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CHAPTER l INTRODUCTION 

In the last few years considerable work has been done 

in attempting to extend the results of nuclear matter 

calculations to the neutron gas limit. More recently this 

work has been stimulated by the discovery of pulsars late in 

1967 and their subsequent interpretation by Gold (1968) as 

rotating neutron stars. The work presented here will deal 

with matter near the neutron gas limit. It was moti vated by 

the fact that the Nemeth-Sprung paper (1968) appears to be 

wrong, and by a desire to extend the calculation to a higher 

density region. A recent paper by Baym, Bethe and Pethick 

(1971) indicates that neutron stars have a lattice structure 

up to the density of normal nuclear matter. Only then do 

the nuclei really dissolve and uniform neutron star matter 

come into existence. The calculation presented here is thus 

of interest mainly in the region greater than that of ordinary 

nuclear matter, although results will be given for lower 

densities where the calculation gives an upper bound on the 

actual e n e r gy . 

An e xpre ssion f or the e ne rgy of the n eutron star 

matter as a functi on of the fractional concentration of 

protons, y , will be obtaine d. The main r e sult will b e to 

obtain t h e f r a c t ion o f proton s which minimizes the e ne rgy 

of the syste m at a given de nsity. Th e energy e xpression will 
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also be used, along with results from elsewhere, for the 

nuclear matter region, to obtain an expression which 

interpolates the energy per particle between symmetric 

nuclear matter and a pure neutron gas. 

Chapter 2 begins with a discussion of the model for 

neutron star matter. It discusses the terms which will be 

included in the energy expression and obtains an expression 

for the kinetic and r est mass energies of the neutrons, 

protons, electrons and muons. In Chapter 3 the method of 

obtaining the expression for the nuclear potential energy is 

discussed. Chapter 4 treats some of the details of the 

calculation and presents the results obtained from the energy 

minimization. Chapter 5 deals with the problem of interpol­

ating between nuclear matter and neutron gas limits. 



CHAPTER 2 KINETIC AND REST MASS ENERGIES 

Neutron stars were first postulated by Landau in 

1932, as products of a supernova explosion. The supernova 

remnant theory is presently backed up by the evidence that 

the pulsar with the shortest period, and therefore presumably 

one of the youngest, is in the Crab Nebula - which was formed 

by the supernova explosion of 1054 A.D. The theory proposes 

. 7 8
that a star of several solar masses and density ~10 to 10 

g/cm3 gradually loses energy and contracts, eventually becoming 

unstable against collapse. A supernova explosion follows and 

under certain conditi ons leaves behind a superdense core. 

This core is rich in neutrons because the electrons at this 

density are highly relativistic, and it is energetically 

favourable for inverse S decay to occur; so that an electron 

and a proton form a neutron (and a neutrino which escapes). 

Some of the electrons at the top of the Fermi sea may have 

sufficient energy to form muons. Since the star before 

collapse has net charge of zero, and these interactions 

conserve charge, the resulting neutron star is also 

electrically neutral. Since neutron stars are believed to 

be at a temperature ~10 8 °K after the initial cooling and the 

energy per particle near nuclear matter densities is several 
. 11

MeV, corresponding to ~10 °K. we can use the zero temperature 

limit in our calculati ons without introducing any error. 

3 
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Our model for a neutron star is therefore quite a 

simple one. It consists of a degenerate Fermi gas of 

neutrons with a small fraction of protons and enough electrons 

and muons to keep the system electrically neutral. In the 

following discussion the term neutron star matter will refer 

to the mixture of neutrons, protons, electrons and muons. 

If the system is entirely neutrons, it will be called a 

neutron gas. When it consists of an equal number of protons 

and neutrons with no electrons, it will be referred to as 

nuclear matter. The Coulomb force is assumed not to be 

present when we discuss nuclear matter. 

Having decided on a model to use, the next step is to 

develop an expression for the energy of the system. Included 

in the energy calculation are the rest mass energies and a 

two body interaction between the nucleons based on the Reid 

potential. Because the particles are assumed to form a 

uniform gas, the net charge in any volume element is zero; 

there is, therefore, no Coulomb contribution to the energy 

of the system. 

Consider first the kinetic energy of the neutrons 

and protons. The kinetic energy of a particle in state i of 

a Fermi gas is 

E. (1)
J. 
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and the total energy of n particles, 

n 
E = l: E. (2)

J.i=l 

For a degenerate gas (i.e., in the T = 0°K limit) all the 

available states below the Fermi momentum pf = ~ kf are 

occupied, and all the states above pf' unoccupied. Trans­

forming to the continuum: 

(3) 

where the factor 2 arises from the two spin states of a 

nucleon, and ~ is a normalization factor. The total kinetic 
h 

energy of the system is therefore 

pf 
2 

E = 2 _E_ 47T E.__ p 2 dp2mh3 f 
0 

5 
·n 1 pf 

= 2 4rr - 5- (4)
2mh3 

The number of particles in the system is A = l: g., where g.
l. l. 

is the occupancy of state i. Since g . = 2 for fermions,
l. 

n 
fA -+ 2 d3p 

h3 

3 
pfn = 2 4rr (5)

3h3 
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The energy per particle is then 

E/A (6) 

The number of particles per unit volume, the number density, 

is obtained from equation (5) 

(7) 

For a system of neutrons and protons the total 

density is simply the sum of the neutron and proton densities 

p = + pp (8)Pn 

1 2 3 = (k 3 + k 3) = (-9)--2 kFn p3'TT2 3'TT 

33 k 3where 2k = + k (10)F n p 

In symmetric nuclear matter k = k = kF.n p 

Consider a system of A nucleons composed of N neutrons 

zand Z protons. If the fraction of protons is y = A' then 

p = y p Pn = (1-y)p (11)p 

3 3k = 2y k and kn3 = 2(1-y)kF3 (12)p F 
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or 

Therefore, for the kinetic energy of the system 

2 2 
=Ncl~k 2 > + zcl~k 2 >5 2m n 5 2m pn p 

h 2 23 2/3 2/3 k 2 3 ~ 2/3 k 2]
= A(l-y) [5 2mn 2 (l-y) F ] + Ay[S 2mp y F 

=A (14) 

The rest mass energy of the system is 

2 2= N m c + Z m c n p 

=A c 2 [m + y(m -m )] (15)n p n 

The electrons and muons, because of their small mass, 

must be treated relativistically so instead of equation (1) 

we have to use 

(16) 


where rn is the rest mass. 

Then, the total energy is 

E =EE .+ 2(Jl.) 4rr (17)
1 h3 



8 

The total number of particles is the same as in the non-

degenerate case, which is given by equation (5). The energy 

per particle is therefore 

(£3 2 I 2 2 2 4T/A = 	-3 p p c + m c dp (18) 
pf 0 

_E_ flkLetting x = = , equation (18) becomes me me 

xf
f x 2 lx2 + 1 dx 

0 

T/A = 

4c 53m 2 1/2 2 	 1= [ ( + 1) ( 2xf + 1) - · h - ]8~3k 3 xf x f 	 sin xf 
f 

(19) 

If there are y 1A electrons and y 2A muons the n their energy 

contribution is 

whe r e re fers to the electrons and to t he muons . Wex1 x 2 

know that 

flk e and P =-l-k3 (21)m c 	 e 2 e3e 	 'IT 

T + T e µ 

4 

[m: ~l { xl(xl2+1)1/2(2xl+l) 
e 

-1 - sinh x2} ] 

(20) 
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2Y1 3
Also (22)Pe = Y1 P = -2 kF 

371' 

... k = (371'2p )1/3 = (2y ) 1/3 kF ( 23)
e e 1 

Similar equations apply for the muons. Then 

equation (20) becomes 

T + T e µ 

where 

4 2 1/2 . -1 mµ {x2 Cx2 +l) (2x2+1)-sinh x 1 }] 

(24) 

= 21/3 flkF 1/3 , and ( 25)x2 m c Y2 
µ 

There are two constraints on and that must bey 1 y 2 

applied in this problem: 

(i) to preserve charge neutrality y 1 + = y, where y isy 2 

the proton density; and 

(ii) no muons will be created unless the relativistic mass 

of the last electron at the electron Fermi surface is greater 

than the rest mass of the muon, i.e., 

2 2 2 4 2 4 
c Pe + me c > m c (26)

µ 

Since pe = mecx1 this condition requires (and y 2 ) to bex 2 

zero unless 
m 

x1 > /(mµ) 2 - 1 ~ 207 (27) 
e 



10 

The next chapter will deal with the interaction 

potential of the nucleons. This will be written as an 

expansion in y since we are interested in small proton 

concentrations. The energy per particle will be written in 

the form 

(2 8) 

where the coefficients c . will be determined in Chapter 3. 
1 

The total energy of neutron star matter is, therefore, 

E = U + EM + TK . + T + T (29)ass in e µ 

and the energy per particle obtained from equations (14), 

( 15) , ( 2 4) , ( 2 8) and ( 29) : 

+ m c 2 + (m -m )yc 2 
n p n 

(30) 




CHAPTER 3 THE NUCLEAR POTENTIAL ENERGY 

In this chapter the method of determining the 

potential energy due to the internucleon forces will be 

discussed. The energy was determined using the reaction 

matrix G of the Brueckner-Bethe-Goldstone theory of nuclear 

matter, taken from a previous calculation. Before describing 

the procedure that was followed, a few general comments on 

nuclear matter theory wil l be presented. 

The Brueckner theory is the generally accepted method 

of dealing with nuclear matter. It provides a way of 

calculating the way in which the interaction between two 

nucleons is modified by the presence of the other nucleons. 

In an infinite Fermi gas for which a static two-body potential 

v is assumed, the interaction can be described in terms of 

the reaction matrix G(11 ,~2 ,~1 1 ,~2 1 ), where ~land _t_2 are 

the initial Fermi momenta of the particles, and k 1 1 and k 2 1 

the final momenta. (Actually k is the wave number and fiJs_ 

the momentum, but k is commonly referred to as the Fermi..._.., 

momentum.) The G matrix is a generalization of the T matrix 

of scattering theory and satisfies a similar equation, the 

Brueckner-Goldston e equation 

G = v - v g G (1)e 

11 
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where v is a realistic two-body interaction, Q is the Pauli 

operator preventing scattering into already occupied states, 

and e is the energy difference between the intermediate and 

initial states. The G matrix is essentially an effective 

interaction in which all two-body clusters are treated 

exactly and higher order clusters allowed for in an average 

way. 

Instead of writing the reaction matrix in terms of 

the individual momenta it can be described in terms of the 

center of mass and relative momenta P, k, P' and k'. A- .- ,,.,,,... ·~ 

number of simplifications follow immediately. From the 

conservation of momentum, z =.E' = nK_. In determining the 

energy only the diagonal elements are needed, so we restrict 

our attention to k = k'. Thus the reaction matrix elements 

which we require can be written as G(Js...,K). In practice 

G(~ 1 [) is evaluated at an average K for each k, so that G 

is a function of k only. It will, however, be a function 

of the density and depend on both k and k , the neutron and 
n p 

proton Fermi momenta, when N ~ z. So G is finally written 

as G(k ,k ;k).
n p 

The G matrix elements used in the calculations were 

obtained for nuclear matter and neutron gas from the work of 

Banerjee at McMaster University and by Sprung at Orsay; both 
, 

used the soft core Reid potential. An effective force of 

Sprung and Banerjee (1971) was used in order to extrapolate 

matrix elements into the high density region where actual 
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nuclear matter matrix elements were unavailable. 

Several approximations were used in evaluating 

G(k ,k ;k). We can think of G(k ,k ;k) as being comprisedn p n p 

of three parts: G (k , k ; k) , G (k , k ; k) and G (k , k ; k)nn n p pp n p np n p 

which describe the neutron-neutron, proton-proton, and 

neutron-proton interactions respectively. The Brueckner-

Dabrowski approximation (1964) allows us to write the 

unsymmetric nuclear matter G in terms of symmetric nuclear 

matter G for which we have G matrix elements available. For 

a small difference in the number of protons and neutrons the 

Brueckner-Dabrowski approximation states that 

2 (a) 

G (k , k ; k) = G (k , k ; k) 2(b)pp n p pp p P 

G (k ,k ;k) = Gnp(kA,kA;k) 2(c)np n p 

where = !(k 2 + k 2) 2 (d)2 n p 

The rationale of this hypothesis is that for 

nn (or pp) interactions, the Pauli principle will be the 

dominant effect and the value of k (or k ) will be 
p n 

unimportant. For n-p interactions this cannot be so, but 

some average value kA for the Fermi momentum may describe 

suitably the interaction. 
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We are using this approximation in the limit of large 

neutron excess. In the actual calculation really only 2(c) 

was used,as the G was replaced by matrix elements obtained nn 

from a pure neutron gas calculation, and Gpp was considered 

small enough to be neglected especially in view of the small 

number of proton-proton pairs. Discussions with Dr. Sprung 

revealed that equation 2(d) might be replaced by 

k 3 = 1 (k 3 + k 3 ) as an alternative formulation of theA 2 n p 

Brueckner-Dabrowski hypothesis. This was also considered 

and will be further discussed in Chapter 4; however, 2(d) 

was used in most of the calculations and will be used in 

further derivations in this chapter. 

A second approximation used is to make G linear in 

k as done by Nemeth et al. (1968). This approximation is 

good for kF < 2.0 fm-l and leads to a considerable reduction 

in the complexity of determining the nuclear potential energy. 

A sample of the curves and their linear fits is given in 

Figure 1. 

In the reaction matrix theory the potential energy 

of a system of nucleons, neglecting higher order cluster 

energies, is 

U = E E <mn!Glmn> (3) 
all pairs N 

Transforming to the continuum 

d 3n 1 
n G(k ,k ;k) (4) 

~ ~ ' n P 
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For the neutron-proton interaction the limits on the 

integrals over m and n are different, so that transforming 

to center of mass and relative coordinates is awkward, 

however, the Brueckner-Dabrowski approximation introduced 

in equati on (2) allows us to set the limits on the integrals 

· m-n
equal. Then with k = ~' the integral can be shown to 

reduce to 

26'IT2kf 6 1 
u = g 

2 
3 J k 2 (1-k) 2 (2+k)G(kf,kf;k)dk (5) 

(2'IT)6 
0 

In nuclear matter kF 3 = 1.5 'IT 2 p,and A, the total number of 

particles is 

___qg_ k 3 (6)2 F6 7i 

The energy per particle is 

U/A 

which gives , (with g = 4 since there are two spin and two 

isospin state s) , 

(7) 
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When G(kF,kF;k) has the simple functional form of 

a + bk the integral is easily evaluated to give 

U/A = p(a + 18b) (8)
35 

1 3For a neutron gas p = ~- k and g = 2 so that equation (5)n 3 1T2 n 

leads to equation (8) with A replaced by N, and p by Pn· 

·we can also define an average G matrix element 

G(kF) = a + ~ so that equation (8) becomes
35 

U/A = pG(kF) (9) 

For nuclear matter the G matrix elements are calculated 

separately for T = 0 and T = 1 and defined in such a way that 

(10) 

which in relation to equation (8) means that G0 
. 18 

= ao + E'ho 1 

G1 = a 1 + ~ll8t- wit. h a= a 0 + a 1 and b = b 0 + b 1 . If we 

consider only the n-p interactions, this means that the 

= 1 and = -1 parts of the T = 1 interaction are turnedT3 T3 

off, leaving only the = 0 contribution . Assuming thatT3 

the three components contribute equally , the contribution to 

the energy from neutron-proton pairs is given b y 

(11) 
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A2 
There are NZ = -:r n-p pairs so that the energy per pair is 

(12) 

The n-n interaction will be the same as in a neutron 

gas of density pn' so the energy contribution is 

U = p N G (13}
nn n nn 

N2 
where G is evaluated at k . There are ~ pairs so the nn n 

energy per pair is given by 

2p 
u =~ =~ (14)nn N nn n nn 

The proton-proton energy contribution is given by 

an equation identical to equation (14) with nn replaced by 

pp. 

If there are N = A(l-y) neutrons and Z = Ay protons, 

the energy will be 

A2 (1-y) 2 2- 2 4- A2y . 2­
U = 2 (~nn) +A y(l-y) <ITGnp) + 2 (~pp) 

which gives, since p = A/n 

U = pA[(l-y) 2G + 4y(l-y)G + y 2GPP] (15)nn np 
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where the various G's are to be evaluated at kn' kA and kp 

respectively . In the neutron star limit, because of the 

small number of proton-proton pairs, the last term in 

equation (15) is negligible and is omitted. 

For the purpose of minimizing the energy we want an 

expression which is a simple function of y. However, k ,
n 

kA and kp depend on y so we make some further simplifications. 

Neutron star matter is composed of almost entirely neutrons 

so that k has almost the same value as for a pure neutron 
n 

gas, in which the fermi momentum is qF = 2113kF. Expanding 

as a Taylor series about qF 

G (k ,O;k)
nn n 

(16) 

but 

k - qn F 

. 1 1 2 = qF(l-3Y-9Y + .•• -1) 

1 1 2 
~ - (-y+-y ) q 3 9 F 

2 1 2 2 
~and (k - qF) yn 9 qF 
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Equation (16) becomes 

G (k ,O;k)
nn n 

(17) 

We could write kA2 = !ck 2 + k 2 ) in terms of y as2 n p 

but this would involve non-integral powers of y. Instead we 

N-Zintroduce the parameter a = -- = l-2y, so that we can write 
A 

~ k
F 

2 c1 

We then re-define kA by 

1 2 = kF (l - 18 a ) 

1 2 = k [1 - - (1- 2y) ]
F 18 

17 4 4 2 
= - -y ]kF[l8 + 18y 18 

4 ­ 4 2 
= (1 - -y) (18)kA + 17Y 170 
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where we have introduced a new quantity kA The 
0 

expression for G becomes np 

()G (kA , kA ;k)
· np · O O · 

G (kA ,kA ;k) + (kA-kA ) ()k
np o· 0 0 AO 

2
() G (kA ,kA ;k) 

np · O 0 

()G (kA ,kA ;k) 
np O 0 

(19) 


To obtain the average G's needed for equation (15) the 

derivation of equation (8) still applies . All that is 

needed, therefore, is to replace the G's in equations (16) 

and (20) by their average values evaluated at qF and kA 
0 

respectively. 



CHAPTER 4 CALCULATIONS AND RESULTS 

The input data for this calculation were G matrix 

elements, given for seven values of k between 0 and 1 (in 

units of kF), taken at a number of values of kF. A linear 

fit of the seven points was made, weighting the central points 

more strongly since IT= a + ~~ b ~ G(0.5). This fit defined 

an intercept, a, and a slope, b, for each kF. The quality of 

the fits can be seen from Fig. 1 which shows several typical 

examples of G as a function of k and the corresponding linear 

fit. For the G matrix elements obtained from the nuclear 

matter programs of Sprung and Banerjee the data could be fitted 

with the functions 

1 (a} 

l(b) 

as suggested by Nemeth a nd Sprung (1968) . The values of the 

coefficients are listed in Table 1 f or the neutron gas and 

nuclear matter T=O and T=l parts. The eff ective force of 

Sprung and Banerjee (1971) was used to obtain G matrix 

elements over a larger r ange of kF. - The functions of 

equation (1) above fai led to give satisfactory fits so the y 

were replaced by the polynomials 

21 



22 

a(kF) = a + a k + a k 2 + a k 3 2(a)1 2 F 3 F 4 F 

2(b) 

Note that b will be slightly in error near kp=O but we are 

mainly interested in what happens for large kF. Figures 

2{a) and 2{b) show the parameters a and bas functions of kF 

for the two forces used. A description of these forces is 

given in Sprung and Banerjee (1971). For our purposes it is 

sufficient to say that force G-0 has a density dependence 

proportional to ~ ; force G-1 has a dependence proportional 

- 18to kF. Throughout most of the calculation only G = a + 3S b 

was needed, instead of a and b separately. Moreover G is a 

smoother function than either a or b and can, therefore, be 

fitted more accurately. Figure 2(c) shows Gas a function of 

kF. The reasons for considering a and b separately were, 

partly inertia because Mrs. Nemeth had done so, and partly 

that it is useful to have these available when we come to 

renormalize the force to give the proper nuclear matter binding 

energy and saturation density. This will be discussed below. 

Since the effective force was available for nuclear 

matter only, a problem arose in deciding what to use for the 

neutron gas matrix elements in the higher density region. 

They were obtained. from the nuclear matter values by the 

following reasoning. Consider nuclear matter at density p 
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and corresponding Fermi momentum kF. We can obtain a neutron 

gas at the same density by doubling the density of the 

original system, thus increasing kF by a factor of 2113 • We 

also must turn off the T=O and T=l, T3=o parts of the nuclear 

interaction (between unlike particles). This means that the 

T=l part of the interaction now has a statistical weight of 2 

instead of the usual 3. We have thus created a neutron and 

a proton gas which do not interact with each other and both 

of which are at the original density p. The energy of the 

system is, therefore, twice the neutron gas energy since the 

charge symmetry of the nuclear force makes the two gases 

equivalent. The energy per particle is the same as for the 

neutron gas alone, since there are twice as many particles. 

What this means is that 

(3) 

or 

.. (4)~ 

The neutron gas matrix elements calculated from this expression 

agree quite well with a correct calculation using the actual 

nuclear programs in the lower density region where both sets 
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were available. The agreement is close enough to assume 

that the disagreement is due to the approximate nature of 

the G-matrix calculation. We, therefore, used the relation 

equation (4) to extrapolate the neutron gas matrix elements 

to higher density. 

With the G matrix elements known and fitted as 

functions of kF the values of G and G · and any required
nn np 

derivatives can be calculated. The coefficients of y in 

equation (2-13) and (2-14) are now known so the coefficients 

c 1 , c 2 , and of equation (3-16) are determined. Hence,c 3 

for any values of kF and y the average energy per particle can 

be calculated from equation (2-30) • 

The next step is to minimize equation (2-30) with 

respect to y 1 and y 2 for a series of values of kF. The 

conditions for a minimum are 

C)(E/A) = O a(E/A) = O (5)
ay1 ay2 

+2-1/3 f12 k 2[_!_ y2/3 __!_(l-v)2/3].£Y_
F m m - C)ylP n 

(6) 
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Since y = y 1 + y 2 , then 
aa~l = 1. From (2- 5) 

3 3 . m . c 

e thus 


ay1 . 
(7)axl = 

Equation (6) thus reduces to 

. 1 
(1-y)2/3] 

m 
n 

(8) 


Similarly the condition a(E/A) = 0 gives the equation
ay2 

+2-1/3 n2kF2 [;y2/3 _; (l-y)2/3] 
p n 

(9) 


Subtracting equations (8) and (9) gives 

(10) 
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It should be recalled that x 2=0 unless 

The nuclear matter programs and effective forces used 

produce G matrix elements which give binding energies for 

nuclear matter of about -12 MeV. These were renormalized to 

give -16.5 MeV binding at p = pNM" We believe that a renor­

malization is necessary because the "observed" nuclear bind­

ing energy is about -16 MeV. Moreover, the G matrix formalism 

represents the effect of the two body clusters and neglects 

the effects of three-body and higher body clusters, which 

make the nuclear potential more attractive by 2 or 3 MeV. 

Several forms of renormalization were used. One method was 

to add a constant to all of the G matrix elements to make them 

more attractive; this corresponds to adding a zero range force. 

The second method was to multiply the G matrix elements by a 

factor; this corresponds to increasing the strength of the 

nuclear force. These adjustments were done in two ways: 

(1) all the correction was put into the T=O part of the inter­

action; (2) the correction was divided equally between the 

T=O and T=l parts of the interaction. 

The first me thod is believed to be bette r because of 

the uncertainty in the t ensor f orce which effects the T=O 

part of the interaction. Therefore, four forms of renormal­

ization have been used: 

1) T=O plus a constant 


2) T=O and T=l plus a constant 
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3) T=O multiplied by a factor 

4) T=O and T=l multiplied by a factor. 

In the graphs the curves will be identified as 1, 2, 3 or 4. 

The results of the minimization are shown in Figures 

3 and 4 for forces G-0 and G-1. The contributions of the 

various terms to the energy are listed in Table 3. One inter­

esting thing to note is the peak in the proton concentration 

near kF = 1.7 Cp=2pNM) · 

The above calculations have been performed using the 

Brueckner-Dabrowski approximation of equation C3-2) with 

kA 
2 

= !.ck 2+k 2 >. When we use the alternative approximation
2 n p 


3 3 
= !.ck 3+k 3> = , G is no longer dependent on k andkA kF2 n p np n 

k but only on kF. Equation C3-16) simplifies to 
p 

This change is easily incorporated into th1 computer program 
. aG a G 

by making kA = kF and setting aknp and --"i1..E equal to 0 in 
o ~ a~ 

0 

equation C3-16). The results of this calcula tion are given 

in Figure s 5 a nd 6. 

Comparison cf the graphs shows that the method of 

renormalizing the force has far more effect on the equilibrium 

proton conce ntra tion t han does the f orce use d or the met hod 

of approximati ng the n-p interaction. 



CHAPTER 5 INTERPOLATION BETWEEN NUCLEAR MATTER 

AND NEUTRON GAS 

Another use for our expression for the nuclear 

potential energy is to obtain a method for interpolating be­

tween the neutron gas and nuclear matter limits. The varia­

tion of the binding energy per particle as a function of the 

neutron excess is important in determining the stability of 

neutron-rich nuclei. The semi-empirical mass formula, valid 

for small neutron excess uses 

(1) 

where E0 is the energy of symmetri c nuclear matter, about 

-16 MeV and ES is the symmetry energy, about 32 MeV. Since 

we are interested in large neutron excess, we shall write 

(2) 

and investigate the nature of f (a ) . If f( a ) = 1, e quation 

(1) would be valid f or all neutr on e xce sses . Howe v e r, f rom 

data from atomic bomb tests, Cameron and Elkin (1965) 

suggeste d that n e utron-ri ch nuclei were f o r me d more easily 

than imp l i e d by the s emi-empirical mass f o r mula, and propo s e d 

28 
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2 b
E(k~,a) = a exp(-a a) (3) 

with a= -17.2928 and b = -26.587. Since the neutron gas is 

unbound by about i6 MeV, this formula is valid only for small 

a. We, therefore, write it in the expanded form 

(4) 

. 2 b 
with ES = -b and f (a) = 1 - Aa , where A = 2a = .77. 

' 
Brueckner, Coon and Dabrowski (1968) using nuclear 

matter calculations at a = 0, .2, and .4 suggested the same 

form for f(a) and obtained ES= 28.0 and A = .67, which fitted 

. their points at a = 0, .2 and .4 exactly. Siemens (1970) used 

the same method to arrive at ~S = 31.0 MeV and A = 1.7, but. 

there seems to a mistake in his calculations and his figures 

should be revised to ES = 29.3 and A = .OS. The only thing 

consistent about these three calculations is that f (a) < 1 

for small a. 

Baym, Bethe and Pethick (1971) have obtained an 

. . ~ 2 . 1. b 1expression in powers o~ a for interpo ating etween nuc ear 


matter and the neutron gas. Their expression for the energy 


is 


(5) 
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where they took E0 = -16.5 MeV and Es = 33 MeV at kF = 1.43. 

At kF = 1.36 where the oth·er authors have done their cal­

culations they have ES = 29.85 MeV, /... = -.24 and E = -.19. 

Their calculation, therefore, . gives /... a di_fferent sign than 

the other authors. From a reading of their paper, it appears 

that they did not pay attention to the sign of /... in writing 

down their energy expression. 

Our expression for the energy is given by 

E = Tk. + U wherein 

(6) 

It should be correct in the case of symmetric nuclear matter 

when we use the exact values of kn' kp and kA instead of 

expanding as a power series in terms of y. For an equal 

number of protons and neutrons we have k = k = k = k so n p A F 

that the n-p interaction is given correctly. The neutron 

and proton gase s will be equivalent and have half the density 

of a pure neutron gas at this density; thus the fermi momen­

tum is reduced by a factor of 2113 . From equation (4-4) we , 

therefore , have 

(7) 

1Thus subs tituting into equation (6) with y = 2 corre ctly 
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gives 

. 1 . -T=l4 -T=l 4 (1) (GT'==O+ l 1 (! c;T=l)]u = + 	 +p [4 (-3 8 NM ) 4 NM 3 8 NM ) 4 3 NM 

T=O G:T=l= 	 (8)p (G"NM + NM ) 

Evaluating the energy per particle 	for a = O, .2, and .4 

2allows us to evaluate f (a) = 1 - Aa • We obtain ES ~ 30 MeV 

and A ~ -0.08 which agrees in sign with Baym et al. (1971) 

but conflicts with the other calculations. Using 

2 4f (a) = 1 - Aa + i::a 

and fitting the energy at a = .8 and 1.0 using ES as deter­

mined from the fit near nuclear matter we obtain A = .04 and 

E = .14. This gives a fair fit to our data in the region 

near the pure neutron gas and tends to agree with Siemens 

(corrected) value for A. The numbers given here are for 

force G-0 renormalized by multiplying the T=O strength by a 

factor which gives -16~5 MeV binding energy for symmetric 

nuclear matte r at kF = 1.36. The results are similar for the 

other f orce s and t yp e s o f a djustme nt . 

The conclusions that can b e drawn from this are 

uncerta in. The more recent calcula tions appear to agree that 

f (a) ~ 1 e verywhe r e , and proba bly is slightly gre ater than 

one for small neutron e xcess. This is at variance with 
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Cameron and Elkin. Possibly the division into volume and 

surface symmetry energies is different from what they used; 

this could affect the energies of finite nuclei without 

showing up in the infinite system studied here. For large 

neutron excess, the value of f (a) is of order one, but 

whether it is a bit smaller or larger depends strongly on 

the value used for E8 . To use f (a) = 1 seems not to be in 

flagrant disagreement with the calculations; this appears to 

be the choice adopted by Brueckner, Meldner and Chirka for 

their Thomas-Fermi calculations. 

In conclusion then, the main result of our calcula­

tions is that there is a peak in the proton concentration. 

-1Nemeth et al. (1967) found a peak at kF = 1.3 fm but in a 

later calculation (Nemeth and Sprung, 1968) no peak or even 

levelling off of the proton concentration was obtained. Our 

calculation gives a higher proton concentration and peaks at 

-1
1.7 fm , just above the highest value of kF in the Nemeth-

Sprung calculation. According to Baym et al. (1971) neutron 

stars have a lattice structure which does not completely 

14 3 -1dissolve until p ~ 2.4 x 10 gm/cm (kF = 1.3 fm ) , so that 

our calculation is applicable only for densities greater than 

this. Buchler and Ingber (1971) state that the validity of 

a non-relativistic many-body calculation ceases at 

15 3 -1 
p ~ 10 gm/cm (kF = 2.0 fm ) . However, it is noteworthy 

that in our calculation the form of the density dependence 

of the nuclear potential (i.e., G-0 or G-1) seems to have 
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less effect on the proton concentration than does the method 

of renormalizing the nucle~r force. We have not allowed 

for the existence of negative pions or other particles in 

our calculation. However, if their interaction with the 

nucleons is small, their effect on the calculation will not 

be too much different from that of the muons since they have 

roughly the same masses. We, therefore, believe that our 

calculation should give a reasonably good description of 

neutron star matter up to 2 or 3 times normal nuclear matter 

density. 



--
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Coefficients used in 

TABLE 1 

fitting the slopes and intercepts of the G matrix elements 

nuclear matter and neutron gas calculations 

obtained from 

Neutron 

Nuclear 

Nucle ar 

gas 

matter 

matter 

T=O 

T=l 

al 

-5.0988 

-0.5107 

-0.9893 

a2 

2.0748 

-21.2849 

- 9.2810 

a3 

-12.3872 

15.3358 

1.6472 

a4 

3.7777 

-3.6621 

-0.4319 

bl 

2.1496 

3.5609 

2.9204 

b2 

-9.2486 

-5.9450 

-5.7830 

b3 

15.0942 

6.8650 

7.3488 

w 
l11 



. TABLE 2 

Coefficients used in fitting the slopes and intercepts of the G matrix elements obtained from the 

effective forces G-0 and G-1 

Force G-0 

al a2 a3 a4 bl b2 b3 b4 

Nuclear matter T=O -16.2572 4.1088 1.6284 -0.3555 6.6901 1.9662 -2.7556 0.4797 

Nuclear matter T=l - 9.2139 -1.6380 2.2313 -0.3888 2.6198 4.6164 -3.2520 0.5317 

Force G-1 

al a2 a3 a4 bl b2 b3 b4 

Nuclear matter T=O -13.8082 -0.1247 3.9412 -0.6478 4.7018 5.1350 -4.3868 0.7181 

Nuclear matter T=l - 9.2954 -1.8128 2.6399 -0.4729 3.5370 3.3621 -2.8928 0.5084 

w 
0\ 



. TABLE 3 

Energy contributions for force G-0 renormalized by multiplying the T=O part by a factor 

% 


kF protons (electrons) 
 Emass TKin 

1. 36 5.871 (5.084) -.076 33.324 

.20 .031 ( .031) -.000 .789 

.40 .175 ( .175) -.002 3.148 

.60 .690 ( .690) -.009 7.025 

.80 1.740 (1.740) -.023 . 12.281 

1. 00 ·3 .15 8 (3.158) -.041 18.769 

1. 20 4.528 (4.522) -.059 26.469 

1.40 6.149 (5.152) -.080 35.169 

1. 60 6.940 (5.163) -.090 45.407 

1. 80 6.754 (4.712) -.087 57.623 

2.00 5.769 (3.913) -.075 72.176 

2.20 4.231 (2.882) -.055 89.368 

2.40 2.452 (1.760) -.032 109.301 

2.60 .873 ( .749) -.011 131.520 

T 
e 

4.776 

.001 

.016 

.147 

.673 

1.861 

3.605 

5.005 

5.735 

5.712 

4.954 

3.624 

2.049 

.711 

T 
µ 

.927 

0.000 

0.000 

0.000 

0.000 

0.000 

.006 . 

1. 200 

2.351 

2.883 

2.710 

1. 959 

.947 

.147 

u E 

-24.840 14.110 

- .152 .637 

- 1.066 2.096 

- 3.190 3.973 

- 6.837 6.095 

-12.135 8.455 

-18 . 746 11.277 

-26.366 14.927 

-33.414 19.989 

-38.937 27.195 

-42.761 37.005 

-45.351 49.545 

-47.572 64.693 

-50.031 82.335 

w 
-...J 
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LIST OF FIGURES 

Figure 1: 	 Several examples of G(kF,kF;k) for force G-1 for 

different values of kF: 

(i) kp=.7 , 	 (ii) kF=l.36 , (iii) kF=2.0 , (iv) kF=2.5. 

Figure 2(a) :Intercepts of the average G matrix elements as 

functions of kF. 

(i) force G-0 , T=O (ii) force G-1 , T=O 

(iii) force G-0 , T=l (iv) force G-1 , T=l. 

Figure 2(b) :Slopes of the average G matrix elements as a 

function of kF. The curves are labelled as in 

Figure 2(a). 

Figure 2(c) :Average G matrix elements as a function of kF. 

The curves are labelled as in Figure 2(a). 

Figure 3: 	 Proton concentration vs. kF for force G-0. The 

n-p interaction uses kA2 ~ !(k 2+k 2 ). The curve2 n p 

is shown with various renormalizations of the 

nuclear force (i) T=O intercept adjusted, 

(ii) T=O and T=l intercept adjusted, (iii) T=O 

times a factor, (iv) T=O and T=l times a factor. 
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Figure 4: 

Figure 5: 

Figure 6: 

Proton concentration vs. kF for force G-1. The 

n-p inteiaction is given by k 2 ~ !(k 2+k 2 ) . 
A 2 n p 

Th~ various curves are labelled as in Figure 3. 

Proton concentration vs . kF for force G-0 with 

the n-p interaction using kA = kF. The curves 

are labelled as in Figure 3. 

Proton concentration vs. kF for force G-1 with 
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