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PROLOGUE

The aim of this thesis is to define as nearly as
possible standard geometrical objects and operatiocns 1n
metric spaces. Later, the possiblilty of stripping most of
the structure from metric spaces yet still preserving the
concept of "distance" is considered.

As far as the aim is concerned a type of regular
set in metric spaces and two related types of "scalar
multiplication" connected with metric spaces are defined.

The regular sets are modelled on the Euclidean
geometric objJjects known as equilateral triangles and regular
tetrahedra.

Two two scalar multiplications are in essence similar
to normal scalar multiplications except that there 1s no
addition associated with them as in vector spaces.

The work regarding metric spaces stripped of most of
theilr structure was motivated by a graduate course in "Universal
Algebra" given by Professor G. Bruns of McMaster University.
Metric spaces can be considered as special cases of these
abstract spaces. Proceeding along this line more structure
is put back into these abstract "dlstance" spaces. This leads
to a mathematical system which resembles a metrlc space in
many ways but which retains certain properties which the

abstract spaces poSsess and metric spaces do not.

(iv)



NOTATION

The following 1s a description of notational usage

within this thesis.
| The capital letter R 1s used throughout to denote

the real numbers although in certain sections it 1is used
differently. In these situations, however, the ygage 1s
specifically indicated.

In some situations, the notation |S| 1s used to denote
the cardinality of the set S which 1s effectively the
number of elements which S has. In other situations, the
notation |x| is used with regard to real numbers to denote
the absolute value of x. In all cases, the usage will be
clear from the context.

With regard to equivalence relations, we will denote
the equivalence class of an element x in M with respect
to the equivalence relation o by [ﬁ]e . The set of all
such equlvalence classes will be denoted by M/8.

If S 1s a set of ordered pairs, then s™1 is the

set of all ordered pairs (x,y) such that
(y,x) € S.
If S and T are sets of ordered palrs, then ST 1s the

set of all ordered pairs (x,y) such that there exists some

z with

(v)



(x,2) € S and (z,y) € T.

Throughout this work, the symbol "iff" will be used

as an abbreviation of the phrase "if and only if".

(vi)
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CHAPTER ONE

- REGULAR SETS =~

Introduction. This Chapter is devoted to the

discussion of "regular" sets in a metric space. These
sets, which are called "tets", are generalizations of the
normal Eucllidean objects known as equilateral triangles

and regular tetrhedra.

A concept of differentiating real valued functions
on a metric space is defined. Also a notion of a "localizable"
direction at a point 1s developed. In addition, a uniform
topology on the tets 1s defined, examined and a uniformly
continuous function on a subset of tets is exhibited. 1In
conclusion, a certain type of space based on the idea of tets
is examined. It 1s found that a metric space generated a
space of thls type and each space of this type generates a

metric space.



SECTION ONE

~ METRIC SPACES =~

l.1l. Preliminary Notlons.

Let M be a set and let R be the set of real

numbers,

Definition: (M,d) is a metric space iff

(1) d: M x M=+ R

(2) for any p,qe M,
d(p,q) = 0 iff p=q

(3) for any p,q € M,
d(p,q) = d(q,p)

(4) for any p,q,r e M,

d(p,q)< d(p,r) + d(r,q)
Condition (4) is commonly known as the triangle inequality.
Let (M,d) be a metric space.

Definition: If p e M and e g R and e > 0

we define the following subsets of M:

N(p; e) = {q]d(p,q) < €}



which 1s called the open disk of radius e at p and
E(p; e) = {q|d(p,q) > e}

which 1s called the exterior of the open disk of radius
at p.

Definition: Define 0, +) to be the set of all

X such that
x € R and x > 0.

Definition: Define D(M,d) to be the set of all

lJ N(p,; e,)
jer 171

where (pi; ei)ieI is a family in M X‘JO,-+] .

Theorem: D(M,d) is a topology on M called the

topology associlated with d.

Proof. Not given ([1], page 119).

e




Theorem: If p e M and e e R and e > 0,

(1) N(p; e) 1is open
(2) E(p; e) is open.

Proof of (1). It i1s immediate that N(p; e)

is a union of the form

LJ N(p,; e;)
1eI i1

consisting of a single term: namely, itself,.

Proof of (2). Take q €& E(p; e). Consider

).

®

r(q) = %(d(p,q) -
Then it is readily seen that

N(q; f(a)) € E(p; e).
Thus we have immediately that

U N(a; £(q)) = E(p; e)
qeE(p;e)

then




since

q € N(q; f(q)).

Theorem: For any p, q, r € M,

d(p,q) > |d(p,r) - d(r,q)|.

Proof. We have from the triangle inequality

d(p,r) < d(p,q) + d(r,q).

This impliles

d(p,q) > d(p,r) - d(r,q).
Also from the triangle inequality
d(r,q) < d(r,p) + d(p,q).
Hence we get
d(p,q) > d(r,q) - d(r,p)
= d(r,q) - d(p,r)



since d(p,r) = d(r,p).

Theorem: For any p,q,r,s € M

ld(p,q) - d(r,s)| <d(p,r) + d(q,s).

Proof.

ld(p,q) - d(r,s)|
=|(d(p,q) - d(q,r)) + (d(g,r) - d(r,s))|

<ld(p,q) - d(a,r)| + |d(q,r) = d(r,s)]

< d(p,r) + d(q,s)

since we have by the preceding theorem that

d(p,r) > ld(p,q) - d(q,r)|
d(q,s) > Id(er) - d(r,s)l.



SECTION TWO

- "TETRAHEDRA" -

l.2. Regular Sets.

Let (M,d) be a metric space and let e & R.

Definition: K G M 1is an e-tet iff |

|
for any x,y € K, |

i
if x #y, then d4(x,y) = e.

Note. @ i1s an e-tet for any e € R. If p e M,

then {p} 1s an e-tet for any e ¢ R.

Definition: K &M 1is a tet 1ff there exists

e € R such that K 1s an e-tet,

Definition: Tet(e) 1is the set of all e~tets

in M.

The term tet 1s intended as a contraction of the
word tetrahedron in order to indicate structures whiéh bear
a resemblance to the equilateral triangle of the plane or the

tetrahedron of space.

Note. We may partially order Tet(e) by inclusion.




Theorem: If K 1is an e-tet in' M, then there

exists a maximal e-tet, K, in M (maximal with respect

to inclusion) such that K ¢ K.

Proof, Let C be a non-empty chain in Tet(e)

such that
LeC implies K ¢ L.

Define

o = U 1.

LeC
Trivially, we have
K @ C¥

since C 1s non-empty.
We now show that C¥ ¢ Tet(e).

Take x,y € C¥ with x ¥ y. Then there exists
L'y L" ¢ C with

xeL' and y e L",



The fact that C 1s a chain gives

L'C L" or L" gL'

We assume, without loss of generality, that

L' L" .

Hence x,y € L". Now L" 1is an e-tet. Thus x,y € L"

and x # y implies that

d(x,y) = e.

Hence C* is an upper bound of C in the set of
all L e Tet(e) with K L. Also C was an arbitrary
non-empty chain. Hence, by Zorn's Lemma, there exists a

maximal X € Tet(e) with the property that K gX.

Definition: Let K be an e-tet in M, Deflne

int(K) = {g| g e M and d(x,q) < e
for all x € K},

ext(K) = {qg] g e M and d(x,q) > e
for some x € K},

bnd(K) = {q] q e M and d(x,q) < e
for all x € K and there

exists x' ¢ K with d(x',q) = e}l.
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In this definition, ext(K) is read "the exterior
of K", int(K) is read "the interior of K" and bnd(K)

is read "the boundary of K",

Theorem: I K 1s an e-tet 1n M, then

(1) ext(K)MNbnd(K) = @
(2) int(K) N bnd(K) = 2
(3) ext(K) M int(K) = ¢

(4) ext(X) U bnd(k) U int(K) = M.

In addition, it is also true that

(5) ext(K) = L) E(x; e)
xeK

(6) int(x) = [ ) N(x; e)
xeK

(7) bnd(K) = U K(x)
xeK

where for any x' € K

K(x') = {q] q e M and d(x,q) < e
for all x e K and

d(x',q) = e}.
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Also it 1is true that

(8) for any x € K,
K(x) 1s closed,

Hence, since E(x; e) 1s open, we have that ext(K)
is open. Since K(x) 1is closed, we have that bnd(X) is
the union of closed sets. Also int(K) is the intersection
of open sets. If, in particular, KX 1s a finite set, then
bnd(K) 1is closed and int(K) is open.

Proof of (3). -Assume there exists an x such that

x £ ext(K) N int(K).

This implies that there exists a y € K such that

d(y,x) < e and d(y,x) > e.

This is impossible.

Proof of (1) and (2). The proofs of these are

analogous to the proof of (3) and are left to the reader.

Proof of (4). Certainly we have

ext(K) U bnd(K) U int(K) & M.
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We now show that the reverse inclusion holds.
Take q € M. Then q  satisfies one of the two

following statements:

(a) there exists some x € K with d(x,q) > e

(b) for any x € K, d(x,q) < e.

In case (a), x 1is immedlately seen to belong to ext(K).

Case (b) may be subdivided into the following cases:

(¢) for any x € K, d(x,q) ¥ e

(d) for some x € K, d(x,q) = e.

In case (¢), x 1s seen to be an element of int(K).

In case (d), x 1is seen to be in bnd(XK).

Proof of (5).

q € ext(K)

iff there exists x € K with d(x,q) > e
iff there exists x € K with q ¢ E(x; e)
1fr q e U E(x; e).

xeK

Proof of (6) and (7). The proofs of these are

analogous to the proof of (5) and are left to the reader.
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Proof of (8). Let (x(n)) be a sequence in K(x')

with 1lim(x(n)) = x. It will suffice to show that x e K(x').

Now for all gq € K,
d(x(n), q) < e.
Hence it 1s seen that
lim(d(x(n), q)) < e.
But ([1}, pages 9 and.15)
lim(d(x(n), q)) = d(1im(x(n)), q).

Hence d(x,q) < e.

Now for any n € N,
a(x', x(n)) = e.
Thus we have

lim(d(x"', x(n))) = e,
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But ([1], pages 9 and 15)

lim(d(x', x(n))) = d(x', 1lim(x(n))).

Finally we get d(x',x) = e.

Theorem: If K 1s an e-tet in M, then K 1is

closed and K does not have a cluster point.

Proof. Let (p(n)) be a sequence in K with
lim(p(n)) = p. It will suffice to show that p € K.

Since (p(n)) has a 1limit, it is a Cauchy sequence.

Thus there exists n* ¢ N such that if k', k" > n* then
d(p(k'), p(k")) < %e.
Hence, since p(k') and p(k") € K, we have that p(k')
and p(k") are equal if k', k" > n*, Thus p(n) = p(n¥*)
if n > n¥, This implies that
lim(p(n)) = p(n¥).

Immediately we have that

p = p(n¥*),



15
Hence p € K since p(n*) € K. Thus K ' is closed.

Take p € K. Then it 1s immediate that

N(p; %e) MK = {pl.

Thus p 1s not a cluster point. p was arbitrary. Hence

K does not have a cluster point.

Corollary. If K 1s infinite, then X 1s not

compact.

Proof. Trivial.



SECTION THREE

- BISECTORS and DERIVATIVES -

1.3.1. The Bisector of a Tet.

Definition: Define Tet(p; e) to be the set of

all maximal e-tets K such that p € K.

Definition: If K € Tet(p; e), define b(p,K) to

be the set of all q € M such that

d(q,r) = d(q,s)

for all r,s e K with r # p and s ¥ p.

b(p,K) is called the bisector of K which passes

through p.

Theorem: If K e Tet(p; e), then b(p,K) 1is

closed.

Proof. Let (q(n)) be a sequence in b(p,K)
with 1lim(q(n)) = q. It will suffice to show that q ¢ b(p,K).

Take arbitrary r,s €¢e K with r ¥ p and s ¥ p.

Then for any n € N,

d(q(n), r) = d(q(n), s).

16
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Hence it 1s seen that

1lim(d(q(n), r)) = 1lim(d(q(n), s)).

But

1im(d(q(n), r))
1im(d(q(n), s))

d(1im(q(n)), r)
d(lim(q(n)), s).

Hence

d(q,r) = d(q,s).

Definitlon: If K ¢ Tet(p; e), define b’ (p,K)

to be the set of all q € b(p,K) with d(r,q) < e for all

re K with r # p.

Definition: If K ¢ Tet(p; e), define b (p,K) to

be the set of all q ¢ b(p,K) with d(r,q) > e for some
re K with r #p

Note. It is clear that

b+(p,K) N b (p,K) = 4.

Intuitively, in the Euclidean plane, b+(p,K) and b (p,K)
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give rise to a "positive" and "negative" direction on

b(p,K) close to p.

1.3.2, Derivatives of Real~Valued Functions.

Let (M,d) be a metric space. Let p € M. Let

Let K € Tet(p; e).

Definition: f 1s positively (e,p,K)-differentiable

ifrf
(1) lim £(y) - £(p)
y*p d(y,p)
yeb*(p,K)
exlsts.
Definition: f 1is negatively (e,p,K)-differentiable
iff
(2) lim £y) - fip)
y+p ~-d(y,p)
yeb (p,K)

exists.
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Definition: f 1is (e,p,K)-differentiable iff f

is positively (e,p,K)-differentiable and f 1is negatively

(e,p,K)-differentiable and
£7 oy (p) = £7_ (D)
(e,K) (e,K)

+ -
where f(e,K)(p) denotes the 1limit (1) and f(e,K)(p)
denotes the limit (2).



SECTION FOUR

- DIRECTIONS - :

1.4.1. Types of Maps.

Let (M,d) and (M',d') be metric spaces.

Definition: f is an isometry of (M,d) onto

(M',d') iff

(1) f: M=->M

(2) f 1s one-~to-one and onto

(3) for any x,y € M,
a'(f(x), £(y)) = d(x,y).

Definition: f 1is a local isometry of (M,d)

into  (M',d') iff

(1) f: M->M
(2) for any p € M, there exists

a neighbourhood U of p and

a neighbourhood V of f(p)

such that flU 1s an isometry

of (U, 4{(U x U)) onto (V, a'|(V x V)).

1.4,2, The Notion of Directions.

Let (M,d) be a metric space.

20
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Definition: If p € M, define

Tet(p) = kJ Tet(p; e).
eeR

Definition: If K 1s a tet, defilne

char(K) = e iff K 1is an e-tet.

Note. In what follows use is made of b+(p,K) in
the definitions. However, a similar discussion can be

carried out using b~ (p,K).

Definition: K determines a direction at p 1iff

(1) K € Tet(p) and p e M
(2) p 1is an accumulation point of

b+(p,K).

Definition: If p € M, define

Tet*(p) = {K|K determines a direction at

Definition: If KXK', K""e Tée#(p); define: K' ~ K"’

p}.-
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1ff there exlsts e € R with e > 0 such that

(1) b (p,K") N N(p; ) ¢ bt (p, k™M)
(2) b (p,k") N N(p; e) c bt (p,k").

Claim. <~ is an equivalence relation on Tet¥*(p).

Proof. The reflexivity of ~ 1s immediate from the
properties of contalnment. The symmetry is inherent in the
definition. The transitivity follows from the transitivity

of containment.

Definition: A regular direction at p is an

equivalence class in Tet*(p) with respect to =,

Notation. If K € Tet¥(p), then [KJN denotes the
equivalence class of K 1in Tet¥*(p) with respect to .,

Thus[}ﬂN is called a regular direction at p.

Definition: A regular direction [?]N , at p is

refinable iff for any e > 0, there exists f > 0 with

f < e such that there exlsts L e [ﬁ]w with

char(L) = f.
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Clailm. The association -

[KJ,\'/W‘—#[K-JNH @(N(p; e))

defines a one-to-one and onto mapping of the set of refinable
regular directions at p in M to the set of refinable

regular directions at p in N(p; e).

Proof. Clearly, since [K], is refinable, we have

that

Kl. N p (Np; &) # 2.
From this, it is immediate that

Kl.n  pNp; )

is a refinable regular direction at p in N(p; e).

Assume that
Kl.N pNes e = Bl N pN(p; e)).

Since neither of these sets 1s empty, we may take J to be
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an element of both., Then we have that if I ¢ [F]m then

and that if I ¢ [L), then
g~ I

Hence it is seen that

v, = K,
and

b1, = .
Thus

K., = @], .

Thils proves that the assoclation is one«to-one.

Let L be a refinable regular direction at p in

N(p; e). Let KX € L. Then it is certainly true that

L=[K],N @Np; e).
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Thus the association is onto.

The refinable directions seem to be of importance
since they are "preserved" no matter how close one comes to

the point p 1in question (i.e., there is a tet giving them).

1l.4.3. Preservation of Refinable Regular Directions.

Let (M,d) and (M',d') be metric spaces. Let
f be a local isometry of (M,d) into (M',d'). Let
p € M. Let U be a neighbourhood of p and let V be a
neighbourhood of f(p) such that f|U 1is an isometry of
(U, d|(U x U)) onto (V, a'|(V x V)).

Since f 1s a local isometry, we are guaranteed
the existence of a U and a V with these properties.

Choose e!' and e" with

N(p; e') €« U and N(f(p); e") g V.

Set e = min {e',e"}. Then it is clear that £|N(p; e)

1s an isometry of N(p; e) onto N(f(p); e).

Moreover under an isometry of a metric space onto
a metric space refinable regular directions are preserved

since such an isometry preserves distances.
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Hence if we take a refinable regular direction {K],

at p in (M,d) and then assign to it

K], N f (N(p; e))

and then assign to this

f(Kl, N pNp; e))),

we have assoclated a refinable regular direction at f(p)

in N(f(p); e) with [K]N . Now assign to this regular
direction at f(p) 4in N(f(p); e) the regular direction

at. p in (M',d4d') guaranteed by the last claim in the
preceding sub-section, Thus we now have an assoclation of
[K]N with a refinable regular direction at f(p) in (M',4').
Moreover, from the construction it is immediate that this
assignment 1s one-to-one and onto between the refinable
regular directions at p in (M,d) and the refinable

regular directions at f(p) in (M',d').

Thus in a certain sense the local isometry, f,

preserves refinable regular directions.



‘SECTION FIVE

- A TOPOLOGY -

1.5.1. Nearness of Tets.

Let (M,d) be a metric space.

Definition: Tet(M) = \U Tet(e).
eeR

Definition: If e € R and e > 0, define N(e)

to be the set of all ordered pairs (K',K") such that

K',K" € Tet(M),

and there exists a function

h: K' -+ K"

such that h 1is one-to-one and onto and such that for

any x € K!

d(x,h(x)) < e,

Definition: U = {N(e)|e ¢e R and e > 0}.

Claim. U is a filter base on Tet(M) x Tet (M)

and the filter that it generates 1s a uniform structure on

27



Tet (M) ([2], page 177; [3], page 21).

Proof. (1). First we show that U 1is a filter

base on Tet(M) x Tet(M). Let

N(h'), N(h") € U.

Consider

h = min{h',h"}.

Then

N(h) € N(h') and N(h) € N(h").

This implies that

N(h) € N(h') N\ N(h").

Note., If R 1s a set of ordered pairs then R

1s the set of all ordered pairs (x,y) such that

(y,x) € R.

28
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If R and S are sets of ordered pairs then R o S 1is

the set of all ordered pairs (x,y) such that there exists

some 2z with
(x,2) e R and (z,y) € S.

(2) Now we show that U generates a uniform structure.

It 1s sufficient to show that

(a) for every e € R with e > 0,
{(K,K)|K € Tet(M)} € N(e)
(b) for every e € R with e > 0,
N(e) = (N(e))™?
(¢c) for every e € R with e > 0,
there exists h € R with h > 0 such that
N(h) = N(h) ¢ N(e).

(a) Let K e Tet(M). Consider the identity map on
K; denote it by I(K). Now I(K) is one-to-one and onto

and for any x € K and any e ¢ R with e > 0 we have

d(x,T(K) (x))
= d(x,x)
= (

< e,
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Hence (K,K) € N(e) for all e € R with e > 0.

(b) Let e € R with e > 0. Let

(K',K") € N(e).

This implies that there exists
h: K' » K"

which is one-to-one and onto and 1is guch that for any x € K
d(x,h(x)) < e.

Consider -
h ~: K" » K!

which is one-to-one and onto. We note that for any y € K"

a(y,h~1(y))
a(h™(y),y)

-1 -1
d(h™ ~(y), h(h™~(y)))

< e



by the properties of h, Hence (K",K') € N(e).

This implies that

N(e) = (N(e))™ 1.

(¢) Let e € R with e > 0. Choose

h = ke,

Let

(K',K") € N(h) o N(h).

This implies that there exists K¥* € Tet(M) with

(K' ,K¥) € N(h) and (K¥,K") € N(h).

Hence there exists

h': K' » K%

which is one-to-one and onto and has the property that
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for any x e K! | |

d(x,h'(x)) < h.

Also there exists

h": K* - K"

which 1s one-=-to-one and onto and has the property that for

any y € K¥

d(y,h"(y)) < h.

Consider

h" o h': K' + K",

Then h" « h' 1is one-to-one and onto. We now see that for

any x € K!

d(x,(h" o h')(x))
<d(x,h'(x)) + d(nh'(x), h"(h'(x)))

<h + h = e
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by ﬁhe triangle inequality. Hence
(K',K") & N(e).
Thus
N(h) ¢ N(h) € N(e).

Definition: Define D¥(M,d) to be the topology

induced on Tet(M) by the filter generated by U.

1.5.2. Finitary Metric Spaces.

Definition: (M,d) 1is finitary iff K € Tet(M)

implies that K 1is finite.

Claim. If (M,d) 1s finitary, then D¥*(M,d)

is Hausdorff.

Proof. Take K',K" € Tet(M) with K' # K". This
implies, without loss of generality, that there exists a k

such that

k ¢ K and k ¢ K".
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Since K" 1is finite, we have that

e = min d(k,x) > 0.
xeK"

Assume that there exists K¥ with

K* € N(K'; %e) N N(K"; %e).

where

N(X; h) = {L|(K,L) € N(h)}

and is thus a neighbourhood of K 1in Tet(M) with

respect to D¥(M,d). This gives that there exists

h': K' -+ K¥

which 1s one~to-one and onto and is such that for any x e K!

d(x,h'(x)) < ke.

Also there exists

n": k¥ » k'
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which 1s one-to-one and onto and is such that for any y € K¥
d(y,h"(y)) < %e.
Hence
d(k,h"(h'(k)))
<d(k,h'(k)) + d(h'(k),h"(h'(k)))
<ke + ke = e,
This 1s a contradiction since

h"(h'(k)) € K",

l1.5.3. A Property of Arcs.

Claim. If f 1s a function with

f: I + Tet(M)

where

I ={x|xeR and 0 < x < 1}
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and if f 1s continuous with respect to the usual topology

on I and D¥(M,d), then
l£co)| = |£(1)].

Proof. For any x € I, there exists h(x) € R

with h(x) > 0 such that for any y € I 1if
|x = y| < h(x)

then
f(y) € N(f(x);‘l)

by the continuity of f. In such a situation we can immediately

conclude that
(1) I£(y)| = |£(x)]

by the definition of D¥(M,d).

The set of all N(x; h(x)) is an open cover of 1I.

Thus there exlsts a finite subcover

n
(N(xy3 h(x4)))y.4
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such that

(l) fOI‘ i = 1,.-.,1’1—1,

Xy < X441

(2) for 1 = 1,...,n-1,
N(xg3 h(x;)) OV N(xg 4, D(x3.4)) # 2

(3) 0 e N(xy, h(x)))

l’

(4) 1 ¢ N(xn, h(xn))

since I 1is compact and connected. We will show that

for 1= 1,...,n-1,

Now since for i = 1,...,n-1,

N(xy5 h(x;)) MN(xg 4, h(xg,)) # 0

there exists Yy for 1=1,...,n-1 such that

¥y € N(xg3 h(xg)) MN(xg 4, hixg4)).
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This and (1) implies that i = 1,...,n-1,
If(xi)l = If(yi)l and lf(yi)l = jf(xi+l)|
Hence we get that for 1 = 1,...,n-1
(x| = 1£(x,0 1
Also since 0 ¢ N(xl; h(xl)) we have that
‘f(O)I = lf(xl)l,
and since 1 ¢ N(xn; h(xn)) we have that
[£(1)] = If(xn)l.
Hence

FeCo) | = [£(x )| = oo = [£(x )] = [£(1)




SECTION SIX

- THE CHARACTERISTIC -

1.6.1. A Uniformly Continuous Function.

Let (M,d) be a metric space. We recall that if
K 1s a tet then

char(K) = e 4iff K 1s an e=tet.

Note. Let K € Tet(M). Then we have the following

results:

(a) 1f |K| <1, then
for any r € R

char(K)

r
(b) if |K| > 2, then

char(K) is unique.

Proof of (a). Since |K| < 1, it follows that

K = {p} for some peM or K= g, In either case, K 1is

an r-tet for any r € R.

Hence char(K) = r for any r € R.
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Proof of (b). Since |K| > 2, it follows that there

exists p,q € K with p # q. Assume

char(X) = r' and char(X) = r",

then

r' and d(p,q) = r".

d(p,q)

this implies that r° r". Hence char(K) is unique.

Definition: Define Tet#(M) to be the set of all

K € Tet(M) with [K| > 2.

Definition: Define D#¥¥(M,d) to be the restriction

of the topology D¥(M,d) to Tet¥(M).

Definition: Define

CHAR: Tet*(M) » R

by setting

CHAR(K) = char(K).
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Then CHAR 1is well-defined by the observations in the

preceding note.

Claim. CHAR is uniformly continuous with respect

to the usual topology on R and D¥¥(M,d).

Proof. Take e > Q0. Choose h = %e, Then it is

sufficient to show that

if (X,L) € N(h),

then |char(K) - char(L)| < e.

Take (K,L) € N(h). Hence there exists

.which is one-to-~one and onto and is such that for any x € K
d(x,f(x)) < h.
Now, since |K| > 2, there exist p,q € K with

p ¥ q.



Thus
£(p) # £(q)
since f 1s one-to-one. Also we have
d(p,f(p)) < h and d(q,f(q)) < h.
By an inequality proved in 1.l we find that
la(p,q) - a(£(p), f(a))|

d(p,f(p)) + d(q,f(a))

<h+h=e¢e,

i

But we also have that

d(p,q) = char(k)
since p # q and that

a(£(p), £(q)) = char(L)
since f(p) # f(q). Hence we see that

| char(K) = char(L)| < e.
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1.6.2. A Function Property.

Let (M,d) Dbe a metric space. Let
K € Tet(M).

Claim. If f 1s a function with

such that for any x € K

d(x,f(x)) < % char(K)

then f 1is one~to-one.

Proof. Assume that x,y €¢ K and f(x) = f(y).

Then we must show that x = y. Now we know that

d(x,f(x)) < % char(K)

and that

d(y,f(y)) < % char(K).
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Computing we find that

d(x,y)

a(x,f(x)) + d(f(x), y)
-d(x;f(x)) + d(y,f(y))
<} char(K) + % char(X)

=char(K)

since f(x) = f(y). But this gives us that x = y since
K 1is a tet.



SECTION SEVEN

- STRUCTURE THEOREMS -

1.7.1. Composite Tet-Spaces.
Definition: (T,d) 1is a tet-space iff
(1) (T,d) 1is a metric space
(2) there exists e € R with e > 0
such that for any x,y € T with x # y:
we have d(x,y) = e.
Definition: ((Ti’di)i I’ R) 1is a composite
€

tet-space iff

(1)
(2)

(3)

(%)

is a tet-space

U r

iel

for any 1 ¢ I, (Ti’di)

R 1s an equivalence relation on i

if x,z € T and y,w e T

i J

and x Ry and 2 R w, then

di(x,z) = dJ(y,w)

for any x,y € \J ’I‘1

ieI
if it is not the case that x R y

then there exists J € I such that

X,y € TJ
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(5) 4if x,y € T, and y,z ¢ TJ

and x,Z € Tk’ then

di(x,y) + dj(y,z) > dk(x,z).

Let T = ((Ti’di)iel’ R) Dbe a composite tet-space.

Definition: Define M(T) to be the set of all

equivalence classes in LJ T
iel

1 with respect to R,

Notation. If x € LJ ‘Ti, then the equivalence
ieTI

class of x 1in t_} Ti with respect to R willl be denoted

iel
by [j]R .

Definition: Define a function d(T) with

a(T): M(T) x M(T) = R
by setting
(a(1)) ([x1g, [¥1g) = d,(x,¥)

if we have that

)y # [é’]R
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and where 1 € I 1s such that x,y € Ti and by setting

(a(T) (g, Ivlg) = 0

if we have that

| f.x]R = [Y]R .

Claim. d(T) 1is well=defined.

Proof. In the case

xlg = g

d(T) 1is certainly well-defined. Let us now consider the case

EX]R * v R*

Assume that
zlg = [_x]R and [w]p = [y]R.

Then let 1i,j ¢ I be such that x,y € Ti and z,wWw ¢ TJ‘
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We can do this by property (4) of T. Hence we have that
xRz and y Rw
and that
X,y eTi and 2Z,W € TJ.
Thus, by property (3) of T, we see that

di(x,y) = dJ(z,w).

Claim. d(T) is a metric on M(T).

Proof. (a). Assume that

(@) [z g = O

Assume, in addition, that
g 7 Wi
Then, by the definition of d(T), there exists 1 € I with

di(x,y) = 0 and x,y € Ti‘
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Thus x =y since di 1s a metric and, consequently,

[)-{]R = LV]R .

This, however, contradicts our assumption.

In the case
‘}]R = Eﬂ}%
we are guaranteed by the definition of d(T) that

(a(r) ([xlg, ) = o.

(b)., If we have that
[xJR = [ij
then it 1s immediate from the definition of d(T) that

@) (g Bl = @) (g Ky

since both sides are zero.
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If we have that co

g # Mg

then we have for some 1 € I that

(@M (g BR

di(x,y)

d; (y,x)

(@™ () g KR

since di is a metric on Ti'

(c¢). We now consider the triangle inequality.

We verify only the case that

[X_JR # [y]R and [y]R # [?]R and [x]R # [z]R

leaving the other cases since they are simllar and very easy

to prove. We have that for some 1,j,k € I

(@M (g Blg) + @]y, f2lp)

di(x,y) + dJ(y,z)

|v

dk(x,z)

@) (Gl g By
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by property (5) of T,

1.7.2. Composite Tet-Spaces of (M,d).

Let (M,d) be a metric space.

Note. If p,q € M, then the set whose elements are
only p and q 1s a d(p,g)-tet in M. This tet is also

contained in a maximal d(p,q)-tet.

Definition: Define Nat to be the ordered pair

consisting of the family of
(K,a| (K x K))

where XK 1s a tet in (M,d) and of the equivalence relation
=|M.

Definition: Define Max to be the ordered pair

consisting of the family of

(K,d| (K x K))

where K 1s a maximal tet in (M,d) and of the equivalence

relation
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Claim. Nat 1s a composite tet-space.

Claim. Max 1s a composite tet-space.

Proofs. The proof of property (U4) of 1.6.1 is
immediate from the note at the beginning of the section.
The proofs of the other properties are immediate translations
of the properties of (M,d) as>a metric space and of equality

as an equivalence relation.

Claim. (M(Nat), d(Nat)) 4is congruent to (M,d)

by means of the assignment

X n—{ x} .

Proof. It 1s simple to show that M(Nat) 1is the

set of all {x} such that x € M. It is also easy to show that

(d(Nat)) ({x},{y}) = d(x,y).

These follow from the fact that the equivalence

class of x 1in a set with respect to equality is Just {x}.

Claim. (M(Max), d(Max)) 1is congruent to (M,d)

by means of the asslignment

x n—{ x}.
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Proof. The proof is the same as the proof of the

preceding claim.



CHAPTER TWO

- "SCALAR MULTIPLICATIONS" =~

Introduction. In this Chapter, two "scalar

multiplications" are defined. 1In the first case a special
scalar multiplication space 1s developed and a topological
embedding theorem is proved for finitely compact metric
spaces with a finite basis. In the second case the scalar
multiplication takes ordered pairs consisting of a real
number and an element of a given metric spaces into subsets
of the metric space. As regards this second scalar
multiplication a relation between it and normal scalar

multiplication on a real inner product space 1s exhibited.

54



SECTION ONE

- THE SPACE V(p,S) -

2.1.1. The Construction of V(p,S).

Let (M,d) be a metric space. In addition,

let S €M and p e S.

Definition: Let V(p,S) be the set of all functions

e such that

and such that e(gq) > 0 for any q ¢ S and such that for

any q e S with q #Z p we have that

(1) fje(p) - d(p,a)| < e(q)
(2)  e(q) < e(p) + d(p,q).

Thus e(p), e(q) and d(p,q) satisfy the triangle
inequality for all qe¢ S with q # p and V(p,S) 1is
a subset of all the mappings from S 1nto the set of non-
negative real numbers. It might be said that in a certaln

sense V(p,S) 1is "quasi-metric at p".
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If X e V(p,S), then 'X 1is a function from S
into the set of non-negative real numbers. Define X(q)
to be the value of X at qg € S. We may specify a function
by the set of 1ts values as in sequence notation. Thus we

write
X = (X(q))qes.

Definition: Consider £ € R and X € V(p,S).

Then we define £X to be the mapping from S into the
complex numbers which sends q to (£X)(q) for any q € S

by putting

|41X(p) 1if q =7p
Ax)(q) =

V2-2) (X(p))2+(1-8) (d(p,a) ) 2+ A(X(q) )2

if q # p.
Thus we have

Ax = ((2x)(p)), U ((8K)(a))geq gup

where the terms on the right are considered as functions.



Our goal is the following theorem.

Theorem. For any f£e R and X e V(p,S),

X € V(p,S).

Proof. The proof is given in the remainder of

this subsection,
Take £ € R and X e V(p,S).

Claim. If q € S with q # p, then

(Ux)(a))? > 0

where we have that

(1) ((2X)(a))° = (82 - B)Y(x(p))?

+

(1-4) (d(p,q) ) 2+4(X(q))°.

Proof, Conslder first the case where

X(p) # 0.
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In this case, we define

| ) o,
(2) oy = LK) +(a(p,g)) - (aN)”
2X(p) d(p,a)

We note that

(3) 22 (x(p))2+(d(p,a))*-28x(p) d(p,a)C(a)

= D20 (x(p)) 2+ (1=R) (a(p,a)) 2+ L(X(a))°.

This 1s readily verified by exnansion of the top half of

the equation using (2).
Now we have that

|X(p) - d(p,a)| < X(q).
This implies that

(X(p))2+(a(p,a))?=(X(a))? < 2X(p) d(p,a).
Hence

C(q) < 1.

We also have that

X(a) < X(p) + d(p,a).

Thus it is seen that

_2X(p) d(p,a) < (X(p))2+(a(p,a))?=(x(a)?.
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Hence

c(a) > -1.
It follows that
() | C(a)] < 1.

Next, if ﬂ,_>_ 0, then from (1), (3) and (4) we get

A\

() (@2 2 J2(X())2+(d(p,q))°-28%(p) d(p,q)
Ax(p)=-d(p,q))?
> 0.

#

On the other hand, if b.f 0, we get from (1), (3) and (4)
that

(X)) ()% > JP(X(p))2+alp,a))2+28X(p) d(p,q)
= (Ux(p)+d(p,a))°

> 0.
Consider now the case where

X(p) = 0,

Then for all qe¢ 8 with q # p we have

| X(p) = d(p,a)| < X(a)
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which gives 'us that

d(p,Q) A X(q).

We also have that for all q € S with q # p

- X(q)

IA

X(p) + d(p,q)
which implies that
X(q) < d(p,q).
Hence 1f q € S and q # p, then
(?) X(q) = d(p,q).

Thus we have

((2X)(a))2 = (1-2)(d(p,a))2+d(p,q))?

= (d(p,q))°
0.

v

Finally, we see that 1f q e S and q # p, then (X)(q)

is real and greater than or equal to zero.
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Claim. We can now complete our proof that

(LX) € v(p,S).

Proof. It is sufficlent to show that for any q € S

with q # p we have that

| (£X)(p) - d(p,a)| = (X)(q)
and that

Ax) (@) < (LX) (p) + d(p,q).

We will now consider the problem in two cases. Filrst

consider the case
X(p) = 0.

By reference to (5) of the preceding claim we see that for

any q € S with q #p

X(q) = d(p,q).
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Also we have that

(X)(p) = [£[X(p) = O.

The inequalities required reduce to

(1) d(p,q) < (£X)(q)
(2) Ax)(q) < d(p,q)

for any q € S with q # p. But these are valid since 1if

qQ €S and q # p then

@2%) (@) =\ (B2=0)0 + (1-£)(d(p,a))2 + £(X(a))?

V(1= (a(p,a))2 + f(a(p,a))2
d(p,q).

Now we consider the case

X(p) # 0.

Making reference to (3) and (4) of the preceding claim

we see that

(a) [C(a)] <1
(b) (LX) (a))? = 22(X(p))? + (dlp,a))?
- 2fx(p) d(p,q) C(q).
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Next, if @ > 0, then from (a) and (b) we see that

(L) (@)2 > 2 (X(p))2+(d(p,a))2-2£x(p) d(p,a)

L}

(LX(p)-d(p,a))°
(| 4| X(p)=d(p,a))?

(LX) (p)=d(p,q))°.

Thus
(LX) (q) > [(2X)(p) - d(p,a)].
Also, if f > 0, then from (a) and (b) we see that

(WX (@))?2 < L2(X(p))2+(d(p,q))°+24X(p) d(p,q)

A

(X (p)+d(p,a))?

(|21 X(p)+d(p,q))°

((x) (p)+d(p,a))°.

This implies that

(£X)(q) < (LX) (p) + d(p,q).




64

Now, if f§ < 0, then from (a) and (b) we have

(LX) (a))° < £2(X(p))2+(a(p,q))%=22X(p) d(p,q)

(4X(p)=d(p,q))2
(L1 X(p)+d(p,q))?

((£X) (p)+d(p,a))°.
From this, it is immediate that

(Lx(q) < (£X)(p) + d(p,q).
Moreover, if £ < 0, we obtain from (a) and (b) that

(LX) (@))2 > p2(X(p))2+(d(p,q))2+2Lx(p) d(p,q)

v

(X(p)+d(p,q))?

(-] L] X(p)+d(p,q))?>

((2%) (p)=d(p,a))2.

Hence

(Ax) (@) > | (LX) (p) - d(p,a)].



Thus in either instance of the sign of ) we have the

required inequalities. Thus

X € V(p,S).

2.1.2. The Scalar Multiplication on V(p,S).

Definition: Define a function 0(p,S) with

0(p,S): R x V(p,S) + V(p,S)

by putting

(0(p,S)) (LX) = £x

for any f € R and X e V(p,S).
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Notation: In what follows, we will use the notatlon

£ 0 x = (0(p,S))(L,X).

Claim. If ), me R and X ¢ V(p,S), then

domox) = (Im) O X,
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Proof. It is sufficient to show that

£(mx)

(Lmi) X.

First consider the point p € S. Then from the definitions

we get
(£(mX))(p) = |£| ((mX)(p))
= |4l Im|X(p)
= |fm|X(p)
and
((Am)X)(p) = |Lm|X(p).
Hence
LmxX))(p) = ((Am)X)(p).

In addition 1f. g ¢ S with q # p then we get

(MmX)) (q)

= V2= (mX) (0))2+(1-) (a(p,a)) 2+ 4 (mX) (a))?
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= V(2-10) Im|Z (X(p))2+(1-8)(d(p,a))°
+2((mP=m) (X(p))°+(1=m) (d(p,q) ) *+m(X(q))*)

=V 220 (X(p))%+(a(p,q) ) °~Lm(X(p))°
tﬁm(d(p,q))zfﬁm(x(q))2

V(Em)2=lm) (X(p))2+(1=Im) (d(p,a) ) 2+Im(X(q))?
(Um)x) (q).

Hence we conclude that

Pmx) = (Im) X.

Definition. We put

# =
p | (d(p,q))qes.
Note. Since the triangle inequality holds in N,
p* € V(p,S).

We also have

(1) p¥(p) =0
(2) for any q € S with q # p

p¥(q) = d(p,q).
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Claim. For any £eR

Jo® = pe.

Proof. First consider the point p. Then we

have that

| 9l (p*(p))
0

(Lp*) (p)

p¥*(p).

Now consider gq € S with q # p. Then

Pp*) (a) = V2= (p*(p))2+(1-0) (a(p,a)) 2+L(p*(a))°

= (1-0) (a(p,a))°+Ld(p,a))°
= d(p,q)

= p¥*(q).

Hence we have shown what was claimed.

Claim. If X e V(p,S), then

0 X = p¥,
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Proof. First consider p € S. Then we see that

o] x(p)
0

(0 X)(p)

p¥(p).

Now consider q € S with q # p. Then we have

(0 X)(a) = V(02-0) (X(p))2+(1-0) (d(p,a)) 2+0(X(q)) 2
= d(p,q)
= p¥(q).
Hence
O X = p¥,

Claim. If X € V(p,S), then

Proof. First consider the point p € S. Then

we get that

(1 X)(p) = |1]|x(p)

X(p).



Now consider q € S with

(1 X)(q)

Hence it is seen that
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qQ # p. Then

V(12-1) (X(p))2+(1-1) (d(p,a) ) 2+ 1(X(q) ) 2
X(q).



SECTION TWO

- THE MAPPING C(p,S) =

2.2.1. Basic Properties of C(p,S).

Let (M,d) be a metric space.

Definition: S 1s a basis of M iff

(1) sgM

(2) for any x,y e M
if we have for every q € S
d(x,q) = d(y,q)

then x=y.

Thus if S 1s a basis of M, then if x,y ¢ M

and x #y, then there exists q € S such that

d(x,q) # d(y,q).

Note. According to our definition, M 1is a basis

of M. For if we take x,y € M with

d(x,z) = d(y,2z)
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for any 2z € M, we may consider the speclal case where

x = 2z, Then we have
0 = d(y,x).

Thus we obtain that x = y. Thus we have seen that every
metric space has at least one basis.

Let S @M and p € M.

Definition: Construct a function C(p,S) with

C(p,S): M » V(p,S)
by setting

(C(p,S))(x) = (d(x’q”qu'
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Note., Since M 1is a metric space we have that if

x € M then

(d(x,q))qES e V(p,S).

Also we see 1mmedlately that

(C(p,s))(p) = p*"




Claim., f S 1is a basis of M, then C(p,S)

is one-~to-one,

Proof.  Assume that

(C(p,8))(x) = (C(p,S))(y).

This gives us, from the definition, that
(d(x,a)) g = (d(y’Q))qu'

This says that for any gq € S

d(x,q) = a(y,q).

Hence we see that

since S 1is a basis of M.

2.2.2. Dense Bases.

Let (M,d) be a metric space
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Claim. If S 1is dense in M, ¢then S 1s a basis

1
=




Th

Proof. Assume that S 1s not a basis of M. Hence

there exists x,y €¢ M with
dfs,x) = d(s,y)
for every 8 € S and such that
x#Yy.
From this we get

d(X,Y) h d(X,S) + d(S’y)

2d(s,x)
for all s € S by the triangle 1inequality. Since S 1s
dense in M we have that for any e > 0 there exlsts
s € S with
d(s,x) < %e.

Thus for any e > 0, we have

d(x,y) < e.




Hence

Hence

that

S

X

d(x,y) = 0.

= y. This is a contradiction.
is a basis of M.

This implies
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SECTION THREE

- THE TOPOLOGY D(p,S) =

2.3.1. Preliminaries.

Let (M,d) be a metric space. Let S &M and

p € S. Assume S 1is a finite set.

Definition: If X e V(p,S) and e ¢ R with e > 0,

then define N(X; e) to be the set of all Y e V(p,S)

such that for any q € S
|X(q) - Y(a)]| < e.

Definition: Let D(p,S) be the usual product

topology on R> pestricted to V(p,S).

Hence D(p,S) 1is a topology on V(p,S) and for
any X & V(p,S) and any e € R with e > 0 we know that

N(X; e) is an open set of V(p,S).

Claim. O(p,S) 1is a continuous mapping.

Proof. It 1s sufficient to show that O0(p,S) 1is

a continuous map from R x V(p,S) into RS since the'image

of 0(p,S) is contained in V(p,S) which is contained in RS,

To show this it 1s sufficient to show that the mapping

£,%) >~ (Ix)(a)
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is continuous for every q € S° since a map into RS is

continuous iff each of its coordinate maps 1is continuous.

We consider first the case where q = p. Now we

know that the map

L1
is continuous on R and that the map

X N-~>X(p)

is continuous on V(p,S) since it is continuous on RS.

Hence the map

(50 + (1 .L1,%()

is continuous on R xV(p,S). But we know that multiplication

on R 1s continuous. Thus we see that

£,x) » 1L 1x(p)

15 continuous on R xV(p,S).

Now we consider the case where q € S and q ¥ p.



We know that the maps

X ~v—(X(p))2,

X —=(X(q))?
and the constant map
2
Xxn~—(d(p,q))

are all continuous on V(p,S) since they are continuous

on R°. Similarly we know that the maps

Lr—? - 2y,
fa—(1 - )

and
L—)
are continuous on R. Hence we see that the maps
2 2
(LX) ~m—=((L" =), (X(p))°)

and

(LX) m—s(1 =L, (d(p,a))?)
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and

(L, X)am—n( D, (X(q))2)

are all continuous, But multiplication on R 1is continuous
and the sum of continuous functions is continuous. Thus the

map

Ly X)m—s(L% =L (X(p))% + (1 -4 (d(p,q))?
+ B(x(g))?

is continuous on R xV(p,S). But since X ¢ V(p,S) the image
of LB,X) under this map is always greater than or equal to
zero. Hence this map is into the non-negative reals. But
taking square roots on the non-negative reals is continuous
and the composition of continuous functions 1is continuous.

Hence

(B, %) m—s(£X) (q)

is continuous on R x V(p,S).

Claim. C(p,S) 1is continuous.

Proof. Let x € M, Let A be a neighbourhood of
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(C(p,S))(x). Then there exists e € R with e > 0 such that
N((C(p,S))(x); e) & A.

We now consider (C(p,S))(N(x; e)). Take y € N(x; e).

Now for all q € S we have that

ld(y,a) - d(x,q)| < d(x,y)

< e

by a claim in l.l1. But we also know that

d(y,aq) = ((c(p,S))(y))(q)
and that

d(x,q) = ((C(p,S))(x))(q)
for any q € S. Hence for any q € S

| ((C(p,S))(y))(a) = ((C(p,8))(x))(a)]| < e.

This implies that

((C(p,S))(y) e N((C(p,S))(x); e).
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Thus we see that

(C(p,S))(N(x; e)) € N((C(p,S))(x); e).

Hence C(p,S) 1is continuous.

2.3.2 An Embedding Theorem.

Theorem. If (M,d) 1is finitely compact (Eﬂ, page 6)

and S is a basis of M, then C(p,S) 1s a homeomorphism

of M onto its image.

Proof. By previous results we have seen that C(p,S)

is continuous and one-to-one in this situation (ef. 2.2.1 and 2,3.1).

It 1s sufficient to show that i1f x € M and

(C(p,S))(x) = X, then

for any e € R with e > 0
there exists h > 0 such that
for any Y ¢ V(p,S)

1f Y e N(x3;h) M (C(p,S))(M)

then d(x,(C(p,S))~t(Y)) < e.

for if this is true we consider the following argument.

Take e > 0 and consider (C(p,S))(N(x; e)). Then by the
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above we are guaranteed the existence of h > 0 with the

prgperty (1). Take

Y € N(X; h) N (C(p,3))(M).
Thus we obtain

a(x,(c(p,s) ™)) < e.

Now we see that

(C(p,8))~1(Y) e N(x; e).

Hence
(Clp,S))~L(N(X; h) A (C(p,S))(M)) € N(x; e)

which implies that (C(p,S))"l is continuous. From this 1t
is immediate that C(p,S) 1is a homeomorphism of M onto

its image.

What follows is a proof of our sufficlency hypothesis.
Assume this hypothesis 1is false. Then for some x¥* € M
with (C(p,3))(x¥) = X¥ there exists e¥ ¢ R with e¥* > 0

such that for any h € R 1f h > 0 then there exists Y



such that

Y € N(X*; h) N (C(p,S)) (M)
and

d(x¥*; (C(p,8))"1(Y)) > e*,

Take an x* and e* which satisfy this condition.

for any h > 0, there exists

Y(h) e N(X¥; h) N (C(p,S)) (M)
such that

d(x*; (C(p,8)) " L(¥v(n))) > ek,
Thus for any n ¢ N,‘ there exists

Y(n) € N(X*; 1/n) N (C(p,S)) (M)
such that

(1) d(x*, (c(p,S)) "1 (¥(n))) > ew,
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We put
y(n) = (C(p,8)) "2 (¥(n)).

Now consider the sequence (y(n)). Now for all q € S and

all n € N we have
@) - la(y(n),a) - d(x*,)] < 1/n
by the definition of (y(n)) and since
Y(n) € N(X¥; 1/n).
From this it 1s seen that for all n € N.
d(y(n),p) < 1/n + d(x*,p).

Now take m,m' ¢ M and consider d(y(m),y(m')). By the

triangle inequality we get

d(y(m),y(m')) < d(y(m),p) + d(y(m'),p)
< 1l/m + 2/m' + 2d(x¥*,p)

A

2 + 2d(x¥*,p).

Thus (y(n)) 1s a bounded sequence. But M 1s finitely
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compact. This implies that there exists y € M such that
¥y 1s a cluster point of (y(n)). We now get that there

exists a subsequence (y(n(i))) of (y(n)) with

lim y(n(1)) = y.

i oo

By (2) of the above, we see that

[a(y(n(1)), q) - d(x*, q)]| < 1/n(1)

for all q € S and all 1 € N. Taking limits as 1

approaches infinity, we obtain that for all q € S

ld(y,q) - d(x*, q)| = 0.

This implies that for all q € S

d(y, q) = d(x¥*, q).

Hence
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slnce S 1is a basls of M. Thus we have

d(x¥, y) = 0.

Now we consider (1) of the above and obtain

d(x¥*,y(n(1))) > e*

for all 1 € N, Taking limits as 1 approaches infinite,

we get

d(x¥, y) > e¥*

Thils glves us a contradiction. Hence our sufficilency

hypothesis 1s valld and this proves the theorem,




SECTION FOUR

- THE COSINE -

2.4, Basic Properties.

Let (M,d) be a metric space.

Definition: If p,q,r e M and p #q and p # r,

then define

(d(p,a))°+(d(p,r))°=(d(a,r))? .
2d(p,q) d(p,r)

cos(pqg,pr) =

Claim: If p,q,r € M and p #q and p # r,

then we have

|cos(pa,pr)| < 1.

Proof. First we show that

-1 < cos(pq, pr).

By the triangle lnequality we have

d(q,r) < d(p,q) + d(p,r).
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By squaring this and rearranging terms we get
2 2 2
-2d(p,q)d(p,r) < (d(p,q))"+(d(p,r))~=(d(q,r))".

Dividing both sides by 2d4(p,q)d(p,r) gives the desired

result,

Now we show that

cos(pg,pr) < 1.

This is true iff
(d(p,a))2+(d(p,r))?~(d(a,r))? < 2d(p,a)d(p,r).

This is equivalent to

(d(p,a)-a(p,r))2 < (d(q,r))?
which is in turn equivalent to

ld(p,a)=-d(p,r)| < d(q,r).

But this is true by a clalim of l.1l.



SECTION FIVE

- THE MAPPING P(p,S) -

2.5. Scalar Multiplication in (M,d).

Let (M,d) be a metric space. Let S C M and let

Definition: If x e M and e € R with e > 0, then

we define S(x; e) to be the set of all y € M such that

d(x,y) = e.

Definition: Let us define a function P(p,S) with

P(p,S): V(p,S) =+ @(M)
by putting

(P(p,s) (0 = [\ s(a; x(q))
qesS

for any X € V(p,S).

Now consider x € M and _2 € R, Then it 1is
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readily seen that

(P(p,S))(L((C(p,S))(x)))
= S(p; |4l alp,x))

A (\Ss.(q; VA2 (a(p, %)) 2+ (1= (a(p,a)) *+lata, x))°
ge
q#p

Definition: We put

Ax) = (P(p,s))B((C(p,8))(x)))

for any J,e R and any x € M. We also define a function

(p,8)* with

(p,S)¥: RxM - @(M)
by putting

(p,$)*(Lx) = Ix)

for any ,ﬂe R and any x e M,

Claim. For any x €& M,

(0x)

]
~—
e}
ngee!
*




Proof. We clearly have that

(0x) € s(p; 0 d(p,x))

= {pl.

In addition we notice that for any q € S with q # p

S(a3 V(02-0) (a(p,%))2+(1-0) (d(p,q)) 2+0(d(q,x))2 )

= S(q; d(p,q)).
This implies that

0x) = (p} N ) Sla;dlp,a)).
ges

a#p
Now for all q € S with q #'p we note that
p € S(q; d(p,q)).
Thus we have that
p € (Ox).

Hence we have proved that

{p} = (0x).
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Claim, For any x e M

x £ (1x).

Proof. Pirst we consider p € S. Then it 1is

immediate that

S(p;|1]d(p,x)) = S(p; d(p,x)).

This gives us that

x € S(p;|1ld(p,x)).

Now let us consider all q € S with q # p. In this

case we observe that

s(a; VI12-1) (a(p,1))24(1-1) (d(p,q)) 2+1(d(q,%))2)

= S(q; d(q,x)).
Moreover we know that
x € S(q; d(g,x)).
Hence we have proved that

x £ (1x).
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Note., For any x e M with x # p and for any

q € S with q #¥ p we have that

$2(a(p,x))%+(d(p,q))%-28d(p,x)d(p,a)cos(px,pq)

= (B%- (a(p,x))°+(1-2) (d(p,a))°+L(d(q,x))°.

This equation 1s readily proved by expanding the first term

with the aid of the definition of cos(px,pq).

Claim. For any J,m € R with

|41 # Im]
and for any x € M with x # p we _can prove that
bx) N (mx) = @ .

Proof. From the definitions of Cﬁx) and (mx) we

obtain that

Ax) N (mx)
S s(p; Wlap,x)) N s(p;lmld(p,x))
= g

since |f| # |m| and d(p,x) # O.



Claim.

For any _2,m e R with

L #mand |3 = [n|

and for any x # p we have that

Proof,

we see that

Assume that

if there exists q € S with q # p
such that cos(px,pq) # 0
then (bx) M (mx) = @.

Since we have that

L#m ana B = |m]

l-—- -m and L;‘ 0.

Ax) N (mx) # @.
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Then we have that for any q € S with q # p

lz(d(p,x) )2+(d(p,q) )2—2£d(p,X)d(p,q)cos(px,pq>

= m°(d(p,x))%+(d(p,q))°-2md(p,x)d(p,q)cos (px,pq).
This implies that for any q € S with q # p
,Rcos(px,pq) = m cos(px,pq)
since our hypothesis guarantees that
Ll = [m].
Hence for any q € S with q # p we see that
cos(px,pq) = O

since ‘2= -m and .2# 0. Thus if there exists q € S with
q # p such that

cos(px,pq) # O

then it is immediate that

Ax) N (nx) = 2.
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Claim. For any x € M with x # p and for any

r € M with

r e (Ix)

where ,B;‘ 0 and ﬁ,e R we have that for any q € S with

qQ#p
cos(pr,pq) = (B/| L 1) cos(px,pq).
Proof. Since r ¢ (Lx) we can conclude that
d(p,r) = |fla(p,x)

and also that for any q € S with q # p

d(r,q) =\/ﬁ2(d(p,x))2+(d(p,q))2-2ld(p,x)d(p,q)cos(px,DQ).

Hence for any q € S with q # p

cos(pr,pq)

_ (d(p,r))3+(d(p,9))3=(d(r,q))?
2d(p,r)d(p,q)

J2(d(p,x))%+(d(p,a))°-F%(a(p,x))2=(a(p,q))*?

+28d(p,x)d(p,q)cos (px,pq)
2| 4 |d(p,x)d(p,q)

= (ﬁ/lﬂ) cos(px,pqa).
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Claim. For any x € M with x #¥ p and for any

re M with

re (Ix)

where J,e R M,ﬂ# 0 we have that for any m € R
(‘mr) c ((mPx).
Proof. We consider y € M such that
vy e (mr).

Then we see that

d(p,y) |m|d(p,r)
Im| 4] d(p,x)

|m{|d(p,x).

Moreover for any g é S with q # p we see that

d(a,y)

=\/52(d(p,r))2+(d(p,q))2-2md(p,r)d(p,q)cos(pr,pq)

= Vn? 1212 (d(p,%))%+d(p,))°
‘2m|14d(p,x)d(p.Q)(2/lﬂpcos(px,pq)

=\/(mB)z(d(p,x))2+(d(p,q))2-2(ml)d(p,x)d(p,q)cos(pX.qu



Hence 1t is immediate that

y € ((md)x).
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SECTION SIX

- A RESULT FOR INNER PRODUCT SPACES =

n
-
(@)
.

Let (H,1) be a real inner product spaée. Let

S €H and let o0 € S,

Claim. For any ,Le R and any x € H

lx € (lx),

where

bx

is the scalar product of and x in H and

Ax)

is defined with respect to Sg¢H and o € S as in 2.5 and

H has the usual metric derived from 1 associated with 1t

and || || denotes the associated norm on H.
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Proof. First we consider d(ﬁx,d).' Then we have

a(dx,o)

|l Lx=o]]
FARRESIR
lled(x,o)-

Now we consider d(ﬂx,q) for any q € S with q # o.

It is sufficient to show that

(d(lx,q))z
= (0% =) (d(o,x))%+(1-8)(d(0,9))°+ (d(a,x))°.

This is equivalent to showing that

2
| | x=q] |

= (L2 -DIIxl12+-pllall® + Ll la-x|]?

which 1n turn is equivalent to

1 (fx-q,Lx-q)

= (Q2-D1(x,x)+(1-D1i(q,a)+ 1(x-q,x-q).

McMASTER UNIVERSITY LIBRARY
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The right member of this equation is equal to

A2-D1(x,x)+(1-L)1(a,q)
W1x,x0+ Li(q,0)- L1(q,x)- b1(x,q)

which equals

PP1(x,x)- Dia, 00~ fi(x,a)+1(a,0).
The left member of this equation is equal to

s B, 0= BCa,0- B2 ()4 (as0).
This in turn 1s equal to

221(x,0)- L1(a,%)- bi(x,0)+1(q,0).

Thus both halves of the equation equal the same thing. Hence

the equation ls true. Thus for any ,l €e R and x € H

Lx e dx).



CHAPTER THREE

- ABSTRACT DISTANCE SPACES -

Introduction., This chapter discusses abstractions

of metric spaces or distance spaces as they are sometimes
called. In this chapter, the terminology "distance spaces”
iﬁ used for these abstract spaces. For these spaces the
basic notion of assigning a "distance" to pairs of points is
retained but all other structure is deleted. Notions of
homomorphisms, quotient spaces and product spaces are defined

and examined.
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SECTION ONE

- INTRODUCTION =

- 3,1.1, Basic Definitions.

Let M and F be glven sets.

Definition: (M,d,F) is a distance space iff

d: Mx M-+ F,

Definition: (M,d,F) 1is a symmetric distance space iff

(1) d: M x M~+>F
(2) for any x,y € M

d(x,y) = d(y,x).

Notation. The notation M,= (M,d,F) and occasionally
7L= (Ny,e,G) wilth or without subscripts will be used throughout
this chapter to denote distance spaces. If symmetry is used

then it will be noted at the time.

3.1.2. Bases.

Let TL= (M,d,F) be a distance space.
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Definition: S 1s a right basis of 7n/iff

(1) sgM
(2) for any x,y € M
if for any s € S, d(x,s) = d(y,s)

then x = y.

Definition: S 4is a left basis of 77L.iff

(1) s egM
(2) for any X,y ¢ M
if for any s € S, d(s,x) = d(s,y)

then x =y,

If 77L is a symmetric distance space then every right
basis of ?YL is a left basis of 7YL and conversely. In this

case we refer to a basis of ‘YYL.

3.1.3. Homomorphisms.

Let WYL

distance spaces,

1= (Ml’dl’Fl) and mz = (M2,d2,F2) be
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Definition: (gl,gz) is a homomorphlsm from

ml into m

5 if
(1) gyt My > M,
(2) gyt Fy > F,

(3) for any x,y € M

(g2° dl)(x,y) = dz(gl(x),gl(y)).

Definition: (gl,g2) is an isomorphism from )]LI

into 771 irf

2

(1) (gl,g2) 1s a homomorphism from
|
”Ll into )]L2 1

(2) 8, and g, are both onq-to-one and onto.

Iir 77Ll and Frﬂ@ are symmetric distance spaces,
then homomorphism and isomorphisms are defined in exactly the

same way.

Noctation. The fact that (gl,gz) is a homomorphism:
from 7YL1 into 77L2 will be denoted by

(158,00 My » TN

1 2°

If it is stated that g 1is a homomorphism then it 1s assumed

that there exists 81 and 85 such that g = (gl’g2)
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£.,) 1s a homomorphism,

Ir g = (gl,gz) and h = (hl,hz) are homomorphisms,

then, as a notatlonal device, we put



SECTION TWO

- HOMOMORPHISMS =

3.2.1. Isomorphisms.

Let WY\

1 and 6YYL2 be distance spaces.

Claim. If (gl,g2) is an isomorphism from 77L1
1

into GYYLz, then (gzl, gg ) 1is an isomorphism from

m? into ml'

Proof. For any x,y € M2

(8, ° d)) (g7 (x), &7 (¥))

= 4, (g, (877 (x)), g (8T ()

dz(x,y)

since g 1s a homomorphism and 81 is one-~to-one and onto.

Hence
dl(%zl(X), gzl(y)) = ggl(dz(X,y))

since 85 is one~to-one and onto.
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2.

. Composition of Homomorphisms.

Claim. (h

Let ml, 'm2 and °YYL3 be distance spaces.

(gl,gg): ml -+ m2
(hy,h): M, - m3.

e M, - M

1 ° gl’

Proof.

(h2 ° g2)(d1(x,y))

h,(g,(d;(x,¥)))

d3(hy (g1 (x)), hy(g,(y)))

d3((h1° gl)(x), (h, ° gl)(y)).
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SECTION THREE

- CONGRUENCE RELATIONS -

3.3. Quotient Spaces.

Note. If 6 is an equivalence relation on M, then
[x], will denote the equivalence class of x in M with

!

respect to 0.
Let WYLbe a dlstance space.

Definition: 8 = (GM,GF) is a congruence relation on

™M ire

(1) BM is an equivalence relation cn M
(2) SF is an equivalence relation on F

(3) for any Xx,y,zZ,w € M

ir zeMx and weMy,

then d(z,w)eF d(x,y).
Let 6 be a congruence relation on 1YL.

Definition: ‘TIWe = (M/e,, d/8, F/8;) where MN/6,

is the set of equivalence classes in M with respect to 611

and similarly for F/6F and where

(a/0) ([0 (7)) [_d(x,yﬂeF :
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Remark. “fJL/6 is called the quotient of Yl by 6 and

is referred to as a gquotient space.

Claim. d/9 is well-defined.

Proof, If
E?]eM = Yf]eM and YﬁjeM = YyleM

then

z0,.x and weMy.

Hence
d(z,w)8y d(x,y)
since 6 1is a congruence relation. Thus

@‘%WDGF»= @““yaeg

As a result of this claim, Y\/6 1is a distance space.

It is symmetric if ﬁT\ is symmetric.



1i1

vefinition: Define .

)
N
>
N
il

f_x]e for x e M
M

Kg (a) = EGGF for a e F

Claim.,

Kg! m +> m/e.

Froof,

Kep(d(X’Y)) = d(x,y) 0
RSN
(d/8)(x, (x), k5 (¥))
0, 0
M A
= ((1/9)(E(]6 ’ [y]e )
M M
= Tx,y), -
Op
lNote. The notation here of 77L/6 and Ko exemplifies

the notation used elsewhere in this chapter for these objects.



SECTION FOUR

- THE CONGRUENCE RELATION

INDUCED

By a HOMOMORPHISM w

3.4, Yquality Transformed.

Let ml and m2 be distance spaces, Let

o= (gf,l,[r,2) be a homomorphism from ml into m2.

Definition: Define GM by

(x,y) € oy iff gl(x) = gl(y).
Define GF by
(a,b) € SF iff g2(a) = gz(b).

Claim. 6 = (GM, GF) is a congruence relation on ‘rnq.

Proof, It 1s easlly seen that GM and QF are

eaquivalence relations from the properties of equallty.

Consider

zemx and weMy.
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lience

al(Z) = g,(x) and gl(W) = gl(y).

Thus

dg(gl(Z), gl(W)) = d2(gl(x), gl(y)).

This implies

g, (d; (z,w)) = ;y(d;(x,y))

since (gl,ﬂ?) is a homomorphism.,

Hence

d.l(z,w)(iF dl(x,y).



SICTION FIVE

- SUBSPACLES -

3.5.1, Definition.

Let 1 Dbe a distance space.

Definition: (¥,G) 1is a subspace of 71L iff

(3) d(N x N) &G,

35.0.2. Subspaces and Homomorphisms,

Let ml and ‘rn,0 be distance spaces, Let

g = (gl, gz) be a homomorphism from ml into mz.

Claim. If (N, G) 1s a subspace of 77L1, then

(n](N), i, (G)) is a subspace of 77L?.

Proof, Take =z, w € ﬁl(N). This Implies that

there coxist X, ¥y € N with

vl(x) = 7 and {’;l(y) = W,

114



d,(z,w) = dy (py (%), 57 (¥))

i

(g, ®© dl)(X, v)

= g,(dy(x, ¥)).

CPut o x,v e & implies

dl(x,y) € G.

lHencoe

Ug(dl(X,Y)) € gz(G).

. —
Lius

d2(z,w) € g2(G).

Claim. If (N, G) 1is a subspace of 77Lq, then

(m;'(n), ggl(G)) is a subspace of 77L1.

Proof. "Take X,y € gzl(N). This implies that there

erliot Zz,Ww £ N with



ro(dy(x,y)) = dy(gy (k) 1y (y))

d2(z, W),
But 2z, w € N impliles
d2(z, w) e G.
Hence
d,(x,y) € got(a).
17 2

3.5.3. Families of Subspaces.

Let WLbe a distance space. Let ((Ni’ G.))

e a family of subspaces of 77L

116

i’ 74iel

Claim, (N, G) 41is a subspace of ?71 where

N=mN and G=m(}.

ieT i leT

Proof. Take x, y € N. Hence

Xy ¥ € Ni for all 1 e I.

i



Y s .
thiia

d(x,y)

d(x,y)

€

G

for all

i

€

I.
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SECTION SIX

- PRODUCTS -

3.0.1. Definition.

Let ( ”L.) be a family of distance spaces.
i
iel

Definition: Define

My =Ty, T1 e, T v

lel el lel

where

CTT ap(x) () ) = (a(xg,y)) .
iel iel + iel + ; + iedl

It is obvious that -rr '771 is a distance space
’ iel ‘
which 1s symmetric if and only if for every 1 ¢ I, mi is

symmetric.,

11. ﬁ?t is called the product of the family

el .
( mi) . In the rest of this sectilon (mi) is

1eI 161
considered fixed and the notation TT )n, (TTM da, TTF) is
used for the product TT'rnz

iel

118
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3.5.2. The Projection Maps.

Let

pr..n’M: M - M,
J J
be defined by

T
pr. ((x.) ) = x
J + iel

3

M

The mapplng prj i1s called the jth projection

of  TVu..

prinp: ]‘F + F
ve detined vy

TF _
pr ((a,) ) = a..
J 1 ier J

TrF

The mapping prj

of  TTF.

is called the Jjth projection




bDefinition: For any J € I, define

m™m M F

pr; = (prj s PTy ).

Claim. For any Jj e I,

prgrqn': mm - 'nlj
Proof.

(prlF o TO((x)  , (wy) )

J iel iel

TF
pry (TTd((xi).

iel

s(Y))
; iel

Mr
pr; ((di(xi,yi))iEI)

andj

d

J leIl iel

= dj(x ).

i*Y;

erl M) O, e My )

120
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3.6.3.  The Extension Property.

Definition: A triple

TR

iel

«m.,
174

el

where i
|
(1) all ?7Li and 771 are distance spaces

(2) for any 1 ¢ I, ¢, m +mi

is said to have the extension property iff

for any distance space 72

and  (y;) with v,z T “’mi

ieT
there exists exactly oﬁe Y with
v: N~ M |
such that for any i ¢ I,

b0 V= V.

Claim.

My, T, eI
[

I lel

has the extension property.



with

Define

by

Define

Dy

Proof. Take

n - (N,e,G) and

by = (wg, wg) and

N
Yu(n) = (y;(n))
N 1 iel

Vg G -TFr

G
vL(g) = (v (g)) .
& 180 o1

(y.)
1 iel

122
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Put
lp = (‘pN) wG)U
Then
mm_
pl"i (-] w - ‘pic
That 1is,
M - _ N
pri o WN = lPi
nF _ .G
pry ° WG wi.
For instance,
prl MmOy = W),
iel
It will now be shown that § 1s a homomorphism from
Ninto TIM.

(yg @ e)(ny,n,)

G
(¢, (e(n,,n,)))
i 172 iel

N N
(dy (Wi(ny)y ¥i(ny)))
1771 17 g
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, (Winy)) )

(TTa) (N (n, )
N 1el

(TTd)(wN(nl), vy (n,)).

The mapping v is unique by the application of the

projections, If ¢ = (¢N, ¢G) is another such map, then

™ ™m

pri o Y = wi and pri o = Y..

i
This implies, for instance, that
T _ N = T
pri!t (Yy(n)) = yy(n) = pri (¢y(n))
and 50

Yy = 9y

claim. 1t ((My , N ,¢e,) ) has the

i€l iel

extension property then there exists exactly one isomorphism

¢ 7% +'ﬂ'77b

such that

prywn»o ¢

]
©
e
.
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Proof. If such a ¢ exists it is unique by

application of the projections as in the preceding c¢laim.

Using, the fact that

«Mmp M, (prT ™y )

£ iel

has the extension property there exists exactly one
¢ : TL»TT'm

with

Using the fact that

«my. LT, Gy
1

el iel

nac Lhe cvbension property there exlists cxactly one

v: TM ~ 7Z



Hence

m?mow e )
(pr-g‘mo ¢) oy

= ¢ioq;

- pelTM

I

Similarly

¢, (Vo)

= ¢,

= 9;° Top -

By the extenslon property applled to the triple

L TM, e

el iel

((CM,)
1 i

with respect to Trm and (pr?m) ¢oey 1s unique.
iel

Similarly ¢ e¢ is unique., Hence

$ o Y =1 and ye¢ = I

™M n’

176



And so

s
'rus

o 7%-+1T77l is an isomorphism,

liote. In the above claim,

wherea IV and IP are the identity maps on N and
¥ b

Similapty

Lo ™ (T Ty -
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SECTION SEVEN

~ BASES IN QUOTIENT SPACES -

2,7, bistances from Relations.

let "L be a distance space. Let o= (eM,eF)

e o congruence relation on ’rrL. Let S & M.

Claim, Ke(S) is a right basis of 77L:iff

for any x,v e M,

if for any s e S, d(x,s)8, d(y,s)

then xeMy.

Proof. Ke(S) is a right basis of iff

for any x,y ¢ M

if for any s €& S,

(ae) (], »[s], ) = (azed([v]y » 1), O
M M M M

then [}JGM = Yj]e

M

128
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for any x,y & M

if for any s € 5,
[atx,s)] 6p [a(y,s7] .

then xeMy

for any x,y € M,
iff for any s € S5,
d(x,s)eF d(y,s)

then xemy.

A similar result holds for left bases,



SECTION EIGHT

- BASES IN PRODUCTS -

>.%.1. Separate Bases.

Let (?JLi) be a family of distance spaces.
iel
[.et (Si) be a family of sets such that for any 1 e I,
iel
O, # @ and Si is a ripht basis of 77Li
Claim, 11- Sj is a ripht basis of .TT 77L1.
iel ieT |
Proof.  Take (Xi> and (yi) in 1T Mi'
il iel iel -
Lo NI ~hyat 371t [a] 9
Acsume that for any (ni)) £ }T Sy
iel iel
( TT a x5 (s4) )
1el - T iel iel
= ( TTa)) (), s ).
ieT ie T iel
Thko TU ] arbitrary. Take &5 € Si arbitrary. Construct
’ 0
(r.) in T s, with r, =5
* el el )
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But o

131

Applying the above to (ri) and equating the
iel

0 LIv coordinates, it 1is found that
L

Si was arbitrary. Hence
-0

ot 10 e I was arbitrary. Hence
(x) = (yy) .
iel ~ iel
MHote, A similar result holds for left bases.
“.0.2. Common Base.
Lot (qTLi) be a family of distance spaces. Let
iel
5 be a set such that for any 1 e I it is true that 5 1is

A right

bnslils of mi'

bDefinition: § 15 the set of all families

in  TI S such that there exists 5 € S with
iel

for any 1 € I.



Claim. S 1s a right basis of V|| ?'Li.

Proof. Take (x,) and (y.)

i7,
iel

Assume that for (si) in S

Tak

ApDp

g

But

But

iel

( TTapx)

iel

1ier iel

(s.) )

iel 1el * el
= ( Tlap ) 5 (s )
iel lel iel

e io € I arbitrary. Take s € S

Construct (Si) in S by

iel
lying the above to this (si)
iel

th coordinates it is seen that

d, (x, , s) = 4d
10 iO 10
53 € 35 was arbilitrary. llence
X = Y. .
10 io
io £ I was arlbtrary. Hence
(x,) = (y,)
et 1T

Note. A similar result holds

arbitrary.

si = s for all

and equating the

for left bases.

132
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SECTION NINE

- PRESERVATION OF BASES UNDER ISOMORPHISM =

3.9, Invariance of Bases.

Let q1tl and WTLZ be distance spaces. Let S

be a right basis of ),hf Let g = (81’82) be an isomorphism

from ’rn’l into ﬂrn,2.

Claim, pgl(‘S) 1s a right basis of ‘Ynz.
Proof. Take =z,w € M,. Assume that for any r e g, (8)
d2(z,r) = dz(w,r).
Let

-1 )

x = ;) (7 =L

and y = £ w).

PTake 5 e 3. Then gl(s) € gl(S). Thus for any 5 e 3

d,(g,(x), g,(5)) = d, (g (y), g,(5)).

133
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Hence
g5(d (x,8)) = g,(dy(y,s)).

But G is one=to-one. Hence for any s € 3,
dl(x,s) = dl(y,s).

Thus

and finally,

]
|

- gl(x) = gl(y) = W,



SECTION TEN

- A HOMOMORPHISM THEOREM -

4.10., The Congruence Relation Induced by a Homomorphism,

Let ml and m2 be distance spaces., Let

¢ = (o, » ¢r ) be a homomorphism from 7711 into 7712. Let
1 1

6 e the conpgruence relation induced on 77%_ by the

nomomorphism ¢ (cf. 3,4).

Claim. There exists exactly one homomorphism

7N qul/e > 7722

sucihh that

(1) bekg = ¢

(2) ¥ is one-to-one,

Moreover,

is an isomorphism,




Proof. Define wM by
1

vy (g ) = ¢ (x).
1 M 1
1
Detfine wF by
1
ve (Tadg ) = 95 (a).
1 Fl 1
Put
v = (¢ Vo )
Ml’ Fl
How
X6, y implies Oy (x)
1 1
ard

ab, b implies ¢ (a) =

1 1

Hence y is well-defined,

¢y (¥)

bp (D).
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Since

i}
[}

¢y (x)

W],

oy (v) implies [x],
1 Ml Ml

and

k],

¢p (a) = ¢Fl(b) implies [g]e .
1 1

1 F

it is seen that y is one=-to-one.

Trivially ¢ °Kg = ¢.

The mapping $ is seen to be unique through the

application of this equation.

How

(g, o d./8)( s )
Fy 1 L] Oy L] Oy
1 1
Vo, ((d,/6)(1x s LY ))
Foood ] 9M1 L eMl

v (L4, (x,y) )
Fl l'—-1 ]GFl

b (d,(x,y)).
Fi01
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Also

d,(by (g Vs ¥y (D] )
2 "M 6 M 0
1 M1 1 Ml

= d (¢ (X), ¢ (y))-
2 141 Ml

Thus ¢ is a homomorphism since ¢ 1is.

If =z € ¢H (Ml), then there exists x € M
1

with
¢, (x) = z,
Ml
Hence
‘PM ([‘XJG ) = Z.
1 M
1
If ¢ e ¢, (F,) then there exists
bl 17?2
¢, (a) = c.
P
Hence

wFl<[gJQF ) = c.
1

Thus ¢ maps ml/ﬁ onto ¢ ml>'

a e Pl

1

138
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SECTION ELEVEN

- FIRST ISOMORPHISM THEORLEM -

3.11. Subspace Quotients.,

Let m and ‘n, be distance spaces. Let ﬂ be a
subspace of m; that is, N&M and G & F and

e = d| (N x N).

Definition: If 6 1is a congruence relation on 771,

doefine

<D
|

vy

[<=]
I

y = 8y N x N)

[
i

G“an(GxG)o

It is clear that 6 is a congruence relation on 71u

n

Let 8 be a congruence relation on 771.

Claim. There exists exactly one homomorphism

P 71/671 > ‘77L/6
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such that

(1) ¢ is one-=to~-one

(2) pox = Kk, o inj
29 0

where

(a) 1inj = (ian, ian)

(b) inJN(X)

x for x & N

(e) ian(a) a for a e G.
Moreover, ¢ is an isomorphism from 71/671 onto Ke( nH.
Note. 1Inj = (inJN, 1an) is a homomorphism from

Proof. By condition (2) on v, it is unique if it

exists, Define

|
Fat

v ([x] 6N)

Define

L
Pt

vol[2]g) = K (@

}‘1
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Now
xeNy implies XGMY implies [}Jem = [V]em'

Hence

Yt NZB kg (W)

is well=-defined.

Similarly

is5 well-defined,
Put
b= Wy, v

How

Kg (x) (Ke ° ian)(x) if x e N
M M
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and

Ko (a) = (K9F° inj;)(a) if a e G.

Hence ¢ satisfies condition (2).

Moreover,

wG(\'_e(x,y)]eG)

v (e g )

KeF(d(x,y))

[atx,»)) 0,
and,

(d/e)(wN([g]eN), wN([y]eN))

(a/8)(k, (x), x4y (¥))
O Oy

(a/0)( [_x]eM, 182 eM)

@(Lyﬂeﬁ



Next if  x,y € N, then

Kg (x) = Kg (y)

M M
implien
XQM ¥
which 1mplies
X8y

since x,v € N and hence

23 PR 8 PR
o, - e,
Hence wH is one-to-one,

Similarly Yo is one-to-one,

Finally,

X K, (N)
[JGM © “oy

implies that there exists x,, € N with

N

XNGM X.

143
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Hence
wI\T([XN-JGN) = [XN]GM = [X]eM'
Hence ¢,, is onto «, (N).
9] BM
Similarly Ve is onto Ko (Gq).

F

Hence ¢ 1s an isomorphism from ?2/%2 onto Ke( 72).



SECTION TWELVE

- SECOND ISOMORPHISM THEOREM -

J.12. Quotient Spaces of Quotient Spaces.

Let ?71 be a distance space. Let 6 and ¢ be

conpruence relations on m‘with 0cy.

definition: Define ¢/6 Dby

x]y (¥/8) y 1ff x ¥y v,
[]eM M/ 8y L ]eM M

a ($/96) ., b iff a ¢, b.
tle,, F/0y, b 0 F

Claim, ¥/6 1is a congruence relation on ‘7n/9 .

Proof, (w/e)M/e and (W/G)F/e are equivalence
1 F

r=lations since wM and wF are equivalence relations.

Assume
z (v/86) X
EJGM M/GMLJGM
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and

Wlg (V/0)wse e, -
Then

Z wM X and w wM V.
Hence

d(z,w)npF d(x,y).
Thus
Finally

(a/8)( [Z]ew’ [wj]eM) (w/e)F/eF(d/e)( [_xjeM, [v] BM) .

Claim. There exists exactly one ilsomorphism

x: v~ N/ /(w/6)
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such that

X © Ky = Keusg)y ® Kg -

Proof. If x exists, 1t is unique by the condition

on it. Define Xy by

XM([x]wM) = [[xjemj(w/e)M/GM'

Define Xp by
xp(l2dy ) = [[a
Py [[]eF](w/e)F/eF.
Put
x = (xys Xp)o
Then

X Yy
iff Y-"]eM(“’/e)WeM D’jeM
1rf [[x)g ] =1, ](

M (w/G)M/eM M W/G)M/em

iff XM([waM) = XM([jjwm).



148

Hence is well-defined and one~to-one.

X
Similarly Xp is well-defined and one-to-one.
From the definition of ,

XKy = %(yre) ° %o -

Also we see that

(xp © d/W)([}]wM, [y]wM)

xp([a(x,y)] b

(Latx,97]4 )

P

and we obtain that

((a76)/(w/8)) (xy(TxJy, Vs Xy (| ))
¥ Xy [']WM Xy ijm
((ase)/(w/0))({] I A
i}ei (0/8) { y]e ]

M~ (y/6)
M/eM

M/GM

(d/6) (Tx s \Y )
are) (3, UeM](We)F/eF

[[g(x,m]eF]

(¥/8)5sq



mailto:l.@<x,y)Je

Finally, for

10xJe ] in (M/GM)/(W/G)M/QM

M(8/0)y g

it is seen by inspection that

( ) = .
Dy ) =xde T O

Hence Xy is onto.

Similarly Xp is onto,
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SECTION THIRTEEN

-~ AN ALTERNATIVE WAY
OF
DEFINING A BASIS =

3.13. A Definition by Functions.

Let ”l be a distance space, Let S & M,

Definition: Define

by

fS(x) = (d(s,x))sss.

Claim., S 1s a left basis of M iff

f ls one-to-one,

S

Proof, Let S be a left basis of M.

fS(x) = fs(y).

150

Assume



Hence
(d(s,x)) g = (d(s,y)) 5.
Thus
d(s,x) = d(s,y) for any s € S.

Thus x =y since S 1is a basis of M. Hence ¢ is

one-to=-oOne.

Let f be one-to-one. Assume

@]

d(s,x) = d(s,y) for any s € S.

This implies !

(d(s,x)) . g = (a(s,¥)) -
Hence
fS(X) = fS(y).

Thus x =y since fS is one-to-one. Hence S i§ a left

bazis of M,

Note. A similar result holds for right bases.



CHAPTER FOUR

- GENERALIZED METRIC SPACES -

Introduction. In this Chapter, a new type of

abstract space is considered and is called a generalized
metric space. These spaces are speclalizations of the spaces
of Chapter Three. Homomorphisms, quotient spaces and
product spaces are developed in this context., These spaces
are close to metric spaces in that all of the conditions on
a metric space are preserved in a formal sense, 1In fact,

every meftric space 1s a generalized metric space,



SECTION ONE

- HOMOMORPHISMS -

4,1.,1, Definitions.

Definition. (F, +, 0, <) 1is a lattice-ordered

group iff

(1) (¥, +, 0) 1is an abellan group
(2) (F, =) 1is a lattice
(3) for any a, b, c € F

if ia <b

then a + ¢ < b + c.

Definition. (M, d, (F, +, 0, <)) 1is a generalized

metric space iff

(1) (M, d, F) 1s a distance space
(2) (F, +, 0, <) 1s a lattice-ordered group
(3) for any x,y € M
d(x,y) = 0 1ff x =y
(4) for any x,y € M
d(x,y) = d(y,x)
(5) for any Xx,y,z € M

d(x,y) + d(y,z) > d(x,z).
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Note¢ The notational device
M= u, a, (7, +, 0, <))

with or without subscripts will be used to denote a

generalized metric space throughout the rest of this
chapter,
Let ‘rnl and 77l2 be two generalized metric spaces.

Definition.

ml into m2 iff

g = (gl, g?) is a homomorphism from

(1) g 1s a homomorphism from ?711 into

an considered as distance spaces

(2) for any a,b € Fl

g, (a + b) = g2(a) +5 8, (b)

(3) for any a, b e Fy

() 31( aAb) = 31(&)/\1 qa (b)
(V) 3,.(3\1\\:) 31(&)\/,_31(5).

If, in addition, 81 and &, are one-to=-one and onto,

then g 1s an isomorphism from 7711 into 7712.
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Notation., The fact that g 1s a homomorphism

from ‘ml into m2 is written symbolically as

g:m <> m2o
h,1.2, Composition of Homomorphisms.

Let ml’ m2 and 7713 be generalized metric

spaces. Let

g:?TLl-+ 77l2 an@ h:"rn,2 > 7713.

Claim. In this situation we have that

h o g:ml+ m3.

Proof. It is sufficient to show that properties (2)
and (3) of the definition of a homomorphism hold for
h ¢ g(ef. 3.2). Consider a, b e Fl. Then as regards

property (2) we see that

(h2 ° g2)(a +1 b) hz(gz(a *s5 b))
hy(gy(a) +5 g,(b))

hy(By(2)) +5 hy(gy(b))

=(h, » g,)(a) +5 (h, ¢ g,)(b).
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In regarding property (3) we follow &

Proceo\uce, Paraﬂe\ +o what was

'wseA to Provﬁ:.Profecfy (2).

4,1.3. The Identity Map.

Let 771 be a generalized metric space.

Claim. The ordered pair

ICT) = (1), I(F))

is an isomorphism from ?71 into 771 where I(M) 1is the

identity map on M and I(F) 1is the identity map on F,.




Proof. The proof is obvious and is left to the

reader.

b,1.4, Inverses of Isomorphisms.

Let 7)L1 and ?7L3 be generalized metric spaces.

Let g = (gl, g2) be an isomorphism of 7711 into 7722.

Claim. (gzl, ggl) is a homomorphism (and hence

an isomorphism) from 7712 into 7711.

Proof. It is sufficient to show properties (2) and
(3) of the definition of a homomorphism (cf. 3.2.1).

Let ¢, d € F2. Let
a = ggl(c) and b = ggl(d).

Then to demonstrate property (2) we see that

= g5t (m,(a) +, m,(0))

tq
n
~~
o
+
no
R
N’
|

= ggl(gz(a +, D))

a +1 b

g5t (c) + g5 ().
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In order to demonstrate property (3), we -?o \\ow a

?roce.xlu.re, Pa.ra.\\e,\ ts what was MS&A

+o prove. Proper'\‘y ).



SECTION TWO

-~ QUOTIENT SPACES =

4,2, Congruence Relations.

Let 771’= (M, 4, (F, +, 0, <)) be a generalized

metric space. For any a, b € F we let
aVb = supla,b}

denote the join of a and b 1in F considered as a lattice

and we let
a A b = inf{a,b}

denote the meet of a and b in F considered as a lattice.

Definition. § = (eM,eF) is a congruence relation on 7’L
iff

(1) 8 1s a congruence relation on 771,
considered as a distance space

(2) for any a, b, a', b' ¢ F
if a eF a' and b eF b!
then a/\beF a' A b!
and aVb Op a'y b!

and a + b GF a' + b!

159
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(3) for any x, y € M

if d(x, y) e, 0, then x 6,y

Note. We will use the notation previously used
in this chapter for equivalence classes and for the set of

these equivalence classes.
Let © = (0,,8;) be a congruence relation on 772.

Definition. If we have that

a s |b e F/8
(o> [P)o, & ™8

then we define

B, Vo) Blg = R A 5] o

and we define

[, Vo Do, = v,

Note., By property (2) of the definition of a

congruence relation we immedlately see that

(A/6) and (V/8)

are well-defined operations on F/GF.
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Claim 1. For any [a]eF, [_b]eF, YS]GF € F/6p

we nave that

(@) e, = Blg, WO [p]eF
iff [p]eF = [p]eF (V/9) [g]eF

(b)) [

(b,) [a]eF

(cy) [_a]eF (N/8) ([.b]eF (A/8) [p:lep)

1]

[, (/) [y

[a]eF (V/8) [a]eF

[}

= ( (A/8) Iblgs ) (Are)
EﬂeF L]eF BﬂeF
(c,) [?]eF (V/9) ([p]eF (V/e) [?JGF)

= (f_a]eF (v/8) \'_b]eF) (v/0) [cjeF

(d) [a (A/8) b b (A/8) Ya '
D T, WO [, = Bl W) B

(d,) CaJeP (v/6) r_b]eF [p]eF (v/9) [a]eF.

Proof. The proof of (bl), (bz), (Cl)’ (02),

(dl) and (d2) are straightforward and are left to the reader.

Proof of (a). Assume that we have

E"]eF - E"]eF (A/8) [b]eF'



This gives us from our definitions that

EX

Hence there exists a!

al

By taking meets of both

a N

By taking meets of both

a

Since (F, <) 1s a lattice, we are guaranteed as a

consequence that

aAiN

and

= [aA b], .
I 0.,
e [aly with
R
= a Ab,
sides with a we see that
a' = a A b,
sides with a' we see that

a' = (aA a') A b.

a' <b

b WV (a A a').

16
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Hence we see that

o = Tle, /o) B Aad, .

Now consider property (2) in the definition of a congruence
relation with regard to the points a, a, a', a of F.

We know that

]

aeF a and aeF a.

Hence we obtain that
!

aeF (a A a').
But thls translates into

a = Ya A a .

Ble, = AT,

Thus we see that

E’]eF Lb]eF (v/8) [-aJeF'

The proof of the reverse implication parallels the

above proof. Thus we have proved what we claimed.
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Definition: If [aly, , [olg € F/6; we define
K F

@]eF (</0) [t] o iff [_a]eF = [_a]eF (A/9) Lb]eF.

Claim 2, (F, (</6)) 1is a lattice whose joins and

meets are given by the operations (V/6) and (A/6)

respectively.

Proof. The proof that </0 1is a partial order on
F/BFv is simple and left to the reader. Now we consider
{c]g € Fre; with
F
EJo (/0 [e]e  and o]y (</0) [blg -
F F F F
Then this implies that

r_c]eF = rg]eF ( /8) [a]eF and @]eF = [9]61‘«‘( /8) [_bjeF.

This gives us that

o, = Elo, V) [T

3 (A70)C [adg  (A70) Todg -

Thus we see that

Elo, < [ede, A0 Lide -
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Thus faly  (A/8) [b], 1is an upper bound for all lower
F F

bounds of [@]e and [b]e . We now show that
F B

(A7e) \b (</8) .
Ei]ep []QF - [.ajeF

This equivalent to showlng that

(A/6) [b = ( (A/0)[p), ) (Ase8) Ta), .
Ei]eF EJeF [@JGF L]ep U%

But this is obviously true. Hence [?]8 (A/6) [b]e is the
F F

rreatest lower bound of [g]e and {pje .
F F

A similar proof where meets are replaced with joins
and property (a) of the preceding claim is used to enable
one to define </8 1in terms of joins gives one that
[?]ep (V/8) [p]eF is the least upper bound of [?jeF and [p]ep.

This complete the proof of this claim.

Definition: If [a], , [P]q € F/6p, then we define
F F

al. (+/8) [b]. = + ), .
(2o, (/0 Blo = B+ tJg

Note. By property (2) of the definltion of a congruence

relation in 4.2 we see immediately that

(+/9)
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is a well-defined operation on F/BF.

Claim 3. (F/6,, (+/8)) 1s a group with unit [p]e .
F

Proof, This is obvious and left to the reader.

Claim 4. (F/8g, (+/e),\'_oje , (</8)) is a lattice-
Llaim 3 R =

ordered group.

Proof. It 1s sufficient to demonstrate property (3)
of a lattice-ordered group. Take [?]e , [p]e e F/6; such
F F

that
[a]eF (</8) [p_']eF.
Let (gje > F/BF. Now we have that
F
al, = [@l, (A/8) [b], .
[. eF [- eF eF
Hence we see that there exists a! e{?]e with
F
a' = a AD,

By consildering the proof of the Claim 1 we see that

aNa' = (aAa') Ab.
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But this means that
aAna' <b,
Hence we obtain that
(aAa') +c<b+ec

since (F, +, 0, <) 1is a lattice-ordered group. This

implies that

(aAna')y +c=(ana') +c)A(Db+c)
which gives us that

Lanad +Jg < B+l
But this translates immediately into

2 A a'JeF (+/0) [c]eF < ) o (+/6) LCJGF'

We also know from the proof of Claim 1 that

[a]eF = fan a']eF.
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Hence we have that

a {(+/90) \c < \b (+/6) e .
(1o (+/0) Tl 5 [l +/0) Lol

Claim 5. (M/6,, d/8, (F/65, (+/6), [9]9F, (</9))

is a generalized metric space where d/6 is defined as it

was for distance spaces in 3.3.

Proof. It is sufficient to verify properties (3),
(4) and (5) of a generalized metric space. Property (3)
is a direct consequence of property (3) of the definition
of a congruence relation. Property (4) is a direct consequence

of property (4) for 772 and the definition of d4d/6. 1In order

to prove property (5) let [}]eM, [y]eM, [?JBM € M/8).

Hence we have that

(d/e)(Lx]eM,[y]eM> (+/8) (d/e)(\‘_y]eM, [z]eM)

La(x,y)] 0, (/9 r_d<y,z>]eF

Eﬂx,y) + d(y,zﬂ().
F
But we know that

d(x,y) + d(y,z) > d(x,z).
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Hence we obtain that

(d(x,y) + d(y,z)) A d(x,z) = d(x,z).

This implies that

[_d(x,y) + d(y,z)]e A d(x,z)]e = [d(x,z)]e
F F F
which gives us that
Ei<st) + d(Y,Z)Je 2 E‘_(X’Z)Je .
F F
Hence we have that

(a/8)([xdq > [¥]e,) (+/0) (a/0) (TyTg » Telp )

> (d/e)([ﬁjeM,[gJeM).

Claim 6. The ordered pair of maps K= (KM,KF) where

Ky is defined by

(x) =
Ky (X [?]GM

and « 1s defined by

I

<pla) = falg
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is a homomorphism from 701 into 771/6 where we put

Mse = (M/ey, a/6, (F/6g, (+/e>,B)JeF, (2/8)).

Proof, The proof is an obvious extension of a
similar result for distance spaces proved in 3.3 and is

left to the reader,

Note. It 1is possible in this context to prove
results similar to those proved for quotients of distance
spaces by merely extending the proofs of these results to give
the validity of properties (2) and (3) of the definition of

homomorphism for generalized metric spaces.



SECTION THREE

- PRODUCTS -~

4,3, Products.

Let (77Li) be a family of generalized metric
iel :
spaces.

Definition. We define “mi to be
iel

(T\- Mis TTdi: (nFis E;P (Oi)

iel el iel

s T4

1eIl iel

where TT'di is as defined previously for distance spaces
iel

(see 3.6) and where

(TT+)((a)) (b)) ) = (a; +; b,)

ieI iel iel eI
and where
(a)) T < ()
1eI 1el leI
iff for any 1 ¢ I, a; <4 bi’

Hotation., For convenience in the rest of this

sub=-section we write TT 7)%_ as
iel

(M, 4, (F, +, 0, i))'

171
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We call j‘_\jlmi the "product of the [J].".

Claim 1. (F, +, 0, <) 1is a lattice-ordered group.

Proof., It is easily seen that
(F, +, 0)
is a group and that
(Fy, <)

is a lattice. We now demonstrate property (3) of a

lattice~ordered group. Let

(ai)

(b,) (e,) e F.
ieI’ 1 i ’ 1

el iel

Assume that

(ay) < (by) .

iel iel

This implies that for all 1 ¢ I

a4 4 Py
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Hence we have that for all 1 ¢ I

ai +l cl < bi +i ci.
Thus we see that
(a, +, c.) < (b, +, c,) .
i i ~7i 1e1 i i 71 1eI
From the deifnition of + we see that
(ay) + (c,) < (b,) + (c,) .
17er 1er = 1liex 17er

Claim 2. (M, d4, (F, +, 0, <)) 1is a generalized

metric space,

Proof. Property (1) of the definition of a generalized
metric space is satisfied which is seen from our work on
distance spaces (cf, 3.6.1). Property (2) is satisfied by
the result of the preceding claim. It remains only to verify

properties (3), (4) and (5).
First consider property (3). Assume that

(x,) (y.) e M
1 isI’ 1 iel
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are such that

(0

a((x,) s (yi) ).
el 170e1” "1 4er

This 1s true iff

(0

iel iel

which 1is true iff for all 1 e I

This 1is equivalent to the statement that for all 1-€ I
X T Y4
which 1s true iff

(x,) = (y,) .
1751 17 5erT

Next consider property (4). Then we have that

a((x,) s (y,) )
1 et 1%5e1
= (d,(X,, ¥,))
1 %10 V4
= (d,(y,, X4))
19qs Xg))

= d((y,) , (x,) )R
Y1l et 1741
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' Finally consider property (5). We observe that

a((x;) s (ys) ) + da((y.) s (z.) )
17 4e1 1 5er 17 4e1 175e1

" a0y, 3y + a0y 3g))

v

(dy (x4, 23))
- R

,» (2) )
el lel

d((xi)

since for each 1 ¢ I, 7713. is a generalized metric space.

We recall from Section 3.6.2 the definition of the
functions

F

pr? and pr'.j

which are the j-th projections of M and F respectively

and we define

M F
prgn==

(prj, prj).

Claim 3. For any Jj e I, prgn’ is a homomorphism

from m into mj'
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Proof. By referring to 3.6.2, we see that it is
sufficient to verify properties (2) and (3) of the definition

of a homomorphism given in 4.1.1.

As regards property (2), we see that

F
pr, ((a,) + (b,) )
J 174e1 17 e1

F
pr. ((a, +; b,)
J i34 ieI)

il
oo}
+
o3

pry ((ay) ) +pr ((b,) ).

1eI iel

In order to demonstrate property (3) we fellow A

Froce.o\ure, paralld \"'o w~‘\a‘\', was o\seal To

prove frover+3 Q).

Ndte. It is possible to define the notion of
extension property for generalized metric spaces in exactly

the same way as was done for distance spaces in 3.6. Then
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it 1is readily seen that

™M = (M, aQ)F, +, 0, <))

has the extension property and that any triple with the
extension property 1s essentially the same as 77@. The
proofs are the same as those for distance spaces exqept
that in certain instances one must verify properties (2)
and (3) of the definition of a generalized metric space

homomorphism given in 4,1.1.



SECTION FOUR

-~ A METHGCGD OF CONSTRUCTION

OF UNIFORM STRUCTURES ON

GENERALIZED METRIC SPACES -

4,4, The Construction.

Let M= (4, d, (F, +, 0, <)) be a generalized

metric space. Let TI¥ be a filter on F such that

(1) for any U, if U e F¥®
then 0 e U

(2) for any V, 1if V g F¥%
then there exists W ¢ F¥®
such that W+ WYV

(3) for any V, if V e F¥
then there exists W g F¥

such that W&V and W 1s convex.

Note. We say that W & F 1is convex 1ff for any

a, b e W and for any x € I



Definition: For any V € F¥, define V(M)

to be the set of all ordered palrs

(x,y)

such that x,y € M and

d(x,y) & V.

Claim. For any V € F¥,

vy = (v(m))~t,

Proof. This is automatic due to property (4)

of the definition of a generalized metric space.

Claim. For any V e F¥,

{(x,x)|x e M} € V(M).
Proof. Take x e M. Then we have that
d(x,x) = 0.
Hence since 0 € V we have that

d(x,x) € V.,

179



180

Thus we obtain that

(x,x) € V(M).

Note. For any X,y € M,

a(x,y) > 0.

Proof. Assume that

d(x,y) < 0.

Then it is immediate that

d(x,y) + d(x,y) < 0.
But by the triangle inequality
d(x,x) < d(x,y) + d(y,x).

This implies that

0 < d(x,y) + d(x,y)
which 1s a contradiction.

Claim. For any V € F¥, there exists W € F#* such that

W(M) o W(M) € V(M).
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Proof, Take T € V such that

T e F¥ and T is convex.

Take W & F¥ such that

Take x,y € M such that

(x,y) € W(M) o W(M).

This implies that there exists 2z € M such that

(x,z) ¢ W(M) and (z,y) & WM).

Hence we have that

d(x,z) ¢ W and d(z,y) € W.

Thus we see that

d(x,z) + d(z,y) € T,

How we know that

0 < d(x,y) < d(x,z) + d(z,y).



Using the facts that 0 € T and
d(x,z) + d(z,y) € T
and that 1 1is convex, we conclude that
d(x,y) & T.
This implies that
d(x,y) € V.
Hence we obtaln that
(x,y) € V(M).
Now consider F" to be the filter on M x M
generated by the set of all V(M) where V e F¥, Then

F" is a uniform structure on M as a consequence of

what we have proved ([?J, page 177; [3], page 21).
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