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ABSTRACT

A method for the dynamic analysis of planar coupled shear walls
subjected to ground motions is developed herein. The method is capable
of application to nonuniform coupled shear walls resting on flexible
foundations. The possibility of develdpmént of yield hinges at the ends
of the connecting beams is included in the analysis. Also P-A Effect
is incorporated in the stiffness of the structure.

The method is based on the transfer matrix technique in com-
bination with the continuvum method. A step-by-step integration
approach is used in solving the equation of motion. The response to a
number of earthquake records are obtained. The effect of the rotational

ductility factor of connecting beams is studied.
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CHAPTER 1

INTRODUCTION
1.1. General

In high-rise buildings, the'design consideration due to lateral
loads becomes particularly important. It i; necessary to provide ade-
quate lateral strength and stiffness to the st%ucture. One alternative
in design is the use of reinforced concrete shear walls, The high
stiffness of the shear walls in their planes is employed to resist the
lateral loads. Usually, these walls extending the entire height of the
building. In order to have windows, doors and service ducts, openings
must be provided in the shear walls, and the resulting structure often
consists of two or more smaller walls coupled together by a system of
horizontal spandrel beams or connecting slabs. Usually, the exterior
walls have spandrel beams, which are short and relatively deep, while
the interior walls have connecting slabs which are less stiff.

When the shear walls are arranged in a symmetric manner in the
plan of the building, wind and seismic loads will cause translational
displacements only. In such a case, the behaviour of the whole building
can be studied from the two-dimensional behaviour of a typical pair of
shear walls. The shear walls may be coupled either through the floor
slabs or floor beams. This class of problem is generally known as the

plane coupled shear walls problem.

Coupled shear walls can be analysed as equivalent frames using



standard matrix structural analysis techniques. The finite width of the
shear wall is accounted for by assuming sets of infinitely rigid beams
connected to the column of the equivalent frame. The length of the
rigid beam is taken from the center line of the wall to the inner edge
of the shear wall. This approach has the advantage of being versatile.
Coupled shear walls can also be analysed using the continuous approach’
which replaces the connecting beams between the walls by a continuous
distribution of laminae of equivalent stiffness. This approach has the
advantage of being relatively simple and explicit solutions can be
obtained for a wide range of coupled shear wall geometries.

In countries where wind load is the.only source of lateral load
on a high-rise building, the elastic analysis of shear walls is extreme-
ly useful in assessing the behaviour of the structure. On the other
hand, in seismic areas where the structure may be exposed to moderate or
severe earthquake, the lateral load may be sufficiently large to cause
plastic deformations in some elements of the structure.

In coupled shear walls of ordinary proportion, the most valuable
areas are the ends of the connecting beams between the shear walls. It
is expected that even under a moderate intensity earthquake, plastic
hinges will develop at the ends of some, if not all, the connecting
beams. The behaviour of a coupled shear wall building during a moderate
earthquake will therefore depend on the extent plastic hinges are formed.
When subjected to a strong earthquake, the rotation demand at the
plastic hinges may even exceed the member's rotational capacity, causing
the connecting beams to fail. Therefore, the behaviour of a coupled

shear wall building subjected to a strong earthquake will depend not



only the extent the formation of the plastic hinges, but also the extent
the proportions of connecting beams that have failed completely.
Therefore, in order to study the behaviour of a coupled shear
wall structure subjected to strong earthquakes, it is necessary to
perform a dynamic analysis to the structure, allowing the possibility of
plastic hinges or real hinges formed at the ends of the connecting beams.
An understanding of the dynamic behaviour is an essential step to design

coupled shear wall structure in seismic areas.

1.2 Review of Past Works

It is useful to review the existing knowledge of coupled shear
walls by citing some of the studies carried out by different authors.
One can divide the works into three general categories: static elastic
studies, static inelastic studies and dynamic elastic studies. Unfor-
tunately, there does notappear any studies on the dynamic inelastic
analysis of coupled shear walls.

Based on the continuous approach, set of design curves for
uniformly distributed lateral load, triangularly distributed lateral
load or a point load at the top are presented by Coull and Choudhury
[5,6]. The effect of the flexibility of foundation on the coupled
shear walls is studied by Tso and Chan [20]. In that study, closed
form solutions are obtained for the stresses and deformations under
the same loading considered by Coull and Choudhury. Based on the
transfer matrix technique coupled with the continuous approach, a

general method is presented for the static analysis of planar non-



uniform coupled shear walls by Tso and Chan [18]. The arbitrary lateral
loading can be approximated by concentrated loads acting at a number of
discrete stations along the height of the wall. The effect of the
flexibility of foundation can be incorporated in this general method.

Based on the equivalent frame approach, a modified beam equi-
valent strucfure‘method is presented by Smith [16]. In this method,
the finite width of shear wall is accounted for by assuming sets of -
rigid arms connected to the columns of the equivalent frame. The
modified beam method presented by Smith is valid only for symmetrical
coupled shear walls.,

Based on the continuous approach, theelasto-plastic static
analysis of uniform plane coupled shear wall has been presented by
Gluck [8], Paulay [13] and Winokur and Gluck [23]. Graphs are
presented,assuming an upper triangle lateral load pattern for various
design characteristics by Gluck [8]. These graphs may be used directly
for practical design including the ultimate load for a given rotational
ductility factor. Gluck [8] concluded that '"Full plastification with
height of the laminae is very rarely possible, due to the limitations
on the rotational ductility factor'". Winokur and Gluck [23] proposed
a design method based on a collapse mechanism consisting of plastic
hinges at the ends of the connecting beams and the base of the shear
walls. By means of an example building, Paulay [13] showed that large
rotations would have occurred at the plastic hinges at.the ends of the
connecting beams when the ultimate strength of the structure is attained.
Experimental work has been carried out by Paulay [14], in which the

spandrel beams are studied under simulated seismic loading. The post



elastic behaviour of the spandrel beams is studied, and improvement in
the beams ductility and capacity is achieved using a new method for the
arrangement of the reinforcing steel.

The dynamic properties of planar, coupled shear walls are
studied by Jennings and Skattum [9]. For elastic planar coupled
shear walls the natural frequencies and mode shapes are studied, both
with and without the inclusion of the inertia of vertical motion,

The results affirm the necessity of including vertical displacement of
the shear walls in the analysis of such systems, and suggest the inertia
of vertical motion also must be considered in the analysis for certain
ranges of the parameters.,

The planar coupled shear walls are analysed dynamically by Tso
and Chan [19] to study the dynamic characteristics of such structures
both analytically and experimentally. The natural frequency is to be
found via a trial and error procedure. Also, no assumption is made
that the midpoints of the connecting beams are points of contraflexure.
In other words, the formulation by Tso and Chan [19] is a generalization
- of the continuous method of coupled shear walls,

The dynamic analysis mentioned above is elastic analysis, and due to
the plastic deformations which are associated with the seismic loading in most
cases especially in the coupling system for coupled shear walls, it is
necessary to carry out dynamic analysis include the plastic deformat-

ions happened during the application of the ground motion.



1.3 Aim of Present Investigation

The purpose of the present analysis is to develope a method for
a complete time-history analysis for nonuniform planar coupled shear
walls, taking into account the plastic deformations in the connecting beams
and the P-A Effect. The proposed method may enable us to obtain more
realistic time-history response of planar coupled shear walls. With
this proposed method, it is possible to study the effect of connecting

beam ductility on the seismic response of coupled shear walls.

1.4 Scope

An elasto-plastic dynamic analysis for planar nonuniform coupled
shear wall is presented in this research work. The method used for the
dynamic elastic analysis including the P-A Effect is presented in
Chapter 2., The modification to the proposed method for dynamic elasto-
plastic analysis is presented in Chapter 3. To examine the safety of
the shear walls building designed according to the NBCC [10], the
coupled shear walls designed according to NBCC is subjected to a
variety of ground excitations. The responses of these walls are pre-
sented in Chapter 4. The design calculation for exterior and interior
planar coupled shear walls is presented in Appendix A.

It is hoped that the present work will provide some insight to
the inelastic dynamic behaviour of planar coupled shear walls under

seismic loading.



CHAPTER 2

ELASTIC DYNAMIC ANALYSIS

2.1 Introduction

The present chapter describgs a study on the seismic analysis of
an elastic coupled shear walls. A completeAdynamic,response analysis is
used to estimate the design load due to earthqﬁakes. The analysis is
based on the transfer matrix technique of the structure after replacing
the connecting beams by an equivalent continuous medium capable of
transmitting actions of the same type as the discrete spandrels.

A study of the natural frequencies and mode shapes is presented.
It takes into account the effect of axial deformations of the walls.
Also, the P-A Effect.is included in computing the stiffness matrix of
the system.

Numerial integration methods are used in the integration of the
equations of motion of the system. The choice of the proper method for
the step-by-step integration is governed by the stability of the
integration and the accuracy of the resulting accelerations, velocities
and displacements.

The purpose of the chapter is to give an idea about the main
concept adopted in the work and to clarify the transfer matrix technique

used in the analysis,

2.2 Appraisal of Existing Approaches

Generally, coupled shear walls can be studied by one of two



methods. These methods are the equivalent frame method and the con-
tinuum method. In the first method, the coupled shear wall is treated
as a single bay frame. The columns and beams are located at the center
lines of the piers and spandrels as shown in Figure (2-1a). The finite
width of the walls are represented by rigid arms as shown in Figure
(2-1b). 1In the second method, the discrete system of the spandrel beams
is replaced by an equivalent continuous medium capable of transmitting
actions of the same type as the discrete spandrels.‘

The continuum method model, Figure (2-1c) is assumed to have
uniform connecting beams distribution and wall stiffness throughout the
wall height. Therefore, it lacks the flexibility to be adopted to
analyse buildings where the floor height, connecting beam stiffness and
wall stiffnesses may change along the height of the structure.

To overcome the difficulty of applying the continuum method for
nonuniform coupled shear walls, a method of analysis using the continuum
approach is presented by Tso and Chan [18]. This method is based on the
transfer matrix technique. The continuum approach with the transfer
matrix technique produce a simple method to apply and in the same time
very flexible, so that it can be used to analyse a wide variety of wall
configurations, foundation conditions and loading conditions. The
technique is to divide the wall into a number of segments, and each
segment can be considered as a uniform coupled shear wall. The continuum
method of analysis can therefore apply to each segment to relate the
parameters of interest from one end of the segment to the other end.

The solution of the problem is then obtained by relating the boundary

conditions at the base to those at top by means of the segments transfer
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matrices. In addition, the transfer matrix technique can be used even
with computers of limited memory capacity. Because of the above
advantages, the transfer matrix technique together with the continuum

method of analysis is used in the present analysis.

2.3 Outlines of the Transfer Matrix Technique

For completeness, the main feature of using the transfer
matrix technique to solve a nonuniform coupled.shear wall is outlined
below.

Figure (2-2) shows a nonuniform coupled shear wall on flexible
foundation. The cross-sectional properties of the coupled wall change
at a number of discrete stations along the height of the wall and con-
centrated lateral loads are acting at these stations. So, the station
is defined as the section at which the wall cross-section properties
changed or when there is a lateral concentrated load acting. The base
is taken to be station zero, and the top is taken to be station n,
where n is the number of segments into which the wall is divided.
Between the base and the top the stations are numbered from 1 to n-1.
Between each pair of stations, the cross-section is uniform and will
be referred to as a segment of the wall. The ith segment lies between
the (i—l)th station and the ith station. A complete solution of the
problem is obtained by determining the state vectors {¢}iA and {¢}iB
above and below the ith station respectively. The state vectors are
defined by:

1 n m e
Colum {y, y ,y ,y , M

(63, , V)

{9}

iA

» Vlig

1 " ne e (2"1)
Colum {y, y , y,y , M

iB

10



nthSTATION
(TOP)

nthSEGMENT

(n-Dth sTATION

(n-D SEGMENT
(-2 STATION

ith sTATION

it SEGMENT

(i sTATION

12 sTATION

12 SEGMENT

STATION
ZERO (BASE)

FIG. 2.2

STEPPED COUPLED

11

T S50 e e A 1
- |

H, 0O

O

4’" Po= 1 El

; 0

Hoy ' O

i—-— Pn_z—‘» D
Hy

=P —r

SHEAR WALL ON FLEXIBLE
FOUNDAT ION



12

Where {¢}iA refers to the side where station i and the (i+1)th
segment join together, and {¢}iB refers to the side where station i and
the ith segment join together. The prime denotes differentiation with
respect to x, Figure (2-3b).

Station zero has one state vector {¢}0 only, and also station n
has one state vector {¢}nB. These state vectors contain the boundary
conditions of the coupled shear wall problem. By relating the state
vector {¢}0 to the state vector {¢}nB by means of tﬁe segment transfer
matrices, {¢}o and {¢}nB can be determined. Then by back-substitution
using the transfer matrices of the segments, other state vectors can be

found. The transfer matrices necessary for the solution of the problem

are defined as follows:

a - Field Transfer Matrix [F]i

The matrix [F]i is the ith field matrix which relates the state
vector at one end of the segment, {¢}(i-1)A’ to the state vector at the

other end of the segment, {¢}iB.

{4’}(1-1)/\ = [F]; (¢} (2-2)

b - Station Transfer Matrix {S]i and the Load Vector {L}i

The matrix [S]i represents the station transfer matrix of the
ith station, it relates the state vector at one side of the station to
the state vector at the other side. The externally applied concentrated

load Pi is included in the load vector {L}i‘ The state vector {¢}iB is
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related to the state vector {¢}iA by the following equation,
{o};p = [S1; {4}, + (L} [(2-3)

c - Total Transfer Matrix of the Structure [F]

The matrix [F] is the product of all the field and station
matrices of the segments. The [F] matrix relates the state vectors at

the base, {¢}0, to the state vector at the top, {¢} [F] is given by

nB’

the following equation [18].

n
[F1 = (T [F1; [s1) (2-4)

i=1

with [S]n = [I] = identity matrix

d - Total Load Vector for the Structure {L}

The externally applied concentrated loads are included in the
total load vector for the structure {L}. This load vector is formed by
the following equation [18].

n-1i-1

(0= 71y by« UL FlIshd 7 4y @o9)

From equations (2-4) and (2-5), the necessary transfer matrices
for relating the state vector {¢}0 to the state vector {¢}nB can be

obtained. The following equation gives this relation.
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{¢}o = [F] {¢}nB + {L} (2-6)

There are six elements in each of the state vectors {¢}o and

{4}

nB’* Out of these twelve elements, six of them are known as given
by the boundary conditions at the top and bottom of the structure.
These remain six are unknowns and equation (2-6) is a set of six
equations for the solutions of these six unknowns. “Once equation

(2-6) is solved, then every element in the state vectors {¢}o and {¢}nB
wili be known,

By means of the transfer matrices of the segments other state
vectors can be determined for all segments starting from the top and
going down until segment 1.

The stress state of the structure, the wall moment Mi(x)’ the

wall axial force T. and the distributed shear q. can be determined
i(x) 1.(x)

from the following equations.

=EL; ¥ (2-7)

%)
Ti (x) = [MiB+ViB(Hi—X) —Mi (x) ]/ai (2-8)

Gy = B L yizx)+ViB)/ai (=8

2.4 Assuthions

Various assumptions are used for the present analysis. The
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assumptions which are listed below can be divided into two main groups,

the first one is the general assumptions which have been verified by

most investigators, and the second group of assumptions concerns the

present problem specifically.

2.4.1 General Assumptions

These assumptions are dealing with the stress-strain relation-

ship and compatability conditions.

13

Moment-Rotation relationship is considered linear up to the
plastic moment followed by a horizontal plastic plateau.
Plane section perpendicular to the axis of the member
before loading remains plane after application of the load.
Shear deformation is neglected for the piers and axial
deformation is neglected for connecting beams.

The midpoints of the connecting beams are points of con-

traflexure.

2.4.2 Special Assumptions

These assumptions are made in order to simplify the analysis and

to make it compatible with the approach used. These assumptions are

dealing with the modeling of the structure.

1.

2.

Wall remains elastic throughout the analysis.
Uncracked section for the wall is used in the calculation
of wall stiffness.

The connecting beams are taken as a double reinforced
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concrete section and the cracked section is used for stiff-
,
ness determination of the connecting beams,
4, The masses are to be lumped at discrete points along the
height of the walls. Therefore, the inertia forces of the

building are approximated by concentrated loads acting at

different heights of the building.

2.5 Dynamic Modelling

The lumped-mass approach is used in the dynamic analysis. The
masses of each segment are lumped at discrete points alcng the height of
the wall., The location of the masses are taken as the stations in the
problem, Therefore, the number of degrees of freedom will be equal to
the number of segments of the wall. The mass matrix, stiffness matrix
and damping matrix in the equations of motion for the system are as

follows:

2.5.1 Mass Matrix [M]

It is a diagonal matrix with the mass of the ith segment to be

the element m(i i) on the main diagonal.

b

2.5.2 Stiffness Matrix [K*]

For stepped coupled shear wall on flexible foundation, Figure
(2-2), the static analysis of it is already done. The transfer matrix
method by Tso and Chan [18], which is described in subsection (2.3), can

8
be used to determine the flexibility matrix [F ]. This flexibility
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matrix is n by n where n is the number of segments. The jth column is
to be formed by calculating the lateral deflection Y; of the ith mass
due to unit load acting at the jth mass, {i=1, n).

P-A Effect can be introduced in this stage, i.e. before invert-
ing the flexibility matrix [F'] to obtain the stiffness matrix., If
P-A Effect is to be neglected the inversion of [F'] will give the
stiffness matrix [K], which does not include the geometric stiffness.
The combined stiffness matrix [K*], which includes the geometric stiff-
ness, can be obtained by inverting the combined flexibility matrix [F*].
The combined flexibility matrix [F*] includes the P-A Effect.

To introduce the P-A Effect, the following iterative procedure

is to be carried out:

1. From the resulting flexibility matrix [F'], the lumped
weights at the stations will cause additional bending
moment due to the eccentricity from the axis of the wall,
Figure (2-4).

2. The additional lateral deflection Afi is calculated at each
station i and added to the flexibility coefficient fi to
get a modified coefficient f .

3. Step (1) is to be repeated using fi* and from which a new
Afi can be calculated. This new Afi is to be added to the
flexibility coefficient fi to obtain a new fi**. Comparison
is to be made between the resulting fi** and fi*. If the
difference between two cycles is within certain allowable
error, the resulting modified flexibility coefficient fi*

is taken to be correct. Otherwise steps (1) to (3) have to
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* % *
be repeated again with fi as fi

Figure (2-4) shows the eccentricities fi for the lumped weights
W, (i=1, n), and the method of calculating the additional bending
moment due to these eccentricities. Also the method of calculating
the elastic weights oy is shown in the same figure. The additional
Afi can be calculated from the following equation:
K=i ' ‘ .
AE; = Kzl {W, | [(HTT -HTT,) + Hy/2] + W, [(HTT -HTT.) + ZH 1} + 88,

(z-11)

where Aei is the additional deflection due to the additional rotation of
the foundation, which can be calculated from the following equation:
M
b6, = fﬁ (HT - HTT,) (2+12)

It should be noted that in the above method the coupled action
is neglected in calculating Af and the coupled shear wall is considered
as cantilever with equivalent moment of inertia Ii = Iil ix IiZ'

By applying the above method for all the columns in the flexi-
bility matrix (j=1, n), a modified flexibility matrix [F*] is obtained.
This matrix includes the gravity load effect, i.e. the combined flexi-
bility matrix.

The combined stiffness matrix [K*] is to be determined by

inverting the flexibility matrix [F],

K] =(F1? (2-13)
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2.5.3 Damping Matrix [C]

For the numerical integration the damping matrix must be intro-
duced to the equations of motion with its original form. It is assumed
that the damping matrix [C] will be diagonalized by the same trans-

*
formation that diagonalize the [M] and [K ] matrices. In other words,

[¢]T[C][¢] = 280, ' ' (2-14)

where [¥] is the modal matrix,
Ei is the ith percentage damping ratio, and
w, is the ith natural frequency in radians per second.
Therefore, to form [C] it is necessary to calculate the
eigenvalues and the eigenvectors of the system. The periods and the
normalized unit vectors can be determined from the eigenvalues and

eigenvectors respectively.

(2-15)

0y (2-16)

If the percentage damping ratios &1,52,...,51,...,£n are to be

assigned, the damping matrix [C] can be determined from equation (2-14),
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|
€] = (e"1 [~ 2550, - 1[e]7 (2-17)

From the orthogonality condition

01 Mi[e] = (11 (2-18)

'1 #
Premultiplying equation (2-18) by [@T] gives

<1 w1
[&'] [e)TMi[e] = [e'1 (1]

<1
therefore [¢7] = [M][e] (2-19)

Postmultiplying equation (2-18) by [<I>]-1 gives

(o1 M1re1re1™t = (110017t

therefore 017! = o317 M1 (2-20)
y -1 ’
Substituting for [ ] and [2] from equations (2-19) and (2-20) in

equation (2-17) gives
[C] = MI[e][ - 280, - - 1[0]" [] (2-21)

Equation (2-21) gives the damping matrix [C] by knowing the

nermalized eigenvector matrix [¢], the frequencies, the mass matrix [M],
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and after assuming the critical damping ratios Ei’ (i=1,n), for the
different modes.
In the present study, the critical damping ratios for the

different modes are taken as
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2.6 Numerical Integration

To obtain the seismic responses numerical integration needs to
be carried out for any ground acceleration record input. The choice
of the proper method for the step-by-step integration is governed by

two factors. These are:

a - Stability of the Integration Procedure

The rate of convergence is dependent upon the period of the
highest mode of the system. Consequently, the time interval At used
must be related to the shortest period of vibration, or the period in
the highest mode of vibration, for lumped mass system. The method is
unconditionally stable if the solution for any initial conditions does
not grow without bound for any time step At, in particular when At/Tmin

is large. Unconditionally stable scheme is needed when we have very

high frequencies. Alternatively, a numerical scheme can be conditionally
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stable., A conditionally stable scheme requires an upper limit for

At/Tmi , and is suitable for systems in which Tmin is relatively large,

n
so that fairly large integration step At can be used. Among the
different numerical schemes, such as Newmark method [11], Wilson 6
method [2] and the direct step-by-step integration method [21],

Newmark method is found to be the most stable method as stated by

Wilson and Bathe [22].

b - The Accuracy of the Resulting Acceleration, Velocities and
Displacements

The accuracy increases by decreasing At, for large values of
At the errors in period are increased and the percentage amplitude
decay also is increased. From Wilson and Bathe's analysis [22],
Newmark method proved to be the only method which gives no errors
either in the period or in amplitude alternation.

From the above discussion it can be seen that Newmark method
is the best one to be used in integrating the equation of motion to
ensure the stability of the integration. Given below is a summary of

Newmark method [11], using "a'" = 0.5 and "B" = 0,25,

1. Assume values of the acceleration of each mass at the end
of the interval.
2. Compute the velocity and the displacement of each mass at

the end of the interval from the following equations:


http:Newma.rk

25

D) = o At o bl
8 . = {u}n b LY IR (2-22)
(At)z . ‘}
and {u}n+l = {u}n + At {u}n Al el L SURE S U (2-23)
: J
3. From the computed displacement {u}n+1, compute the
resisting forces {R} ,
) = -
{R’n+1 [K] {u}n+1 (2 24)

4, From the computed velocity {1'1}n+l , compute the damping

forces {D} ,
{(0}_,, = [€] {u}_,, (2-25)

5. From the resisting forces {R}n+ the damping forces {D}n+" and

r !
the applied loads {P}n+1, which is given by —[M]{l}an+1, and

a is the ground acceleration at t

il the acceleration can

n+l1?’

take a new value for each mass at the end of the interval.

- =7
{8} ,, = M7 {P-R-D} . (2-26)

6. Compare the derived acceleration with the assumed accelerat-
ion at the end of the time interval. If these are the same,
the calculation is completed and one can proceed to the

next time interval. If these are different, repeat the
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calculation with the derived value as the new acceleration

for the end of the time interval.

2.7 Equivalent Static Load

The output of the numerical integration process is the
displacement, the velocity and the acceleration for each mass as a
function of time. The product of mass times the corresponding

acceleration will give the inertia load acting on the structure.
{W}t ==[M] {u}t (2-27)

It should be noted that {ﬁ}t is the total acceleration vector
at time (t).

Once the inertial loading is known, the stress state of the
structure can be determined using the transfer matrix technique as
described in subsection (2-3). In this manner, one can obtain a time-
history of the parameters of interest. The parameters of interest may
be the top deflection, the base wall moment, tlhe connecting beam end

moments or the axial force in the walls.



CHAPTER 3

ELASTO-PLASTIC DYNAMIC ANALYSIS

3.1 Introduction

An inelastic dynamic analysis for a planar coupled shear walls
is presented in this chapter. The analysis is based on the trangfer
matrix technique in combinatioﬁ with the continuum method.

The main differencebetween this analysis and the elastic
dynamic analysis as described in the previous chapter is that the
present analysis takes into account the inelastic behaviour of the
connecting beams. Depending on the shear intensity q(x,t) in the
connecting beam, the beam may be in one of three states. It may remain
elastic when q(x,t) is small. Plastic hinges may form at the ends of
the connecting beams if the end moment exceeds the plastic moment of
the beams. Finally, if the deformation requirement on the connecting
beam is sufficiently large the beam may fail. No shear nor moment
will be transmitted by the connecting beam if this happens. Conceptual-
iy, one can represents this state as the formation of two real hinges
at the ends of the connecting beam. At any given time, the shear
intensity Q(x,t) varies along the height of the structure. Therefore,
part of the connecting beams may be elastic, part of them may have
plastic hinges formed at the ends and part of them may have failed and
therefore represented by connecting beams with real hinges at the ends.

A segment of a coupled shear wall containing only elastic connecting

27



28

beams is called an elastic segment., Similarly, a segment of the
coupled shear wall containing connecting beams with plastic hinges or
real hinges are called plastic hinged segment or real hinged segment
respectively.

The properties of a plastic hinged segment or real hinged
segment will be different from an elastic segment. Hence, if the
transfer matrix technique is used in the solution of the problem, it is
necessary to derive appropriate field transfer‘matrices for plastic
hinged segments and real hinged segments in addition to elastic
segments. Furthermore, the station transfer matrix relating a state
vector in an elastic segment to a state vector in a plastic hinged
segment is different from one which relates two state vectors both in
the elastic segment. Since each segment can take the form of an
elastic segment, a plastic hinged segment or a real hinged segment,

it is necessary to develop nine station transfer matrices to cover

all combination of segment variations as shown in Figure (3-1).

3.2 Scheme of Computation

In this section the segment states are defined and the over-
all scheme of analysis is described. The flow chart of the computer

program to perform the computation is presented,

3.2.1 Assumptions for the Definition of Segment State

To decide what state a segment is in, the bending moment and

the rotation at the ends of the connecting laminae are to be computed
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and related to the moment-rotation relationship of the connecting
laminae. The relation between the bending moment at ends of the con-

necting laminae and the shear intensity S is as follows:

2mxi
i = o (3-1)
i
where
m_. = Bending moment per unit height at distance x from

X1

the bottom of the segment (i).
As ¢ the length of the connecting laminae within the segment
(i) is constant, q.; can be used instead of the end moments to check
the conditions of the connecting laminae. Also, the rotation ef the
lamina can be expressed in terms of the relative end displacements of

the laminae A.

3.2.1.1 Segment Shearing Force Intensity a and Deflection Ai

In the present analysis, the shearing force q; per unit height
of the ith segment is taken to be the average value in the ith segment's

laminae, q; can be calculated from the following equation:

1
q; =5 (a5, * qui) (3-2)

where
qQ; = Shearing force intensity at the bottom of the ith

o

segment .,
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and Gy, = Shearing force intensity at the top of the ith
’ segment.
The deflection Ai of the connecting laminae of the ith segment
is taken to be one half of the average value of the relative axial

deformation between the two walls in the ith segment, Figure (3-2b),

Ai can be calculated from the following equation.

1
i k] (Aio+AiHi) (3-3)
where
Aio = %—the relative axial deformation between the two walls
at the bottom of the ith segment.
AiH = l-the relative axial deformation between the two

i 2
walls at the top of the ith segment.

3.2,1.2 Resistance Function

Instead of using the moment-rotation relationship, the resistance
function of the ith segment's laminae will be expressed in terms of q;
and Ai defined previously. The resistance function used as shown in
Figure (3-2a) is a bilinear hysteretic resistance function. As the
deflection Ai increases from zero, the resistance 9 increases linearly
with a slope of 2uiz/ai. The linearity continues until the yielding
deflection Ayi is reached. As the deflection Ai increased further, the
resistance a; is assumed to remain constant at qpi' The latter value

will be maintained until the ductility limit of the member is reached.
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However, if the deflection Ai reaches a maximum before the ductility
limit and then decreases, the resistance a3 is assumed to decrease
along a line parallelicd to the initial elastic shape. This decrease
will continue with decreasing the deflection Ai until a shearing

intensity -qp is attained.
b |

3.2.1.3 Segment State

s

’

Shown in Figure (3-2a) is the resistance function of
the connecting laminae in the ith segment. The ductility limit
is denoted by Au. which is the product of the yielding deflection
Ayi and the ductility coefficient u. Figure (3-2a) contains
two sets of lines, namely : Set I and Set II. The segment state can
be defined as follows:

- If the average shear intensity Q; in the segment is such that

q; 2 qp and average laminae deflection Ai > Ai(t-ét), 1.8,

i t ,
along line II, or if q; € -qp and A, = Ai(t—ét), i,e.
= i
'
along line II and in both cases, |Ai| < |Au |, then the
i

segment is in the plastic hinged state.

1
- If A, < A,(t-6t) and q. = q i.e, along line I , or if
i, i i P;
”"
Ait > Ai(t-Gt) and q; € -qpi , i.e. along line I , the
segment is in the elastic state. Also, the segment is in the

elastic state if - < g < :
qpi 9 qpi
- If the laminae deflection exceeds the ductility limit

(IAiI 2 IAu l), the segment is in the real hinged state.
i
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Once a segment is in the real hinged state, it will remain in
the real hinged segment statc to the end of the analysis. However,
when a segment is in the plastic hinged state, it will return to the
elastic segment state upon unloading.

The general procedure for response calculations is as follows:
The segments are defined as the wall between the lumped masses and are
taken to be elastic initially. Step-by-step integration is performed
to obtain the displacement, velocity and acceleratién at every time
interval At. The stress state of the wall is checked not at every time
step but at intervals of Kmax times 6t. The value of Kmax is to be
entered as input to the computation, and §t is the time interval of
calculating the straining actions of the structure. This arrangement
allows the user to obtain a compromise between accuracy of sclution and
economy in computation time. If any segment changes its state, the
overall stiffness matrix of the coupled wall is reevaluated before
the next time step integration takes place. This procedure carries on
until the end of the earthquake or when the time of integration reaches
a prescribed time limit. The time history responses for top deflection,
base wall moments, wall axial forces and the shear intensity at the
different segments are calculated and plotted out.

If all the segments become real hinged segments before the end
of the time integration, all the connecting beams have failed and the
coupled wall becomes two independent acting cantilevers. The dynamic
properties of this system can then be computed simply based on an

equivalent cantilever system as shown in Figure (3-3).
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3.2.2 Flow Chart for the Elasto-Plastic Dynamic Analysis of Planar
Coupled Shear Wall

For the purpose of saving the computer time the following steps

are taken in the computer program:

1. The response is printed out at time interval §t=0.1 second,
independent of the time interval of the numerical integration
At. In general, At is of the order of 0.01 second. There-
fore, the response is printed out once every ten cycles of
integration.

2. A factor Kmax is introduced for the check of segment stress
state, so that the segments state is to be checked at time
interval = Kmax 8t second, and the segments state is
assumed to be constant in the interval between checking.

3. The moment of inertia of the connecting beams, which is
assumed as cracked section, is computed manually beforehand
in Appendix A, then introduced to the program as input
data and kept constant in the analysis.

The flow chart of the computer program is shown in Figure (3-4).

Some controlling integer and real parameters are presented in the
flow chart to control the operation. These controlling parameters are

K

e Jd 4t

» NSEG, q_ , A_. and A . The following definitions may
Py |

help in understanding the flow chart:

max

NSEG number of segments for the shear wall.

L segments state check parameter, i.e. the segments

states are to be checked every Kmax ét, where &t is
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the time interval for computing the stress state of
the structure.
J number of segments which change their states., If J=0,

no correction of the dynamic properties needs to be

made.
t time limit of the analysis.
max ;
qp plastic shearing force intensity of the ith segment's
i
laminae.
Ay yield deflection of the ith segment's laminae.
i
A, ultimate deflection of the ith segment's laminae.
i

Au is the product of the yield deflection Ay and the
i i
ductility coefficient u.

3.3 Development of Transfer Matrices

In this section the field transfer matrices for an elastic
segment, a plastic hinged segment and a real hinged segment respectively
are presented. In addition, nine station transfer matrices are develop-

ed to cover all combinations of segment variations.

3.3.1 Field Transfer Matrices

Listed below are the three field transfer matrices with the
derivation of the field transfer matrices for aplastic hinged segment,
and a real hinged segment. The elastic segment field transfer matrix
has been considered by Tso and Chan [18]. Therefore, the final results
of the field transfer matrix of an elastic segment is presented without

derivation.
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3.3.1.1 Field Transfer Matrix for Elastic Segment

By definition, this is the segment in which the connecting beams
are in the elastic state [Figure 3-1(1)]. The field transfer matrix

for the elastic segment can be written in the following form:

[Fl; = vl; D, (3-4)

*

where [F]i is the field transfer matrix for the ith segment shown in

figure (3-5).

1 o 1 0 0 0 g
0 1 0 a. 0 0
h £
2
. “ H,
2 2, 2 Yi %4
0 0 oy 0 Y3 /ai - 5
,[4)]1 = * (3-5)
3 2
0 0 0 a; 0 ¥y /ai
0 0 0 0 1 H.
"
0 0 0 0 0 1
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3.3.1.2 Field Transfer Matrix for Plastic Hinged Segment

A plastic hinged segment has all its connecting beams with
plastic hinges formed at their ends. Consider the segment as shown in
Figure (3-6) subjected touniform shearing force per unit height qP

i
in the connecting beams.

where
2Mui
qp. I (3-7)
i - e
Mui = Ultimate moment of the connecting
beams considered as double reinforced
concrete cross section.
and h. = Storey height in the ith segment.

X

From axial force equilibrium of an element as shown in Figure
(3-7), we have
dT

ax vy (3-8)
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As qp is constant along the height of the segment, the change in the
axial force T is linear.

And wall moment M is given by the moment equilibrium condition

M=M -T.a (3-9)

A T A e VA TR (3-10)
P
*
where V = Wall shear
and V = Inter-storey shear

Equations (3-9) and (3-10) provide a relationship between the
wall moment and overturning moment; and the wall shear and the inter-
storey shear respectively. In aplastic hinged segment, qp and T are
known quantities. Therefore, one can obtain the wall moment and wall
shear readily once the overturning moment and inter-storey shear
are known. Therefore, for a plastic hinged segment, the problem is
statically determinated.

To obtain the field transfer matrix for a plastic hinged

! "
segment, it is necessary to obtain relationships between y, y , y ,

1

s M® and V at the top and bottom of the plastic hinged segment.

The deflection,slope and curvature relationship can be obtained by



44

T+dT/ax) A x Mig =M®g~Tig 9i
4
AX ' Qp Ax
‘L ! H; L
2
| ; v 1
el
Mi—1A
FIG. 3.7 EQUILIBRIUM OF AXIAL FIG,3_8 EQUIVALENT WALL
FORCES 4 LEFT WALL
Jp; q; H;
Clgia Al
pi i s — ) T
0 s ithseEGMENT H T !
s , i =
Fma o
vy
Oni G
}‘—Gi——"“l ” o =]
F1CTITIOUS EXTERNAL
FORCES

FIG. 3.9 EXTERNAL EFFECT OF THE INTERNAL SHEARING FORCE p;



45

considering a plastic hinged segment under overturning moment M® and
inter-storey shear V to be the same as a beam with moment of inertia
I= I1 + 12 under the action of beam moment M and beam shear V*,
Figure (3-8).

Consider a beam of length Hi under the actions of wall moments
MiB and wall shears V*ib at the top of the beam as shown in Figure

(3-11), the deflection and slope at the top relative to the base are

given by

1
Yei-DA = Yip - B30 5p785p) - ¥ (=il

1 1
Yei-13a = Y iB - % (5-12)

1 1
To obtain a relation between (y, y )(i-l)A and (y, y )iB’ it 1is
*
necessary to express y and eiB in terms of the elements of the state
vector {¢}iB. This can be achieved by computing the top deflection

and slope for the equivalent beam subjected to the wall forces, M.

iB
av,.”
an iB .
2 * 3
« Mg fy Vig My o
Y = 3T, 3ET, o
W 1
M. H, V.. H.2
Mgy Vyp Hy
88 = BT, T 2EI; (3-14)

Substituting by the above values in equations (3-11) and (3-12)

leads to



3
YG-DA T Yie "M Y a3 T2 Y it GET,  iB

(3-15)
2
1 1 " Hi * 3 16
Y -na T Vi " MY e T ZEL, VY is (el
For shear force equilibrium, we have

* * 7
Via-na©Vis (3-17)

shear force-bending moment relationship leads to
: 3-18
Mei13a = Mip * H; V 5 (5=18)
. 1" a " i V* 3 19
Y @AY i T EL Y a8 (3-19)

Expressing the wall moments in terms of the overturning
moments at (i-1)A level and iB level, we have

e e %
M. =M + H. V
(i-1)A fiB i

e e
where M fiB _M i * qpi a; Hi (3-21)

o5 (3-20)

Equation of shear for the equivalent wall under an applied

o
shearing force V ..  as shown in Figure (3-11), can be written as
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m (B4 *

BLi Y a-px " E3 7Y 58 * V i

AR} mni 1 * 3 22
Y (i-13a 4B AETE T (5~22)

Equations (3-15), (3-16), (3-17), (3-19), (3-20) and (3-22)
provide the relation between the state vector at (i-1)A level and the
state vector at iB level. It should be noted that the state vectors
at (i-1)A and iB levels contain the wall shear V* instead of the inter-
storey shear V, also the state vector at iB contains a filctitious
, which is necessary to keep the equilibrium at the

.
iB
bottom of the segment, i.e. the internal distributed shearing force

parameter M®

qip produces three pseudo elements in the state vectors at top and

; * =
bottom of the plastic hinged segment; namely V . _, M® and V' ...
iB fiB iA
Figure (3-9) shows the external loads necessary to handle the plastic
hinged segment by the transfer matrix technique.

The field transfer matrix [F]i for a plastic hinged segment

is given in equation (3-23).
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- ™ Hi2 HiS ~ 5 =
y 1 By = 0 0 T y
5 8
1 "Hiz 1
y 0 1 H 0 0 5 y
1
" Hi "
y 0 0 1 0 0 BT y
_ i
1mns l "nt
1
M® 0o 0 0 g ' H M®
i 1
* *
v | Lo o o 0o 0 B | v
(i-1)A . iB
(3-23)

To use the above equation, two modifications must be done to
the station transfer matrices at station (i) and station (i-1). These
modifications are necessary to obtain the pseudo vector at iB level,
{¢}'iB, and to proceed with the inter-storey shear for the (i-1)th
segment after computing the pseudo vector at (i-1)A level from equation
(3-23). The necessary modifications will be presented in subsection

(3.3.2) later,
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3.3.1.3 Field Transfer Matrix for a Real Hinged Segment

The field transfer matrix for a real hinged segment can be
obtained from the plastic hinged segment assuming the connecting beams
have lost their moment transmission capacities, [Figure (3-12)]. i.e.,
when qPi = 0. Therefore, by substituting by the above value of qpi

in equations (3-10) and (3-21) leads to
vV =V (3-24)
and M = M®, (3-25)

*
Substituting in V iB and MefiB by ViB and MiB respectively,
equation (3-23) gives the field transfer matrix for the real hinged

segment [F]i in the following equation.

" [ 1 .H Eii 0 0 Hi3 ) [ ¢
y T2 6EL. y
i
1 "Hiz 1
Y R Y
1
" ]_li "
g i
m 1 T
1
M 0 0 0o o0 1 Hy M°
v 0 o a ‘o0 L. :eq] | V|
(i-1)A iB

(3-26)
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3.3.2 Station Transfer Matrices

Listed below are the nine station transfer matrices necessary to

complete the solution of the problem.

3.3.2.1 Station Transfer Matrix Relating a State Vector in Elastic
Segment to State Vector in Elastic Segment (Elastic-Elastic
‘Station)

The station transfer matrix for elastic-elastic station as
shown in Figure (3-13a) has been formulated by Tso and Chan [18] in the

following form:

{¢}iB = [S]i {¢}iA + {L}i (3-27)
where [S]i = Station Transfer Matrix for the ith station.
and }{L}i = Load Vector for the ith station.

Equation (3-27) can be written in the following detailed form:

y 1 o 0 0 0 o Iy 1[0
1
y 0 1 0 0 0 0 y' 0
" , i A iy "
y 0 I.a. 0 Elia. b 4 0
i i+l 1 i+l
) MR o 1
e is173 i 7 i+l el 17V3
y 0 0 0 i 0 By 7 | R ET.
it i+l iti+1 .
M 0 0 0 0 1 0 M® 0
v 0 0 0 0 0 1 v By
. -lB aid "J - jj‘\ s -
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12EI, . .a.
2 7 bi
where e 5 s
i 2
h,.¢c.” B
A 1
12E1,. .
and 8.2 = 1 4 s
i 2
GA,. c.
bi

3.3.2.2 Station Transfer Matrix Relating a State Vector in Elastic
Segment to State Vector in Plastic Hinged Segment (Plastic-
Elastic Station)

From the continuity of the wall, the lateral deflection and

the slope above and below the station are equal.

YiB T Via o
H 1

and Y 58 =7 ia (3-30)

The relation between bending moments below and above the

station due to wall cross section sudden change is given by

BL; ¥ 5= Elg g ¥oguner 10530 oy
" Lisn® v %073 .
YT a . TatEa o N (3-31)
i i+l i i+l

Also due to the sudden change in the cross section of the wall

the relation between the shearing force below and above the station is



given by

mnt mnt

~(BL; Y55 - 25 gl = Cleyy Y ia "By bt Hy

mne e

Bl ¥ s P B Vo R e S i T
a u 2
% n iv1l Mi
=Bl 1 ¥ sa TS0 G~ %140 Yaap
R T I
y § i+l
I a 2 P
L ey B Y E L e € N RN
* Y iB T. 7YiA EL. 2 EL.
1 “ Be's
i+l
(3-32)

For the section just above the station and the section just

below it the overturning moment in both sides are equal.

A (3-33)

As shown in Figure (3-13b) the shearing force at the section
just above the station is the fictitious shearing force V*iA due to
the modification done to the state vectors in the plastic hinged
segment (i+i), i.e. the ekternal shearing force at this section is

reduced by (q

- RIeg
Pi+1 xad

*

BRI S T o TR

x (3-34)
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Equations (3-29), (3-30), (3-31), (3-32), (3-33) and (3-34)

give the station transfer matrix for the plastic-elastic station.

y 1 0 0
t
y 0 1 0
a. 1.
" i Ti+l
7 L b a. I
- i+l 1
(AR
y 0 O 0
M® 0 0 0
Vv i _O 0 0
- iB

0 0
0 0
0 i+1-ai
El.a.
1 i+l
i+l
L. 0
i
0 1
0 0

iA

(3-35)
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3.3.2.3 Station Transfer Matrix Relating a State Vector in Elastic

Segment to State Vector in Real Hinged Segment (Real Hinged-

Elastic Statinon)

This is a special case of the plastic-elastic station.

substitute in the load vector in equation (3-35) by zero for ap

i+l

load vector for the real hinged-elastic station will be obtained.

2

If we

the

The

station transfer matrix [S]i will be the same as it is independent of

the connecting beams shearing force in segment (i+1).

The station transfer matrix in this case can be written as:
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vyl [1 o 0 0 0 o] [yl [ o
1 1
y 0 1 0 0 0 0 y
a -a
0 i i+l 3817 %% 0
Y B0 = I I g Y b
i+1 i i+l
= G s
-p
e i+1 ik i
pi 1
M 0 0 0 0 1 0 M® 0
v ] Lo o 0 0 0 o S B A B
iB iA
(3-36)

3.3.2.4 Station Transfer Matrix Relating a State Vector in Plastic
Hinged Segment to State Vector in Elastic Segment (Elastic-
Plastic Station)

Equations (3-29), (3-30) and (3-31) are valid in this case as
they are independent of the shearing force intensity in the connecting
beams above and below the station.

From the relation between the shearing force above and below the

station we get

ne "y

EI, y ;p = E p

Lol 7 34 * 25 G ~ 341 % F



58

1"t

B i SO S
But P N k. (3-37)
iA a.
i+1
and 4B © Ypi
. "t 1 Tt g ;
VB TELL [BE g 7 ga * B 9py < Blagy 7 53 ~Vas = Pyl

: P. = g a.
111 1 i 14
Y ip T~ BI, Via - ET, (3-38)

n

Because of the reduction value (qpi ai) in the shearing force
at B which is necessary in forming the field transfer matrix for the

plastic hinged segment (i), a modification will be introduced in the

*
load vector (i) in both M®.  and V. to get m® and V ., respectively.
iB PR fiB iB
e e
M =M., +q.. a, H, (3-39)
fiv iA Pl A I

*

And v iR = ViA + P, - Ap; 2 (3-40)

Equations (3-29), (3-30), (3-31), (3-38), (3-39) and (3-40) form the

station transfer matrix.
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vy 1 [1 o 0 0 0 0] [y ] 0 i
1] t
y 0 1 0 0 0 0 y 0
" Liel -4 2541724 "
Y 0 0 =0 ga— Y}|¥ ¢
i’ i Ti+l ii+l B
P.-q,.a.
"t | ne 17 1pi%i
y R v . 2 EL. || Y S
1 A
e e
M 0 0 0 0 1 0 M Py 25 H
*
(v | [o o 0 0 0 HIES | (P5-ap; 2y) |
iB iA
(3-41)

3.3.2.5 Station Transfer Matrix Relating a State Vector in Plastic
Hinged Segment to a State Vector in Plastic Hinged Segment
(Plastic-Plastic Station)

] " t
As the relations between (yiB’ Y iB and y iB) and (yiA’ You

"
and y iA) are independent of the shearing force in the connecting beams
above and below the station, equations (2-39), (3-30) and (3-31) are
valid in this case.

The equation of shear is

me nt
B Y " Pl Y aa T2 % " fa Y, TN
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..... L AT IRRIRRN « FHeo
comt Ny e (Pi'—(ai Ap; 3441 Pi+1))
Y i T T,V A BIL,

(3-42)
As discussed in the previous case a modification will be

introduced in the load vector (i) in both MeiB and ViB to get Mef
* iB
and V iB respectively. In addition, a correction must be done to

. " :
the reduced shearing force V : to fulfil the external equilibrium of

A

the shearing forces at the station (i).

(]
Mg =MWay *hpp'ay Ty (a=45)

and Y ip = Y T P, + p - dp; 23 (3-44)

a.
i+l 24
Equations (3-20), (3-30), (3-31), (3-42), (3-43) and (3-44)
form the station transfer matrix. This station transfer matrix is
given by equation (3-45). The station matrix [S]i and the load vector

{L}i are different than those for the elastic-plastic station given

by equation (3-41).
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Station Transfer Matrix Relating a State Vector in Plastic

Hinged Segment to a State Vector in Real Hinged Segment

(Real Hinged-Plastic Station)

By substituting in equations (3-42) and (3-44) for Ap; 41 by

(3-46)

(3-47)

Equations (3-29), (3-30), (3-31) and (3-43) are valid.

0

0

0
_(Pi+qpi+1ai+1’qpiai)

Bl

1
p; 23 Hj
L (Pi*apseg 25.0-%5%)
(3-45)



'y 1 [1 o 0 0 0 o] [y 1 [ 0
t t
y 0 1 0 0 0 0 y 0
a. a -a
1t i+1 1 i+l i Lt
4 L = vl y 0
1 i+l i i+1
= +
: |
e i+l tn i P11
y 0 0 0 T 0 0 y -( BT )
1 i i A
e e
M 0 0 0 0 1 0 M ap; 2; H,
%
v [o o 0 0 0 LV L - oaps ay)
iB iA
(3-48)

3.3.2.7. Station Transfer Matrix Relating a State Vector in Real-
Hinged Segment to a State Vector in Elastic Segment (Elastic-

" 'Real Hinged Station)

Equations (3-29), (3-30) and (3-31) are valid in this case.
The change will be in the terms concerning the shearing force in the
connecting beams above and below the station.

The equation of the shearing force equilibrium above and below

the station is

mnt 1ne

BLi Y ap " By YV aa 25 % T % Ya T Py
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The second term in the R.H.S. of the last equation will vanish

as the shear intensity in the ith segment is equal to zero.

. "t Ii+1 1" Ii+1 mnt ViA Pi
Y i T T, Y ian T 1. Y iA T EL. T EL
1 i S 55 i 8
1mnt 1
Y i = BT, Via "B R (5-40)
1 i 2 :
From the equilibrium
e _ . e 5
MTip = MO, (3-50)
And Vig = Vip + Py (3-51)

Equations (3-29), (3-30), (3-31), (3-49), (3-50) and (3-51)

form the station transfer matrix as follows:
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vy ] [1 o 0 Q 0 0 ¥y 0
1 1
y g .1 0 0 0 0 y 0
" Loei-%3 Sl Ty " 0
y 070 e il y
i i+l 1 i+l
= +
P
me 2 e i
1 |
M 5%, 0 0 0 1 0 M 0
e ] o0 0 0 0 ¥ il S8 P
iB iA
(3-52)

3.3.2.8 Station Transfer Matrix Relating a State Vector in Real Hinged
Segment to a State Vector in Plastic Hinged Segment (Plastic-
Real Hinged Station)

Besides the equations (3-29), (3-30) and (3-31) the following

equations can be obtained from station shown in Figure (3-15b)

mnt e

BLi ¥ ip “ B Tt B G M s

e i+l @ By %2, %54y

T Bt g i Tl Bls ) [33)

Equation (3-50) is valid.
*
Due to the shearing force correction from V iA to ViA the

shearing force equilibrium will be
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M€ 0
Vv 0
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iB

V¥

iA

+ (Pi4-q

pi+1

a

i+l

)

the station transfer matrix will be:

0 0 0
0 0 0
Lie18y Gy
= % 57 0
i i+1 1 q#l
I,
i+l
0 L 0
% 2
0 0 0
0 0 1

s 5 17

P

.+a.
i i+l
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qpi+1)

~{

(P

EL..
i

.+a.
1l 1+1

(3-

Real Hinged Segment to a State Vector in Real
Hinged Segment (Real Hinged

)

—

q
Pivi

54)

Station Transfer Matrix Relating a State Vector in

Real Hinged Station)

The station shown in Figure (3-15C) is the simplest

statinn because of the vanishing of the shearing forces in

the connecting beams above and below the station.

Equations (3-29),

equation of shear becomes

(3-30) and (3-31) are valid,

The
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Y:ipg = Y on & T (3-55)
iB Ii iA EI1

"t I' "y Pi

Equations (3-50) and (3-51) are valid too.
Therefore, the station transfer matrix in this case can be

formed from the above equations in the following form:

y 1 0 0 0 0 ol y 0
1 1
y o 1 0 0 0 ol| vy 0
" 1i01% 4eld "
y L rmgpel x n + iy §f B ¢
- i i+l i 1+L %
I P.
(IR ] i+1 LA 3 |
y 0 O 0 T 0 0 y "ET
1 o
e e
M 0 O 0 0 1 0 M 0
Vv 0 O 0 0 0 1 Vv Pi
e __JlB S e PP L e

(3-56)

3.3.3 Summary and Discussion

A development of transfer matrices is presented in
this section. Three field transfer matrices are presented,

The field transfer matrix for a plastic hinged segment is
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developed and presented in subsection (3.3.1.2). Although
the real hinged segment is a special case of the plastic
hinged segment, both of their field transfer matrices are the
same, equations (3-23) and (3-26). The field transfer matrix

for a plastic hinged segment relates two pseudo state vectors,

'

{¢};B and {¢}(

fullA While the field transfer matrices for

an elastic segment and a real hinged segment relate actual

state vectors, {¢}iB and {¢}(i—l)A'
where
{ }' _ C 1 1 1" "t Me V*
¢ (1~1)A - olumn (}’,Y sY »Y 3 > )(1_1)A
1 _ 1 " 1"ni Me *
o 1e) 4 = Column (y,y ,y ,y M .V ).y
{ } = C 1 ] n m"niy Me
. ¢ (i-1)A = olumn (y,y ,y ,y ’V)(i—-l)A
1 " 1" e
and {¢} = Column (y,y ,y ,y ,M ,V)

iB iB

*
Mef and V are given by equations (3-21) and (3-10)

respectively.

1
(i-1)A
and {¢};B’ is shown in Figure (3-16) for a plastic hinged

The position of the pseudo state vectors, {¢}

segment. The modifications necessary to obtain these state
vectors are included in the load vectors of the two stations
above and below the segment, they are stations (i) and (i-1)

respectively.
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In addition, nine station transfer matrices are
presented’ in this section. It should be noted that the
station transfer matrix relating state vectors from an
elastic segment to a vector in a plastic hinged segment is
different from that relating a state vector ina plastic hinged
segment to a state vector in elastic segment. Figure (3-17)

represents an example for this unsymmetrical property.



CHAPTER 4

DYNAMIC ANALYSIS OF SHEAR WALL BUILDINGS

4.1 Coupled Shear Wall Systems

In this chapter, the behaviour of coupled shear wall buildings
subjected to earthquake excitation is studied. It is assumed that the
buildings considered are symmetrical in plan and consist of a series of
planar coupled shear walls. It is assumed that all internal coupled
walls are identical and also the two ends coupled walls are the same.

In addition, it is assumed that the interior walls are coupled by the
floor slabs, while the exterior end walls are coupled by stiff connecting
beams.

Two buildings of typical dimensions are considered. The first
building is a ten storey coupled shear wall structure. The walls of the
structure, the storey height, and the connecting beam stiffness are
constant throughout the height. The walls are assumed to rest on a
rigid foundation. Figure (4-1) gives the plan and the wall dimensions
of the building. The second example building has a similar plan and
storey height as the first example building, except the number of stories
is increased to twenty. The walls of these buildings are designed
according to NBCC [10] and ACI Code [1].

Since the buildings are symmetricag;hgiroverall behaviour can be

understood by studying the responses of a typical interior coupled shear

72



walls and a typical external coupled shear walls.
building, the walls are designed to resist a seismic horizontal

acceleration of 16% g.

Two designs of the walls of the 20 storey

73

For the 10 storey

building are carried out, one design for a seismic load of 16% g and

the other a seismic load of 8% g.

walls dimensions and capacities of the walls of the two buildings.

Table (4-1) is a summary for the

20 Storey Building (16% g)

el Wall Conn. S
Thtiﬁ?ess bea?iiipth As.b Asw qp Muw
K/ft K. ft
Exterior 12 24 4#10 22#11 20 43400
*
Interior 12 6 3#5/ft 18#11 2.68 37700
10 Storey Building (16% g) & 20 Storey Building (8% g)
Wall Conn. =
i Thickness beam depth A A
¥ P sb SW dp uw
(in) (in) K/ft K. ft
Exterior 9 24 4#9 12#10 16 25500
*
Interior 9 6 3#5/ft 12#10 2.68 25500

*
Effective connecting slab width = 3.5 ft.

Table (4-1)

Dimensions, Reinforcement and Capacities of Exterior and

Interior Walls of the Example Buildings
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The dimensions, reinforcement and capacities presented in

Table (4-1) are the final design values.The detailed calculations are

presented in Appendik A.

4.2 Dynamic Analysis

The dynamic model for the walls in the 10 storey building is
given in Figure (4—25 and for the 20 storey building is given in
Figure (4-3).

For buildings with rigid floor diaphragms, the lateral loads
caused by the ground acceleration are distributed according to the
stiffness of the lateral force resisting elements. To have the building
vto vibrate as a unit, the mass ~ of the complete structure is also
assumed to be distributed proportional to the stiffness of the walls.
Table (4-2) gives the periods of the exterior and the interior walls of
the 20 storey building. These walls were designed for a lateral seismic
load of 16% g maximum ground acceleration. The masses of the building
are assumed to be distributed uniformly throughout the height in
accordance with the wall stiffnesses in the period calculations.

From Table (4-2), it is seen that the fundamental periods of
the walls are the same. However, the periods of the other modes are
different. The differance between the corresponding periods increases
as the mode number increases. This is because the end walls with stiffer
connecting beams behave differently from the interior walls. To obtain
identical periods for all modes in the two walls, it becomes necessary to

distribute the masses nonuniformly along the height of each wall. For
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simplicity, we shall distribute the masses uniformly along the height
of the walls in proportion to their stiffness in this study. Therefore,
the mass distribution of both the internal and external walls are taken

to be uniform in subsecquent analyses.

MODE 1 2 3 4 5

(1) Exterior Wall|l.510 sec.|0.292 sec.|0.124 sec.|0.074 sec.|0.054 sec.|-

(2) Interior Wall|l.510 " [0.309 no10.116 n 0.061 0.041
%%%-x 100 100 106 93.5 82.5 76

Table (4-2) Corresponding Periods of the Walls of the 20 Storey

Building

4.3 Sinusoidal Ekcitation

To check the correctness of the computer program, the exterior
wall of the 10 storey building is analysed subjected to sinusoidal
ground motions. The modal critical damping ratios are taken as:

= 4% = 6% = 7.5% = 8.5% =9% i S
4 4%, ;2 6%, §3 Ta5%. C4 8.5% and 43 9% in the present and
all subsequent studies.

The time interval for calculating the straining actions &t equals
0.1 second. The time interval for checking the segments stress state
(X §t) equals 0.1 seconds. The time limit for the analysis t is

max max
taken to be 20.0 seconds.

The sinusoidal ground acceleration has a maximum amplitude of

20% g and frequency equals 13.37 radian per second. This frequency is
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exactly equal to the fundamental frequency of the exterior
wall when all connecting beams are elastic. However, the

wall frequency will be changed slightly if the response 1is

sufficiently large to cause plastic hinges formed at the ends

of the connecting beams for a short time during each cycle.
To prevent the formation of real hinges at the ends of the
connecting beams, the rotational ductility factor for the
connecting beams is assumed to be equal to 500. Therefore,
the wall will be excited into resonance and its response 1is
predominately that of the first mode. The top deflection
response is shown in Figure (4-4).

To check the accuracy of the computer program, the
maximum top displacement is calculated by the modal super-
position method. Only the first mode will be considered.
At resonance the magnification factor a based on elastic

1

analysis can be calculated as

SR
2g, - ZxD.04

0.0581

0..1920

0.3627

1]

The first eigenvector {>\}1
0,5458

0.7283
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The normalized eigenvector {¢}l can be computed from

where

3 2
C, = ) m,A;, = 20.15
Therefore

0.0430
{¢}1 = 0.0817
0.1255

0.1640

The load vector {F} can be computed from

130
130
{F} = -{m} 3 0w 8 2 130 Kip

130

1350

The static displacement for mode (1) can be calculated from

CN
IH
™

Il D~

- 2 _
65, F31/w) = 0.312 ft.



82

The dynamic displacement for mode (1) = A1 oy = 3.9 ft.
st

The maximum displacement for mode (1)'{x}1 can be com-
max
puted from

{x} = Ay g {¢}1

max st

0.051
0.168

{x} =

max

1+
o

el £t

0.490

0.640

Therefore, the maximum top displacement = 0.640 ft.
(Ist mode only).

Figure (4-4) indicates that the maximum top displace-
ment calculated from the modal super-position method as a
dashed line. Agreement between the step-by-step integration
response and the dashed line provides a check on the cor-

rectness of the computer program.

4.4 Object of Investigation

The behaviour of a coupled shear walls is affected
by the stiffness and rotational ductility of the connecting

beams. For architectural reasons, the interior shear walls
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in a shear wall building are coupled through the floor slabs only. Due
to the flexibility of the slabs, the coupling effect is limited. Further-
more, the rotational ductility of the coupling slab is also limited. One
may then logically pose the question as to how effective are the slab
coupled shear walls with limited ductility in resisting earthquake
- ground motion. This question will be studied in the present study by
comparing the performance of some typical interior coupled shear walls 5
and the performance of uncoupled walls (independently acting Cantilevers)
of the same proportion.

For the end walls, one can provide deep connecting beams to
increase the coupling effect. Also, by proper reinforcing detailing,
it has been shown that very large rotational ductility can be obtained
[14]. For the exterior coupled shear walls therefore, it is useful to
investigate to what extent the increase in beam ductility will improve
the performance of the walls under moderate or strong earthquake
excitation. Obvicusly, the definition of moderate or strong earthquake
excitation is relative. 1In this thesis, if the wall is designed for
a seismic load of 16% g and is subjected to ground motion with
maximum acceleration of 16% g, we shall define the excitation to this
wall as moderate. However, if the wall is designed for an 8% g
seismic load and subjected to a ground motion with 16% g peak acceler-

ation, then the excitation to the wall is considered strong.
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Before we study the two problems posed above, it is
necessary to ensure that the proposed 5 masses dynamic model
is an adequate dynamic model for response studies. This

investigation is given in the following section.

4.5 Effect of the Number of Lumped Masses

In the présent analysis the number of degrees of
freedom of the dynamic model equals to the number of segments
into which the wall is to be divided. This is because the
number of segments equals to the number of lumped masses of
the' structure ;as discussedwin Chapter 2. 'To ensure a five
masses representation is adequate, a study on the effect of
the number of segments used in the dynamic modeling is carried
out. The response of the exterior walls of the 20 storey
building is computed based on a 5 and a 10 mass representat-
ion of the wall. The N.S. component of ElCentro 1940 record
normalized to 20% g maximum acceleration is used as input.

The parameter of interest are the top displacement, the base
moments, and the axial forces at the base of piers.

The output time-history responses of the top dis-
placement, base moments of piers and axial forces at base of
the piers for the two models are shown in Figures (4-5)
through (4-10). The top-displacement, and the base moment
responses have essentially the same shapes with the same
peaks for the two models as shown in Figures (4-5), (4-6),

(4-7) and (4-8). The axial forces responses shown in Figures
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(4-9) and (4-10) have the same peaks. However, there is a
minor difference between them in the responses after the
main peak response.

Table (4-3) gives the periods of the 5 mass modei
and the first five periods of the 10 mass model. ' The
periods are found to be sensitive to the number of lumped
masses. As the number of masses increases the periods
decrease. Table (4-4) gives a summary of the maximum res-
ponse values for the two models. No significant difference
between the two model results is shown in Table (4-4). As
an analysis using the five lumped mass system costs about
one quarter of the cost of the ten lumped mass system, all
subsequent response calculatinns will be carried out using

the five mass dynamic model.

MODE 1 2 3 4 5

Period (5 masses) 1510 102921 '0: 1244 0,074 |0.054
second

Period -((10masses)id-d.386= 0,293 | 0:115] 0.067 .1 0.044
second

Table (4-3) Effect of the Number of Segments in the

Periods, Exterior Wall, 20 Storey Building
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No. Fund. Max. Max. Max.Axial
of K/ft Period | Top Base Force at
MODEL stor- ¢ Displ Moment |Base (K.)
ies per| Ip PL- 1 (1000
segment (sec.) (ft) | K.ft) |Tension| Comp.
5 masses 4 20 15 It..510 0.287 67.04] 1950 (4600
10 masses 2 20 15 1.386 0257 67.46| 1925 |4575
Table (4-4) Effect of the Number of Segments, Exteriorxr
Wall, 20 Storey Building (ElCentro N.S.,20%g)
4.6 Method of Excitation

storey coupled shear walls.

Real earthquake records are used to analyse the 20

These real earthquake records

are normalized to the same maximum horizontal accelerations

of 16% g.

.constant

used to

Figurés

summary

each wall of the 20 storey building.

throughout the study.

The duration of the ground accelerations is kept

Twenty seconds duration is

allow for large response to be built up.

These ground acceleration records used are shown in

(4'11),

(4-12) and (4-13).

Table (4-5) gives a

of the earthquake records used in the analysis with

In all cases except

the case of the double cantilever wall, three runs are made

for each

o £E5;

case,

15 and 500.

using three different beam ductility values

These ductility values are taken as repre-

sentative of low, moderate and high ductility situations.
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GROUND ACCELERATION (16% g) WALL

ELCENTRO, COMP. N.S. (1940) | Exterior Wall (16%g)
Exterior Wall (8%g)
Interior Wall (16%g)

Double Cantilever Wall

SAN FERNANDO, COMP. N.S. exterior Wall (16%g)
Wilshire Blvd., Basement Interior Wall (16%g)
TAFT, COMP. N21E (1952) Exterior Wall (16%g)

Table (4-5) Input Ground Acceleration

4.7 Seismic Response

In this section the seismic responses of the
exterior and interior coupled shear walls of the 20 storey
building are presented. The parameters of interest are
(i) the top displacement, (ii) the base moment of the piers,
and (iii) the axial forces at the base of piers. These
parameters are used to evaluate the performance of the struc-
ture under seismic loads. The shearing force intensity in
the connecting laminae is also presented to clarify the
behaviour, especially when large inelastic deformations

occurred in the connecting laminae.
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4.7.1 Interior Wall Response

The interior wall is studied using records from the
ElCentro and San Fernando earthquakes normalized to 16% g
as a maximum horizontal acceleration. In other words, the
wall is subjected to ground excitations of the same inten-
sities as it is designed for. The amalysis is carried out
for the coupled shear wall and also for an equivalent canti-
lever consisting of the two piers which connected together by
beams with hinges at ends. The coupled shear wall is studied
with three values of the rotational ductility factors, these

are u=5, 15 and 500 respectively.

4.7.1.1 Coupled Wall

Six computer runs are considered for the interior
coupled shear wall to obtain the parameters of interest.
Three runs are with the ElCentro record and the -other: three
with San Fernando record. Given below are the seismic
responses for the six cases accompanied with the necessary

discussions.

a - ELCENTRO COMP. N.S.

Figures (4-14) through (4-22) give the top displace-
ment, base moments, axial force at base of piers and shear

intensity of connecting laminae, as time-history responses.
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The rotational ductility factor of the coupling slabs u

equals to 5. Figure (4-14) indicates that the top displace-
ment is mainly due to the first mode of vibration. Figures
(4-15) and (4-16) are the same as the base moment in the left
wall must be identical to that in the right wall, since the
two piers have the same moment of inertia. Figures (4-15) and

(4-16) indicate that the higher modes also contribute to the

bending moment response. Figure (4-17) gives the axial force
response at base of the piers. The response in Figure (4-17)
is limited to a certain value after about 2.0 seconds. This

value is the plastic shear intensity in the connecting laminae
times the height of the upper two segments. These two segments
remain to be plastic hinged segments, as shown in Figures
(4-21) and (4-22), while the lower three segments are changed
to real hinged segments after about 2.0 seconds due to the

low value of ductility used. The shearing force intensity

of the first three segments are given by Figures (4-18),
(4-19) and (4-20). The shearing force intensity is dropped

to zero when the end rotation of the laminae exceeds the
ultimate rotation value and the segment changes to real

hinged segment. Also, the contribution of the higher modes

is clear in the shearing force intensity responses.

b - SAN FERNANDO EARTHQUATE COMP. N.S., Wilshire Blvd.,
Basement

Figures (4-23) through (4-30) give the response of
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the top displacement, base moment in left wall, axial force
at base of piers and the shearing force intensity in the
connecting laminae, when the wall is subjected to the N.S.
component of the Wilshire Blvd.,basement record of San
Fernando earthquake. The rotational ductility factor of the
coupling slabs u equals to 5 in these calculations. The
base moment in the right pier is left out because it is the _
same as the left pier.

The seismic response of the interior coupled shear
wall presented in Figures (4-14) through (4-30) describes
the behaviour of the wall under the seismic loads arised from
ElCentro and San Fernando earthquakes. Given below is a dis-

cussion of the parameters of interest presented based on the

calculations made.

(i) Top Displacement

The study of the top displacement is essential for
understanding the overall behaviour of the structure. The
flexibility of the structure is proportional to the top
displacement and the overall ductility of the structure can be
calculated from the top displacement.

The time-history response for the top displacement
of the interior wall is shown in Figures (4-14) and (4-23).

In Figure (4-14) the response increases after the changing
of three segments in the structure to real hinged segments.

Later, it decreases again due to the absorption of energy due
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to plastic deformations occurred in the connecting beams of
the remaining segments (see Figures (4-18) to (4-22)). 1In
Figure (4-23) the maximum response occurs at toward the last
seconds of the analysis. This may be due to the characteris-
tics of the input accelerationn. The earthquake produces a
high ground velocity in the last eight seconds of the record
and this may be the cause of the large response of the

structure toward the last eight seconds of computation.

(ii) Base Moment For Piers

The most critical section for the piers is that at
the base. The base moments in the left and right piers in
combination with the couple arised from the axial force in
the piers are responsible for resisting the external over-
turning moment at the base caused by the seismic loads. The
piers of the internal shear walls are identical, so that the
bending moment of the left pier will be the same as the
bending moment of the right pier. As the base moment in
each pier is affected by the axial force in the piers, this
moment is sensitive to the condition of the connecting beams.
This is because the axial force at the base is the integration
of the shearing forces in the connecting beams from the top
to the bottom of the wall.

The time-history response for the base moment in the
piers of the interior wall of the 20 storey building is shown

in Figures (4-15), (4-16) and (4-24). The base moment given
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in Figure (4-15) has an abrupt increase after two seconds.
This abrupt increase is due to the sudden decrease in the
axial force at the base as shown in Figure (4-17). The base
moment given in Figure (4-24) is different than that discussed
above. This is because the ground acceleration given by
record shown in Figure (4-12) produce a larger ground velocity
in the portion of the record after twelve seconds. The base
moment in the last eight seconds of the time-history response,
Figure (4-24), shows that not only the magnitude of the ground

acceleration has a serious effect on the structural behaviours,

but also the ground velocity will affect the response.

(iii) Axial Forces at Base

-As the axial force is the integration of the shearing
force intensity in the laminae, it is directly affected by the
ch;nging of the connecting beams state. When the dead load is
included in the axial force, the piers remain under compressive
axial forces all the time. This can be seen in Figure (4-17)
and (4-25). The high dead load carried by the interior walls
arise from the large tributary area of the interior wall as

shown in Figure (4-1).

4.7.1.2 Equivalent Cantilever

The behaviour of the double cantilever wall is an

elastic one,since the walls are taken to be elastic in the
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The response of such a case is shown in

Figure (4-31) and (4-32) under the ElCentro Comp. N.S.

normaiized to 16% g maximum horizontal acceleration. The

top displacement and the base moment are larger than those

for the interior coupled shear walls, presented in Figures

(4-14) and (4-15).

Listed below are the maximum values of the parameters

of interest discussed above for the interior wall for both

of coupled wall and equivalent cantilever wall.

Ground Acceleration

Ductility of Connecting Beams

()
(Duration = 20 sec.)
5 15 500
ELCENTRO, COMP. N.S. 0.234 Ft 0.238 Ft 0.238 Ft
(1940)
SAN FERNANDO, Wilshire 0.384 Ft 0.281 Ft 0.281 Ft
Bivd., Basement, COMP.N.S.

Table (4-6)

Maximum Top Displacement, Interior Coupled

Shear Wall

Ground Acceleration

Ductility of Connecting Beams (u)

(Duration = 20
seconds)

15 500

ElCentro, Comp. N.S.
(1940)

23.2x10°K. ft

24.4x10°K.ft|24.4x10°K. ft

San Fernando, Wil-
shire Blvd., Base-
ment, Comp. N.S.

27.3x103 i

3

23.4x10 23.4x103 "

Table (4-7) Max. Base Wall Moment (Left and Right Piers),

Interior Coupled Shear Wall
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Ground Accelera- Ductility of Connecting Beams (u)
tion
(Duration = 20 5 15 500
o Tension Comp. |Tension Comp. |Tension| Comp.
ElCentro Comp. 3 3 3'
N.S. (1940) 2.32x10 2.32x10 - 2.32x10
K K K
San Fernando,
ot ks 2.32x10° 2.32x10°| - |2.32x10°
Basement, Comp.
K K K
N.S.
Table (4-8) Max. Axial Force at the Base of Piers, Interior
Coupled Shear Wall
Ground Acceleration | Max. Top Displ.|{Max. Base Moment| Max. Axial
(Duration = 20 Ft Kip. Ft Force 4 Kip
seconas) (Comp.)
ElCentro, Comp. N.S. 0.626 29.0x10° 1.85x10°
(1940)

Table (4-9)

Equivalent Cantilever Wall

Table (4-7) indicates that the maximum top displace-

ment is less than HT/450 while the maximum top displacement

for the equivalent cantilever wall (Table (4-9)) is approximate-
ly HT/275. This increase in top deflection is due to the lack
of couple action in the cantilever wall case.  Comparing the
maximum base moment for the piers in the equivalent canti-
lever wall and the coupled wall leads to the conclusion that

the coupled shear wall, even with flexible connecting beams,
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behaves better than the equivalent cantilever wall under
the same lateral loads.

Due to the small capacity of the connecting slabs in
transmitting axial force between the two piers, the axial
force in the piers for both type of wallsalways remain com-

pressive as shown in Tables (4-8) and (4-9).

4.7.2 Exterior Wall Response

Two designs are taken for the exterior wall.- In one
case, the wall designed to resist a maximum horizontal ground
acceleration of 16% g. In another case, it designed to re-
sist a maximum horizontal ground acceleration of 8% g. The
wall designed for 16% g seismic load is subjected to the
ElCentro, San Fernando and Taft earthquake records as an
input ground motions. All of the earthquake records are
normalized to 16% g maximum horizontal acceleration. The
wall designed for 8%g seismic loading is subjected to the
ElCentro record only, normalized to 16% g peak acceleration.
The main object of this study is to examine the effect of the
rotational ductility of the connecting beams when the coupled
shear is to be subjected to ﬁoderate or strong earthquakes.

The performance of the wall is evaluated through the
seismic response of the parameters of interest, namely: the
top displacement, the base moment for the piers, and the

axial forces at the base. Again, the shearing force inten-
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sity in connecting laminae are presented to clarify the

behaviour of the walls.

4.7.2.1 Exterior Wall Subjected to Moderate Earthquake
Excitation

By moderate earthquake excitation, we consider the
peak horizontal acceleration of the earthquakes the same as
that the wall is designed for. In the cases studied, this
horizontal acceleration is taken to be 16% g.

Given below are the seismic responses for nine cases.
There are three earthquake records and for each earthquake
record, three values of rotational beam ductility of 5, 15

and 500 are used.

(i) Top Displacement

The time-history response is shown in Figures (4-33),
(4-34) and (4-35). In the case of the ElCentro record, the
effect of the ductility of the connecting beams is immaterial
as the connecting beams remain elastic. The response of the
connecting beams are shown in Figures (4-42) to (4-46). For
the Wilshire Blvd. record of San Fernando, Figure (4-34)
indicates that for ductility greater than fifteen, no im-
provement for the wall behaviour can be detected. The case
of Taft record excitation shows that the connecting beam
ductility is of more importance than the previous cases

studied under the ElCentro and San Fernando earthquake



TOP DISPLs (FTae)

_-25

=25

w20 -

-15 -

-10 —

-05 T

"-00

_-05 —

_-.1.0 [

—-.1.5 I

_-20 I

H LA
\

| I | | | | | ]

1

20 4 a0 S w0 80 1040 12.0 140 160

DUCTIL« OF CONe BEAMS =5 OR 15 QR 500

FIG.4.33 TOP DISPL., ELCENTRO COMPa NORTH

18.0

200

TIME (SEC.)

9

EXT.

WALL

GZl



TOP DISPLs (FTa)

=30

-24 =

-18 -

-12 —

«06

-_—'~"—--——~__~
>

—-a00 AVI\ /\‘\
Vo

"-US =
""-.12 =
—.18 I

—'-24 —

1 | | 1 1 | N |

'—-30 J

FIG.4_34 TOP DISPL. 4

4.0 6.0 8a0 10.0 120 140 160 180 200

TIME (SEC.
DUCTIL- OF CONa BEAMS = 15 OR 500 4 EXTERIOR WALL

SAN FERNANDO WILSHIRE BLVDe sBASEMENTs» COMP. SOUTH

9zl



TOP DISPLs (FTs)

=35

=28

=14

=07

—-00

—.07

‘_-14‘

—.21

—-28

—’135

=

N iy

S

- v\ﬂ\/\/\\/vv/\\/

| | | I l I I | |

2al 4.0 60 8al 1040 i2.0 140 1640 18 a0 200

TIME (SEC.
DUCTIL«. OF CON« BEAMS = 15« ¢ EXTERIOR WALL

FIG.4_35 TOP DISPL. o TAFT EaQa COMP N21E

Lzl



128

excitation. Shown in Figure (4-35) is the top deflection
response for u=15, which can be taken as a moderate beam

ductility value.

(ii) Base Moment for Piers

The time-history responses for the moment in the
base of the piers are shown in Figures (4-36), (4-37) and
(4-38). Responding to the ElCentro and San Fernando records,
the structure behaves essentially elastically after some
elasto-plastic deformation in the connecting beams in the
first few seconds. The structure in these two cases is said
to be shaken down. '"This is due to the residual shearing
force aj which satisfies at every connecting beam j the

conditions

q' A q < q = (4_1)

Qs . * 95 > FRE s O (4-2)

and which is statically admissible [10a]. The residual
shears existing in the connecting beams after the structure
has shaken down will not necessarily be the distribution aj’
see Figures (4-42) to (4-46). The base moment in the above
discussed two cases never exceeds the ultimate capacity of
the wall cross section which equals to *43400 Ft Kip.

For the response to the normalized Taft record, the

bending moment, as given by Figure (4-38), is larger than
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the ultimate capacity of the cross section in some instances.
These high values are a result of the formation of real hinges
in 66% of the connecting beams. Therefore, an increasing of
the rotational ductility factor of the connecting beams will

improve the performance of the wall substantially in this

case.

(iii) Axial Forces at Base

The time-history responses are shown in Figures (4-39),
(4-40) and (4-41). These Figures show that the piers may be
subjected to tensile forces even after including the dead
load. This is because the connecting beams have high capa-
city to transmit axial forces between the two walls, while
the tributary area carried by the end shear wall is small
compared to the interior shear wall.

To decrease the tensile forces in the piers, it is
useful to arrange the walls in such a way to keep the tri-

butary floor areas proportional to the wall stiffnesses.

4,.7.2.2 Exterior Wall Subjected to Strong Earthquake
Excitation - ,

In this case, we consider the response of a wall
designed for a 8% g seismic load and being subjected to the
ElCentro ground excitations of 16% g. The top displacement

time-history records are shown in Figures (4-52) and (4-53)
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for rotational ductility factors of the connecting heams
equal to 15 and 500 respectively. There is little difference
between the two figures. However, the response presented is
larger than that for the exterior wall designed for a seismic
load of 16% g.

The base moment time-history records are shown in
Figures (4-54) and (4-55). For a ductility ﬁ equals to 15,
the base moment exceeds the ultimate capacity of the piers
six times. This is due to the formation of real hinges in
40% of the connecting beams. For a ductility u equals to
500, the base moment exceeds the ultimate capacity only twice.
Therefore, the need for high rotational ductility factor for
the connecting beams is evident if only moderate damage 1is
expected under strong ground shaking.

The axial force time-history is shown in Figures
(4-56) and (4-57). In the case where u=Il5, the formation of
real hinges in 40% of the connecting beams reduces the axial
force as shown in Figure (4-56). On the other hand, the piers
are subjected to large tensile axial forces in the case of
high ductility connecting beams, as shown in Figure (4-57).

Listed below are the maximum values of the parameters

of interest discussed above for the exterior wall.
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1Ground Acceleration

Ductility of Connecting Beams (u)

(Duration = 20 sec.)
5 15 500
ELCENTRO, COMP. N.S. 0:.:241 Ft 0.241 Ft 0.241 Ft
(1940)
SAN FERNANDO, Wil- 0.280 Ft 0.266 Ft 0.266 Ft
shire Blvd., Base-
ment, COMP. N.S.
TAFT, COMP. N21E 0.309 Ft 0.309 Ft 0.309 Ft
(1952)

Table (4-10)

Maximum Top Displacement,

Exterior Wall

Designed for 16% g

Ground Acceleration Ductility of Connecting Beams (u)
(Duration =20 sec.) 5 15 500
ELCENTRO, COMP. N.S. 34.7x103 34.7x103 34.7)(103
(1940) K.ft K.ft K.ft
SAN FERNANDO, Wil- 34.3x10° | 38.3x10° | 38.3x10°
shire Blvd., Base- K. £t K.ft K.ft
ment, COMP. N.S.
3 3 3
TAFT, COMP. N21E 45.2x10 45.2x10 38.2x%x10
(1952) K.ft KL.ft K.ft

Table (4-11)

Maximum Base Moment (Left and Right Piers)

Exterior Wall Designed for 16% g
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Ground Acceleration Ductility of Connecting Beams (u)
(Duration = 20 sec.) 5 15 500
Tension |Comp. |Tension | Comp. {Tension | Comp.
: 3 3 3 3 3 3
ELCENTRO, COMP. N.S.|1.55x107{4.1x107{1.55x10" | 4.x10" 1.55x10}14.1x10
(1940) K K K K X K
. 3 & 3 3 . 31, é
SAN FERNANDO, Wil- 2.03x10714.68x10f2.03x10" | 4.8x10°R.03x10"{4.68x1
shire, Basement, K K K K K K
COMP. N.S.
TAFT, COMP. N.S. 2.01x103 4.66x1032.07x103 4.72ﬂ032.0%d034.72d03
q (1952) K K K K K K

Table (4-12)

Maximum Axial Force at the Base of the Piers,

Exterior Wall Designed for 16% g

Ductility of Max Top Dis-| Max Base Max Axial Force at
Connecting placement Moment Base (Kip)
pesms. | (FL.) (FE.Kip) Tension { Compression
5 0.34 48.3x103 l.3x103 4.31x103
15 0.32 30.0x10° 1.3x10° | 4.31x10°
3 3 3
500 .51 30.0x10 I 1 x1.0 4.13x10

Table (4-13)

Exterior Wall Designed to resist Maximum Hori-

zontal Acceleration of 8%g,

ElCentro Comp.

N.S.

Normalize

d to 16%

g
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The effect of the ductility of connecting beams is
significant when the coupled shearwallis subjected to éarth-
quake of intensity higher than that used in designing the
wall. Although the maximum values presented in Table
(4-13) for the two cases of p equals to 15 and 500 seemed to
be the same, the repetition'of the maximum values exceeding
the ultimate capacity in case of pu-equals 15, as shoﬁn in
Figure (4-54), is of great significance to the ultimate

survival of the structure.

4.8 Overall Behaviour

This section studies the relation between the overall
ductility demand of the studied coupled shear walls p overall
and the connecting beam rotational ductility factor u. The
formation of the real and plastic hinges at the connecting
beams and the corresponding time of the maximum number of
these hinges are also presented in this section.

The overall ductility for a ductile shear wall has a

value ranged from 4,0 to 5.0. The overall ductility demand

is defined by

il 2
Hoverall ~ Ay (45
where Au = maximum top displacement response.
Ay = top displacement at the time in which

the segments first change from elastic
to inelastic, due to triangular static load.
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Table (4-15) indicates that the connecting beams
ductility factor p is of minor influence when we use the
definition of Au as the maximum top displacement. It should
be noted that the maximum value may occur after the formation
of the real hinges in the connecting beams when the structure
becomes more flexible. In general, for low connecting beam
ductility, the overall ductility demand will be larger than

that for high connecting beams ductility.

Ductility of Connect-

Ground Acceleration 3
ing Beams (u)

2 i 2
WALL (Duration=20sec.)ft/sec 5 15 500
ELCENTRO, COMP. N.S. .63 1.63 1..63
(1940)
Exterior| SAN FERNANDO, Wilshire 3.91 1.81 1.81
wall Blvd., Basement, COMP.
N.S.

TAFT, COMP. N21E (1952) 2L 2.11 2.11

Interior
wall_ ELCENTRO, COMP. N.S. 2.38 2.40 2.40

SAN FERNANDO, Wilshire Blvd.
Basement, COMP. N.S. 3.95 2.89 i 2.89

Table (4-14) Overall Ductility Demand of the Exterior and

Interior Walls of the 20 Storey Building (Max. G. Acc,=16%g)
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The damage happened in the walls of the 20 storey
building due to the earthquakes loads is studied through the
number of segments which are changed to the real hinged
state and the maximum number of segments changed to the
plastic hinged state. The maximum number of segments which
are changed to real hinged segments is presented in Table
(4-15) {for the different connecting beams ductility factors.
Only the cases associated with the TAFT record gave a heavy
damage in the exterior walls designed to resist lateral
seismic loads of 16%g maximum acceleration. This is because
the repetition of the peaks in the TAFT record as shown in
Figure (4-13). For the interior walls, the damage is heavier
than that for the exterior walls when the ductility of the
connecting beams is low.

The maximum number of segments which are changed to
plastic hinged segments and the first time at which such
number occurs is tabulated in Table (4-16). The number of
occurrance of such number is given in Table (4-16) as well.
It can be seen from Table (4-16) that the interior walls will
suffer more than the exterior walls (16%g), although the
later share more than the former in resisting the lateral
seismic loads; This is due to the low bending capacity of
the connecting slabs in the interior walls.

The exterior walls designed to resigt lateral.seismic
loads of 8%g suffer heavy damage when the ductility of the

connecting beams is moderate or low, while the damage is
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slight for very high value of connecting beams ductility.
Therefore, the rotational ductility factor u has more
influence in improving the coupled shear wall behaviour when
subjected to earthquakes having intensities higher than the
design intensity.

A segments state time-history is shown in Figure
(4-58) for the exterior wall designed to 16%g maximum hori-
zontal ground acceleration under the Taft earthquake record.
The-rotational ductility factor j is teken as 15.0. The six
peaks shown in Figure (4-13) occur at the following times:
3. Trd4.2, 6.2, 6.4, 6.6, 'and 9.1 seconds: *  The .damage
pattern is shown in Figure (4-58) at the corresponding time
stations. The first three peaks cause only plastic hinges,
while the other peaks cause the real hinges to form. This
is because the last three peaks are accompanied with high
ground velocities. After the last change in segments state
happened at 9.1 seconds, the structure behaves elastically
to the end of the analysis. This is due to the flexibility
resulted from the lower three segments which are changed to

real hinged segments.



Ductility of Connecting Beams (u)
WALL Ground Acceleration
(Duration=20 sec.) 5 15 500
* *
Number Time Number Time Number Time
—{
—
@~
= o0 ELCENTRO, COMP. N.S.
- (1940) 2 4.6 5.00 0 .
hs
ELCENTRO, COMP. N.S. 0 - - 0 -
(1940)

-
«
Z’ﬂ SAN FERNANDO, Wilshire 1 4.10 - 0 -
b0 Blvd., Basement, COMP.
O of
ST Na'Se,
- -
O -
+
e TAFT, COM. N21E (1952) 3 6.40 9.10 0 -

AELCENTRO ; -COMP. N.S. > 3 4.70 - 0 -
5 (1940)
o
o -
~ =
3 g SAN FERNANDO, Wilshire 4 7.90 - 0 -
= Blvd., Basement, COMP.
= N.S.

* Time at which that number occurs (seconds)

Table (4-15) Max. No.

of Segments which are changed to Real Hinged Segments

20 Storey Building

6ST



Ductility of Connecting Beams (u)

WALL Ground Acceleration

(Duration=20 sec.) . r - >00
*
Np Time NR NP Time NR NP Time N
—
i
<
&= b ELCENTRO, COMP.N.S.| 3 2.10 1 3 2.10 1 3 2:10 1
P o (1940)
A
m
ELCENTRO, COMP.N.S.| 2 1.7Q 1 2 1. 70 1 2 1.70 1
(1940)
SAN FERNANDO, Wil- 3 2.80 2 3 2.80 2 5 2.80 2

shire Blivd., Base-
ment, COMP. N.S.

Exterior Wall
(16%g)

TAFT, COMP. N21E 3 4.20 2 5 4.20 2 3 4.20 3
(1952)
S ELCENTRO, COMP.N.S.| 4 1.70Q 1 5 8.40 4 5 8.40 4
ol (1940)
o o
L=
.a
L SAN FERNANDO, Wil- S5 6.30 1 5 6.30 4 5 6.30 4

shire Blvd., Base-
ment, COMP. N.S.

*Nb = Maximum Number of plastic hinges
+Time at first change to such number

-Np = Number of occurrance :

Table (4-16) Max. No. of Segments which are Changed to Plastic Hinged Segments

20 Storey Building

091
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Coniclusions

The following conclusions are drawn based on the
work presented above.
(1) The continuum approach in combination with the trans-
fer matrix technique can provide an efficient means to
obtain a full time-history response to ground motions. The
proposed method is capable of handling plane non-uniform
coupled shear wall structures subjected to any ground
acceleration. The effect of flexible foundation can be
incorporated in the analysis. Complexity in the structural
configuration and/or the inelastic regions are conveniently
handled by dividing the structure into a series of segments
where each segment has uniform structural properties within
itself. Independent of the number of storeys of the
structure or the number of segments into which the walls are
to be divided, the resulting ¢transfer mafrices are six by
six matrices. . Theféfore, computers with limited memory
capacity can be used to analyze high rise buildings using
the proposed method.
(2) The P-A Effect appears to have a minor influence in

the coupled shear walls stiffness. This is due to the piers
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are assumed to remain elastic throughout the analysis. With

possible plastic deformations in the walls, the P-A Effect

may be important. This aspect requires further investigation.
(3) For a twenty storey building, five lumped mass
dynamic model is shown to be adequate. The response of the

five mass system is found to be very close to the response
of ten mass system, while the computatioﬁ costs £for the
former is only one quarter the computation costs for the
later.

(4) For a uniform building with walls of different
stiffness, if the masses of the building are to be distri-
buted uniformly throughout the height in accordance with the
wall stiffnesses, only the fundamental periods of the walls
will be the same. The periods of thé other modes will be
different. To obtain identical periods for all modes in the
walls, it becomes necessary to distribute the masses non-
uniformly along the height of each wall, even though the
building as a whole is a uniform building.

(5) For the same building, under the same ground motions,
the walls coupled by floor slabs (flexible connection) suffer
more damage than those coupled by stiff connecting beams,
although fhe Tatter share more in resisting the lateral.
earthquake loads,

(6) Due to the high shearing force transmitting capacity

of the connecting beams, the axial force in the piers due to
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lateral load may exceed the dead load carried by each pier.
In such a case a tensile force will occur at the base of
the pier. This situation is particularly serious for end

walls where the coupling deep beam is stiff .and yet the

tributary area for gravity load is small.

) Based on the present limited study, it shows that the model
structure will suffer light damage if it is exposed to earthquake

having the same intensity as that used in designing the coupled shear
wall according to the NBCC [10] and the ACI Code [1]. On the other hand,
if the wall is ekposed to earthquake having a higher intensity compared
with the design earthquake, a heavy damage may occur even in the piers

for rotational ductility factor u equals to 15.

(8) The improvement gained in the coupled shear wall

behaviour by increasing the rotational ductility factor of

the connecting beams is noticeable when the wall is exposed

to strong earthquakes, while this improvement is limited

when the wall is exposed to moderate earthquakes.

5.2 Recommendations

The following points require further investigations.
(1) Detailed modeling techniques such as the use of
cracked sections, strain hardening as exhibited by steel,
deteriorate stiffness due to the cyclic loading of concrete

members are useful to incorporate into the analysis to
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obtain more realistic results.

(2) To avoid any tensile forces to be existing in the piers, it

is necessary to increase the dead load carried by the piers when the
coupling beams have stiff connecting beams. This can be done by
arranging the walls in such a way keeps the tributary area proportional

to the wall stiffness for all the walls.



APPENDIX A
DESIGN CALCULATION FOR EXTERIOR AND INTERIOR
WALLS IN EXAMPLE BUILDINGS

For the multi-storey building shown in Figure (4-1),
the straining actions at the base of the piers are to be
calculated according to National Building Code of Canada for
-16% g and for 8% g seismic loading. The two coupled shear
walls given in Chapter 4 are considered in this Appendix, the
first will be designed to 16% g, while the second example will
be designed twice, once for 16% g and the other for 8% g
seismic loading.

The two walls are designed to resist the dead load,
live load and earthquake loads. The critical design sections
for each wall are the connecting beams cross section, and
the piers cross section at base.

As the earthquake loads are to be distributed accord-
ing to the walls stiffnesses, it is necessary to estimate
from the beginning the stiffnesses of these walls. The
overall stiffness of the wall is affected by the stiffness
of the connecting beams which can be represented by the

factor o, where

] (A-1)
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where
I=Il+12
A = A1 + A,
h = Storey height
and Ip = Moment of inertia of connecting beams.

A-1 Stiffness of the Connecting Beams

a- Exterior Wall

Let us consider the connecting beams are doibly

reinforced concrete cross section. Taking
3 s 3 s
Es = 29x107 Ksi |, EC = 3.5x10" Ks1
, £!' = 4 Ksi and f_ = 60 Ksi
c b
. - -
We "have AS AS 0

So neglect As' in getting M

f'

N c 87000
AS = AC[O.gsx?—XKX§7666:?~] (A—Z)
b y y :
= %
= 2.85% AC
< . 2
Trying 4#9 (As = 4 in")
AS/AS = 70% 0.K
b
A-A_ = 2%
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To obtain the Comp. zone, Figure (A-1)

Aok

) e :
® % 0.85f1.% feanin

Ultimate Bending Moment Capacity

1

Mu = As fy (d-a/z) -

4 x 60000 x 18.1 = 43.45 x lO5 in.Ib

362,0 ft.Kip

;oa, - 2Mu/(c.h) = 2 x 362/(5x8.75) = 16.0 Kip/ft.
I Cracked
1
5 = 7.8x9x8.1 " 4.1'
7.8 2.0x2_ 29
22x9 (53150 *3.%5)
3
_ 7.8x9 2 29 2 2
Iep = 702 * X785 5 + 55 x4 [g5 * 17.71!
= 0.4575 ft?

Check for Tension Steel

Ee ® 0.003 x [22-(7.8/0.85)]/(7.8/0.85) = 0.00425


http:362/(5x8.75

169

"

f_ = 0.00425 x 29000000 129000 p._.
S S1

1

129+K o » F
sil, y

Steel yields.

Check for Comp. Force

C=7.,8x9 x 0.85 x 4 = 240 Kip #
T =4 x 6000 = 240 Kip # O.K.
Factor o HT
2
0‘2 - 12x0.45;5 %2?3*' 26.25 2] - 0.00455 ft-z
8+ 75x(5) (15 4E25)
aHT = 0,0675 x 87.5 = 5.9 (moderately coupled wall)
b - Interior Wall
From [7] , with the following dimensions

L =5 , = 0.125 and Y/X = 0.5

il

, see Figure (A-2).
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-
0.85f. £ =.003 As4 in?
T c 27
a 2 _,t— /
-+ 4+ /N L A
o ik ol
_eJ C.G. , ,
T 20 24
12
€s zr
AS=4 in.z 1
le— 9" o] .

STRESS_STRAIN DISTRIBUTION FOR CONNECTING
BEAMS OF THE EXTERIOR WALL

/
o 20
R 2
C I R
U i j
W ' 17.5
j— 2 _L A /
X=46_1|:_ $ X ] é_?_/ 1 50
L W : 17.5° :
K N BRI N S
C | o/ , 5
T Y= 201 T
FIG. A_3
3#5/
/ . TRIBUTARY AREA FOR
3.1 -
A = INTERIOR WALLS
g " L ¢ 4 /n\ 5 P
4. ) LI g9 o b j I b' 89 2 IL_:’
3#5/ft S/ oy
ré
- 3.50 :{

FIG. A_2 CONNECTING SLABS OF

INTERIOR WALLS
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Ye/Y = 0,175

Y = 0.175 x 20

= 3.5 ft.

Take A. = 0.5 A

= 3,15 in2

2

1
Take: “3#5/ft 3:2%1n

1.525%

>| >
(e} w
1}

1.34 in

8
i

58.5 K.ft.

=
]

2.68 K/ft.

L
1}

I Cracked

1:29n

(0]
"

0.0235 ft?

-
I

cT
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Check for Tension Steel

0.00652

™
]

Hh
I

189 Ksi > fy 0.K. yielded

Check for Comp. Force

€C = 1.34 x 42 x 0:85 x 4

192 Kips #

T = 3.2 x 60

192 K9ps #

Factor aH

T
2
2 a . 5 ~
Pt g 1.2.x%0 023§ [%57; 3 26,25 2] = 0.000234 ft 2
8. 75x (:5) (12512 50
aH,. = 0.0153 %X, 87.5 = 1,34 (Flexible coupled Wall)

T

A.2 Limit States Design

The factored load combinations shall be equalled to

Y[aDD + w(aLL+aQQ+aTT)] (A-3)
where

1.25 or in case of over turning, uplift and

*
Q
1]

stress reversal 0.85 4

aL = 1.5
o~ = 1.5 , and
Q
= 1.25
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* ¢ = 1,0 when only 1 of the loads L, Q and T
acts,
Y = 0.7 when 2 of the loads L, Q and T act,
and
Yy = 0.6 when all the loads L, Q and T act.
* y = 1.0 for all buildings, except as provided

in Clause (b) - 4.1.4.2 (5), N.B.C. (1975).

Coupled Shear Wall II - II

Dead Loads
- Own Wt.
0-757% E7:8 % 2°% Q5150 [=3,92 ' F/ £t
- Slabs :- Figure (A-3)
Cover = 30 lb/ft2
Slabs wt. = 0.5 x 150 = 75 lb/ft2

.".Reaction of slab on the coupled shear wall (0.03+0.075)
x50x20
= 105 Kip/Storey

- Partitions

Assume the total wt. of the partitions = total wt. of

walls

Total D.L./storey 105+3,92x2x8,75 = 105+68,5

= 173.5 Kips

Total D.L. at G,L. = 1735 Kips
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* As the coupled shear wall supports an area of floor and

roof > 900 ft2

Multiplied factor equals to 0.5+15/YA = 0.975

* For Residental Areas
40 psf in the min., design
20 psf in the min. design

20 psf in the min., design

with a slope of 30 deg.

L.L. (1st floor » 9th floor)

& L.L. (10th floor - roof)

Total L.L. at G.L.

§ Max. 0.T.M. at G.L.

50.7x9%39

load for apartments, hotels...

load for roofs.
load for snow for roofs

or less.

(.040x20x40+0.100x20x10)

0. 975

50.7 Kips

(.040x20x50)0.975

39.0 Kips

= 495 Kips

(5x20x0.1x22.5x9+20x20x0.04x10x9

+25x20x0.04x12.5)x0.975

= 3625 K.ft
Coupled Shear Wall I-I
Dead Loads
- Own Wt. 3.92 K/ft.
- Slabs 52.5 K/storey

- Partitions = 3.92 K/ft.
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Total D.L./storey = 52.5+3.92x2x8.75 = 121 Kips

Total D.L. at G:lL. = 1210 Kips.
Live Loads

Total L.L. at G.L. = 254 Kips.

Max. O0.T .M. at 6.5k = 1855 K.ft.

Whole Building

Effect of Earthquakes

The base shear Q can be determined from the following

equations
Q = A.S.K.I.F.W

where

A = percentage of the gravity acceleration g 0.16 as

upper limited in Vancouver

area with probability

of annual exceedance equals to 0.005, NBC comment-

ary J [10].
» S = Seismic Response factor (O.
s T = Period of the structure (0.

= 0.05x87.5/ 40 = 0.69 sec.
S = o.S/iETEE = 0.565
s K= Structural factor (1,0 for
, I = Important factor (1.0 for

, F = Foundation factor (1.3 for

5/3V/T ) (A-4)
05hn//ﬁ) (A-5)

ductile shear wall)
ordinary structures)

dense sand)


http:52.5+3.92x2x8.75
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And W = Weight of the structure + Snow for roofs
= (7x1735+3,92X8.75x10+50x140x0,02) = 12627 Kips.
Q = 0.16x0.565x1.0x1.0x1.3x12627 = 1465 Kips.
As hn/Ds < 3 .. No concentrated force at top.

As the storey height is constnat with the height and the

masses at slab levels are equal

n
Fo = (th/,il hy)
==

(1+2+3+4+5+6+7+8+9+10)8.75 = 55x8.75 ft.

o~
=g
I

S. Fy = 1465 x §%‘= 26. 6K
, F, =53.5Kk , F, = 79.9K , F, = 106.6K , F. = 133.2K
7 F6 = 159.%5 s F7 = 186.4K , FS = 213.2K , Fg = 239.8K
And F = 266.4K.
As T = 0.69 sec. (0.5<T¢1.5) .. J = 1.1-0.2+0.69

= 0.962
The reduced overturning moment and the shearing force diagrams are given by
Figure (A-4)
¥ As oH =~ 4.5 aH

TIeI TII—II

The stiffness of wall I-I is much bigger than the
stiffness of wall II-II, So, assume the stiffness of wall I-I

equals to three times the stiffness of wall IL-II.


http:1.1-0.2+0.69
http:1+2+3+4+5+6+7+8+9+10)8.75
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. 266.4 266.4
239.8
213.2
186.4
159.8
133.2
106.6
79.9
53.3
89.8
// 26.6
/
. 1465.0
'/ /863 VoL VLA 7777
REDUCED O.T.M. (1000 K.FT) S.F.D. (KIPS) L.F.D. (KIPS)
FIG.A_4 LOADING AND STRAINING ACTIONS (EARTHQUAKE EFFECT)
/
e 00—
-~ 50—
30" |
st
K K K K EHEK K K 3K
—¢—o—+—ao—e—0——0
A 255 Kip.FT
— 600 |
KV
I — ]
g '///I *L <ir
1 |
S o
I~ Fy=14]
F]:G0.0
l <
| FIG.A_5 TORSIONAL EFFECT
| (KIPS)
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1

.. The effect of Earthquake on wall I-I 6300]

3
T?§3+7)[8

1995 K.ft

And the effect of earthquake on wall II-II

L
13

[86300] = 665 K.ft

Effect of Torsion

For symmetrical plan as given by Figure (A-5) the
accidental torsion must be considered. Equation (A-6) gives

the accidental torsion moment.

MT T \'
where V = Base shear
= 1465 Kip.
e. = 0.05B
X
= 7.0 ft.
MT = 7x1465 = 10255 Kip.ft.
From Figure (A-5)
Tnx? = (6*72+2%5242+3%4+2+12)x100

(294+50+18+2)100

36400 ft2
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+10255x3x70
1 36400

+60 Kip. (at base)

£10255x50
2 36400

= +14.1 Kip.

13x60

g;TZgg) 23500 Kip. ft. (17% increase)

MII = 1995*(1+
Total

13x14, 1

= ES
665% (1+=37==

M ) = 7450 Kip.ft. (12.4%
IT 1l15ta1

increase)

Thermal Effect: Neglected

Deéign Tables




Wall I-I (Exterior) I1-II (Interior)
Combggzgion D WS 0+Q DTL+Q 2 DL o= Sebry
Y 1.0 1.0 1.0 G, 7 1.0 1.0 1.0 0.7
p 1.25| 1.25| 0.85{ 1.25| 0.85| 1.25| 0.85| 1.25{ 1.25| 0.85| 1.25| 0.85| 1.25| 0.85
Axial Force|-1510|-1890|-1440{=1510|-1060}~1776|-1326|-2170|-2902{-2207 |-2170|-1475 |Z2684 {-1989
Kip
Shearing F. 0 0 0 600 600 420 420 0 0 0 210 210 147 147
Kip
ORT.Mé 0 2785 278535250 {35250|26600126600 0 5440 5440111200|11200{11650{11650
ip«ft,

Table (A-1) Straining Actions at the Base,

10 Storey Building

» Critical for Over Stressing

£33

Critical for Over Turning

08T



Walls Constants
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2 _ ¥ 2 - ,_EEEZL___ I = I, +I
- EI °? a+(I/A.a) °’ 172
1 1 1
and |+ = +— 4% —
A A1 A2
2 I 4
For both A = 6.5625 ft . = 670 ft -
, a = 22.5 ft and E = 3500 K, 4
Wall aHT az uz YZ Yz/az Mov. st .|Mov.T |Tov. st .{Tov.T.
I-1 5.9 [0.00455]394(0.000168|0.0370{35250(|35250{+1305(+*1305
* *
IT-I1| 1.3410.000234{20.4|0.0000087|0.0370(11650{11200|+*430 |*415
* Bigger than T
max

Table (A-2) Walls Constants and Axial Forces due to the O0.T.M.

at Base, 10 Storey Building
¥
At base T = 2 M(x=0) ]TI}[Tmaxl
- *
Tmax iHT qp

Wall I-I: T = +87.5%16 +1400 Kip.
—_— max :

Wall II-II; T = +87.5%2.68 = +234.5 Kip.

(A-6)




So from table (A-2) T

bigger than Tmax

over stressing

for wall II=II.

over turning

182

are

o5t - Tonof ™ +234.5 Kip.

_ _ _ M-T.a

For Il = 12 i M1 = M2 = > )
Over stressing Over turning
Wall ' ' ! !
M : N K M K N ¥ M = N K M N K
max c c max max c c max
) i (@) 2

??il 2925 +550 (2925 [-2060 [2925 £775 12925 -1835

Wall @ O
II-11 3185 |-1102.5{3185 |-1576.5|2735 -498.0 (2735 [-967.0

Table (A-3) " Design Values,

10 Storey Building

1 § 3 - Check for Comp.

2 - Check for As‘

in Concrete

For the two walls the same cross section and reinforce-

ment will be considered.

For the material properties chosen for the connecting

beams
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Choose As = 0 SASb = 0,854% AC
= 0.854x?332x17.0 - 15.65 in2 (12410)

The wall cross section is shown in Figure (A-8a)

A = 14.7 in® (0.285 A, ) & (0.8% A)
act b
Check
Ag T Ppebut P %ﬁ% = 0.016
17.0 =

d/t & % = (M/P)t = (M/P)/17.5

il
0]
[e]
(o]
\l
9]

For the above three values we can use the interaction

diagrams [24]

il
[
~
[e))
152

el 1]
m = fy/(O.SS £.")
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; P =K.b. Ml'1=Pl'l Puo| My
b 1 .. .
Wall Pt.m ~ K t.fC . € P v omments
I-1 (1){0.2825|0.,0815(0.860 6500 925013151315 E. 0.8
=3.15
I-%¥ . (2} - " . - . - - |P is a
Tension
Force
IT-11(3)10.2825{0.1160/0.835 6250 12600({3.98|3.98|F.0.S
=3.98

For the Case (2)

Table (A-4) Check for the Assumed Section,

10 Storey Building

Wall I-1I

.
LI

1}
(O3]

+775

acting inside the reinforced steel.

Neglect the concrete,

Figure (A-¢)

To get the ultimate values, Pu and Mu s, we have the

following equations

N
u

1

1

=<
!

'
= Ag(d-d ). f_

2

242,5 %
s

2

(1)

(iij




As(fsl “fs’z)

>
i
e
=
wm
~No
®
. Nra— N

FIG. A_6 STEEL SECTION

- cern STIRRUPS
B A A 7
//‘v//  # 3@6
)
! =%
24 20 =253 2#5
e

QD & & 4410

4———12// —]
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FIG. A_7 CONNECTING BEAMS CROSS SECTION, EXTERIOR

WALL (20 STORY BUILDING 516 %g)
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£, + £, = £ =60 (iii)
51 S5 y _
. f =60~ f
o | 52
Mu = Nu.e = 3.78 Nu (iv)
. 3.78N = 242.5 £
u S
2
N = 0. 4(60-£ J =.1768 «29.4 £
u S S
2 2
= 1765-29,4x0.0156 &u
= 1785 _
Nu T 1.46 = 1210
N
- _u _ 1210 -
F.0.5. = % = 12 1.57

* Additional safety can be gained by introducing the long steel.
For all connecting beams are real hinges (Wall I-I).
P = -755 K. (constant)

To get the ultimate B.M. assume large eccentrisity

Check

-~

]

[=]

i
o

o+|®

1

—

(93}

' e = 26.25 ft.
u

26.25%P = 19.8x10° K.ft.

=
n
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A-3 Case of 20 Stories: [16%g, ground acceleration]

Take b = 12 (T = 1.38 sec,)
Wall I-I (Exterior)

Hp = 11.4 and qp = 20 Kip/ft
Wall II-ITI (Interior)

HT = 2.33 and qp = 2.68 Kip/ft

Design Tables




Wall I-I (Exterior) ! IT-II (Interior)

o D D+L D+Q D+L+Q D D+L D+Q D+L+Q
Combination

Y 1.0 1.0 1.0 0. 7 1.0 1.0 Lot 0.7
opn 1:25% 1.25% 0.85)] 1.25 | 0.85.f I'.25| 0,85} 1.25] 1.25] 0.85 ] 1254} 0.85 | 1.25}f 0,85
r R B *

Axial Force|-3310(-4065{-3005|-3310 [-2250 |-3840|-2780(-4630{-6142|-4662|-4630{-3150 |-56901-4210

Kip
Shearing F. 0 0 0 1050 | 1050 735 735 0 0 0 390 390 245 245

Kip
0T M5 0 5%.9 5+9 109.0,109.0, 80.5| 80.5 0 11.8} 11.8} 35.0§) 35.0} 32,7 32.7
1000 K.£ft.

Table (A-5) Straining Actions at the Base, 20 Storey Building (16% g)

- * Over Stressing
** Over Turning

For Both ': A = 8.825 ft2 , I = 895 ft4 , a =22.5 ft and E = 3500 Ksi

88T
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29 in2

[}
=]
[
w
o
>

1]

Take A = 0.4 A
S Sy,

Choose 18#11 (26.5 in”) , 0.366 A_ and 1.04% A_
b

The wall cross section is shown in Figure (A-8)

Check
_ 2.08 _ -
P = 559 @ B = 17.65 P .m = 0.367
' _16.875 _
) dft = potueie-0,007
€ 3 ¥ = I-)u l:4u
a1l x B = ey e Bt a
; P .m : K [P, E;b PSIMERLe o Ty F.0.S
c
1)
I-I1 |0.367]0.170/0.800| 8000 23700 |1.55(1.55| 1.55
() %
O -~ lo.3706] - - . 0.84|0.84|Unsafe
(3)
I1-11[0.367|0.191[0.770| 7700 25600 [2.32[2.32| 2.32

Table (A-8) Check for the Assumed Section, 20 Storey Building

(16% g)

i Increase the area of steel by using 22#11 (32,2 inz)

F.0.S. = 1.04 (Wall I-I only).

AS
r T 0.445 & As = 1.28% A
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* For all connecting beams real hinges (wall I-I) P = -1655 K.
e
K = 0,165 S —=1,50 ., e = 26.25 ft.
t u e o

ﬁu = 43400 K.ft.

A-4 Case of 20 Stories: [8%g, ground acceleration]

' "
Taking b = 0.75 (g ) , (T = 1.38 sec.)
The connecting beam cross section will take as given by

Figure (A-1).

Exterior Wall (I-I)

aHp = 11.8 and qp = 16 K/ft
Interior Wall (II-II)
aHp = 2.33 and qp = 2.68 K/ft.

Design Tables




Wall Exterior (I-I) Interior (II-II)

Load
Combination D D#L D+Q D+L+Q D D+L D+Q D+L+Q

¥ 1.0 1.0 1.0 0.7 1.0 1.0 1.0 0.7

o 1.25| 1.25! 0.85| 1.25| 0.85} 1.25| 0.85 | 1.25| 1.25| 0.85| 1.25| 0.85| 1.25| 0.85

- * * % * % *

AXIaiigorce -3030/-3785]|-2810|-3030 |-2055 {-3560 |-2585 | -4350(-5862|-4467|-4350|-2955|-5410|-4015
Shearing 0 0 0 480 | 480 | 336 | 336 0 0 0 183 183 128 128
force Kip
0.T.M.
1000 Kip.ft| 0 5.9 | 5.9 | 50.0]|50.0] 39.21| 39.2 0 11.8] 11.8| 16.5| 16.5| 20.0| 20.0

* Over stressing

** Qver turning

Table (A-9) Straining Actions at the Base , 20 Storey Building (8% g)

For both: A= 6.5625 £t2 , I = 670 £t* , a = 22.5 ft and E = 3500 K,

i

Z61
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2 9 K.ft K.ft K.ft K
WALL Y /e Mov.st; Mov._t. Tov.st. Tov.t
Exterior (I-I) 0.0370 | 50000 50000 +1850 +1850

Intericr (II-II)

H
{
0.0370 20000

* *
16500 740 610

S
Bigger than Tmax

Table (A-10) Axial Force due to the O0.T,M. at Base, 20 Storey

T = +16x175 = +2800 Kip.
max
I-1
T ot = +2.68x175 = *469 Kip.
e % 4
Over Stressing Over Turning
WALL K.ft. K [K.ft. . Kift. KIK.ft. K
M N M M N M N
max e = max max c c max
(1) (2)

Exterior (I-I)

4250 | +335 | 4250

-3365{4250 | +822 |4250 |-2878

Interior (II-I1)

(3)
4750 |-2236 4750

-317413000 [-1008|3000 {-1946

1 § 3 check for Comp. in concrete.

2 check for As'

Table (A-11) Design Values, 20

Storey Building (8%g)

Trying the wall cross section shown in Figure (A-8a).
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Check

d/t = 0.975 , &= My/17.5 and mP, = 0.2825
| t P

Table (A-12) gives the facyor of safety with the three

cases of loading given by Table (A-11).

- 3
(o =1l

WALL P .m .e (P /P &u/M F.O0.S|

ctlo
=~

(1)
Exterior (I-I) {0.2825[0.0720.860| 6500 8200| 1.94| 1.94| 1.94

(2)
Exterior (I-I) - 0.297 | - - « |1.333|1.335]1.333

(3)
Interior(II-11)]|0.2825]0.086(0.880| 6500| 9800| 2.05| 2.05| 2.05

Table (A-12) Check for the Assumed Section, 20 Storey Building

(8% g)
For all connecting beams real hinges (wall I-I) P = =1515 Kip.
e
K = 0.200 .= =0.96 ..e_ = 16.8 ft.
i u

M, = 25500 ft.Kip.

In table (A-13) a summary of the actual design with

Mu value for ezample 2 with the two cases considered, namely:

design for 0.16g, and design for 0.08g.




Max.G. Acceleration=16%g Max, G. Acceleration=8%g
Wall A A q M Wall A A q M
WALL 1 wiatn Sv | Sw P Yw o |width| b Sy P Uy

" £ " !
Exterior 12 4#10 |22#11| 20 K/ft | 43400 X 9 4#9 12#10 16 K/ft 25500K

" * ' * .

"

Interior 12 [3#5/ft|18#11|2.68K/ft | 37700K 9 3#5/ft | 12#10 | 2.68K/ft 25500K
* Connecting slab width = 3.5 ft.

Note:

The dimensiocns and

Table (A-13)

Summary of Actual Design,

20 Storey Building

for the case of 16%g due to the minimum requirements recommended by the code,

to the live and dead loads effect.

reinforcements in the case of 8%g not exactly one half those

also due

S61



1£4/10 2 143/ ft 144 /ft

4 12#10 / . ; | /
ol e A 1T . | =
T |

1#3 /ft 1# 4 /ft

|((]) BASE CROSS SECTION FOR INTERIOR AND EXTERIOR WALLS (10STORY BLDG & 20 STORY BLDG,8%q)

12 4/10ft2 144 ] ft 145 /ft

R R 1 IPEHERET
12 4 /tt \1%5/& !

(b) BASE CROSS SECTION FOR INTERIOR WALLS (20 STORY BLDG»16%g)

1#4 /10 ft2 1#4/ft 145 /ft

SR A EDEE: (5 DI &5 e

-

14 4] ft 145/t

/
}4 17.50 =

(c) BASE CROSS SECTION FOR EXTERIOR WALLS (20 STORY BLDG 5 16 % g )
FIG.A_8 DETAILING OF BASE CROSS SECTIONS

961
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