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to y gives the optimum proton ratio at a given density. Using
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determining the stability of neutron-rich nuclei.
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CHAPTER 1 INTRODUCTION

In the last few years considerable work has been done
in attempting to extend the results of nuclear matter
calculations to the neutron gas limit. More recently this
work has been stimulated by the discovery of pulsars late in
1967 and their subsequent interpretation by Gold (1968) as
rotating neutron-stars. The work presented here will deal
with matter near the neutron gas limit. It was motivated by
the fact that the Nemeth-Sprung paper (1968) appears to be
wrong, and by a desire to extend the calculation to a higher
density region. A recent paper by Baym, Bethe and Pethick
(1971) indicates that neutron stars have a lattice structure
up to the density of normal nuclear matter. Only then do
the nuclei really dissolve and uniform neutron star matter
come into existence. The calculation presented here is thus
of interest mainly in the region greater than that of ordinary
nuclear matter, although results will be given for lower
densities where the calculation gives an upper bound on the
actual energy.

An expression for the energy of the neutron star
matter as a function of the fractional concentration of
protons, y, will be obtained. The main result will be to
obtain the fraction of protons which minimizes the energy

of the system at a given density. The energy expressicn will



also be used, along with results from elsewhere, for the
nuclear matter region, to obtain an expression which
interpolates the energy per particle between symmetric
nuclear matter and a pure neutron gas.

Chapter 2 begins with a discussion of the model for
neutron star matter. It discusses the terms which will be
included in the energy expression and obtains an expression
for the kinetic and rest mass energies of the neutrons,
protons, electrons and muons. In Chapter 3 the method of
obtaining the expression for the nuclear potential energy is
discussed. Chapter 4 treats some of the details of the
calculation and presents the results obtained from the energy
minimization. Chapter 5 deals with the problem of interpol-

ating between nuclear matter and neutron gas limits.



CHAPTER 2 KINETIC AND REST MASS ENERGIES

Neutron stars were first postulated by Landau in
1932, as products of a supernova explosion. The supernova
remnant theory is presently backed up by the evidence that
the pulsar with the shortest period, and therefore presumably
one of the youngest, is in the Crab Nebula - which was formed
by the supernova explosion of 1054 A.D. The theory proposes

7 to 10°

that a star of several solar masses and density n10
g/cm3 gradually loses energy and contracts, eventually becoming
unstable against collapse. A supernova explosion follows and
under certain conditions leaves behind a superdense core.

This core is rich in neutrons because the electrons at this
density are highly relativistic, and it is energetically
favourable for inverse B decay to occur; so that an electron
and a proton form a neutron (and a neutrino which escapes).
Some of the electrons at the top of the Fermi sea may have
sufficient energy to form muons. Since the star before
collapse has net charge of zero, and these interactions
conserve charge, the resulting neutron star is also
electrically neutral. Since neutron stars are believed to

be at a temperature m108°K after the initial cooling and the
energy per particle near nuclear matter densities is several

11

MeV, corresponding to n10 °K, we can use the zero temperature

limit in our calculations without introducing any error.



Our model for a neutron star is therefore quite a

" simple one. It consists of a degenerate Fermi gas of
neutrons with a small fraction of protons and enough electrons
and muons to keep the system electrically neutral. In the
following discussion the term neutron star matter will refer
to the mixture of neutrons, protons, electrons and muons.

If the system is entirely neutrons, it will be called a
neutron gas. When it consists of an equal number of protons
and neutrons with no electrons, it will be referred to as
nuclear matter. The Coulomb force is assumed not to be
present when we discuss nuclear matter.

Having decided on a model to use, the next step is to
develop an expression for the energy of the system. Included
in the energy calculation are the rest mass energies and a
two body interaction between the nucleons based on the Reid
potential. Because the particles are assumed to form a
uniform gas, the net charge in any volume element is zero;
there is, therefore, nb Coulomb contribution to the energy
of the system.

Consider first the kinetic energy of the neutrons
and protons. The kinetic energy of a particle in state i of

a Fermi gas is

g o= L 5.2 |
By " o2m Py : (1)



and the total energy of n particles,
n
E= I E, (2)

For a degenerate gas (i.e., in the T = 0°K limit) all the
available states below the Fermi momentum Pe = h kf are
occupied, and all the states above Pgr unoccupied. Trans-

forming to the continuum:

E > 2 i% J E(p)d3p (3)
h
where the factor 2 arises from the two spin states of a

nucleon, and j% is a normalization factor. The total kinetic

h
energy of the system is therefore
p
E =2 - 4r fpizd
5 2m P P
. 0
5
L oa M 1 Pg
234 s L

The number of particles in the system is A = I = where 9

is the occupancy of state i. Since g; = 2 for fermions,

A > 2 i% J d3P
h
3
p
P B
= 2 3 4T 5 (5)



The energy per particle is then
_ _ 2
E/A = &% == 23—k (6)

The number of particles per unit volume, the number density,

is obtained from equation (5)

_ A _ 1 3
p=5=—5k (7)
3T

For a system of neutrons and protons the total

density is simply the sum of the neutron and proton densities

p=rp, % Po (8)
1 3 3 2 3 ;
= — (k + k. 7)) = ==k (9)
3TT2 n P 31T2 F
3 _ 3 3
where 2kF = kn + kp (10)

In symmetric nuclear matter kn = kD = kF’
Consider a system of A nucleons composed of N neutrons

and Z protons. If the fraction of protons is y = %, then

P, =Y P Py = (1-y) o (11)

3

and k = 2(l—y)kF (12)



k= 2Y/31-91/3 x

or k= (2y)1/3 kF n F

p (13)

Therefore, for the kinetic energy of the system

2 2

_ 3| w2 o 3 #% .32
Ty =NE o kg ) * 25 o Kp )

n P
- R 12 B 53 B BB Be L ead n? 2/3 y 2
¥) 13 2mn ¥ F Ylg 2mp ¥ F
2/3 .2 . 2
22/3.312% x
_ F 1 ,_..5/3, 1 _5/3
= A 10 [mn (1-y) + m y Tl (14)

The rest mass energy of the system is

E, = Nnm c2 + 2 m_cC
n P

A c2[mn + y(mp-mn)] (15)

The electrons and muons, because of their small mass,
must be treated relativistically so instead of equation (1)

we have to use

4.2 3.2 4
E, = /pi c“+m“c (16)
where m is the rest mass.
Then, the total energy is
Q S e -
E = ZEi + 2(—3) 4t Yp“c® + m“c” p“dp (17)
h

0



The total number of particles is the same as in the non-
degenerate case, which is given by equation (5). The energy

per particle is therefore

p _ o
£
T/A = _3_3. [ p2 /p2c2 + m2c4 dp (18)
Pe 9
Letting x = %% =‘%% , equation (1l8) becomes
Xe ey
T/A = ___é__§ (mc)3mc2 j x2 /x2 + 1 dx
(mcxf) 0
3mc? 2 1/2,. 2 =
= = [x.(x + 1) (2x + 1) - sinh "x_]
8 3 £ f £
Xf
3mdc> 2 1/2,. 2 -1
= —= [x.(x + 1) (2x + 1) - sinh “x_.]
3 3 £t £ £
8h k. ‘
(19)

If there are ylA electrons and yzA muons then their energy

contribution is

4
5 m 'y
- 23 € e “1 2 1/2 e =L
Te + TU = A8 ﬁ3 [—;—3—{xl(xl +1) (2x1+l) sinh Xy
e
m 4y
u *2 2 1/2 I |
+ 3 {xz(x2 +1) (2x2+1) sinh xz}]
H (20)

where X refers to the electrons and x, to the muons. We

know that

3

" (21)

K, =)o and p = —=k

Ak 1
1 mec e 3ﬁ2



Also Pe = Y0P = —5 k (22)

. - 2 1/3 _ 1/3
% ke = (37 pe) = (2yl) kF (23)

Similar equations apply for the muons. Then

equation (20) becomes

‘ 5
1, 3 2,..1/2 -1
Te + Tu = A 16 ﬁ3k —— [m {xl(xl +1) (2xl+l) sinh xl}

4 2,..1/2 |
m, {xz(x2 +1) (2x2+1) sinh xl}]
(24)

hk hk
_ ,1/3 F 173 _ a1/3 i 1/3

where X, = 2 ﬁ;E Yy , and X, = 2 muc Y, (25)

There are two constraints on Yq and Y, that must be
applied in this problem:
(i) to preserve charge neutrality y; *+ ¥, =y, where y is
the proton density; and
(1ii) no muons will be created unless the relativistic mass
of the last electron at the electron Fermi surface is greater

than the rest mass of the muon, i.e.,
czpe2 +m “c’ 2 m “c . (26)

Since Pe = M CXy this condition requires Xy {and y2) to be

zero unless

U, 2
S =t - AT
Xy > /(me) 1 &~ 207 (27)
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The next chapter wiil deal with the interaction
potential of the nucleons. This will be written as an
expansion in y since we are interested in small proton
concentrations. The energy per particle will be written in
the form

_ 2
g = A(c0 + ey + c,¥7) (28)

where the coefficients cy will be determined in Chapter 3.

The total energy of neutron star matter is, therefore,

E=U0+ EMass + TKin g Te + Tu (29)

and the energy per particle obtained from equations (14),

(15), (24), (28) and (29):

_ 2
E/A = o + cly + c,¥y

2 2
+ mnc + (mp mn)yc

3 .2/3 .2 2,1, .5/3 1 5/3
+ 10 2 bol Kp [m (1-y) +m v ]
n P
+ 3 o m 4ix. (%, 241) 12 (2x, 241) -sinh " 1x. }
16 .3, 3T '¥11¥%; Xy + *1
kg

4 2...1/2 .2, . . -1
+ m, {xz(x2 +1) (2x2 +1)-sinh “x.}]

2
(30)



"CHAPTER 3 THE NUCLEAR POTENTIAL ENERGY

In this chapter the method of determining the
potential energy due to the internucleon forces will be
discussed. The energy was determined using the reaction
matrix G of the Brueckner-Bethe-Goldstone theory of nuclear
matter, taken from a previous calculation. Before describing
the procedure that was followed, a few general comments on
nuclear matter theory will be presented.

The Brueckner theory is the generally accepted method
of dealing with nuclear matter. It provides a way of
calculating the way in which the interaction between two
nucleons is modified by the presence of the other nucleons.
In an infinite Fermi gas for which a static two-body potential
v is assumed, the interaction can ke described in terms of
the reaction matrix G(&l,&z,hi',hz'), where kl andn]g.2 are
the initial Fermi momenta of the particles, and kl' and kz'
the final momenta. (Actually k is the wave number and hk
the momentum, but h'is commonly referred to as the Fermi
momentum.) The G matrix is a generalization of the T matrix
of scattering theory and satisfies a similar equation, the

Brueckner-Goldstone egquation

=y -v 2
G=v v s G (1)

11
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where v is a realistic two-body interaction, Q is the Pauli
operator preventing scattering into already occupied states,
and e is the energy difference between the intermediate and
initial states. The G matrix is essentially an effective
interaction in which all two-body clusters are treated
exactly and higher order clusters allowed for in an average
way.

Instead of writing the reaction matrix in terms of
the individual momenta it can be described in terms of the
center of mass and relative momenta P, k, B' and &'. A
number of simplifications follow immediately. From the
conservation of momentum, P = P' = ik. In determining the
energy only the diagonal elements are needed, so we restrict
our attention to kX = k'. Thus the reaction matrix elements
which we require can be written as G(k,K). In practice
G(k,K) is evaluated at an average K for each k, so that G
is a function of k only. It will, however, be a function
of fhe density and depend on both kn and kp, the neutron and
proton Fermi momenta, when N # Z. So G is finally written
as G(kn,kp;k).

The G matrix elements used in the calculations were
obtained for nuclear matter and neutron gas from the work of
Banerjee at McMaster University and by Sprung at Orsay; both
used the soft core Reid potenEial. An effective force of
Sprung and Banerjee (1971) was used in order to extrapolate

matrix elements into the high density region where actual
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nuclear matter matrix elements were unavailable.

Several appfoximations were used in evaluating
G(kn,kp;k).. We can think of G(kn,kp;k) as being comprised
of three parts: Gnn(kn,kp;k), Gpp(kn,kp;k) and an(kn,kp;k)
which describe the neutron-neutron, proton-proton, and
neutron-proton interactions respectively. The Brueckner-
Dabrowski approximation (1964) allows us to write the
unsymmetric nuclear matter G in terms of symmetric nuclear
matter G for which we have G matrix elements available. For

a small difference in the number of protons and neutrons the

Brueckner-Dabrowski approximation states that

Gnn(kn,kp;k) = Gnn(kn,kn;k) 2(a)

k_,k_ik G k_,k_:k 2(b
pp( n'%p ) pp( p'¥p ) (b)

an(kn,kp;k) an(kA,kA;k) 2(c)

where k =-21-(k + k%) 2(d)

The ratioﬁale of this hypothesis is that for
nn (or pp) interadtions, the Pauli principle will be the
dominant effect and the value of kp (or kn) will be
unimportant. For n-p interac;ions this cannot be s2, but

some averadge value kA for the Fermi momentum may describe

suitably the interaction.
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We are using this approximation in the limit of large
neutron excess. In the actual calculation really only 2(c)
was used,as.the Gnn was replaced by matrix elements obtained
from a pure neutron gas calculation, and Gpp was considered
small enough to be neglected especially in view of the small
number of proton-proton pairs. Discussions with Dr. Sprung
revealed that equation 2(d) might be replaced by

k 3

A = %(knB + kp3) as an alternative formulation of the

Brueckner-Dabrowski hypothesis. This was also considered
and will be further discussed in Chapter 4; however, 2(d)
was used in most of the calculations and will be used in
further derivations in this chapter.

A second approximation used is to make G linear in
k as done‘by Nemeth et al. (1968). This approximation is

1 and leads to a considerable reduction

~good for kp < 2.0 fm~
in the complexity of determining the nuclear potential energy.
A sample of the curves and their linear fits is given in
Figure 1.

In the reaction matrix theory the potential energy

of a system of nucleons, neglecting higher order cluster

energies, is

U= I I <mn|G|mn> (3)
all pairs .

" Transforming to the continuum

U > I § 3]2 g2 J d3’Ig I d3’1;1 1 G(kn'kp;k) (4)

(2m)

o)
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For the neutron-proton interaction the limits on the
integrals over m and n are different, so that transforming
to center of mass and relative coordinates is awkward,
however, the Brueckner-Dabrowski approximation introduced

in equation (2) allows us to set the limits on the integrals

- m-n

5 the integral can be shown to

equal. Then with k =

reduce to

6ﬂ2 6 1

2 k
u=g? 8 2 k2 (1-k) 2 (2+k) G (k ., k .7k) Ak (5)
6 3 £ F
(2m) 0
In nuclear matter kF3 = 1.5 nzp,and A, the total number of
particles is
0 g
ATl o'k = L xS’ (6)
6T

The energy per particle is

2 2842 3 1
u/a=936"__ _F k2 (1-k) 2 k_:k
e 6 6 3 ( a ) (2+k)G(kFI Fl )dk
2T 0
1
_2g3 2 (fi200 ,
23 7% | k% (1-k) % (2+K) G(ky kyik) dk

0

which gives, (with g = 4 since there are two spin and two

isospin states),

1 5 5 ' i
U/A = 12p I k (l—k)“(2+k)G(kF,kF;k) (7)
0
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When G(kF,kF;k) has the simple functional form of

a + bk the integral is easily evaluated to give

U/A = pla + 3Eb) (8)
_ 1 3 _ .
For a neutron gas Py = ;;7 kn and g = 2 so that equation (5)

leads to equation (8) with A replaced by N, and p by Pn*
We can also define an average G matrix element

§(kF) = a + %gb so that equation (8) becomes

U/A = pE(kF) (9)

For nuclear matter the G matrix elements are calculated

separately for T = 0 and T = 1 and defined in such a way that

U/A = p(G0 + El) (10)

which in relation to equation (8) means that 50 =ap + %gbo'
18

Gl = al + §§bl with a = a0 + al and b = b0 + bl' If we

consider only the n-p interactions, this means that the

T3 = 1 and T3 = -1 parts of the T = 1 interaction are turned

off, leaving only the T3 = 0 contribution. Assuming that
the three components contribute equally, the contribution to

the energy from neutron-proton pairs is given by

(11)



L7

2
There are N2Z %r n-p pairs so that the energy per pair is

4 _ 4p,= , 1= _ 4=
np 2 a (Gy + 367) 0 1) =@ Snp (12)

The n-n interaction will be the same as in a neutron

gas of density Ppr SO the energy contribution is

nn = Pn = Gnn (13)
_ ’N2
where Gnn is evaluated at kn' There are > pairs so the
energy per pair is given by
2p '
2 _ n= _ 2
Unn ;7 - N nn ﬁchn (14)

The proton-proton energy contribution is given by

an equation identical to equation (14) with nn replaced by

PpP.

If there are N A(l-y) neutrons and Z = Ay protons,

the energy will be

2 2 '
_ A“(1l-y) 2= 2, 4= A 2=
U= S50 (56, AT (58 ) + 55T (56,

which gives, since p = A/Q

U = pAl(1-y)*T

- - _
n tav(l y)an + y G 1] (15)

PP
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where the various G's are to be evaluated at kn, kA and kp
respectively. In the neutron star limit, because of the
small number of proton-proton pairs, the last term in
equation (15) is negligible and is omitted.

For the purpose of minimizing the energy we want an
expression which is a simple function of y. However, kn’
kA and kp depend on y so we make some further simplifications.

Neutron star matter is composed of almost entirely neutrons

so that kn has almost the same value as for a pure neutron

~gas, in which the fermi momentum is dp = 21/3kF. Expanding
as a Taylor series about dp
- 9G__(g.,0:k)
- - . . nn °F
Gnn(knrolk) = Gnn(qF:OIk) + (kn qF) 54
226 (q.,0:k)
1 _ 2" "nn P’
* 27y ~2p) "2 V167
9
but
_ . wdf3.  1/3 _
kn qF = 2 (1 Y) kF qF

’ 1 1.2
qF(l §y g + ¢iswi=1)

Il

1. .1 2
(§Y+§Y )qF

n

and (k, - qF)2 = % v’ sz



19

Equation (16) becomes

2

- _ , 3G 2 3°G
. _ . I 3 1.2 nn P4 2 nn
Cpn (K r07K) = Gpp (@R 07k) = (3Y + 5¥ )dp 55 = + 15% 2
F aqF

(17)
We could write k, 2 = J'—(k 2 4 x 2) in terms of y as
A 2'n P
2 -1 2 2
k2 = 273 P ta-n 23+ v

but this would involve non-integral powers of y. Instead we

introduce the parameter o = gig = 1-2y, so that we can write
ky? = 2k 21(1+) 23+ (1-0) 23
N kF2(1 _ %az)
We then re-define kA by
ky = kp(1 - 75 o)

= kpll - $5(1-2y) ]

= kF[%% * f?y B f%yzl

= ky (1+ 12y - 153°) (18)
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where we have introduced a new quantity kA = ==k

expression for an becomes

Ban(kA ,kA k)

k) = k) k. 0o
Gop (Kprkaik) = G (ky Jkp 5K) + (ky=ky ) =
0 o 0 A,
326 (k. ,k. k)
1 - e Ll
+ 57k ) 2
' 0 3k,
0
\ aan(kAo,kAo;k)
0
2% (ky /ky iK)
boB? e 2 P85 &y (19)
289¢ “a 2
0 9k
&g

To obtain the average G's needed for equation (15) the
derivation of equation (8) still applies. All that is
needed, therefore, is to replace the G's in equations (16)
and (20) by their average values evaluated at dp and kA

0
respectively.



CHAPTER 4 CALCULATIONS AND RESULTS

The input data for this calculation were G matrix
elements, given for seven values of k between 0 and 1 (in
units of kF), taken at a number of wvalues of kF. A linear
fit of the seven points was made, weighting the central points
more strongly since G = a + %% b = G(0.5). This fit defined
an intercept, a, and a slope, b, for each kF‘ The quality of
the fits can be seen from Fig. 1 which shows several typical
examples of G as a function of k and the corresponding linear
fit. For the G matrix elements obtained from the nuclear
matter programs of Sprung and Banerjee the data could be fitted
with the functions

2

a(kF) = al/kF + a, + a3 kF + a, kF 1(a)

b(kF)

|
o
+
o
7
)
+
o’
~

1(b)

as suggested by Nemeth and Sprung (1968). The values of the
coefficients are listed in Table 1 for the neutron gas and
nuclear matter T=0 and T=1 parts. The effective force of
Sprung and Banerjee (1971) was used to obtain G matrix
elements over a larger range of kF.' The functions of
equation (1) above failed to give satisfactory fits so they

were replaced by the polynomials

21
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2(a)

Il
o))
+
[\

a(kF)

b(kF) b kF + b 2 (b)

1 kF + B .k

2
Note that b will be slightly in error near kF=O but we are
mainly interested in what happens for large kF. Figures

2(a) and 2(b) show the parameters a and b as functions of kF
for the two forces used. A description of these forces is
given in Sprung and Banerjee (1971). For our purposes it is
sufficient to say that force G-0 has a density dependence
proportional to /E; ; force G-1 has a dependence proportional

to kF. Throughout most of the calculation only G = a + %% b

was needed, instead of a and b separately. Moreover G is a
smoother function than either a or b and can, therefore, be
fitted more accurately. Figure 2(c) shows G as a function of

k The reasons for considering a and b separately were,

Fe
partly inertia because Mrs. Nemeth had done so, and partly
that it is useful to have these available when we come to
renormalize the force to give the proper nuclear matter binding
energy and saturation density. This will be discussed below.
Since the effective force was available for nuclear
matter only, a problem arose in deciding what to use for the
neutron gas matrix elements in the higher density region.

They were obtained from the nuclear matter values by the

following reasoning. Consider nuclear matter at density o
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and corresponding Fermi momentum kF. We can obtain a neutron
gas at the same density by doubling the density of the
original system, thus increasing Ke by a factor of 21/3. We
also must turn off the T=0 and T=1, T$=0 parts of the nuclear
interaction (between unlike particles). This means that the
T=1 part of the interaction now has a statistical weight of 2
instead of the usual 3. We have thus created a neutron and

a proton gas which do not interact with each other and both
of which are at the original density p. The energy of the
system is, therefore, twice the neutron gas energy since the
charge symmetry of the nuclear force makes the two gases
equivalent. The energy per particle is the same as for the

neutron gas alone, since there are twice as many particles.

What this means is that

_ 2 .T=1,,1/3
Ungkp) = 3 Uyy (277 Tkp) (3)
or
. - 2 T=1,,1/3 1/3, .
i o _ 4 7=1,.1/3, .1/3, .
e ¢ GNG(kF,OIk) e _3- GNM (2 kF,2 kF[k) (4)

The neutron gas matrix elements calculated from this expression
agree quite well with a correct calculation using the actual

nuclear programs in the lower density region where both sets
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were available. The agreemeﬁt is close enough to assume
that the disagreement is due to the approximate nature of
the G-matrix calculation. We, therefore, used the relation
equation (4) to extrapolate the neutron gas matrix elements
to higher density.

With the G matrix elements known and fitted as

functions of kp the values of Eh

and G__ and any required
n np

derivatives can be calculated. The coefficients of y in
equation (2-13) and (2-14) are now known so the coefficients
Cyr Cyr and c,y of equation (3-16) are determined. Hence,
for any values of kF and y the average energy per particle can
be calculated from equation (2-30).

The neXt step is to minimize equation (2-30) with
respect to Yq and Yo for a series of values of kF' The

conditions for a minimum are

3 (E/A)
—_—t—= =0 ’ = =0 (5)
3Yl 3Y2
3 (E/A) _ _ 2
——551— = <, + 2c3 + (mp mn)c

Vi I 2[5; y2/3_é%41_y)2/3 3y

g P n ayl
4 5 2,. 2
g Uy € 2. .. 173, 2. % (2X,7+l) 1 Sy
* 16 303 L D6 M) s gy
nk (x,2+1) (% 241) 1

(6)
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Since y = Yq + Yor then o8y - 1. From (2- 5)
Y1
me3c3 3
Y, = ——= X ; thus
1 2h3k 371 o
F
3y,  3m_Sc>
F e % 2 (7)
ox 3. 31
1 2h kF

Equation (6) thus reduces to

0 =c, + 2cC 2

2 3 + (mp—mn)c

+2-l/3h2kF2 [ﬁ:_L_ g2/3 _ I__nl_ (1-y) 23]
P n

2 2 .
+ m_C /xl +1 (8)

3(E/A) _

Similarly the condition 3y = 0 gives the equation
2

= _ 2
0 = c2 + 2c3 + (mp mn)c

-1/3 .2, 2 Ly2/3

1 2/3
h kF [m - a—(l’Y) ]

P n

+2

2 2
+moc /x,"+1 (9)

Subtracting equations (8) and (9) gives

m c2 Vx.°+1 = m 02 Vx 2+l (10)
e . u 2
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m 2
It should be recalled that x2=0 unless X, > v —Ef - 1.
m
e

The nuclear matter programs and effective forces used
produce G matrix elements which give binding energies for
nuclear matter of about -12 MeV. These were renormalized to

give -16.5 MeV binding at p = We believe that a renor-

Onm*
malization is necessary because the "observed" nuclear bind-
ing energy is about -16 MeV. Moreover, the G matrix formalism
represents the effect of the two body clusters and neglects
the effects of three-body and higher body clusters, which
make the nuclear potential more attractive by 2 or 3 MeV.
Several forms of renormalization were used. One method was
to add a constant to all of the G matrix elements to make them
more attractive; this corresponds to adding a zero range force.
The second method was to multiply the G matrix elements by a
factor; this corresponds to increasing the strength of the
nuclear force. These adjustments were done in two ways:
(1) all the correction was put into the T=0 part of the inter-
action; (2) the correction was divided equally between the
T=0 and T=1 parts of the interaction.

The first method is believed to be better because of
the uncertainty in the tensor force which effects the T=0
part of the interaction. Therefore, four forms of renormal-
ization have been used:

1) T=0 plus a cocnstant

2) T=0 and T=1 plus a constant



3) T=0 multiplied by a factor

4) T=0 and T=1 multiplied by a factor.
In the graphs the curves will be identified as 1, 2, 3 or 4.

The results of the minimization are shown in Figures
3 and 4 for forces G-0 and G-1l. The contributions of the
various terms to the energy are listed in Table 3. One inter-
esting thing tovnote is the peak in the proton concentration
near kF = 1.7 (p=2pNM).

The above calculations have been performed using the
Brueckner-Dabrowski approximation of equation (3-2) with

k = %(kn2+kpz). When we use the alternative approximation

k = %(k Gn is no longer dependent on kn and

n p F !

kp but only on kF. Equation (3-16) simplifies to

This change is easily incorporated into th% computer program
G

oG d
by making k = k_ and setting R . e equal to 0 in
A F ok 2
0 A ok
0 A
0
equation (3-16). The results of this calculation are given

in Figures 5 and 6.

Comparison cf the graphs shows that the method of
renormalizing the force has far more effect on the equilibrium
proton concentration than does the force used or the method

of approximating the n-p interaction.



CHAPTER 5 INTERPOLATION BETWEEN NUCLEAR MATTER

AND NEUTRON GAS

Another use for our expression for the nuclear
potential energy is to obtain a method for interpolating be-
tween the neutron gas and nuclear matter limits. The varia-
tion of the binding energy per particle as a function of the
neutron excess is important in determining the stability of
neutron-rich nuclei. The semi-empirical mass formula, valid
for small neutron excess uses

2

E(kF,a) = EO(kF,O) + 0“E (1)

S

where E0 is the energy of symmetric nuclear matter, about

-16 MeV and ES is the symmetry energy, about 32 MeV. Since

we are interested in large neutron excess, we shall write

E(kp,a) = Ey(kg,0) + E 0’ £ (a) (2)

S

and investigate the nature of f(d). If £f(a) = 1, equation
(1) would be valid for all neutrcn excesses. However, from
data from atomic bomb tests, Cameron and Elkin (1965)
suggested that neutron-rich nuclei were formed more easily

than implied by the semi-empirical mass formula, and prorosed

28
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2 b, ‘
E) | (3)

E(kf,a) = a exp(-a
with a = -17.2928 and b = -26.587. Since the neutron gas is
unbound by about 16 MeV, this formula is wvalid only for small

@. We, therefore, write it in the expanded form

2 2 4
E(kg,a) = a(l - 20® + 3% o%
_ A - _ b 2
= a ba” (1 T ) (4)
: _ N 2 _ b _
with ES = -b and f(a) = 1 - Aa", where A = 33 = e 17

Brueckner, Coon and Dabfowski (1968) using nuclear
matter calculations at a =20, .2, and .4 suggested the same

form for f(a) and obtained E_ = 28.0 and A = .67, which fitted

S
.their points at a = 0, .2 and .4 exactly. Siemens (1970) used
the same method to arrive at ES = 31.0 MeV and A = 1.7, but
there seems to a mistake in his calculations and his figures
should be revised to ES = 29.3 and A = .05. The only thing
consistent about these three calculations is that f(a) < 1

for small a.

Baym, Bethe and Pethick (1971) have obtained an
expression in pcwers of uz for interpolating between nuclear
matter and the neutron gas. Their expression for the energy
is

E(kp,a) = Eg(kp,0) + Es(k)dz(l—A(kF)a2+E(kF)a4) G
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where they took EO = -16.5 MeV and ES = 33 MeV at kF = 1.43.

At kF = 1.36 where the other authors have done their cal-

culations they have E_, = 29.85 MeV, A = -.24 and ¢ = -.19.

S

Their calculation, therefore, gives A a different sign than
'the other authors. From a reading of their paper, it appears
that they did not pay attention to the éign of A in writing
down their energy expression.

Our expression for the energy is given by

E = Tkin + U where

u, 2 _
+ 4y (1 y)Gnp + v

Gpp] (6)

U=pl(-n? T

It should be correct in the case of symmetric nuclear matter
when we use the exact values of kn, kp and kA instead of
expanding as a power series in terms of y. For an equal

number of protons and neutrons we have kn =k _ = kA = kF SO

P
that the n-p interaction is given correctly. The neutron

and proton gases will be equivalent and have half the density

of a pure neutron gas at this density; thus the fermi momen-

tum is reduced by a factor of 21/3. From equation (4-4) we,

therefore, have

T

i/3 Ry o= 2

G = G =

=1
nn PP GNG M (ke

F,kF;k) (7)

Thus substituting into egquation (6) with v = % correctly



K 4i 3

gives

zL=0_
L)+ 4k D G+

]

wre
@

2

=

1 71
5 G

T
v )t

U=ol7 (3G NM

B T=0, ~T=1 "

Evaluating the energy per particle for o = 0, .2, and .4
allows us to evaluate f(a) =1 - Xaz. We obtain ES ~ 30 MeV
and A = -0.08 which agrees in sign with Baym et al. (1971)

but conflicts with the other calculations. Using
£(a) = 1 - Aa® + ea’

and fitting the energy at d = .8 and 1.0 using ES as deter-
mined from the fit near nuclear matter we obtain A = .04 and
€ = .14. This gives a fair fit to our data in the region
near the pure neutron gas and tends to agree with Siemens
(corrected) value for A. The numbers given here are for
force G-0 renormalized by multiplying the T=0 strength by a
factor which gives -16.5 MeV binding energy for symmetric
nuclear matter at kF = 1.36. The results are similar for the
other forces and types of adjustment.

The conclusions that can be drawn from this are
uncertain. The more recent calculations appear to agree that
f(d) = 1 everywhere, and probably is slightly greater than

one for small neutron excess. This is at variance with
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Cameron and Elkin. Possibly the division into volume and
surface symmetry energies is different from what they used;
this could affect the energies of finite nuclei without
showing up in the infinite system studied here. For large
neutron excess, the value of f(d) is of order one, but
whether it is a bit smaller or larger depends strongly on
the value used for ES. To use f(d) = 1 seems not to be in
flagrant disagreement with the calculations; this appears to
be the choice adopted by Brueckner, Meldner and Chirka for
their Thomas-Fermi calculations.

In conclusion then, the main result of our calcula-
tions is that there is a peak in the proton concentration.
Nemeth et al. (1967) found a peak at kF = 1.3 fm-l but in a
later calculation (Nemeth and Sprung, 1968) no peak or even
levelling off of the proton concentration was obtained. Our
calculation gives a higher proton concentration and peaks at
X=7 fm—l, just above the highest value of kF in the Nemeth-
Sprung calculation. According to Baym et al. (1971) neutron
stars have a lattice structure which does not completely
dissolve until p = 2.4 x 1014 gm/cm3 (e, = 1.3 fm_l), so that
our calculation is applicable only for densities greater than
this. Buchler and Ingber (1971) state that the validity of
a non-relativistic many-body calculation ceases at
p = 1015 gm/cm3 (kF = 2.0 fm—l). However, it is noteworthy

that in our calculation the form of the density dependence

of the nuclear potential (i.e., G-0 or G-1) seems to have
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less effect on the proton concentration than does the method
of renormalizing the nuclear force. We have not allowed

for the existence of negative pions or other particles in
our calculation. However, if their interaction with the
nucleons is small, their effect on the calculation will not
be too much different from that of the muons since they have
roughly the same masses. We, therefore, believe that our
calculation should give a reasonably good description of
neutron star matter up to 2 or 3 times normal nuclear matter

density.



G.
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TABLE 1

Coefficients used in fitting the slopes and intercepts of the G matrix elements obtained from

nuclear matter and neutron gas calculations

2l 25 By 3y 1
Neutron gas =5, 0988 2.0748 ~12.3872 3.7777 2.1496
Nuclear matter T=0 -0.5107 -21.2849 15.3358 -3.6621 3.5609
Nuclear matter T=1 -0.9893 - 9,2810 1.6472 -0.4319 2.9204

-9.2486

-5.9450

=5.7830

15.0942

6.8650

7.3488

13



Coefficients used in

Nuclear

Nuclear

Nuclear

Nuclear

matter

matter

matter

matter

fitting the slopes and intercepts of the G

o |

~16.25%72

- 9.2139

o |

-13.8082

- 9.2954

effective forces G-0 and G-1

4.1088

-1.6380

-0.1247

-1.8128

- TABLE 2

Force

1.6284

2.2313

Force

=0

~0.3555

-0.3888

G-1

3.9412

2.6399

-0.6478

-0.4729

matrix elements obtained from the

6.6901

2.6198

4.7018

3.5370

0

1.9662

4.6164

Hy

5.1350

3.3621

%y

-2.7556

-3.2520

-4.3868

-2.8928

by

0.4797

0.5317

0.7181

0.5084

9¢



NONNN R e

.36
.20
.40
.60
.80
.00

.20

I40

.60

.80
.00
.20
.40
.60

%
protons

5.871
.031
+»175
.690

1.740

3.158

4,528

6.149

6.940

6.754

5.769

4.231

2.452
.873

(electrons)

(5.084)
( .031)
( +175)
( .690)
(1.740)
(3.158)
(4.522)
{5.152)
(5.163)
(4.712)
{3-913)
(2.882)
(1.760)
( .749)

mass

.076
.000
.002
.009
.023
.041
.059
.080
.090
.087
.075
.055
.032
011

TABLE 3

Kin

33.324
.789
3.148
7.025
12.281
18.769
26.469
35.169
45.407
57.623
72.176
89.368
109.301
131.520

4

1
3
5

N W s O,

.776
.001
.016
.147
+673
.861
.605
.005
.735
.712
.954
.624
.049
o Tl

Energy contributions for force G-0 renormalized by multiplying the T=0

. 927
0.000
0.000
0.000
0.000
0.000

.006
1.200
2,351
2.883
2.710
1.959

.947

.147

part by a factor

-24.840
- 3152
- 1.066
- 3.190
- 6.837
-12:135
-18.746
-26.366
-33.414
-38.937
-42.761
-45,351
-47.572
-50.031

14.110
.637
2.096
3.973
6.095
8.455
11.277
14.927
19.989
27,195
37.005
49.545
64.693
82.335

w
~
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" LIST OF FIGURES

Figure 1: Several ekamples of G(kF,kF;k) for force G=1 for
different values of kF:

(1) kF='7 , (ii) kF=l.36 , (1ii) kF=2.0 ¢ (iv) k.=2.5.

F
Figure 2(a):Intercepts of the average G matrix elements as
functions of kF.
(i) force G-0 , T=0 (1ii) force G-1 , T=0

(iii) force G-0 , T=1 (iv) force G-1 , T=1.

Figure 2(b) :Slopes of the average G matrix elements as a
function cf kF' The curves are labelled as in

Figure 2(a).

Figure 2(c):Average G matrix elements as a function of kF'

The curves are labelled as in Figure 2(a).

Figure 3: Proton concentration vs. kF for force G-0. The

2 2
P
is shown with wvarious renormalizations of the

n-p interaction uses kA = %(kn2+k ). The curve
nuclear force (i) T=0 intercept adjusted,

(ii) T=0 and T=1 intercept adjusted, (iii) T=0

times a factor, (iv) T=0 and T=1 times a factor.



Figure 4:

Figure 5:

Figure 6:

39

Proton concentration vs. kF for force G-1. The
2 ' 1 2 2

= 2(kn +kp |
The various curves are labelled as in Figure 3.

n-p interaction is given by L

Proton concentration vs. kF for force G-0 with
the n-p interaction using kA = kp. The curves

are labelled as in Figure 3.

Proton concentration vs. kF for force G-1 with

kA = kF.
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