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PROLOGUE 


The aim of this thesis is to define as nearly as 

possible standard geometrical objects and operations in 

metric spaces. Later, the possiblilty of stripping most of 

the structure from metric spaces yet still preserving the 

concept of "distance" is considered. 

As far as the aim is concerned a type of regular 

set in metric spaces and two related types of "scalar 

multiplication" connected with metric spaces are defined. 

The regular sets are modelled on the Euclidean 

geometric objects known as equilateral triangles and regular 

tetrahedra. 

Two two scalar multiplications are in essence similar 

to normal scalar multiplications except that there is no 

addition associated with them as in vector spaces. 

The work regarding metric spaces stripped of most of 

their structure was motivated by a graduate course in "Universal 

Algebra" given by Professor G. Bruns of McMaster University. 

Metric spaces can be considered as special cases of these 

abstract spaces. Proceeding along this line more structure 

is put back into these abstract "distance" spaces. This leads 

to a mathematical system which resembles a metric space in 

many ways but which retains certain properties which the 

abstract spaces possess and metric spaces do not. 

(iv) 



NOTATION 

The following is a description of notational usage 

within this thesis. 

The capital letter R is used throughout to denote 

the real numbers although in certain sections it is used 

differently. In these situations, however, the L\Sage is 

specifically indicated. 

In some situations, the notation ISi is used to denote 

the cardinality of the set S which is effectively the 

number of elements which S has. In other situations, the 

notation lxl is used with regard to real numbers to denote 

the absolute value of x. In all cases, the usage will be 

clear from the context. 

With regard to equivalence relations, we will denote 

the equivalence class of an element x in M with respect 

to the equivalence relation e by [xJ • The set of all
9 

such equivalence classes will be denoted by M/e. 
1If S is a set of ordered pairs, then s- is the 

set of all ordered pairs (x,y) such that 

(y,x) t S. 

If S and T are sets of ordered pairs, then S o T is the 

set of all ordered pairs (x,y) such that there exists some 

z with 

(v) 



(x,z) £ S and (z,y) £ T. 

Throughout this work, the symbol "iff" will be used 

as an abbreviation of the phrase "if and only if". 

(vi) 
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CHAPTER ONE 

- REGULAR SETS ­

Introduction. This Chapter is devoted to the 

discussion of "regular" sets in a metric space. These 

sets, which are called "tets", are g~neralizations of the 

normal Euclidean objects knpwn as equilateral triangles 

and regular tetrhedra. 

A concept of differentiating real valued functions 

on a metric space is defined. Also a notion of a "localizable" 

direction at a point is developed. In addition, a uniform 

topology on the tets is defined, examined and a uniformly 

continuous function on a subset of tets is exhibited. In 

conclusion, a certain type of space based on the idea of tets 

is examined. It is found that a metric space generated a 

space of this type and each space of this type generates a 

metric space. 

1 




SECTION ONE 

- METRIC SPACES ­

1.1. Preliminary Notions. 

Let M be a set and let R be the set of real 

numbers. 

Definition: (M,d) is a metric space iff 

(1) 	 d: M x M + R 

(2) 	 for any p,q £ M, 

d(p,q) = 0 iff p•q 

( 3) for any p,q £ M, 

d(p,q) = d(q,p) 

(4) 	 for any p,q,r £ M, 

d(p,q)~ d(p,r) + d(r,q) 

Condition (4) is commonly known as the triangle inequality. 

Let 	 (M,d) be a metric space. 

Definition: If p £ M and e c R and e > O 

we define the following subsets of M: 

N(p; e) = {qj d(p,q) < e} 

2 
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x 

which is called the open disk of radius e at p and 

E(p; e) = {qld(p,q) > e} 

which is called the exterior of the open disk of radius e 

at p. 

Definition: Define JO, +)to be the set of all 

such that 

x E R and x > o. 

Definition: Define D(M,d) to be the set of all 

where (pi; e 1 )iEI is a family in M x Jo, +J. 

Theorem: D(M,d) is a topolo5y on M called the 

topology associated with d. 

Proof. Not given ( [1] , page 119). 
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Theorem: If p E M and e E R and e > o, then 

(1) N(p; e) is open 

(2) E(p; e) is open. 

Proof of (1). It is immediate that N(p; e) 

is a union of the form 

consisting of a single term: namely, itself. 

Proof of (2). Take q E E(p; e). Consider 

f(q) = ~(d(p,q) - e). 

Then it is readily seen that 

N(q; f(q)) ~ E(p; e). 

Thus we have immediately that 

lJ N(q; f(q)) • E(p; e) 
qEE(p;e) 
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since 

q e: N(q; f(q)). 

Theorem: For any p, q, r e: M, 

d(p,q) > ld(p,r) - d(r,q)I. 

Proof. We have from the triangle inequality 

d(p,r) ~ d(p,q) + d(r,q). 

This implies 

d(p,q) ~ d(p,r) - d(r,q). 

Also from the triangle inequality 

d(r,q) ~ d(r,p) + d(p,q). 

Hence we get 

d(p,q) ~ d(r,q) - d(r,p) 

= d(r,q) - d(p,r) 
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since d(p,r) = d(r,p). 

Theorem: For an~ p,q,r,s £ M 

ld(p,q) - d(r,s)I ~d(p,r) + d(q,s). 

Proof. 

ld(p,q) - d(r,s) I 
' 

=l(d(p,q) - d(q,r)) + (d(q,r) - d(r,s))I 

~ld(p,q) - d(q,r)I + ld(q,r) - d(r,s)I 

! d(p,r) + d(q,s) 

since we have by the preceding theorem that 

d(p,r) > ld(p,q) - d(q,r)I 

d(q,s) > ld(q,r) - d(r,s) I. 



SECTION TWO 

"TETRAHEDRA" 

1.2. 	 Regular Sets. 

Let (M,d) be a metric space and let e £ R. 

Definition: K c; M is an e-tet iff 

for any 	 x,y £ K, 
i 

if x ~ 	y, then d(x,y) = e. 

~· g is an e-tet for any e £ R. If p £ M, 

then {p} is an e-tet for any e £ R. 

Definition: K ~M is a tet iff there exists 

e £ R such that K is an e-tet. 

Definition: Tet(e) is the set of all e-tets 

in M. 

The term tet is intended as a contraction of the 

word tetrahedron in order to indicate structures which bear 

a resemblance to the equilateral triangle of the plane or the 

tetrahedron of space. 

Note. 	 We may partially order Tet(e) by inclusion. 

7 
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Theorem: If K is an e-tet in' M, then there 

exists a maximal e-tet, K, in M (maximal with respect 

to inclusion) such that K ~ K. 

Proof. Let C be a non-empty chain in Tet(e) 

such that 

L £ C implies K ~ L. 

Define 

C* = LJ L. 
L£C 

Trivially, we have 

K <;. C* 

since C is non-empty. 

We now show that C* E Tet(e). 

Take x,y £ c• with x ~ y. Then there exists 

L', L" EC with 

x E L' and y E L". 
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The fact that C is a chain gives 

L' ~ L" or L" ~ L'. 

We assume, without loss of generality, that 

L' ~ L" • 

Hence 

and x 

x,y 

~ y 

E L". Now L" 

implies that 

is an e-tet. Thus x,y E L" 

d(x,y) = e. 

Hence C* is an upper bound of C in the set of 

all L E Tet(e) with K ~ L. Also C was an arbitrary 

non-empty chain. Hence, by Zorn's Lemma, there exists a 

maximal KE Tet(e) with the property that K f;af. 

Definition: Let K be an e-tet in M. Define 

int(K) = {qi q E M and d(x,q) < e 

for all x EK}, 

ext(K) = {qi q E M and d(x,q) > e 

for some X E K}, 

bnd(K) = {qi q E M and d(x,q) < e 

for all X E K and there 

exists X' E K with d(x' ,q) • e}. 
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Also 	it is true that 

(8) 	 for any x £ K, 

K(x) is closed. 

Hence, since E(x; e) is open, we have that ext(K) 

is open. Since K(x) is closed, we have that bnd(K) is 

the union of closed sets. Also int(K) is the intersection 

of open sets. If, in particular, K is a finite set, then 

bnd(K) is closed and int(K) is open. 

Proof of (3). Assume there exists an x such that 

x £ ext(K) (\ int(K). 

This 	implies that there exists a y £ K such that 

d(y,x) < e and d(y,x) > e. 

This 	is impossible. 

Proof of (1) and (2). The proofs of these are 

analogous to the proof of (3) and are left to the reader. 

Proof of (4). Certainly we have 

ext(K) U bnd(K) U int(K) • M. 
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We now show that the reverse inclusion holds. 

Take q E M. Then q satisfies one of the two 

following statements: 

(a) there exists some x E K with d(x,q) > e 

(b) for any x .E K, d(x,q) < e.-


In case (a), x is immediately seen to belong to ext(K). 

Case (b) may be subdivided into the following cases: 

(c) for any x E K, d(x,q) ~ e 

(d) for some x £ K, d(x,q) = e. 

In case (c), x is seen to be an element of int(K). 

In case (d), x is seen to be in bnd(K). 

Proof of (5). 

q E ext(K) 

iff there exists x e: K with d(x,q) > e 

iff there exists x £ K with q £ E(x; e) 

iff q E u E(x; e). 
xe:K 

Proof of (6) and (7). The proofs of these are 

analogous to the proof of (5) and are left to the reader. 
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Proof of (8). Let (x(n)) be a sequence in K(x') 

with lim(x(n)) = x. It will suffice to show that x E K(x'). 

Now for all q E K, 

d(x(n), q) < e. 

Hence it is seen that. 

lim(d(x(n), q)) < e. 

But ( [l], pages 9 and 15) 

lim(d(x(n), q)) = d(lim(x(n)), q). 

Hence d(x,q) ~ e. 

Now for any n E N, 

d(x', x(n)) • e. 

Thus we have 

lim(d(x', x(n))) • e. 
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But ( [l] , pages 9 and 15) 

lim(d(x', x(n))) • d(x', lim(x(n))). 

Finally we get d(x',x) = e. 

Theorem: If K is an e-tet in M, l!l!!'.!. K is 

closed and K does not have a cluster point. 

Proof. Let (p(n)) be a sequence in K with 

lim(p(n)) = p. It will suffice to show that p £ K. 

Since (p(n)) has a limit, it is a Cauchy sequence. 

Thus there exists n* £ N such that if k' k" > n* then, ­

d(p(k'), p(k")) < ~e. 

Hence, since p(k') and p(k") £ K, we have that p(k') 

and p(k") are equal if k', k" > n•. Thus p(n) • p(n*) 

if n > n*. This implies that 

lim(p(n)) = p(n*). 

Immediately we have that 

P • p(n*). 
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Hence p E K since p(n*) E K. Thus K is closed. 

Take p E K. Then it is immediate that 

N ( p; ~e) (\ K = {p}. 

Thus p is not a cluster point. p was arbitrary. Hence 

K does not have a cluster-point. 

Corollar~. If K is infinite, then K is not 

compact. 

Proof. Trivial. 



SECTION THREE 

- BISECTORS and DERIVATIVES ­

1.3.1. The Bisector of a Tet. 

Definition: Define Tet(p; e) to be the set of 

all maximal e-tets K such that p £ K. 

Definition: If K £ Tet(p; e), define b(p,K) to 

be the set of all q £ M such that 

d(q,r) • d(q,s) 

for all r,s £ K with r # p and s ~ p. 

b(p,K) is called the bisector of K which passes 

through p. 

Theorem: !! K £ Tet(p; e), then b(p,K) is 

closed. 

Proof. Let (q(n)) be a sequence in b(p,K) 

with lim(q(n)) • q. It will suffice to show that q £ b(p,K). 

Take arbitrary r,s £ K with r ~ p and s ~ p. 

Then for any n £ N, 

d(q(n), r) = d(q(n), s). 

16 
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Hence it is seen that 

lim(d(q(n), r)) = lim(d(q(n), s)). 

But 

lim(d(q(n), r)) = d(lim(q(n)), r) 

lim(d(q(n), s)) = d(lim(q(n)), s). 

Hence 

d(q,r) = d(q,s). 

Definition: If KE Tet(p; e), define b+(p,K) 

to be the set of all q E b(p,K) with d(r,q) < e for all 

r E K with r ~ p. 

Definition: If K E Tet(p; e), define b-(p,K) to 

be the set of all q e b(p,K) with d(r,q) > e for some 

r E K with r ~ p 

Not.e. It is clear that 

Intuitively, in the Euclidean plane, b+(p,K) 
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give. rise to a "positive" and "negative" directiol') on 

b(p,K) close to p. 

1.3.2. 	 Derivatives of Real-Valued Functions. 

Let (M,d) be a metric space. Let p £ M. Let 

f: M + 	 R. 

L~t K E Tet(p; e). 

Definition: f is positively (e,p,K)-differentiable 

iff 

f(y) - f(p)(1) 
d(y,p) 

exists. 

Definition: f is negatively (e,p,K)-differentiable 

iff 

f(y) - f(p)(2) 
-d(y,p) 

exists. 
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Definition: f is (e,p,K)-differentiable iff f 

is positively (e,p,K)-differentiable and f is negatively 

(e,p,K)-differentiable and 

where denotes the limit (1) and fCe,K)(p) 

denotes the limit (2). 



SECTION FOUR 

- DIRECTIONS ­

1.4.1. Types of Maps. 

Let 	 (M,d) and (M' ,d') be metric spaces. 

Definition: f is an isometry of (M,d) onto 

( M' , d') i ff 

(1) 	 f: M + M' 

(2) 	 f is one-to-one and onto 

( 3) for any x,y e M, 

d'(f(x), f(y)) = d(x,y). 

Definition: f is a local isometry of (M,d) 

into (M' ,d') iff 

(1) 	 f: M + M' 

(2) 	 for any p e: M, there exists 

a neighbourhood u or p and 

a neighbourhood v of f(p) 

such that rlu is an isometry 

of (U, dj(U x U)) onto (V, d'j(V x V)). 

1.4.2. The Notion of Directions. 

Let 	 (M,d) be a metric space. 

20 
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Definition: If p £ M, define 

Tet(p) = U Tet(p; e). 
e&R 

Definition: If K is a tet, define 

char(K) = e iff K is an e-tet. 

Note. In what follows use is made of b +(p,K) in 

the definitions. However, a similar discussion can be 

carried out using b-(p,K). 

Definition: K determines a direction at p iff 

(1) K £ Tet(p) and p £ M 

(2) 	 p is an accumulation point of 

b+(p,K). 

Definition: If p £ M, define 

Tet*(p) = {KjK determines a direction at p}. 

Definition: If K', K"'"'e Tie•(p~ j. define·:· K' "' K" · 
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iff there exists e £ R with e > O such that 

+ +(1) b (p,K') n N(p; e) ~ b (p,K") 

(2) b+(p,K") () N(p; e) ~ b+(p,K'). 

Claim. "' is an equivalence relation on Tet*(p). 

Proof. The reflexivity of "' is immediate from the 

properties of containment. The symmetry is inherent in the 

definition. The transitivity follows from the transitivity 

of containment. 

Definition: A regular direction at p is an 

equivalence class in Tet*(p) with respect to "'• 

Notation. If K £ Tet*(p), then [K]"' denotes the 

equivalence class of K in Tet*(p) with respect to "'· 

Thusl}c]"' is called a regular direction at p. 

Definition: A regular direction [K]"' , at p is 

refinable iff for any e > O, there exists f > O with 

f < e such that there exists L £ [K]"' with 

char(L) = f. 
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Claim. The association 

defines a one-to-one and onto mapping of the set of refinable 

regular directions at p in M to the set of refinable 

regular directions at p in N(p; e). 

Proof. Clearly, since [!<]"' is refinable, we have 

that 

[jc] "' ('\ f ( N ( p ; e ) ) ; 0 • 

From this, it is immediate that 

is a refinable regular direction at p in N(p; e). 

Assume that 

O<J"' () f (N(p; e)) • ~]"' () (p(N(p; e)). 

Since neither of these sets is empty, we may take J to be 
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an element of both. Then we have that if I £ {!c]"' then 

J "' I 

and that if I £ [1]"' then 

J "' I. 

Hence it is seen that 

and 

• 

Thus 

This proves that the association is one•to-one. 

Let L be a refinable regular direction at p in 

N(p; e). Let K £ L. Then it is certainly true that 

(p(N(p; e)). 



25 

Thus the association is onto. 

The refinable directions seem to be of ~mportance 

since they are "preserved" no matter how close one comes to 

the point p in question (i.e., there is a tet giving them). 

1.4.3. Preservation of Refinable Regular Directions. 

Let (M,d) and (M',d') be metric spaces. Let 

f be a local isometry of (M,d) into (M',d'). Let 

p £ M. Let u be a neighbourhood of p and let V be a 

neighbourhood of f{p) such that flU is an isometry of 

(U, dl(U x U)) onto (V, d'ICV x V)). 

Since f is a local isometry, we are guaranteed 

the existence of a U and a V with these properties. 

Choose e' and e" with 

N(p; e') ~ U and N(f(p); e") ~ V. 

Set e •min {e',e"}. Then it is clear that tlNCp; e) 

is an isometry of N(p; e) onto N(f(p); e). 

Moreover under an isometry of a metric space onto 

a metric space refinable regular directions are preserved 

since such an isometry preserves distances. 
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Hence if we take a refinable regular direction (K]"' 

at p in (M,d) and then assign to it 

[K)"' (\ f (N (p; e)) 

and then assign to this 

f(N(p; e))), 

we have associated a refinable regular direction at f(p) 

in N(f(p); e) with [K]"' • Now assign to this regular 

direction at f(p) in N(f(p); e) the regular direction 

at p in (M',d') guaranteed by the last claim in the 

preceding sub-section. Thus we now have an association of 

[K]"' with a refinable regular direction at f(p) in (M',d'). 

Moreover, from the construction it is immediate that this 

assignment is one-to-one and onto between the refinable 

regular directions at p in (M,d) and the refinable 

regular directions at f(p) in (M',d'). 

Thus in a certain sense the local isometry, r, 
preserves refinable regular directions. 



SECTION FIVE 

- A TOPOLOGY ­

1.5.1. 	 Nearness of Tets. 

Let (M,d) be a metric space. 

Definition: Tet (M) = U Tet (e). 
ee:R 

Definition: If e e: R and e > O, define N(e) 

to be the set of all ordered pairs (K',K") such that 

K' , K" e: Tet (M), 

and there exists a function 

h: K' 	 -+ K" 

such that h is one-to-one and onto and such that for 

any x e: K' 

d(x,h(x)) < e. 

Definition: U = {N(e)le e: R and e > O}. 

Claim. U is a filter base on Tet(M) x Tet(M) 

and the filter that it generates is a uniform structure on 

27 
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Tet (M) ( [?] , page 177; [3] , page 21). 

Proof. (1). First we show that U is a filter 

base on Tet(M) x Tet(M). Let 

N(h'), N(h") Eu. 

Consider 

h = min{h' ,h"}. 

Then 

N(h) ~ N(h') and N(h) ~N(h"). 

This implies that 

N ch > ~ N<h • > n N Ch" > • 

Note. If R is a set of ordered pairs then R-l 

is the set of all ordered pairs (x,y) such that 

(y,x) e: R. 
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If R and S are sets of ordered pairs then R • S is 

the set of all ordered pairs (x,y) such that there exists 

some z with 

(x,z) £ R and (z,y) £ s. 

(2) Now we show that U generates a uniform structure. 

It is sufficient to show that 

(a) 	 for every e £ R with e > o, 

{(K,K)IK £ Tet(M)} ~N(e) 

(b) 	 for every e £ R with e > o, 
N(e) = (N(e))-l 

(c) 	 for every e £ R with e > O, 

there exists h £ R with h > O such that 

N(h) o N(h) 6:. N(e). 

(a) Let K £ Tet(M). Consider the identity map on 

K; denote it by I(K). Now I(K) is one-to-one and onto 

and for any x £ K and any e £ R with e > O we have 

d(x,I(K) (x)) 

= d(x,x) 

• 0 

< e. 
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Hence (K,K) e: N(e) for all e e: R with e > O. 

(b) Let e e: R with e > o. Let 

( K' , K") e: N ( e) • 

This implies that there exists 

h: K' + K" 

which is one-to-one and onto and is such that for any x e: K' 

d(x,h(x)) < e. 

Consider 

h-1 : K" + K' 

which is one-to-one and onto. We note that for any y E K" 

d(y ,h- 1 (y)) 

= d(h-1 (y),y) 

= d(h- 1 (y), h(h- 1 (y))) 

< e 
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by the properties of h. Hence (K",K') E N(e). 

This implies that 

N(e) = (N(e))- 1 . 

(c) Let e E R with e > O. Choose 

h = ~e. 

Let 

(K' ,K") £ N(h) o N(h). 

This implies that there exists K* E Tet(M) with 

(K' ,K*) E N(h) and (K* ,K") E N(h). 

Hence there exists 

h': K' + K* 

which is one-to-one and onto and has the property that 
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for any x £ K' 

d(x,h' (x)) < h. 

Also there exists 

h": K* + K" 

which is one-to-one and onto and has the property that for 

any y e: K* 

d(y,h"(y)) < h. 

Consider 

h" oh': K' + K". 

Then h" o h' is one-to-one and onto. We now see that for 

any x e: K' 

d(x,(h" o h')(x)) 

~d(x,h'(x)) + d(h'(x), h"(h'(x))) 

<h + h = e 
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by the triangle inequality. Hence 

(K',K") E N(e). 

Thus 

N(h) o N(h) ~N(e). 

Definition: Define D*(M,d) to be the topology 

induced on Tet(M) by the filter generated by U. 

1.5.2. Finitary Metric Spaces. 

Definition: (M,d) is finitar~ iff K E Tet(M) 

implies that K is finite. 

Claim. If (M,d) is finitary, then D*(M,d) 

is Hausdorff. 

Proof. Take K',K" E Tet(M) with K' ~ K". This 

implies, without loss of generality, that there exists a k 

such that 

k £ K' and k t K". 
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Since K" is finite, we have that 

e • min d(k,x) > o. 
xe:K" 

Assume that there exists K* with 

K* e: N(K'; ~e) n N(K"; ~e). 

where 

N(K; h) = {LI (K,L) c N(h)} 

and is thus a neighbourhood of K in Tet(M) with 

respect to D*(M,d). This gives that there exists 

h': K'+K* 

which is one-to-one and onto and is such that for any x c K' 

d(x,h'(x)) < ~e. 

Also there exists 

K 11h": K* + 



which is one-to-one and onto and is such that for any y 
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E K* 

d(y,h"(y)) < ~e. 

Hence 

d(k,h" (h' (k))) 

~d(k,h'(k)) + d(h'(k),h"(h'(k))) 

<~e + ~e = e. 

This is a contradiction since 

h"(h'(k)) EK". 

1.5.3. A Property of Arcs. 

Claim. If f is a function with 

f: I + Tet(M) 

where 

I= {xix E R and O < x < 1} 
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and if f is continuous with res;eect to the usual topolo5Y 

on I and D*(M,d), then 

jf(O)I = lf(l)j. 

Proof. For any x £ I, there exists h(x) £ R 

with h(x) > O such that for any y £ I if 

Ix - YI < h(x) 

then 

f(y) £ N(f(x); 1) 

by the continuity of f. In such a situation we can immediately 

conclude that 

(1) lrCy)I = lr(x)I 

by the definition of D*(M,d). 

The set of all N(x; h(x)) is an open cover of I. 

Thus there exists a finite subcover 
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such 	that 

(1) 	 for i = 1, ••• ,n-1, 

xi < Xi+l 

(2) 	 for 1 = 1, ••• ,n-1, 

N(x1 ; h(x1 )) ('\ N(xi+l' h(xi+l)) :f 16 

(3) 	 0 £ N(x1 , h(x ))
1

(4) 1 £ N(xn' h (xn)) 

since I is compact and connected. We will show that 

for i = 1, ••• ,n-1, 

Now 	 since for i = l, ••• ,n-1, 

there exists for i=l, ••• ,n-1 such that 
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This and (1) implies that i • l~ ••• ,n-1, 

Hence we get that for 1 = l, ••• ,n-1 

Also since O e N(x1 ; h(x )) we have that1

and since 1 e N(xn; h(xn)) we have that 

I f ( 1 ) I = I f ( xn ) I . 

Hence 

If ( 0 ) I = I f ( x 1) I = • • • = If ( xn) I = If ( 1 ) I . 



SECTION SIX 

- THE CHARACTERISTIC ­

1.6.1. A Uniformly Continuous Function. 

Let (M,d) be a metric space. We recall that if 

K is a tet then 

char(K) = e iff K is an e-tet. 

Note. Let K £ Tet(M). Then we have the following 

results: 

(a) 	 if IKI ~ 1, then 

for any r £ R 

char(K) = r 
(b) 	 if IKI > 2, then 

char(K) is unique. 

Proof of (a). Since IKI ~ 1, it follows that 

K = {p} for some p £ M or K • ~. In either case, K ls 

an r-tet for any r £ R. 

Hence char(K) = r for any r £ R. 
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Proof of (b). Since IKI ~ 2, it follows that there 

exists p,q £ K with p ~ q. Assume 

char(K) = r' and ch~r(K) = r". 

then 

d(p,q) = r' and, d(p,q) = r". 

this implies that r' = r". Hence char(K) is unique. 

Definition: Define Tet*(M) to be the set of all 

K E Tet(M) with IKI ~ 2. 

Definition: Define D**(M,d) to be the restriction 

of the topology D*(M,d) to Tet* ( M). 

Definition: Define 

CHAR: Tet*(M) + R 

by setting 

CHAR(K) = char(K). 
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Then · CHAR is well-defined by the observations in the 

preceding note. 

Claim. CHAR is uniformll continuous with respect 


to the usual topolosy on R and D**(M,d). 


Proof. Take e > O. Choose h = ~e. Then it is 


sufficient to show that 


if (K,L) € N(h), 

then lchar(K) - char(L)I < e. 

Take (K,L) € N(h). Hence there exists 

f: K + L 

. which is one-to-one and onto and is such that for any x € K 

d(x,f(x)) < h. 

Now, since IKI > 2, there exist p,q € K with 

p ~ q. 
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Thus 

f(p) :j f(q) 

since f is one-to-one. Also we have 

d(p,f(p)) < h and d(q,f(q)) < h. 

By an inequality proved in 1.1 we find that 

ld(p,q) - d(f{p), f(q))j 

~ d(p,f(p)) + d{q,f(q)) 

< h + h = e. 

But we also have that 

d(p,q) = char(K) 

since p :j q and that 

d(f(p), f(q)) = char(L) 

since f(p) ~ f(q). Hence we see that 

lchar(K) - char(L)I < e. 
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1.6.2. 	 A Function Property. 

Let (M,d) be a metric space. Let 

K E Tet(M). 

Claim. 	 If f is a function with 

f: K + 	 M 

such that for any x E K 

d(x,f(x)) < ~ char(K) 

then f 	 is one-to-one. 

Proof. Assume that x,y EK and f(x) = f(y). 

Then we must show that x = y. Now we know that 

d(x,f(x)) < ~ char(K) 

and that 

d(y,f(y)) < ~ char(K). 
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Computing we find that 

d(x,y) 


~d(x,f(x)) + d(f(x), y) 


•d(x,f(x)) + d(y,f(y)) 

<~ char(K) + ~ char(K) 

=char(K) 

since f(x) = f(y). But this gives us that x = y since 

K is a tet. 



SECTION SEVEN 

STRUCTURE THEOREMS 

1.7.1. Composite Tet-Spaces. 

Definition: (T,d) is a tet-space iff 

(1) 	 (T,d) is a metric space 

(2) 	 there exists e E R with e > O 

such that for any x,y E T with x ~ y: 

we have d(x,y) = e. 

Definition: ((Ti,di) , R) is a composite 
iE! 

tet-space iff 

(1) for any i E I, (Ti,di) is a tet-space 

(2) R is an equivalence relation on LJ 
iEI 

T 
i 

(3) if and 

and x R y and z R w, then 

di(x,z) = dj(y,w) 

(4) 	 for any x,y E u Ti 
ieI 

if it is not the case that x R y 

then 	there exists j E I such that 
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(5) if x,y £ Ti and 	 y,z ~ Tj 

and x,z £ Tk' then 

di(x,y) + dj(y,z) ~ dk(x,z). 

Let T = ((T1 ,d1 )i£I' R) be a composite tet-space. 

Definition: Define M(T) to be the set of all 

equivalence classes in 	 lJ Ti with respect to R. 
i£I 

Notation. If x £ 	 U Ti, then the equivalence 
ie:I 

class of x in 	 LJ Ti with respect to R will be denoted 
i£I 

Definition: Define a function d(T) with 

d(T): M(T) x M(T) + R 

by setting 

if we have that 
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and where i £ I is such that x,y £ Ti and by setting 

if we have that 

Claim. d(T) is well-defined. 

Proof. In the case 

d(T) is certainly well-defined. Let us now consider the case 

Assume that 

Then let i,j c I be such that and 
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We can do this by property (4) of T. Hence 
1 

we h~ve that 

x R z and y R w 

and that 

and 

Thus, by property (3) of T, we see that 

Claim. d(T) is a metric on M(T). 

Proof. (a). Assume that 

Assume, in addition, that 

Then, by the definition of d(T), there exists i £ I with 
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Thus x = y since di is a metric and, consequently, 

This, however, contradicts our assumption. 

In the case 

we are guaranteed by the definition of d(T) that 

(b). If we have that 

then it is immediate from the definition of d(T) that 

since both sides are zero. 
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I IIf we have that 

then we have for some i E I that 

= d (x,y)1 

= d1 (y,x) 

= (d(T)) ( [>'] R' [x]R) 

since di is a metric on Ti. 

(c). We now consider the triangle inequality. 

We verify only the case that 

leaving the other cases since they are similar and very easy 

to prove. We have that for some i,j,k EI 

= ct1 (x,y) + dj(y,z) 


~ dk(x,z) 


= (d(T)) ( [x] R' ~)R) 
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by property (5) of T. 

1.7.2. Composite Tet-Spaces of (M,d). 

Let (M,d) be a metric space. 

Note. If p,q E M, then the set whose elements are 

only p and q is a d(p,q)-tet in M. This tet is also 

contained in a maximal d(p,q)-tet. 

Definition: Define Nat to be the ordered pair 

consisting of the family of 

(K,di(K x K)) 

where K is a tet in (M,d) and of the equivalence relation 

=IM. 

Definition: Define Max to be the ordered pair 

consisting of the family of 

(K,dl(K x K)) 

where K is a maximal tet in (M,d) and of the equivalence 

relation 

•IM. 
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Claim. Nat is a composite tet-space. 

Claim. Max is a composite tet-space. 

Proofs. The proof of property (4) of 1.6.1 is 

immediate from the note at the beginning of the section. 

The proofs of the other properties are immediate translations 

of the properties of (M,d) as a metric space and of equality 

as an equivalence relation. 

Claim. (M(Nat), d(Nat)) is congruent to (M,d) 

by means of the assignment 

x N"-->{ x} • 

Proof. It is simple to show that M(Nat) is the 

set of all {x} such that x £ M. It is also easy to show that 

(d(Nat))({x},{y}) = d(x,y). 

These follow from the fact that the equivalence 

class of x in a set with respect to equality is just {x}. 

Claim. (M(Max), d(Max)) is congruent to (M,d) 

by means of the assignment 

x f'V'\..-') { x } • 



53 

Proof. The proof is the same as the proof of the 

preceding claim • 



CHAPTER TWO 

- "SCALAR MULTIPLICATIONS" ­

Introduction. In this Chapter, two "scalar 

multiplications" are defined. In the first case a special 

scalar multiplication space is developed and a topological 

embedding theorem is proved for finitely compact metric 

spaces with a finite basis. In the second case the scalar 

multiplication takes ordered pairs consisting of a real 

number and an element of a given metric spaces into subsets 

of the metric space. As regards this second scalar 

multiplication a relation between it and normal scalar 

multiplication on a real inner product space is exhibited. 
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SECTION ONE 

- THE SPACE V(p,S) ­

2.1.1. The Construction of V(p,S). 

Let (M,d) be a metric space. In addition, 

let S ~M and p Es. 

Definition: Let V(p,S) be the set of all functions 

e such that 

e: S ~ R 

and such that e(q) > 0 for any q E S and such that for 

any q E S with q ~ p we have that 

(1) le(p) - d(p,q)j ~ e(q) 

(2) e(q) < e(p) + d(p,q). 

Thus e(p), e(q) and d(p,q) satisfy the triangle 

inequality for all q E S with q ~ p and V(p,S) is 

a subset of all the mappings from S into the set of non­

negative real numbers. It might be said that in a certain 

sense V(p,S) is "quasi-metric at p". 
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If X E V(p,S), then ·x is a function from S 

into the set of non-negative real numbers. Define X(q) 

to be the value of X at q E s. We may specify a function 

by the set of its values as in sequence notation. Thus we 

write 

X = (X(q))qES" 

Definition: Consider ..! E R and XE V(p,S). 

Then we define jx to be the mapping from S into the 

complex numbers which sends q to (jX)(q) for any q ES 

by putting 

l!IX(p) if q = P 
(j,X) ( q) = 

V<l2-~)(X(p)) 2+(1-l)(d(p,q)) 2+j(X(q)) 2 

if q # p. 

Thus we have 

J;x = ((jX)(p))p U ((jX)(q))qES,q~p 

where the terms on the right are considered as functions. 
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Our goal is the following theorem. 

Theorem. For any i, ER and XE V(p,S), 

jX E V(p ,S). 

Proof. The proof is given in the remainder of 

this subsection. 

Take _£ E R and XE V(p,S). 

Claim. If q E S with q ~ p, then 

<(.tx) (q) ) 2 > o 

where we have that 

2( l) ((.iX) ( q) ) 2 = Cl} - j) (X ( p)) 

+ (l-j)(d(p,q)) 2+j(X(q)) 2 • 

Proof. Consider first the case where 

X(p) ~ O. 
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In this case, we define 

~ 2 ' 2 

( ?. ) 
C(q) = (X(p))'+(d(p,q)) -(X(q)) 

2X(p) d(p,q) 

We note that 

( 3) l 2 CX(p)) 2+(d(p,q)) 2-2iX(p) d(p,q)C(q) 

2= C.!2-.i) (X(p) ) 2+(1-j) (d(p,q) ) 2+ j,(X(q) ) • 

This is readily verified by expansion of the top half of 

the equation using (2). 

How we have that 

jX(p) - d(p,q)j < X(q). 

This implies that 

(X(p)) 2+(d(p,q)) 2-(X(q)) 2 
< 2X(p) d(p,q). 

Jlence 

C(q) < 1. 

We also have that 

X(q) < X(p) + d(p,q). 

Thus it is seen that 
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Hence 

C(q) ~ -1. 

It follows that 

( 4) 	 jC(q)I 2 1. 

Next, 	if i~ O, then from (1), (3) and (4) we get 

2 2 2ccJ,x )Cq ) ) 2 	 > j (X(p)) +(d(p,q)) -2JX(p) d(p,q) 

= cJx(p)-d(p,q)) 2 

~ o. 

On the other hand, if 	t -" 0 we get from (1), (3) and (4)' 
that 

2(cJ,x)(q)) 2 ~ J}CX(p)) +(d(p,q)) 2+2JX(p) d(p,q) 

= c!x(p)+ct(p,q)) 2 

> 0. 

Consider now the case 	where 

X(p) = o. 

~hen for all q E ~ with q ~ p we have 

I X(p) - d(p,q)I < X(CJ) 
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which gives ·us that 

d(p,q) ~ X(q). 

We also have that for all q E S with q ~ p 

X(q) ~ X(p) + d(p,q) 

which implies that 

X(q) ~ d(p,q). 

Hence if q E S and q ~ p, then 

( 5) X(q) = d(p,q). 

Thus we have 

((jX)(q)) 2 = (l-.1.,)(d(p,q)) 2+1,(d(p,q)) 2 

= (d(p,q))2 

> o. 

Finally, we see that if q E S and q 'p, then (jx)(q) 

is real and greater than or equal to zero. 
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Claim. We can now complete our proof that 

c.tx) e: v<P , s> • 

Proof. It is sufficient to show that for any q e: S 

with q # p we have that 

I (jX) (p) - d(p,q) I < (j.x)(q) 

and that 

<l x> <q ) < c..tx) <P ) + ct <P , q ) • 

We will now consider the problem in two cases. First 

consider the case 

X(p) = O. 

By reference to (5) of the preceding claim we see that for 

any q e: S with q ~ p 

X(q) = d(p,q). 



62 


Also we have that 

(JX)(p) =. ILIX(p) = o. 

The inequalities required reduce to 

(1) d(p,q) ~ (j,X)(q) 

(2) (J.X)(q) ~ d(p,q) 

for any q E S with q ~ p. But these are valid since if 

q E S and q ~ p then 

(,lX)(q) =~c.L2 -J.,)o + (l-1,)(d(p,q)) 2 + .tCX(q)) 2 

2 2= V'c1-J..><dCp,q>> + l<dCp,q)) 

= d(p,q). 

Now we consider 	the case 

X(p) ~ O. 

Making reference to (3) and (4) of the preceding claim 

we see that 

(a) IC(q)j ~ 1 

(b) 	 ((jX)(q))2 = l2(X(p))2 + (d(p,q))2 

- 2_t)((p) d(p,q) C(q). 
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Next, if .£ ~ o, then from (a) and (b) we see that 

((..lX)(q)) 2 ~.Q,2 (X(p)) 2+(d(p,q)) 2-2.£X(p) d(p,q) 

= (£X(p)-d(p,q)) 2 

= (jj,jX(p)-d(p,q))2 

= ((.£,X)(p)-d(p,q)) 2• 

Thus 

<Lx)(q) > l<lx)(p) - d(p,q)I. 

Also, if 1 ~ o, then from (a) and (b) we see that 

((JlX)(q)) 2 ~ t 2 (X(p)) 2+(d(p,q)) 2+2.tX(p) d(p,q) 

= (.Q,Jc(p)+d(p,q))2 

= <IJIX(p)+d(p,q)) 2 

= ((£X)(p)+d(p,q)) 2• 

This implies that 

(jX)(q) < (1.X)(p) + d(p,q). 
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Now, if i, ~ O, then from (a) and (b) we have 

((lX)(q)) 2 ~.£ 2 (X(p)) 2+(d(p,q)) 2-2jX(p) d(p,q) 

= (jX(p)-d(p,q)) 2 

= <lljX(p)+d(p,q))2 

= ((jJC)(p)+d(p,q))2. 

From this, it is immediate that 

(,tX(q) < cex)(p) + d(p,q). 

Moreover, if Jl ~ o, we obtain from (a) and (b) that 

((jX)(q)) 2 ~j2 (X(p)) 2+(d(p,q)) 2+2!X(p) d(p,q) 

= (JX(p)+d(p,q)) 2 

= (-l!IX(p)+d(p,q)) 2 

= ccix)(p)-d(p,q)) 2 • 

Hence 

(j,X)(q) > IC.i.X)(p) - d(p,q)I. 
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Thus in either instance of the sign of j, we have the 

required inequalities. Thus 

!X £ V(p,S). 

2.1.2. The 	Scalar Multiplication on V(p,S). 

Definition: 	 Define a function O(p,S) with 

O(p,S): Rx V(p,S) + V(p,S) 

by putting 

(O(p,S))(,l,X) = j,x 

for any j, £ R and X £ V(p,S). 

Notation: In what follows, we will use the notation 

j 0 X = (O(p,S))(l,,X). 

Claim. If J,, m £ R and X £ V(p,S), then 

j,o(m o X) = (j,m) ox. 
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Proof. It is sufficient to show that 

j( mX) = (1,ni) x. 

First consider the point p e s. Then from the definitions 

we get 

(J(mX))(p) = l~ICCmX)(p)) 
= Iii lmlX(p) 

= llrnl X(p) 

and 

((,tm)X)(p) = llmjX(p). 

Hence 

C!(mX))(p) = ((!m)X)(p). 

In addition if q e S with q ~ p then we get 

( i,(mX)) (q) 

=V<i}-!> <(mX) (p) >2+c1-..e> (d(p,q) >2+1< CmX) (q) )
2 
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+£(Cm2-m)(X(p)) 2+(1-m)(d(p,q)) 2+m(X(q)) 2} 

=JJ,2m2(X(p) )2+(d(p,q) )2-,tm(X(p) )2 

-.£,m(d(p,q)) 2+lm(X(q)) 2 

=Jcc.tm> 2-lm)(X(p)) 2+(1-Jm)(d(p,q)) 2+imcxcq)) 2 

= ( (tm)X) (q). 

Hence we conclude that 

.£(mX) = (i,m) X. 

Definition. We put 

p* = (d(p,q))qES" 

Note. Since the triangle inequality holds in M, 

p* e: V(p,S). 

We also have 

(1) 	p*(p) = 0 

(2) 	 for any q £ S with q , p 

p*(q) = d(p,q). 
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Claim. For any fl E R 

j,p* = p*. 

Proof. First consider the point p. Then we 

have that 

(j,p*)(p) 	= 1J,1 (p * ( p)) 

= 0 

= p*(p). 

Now consider q E S with q ~ p. Then 

2Clp*)(q) = vfcJ 2-l>Cp*(p)) 2+C1-j)(d(p,q)) 2+t<P*(q)) 

2• vc1-JJ(d(p,q)) 2+£(d(p,q))
 

= d(p,q) 


= p*(q). 


Hence we 	 have shown what was claimed. 

Claim. 	 If XE V(p,S), then 

0 x = p*. 



Proof. First consider p E s. Then ~e see that 

(0 X)(p) 	= IOIX(p) 

= 0 

= p*(p). 

Now consider q E S with q ~ p. Then we have 

2(0 X) (q) 	= v'< o2-o) (X(p)) +( 1-0)(d(p ,q)) 2+o( X(q)) 2 

= d(p,q) 

= p*(q). 

Hence 

0 x = p*. 

Claim. 	 If XE V(p,S), then-
1 x = x. 

Proof. First consider the point p E S. Then 

we get that 

(1 X)(p) 	= jljX(p) 

= X(p). 
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Now consider q E S with q ~ p. Then 

(1 X)(q) = \/'(12-l)(X(p)) 2+(1-l)(d(p,q)) 2+1(X(q)) 2 

= X(q) • 

Hence it is seen that 

1 x = x. 



SECTION TWO 


- THE MAPPING C{p,S) 

2.2.1. Basic Properties of C(p,S). 

Let 	 (M,d) be a metric space. 

Definition: S is a basis of M iff 

(1) 	 S ~ M 

(2) 	 for any x,y E M 

if we have for every q E S 

d(x,q) = d(y,q) 

then x=y. 

Thus if S is a basis of M, then if x,y £ M 

and x F y, then there exists q E S such that 

d(x,q) ~ d(y,q). 

Note. According to our definition, M is a basis 

of M. For if we take x,y E M with 
i 

d(x,z) = d(y,z) 
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for any z E M, we may consider the special case where 

x = z. Then we have 

O = d(y,x). 

Thus we obtain that x = y. Thus we have seen that every 

metric space has at least one basis. 

Let s ~ M and p E M. 

Definition: Construct a function C(p,S) with 

C(p,S): M + V(p,S) 

by setting 

(C(p,S))(x) = (d(x,q))qEs· 

Note. Since M is a metric space we have that if 

x E M then 

(d(x,q))qES E V(p,S). 

Also we see immediately that 

(C(p,S))(p) = p*. 
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Claim. If S is a basis of M, then C(p,S) 

is one-to-one. 

Proof. 	 Assume that 

(C(p,S))(x) = (C(p,S))(y). 

This gives us, from the definition, that 

(d(x,q))q£S = (d{y,q))q£s· 

This says that for any q £ S 

d(x,q) = ' d(y,q). 

Hence we 	 see that 

x = y 

since 	 S is a basis of M. 

2.2.2. 	 Dense Bases. 

Let (M,d) be a metric space 

Claim. If S is dense in M, then S is a basis 

of M. 
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Proof. Assume that S is not.a basis of M. Hence 

there exists x,y E M with 

d(s,x) = d(s,y) 

for every s E S and such that 

x ':! y. 

From this we get 

d(x,y) < d(x,s) + d(s,y) 

= 2d(s,x) 

for all s E S by the triangle inequality. Since is 

dense in M we have that for any e > O there exists 

s £ S with 

d(s,x) < ~e. 

Thus for any e > o, we have 

d(x,y) ~ e. 
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Hence 

d(x,y) = O. 

Hence x = y. This is a contradiction. This implies 

that S is a basis of M. 



SECTION THREE 

- THE TOPOLOGY D(p,S) ­

2.3.1. Preliminaries. 

Let (M,d) be a metric space. Let S ~M and 

p E s. Assume S is a finite set. 

Definition: If X E V(p,S) and e £ R with e > O, 

then define N(X; e) to be the set of all Y £ V(p,S) 

such that for any q £ S 

IX(q) - Y(q) I < e. 

Definition: Let D(p,S) be the usual product 

topology on RS restricted to V(p,S). 

Hence D(p,S) is a topology on V(p,S) and for 

any X E V(p,S) and any e E R with e > O we know that 

N(X; e) is an open set of V(p,S). 

Claim. O(p,S) is a continuous mapping. 

Proof. It is sufficient to show that O(p,S) is 

a continuous map from R x V(p,S) into RS since the image 

of O(p,S) is contained in V(p,S) which is contained in Rs. 

To show this it is sufficient to show that the mapping 

c.t,x) .. c!x> (q) 
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is continuous for every q e S since a map into RS is 

continuous iff each of its coordinate maps is continuous. 

We consider first the case where q = p. Now we 

know that the map 

is continuous on R and that the map 

X .-v-->X(p) 

8is continuous on V(p,S) since it is continuous on R • 

Hence the map 

ct, x) ~ <I.t I , x<P ) ) 

is continuous on R xv(p,S). But we know that multiplication 

on R is continuous. Thus we see that 

ce,x) ~, l..t jX(p) 

J::; continuous on R xV(p,S). 

Now we consider the 
1 

case where q £ S and q J' p. 
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We know that the map~ 

X tv--)(X(p) ) 2 , 

x~>(X(q) ) 2 

and the constant map 

2xrv-->( d ( p J q) ) 

are all continuous on V(p,S) since they are continuous 

on Similarly we know that the maps 

i,~cL2 
7 J,), 

j,~(l - J,) 

and 

are continuous on R. Hence we see that the maps 

and 
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and 

are all continuous. But multiplication on R is continuous 

and the sum of continuous functions is continuous. Thus the 

map 

(};,X)IV'--->(.i,2 -i) (X(p)) 2 + (1 -1,) (d(p,q)) 2 

+ j(X(q))2 

is continuous on R xv(p,S). But since Xe: V(p,S) the image 

of (j,x) under this map is always greater than or equal to 

zero. Hence this map is into the non-negative reals. But 

taking square roots on the non-negative reals is continuous 

and the composition of continuous functions is continuous. 

Hence 

ct, x) IV'---)(.lx) ( q) 

is continuous onRxV(p,S). 

Claim. C(p,S) is continuous. 

Proof. Let x e: M. Let A be a neighbourhood of 

http:IV'---)(.lx
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(C(p,S))(x). Then there exists e £ R with e > O such that 

N((C(p,S))(x); e) s;, A. 

We now consider (C(p,S))(N(x; e)). Take y E N(x; e). 

Now for all q £ S we have that 

ld(y,q) - d(x,q)j 	< d(x,y) 

< e 

by a claim in 1.1. But we also know that 

d(y,q) = ((C(p,S))(y))(q) 

and that 

d(x,q) = ((C(p,S))(x))(q) 

for any q £ s. Hence for any q E S 

l((C(p,S))(y))(q) - ((C{p,S))(x))(q)j < e. 

This implies that 

((C(p,S))(y) e N((C(p,S))(x); e). 
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Thus we see that 

(C(p,S))(N(x; e)) 6 N((C(p,S))(x); e). 

Hence C(p,S) is continuous. 

2.3.2 An Embedding Theorem. 

Theorem. If (M,d) is finitely compact ( (4], page 6) 

and S is a basis of M, then C(p,S) is a homeomorphism 

of M onto its image. 

Proof. By previous results we have seen that C(p,S) 

is continuous and one-to-one in this situation (cf. 2.2.1 and 2.3.1). 

It is sufficient to show that if x E M and 

(C(p,S)){x) • X, then 

for any e E R with e > O 

there exists h > 0 such that 

for any Y E V{p,S) 

if Y E N(x;h) (\ (C(p,S))(M) 

then d(x,(C(p,S))-1 (Y)) < e. 

for if this is true we consider the following argument. 

Take e > O and consider (C(p,S))(N(x; e)). Then by the 
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above we are guaranteed the existence of h > O with the 

property (1). Take 

Y £ N(X; h) (\ (C(p,S))(M). 

Thus we obtain 

d(x,(C(p,S))-l(Y)) < e. 

Now we see that 

(C(p,S))-1 (Y) E N(x; e). 

Hence 

(C(p,S))-l(N(X; h) ('\ (C(p,S))(M)) s; N(x; e) 

which implies that (C(p,S))-l is continuous. From this it 

is immediate that C(p,S) is a homeomorphism of M onto 

its image. 

What follows is a proof of our sufficiency hypothesis. 

AsGume this hypothesis is false. Then for some x* £ M 

with (C(p,S))(x*) = X* there exists e* c R with e* > 0 

such that for any h £ R if h > O then there exists Y 
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suctt that 

Y £ N(X*; h) (') (C(p,S))(M) 

and 

d(x*; (C(p,S))-1 (y)) ~ e*. 

Take an x* and e* which satisfy this condition. Hence 

for any h > o, there exists 

Y ( h) £ N ( X*; h) (') ( C ( p, S) ) ( M) 

such that 

d(x*; (C(p,S))-1 (Y(h))) > e*. 

Thus for any n £ N, there exists 

Y(n) £ N(X*; l/n) ("'\ (C(p,S))(M) 

such that 

( 1) d(x*, (C(p,S))-1 (Y(n))) > e*. 



84 

We put 

y(n) = (C(p,S))-1 (Y(n)). 

Now consider the sequence (y(n)). Now for all q E S and 

all n E N we have 

(2) 	 jd(y(n),q) - d(x*,q)j < l/n 

by the definition of (y(n)) and since 

Y(n) E N(X*; l/n). 

From this it is seen that for all n E N. 

d(y(n),p) < l/n + d(x*,p). 

Now take m,m' EM and consider d(y(m),y(m')). By the 

triangle inequality we get 

d(y(m),y(m')) 	~ d(y(m),p) + d(y(m'),p) 

< l/m + 2/m' + 2d(x*,p) 

< 2 + 2d(x*,p). 

Thus (y(n)) 	 is a bounded sequence. But M is finitely 
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compact. This implies that there exists y E M such that 

y is a cluster point of (y(n)). We now get that there 

exists a subsequence (y(n(i))) of (y(n)) with 

lim y(n(i)) = y. 
1+~ 

By (2) of the above, we see that 

lct(y(n(i)), q) - d(x*, q)j < l/n(i) 

for all q E S and all i E N. Taking limits as 1 

approaches infinity, we obtain that for all q E S 

lctCy,q) - ct<x*, q) I = o. 

This implies that for all q E S 

d(y, q) = d(x*, q). 

Hence 

x* = Y 



86 

since S is a basis of M. Thus we have 

d(x*, y) 	= o. 

Now we consider (1) of the above and obtain 

d(x*,y(n(i))) > e* 

for all i £ N. Taking limits as i approaches infinite, 

we get 

d(x*, y) 	> e* 

> o. 

This gives us a contradiction. Hence our sufficiency 

hypothesis is valid and this proves the theorem. 



SECTION FOUR 

- THE COSINE ­

2.4. 	 Basic Properties. 

Let (M,d) be a metric space. 

Definition: If p,q,r £ M and p ' q and p # r, 

then define 

(d(p,q)) 2+(d(p,r)) 2-(d(q,r)) 2 •cos(pq,pr) • --- -- --­
2d(p,q) d(p,r) 

Claim: If p,q,r £ M and p ~ q and p ~ r, 

then we have 

lcos(pq,pr)I < 1. 

Proof. 	 First we show that 

-1 < cos(pq, pr). 

By the 	triangle inequality we have 

d(q,r) < d(p,q) + d(p,r). 
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By squaring this and rearranging terms we get 

-2d(p,q)d(p,r) < (d(p,q)) 2+(d(p,r)) 2-(d(q,r)) 2 • 

Dividing both sides by 2d(p,q)d(p,r) gives the desired 

result. 

Now we show that 

cos(pq,pr) < 1. 

This is true iff 

2 2 2(d(p,q)) +(d(p,r)) -(d(q,r)) < 2d(p,q)d(p,r). 

This is equivalent to 

(d(p,q)-d(p,r)) 2 < (d(q,r)) 2 

which is in turn equivalent to 

jd(p,q)-d(p,r)I < d(q,r). 

But this is true by a claim of 1.1. 



SECTION FIVE 

- THE MAPPING P(p,S) ­

2.5. Scalar Multiplication in (M,d). 

Let (M,d) be a metric space. Let S ~ M and let 

p e: s. 

Definition: If x e: M and e e: R with e > o, then 

we define S(x; e) to be the set of all y e: M such that 

d(x,y) = e. 

Definition: Let us define a function P(p,S) with 

P(p,S): V(p,S) + @(M) 

by putting 

(P(p,S))(X) = 	 n S(q; X(q)) 
qe:S 

for any X e: V(p,S). 

Now consider x £ M and J. e: R. Then it is 
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readily seen that 

(P(p,S))(j((C(p,S))(x))) 

= S(p;Ltl d(p,x))
(\ n s ( q ; 1i.-ct-::: 2- ___ 2_+_1_(d_(_q_,x_)_)...,.,..2,...._-J,_)(_d_(_p_,x_)_)..,,,..+(_l j)_(d_(_p_,q_)_)_,,, 2 

qe:S 
q7'p 

Definition: We put 

(Jx) = (P(p,S))(j((C(p,S))(x))) 

for any J,e: R and any x e: M. We also define a function 

(p,S)* with 

(p,S)*: Rx M -+- f(M) 

by putting 

( p , s ) * ( l, x ) = <.l x ) 

for any .J, e: R and any x e: M. 

Claim. For any x e: M, 

(Ox) = {p}. 



91 

Proof. We clearly have that 

(Ox) 	 ~S(P; 0d(p,x)) 

= {p}. 

In addition we notice that for any q E S with q 7' p 

S(q; /co2-0)(d(p,x)) 2+(1-0)(d(p,q) ) 2+0(d(q,x)) 2 ) 

= S(q; d(p,q)). 

This 	implies that 

(Ox) = {p} ('\ 	(\ S(q;d(p,q)). 
qES 
q7'p 

Now 	 for all q E S with q ~ p we note that 

p E S(q; d(p,q)). 

Thus 	we have that 

p E 	 (Ox). 

Hence we have 	proved that 

{p} = <Ox). 
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Claim. For any x £ M 

x £ ( lx) • 

Proof. First we consider p £ s. Then it is 

immediate that 

S(p;llld(p,x)) = S(p; d(p,x)). 

This gives us that 

x £ S(p;jljd(p,x)). 

Now let us consider all q £ S with q ~ p. In this 

cai>e we observe that 

S(q; vfc12-l)(d(p,x)) 2+(1-l)(d(p,q)) 2+1(d(q,x)) 2 ) 

= S(q; d(q,x)). 

Moreover we know that 

x £ S(q; d(q,x)). 

Hence we have proved that 

x £ ( lx). 
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~· For any x £ M with x 7' p and for any 

q £ S with q ~ p we have that 

j 2 (d(p,x)) 2+(d(p,q)) 2-2!d(p,x)d(p,q)cos(px,pq) 

= <J 2-.bCct(p,x)) 2+(1-l)Cd(p,q)) 2+j(d(q,x)) 2 • 

This equation is readily proved by expanding the first term 

with the aid of the definition of cos(px,pq). 

Claim. For any j.,m £ R with 

111 7' lml 

and for any x £ M with x 7' p we can prove that 

(.f,x) (') (mx) = 0 • 

Proof. From the definitions of CJx) and (mx) we 

obtain that 

<lx) n (mx) 

~S(p; l!lct(p,x))n S(p;lmld(p,x)) 

= 0 

since Ill 7' lrnl and d(p,x) 7' O. 



Claim. For any j ,m £ R with 

j ~ mand IJI = lml 

and for any x # p we have that 

if there exists q £ S with q ~ p 

such tha,! cos(px,pq) # O 

then (l,x) n (mx) = 0. 

Proof. Since we have that 

J, # m and I..t I = Iml 

we see that 

J, = -m and Rn' o. 

Assume that 

(1,x) ('\ (mx) ~ 0. 
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Then we have that for any q E S with q ~ p 

2i 2 
(d(p,x)) +(d(p,q)) 2-2!d(p,x)d(p,q)cos(px,pq) 

= m2
(d(p,x)) 2+(d(p,q)) 2-2md(p,x)d(p,q)cos(px,pq). 

This implies that for any q E S with q ' p 

!cos(px,pq) = m cos(px,pq) 

since our hypothesis guarantees that 

IJI = lml. 

Hence for any q E S with q ~ p we see that 

cos(px,pq) = O 

since J = -m and 1,' 0. Thus if there exists q E S with 

q ~ p such that 

cos(px,pq) ~ O 

then it is immediate that 

ctx) n (mx) = 0. 
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Claim. For any x E M with x r p and for any 

r & M with 

r E (i,x) 

where ...£ ~ O and J, & R we have that for any q & S with 

q ~ p 

cos(pr,pq) = <l1l.LI) cos(px,pq). 

Proof. Since r E Cix) we can conclude that 

d(p,r) = 1lld(p,x) 

and also that for any q E S with q ; p 

Hence for any q E S with q ~ p 

cos(pr,pq) 

= (d(p,r)) 2+(d(p,q)) 2-(d(r,q)) 2 

2d(p,r)d(p,q) 

!2(d(p,x))2+(d(p,q))2-j2(d(p,x))2-(d(p,q))2 

+2Jd(p,x)d(p,q)cos(px,pq) 
21 J, jd(p,x)d(p,q) 

= ct11li) cos(px,pq). 
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Claim. For any x e: M with x ~ p and tor any 

r e: M with 

r e: (jx) 

where .le: R with l, JI. O we have that for any m e: R 

(mr) s;. (( mj) x) • 

Proof. We consider y & M such that 

ye: (mr). 

'l'hen we see that 

d(p,y) - lmjd(p,r) 

= lml Ill d(p,x) 

= 1m.e.1 d < P , x > • 

Moreover for any q e: S with q # p we see that 

d(q,y) 


=Vm,..~ """--2-m_d_(_p_,_r_)_d_(_p_,-q-)c_o_s_(_p_r_,_p_q_)
2 -(d-(p-,-r-)-)-,:2~+-(_d_(_p_,-q-)....,)2

2 2 
== Vm2 ll1 2 Cct(p,x)) +d(p,q)) 

-2m 1.llct(p,x)d(p,q) cJ; lJ,f)cos(px,pq) 
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Hence it is immediate that 

y E ((m.£)x). 



SECTION SIX 


- A RESULT FOR INNER PRODUCT SPACES ­

2.6. 

Let (H,i) be a real inner product space. Let 

S 	s; H and let o £ S. 

Claim. For any 1,£ R and an¥ x £ H 

J,x £ clx)' 

where 

!x 

is the 	scalar product of and x in H and 

<.lx) 

is defined with respect to S ~ H and o £ S as in 2.5 and 

H has the usual metric derived from i associated with it 

and I I I I denotes the associated norm on H. 
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Proof. First we consider d(!x,o).· Then w~ have 

d c.2,x, o > 	= I 11. x-o I I 


= l.t I I I x-o 11 

= L£1d(x,o). 


Now we consider ctClx,q) for any q £ S with q ~ o. 

It is sufficient to show that 

(d(ix,q) )2 


02 a 2 n 2 2
= (..t, -k)(d(o,x)) +(l-.11)(d(o,q)) + (d(q,x)) • 

This is equivalent to showing that 

I Ix-qi 12 


= <1} -J.,>llxll 2+Cl-1,)llqll 2 +J,llq-xll 2 


which in turn is equivalent to 


i C..fx-q ,1,x-q) 


= c!2-J,)i(x,x)+(l-l,)1{q,q)+ i(x-q,x-q). 
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The right member of this equation is equal to 

<!2-l.)i(x,x)+(l-.l,)i(q,q) 

+J,i(x,x)+ ,li(q,q)- J,i(q,x)- ),1{x,q) 

which equals 

j,2i(x,x)- ji{q,x)- l,i{x,q)+i(q,q). 

The left member of this equation is equal to 

i(!x,.lx)- l1(q,x)- 1,i{x,q)+i(q,q). 

This in turn is equal to 

Thus both halves of the equation equal the same thing. Hence 

the equation is true. Thus for any 1, E R and x E H 

!x £ cix). 



CHAPTER THREE 

- ABSTRACT DISTANCE SPACES - ' 

Introduction. This chapter discusses abstractions 

of metric spaces or distance spaces as they are sometimes 

called. In this chapter, the terminology "distance spaces" 

i~ used for these abstract spaces. For these spaces the 

basic notion of assigning a "distance" to pairs of points is 

retained but all other structure is deleted. Notions of 

homomorphisms, quotient spaces and product spaces are defined 

and examined. 
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SECTION ONE 

- INTRODUCTION ­

3.1.1. 	 Basic Definitions. 

Let M and F be given sets. 

Definition: (M,d,F) is a distance space iff 

d: M x 	 M + F. 

Definition: (M,d,F) is a symmetric distance space iff 

(1) d: 	 M x M + F 

(2) 	 for any x,y E M 

d(x,y) = d(y,x). 

Notation. 'rhe notation ir\, = (M,d,F) and occasionally 

n= (N,e,G) with or without subscripts will be used throughout 

this chapter to denote distance spaces. If symmetry is used 

then it will be noted at the time. 

3.1.2. 	 Bases. 

Let ffi= (M,d,F) be a distance space. 
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Definition: S is a right basis of in, iff 

(1) 	 S ~ M 

(2) 	 for any x,y £ M 

if for any s £ s, d(x,s) = d(y,s) 

then x = y. 

Definition: S is a left basis of miff 

(1) 	 S £ M 

(2) 	 for any x,y £ M 

if for any s £ s, d(S,x) = d(s,y) 

then x = y. 

If 'fn is a symmetric distance space then every right 

bas:i.s of m is a left basis of m and conversely. In this 

case we refer to a basis of m . 

3.1.3. Homomorphisms. 

Let and Th=2 be 

distance spaces. 
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Definition: (g1 ,g2 ) is a homomorphism from 

ml into m2 if 

(1) gl: Ml 	 + M2 

(2) g2: F + F21 

(3) for any x,y E M1 

( g2 0 dl) ( x ,y) = d2(gl(x),gl(y)). 

Definition: (g1 ,g2 ) is an isomorphism from ~l 
into m2 iff 

(1) 	 (gl,g2) is a homomorphism from 

intoml m2 

(2) gl and 	g2 are both one-to-one and onto. 
I 
I 

If ir'L and TYL are symmetric distance spaces,1 2 

then homomorphism and isomorphisms are defined in exactly the 

same way. 

Notation. The fact that (g1 ,g2 ) is a homomorphism 

from °YYL1 into i'fi 2 will be denoted by 

If it is stated that g is a homomorphism then it is assumed 

that there exists g and g such that g = (g1 ,g2 )1 2 



lOG 

is n homomorphism. 

If are homomorphisms, 

then, ns a notational device, we put 

h 0 p; = (h 0 c, , 1 ..L 



SECTION 	 TWO 

- HOMOMORPHISMS ­

3.2.1. 	 Isomorphisms. 

Let ml and Th2 be distance spaces. 

Claim. If ( gl ,g2) is an isomorphism from m1 

-1 -1into 	 (g , g ) is an isomorphism fromm2' then 1 2 

Proof. For any x,y £ M2 

since g is a homomorphism and g is one-to-one and onto.
1 

Hence 

since is one-to-one and onto. 
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3.2.2. · Composition of Homomorphisms. 

Let m 1 , Jn 2 and Th be distance spaces. Let
3 

(gl,g2): i'n,l + 'YYl,2 

(h1,h2)= m2 + m3. 

Proof. 

= h2(g2(dl(x,y))) 


= h2(d2(gl(x), gl(y))) 


= d3(hl(gl(x)), hl(gl(y))) 


= d3((hl o gl)(x), (hl o gl}(y)). 




SECTION THREE 

- CONGRUENCE RELATIONS ­

.L.1· Quotient Spaces. 

Note. If e is an equivalence relation on M, then 

[x]8 will denote the equivalence class of' x in M with 

respect to e. 

Let °Yl\, be a distance space. 

Definition: e = (eM,eF) is a congruence relation on 

miff 

(1) is an equivalence relation on MeM 

(2) is an equivalence relation on FSF 

( 3) for any x,y,z,w e: M 

if zeMx and weMy, 

then d(z,w)eF d(x,y). 

Let e be a congruence relation on m. 
Definition: 'rfl,;e = (M/SM, d/e, F/0F) where M/eM 

is the set of equivalence classes in M with respect to eM 

and similarly for F/0F and where 
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Remark. if\.;e is called the quotient of 1(1' by e and 

is referred to as a quotient space. 

Claim. d/8 is well-defined. 

Proof. If 

= lic1e and [w]0M M 

then 

Hence 

d(z,w)eF d(x,y) 

since e is a congruence relation. Thus 

@<z,w)] . = 0
F 

As a result of this claim, °ff\,;e is a distance space. 

It is symmetric if °l'lt is symmetric. 
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iJefinition: ,Define 

.1 •. " 

for x e: M 

for a e: F 

cl ai.Jr[. 

Proo r. 

Ke (d(x,y)) = 
1·' 

(d/O)(K (x), K
0M 

= (cl/ e ) ( {!Je , 
M 

= (? cx , Y )] e . 
F 

IJote. 'l'he notation here Of 

the notat:ion used. elsewhere in this 

d(x,y) 
eF 

(y))
0M 

\1] e )
M 

m/e and Ke exemplifies 

chapter for the:_;e objects. 



SECTION FOUR 

- THE CONGRUENCE RELATION 

INDUCED 

By a HOMOMORPHISM ­

3.~. Equality rrransformed. 

Let ml and 'm2 be distance spaces. Let 

1- = (p;l,r:2) be a homomorphism from 'YYLi into m2. 
Definition: Define 

Define 

Clri.im. U = ( eM, e ~) is a congruence relation on ~.1

Proof. It is easily seen that 

e~uivalence relations from the properties of equality. 

Consider 
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Hence 

'l'hu0 

Thi::; implies 

since (g 1 ,~ 2 ) is a homomorphism. 

Hence 



SEC'1,ION F'IVE 

- SUBSPACES ­

3.).1. Definition. 

Let i1 be a distance space. 

DefJnition: (N,G) is a subspace of m iff 

( 1) N S:, f·1 

(2) U c;;,F 

(3) d(N x N) ~U. 

_). ~). ! . ~;ubspacc~; and Homomorphisms. 

Let and be distance spaces. Letml m?. 
ml m').be a homomorphism from into 

L 

Claim. If (N, G) is a subspace of m
1 

, then 

(r~ 1 (rJ), r~?(C)) L> a :;uuspace of m •
2 

l'ruof'. 'J'ake ,, , w c r~ 1 (N). 'Phi[; lrnplie:1 that 

x, y c N with 
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Ful x ,y E '" implies 

ct 1 (x,y) £ G. 

Claim. If (N, G) is a subspace of thenm'),
'­

-J
P:-i 

;_ 
(G)) is a subspace of 'Y'/t1 • 


-1
Proof. 'I'ake x,y .t. r; (N). Thi~ implies that there
1 

z,w c n with 
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l:!ut z, w £ N implies 

Hence 

3.~.3. Families of Subspaces. 

Let m be a distance snace. Let ((Ni' Gi) )ie:I 

be a fami l.v of subspaces of m. 

Claim. (N, G) i ,,
•) a subspace of mwhere 

(iN = n ui and = n Gi. 
i£I i EI 

i'roof. Take x, y £ N. Hence 

x, y c for all i e: I.N1 
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d(x,y) £ for all i £ I.a1 

d(x,y) £ G. 



SEC'I'!ON SIX 

- PRODUCTS ­

3.G.1. Definition. 

Let ( °Yn, 1 ) be a family of distance spaces. 
i£I 

Definition: Define 

where 

It is obvious that 'Yni is a distance spaceTT 

icI 


which is symmetric if and only if for every i £ I, is 


~mi i~; called the product of the faml) .v 

( 'Yfl ) . In the rest of this
1 

iEI 
considered fixed and the notation 

used for the product 	 1T '\I)').• 
i e:I "'1. 

118 

sectlon 

is 
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3.G.2. The Projection Maps. 

Let 

Pr lT. M•• 1TM -+ J'vI 
J j 

be defined by 

pr~M ((x.) ) = xj.
1J ie:I 

TTM 
' 1'l1e mapping pr. is called the jth projection

,) 

Of' JTrt.-1.' 

J,(; t 

a .. 
J 

'l'he mappinc pr }TF is called the Jth projection
J 

of 1T F. 
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and 

Definition: For any j € I, define 

Claim. For any j € I, 


Proof. 
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3.6.3. The Extension Property. 

Definition: A triple 

where 

(1) 

( 2) 

all 

for 

mi 
any i 

and mare distance spaces 

e: I, cp.: rn, .. 'Ws. 
l 11111 

is said to have the extension property iff 

for any distance space 

and (~.) with ~i:
1 ie:I 

n 
n 

there exists exactly one ~ with 

such that for any i e: I, 

Claim. 

has the extension property. 
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Proof. rrake 

n = (N, e, G) and ( 1jJ i) 
ie:I 

with 

Define 

by 

ljl ( ) = ( ljlN ( n) )
N n i ie:I 

Define 

by 
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Put 

'I'hen 

'l'ha t L:;, 

1TM = ljJNpri 0 ljJN i 

pr1T F G 
i 0 I/JG = ljli. 

For 	instance, 

It will now be shown that ljJ is a homomorphism from 

'n into TT'm. 

(ljlG 	 o e)(nl,n2) 

G = (1jli(e(nl,n2))) 
i e:I 

N N= (di(ljli(nl), lj.li(n2))) 
ie:I 
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'l'he mapping \j.I is unique by the application of the 

projections. If ¢ = (¢N' ¢G) is another such map, then 

?his implies, for instance, that 

N JTMw (n) = pr . «t».1 (n ) ) 1 J. h 

and :;o 

Claim. If ((m ) , n ,(¢.) ) has the1 11£1 it:I 

extension property then there exists exactl¥ one isomorphism 

:; ucl1 that 
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Prbof. If such a • exists it is unique by 

application of the projections as in the precedin~ claim. 

Usin8 the fact that 

( (mi) ' irm, (pr'!1°m) )
1ieI ieI 

has the extension property there exists exactly one 

with 

Usin~ the fact that 

w: rrm~ n 
'· i ;­
.1.i.. :..,., 
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pr~'YTL o ( ¢ 0 ljJ)
l 

= <I>. 0 ljJ
l 

irm = pri 

= nrlTm o I 
t' i ·· irm. 

Slrni l arly 

By the extension property applied to the triple 

with rec;pect to lT'Yn and (pr"!f'm,) ¢> o ljJ is unique. 
l ii:; I 

Similarly ljJ • <P is unique. Hence 

<I> 0 ljJ = IlTm and ljJ o ¢> = I?'J, • 
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J\nd ~:;cJ 

<P n + irm is an isomorphism. 

Hotc. In the above claim, 

wrw r·~ I,, and I(', are the identity maps on N and G. 
lJ 



SECTION SEVEN 

- BASE~ IN QUOTIENT SPACES -

?..'f. lJ:l::>t2nces from Relations. 

L 1 • a 

Let m be a distance space. Let 

8onrr,ruence relation on m. Let S 

8 = (eM,eF) 

~ M. 

Claim. ic 
8 

(S) is R rie;ht basis of miff 

for any x,y e: M, 

if for anJ' s e: s, d(x:,s)eF d(y,s) 

then xe My. 

Proof. K 
8 

(S) is a right basis of iff 

for any x, y e: M 

if for any s e: S, 

128 
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i f'f 

i ff 

for any x,y 

if for any s 

[ctCx,s )] eF = 

for any x,y 

if' for any s 

E M 

c s, 

[ct Cy ,s )] 8F' 

E M, 

t. s, 

d(x,s)Elp d(y,s) 

then xef.ly. 

Note. A similar result holds for left bases. 



SEC'l'ION EIGH'l' 

- BASES IH PRODUCTS ­

Separate Bases. 

Let (mi) be a family of distance spaces. 
ie:I 

Let U\) be a family of sets such that for any i £ I, 
ii-~ I 

,, ,, . :I {J and s. is a rir;ht basis of mi
-'-' l 

Claim. TI d.
(' is a ri~ht basis of Tr m.. 

] 1
iE I i£I 

l ' r· :_; u f • 'l'akc ( x. ) A.nd in TI ~·1.. 
i i c I i£1 .l 

( :-; . ) e: TI s. 
l . T. 1 

1£.L ie:I 

( Tict.)((x.) , (s ) )
1 1 1 

iEI 1£1 ie:I 

= ( nd.) ((yi) , (s.) ).
1 1 

iE I 1£ I iE I 

,,
'1 V I arbitrary. Take arbitrary. ConstructI) - ; ,) L 0 

TI ('( r. ) in ,, ' witli r. = 0. 

1 1 ] ()if: I le I 
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Applying the above to (r ) and equating the1 icI 
i Ll 1 coo rd inatc:>, it is found that0 

= di ( y. ' s). 
o 	 1 0 

Rut 3 	 E ~. was arbitrary. Hence 
.10 

n.i.t 1	 E r wa~-; arbitrary. Hence0 

(x) 	 = (yj ) 
it: I - ie:I 

Note. A similar result holds for left bases. 

::.c,.2. 	 Common Base. 

Let C°nt ) be a family of distance spaces. Let1 ie:I 

~; be a :;et such that for any i e: I it is true that .is 

;l r'i.f~ht 	 Ll:1:;ls of mj_. 
llcf'.inition: IT is the set or all ramilles 

( :; ; ) j_ n 1T S :rnch that there exisU> r:; E ;:, wlth 
c LEJ l e: I 

.; . = ._ for any 1 E I • 
. L 
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Claim. S is a right basis of 	 Tr irl,1 • 
ie:I 

Proof. Take (x. ) and (y. ) in TT m..
1 ie:I 1 ie:I ie:I l 

Assume that for ( s.) in S 
1 ie:I 

Take e: I arbitrary. Take 	 s e: S arbitrary.i 0 

Construct (s.) in ~ by si = s for all i c I. 
l ie:I 

Applying the above to this (si) and equating the 
ie:I 

th coordinates it is seen that1 0 

But " £ ~_; was arbitrary. Hence 

xi = Y1 • 
0 0 

But e: I was aribtrary. Hence1 0 

Note. A similar result holds for left bases. 



SEcrrIOJJ tHNE 


- PRESERVATION OF BASES UNDER ISOMORPHISM ­

3.cJ. Invariance of Bases. 

Let and be distance spaces. Let sm2 

be a right has is of ml. Let g = (gl,g2) be an isomorphism 

from into 

ml 

m2. 

Claim. r; 1 (S) is a right basis of °Yn, • 

ml 

2 

Proof. Take z,w E M2• Assume that for any r E g1 (S) 

Let 

-1 ) -1 x = f~ l ( 7. and Y = v,] (w). 

133 




134 

Hrmce 

But is one-to-one. Hence for any s e: s,~2 

'I'hus 

x = y 

and finally, 



SECTION 'rl£N 

- A HOMOMORPHISM THEOREM ­

-~. lrl. 'l'he Congruence He lati on Induced by a Homomorphism. 

Let ml and m2 be distance spaces. Let 

cp = cpF ) lJe a homomorphism from ml into m2. Let( cpl·l1' 
1 

e lie the conr.:,ruence relation induced on by the~ 
homomorphism <P (cf. 3.4). 

Claim. 'I'here exists exactly one homomorphism 

~m 2 

: ; 1.l c j l LJ ia t 

(2) ~ is one-to-one. 

l. 3 5 
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Proof. De fine ,1, by
"'M1 

De fine ljJF by 
l 

1IJ1;i ( [a] e ) = cpF (a) · 
1 F~ l1 . 

Put 

llow 

x0M y implies cpM (x) = cpM (y) 
1 1 1 

anrl 

Hence iµ is well-defined. 
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Since 

= <PM (y) implies 
1 

and 

<l>F' (a) = <Pp (b) implies 
1 1 

it is seen that 1jJ is one-to-one. 

Trivially w•Ke = <1>. 

'T'he mappine; 1jJ is seen to be unique throup;h the 

npplication of this equation. 

How 

( 1/JF • dl/e) ( [x] e ' 
1 M1 

= 1/JF (( dl/e) ( [x] e ' 
1 M1 

= 1/Jp c[a1 <x, Y )] e )
1 F1 

=<Pp (ct1 (x,y)). 
1 
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Thus ~ is n homomorphism since $ is. 

If ::". e: •n (M1 ), 
1 

then there exL>ts x e: M1 

with 

<t>M ( x) = z. 
1 

Hence 

1If c e: <t>F (P1 ), then there exi:::;t:i a e: B with11 

$F (a) = c. 
1 

Hence 



SECTION ELEVEN 

- FIRST ISO.MORPHISM 'l1 HEOREM ­

3.11. Subspace Quotients. 

Let m and n be distance spaces. Let n be a 

c;ubspace of that is, N ~ M and G ~ F andm; 
e = di (N x N). 

Definition: If 0 is a cone;ruence relation on m, 
de f:i ne 

by 

eN = eM () (N x N) 

eG = ep n (G x G). 

It is clear that 07', is a congruence relation on n. 
Let 0 be a congruence relation on m. 
Claim. There exists exactly one homomorphif.m 
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such that 

where 

Moreover, tjJ is an 

Hote. lnj 

n into m. 

Proof. By 

exists. Define 

IJc flnc 

(1) tjJ is one-to-one 

( 2 ) tjJ • K = K 0 • inj0n 

(a) inj = ( inj N' injG) 

(b) inj N( x) = x for x e: N 

(c) injG (a) = a for a e; G. 

isomorphism 	from n1e'n onto Ke ( n). 

= (injN, lnjG) is a homomorphism .from 

condition (2) on tjJ, it is unique if it 

tjJc· ( £!1J 0 ) = K (a)81 
G F 
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Now 

Hence 

L.; well-defined. 

~)irni larly 

L> we 11-defined. 

Put 

JJow 



and 

Ke 
F 

(a) = (K 8F 
o inj G) (a) if a e: G. 

Hence w satisfies condition (2). 

Moreover, 

(WG o e/en) ( [x]et/ [YJ e )
N 

= WG ( ( e I 871, ) ( [x] e N, [YJ e > 
N 

= ipG ( [.e ( x ' Y )] e ) 
G 

= wa<[ctCx,y)] eG) 

= 

= 

K (d(x,y))
eP 

[d cx ,y )] e . 
p 

and, 

(d/8)(wNC[x] 8 ), w1/[Y] 8 .))
N N 

= (d/8)(K 8 (x), Ke (y)) 
Jq lVI 

= Cct/e) ( [.x] 8 , [Y] 8 ) 
M M 

= [ct(x,y)J 8 • 
F 
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Next if x,y £ N, 	 then 

= Ke (y) 
M 

imp lie~~ 

which imp lie,-; 

::;inse x,;:r e: JJ and hence 

= [Y)e . 
N 

l!cnce iµ l is one-to-one.1

~)imi1arly ,,, is one-to-one.'f'G 

Finally, 

[x]e £ Ke (N) 
M M 

imnJtes that there exists xN e: N with 
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Hence 

= [xJa . 
M 

Hence lP;J js onto Ka (N). 
M 

Slrnilarly is onto Ka (G). 
F 

Hence ljJ is an h;omorphism from rl!~ onto Ka ( n). 



SECTION rrWELVE 


- SECOND ISOMORPHISM THEOREM ­

3.12. Quotient Spaces of Quotient Spaces. 

Let rn, be a distance space. Let 0 and ip be 

conr:ruence relations on m.with 0 ~ ip. 

Definition: Define $/0 by 

[xJ0 (ip/e)M/0 []Je iff x ipM y,
M M M 

Claim. ip;e is a coneruence relation on 1n.1a . 

Proof. (1Jl/0)M/e and (ip/e)F/ 0 are equivalence 
M F 

r~lations since ipM and ipF are equivalence relations. 

Assume 

1115 
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and 

Then 

z ljJM x and w ljJM y. 

Hence 

d(z,w)ljJF d(x,y). 

'l'h u:; 

[ct( z ,w)] e 
F 

Finally 

(ct/e)C(z] 8 , (w] 8 )(w/e)F/e (ct/e)([x] 8 , [Y]e ).
M M F M M 

Claim. 'r'here exist:; exactly one l:;omorphism 

x: m/ljJ -+ ( "fn;e)/(ljJ/8) 



such that 

Proof. If x exists, it is unique by the condition 

on it. Define XM by . 

IA:: fine XF by 

Put 

Then 

x 1/JMY 

ifr (.x]e <iµ I e ) JVI/ e [YJ e 
M M JVI 
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Hence XM is well-defined and one-to-one. 

Similarly X is well-defined and one-to-one.F 

From the definition of x, 

Also we see that 

and we obtain that 

((d/0)/(w/0))(xM<(xJ"' ), xM<(J]iµ ))
M M 

= ((d/0)/("'/0))(l[x) 0 1 ,~.(..YJ 0 J )
iir' (w/0)M/ 0 M ciµ;e)M/e

M M 
= [<d/0)Cf3]0 , l?J 0 )] 

M M (w/0)F/eF 

=l.@<x,y)Je J . 
F (ip/0)P/8F, 

mailto:l.@<x,y)Je
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Finally, for 

in (M/eM)/(ip/e)M/e
M 

it is seen by inspection that 

Hence XM is onto. 

Similarly Xp is onto. 



SECTION THIRTEEN 

- AN ALTERNATIVE WAY 


OF 


DEFINING A BASIS ­

3.13. 	 A Definition by Functions. 

Let m be a distance space. Let S SS: M. 

Definition: Define 

by 

Claim. 	 S is a left basis of M iff 

f s is 	one-to-one. 

Proof. Let S be a left basis of M. Assume 

150 
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Hence 

'l'hus 

d(s,x) = d(s,y) for any s £ s. 

Thus x = y since S is a basis of M. Hence isr5 

one-to-one. 

Let f"' be one-to-one. Assume 
t..) 

d(s,x) = d(s,y) for any s £ s. 

This implies 

(d(s,x))s£S = (d(s,y))s£S" 

Hence 

'l1hus x = y since is one-to-one. Hence is a left 

basis of M. 

Note. A similar result holds for right bases. 



CHAPTEH POUR 

- GENERALIZED METRIC SPACES ­

Introduction. In this Chapter, a new type of 

abstract space is considered and is called a eeneralized 

metric space. These spaces are specializations of the spaces 

of Chapter Three. Homomorphisms, quotient spaces and 

product spaces are developed in this context. These spaces 

are close to metric spaces in that all of the conditions on 

a metric space are preserved in a formal sense. In fact, 

every metric space is a eeneralized metric space. 
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SECTION ONE 

- HOMOMORPHISMS ­

4.1.l. Definitions. 

Definition. (F, +, o, ~) is a lattice-ordered 

group iff 

(1) 	 (P, +, O) is an abelian group 

(2) 	 ( F', ~) is a lattice 

(3) 	 for any a, b, c e: F 

if a < b 

then a + c < b + c. 

Definition. (M, d, (F, +, O, ~)) is a generalized 

metric space iff 

(1) 	 (M, d, F) is a distance space 

(2) 	 (F, +, o, ~) is a lattice-ordered group 

(3) 	 for any x,y e; M 

d(x,y) = 0 iff x = y 

(4) 	 for any x,y e: M 

d(x,y) = d(y,x) 

(5) 	 for any x,y,z e: M 

d(x,y) + d(y,z) ~ d(x,z). 
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~· The notational device 

m= (M, d, (F, +, O, ~)) 

with or without subscripts will be used to denote a 

generalized metric space throughout the rest of this 

chapter. 

Let ~ and m be two generalized metric spaces.2 

Definition. g = (g1 , g 2 ) is a homomorphism from 

ml m2into iff 

(1) g is a homomorphism from ml into 

m2 considered as distance spaces 

(2) 	 for any a,b E lt,
1 

g2(a +l b) = g2(a) +2 g2 (b) 

(3) 	 for any a, b E Fl 

(a) 	 - ~'l. (Cl,) f\,_ ,'l lb)~'-(a. l\,b) ­
('o) ~2.(a.v,\:>) -- ~,..(a.) \J.,_ ~~lb). 

If, in addition, e and are one-to-one and onto,1 g 2 

then e is an isomorphism from ml into m2. 



Notation. The fact that g is a homomorphism 

from 1"!i into /7l is written symbolically as1 2 

4.1.2. Composition of Homomorphisms. 

Let ~l' 'Yn2 and ~ be generalized metric 

spaces. Let 

Claim. In this situation we have that 

Proof. It is sufficient to show that properties (2) 

and (3) of the definition of a homomorphism hold for 

h o g(cf. 3.2). Consider a, b £ F1 • Then as regards 

property (2) we see that 

(h2 • g2)(a +lb)= h2(g2(a +2 b)) 

= h2(g2(a) +2 g2(b)) 

= h2<e2(a)) +3 h2(g2(b)) 

=(h2 • g2)(a) +3 (h2 • g2)(b). 
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In rep;arding property ( 3) we -f o \Io W a 

4.1.3. 	 The Identity Map. 

Let 'fTi be a generalized metric space. 

Claim. The ordered pair 

I('Tft,) = (I(M), I(F)) 

i;:; an isomorphism from minto mwhere I (M) is the 

identity map on M and I(F) is the identity map on F. 
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Proof. The proof is obvious and is left to the 

reader. 

4.1.4. Inverses of Isomorphisms. 

Let iY'i and 7fl be generalized metric spaces.
1 2 

Let g = (g1 , g 2 ) be an isomorphism of ml into m•2 

is a homomorphism (and hence 

an isomorphism) from 

Claim. (gl
-1 

, 

into ml. 
Proof. It is sufficient to show properties (2) and 

(3) of the definition of a homomorphism (cf. 3.2.1). 

Let c, d £ F • Let2 

-1 -1 a = g ( c) and b = g2 ( d).2 

Then to demonstrate property (2) we see that 

-1 -1
g2 ( c +2 d) = g2 (r;2(a) +2 ~2 ( b)) 

-1 (= e;2 ( g2 a +l b)) 

= a + b1 

-1 -1 = g2 ( c) + g2 ( d) • 
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In order to demonstrate property ( 3), we f'o l \ow a.. 



SECTION TWO 

- QUOTIENT SPACES ­

4.2. Congruence Relations. 

Let m= (M, d, (F, +, O, ~)) be a generalized 

metric space. For any a, b £ F we let 

a Vb = sup{a,b} 

denote the join of a and b in F considered as a lattice 

and we let 

a/\ b = inf{ a,b} 

denote the meet of a and b in F considered as a lattice. 

Definition. e = CeM,elt,) is a congruence relation on m 
if'f 

(1) e is a congruence relation on ~ 

considered as a distance space 

(2) for any a, b, a' b' £ F
' 

if a eF a' and b eF, b' 

then a I\ b a'/\b'eF 

and a Vb eF a' "b' 

and a + b eF a' + b' 

159 
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(3) 	 for any x, y E M 

if d(x, y) eF O, then x eM y 

Note. We will use the notation previously used 

in this chapter for equivalence classes and for the set of 

these equivalence classes. 

Let 0 = (0M,0F) be a congruence relation on m. 
Definition. If we have that 

[a] 0 , [b) 0 E F/0F 
F F 

then we define 

[a] 0 (/\/0) [b] 0 = [l/\~e
F F F 

and 	we define 

[a]0 (V/0) [b] 0 = [av b] 0 • 
F F F 

Note. By property (2) of the definition of a 

conr,ruence relation we immediately see that 

(,\/0) and (V/0) 

are 	well-defined operations on F/0F. 
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Claim 1. For any [a] 0F, [.b) 0F, ~J 0F E F/0F 

we have that 

(a) UtJ e = (a] e (I\/ e ) (.b] e 
F F F 

iff (11) = [p] CV/e) [.a]0 0 0F F F 

(b ) (.a) = (?.] (1\/8) [a)1 8 0 8F F F 

(b 2 ) [a] 8 = (a) 0 (V/e) [a) e 
F F F 

(a] 0 (f\/e) <tbJ 8 (/\/e) ~] 0 ) 
F F F 

= <(.a] 0 (/\/0) [.b] ) (/\/0) (c]0 0F F F 

(c 2 ) [.a] 8 CV/0) ([b) CV/0) [cJ 0 )0F F F 

= ( (a] 0 (V/8) (.b] 8 ) (V/0) [cJ 0F F F 

( d 1 ) [a] e (J\/e) [b] 8 = (pJ 0 (J\/0) (a] 8F F F F 

(d2 ) (aJ (V/0) (.b) 0 = (p] CV/0) [a) •8 0 0F F F ~ 

Proof. The proof of (b ), (b ), (c ), (c ),1 2 1 2 

(d 1 ) and (d2 ) are straightforward and are left to the reader. 

Proof of (a). Assume that we have 

(a] 8 = [a) 8 (1\/0) [b] 0 • 
F F F 
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This gives us from our definitions that 

[aJe = Gi /\ b] e • 
F F 

Hence there exists a' E (a]0 with 
. F 

a' = a /\ b. 

By taking meets of both sides with a we see that 

a/\ a' = a/\ b. 

By taking meets of both sides with a' we see that 

a A a'= (a/\ a')/\ b. 

Since (F, ~) is a lattice, we are guaranteed as a 

consequence that 

a/\a' <b 

and 

b = b V (a /\a'). 
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Hence we see that 

[b] 0 = l_b] 0 CV/8) ~ /\ a~ 0 . 
F F F 

Now consider property (2) in the definition of a congruence 

relation with regard to the points a, a, a', a of F. 

We know that 

ae a' and aeF a.F 

Hence we obtain that 

aeF (a A a'). 

But this translates into 

[aJe =[al\a~e·
F F 

Thus we see that 

t'P]e = [E>] 0 <VI e) [a] 0 • 
F F 1', 

The proof of the reverse implication parallels the 

above proof. Thus we have proved what we claimed. 
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Definition: If [a] 0 , fp] 0 e: F/0F we define 
B' F 

Claim 2. ( P, <.::/0)) is a lattice whose Joins and 

meets are r;i ven by the operat:l..ons (V/0) and (1\/6) 

respectively. 

Proof. The proof that </0 is a partial order on 

F/0F is simple and left to the reader. Now we consider 

~Je E F/0F with 
F 

~] 0 <.~/0) [aJ 0 and (c)8 <.~/0) Q>] 0 • 
F F F F 

Then this implies that 

~] 0 = [c] 6 ( /e) [a] 0 and ~) 0 = (g] 0 ( /0) [b] 0 • 
F F F F F F 

This r;ives us that 

1:9Je = ~Je <A10 ) [cJe
F F F 

= 1£:Je (1\/0) ( (aJe (/\/0) ~J 01;') • 
F F · 

Thus we see that 

(cJ a < Ui-Je (1\/ 9 ) [b] a · 
F F F 
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Thus [a]0 (A/0) [b] 0 is an upper bound for all lower 
F F 

bounds of (a] and (p] • We now show that80F F 

[a] 0 (/\/8) (b] (</8) [3.] •8 8F F F 

This equivalent to showing that 

~]0 (/\/9) (b]0 = <UiJ0 C/\/9)(.b]e ) (1\/9) [aJ0 · 
F F F F F 

But this is obviously true. Hence (a] (1\/8) is the0F 

createst lower bound of [a] 8 and (p] •0F F 

A similar proof where meets are replaced with joins 

and property (a) of the preceding claim is used to enable 

one to define </0 in terms of joins gives one that 

Q1] cv10) (b] 0 is the least upper bound of [aJ0 and [b] 0 •0 F F F F 
This complete the proof of this claim. 

Definition: If (a] 0 , [b] 0 e: F/0F, then we define 
F F 

[a] 0 (+/0) (bJ 0 = ~ + bJ 0 • 
F F F 

Note. By property (2) of the definition of a con~ruence 

relation in 4.2 we see immediately that 

(+/0) 
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such 

is a well-defined operation on F/eF. 

Claim 3. (F/eF, (+/e)) is a group with unit [o]
6 

• 
F 

Proof. This is obvious and left to the reader. 

Claim 4. (F/eF, (+/e), [.oJ , (~/0)) is a lattice­0F 
ordered group. 

Proof. It is sufficient to demonstrate property (3) 

of a lattice-ordered group. 

that 

~)0 <.~/ 0 ) l"PJ0 · 
F F 

Let [£] 8 e: F/SF. Now we have that 
F 

~J0 = UtJ0 (f\/e) [bJe · 
F F F 

Hence we see that there exists a' e: (a] 0 with 
F 

a' = a /\ b. 

By considerin~ the proof of the Claim 1 we see that 

a/\a' = (a/\a')/\b. 
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But this means that 

a/\ a' < b. 

Hence we obtain that 

(a/\ a') + c < b + c 

since (F, +, o, <) is a lattice-ordered group. This 

implies that 

(a/\ a')+ c = ((a/\ a')+ c) /\ ( b + c) 

which gives us that 

na /\a') + cJe < U> + c)e . 
F F 

But this translates immediately into 

[a A a'Je (+/a) (c] < \EJ 0 (+/0) [c] •0 0F F F F 

We also know from the proof of Claim 1 that 

[?.Je = [a /\ a'] a . 
F F 
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Hence we have that 

[a]9 (+/e) (cJ0 i fi>J0 (+/9) GJ0 · 
F F F F 

Claim 5. (M/0M' d/0, (F/0F' (+/0), [o]8 , C,.s_/0)) 
F 

is a generalized metric space where d/0 is defined as it 

was for distance spaces in 3.3. 

Proof. It is sufficient to verify properties (3), 

(4) and (5) of a generalized metric space. Property (3) 

is a direct consequence of property (3) of the definition 

of a congruence relation. Property (4) is a direct consequence 

of property (4) for m and the definition of d/0. In order 

to prove property (5) let (xJ 0 , ty] 0 , [z] 0 e M/0M. 
M M M 

Hence we have that 

(d/0)([.xJaM'U'JaM) (+/0) (d/8)(l_y]9M' [zJeM) 

= [d(x,yLJ 0 (+/0) ~(y,z)] 0F F 

= @<x,y) + d(y,zD e • 
F 

But we know that 

d(x,y) + d(y,z) > d(x,z). 
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Hence we obtain that 

(d(x,y) + d(y,z)) I\ d(x,z) = d(x,z). 

This implies that 

fu<x,y) + d(y,z)] 8 /\ ~(x,z)J 8 = [ctCx,z)] 8FF F 

which gives us that 

Lli cx ,y) + a (y, z D ~ @C x, z )] 8 •8F F 

Hence we have that 

(d/8)((_x] 8 ,(l]8 ) (+/8) (d/8) <(¥] , [z] )8 8M M M M 

> (d/8)( (.x] 8 , [z]8 ) • 
- M M 

Claim 6. The ordered pair of maps K= (KM,KF) where 

KM is defined by 

= [xJ0
M 

and KF is defined by 
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is a homomorphism from 'rn into rn,;0 where we put 

1Y/,!6 = (M/6M, d/6, (F/6F' (+/6),(.o]6 , (~/6)).
F 

Proof. The proof is an obvious extension of a 

similar result for distance spaces proved in 3.3 and is 

left to the reader. 

Note. It is possible in this context to prove 

results similar to those proved for quotients of distance 

spaces by merely extending the proofs of these results to give 

the validity of properties (2) and (3) of the definition of 

homomorpl1ism for generalized metric spaces. 



SECTION THREE 

- PRODUCTS ­

4.3. Products. 

Let (mi) be a family of generalized metric 
ie:I 

spaces. 

Definition. We define 	 11 'Y/?,i to be 
ie:I 

where 1Td is as defined previously for distance spaces1ie:I 

(see 3.6) and where 

and where 

iff for any i e: I, a 1 ~i bi. 

Hotation. For convenience in the rest of this 

sub-section we write Tf 7n,,. as 
1ie:I 

(M, d, (F, +, O, <)). 

171 
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We call ~Imi the "product of the mi". 

Claim 1. (F, +, o, ~) is a lattice-ordered group. 

Proof. It is easily seen that 

(F, +, O) 

is a group and that 

(F, ~) 

is a lattice. We now demonstrate property (3) of a 

lattice-ordered group. Let 

Assume that 

This implies that for all i £ I 

ai < i bi. 
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Hence we have that for all i E I 

Thus we see that 

From the deifnition of + we see that 

Claim 2. (M, d, (F, +, o, ~)) is a generalized 

metric space. 

Proof. Property (1) of the definition of a generalized 

metric space is satisfied which is seen from our work on 

distance spaces (cf. 3.6.1). Property (2) is satisfied by 

the result of the preceding claim. It remains only to verify 

properties (3), (4) and (5). 

First consider property (3). Assume that 
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are such that 

This is true iff 

(Qi) = (di(xi, y.))
1iEI iEI 

which is true iff for all i £ I 

This is equivalent to the statement that for all i·E I 

which is true iff 

Next consider property (4). Then we have that 

d((xi) , (yi) ) 
iEI iEI 

= (di(xi, yi)) 
iEI 

= (di (yi, xi)) 
ie:I 

.,. d((yi) , (xi) ). 
iEI iEI 
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Finally consider property (5). We observe that 

d((x.) , (y.) ) + d((yi) , (zi) )
1 1iEI iEI iEI iEI 

= (di(xi' yi) + di(yi' zi)) iEI 

> (di(xi, zi)) 
iEI 

since for each i £ I, 'YY\.,1 is a generalized metric space. 

We recall from Section 3.6.2 the definition of the 

functions 

and 

which are the j-th projections of M and F respectively 

and we define 

Claim 3. For any j £ I, prj'L is a homomorphism 

from m into mj. 
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Proof. By referring to 3.6.2, we s~e that it is 

sufficient to verify properties (2) and (3) of the definition 

of a homomorphism given in ~.1.1. 

As regards property (2), we see that 

F
prj ((ai) + (b.) )

1ie:I ie:I 

= aj +j b j 

= pr 
F
j (( ai) ) + prj

F 
( (b 1 ) ) • 

iEI ie:I 

In order to demonstrate property ( 3) we r c \\ow · a. 

NOte. It is possible to define the notion of 

extension property for generalized metric spaces in exactly 

the same way as was done for distance spaces in 3.6. Then 
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it is readily seen that 

m = (M, d)F, +, O, <)) 

has the extension property and that any triple with the 

extension property is essentially the same as 'YYl,;. The 

proofs are the same as those for distance spaces except 

that in certain instances one must verify properties (2) 

and (3) of the definition of a generalized metric space 

homomorphism given in 4.1.1. 



SECTION FOUR 

- A METHOD OF CONSTRUCTION 

OF UNIFORM STRUCTURES ON 

GENERALIZED METRIC SPACES ­

4.4. The Construction. 

Let m= (M, d, (F, +, O, .::_)) be a generalized 

metric space. Let F* be a filter on F such that 

(1) 	 for any u, if u e: F* 

then 0 e: u 

(2) 	 for any v, if v e: F* 

then there exists w e: F* 

such that w + w~v 

(3) 	 for any v, if v e: F* 

then there exists w e: F* 

such that w '=- v and w ls convex. 

Note. We say that W ~F is convex iff for any 

a, b e: W and for any x e: F 

if a < x < b 

then x e: w. 
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Definition: For any V E F*, define V(M) 

to be the set of all ordered pairs 

(x,y) 

such that x,y E M and 

d(x,y) e: v. 


Claim. For any V E F*, 


V(M) = (V(M))-l. 

Proof. This is automatic due to property (4) 

of the definition of a generalized metric space. 

Claim. For any V E F*, 

{(x,x)lx e: M} s;, V(M). 

Proof. Take x E M. Then we have that 

d(x,x) = O. 

Hence since 0 E V we have that 

d(x,x) e: V. 
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Thus we obtain that 

(x,x) E V(M). 


Hate. For any x,y E M, 


cl(x,y) ~ o. 


Proof. Assume that 


d(x,y) < o. 

Then it is immediate that 

d(x,y) + d(x,y) < O. 

But by the triangle inequality 

d(x,x) ! d(x,y) + d(y,x). 

Thi~ implies that 

O ! d(x,y) + d(x,y) 

which is a contradiction. 

Claim. For any VE F*, there exists WE F* such that 

W(M) o W(M) S:. V(M). 
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Proof. Take T ~V such that 

T E F* and T is convex. 

Take W E F* such that 

w + w ~'r. 

Take x,y E M such that 

(x,y) E W(M) o W(M). 

This implies that there exists z E M such that 

(x,z) E W(M) and (z,y) E W(M). 

Hence we have that 

d(x,z) E W and d(z,y) E W. 

Thus we see that 

d(x,z) + d(z,y) E T. 

IJow we know that 

0 < d(x,y) < d(x,z) + d(z,y). 
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Using the facts that O E T and 

d(x,z) + d(z,y) E T 

and that T is convex, we conclude that 

d(x,y) E T. 

This implies that 

d(x,y) E V. 

Hence we obtain that 

(x,y) E V(M). 

Now consider F" to be the filter on M x M 

8enerated by the set of all V(M) where V E F*. Then 

F" is a uniform structure on M as a consequence of 

what we have proved ( (2], page 177; (3], page 21). 
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