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ABSTRACT 

A method for tlie dynamic analys·is· of planar coupled shear walls 

sub.j ected to ground motions· is developed herein. The method is capable 

of application to nonuniform coupled shear walls resting on flexible 

foundations. The possibility- of development of yield hinges at the ends 

of the connecting beams is included in t he analysis . Also P-& Effect 

is incorporated i n the stiffnes·s of the structure. 

The method is based on the transfer matrix technique in com­

bination with the continuum method. A step-by-step integration 

approach is used in solving the equation of motion. The r esponse to a 

number of earthquake records are obtained. The effect of the rotational 

ductility factor of connecting beams is studied. 
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CHAPTER 1 

INTRODUCTION 

1.1. General 

In high-rise buildings, t he des_i gn consideration due to l ateral 

loads becomes particularly important. It is necessary to provide ad e­

quate lateral strength and stiffness to the structure. One alternative 

in design is the use of reinforced concr ete shear walls. The high 

stiffness of the shear walls in their planes is employed to resist the 

lateral loads . Usually, these walls extending the entire height of the 

building. In or der to have windows, doors and service ducts, openings 

must be provided i n the shear walls, and the resulting structur e of~en 

consists of two or more smaller walls coupled together by a system of 

horizontal spandrel beams or connecting slabs. Usually, the exterior 

walls have spandrel beams, which are short and relatively deep, while 

the interior walls have connecting slabs which are less stiff. 

~~en the shear walls are arranged in a symmetric manner in the 

plan of the building, wind and seismic loads will cause translational 

displacements only. In such a case, the behaviour of the whole building 

can be studied from the t wo-dimensional behaviour of a typical pair of 

shear walls. The shear walls may be coupled either through the floor 

slabs or floor beams. This class of problem is generally known as the 

plane coupled shear walls problem. 

Coupled shear walls can be analysed as equivalent frames using 

1 
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standard matrix structural analysis techniques. The finite width of the 

shear wall is accounted for by assuming sets of infinitely rigid beams 

connected to the column of the equival ent frame. The length of the 

rigid beam is taken from the center line of the wall to the inner edge 

of the shear wall. This approach has the advantage of being versatile. 

Coupled shear wal ls can also be analysed us ing the continuous approach 

which replaces the connecting beams between the wa lls by a continuous 

distribution of laminae of equivalent stiffness. This approach has the 

advantage of being relatively simple and explicit solutions can be 

obtained for a wide range of coupled shear wa ll geometries. 

In countries where wind load is the only source of lateral load 

on a high-rise building, the elastic analysis of shear walls is extreme ­

ly useful in assessing the behaviour of the structure. On the other 

hand, in seismic areas where the structure may be exposed to moderate or 

severe earthquake , the lateral load may be sufficiently large to cause 

plastic deformations in some elements of the structure . 

In coupled shear wal ls of ordinary proportion, the mos t valuable 

areas are the ends of the connecting beams between the shear wa lls. It 

is expected that even under a moderate intensity earthquake, plastic 

hinges will develop at the ends of some, if not al l, the connecting 

beams. The behaviour of a coupled shear wall building during a moderat e 

earthquake wil l therefore depend on the extent plastic hinges are formed. 

When subjected to a strong earthquake, the rotation demand at the 

plastic hinges may even exceed the member's rotational capacity, causing 

the connecting beams to fail. Therefore, the behaviour of a coupled 

shear wall building subjected to a strong earthquake wil l depend not 
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only the extent the formation of the plastic hinges, but also the extent 

the proportions of connecting beams that have failed completely. 

Therefore, in order to study the behaviour of a coupled shear 

wall structure subjected to strong earthquakes, it is necessary to 

perform a dynamic analysis to the structure, allowing the possibility of 

plastic hinges or real hinges formed at the ends of the connecting beams. 

An understanding of the dynamic behaviour is an essential step to design 

coupled shear waU structure in seismic areas. 

1. 2 Review of Past Works 

It is useful to review the existing knowledge of coupled shear 

walls by citing some of the studies carried out by different authors. 

One can divide the works into three general categories: static elastic 

studies, static inelastic studies and dynamic elastic studies . Unfor­

tunately, there doe§notappear any studies on the dynamic inelastic 

analysis of coupled shear walls. 

Based on the continuous approach , set of design curves for 

uniformly distributed lateral load, triangularly distributed latera l 

load or a point load at the top are presented by Coull and Choudhury 

[5,6]. The effect of the flexibility of foundation on the coupled 

shear walls is studied by Tso and Chan (20]. In that study, closed 

form solutions are obtained for the stresses and deformations under 

the same loading consider~d by Coull and Choudhury. Based on the 

transfer matrix technique coupled with the continuous approach, a 

general method is presented for the static analysis of planar non­
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uniform coupled shear walls by Tso and Chan [18]. The arbitrary lateral 

loading can be approximated by concentrated loads acting at a number of 

discrete stations along the height of the wal l. The effect of the 

flexibility of foundation can be incorporated in this general method. 

Based on the equivalent frame approach , a modified beam equi­

valent structure _method is presented by Smith [16]. In this method, 

the finite width of shear wall is accounted for by assuming sets of · 

rigid arms connected to the columns of the equivalent frame. The 

modified beam method presented by Smith is valid only for symmetrical 

coupled shear walls. 

Based on the continuous approach, theelasto-plastic static 

analysis of uniform plane coupled shear wall has been presented by 

Gluck [8], Paulay [13] and Winokur and Gluck [23]. Graphs are 

presented,assuming an upper triangle lateral load pattern for various 

design characteristics by Gluck [8]. These graphs may be used directly 

for practical design including the ultimate load for a given rotational 

ductility factor . Gluck [8] concluded that "Ful l plastification with 

height of the laminae is very rarely possible , due to the limitations 

on the rotational ductility factor" . Winokur and Gluck [23] proposed 

a design method based on a collapse mechanism consisting of plastic 

hinges at the ends of the connecting beams and the base of the shear 

walls . By means of an example building, Paulay (13] showed that large 

rotations would have occurred at the plastic hinges at ~the ends of the 

connecting beams when the ultimate strength of the structure is attained . 

Experimental work has been carried out by Paulay [14], in which the 

spandrel beams are studied under simulated seismic loading. The post 
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elastic behaviour of the spandrel beams is studied, and improvement in 


the beams ductility and capacity is achieved using a new method for the 


arrangement of the reinforcing steel. 


The dynamic properties of planar, coupled shear walls are 

studied by Jennings and Skattum [9] . For elastic planar coupled 

shear walls ~he natural frequencies and mode shapes are studied, both 

with and without the inclusion of the inertia of vertical motion. 

The results affirm the necessity of i ncluding vertical displacement of 

the shear walls in the analysis of such systems, and suggest the .inertia 

of vertical motion also must be considered in the analysis for certain 

ranges of the parameters . 

The planar coupled shear walls are analysed dynamically by Tso 

and Chan [19] to study the dynamic characteristics of such structures 

both analytically and experimental ly. The natural frequency is to be 

found via a trial and error procedure. Also, no assumption is made 

that the midpoints of the connecting beams are points of contraflexure. 

In other words, the formulation by Tso and Chan [19] is a generalization 

of the continuous method of coupled shear walls . 

The dynamic analysis mentioned above is elastic analysis, an<l due to 

the plas~ic deformations whi~h are associated ~ith the seismic loading in most 

cases especially in the coupling system for coupled shear walls, it is 

necessary to carry out dynamic analysis include the plastic deformat­

ions happened during the application of the ground motion . 
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1.3 Aim of Present Investigation 

The purpose of the present analysis is to develope a method for 

a complete time-history analysis for nonuniform planar coupled shear 

walls, taking into account the plastic deformations in the connecting beams 

and the P-6 Effect. The proposed method may enable us to obtain more 

realistic time-history response of planar coupled shear walls. With 

this proposed method , it is possible to study the effect of connecting 

beam ductility on the seismic response of coupled shear walls . 

1.4 Scope 

An elasto-plastic dynamic analysis for planar nonuniform coupled 

shear wall is presented in this research work. The method used for the 

dynamic elastic analysis including the P-6 Effect is presented in 

Chapter 2. The modification to the proposed method for dynamic elasto­

plastic analysis is presented in Chapter 3. To examine the safety of 

the shear walls building designed according to the NBCC [10], the 

coupled shear walls designed according to NBCC is subjected to a 

variety of ground excitations. The responses of these walls are pre­

sented in Chapter 4 . The design calculation for exterior and interior 

planar coupled shear walls is presented in Appendix A. 

It 1s hoped that the present work will provide some insight to 

the inelastic dynamic behaviour of planar coupled shear walls under 

seismic loading . 



CHAPTER 2 


ELASTIC DYNAMIC ANALYSIS 


2.1 Introduction 

The present chapter describes a study ' on the seismic analysis of 

an elastic coupled shear walls. A complete dynamic,response analysis is 

used to estimate the design load due to earthquakes. The analysis is 

based on the transfer matrix technique of the structure after replacing 

the connecting beams by an equivalent continuous medium capable of 

transmitting actions of the same type as the discrete spandrels. 

A study of the natural frequencies and mode shapes is presented. 

It takes into account the effect of axial deformations of the walls. 

Also, the P-Ll Effect is included in computing the stiffness matrix of 

the syst em. 

Numerial integration methods are used in the integration of the 

equations of motion of the system. The choice of the proper method for 

the step-by-step integration is governed by the stability of the 

integration and the accuracy of the resulting accelerations, velocities 

and displacements. 

The purpose of the chapter is to give an idea about the main 

concept adopted in the work and to clarify the transfer matrix technique 

used in the analysis. 

2.2 	 ~raisal of Existing Approaches 

Generally, coupled shear walls can be studied by one of two 

7 
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methods. These methods are the equivalent frame method and the con­

tinuum method. In the first method , the coupled shear wall is treated 

as a single bay frame. The columns and beams are located at the center 

lines of the piers and spandrels as shown in Figure (2-la). The finite 

width of the walls are represented by rigid arms as shown in Figure 

(2-lb). In the second method , the discrete system of the spandrel beams 

is replaced by an equivalent continuous medium capable of transmitting 

actions of the same type as the discrete spandrels. 

The continuum method model, Figure (2-lc) i s assumed to have 

uniform connecting beams distribution and wal l stiffness throughout the 

wall height. Therefore, it lacks the flexibi lity to be adopted to 

analyse buildings where the floor height, connecting beam stiffness and 

wall stiffnesses may change along the height of the structure. 

To overcome the difficulty of applying the continuum method for 

nonuniform coupled shear walls, a method of analysis using the continuum 

approach is presented by Tso and Chan [18]. This method is based on the 

transfer matrix t echnique . The continuum approach with the transfer 

matrix technique produce a simple method to apply and i n the same time 

very flexible, so that it can be used to analyse a wide variety of wal l 

configurations, foundation conditions and loading conditions. The 

technique is to divide the wall into a number of segments, and each 

segment can be considered as a uniform coupled shear wall . The continuum 

method of analysis can therefore apply to each segment to relate the 

parameters of interest from one end of the segment to the other end. 

The solution of the problem is then obtained by relating the boundary 

conditions at the base to those at top by means of the segments transfer 
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matrices. In addition, the transfer matrix technique can be used even 

with computers of limited memory capacity. Because of the above 

advantages, the transfer matrix technique together with the continuum 

method of analysis is used in the present analysis. 

2.3 Outlines of the Transfer Matrix Technique 

For completeness, the main feature of using the transfer 

matrix technique to solve a nonuniform coupled shear wall is outlined 

below. 

Figure (2-2) shows a nonuniform coupled shear wall on flexible 

foundation. The cross-sectional properties of the coupled wall change 

at a number of discrete stations along the height of the wall and con­

centrated lateral loads are acting at these stations. So, the station 

is defined as the section at which the wall cross-section properties 

changed or when there is a lateral concentrated load acting . The base 

is taken to be station zero , and the top is taken to be station n, 

where n is the number of segments into which the wall is divided. 

Between the base and the top the stations are numbered from 1 to n-1. 

Between each pair of stations, the cross-section is uniform and will 

be referred to as a segment of the wall. The ith segment lies between 

the (i-l)th station and the ith station. A complete solution of the 

problem is obtained by determining the state vectors {~}iA and {~}iB 

above and below the ith station respectively. The state vectors are 

defined by: 
I II I II 

{~}iA =Column {y, y , y , y 
I II (2-1)II I 

{~}iB =Column {y, y , y , y 
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Where {cp}iA refers to the side where station i and the (i+l)th 

segment join together, and {cp}iB refers to the side where station i and 

the ith segment join together. The prime denotes differentiation with 

respect to x, Figure (2-3b). 

Station zero has one state vector {¢} only, and also station n 
0 

has one state vector {¢}nB' These state vectors contain the boundary 

conditions of the coupled shear wall problem. By relating the state 

vector {¢} 0 to the state vector {cp}nB by means· of the segment transfer 

matrices , {¢} 0 and {¢}nB can be determined. Then by back-substitution 

using the transfer matrices of the segments, other state vectors can be 

found. The transfer matrices necessary for the solution of the problem 

are defined as follows: 

a - Field Transfer Matrix [F].
l 

The matrix [F]. is the ith field matrix which relates the state 
l 

vector at one end of the segment, {¢}(i-l)A' to the state vector at the 

other end of the segment, {¢}iB' 

= [F]. {¢}.B (2 -2){¢} (i-l)A l l 

b - Station Transfer Matrix [S]. and the Load Vector {L}.
l l 

The matrix [S]. represents the station transfer matrix of the 
l 

ith station, it relates the state vector at one side of the station to 

the state vector at the other .side . The externally applied concentrated 

load Pi is included in the load vector {L}i. The state vector {¢}iB is 
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related to the state vector {¢}iA by the following equation, 

{¢}iB = [S]. {¢}.A+ {L} . (2-3)
1 1 1 

c - Total Transfer Matrix of t he Structure (F] 

The matrix [F] is the product of all the field and station 

matrices of the segments. The (F] matrix relates the state vectors at 

the base, {¢}0 , to the s t ate vector at the top, {¢}nB' [F] is given by 

the following equation (18]. 

n 

[F] = cTf [F]. [SJ . ) (2-4)
1 1

j:::;l 

with [S] = [I] = identity matrix 
n 

d - Total Load Vector for the Structure {L} 

The externally applied concentrated loads are included in the 

total load vector for the structure {L}. This load vector is formed by 

the following equation (18], 

n-1 i-1 
{[.} = [F]l {L}l + I OT (F]k(S]kJ [F]. {L}. (2-5) 

i=2 k=l 1 1 

From equations (2-4) and (2-5), the necessary transfer matrices 

for relating the state vector {¢}0 to the state vector {¢}nB can be 

obtained. The following equation gives this relation, 

' . 
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(2-6) 

There are six elements in each of the state vectors {¢} and 
0 

{¢}nB· Out of these twelve elements , six of them are known as given 

by the boundary conditions at the top and bottom of the structure. 

These remain six are unknowns and equation (2 - 6) is a set of six 

equations for the solutions of these six unkno.wns. Once equation 

(2-6) is solved, then every element in the state vectors {¢}0 and {¢}nB 

wi 11 be known. 

By means of the transfer matrices of the segments other state 

vectors can be determined for all segments starting from the top and 

going down until segment 1. 

The stress state of the structure, the wall moment Mi(x)' the 

wall axial force Ti(x) and the distributed shear qi(x) can be determined 

from the following equations . 

" (2-7)Mi(x) = E 1i yi(x) 

= [M. 8+V. 8 (H.-x)-M. ( )]/a. (2 -8 )Ti (x) l l l l x l 

II I 

= (E I. y. ( )+V .B) /a. (2-9)
l l x l l 

2.4 Assumptions 

Various assumptions are used for the present analysis. The 
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assumptions which are listed below can be divided into two main groups, 

the 	first one is the general assumptions which have been verified by 

most investigators, and the second group of assumptions concerns the 

present problem specifically . 

2.4.1 General Assumptions 

These assumptions are dealing with the stress-strain relation­

ship and _compatability conditions . 

1. 	 Moment-Rotation relationship is considered linear up to the 

plastic moment followed by a horizontal plastic plateau . 

2. 	 Plane section perpendicular to the axis of the member 

before loading remains plane after application of the load. 

3. 	 Shear deformation is neglected for the piers and axial 

deformation is neglected for connecting beams. 

4. 	 The midpoints of the connecting beams are points of con­

t raflexure. 

2.4.2 Special Assumptions 

These assumptions are made in order to simplify the analysis and 

to make it compatible with the approach used. These assumptions are 

dealing with the modeling of the structure. 

1. 	 Wall remains elastic throughout the analysis. 

2. 	 Uncracked section for the wall is used in the calculation 

of wall stiffness. 

3. 	 The connecting beams are taken as a double reinforced 
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concrete section and the cracked section is used for stiff­

ness determination of the connecting beams. 

4. 	 The masses are to be lumped at discrete points along the 

height of the walls. Therefore, the inertia forces of the 

building are approximated by concentrated loads acting at 

different heights of the building .. 

~ I.. · . ' 

2. 5 	 Dynamic Mode lling ,· 

The lumped-mass approach is used in the dynamic analysis. The 

masses of each segment are lumped at discrete points along the height of 

the wall. The location of the masses are t aken as the stations in the 

problem. Therefore, the number of degrees of freedom will be equal to 

the number of se gments of the wall. The mass matrix, stiffness matrix 

and damping matrix in the equations of motion for the system are as 

follows: 

2. 5 .1 Mass Matrix .lt!l 

It is a diagonal matrix with the mass of the ith segment to be 

the element me. ') on the main diagonal.
1 , 1 

2.5.2 Stiffness Matrix [K*] 

For stepped coupled shear wall on flexible foundation, Figure 

(2~2), the static analysis of it is already done. The transfer matrix 

method by Tso and Chan [18], which is described in subsection (2.3), can 
I 

be used to determine the flexibility matrix [F ]. This flexibility 
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matrix is n by n where n is the number of segments. The jth column is 

to be formed by calculating the lateral deflection y. of the ith mass 
l 

due to unit load acting at the jth mass, (i=l, n). 

P-~ Effect can be introduced in this stage, i.e. before invert-
I 

ing 	the flexibility matrix [F ] to obtain the stiffness matrix . If 
I 

P-~ Effect is to be neglected the inversion of [F ] will give the 

stiffness matrix [K], which does not include the geometric stiffness. 

* 	 ,
The combined stiffness matrix [K ], which includes the geometric stiff­

* ness, can be obtained by inverting the combined flexibility matrix [F ] . 

*The combined f l exibility matrix [F ] includes the P-~ Effect. 

To introduce the P-~ Effect, the fol lowing iterative procedure 

i s to be carried out: 
I 

1. 	 From the resulting flexibility matrix [F ], the lumped 

weights at t he stations wi ll cause additional bending 

moment due to the eccentricity from the axis of the wall, 

Figure (2-4). 

2. 	 The additional lateral deflection ~f. is calculated at each 
l 

station i and added to the flexibility coefficient f. to 
l 

* get 	a modified coefficient f . . 
l 

*3. Step (1) is to be repeated using f. and from which a new 
l 

~f. 	 can be calculated. This new ~f. is to be added to the 
l 	 l 

**flexibility coefficient f. to obtain a new f. . Comparison
l 	 l 

is to be made between the resulting f. ** and f .. * If the 
l l 

difference between two cycles is within certain allowable 

* error, the resulting modified flexibility coefficient f. 

is taken to be correct. Otherwise steps (1) to (3) have to 

l 



6 o(i+1A = b 8.M.·1I E Ii+1 • Hr =TOTAL H~fGH T 

• 	 H TT i =HT- t=Hk 6 0( i 8 = b. S.t-'\/E Ii . 

k=1 
W-1 I o<iBHi= 
w. 2 =CMODE j 	 I (~Ao<i B ) H/2 

Iz 1 
FIG. 2_4 12Hi /3 

( P-~ EFFECT) -_l 
wi1 

Wiz 

c(iA 



20 

** *be repeated again with f . as f. 
l l 

Figure (2-4) shows the eccentricit ies f. for the lumped weights 
l 

w. , (i=l, n), and the method of calculating the additional bending
l 

moment due to these eccentricities. Also the method of calculating 

the elastic weights a. is shown in the same figure. The additional 
l 

Af. can be calculated from the following equation:
l 

~f. = 
l 

(2-11) 

where ~e. is the additional deflection due to the additional rotation of 
l 

the foundation, which can be calculated from the following equation: 

M 
~e. = Ko (HT - HTT.) (2-12)

i i8 

It should be noted that in the above method the coupled action 

is neglected in calculati ng ~f and the coupled shear wall is considered 

as cantilever with equivalent moment of inertia Ii = Iil + Ii2 . 

By applying the above method for all the columns in the f lexi­

* bility matrix (j=l, n), a modified flexibility matrix (F ] is obtained. 

This matrix includes the gravity load effect, i.e. the combined flexi­

bility matrix. 

* The combined stiffness matrix (K ] is to be determined by 

*inverting the flexibili t y matrix [F ]. 

(2-13) 
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2.5.3 Damping Matrix [C] 

For the numerical integration the damping matrix must be intro­

duced to the equations of motion with its original form. It is assumed 

that the damping matrix [C] will be diagonalized by the same trans­

* formation that diagonalize the [M] and [K ] matrices . In other words , 

(2-14) 


where 	 [ <Ii] is the modal matrix, 

~. is the ith percentage damping ratio, and 
1 

w. is the ith 	natural frequency in radians per second. 
1 

Therefore, to form [C] it is necessary to calculate the 

eigenvalues and the eigenvectors of the system. The periods and the 

normalized unit vectors can be determined from the eigenvalues and 

eigenvectors respectively. 

T. = 2ir I w. 	 (2-15)
1 1 

1 
n 

I 2
{qi}.= m.. .:\ .. {.:\}. (2-16)

J 11 lJ Ji=l 

If the percentage damping ratios ~ 1 .~ 2 , ... ,~i'''''~n are to be 

assigned, the damping matrix [CJ can be determined from equation (2-14), 



22 

[- - 2F; . w. __] [4>] -1 (2-17)
1 1 

From the orthogonality cond i tion 

[4>] T [M] [4>) = [I] (2-18) 

!· 

-1 
Premultiplying equation {2-18) by [4>T} gives 

therefore (2-19) 

Postmultiply i ng equation (2-18) by [4>] - l gives 

therefore (2-20) 

-1 
Substituting for [4>T] and [4>]-l from equations (2-19) and (2-20) in 

equation (2-17) gives 

(2-21) 

Equation (2-21) gives the damping matrix [C] by knowing the 

normalized eigenvector matrix [4>], the frequencies, the mass matrix [M], 
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and after assuming the critical damping r atios s. , (i=l,n), for the 
1 

different modes. 

In the pr esent study, the critica l damping ratios for the 

different modes are taken as 

= 4% + 5%s1 

= 5% + 7% ' s2 

~ 

= 9% +12% (n > 5)sn 

2.6 Numer i cal Integration 

To obtain the seismic responses numerical integration needs to 

be carried out for any ground acceleration record input. The choice 

of the proper method for the step-by-step integration is goverr1ed by 

two factors. These are: 

a - Stability of the Integration Procedure 

The rate of convergence is dependent upon the period of the 

highest mode of the system. Consequently, the time interval bt used 

must be related to the shortest period of vibration, or the period in 

the highest mode of vibrat ion, for lumped mass system. The method is 

unconditionally stable if the solution for any initial condi tions does 

not grow without bound for any time step bt, in par ticular when bt/T .min 

is large. Unconditionally stable scheme is needed when we have very 

high frequencies. Alternat ively, a numerical scheme can be conditionally 
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stable. A conditionally stable scheme requires an upper limit for 

At/T . , and is suitable for systems in which T . is relatively large,min min 

so that fairly large integration step L'lt can be used. Among the 

different numerical schemes, such as Newmark method [11], Wilson e 

method [2] and the direct step-by-step integration method [21], 

Newmark method is found to be the most stable method as stated by 

Wilson and Bathe [22]. !· 

b - The Accuracy of the Resulting Acceleration, Velocities and 
Displacements 

The accuracy increases by decreasing L'lt, for large values of 

At the errors in period are increased and the percentage amp litude 

decay also is increased. From Wilson and Bathe's analysis [22), 

Newma.rk method proved to be the only method which gives no errors 

either in the period or in amplitude alternation. 

From the above discussion it can be seen that Newmark method 

is the best one to be used in integrat i ng the equation of motion to 

ensure the stability of the integration. Given below is a summary of 

Newmark method [11], using "a"= 0.5 and "8" = 0.25. 

1. 	 Assume values of the acceleration of each mass at the end 

of the interval. 

2. 	 Compute the velocity and the displacement of each mass at 

the end of the interval from the following equations: 

http:Newma.rk
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6t ..
{u} 4 )and {u} = {u} + 6t + 1___2{u1 	 1n+ n n n+ 

. 

3 . 	 From the computed displacement {u}n+l' 

resisting forces {R} , 

,. 

{R} l = [K] {u} ln+ n+ 

(2-22) 

.. 
+ u } (2-23)

n
J 

compute the 

(2-24) 

4 . 	 From the computed velocity {u} , compute the damping1n+ 


forces {D} , 


{D}n+l = [CJ {~}n+l 	 (2-25) 

5. 	 From the resisting forces {R}n+t the damping forces {D}n+l and 

the applied loads {P} 1 , which is given by-[M]{l}a 1 , andn+ n+ 

a is the ground acceleration at t the acceleration cann+l n+l' 

take a new value for each mass at the end of the interval. 

(2-26) 

6. 	 Compare the derived acceleration with the assumed accelerat­

ion at the end of the time interval. If these are the same, 

the calculation is completed and one can proceed to the 

next time interval. If these are different, repeat the 
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calculation with the derived value as the new acceleration 

for the end of the time interval . 

2 . 7 Equivalent Static Load 

The output of the numerical integration process is the 

displacement, the velocity and the acceleration f or each mass as a 

function of time . The product of mass times the corresponding 

acceleration will give the inertia load acting on the structure. 

(2-27) 


It should be noted that {u}t is the total acceleration vector 

at time (t) . 

Once the inertial loading is known, the stress state of the 

structure can be determined using the transfer matrix technique as 

described in subsection (2-3) . In this manner, one can obtain a time­

history of the parameters of interest. The parameters of interest may 

be the top deflection, the base wall moment , tne connecting beam end 

moments or the axial force in the walls . 



CHAPTER 3 

ELASTO-PLASTIC DYNAMIC ANALYSIS 

3.1 Introduction 

An inelastic dynamic analysis for a planar coupled shear walls 

is presented in this chapter . The analysis is based on the transfer 

matrix technique in combination with the continuum method. 

The main differencebetween this analysis and the elastic 

dynamic analysis as described in the previous chapter is that the 

present analysis takes into account the inelastic behaviour of the 

connecting beams. Depending on the shear intensity q(x,t) in the 

connecting beam, the beam may be in one of three states. It may remain 

elastic when q(x,t) is small. Plastic hingesmay form at the ends of 

the connecting beams if the end moment exceeds the plastic moment of 

the beams. Finally, if the deformation requirement on the connecting 

beam is sufficiently large the beam may fai l. No shear nor moment 

will be transmitted by the connecting beam if this happens. Conceptual­

ly, one can represents this state as the formation of two real hinges 

at the ends of the connecting beam. At any given time, the shear 

intensity q(x,t) varies along the height of the structure. Therefore, 

part of the connecting beams may be elastic, part of them may have 

plastic hinges formed at the ends and part of them may have failed and 

therefore represented by connecting beams with real hinges at the ends . 

A segment of a coupled shear wal l containing only elastic connecting 

27 
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beams is called an elastic segment. Similarly, a segment of the 

coupled shear wall containing connecting beams with plastic hinges or 

real hinges are called plastic hinged segment or real hinged segment 

respectively. 

The properties of a plastic hinged segment or real hinged 

segment will be different from an elastic segment. Hence, if the 

transfer matrix technique is used in the solution of the problem, it is 

ne.cessary to derive appropriate field transfer' matrices for plastic 

hinged segments and real hinged segments in addition to elastic 

segments. Furthermore, the station transfer matrix relating a state 

vector in an elastic segment to a state vector in a plastic hinged 

segment is different from one which re l ates tw0 state vectors both in 

the elastic segment. Since each segment can take the form of an 

elastic segment, a plastic hinged s egment or a real hinged segment, 

it is necessar y to develop nine station transfer matrices to cover 

all combination of segment variations as shown in Figure (3-1). 

3.2 Scheme of Computation 

In this section the segment states are defined and the over­

all scheme of analysis is described. The flow chart of the computer 

program to perform the computation is presented , 

3.2.1 Assump}ions for the Definition of Segment State 

To decide what state a segment is in, the bending moment and 

the rotation at the ends of the connecting laminae are to be computed 
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and related to the moment-rotation relationship of the connecting 

laminae. The relation between the bending moment at ends of th P. con­

necting laminae and the shear intensity q . is as follows: 
Xl 

2m .
Xl 

(3-1) 
Ci 

where 

m . = Bending moment per unit height at distance x from 
Xl 

the bottom of the segment (i). 

As c. the l ength of the connecting l aminae within the segment
1 

(i) is constant, q . can be used instead of the end moments to check
Xl 

the conditions of the connecting laminae . Also, the rotation ef the 

lamina can be expressed in terms of the relative end displacements of 

the laminae b.. 

3.2.1.1 Segment Shearing Forc e Intensity q. and Deflection b.. 
1 l · 

In the present analys is , the shearing force q. per unit height
1 

of the ith segment is taken to be the average value in the ith segment's 

laminae , q. can be calculated from the following equation:
1 

(3-2) 


where 

q = Shearing force intensity at the bottom of the ithio 

segment . 
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and q.H = Shearing force intensity at the top of the ith 
l 	 . 


l 


segment. 

The defl ection 15.. of the connecting l aminae of the ith segment 
l 

is taken to be one half of the average value of the relative axial 

deformation between the two walls in the ith segment , Figure (3-2b), 

15.. can be calculated from the following equation . 
l 

1 
15.. = -2 	 (15.. +15..H ) (3-3)

l lO l . 
l 

where 

15.. = -1 the relative axial deformation between the two walls 
l O 2

at the bottom of the ith segment. 

15.itti = 	 } the relative axial deformation between the two 

walls at the top of the ith segment . 

3.2.1.2 Resistance Function 

l 
Instead of using the moment-rotation relationship , the resistance 

function of the ith segment 's laminae will be expressed in terms of q.
l 

and 15.. 	 defined previously. The resist ance function used as shown in 
l 

Figure (3- 2a) is a bilinear hysteretic resistance function. As the 

deflection 15.. increases from zero , the resistance q. increases linearly
l 	 l 

. 	 2
with a 	 slope of 2u. /a .. The linearity continues until the yielding

l l 

deflection 15.y. is reached . As the deflection 15.. increased further , the 
l 	 l 

resistance q. is assumed to remain constant at q . • The latter value 
l 	 pl 

will be 	maintained until the ductility limit of the member is reached . 



32 

(a) 

( b) 

FIG. 3_2 RESISTANCE FUNCTION 




33 

However, if the deflection 6. reaches a maximum before the ductility
1 

limit and then decreases, the resistance q. is assumed to decrease 
1 

along a line parallellcd to the initial elastic shape. This decrease 

will continue with decreasing the deflection 6 . until a shearing
1. 

intensity -~. is attained. 
1. 

3.2.1.3 Segment State 

Shown in Figure (3-2a) is the resistance function of 

the connecting laminae in the ith segment. The ductility limit 

is denoted by 6 which is the product of the yielding deflection u. 
1. 

6 and the ductility coefficient µ, Figure (3-2a) contains 
Yi 

two sets of lines, namely Set I and Set II. The segment state can 

be defined as follows: 

- If the average shear intensity q. in the segment is such that 
1 

q. ~ q and average laminae deflection 6. ~ 6. (t- ot), i.e . 
1. pi ~t 1 . 

along line II, or if q. ~ -q and 6 . ~ 6. (t-ot), i.e. 
1 

-i P·1 i t- . 

along line II 
I 

and in both cases, !6. I < then the 
1 

segment is in the plastic hinged state, 
I 

If 6. < 6.(t-Ot) and q. ~ q i.e. along line I , or if 
lt 1 1 pi 

II 

6. > 6. Ct-at) and q. ~ -q , i.e. along line I , the 
1 1 p.lt 1 

segment is in the elastic state. Also, the segment is in the 

elastic state if -q < q. < q . 
pi 1 pi 

- If the laminae deflection exceeds the ductility limit 

Cl6. I ~ 16 IL the segment is in the real hinged state. 
1 u. 

1 
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Once a segment is in the real hinged state, it will remain in 

the real hinged segment state to the end of the analysis. However, 

when a segment is in the plastic hinged state, it will return to the 

elastic segment state upon unloading. 

The general procedure for response calculations is as follows: 

The segments are defined as the wall between the lumped masses and are 

taken to be elastic initially. Step-by-step integration is performed 

to obtain the displacement, velocity and acceleration at every time 

interval 6t. The stress state of the wall is checked not at every time 

step but at intervals of K times ot. The value of K is to be max max 

entered as input to the computation, and ot is the time interval of 

calculating the strai ning actions of the structure. This arrangement 

allows the user to obtain a compromise between accuracy of solution and 

economy in computation time. If any segment changes its state, the 

overall stiffness matrix of the coupled wall is reevaluated before 

the next time step integration takes place. This procedure carries on 

until the end of the earthquake or when the time of integration reaches 

a prescribed time limit. The time history responses for top deflection, 

base wall moments, wall axial forces and the shear intensity at the 

different segments are calculated and plotted out. 

If all the segments become real hinged segments before the end 

of the time integration, all the connecting beams have failed and the 

coupled wall becomes two independent acting cantilevers. The dynamic 

properties of this system can then be comput ed simply based on an 

equivalent cantilever system as shown in Figure (3-3). 
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3.2.2 	 Flow Chart for the Elasto-Plastic Dynamic Analysis of Planar 
Coupled Shear Wall 

For the purpose of saving the computer time the following steps 

are taken in the computer program: 

1. 	 The response is printed out at time interval ot=O.l second, 

independent of the time interval of the numerical integration 

6t. In general, 6t is of the order of 0.01 second. There­

fore, the response is printed out once every ten cycles of 

integration. 

2. 	 A factor K is introduced for the check of segment stress max 

state, so that the segments state is to be checked at time 

interval = K ot second, and the segments state is max 

assumed to be constant in the intervalbetween checking. 

3. 	 The moment of inertia of the connecting beams, which is 

assumed as cracked section, is computed manually beforehand 

in Appendix A, then introduced to the program as input 

data and kept constant in the analysis. 

The flow chart of the computer program is shown in Figure (3-4). 

Some controlling integer and real parameters are presented in the 

flow chart to control the operation. These controlling parameters are 

K , J, t , NSEG, q , 6 and 6 The following definitions may
max max pi Yi ui 

help in understanding the flow chart: 

NSEG number of segments for the shear wall. 


K segments state check parameter , i.e. the segments 
max 

states are to be checked every K ot, where ot is max 



----

37 

. 

No 

END 

DEFORM AT IONS OF CONNECTING 

BEAMS: 8Y THE SAME TEC HNIQ 

GE T THE REL ATIVE Df:Fl.. OF THE E­

NOS OF THE CONN.BEAMS I 6. l. 

SllFFNESS MATRIX : ~OR CANTIL.E­

VER HAS EQUIVALENT MOME NT OF 

INERTIA . P-OELTl\ EFFECT INCLUO... 

OAlA INr'UT: WALL DIM~ ,LU. 

MPED MASSE.S,OAMPING,OUCTIL 

ITY,E,G , qp, NSEG,GROUND ACCJ­

ELER AT 10N, t rnoxAND Kmax· 

IN ITIA LiSE VALUES : t:O.O, 

K:C , ELA STIC SEGMENTS ,ZE­

RO VALUES FOR STRAINING ACT­

IONS AND NUMERCAL INTEG. 


FLEXIBILITY MATRIX : USING 

THE APPRQPRIATE TRA NSFrn 

MA TRIX l\CCORDING TO THE SE. 
GMENlS STATE. 

ST IFFNESS MATRIX : THE 1NVE. 

RSlON OF FLEXIBILITY MA 1R IX 

AFTER I NTRODUCING P- DELTA 
EFFECT. 

~~~~~~~~~ 

EIGEN'/ALUES e. EIGENVECTORS: 

FROM STIFF. & MASS MATRCES. 

DAMPING MATRIX: FROM THE IN_,
PlJl( •1.c.o.) ,E. .Vf•L~N1:0 E.VEC~ . 

NUMERICAL INl EGRATION: TO 

GET THE DISPLACE.MEN T AND THE 

ABSOLUTE ACCELERATION FOR 
EACH MASS '1\HH TIME ( t) • 

EQUIVALENT STATIC LOAD: FROM 

THE ABS. ACC.& THE MASS, BY THE 

TRA NSFER MATRIX TECHNIQUE CE 
T THE STRAINING AC TIONS . 

OUTPUT: STRAINING ACTIONS-TIM. 

E,OISF\.ACEMENT- TIME ANO ST. 

ACTIONS- OCFORMATIONS ARE 

PLOTTED AND PR IN TED~· 

ED TOO. 

• ABSOLUTE VA LUES 

FIG.3_4 FLOW CHART FOR THE ELASTO_ PLASTIC DYNAMIC 
ANALYSIS OF COUPLED SHEAR WALLS 



38 

the time interval for computing the stress state of 

the structure. 

J 	 number of segments which change their states . If J=O, 

no correction of the dynamic properties needs to be 

made . 

t 	 time limit of the analysis. max 

plastic shearing force intensity of the ith segment's 

laminae. 

b yield deflection of the ith segment's laminae. 
Yi 

b ultimate deflection of the ith s egment 's laminae. u. 
1 

b is the product of the yield deflection b and the u. 	 y.
1 	 1 

ductility coefficient µ. 

3.3 Development of Transfer Matrices 

In this section the field transfer matrices for an elastic 

segment, a plastic hinged segment and a real hinged segment respectively 

are presented. In addition, nine station transfer matrices are develop­

ed to cover all combinations of segment variations . 

3.3.1 Field Transfer Matrices 

Listed below are the three field transfer matrices with the 

derivation of the field transfer matrices for apla~tic hinged segment, 

and a real hinged segment. The elastic segment field transfer matrix 

has been considered by Tso and Chan [18]. Therefore , the final results 

of the field transfer matrix of an elastic segment is presented without 

derivation. 
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3.3 .1 . l Field Transfer Matrix for Elastic Segment 

By definition, this is the segment in which the connecting beams 

are in the elastic state [F igure 3-1(1)]. The field transfer matrix 

for the elastic segment can be written in the following form : 

-1[F] . = [1/J]. [;\). (3-4)
1 1 . 1 

,· 

where [F]. is the field transfer matrix for the ith segment shown in 
1 

fi gure (3 -5). 

1 0 1 0 0 0 

0 1 0 a. 
1 

0 0 

, [1/J] i = 

0 0 2 
ct . 

1 
0 

2 2 
y. /ct . 

1 1 

2 y. H. 
1 1 

2 
ct. 

1 (3-5) 

0 0 0 
3 a. 

1 
0 

2 2 
-y. / a. 

1 1 

0 0 0 0 1 H. 
1 

0 0 0 0 0 1 
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22 ~ H./a. 2 y i 2 1 ri (1 2 1 )1 -H. -1/a. 2 
--2 °¥1i +z --=t1i "611i +--21. 1. 1. 1. a. a. a. a. 

1. 1. 1. 1. 

-yi 2 1 )0 1 0 -1/a. 2 
-yi

2 H./a. 2 
--2 

2 (1°¥1i +-2­1. 1. 1. a. a. 
1. 1. 

2
ch a.H. -sh a.H. -Yi 

2 ch a.H. -Yi sh a.H. 
1. 1. 1. 1. 1. 1. 1. 1. 

0 0 
2 3 4 5 

Cl. a. a. Cl •. 
1. 1. 1. 1.-1and p,]. = . 1. 

-sh a .H. ch a.H. y . 2 sh a.H. y. 2 ch a .H.. 
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 

0 0 2 3 4 5 
Cl. a . Cl. Cl. 

1. 1. 1. 1. 

0 0 0 0 1 0 

0 0 0 0 0 1 

(3-6) 

where 

sh aH = sinh aH ch aH = cosh aH 

a. µ.
2 1. 1.

and Cl • = 

2 

(1+Ii 2)
1. E I. 

1. A. a . 
1. 1. 

2 µ.
2 1. y. = 

1. E2 A. I. a . 
1. 1. 1. 

12E lb. a.
2 1. 1. 

µ. =----­
1. 

h. c. 3 e. 2 
1. 1. 1. 



41 

12E Ibi 
s. 2 = 1 = 

l. * 2G A. . C.
--bl. l. 

1 1 1 
= -- +A: 

l. Ail Ai2 

3.3.1.2 Field Transfer Matrix for Plastic Hinged Segment 

A plastic hinged segment has all its connecting beams with 

plastic hinges formed at their ends. Consider the segment as shown in 

Figure (3-6) subjected to uniform shearing force per unit height qp. 
l. 

in the connecting beams. 

where 
2M . 

Ul. (3-7)qP· = c. h. 
l. l. l. 

M . = Ultimate moment of the connecting
Ul. 

beams considered as double reinforced 

concrete cross section. 

and h - Storey height in the ith segment.i ­

From axial force equilibrium of an element as shown in Figure 

(3-7), we have 

(3-8) 
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As ~ is constant along the height of the segment, the change in the 

axial force T is linear . 

And wall moment M is given by the moment equilibrium condition 

e
M = M - .T . a (3-9) 

where Me is the overturning moment . 

. a 

* V = V - q .a (3-10)
p 

* where V = Wall shear 

and V = Inter-storey shear 

Equations (3-9) and (3-10) provide a relationship between the 

wall moment and overturning moment; and the wall shear and the inter­

storey shear respectively. In a plastic hinged segment, q and T are 
p 

known quantities . Therefore , one can obtain the wall moment and wall 

shear readily once the overturning moment and inter-storey shear 

are known. Therefore, for a plastic hinged segment, the problem is 

statically determinated . 

To obtain the field transfer matrix for a plastic hinged 
I II 

segment, it is necessary to obtain relationships between y, y , y , 
I II e 

y , M and V at the top and bottom of the plastic hinged segment. 

The deflection,slope and curvature relationship can be obtained by 
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considering a plastic hinged segment under overturning moment Me and 

inter-storey shear V to be the same as a beam with moment of inertia 

*I = I 1 + I 2 under the action of beam moment M and beam shear V , 

Figure (3-8). 

Consider a beam of length H. under the actions of wall moments 
l 

* MiB and wall shears V ib at the top of the beam as shown in Figure 

(3-11), the deflection and slope at the top relative to the base are 

given by 

' * 
y(i-l)A = yiB - H. (y iB-e iB) y (3-11)

l 

= y ' - (3-12)y(i-l)A iB 8iB 

' ' To obtain a relation between (y, y )(i-l)A and (y, y )iB' it is 

* necessary to express y and eiB in terms of the elements of the state 

vectQr {~}iB. This can be achieved by computing the top deflection 

and slope for the equivalent beam subjected to the wall forces, MiB 

* and ViB . 

M.B H. 
2 * H. 3 

l ViB l* y = 
l 

+ (3-13)2EI. 3EI. 
l l 

* 2
M. B H. H.ViBl l l = + (3-14)8iB EI. 2EI. 

l l 

Substituting by the above values in equations (3-11) and (3-12) 

leads to 
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H. 2 H.3 
l l" 	 * = yiB - H. + -2- y iB +-- v iBy(i- l)A l y iB 	 6EI. 

l 

(3-15) 

H. 2 
.l y 	 = H. 

II 

v * (3-16)
(i-l)A y iB l y iB - 2EI . iB 

l 

For shear force equilibrium, we have 

* * (3- 17)V (i-l)A = V iB 

shear force-bending moment relationship leads to 

* + H. v 	 (3-18) M(i-l) A = MiB l iB 

H.II II * y 	 = y + 
l (3-19)(i-l)A iB EI. V iB 
l 

Expressing the wall moments in terms of the overtur ning 

moments at (i-l)A level and iB level, we have 

Me *e 
+ H. 	 (3-20)M (i-l)A 	= fiB l 

v iB 

ewhere Me M . B + a . H. 	 (3 -21)
l qpi l lfiB 

Equation of shear for the equivalent wall under an app lied 

* shearing 	force V iB' as shown in Figure (3-11), can be written as 
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Ill Ill * 
Eli y (i-l)A = Eli y iB + V iB 

II I II I 1 * 
(3-22)y(i-l)A = y iB + EI. V iB 

1 

Equations (3-15), (3-16), (3-17), (3-19), (3-20) and (3-22) 

provide the relation between the ·state vector at (i-l)A level and the 

state vector at iB level. It should be noted that the state vectors 

* at (i-l)A and iB levels contain the wall shear V instead of the inter­

storey shear V, also the state vector at iB contains a f~ctitious 

parameter Me , which is necessary to keep the equilibrium at the 
f iB 

bottom of the segment, i.e. the internal distributed shearing force 

q. produces three pseudo elements in the state vectors at top and1p 

* e * 
bottom of the plastic hinged segment; namely V iB' M f and V 'A' 

iB 1 

Figure (3-9) shows the external loads necessary to handle the plastic 

hinged segment by the transfer matrix technique. 

The field transfer matrix [F]. for a plastic hinged segment
1 

is given in equation (3-23). 
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y 

y 

II 

y 

II I 

y 

Me 

* v 

= 

(i - 1. A 

1 -H. 
1 

H. 2 
1 

-2 0 0 

H.3 
1 

6EI. 
1 

0 1 -H. 
1 

0 0 

-H.2 
1 

2EI. 
1 

0 0 1 0 0 
H. 

1 

EI. 
1 

0 0 0 1 0 
1 

EI. 
1 

0 0 0 0 1 H. 
1 

0 0 0 0 0 1 

y 

y 

II 

y 

II I 

y 

rvt 
* v 

iB 

(3-23) 

To use the above equation, two modifications must be done to 

the station transfer matrices at station (i) and station (i-1). These 

modifications are necessary to obtain the pseudo vector at iB level, 
I 

{~} iB' and to proceed with the inter-storey shear for the (i-l)th 

segment after computing the pseudo vector at (i-l)A level from equation 

(3-23). The necessary modifications will be presented in subsection 

(3. 3. 2) later. 
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3 . 3.1.3 Field Transfer Matr ix for a Rea l Hinged Segment 

The field transfer matrix for a real hinged segment can be 

obtained from the plastic hinged segment assuming the connecting beams 

have lost their moment t ransmission capacities, [Figure (3-12)] . i . e . , 

when q . = 0. There fo re, by substituting by the above value of q .pl pl 

in equations (3-10) and (3-21) leads to 

v * = v (3-24) 

Me eand = (3-25 ) M iB fi B 

*Substituting in v and Mef by V. 8 and Me respectively,i B i iBiB 
equation (3-23) gives the field transfer matrix for the real hinged 

segment [F] . in the following equation .l 

y 

y 

" y 

' " y 

Me 

v 

= 


(i - l)A 

1 -H.l 

H. 2 
l 

-2­ 0 0 
H. 3 

l 
6EI.l 

0 1 - H.l 0 0 
-H . 2 

l 
2EI.l 

0 0 1 0 0 
H. 

1 

EI-:­l 

0 0 0 1 0 1 
EI. 

1 

0 0 0 0 1 H. 
1 

0 0 0 0 0 1 

y 

y 

" y 

' " y 

Me 

v 
i B 

(3- 26) 
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3.3.2 Station Transfer M~tr ices 

Listed below are the nine station transfer matrices necessary to 

complete the solution of, the problem. 

3.3.2.1 Station Transfer Matrix Relating a State Vector in Elastic 
Segment to Stat e Vector in Elastic Segment (Elastic-Elastic 

· · StatiOn) 

The station transfer matrix for elastic-elastic station as 

sho\.'[Il in Figure (3-13a) has been formulated by Tso and Chan [18] in the 

following form: 

= [S]. {~}.A + {L}. (3-27)
1 1 1 

where [S] . =Station Transfer Matrix for the ith station. 
1 

.­
and {L}. = Load Vector for the ith station. 

1 

Equation (3-27) can be written in the following detailed form: 

y 

y 

II 

y 

= 

y '" 

Me 

v 
iB 

1 0 0 0 0 0 y 0 

0 1 0 0 0 0 y 0 

0 

0 

0 

0 

I. 1a.
1+ 1 

I.a. 1 
0 

1 1+ 

2 
.1i+lµi . 

0 2
I.µ . 1

1 1+ 

a. 1-a. 
1+ 1 

EI.a. l
1 1+ 

0 
. 

0 

2 .· . . 2 
µi .,.µi+l 

2
EI..µ. 1

1 1+ 

" y 

II I 

y 

+ 

0 

-P . 
1 

EI. 
1 

0 0 0 0 1 0 Me 0 

0 0 0 0 0 1 v P. 
1 

(3-2~) 
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12Eibi a.
2 lwhere µ. :::: 

l 3 2
h. c. B. 

l l l 

12Eibi2and = 1 +'\ * c . 2 
G A bi l 

3.3.2.2 	 Stat i on Transfer Matrix Relating a State Vector in Elastic 
Segment to State Vector i n Plastic Hinged Segment (Pl a st ic ­
Elastic Station) 

From the continuity of the wall, the lateral deflection and 

the slope above and below the station are equal. 

(3-29) 

I 

and 	 (3-30)y iB y iA 

The relation between bending moments below and above the 

station due to wall cross section sudden change is given by 

"" EI. y EI. 1 y - (a.-a. 1)
l iB i+ iA l i+ TiA 

1 a.ti 	 tiI. 	 ai+l-aii+ l 	 e 
:::: y + 	 (3-31)y iB I. a. 1 iA EI. a. l M iA 

l J.,+ 	 l i+ 

Al so due to the sudden change in the cross section of the wa ll 

the relation between the shearing force below and above the station is 
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given by 

II I 

II I II I 

Eli y iB = Eii+l y iA + ai qiB - ai+l qiA -pi 

2 
"' (ai+l µi 

= EI1.+l y i·A + 2 )q1.+lP - a. 1 q. lP - P.l+ l+ l 
a. µ . 1l l+ 

2 
µ. P . II I . I. 1 111 .i+ (-1- -1) - l 

y iB = -!-.- yiA + 2 EI. 
l µ i+l l 

(3-32) 

For the section just above . the station and the section just 

below it the overturning moment in both sides are equal. 

e e (3-33)M iB = M iA 

As shown in Figure (3-13b) the shearing force at the section 

*just above the station is the fictitious shearing force V iA due to 

the modification done to the state vectors in the plastic hinged 

segment (i+l), i.e. the external shearing force at this section is 

reduced by (q a. 1).
P l+i+l 

* 
ViB =y iA_ + (qp a)i+l + pi (3-34) 
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Equations (3-29) , (3-30), (3 ·-31), (3-32), (3-33) and (3-34) 

give the station transfer matrix far the plastic-elastic stat ion. 

y 

y 

" y 

II I 

y 

Me 

v 
1B 


= 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 
a. I. 1l i + 

I.a.l+ 1 l 
0 

a. 1-a.l+ l 
EI. a . ll l+ 

0 

0 0 0 
I. li+ 
-I-.­

l 
0 0 

0 0 0 0 1 0 

0 0 0 . 0 0 1 

y 

y 

" y 

" t 
y 

Me 

* v 

+ 

iA 

0 

0 

0 

2 
1 µ . - l 

EI. [Pi+ai+ 1 qp. (l--:-2-)]
l i+l µ . 1l+ 

0 

P. + qp a . 1l l+i+l 

(3-35) 

3 .3 ~2.3 Station Transfer Matrix Relating a State Vector in Elastic 
Segment to State Vector in Real Hinged Segment (Real Hinged ­
Elastic Station) 

This is a special case of the plastic-elastic station. If we 

substitute in the load vector in equation (3 -35 ) by zero for qp , the 
i +l 

load vector for the real hinged-elastic station will be obtained. The 

station transfer matrix [S]. will be the same as it is independent of 
l 

the connecting beams shearing force in segment (i+l) . 

The station t ransfer matrix in this case can be hTitten as: 
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y 

y 

I! 

y 

y 
" ! 

Me 

= 

iB 

1 0 0 0 0 0 

0 1 0 0 0 0 

a. I. 1 · ai+l - ai1 1+
0 0 	 0 0 

a. I. EI. a. ll + 1 l l i + 

I. 1l+
0 0 0 	 0 0-I-.­

l 

0 0 0 0 1 0 

0 0 0 0 0 1 

y 

y 

" y 

I! I 

y 

Me 

v 
iA 

+ 


0 

0 

-P.1 
IT:"""1 

0 

P. l 

(3-36) 

3.3.2.4 	 Station Transfer Matrix Re l ating a Stat e Vector in Plastic 
~ed Segment t o State Vector in Elas t i c Segment (Ela st ic­
Pla stic St ation) 

Equations (3-29), (3-30) and (3 - 31 ) are va lid in this ca s e a s 

they are independent of the shearing force intensity in the connecting 

beams above and below the s tation. 

From the 	relation b et ween the s hearing force above and be low t he 

station we get 

11 I II I 

Eli y iB 	= Eii+l y iA + a i qiB ~ ai+l qiA -Pi 
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11 I 

EL 1 y].+ iA+ViA 
But (3-37)qiA "" a.l.+ 1 

and =qiB qPi 

11 I II I II t 

y 
1 

[EI. 1 y + a. - EI.l+1 y - p . ] 
iB = EI. l+ iA l qPi iA -ViA 1 

l 

P.II I - a.1 1 q:ei l 
y = - (3-38)

iB EI. V iA EI. 
1 l 

Because of the reduction value (q . a.) in the shearing force 
p1 1 

at B which is necessary in f orming the field transfer matrix for the 

plas tic hinged segment (i), a modification will be introduced in the 

e e * load vector (i) in both M 1. B and V.B to get M f and V .B respectively . 
. 1 iB l 

Me += e a. H. (3-39)M iA qpi l lf iV 

*And v + P. - a. (3-40)iB = ViA l qPi l 

Equations (3-29), (3-30), (3-31), (3 -38) , (3-39) and (3-40) form the 

station transfer matrix. 
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>l 

" y 

"' y 

Me 

v * 

= 

iB 

1 0 0 0 0 0 

0 1 0 0 0 0 

. I i+l 
.. 
a. 

1 ai+l...,ai 
0 0 0 0I. a. 1 EI.a . l1 1+ 1 1+ 

. -1 
0 0 0 0 0 EI. 

1 

0 0 0 0 1 0 

0 0 0 0 0 1 

r 
y 

y " 

II I 

y 

Me 

v 
iA 

+ 


0 

0 

0 


. P.-qp.a.

-(1. 11)

EI. 
1 

a. H.qPi 1 1 

(P. -qp. a .)
1 1 , l 

(3-41) 

3.3.2.5 	 Station Transfer Matrix Relating a State Vector in Pl astic 
Hinged Segment to a State Vector in Plastic Hinged Segment 
(Plastic-P lastic Station) 

" As the relations between (yiB' y iB and y iB) and (yiA' YiA 

and y " iA) are independent of the shearing force in the connecting beams 

above and below the station, equations (2-39) , (3-30) and (3-31) are 

valid in this case . 

The equation of shear is 

II I II I 

Eii y iB P. 
1 
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qp . ) . P. (a. qp.-a. 1 . '+.l 
( l - l l l+ l ) 

EI. 
l 

(3- 42) 

As discussed in the previous case a modification will be 

introduced in the load vector (i) in both Me iB and ViB to get MefiB 

*and V iB respectively. In addition, a correction must be done to 

*the reduced shearing force V iA to fulfil the external equilibrium of 

the shearing forces at the station (i). 

(3-43) 


* *and V iB = V i'A + P1. + qp a. 1 - qp. a. (3-44)
i+l l+ l l 

Equations (3-20), (3-30), (3-31), (3-42) , (3-43) and (3-44) 

form the station transfer matrix . This station transfer matrix is 

given by equation (3-45) . The station matrix [S] . and the load vector 
l 

{L}. are different than those for the elastic-plastic station given
l 

by equation (3-41). 
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y 

y 

II 

y 

11 I 

y 

Me 
f 

* v 

= 

iB 

1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

I. 1 a . 1+ 1 
I. a . 11 1+ 

0 

0 

I. 11+ 
I.1 

a. 1-a.1+ 1 

EI .a . l1 1+ 

0 

0 

0 

0 0 0 0 1 0 

0 0 0 0 0 1 

y 

y 

11 

y 

II I 

y 

Me 

* v 
ii\ 

+ 


3 .3.2.6 Station Transfer Matrix Relating a State Vector 

..,
0 

0 

0 


P.+qp. 1a. 1-qp.a.

- ( 1 1 + 1 + . 1 1) 

EI.1 

a. H.qPi 1 1 

(P. +qp. 1 a. 1-qp . a . ) 
1 1+ 1+ 1 1 

(3 - 4 5) 

in Plastic 
Hinged Segment to a State Vector in Real Hinged Segment 
(Real Hinged-Plastic Station) 

By substituting in equations (3-4 2) and (3-44) for qPi+l by 

zero we get 

P. - a.II I II 1I.l+ J. 1 1 qPi 
y = y (3- 46 )iB I. i A EI. 

1 1 

* and v + P. - a. (3-47)iB = ViA 1 qPi 1 

Equations (3-29), (3-30), (3-31) and (3-43) are valid . 
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y 

y 

" y 

" ! 

y 

~tf 

v * 

= 

iB 

3 . 3.2.7. 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 
I. 1 a . l+ l 
I. a. 1l l + 

0 
ai+l-ai 
EI .a. ll l+ 

0 

0 0 0 
.1i +l 
-I­.­

l 
0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

y 

y 

y " 

t " 
y 

Me 

v 
iA 

+ 


0 

0 

0 

P . qPi a . 
l l ) - ( EI.l 

a. H. qPi l l 

(P. - qp . a. )l l l 

(3 -48) 

Station Transfer Matrix Re lating a State Vector in Rea l ­
Hin ged Segment to a Sta te Vector in El astic Segment (Elastic­
Real Hinged Stati n) 

Equations (3-29), (3-30) and (3-31) are valid in this case. 

The change wil l be in the terms concerning the shearing force in the 

connecting beams above and below the station. 

The equat ion of the shearing force equilibrium above and below 

the station is 

!!( '" 

El i y iB = Eli+ l y iA + ai qiB - ai+ l qiA ~ pi 
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The second term in the R.H.S . of the last equation wil l vanish 

as t he shear intensity i n the ith segment is equal to zero , 

II t 1i +l " ' 
.' .y iB = --y

I. iA 
l 

(3-4 9) 

From the equi librium 

M 
e 

iB = M 
e 

iA (3 - 50) 

And (3-51) 

Equations (3-29), (3-30), (3 - 31) , (3-49), (3-50) and (3-51) 

form the station transfer matrix as follows: 
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y 

y 

" y 

"' y 

Me 

v 
iB 

3.3.2.8 

= 

1 0 0 0 0 0 

0 1 0 (J 0 0 

. . Ii~l aj_ ai+l""'ai 
0 0 0 	 0 

1.a. 1 EI. a. l1. 	 1. + 1. 1.+ 

. ..:.1 
0 0 0 0 0 EI.1. 

0 0 0 0 1 0 

0 0 0 0 0 1 

r-
y 

y " 

" ! 
y 

Me 

v 

+ 


iA 

0 

0 

0 

:..p,
1. 

EI.1. 

0 

P. 
1: 

(3-52) 


Station Transfer Matrix Relating a State Vector in Real Hinged 
Segment to a State Vector in Plastic Hinged Segment (Plastic­
Real Hinged Station) 

Besides the equations (3-29), (3-30) and (3-31) the following 

equations can be obtained from station shown in Figure (3-15b) ­

EI. y 
II I 

= EI. 1 y "' iA + a. qiB - a. 1 qiA P.1. iB 1.+ 1. 1.+ 1. 

::: 
I.1.+1 111 P.1. 

+ ai+lqPi+l)" ' y --y 	 ( (3-53)iB I. iA EI.1. 	 1. 

Equation (3-50) is 	valid. 

* Due to the sheari_ng force correction from V iA to V iA the 

shearing force equiliorium will oe 



66 

(a) ELASTIC_REAL HINGED STATION 

1.. oi•1 .,l 
I I

i ~ v7. rlA {¢{ 
~-:--1 ! ~ 1L_:J~~-~~F:--~-1~--~-~!>STATION 

Tia\ Vis ~ !riB {¢ls 
I t 
---Oj ... 1 

( b) PLASTIC _REAL HIN GED STAT ION 

(c) REAL HlNGED _ REAL ~!INGE D STATION 

FIG. 3_15 FORCE COMPONENTS ACTING ON THE 1tt1 STATION, 

TRANSFER TO RE,l\L Hlf\1 GED SEGMENT 



67 

v1. B = v ~1.' A + (P -i q a· i · p . 1 

Therefore , the stat ion tran s fer 

y 
r 
1 0 0 0 0 0 

y 0 1 0 0 0 0 

y " 

II I 

y 

0 

0 

0 

0 

I. 1 a . a . 1 -a.1+ 1 l+ 1 
I . a. l 

0 
EI.a.

1 1+ 1 1+1 
I . 11+

0 -I-.­ 0 
1 

0 

0 

Me 0 0 0 0 1 0 

v 0 0 0 0 0 1 

'-­· iB 

1+ 


ma tri x 


y 

y ' 
" y 

II I 

y 

Me 

* v 

)i+l 

wil 1 

+ 

.A 

3.3.2.9 Sta tion Transf e r Matrix Relating a 

be: 

0 

0 

0 

P.+a . lq . 11 1+ pi+ )- ( EI 
1
. 

0 

(P.+a. 1 q )
1 i+ p . 1 + 1 

(3·:.L 4) 

State Ve ctor in 
Rea l Hi n ged Segment to a State Vector in Real 
Hinged S egme nt (R ea l Hinged - Real Hinged St a tion) 

The station shown in Figure (3-lSC) is the simplest 

station b ecause of the vanishing of the shearing forces in 

the connecting beams above nnd below the station. 

Equations (3-29), (3-30) and (3-31) are valid, The 

equation o~ shear becomes 
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l . 11 -r " ' p i (3 ... 55)
I . y iA - Er 

1 1 

Equations (3-50) and (3-51) are valid too. 

Therefore, the station transfer matrix in this case can be 

formed f r o m th e a bove equ a tio n s i n 

y 

y 

y " 

II I 

y 

1 0 0 0 0 0 

0 1 0 0 0 0 

= 
0 0 

I . l a . 
1+ 1 

I. a. 11 1+ 

0 
a. f a.

1 + 1 

EI. a, 1
1 i+ 

0 

0 0 0 
I . 11+ 

I . 
1 

0 0 

0 0 0 0 1 0:ej 
0 0 0 0 1 

iB I~ 

3.3.3 Summ a r y a nd Discu ss i on 

th e f o llowin g fo r m: 

y 

y 

" y 

II I 

y 

Me 

v 

+ 

iA 

0 

0 

0 

P. 
1 

EI. 
1 

0 

P. 
1 

( 3-5 6) 


A d e v e lopment of tr an sf e r matrices i s p re s e nted in 

th i s section. Three field transfer matrices ar e present e d, 

Th e field tr a nsf e r ma t r ix for a plastic hin ge d s egment i s 
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develop ed and presented in subsection (3.3.1.2). Although 

the real hinged segment is a special case of the plastic 

hinged segment, both of their field tr ansfer matrices are the 

same, equations (3~23) and (3 n26) . The field transfer matrix 

for a plastic hinged segment r elates two pseudo stat e vectors, 

While the fi e ld transfer matrices for 

an elastic segment and a real hin ged segment relate actual 

state vectors, { <j>} i B and {<j>}(i-l)A" 

where 
,, ' '' = Column (y 'y ,y" ,y Me,v * 

{<j>}(i-l)A ) (i-l)A 

e' *{ <j>} = Column (y,y 
I 

,y " 'y " ' M f'V )iBiB 

' " Me
{<j>}(i-l)A = Column (y,y 'y 'y " ' V) (i - l)A 

e" ' and { <j>} i B = Column (y,y ' ,y " ,y ,M ,V)iB 

*Me f and V are given by equations (3-21) and ( 3- 10) 

respectively. 

' The position of the pseudo state vectors, {<j>}(i-l)A 
I 

and {<j>}iB' is s hown in Figure (3~16) for a plastic hinged 

segment, The modifications necessary to obtain these state 

vectors are included in the load vectors of the two stations . 

above and below the se gment, they are stations (i) and (i r l) 

respectively. 
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In addition, nine station transfer matrices are 

presented' in this section. It should be noted that the 

station transfer matrix relating state vectors from an 

elastic segment to a vector in a plastic hinged segment is 

different from that relating a state vector in a plastic hinged 

segment to a state vector in elastic segment. Figure (3~17) 

represents an example for this unsymmetrical property. 



CHAPTER 4 


DYNAMIC ANALYSIS OF SHEAR WALL BUILDINGS 


4 .1 Coupled Shear Wall Systems 

In this chapter, the behaviour of coupled shear wall buildings 

subjected to earthquake excitation is studied. It is assumed that the 

buildings considered . are symmetrical in plan and consist of a series of 

planar coupled shear walls. It is assumed that all internal coupled 

walls are identical and also the two ends coupled walls are the same. 

In addition, it is assumed that the interior walls are coupled by the 

floor slabs, while the exterior end walls are coupled by stiff connecting 

beams. 

Two buildings of typical dimensions are considered. The first 

building is a ten storey coupled shear wall structure. The walls of the 

structure, the storey height, and the connecting beam stiffness are 

constant throughout the height. The walls are assumed to rest on a 

rigid foundation. Figure (4-1) gives the plan and the wall dimensions 

of the building. The second example building has a similar plan and 

storey height as the first example building, except the number of stories 

is increased to twenty. The walls of these buildings are designed 

according to NBCC [10] and ACI Code [1]. 

Since the buildings are symmetrical
~ ~ 
their overall behaviour can be-

understood by studying the responses of a typical interior coupled shear 

72 
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walls and a typical external coupled shear walls: For the 10 storey 

building, the walls are designed to resist a seismic horizontal 

acceleration of 16% g. Two designs of the walls of the 20 storey 

building are carried out, one design for a seismic load of 16% g and 

the other a seismic load of 8% g. Table (4-1) is a surrunary for the 

walls dimensions and capacities of the walls of the two buildings. 

Wall 

Exterior 

Wall 
Thickness 

(in) 

12 

20 Storey Building (16% g) 

Conn. 
beam depth A 'b A 

(in) S · SW 

24 4#10 22#ll 

qp 

K/ft 

20 

-
M 

uw 
K.ft 

43400 

Interior 12 * 6 3#5/ft 18#11 2.68 37700 

10 Storey Building (16% g) &20 Storey Building (8% g) 

Wall Wall 
Thickness 

(in) 

Conn. 
beam depth 

(in) 
As b A 

sW qp 

K/ft 

-
M uw 
K.ft 

Exterior 9 24 4#9 12#10 16 255 00 

Interior 9 * 6 3#5/ft 12#10 2.68 25500 

* Effective connecting slab width== 3.5 ft . 

Table (4-1) Dimensions, Reinforcement and Capacities of Exterior and 

Interior Walls of the Example Buildings 
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The dimensions, reinforcement and capacities presented in 

Table (4-1) are the final design values.The detailed calculations are 

presented in Appendix A. 

4.2 Dynamic Anaiysis 

The dynamic model for the walls in the- 10 storey building is 

given in Figure (4-2) and for the 20 storey building is given in 

Figure (4-3). 

For buildings with rigid floor diaphragms, the lateral loads 

caused by the ground acceleration are distributed according to the 

stiffness of the lateral force resisting elements. To have the building 

to vibrate as a unit, the mass ' of the complete structure is also 

assumed to be distributed proportional to the stiffness of the walls. 

Table (4-2) gives the periods of the exterior and the interior walls of 

the 20 storey building. These walls were designed for a lateral seismic 

load of 16% g maximum ground acceleration. The masses of the building 

are assumed to be distributed uniformly throughout the height in 

accordance with the wall st1ffnesses in the period calculations. 

From Table (4-2), it is seen that the fundamental periods of 

the walls are the same . However , the periods of the other modes are 

different. The differance between the corresponding periods increases 

as the mode number increases. This is because the end walls with stiffer 

connecting beams behave differently from the interior walls . To obtain 

identical periods for all modes in the two walls, it becomes necessary to 

distribute the masses nonuniformly along the height of each wall. For 
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Ib =0.4575 FC?e t4 & qp = 16.0 Kip/ FeC?t 

WALL II: 

FOR MASS MATRIX m1 =m2 =m3=m4=ms=7.19 )) 

FOR P_6EFFECT m1 =m2 =m3=m4=m5=10.7S " 
Ib =0.0235 F0et4 & qp = 2.68 Kip I Fc:iC?t 

FOR ALL SEGMENTS: 

h ·= 8.75 Feet , c :: 5.0 Feet & a= 22.5 FG<?t 

Fl G. 4-2 DYNAM IC MODEL, 10 STORY BUILDING 

http:m3=m4=m5=10.7S
http:m3=m4=ms=7.19


----

Ix 	 77 

I 

PIER 1 

m5 T 5t_b SEG.L.hi: 
+~ml 

L. tb 	 SEG.
L.h4 

m,_, 
HT f 3tb SEG.

L.~
m2 

2th 	 SEG.L.hz 

-tm1 
1tti SEG.4111 

j_ 

I 

---j---- --~---

--l---
I 

-+-- I 

---1----
I-r I 

---,--- ----r-
I 

LUMPED SYSTEM EQUIVALENT STRUCTURE 

WALL I : 

FOR 	 MASS MA TR1X m1 = mz = m3 =mt.= ms= 42.05 K. Sec2 
Ft, 

FOR P _ t::,. EFFEC T 

Ib = 0. 5 60 Ft 4 & qp= 20.0 K/ Ft. 

WALL II: 

FOR MASS MATRIX 

FOR p_ /:::,.EFFECT m1 = m 2 = mJ = m L. =ms= 2L..55 JJ 

lb= 0.0 235 Ft I. & q p = 2. 6 8 K/ Ft. 

FOR ALL SEGMENTS: 

a = 22.5 Fth =	8.75 Ft ' c = 5.0 Ft & 

FIG. 1.,_3 DYNAMIC M 0 DEL , 20 STOl~Y BLDG ( 16 % 9) 



78 

simplicity, we shall distribute the masses uniformly along the height 

of the walls in proportion to their stiffness in this study . Therefore, 

the mass distribution of both the internal and external walls are taken 

to be uniform in subsequent analyses . 

MODE 1 2 3 4 5 

(1) Exterior Wall 1. 510 sec. 0.292 sec. 0.124 sec. 0.074 sec. 0 . 054 sec. 

(2) Interior Wall 1. 510 II 0.309 fl 0.116 fl 0.061 fl 0.041 II 

(2) 100 100 106 93.5 82.5 76(lf x 

Table (4-2) 	 Corresponding Periods of the Walls of the 20 Storey 

Building 

4.3 Sinusoidal Excitation 

To check the correctness of the computer program, the exterior 

wall of the 10 storey building is anal ysed subjected to sinusoidal 

ground motions. The moda l critical damping ratios are taken as: 

s1 = 4%, s2 = 6%, ~3 = 7.5%, ~4 = 8.5% and ~5 =9% in t he present and 

all subsequent studies. 

The time interval for calculating the straining actions ot equals 

0.1 second. The time interval for checking the segments stress state 

(Kmax ot) equals 0.1 seconds. The time limit for the analysis t is max 

taken to be 	20.0 seconds. 

The sinusoidal ground acceleration has a maximum amplitude of 

20% g and frequency equals 13.37 radian per second . This frequency is 
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exactly equa l to the fundamental frequency of th e exterior 

wall when all connecting beams are elastic. However, the 

wall frequen~y will be changed slightly if the respon se is 

sufficiently large to cause pl a stic hinges formed at the ends 

of the connecting beams for a short time during each cycle. 

To prevent the formation of real hinges at the ends of the 

connecting be am s, the rotational ductility factor for t he 

connecting beams is assumed to be equa i to 500. Therefore, 

the wall will be excited into resonance and its response is 

predomin ately tha t of the first mode. The top deflection 

response is shown in Figure (4-4). 

To check the accuracy of the c omputer program, the 

maximum top displacement is calculated by the modal super­

position method. Onl y th e first mode will be considered. 

At resonance the magnification factor based on elastica 1 

analysis can be calculated as 

1 a = = 12.5
2x0.04

1 

0.0581 

0.1920 

0.3627 
The first eigenvector {A} 1 = 

0.5458 

0.7283 
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The norm a liz e d e i g e nv ec tor { ¢ } 1 can be c omput e d f r o m 

wher e 
5 2
l m.A.l = 20. 15 

. 1 l 1l= 

Ther e fore 

0 .01 3 0 

0.04 30 

0.0817 

0.1255 

0.1640 

The load v e ctor {F} can be co mputed from 

130 

-
{ F} = -{m} a max g = 

130 

130 

130 

Kip 

130 

The static displacement for mode (1) can be calc u lated from 

= 0.312 ft. 
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The dynamic displacement for mode ( 1) 3 . 9 ft.= Al al = 
st 

The maximum displacement for mode ( 1) {x}l c a n be com-
max 

puted from 

{x}l 
max 

0.051 

0.168 

{x }l = ± 0 .3 18 ft. 
max 

0.490 

0.6 4 0 

Therefore, the max imum top displacem e nt = 0.640 ft. 

(1 s t mode on l y). 

Figure (4-4) indi c at ,s t h a t the max i mum top displace­

ment c a lcul ate d from the modal sup e r-position method a s a 

d a shed lin e. Agr eeme nt between the step- by- step inte gration 

response and the dashed line provi d es a check on the cor­

rectn e ss of the computer program. 

4.4 Object o f Investigation 

Th e behaviour of a coupled shear walls is affected 

by the sti ff nes s and rotational ductility of the connecting 

beams. For ar chitectural re a sons, the interi o r shear walls 



83 


in a shear wall building are coupled through the floor slabs only. Due 

to the flexibility of the slabs, the coupling effect is limited. Further­

more, the rotational ductility of the coup ling slab is also limited. One 

may then logically pose the question as to how effective are the slab 

coupled shear walls with limited ductility in resisting earthquake 

ground motion . This question will be studied in the present study by 

comparing the performance of some typical interior coupled shear walls 

and the performance of uncoupled walls (independently acting Cantilevers) 

of the same proportion. 

For the end walls, one can provide deep connect ing beams to 

increase the coupling effect . Also, by proper reinforcing detailing , 

i t has been shown that very large rotat ional duct ility can be obtained 

[14]. for the exterior coupled shear walls therefore, it i s useful to 

i nvestigate to what ext ent the increase in beam ductility will improve 

t he performance of the walls under moderate or strong earthquake 

exci t ation. Obviously, the definition of moderate or str ong earthquake 

excitation is relative. In this thesis, if the wall is designed for 

a seismic load of 16% g and i s subjected to ground motion with 

maximum acceleration of 16% g, we shall define the excitation to this 

wall as moderate. However, if t he wall is designed for an 8% g 

seismic load and subjected to a ground motion with 16% g peak acceler­

ation, then the excitation to the wall is considered strong. 
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i t ha .> been shown that very large rotational ductility can be obtained 

[14] . for the exterior coupled shear walls th erefore, it i s useful to 

i nvesti ga t e to wi1at ext ent the increase in beam ductility will improve 

t he performance of the walls under moderate or strong earthquake 

exciLation. Obvi ous ly, the definit ion of moder ate or str ong earthquake 

excitation is r e lative. In this thes i s , if the wall is designed for 

a seismic load of 16% g and is subjected to ground motion with 

maximum acceleration of 16% g, we shall define the excitation to this 

wall as moderat e . However, if t he wall is designed for an 8% g 

seismic load and subj ected to a ground motion with 16% g peak acceler­

ation, then the excitation to the wall is considered strong . 
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Before we study the two problems posed above, it is 

necessary to ensure that the proposed 5 masses dynamic model 

is an adequate dynamic model for response studies. T~is 

investigation is given in the following section. 

4.5 Effect of the Number of Lumped Masses 

In the prese~t analysis the number of degrees of 

freedom of the dynamic model equals to the number of segments 

into which the wall is to be divided. This is because the 

number of segments equals to the number of lumped masses of 

the structure as discussed in Chapter 2. To e n s ure a five 

masses representation is adequate, a study on the effect of 

the number of segments used in the dynamic modeli~g is carried 

out. The response of the exterior walls of the 20 storey 

building is computed based on a 5 and a 10 mas s representat­

ion of the wall. The N.S. component of ElCentro 1940 record 

normali zed to 20% g maximu~ acceleration is used as input. 

The parameter of interest are the top displacem e nt, the base 

moments, and the axial forces at the base of piers. 

The output time-history responses of the top dis­

placement, base moments of piers and axial forces a t b as e of 

the piers for the two models are shown in Figures (4 - 5) 

through (4 -1 0). The top -d isplac ement, and the base moment 

responses have essentia lly the same shapes with the same 

peaks for the two models as shown in Figure s (4 ~ 5), (4-6), 

(4-7) and (4 - 8). The axial forces responses shown in Figures 
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(4-9) and (4~10) have the same peaks. However, there is a 

minor difference between them in the responses after the 

main peak response. 

Table (4-3) gives the periods of the 5 mass model 

and the first five periods of the 10 mass mode 1. The 

periods are found to be sensitive to the number of lumped 

masses. As the number of masses increases the periods 

decrease. Table (4-4) gives a summary of the maximum res­

ponse values for the two models. No signific a nt difference 

between the two model results is shown in Table (4-4). As 

an analysis using the five lumped mass syst e m costs about 

one quarter of the cost of the ten lumped mass system, all 

subsequent response calculations will be carried out using 

the five mass dynamic model. 

MODE 1 2 3 4 5 

Period (5 masses) 
second 

1. 510 0. 2 92 0.124 0.074 0.054 

Period (lOmasses) 
second 

1.386 0.273 0.115 0.067 0.044 

Table (4~3) Effect of the Number of Segments in the 

Periods, Ext e rior Wall, 20 Storey Building 
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5 

MODEL 

masses 

No. 
of 

s t or­
ie s per 
segrrent 

4 

K/ft 

qp 

20 

µ 

15 

Fund. I Max. 
Period Top 

Displ. 

(sec.) (ft) 

1. 510 0.287 

Max. 
Base 
Moment 
(1000 
K.ft) 

67.04 

Max.Axial 
Force at 
Base ( K.) 

Tensi onl Comp. 

195 0 4600 

10 masses 2 20 15 1.386 0.257 67.46 1925 4575 

Table (4-4) 	 Effect of the Number of Segments, Exterior 

Wall, 20 Storey Building (ElCentro N.S.,20%g) 

4.6 Method of Excitation 

Real earthquake records are used to analyse the 20 

storey coupled shear walls. These real earthquake records 

are normalized to the same maximum horizontal accelerations 

of 16% g. The duration of the ground accelerations is kept 

;,.constant throughout the study. Twenty seconds duration is 

used to allow for large response to be built up. 

These ground 	acceleration records used are shown in 

Figures (4-11), (4-12) and (4-13). Table (4-5) gives a 

summary of the earthquake records used in the analysis with 

each wall of the 20 storey building. In all cases except 


· the case of the double cantilever wall, three runs are made 


for each case, using three different beam ductility values 


of 5, 15 and 	 500. These ductility values are taken as repre­

sentative of 	low, moderate and high ductility situations. 
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GROUND ACCELERATION (16% g ) WALL 

Exterior Wa ll (16 %g ) 


Exterior Wall (8 %g ) 


In te r ior Wall ( 16%g) 


Double Ca ntilever Wal 1 


ELCENTRO, COMP. N.S. (1940) 

.. 

SAN FERNANDO, COMP. N.S. exterior Wall (16 %g ) 

Wilshire B1vd. , Basement Interior Wa ll (1 6%g ) 

-

TAFT, COMP. N2 1 E (1952) Exterior Wa ll (16%g) 

Table ( 4 -5) Input Ground Acceleration 

4.7 Seismic Response 

In this section the seismic responses of the 

exterior and interior coupled shear walls of the 20 storey 

building are presented. The parameters of interest are : 

(i) the top displacement, (ii) the bas e moment of the piers, 

and (iii) the axial forces a t the base of pi er s. These 

parameters are used to evaluate the performance o f the struc­

ture under seismic lo ad s. The shearing force .int ens it y in 

the conn ec ting l a minae is also presented to cla r ify the 

behaviour , especially when large inelastic de f o rmat ions 

occ u r red in the connecting laminae . 
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4. 7. 1 Interior Wall Response 

The interior wall is studied using records from the 

ElCentro and San Fernando earthquakes normalized to 16% g 

as a maximum horizontal acceleration. In other words, the 

wall is subjected to ground excitations of the same inten­

sities as it is designed for. The analysis is carried out 

for the coupled sh e ar wall and also for an equivalent canti­

lever consisting of the two piers which connected together by 

beams with hinges at ends. The coupled shear wall is studied 

with three values of the rotational ductility factors, th e se 

are µ=5, 15 a nd 500 respectively. 

4.7.l·.l Coupled Wall 

Six computer runs are considered for the interior 

coupled shear wall to obtain the parameters of interest. 

Three runs a re with the ElC e ntro r e cord a nd the -other thr e e 

with San Fe rnando record. Giv e n b e low are the seismic 

responses for the six cases accompanied with the necessary 

discussions. 

a - ELCENTRO COMP. N.S. 

Figures (4-14) through (4 .. 22) give the top displace­

me nt, b as e mom ents, axial force a t base of pi e rs and s h e ar 

intensity of connecting laminae, as time-history responses. 
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The rotational ductility factor of the coupling slabs µ 

equals to 5. Figure (4-14) indicates th at the top displace­

ment is mainly due to the first mode of vibration. Figures 

(4-15) and (4-16) are the same as the base moment in the left 

wall must be identical to that in the right wall, since the 

two piers have the same moment of inertia. Figures (4-15) and 

(4-16) indicate that the higher modes also contribute to the 

bending moment response. Figure (4-17) gives the axial force 

response at base of the piers . The response in Figure ( 4 - 17) 

is l imited to a certain value after about 2.0 seconds . This 

value is the plastic shear intensity in the connecting laminae 

times the height of the upper two segments . These two segments 

remain to be pla s tic hinged segments , as shown in Figures 

(4 -21) and (4-22), while the lower three segments are changed 

to real hinged segments after about 2.0 seconds due to the 

low value of ductility used. The shearing for ce int ensity 

of the first three segments are given by Figures (4-18), 

(4-19) and (4-20). The shearing force intensity is dropped 

to zero when the end rotation of the lamin ae exceeds the 

ultimate rotation value and the segment changes to real 

hin ged segment. Also, the contribution of the higher modes 

is clear in the shearing force intensity responses . 

b - SAN FERNANDO EARTHQUATE CO MP . N.S., Wilshire Blvd., 
Basement 

Figures (4-23) through (4-30) give the response of 
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the top displacement, base moment in left wall, axial force 

at base of piers and the shearing force inten s ity in the 

connecting laminae, when the wall is subjected to the N.S. 

component of the Wilshire Blvd.~basement record of San 

Fernando earthquake. The rotational ductility factor of the 

coupling slabs µ equals to 5 in these calculations. The 

base moment in the right pier is left out because it is the 

same as the left pier. 

The seismic respon s e of the interior coupled shear 

wall presented in Figures (4-14) through (4-30) describes 

the behaviour of the wall under the seismic loads arised from 

ElCentro and San Fernando earthquakes. Given below is a dis­

cussion of the parameters of interest presented based on the 

calcul ations made . 

(i) Top Displacement 

The study of the top displacement is essential for 

understanding the overall behaviour of the structure. The 

flexibil ity of the structure is proportional to the top 

displace ment and the overall ductility of the structure can be 

calculated from the top displacement. 

The time-history response for the top displacement 

of the interior wall is shown in Figur e s (4~14) and (4-23). 

In Figure (4-14) the response increas e s after the changing 

of three segments in the structure to real hin ged segments. 

Later, it decreases again due to the absorption of energy due 
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to plastic deformations occurred in the connecting beams of 

t he rema in i n g s e gm en t s ( s e e F i g u r e s ( 4 - 1 8 ) t o ( 4 ~ 2 2 )) . I n 

F igure (4-23) the maximum response oc c urs at toward the last 

second s of the analysis. This may be du e to the characteris­

tics of th e input a c celeration. The earthquake produces a 

high ground velocity in the last eight seconds of the record 

and this may be the cause of the large response of the 

structur e toward th e last eight seconds of computation. 

(ii) Base Moment For Piers 

The most cr itica l section for the pi e rs is th a t at 

the base. The base moments in the left and right piers in 

combination with the couple arised from the axial force in 

th e piers are r esponsi b l e for resisting the extern a l over­

tu!ning moment at the base caused b y the seismic loads. The 

pi e rs of th e internal shear walls are identical, so that the 

bend i n g moment of the left pier will be the same as the 

bending moment of the right pier. As the base moment in 

each pier is affected by th e axial force in the piers, this 

moment is sensitive to the condition of the connecting beams. 

This is because the axial force at the base is the integration 

of the shearing fo rces in the connecting beams f rom the top 

to the bottom of th e wall. 

Th e time - hi story resp onse f or the ba se moment in th e 

piers of the interior wall of the 20 storey building is shown 

in Figures (4 - 15), (4-16) and (4-24). The b ase moment given 
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in Figure (4-15) has an abrupt increase after t wo seconds. 

This abrupt i ncrease is due to the sudden d e crease in the 

axial force at th e base as shown in Fi gure (4-17). The base 

moment given in Figure (4-24) is different than that discussed 

above. This is because t he ground acceleration given by 

record shown in Figure (4-12 ) produce a lar ger gr o u nd velocity 

in t h e portion of the record after twelve seconds. The base 

moment in the last eight seconds of the time-history res p ons e , 

Figure (4-24), shows that not only the mag n itude of the grou n d 

acceleration has a serious effect on the structur al behaviours, 

but also the ground velocity will affect the response. 

(iii) Axial Forces at Base 

As the axial force is the integration of the shearing 

force intensity in the laminae, it is directly a ff ected by the 

changing of the connecting beams state. When the de ad load is 

included in the axial force, the piers remain und er compressiv e 

axial forces all the time. This can be seen in Figure (4-17) 

and (4-25). The high dead load carried by the interior walls 

arise from the large tributary area of the interior wall as 

shown in Figure (4-1). 

4.7.1.2 Equivalent Cantilever 

The behaviour of the double cantilever wall is an 

elastic one,since the walls are taken to be elastic in the 
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present study. The response of such a case is shown in 

Figure ( 4-31) and (4~32) under the ElCentro Comp. N. S. 

normal ized to 16% g maximum horizonta l acceleration . The 

to p displac eme nt and the base moment are l arger than those 

fo r the interior coupled shear walls, presented in Figures 

( 4 -1 4) and (4-15). 

Listed below are th e maximum values of the parameters 

of interest discus sed above for the interior wall for both 

o f coupl ed wall and equivalent cantilever wal l. 

Ground Acceleration 

(Duration = 20 sec . ) 

Ductility of Connecting 
(µ ) 

5 15 

Beam s 

5 00 

ELCE NT RO, COMP. 
(19 4 0) 

N. S. 0. 234 Ft 0. 238 Ft 0.238 Ft 

SAN FERNANDO, Wilshire 
B 1 vd. , Basement , COMP. N.S. 

0. 384 Ft 0. 28 1 Ft 0.281 Ft 

Ta bl e (4 - 6) Maximum Top Disp l acement, In te rior Coupled 

Sh ear Wall 

Ground Acceleration 

(Duration = 20 
s e conds) 

Ductility of Conn ecting Beams (µ) 

5 15 500 

ElCentro, Comp . N. S . 
(1940) 

323 . 2xl0 K. ft 24 . 4xl0 3K.ft 324.4x l0 K.ft 

San Fernando, Wil ­
shire Blvd., Base­
ment, Co mp. N.S. 

27 . 3x l0 3 fl 323 .4xl0 " 
323.4xl0 fl 

Tabl e (4-7) Max . Base Wall Moment (Le f t and Ri gh t Pi e r s ), 

In terior Cou p l e d Sh e ar Wall 



120 


Ground 
ti on 

Accelera - Ductility of Connecting Beams (µ) 

(Duration 
seconds) 

= 20 5 

Tension Comp. 

15 

Tension Comp . 

500 

Tension Comp. 

ElCentro Comp. 
N.S. (1940) - 32.32xl0 

K 
- 32 .3 2xl0 

K 
- 32.32xl0 

K 

San Fernando, 
Wilshi re B 1 vd. , 
Basement, Comp. 
N.S. 

-
32.3 2xl0 

K 
~ 

32.3 2xl0 
K 

-
-

32 .3 2xl0 
K 

Table (4-8 ) Max . Axial Force at the Base of Piers, In terior 

Coupled Shear Wall 

Ground Acc e leration 
(Du ration = 20 
seconds) 

Max. Top 
Ft 

Displ. Max. Base 
Ki p . 

Moment 
Ft 

Max. Axial 
Force , Kip 

(Comp.) 
-

ElC entro, Comp . 
(1940) 

N.S. 0.6 26 29.0xlO 3 l.85xl0 3 

Table ( 4 -9) Equivalent Cantilever Wall 

Table (4-7) indicates that th e maximum to p displace ­

ment is less than HT/450 whi l e the max imu m top displacement 

for the equivalent cantilever wal l (Table (4-9)) is approxim a te ­

ly HT/275. This increase in top deflection i s due to the lack 

of couple action in the cantilever wal l case. · Co mparing the 

maximum base ~oment f or the piers in the equi v alen t canti­

lever wa ll and the coupled wall le ad s to the conclu s ion that 

the coupled shear wall, even with flexible connecting beams, 
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behaves better than the equivalent cantilever wa l l under 

the same later a l loads. 

Due to the small capacity of the conn e cting slabs in 

transmitting axial force between the two piers, the axial 

force in the piers for both type of wallsalways remain com­

pressive as shown in Tables (4-8) and (4-9). 

4.7.2 Exterior Wall Response 

Two designs are tak e n for the exterior wal 1. · In one 

case, the wall designed to resist a maximum horizontal ground 

acceleration of 16% g. In another case, it designed to re­

sist a maxi mum horizontal ground acceleration of 8% g. The 

wall designed for 16 % g seismic load is subjected to the 

ElCentro, San Fernando and Taft earthquake records as an 

input ground motions. All of the earthquake records are 

norm a lized to 16% g maximum horizontal acceleration. The 

wall designed for 8%g seismic loading is subjected to the 

ElCentro record only, normalized to 16 % g peak acceleration. 

The main object of this study is to examine the effect of the 

rotational ductility of the connecting beams when the coupled 

shear is to be subjected to moderate or strong earthquakes. 

The performance of the wall is evaluated through the 

seismic response of the parameters of interest, name~y: the 

top displacement, the base moment for the piers, and the 

axial forces at the base. Again, the shearing force inten~ 
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sity in connecting l aminae are presented to clarify the 

behaviour of the walls. 

4 . 7 . 2 . 1 	 Exterior Wall Subjected to Moderate Earthquake 
Excitation 

By moder a te earthquake excitation, we consider the 

peak horizontal acceleration of the earthquakes the s a me as 

that the wall is designed for. In the cases studied, this 

horizontal acceleration is t aken to be 16% g. 

Given below are the seismic responses for nine cases. 

There are three earthquake records and for eac h earthquake 

record, three values of ro tational beam ductility of 5, 15 

and 500 are used. 

(i) Top 	 Displacement 

The time-history response is shown in Figures (4-33), 

( 4- 34) and (4 -35). I n the case of the ElCentro record, the 

eff e ~ t of the ductility of the conne cting beams is immat eria l 

as t h e conn ect i ng beams rema i n elastic. The response of the 

connectin g beams are shown in Figures (4- 4 2) to (4-46). For 

the Wilshire Blvd. record of San Fernando, Figure (4-34) 

indicates that for ductility grea ter than fifte en, no im­

provem ent for the wall b ehaviour can be detected. The case 

of Taft record excitation shows that the connecting beam 

ductility is of more importance than the previous cases 

studied under the ElCentro and San Fernando earthquake 
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excitation. Shown in Figure (4-35) is the top deflection 

response for µ=15, which can be taken as a moderate beam 

ductility value. 

(ii) Base Moment for Piers 

The time-history responses for the moment in the 

base of the piers are shown in Figures (4-36), (4~37) and 

(4-38). Responding to the ElCentro and San Fernando records, 

the structure behaves essentially elastically after some 

elasto-plastic deformation in the connecting beams in the 

first few seconds. The structure in these two cases is said 

to be shake.Ii down. ~ · ', This is due to the residual shearing 

force q. which satisfies at every connecting beam j the 
J 

conditions 

qJ. + q. ~ q . (4-1)Jmax PJ 

q. 	 + q. ~ -q . ( 4 - 2)
J Jmin PJ 

and which is statically admissible [lOa]. The residual 

shears existing in the connecting beams after the structure 

has shaken down will not necessarily be the distribution q.,
J 

see Figures (4-42) to (4-46). The base moment in the above 

discussed two cases never exceeds the ultimate capacity of 

the wall cross section which equals to ±43400 Ft Kip. 

For the response to the normalized Taft record, the 

bending moment, as given by Figure (4-38), is larger than 
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the ultimate capacity of the cross section in some instances . 

These high values are a result of the formation of real hinges 

in 60% of the connecting beams. Therefore, an increasing of 

the rotational ductility factor of the connecting beams will 

improve the performance of the wall substantially in this 

case. 

(iii) Axial Forces at Base 

The time-history responses are shown in Figures (4-39), 

(4-40) and (4-41). These Figures show that the piers may be 

subjected to tensile forces even after including the dead 

load. This is because the connecting beams have high capa­

city to transmit axial forces between the two walls, while 

the tributary area carried by the end shear wall is small 

compared to the interior shear wall. 

To decrease the tensile forces in the piers, it is 

useful to arrange the walls in such a way to keep the tri­

butary floor areas proportional to the wall stiffnesses. 

4.7.2.2 	 Exterior Wall Subjected to Strong Earthquake 
Excitation 

In this case, we consider the response of a wall 

designed for a 8% g seismic load and being subjected to the 

ElCentro ground excitations of 16% g, The top displacement 

time-history records are shown in · Figures (4-52) and (4-53) 
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for rotational ductility factors of the connecting beams 

equal to 15 and 500 respectively. There is little difference 

between the two figures. However, the response presented is 

larger than that for the exterior wall designed for a seismic 

load of 16% g. 

The base moment time-history records are shown in 

Figur:es (4-54) and (4-55). For a ductility ~ equals to 15, 

the base moment exceeds the ultimate capacity of t he piers 

six times. This is due to the formation of real hinges in 

40% of the connecting beams. For a ductility µ equals to 

500, the base moment exceeds the ultimate capacity only twice. 

Therefore, the n~ed for high rotational ductility factor for 

the conn e cting beams is evident if only moderate d a ma ge is 

expected under strong ground shaking. 

The axial force t i me - history is shown in Figures 

(4-56) and (4-57). In the case whe r e µ=15, the form a tion of 

real hinges in 40% of the connecting beams reduces the ax ial 

force as shown in Figure (4-56). On the other hand, the piers 

are subjected to large tensile axial forces in the case of 

high ductility connecting beams, as shown in Figure (4 ~ 57). 

Listed below are the maximum values of the parameters 

of interest discussed above for the exterior wall. 
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· Ground Acceleration Ductility of Connecting Beams (µ) 

(Duration = 20 sec.) 
5 15 5 0 0 

ELCENTRO, COMP . N.S. 
(19 4 0 ) 

0 . 241 Ft 0.241 Ft 0.241 Ft 

SAN FER NAND O, Wi l ­
shire B 1 v d . , Base­
ment, COMP. N . S . 

0.280 Ft 0.266 Ft 0.266 Ft 

TAFT, COMP. N21E 
(1952) 

0 . 309 Ft 0.309 Ft 0.309 Ft 

Table (4-10) Maximum Top Displacem en t, Exterior Wall 

Designed for 1 6 % g 

Ductility of Connecting Beams (µ)Ground Acceleration 

(Duration =20 sec.) 5 15 500 

33
ELCENTRO, COMP. N.S. 34.7xl034 . 7xl0 34 . 7xl0 3 

K.ft K.ftK. ft(194 0 ) 

-
3 38.3xl0 338.3xl0 3SAN FERNANDO, Wil­ 34.3xl0 

K. ftK.ft K.ftshire B 1 vd. , Base­
ment , COMP. N.S. 

33 38.2xl045 . 2xl0 3 45.2xl0TAFT, COMP . N21E 
K.ftK. ftK. ft(1952) 

Ta ble (4-11) Maximum Base Moment (Left and Right Piers) 

Exterior Wall Designed for 16 % g 

1 
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Ground Acceleration Ductility of Connecting Beams (µ) 

(Duration = 20 sec.) 5 15 500 

Tension Comp. Tension Comp. trension Comp. 

ELCENTRO, COMP. N.S. 1.55 x l0 3 4 . lx 1 0 3 31.55xl0 4.Jxl03 31 3~ . 5 5 x 1 0 4 . 1 x 10 
(1940) K K K K K K 

SAN FERNANDO, Wil­ 2.03xl0 3 4 . 68xl a2.03x l0 3 4.ffixlcr b . 03x 10 3 4.68x1 a 
shire, Basement, K K K K K K 
COMP. N.S . 

TAFT, COMP. N.S. 
3 4.66xlcf 3 4. 7 2 xlO ~ 2 . 0 7x1 03 4.7M0 3 !2.0lxlO 2 . 07xl0 

(1952) K K K K K ~ 
Table (4-12) Maximum Axial Force at the Base of the Pi e rs, 

Exterior Wall Designed for 16% g 

Ductility of 
Connec ting 
Beams µ 

Max Top Dis­
placement 
(Ft.) 

Max Base 
Moment 
(Ft.Kip) 

Max Axial Force at 
Base (Kip) 

Tension Compression 

5 0.34 48.3x l 0 3 1. 3xl 0 3 4.3lxl0 3 

15 0.32 30.0xlO 3 l.3xl0 3 4.3lxl0 3 

500 0.31 30.0xlO 3 l.lxlO 3 4.13xl0 3 

Table (4-13) Exterior Wall Designed to resist Maximum Hori­

zontal Ac~eleration of 8 %g, ElCentro Comp. N. S. 

Normalized to 16 % g 
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The effect of the ductility of connecting beams is 

significant when the coupled shearwallis .subjected to earth­

quake of intensity higher than that used in designing the 

wall. Although the maximum values presented in Table 

(4-13) for the two cases of µ equals to 15 and 500 seemed to 

be the same, the repetition of the maximum values exceeding 

the ultimate capacity in case of µ · equals 15, as shown in 

Figure (4-54), is of great significance to the ultimate 

survival of the structure. 

4.8 	 Overall Behaviour 

This section studies the relation between the overall 

ductility demand of the studied coupled shear walls µ overall 

and the connecting beam rotational ductility factor µ. The 

formation of the real and plastic hinges at the connecting 

beams and the corresponding time of the maximum number of 

these hinges are also presented in this secti on. 

The overall ductility for a ductile shear wall has a 

value ranged from 4.0 to 5.0 . The overall ductility demand 

is defined by 

lrn 
(4 ~ 3)µoverall = t:,y 

where 	 /:,u = maximum top displacement response. 

Ay = 	 top di splacement a t the time in which 
the segments first change from elastic 
to inelastic,. due to triangular static load. 
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Table (4~15) indicates that the connecting beams 

ductility f actor µ is of minor influence when we use the 

definition of ~u as the maximum top displacement. It · should 

b e noted that the maximum value may occur after the for mation 

of the real hinges in the connect i ng beams when the structure 

becomes more flexible. In general, for low connecting beam 

ductility, the overall du demandctility will be larger than 

that for high connect i ng b ~ams ductility. 

Ductility o f Co nn ec t-Gr ound Acce ler a tion 
i n g Beams ( µ ) 

(Dura tion =2 0sec.)ft/se~WALL 5 15 500 

ELC ENTRO, COMP. N.S. 1.6 3 1.63 1.6 3 
(1940) 

Ex te r ior SAN FE RNAND O, Wil sh ire 1.91 1 . 81 1.81 
wa ll Blvd., Basement, COMP. 

N.S. 

TAFT, COMP. N2 1E (1952) 2.11 2.11 2.11 

Interior 
wall ELC ENTRO, COMP. N.S. 2.38 2 .4 0 2. 4 0 

SAN FERNANDO, Wilshir e 
J3asement_,_ COMP . N. S. 

Bl vd. 
3 .95 2.89 2.89 

Table (4 - 14) Ov e rall Duct i lity Demand of the Ex t e rior a nd 

In teri or Wa lls of th e 2 0 St orey Build i ng (Max. G. Acc. =16 %g) 
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The damage happened in the walls of the 20 storey 

buildin g due to the earthquakes loads is ~udied through the 

number of segments which are changed to the real hing ed 

state and the maximum number of segments changed to the 

plastic hinged state. The maximum number of s eg ments which 

are changed to real hinged segments is presented in Table 

(4-15) f or the different connecting beams ductility factors. ­

Only the cases associated with the TAFT record gave a heavy 

damage in the exterior walls desi gne d to resist lateral 

seismic loads of 16%g maximum acceleration. This is because 

the repetition of the peaks in the TAFT record as shown in 

Figure (4-13). For the interior walls, the damage i s heavier 

than that for the exterior walls when the ductility of the 

connecting beams is low. 

The maximum number of segments which are chan ge d to 

plastic hinged segments and the first time a t which such 

number occurs is tabulated in Table (4-16). The numb e r of 

occurrance of such number is given in Table (4-16) as well. 

It can be seen from Table (4-16) that the interior walls will 

suffer more than the exterior walls (16 %g ), although the 

later share more than the former in resisting the lateral 

seismic loads. This is due to the low bending capacity of 

the connecting slabs in the interior walls. 

The exterior walls designed to resist lateral seismic 

loads of 8%g suffer heavy damage when the ductility of the 

connecting beams is moderate or low, while the damage is 
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slight for very high value of connecting beams ductility. 

Therefore, the rotational ductility factor µ has more 

influence in improving the coupled shear wall behaviour when 

subjected to earthquakes having intensities higher than the 

design intensity. 

A segments state time-history _is shown in Figure 

(4-58) for the exterior wall designed to 16%g maximum hori­

zontal ground acceleration under the Taft earthquake record. 

The rotational ductility factor µ is taken as 15.0. The six 

peaks shown in Figure (4-13) occur at the following times: 

3.7, 4.2, 6.2, 6.4, 6.6, and 9.1 seconds. The damage 

pattern is shown in Figure (4-58) at the corresponding time 

stations. The first three peaks cause only plastic hinges, 

while the other peaks cause the real hinges to form. This 

is because the last three peaks are accompanied with high 

ground velocities. After the last change in segments state 

happened at 9.1 seconds, the structure behaves elastically 

to the end of the analysis. This is due to the flexibility 

resulted from the l ower three segments which are changed to 

real -hinged segments. 



Ductility of Conn e ct i n g Be am s ( µ ) 

WALL Ground Acceleration 
(Duration=20 sec. ) 5 15 5 00 

* * *Numb er Time Numbe r Time Numbe r Time 
.-! 

I.-! 
C1l ,.--._ 
~ b.O ELC ENTRO, COMP. N.S. I.. o\ O 

(19 40 ) 2 4 .6 2 5. 00 0.µ 00 -
>< '--' 

P-l 

ELC ENTRO , COMP. N.S. 0 - 0 -
I 

0 -
(19 40) 

rl I 
.-! I

C1l I:;;:: SAN FERNANDO, Wilshire 1 4.10 0 - 0 I -,.--._ 
f-1 b.() B 1 vd. , Ba s ement, CO MP . l0 o\O . N.S. 

•r-i '° 
f-1 .-! 
Q) '--' I.µ 

>< TAFT, COM. N21E (1952 ) 3 6.40 3 9. 10 0P-l -

ELCENTRO, COMP. N.S. 3 4.70 0 0 I- -, 
f-1 

(19 40) 
0 

·r-i .-! 
h .-t 
Q) C1l SAN FERNANDO , Wils h ire 4 7.90 0 - 0 -.µ ::t 
i::: B 1 vd. , Basement, CO MP . 

1-f 
N.S. 

* Time at whic h that numb e r 	 occurs (se c onds) 

Table 	 ( 4-15) Max. No. o f Se gments wh ich a re ch a nged to Re a l Hi n ge d Se gments 

20 St or ey Bui ldin g 
U1 
I-' 

\D 



Ductility of Con n ecting Beams 

WALL Ground Acceleration 
5 15(Duration= 20 sec. ) 

Time f 
:* 

Np INp N . Np Ti me NRR 

r-l 
r-l 
cO ,...., 

;:;:: Oll ELCENTRO, COMP.N.S. 3 2.10 
.. c\ O 

(19 40)µ co 
>< '-J 

f.J..l 

ELCENTRO, COMP.N.S. 2 1. 70 
r-l (194 0) 
r-l 

cO 
;:;:: ,...., SAN FERNANDO, Wil­ 3 2.80!-< Oll 
Q o\O . shire Blvd., Base­

·.-i '° 
h . r-l ment, COMP . N.S. 
d) '-J 

µ 

>< 
f.J..l TA FT, CO MP. N21E 3 4.20 

(195 2) I 

H ELCENTRO, COMP.N.S. 4 1. 700 
• i-i' r-l (19 4 0)
Hr-i 
d) cO 
µ;:;:: 

. ~ 
1-t. SAN FERNANDO, Wil­ 5 6.30 

shire Blvd., Base­
ment, CO MP. N.S. 

1 3 2 . 1 0 1 3 

1 2 1. 70 1 2 

2 3 2.80 2 3 

2 3 4 .20 2 3 

1 5 8.40 4 5 

1 5 6.30 4 5 

(µ) 

5 00 

Ti me NR 

2 .1 0 1 

1. 70 1 

2 . 80 2 

4.20 3 

8 . 40 4 

6.3 0 4 

*Np = Ma x i mum Number of plastic h inges 


fTime at first chan g e to such number 
I-' 


°'0 

.NR = Number of occurrance 

Table (4-16) Ma x. No. of Segme n t s whic n ar e Chan ged t o Pl a stic Hinged Segmen ts 
2 0 Storey Bu il di n g 



-: 

th 
s-SEG. 

th 
L. -sEG. 

rd 
3 -sEG. 

2Q...dSEG. 

1~SEG. 

TIME ( 2.0) ( 3.7) (4.2 ) ( 5. 6) ( 6.2) ( G.L.) ( 5.G ) ( g .1 ) ( 1 s.o) 
(Sec.) 

0 ELASTIC ~ PLASTIC HINGES IJREAL HINGES 

~ 

FIG. 4 _58 SEGMENTS STATE TIME_H ISTORY FOR THE EX TERIOR WA LL,p=15.0 ~ 

( T AF T , C 0 MP. N 21 E ) ' 



162 


CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The following conclusions are drawn based on the 

work presented above. 

(1) The continuum approach in combination with the trans­

fer matrix technique can provide an efficient means to 

obtain a full time -hi s tory r e spons e to ground motions. Th e 

proposed method is capable of handling plane non-uniform 

coupJed shear wall structures subjected to any gr ound 

acceleration. The ef f ect of flexible foundation can be 

incorpor a ted in the analys i s. Complexity in th e struc tural 

configuration and/or the inelastic regions are convenientl y 

handled by dividing the structur e into a series of se gments 

where eac h s e gment h as uniform structural propert ies wi th i n 

itself. Independent of the number of storeys of th e 

structure or the number of segment s into which th e wall s ar e 

to be divid ed , th e !esult i n g t ·r ans f e r matric e s are si x by 

six matr i ces. Ther ~fore, computer s with limited memory 

capacity can be used to analyze high rise buildings usin g 

the proposed method, 

(2) The P-l Ef f e ct app ear s to ha v e a mi nor i n f lu enc e in 

the coupled shear walls stiffness. This is due to the piers 
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are assumed to remain elastic throughout the analysis, With 

possible plastic deformations in the walls, the P-~ Effect 

may be important, This aspect requires further investigation. 

( 3) For a twenty storey b~ilding, five lumped mass 

dynamic model is shown to be adequate. The response of the 

five mass system is found to be very close to the response 

of ten mass system, while the computation costs for the 

former is only one quarter the computation costs for the 

l ater. 

( 4) For a uniform building with walls of different 

s tiffness, if the masses of the building are to be distri­

buted uniformly throughout the height in accordance with the 

wall stiffnesses, only the fundamental periods of the walls 

will be the same. The periods of the other modes will be 

d ifferent. To obtain identical periods for all modes in the 

walls, it becomes necessary to distribute the masses non­

unifor~ly along the height of each wall, even though the 

building as a whole is a uniform building. 

(5) For the same building, under the same ground motions, 

the walls coupled by floor slabs (flexible connection) suffer 

more damage than those coupled by stiff connecting beams, 

al though the Tatter share more in resisting the lateral . 

earthquake loads, 

(6) Due to the high shearing force transm·itting capacity 

of the connecting beams, the axial force in the piers due to 
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lateral load may exceed the dead load carried by each pier. 

In such a case a tensile force will occur at the base of 

the pier. This situation is particularly serious for end 

walls where the coupling deep beam is stiff .and yet the 

tributary area for gravity load is small. 

(7) Based on the present l imited study, it shows that the model 

structu~e will suffer light damage if it is exposed to earthquake 

having the same intensity as that used i n designing the coupled shear 

wall according to the NBCC [10] and the ACI Code [l]. On the other hand, 

if the wall is exposed to earthquake having a higher intensity compared 

with the design earthquake, a heavy damage may occur even in the piers 

for rotational ductility , factor µ equals to 15. 

(8) The improvement gain ed in the coupled shear wall 

behaviour by increasing the rotational ductility factor of 

the connecting beams is noticeable when the wall is exposed 

to strong earthquakes, while this improvement is limited 

when the wall is exp os ed to moderate earthquakes. 

5.2 Recommendations 

The following points require further investigations . 

(1) Detailed modeling techniques such as the use of 

cracked sections, strain hardening as exhibited by steel, 

deteriorate sti£fness due to the cycl ic loading o f concrete 

members are useful to incorporate into the analysis to 
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obtain more realistic results. 

(2) To avoid any tensile forces to be existing in the piers, it 

is necessary to increase the dead load carried by the piers when the 

coupling beams have stiff connecting beams. This can be done by 

arranging the walls in such a way keeps the tributary area proportional 

to the wall stiffness for all the walls. 



APPENDIX A 

DESIGN CALCULATION FOR EXTERIOR AND INTERIOR 

WALLS IN EX AMPLE BUILDINGS 

For the multi-storey building shown in Figure (4-1), 

the straining actions at the base of the piers are to be 

calculated according to National Building Code of Canada for 

16% g and for 8% g seismic l oading. The two coupled sh ear 

walls given in Chapter 4 are considered in thi s Appendix, the 

first will be designed to 16% g , while the second exampl e wil l 

be designed twice, once for 16% g and the other for 8% g 

seismic loading. 

The two walls are designed to resist the d ea d load , 

live load and earthq~ake loads. The critical design sections 

for each wall are the connecting beams cross section, and 

the piers cross section at base. 

As the earthquake loads a re to be distributed accord­

ing to the wal l s stiffnesses, it is necessary to estimate 

from the beginning th e stiffnesses o f these walls . The 

overall stiffness of th e wall is affected by the stiffness 

of the connecting beams which can be represented by the 

factor a, where 

12I £22 _ _p _A_ ]a = [--- + (A-1)
Ih C 3 AlA2 
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where 

I = Il + 12 

A += Al A2 

h = Storey height 

and I = Moment of inertia of connecting be ams. 
p 

A- 1 Stiffness of th e Connectin g Beams 

a- Exterior Wal l 

Let us con sider the connectin g beams are doibly 

reinforced concrete cross section. Taking 

E c = 3. 5x10 3 Ksi 

f ' = 4 Ks i a n-d f = 6 0 KS i c y 

We ·have A' = 0 s 


So n eglect A ' in getting M 
s u 

f ~ 8 7000 = Ac[0.85x-r-xKx 8 7000 +f ] (A-2) 
y y 

= 2.85% Ac 

Trying 4#9 (As = 4 in 2 ) 

.'.A IA = 70% .. O.K. 
S Sb 

A -A = 2% s c 
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To obtain the Comp. zone, Figure (A~l) 

a = 7 .8 in 

Ultimate Bending Moment Capacity 

= 4 x 60000 x 18.1 = 43.45 x 105 in.lb 

= 362,0 ft.Kip 

qp = 2Mu/(c.h) = 2 x 362/(5x8.75) = 16.0 Kip/ft. 

Cracked 

7.8x9x8 .. l 
e = = 4.1 " 


22 9 (~ 2.0x2 ~) 

x 22 + 100 x3.5 

3 
7.8x9 2 29 2 2

I = 1 2 + 9x7. 8xlf:() + 3:5 x 4 ["5."9 + 14""":1]er 

= 0.4575 ft 4 

Check for Tension Steel 

£5 = 0.003 x [ 22~ (7.8/0.8 5 )]/(7.8/0. 85) = 0.00 425 

http:362/(5x8.75
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f ~ 0.00425 x 29000000 = 129000 p
s si 

= 129 K . > f
Sl y 

Steel yields. 

Chec k for Comp. Force 

C = 7,8 x 9 x 0.85 x 4 = 240 Kip # 

T - 4 x 6000 = 240 Kip # O.K. 

Facto r a HT 

2 
2 1 2x0 . 4575 [22.5 + 26 . 25 ] = -2 a = 0.00 45 5 ft 

8. 75x(5) 3 670 (13.125) 2 

.. aHT = 0.0675 x 87.5 = 5.9 (moderately coupled wall) 

b - Interior Wall 

From [7 ] with the following dimensions 

L = 5 , ~ = 0.125 and Y/X = 0.5 

, see Figure (A- 2). 
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0.85 fc: 
I 

fc =.003 in? j_ 

= 4 i n.2 

f.- 9// -I 

FIG. A_1 STRESS_STRAIN DISTRIBUTION FOR CONNECTING 

BEAMS OF THE EXTERIOR WALL 

A5 T 

T c T 211 

TAT
a · x 

_j_ j_ N 

t 
- + 

C.G. 
2011 

h----· 24 

l l12 

T I
__L 2" 

I
f- 20 ~ 

j_ ~-----+------! l.-.J[. ~I ITr-,--: ---r- --- ,~:, ITY
c 

,l_ 
J so'X=40 L 

1I 1 I T 
J I 

I 

17.5 1 
I 

..... .··· ···i·....1$··· ·· ··!·· .... .. ... + ' '1c ~ T 
j •.V = 201 

... j T 
FIG. A _ 3 

311- 5/ tt 
TRIBUTARY AR EA FOR

j_ j_( 
INTERIOR WALLS,, I49 

f Tf 

~ 3.50 
I ....., 

FIG. A _ 2 CONN EC TING SLA BS OF 

INTERIOR WALLS 

6 



I 

171 

Y /Y = 0.175 e 

y = 0.175 x 20 
e 

= 3.5 ft. 

A = 2.85% A cSb 

Take A 0.5 A"' s Sb 

15% A"' c 

2 = 3.15 in 

Take 3#5 /ft ' = 3.2 in 2 

A s = 1.525 %
A c 

a = 1. 34 in 

M = 58.5 K.ft. 
u 

qp = 2 .6 8 K/ ft . 

Cracked 

e = 1. 2 in 

I = 0.0 23 5 ft 4 
er 
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Check for Tension Steel 

E = 0.00652 s 

f s = 189 K . > f O .K. yielded
Sl y 

Check for Comp. Force 

C : 1.34 x 42 x 0.85 x 4 = 192 Kips # 

T ~ 3.2 x 60 = 1 92 K9ps # 

Factor 	aHT 

2 

a2 = 12x0.0235 [22.5 + 
 26 · 25 	 ] = 0 , 000234 ftM 2 

8 . 75x(5) 3 670 (13.125) 2 

aHT = 0.0153 x 87.5 = 1.34 (Flexible coupled Wall) 

A . 2 	 Limit States Design 

The factored load combinations shall be equalled to 

(A-3) 


where 

* °'o = 1. 25 or in case 

stress reversal 

of over 

0.85 " 

turning, up 1 i ft and 

°'L 

°'Q 

°'T 

= 

= 

= 

1. 5 

1. 5 

1. 25 

and 
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;:* 1/1 	 1. 0 when only 1 of the loads L, Q and T 

acts, 

1/i - 0' 7 wh e n 2 of the loads L, Q and T act, 

and 

1/i = 0.6 when all the loads L, Q and T act. 

* 	 y = I. 0 for all buildings, except as provid e d 

in Cl a use (b) - 4.1.4.2 ( 5) , N,B.C. ( 19 7 5-J . 

Coupled She a r Wall II - II 

Dead Lo a ds 

- Own Wt. 

0.75 x 17.5 x 2 x 0 . 150 = 3 , 92 K/ft 

- Slabs Figure (A- 3) 

Cover = 30 lb/ft 2 

Slabs wt. = 0.5 x 1 50 = 75 lb/ft 2 

.·.Reaction of slab on the coupled shear wall= (0.03+0.0 7 5) 

x50x20 

- 105 Kip/Storey 

- Partitions 

Assume th e total wt. of the partitions ~ total wt. of 

walls 

Total 	D.L./storey = 105+3.92x2x8,75 = 105+68,5 

= 173,5 Kips 

Total D.L. at G,L. = 1735 Kips 
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Live Loads 

* 	 As the coupled shear wall supports an area of floor and 

roof > 900 ft 2 

Multiplied factor equals to 0.5+15//A = 0.975 

* 	 For Residental Areas 

4 0 p s f in t h e mi n . d e s i g n 1 o ad for apart men t s , h o t e 1 s-. . . 

20 psf in the min. design load for roofs. 

20 psf in the min. design load for snow for roofs 

with a slope of 30 deg. or less. 

L.L. (1st floor~ 9th floor) = (.040x20x40+0.100x20xl0) 

0.975 

= 50.7 Kips 

& L.L. (10th floor - roof) = (.040x20x50)0.975 

= 39.0 Kips 

Total L.L. at G.L. = 50.7x9+39 = 495 Kips 

& Max. O.T.M. at G.L. = (5x20x0.lx22.5x9+20x20x0.04xl0x9 

+25x20 x0 .0 4xl2.5)x0 .975 

= 3625 K.ft 

Coupled Shear Wall I - I 

Dead Loads 

Own Wt. 3.92 K/ft. 

- Slabs 52.5 K/storey 

Partitions 3.92 K/ft.'°' 
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Total D.L./storey = 52.5+3.92x2x8.75 -· 121 Kips 

Total D.L, at G.L, = 1210 Kips. 

Live Loads 

Total L.L. at G.L. = 254 Kips. 

Max. O.T.M. at G.L. = 1855 K.ft. 

Whole Building 

Effect of Earthquakes 

The base shear Q can be determined from the following 

equations 

Q = A.S.K.I.F.W 

where 

A= 	percentage of the gravity acceleration g 0.16 as 

upper limited in Vancouver area with probability 

of annual exceedance equals to 0.005, NBC comment­

ary J [10]. 

s = Seismic Response factor (0.5/31T ) (A-4) 

T = Period of the structure (0. 05h /ID) (A-5)n 

= 0.05x87.5/ 40 = 0.69 sec. 
3 

s = 0. 5/ !0':69 = 0.565 

K = Structural factor (.!...:_Q_ for ductile shear wall) 

I = Important factor (l.:._Q_ for ordinary stru~tures) 

F = Foundation factor (~ for dense sand) 

http:52.5+3.92x2x8.75
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And W 	= Weight of the structure + Snow for roofs 

= (7xl735+3,9 2x8 .75xl0+50xl40x0.02) = 12627 Kips. 

Q = 0.16x0.565xl.Oxl.Oxl.3xl2627 = 1465 Kips. 

As h /D < 3 .'. No concentrated force at top.n s 

As the storey height is constnat with the height and the 

masses at slab levels are equal 

n 
: . F = (Qh I l h.) 

x x i=l l 

n
I h. = (1+2+3+4+5+6+7+8+9+10)8.75 = 55x8.75 ft. 

. 1 li= 

1= 1465 x = 26.6K55 

F 2 = 53.5K , F 3 = 79.9K F 4 = 106.6K , F 5 = 133.2K 

= 159.8K = 186. 4K , = 213.2K , = 239.8KF 6 F 7 F8 F 9 


And Flo = 266.4K. 


As T = 0.69 s e c. (O.S<T~l.5) J = 1.1-0.2+0.69 

= 0.962 
The reduced overturning moment and the shearing force diagrams are given by 
Figure (A-4) 

"" 4. 5 a.H 
TI I-II 

The stiffness of wall I-I is much bigger than the 

stiffness of wall I I-II ~ So, assume the stiffness of wall I-I 

equals to three times the stiffness of wall II-II. 

http:1.1-0.2+0.69
http:1+2+3+4+5+6+7+8+9+10)8.75
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266. 4 - ---a. 255.4 

,____.i 18 G .4 

\....--a.I 159.8 

10 6.6 

79.9 

53.3 

25.G 

1465.0 
1.-------.....,.,~ 

REDUCED 0 .T. M. (1000 K.FT) S • F . D. ( K !PS) L . F.D _ (KIPS) 


FIG. A_4 LOADING AND STRAIN ING ACTIONS ( EARTHQUAl-< E EFFECT) 


3K I< K 

.· W10255 1<1P. FT 


- 60.0 

I~ 

I .1 -_.i.­r--J- f2=14.1 

TORSIONAL EFFECT 
(KIPS) 

F1 =60.0 
I
I FIG.A_5 
I 
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The effect of Earthquake on wall I~I :::: ( 2x
3 
3 + 7 ) [86300] 

:: 1995 K.ft 

And the effect of earthquake on wall II-II 

:::: 1~[86300] :::: 665 K.ft 

Effect of Torsion 

For symmetrical plan as given by Figure {A-5) the 

accidental torsion must be considered. Equation (A-6) gives 

the accidental torsion moment. 

e vMT x 

;:::where v Base shear 

:; 1465 Kip. 

e = 0.05B x 

MT 

= 7.0 ft. 

;::: 7x1465 = 10255 Kip.ft. 

From Figure (A-5) 

= (294+50+18+2)100 

= 36400 ft 2 
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±10255x3x70 
=Fl 36400 

= ±60 Kip. (at base) 

±10255x50 
F2 = 36400 

= ±14.1 KiE· 

M = 1995*(1+ 13 x 6 0 ) = 23500 Kip. ft. (17% increase)
!!Total 3xl465 

= 665 *(l+l3xl4.l) = 7450 Kip . ft . (12.4%1465 

increase) 

Thermal Effect: Neglected 

pesign Tables 



Wall I-I (Exterior) 
II-II (Interior) 

Load D D+L D+Q D+L+Q D I D+L D+Q
Combination 

1jJ 1. 0 1. 0 1. 0 0. 7 1. 0 1. 0 1.0 

a.D 1. 25 1. 2 5 0. 8 5 1. 25 0.85 1. 2 5 0.85 1. 25 1. 25 0.85 1. 25 0.85 

"'-1510 i:--1060 -2902 1-2207 
·-~Axial Force -1510 -1890 - 1440 -17 76 -132 6 -2170 -2 170 -1475 

Kip 

Shearing F. 0 0 0 600 600 420 420 0 0 0 210 210 
Kip 

O.T.M. 0 2785 27 8 5 35250 3525 0 26600 26600 0 5440 5440 11200 11200 
Kip.ft. 

D+L+Q 

0 . 7 

1. 25 0.85 

"' -2 6 84 -1989 

147 147 

11 6 50 11650 

Table (A-1) Strainin g Actions at the Base, 10 Storey Building 

~ 

*• 
Critical 

Critical 

for 

for 

Over 

Over 

Stressing 

Turning 

~ 

00 
0 
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Walls 	Con s t an t s 

2 µ2 
= 	 = EI a+(I/A.a) 

and 

For both 	 A = 6.56 2 5 ft 2 I = 6 7 0 ft 4 

a = 22.5 ft a nd E = 3500 K .
Sl 

Wa ll a.H T 
2 

Cl. 
2 

]J 
2 y 2 2 

y / a. Mov. st . Mo v. T To v. st. Tov.T. 

I - I 5.9 0.00 4 55 3 9 4 0 .0001 68 0 . 03 70 35250 3 5250 ± 13 05 ±1305 

II-II 1. 34 0.0002 34 20 . 4 0.00000 27 0.0 37 0 11650 11 2 00 * ±43 0 * ±4 15 l 

* Bigge r than T 
max 

Tab l e ( A- 2) Wal l s Cons t a n ts a nd 

at Bas e , 10 S tore y 

Axia l Forces 

Bu i ld i n g 

d ue to th e O. T . M. 

At b ase T = 
2 

L 
2 

Cl 

M 
(x = O) 

(A-6) 

T 
max = +H *q- T p 

Wall I -I : T 
ma x 

:::; ± 8 7 .5 * 16 = ± 1 4 00 Ki p, 

Wall II - II: T max = ±87.5*2 . 68 = ± 2 34 .5 Kip. 



---

182 


So from table (A~2) T . and T . are over stressing over turning 

bigger than T for wall II•II. max 

Tov.st = Tov.T - ±234.5 Kip. 

M-T.aFor = --2-­I 1 

Over turningOver stressin g 

Wall ,, 
K' K K KK K K 

NM 
K' 

M N MNN M c c c maxmax c max max 

® ©Wall 2925 +775 2925 -18352925 +550 ~92 5 fC?2 060I-I 

®-----­ -
®Wall 

II-II -967.02735 - 4 9 8. 0 27353185 -1576.53185- 110 7. 5 

Table (AL..3)· Desi gn Values, 10 Storey Buildin g 

1 & 3 - Check for Comp. in Concrete 

2 - Check for A . s 

For the two walls the same cross section a nd reinforce­

ment will be considered. 

For the material properties chosen for the connecting 

beams 

= 2,85% A c 
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Choose = 0.3A = 0,854% AA5 Sb c 

= 0.854x9xl2xl7.0 = 15 . 65 in2 (l 2#lO) 
100 

, The wall cross section is shown in Figure (A-8a) 

A = 14.7 in 2 (0.285 A ) & (0.8% A) 
5 act sb c 

Check 

pt = 1. 6 
= 0.016A 100sTotal 

17 · 0d/t ·- = 0.975 &~ = (M/P)t = (M/P)/17.517.5 t 

For the above three values we can use the interaction 

diagrams [24) 

m = f /(0.85 f 1 ) = 17.65 
y c 
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p pM' =PI M'' =K.b. · ue u u u uWall -Pt,m K - Cbmmen 1slt. f' -. e pt c M 

I - I ( 1) 0.2825 0,0815 0.860 6500 9250 3,15 3.15 F.O.S. 
=3.15 

I - I (2) - p is a 
Tension 

Force 

- - -- --

II-11(3) 0. 2 825 0.1160 0.835 6250 12600 3.98 3.98 F. 0. S. 
=3.98 

Table (A-4) Check for the Assumed Section, 

10 Storey Building 

For the Case (2) Wall I-I 

p = +775 M = 2925' 

e = 3.78 ' < 

P acting inside the reinforced steel. 

.. Neglect the concrete, Figure (A - 6) 

To get the ultimate values, P and M , we have the 
u u 

following equations 

;:N 2A f = 29.4 x f (i)u s sl sl 

.., 


Mu As(d-d ' ) . f = 242 . 5 f Ci i)
;::: 

s5 2 
2 
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0 
•I 

Fl G. A_ 6 STEEL SECTION 

STIRRUPS 
# 3i<J6 " 

4#10 

l--1l --J 

FIG. A _7 CONNECTING BEAMS CROSS SECTION, EXTERIOR 

WALL ( 20 STORY BUILDING , 16 % g) 
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f + f = f y = 60 (iii)
sl s2 


f = 60 - f 

sl 52 

'"' 
M = N . e = 3.78 N Liv)u u u 

3,78N = 242.5 f 
u s2 

N = 29.4(60 - f ) = 1765 -29.4 f u s2 s2 

= 1765 - 29,4x0.0156 N 
u 

1765
N = = 1210 

u 1.46 

N 
u 1210F. 0 .-S . = p = = 1. 5 7 775 

*Additional safety can be gained by introducing the long steel. 

For all conne c ting beams are real hinges (Wall I-I). 

P = -755 K. (constant) 

To get the ultimate B.M. assume large eccentrisity 

Check 

e 
K = 0. 1 0 u = 1. 5 e = 26.25 ft.

t u 


. 3 

~Mu 26,25*P = 19.8xl0 K.ft, 
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A-3 Case of 20 Stories: [16 %g, g round acceleration] 

Take b = 12 " (T = 1.38 sec,) 

Wall I-I (Exterior) 

and q = 20 Kip/ft
p 

Wall II-II (Interior) 

HT = 2.33 and q = 2.68 Kip/ft
p 

Design Tables 



Wall I-I (Exterior) I II -II (Interior) 

Load 
Combination D D+L D+Q D+L+Q D D+L D+Q D+L+Q 

ijJ 1. 0 1. 0 1. 0 0 . 7 1. 0 1. 0 1. 0 0.7 

aD 1. 25 1. 25 0.85 1. 25 0. 8 5 1. 2 5 0.85 1.25 1.25 0.85 1 . 2 5 0.85 1. 25 0 . 85 

Axial Force 
Kip 

-3310 -4065 -3005 
>< 

-3310 
" >< 

-2250 -3840 - 278 0 -4630 -6142 -46 62 - 4 630 "'" -3 150 -569 0 
. 

- 42 1 0 

Shearing F. 
Kip 

0 0 0 1050 1050 7 35 735 0 0 0 390 390 245 2451 

O.T.M. 
1000 K.ft . 
' 

0 5 . 9 5. 9 109. 0 10 9 . 0 80 .5 

I 
80 .5 0 11. 8 11. 8 35.0 35. 0 32. 7 32. 7 

Table (A -5 ) Straining Actions at the Base, 20 Storey Buildin g (16 % g) 

- * 

** 

For 

Over 

Over 

Both 

Stressing 

Turning 

· · A = 8.825 ft 2 , I = 895 ft 4 , a = 22.5 ft and E = 3500 K .
Sl 

..... 
CXl 
CXl 
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= 2.85% J\ c 

Take A ~ 0.4 A ~ l.1S% A ~ 29 in 2 
s cSb 

Choose 18#11 (26.S in 2 ) , 0.366 A and 1,04% A 
Sb C 

The wall cross sec t ion is shown in Figure (A-8) 

Check 

pt = 2.08 m = 17.6S Pt.ID = 0.3 67
100 ' 


16.87S
d/t = - 0.967
17.SOO 

/ 

- -
p M- ue u

M ::;pWll l - . e F.O.S.p =K.b.t.KPt.ID pu u u Mt f' 
c 

(1) 
I -I 1. SS0.367 0.800 23700 1. s s 1. SS0.170 8000 

(2) 
I -I Unsafe * - 0.84 0.840.370 - --

(3) 
II -I I 2 .3 2 2.3 22S600 2. 3 2 0.367 0.191 0.770 7700 

Table (A-8) Check for the Assumed Section, 20 Storey Buildin g 

(16% g)_ 

·* Incre ase the area of steel by usi n g 22#1 1 (32,2 in 2 ) 


F.0.S, ;:; 1.04 (Wall l-I only). 


As 

y:;- = 0 .44 S & As = 1.28% A c 

Sb 
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* For all connecting beams real hinges (wall I ~ I) P = ~1655 K. 

e 

K = 0.165 u ::: 1. 50 e = 2-6. 2 5 ft. 


t u 


M = 43400 K.ft. 

u 

A-4 Case of 20 Stories: [8%g, ground acceleration] 

' llTaking b = 0.75 (g) , (T = 1.38 sec.) 

The connecting beam cross section will take as giv e n by 

F i gill r e (A - 1 ) . 

Exterior Wall (I _-.:_U 

and q 16 K/ft
p 

Interior Wall (II-II) 

aHT = 2.33 and qp = 2.68 K/ft. 

Design Tables 



Wall Exterior (I-I) 
I Interior (II-II) 

Load 
D D+L D+Q D+L+Q D D+L D+Q

Combination 

ijJ 1. 0 1. 0 1. 0 0.7 1. 0 1.0 1. 0 

aD 1. 25 1. 25 0.85 1. 25 0.85 1. 25 0.85 1. 25 1. 25 0.85 1. 25 0.85 

Axial force * ** ** 
Kip -3030 -3785 -2810 -3030 -2055 -3560 - 2585 - 4350 ... 5 8 62 -4467 - 4 350 -2955 

Shearing 
0 0 0 480 480 336 336 0 0 0 183 183force Kip 

O.T.M. 
11000 Kip.ft 0 5.9 5.9 50.0 50.0 39. 2 39. 2 0 11. 8 11. 8 16.5 16.5 
L 

D+L+Q 

0.7 

1. 25 0.85 

* -5410 -4015 

128 

20.0 

128 

20.0 

* 

*k 

Over 

Over 

stressing 

turning 

Table (A-9) Straining Actions at the Base , 20 Storey Building (8% g) 

For both: A = 6.5625 ft 2 I = 670 ft 4 a = 22.5 ft and E = 3500 K .
S1 

~ 

\.0 
N 



- -

193 


KK.ft K.ft K,ft
2/ 2y Ct M . TTMWALL oy. st, oy,t. ov,st. ov,t 

l0.0370 ::i 0 0 00 50000 ±1850 ±1850Exterior (I~ l) 

- ..i.-

** ±610 IInterior (II - II) 0.0370 2 0000 16500 ± 740 

* Bigger than T 
max 

Table (A-10) Axial Force due to th e O.T,M. at Base, 20 Storey 

T ; ±16xl 7 5 = ±2800 Kip. 
max I-I 

T = ±2.68xl75 = ±4 69 Kip. 
maxII-II 

Over Stres s in g Over Turning 

WALL K.ft. 
M max 

K 
N 

c 

K.ft. 
M 

c 

K 
N max 

K.ft. 
M max 

K 
N 

c 

K.ft. 
M c 

K 
N max 

I 

Exterior (I-I) 
>----­

Interior(II-II) 

4 2 50 

4 7 50 

+335 

-2236 

(1 ) 
4250 

( 3) 
4 7 50 

-3365 

-317 4 

( 2) 
4250 

3000 

+82 2 

-100 8 

4250 

3 000 

- 2 878 

-1946 

1 & 3 check for Comp. in concrete. 

2 check for A . s 

Table (A-11) De s i g n Values, 20 Storey Building (8 %g) 

Tryin g th e wall cross section s hown in figure (A- 8a). 
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Check 

d/t = 0.975 'f = and mP = 0,2825(f)/17.5 t 

Table (A" l 2) gives the facyor of safety with the three 

cases of loading given by Table (A-11). 

WALL 

Exterior 
(1) 

(I - I) 

Pt.m 

0.2825 

e 
-· 
t 

0.072 

K 

0.860 

" 
P=K.B u 
. t. f' 

c 

6500 

- -
M =P u u 

. e 

8200 

-
P /Pu 

1. 94 

-
M /M 

u 

1.94 

-
F. 0. S. 

1. 94 

Exterior 
(2) 

(I - I) - 0.297 - - - 1.333 1.333 1.333 

(3) 
Interio r (II-II) 0.2825 0.086 0.880 6500 9800 2.05 2.05 2.05 

Table (A-12) Check for the Assumed Section, 20 Storey Building 

( 8 % g) 

For all connecting beams real hinges (wall I-I) P = ;1515 Kip. 

e 
K = 0.200 u = 0.96 e = 16.8 ft. 

t u 

Mu = 25500 ft.Kip. 

In table (A-13) a summary of the actual design with 

M value for ezample 2 with the two cases considered, namely:u 

design for 0.16g, and design for 0,08g, 



Max. G. Acceleration=8 %g Max.G. Acceleration=l6%g 

- -
MA AWall M Wall AA qpqp uWALL ss uSb Sb wwWidth w Widthw 

4#10 9"22#11Exterior 12 " 4# 9 12 #10 16 K/ ft 2550 0K ' 20 K/ft I 43400 K' 

,,
* * 
12 " 3#5/ft 18#11Interior 2.68K/ft 3#5/ ft 12 #1037700K ' 9 2.68K/ft 2ssd 

* Connecting slab width = 3.5 ft. 

Table (A-13) Summary of Actual Design, 20 Storey Buildi ng 

Note: 

The dimensions and reinforcements in the case of 8%g not exactly one half those 

for the case of 16%g due to the minimum requirements recomm ended b y the code, also due 

to the live and dead :loads effect. 

fo-' 
~ 
CJl 



______ 

1.1-4/10 ft2 1 ff 3 I ft 1#-4/ft 

12:110j_/ ,12#10 

0.75 

T 
1# 3 / ft 1/ 4 / ft 

I 

l(a) BASE CROSS SECTION FOR INTERIOR AND EX TERIOR WALLS (10 STORY BLDG & 20 STORY BLDG,8% g) 

I I 

• • T • • ,,v ~ -~ T ~ -.~ 

JI!~,,, 
......_ _._ _._ _._ _._ It_ _._ "'-

• 
...... ......_ 

~ 

~ 
~ ~~ 

1#4/1 0 ft 2 1 #' 4/ft 1 # 5 If t 

L 18 =1t- 1118#111 L , /II 111Jfi1 

1.0 ~ ~ 
lil.bi 

1 
II 1#4/tt 1;f5/tt~ 

.l 
/ 

1.0 

T 

I 
( b) BASE 

22t11 

I 

CROSS SECTION FOR INTERIOR 

1#4/10ft2 

J_ 

WALLS ( 20 STORY BLDG,16 % g) 

1#4/tt 1;f'5/tt 

L 

111'4/ft ~ 11-5/ft -

22 ~11 
J 
~ 

I! ~ 

I 

L.. 
~c) BASE CROSS SECTION 

I 
17. 5 0 

FOR EXTERIOR WALLS 

FIG. A _ 8 DETA I L IN G 

(20STORY BLD G , 16%g) 

0 F BAS E CROSS SECT 10 N S 

_J 
~, 

tD 
en 

~~ JI 1i ...... "T .. v ~ • -.- fi ~ -. p ~ 

~ ~ la i.; _._ _ll __. 

..... --. 

.ll _J _._ _ll __!! ___._ • It • Ill • 

1i 

'~ 
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