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NOTATION

the longitudinal shear area of concrete per
connection.

total area of transverse reinforcement éer
connection.

area of steel beam section

total area of transverse reinforcement pef
unit length of slab.

depth of concrete compression zone

width of concrete siab

thickness of push-off specimen -

concrete compressive force in the slab
compressive force acting at the steel area
subjected to compression

depth of steel beam

length of push-off specimen

Elastic modulus of steel lever arm between
conpressive force, C, and tensile force, T.
lever arm between compressive force, C', and
tensile force, T.

steel beam yield strength

concrete cylinder strength at 28 days
yield stress of transverse reinforcement

height of the cellular part of slab

the concrete and reinforcement coefficients

respectively as used in the empirical approach.
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beam span

length of shear surface at the shear connection

shear span

experimental moment at first visible longitudinal

cracking

experimental ultimate moment of resistance.

theoretical ultimate moment of resistance

number of shear connections in the shear span

number of times each longitudinal shear

reinforcing bar is intersected by a shear

surface

transverse steel ratio
transverse steecl ratic
flexural capacity
transverse steel ratio

flexural capacity

in slab

for the case of partial

for the case of full

transverse stress produced bty transverse slab

reinforcement for the case of full flexural

capacity

transverse steel ratio
transverse steel ratio
of the slab

shear force in a shear
shear force in a shear

longitudinal cracking

in the tensile zone of the slab

in the compressive zone

connection

connection at first



shear force in a shear connection at ultimate
capacity

experimental shear force in a shear connection
at ultimate capacity

theoretical shear force in a shear connection at
ultimate capacity

longitudinal spacing of shear connections
tensile force in steel beam

effective thickness of slab

cube strength of concrete

applied force in push-off specimen

longitudinal shear stress

longitudinal shear stress at ultimate load

shear stress on a concrete element ip the
compression zone of the slab

shear stress on a concrete element in the tensile
zone of the glab

width of push~off specimen
normal stress

transverse normal siress

1]

longitudinal normal stress

the inclination to the horizontel axis of the

line pvassing through the origin and the point
)¢ g I

principal direction at failure

viii
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min

principal direction at failure for the elements
of the compression zone of the slab

principal directioh at failure for the elments
of tensile‘zone of the slab

ratio of the longitudinal normal compressive
stress to the specified concrete compressivé
strength

the value of a when the transverse normal gtress
is zero

the value of a when the transverse normal stress
is (pfy)u o

ratio of the longitudinal normal stress to the
concrete tensile strength

ratio of the shear stress v_ in the compression

C

zone of the slab to the shear stress vt in the

tensile zone of the slab.
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CHAPTER I

LONGITUDINAL CRACKING

The exact magnitude and distribution of stresses
which are present iﬁ practice in a composite floof system
incorporated in a building is extremely difficult to deter-
mine. However, most tests which have been done to study
the longitudinal shear strength ahd the effect of transverse
slab reinforcement were made on simply supported beams with

(3) (4)* For such cases the stresses

a point load at midspan.
present in the concrete slab can be classified into two
groups, depending on their effect. The firét group of
stresses has a major effect on the behaviour of the beam,
and these stresses, usually, determine the ultimate load-
carrying capacity cf the composite beam. These stresses
include: |
1. bending stresses (tension and compression)

as a result of the steel?concrete interaction.
2. longitudinal shear stress which is produced

by the action of the shear ccnnectors.
The second group of stresses includes:
1. transverse bending stress and vertical shear

due to the dead weight of the slab.

2., local compressive stresses in the concrete

at the root of the shear connectors.

* . .
Number in parenthesis refers to the reference listings.



In general, the effect of the second group of stresses is small,

as a result of which they have been neglected in design and
analysis.

The longitudinal shear stress at a section along the

line of the shear connectors is dependent upon the horizontal
shear force, Q, in the adjacent connector. For the case of a

simply supﬁorted beam with a point load at mid span, the shear

force is assumed to be the same for all the connectors. However,

the magnitude of the shear force, especially in the inelastic

range, tends to a maximum at the vicinity of the load point.

Figure (1.l1) shows a typical shear force diagram for a simply

. . . - ' 4
supported beam with constant spacing of shear connectors.( )
In fact, the shear force distribution along the beam is a
function of the slip between the steel beam and the concrete

slab, therefore the Q diagram shown also represents the slip

¢

variation along the besam,

FIG.(1.). TYPICAL 7 . 4
SHEAR FORCE DISTRIBUTION TN
ALONG THE SPAN OF A J—— —7 ‘\A// PLASTIC ZONE

SIMPLY SUPPORTED BEAM _ ELASTIC ZONE

-




All previous design methods have considered constant
longitudinal shear stress through the slab thickness which
is equal to the shear force, Q, in a connector divided by
the shear plane (equal to LSXS). This assumption implies
that the shear strength is the same in the upper énd lower
parts of the concrete slab. Since in all beam tests,‘as
well as in practice, the top part of the slab is in comp-
ression whereas the lower part‘is in tension, the previous
assumption neglects the effect of bending stress on the
ultimate shear capacity of the slab. However, Davies(3)
and the CP117(1) design method recommend that the transverse
reinforcement should be placed in the lower part of the slab

in order to account for the harmful effect of the flexural

tensile stress on shear strength of the slab.

Longitudinal cracking along the line of the shear
connectors may occur if the slab fails to resist the long-
itudinal shear stress produced by the connectors. The
crack development is thought to be due to excessive prin-
cipal tensile stress. Therefore,a plain concrete slab will
fail when the produced principal tensile stress is equal or
greater than the concrete tensile strength which is prop-
ortional to the square root of the compressive strength.(s)
If transverse reinforcement is provided, the cracking
resistance of the slab will be improved such that the crack

starts when the yield stress of the reinforcement is



reached.(3) Thus, a certain amount of reinforcement has to
be used in order to prevent excessive longitudinal cracking of the
slab and to achieve the maximum load-carrying capacity of

the composite beam.

Longitudinal cracking usually starts near the point X
load in a test beam at which the dual action of bending and

(3) (1) that the

shear strésses is a maximum. It is thought
crack stacts in the lower part of the slab then propagates
to the upper part to become visible. This behaviour has
tean reasoned by the fact that axial tension éauses a
decraass in the diagonal tension strength while axial com-
pression increases it. Oﬁce the crack starts, it then
develops towards the supports as the load increases. As a
rezult of the crack development towards the supports, a

greater Loss of interaction between the concrete slab and

H

[vtc: teel-beam is expected to occur, thus cutting down the
load-carrying capacity of the beam. Davies showed that the
progress of the longitudinal crack towards the supports is
dependent upcn the amount of transverse reinforcement

pragsent in the slab. The lower the transverse reinforcement
naranstaer, pfy, the léwer the percentage of theoretical
wltiicate flexuxal capacity at which cracks first form and

the more rapidly they extend towards the suppoxrts. The devel-
opnent of longitudinal cracks can be considered to constitute
a tvpe of failure which must be taken into account in the

tltimate strength analysis of composite beams.
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CHAPTER II

EXISTING DESIGN PROCEDURE

2.1 General

(5)

Neither the CISC ’ AISC(G)

(7)

nor ACI specifications
makes any reference to longitudinal shear stress or transverse
reinforcement in the concrete slab of a composite beam. Thus,
the reinforcement is left to be determined solely by the
transverse bending moment in the composite floor slab. This
means that in case of small or zero transverse moment, as in
most composite tests, there will be no apparent need for slab
reinforcement. For such cases, it was shown by Davies that
only 50 to 60 per cent of the capacity of the composite beam
would be achieved without transverse reinforcement.

In the follo#ing sections, the existing design methods

and equations are mentioned and discussed.

2.2 C.P. 117:1965 Design Equations

The British Code of Practice CP'117, Part I(l) does
cover the longitudinal shear étrength of composite beams with
solid or hunched slabs, but it was written in 1964 when only
a few beams had been tested. HBowever, there is evidence that
the C.P. 117 Equations give a considerably conservative
estimate of the recuired transversé reinforcement as compared

' (3)

to Davies results.



The CP 117:1965 design eguation states that:
The shear force (lbf) per inch run of beam,
gg, should not exceed either
1. the shear resistance per inch run of begm which

is equal to:

2.8 LS/U—‘; + Atfy n . eee (2.1)
orxr
7.5 LS Uw ees (2.2)

Furthermore, the amount of transverse reinforcement
A, to be placed entirely in the bottom of the slab or
haunch should not be less- than:
Q

IE%— in2 per inch run of beam ees (2.3)
Yy

Equations (2.1) and (2.2) can be rewritten in terms
L}
of cylinder compressive strength, fc' instead of U, to be in

the form of equations (2.4) and (2.5) respectively.

Qu '

g $3.5Lg/f + A D .es (2.4)
and

0 '

u

= <10 lefc .ces (2.5)
where,

L, = the length of the shear surface at the shear

connectors, in inches, but not to be taken to be



more than twice the slab thickness.

n = number of times each lower transverse reinforcing
bar is intersected by a shear surface. Generally,
for T-beams, n = 2 and for L-beams n =_1;

It should be stated here that the following assumptions

were made/in the prévious CP 117 Equations:

1. The development of the longitudinal crack in the
slab is mainly due to excessive principal tensile
stress.

2. The resistance of concrete to principal tensile
stress is directly proportional to the square root
of the cylinder strenagth. In fact the concrete
terms in equations (2.1) and (2.4) are derived
from ACI - ASCE committee 326(8) reéommendation
that the ultimate diagonal tension strength of an
unreinforced web shall not exceed 3.5/§Z, which in
terms of cube strength is 2.8/ﬁ;. Similarly, equation
(2.2) is derived from the same recommendation that
the safe upper limit for shear stress is given by
8 f; or lO/QZ depending upon the shape of the cross-
section of the concrete.

3. The reinforcement contribution in resisting longitudinal
shear is proportional to the yield stress of reinforcing
bars. The reinforcement term in equation (2.1)

considers that a crack will certainly develop in the



concrete when the yield stress of the reinforcement
is attained.

4. The reinforcement in the upper part of the concrete
slab is not considered to be effective in reéisting
longitudinal shear and the proposed reinforcement
is in addition to that required to resist transverse
bending of the slab.

5. Neither the longitudinal bending nor the Qidth or
length of the slab have been taken to have any
effect on the longitudinal shear strength of the

concrete slab.

2.3 Johnson Design Method and Approach

In his paper "Longitudinal shear strength of composite
beams"” Johnson(z) has recommended a new ultimate design method
for the transverse reinforcement in the solid slab of a
composite beam. He studied all available results of tests to
failure on positive and negative moment regions of composite
beams with and without negative transverse bending of the slab
including over 60 beams at Cambridge University. His design
method makes use of the folloQing conclusion which he had found
from his study.

1. All transverse reinforcement contributes to long~

itudinal shear strength, irrespective of its level

in the slab and of the magnitude of the negative



transverse bending moment.
2. No account need be takeﬁ of longitudinal bending
(of either sign) in determining the lonéitudinal
shear strength of a composite beam.
Johnson has found that the shape and dimensions of the
composite beam affééts the required amount of reinforéement.
He stated/that the value of pfy for a given shear stress, Var
depends on' the shape coefficient of the beam which is essentially
the ratio of the slenderness of the beam to that of the slab
forming its top flange. He also reported the effect of the
shape coefficient, A, to be as shown in Fig. (2.1). Nevertheless,
he neglected the effect df A in his design equations on the base
that the practical range of A was found to between 0.7 and 1.4.
Johnson's design method proposed the following:
The total amount of transverse reinforcement should
satisfy ‘ | '
pfy > 1.26 Vo "~ 3.8/?2- oo (2.6)

> 80 psi e (2.7)
and the reinforcement should be placed in the slab such that:
1
£, 2 ipf
Pety 2 7Py
2> the reinforcement required to resist

negative transverse bending of the slab

LI (2.8)
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where Vg = the mean ultimate longitudinal shear stress on a
possible plan of longitudinal shear failure.

and Py, and Py = the transverse reinforcement per unit area
present at the bottom and top of the concrete slab,
respectively.

Almost the same assumptions as well as ﬁhe variable
parameters used in CP 117 design equations have been used by
Johnson, resulting in a reasonable similarity between the two
designs. The main two differences between CP 117 and the
Johnson design equations are the reinforcement and concrete
coefficients and the placement of the reinforcement in the
slab. |

For comparison purposes, the two previous design
equations as well as Davies' are represented graphically in
Fig. (2.2). Davies work and approach are discussed in detail

in Chapter 1IV.
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CHAPTER III

TESTS ON COMPOSITE BEAMS INCORPORATING
3 - in. CELLULAR DECKING

2.1 General

For composite steel-concrete keams having a solid
slab it has been demonstrated expérimentally that slip
between the steel beam and the concrete slab is small,
resulting in the effect of slip being neglected and the com-
posite beam considered as having full interaction. However,
with a composite beam incorporating cellular metal decking
the cellular zone constitutes a much more flexible zone
between the solid part of the slab and the steel beam, and
in which larger slip can occur, resulting in some loss of
interaction. In addition, the cellular metal deck as well
as the geometry of the concrete ribs present more diffic-
uities in predicting the overall behaviour and the stresses
acting in the solid part of the slab. Therefore, it is
expected to see some differences in the behaviour and per-
formance of the two previous types of composite beam as

far as longitudinal shear strength of the slab is concerned.

Most test results available to date have considered
the ultimate capacity of the composite beam without detail

or any reference to the behaviour and performance of the
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beam at the start of longitudina% cracking. Davies has
studied the stage of first cracking in enough detail, and
his tests on solid slab composite beams as well as‘his
empirical approach are discussed in the following chapter.
Three composite beams incorporating cellular metal decking
which have been tésted are reported in this chapter Qith
an emphaﬁis on the stress conditions at first visible

longitudinal cracking.

The tests reported herein were originally made to
study the ultimate capacity and performance cf the type of
beam in question. The experimental work consisted of three
simply supported beams of different span length and siab
width which were loaded to failure by a single point load

at mid-span.

3.2 Description of Beams:

The identification of the beams used herein is as
follows: the numerator and denominator of the subscripted
ratio denote the width and span length in feet of the
concrete slab respectively. Thus B8/30 designates the beam
having 8 ft. slab width and 30 ft. span length.

All the beams fested had the same amount and type
of transverse reinforcement, steel beam, metal deck and
shear connectors. Description and properties of the beams
are summarized in Table (2.1), whereas detailings and

dimensions are shown in Fig. (3.1). The transverse
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reinforcement of the beam was provided by using 6 x 6, 10/10
welded wire mesh placed approximétely at mid-depth of the
solid part of the slab. The mesh wires are 0.135 - in. in
diameter resulting in 0.0143 in.2 cross-sectional area

and placed at 6 - in. centres in both transverse and long-
itudinal directions. Based on 0.2 per cent proof stfess,
the yield stress of the wires, as given by the producer,

was 64,000 psi. Since this stress is greater than the upper
limit recommended by the British Ccde of Practice CP117(1),
so 60,000 psi was taken to be the yield stress of the
transverse reinforcement used in the beams,

Although the steel beams were all fromva single
rolling, difference in the yield stresses, Fy, were
recorded. Four test samples taken from the web and the
flanges of each beam were tested for the yield stress and
the average of the four values was considered. The term
ASFY of each beam was calculated from the sum of the areas
of the flanges and the web multiplied by the corresponding
yield stress.

The metal deck used in the beams was 22 gauge.

The concrete ribs of the slab formed by the cellular deck
were 2-1/8 in. wide at the bottom and 2-3/8 in. at the top

with 2-7/8 in. in height and they were at 6 in centres.

Headed studs 4-1/2 in. high and 3/4 in. diameter were

staggered at the outstanding legs of the steel beam flanges.



Details and properties of test beams incorporating cellular decking

TABLE (3.1)

' CONNECTORS TRANSVERSE REINF, STEEL BEAM YEILD STRESS
BEAM fc ASF
S m Ay P pfy Top flg.| Bot. flg.] Web y
psi in. inz/in psi psi psi psi kip
B8/30 4,470 6 29 0.0024 10.097 58 48,100 48,100 (48,910 428
B10/30 4,060 6 29 0.002410.097 58 43,510 43,100 143,860 | 385
58/40 4,470 6 39 . 0.0024{0.097 58 48,100 48,100 (48,910 428

91
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The studs were placed sﬁch that the transverse spacing
was 3-1/2 in. and one stud per rib resulted in longitudinal
spacing, S, of 6 inches. 7

The concrete was a commercial ready-mix with a
maximum aggregate size of 3/4 in. and a nominal 28 day
strength of 3,000 psi. The average crushing strength of
concrete cylinders at time of test for each beam as well

as other detailings are listed in Table (3.1).

3.3 Instrumentation and Test Procedure

Electric strain gauges were mounted on the steel
beam and the top surface of the concrete slab.Fig.(3.1)
shows the type and locatioun of the strain gauges used in
the tested beams.0.001 in. dial gauges were used to measure
the mid-span deflection. Six 0.0001 in. dial gauges, two
at the ends of the slab, were mounted to each slab to
measure the slip between the top flange of the steel beam
and of the concrete slab.

All beams were simply supported and tested to
failure with a centre-point load applied by means of a
hydraulic jack. The load was applied in 1 kip increments.
For each load increment, gauge readings were recorded after
a waiting period because a significant relaxation of load
occurred.

Strains were measured acrosslthe steel beam section

at mid-span before and after pouring of the concrete and during
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the curing stages to record the dead load and the shrinkage

strains.

3.4 Test Results and Analysis

Fig. (3.2) shows the curves of the applied load
versus mid~-span deflection for the three beams. Also shown
in the same Figure are the theoretical ioad-deflection
curves assuming complete inﬁeraction, and the stages at which
longitudinal and flexural cracks became visible.

The horizontal shear force Q at any stage of load-
ing can be found with reasonable accuracy by means of the
strain diagrams across the steel beam section. The strain
diagrams for the three tested beams, drawn by means of
strain-gauges readings, at first visible longitudinal crack
(at point ¢ in Fig. (3.2)) are shown in Fig. (3.3). Know-
ing the strains, the stress distributions across tﬁe steel
beam were drawn as shown using a yield-strain value, ey,
equal to the average yield stress for each beam divided by

the modulus of elasticity, E, of steel (29 x 106

psi).
For equilibrium of forces shown in Fig. (3.4) the

following equation must be satisfied:

T=C+ C' ees(3+1)
where C is the total compressive force present in the
concrete and C' and T are the,total'compressive and tensile

forces present in the steel section respectively.
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Thus
cC = T - ¢C°
and since C at a section in between the point of zero and
maximum bending moment must equal the sum of the shear
forces acting between the section under consideration and

the point of zero moment, then .

/

C = IQ _ e (3,2)
Therefore
ZQC= T-C~
Q. .
or Q= == = == cee (3.3)

Knowing C° and T for each.beam from the stress diag-
ram, then Qc at first visible crack can be found using equation
{3.3). In the calculation made herein, the yield stress and
strain for each beam were assumed to be equal in tension and
compression, and that the tensile stress in the concrete
slab is negligible.

Table (3.2) shows the calculated shear force Qc and
the corresponding longitudinal bending moment at first
visible crack as well as the theoretical and experimental
ultimate shear force and moments for each beam. The theor-
etical values of shear and moment were calculated'assuming
complete interaction between the steel beam and the concrete
slab, whereas the experimental values were found by means

of trial and error using the partial connection concept.
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SECTION STRAIN STRESS

FI6. (3.4) - GENERAL STRAIN AND STRESS

DISTRIBUTIONS AT FIRST VISIBLE LONGITUDINAL
CRACK,



TABLE (3.2)

Summary of test results

BEAM

eQ

tQ

eM

eM

M
c xu u c u u c/tMu c/eMu u/tMu
k k k ke.in k.in | k.in
38/30 6.35| 9.15} 14.75{3,350| 4,170} 5,100 0.66 0.80 0.82
B10/30 7.0 8.27( 13.3 |3,590| 3,910 4,650 0.77 0.92 0.84
88/40 5.9 5.4 11.0 {4,200 4,020 5,100 0.82 1.05 0.97

A4



Fig. (3.5) shows the stress distribution at mid-span section
for the two cases: (a) complete connection, and (b) partial
connection.

The ultimate strength of the headed studs used in
the beams was believed to be mbre than that required té
achieve the theoretical ultimate flexural capacity of the
composite beams. None of the beams tested showed any evid-
ence of stud failure or punch out of the rib. All the
beams were designed such that the theoretical piastic
neutral axis would be within the solid part of the concrete
slab. Therefore, the theoretical ultimate shear force for

the tested beams would be given by equn. (3.4)

ZQu = C and C =T = AsFy
Then ZQu = ASFy
. ASF
or Qu = ‘—E—X- eee (3.4)

and the theoretical ultimate moment would be

_ d . a

c AgF ce. (3.6)

Where a = — = '
0.85 £b 0.85 f b

and t, h is the thickness of the solid and ribbed
parts of the slab respectively. d is the depth of the

steel beam.
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The experimental ultimate moment was found for
each beam directly from the ultimate applied load, whereas
the corresponding shear force, i.e. eQu' was found by
solving by trial and error for the forces C and C” which
satisfy force and moment equilibrium. Thus the féllowing
equations had been satisfied in finding eQu for the
three beams:

for force equilibrium,

c+cCc’ =TT
Substitute T = ASFY - C
AsFy - ¢
and rearrange to get C~ = -—72———— : Ceee (3.7).

and for internal moment equal external moment:
M, = applied moment
= C.e + C’. e° ess (3.8)

It was shown in Fig. (1.1) that the slip in the
in-elastic zone of the composite beam tends to a maximum
before or at the vicinity of the point-load. This is also
indicated in a composite beam incérporating cellular deck-
ing. Fig. (3.6) shows the slip distribution as measured
during the loading process of keam B10/30. It is clear
from the figure that the maximum value of slip has progressed

towards the center line of the beam as the lpad increases

and that the equal slip or shear force assumption along
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the span starts to be viclated just before or at the
start of longitudinal splitting of the slab.
More discussiocn of test results and comparison

with solid slab composite beam are mentioned in Chapter V..
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CHAPTER 1V

DAVIES' TESTS AND EMPIRICAL APPROACH

4,1 CGeneral

(3)

The object.df Davies experimental pr&gram was to
study thé behaviour of half-scale composite T-beams when the
connector spacing or the amount of transverse reinforcement
waé reduced in successive beams. He reported in his paper
the result of tests on seven steel-concrete compésite beams

four of which, identified as series 2 beams, were tested to

study the longitudinal shear strength.

4.2 Description of Beams and Test Results .

All the beams were simply supported and tested to
failure at an average age of 35 days by means of a centre point
load. The beams had the same cross-section, span length and
the same number of identical welded stud shear connectors.

The proportion of the beam cross-sections were such that under
ultimate load the plastic neutral axis was in the slab. The
studs in all the beams were arranged in a single line along
the centre of the top flange.

The transverse reinforcement of the slab was provided
by means of steel bars 0.212-in. in diameter and having a

yield stress of 60,000 psi. Fig. (4.1) and Table (4.1) show
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the important details of the beams whereas a summary of the
test results is given in Table (4.2). The amount of transverse
reinforcement was reduced iﬁ successive beams,

The failure qf beam Ags which had the larggst émount
of transverse reinforcement, was a flexural failure of the slab
at mid~span. This was not accompanied by any longitudinal
crack along the line of the shear connectors. For the other
three beams, longitudinal crack started before achieving the
theoretical ultimate moment and the final failure of the beams
was accompanied by flexural crushing of the concfete slab at
mid-span. In no case was there any failure of the shear_
connectors themselves. |

The moment-deflection curves for the four beams are

u/tMu'
are plotted in Fig. (4.3) against the

shown in Fig. (4.2),while the ratios of moments eM

and eMC/

eM
c/eMu tMu

percentage transverse reinforcement. It is clear from the

two previous figures that the variation of transverse rein-
forcement produced a quife definite influence_on the capacity .
of the beams to achieve their ultimate moment of resistance.

The eMu curve shows that the ultimate moment could be

/tM

u .
achieved if the amount of transverse reinforcement was equal
to or greater than 0.5 per cent. This percentage of reinforce-
ment was considered by Davies to be the minimum that was

adequate for the beams tested. In addition, he reported that

there would be little, if any, gain of strength for an amount
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TABLE (4.1)

Details of beams A4, B4, C4 and D4

BEAM U CONNECTOR TRANSVERSE REINFORCEMENT STEEL BEAM
ps: S m ,Arc P pfy As Fy
in, in2/connec. ] psi kip
A4 6,200 1.51] 16 0.0355 0.94 564 111
B4 7,300 1.5} 16 0.0177 0.47 282 114
c, |7,300 | 1.5] 16 0.0088 0.235 | 141 115
D4 6,500 1.5 16 0.0044 0.118 71 115

Summary of test results of beams A4,B4,C4 and D

TABLE (4.2)

4
3
BEAM Qc eM, My ™My
Kip K.in. | k.in.| k.in.
A, 6.92 - 492 455
5,15 417 485 485
c 4.03 362 438 487
D 3.14 303 377 474
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of reinforcement in excess of 1.0 per cent.

The effect of transverse reinforcement on the amount of
slip between the steel beam and the concrete slab is illustrated
in Figures (4.4) and (4.5). The first figure shows tﬁe total
end slip plotted against mid-span moment for the four beams
while the second shows the slip variation at different sections

along the span of beam B4.

4.3 An Empirical Approach:

Davies applied the same assumptions as those in the
CP 117 design equations when he derived his design equation
by using the following empirical approach: V

For the case of no transverse negative moment in the
slab, the capacity of the slab to resist longitudinal cracking
is dependent upon both the concrete and the transverse rein-
forcement. Therefore, the total resistance of the slab to
longitudinal cracking is the sum of the concrete and reinforce-

ment contribution and may be expressed as:

YcAcc ¥ YrArc

where . = F(Uw)

Yy = G(f,)

Acc = shear area of concrete per connector

= t.s

Arc = total area of transverse reinforcement

per connector

= A_.S

t.



The development of a crack is caused by excessive
principal tensile stress which can be considered to be
comparable to the square root éf the cylinder or cube strength
of concrete. A

Thus Yo = F(Uw) = K /Uw

1

Since a crack would certainly develop in the concrete
when the yield stress of- the reinforcement is attained, then
Y, can be taken to be proportional to £

b 4

i.e. Y = G(fy) = K2 fy

where Kl and K2 are constants.
Then:
capacity of slab (per

connector) to resist = ees (4.1)

longitudinal cracking = Xy Ao /U + K, A fy

Using the experimental data equation (4.1) can be written for

each of the beams Bé, C4 and D4=

5.15 = 3.75 Kl v¥7300 + 60,000 x 0.0177 K2 )
, )

4.03 = 3.75 Kl v7300 + 60,000 x 0.0088 K2 ) (4.2)
. )
3.14 = 3.75 Ky Y6500 + 60,000 x 0.0044 K, )

From the graphical representation of the above three equations,
shown in Fig. (4.6), Davies has selected approximate values
for Kl and K2 as 8.5 and 2.4 respectively. Then equation

(4.1) becomes,

Q. = 8.5 A /B; + 2.4 A fy A cee (4.2)
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The ideal failure of a éomposite T-beam would be the

simultaneous occurrance of |
i) flexural failufe of the concrete slab
ii) shear connector failure, and

iii) 1longitudinal cracking of the slab.

For such an ideal case of failure,Qc must be equal to Q,,
where Qu is the ultimate capacity of one shear connector.

Then ,from equation (4.2).

Q, = 8._5 A ./Er‘w +2.4A fy
= 8.5 t.S /YJ; + 2.4 A .S fy
or
Qu
'§'_= 8-5 t/[TVV+2.4 At fy ) o e (4.3)

Equation (4.3) displays the relative éontribution of
the concrete and reinforcement to slab shear resistance for
the three half-scale T-beams tested. Davies did not suggest
the equation is fully applicable to beams under feal conditions
of loading since such an empirical formula can be valid only
within the scope of the experimental condition and accuracy.
The graphical representation of equation (4.3) is shown in
Fig. (2.2) using U, = 7,000 psi.

Using equation (4.3) it is possible to estimate the
amount of transverse reinforcement which would have permitted
a crack to have appeared longitudinally in beam A, at the same

time as ultimate flexure, when the load per connector was
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6.92 kips. Putting the appropriate values in equation

(4.3) to get:

0.0205 in%/in.

b
0

then P = 0.82%
pf.. = 492 psi

Therefore, Davies has concluded that the minimum amount
of reinforcement necessary to prohibit the development of
longitudinal cracking prior to failure was found to be 0.82

per cent for the section of the test beams..
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CHAPTER V

DISCUSSION OF LONGITUDINAL SHEAR FAILURE

Although both types of composite beams, discusséd in
the previous two Chapters, behaved fairly similarly at an
early stage of loading, some differences were noticed at the
longitudinal cracking locad as well as at ultimate load. 1In
addition, all tests have shown the importance of transverse
slab reinforcement and the necessity for a reliable design
method that gives the least amount of reinforcement required
to prevent the development of longitudinal cracking. It is
the object of this Chapter to point out the major differences
in the behaviour of solid and ribbed slab composite beam
tests and to check the adequacy of the existing design equat-

ions.

5.1 Comparison of Test Results

It is clear from Figures (3-2) and (4.2) that the slab
type has influenced the load-midspan deflection curves of the
two types of beam tests. The moment—deflectiqn curves for
Davies' beams did not show any discontinuity or abrupt rate
of change of deflection either at thé start of cracking or
at any later stage of loading. The rate of change of deflect-

ion began to increase steadily at the vicinity of the cracking

load. However, for all the beams with cellular metal decking
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a sudden drop of load acéompanied by a longitudinal crack

can be noticed from Fig. (3.2). Thus, the sudden drop of
load can be considered as a épecific phenomena of longitud-
inal shear failure of composite beams incorporating metal
decking. This phenoﬁena can perhaps be explained by the
following reasoning. Part of the longitudinal shear is
likely to be resisted by frictional stresses present at the
upper surface of the metal deck. The static frictional stress
will increase the shear resistance of the lower part of the
slab which has low shear capacity due to the presence of
axial tensile stress at that part of the slab. When the _
applied load produces a shear equal to the totél shearing re-
sistance of the slab, a sudden longitudinal crack is expected
to occur through the total thickness of the slab. Therefore,
it is not necessary in such beams that the crack should start
at the lowef part of the slab and then propégate gradually up
to the top surface as had been reported(3) for solid slab '
composite beams.

Another difference which is worth mentioning is the
slip characteristics at ultimate loads. Comparing Figures
(3.6) and (4.5), it can be stated that the differenée between
the maximum and minimum slip at any load in the in-elastic
zone is comparatively small in Davies' beams as compared to
the ribbed slab beams. Therefore, solid slab composite beams

are expected to give better agreement than cellular slab
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type as far as the assumption of egual shear forces, Q,
is concerned.

Considering the empifical approach used in deriving
Davies' design equation, similar equation to eq. (4.2) can
be written for the béam tests incorporating cellulér metal
decking. Eq. (4.3) is applied for each of 38/30’ BlO/ﬁO and

38/40 using an equivalent cube strength as reported by
(9)

Evans to get:
6350 = 15k, /5100 + 0.0145 x 60000 K,
7000 = 15K Y4500 + 0.0145 x 60000 kz eee (5.1)
5900 = 15K, 5100 + 0.0145 x 60000 K

1 2

The plot of the above three equations are shown in
Fig. (4.6). From that plot, it is clear that there is no
possible solution for Kl and K2 similar to those found by
Davies. It would be more reasonable, according to the emp-.
irical method of approach, to expect the three lines to be
almost identical. This is because the three beams have the
same reinforcement parameters with slight change in the
concrete parameters. An explanatién for the aétual plot of
the lines can be reasoned by the existing differences in the
slab width and length of the three tested beams which are

believed to have a pronounced effect on the shearing resistance

of the slab.
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5.2 Test Results Versus Existing Design Procedures

CP 117 and Johnson, as discussed in Chapter II, have
suggested empirical equations for estimating the longitudinal
shear strength of the concrete slab for a given concrete strength
and transverse reinforcement. Thus, this slab strengﬁh cén be
calculated from the recommended equations for each beam test
at the start of longitudinal cracking of the slab. The com-
parison between the test results and the existing design pro-
cedure is made for convenience in terms of the percentage of
transverse reinforcement as shown in Table (5.1). The equiv-
elant cylinder or cube strength of concrete is interpolated
using Evan's(g) data. In this Table, p represents the calcul-
ated percent transverse reinforcement which is given by the
applicable design equation to achieve the shearing capacity of
each beam up to the start of the first visible longitudinal
cracking. The ratio(theor. p/exper. p) represents the ratio
of the calculated percentage to the actual one of each beam.

It is clear from this ratioc that both the CP 117 and Johnson
design equations give conservative estimates of the longitudinal
shear capacity of the tested beams. In the same Table thé
calculated theoretical percentage of the transverse reinforcement
required to achieve the maximum load-carrying capacity of each

beam is also listed. This percentage,(p)u,which is calculated



TABLE

existing theories.

(5.1)

47

Comparison of the experimental and theoretical
percent transverse reinforcement of the tested

beams at first longitudinal cracking load,vwith

c.P. 117 JOHNSON
BEAM th h
eor. p ‘theor. p

P exper. p (p)u p exper. p (p)u

3 % ] %
B8/30 0.177 1.83 0.54 0.133 1.37 0.61
310/30 0.196 2.02 0.48 0.133 1.37 0.53
B8/40 0.166 i.71 0.33 0.133 1.37 0.35
B4 0.74 1.58 1.19 0.86 1.83 1.49
C4 0.49 2.10 1.20 0.61 2.58 1.50
D4 0.35 3.00 1.22 0.39 3.28 1.52
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A F
using Q = —%41 seems to be also on the conservative side for
Davies' beams. This is because Davies reported it to be 0.823%

as calculated for beam A4 in the previous chapter.



49

CHAPTER VI

PROPOSED DESIGN METHOD

6.1 General

A new ultimate strength design method for the trans-
verse slab reinforcément of a composite beam is proposed.
The method is based on estimating the magnitude of pfy re-
quired which permits a crack to develop longitudinally at
the same time as flexural capacity of the slab is attained.
The method is then generalized to include other types of
composite beam failure. The approach and analysis used
herein is considered to be valid for simply supported com-
posite beams, with solid, ribbed or haunched slab.

The proposed method of design makes use of Cowan's(lo)

criterion of failure and the method of construction of the

relationship between v and pfy as outlined in Reference (11).

6.2 Theory

6.2.1 Cowan and Zia Envelopes of Failure

To evaluate the strength of a member subjected to
biaxial stress, one must establish a criterion of failure.
Several theories of failure for concrete under combined
stresses have been proposed, such as Mohr, Rankine, Coulomb
and Cowan. Cowan suggested the combination of the maximum
stress (Rankine's) and the internal friction theory

(Coulomb's) as a dual criterion of failure for concrete.
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His suggestion was based on the cbservation of two distinct modes
cf failure of concrete, cleavage and shear fracture. Cowan's
failure envelope is shown in Fig.(6.1) where Cy and C, are

Mohr's circles representing simple tension and simple compression,
respectively, and that 37 degrees is assumed to be the angle of
internal friction of normal concrete.

A modification of Cowan's theory was proposed by Zia(lo)
in an attempt to reduce the abrupt change from pure cleavage
failure to pure fracfure failure. The modification is also
shown in Fig.(6.1) and the resultant envelope will ke identified,
hereafter, as the Zia envelope.

6.2.2 The Experimental and Theoretical Work of Hofbeck,
Ibrahim and Mattock(ll)

The authors of Reference (1ll) studied the shear transfer
in reinforced concrete; that is, when shear failure is constrained
to occur along a plane. This typé of shearing action is called
"shear transfer“ irn order to distinguish it from that usually
occurring in a reinforced concrete beam. Thirty-eight push-off
specimens were tésted, some with, and some without a pre-existing
crack along the shear plane. A method was presented for the
calculation of shear transfer sirenqﬁh in initially uncracked
concrete based on a slightly modified version of the failure
envelope proposed by Zia.

To explain how the v, pfy relationship can be constructed(ll),

consider a push-off specimen of width w, thickness b’ and shear

plane of length d. The stresses acting on a small element of
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concrete lying in the shear plane will be as shown in Fig. (6.2),

where .
v = v/pd -
Op = pfy
o = V/bw
y /

Since for a particular patterns of push-off specimen v/oy ;s
constant, points on the Mohr circles; Fig.(6-2); at failure corr-
esponding to v and oy will all lie on the straight line OA inclined
at angle 6 to the normal stress axis, where 0 is tan-1 (v/oy).
The term (v/oy) is fixed by the proportions of the test specimen
and is equal to w/d. A series of circles are drawn, each tangent
to the failure envelope. Where line OA cuts a circle establishes
the point v, oy for the stress conditions at failure represented'
by that circle. A line is drawn through point v, oy and through
the centre of that circle. Where this line cuts the circle diam-
etrically opposite from point v, oy,fixes the point v, Ous that
is, v, pfy. By repeating this process for several circles, a
succession bf points A\ pfy can be obtained. ‘A line through
these points is the v, pfy relationship obtained in the push-

off specimen(ll).

6.3 Shear Transfer Concept as Applied to the Slab of
' Composite Beam

Consider a transverse strip in the slab of a composite
beam taken between two adjacent connectors. The forces acting

on that strip are as shown in Fig.(6.3). The shear force Q,
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wihich is taken to be equal in all the connectors, produces a

(1),(2),3)

shear stress along the two shown suriaces
follows that the shear failure in the strip is constrained to
occur along a predetermined plane. This type of shear action
has been defined in Reference (11) as a "shear trénéfer". In
fact, a reasonable similarity exists between the strip shown
in Fig.(6.3) and the push-off specimen shown in Fig,.(6.2). The
main differences between the two cases are the number of shear
surfaces and the nature of the longitudinal stress oy. In the
slab of a composite beam the shear plane consists of two parallel
surfaces separated by the studs which run along the span. In
addition, ay in the composite slab is produced by the bending
stress which may vary in sign and magnitude throughout the thick-
ness of the slab. |

Due to the.variation in GY throughout the slab thickness,
it follows that the shear carrying capacity of concrete should
vary through that thickness. That is because the former has a
pronounced effect on the latter(3). Herein, the shear stress
produced by Q is considered to vary through the slab thickness
and 1is dependent upon the shear resistance variation.

In general, two zones can be distinguished at ultimate
load through and across the slab thickness. The first zone is
that above the neutral axis of the slab which is under longit-

udinal compressive stress. The second zone is the tensile zone

stress below the slab neutral axis. Both zones are shown in
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Fig.(6.3). Hereafter, the subscripts c and t will refer to
the compressive and tensile zone respectively.

Consider two small concrete elements at the éhear surface
such that each one is taken from one of the two concrete zones.
From the above discussion and assumptions, it follows that these

elements are subjected to the stresses shown in Fig. (6.4), where,

af =0 £2 = ¢ and 0. = pf .
c yc ’ B t Y X P Yy

6.4 Stress Conditions

Due to the similarity in the concrete elements of the
push-off specimens of Reference (11) and the previous slab str;p,
the same procedure can be adopted to find the v, pfy relation
for a given element (c¢) of Fig.(6.4) in the composite beam slab.
Fig.(6.5) shows this relation for different values of 6. For
the plotted values of 6, either the Cowan or Zia envelope of
failure has been used since both give identical results.

Consider the dotted curve shown in Fig.(6.5). It rep-
resents the maximum possible Oy that would be utilized if afé
is maximum. This state is represented graphically in Fig. (6.7)
for which the subscript u has been used to identify the corres-
ponding ultimate stresses. In fact, this dotted curve can be

drawn directly from Fig.(6.7) by taking several values of 6 to

v pf
find the associated(—$), and (——¥). It is clear that for diff-
f

c . . .
erent values of 6, thé locus of €hese points is a circular curve
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v
which is tangent to the —$ axis and having the pcint (% , 0)

e

as centre. This dotted curve of Fig.(6.5) is the front part of

the circle of Fig.(6.7). For this circle the relation between

8 and (pfy)u can be given by:
]
£, |

It is clear from Fig. (6.2) that 6 is given by:

v
_ c
tan § = —¢ | .. (6.2)
of
c
then a = (Z$) 1 ves(6.3)
£ tan 0
c

Therefore, by equation (6.3), the relation between a and

pfy at a given 6 can be plotted using the corresponding values
Ve pf

of — and ——¥ from Fig.(6.5). This relation is shown in Fiqg.(6.6).
f f

c e
The line corresponding to (pfy)u is also shown in this figure
which gives the associated values of o, i.e. a,- |
Another interesting case to study is when pfy = 0. This
case can be shown graphically as shown»in Fig.(6.8). It follows
that a state of stress exists for the concrete element (c),
Fig.{6.4), in which there would be no need for any transverse
reinforcement and that the element shear resistance is capable
of taking the applied shear. The normal stress coefficient, a,
for this case (i.e. pf_ = 0) is known from Fig.(6.6) for a given

Yy
value of 6,
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FIG, (6.5) - THE RELATIONSHIP BETWEEN v,
AND »f,.
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F16, (6,6) - THE RELATIONSHIP BETHEEN a
AND e, .

12
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FIG, (6.8) - STRESS CONDITION FOR pf, = 0.
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6.5 Flexural Failure of the Slab and Associated Stresses

The flexural failure of the slab has been the most common
failure of composite beam tests. In general, this failure, if
not accompanied by any longitudinal or connection failure,
indicates that the beam has achieved its maximum capacity. For
such cases of failure, the stresses present in the most highly
stressed section have been assumed as shown in Fig.(6.9). 1In
this figure,.the stress distribution is taken to be similar to
that present in a reinforced concrete member. In fact, this
similarity does not entirely hold true in composite beam slabs
which are assumed to have vertical shear surfaces, Fig.(6,3).
This is due to the existence of the longithdihal shear stress at
the shear surfaces. Theoretically speaking, a concrete element
will crush if it is subjected to a uniaxial stress equal to f;.
But the element capacity would be reduced if a shear stress is
applied in addition to the normal stress. To clarify this
point further, consider the stresses acting on the concrete
element (c¢) at Fig.(6.4). The maximum possible af; that can be
applied on that element was found to be given by a,e

From Fig.(6.6) it is clear that ay is equal to unity if,
and only if, 0 is zero and it decreases as 6 increases. The
angle 6 is zero only when the applied shear stress, Vo s On the
element is zero. From this it follows that the presence of

shear prevents the elements from achieving their theoretical

R .
flexural capacity fc' In such cases, the failure of the elements
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FIG. (6.9) - STRESS DISTRIBUTION ACROSS THE
BEAM AT ULTIMATE LOAD, -
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would be of the shear-fraction type. In this type of failure, the
failure plane would be along the principal plane inclined by
the angle g# = 0 to the longitudinal axis of the slaﬁ. However,
it is expected that the shear-fraction failure of the elements
at the shear surface will be quickly followed by flexural fail-
ure of the concreteVOn both sides of that surface. |

Theéefore, and as far as the compressive part of the
slab is concerned, the ultimate capacity of the concrete elements
at the shear surface would be achieved when the major normal

[ ]
stress is a fc' For this case, it was found that the trans-

u
verse slab reinforcement should be capable of providing a stress
equal to or greater than (ﬁfy)u, and that the amount of ;ein~
forcement can be given by equation (6.1).

In Fig. (6 .9), the bottom of the stress block is consid-
ered to represent also the position of the slab neutral axis.
Hereafter, the part of the concrete below the distance (a) from

the top fibres of the slab is assumed to be under constant

]
tensile stress equal to B ft. , where,

C

* ° fcb

and since for ultimate flexural capacity of the slab

C = 2Qu = AS Fy
AS FY XQu
Then a = -o-:-g-s—-f—|—b- = b-.—g-—s-;-l: --.(6.4)

c c



] .
Following the same reasoning as that used for afc, then here

also § will be less than unity due to the presence of shear.

6.6 Basic Equations

Since all the elements under the same stresses have the
same shear resistance, then equating the forces acting on.one of

the shear surfaces of the slab strip of Fig.(6.3) we get:

~

- Q, . : : '
7 =V, as + v, (t-a) s o eee(6.5)
or . ‘ , L
QV _ : -
— =v, as [1+§.‘53_1
v, . -
where p =5 represents the comparative shear resistance
t of elements (c) to elements (t), Fig.(6.4).
Then PR : - .
AT ST ... (6.6)
c 2as ap i

Since for the case of flexural failure of the slab we

have vé
- tan 0 —c
0.85 fc

then, substituting in the above equation for v from equation (6.6)"

we get - Qu 1 t-a
tan 0 EYS [l + 5-5-

1}
0.85 fc.

By substituting the value of a as given from equation

[ ]
(6.4) and cancelling the terms 0.85 f_, we get
Q b

_ u - t-ay -
tan 6 = Yé-; 35 [1 + 5_0— i
| _ b t-a
or tan B-—m (1 +5_F’—]
Where m = éQ is the number of connections up to the

section under consideration.
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Since Sm is equal to the shear span L, then the above
equation becomes:
b ol -

t-a
tan e = g [1 + ——] . 000(6.7)
ZLV ap

6.7 The Contribution of the Slab Tension Zone

Fig.(6.10) shows a general stress condition for a long-
itudinal shear type of failure since:
(i) the ultimate flexural failure is not achieved; a < a,

(ii) circles c, and c, are tangent to the failure envelope.

For this case, let Vo and Ve denote the average shear
stress of the top and bottom of the concrete slab respectively.
It is clear from Fig.(6.10) that Ve >> Vv, or p >> 1.0. In fact,
it is believed that p is not constant throuéﬁ the process of
loading of the composite beam. It starts, say, with a value of
unity until the limiting stresses of the tension zone elements
are attained. Then, due to the constraint provided by the upper
part of the slab, it is expected that, with the increase of load,
the lower part of the slab remains in a stationary condition
without longitudinal shearing. That is to say, vy remains con-
stant while the shear stress in the compressive zone is gradually
increasing. Finally, a longitudinal crack is expected to start

at the lower part of the slab as the ultimate condition of the

compression zone of the slab is approached.
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COWAN FAILURE
ENVELOPE,_

FIG, (6,10) - GENERAL STRESS CONDITION AT
FATLURE. |



Referring to Fig.(6.10), it seems reasonable to assume
that the two principal direction ¢c and ¢t are equal prior to

failure, where

Ve

tan ¢t=f—r—-————— ...(6.8)
+ pf '
t Y

and 2vc ‘ ‘
tan 2¢ e It ‘ ..-(6.9)

¢ af - pfy
This assumption implies that the crécking surface tends to be
continuous throughout the shear surface. However, if ¢c # ¢t
it is expected that there will be an abrupt change in the créck
pattern through the thickness of the slab, and that change, if
present, has to be at the slab N.A. | |
Thus, substituting ¢c = ¢t = ¢ into equations (6.8) and

(6.9) we get: '

af . - pf
= c
vV, = tan 2¢ [——_—5——~XJ
) L
and v, = tan ¢ [f  + pf ] |
ot
_  tan 2¢ af, - pfy ' ... (6.10)
Then P = 7T tané v
ft + pfY

Equation (6.10) shows that p is a function of ¢, «, pfy and the
concrete strength. To check the practical range of variation of
p in composite beams consider the two extreme cases:

(i) the case when no transverse reinforcement is used, aé

represented in Fig. (6.8).
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Substituting pfy =0 ih equation (6.9) we get;

tan 2¢ = 2 —S
afc
Avc
but since tan & = —p
af
c
Then ' ) :
tan 2¢ = 2 tan 6 ees(6.11)

/

Then, for a given concrete strength and 8, the corres-
ponding p is calculated from equation (6.10) by knowing ¢ from

equation (6.11) and a from Fig.(6.6).

(ii) the case when ultimate capacity of the slab is
achieved; i.e. when pf, = (pf.)_.
chieve i when p ¥ (p y)u )
It follows from Fig. (6.7) that ¢ = 6. The same pro-

cedure as above is used to find p for a given 0.

The relation p - tan 6 is plotted as shown in Fig.(6.11)

for concrete compressive strengths of 6,000 psi and 3,000 psi.

'\ 3/4

L]
For that plot,f  has been taken to be equal to 0.68 (fc) s

(10].
For comparison, the two cases are shown in the figure, from which
it follows that p decreases as 6 and/or pfy increase.

It may be seen that for the plotted range of tan 6, p drops
to four when tan 6 = 0.4 and it can go up to twelve for tan 6 = 0.1.

Then for that range of 6, the shear resistance of the tension

zone of the slab is much less than that of the compression zone.
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Consider now the term g%i of equation (6.7). This term
approaches zero when a = t or when p is large. In practice,

the range of a is usually such that % < a < t. Therefore, it

follows that g%i is always much less than unity and neglecting

it will not affect the accuracy of tan 6 in equation (6.7).

Doing this, equation (6.7) can be simplified further to become

tan 8 = 2%— A ..o (6,12)

v

6.8 Ultimate Strength Design Equation and Chart:

From all the previous discussion, it follows that the
equation ' ' B

fe
(pfy)u = = (1- cos20)

gives the minimum amount of transverse reinforcement required to

achieve the ultimate capacity of the concrete slab. In this

equation
' 1 - cos20 = 2 Sin%e
d si tan @ P then Sin 6 >
and since tan = en in 8 =
2L, /2 2
b® +(2L_ )
v
Therefore the design equation becomes
fl
£ = < ' e..(6.13
(p y)u ~Hr B ( 3)
1 +(—%)

b
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pf
If (--—¥-)u is plotted against 7%— , equation (6.13) would be
£ v

c
represented graphically as a circular curve similar to the dotted
curve of Fig. (6.5). This pldt is shown in Fig. (6.12) which
is the design chart of the proposed ultimate strength design.
For the case ﬁhen the plastic neutral axis is within
the steel beam, the same adopted procedure is still applicable.

But, in this latter case, the sum of the connection shear forces,

LQ, at flexural failure of the slab would be given by,

IQ = the ultimate compression capacity of the slab

]
= 0.85 fc bt.

6.9 Other Types of Composite Beam Failure

Consider now a composite beam which has transverse slab
reinforcement less than that required to achieve the ultimate

flexural capacity of the slab; i.e. pf (pfy)u. In this case,

v <
a longitudinal crack is expected to occur at the most stressed
section in the slab, then to develop towards the supports as the
load increases. At this section of the slab, it is rather
difficult tobpredict the exact stress distribution when the long-
itudinal crack starts. However, an approximation of the bending
stress distribution likely to be present above the section neut-
ral axis is shown in Fig.(6.13). This approximation is based on

elastic-plastic type of stress distribution since the ultimate

flexural condition of the slab has not been attained. The
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position of the neutral axis is also considered in this type
of failure to be given by the distance a from the slab top
fibres, where

AsFy .. (6.14)
SN A
0.85 fcb

In fact, the position of the neutral axis in a reinforced con-
crete section tends to propagaterup while the ultimate condition
is being approached. However, the range of variation of the
neutral axis between elastic and plastic stages of loading is
rather small and it has been neglected.

Using the same reasoning heré as that used for dis-
regarding the tension zone contribution, then, the longitudinal
shear is ccnsidered to be taken by the part of the slab above
the neutral axis. Although the longitudinal normal stress
varies through the slab thickness, it is assumed that all the
concrete elements at the shear surfaces will fail simultaneously
when their total shearing resistance is utilized. It follows
from Mohr circles representing failure conditions in Figs. (6.7)
and (6.8) that the transverse normal stress, O r varies through
the slab thickness since it is'dependent upon the magnitude of

L}
the longitudinal normal stress afc. The variation of Oy is

such that
4 -
(i) when afc = a, fc 3 O, = (pfy)u
(_‘ [ ] ]
ii) when ch < %in fc P O, = 0
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The above two cases repreéent the failure of the concrete
elements above y and below vya of Fig. (6.13) respectively.

For the intermediate concrete elements within x, the transverse
stress would be somewhere between zero and (pfy)u. .Fof simp-
licity and in order té be on the conservative side, this
intermediate zone is included with the one above it resﬁlting
in a transverse stress of (pfy)u utilized within yva p;ior to
failure of the beam in question. Then the total transverse
force utilized pricr to failure of the part of the slab above
the neutral axis is given by (pfy)u vya per unit length of the
slab., This transverse force results in an average stress of
(pfy)u lg which should equal the average transvefSe stress
produced by the reinforcing bars throughout the slab thickness.
The latter average transverse stress is assumed to be acting
throughout the total thickness of the slab regardless of the

position of the transverse reinforcing bars in the slab.

Thus ,

where p” is the steel ratio in the concrete slab
for partial ultimate capacity.
The coefficient y in the above equation is a function

of the stress distribution shown in Fig. (6.13), and a general
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expression for it can be derived as follows:

ya = a-y+x
or Y = 1 - 1-§—§ ...(6.16)

from similar triangles we get:

/

[»
Yy - xXx _ “min B
y 0.85%5 .
o,
_ min
or y -x = 0.35

Substituting the above value of (y - x) into equation (6.16),

we get,

. a_ .
Yy = 1-y Tlna cee(6.17)

An expression for y can be found by equating the total force

due to bending in the slab to C,

[ ]
i.e. C=0.85fpb (a- %) 3 C < AF
_ c
or y =2 (a - —=—)
0.85 £_b

Substituting y into equation (6.17), we get,

2 %mi
Y= 1-GgEe (@ - ——)
. 0.85 £ b
[ o
_ C
or Y_1_2.35a_ (l——.——_.'—..)

Tin 0.85 £ _ba
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- AsFy
and since a = —————
0.85 £ b
c
— — . | - C 0..(6.18)’
then y = 1 2,35 Qrin (1 AsFy )

Finally, substituting y into equation (6.15), we get

g = - - L _ '
P fy - (pfy)u (1 2.35 %min (1 AsFy)] cee(6.19)
The above equation implies that for a given (pfy)u’ aﬁin and

ASFy then C and hence the moment at first longitudinal crack-
ing can be determined for any value of the transverse slab
reinforcement parameteir, p fy, (pfy)u and ain ©an be known

for a given 2%— from Fig.(6.12) in which the corresponding
v

values of Orin @S found from Fig.(6.6) are tabulated.

Equation (6.19) can be re-arranged to give

_ o1 __ ot
c = ASFy {1 m—a;; [1 E?;sv—u]}

and since C = ZQC = m Qc
Ast 1 | pr
then QC = - {1 - Zm {l - -(I—)-f-;r;]} ...(6.20)

Another feature of equation (6.19) is that it can be
used to determine the minimum amount of transverse slab rein-
forcement required when there is only partial connection.

This type of failure is likely to occur when ZQu < A F where

S ¥,
Qu is the ultimate shearing strength of a connector. In fact
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in this case also, the same elastic-plastic stress distribut-
ion shown in Fig. (6.13) can be considered valid at the
connecticn failure. As a result, equation (6.19) would be in

this case:

o

. _ . _ - u
P fy = (pﬁy)u (1 2.35 ooin (1 X—?~0] Ces.(6.21)

Sy
where p’fY here represents the transverse reinforcement para-

meter required for the simultaneous occurrence of shear

. . : 4 tud i a king of
connection failure and the excessive longitudinal ocracking ol

the slab.
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CHAPTER VII

COMPARISON AND CONCLUSION

7.1 Comparison with Davies Test Results

(11)

In part 2 of his paper "Test on half-scale steel-

concrete composite beams with welded stud connectors", Davies
studied the effect of transverse slab-reinforcehent on the
behaviour and performance of composite beams. He reported
» B,

4 4

C4, and D4; in which the transverse reinforcement was reduced

in successive beams.

the cracking loads and shear forces of Series 2 beams; A

The cube strength and the equivalant cylinder strength
of concrete for all the beams are listed in Table (7.1). The
equivalant cylinder strength was made using Evan's Table(g)
of conversion. The table also shows a comparison between the
experimental pfy and connector force at cracking Qc as reported
by Davies and the associated theoretical values calculated
using the proposed design equations. The theoretical values
of pfy were found by substituting the shear forces as reported
by Davies into equation (6.,19), whereas equation (6.20) and

the actual pfy were used for the calculation of the theoretical

Qc' In these two equations, Opin Was taken to be 0.68 as given
by Fig. (6.12). The flexural failure of beam A, was not

accompanied by any longitudinal cracking along the line of the



(2%

shear connectors. This beam was excluded from the theoretical
calculation since its slab proved to be transversly over-
reinforced. |

It is clear from comparing the two values gf pf?'of
each beam that the theoretical values are in good agreement
with the actual pfy used. It is also clear that the difference
-between the experimental and theoretical values increases with
the decrease of pfv haviﬁg a maximum of 9.2% for beam C, and
a minimum of - 22.5% for beanm D,. However, an excellent
agreement of the theoretical and the experimentai values of
Q. exists for all the beams with a maximum difference of less
than + 4.5%. .

Davies also reported that the shear resistance per inch
run of beam could be represented by the foliowing empirical

expression:

§3=8.5t/ﬁ:+24AfY

Using the above expression, Davies reported that the
awount of transverse reinforcement which would have pcrmltted
gxceovsive longitudianel cracking in beam A4 at the same time
as ultimate flexure would be'o 0205 in /Jn. This is egual
to 6,82 per cent resulting in a pfy valua of 492 psi when
fy iz 60,000 psi. Almost the same reinforcement can be
obtained by putting the appropriate values of f' and ble
into eguation (6.13). The calculated (pfy)u value from thls
equation 15 490 psi which by definition would pernmit a crack
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to develop longitudinally as ultimate flexure is attained.

It follows from the above comparison that the proposed
theoretical approach is in good agreement with Davies tests
and his empirical equation. The agreement is almost perfect
in the predicted transverse reinforcement and the'shear force
for the full ultimate condition. 1In addition the caléulated
values of Qc for Davies beams are almost identical with the
experimental ones. As a result, the compressive force C in
the slab due to bending can be estimated for any amount of
transverse slab reinforcement. Knowing C, then the applied
moment for the case of partial ultimate failure can be
calculated.

Referring to Davies empirical expression, it is possible
to derive a similar expression using the theoretical values
obtained by assuming any two distinct values of pfy. Let
these two values be the upper and lower limits of pfy; i.e.

(pfy)u and zero; and ASFy and'vu be as those given for beam

‘A4. Then, equation (6.20) gives

Qg = 2.6 kip | for pfy =0
and ch = 6.92 kip for (pfy)u = 490 psi

Then the concrete coefficient K,y would be given by



and the reinforcement coefficient K2 would be

0
- r.c2 _ f
K, = t.s Ky Uw]/(pfy)u
= 2.35 |

The resultant expression would be

o

u—
s~ = 8.80t YU + 2.35 At
Although the above equation is quite similar to Davies',
it is valid only for the special case when b/2Lv is equal
to 0.312., That is because the two calculated values of

either Q. or pfy as discussed in the proposed analysis are

functions of the concrete strength and 6 where 6 = 'c.an-l b/ZLv.



TABLE (7.1)

Comparison with Davies beam tests -

experimental theoretical
]
b
Beam Uw fc 2Lv pfy Qc pfy Qc
psi psi psi kip psi kip
A, 6,200 5,500| 0.312 564 6.92 - -
B, 7,300 6,850] 0.312 282 5.15 276 5.18
C, 7,300 6,850| 0.312 141 4.03 154 3.94
D, 6,500 6,000] 0.312 71 3.14 55 3.28
TABLE (7.2)
Comparison with cellular slab composite
beam tests
experimental theoretical
: b
Beam 'Z-i.'; pfy QC Pfy QC (Pfy)u pu
psi kip psi kip psi %
38/30 0.267 58 6.35 30 7.10 298 0.50
810/30 0.333 53 7.00 77 6.53 406 0.67
B8/40 0.200 58 5.90 18 7.21 172 0.29
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7.2 Comparison with the Composite Beam Tests
Incorporating Cellular Decking

The relative differences between the behaviour and
performance of solid and cellulor slab composite.beam‘tests
were mentioned and discussed in Chapter V. 1In thét discussion,
the effect of the slip and the presence of the metal deck in
the latter type were shown to have a pronounced effect on
the longitudinal shear resistance‘of the ribbed slab. 1In
the proposed analysis, complete connection was assumed to exist
between the concrete slab and the steel beam, as a result of
which the slip effect, if present, was neglected. Such an
assumption is believed to be vioclated for the three beam‘tests
in question especially in the inelastic stage of loading. The
slip, as reported by Davies, increases with the decrease in
percent of transverse reinforcement in the slab which was very
small in the beams B8/30' 310/30 and B8/40' The presence of
the metal deck adds another problem in estimating the actual
stresses at failure in order to check the applicability of the
proposed method to the test beams.

Table (7.2) shows the comparison between the experimental
and theoretical values of pfy and Qc. The theoretical values
are calculated as explained in the previous section. The
comparison shows some uncertainty in the prediction of the
actual behaviour of the beams as reflected in the range of the

errors. For beams 38/30 and 38/40’ the theory predicted



better performance than that actually observed as reflected in

the magnitudes of Qc' On the other hand B surpassed the

10/30
theoretical expectation. It is believed that a better

agreement between experimental and theoretical values would

have been achieved if a greater amount of transverse reinforce-
ment had been used in the slab of the tested beams. 1In the

same Table, the theoretical values of (pfy)u and the correspond-
ing percent transverse reinforcement réquired to achieve the
ultimate flexure of the beams are listed. Although these
ultimate values range from 300 tc 700 percent of/the values used
in the beam tests, they are still close to those resulting from

(1) (2)

other design procedures as listed in Table (5.1).

7.3 Conclusions

Since the longitudinal shear failure of the slab of
composite beams is constrained to occur at a predetermined shear

surface, the shear transfer concept(ll)

can be used to analyse
the stresses on the concrete elements located at that surface.
Using the Cowan or Zia envolope of failure and the method of
construction of the v, pfy relationship of reference (11) a
method of analysis of these stresses is proposed. The fiethod
implies that the longitudinal shear cracking of the slab is the
result of achieving the ultimate shear capacity of a concrete
element which is in turn a function of the normal stresses

present at the shear surface. In the analysis, the contribution

of the concrete elements subjected to tensile longitudinal



stress due to bendiné is found to be small and it has been
neglected. In addition the longitudinal compressive stress
as well as the slab width and the shear span of the bea@
are found to be the main parameters which can not .-be
neglected when estimating the longitudinal shear capacity
of the slab. |

A design chart based on estimating the transverse
normal stress, (pfy)u' required within the concf;te slab
to achieve the full ultimate flexural capacity q; the
composite beam is proposed. Alternatively, using elastic-
plastic stress distribution across the concrete slab, the
longitudinal compressive force due to bending and hence the
applied moment can be predicted for any longitudinal shear
capacity of the slab.

The proposed design and analysis when compared to

(3) showed good agreement between

previous tests and analysis
both the values of the shear force Qc prior to failure, and

in the estimated percentage of transverse reinforcement.
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