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In this report, a method for calculating the longitudinal 

shear capacity of the slab of simply-supported steel-concrete 

composite beams is presented. The method is based on analysin~ 

the stresses at failure of the concrete elements located at the 

slab shear surface. In this analysis, the slab width and the 

shear span are found to be two main parameters that have been ne­

glected inthe empirical solutions previously adopted. 
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NOTATION 


A cc the longitudinal shear 

connection. 

area of concrete per 

A re total area of 

connection. 

transverse reinforcement per 

area of steel beam section 

total area of transverse reinforcement per 

unit length of slab. 

a depth of concrete compression zone 

b 

b ' 
width of concrete slab 

thickness of push-off specimen 

c 

c ' 
concrete compressive force in the slab 

compressive force acting at the steel area 

subjected to compression 

d 

d ' 
depth of steel beam 

length of push-off specimen 

E Elastic modulus of steel lever arm between 

I 

e 

compressive force, C, and tensile force, 
I 

lever arm between compressive force, c , 

T. 

and 

tensile force, T. 

steel beam yield strength 

concrete cylinder strength at 28 days 

yield stress of transverse reinforcement 

height of the cellular part of slab 

the concrete and reinforcement coefficients 

respectively as used in the empirical approach. 
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L beam span 

Ls length of shear surface at the shear connection 

Lv shear span 

eMc experimental moment at first visible longitudinal 

cracking 

eM experimental ultimate moment of resistance. u 

tMu theoretical ultimate moment of resistance 

m number of shear connections in the shear span 

n nUJT1ber of times each longitudinal shear 

reinforcing bar is intersected by a shear 

surface 

p transverse stet,:!l ratio in slab 

p transverse 5tecl r~tio for the 

flexural capacity 

transverse steel ratio for the 

flexural capacity 

case of partial 

case of full 

transverse stress produced by transverse slab 

reinforcement for the case of full flexural 

capacity 

transverse steel ratio in the tensile zone of the slab 

transverse steel ratio in the compressive zone 

of the slab 

Q 	 shear force in a shear connection 

shear force in a shear connection at first 

longitudinal cracking 

vii 



shear force in a shear conne.ction at ultimateQll 

capacity 

experimental shear force in a shear connection 

at ultimate capacity 

tQ theoretical shear force in a shear connection at u 

ultimate capacity 

s longitudinal spacing of shear connections 

'I' tensile force in steel beam 

t. effective thidrness o~ slab 

u cube strength of conc.ret:e w 

v applied force in push-off specimen 

v longitudinal shear stress 

v longitudinal shear stress at ultimate load 
u 

v 	 shear stress on a concrete element in the c 


compression zone o.f the slab 


v 	 shear stress on a concrete element in the tensile
t 

zone of the slab 

"{.'/ width of push-off specimen 

0 normal Gtress 

~,, 	 tr:xn:;verse normal s:tress 
x 

Cf 	 longitudinal normal stress 
:~·, 

v 
,, 	

the inclL1ation to the hori::mntaJ. .:ixis of the 

line pas:.; ing through the or .i.g:Ln and the point 

(0 , v)y 

principal di~ectj.on at failure 

viii 

http:di~ectj.on


principal direction at failure for the elements 

of the compression zone of the slab 

principal direction at failure for the elments~t 

of tensile zone of the slab 

a 	 ratio of the longitudinal normal compressive 

stress to the specified concrete compressive 

strength 

n . 	 the value of a when the transverse normal stressmin 

is zero 

the value of a when the transverse normal stress 

is (pfy)u 

B 	 ratio of the longitudinal normal stress to the 

concrete tensile strength 

p 	 ratio of the shear stress vc in the compression 

zone of the slab to the shear stress vt in the 

tensile zone of the slab. 
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CHAPTER I 

LONGITUDINAL CRACKING 

The exact magnitude and distribution of stresses 

which are present in practice in a composite floor system 

incorporated in a building is extremely difficult to deter­

mine. However, most tests which have been done to study 

the longitudinal shear strength and the effect of transverse 

slab reinforcement were made on simply supported beams with 

a point load at midspan. (J) <4>* For such cases the stresses 

present in the concrete slab can be classified into two 

groups, depending on their effect. The first group of 

stresses has a major effect on the behaviour of the beam, 

and these stresses, usually, determine the ultimate load­

carrying capacity cf the composite beam. These stresses 

include: 

1. 	 bending stresses {tension and compression) 

as a result of the steel-concrete interaction. 

2. 	 longitudinal shear stress which is produced 

by the action of the shear connectors. 

The second group of stresses includes: 

1. 	 transverse bending stress and vertical shear 

due to the dead weight of the slab. 

2. 	 local compressive stresses in the concrete 

at the root of the shear connectors. 

Number in parenthesis refers to the reference listings. 



\ 
\ 
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In general, the effect of the second group of stresses is small, 

as a result of which they have been neglected in design and 

analysis. 

The longitudinal shear stress at a section along the 

line of the shear connectors is dependent upon the horizontal 

shear force, Q, in the adjacent connector. For the case of a 

simply supported beam with a point load at mid span, the shear 

force is assumed to be the same for all the connectors. However, 

the magnitude of the shear force, especially in the inelastic 

range, tends to a maximum at the vicinity of the load point. 

Figure (1.1) shows a typical shear force diagram for a simply 

4supported beam with constant spacing of shear connectors.< > 

In fact, the shear force d_istribution along the beam is a 

function of the &lip between the steel beam and the concrete 

slab, therefore the Q diagram shown also represents the slip 

variation along the beam. 

FIG.(l.). TYPICAL 
,_-,SHEAR FORCE DISTRIBUTION ,, \ 

_______..,..,, ~PLASTIC ZONEALONG THE SPAN OF A 

SIMPLY SUPPORTED BEAM ELASTIC ZONE 

.... _.....-·­\ 
\ ..... ­
\ /,,.... _..,,. 
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All previous design methods have considered constant 

longitudinal shear stress through the slab thickness which 

is equal to the shear force, Q, in a connector divided by 

the shear plane (equal to L XS). This assumption implies
5 

that the shear strength is the same in the upper and lower 

parts of the concrete slab. Since in all beam tests, as 

well as in practice, the top part of the slab is in comp­

ression whereas the lower part is in tension, the previous 

assumption neglects the effect of bending stress on the 

ultimate shear capacity of the slab. However, Davies(J) 

and the CP117(l) design method recommend that the transverse 

reinforcement should be placed in the lower part of the slab 

in order to account for the harmful effect of the flexural 

tensile stress on shear strength of the slab. 

Longitudinal cracking along the line of the shear 

connectors may occur if the slab fails to resist the long­

itudinal shear stress produced by the connectors. The 

crack development is thought to be due to excessive prin­

cipal tensile stress. Therefore,a plain concrete slab will 

fail when the produced principal tensile stress is equal or 

greater than the concrete tensile strength which is prop­

ortional to the square root of the compressive strength. (S) 

If transverse reinforcement is provided, the cracking 

resistance of the slab will be improved such that the crack 

starts when the yield stress of the reinforcement is 
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reached.CJ) Thus, a certain amount of reinforcement has to 

be used in order to prevent ~xcessive longitudinal cracking of the 
.. 

slab and to achieve the maximum load-carrying capacity of 

the composite beam. 

Longitudinal cracking usually starts near the point 

load in a test beam at which the dual action of bending and 

3.shear stresses is a maximum. It is thought < > (l} that the 

crack sta£ts in the lower part of tha slab ci1en propagates 

to l:b.e upper pa.rt to become visible. This behaviour has 

beAn reasoned by the fact that axial tension causes a 

dec:r:(.°!o.st:: in the diagonal tension strength while axial com-

pr.:e::;sion increases it. Once the crack starts, it then 

d0vclcps to~ards the supporta as the load increases. As a 

result of the crack development towards the supports, a 

greater loss of interacti.on between the concrete slab and 

the steel beam is expected to occur, thus cutting down the 

load-carrying capacity of the beam. Davies showed that the 

progress of the longitudinal crack towards th~ supports is 

dependent upon the amount of transverse reinforcement 

present in the slab. The lower the transverse reinforcement 

nf , the lower the percentage of theoretical ,_ y ­

t~lt5.rr..J.b~ flexm:al c:a.pacity at which cracks first form and 

the 1~orc rapidly they extend towards the supports. The <level­

0pnent of longitudinal cracks can be considered to constitute 

a type of fa~.lure which rnust be taken into account in the 

c.1::-..i.rnate strength an<llysi.s of composite beams. 

http:t~lt5.rr
http:interacti.on
http:dec:r:(.�!o.st
http:reached.CJ
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CHAPTER II 

EXISTING DESIGN PROCEDURE 

2.1 General 

Neither the CISC(S), AISC(G) nor ACI( 7 )specifications 

makes any reference to longitudinal shear stress or transverse 

reinforcement in the concrete slab of a composite beam. Thus, 

the reinforcement is left to be determined solely by the 

transverse bending moment in the composite floor slab. This 

means that in case of small or zero transverse moment, as in 

most composite tests, there will be no apparent need for slab 

reinforcement. For such cases, it was shown by Davies that 

only 50 to 60 per cent of the capacity of the composite beam 

would be achieved without transverse reinforcement. 

In the following sections, the existing design methods 

and equations are mentioned and discussed. 

2.2 C.P. 117:1965 Design Equations 

The British Code of Practice CP 117, Part I(l) does 

cover the longitudinal shear strength of composite beams with 

solid or hunched slabs, but it was written in 1964 when only 

a few beams had been tested. However, there is evidence that 

the C.P. 117 Equations give a considerably conservative 

estimate of the required transverse reinforcement as compared 

3to Davies 1 < > results. 



The CP 117:1965 design equation states that: 

The shear force (lbf) per inch run of beam, 
Qu
S-' 	should not exceed either 

1. 	 the shear resistance per inch run of beam which 

is equal to: 

(2 .1) 

or 

... 	(2. 2) 

Furthermore, the amount of transverse reinforcement 

At to be placed entirely in the bottom of the slab or 

haunch should not be less-than: 

Qu 2 . . h f b'4Sr- in per inc run o earn • • • (2. 3) 
y 

Equations (2.1) and (2.2) can be rewritten in terms 
I 

of cylinder compressive strength, fc, instead of Uw to be in 

the form of equations (2.4) and (2.5) respectively • 

••• (2.4) 

and 

••• 	 (2.5) 

where, 

Ls = the length of the shear surface at the shear 

connectors, in inches, but not to be taken to be 



J 

more than twice the slab thickness. 

n = number of times each lower transverse reinforcing 

bar is intersected by a shear surface. Generally, 

for T-beams, n = 2 and for L-beams n = 1. 

It should be stated here that the following assumptions 

were made in the previous CP 117 Equations: 

1. 	 The development of the longitudinal crack in the 

slab is mainly due to excessive principal tensile 

stress. 

2. 	 The resistance of concrete to principal tensile 

stress is directly proportional to the square root 

of the cylinder strength. In fact the concrete 

terms in equations (2.1) and (2.4) are derived 

from ACI - ASCE committee 326( 8 ) recommendation 

that the ultimate diagonal tension strength of an 

unreinforced web shall no~ exceed 3.5;;:, which in 

terms of cube strength is 2.8~. Similarly, equation 

(2.2) is derived from the same recommendation that 

the safe upper limit for shear stress is given by 

8~ or 10~ depending upon the shape of the cross­

section of the concrete. 

3. 	 The reinforcement contribution in resisting longitudinal 

shear is proportional to the yield stress of reinforcing 

bars. The reinforcement term in equation (2.1) 

considers that a crack will certainly develop in the 



concrete when the yield stress of the reinforcement 

is attained. 

4. 	 The reinforcement in the upper part of the concrete 

slab is not considered to be effective in resisting 

longitudinal shear and the proposed reinforcement 

is in addition to that required to resist transverse 

bending of the slab. 

5. 	 Neither the longitudinal bending nor the width or 

length of the slab have been taken to have any 

effect on the longitudincl shear strength of the 

concrete slab. 

2.3 Johnson Design Method and Approach 

In his paper "Longitudinal shear strength of composite 

beams" Johnson( 2 ) has recommended a new ultimate design method 

for the transverse reinforcement in the solid slab of a 

composite beam. He studied all available results of tests to 

failure on positive and negative moment regions of composite 

beams with and without negative transverse bending of the slab 

including over 60 beams at Cambridge University. His design 

method makes use of the following conclusion which he had found 

from his study. 

1. 	 All transverse reinforcement contributes to long­

itudinal shear strength, irrespective of its level 

in the slab and of the magnitude of the negative 
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transverse bending moment. 

2. 	 No account need be taken of longitudinal bending 

(of either sign) in determining the longitudinal 

shear strength of a composite beam. 

Johnson has found that the shape and dimensions of the 

composite beam affects the required amount of reinforcement. 

He stated that the value of pfy for a given shear stress, vu' 

depends on the shape coefficient of the beam which is essentially 

the ratio of the slenderness of the beam to that of the slab 

forming its top flange. He also reported the effect of the 

shape coefficient, A, to be as shown in Fig. (2.1). Nevertheless, 

he neglected the effect of X in his design equations on the base 

that the practical range of A was found to between 0.7 and 1.4. 

Johnson's design method proposed the following: 

The total amount of transverse reinforcement should 

satisfy 

(2. 6) 

80 psi ... (2. 7) 

and the reinforcement should be placed in the slab such that: 

~ the reinforcement required to resist 

negative transverse bending of the slab 

... 	(2. 8) 
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where vu = the mean ultimate longitudinal shear stress on a 

possible plan of longitudinal shear failure. 

and pb and Pt = the transverse reinforcement per unit area 

present at the bottom and top of the concrete slab, 

respectively. 

Almost the same assumptions as well as the variable 

parameters used in CP 117 design equations have been used by 

Johnson, resulting in a reasonable similarity between the two 

designs. The main two differences between CP 117 and the 

Johnson design equations are the reinforcement and concrete 

coefficients and the placement of the reinforcement in the 

slab. 

For comparison purposes, the two previous design 

equations as well as Davies' are represented graphically in 

Fig. (2.2). Davies work and approach are discussed in detail 

in Chapter IV. 
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CHAPTER III 

TESTS ON COMPOSITE BEAMS INCORPORATING 


3 - in. CELLULAR DECKING 


3.1 General 

For composite steel-concrete beams having a solid 

slab it has been demonstrated experimentally that slip 

between the steel beam and the concrete slab is small, 

resulting in the effect of slip being neglected and the com­

posite beam considered as having full interaction. However, 

with a composite beam incorporating cellular metal decking 

the cellular zone constitutes a much more flexible zone 

between the solid part of the slab and the steel beam, and 

i.n which larger slip can occur, resulting in some loss of 

interaction. In addition, the cellular metal deck as.well 

as the geometry of the concrete ribs present more dif f ic­

ulties in predicting the overall behaviour and the stresses 

acting in the solid part of the slab. Therefore, it is 

expected to see some differences in the behaviour and per­

formance of the two previous types of composite beam as 

far as longitudinal shear strength of the slab is concerned. 

Most test results available to date have considered 

the ultimate capacity of the composite beam without detail 

or any reference to the behaviour and performance of the 
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beam at the start of longitudinal cracking. Davies has 

studied the stage of first cracking in enough detail, and 

his tests on solid slab composite beams as well as his 

empirical approach are discussed in the following chapter. 

Three composite beams incorporating cellular metal decking 

which have been tes·ted are reported in this chapter with 

an emphasis on the stress conditions at first visible 

longitudinal cracking. 

The tests reported herein were originally made to 

study the ultimate capacity and performance of the type of 

beam in question. The sxperimental work consisted of three 

simply ~upported be.ams of tliffe:tent span length and slab 

width which were loaded to failure by a single point load 

at mid-span. 

3.2 Description of Beams: 

The identification of the beams used herein is as 

follows: the numerator and denominator of the subscripted 

ratio denote the width and span length in feet of the 

concrete slab respectively. Thus B designates the beam
8130 

having 8 ft. slab width and 30 ft. span length. 

All the beams tested had the same amount and type 

of transverse reinforcement, steel beam, metal deck and 

shear connectorso Description and properties of the beams 

are summarized in Table (3~1), whereas detailings and 

dimensions are shown in Fig. (3.1). The transverse 
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reinforcement of the beam was provided by using 6 x 6, 10/10 

welded wire mesh placed approximately at mid-depth of the 

solid part of the slab. The mesh wires are 0.135 - in. in 

2diameter resulting in 0.0143 in. cross-sectional area 

and placed at 6 - in. centres in both transverse and long­

itudinal directions. Based on 0.2 per cent proof stress, 

the yield stress of the wires, as given by the producer, 

was 64,000 psi. Since this stress is greater than the upper 

limit recommended by the British Code of Practice CP117(l), 

so 60,000 psi was taken to be the yield stress of the 

transverse reinforcement used in the beams. 

Although the steel beams were all from a single 

rolling, difference in the yield stresses, F , were y 

recorded. Four test samples taken from the web and the 

flanges of each beam were tested for the yield stress and 

the average of the four values was considered. The term 

A F of each beam was calculated from the sum of the areas s y 

of the flanges and the web multiplied by the corresponding 

yield stress. 

The metal deck used in the beams was 22 gauge. 

The concrete ribs of the slab formed by the cellular deck 

were 2-1/8 in. wide at the bottom and 2-3/8 in. at the top 

with 2-7/8 in. in height and they were at 6 in centres. 

Headed studs 4-1/2 in. high and 3/4 in. diameter were 

staggered at the outstanding legs of the steel beam flanges. 



TABLE (3.1) 


Details and properties of test beams incorporating cellular decking 


BEAM 
I 

f c 

psi 

CONNECTORS 

s m 

in. 

TRANSVERSE 

At p 

in2/in % 

REINF. 

pfy 

psi 

STEEL BEAM YEILD STRESS 

Top flg. Bot. flg. Web 

psi psi psi 

AsFy 

kip 

B8/30 4,470 6 29 0.0024 0.097 58 48,100 48'100 48 ,910 428 

Bl0/30 4,060 6 29 0.0024 0.097 58 43,510 43,100 43,860 385 

BS/40 4,470 6 39 0.0024 0.097 58 48,100 48,100 48 ,910 428 

\ 

...... 
O"I 
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The studs were placed such that the transverse spacing 

was 3-1/2 in. and one stud per rib resulted in longitudinal 

spacing, s, of 6 inches. 

The concrete was a commercial ready-mix with a 

maximum aggregate size of 3/4 in. and a nominal 28 day 

strength of 3,000 psi. The average crushing strength of 

concrete cylinders at time of test for each beam as well 

as other detailings are listed in Table (3.1). 

3.3 Instrumentation and Test Procedure 

Electric strain gauges were mounted on the steel 

beam and the top surface of the concrete slab.Fig.(3.1) 

shows the type and locatiQ~ of the strain gauges used in 

the tested beams.0.001 in. dial gauges were used to measure 

the mid-span deflection. Six 0.0001 in. dial gauges, two 

at the ends of the slab, were mounted to each slab to 

measure the slip between the top flange of the steel beam 

and of the concrete slab. 

All beams were simply supported and tested to 

failure with a centre-point load applied by means of a 

hydraulic jack. The load was applied in 1 kip increments. 

For each load increment, gauge ~eadings were recorded after 

a waiting period because a significant relaxation of load 

occurred. 

Strains were measured across the steel beam section 

at mid-span before and after pouring of the concrete and during 
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the curing stages to record the dead load and the shrinkage 

strains. 

3.4 Test Results and Analysis 

Fig. (3.2) shows the curves of the applied load 

versus mid-span deflection for the three beams. Also shown 

in the same Figure are the theoretical load-deflection 

curves assuming complete interaction, and the stages at which 

longitudinal and flexural cracks became visible. 

The horizontal shear force Q at any stage of load­

ing can be found with reasonable accuracy by means of the 

strain diagrams across the steel beam section. The strain 

diagrams for the three tested beams, drawn by means of 

strain-gauges readings, at first visible longitudinal crack 

(at point c in Fig. (3.2)) are shown in Fig. (3.3). Know­

ing the strains, the stress distributions across the steel 

beam were drawn as shown using a yield-strain value, ey' 

equal to the average yield stress for each beam divided by 
. 6 

the modulus of elasticity, E, of steel (29 x 10 psi). 

For equilibrium of forces shown in Fig. (3.4) the 

following equation must be satisfied: 

T = C + C' ••• (3.1) 

where C is the total compressive force present in the 

concrete and C' and T are the total compressive and tensile 

forces present in the steel section respectively. 
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Thus 
C = T C# 

and since C at a section in between the point of zero and 

maximum bending moment must equal the sum of the shear 

forces acting between the section under consideration and 

the point of zero moment, then . 

c = EQc • •• (3.2) 

Therefore 


EQc = T-C# 


EQc T-C# 
or Q = = ••• (3.3)c m m 

Knowing c# and T for each beam from the stress diag­

ram,then Qc at first visible crack can be found using equation 

{3.3). In the calculation made herein, the yield stress and 

strain for each beam were assumed to be equal in tension and 

compression, and that the tensile stress in the concrete 

slab is negligible. 

Table (3.2) shows the calculated shear force Q and . c 

the corresponding longitudinal bending moment at first 

visible crack as well as the theoretical and experimental 

ultimate shear force and moments for each beam. The theor­

etical values of shear and moment were calculated assuming 

complete interaction between the steel beam and the concrete 

slab, whereas the experimental values were found by means 

of trial and error using the partial connection concept. 
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TABLE (3.2) 


Summary of test results 


BEAM eMUtQUQC tMUequ Mc eMu/tMMc/tM Mc/eMUu u 

k.in k.ink.ink kk 

3,350 4,170 5,100 0.66 0.80 0. 8214.756.35 9.158 8/30 

3,590 3,9108 10/30 7.0 8.27 13.3 4,650 0.77 0.92 0.84 

4,0208 4,2005.9 5.4 11.0 5,100 0.82 1.05 0.978/40 

--. 
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Fig. (3.5) shows the stress distribution at mid-span section 

for the two cases: (a) complete connection, and (b) partial 

connection. 

The ultimate strength of the headed studs used in 

the beams was believed to be more than that required to 

achieve the theoretical ultimate flexural capacity of the 

composite beams. None of the beams tested showed any evid­

ence of stud failure or punch out of the rib. All the 

beams were designed such that the theoretical plastic 

neutral axis would be within the solid part of the concrete 

slab. Therefore, the theoretical ultimate shear force for 

the tested beams would be given by equn. (3.4) 

== c and c = T = A5 Fy 

= A5 Fy 

A9 Fy 
= .. . (3. 4)m 

and the theoretical ultimate moment would be 

tMu = A5 Fy { ~ + t + h - ~) (3. 5) 

AFC. s y (3. 6)Where a = = I 
0.85 f cb 0.85 f cb 

and t, h is the thickness of the solid and ribbed 

parts of the slab respectively. d is the depth of the 

steel beam. 
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The experimental ultimate moment was found for 

each beam directly from the ultimate applied load, whereas 

the corresponding shear force, i.e. eQu' was found by 

solving by trial and error for the forces C and c"' which 

satisfy force and moment equilibrium. Thus the following 

equations had been satisfied in finding eQu for the 

three beams: 

for force equilibrium, 

C + C' = T 

Substitute T = c' 

and rearrange to get c' = • • • (3 .7). 

and for internal moment equal external moment: 

= applied moment 

= c. e + c'. e' •••. (3. 8) 

It was shown in Fig. (1.1) that the slip in the 

in-elastic zone of the composite beam tends to a maximum 

before or at the vicinity of the point-load. This is also 

indicated in a composite beam incorporating cellular deck­

ing. Fig. (3.6) shows the slip distribution as measured 

during the loading process of beam B • It is clear
10130 

from the figure that the maxim-:.irn value of slip has progressed 

towards the center line of the beam as the load increases 

and that the equal slip or shear force assumption along 
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the span starts to be violated just before or at the 

start of longitudinal splitting of the slab. 

More discussion of test results and comparison 

with solid slab composite beam are mentioned in Chapter v. 
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CH.APTER IV 

DAVIES' TESTS AND EMPIRICAL APPROACH 

4.1 	 General 

The object o.f Davies <3> experimental program was to 

study the behaviour of half-scale composite T-beams when the 

connector spacing or the amount of transverse reinforcement 

was reduced in successive beams. He reported in his paper 

the result of tests on seven steel-concrete composite beams 

four of which, identified as series 2 beams, were tested to 

study the longitudinal shear strength. 

4.2 Description of Beams and Test Results ' 

All the beams were simply supported and tested to 

failure at an average age of 35 days by means of a centre point 

load. The beams had the same cross-section, span length and 

the same number of identical welded stud shear connectors. 

The proportion of the beam cross-sections were such that under 

ultimate load the plastic neutral axis was in the slab. The 

studs in all the beams were arranged in a single line along 

the centre of the top flange. 

The transverse reinforcement of the slab was provided 

by means of steel bars 0.212-in. in diameter and having a 

yield stress of 60,000 psi. Fig. (4.1) and Table (4.1) show 
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the important details of the beams whereas a summary of the 

test results is given in Table (4.2). The amount of transverse 

reinforcement was reduced in successive beams. 

The failure o_f beam A4 , which had the larg~st amount 

of transverse reinforcement, was a flexural failure of the slab 

at mid-span. This was not accompanied by any longitudinal 

crack along the line of the shear connectors. For the other 

three beams, longitudinal crack started before achieving the 

theoretical ultimate moment and the final failure of the beams 

was accompanied by flexural crushing of the concrete slab at 

mid-span. In no case was there any failure of the shear 

connectors themselves. 

The moment-deflection curves for the four beams are 

shown in Fig. (4.2),while the ratios of moments eM /tM , 
u u 

eMc/eM and eMc/tM are plotted in Fig. (4.3) against the 
u u 

percentage transverse reinforcement. It is clear from the 

two previous figures that the variation of transverse rein­

forcement produced a quite definite influence on the capacity . 

of the beams to achieve their ultimate moment of resistance. 

The eMu/tM curve shows that the ultimate moment could be 
u 

achieved if the amount of transverse reinforcement was equal 

to or greater than 0.5 per cent. This percentage of reinforce­

ment was considered by Davies to be the minimum that was 

adequate for the beams tested. In addition, he reported that 

there would be little, if any, gain of strength for an amount 
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TABLE (4.1) 

Details of beams A 4, B4, C and D4 4 

CONNECTOR STEEL BEAMTRANSVERSE REINFORCEMENTBEAM uw 
s m A p pfy As FYpsi re 

in2 / %in. psi. connec. kip 

6,200 1111.5 16 0.0355 0.94 564A4 

1147,300 1.5 0.0177 0.47 28216B4 

1157,300 1.5 16 0. 00 88 0.235 141C4 

1156,500 0.0044 0 .1-18 1.5 16 71D4 

TABLE (4.2) 


BEAM QC 

kip 

eM 
0 

k.in. 

eMU 

k.in. 

tMU 

k.in. 

A4 6.92 - 492 455 

B4 5.15 417 485 485 

C4 4.03 362 438 487 

D4 3.14 303 377 474 
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of reinforcement in excess of 1.0 per cent. 

The effect of transverse reinforcement on the amount of 

slip between the steel beam and the concrete slab is illustrated 

in Figures (4.4) and (4.5). The first figure shows the total 

end slip plotted against mid-span moment for the four beams 

while the second shows the slip variation at different sections 

along the span of beam B4 • 

4.3 	 An Empirical Approach: 

Davies applied the same assumptions as those in the 

CP 117 design equations when he derived his design equation 

by using the followin.g empirical approach: 

For the case of no transverse negative moment in the 

slab, the capacity of the slab to resist longitudinal cracking 

is dependent upon both the concrete and the transverse rein­

forcement. Therefore, the total resistance of the slab to 

longitudinal cracking is the sum of the concrete and reinforce-­

ment contribution and may be expressed as: 

where = F(U ) 
w 

= G(f )
y 

Ace = shear area of concrete per connector 

= t.s 

Arc = total area of transverse reinforcement 

per connector 
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The development of a crack is caused by excessive 

principal tensile stress which can be considered to be 

comparable to the square root of the cylinder or cube strength 

of concrete. 

Since a crack would certainly develop in the concrete 

when the yield stress of·the reinforcement is attained, then 

Yr can be taken to be proportional to fy 

i.e. 

where K1 and K2 are constants. 

Then: 

capacity of slab (per 

connector) to resist • • • (4.1) 

longitudinal cracking = K1 Ace /uw + K2 Arc fy 

Using the experi:r.lental data equation (4.1) can be written for 

5.15 	 = 3.75 Kl ./7300 + 60,000 x 0.0177 K2 
) 
) 

4.03 	 = 3.75 Kl i1301r + 60,000 x 0.0088 K2 ) (4.2) 
) 

3.14 = 3.75 Kl 16500 + 60,000 x 0.0044 K· 	)2 

From the graphical representation of the above three equations, 

shown in Fig. (4.6), Davies has selected approximate values 

for K1 and K2 as 8.5 and 2.4 respectively. Then equation 

(4.l} becomes, 

• • • ( 4. 2) 
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The ideal failure of a composite T-beam would be the 

simultaneous occurrance of 

i) flexural failure of the concrete slab 

ii) shear connector failure, and 

iii) longitudinal cracking of the slab. 

For such an ideal case of failure,Qc must be equal to Qu, 

where Qu is the ultimate capacity of one shear connector. 

Then,from equation (4.2). 

Qu = 8.5 Ace ~ + 2.4 Arc fy 

= 8.5 t.s luw + 2.4 At.s fy 

or 

••• (4.3) 

Equation (4.3) displays the relative contribution of 

the concrete and reinforcement to slab shear resistance for 

the three half-scale T-beams tested. Davies did not suggest 

the equation is fully applicable to beams under real conditions 

of loading since such an empirical formula can be valid only 

within the scope of the experimental condition and accuracy. 

The graphical representation of equation (4.3) is shown in 

Fig. (2.2) using uw = 7,000 psi. 

Using equation (4.3) it is possible to estimate the 

amount of transverse reinforcement which would have permitted 

a crack to have appeared longitudinally in beam A4 at the same 

time as ultimate flexure, when the load per connector was 
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6.92 kips. Putting the appropriate values in equation 

(4.3) to get: 

then 	 p = 0.82\ 

pf = 492 psiy_ 

Therefore, Davies has concluded that the minimum amount 

of reinforcement necessary to prohibit the development of 

longitudinal cracking prior to failure was found to be 0.82 

per cent for the section of the test beams. 
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CHAPTER V 

DISCUSSION OF LONGITUDINAL SHEAR FAILURE 

Although both types of composite beams, discussed in 

the previous two Chapters, behaved fairly similarly at an 

early stage of loading, some differences were noticed at the 

longitudinal cracking load as well as at ultimate load. In 
-

addition, all tests have shown the importance of transverse 

slab reinforcement and the necessity for a reliable design 

method that gives the least amount of reinforcement required 

to prevent the development of longitudinal cracking. It is 

the object of this Chapter to point out the major differences 

in the behaviour of solid and ribbed slab composite beam 

tests and to check the adequacy of the existing design equat­

ions. 

5.1 	Comparison of Test Results 

It is clear from Figures (3.2) and (4°2) that the slab 

type has influenced the load-midspan deflection curves of the 

two types of beam tests. The moment-deflection curves for 

Davies' beams did not show any.discontinuity or abrupt rate 

of change of deflection either at the start of cracking or 

at any later stage of loading. The rate of change of-deflect­

ion began to increase steadily at the vicinity of the cracking 

load. However, for all the beams with cellular metal decking 
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a sudden drop of load accompanied by a longitudinal crack 
. 

can be noticed from Fig. (3.2). Thus, the sudden drop of 

load can be considered as a specific phenomena of longitud­

inal shear failure of composite beams incorporating metal 

decking. This phenomena can perhaps be explained by the 

following reasoning. Part of the longitudi~al shear is 

likely to be resisted by frictional stresses present at the 

upper surface of the metal deck. The static frictional stress 

will increase the shear. resistance of the lower part of the 

slab which has low shear capacity due to the presence of 

axial tensile stress at that part of the slab. When the 

applied load produces a shear equal to the total shearing re­

sistance of the slab, a sudden longitudinal crack is expected 

to occur through the total thickness of the slab. Therefore, 

it is not necessary in such beams that the crack should start 

at the lower part of the slab and then propagate gradually up 

to the top surface as had been r~ported(J) for solid slab 

composite beams. 

Another difference which is worth mentioning is the 

slip characteristics at ultimate loads. Comparing Figures 

(3.6) and (4.5), it can be stated that the difference between 

the maximum and minimum slip at any load in the in-elastic 

zone is comparatively small in Davies' beams as compared to 

the ribbed slab beams. Therefore, solid slab composite beams 

are expected to give better agreement than cellular slab 
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type as far as the assumption of equal shear forces, Q, 

is concerned. 

Considering the empirical approach used in deriving 

Davies' design equation, similar equation to eq. (4.2) can 

be written for the beam tests incorpor~ting cellular metal 

decking. Eq. (4.3) is applied for each of ~ , and8130 B10; 30 

B8140 using an equivalent cube strength as reported by 

Evans< 9> to get: 

6350 = 	 15Kl /5100 + 0.0145 x 60000 K2 

7000 = 	 15Kl /4500 + 0.0145 x 60000 K2 • • • (5.1) 

5900 = 	 15Kl /5100 + 0.0145 x 60000 K2 

The plot of the above three equations are shown in 

Fig. (4. 6). From that plot, it is clear that there is no 

possible solution for K1 and K2 similar to those found by 

Davies. It would be more reasonable, according to the emp-. 

irical method of approach, to expect the three lines to be 

J 	 almost identical. This is because the three beams have the 

same reinforcement parameters with slight change in the 

concrete parameters. An explanation for the actual plot of 

the lines can be reasoned by the existing differences in the 

slab width and length of the three tested beams which are 

believed to have a pronounced effect on the shearing resistance 

of the slab. 
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5.2 Test Results Versus Existing Design Procedures 

CP 117 and Johnson, as discussed in Chapter II, have 

suggested empirical equations for estimating the longitudinal 

shear strength of the concrete slab for a given concrete strength 

and transverse reinforcement. Thus, this slab strength can be 

calculated from the recommended equations for each beam test 

at the start of longitudinal cracking of the slab. The com­

parison between the test results and the existing design pro­

cedure is made for convenience in terms of the percentage of 

transverse reinforcement as shown in Table (Sul). The equiv­

elant cylinder or cube strength of concrete is interpolated 

9using Evan 1 s< > data. In this Table, p represents the calcul­

ated per~ent transverse reinforcement which is qiven by the 

applicable design equation to achieve the shearing capacity of 

each beam up to the start of the first visible longitudinal 

cracking. The ratio(theor. p/exper. ~represents the ratio 

of the calculated percentage to the actual one of each beam. 

It is clear from this ratio that both the CP 117 and Johnson 

design equations give conservative estimates of the longitudinal 

shear capacity of the tested beams. In the same Table the 

calculated theoretical percentage of the transverse reinforcement 

required to achieve the maximum load-carrying capacity of each 

beam is also listed. This percentage,(p) ,which is calculated 
u 
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TABLE (5 .1) 

Comparison of the experimental and theoretical 

percent transverse reinforcement of the tested 

beams at first longitudinal cracking load, with 

existing theories. 

C.P. 117 JOHNSON 
BEAM 

theor. g ·theor. ppp exper. p exper. p 

% %% % 

0 .177 1.83 0.54 0.133 1.37 0.61B8/30 

0 .196 2.02 0.48 0.133 1.37 0.53Bl0/30 

Ool66 l.71 0.33 0.133 0.351. 37BB/40 

0.74 1.58 1.19 0.86 1.83 1.49B4 

0. 49 2.10 1.20 0.61 2.58 1.50C4 

0.35 3.00 1.22 0 .39 3.28 1.52D4 
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AF 
using Q =~ seems to be also on the conservative side for 

m 

Davies' beams. This is because Davies reported it to be 0.82% 

as calculated for beam A4 in the previous chapter. 
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CH.?\PTER VI 

PROPOSED DESIGN METHOD 

6 .1 General 

A new ultimate strength design method for the trans­

verse slab reinforcement of a composite beam is proposed. 

The method is based on estimating the magnitude of pfy re­

quired which permits a crack to develop longitudinally at 

the same time as flexural capacity of the slab is attained. 

The method is then generalized to include other types of 

composite beam failure. The approach and analysis used 

herein is considered to be valid for sJmply supported com­

posite beams, with solid, ribbed or haunched slab. 

The proposed method of design makes use of Cowan's(lO) 

criterion of failure and the method of construction of the 

relationship between v and pf as outlined in Reference (11).
y 

6.2 Theory 

6.2.1 Cowan and Zia Envelopes of Failure 

To evaluate the strength of a member subjected to 

biaxial stress, one must establish a criterion of failure. 

Several theories of failure for concrete under combined 

stresses have been proposed, such as Mohr, Rankine, Coulomb 

and Cowan. Cowan suggested the combination of the maximum 

stress (Rankine's) and the internal friction theory 

(Coulomb's) as a dual criterion of failure for concrete. 
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His suggestion was based on the observation of two distinct modes 

cf failure of concrete, cleavage and shear fracture. Cowan's 

failure envelope is shown in Fig.(6.1) where c1 and c2 are 

Mohr's circles representing simple tension and simple compression, 

respectively, and that 37 degrees is assumed to be the angle of 

internal friction of normal concrete. 

A modification of Cowan's theory was proposed by Zia(lO) 

in an attempt to reduce the abrupt change from pure cleavage 

failure to pure fracture failure. The modification is also 

shown in Fig.(6.1) and the resultant envelope will be identified, 

hereafter, as the Zia envelope. 

6.2.2 	 The Experimental and Theoretical Work of Hofbeck, 
Ibrahim and Mattock(ll) 

The authors of Reference (11) studied the shear transfer 

in reinforced concrete; that is, when shear failure is constrained 

to occur along a plane. '!'his type of shearing action is called 

"shear transfer" in. or-der to distinguish it from that usually 

occurring in a reinforced concrete beam. Thirty-eight push-off 

specimens were tested, some with, and some without a pre-existing 

crack along the shear plane. A method was presented for the 

calculation of shear transfer strength in initially uncracked 

concrete based on a slightly modified version of the failure 

envelope proposed by Zia. 

To explain how the v , pfy relationship can be constructed (ll) , 

consider a push-off specimen of width w, thickness b#and shear 

plane of length d'. The stresses acting on a small element of 
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concrete lying in the shear plane will be as shown in Fig.(6.2), 

where 

v = V/lld' 

= 

a y = V/bw 

Since for a particular patterns of push-off specimen v/cry. is 

constant, points on the Mohr circles; Fig.(6-2); at failure corr­

esponding to v and cry will all lie on the straight line OA inclined 
-1at angle e to the normal stress axis, where e is tan (v/ay). 

The term (v/cry) is fixed by the proportions of the test specimen 

and is equal to w/d~ A series of circles are drawn, each tangent 

to the failure envelope. Where line OA cuts a circle establishes 

the point v, cry for the stress conditions at failure represented 

by that circle. A line is drawn through point v, cry and through 

the centre of that circle. Where this line cuts the circle diam­

etrically opposite from point v, oy 1 fixes the point v, crx, that 

is, v, pfy. By repeating this process for several circles, a 

succession of points v , pf can be obtained. A line throughu y 

these points is the vu, pfy relationship obtained in the push-

off specimen(ll). 

6.3 	 Shear Transfer Concept as Applied to the Slab of 
Composite Beam 

Consider a transverse strip in the slab of a composite 

beam taken between two adjacent connectors. The forces acting 

on that strip are as shown in Fig.(6.3). The shear force Q, 
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which is taken to be equal in all the connectors, produces a 

shear stress along the two shown surfaces(l),( 2),C3>. It 

follows that the shear failure in the strip i.s constrained to 

occur along a predetermined plane. This type of shear action 

has been defined in Reference (11) as a "shear transfer". In 

fact, a reasonable similarity exists between the strip shown 

in Fig. (6.3) and the push-off specimen shown in Fig. (6. 2). The 

main differences between the two c~sco are the nUinber of shear 

surfaces and the nature of the longitudinal stress cry. In the 

slab of a composite beam the shear plane con.sists of two parallel 

surfaces separated by the studs which run along the span. In 

addition, cry in the composite slab is produced by the bending 

stress which may vary in sign and magnitude throughout the thick­

ness of the slab. 

Due to the variation in a throughout the slab thickness,y 

it follows that the shear carrying capacity of concrete should 

vary through that thickness. That is because the former has a 

pronounced effect on the latter< 3>. Herein, the shear stress 

produced by Q is considered to vary through the slab thickness 

and is dependent upon the shear resistance variation. 

In general, two zones can be distinguished at ultimate 

load through and across the slab thickness. The first zone is 

that above the neutral axis of the slab which is under longit­

udinal compressive stress. The second zone is the tensile zone 

stress below the slab neutral axis. Both zones are shown in 
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Fig.{6.3). Hereafter, the subscripts c and twill refer to 

the compressive and tensile zone respectively. 

Consider two small concrete elements at the shear surface 

such that each one is taken from one of the two concrete zones. 

From the above discussion and assumptions, it follows that these 

elements are subjected to the stresses shown in Fig. (6.4), where, 

af , Sf~ = and crx = pf • c t y 

6.4 Stress Conditions 

Due to the similarity in the concrete elements of the 

push-off specimens of Reference (11) and the previous slab strip, 

the same procedure can be adopted to find the v, pf relation y 

for a given element (c) of Fig.(6.4) in the composite beam slab. 

Fig.(6.5) shows this relation for different values of a. For 

the plotted values of a, either the Cowan or Zia envelope of 

failure has been used since both give identical results. 

Consider the dotted curve shown in Fig.(6.5). It rep­

resents the maximum possible crx that would be utilized if af~ 

is maximum. This state is represented graphically in Fig. (6.7) 

for which the subscript u has been used to identify the corres­

ponding ultimate stresses. In fact, this dotted curve can be 

drawn directly from Fig.(6.7) by taking several values of a to 

find the associated(~), and (~). It is clear that for diff­

erent values of a, t;~ locus off~hese points is a circular curve 
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~ 1which is tangent to the -.- axis and having the point c , 0)2 
f c 

as centre. This dotted curve of Fig.(6.5) is the front part of 

the circle of Fig.(6.7). For this circle the relation between 

e and {pfy)u can be given by: 
I 

f c 
= [l - Cos 2 0] ••• (6.1)~ 

It is clear from Fig.(6.2) that e is given by: 

Ve 
tan e = ~ ooe(6.2)

afc 

v 
then a = (~) 1 

~ •• (6.3)tan a 
f c 

Therefore, by equation (6.3), the relation betweP.n a and 

pfy at a given e can be plotted using the corresponding values 

VC ~ of-,. and , from Fig.(6.5). This relation is shown in Fig.(6.6). 
f c fc 

The line corresponding to (pfy)u is also shown in this figure 

which gives the associated values of a, i.e. au. 

Another interesting case to study is when pf = O. This y 

case can be shown graphically as shown in Fig.(6 ..8). It follows 

that a state of stress exists for the concrete element (c), 

Fig.(6.4), in which there would be no need for any transverse 

reinforcement and that the element shear resistance is capable 

of taking the applied shear. The normal stress coefficient, a, 

for this case {i.e. pfy = 0) is known from Fig.(6.6) for a given 

value of a. 
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6.5 Flexural Failure of the Slab and Associated Stresses 

The flexural failure of the slab has been the most common 

failure of composite beam tests. In general, this failure, if 

not accompanied by any longitudinal or connection failure, 

indicates that the beam has achieved its maximum capacity. For 

such cases of failure., the stresses present in the most highly 

stressed section have been assumed as shown in Fig.(6.9). In 

this figure, the stress distribution is taken to be similar to 

that present in a reinforced concrete member. In fact, this 

similarity does not entirely hold true in composite beam slabs 

which are assumed to have vertical shear surfaces, Fig.(6.3). 

This is due to the existence of the longitudinal shear stress at 

the shear surfaces. Theoretically speaking, a concrete element 
I 

will crush if it is subjected to a uniaxial stress equal to fc. 

But the element capacity would be reduced if a shear stress is 

applied in addition to the normal stress. To clarify this 

point further, consider the stresses acting on the concrete 
I 

element (c) at Fig.(6.4). The maximum possible afc that can be 

applied on that element was found to be given by au. 

From Fig.(6.6) it is clear that au is equal to unity if, 

and only if,0 is zero and it decreases as a increases. The 

angle a is zero only when the applied shear stress, v , on the c 

element is zero. From this it follows that the presence of 

shear prevents the elements from achieving their theoretical 

•flexural capacity fc. In such cases, the failure of the elements 



62 

_.,___ 

b .., 
N- - -

,. 

A5 Fy .. 

( :l 

-­ l - J 

FIG. C6.9) - STRESS DISTRIBUTION ACROSS THE 
BEAM AT ULTIMATE LOAD. 



. 63 

would be of the shear-fraction type. In this type of failure, the 

failure plane would be along the principal plane inclined by 

the angle P = e to the longitudinal axis of the slab. However, 

it .is expected that the shear-fraction failure of the elements 

at the shear surface will be quickly followed by flexural fail­

ure of the concrete on both sides of that surface. 

Therefore, and as far as the compressive part of the 

slab is concerned, the ultimate capacity of the concrete elements 

at the shear surface would be achieved when the major normal 

stress is au fc. ' For this case, it was found that the trans­

verse slab reinforcement should be capable of providing a stress 

equal to or greater than (pfy)u' and that the amount of rein­

forcement can be given by equation (6.1). 

In Fig.(6 .9), the bottom of the stress block is consid­

ered to represent also the position of the slab neutral axis. 

Hereafter, the part of the concrete below the distance (a) from 

the top fibres of the slab is assumed to be under constant 

tensile stress equal to 6 ft. ' , where, 

a = c 

and since for ultimate flexural capacity of the slab 

c = l:Qu = As F y 

A l:Qs FY . _uThen a = I = ••• (6.4)o.ss _0 • 85f I b.f Cb c· 



I 

Following the same reasoning as that used for af , then here c 

also S will be less than unity due to the presence of shear. 

6.6 Basic Equations 

Since all the elements under the same stresses have the 

same shear resistance, then equating the forces acting on.one of 

the shear surfaces of the slab strip of Fig.(6.3) we get: 

••• (6.5) 


or 
Ou t-a 

as Cl + ap-1r = 


where p = 
 represents the comparative shear resistance 

of elements (c) to elements (t), Fig.(6.4). 

Then, °u 
[ l + t-al ••• (6.6) 

vc = ias ap 

Since for the case of flexural failure of the slab we 

have VC 
tan e = 

0.85 f c 

then, substituting in the above equation for v from equation (6.6). 

we get Qu 1 t-a1tan e = [l +2as ap0.85 f c 

By substituting the value of a as given from equation 
I 

(6. 4) and cancelling the terms 0.85 f , we get
0 

Ou b [l + t-ajtan e = 
EQU '2S ap 

b or tan e = 2sm [l + 
aP 
t-a1 

Where m = EQ is the number of connections up to theQ 
section under consideration. 

: 
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Since Sm is equal to the shear soan L then the above .. v 

equation becomes: 

b [l + t-a1tan e = -- ••• (6.7)
2Lv ap 

6.7 The Contribution of the Slab Tension Zone 

Fig.(6.10) shows a general stress condition for a long­

itudinal shear type of failure since: 

(i) the ultimate flexural failure is not achieved: a < au 

(ii) circles c 1 and are tangent to the failure envelope.c 2 

For this case, let vc and vt denote the average shear 

stress of the top and bottom of the concrete slab respectively. 

It is ~lear from Fig.(6.10) that vc >> vt, or p >> 1.0. In fact, 

it is believed that p is not constant through the process of 

loading of the composite beam. It starts, say, with a value of 

unity until the limiting stresses of the tension zone elements 

are attained. Then, due to the constraint provided by the upper 

part of the slab, it is expected that, with the increase of load, 

the lower part of the slab remains in a stationary condition 

without longitudinal shearing. That is to say, vt remains con­

stant while the shear stress in the compressive zone is gradually 

increasing. Finally, a longitudinal crack is expected to start 

at the lower part of the slab as the ultimate condition of the 

compression zone of the slab is approached. 

http:Fig.(6.10
http:Fig.(6.10
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Referring to Fig.(6.10), it seems reasonable to assume 

that the two principal direction cf>c and cf>t are equal prior to 

failure, where 

tan cf>t = ••• (6.8) 

and 
tan 2cf> = ••• (6.9)

c af - pfc y 

This assumption implies that the cracking surface tends to be 

continuous throughout the shear surface. However, if cf>c 1 cf>t 

it is expected that there will be an abrupt change in the crack 

pattern through the thickness of the slab, and that change, if 

present, has to be at the slab N.A. 

Thus, substituting cf>c = cf>t = cf> into equations (6.8) and 

(6.9) we get: I 

af · - pf 
tan 2cf> [ c Y]2 

I 

and Vt = tan cf> [ft + pfy 1 

I 

afc - pf ••• (6.10)tan 2cf> yThen p = 2 tan~ 
ft + pfy 

Equation (6.10) shows that p is a function of cf>, a, pf and the y 

concrete strength. To check the practical range of variation of 

p in composite beams consider the two extreme cases: 

(i} the case when no transverse reinforcement is used, as 

represented in Fig.(6.8). 

http:Fig.(6.10
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Substituting pfy = O in equation (6.9) we get; 

tan 2~ = 2 
Ve --. 

afc 
v 

but since tan a = c 
--r 
af c 

Then 
tan 2~ ·= 2 tan 0 	 ••• (6.11) 

Then, for a given concrete strength and a, the corres­

ponding p is calculated from equation (6.10) by knowing ~ from 

equation (6.11} and a from Fig.(6.6). 

(ii) 	 the case when ultimate capacity of the slab is 

achieved; i.e. when pfy = {pfy>u· 

It follows from Fig. (6.7) that~= a. The same pro­

cedure as above is used to find p for a given a. 
The relation p - tan 6 is plotted as shown in Fig.(6.11) 

for concrete compressive strengths of 6,000 psi and 3,000 psi. 

For that plot,£~ has been taken to be equal to 0.68 (f~)J/~[10). 

For comparison, the two cases are shown in the figure, from which 

it follows that p decreases as 6 and/or pfy increase. 

It may be seen that for the plotted range of tan 6, p drops 

to four when tan 6 = 0.4 and it can go up to twelve for tan 0 = 0.1. 

Then for that range of e, the shear resistance of the tension 

zone of the slab is much less than that of the compression zone. 

http:Fig.(6.11
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Consider now the term !~a of equation (6.7}. This term 

approaches zero when a = t or when p is large. In practice, 

the range of a is usually such that i ~ a < t. Therefore, it 

follows that ~~a is always much less than unity and neglecting 

it will not affect the accuracy of tan e in equation (6.7). 

Doing this, equation (6.7} can be simplified further to become 

btan e = ••• (6.12)
2Lv 

6.8 Ultimate Strength Design Equation and Chart: 

From all the previous discussion, it follows that the 

equation 

gives the minimum amount of transverse reinforcement required to 

achieve the ultimate capacity of the concrete slab. In this 

equation 

1 - cos20 = 2 Sin2e 

b b 
and since tan e = then Sin 0 = 2Lv Q +(2L ) 2 

v 

Therefore the design equation becomes 
f' 

c(pf ) = ••• (6.13)y u 2· 2L 
1 +( bv) 
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is plotted against ~ , equation (6.13} would be 
'Lv 

represented graphically as a circular curve similar to the dotted 

curve of Fig. (6.5). This plot is shown in Fig. (6.12) which 

is the design chart of the proposed ultimate strength design. 

For the case when the plastic neutral axis is within 

the steel beam, the same adopted procedure is still applicable. 

But, in this latter case, the sum of the connection shear forces, 

EQ, at flexural failure of the slab would be given by, 

EQ = the ultimate compression capacity of the slab 

' = 0.85 fc bt. 

6.9 Other Types of Composite Beam Failure 

Consider now a composite beam which has transverse slab 

reinforcement less than that required to achieve the ultimate 

flexural capacity of the slab; i.e. pfy < (pfy>u· In this case, 

a longitudinal crack is expected to occur at the most stressed 

section in the slab, then to develop towards the supports as the 

load increases. At this section of the slab, it is rather 

difficult to predict the exact stress distribution when the long­

itudinal crack starts. However, an approximation of the bending 

stress distribution likely to be present above the section neut­

ral axis is shown in Fig.(6.13). This approximation is based on 

elastic-plastic type of stress distribution since the ultimate 

flexural condition of the slab has not been attained. The 

http:Fig.(6.13
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position of the neutral axis is also considered in this type 

of failure to be given by the distance a from the slab top 

fibres, where 

••• (6.14)a = 

In fact, the position of the neutral axis in a reinforced con­

crete section tends to propagate up while the ultimate condition 

is being approached. However, the range of variation of the 

neutral axis between elastic and plastic stages of loading is 

rather small and it has been neglected. 

Using the same reasoning here as that used for dis­

regarding the tension zone contribution, then, the longitudinal 

shear is considered to be taken by the part of the slab above 

the neutral axis. Although the longitudinal normal stress 

varies through the slab thickness, it is assumed that all the 

concrete elements at the shear surfaces will fail simultaneously 

when their total shearing resistance is utilized. It follows 

from Mohr circles representing failure conditions in Figs.(6.7) 

and (6.8) that the transverse normal stress, a , varies through
x 

the slab thickn'ess since it is dependent upon the magnitude of 
I 

the longitudinal normal stress a.fc. The variation of ax is 

such that 
• I 

(i) when cxf = a f O' = (pfy)uc u c x 

I I 

(ii} when Clf < ; = 0 c amin f c crx 
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The above two cases represent the failure of the concrete 

elements above y and below ya of Fig. (6.13) respectively. 

For the intermediate concrete elements within x, the transverse 

stress would be somewhere between zero and (pf ) • For simp­
y u 

licity and in order to be on the conservative side, this 

intermediate zone is included with the one above it resulting 

in a transverse stress of (pf ) utilized within ya prior to y u 

failure of the beam in question. Then the total transverse 

force utilized prior to failure of the part of the slab above 

the neutral axis is given by (pfy)u ya per unit length of the 

slab. This transverse force results in an average stress of 

(pfy)u ~: which should equal the average transverse stress 

produced by the reinforcing bars throughout the slab thickness. 

The latter average transverse stress is assumed to be acting 

throughout the total thickness ef the slab regardless of the 

position of the transverse reinforcing bars in the slab. 

Thus , 
y ••• (6.15) 

where p' is the steel ratio in the concrete slab 

for partial ultimate capacity. 

The coefficient y in the above equation is a function 

of the stress distribution shown in Fig. (6.13), and a general 
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DISTRIBUTIOtl. IN THE SLAB FOR PA.RTIAL ULTiriATE 
STRENGTH. 
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expression for it can be derived as follows: 

ya = a - y + x 


or y = 
 ••• (6.16) 

from similar ~riangles we get: 

y - x amin 
= y "079"5' 

amin or y - x = y 
~ 

Substituting the above value of (y - x) into equation (6.16), · 

we get, 
a .min • •• (6.17)

y = 1 - y o.85a 

An expression for y can be found by equating the total force 

due to bending in the slab to C,• 
I 

i.e. c = o.as f cb (a - ~) ; C <AF s y 

cor y = 2 (a - ) 
0.85 fcb 

Substituting y into equation (6.17), we get, 

a .2 min (a - C )Y = 1 - o.asa 
0.85 fcb 

or y = 1 - 2.35 amin (1 -
c 

) 
0.85 fcba 
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and since a = 

c ••• {6.18)then y = 1 - 2.35 a . {l - A-F )min s y 

Finally, substituting y into equation (6.15), we get 

c 
= (pfy)u [l - 2.35 amin (1 - AF)] ••• (6.19) 

s y 

The above equation implies that for a given (pf ) , a . and 
y u min 

A F then C and hence the moment at first longitudinal crack­s y 

ing can be determined for any value of the transverse slab 

reinforcement parameter, p~f • (pf ) and a . can be known 
y. y u min 

l:for a given Lr;- from Fig.(6.12) in which the corresponding 
v 

values of a. as found from F'ig.(6.6) are tabulated.min 

Equation (6.19) can be re-arranged to give 

pf 
c = AsFy {1 - 21 c1 - (pf r ]}.35 a .min y u 


and since c = EQc = m Q
c 

AF pf
1 ythen Qc = -2...:t.. {l - [l - ] } ••• (6.20)m 2.35 (pfy)uamin 

Another feature of equation (6.19) is that it can be 

used to determine the minimum amount of transverse slab rein­

forcement required when there is only partial connection. 

This type of failure is likely to occur when EQ < A F where u s y, 
Qu is the ultimate shearing strength of a connector. In fact 

http:Fig.(6.12
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in this case also, the same elastic-plastic stress distribut~ 

ion shown in Fig. (6.13) can be considered valid at the 

connection failure. As a result, equation (6.19) would be in 

this case: 

LQU
p'fy = (pf ) [l - 2.35 a . (1 - ;r----p)] ••• {6.21)

y u min ns y 

where p'fy here represents the transverse reinforcement para­

meter required for the simultaneous occurrence of shear 

connection failure and the excessive longitudinal.cracking of 

the slab. 
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COPIBR ~I 

COMPARISON AND CONCLUSION 

7.1 	 Comparison with Davies Test Results 

In part 2 of his paper{ll) "Test on half-scale steel-

concrete composite beams with welded stud connectors", Davies 

studied the effect of transverse slab reinforcement on l:he 

behaviour and performance of composite beams. He reported 

the cracking loads and shear forces of Series 2 beams; A
4

, B
4

, 

c 4, and o 4; in which the transverse reinforcement was reduced 

in successive beams. 

The cube strength and the equivalant cylinder strength 

of concrete for all the beams are listed in Table {7.1). The 

equivalant cylinder strength was made using Evan's Table<9 > 

of conversion. The table also shows a comparison between the 

experimental pfy and connector force at cracking Qc as reported 

by Davies and the associated theoretical values calculated 

using the proposed design equations. The theoretical values 

of pf were found by substituting the shear forces as reportedy 	 . 

by Davies into equation (6~19), whereas equation (6.20) and 

the actual pfy were used for the calculation of the theoretical 

In these two equations, a . was taken to be 0.68 as givenmin 

by Fig. (6.12). The flexural failure of beam A4 was not 

accompanied by any longitudinal cracking along the line of the 



shear connectors. This beam was excluded from the theoretlcal 

calculation since its slab proved to be transversly over-

reinforced. 

It is clear from comparing the two values of pf· of . y 


each beam that the theoretical values are in good agreement 


with the a.ctual pf used. It is also clear that the difference 
y 

-between the experimental and theoretical values increases with 

tbe decrease of pf ~aving a maximum of 9.2% for beam c4 and y 

a minimum of - 22.5% for beam n4 • However, an excellent 

agreement of the theoretical and the experimental values of 

Qc exists for all the beams with a maximum difference of less 

than+ 4.5%. 

Davies also reported that the shear resistance per inch 

run of beam could be represented by the following empirical 

expression: 

Using the above exp:cession, Davies reported that the 


au·.o!.mt of transverse reinforcr;:.ment which would have permitted 


~xc:::c£iive lonc:i. tu.di.ital ei:i::.c'd.nr:~ in bearn A at the same time4 


as ultimate flexure would be 0.0205 in2/in. This is equal 


to G.82 per cent resulting in a pfy value of 492 psi when 


fv is 60,000 psi~ Almost the same reinforcement can be 
.. 
I 

'Obtained by putting the appropriate values of fc and b 1?L 
1~ v 


i~to equation (6.13}. The calculated (pf } value from this 

y u 

equation is 490 psi which by definition would permit a crack 

http:ei:i::.c'd.nr
http:au�.o!.mt
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to develop longitudinally as ultimate flexure is attained. 

It follows from the above comparison that the proposed 

theoretical approach is in good agreement with Davies tests 

and his empirical equation. The agreement is almost perfect 

in the predicted transverse reinforcement and the shear force 

for the full ultimate condition. In addition the calculated 
·.,. 

values of Q for Davies beams are almost identical with the c 
experimental ones. As a result, the compressive force C in 

the slab due to bending can be estimated for any amount of 

transverse slab reinforcement. Knowing C, then the applied 

moment for the case of partial ultimate failure can be 

calculated. 

Referring to Davies empirical expression, it is possible 

to derive a similar expression using the theoretical values 

obtained by assuming any two distinct values of pfy. Let 

these two values be the upper and lower limits of pfy; i.e. 

(pf ) and zero; and A F and v be as those given for beam y u s y u 


A • Then, equation ( 6. 20) gives

4


= 2.6 kip for pfy = 0
0c1 
and = 6.92 kip, for (pfy>u = 490 psi0c2 


Then the concrete coefficient Kl would be given by 


0c1 = = 8.80Kl 
t.s/t1w 
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and the reinforcement coefficient K2 would be 

0c2 c­
= [t S - Kl vU ]/(pf )• w y u 

= 2.35 

The resultant expression would be 

Although the above equation is quite similar to Davies', 

it is valid only for the special case when b/2Lv is equal 

to 0.312. That is because the two calculated values of 

either Qc or pfy as discussed in the proposed analysis are 
-1functions of the concrete strength and e where e = tan b/2Lv. 
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TABLE (7 .1) 


Comparison with Davies beam tests~ 


Beam u w 

psi 

I 

f c 

psi 

b 
2L v 

experimental 

pf QCy 

psi kip 

theoretical 

pfy 

psi 

QC 

kip 

A4 6,200 5,500 0.312 564 6.92 - -
B4 

c4 

7,300 

7,300 

6,850 

6,850 

0.312 

0.312 

282 

141 

5.15 

4.03 

276 

154 

5.18 

3.94 

D4 6,500 6,000 0.312 71 3.14 55 3.28 

TABLE (7.2) 

Comparison with cellular slab composite 
beam tests 

Beam b 
2L v 

experimental theoretical 

pfy 

psi 

QC 

kip 

pfy 

psi 

QC 

kip 

(pf )
Yu 

psi 

Pu 

% 

B8/30 0.267 58 6.35 30 7.10 298 0 .so 

Bl0/30 0.333 58 7.00 77 6.53 406 0.67 

BS/40 0.200 58 5.90 18 7.21 172 0.29 
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7.2 	 Comparison with the Composite Beam Tests 
Incorporating Cellular Decking 

The relative differences between the behaviour and 

performance of solid and cellular slab composite beam tests 

were mentioned and discussed in Chapter v. In that discussion, 

the effect of the slip and the presence of the metal deck in 

the latter type were shown to have a pronounced effect on 

the longitudinal shear resistance of the ribbed slab. In 

the proposed analysis, complete connection was assumed to exist 

between the concrete slab and the steel beam, as a result of 

which the slip effect, if present, w3s neglected. Such an 

assumption is believed to be violated for the three beam tests 

in question especially in the inelastic stage of loading. The 

slip, as reported by Davies, increases with the decrease in 

percent of transverse reinforcement in the slab which was very 

small in the beams B The presence of8130 , a10130 and B8140 • 

the metal deck adds another problem in estimating the actual 

stresses at failure in order to check the applicability of the 

proposed method to the test beams. 

Table (7.2) shows the comparison between the experimental 

and theoretical values of pfy and Qc. The theoretical values 

are calculated as explained in the previous section. The 

comparison shows some uncertainty in the prediction of the 

actual behaviour of the beams as reflected in the range of the 

errors. For beams B and a the theory predicted8130 8140 , 



better performance than that actually observed as reflected in 

the magnitudes of Qc. On the other hand B10130 surpassed the 

theoretical expectation. It is believed that a better 

agreement between experimental and theoretical values would 

have been achieved if a greater amount of transverse reinforce­

ment had been used in the slab of the tested beams. In the 

same Table, the theoretical values of (pf } and the correspond­y u 

ing percent transverse reinforcement required to achieve the 

ultimate flexure of the beams are listed. Although these 

ultimate values range from 300 to 700 percent of' the values used 

in the beam tests, they are still close to those resulting from 

2other design procedures{!) < > as listed in Table (5.1). 

7.3 Conclusions 

Since the longitudinal shear failure of the slab of 

composite beams is constrained to occur at a predetermined shear 

surface, the shear transfer concept(ll) can be used to analyse 

the stresses on the concrete elements located at that surface. 

Using the Cowan or Zia envelope of failure and the method of 

construction of the v, pfy relationship of reference Jll) a 

method of analysis of these stresses is proposed. The method 

implies that the longitudinal shear cracking of the slab is the 

result of achieving the ultimate shear capacity of a concrete 

element which is in turn a function of the normal stresses 

present at the shear surface. In the analysis, the contribution 

of the concrete elements subjected to tensile longitudinal 
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stress due to bending is found to be small and it has been 

neglected. In addition the longitudinal compressive stress 

as well as the slab width and the shear span of the beam 

are found to be the main parameters which can not.be 

neglected when estimating the longitudinal shear capacity 

of the slab. 

A design chart based on estimating the transverse 

normal stress, (pfy)u, required within the concrete slab 

to achieve the full ultimate flexural capacity of the 
/ 

composite beam is proposed. Alternatively, using elastic-

plastic stress distribution across the concrete slab, the 

longitudinal compressive force due to bending and hence the 

applied moment can be predicted for any longitudinal shear 

capacity of the slab. 

The proposed design and analysis when compared to 

previous tests and analysis(J) showed good agreement between 

both the values of the shear force Qc prior to failure, and 

in the estimated percentage of transverse reinforcement. 
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