
MORSE CODE 


COMMUNICATION AID 


FOR 


THE HANDICAPPED 




MORSE CODE 

COMMUNICATION AID 


FOR 


THE HANDICAPPED 


by 

E. G. CALLWAY, B. ENG. 

A Project 

Submitted to the School of Graduate Studies 

in Partial Fulfillment of the Requirements 

for the Degree 

Master of Engineering 

McMaster University 


April 1981 




MASTER OF ENGINEERING (1981) McMASTER UNIVERSITY 
Department of Engineering Physics HAMILTON, ONTARIO. 

TITLE: 	 Morse Code Communication · 
Aid for the Handicapped 

AUTHOR: E.G. Callway, B.Eng. 

SUPERVISOR: Dr. Ralph Bloch 

NO. OF PAGES 122, vi 



ABSTRACT 

A microprocessor driven display was built and prog­

rammed for the storage and reproduction of Bliss symbols. 

An explanation is offered for the success of the symbol 

language in teaching the handicapped. 

The hardware was designed to be inexpensive enough 

for classroom use, but still deliver adequate flexibility and 

resolution. Due to the complexity and variety of the symbols 

a method of data compaction was developed to reduce the 

required storage space. 

Initial tests are presented and suggestions are made 

for continuing the work. 

ii 



ACKNOWLEDGEMENTS 

The author would like to thank Dr. R. Bloch, Chedoke 

Hospital, for his advice and guidance. Appreciation is also 

expressed to Ted Bojanowski, Madeleine Harris, Ted Iler and 

Tony Wallace for their continual advice and support. 

Special thanks are due to Dr. J. Russell for the 

interest he took in the project. 

iii 



CHAPTER I 


1. 0 
1.1 
1.2 

CHAPTER II 


2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 

CHAPTER III 


3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 

CHAPTER IV 


4.0 
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 

CHAPTER V 


5.0 
5.1 
5.2 

TABLE OF CONTENTS 


INTRODUCTION 1 


Communication Aids for the Handicapped 1 

The Morse Code as a Communication Aid 2 

Previous Work and Basic Requirements 2 


THE MORSE CODE 4 


Basic Description 4 

Code Sample 5 

Decoding 6 

Code Characterization Displays 8 

Decoder Functions 9 

General Decision Strategies 13 

Decision Problems and Approaches 14 


THE DECODING PROGRAM 20 


Timing 20 

Input 20 

Histograms 21 

Morse/ASCII Conversion 21 

Slow Adaptability 22 

Threshold Setting 22 

Out of Range Correction 28 


HARDWARE - AIMS AND DEVELOPMENT 30 


Hardware Requirements 30 

Patient Interface 30 

Automatic Keyer 35 

Detailed Keyer Operation 37 

Footswitch/Keyer Results 40 

Audio Input Board 40 

Digital Input Board 46 

Microprocessor System 48 


RESULTS AND CONCLUSIONS 51 


Testing and Results 51 

Trial Unit 53 

Conclusions and Recommendations 53. 


iv 



APPENDICES 

A Morse Code Characters and Program Commands 56 

B Flowcharts 58 

c Monitor Program 82 

D Morse Decoding Program 98 


REFERENCES 121 


v 



Figure 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 

LIST OF FIGURES 

Histograms 7 

Scatter Plot 10 

Teletype Histogram 11 

Tektronix Histogram 12 

Threshold Histograms 2:? 

Rancho Footswitch 33 

Metal Footswitch 33 

Wooden Footswitch 36 

Keyer Schematic 38 

Final Footswitch 41· 

Audio Input Schematic 42 

PLL Tests 45 

Digital Input Schematic 47 

Development System 49 

Trial Unit 54 




CHAPTER I 


INTRODUCTION 

1.0 Communication Aids for the Handicapped 

The inability to communicate with other people can 

make life difficult and unrewarding. Since the most common 

form of communication is speech, lack of speech can be seen 

as a serious handicap. 

Communication aids enable a person with a speech, 

visual, auditory or motor disorder to communicate with other 

people. Those with handicaps in these areas are often down­

graded, as a lack of words is unfairly equated with a lack 

of ideas. 

The purpose of this. project was to provide a non-vocal 

cerebral palsied person with a portable means of communi­

cation using Morse code. An appropriate review of cerebral 

palsy can be found in Day ( 4) • Briefly, it is a neurological 

disorder, present at birth and nonincreasing, which causes wide­

spread motor disabilities. Its effects vary from slight tre­

mors and weakness to a complete lack of control over voluntary 

movements, including speech. 

In this case, the subject was a young man confined to a 

wheelchair and possessing extremely limited speech, but of 

1 




2 


normal intelligence. He had some control over his feet and 

was able to turn the pages of a book and type slowly with 

them. For practical reasons of size and weight a typewriter 

could not be permanently attached to his wheelchair. An 

electronic keyboard with an eye-level display might have 

worked, but it would have still required a ruggedized QWERTY 

keyboard small enough to be unobtrusive, but large enough 

to be worked with the feet. For use outdoors either unit 

would be unsuitable as they could not be operated with a 

shoe. 

1.1 The Morse Code as a Communication Aid 

It was decided to try the Morse code as a method of 

communication. Unlike a typewriter, a single switch can be 

used to send the whole code, thus solving the problems of 

size and ruggedness. Morse code is fairly compact, with 

common letters such as E or T being a single dot or dash, 

while z is much longer. This fortuitous arrangement is only 

valid for English. 

The main disadvantage is that most people do not under­

stand the code. It was felt that a simple and reliable deco­

ding device could be built using microprocessor technology. 

1.2 Previous Work and Basic Requirements 

Schemes for the automatic decoding of Morse code have 

always been popular, but not necessarily cheap or effective. 



3 


Most of the research in this area is performed by amateur 

radio operators and various military organizations, each 

for their own purposes. Bell (2) presents the military view 

with its aim of increased surveillance with less manpower. 

For ham radio operators it becomes possible to communicate 

more enjoyably be removing some of the hard work. Recently 

there has been work on microprocessor based decoders, but 

they tend to require large volumes of code for initiali­

zation (1) or require fairly good code \12) . The first requi­

rement cannot be met due to the short conversations, and the 

second because of the nature of the sender. It was felt that 

a better algorithm could be developed for this use. 

Unlike receiving, sending the code is fairly easy, and 

in fact the subject learned to send it within one week. By 

contrast, this author still cannot understand the code 

without the aid of the device developed here! 

The items generated by this project were a footswitch 

interface to send the code, an adaptive software program to 

interpret it, and recommendations for the hardware required 

to produce a portable unit. 



CHAPTER II 

THE MORSE CODE 

2.0 	 Basic Description 

Morse code is an internationally recognized binary 

(on-off) coding scheme for the transmission of letters and 

numbers. Although it was originally designed to be sent and 

received by human operators, it can also be used with 

mechanical or electronic devices. 

Each character consists of a unique sequence of one to 

six MARKS (on) separated by SPACES (off) . The marks and 

spaces, or ELEMENTS, have several different lengths. Marks 

of time duration 1 are called DOTS, and those of lengths 3 

are DASHES, SYMBOL SPACES ·of length 1 are used inside a 

letter, CHARACTER SPACES of length 3 separate characters, 

and WORD SPACES of duration 7 divide words. 

The absolute timing of the elements does not matter as 

long as they maintain the 1:3:7 ratio~. The dot is usually 

designated as the speed determining element. By not fixing 

the speed, operators can work from 5 to 60 words per minute 

lGuenther,9), often limited by skill of the receiver. 

Machine to machine transfers can proceed at higher rates. 

Grappel and Hemenway (8) state that the reciprocal of 

4 




5 

the speed in words per minute corresponds roughly to the 

dot length in seconds for normal text. Thus, at 	an average 

speed of 10 words per minute, the dots and symbol spaces 

would be 0.1 second long. 

Bell (2) was unable to find a standard value for the 

bandwidth of Morse code, but used 3 times the reciprocal of 

the dot length as a working value. This figure is important 

when designing analog input circuitry to reduce noise while 

retaining information. The bandwidth of machine code could 

be rigorously calculated, but hand sent code is too depen­

dent on human factors for meaningful results. 

2.1 Code Sample 

To send a message, such as "I am hot", it is neces­

sary to find the correct c.ode for each letter, and then 

join the individual codes with the correct spaces. A table 

of the various character codes is given in Appendix A. 

There is no provision for upper or lower case in the code. 

Individual codes: 

I a m 

h 	 0 t 

Complete message: 

I a m h 0 t 	 (text) 

(code)
. 	 . . . . 

1 1 1 3 3 3 1 1 1 1 3 3 3 3 (mark times) 
7 1 3 7 1 1 1 3 1 1 3 (space times)1 



6 


It can be seen that information is contained in both the 

marks and spaces. 

2.2 Decoding 

To decode a message it is first necessary to take eaah 

element and decide its relative length: 1, 3 or 7. For well 

sent, low noise code, the wide ratios (1:3 and 3:7) make 

this an easy task, even for a mediocre operator or simple 

machine. 

Because the spaces clearly define the beginning and 

end of letters and words, it merely remains to look up the 

individual letter codes and produce a copy of the message. 

The above tasks can be implemented easily to produce 

a simple decoder at low cost. The Morse-A-Letter (11) is an 

example of such a device, available as a kit for $150. 

Unfortunately, Morse code is rarely received under 

ideal conditions. Human operators cannot exactly duplicate 

the 1:3:7 ratios, and during a long message both the ratios 

and overall speed will vary. Bell (2), Guenther (9), Freimar 

(5) and other detail some of these changes, including the 

variations which may occur inside a single character. 

For most applications the signal has been received via 

a radio link, and is further corrupted by noise and fading. 

For reliable decoding of Morse code, the machine must 

be adaptive in some way. It may only adjust its overall 



7 

r : ::::-.~ cr of 

JJ 

Ci DJ ration 
(:-::He ) 

15 

:o 

a) Bell, Reference 2. 

: :,Hj(.S 

:. ~ -.:- er of 

l U 1:> ... 1::.0 2i0 24 v 

~;a C.!:'S 

AVE RAGE = 1.0 AVE RAGE = 3.81
_.I 

l 

' l 
w AVERAGE= 4.97 
u 
<! AYERAGE = 1.13 
a.. ~ en 

b) Hickey, Reference 10. 

Figure 1. Histograms 



8 


speed, such as the Automatic Fist Follower (7), it may com­

pensate for deviations in the 1:3:7 ratios (3), or it may 

even perform some textual analysis based on a rudimentary 

knowledge of English (10) . 

2.3 Code Characterization Displays 

In order to analyze a Morse signal, most researchers 

have found it helpful to have a graphical representation of 

the main characteristics. 

Hickey (10) and Bell (2) used histograms, shown in 

Figure 1. The horizontal axis is time, and the positive 

vertical axis shows the number of marks with that duration. 

The negative vertical axis displays the space information, 

inverted for clarity. In both cases, some of the important 

characteristics of Morse code are shown: 

1. 	 There are more dots than dashes, and more symbol spaces 

than character or word spaces. 

2. 	 The dot cluster is narrow with an obvious midpoint. 

3. 	 The dash cluster is wide, and the midpoint may not be 

clearly defined (flat top, rather than peak). 

4. 	 The symbol space cluster is as well-defined as the dot 

cluster, with nearly the same midpoint. 

5. 	 The character spaces are poorly grouped. 

6. 	 The word spaces are not grouped at all. 

Point 1 is inherent in any Morse transmission of text, 



9 


but 2 to 6 are peculiar to hand sent code. It can be seen that 

the 1:3:7 ratios are not exactly followed. 

Guenther (9) used scatter distribution plots which are 

able to show the changes when one element follows another. 

For the example shown in Figure 2, it can be seen that 

dashes following word or character spaces (groups D and E) 

are longer than dashes after symbol spaces (group F) . This 

particular type of information cannot be easily seen on the 

histogram displays. The frequency of occurence information 

is slightly obscured by the scatter plots as it changes 

from height to dot density. 

For this project, the histogram method was chosen as it 

offers a good display of information with minimal hardware 

and software requirements. The output was first presented 

on a Teletype printer (Figure 3), but the program was 

changed to use a Tektronix graphics terminal (Figure 4). 

This gave a higher quality display and much faster output. 

2.4 Decoder Functions 

Any decoding. device must perform several basic 

functions: 

1. Separate the marks into dots and dashes. 

This is the least difficult operation as the dots and 

dashes are usually well sent, preserving the 1:3 ratio or 

even making it larger (3). 



10 

in 
I 

a 
U) 

0 
z 
a 
u v 

w 0 
U) 

w 
Ll 
a: 
CL 
CJ) ­

CJ 

0 

DOT DRSH (RLL) 

RECORDING SESSION 2 

.J:,,.• • . :-~ . .-..-~ ,f ••. :i-: . 

J ::;--::.· ' 

i~:!: . _.: ·.:: ,_ . 

- r. • I 
·: ::..• 
;~·, • • • • I: • 

---:::=:r... . •. 
• • .1 • •. • ••• I 

.:=~ .. r·--:" · .. • 
""'% •• 

1.: :- •
:..T1. • • • .i. •• • 

·• ·7­ ,· .. -: ~ ·...·. ·.. 
-~= . . . . .·r..: ·-.':·' =-·.='s--:.·• • 
~-. ·. . . "· ,_ ·.. 

...... ,,, • • •• s - •
• ···1. ·• ·.' .• -. 

-~z=·. • .·-'.\ • I ::1 • • •: 
• :~r - ._· • • 

.· .t 

.... ·.. . 

-,,.
::-_:=-=::: 

:-:::::;: . 
•---=:..=.·.-=--::..•• 

• -+-~...--......--..---.---.---~....-......--.--..---.---.---..~.---.--....--.--.---.---.~.--,--~-
0 ' I 

0.0 0.1 0.2 0.3 0.4 0.5 0.5 

PULSE DURATION CSECONDSl 

Figure 2. Scatter Plot. (Guenther, Ref. 9) 



1-Ij 
I-'· 0123456769ABCOEf0123456769ABCDEf0123456789ABCOEf0123456769A8CDEf 

lQ 
c 
 0 !! 


I S H 

. S H 


rs 
2 
3 H s 

w 4 H 

CD 

s 
5 H s 
6 H s 
7 s H

8 8 
CD 9 s 

s 
H 

H 

I-' A s M
CD B s Hrt c H s 
~ 0 M s"'d E H sCD f H s 


0 I!
tt: 
I-'· I s H 

Ul 2 H s 
rt s3 11 
0 4 s M 

lQ 5 s H 
rs 6 s H 
PJ 7 s 11 s 8 s H 

9 s 11 

A I! 

B HS 

C HS 

0 !'I . Occurences 
E I! rf !f 

0 B 


(/)l 1115 ~ 

2 115 
 t:-1 

3 s 
 CD 

::i (/)4 e ~ 
lQ "'d pi 


6 HS rt pi rs 
5 • 

:;J' () ~ 7 I! CD6 H s t:19 HS t:1 PJ
A I! PJ rtB !! rt PJ
C B PJ 
0 ~ I-' 
E HS 1--' 
f HS 



Computed ParametersSPEED 0236 "ARK THRESHOLD 87 SPACE THRESHOLD 89 

!

A 
9 
B 
7 

~ 

4 
3 

/Dots ff) 

<1) 
u 
@I ,Length 
~ 
:::1 
u 
u 
0 

!&1JJ!JJze~~e~!!!!!~;;~h;;~$¢O¢~~t~~~;~tt~~teot~~i~~~~~ 
1 'I I'Ill I~ ' Cha~Spaces Word Spaces 

4 s 
6 
7 
8 
9 --...__Symbol Spaces
A 

I __. 
tv 

Fig. 4 Annotated Tektronix Histogram 



13 


2. Separate the spaces into symbol, character and word. 

The spaces are never sent with as much care as the 

marks. Blair (3) and Guenther (9) agree that a more comp­

licated decision process is needed for the spaces. 

3. 	 Based on the character spaces which have been found, 

divide the data stream into characters, decode and 

output them. 

If the character spaces have been correctly found, and 

if the marks were properly identified, the final conversion 

from Morse to text is a simple operation using a look-up 

table. When the above processes produce an invalid charac­

ter, there is a choice between printing an error message, 

and reassigning the various elements using a modified deci­

sion technique in an attempt to find a valid character. 

This correction process may be quite involved in the 

larger devices (11) . 

4. 	 Based on the word spaces, output spaces between words. 

Although word spaces are the most variable type of 

space, their identification is not critical, as a missing 

space between words rarely causes a loss of understanding. 

2.5 General Decision Strategies 

Hickey (10) noted that there are three basic approaches 

to the manual Morse problem: 

1. 	 Macro: You can accumulate statistical information on an 



14 


operator and use this data to make decoding decisions. 

2. Micro: You can make your decisions on a mark to mark 

basis, sometimes called the "idiot dot" method. 

3. Hybrid: You can compromise these two methods and come up 

with a hybrid algorithm. 

Method 1 requires a memory large enough to contain all 

the timing information in a message, but should give the 

best results. Method 2 requires very little computer time 

or space, but is the least reliable. Successful devices, 

such as MAUDE (6), use the hybrid approach. 

A common method is to keep an average speed parameter 

which varies slowly, and an average dot time which uses 

only the last few characters. The decision thresholds are 

calculated from empirical formulas using the dot average. 

The short "time constant" on the dot average allows trac­

king of fast speed changes, while the slower responding 

speed parameter inhibits locking on t.. . noise (8) • 

2.6 Decision Problems and Approaches 

1. Decoding Delays: 

The methods which build up a large body statistical 

information about an operator require a large sample of 

code to be effective, thus delaying decoding. Guenther (9) 

tried to qui~ken the process by decoding initially with one 

set of rules, then switching to a better set when more code 



15 


had been received. 

For use as a conversational communication aid, the 

long initialization times of most methods are unacceptable. 

Since the code will be sent very slowly (possibly 1 w.p.m.) 

it is important to have each letter decoded as quickly as 

possible. 

2. Non-Code Activation: 

Due to the nature of the sender, there are periods 

when the code switch is involuntarily activated. If some of 

the simpler averaging techniques are used, after several 

non-code "words", the program will have locked on to that 

style, losing its memory of the sender's true characteristics. 

This is similar to the problems caused by noise and 

interference in the radio case, and is why "idiot dot" 

strategies fail. 

Since a non-code sequence is obvious to an observer, 

(because of the sender's physical involvement) no attempt 

was made to block decoding during one. It would require a 

complex program to have the computer recognize invalid 

input. The decoding algorithm was designed so that inputs 

which are not similar to previously received code do not 

affect the decoding thresholds unless prolonged. 

3. Space Problems: 

Problems arise when there is poor distinction between 

the symbol and character spaces. If a long group of marks 



16 


is received with no obvious character space in the string, 

a good receiver can separate the string into characters 

using his knowledge of valid letter codes, combined with 

his expectations based on context. 

Machines find this difficult unless they contain rules 

and vocabulary from the language being decoded. An easier 

method is to mix timing and simple language rules such as 

in the MAUDE decoder. Rules such as "The longest of 6 suc­

cessive spaces is almost always a character space" allowed 

the machine to divide a string of poor code into letters. 

If the division resulted in an invalid character, a modified 

set of rules was tried. (6) 

The bad grouping of the various space types not only 

causes incorrect decoding (due purely to the bad sending) , 

but also makes it difficult to calculate best values for 

the space thresholds, compounding the errors. In this pro­

gram the threshold s.etting process does disregard poorly 

grouped information as mentioned above, but in addition the 

initially calculated symbol/character threshold is averaged 

with the dot/dash threshold, which is more reliable. For 

perfectly sent code these two thresholds should be equal. 

4. Correction Routines: 

McElwain and Evens (11) reported good success with a 

"degarbling" program to correct machine received code. It 

was given a vocgbulary list of every wore which might be 



17 


used in the message, along with the received, partially 

decoded text, and some timing information. Based on this 

it could correct many of the errors in the received text. 

This would be useful in a military situation where the con­

text is unknown but the vocabulary prescribed. It allows 

large volumes of readable text to be produced with little 

operator attention. 

In ordinary conversation the vocabulary is large, but 

the context is known - such as replies to questions. It was 

found in preliminary tests that a reply never had to be 

completely spelled out, as the listener could correctly 

guess the full statement after a few letters or words. For 

this reason no error correction routines were included in 

this design. This works well in a conversational environ­

ment, but might be inadequate for other uses. 

5. Effects of Incorrect Decisions: 

Most of the schemes examined use variations of the 

following method. The element being processed (on line 

or from memory) is examined and a decision made as to its 

nature (dot/dash, symbol/character/word) . This decision is 

used as part of the character currently being assembled for 

decoding. If the element was classified incorrectly, the 

current character will be incorrect. Error correction 

schemes may help if an invalid character was produced. 



18 


One incorrect character is not a pr oblem, but each 

element is then used to update a running average, as in: 

DOT AVG. = DOT AVG. + NEW DOT/8 DOT AVG./8 

DASH AVG. = DASH AVG. + NEW DASH/8 DASH AVG./8 

(This keeps running averages of the typical dot and dash, 

with each new element given a weight of 0.125.) 

The various averages are used to calculate the thres­

holds, as in: 

MARK AVG. DOT AVG./4 + DASH AVG./2 

(For perfectly weighted 1:3 code, this produces a threshold 

at 1.75, an empirically better value than value 2, which might 

have been expected.) (after 1) 

Unfortunately, any incorrectly classified element is 

averaged into the wrong place. 

The effect of this is that a period of bad code or 

noise is not only incorrectly decoded (which may be unavoi­

dable) , but is also used to calculate incorrect thresholds 

which prolong decoding errors into periods of good code. 

Most of the element classification errors occur when 

an element is received with a timing value near a threshold 

value. These elements are poorly grouped with respect to 

the average of their intended value. If these elements are 

included in the average calculations, even if they are cor­

rectly classified, poor threshold values must result. 



19 


Elements near present threshold values cannot however 

be explicitly and permanently excluded from calculations as 

they may be important if the operator has changed speed. 

The decoding algorithm outlined in the next chapter 

tries to use only well-grouped data, ignoring data which 

may represent noise or odd code. 



CHAPTER III 

THE DECODING PROGRAM 

Some of the main features of this program are: 

3.0 Timing 

A software timer is used instead of external counters. 

This gives maximum adaptability and minimizes the hardware 

requirements. At the slow code speeds anticipated, the non­

timing portions of the program do not significantly distort 

the timing, so the delays through various paths were not 

equalized, but ignored. A single speed parameter is used, 

with an estimated useful range of 300 to 1. 

All timing in the program is in the arbitrary, dyna­

mically variable units determined by the speed parameter. 

3.1 Input 

The code input is sampled under program control, ins­

tead of using an interrupt. It was felt that an interrupt 

based system was too susceptible to noise, as it must 

respond to every input change, however short. When fully 

adapted to a code style, an average length dot is sampled 

8 times, a dash 24 times. While adapting, the program will 

decode correctly if a dot is sa~pled . from ·2 to 20 times. 

20 




21 


The program will lock on to code over a much wider range. 

3.2 Histograms 

As each mark or space finishes, its length (in arbit­

rary timing parameter units) is stored in a histogram type 

table. There are separate tables for marks and spaces. The 

tables allow for a length from 1 to 64 timing units, with a 

maximum count in each entry bin of 64 occurences. When any 

bin in either the mark or space table reaches 64 counts, 

the data in both tables is divided by 2. This prevents 

software overflows and allows new data to slowly take over 

from the old. The histograms are smoothed with a moving 

window and used for threshold calculations. 

The smoothed data can be displayed on a graphics ter­

minal as an actual histogrpm. This is useful for checking 

the overall quality of the code and the validity of the 

threshold setting algorithm. 

3.3 Morse/ASCII Conversion 

As each element comes in, it is shifted into a charac­

ter holding register, using "O" for dots and "l" for 

dashes. When a character space is found, the data in the 

character holding register is used directly as a memory 

address pointing to the equivalent ASCII in a look-up table. 

This method is simple and fast while requiring a minimum of 

space for the table. 



22 


Two 6 mark characters produce ambiguous addresses and 

are dealt with separately. 

If it is desired to put out more than one character 

per Morse input, such as a "CR/LF", then a special case 

subroutine must be written. 

3. 4. Slow Adaptability 

After the thresholding process has decided dot or dash 

each mark time is compared to 8 or 24 respectively. If the 

time was short, the overall speed is increased by a small 

increment, and vice versa. This action slowly forces the 

program into the correct speed range. As it works slowly, 

noise or bad code will not really affect the speed unless 

prolonged for dozens of marks, an unlikely event. Due to 

its poor quality, the space data is not used. 

Initially this was the only adaptation mecha~ism in 

the program, but it could not be made fast-responding with­

out the program becoming unstable during bad code. It also 

required perfect 1:3 ratio code, which is rarely sent. 

3.5 Threshold Setting 

Figure 4 shows a typical histogram and 5 shows an 

idealized version. If point 7 can be relia~ly found, 

then the critical dot/dash and element/character 



23 

m 
Q) 
0 
s:: 
Q) 

8 
0 
0 

0 

3 

Computed 
Threshold 

,14 __1 -

Length 

a) Marks 

m 
Q) 
0 
s:: 
Q) 

8 
0 
0 

0 

Computed 
Threshold 

,14_,­
Length 

b) Spaces 

Figure 5. Threshold Histograms. 



24 


decisions can be properly made. 

Blair (3) used histogram data, by assuming an initial 

threshold value, then calculating an empirical "goodness 

of separation" based on various statistical parameters. 

The threshold estimate was moved until the "goodness of 

separation" was maximized. This method requires a lot of 

computation and would not be suitable for real time app­

lication, but the basic idea is excellent. 

The stylized histogram in Figure 5 provides the 

basis for the method. chosen. It was found that co~e from 

different sources always had similarly shaped histograms. 

The most important similarities are that the dot peak is 

consistently higher than the dash peak, and the symbol 

space peak higher than the character space peak. The work 

space peak is not well-def~ned and often cannot be found. 

The "noise level" between peaks is lower than the peaks, 

and consists of elements which were poorly timed. The peaks 

are shown with flat tops, but this is not essential. 

To find the threshold (dot/dash or symbol/character}:. 

1. Find point 1: 

An entire histogram is searched for the largest value, 

point 1. If two points have this value (1 and l'), then the 

rightmost one is taken because it should be closer to the 

threshold. This largest peak is always the dot or symbol 

space peak. The position and value of point 1 are noted. 



25 


2. Find point 2: 

The histogram is searched from point 1 to the right 

for the data point which is 1/2 or less than the value at 

point 1. If this point does not occur before the dash peak 

the code is of very bad quality and cannot be decoded. Only 

its position is noted, as its value was used to find it. 

3. Find point 3: 

The first estimate of the threshold is found by calcu­

lating point 3, which is the position as far to the right of 

point 2 as point 2 is to the right of point 1. Its value 

is ignored, because it contains the bad data that this met­

hod was designed to avoid. 

4. Find point 4: 

The histogram is now searched for the largest data 

value from point 3 to the ~nd. This will be the dash or 

character peak . . If two bins contain this value the leftmost 

one is chosen as this will be closer to the threshold. The 

position and value are noted. 

5. Find point 5: 

The histogram is searched from point 4 to the left for 

the first bin whose value is 1/2 or less than that -of point 

4. If the code is very bad the noise floor could be higher 

than this 1/2 value, which would extend the search to the left 

side of the first peak. To avoid this, the search will stop 

at point 3, even if the desired value was not found. Code 



26 


that bad would be unreadable anyway, but a good threshold 

value must still be chosen to aid the slow adaptation. 

Only the position of this point is used. 

6. Find point 6: 

The second estimate of the threshold is found by cal­

culating point 6, which is as far to the left of point 5 as 

point 5 is to the left of point 4. Just the position is 

taken as the value contains questionable data. 

7. Find point 7: 

Point 7 is the arithmetic average of points 3 and 6. 

This is the estimate of the threshold. If either line 1-2-3 

or 4-5-6 has a shallow slope it is possible for point 3 to 

be to the right of point 6. This does not affect the choice 

of point 7, as it just means that 1-2-3 crosses 4-5-6 above 

rather than below the hori?ontal axis. 

8.8. Space Correction: 

The above seven operations are performed separately 

for the mark and space data, so that the only tie between 

the thresholds should be the overall P!ogram speed. This 

allows for different distributions of the marks and spaces. 

It also is useful for very slow code (less than 1 w.p.m.) 

so that long spaces can be used without long marks. 

It was found however that the space data is never as 

well-grouped as the mark data. This becomes a problem when 

small code samples are obtained, as it may take a long time 



27 


to build up the space peaks properly. For this reason the 

space threshold estimate obtained from steps 1 to 7 is 

averaged with the value for the mark threshold to obtain 

the final space value. It was found that this helped 

decoding in almost all cases. 

9. Character/Word Threshold: 

The space between words in regular Morse code is 7 dot 

times long. These word spaces should appear as a third peak 

in the space histogram, but rarely do, so a continuation 

of the above methods cannot be used to find it. 

The character/word threshold is set at 3.5 times the 

symbol/character threshold, or 7 dot times (assuming a sym­

bol/character value of 2 dot times). Normal code would give 

a value between 3 and 7, but it was found that for this 

application the character ~paces were as long as ordinary 

word spaces. This operation is not critical for conversa­

tional use. 

The threshold setting method has been shown to find a 

good threshold value. No math other than integer addition, 

subtraction, and division by shifting is used, giving a 

high speed. It can be seen that a simple curve fit is 

actually done to find the horizontal position of the inter­

section of lines 1-2-3 and 4-5-6, which should be at the 

low point between the two distributions. Only very basic 

assumptions are made about the shape of the histograms, 



28 

without fixing the time ratios at 1:3 or the valley at a 

certain distance between peaks. Any time bins which do not 

have counts to a value of at least 50% of the closest peak 

are automatically excluded from the calculations, as are 

all bins on the far sides of the peaks which also do not 

contain information about the threshold position. 

The most important objective has been achieved, and 

that is any elements which were incorrectly classified when 

first received are not averaged into the wrong place to 

perpetuate the initial error. Instead they are put into the 

histogram where they belong in time-relation to previously 

received elements. If they were part of a legitimate speed 

change, new peaks will form in the correct place to give a 

correct threshold, ~nd if they were errors of low occurence 

they will be completely ignored. 

If reasonable quality code is received, a useable 

threshold is usually found after the receipt of less than a 

dozen marks, giving the required fast initialization time. 

3.6 Out of Range Correction 

If the program is running far too quickly, then the 

dashes will time out to the maximum of 64, rather than the 

ideal 24. If a mark of length 64 is detected, the timing 

constant is doubled (to slow the program and halve the 

counts) and the program is restarted with clear histograms. 



29 

This allows one to start without having to make an 

initial guess at the -code speed. The program will restart 

on each mark until the timing constant is within range. 

This mechanism can be fooled by holding down a key to pro­

duce a long mark, so an automatic keyer should be used 

which cannot produce marks longer than those required. 

Spaces are not checked in this manner as a long space could 

be just a pause in sending, not a change of speed. 

If the program is far too slow, a mark may only be 

sampled once. There is no explicit mechanism to deal with 

this case, as a typical key bounce would also be sampled 

once and a speed halving mechanism (as above) would cause 

the program to lock onto that noise. The normal threshold 

setting process can deal with this condition, for if all 

the marks go into the 1 bin rather than being spread around 

8 and 24, the histogram fills up and empties quickly. This 

lets the slow adaptation and threshold mechanisms function 

effectively by quickly removing data stored at an earlier 

speed. This is a slower correction than for the opposite 

case above, but it is stable unless the number of noise marks 

greatly exceeds the number of true marks. Code of such 

bad quality is not expected in this application. 

Flowcharts are given in Appendix B and the assembled 

code is in Appendix D. 



CHAPTER IV 

HARDWARE - AIMS AND DEVELOPMENT 

4.0 Hardware Requirements 

The hardware falls into three main categories: 

1. Patient Interface - physical movement to audible code 

2. Digital Interface - audio signal to digital input 

3. Processor and Display - digital input to visible letters 

The ideal system would consist of a single switch con­

nected directly to an input port on a one chip microproces­

sor. An output port would drive a speaker with clean code 

for audio feedback, while another drove a display with the 

reconstructed characters. ·Very little other hardware would 

be required, as~ll the timing and switch debouncing would 

be performed in software. The computer and the display 

would be lightweight and low powered. The system used for 

development was more complex, but at all stages decisions 
' 

were made with the above criteria in mind. 

4.1 Patient Interface 

In any manual Morse system a key is required to trans­

late the operator's movements into a string of dots and 

dashes, providing an electrical signal for transmission and 

30 




31 


an audible one for the operator. The audio feedback may 

come from a directly connected buzzer, monitoring of the 

transmitted signal, or the mechanical action of the key. 

Keys vary from a simple switch to dual switches with mech­

anisms for automatically timing perfect dots, dashes 

and spaces. 

Normally code is sent with the hand, but in this case 

the subject only had reliable control over his right foot, 

so this point was chosen for the interface. During 

the largest muscle spasms it was unuseable, but good action 

was available at most times. 

At an early point in the project, it was decided not to 

use a direct electrical connection between the subject and 

the processor. In its place the audio signal from the 

keyer was picked up by a microphone and conditioned for use 

by the computer. This approach allowed all test sessions to 

be recorded on a cassette recorder in any location suitable 

to the subject. Whether the code was "live", taped in the 

subject's home, or from a shortwave radio, it could all be 

processed the same way and stored easily for reevaluation. 

It also solved the problem of electrically isolating the 

subject from the equipment, which was line-powered except 

for the keyer. 

One final benefit was that verbal comments on the pro­

gress of the session were recorded at . . the appropriate times 



32 


and were thus more valuable than written notes. This was 

especially useful in analyzing the earlier sessions, as the 

character sent could rarely be recognized but was often 

framed by coITITTlents which described the true intent and the 

mistake. 

The first key to be tried was a "Rancho" 1 footswitch 

switch connected directly to a 12-volt battery and a 

Mallory Sonalert (Figure 6). The Sonalert was chosen because 

of its low power consumption, high efficiency and sine wave 

audio output. The last quality was found to be useful in 

triggering the phase locked loop detector described below. 

Ordinary buzzer sources produced complex audio waveforms 

which were hard to detect against background noise. 

The switch could be placed in a loose-fitting shoe 

or sandal and was cosmetically the most ple~sing, but it had 

a large amount of contact bounce. This was not a problem in 

gait studies due to the higher pressure available for con­

tact closure, but the effect was intolerable for machine 

read Morse code. 

It became apparent that the s~bject was making a 

valiant effort to send correct code, but he could not time 

out the dots and dashes properly with the single switch. 

It was decided that a dual action switch was needed, with 

1Developed at Rancho Los Amigos for gait studies 



33 

Figure 6. Rancho Footswitch 

Figure 7. Metal Footswitch. 



34 


one position for dots and another for dashes. The author 

designed and built the footswitch in Figure 7. The metal 

loop enclosed the big toe of the right foot and pivoted 

in a similar way. Two microswitches sensed motion up or 

down from the rest position to trigger a dash or dot 

respectively. This orientation was chosen as the subject 

could press down more easily and more dots are used than 

dashes. The restoring force from each direction could be 

varied independently by changing the microswitches. 

To complement this, a keyer was designed by Tony 

2Wallace with two separate inputs which would result in 

an audio tone of dot or dash length when activated. 

Further trials were conducted with this equipment and 

new problems appeared. The footswitch required the foot to 

remain motionless while the toe pivoted up and down. The 

subject however found it easier to curl his toes down and 

push his foot up and down, which did not activate the 

switch properly. The switch also had to be flexible like 

the Rancho switch or else much stronger, as it was easily 

damaged. 

The keyer had no automatic space delays, so although 

perfect length marks were being sent, a dot and dash could 

be sent simultaneously. Holding a switch down produced one 

mark, but another often appeared on release due to contact 

bounce. The -square wave oscillator and small speaker pro-

Electronic Technologist, Chedoke Rehabilitation Centre 
2 



35 


duced an excellent signal for the ear, but it was not 

recognized over background noise by the equipment. The 

length of the tones, and hence the overall speed, could not 

be easily varied. 

Another footswitch was designed and constructed. 

(Figure 8) Two microswitches were mounted into the wooden 

frame and activated by pressing the clear plastic cover plates. 

This design was more rugged and easier to activate. 

4.2 Automatic Keyer 

The author designed and built a fully automatic keyer 

which can send perfect dots or dashes, but with the addi­

tion of a perfect symbol space between them. If the foot­

switch is held down the keyer will produce a string of dots 

and spaces. If it is then suddenly pushed up, the dot in pro­

gress is finished, the symbol space timed out, and the 

switches sampled. If the dash switch is still activated, a 

dash is begun and the switch can then be released. The 

dashes are also auto-repeating if required. 

There is a semi-automatic mode in which a switch has 

to be released and reactivated before a mark is repeated, 

although the minimum space timing is still produced. 

In the manual mode either switch activates the tone 

for as long as it is closed with no automatic timing. 



36 

Figure 9. Wooden Footswitch. 



37 

Since the design is fully synchronous without using 

monostables, the speed can be varied over a wide range with 

all timings (dot, dash, space) in the correct ratio. The 

Sonalert was used again for the advantages outlined above. 

The unit was built with CMOS technology and has a quiescent 

power drain of microwatts. For this reason and to simplify 

operation no power switch was included. The battery can be 

from 4 to 9 volts with no change in operation. 

4.3 Detailed Keyer Operation 

In the manual mode either switch can directly activate 

the output through ICia,D3 and Ql. The trigger signal to 

the timing circuits is shorted to ground through Dl and 

SWlb. 

In the automatic mode IC6 is the timing oscillator 

which sets the code rate. ICS is a decade counter with 10 

active h1~gb decoded outputs, clocked by IC6. If no switches 

have been closed: 

1. 	 ICS is in the "O" state, closing the trigger sampler 

formed by IClb and IClc. 

2. 	 IC3a is off turning off IC6, the clock. 

3. 	 IC3b is off, turning off the output. 

When a switch is closed, the trigger signal gated 

through IClb and IClc: 

1. 	 Sets IC3a to turn on IC6 and start the clock. 



C5 
10n 

+ 

"DOT~'r7 R1 

41 
100k 

+Cl>-=f 10on 

+ 

- _____ ~·~~~~A_L.::'=-=_
SW1a 

c 

~-+-----+--.;:.,j5 AST 6 

"DASH"~R2 I T I I I l 41 I I I al 91 112 

100k 

r-7 / .l± C2\.42
)-=f 10on. 

IC + 
u ·co4011 , 4 

3,4 CD4013 , 4 

S CDL.0 17 16 

6 CD4047 14 

01-3 1N914 

04 red led 

Gnd 
7 

7 

8 

7 

Ql 2N2222 

0 
5 

CE C 
131 14 

1, •"AA'7"-f +F_k1-~_ks +. 
eel Is -= 11 'fi( 'fi(f ~3 ~On ~On 

+ 

SWl in "AUTO" position 

There is no power switch. 

"SPEED" 

~ 
c 
-i 

~ "SEMl-
1 ._AUTO''+ 

w
Figure 9. Keyer Schematic 

"TTL 
J3 - KEY 

rour·· 

00 



39 


2. 	 Sets IC3b to turn on the output through D2 and Ql. 

3. Clocks IC4a to latch the input - 1 for dash, 0 for dot. 

Because the input is latched, a change in the switches will 

not change the timing. 

IC2a, b and c select the count from ICS which will stop 

the output, based on the switch latched in IC4a. A dot is 

stopped by the "l" count, a dash is stopped by the "3" 

count, giving the correct timing. 

Using 	a dot as an example: 

1. 	 The output is on during the "O" count after triggering 

This is one clock cycle long. 

2. 	 The rising edge of the "l" count, gated by IC2a, b and 

c, clocks IC3b to the zero state, turning off the output 

and ending the dot. 

3. 	 During the "l" count, the output is off and the input is 

locked out. This gives the required symbol space. 

4. 	 One clock cycle later, the falling edge of the "l" count 

clocks IC3a to the zero state, which turns off the clock 

and resets ICS to the "O" state. 

5. 	 As ICS is reset to "0" the swi·tch sampler of IC la and b 

opens again to check the switches, ending the cycle. 

The dash sequence is identical, except the "3" count 

is 	used instead of the "l" count. 

In the semi-automatic mode, the sigbal which ends the 

mark also clocks IC4b to the ''l" state. The trigger signal 



40 


is then grounded out through the Q output and Dl. When both 

keys have been released, IC4b is reset through ICld. The 

effect of this is that a switch must have been released 

after the completion of the mark (i.e. during the symbol 

space or later) and then reclosed to send another mark. 

4.4 Footswitch/Keyer Results 

Sequences such as "dot dash dot" (R) became "down up 

down" with little reg~~d . for timing. The only requirement 

was that a switch had to be held until the mark began, and 

the switch for the next mark had to be activated (or the 

last one released) by the time the previous symbol space 

was finished. Due to the very slow speeds available and the 

fact that the switches were locked out when not being sam­

pled, good "noise immunity" from involuntary movements was 

achieved. 

This equipment was tried and the only improvements 

needed were a reorientation and height adjustment of the 

upper switch, but its overall performance was finally good 

enough to test the software. 

A final footswitch was built incorporating the needed 

adjustments((Figure 10) and it performed satisfactorily. 

4.5 Audio Input Board 

The basis of this circuit, shown in Figure 11, is IC3, 

a phase locked loop tone detector. This approach was chosen 



41 


Figure 10. Final Footswitch (on wheelchair mounting). 



42 

"MIC" ci50n 

R 2 1M 

~ 
1 
>-c-1_l___.) ..___.,~,...__.._~ 

4~ 

"AGC 
LEVEL" 

(internal 

C7 
sonT 

R6 3M3 

01 C9 6u8 

07 02 

RlS 2M2 ----­ '1 
"DETECTOR" R 19 

(yellow) 120 R 

decoded .... --..,..._-__,, +s 
tone R 26 

10k 

C17 R25 
+s 

150n L.70k­8 
-----....._ 

r---_._--.1 C13 R 2 2 
C16 + 100n 390R 

GsonT 

R23 
10k 

"TUNE" 

+ 

"LEVEL" (red) 
DG ~\ 

03 SW1 

cwt RSb 
100k 

R21 
L.7k 

Rl 1 
270R 

+ c12 
6u8 

mic 
"SELECT"' 

L< 
J2 "AUX" 

+< 

08 	
QJbotQ1 2N3819 

01-5 1N914 
"EXT 6v) S.l J± L+s 

06, 7 I e dAC/DC">-; C 18 -: _.pow er lo digital boardT 220u . I ·1 .-useonya J6prn5 08 1N400t. 

is unpowered 	 IC 1 LM 3900 

IC2 t.N 26 

IC3 LM 567 

Figure 11. Audio Input Schematic 



43 


over simple amplitude detection as it gives excellent 

rejection of background noise. As outlined in reference 13, 

there are design tradeoff s involving detection bandwidth, 

speed of response, and noise immunity. 

Switch SWl selects a high gain microphone input or a 

direct input for tape playback. Gain control RSb and D3, D6 

form a nonlinear input network to aid noise rejection. At 

low gain levels (large inputs) the signal must overcome the 

forward voltage drop on the diodes, so low level noise is 

partially inhibited. D6 was also intended to function as 

a level indicator, but the signal required to activate it 

was too large. 

R22 and D4-5 clip any input to 1 volt peak to peak. If 

larger signals are allowed IC3 tends to detect harmonics of 

low frequency signals. Cl5 and R23-24 determine the centre 

detection frequency, allowing tuning from 700 Hz to 3000 Hz. 

Cl4 affects detection bandwidth and loop response time, 

while Cl6 is part of a filter on the output switch. These 

two capacitors were varied considerably from design values 

to optimize switching times and dropo~t rejection. R25-26 

add some · ·hysterisis to the output, and Cl7 increases this 

feedback during switching transitions. 

ICl-2 are an AGC (automatic gain control) amplifier 

for microphone inputs. ICla provides a gain of 100, with 

3db rolloffs at 300 Hz (Rl, C2) and 16 KHz (R2, C3). Ql and 



44 


R3 are the variable gain attenuator necessary for AGC 

action. IClb is the amplifier inside the AGC loop, and it 

also lowers the upper 3db point to 10 KHz. The external gain 

control varies the gain of this section from 27 to 150, 

exclusive of the attenuator. It may seem odd to have this 

control inside the loop, but it limits the maximum gain for 

low level signals when low gain is selected. Combined with 

the nonlinear network of RSb, D3, D6, at low gain levels 

low level signals are not well amplified by LClb and are 

further rejected at the nonlinear network. By reducing 

these unwanted signals IC3 performs more reliably. High 

gain is available when required, but it should only be 

used in quiet surroundings. 

Dl-2 and C9-10 form a voltage doubler for AGC detec­

tion. Attack time is approximately 20ms (Rll+Rl3, ClO) and 

decay time 15s (Rl4, ClO). IClc adds a de gain of 2 to the 

AGC control signal. 

IC2 gates the AGC signal to ClO so that it is only 

increased to lower the gain when a tone has been detected 

by IC3. This stops high room noise from lowering the gain 

of the system and relates it more closely to the level of 

the desired signal. 

Tests were done in a noisy room (fan noise) using the 

Sonalert Keyer and a microphone pickup several feet away. 

As Figure 12 shows, good digital signals were produced for 



45 

Figure 12. Phase Locked Loop Tests. 

a) High ambient noise (short space, long mark) 

L_____ 

b} Low ambient noise (long space, long mark) 



46 

both low and high noise inputs. 

For tracking of noisier or faster code, one could add 

a bandpass filter in front of the microphone amplifier with 

its tuning coupled to the phase locked loop. This would 

greatly increase noise rejection and allow other time cons­

tants to be relaxed for better tracking of fast code. 

4.6 Digital Input Board 

This is a simple circuit (Figure 13) to condition the 

detected tone from the audio board and allow the direct use 

of single or double keys. 

The three input circuits are identical and require a 

switch closure to ground for a mark. R25 is a pullup resis­

tor and R26, C25 form a low pass filter with a cutoff near 

70 Hz to reduce noise from IC3 or external keys. R27-28 and 

IC4 form a Schmitt trigger to square the signal for digital 

use. Dl0-11 give a visual indication of external switch 

activation. 

ICS-6 combine the three possible inputs into two data 

lines. Pin 1 is high for a tone mark or the dot switch and 

Pin 2 is high for the dash switch. Both pins high indicates 

an error. SW2 informs the software whether a single or 

double switch is being used. Pins 1, 2 and 4 connect to 

data lines 0, 1 and 2 respectively on an input port on the 

microprocessor. The dual key and SW2 sense software was not 



+s 
output 

J 6 
pin no's 

tone 
decoded~ 

t 

+s 'pll,...,.,,.. ,....,. 100k ~~.~Is ( 2R29J 

r--7 .. 2 
"DOT/ 

SINGLE"\44>--+ 
L.IVI I 
fr oril 

R37 
../VV'-+5 3 

O'JI: I 390R+5 
I -< 

R33
r--7 .. 2k2 

"DASH"\45>--. 10T 1oon 

•5 GndI C 

4 CD4040 1 8 

5 CD4011 14 7 

6 CD4001 14 7 

Figure 13. 

9 V I/ "DASH" 

(green) 


4 
"DOUBLE" f'SINGLE" 

I ( 

~"' 

2k2 

+5 5 

~Sw2 ~ 

power to audio board~ 

10 
J6: Shell is ground ... 

Digital Input Schematic 
.t:::i. 
-.....] 



48 

needed or written during development, but its addition 

would be trivial. 

4.7 Microprocessor System 

The microcomputer used for development is shown in 

Figure 14. It is based on the single board demonstration 

unit marketed by Tektron Inc. using the RCA 1802 CMOS 

microprocessor. It was chosen as its power requirements are 

a few milliamps at 5 volts, and it is thus suited for the 

ultimate goal of a portable device. It is an 8-bit machine 

with sixteen general purpose 8-bit registers and a suitable 

instruction set. Apart from RAM and ROM it is nearly a one 

chip processor, as the clock oscillator, DMA, interrupt 

and I/O ports are provided on the chip. Further details can 

be found in reference 16. 

The system used for development was more complex than 

the capabilities of the chip might imply. The unit had to 

drive TTL circuits, which required buffering the data and 

address lines. The final system would be completely CMOS 

and the microprocessor could drive everything directly. Two 

serial I/O ports, including a cassette interface, were 

included, as well as a hexadecimal led display and an ASCII 

keyboard. On the demonstration board itself was an 8-bit 

latched output port driving eight leds and a hexadecimal 

keypad which was enlarged and brought out to the front 



49 

Figure 14. Development System. 



50 

panel. Memory consisted of 2K of RAM, but the first 512 

bytes were replaced with EPROM containing the monitor. 

The monitor program given in Appendix C allowed edit­

ing and execution of programs, and also contained utility 

routines for driving the various interfaces. Operation is 

based on the ASCII keyboard and the hexadecimal display, 

but it can be run from a terminal with less flexibility. 

Circuitry for this system is not given as it does not 

relate directly to the final system. As pointed out above, 

that would consist of a one board computer without the ex­

tra buffering and peripheral capabilities. 



CHAPTER V 

RESULTS AND CONCLUSIONS 

5.0 Testing and Results 

Testing involved two main areas, testing with the 

patient and without. Both the hardware and the software 

were initially developed using the general rules for Morse 

code, and then modified as required. 

The footswitch progressed from a single switch and a 

buzzer to a dual switch designed for the feet, plus an auto­

matic keyer. The final combination of an adjustable wooden 

frame and microswitches c~vered in plexiglass proved to be 

functionally adequate and quite rugged. Required ·pressure 

for activation was easily varied by inserting foam rubber 

under the plexiglass. For a patient with weaker movements and 

more control it should be possible to place a single or 

dual switch entirely within a shoe using the Rancho type 

switch. 

The automatic keyer was found to be necessary due to 

the subject's relatively poor control compared to a normal 

Morse operator. In this respect Morse code with its timing 

requirements might not be the ideal code for the cerebral 

palsied. Again, for a subject with better control the keyer 

51 




52 


may not be needed, or could be incorporated into the soft­

ware. 

The program began as a short decoder of ideal code 

with fixed dot/dash ratios. This performed perfectly in 

tests using perfect code from another 1802 system, but 

failed miserably using hand sent code. The final program 

was much longer than anticipated (as usual!), but produced 

readable code. Some tests were conducted using code from a 

shortwave radio using the phase locked loop detector desc­

ribed in the hardware section. This code was being sent at 

rates up to 20 times those anticipated for this project, 

but readable code was still produced. One caution to others 

trying this test is that amateur radio operators of ten use 

a bewildering array of abbreviations which at first appear 

to be bad decoding. Due to international regulations, it is 

unfortunately illegal to reproduce here any of those tests. 

Tests with the patient were quite brief due to logistic 

problems. These sessions were taped however and used repea­

tedly. It was found that for use as a conversational aid 

extra non-standard characters had to be added to do things 

such as blank the display and perform a carriage return. 

Due to the very long times between letters the automatic 

letter space should be deleted and replaced with a special 

space code, although this was not done. 



53 


5.1 Trial Unit 

Near the end of the project a summer student built a 

portable decoder based on the work presented here. (15) The 

result, shown in Figure 15, consisted of the footswitch and 

keyer, the processor, the battery and charger, and a 20 

character alphanumeric display. The size of the battery was 

due mainly to the fluorescent display. 

Several trials were conducted with this apparatus on a 

wheelchair and it fulfilled the requirements. At the present 

time, intermittent electrical failures are preventing its use, 

but a more reliable unit will be produced. 

5.2 Conclusions and Recommendations 

The main objectives of the project were met, in that 

Morse code was shown to be a feasible means of portable 

communication for a cerebral palsied person. 

Improvements can now be made all round, due to a better 

understanding of the problem, and more compact and lower 

power technology. Studies of the histograms generated by the 

user should be made so that the decoding algorithm can be 

tailored to the user. Convenience features can be included, 

such as the facility for the unit to operate as a computer 

terminal. A liquid crystal display would allow week long 

operation on a single charge, or a smaller battery. The ac­

tual switch required depends on the individual user, as with 



54 

Figure 15. Trial Unit. 



55 


all aids, but a lighter and more visually pleasing switch 

could be designed. 

It should be noted that most of the above improvements 

are aesthetic (editing,lower weight, etc.) rather than func­

tionally essential. It is the author's experience however 

that unless an aid is almost invisible in its active and 

passive states it is apt to be rejected by the user. 

In closing, an aid is only useful if it is used! It 

is the author's hope that further work will be done in this 

area, both in clinical trials and final placing of devices with 

the handicapped. 



APPENDIX A 

MORSE CODE CHARACTERS 

AND 

PROGRAM COMMANDS 

56 




57 


MORSE CODE CHARACTERS 

A N - 1 - - - - Period 

B - 0 - 2 - - - Comma 
pc - 3 Question 

D - Q 4 Error 

E R 5 Colon 

F s 6 - Semicolon ­

G - - T - 7 Bracket 

H u 8 - - - Backslash ­

I v 9 

J w 0 

K - x ­
L y ­

M z 

PROGRAM COMMANDS FROM ASCII KEYBOARD 

I Restart at 03EO, cal~ monitor for new sp ed 

H Output histogram immediately, wait for more commands 

K Send "COPY" command to graphics terminal, wait 

M Restart at 03F6, some histogram, speed and thresholds 

N Set non-auto mode, restart at 03F6 (cancel a "Z") 

X Clear histograms and continue 

Y Divide histogram data by 2 and continue 

Z Set automatic mode (output a histogram on any overflow) 



APPENDIX B 

FLOWCHARTS 

58 




~~~~jump to 

Center 

59 

PROGRAM OVERVIEW 

reset all counters and histograms 

input intf al value for time constant 

TIMER entry 

delay for 1 time constant 

KEYUP 
routine 

key down routine) 

put keyup time Into histogram 

Yes 

Increment key down timer 



! 
60 

PROGRAM OVERVIEW (continued) 

enter KEYUP routine 

Yes 

put "O" 
register 

Yes 

No No 

adjust time constant 
slightly to correct 
overall speed 

Dash 

into character put 11 1 11 into character 
register 

Yes 

key down time into 

increment count of marks in present character 

page) 



61 

PROGRAM OVERVIEW (continued) 

check keyup timer 

NoYes 

decode Morse and 
output character 

No 

Increment keyup timer 

calculate new decision 
threshold values 

Yes 

output inter 
word space 

increment keyup timer 

No 

take appropriate action 

jump to Timer entry 
continue timing 



62 

MORSE 03DE-03FF 

enter RSTRT 03DE 
(full restart) 

00 in RC.O monitor 
.flag for data entry 

enter MORSE 03EO 
(starting point) 

03E6 in R3, 3 in X set 
up R3 as program counter 

output "FO" to format 
serial port 2 

RESET Q flag 

CALL SIN this calls the 
monitor as a subroutine to 
input initial speed to RD, 
type "R" to return here 

enter RSTR2 03EF 
(partial restart) 

1 0 i n RE o 1 , RE • 0 = ma r k 
& space threshold preset 

CALL MASG with Q = O, 
set histograms to zero 

enter RSTRl 03F6 
( semi ·restart ) 

CALL CRLF output "CR" & 
"LF" to show (re)start 

(cont. on next page) 

reset some registers to 00 
RC.O = time of keyup 
R9.0 = time of key down 
RC.l c no. of marks In 

a character 
R9.l = dot/dash C0/1) 

shift register 

enter TIME 0400 
(timing loop) 

RD In RF get timing para­
meter, prop. to I/speed 

JUMP to STDN 
key still down 

just down) 

Y (overflow) 

( t I me I s 0 • K • ) 

CALL UBIN bin keyup time 

">---_....JUMP to AUT 
bin Is full 

I nput para 11 e 1 port 1, 1s b 
= O, key up; lsb = 1, down 



63 


AUT? 0568-057F UP 042C-047F 


07EE in R7 = auto­
fl ag memory address 

get M(R7) = auto-flag 

07FO in R7 = 1/0 add 

>---4JUMP to HIST 
output hist 

>---_.RESET Q 
y 

JUMP to STDN 

JUMP to UP2 

The "AUT" section of code· is 
in a difficult position. It 
acts like a subroutine, but 
in fact "Q" is used to deter­
mine the "return" address. 

enter STDN 0421 
cont. prev. pg. 

00 in RC.O reset 
key up timer 

increment key down timer 

>----JUMP 

(key just up) 

(mark 

to STUP 
key still up 

R 9 • 0 - R E .. 1 i n D = key 
down - mark threshold 

Y ( ma r k = da sh ) 

= dot) 

shift a 0 Into lsb of R9.l 
signifying last mark • dot 

R9.0 - 08 in D = mark ­
perfect dot time 

shift a 1 into lsb of R9.l 
cause last mark was dash 

R9.0 - 18 In D = mark -
perfect dash time 

~-----JUMP to UPI 
speed Is OK 
{next page) 

RD + 1 In RD this raises 
timing constant • slower 



64 

enter UPI 044,B 

cont. prev. pg. 


CALL OBIN bin down time 

from 

increment RC.l = no. of 
marks in this character 

STUP 
prev. pg. 

00 Jn R9.0 reset 
key down timer 

Y ( t f mer f u 11 ) 

Y (no marks, 
no letter) 

"'---_.JUMP to LOUT 
Y output letter 

enter UP2 0456 return 
from AUT, no histogram 

JUMP to TIME continue 
normal timing 

find 3.5 * RE.O = lnter­
character space, ICS 

~-·~	output 11 2O" = 
ASCII "space" 

Increment RC.O = keyup timer 



65 

enter UPI 044B 

cont. prev. pg. 


CALL OBIN bin down time 

Increment RC.I = no. of 
marks in this character 

00 Jn R9.0 reset 
key down timer 

Y ( t Jmer f u 1 1 ) 

Y (no marks, 
no 1et t er) . 

~___.JUMP to LOUT 
Y output letter 

find 3.5 * RE.O = lnter­
1WSword space, 

output 11 20" = 
ASCII "space" 

increment RC.O = keyup timer 

enter UP2 0456 return from 
from AUT, no histogram 

STUP 
prev. pg. 

JUMP to TIME continue 
normal timing 



66 

LOUT 0480-04BO 


output R9.l to POPl put morse register 
on leds for visual check (optional) 

has 6 marks} 

II • II . ------+----.... 

~-... 1oad "*" 1------+----..... 
overrun 

( 6 or fewer) 

R9.l AND 3F in RF.O mask in lower 
6 morse bits, 1 of 64 addresses 

05 In RF.I = high address 

load M(RF) =desired ASCII letter 

output cha r act er .,______________. 

Increment RC.O = keyup timer 

RC.O in M(07EF) save keyup timer 

JUMP to THRM f Ind new thresholds 



67 


KCHK 04B8-04FC 


>--_..,.JUMP 
ful 1 

,,__---"!ii J UM P 

ASCII data into D, MCRX) 

to RSTRT 
restart 

t o H I S T 
for histogram 

0210 in RA = address for 

serial port 2 routine 


output copy command "ESC", 
"ETB" to graphics terminal 

0201 in RA = address for 
serial port 1 routine 

>--__.JUMP to RSTRl 
s em i res ta r t 

y 

RESET Q for hist = 00 

SAUT here If 0 N" or "Z" 
07EE In R7 = auto flag 
memory address 

input keyboard in M(R7)
"Z" = auto, "N" = n.auto 

JUMP to RSTRl 

y 

JUMP to START the data 
was not a valid command 

07FO in R7 • 1/0 address 

JUMP to TIME continue 
decoding after "N 11 ,"Z" 



68 


MASG 03C0-0304 UBIN, OBIN 0540-055E 

0540 
timer 

0580 in RF = start add 
of raw histogram data 

,___---t get MC RF) 
hist data 

data/2 in 

80 + RC.O in D ~ offset 
+ key up time a low add 

enter OBIN 0545 
bin key down timer 

JUMP to .....---c: 
BIGM Y 

CO + R9.0 In D = offset 
+ key down = low add 

= 


0 


D in MCRF) = fixed data 

increment RF 

BIGM OSSF-0565 


shift RO left by one to 
double time constant 

JUMP to RSTR2 
semi restart 

0 in RF.O = low address 
=actual time + offset 

05 in RF.l = high address 

MCRF) in D = present count 

increment count, store 
it back Into MCRF) 

JUMP to SMTH this smooths 
histogram data 



SMTH 0760-079F 

enter 

0580 in RF = start add 
of raw histogram data 

0680 in RO = start add 
of smoothed data 

0 in X RO used for math 

get data(N) from MCRF) 
(N is a dummy index) 

multiply data{N) by 2 

D in M(RO) = 2•data(N) 
Into smooth data(N) 

decrement RF = data{N-1) 

y 

get data(N-1) from MCRF) 

data{N-1) + 2•data{ N) · in 
D = result so far 

D In M(RO) = result so 
far into smooth area 

RF + 2 in RF = data{N+l) 

Note: smoothed data(N) . = 
(data(N-1) + 2•data(N) + 
data(N+l) + 2)/4 

69 

y 

get data(N+l) from M(RF) 

data{N+l) + data(N-1) + 

2•data(N) In M(RO) 


M{RO) + 2 in D add 2 
to correct round-off 

D/4 in MCRO) divide 
and store final result 

increment RO = next 
smooth bin 

N 


7 In X (normal value) 

~-RETURN 
(done) 


Ca bin full) 


CALL MASG this divides 

histograms by 2 as Q=l 

output "CR","LF" & ">" 

RETURN 



70 


LTOR 0710-0723 

entry: half peak in RC.l 
start address of search 
in R9 
00 in RF.O 

exit: RF.O = * of bins 
from peak to first bin 
<= 1/2 peak from left 
to right 

enter 

9 in X R9 is mem. pointer 

RC.l - M(R9) in D find 
half peak - new data 

y 
(done) 


increment RF bin pointer 


increment R9 memory add. 


N 

{overrange) 

7 in X normal value 

RETURN 


RTOL 0728-073F 

entry: half peak in RC.1 
start address in R9.0 
00 in RF .. O 
lowermost bin I in RE.O for 
spaces, RE.1 for marks 
Q = O, spaces; Q = 1,marks 

exit: RF.O = I of bins from 
peak to first bin <= peak 
from right to left 

9 in X R9 is mem. pointer 

y 
(done) 

R9.0 - 80 in 0 subtract 

space off set 


Note: LTOR and RTOL are increment RF bin counter 
very similar and differ 
In direction of scan and 
overrange criteria. decrement R9 mem pointer 



71 


FMAX 0740-0750 

conditions on entry: 


Q = 0 to find right maximum 
00 in RC.l, RC.O reset Q = 1 to find left maximum 
max. value and bin I RF.O has lowest bin number 


to be searched. 

R9 has that memory address. 


,___'""'oo in RF.o conditions on exit 
N right max 

RC.O has the bin number with 
the maximum data value. 
RC.l has that data value. 

9 In X R9 is used as a 
memory pointer for math 

RC.l - M(R9) In 0 find current max. - new data 

N 
on 

Y (never change 
if current > new) 

~ax, change if < only) 

Y (left max, no 
change on = ) 

(must be <, change) 

M(R9) in RC.I hold new data as max. value 


RF.O in RC.O hold new bin I as max. bin I 


( r. max, 
change 
< or = ) 

increment RF point (logically) to next bin 

increment R9 point (memory) to next bin 

RETURN>-------~ 7 in X 
(R9 = doneas usual 
or OSBF) . 



72 

AODSO 0700-070F 


entry: peak value in RC.l 
peak bin # in RC.O 
Q = 1 for marks 
Q = 0 for spaces 

exit: half peak in RC.I 
actual memory add. 
of peak in R9.0 

enter 

00 In RF.O reset 
bin counter 

Y (marks) 

(spaces) 

load 80 = 
space offset 

load CO = 
mark offset 

CRC.1)/2 in RC.1 find 
half maximum value 

D + RC.O in R9.0 offset 
+ peak bin # = low address 

RETURN 




73 

THRM 0600-0638 

06CO in R9 start address of smoothed mark data 

reset Q to find right maximum in FMAX 

CALL FMAX find right maximum (dot peak, point 1) 

set Q for mark routine in ADDSO 

CALL ADDSO fix data from FMAX 

SUB LTOR find bin 50% or less than dot peak (point 2) 

RC.O + 2•RF.O In D, RF.O (counter) & RE.l (left stop) 
find bin twice as far from peak as 50% bin, estimate 
of threshold based on dot peak and start point for 
dash peak search (point 3) 

D + CO In R9.0 convert this to a memory address 

set Q to find left maximum In FMAX 

CALL FMAX find left maximum (dash peak, point 4) 

set Q for mark routine.in ADDSO 

CALL ADDSO fix data from FMAX 

SUB RTOL find bin 50% or less than dash peak (point 5) 

RC.O - 2•RF.O in D find bin twice as far from dash peak 
as 50% bin, estimate of threshold based on dash peak, 
(point 6) 

(continued next page) 

http:routine.in


74 

THRM (continued previous page) 

CRE.1 + 0)/2 in RE.I average two estimates (dot, dash) 
for mark threshold, store it in RE.l (point 7) 

JUMP to THRS 

THRS 0640-067F 

This routine is very similar to THRM, and differs in detail 
only. IRCS refers to the tntercharacter space, and IACS to 
the lntracharacter space. 

0680 in R9 start address of smoothed space data 

reset Q to find right maximum in FMAX 

CALL FMAX find right maximum (IACS peak, point 1) 

reset Q for space routine in ADDSO 

CALL ADDSO fix data from FMAX 

SUB LTOR find bin 50% or less than IACS peak (point 2) 

RC.O + 2*RF.O In D, RF.O (counter) & RE.O Cleft stop) 
find bin twice as far from peak as · 50% bin, estimate 
of threshold based on IACS peak and start point for 
IRCS peak search (point 3) 

D + 80 in R9.0 · convert this to a memory address 

set Q to f Ind left maximum In FMAX 

CALL FMAX find left maximum (IRCS peak, point 4) 

(continued next page) 



75 

THRS (continued previous page) 

J_ 
{reset Q for space routine in AoosoJ 

l 
[cALL ADDSO fix data from FMAXj 

l 

SUB RTOL find bin 50% or less than IRCS peak {point 5) 

1 

RC.O - 2•RF.O in D find bin twice as far from IRCS peak 
as 50% bin, estimate of threshold based on IRCS peak, 
(point 6) 

l 
CRE.O + 0)/2 In RE.O average two estimates CIACS,IRCS) 
for space threshold, store I t in RE.O 

I 
(RE.O + RE.1)/2 in RE.O average this estimate for the 
space threshold with estimate for the mark threshold, due 
to the 1ow "qua 1 i t y" of the space information, store t t 
in RE.O (point 7) 

I 
[JUMP to CLUP] 

J, 
CLUP ·07B0-07BD 

SUB DISPY display new thresholds 

00 in R9.0 reset R9.0 for use as key down timer 

00 Jn RC.I reset RC.1 to count number of marks/character 

01 in R9.l preset morse shift register with leading 1 

MC07EF) Jn RC.O restore key up time value to RC.O 

JUMP to TIME thresholds found, continue regular timing 



XYOUl 02E0-02Fl 

entry: 8 bit x coordinate 
in M(07Fl), y in MC07F2) 

(enter) 

l 
M(07Fl) in RO.O 
get x coordinate 

J 

M(07F2) In RO.l, D 
get y coordinate 

1 

SHIFT D right 3 times get 
high 5 bf ts of y coordinate 

D OR 20 add 
identifier 

I 
"high y byte" 

l 
loutput "high y byte"] 

I 

RO.l in D get y coordinate 

I 

SHI FT D left 2 times se.t 
2 lower bits to 0 

1 

D In M(07FO) save inter­
mediate y value 

r
lRETURN] 

At this point the intermediate 
y value in MC07FO) can have 
the two lowest bits set by the 
main program. This would allow 
the full 10 bit accuracy of 
the graphics terminal to be 
used. 

76 

XYOU2 02F8-030D 

entry: i ntermed I ate y 
value in M(07FO) 

enter 

M(07FO) in D get Inter­
mediate y value 

D AND lF mask in low 5 
bits 

D OR 60 add "low y 
byte" identifier 

output "low y byte" 

RO.O in D get x coord. 

SHIFT D right 3 times 
get high 5 bits of x 

D OR 20 add "high x 
byte" identifier 

output "high x byte" 

RO.O in D get x coord. 

SHIFT D left 2 times 
0 Into 2 lowest bits 

D OR 40 add "low x 
byte" identifier 

output "low x byte" 

RETURN 



77 


LTTR 0220-0248 

entry: 	RC.O = Fl for x axis, F2 for y axis; a low mem. add. 
Q = 0 to letter in +'ve direction Cx or y) and v.v. 
RC.1 = screen address Increment per letter 
M(07Fl) = x coordinate, M(07F2) = y coordinate 
R9.0 = last position to be lettered, +/- 1 

output GS set terminal Into graphics mode 

CALL XYOUl, XYOU2 output x & y coordinates 

output US set alphanumeric mode at x & y coordinates 

RF.O AND OF in RF.I put low 4 bits of axis count In RF.1 

CALL lHOUT output ASCII equivalent to letter axis 

RC.O in R7.0 R7 now points to x or y value to be changed 

M(R7) + RC.l in M(R7) increment screen address as needed 

increment RF.01---< 
+'ve direction N 

~-.... decrement RF.O 
Y -'ve direction 

N (continue) 

(finished this axis) 

RETURN 


00 in RF.O 
first letter N 

~--.OF in RF. 0 
Y first letter 



78 

HIST 0250-036E 

enter 

CALL CRLF output a carriage return & line feed to port 1 

0210 in RA point RA to routine for serial port 2 

output "BEL" inform operator of histogram 

output "ESC" & "FF" erase graphics screen 

FFFF In RF set up delay loop while screen clears 

y 

Fl in RC.O letter x axis 04 in RC.l x increment 
04 In MC07Fl) x offset 61 in MC 07F2) y offset 
3F in R9.0 last count + 1 0 in Q positive Increment 

CALL LTTR letter x axis in positive direction, 0 to 3E 

F2 in RC.O letter y axis 05 in RC.l y increment 
00 in MC07Fl) x offset 11 In MC07F2) y offset 
FF In R9.0 last count - 1 1 in Q negative increment 

CALL LTTR letter negative y axis, F to 0 

F2 in RC.O letter y axis 05 in RC.1 y increment 
00 in MC07Fl) x offset 66 in MC07F2) y offset 
10 in R9.0 last count + 1 0 in Q positive increment 

CALL LTTR letter y axis in positive direction, 0 to F 

JUMP to TEKH output ·data to labelled axes 



_ .. 

79 

TEKH 0310-036E 

entry: Q = 0, space data is output first 

enter 

05 in M(07Fl) x offset 

06CO In RC start-----~ 
of mark data Y 

66 in M{07F2) y 
offset for marks y 

~---0680 in RC start 
of space data 

,____.60 in M{07F2) y . 
N offset for spaces 

output "GS" next coordinate pair will define dark vector 

CALL XYOUl, XYOU2 dark vector to start of next bar Cx,O) 

MCRC) * 1.25 In D scale smoothed histogram data 

MC07F2)-D in M(07F2)MC07F2)+D in MC07F2) 
spaces, vector down,marks, vector up, 

find offset + data find offset - data 

CALL XYOUl · output "high y byte", upper 5 bi ts of 10 

M(RC) AND 03 In D get data again, mask in 2 lowest bits 

M(07F2)+0 in M(07F2) M(07F2)-D in MC07F2) 
subtract correctionadd correction 

CALL XYOU2 output "low y byte", lower 5 bi ts of 10, 
"low x byte" and "high x byte" Conly 8 significant bits) 

----~(continued next page) 



-.. 80 

cont. TEKH 0351 
from prev. page 

increment RC point to next histogram data byte 

M(07Fl) + 04 in MC07Fl} increment x coordinate 

to TE Kl 
spaces not done 

>------w JUMP 

(spaces done} 

set Q for mark output 

~-JUMP to 

>--... JUMP 

(done) 

TEKH back 
to start, begin 
mark output 

to TEKl 
marks not done 

JUMP to OUPAR output parameters and headings 



81 


OU PAR 0370-03AF 


00 in M(07Fl) = X coord 
BA in M(07F2) = Y coord 

output ID (control "GS") 
to select graphics mode 

CALL XYOU1,XYOU2 send 
coords as dark vector 

output lF (control "US") 
to set alpha mode 

HEAD 03B6-03BC 

start address of ASCII 
1 is t is in RC 

get ASCII data from 
MCRC), increment RC 

0280 In RC = start 
address of headings output ASCII data to 

selected serial port 

CALL HEAD output "SPEED" 

CALL RDOUT output RD, 
the speed parameter 

0287 in RC = next heading 

CALL HEAD output 
"MARK THRESHOLD" 

RE.l in RF.1 CALL 2HOUT 
output mark threshold 

02CB in RC = next heading 

RE.O in RF.l CALL 2HOUT 
output space threshold 

0201 in RA select 
serial port 1 again 

JUMP TO KCHK this Is 
the end of the histogram 

CALL HEAD output 
"SPACE THRESHOLD" 



APPENDIX C 

MONITOR PROGRAM 

82 




83 


MONITOR OPERATION 

Most of the monitor resides in EPROM from 0000 to 
01FF. The two serial output drivers sit in RAM from 0200 
to 021F and must be reloaded before use. To start the 
monitor· hit "Reset" and "Ru.n" on the f r·on t panel , The 
available commands are all single key commands which are 
immediately acted upon, no carriage return is requ.ired. 
All addresses or data are displayed on the 8 digit hexa­
decimal display above the ASCII Keyboard. RD is displayed 
in the left four digits and RE in the right. 

Key Function 
breaK ;Interupts the processor and restarts the 

;monitor at 0000. This may be used at any time to regain 
;control from a bad program which has NOT used Rl. 
space ;Normally numeric data goes to RD, but after the 

;space bar is pressed data goes to RE. After the next 
;command data flow returns to RD. 
0-9, A-F ;Enters hexadecimal numbers to RD or RE. 
? ;The data in M<RD> i~ displayed in RE.O, RE.1=00 
I ;Use after "?" to display successive locations. 

;The data in RE. 0 is entered into M<RD>. If "!" 
;is hit again, RD is advanced by 1 and RE.l=OO, New data 
;can now be entered in RE. 

$ ;Start execution of a program at MCRD> with RO 
;as RP. R3 should be made RP at the start of that program. 

P ;All the data from MCRD> to MCRE> is moved down 
;by one to M<RD+l> to M<RE+l>. This is useful but any JU.mp 
;addresses must be correct~d by hand. 

G ;Any data from serial port 1 is dumped into 
;MCRD> to MCRE>. When CRE-RD> bytes have been collected or 
;if there were any errors the program returns to the 
;monitor. This is usually used for loading from a cassette. 

W ;All the data from M<RD> to MCRE> is dumped out 
;serial port 1. This is usually used to record a cassette. 

R ;If the monitor was cal led as a subroutine by 
;a running program this command is used to return to that 
;program. This is useful for entering data during execution 

TT ;This is a two Key command. The data from MCRD> 
;to MCRE> is output to serial port 1 as double hexadecimal 
;ASCII characters, with each pair fol lowed by "CR" & "LF". 
;This is used to obtain listings on the Teletype. 

TP ;This is the same as "TT" except that the address 
;is output at the beginning and at every nnnO address. 

Many useful routines are hidden in the monitor and 
can be called by other programs. The whole monitor can be 
called, with return effected by "R". Some routines will 
return automatically if "Q" is set. 



84 

1/0 PORTS & FLAG ASSIGNMENTS 

The three "N" ) ines from the 1802 are decoded to seven 
lines (called "DEC N" > to all mv d ir·ect access to seven I 10 
por· ts. 

Code Mnemonic Comments 
61 OUT SER 1 ; This is serial por· t 1, a UART which 

;drives an FSK cassette, 20 ma loop TTY, and EIA RS 232 
;interfaces. Baud rate is 110 or 600, format is 7 or 8 bits 
;with optional parity, selectab l e by front panel switches. 
;EF3 = 1 signifies transmitter busy, EF3 = O, ready. 

69 I NP SER 1 ; This is ser· i al i npu. t por· t 1, and it 
;is configured the same way as the output port. Th e thr e e 
;input interfaces are OR ' d, so only one should be u sed at 
;time. Input and output may proceed simultaneously. UART 
;error Flags are OR'd onto a flag: EF1 = 1 means error, 
;EFl = O, no error. EF2 = 0 means new data ready, EF2 = 1 
;no data. There is a front panel switch to con n ect EF2 to 
;the DMA so tapes may be loaded with no bootstrap at 0000. 

62 OUT POPI ;Parat lel output port 1, a set of 8 
;leds on the CPU card and a dip connector. 

6A INP HEX ;This is the hex keyboard on the front 
;panel. If the CPU is in the load mode, each pair of hex 
; d i g i ts wi 1 I be DMA ' d i n to M ( R 0 > • I t can be r· e ad \lJ i t h 6 A • 

63 OUT DISP ;Output to the hex led display. The 
;data must be formatted by subroutine DISPY. This display 
;is used extensively by all programs. 

6B INP ASKEY ;Input the ASCII encoded Keyboard. 
;EF4 = 1 means new data, EF4 = O, no data. 

64 OUT POP2 ;This.is a one bit <DO> output port 
;used by the morse program to output the sampled Key as 
; a checK on sampling r·a te. It is not essential. 

6C INP 4 ;Not used. 
65 OUT 5 ;Not used. 
6D INP 5 ;Not used. 
66 OUT SER2 ;Output data to serial port 2. This 

;port has 20 ma TTY and EIA RS 232 interfaces. The baud 
;can be set on the bacK panel from 75 to 4800. 

6E INP SER2 ;Input data ~rom serial port 2. 
67 OUT CON2 ;This sets the control register on 

;serial port 2. D7=PI, D6=SBS, D5=WLS1, D4=WLS2, D3=PS. 
;D2-DO ar·e not used. Output "FO" to set 8 data bits, no 
;parity and 2 stop bits. 

6F INP PIP1 ;D7=1 if serial port 2 is ready to 
;send, D6=1 for new data ready, D5=1 for any errors. D4 
;and D3 are not used. D2 - DO connect to the morse inter­
; face, DO=l for Key down. 



85 


LABELS 

;Some labels are entry points of significancet but most 
;are merely for internal branches and deserve no comment. 

Add. Label Comments 
0000 START ;Beginning of monitor, resets all required 

;registers. The interrupt is not enabled 
;until this is complete. Many routines and 
;the interrupt come to this point. 

0030 CHECK ;If Q=1, executes an SCRT RETURN from here. 
0033 SIN ;Enter monitor here as a subroutine. 
0036 DIN ;Enter here if input already in RF.1. 
00:3E Sl 
004B S1B ; 
0070 ATOF ;Jump here if monitor recognizes hex A to F 
0074 NUM ;and here if 0 to 9. 
007D MOSH 
OOBD LRE 
0098 SHOV? ; 
OOA4 LOGAN ;Here from look routine to examine next add. 
OOA5 LOOK ;Routine to examine memory. Not a subroutine. 
OOBS RENM ; 
ooco MOD ;Routine to modify memory. Not a subroutine. 
OODB SOVER ; 
OODC SRX4 ;SEP subroutine to shift D right four places. 
OOE2 HOVER ; 
OOE3 HXOUT ;SEP subroutine to output to hardware display 
OOF4 INPUT ;SCRT subroutine waits for input from serial 

;port 1 or t~e ASCII Keyboard. Data returned 
;in M<RX> and RF.1. 

OOF9 KB? 
OOFC GOT IT 
0100 EX ITC ; 
0101 SUB ;SEP subroutine for subroutine cal ls by SCRT. 
0112 EX I TR ; 
0113 RETRN ;SEP subroutine for SCRT subroutine exits. 

;See RCA 1802 Users Manual fo~ SEP and SCRT. 
0120 WRITE ;Cassette or paper tape dump. Not subroutine. 
0121 TFRE? ; 
0134 PUSH ;Routine to make a hole. Not a subroutine. 
0136 MPUSH 
0147 PDONE ; 
0150 GET ;Routine to input tapes. Not a subroutine. 
0157 DELAY ; 
015D SER? ; 
0161 GMORE ; 
016C MSER? ; 
0170 GDONE 



86 


Add. 
0178 
0188 
018B 
01Al 
01CE 
01DA 
01E2 
01F2 
0200 
0201 
0202 
020F 
0210 
0214 

Label 
TTY 
MORTY 
NOTTP 
NOA DD 
RDOUT 
CRLF 
2HOUT 
1HOUT 
SlDON 
SOUT1 
SlOK? 
S2DON 
SOUT2 
T20K? 

LABELS 

Comments 
;Routines for hex/ASCII dumps. Not subroutine 

; 
;SCRT subroutine outputs RD as 4 hex/ASCII. 
;SCRT subr·out ine outputs an ASCII "CR" & "LF" 
;SCRT output subroutinet2 hex/ASCII from RF.1 
;SCRT output subroutinet 1 hex/ASCII from RF. 1 
; 
;SEP subroutine outputs D to serial port 1. 

; 
;SEP subroutine outputs D to serial port 2. 
; 

MONITOR REGISTER ASSIGNMENTS 

Register Initial Value Use 
RO 0000 ;Reset inter·nal ly by 1802; initial 

;program counter <RP> I RP after· "$" command/ DMA pointer. 
R1 0000 ;RP after interupt to restart mon­

; i tor, reset before interrupt reenabled. To ensure correct 
;interrupt action, Rl should NEVER have other uses. 

R2 07EO ;StacK pointer for SCRT addresses. 

R3 0007 ;RP for most programs. 

R4 0101 ;RP for SEP routine CALL for SCRT. 

R5 0113 ;RP.for SEP routine RETURN for SCRT. 

R6 ;Scratchpad for CALL and RETURN. 

R7 07FO ;RX for most programs. 07FO is a 


;Free location for I/O and R7 should point here when not 
;in use. The area from 07E1 to 07FF is available as a stacK 
;for data, but only 07FO is used by the monitor. 

RS OODC ;RP for SEP routine SRX4. 

R9 ;Scratchpad 

RA 0201 ;RP for SEP rouXine SOUT1. 

RB OOE3 ;RP for SEP routine HXOUT. 

RC --00 ;Scratchpad, RC.O is used as a flag. 

RD ;Basically scratchpad, but since RD 


; i s output t o the l e d d i sp l a y, i t i s used b y man y r· out i n es 
;for addresses or data. The display should be updated each 
;time RD is modified. 

RE ;Same as RD. 

RF ;Scratchpad. 




87 


MONITOR PROGRAM 

Add. Code Label Mnemonic Comments 
0000 F8 00 START LDI 00 ;Load 0007 in R3 for- use as 
0002 B3 PHI 3 ;the pr·ogr·am counter <RP>. 
0003 F8 07 LDI 07 ; 
0005 A3 PLO 3 ; 
0006 D3 SEP 3 ;MaKe R3 = RP 
0007 7A REQ ; If monitor· restarted fr·om 
0008 F8 00 LDI 00 ; Jump or int erupt, Q flag 
OOOA A1 PLO 1 ;may need to be r·ese t. 
OOOB B1 PHI 1 ; Initialize the r e g ister·s 
oooc BB PHI 8 ;as r·equ ired. 
OOOD AC PLO c ; 
OOOE BB PHI B ;0000 R1 
OOOF FS 01 LDI 01 ;07EO R2 
0011 A4 PLO 4 ;0101 R4 
0012 B4 PHI 4 ;0113 R5 
0013 B5 PHI 5 ;07FO R7 
0014 AA PLO A ;OODC RS 
0015 FB 02 LDI 02 ;0201 RA 
0017 BA PHI A ;OOE3 RB 
0018 FB EO LDI EO 00 RC.O 
OOlA A2 PLO 2 
001B F8 DC LDI DC 
001D A8 PLO 8 
001E F8 E3 LDI E3 
0020 AB PLO B 
0021 FB FO LDI FO 
0023 A7 PLO 7 ; 
0024 FB 07 LDI 07 ; 
0026 B2 PHI 2 
0027 B7 PHI 7 
0028 FB 13 LDI 13 ; 
002A A5 PLO 5 ; 
002B E3 SEX 3 ;MaKe R3 = RX. This enables 
002C 70 73 RET 73 ;the RET to load the immed­
002E C4 NOP ;iate by,te and enable the 
002F C4 NOP ;interrupt. R:3=RP, R7=RX 



88 

MONITOR PROGRAM 

Add. Code Label Mnemonic Comments 
0030 39 33 CHECK BNQ SIN ;Jmp 1 if Q=O,else retu.rn 
0032 D5 RETURN ;to cal ling pr·ogr·am 
0033 D4 OOF4 SIN SUB INPUT ;Get input fr·om device 
0035 9F DIN GHI F ;Input into D 
0037 FF 20 SMI 20 ;Subtract 20, 0 i f "space" 
0039 
003B 

3A 
1C 

3E BNZ 
INC 

Sl 
c 

;Jmp i f not 
;MaKe RC.O > o, data to RE 

003C 
003E 

30 
FF 

30 
01 Sl 

BR CHECK 
SMI 01 

;Bad< for 
;Subtract 

more input 
0 1 t 0 i f II! II 

0040 32 co BZ MOD ;Jmp to modify memory if so 
0042 FF 03 SMI 03 ;Subtract 03, 0 i f " $" 

0044 3A 4B BNZ SlB ; Jmr:· if not 
0045 SD CLO D ;Put RD into RO, and begin 
0047 AO PLO 0 ;execution of a new pr·ogr·am 
0048 9D CHI D ; with RO as the PC. The PC 
0049 BO PHI 0 ;should be changed bacK to 
004A DO SEP 0 ;R3 by the neu1 progr·am. 
004B FF 1B S1B SMI 1B ; Sub tr·ac t 1 B, 0 i f "? .. 

. t 

004D 3B 74 BM NUM ; I f neg, was 0 to 9, input it 
004F 32 A5 BZ LOOK ;Jmp to looK at memor· y if "?" 
0051 ?F 08 SMI 08 ;Subtract 08, 0 i f " G" 
0053 3B 70 BM ATOF ; If neg, was A to F, input i t 
0055 C2 0150 LBZ GET ;Jmp to GET if "G" 
0058 FF 09 SM! 09 ;Subtr·act 09, 0 i f "P" 
005A C2 0134 LBZ PUSH ;Jmp to PUSH i f "P" 
005D FF 02 SMI 02 ; Subtr·ac t 02, 0 i f "R" 
005F C6 LSNZ ;Skip 2 i f not 
0060 D5 RETURN ;Return to the pr·ogr·am 
0061 00 IDL ;which called the monitor 
0062 
0064 

FF 
C2 

02 
0178 

SMI 
LBZ 

02 
TTY 

;Subtract 02, 0 if "T" 
;Jmp to TTY routines if .. T" 

0067 
0069 

FF 
C2 

03 
0120 

SMI 
LBZ 

03 
WRITE 

;Subtract 03, 
;Jmp to wr· i te 

0 if "W" 
if .. w.. 

006C Dl SEP 1 ; If no command r·e cogn i zed, 
006D 00 IDL ; thE;·re \.Vas an error, so 
006E 00 IDL ;restart monitor·. 
006F 00 IDL 



89 


Add. 
0070 
0072 
007:3 
0074 
0075 
0076 
0077 
0078 
0079 
007A 
007C 
007D 
007E 
0080 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
008A 
008B 
008D 
008E 
OOBF 
0090 
0091 
0092 
0093 
0094 
0095 
0097 
0098 
0099 
009A 
009B 
009D 
OOAO 
OOA1 
OOA2 

MONITOR 

Code Label Mnemonic 
FB 09 ATOF LDI 09 
F4 ADD 
57 STR 7 
FO NUM LDX 
FE SHL 
FE SHL 
FE SHL 
FE SHL 
57 STR 7 
FB 04 LDI 04 
A9 PLO 9 
BC MOSH GLO C 
3A SD BNZ LRE 
BD GLO D 
FE SHL 
AD PLO D 
9D CHI D 
7E SHLC 
BD PHI D 
FO LDX 
FE SHL 
3B 98 BNF SHOV? 
1D INC D 
30 98 BR SHOV? 
BE LRE GLO E 
FE SHL 
AE PLO E 
9E GHI E 
7E SHLC 
BE PHI E 
FO LDX 
FE SHL 
3B 98 BNF SHOV? 
lE INC RE 
57 SHOV? STR 7 
29 DEC R9 
89 GLO 9 
3A 7D BNZ MOSH 
D4 01 AB SUB DISPY 
30 30 BR CHECK 
00 IDL 
00 IDL 

PROGRAM 

Comments 
;Add 09 to the ASCII from 
;A to F to remove offset 
;Restore it liKe 0 to 9 
;Here if it was 0 to 9 
;Shift left by 4 to remove 
;last of offset. There is 
;now a hex number in D4 to D7 
;of the D register. 
;Save it 
;Load R9.0 with the number of 
;shifts to be done. 
;If RC.O=O, shift hex to RD 
;Else Jmp to load RE 
;This section of code shifts 
;RD left by one in a 16 bit 
;shift. This leaves a 0 in 
;the lsb. 
; 
; Sh it t done her·e 
;Get the hex character 
;Shift the msb into DF 
; If o, check if shifting done 
;Else inc RD, ie set lsb to 1 
;ChecK if shifting done 
;This is the same as 0080 to 
;OOBA, but the hex is shifted 
;into RE because RC.O > o. 
; 
; 

; 
;Save th~ shifted hex 
;Dec the shift counter 
;Get the counter 
;Jmp for more if not 0 
;If done, display result, 
;then back for more. 
; 
; 



90 


MONITOR PROGRAM 

Add. Code Label Mnemonic Comments 
OOA4 1D LOGAN INC D ;Point to next mem. location. 
OOAS OD LOOK LDN D ;This is the beginning of the 
OOA6 AE PLO E ;routine to examine memory. 
OOA7 F8 00 LDI 00 ; Pu·; the data in RE.O and 
OOA9 BE PHI E ; b 1 anK RE. 1. 
OOAA D4 01AB SUB DI SPY ;Display M<RD> in RE.O. 
OOAD cs LSNQ ; S~<i::· 2 if Q=O, else since one 
OOAE D5 RETURN ; location \J.laS displayed, 
OOAF 00 I:uL ;retu.rn to cal l i ng progr-·am. 
OOBO D4 OOF4 SUB INPUT ;Go and get an input, 
OOB3 
OOB4 

9F 
FF 49 

GHI 
SMI 

F 
49 

;put it into D. 
;Subtract 49, 0 if .. I .. • 

OOB6 32 A4 BZ LOGAN ; If so, Jump to looK again. 
OOBB FB 00 RENM LDI 00 ; I f not, reset RC.O <not 
OOBA AC PLO c ;aiVJays needed}, and JUmp to 
OOBB 30 36 BR DIN ; mor1 i tor· to checK last inpu.t. 
OOBD 00 IDL ; 
OOBE 00 IDL ;MOD is the routine to modify 
OOBF 00 IDL ;a memory location. The pie::e 
ooco BE MOD GLO E ;of data in RE.O is put into 
OOCl 5D STR D ; M <RD> • 
OOC2 FB 00 LDI 00 ;BlanK RE. 1 • 
OOC4 BE PHI E ; 
OOC5 D4 OlAB SUB DI SPY ;Display that. 
OOCB cs LSNQ ;SKp 2 if Q=O, else since one 
OOC9 D5 RETURN ; location was modified, 
OOCA 00 IDL ;return to cal ling pr-·og r· am. 
OOCB D4 OOFA SUB INPUT ;Go and get an input, 
OOCE 
OOCF 

9F 
FF 21 

GHI 
SM! 

F 
21 

;put it into n. 
; Subtr·act 21, 0 if "I". . 

OOD1 3A BB BNZ RENM ; If not, bacK to monitor, 
OOD3 lD INC D ;else point to next location 
OOD4 D4 01AB SUB DI SPY ;and display that addr·ess. 
OOD7 30 30 BR CHECK ;Go bacK to the monitor· and 
OOD9 00 IDL ;enter data for that location 
OODA 00 IDL ;Note that data goes to RE. 

OODB D3 SOVER SEP 3 ;Retu.rn to cal ling pr·ogram. 
OODC F6 SRX4 SHR ;This is an SEP subroutine 
OODD F6 SHR ;which shifts the D r·eg ister· 
OODE F6 SHR ;right by four· places. It 
OODF F6 SHR ;puts O's into D4 to D7. 
OOEO 30 30 BR SOVER ;Over­ and out 



91 


MONITOR PROGRAM 

Add. Code Label Mnemonic Comments 
OOE2 D3 HOVER SEP 3 ;Return to cal ling program 
OOE3 FA OF HXOUT ANI OF ;This is an SEP subroutine 
OOE5 FB OF XRI OF ;which outputs a single hex 
OOE7 57 STR 7 ;digit to the correct place 
OOEB 89 GLO 9 ;in the led display. Enter 
OOE9 FC 10 ADI 10 ;with the digit in DO to D3 
OOEB A9 PLO 9 ;of Dt and the digit # minus 
OOEC Fl OR ;one in D4 to D7 of R9.0. so 
OOED 57 STR 7 ;FO is leftmost digit. and 
OOEE 63 OUT DISP ;60 is the rightmost digit. 
OOEF 27 DEC 7 ;This digit # is upped by 10. 
OOFO 30 E2 BR HOVER ;Over and out. Note that this 
OOF2 00 IDL ;routine depends heavily on 
OOF3 00 IDL ;the display hardware. 
;This is the input subr·ou.tine. It loops until it finds an 
;input from the ASCII Keyboard or serial interface 1. 
OOF4 35 F9 INPUT B2 KB? ;Jmp if no serial input 
OOF6 69 !NP SERI ;Else input it 
OOF7 30 FC BR GOTIT ;Jmp a bit 
OOF9 3F F4 KB? BN4 INPUT ;Loop if no Keyboard either. 
OOFB 6B INP ASKEY ;Else input it 
OOFC BF COTIT PHI F ;Salt it away 
OOFD D5 RETURN ;Over and out 
OOFE 00 IDL 
OOFF 00 IDL ; 
;This is the SUB subroutine. It is used to call subroutines 
;via the RCA SCRT (Standard Call and Return> conventions. 
0100 D3 EXITC SEP 3 ;Go to the cal led subroutine. 
0101 E2 SUB SEX 2 ;R2 points to the return 
0102 96 CHI 6 ;address stack. 
0103 73 STXD ;Push R6 onto stacK and 
0104 86 CLO 6 ;leave stack at a free 
0105 73 STXD ;location. 
0106 93 GHI 3 ;Coµy old RP <R3> into R6 
0 1 0 7 B6 PH I 6 ; to save, i t • 
0108 83 GLO 3 ;R6 now points to two byte 
0109 A6 PLO 6 ;inline address in cal ling 
OlOA 46 LDA 6 ;program. Get it and put it 
OlOB B3 GHI 6 ;into R3 as it is the start 
OlOC 46 LDA 6 ;of the called routine. 
010D A3 PLO 3 ; 
OlOE E7 SEX 7 ;Put R7 bacK as RX as R2 only 
010F 30 00 BR EXITC ;points to the subroutine 
0111 CO IDL ;address stacK. 



92 


MONITOR PROGRAM 

This is the RETURN subroutine. It is used to return from 
a subroutine cal led by standard RCA SCRT techniques. This 
and the above routines are not used for SEP subroutines. 

Add. Code Label Mnemonic Comments 
0112 D3 EX I TR D3 ;Return to cal ling program. 
0113 96 RETRN GHI 6 ;Copy R6 into R3 so it ~lJ i l l 
0114 B3 PHI 3 ;contain the re tur·n pr·ogram 
0115 86 GLO 6 ;counter. 
0116 A3 PLO :3 ; 
0117 E2 SEX 2 ;R2 points to the r·etu.rn 
0118 60 IRX ; addr·ess stack. Decrement 
0119 72 LDXA ; it fr· om the fr·ee location so 
011A A6 PLO 6 ; it points to the pr·ev ious l y 
011B FO LDX ;stored value of R6 and put 
011 c B6 PHI 6 ; i t bacK into R6. 
01 lD E7 SEX 7 ;Put R7 ba cl-( as RX. 
01 lE 30 12 BR EX I TR ; Over· and out 

;This is the "W" <Write) routine. It is u.sed to du.mp 
;memory locations via serial output port 1. The data is 
; sen t ou t as a. s tr· e am o f 8 b i t b y t es, but f i n a l for· ma t 
;depends on the UART control switches. It is not converted 
;to hex or ASCII, so this is the routine for writing to 
;cassette. The data from M<RD> to M<RE> is sent out. 

0120 ED WRITE SEX D ;RD is used for output <RX) • 
0121 36 21 TFRE? B3 TFRE:? ;Loop , t i l l transmitter free. 
0123 61 OUT SER1 ;Output byte and advance RD. 
0124 E7 SEX 7 ;R7 = RX for display. 
0125 D4 01AB SUB DISPY ;Display advanced addr·ess. 
0128 D4 01C4 SUB SRERD ;Sub for 16 bit RE-RD and 
012B 3:3 20 BGE WRITE ;bacK for· more if RE>=RD. 
012D C5 LSNQ ;SKp 2 if Q=O, else this was 
012E D5 RETURN ;called as a subr·ou tine, so 
012F 00 IDL ; re turr1 ...to calling program. 
0130 Dl SEP 1 ;Done, so bacK to monitor·. 
0131 00 IDL 
0132 00 IDL ; 
0133 00 IDL 

http:r�etu.rn


93 


MONITOR PROGRAM 


;This is the "P" <Push> routine. All the data from MCRD> to 
;MCRE> is pushed down by one location. This is useful for 
;inserting an instruction, but all Jumps must be corrected. 
Add. Code Label Mnemonic Comments 
0134 4D PUSH LDA D ;Get the first byte & advance 
0135 B9 PHI 9 ;Save it. 
0136 OD MPUSH LDN D ;Get the second byte. 
0137 A9 PLO 9 ;Save that too. 
0138 99 GHI 9 ;Get the first one again. 
0139 5D STR D ;Put it in new location. 
013A 89 CLO 9 ;Get the second one again. 
013B B9 PHI 9 ;Save it as new first byte. 
013C D4 OlAB SUB DISPY ;tisplay advanced address. 
013F D4 01C4 SUB SRERD ;Sub for 16 bit RE-RD. 
0142 3B 47 BL PDONE ;Jump ahead if done 
0144 ID INC D ;Else increment RD 
0145 30 36 BR MPUSH ;and go bacK for more. 
0147 C5 PDONE L3NQ ;SKp 2 if Q=O, else this was 
0148 D5 RETURN ;called as a subroutine, so 
0149 00 IDL ;return to cal ling program. 
014A Dl SEP 1 ;Done, so bacK to monitor. 
014B 00 IDL ;IDL from 014B to 014F inc~ 
; Th i s i s the " G" ( Ge t ) rout i n e • I t i s used to i r1 put a 
;string of data bytes into memory From MCRD> to MCRE> from 
;serial port 1. Parity depends on the front panel switches. 
;This is the routine for loading a cassette or paper tape. 
0150 69 GET INP SERI ;Input to clear UART flags. 
0151 F8 FF LDI FF ;Load FFFF into R9 for use as 
0153 B9 PHI 9 ;a timing constant. A delay 
0154 F8 FF LDI FF ;is used so the cassette 
0156 A9 PLO 9 ;interface can stabilze. 
0157 29 DELAY DEC 9 ;Decrement timing constant. 
0158 B9 GHI 9 ;Get the high 8 bits. 
0159 C4 NOP ;Extra delay. 
015A C4 NOP ; 
015B 3A 57 BNZ DELAY ;Loop until R9.1 = 00. 
015D 35 SD SER? B2 SER? ;Tiny loop until data appears 
015F 34 50 B1 GET ;Start again if error. 
0161 69 GMORE INP SER1 ;Get some data (finally!!) 
0162 5D STR D ;and store it. 
0163 1D INC D ;Increment memory pointer. 
0164 D4 01AB SUB DISPY ;Display pointer. 
0167 D4 01C4 SUB SRERD ;Sub for 16 bit RE - RD 
016A 3B 70 BL GDONE ;and Jump ahead if done. 
016C 35 6C MSER? B2 MSER? ;Wait for more serial. 
016E 3C 61 BNl GMORE ;BacK for more if no error. 
0170 C5 GDONE LSNQ ;SKp 2 if Q=O, else this was 
0171 D5 RETURN ;called as a subroutine, so 
0172 00 IDL ;return to cal ling program. 
0173 Dl SEP 1 ;All done, bacK to monitor 



94 


MONITOR PROGRAM 

;These ar·e the two teletype routinest "TT" and "TP". 
;TT taKes sequential 8 bit memory locations and outputs 
;them as two hex ASCII characters - so 11000101 would 
;be sent out as C5. Each pair of characters is fol lowed by 
;a line feed/carriage return. TP is similar except that the 
;starting address and every nnOO address is also output. 
;These routines are used for teletype listings. The memory 
;from M<RD> to M<RE> is output. 

Add. Code Label Mnemonic Comments 
0174 00 IDL ; 
0175 00 IDL 
0176 00 IDL ; 
0177 00 IDL ; 
0178 D4 OOF4 TTY SUB INPUT ;Get second letter of inst­
017B 9F GHI F ;ruction and put it into D. 
017C FF 50 SMI 50 ;Subtract 50, 0 if "P" t put 
017E BC PHI C ;result in RC. 1 for flag use. 
017F D4 OlDA SUB CRLF ;Output a CR and LF. 
0182 9C GHI C ;Get flag and 
0183 3A BB BNZ NOTTP ;Jump a bit if not TP. 
0185 D4 01CE SUB RDOUT ;Output RD to serial port 1. 
0188 D4 01DA MORTY SUB CRLF ;Output a CR and LF. 
018B 4D NOTTP LDA D ;Get the datat put it in RF.1 
018C BF PHI F ;and advance the pointer. 
018D D4 01E2 SUB 2HOUT ;Sub to output two characters 
0190 D4 01AB SUB DISPY ;Display advanced pointer. 
0193 9C GHI C ;Get flag and 
0194 3A Al BNZ NOADD ;don't output add. if not TP. 
0196 BD GLO D ;Get low 8 bits of pointer, 
0197 FA OF ANI OF ;masK in lower 4 bits only. 
0199 3A Al BNZ NOADD ;J~mp if address not = nnOO. 
019B D4 OlDA SUB CRLF ;Output a CR and LF. 
019E D4 01CE SUB RDOUT ;Output RD. 
01A1 D4 01C4 NOADD SUB SRERD ;Sub for 16 bit RE - RD. 
01A4 33 88 BGE MORTY ; Go bad<, for more if not done 
01A6 C5 LSNQ ;SKp 2 if Q=O, else this was 
01A7 D5 RETURN ;called as a subroutine, so 
01A8 00 IDL ;retrun to cal ling program. 
01A9 Dl SEP 1 ;Al ~ done, bacK to monitor 
OlAA 00 IDL ; 



95 


MONITOR PROGRAM 


;This is the display subroutine. When it is cal led the 
;current contents of RD and RE are output to an eight digit 
;hexadecimal led display. The display is self scanning and 
;refresh by the program is not required. The display should 
;be updated whenever RD or RE is changed. 

Add. Code Label Mnemonic Comments 
OlAB F8 FO DI SPY LDI FO ;Preset R9.0 for use by HXOUT 
01AD A9 PLO 9 ; 
01AE 9D CHI D ;Get the high 8 bi ts of RD. 
OlAF DB SEP 8 ;Su.b to shift r·ight by four. 
OlBO DB SEP B ;Sub to output first <left­
01B1 9D GHI D ;most) digit, get RD. 1 again. 
01B2 DB SEP B ;Output second digit. 
01 B:3 BD GLO D ;Get the low B bits of RD. 
01B4 DB SEP 8 ;Shift right by four. 
01B5 DB SEP B ;Output third digit. 
01B6 BD CLO 8 ;Get RD.O again. 
01B7 DB SEP B ;Output fourth digit. 
01B8 9E CHI E ;Get the high 8 bi ts of RE. 
01B9 DB SEP 8 ;Shift r· i gh t by four. 
OlBA DB SEP B ;Output fifth digit~ 
01BB 9E GHI E ;Get RE. 1 again. 
OlBC DB SEP B ;Output sixth digit. 
01BD BE GLO E ;Get the low 8 bits of RE. 
OlBE DB SEP 8 ;Shift right by four. 
01BF DB SEP B ;Output seventh digit. 
OlCO BE CLO E ;Get RE.O again. 
01C1 DB SEP B ;Output eighth digit. 
01C2 D5 RETURN ; Retur·n to calling pr·ogram. 
01C3 00 IDL ; 

;This routine performs a 16 bit sub tr·ac ti on, RE - RD. 
;Only the sign, in DF, is r·e turned. 

01C4 8D SRERD GLO D ;Get low,8 bits of RD and put 

01C5 57 STR 7 ; it in a free location. 

01C6 BE GLO E ;Get low 8 bits of RE. 

01C7 F7 SM ;D-MCRX> = RE.O-RD.O. 

01C8 9D GHI D ;Get high 8 bits of RD and 

01C9 57 STR 7 ;put it in a free location. 

OlCA 9E GHI E ;Get high 8 bits of RE. 

OlCB 77 SMB ; RE. 1 - RD. 1 - Borrow. 

OlCC D5 RETURN ;Return to calling progr·am. 

01CD 00 IDL ; 




96 

MONITOR PROGRAM 

;This is a routine to output RD as 4 ASCII char·acters. 

Add. Code Label Mnemonic Comments 
01CE 9D RD OUT GHI D ;Get the high 8 bits of RD 
OlCF BF PHI F ;and put them in RF. 1 
01DO D4 01E2 SUB 2HOUT ;Sub to output t \lJO charac ter·s 
01D3 SD GLD D ;Get the low 8 bits of RD 
01D4 BF PHI F ;and put them in RF. 1. 
01D5 D4 01E2 SUB HOUT ;Sub to output two characters 
01D8 D5 RETURN ; Re tu.r·n to cal ling pr·ogr·am. 
01D9 00 IDL 

;This routine outputs a "CARRIAGE RETURN" & "LINEFEED". 

OlDA FB OD CRLF LDI OD ;Load ASCII for "CR". 
01DC DA SEP A ;Sub to output n. 
OlDD F8 OA LDI OA ;Load ASCII for "LF". 
01DF DA SEP A ;Sub to output n. 
OlEO D5 RETURN ;Return to calling program. 

' 
~01E1 00 IDL 

;This routine outputs two ASCII hexadecimal characters from 
;an 8 bit number in RF.1. 

01E2 9F 2HOUT GHI F ;Get data passed from program 
01E3 B9 PHI 9 ;Hide it somewhere. 
01E4 DB SEP 8 ;Sub to shift right by four. 
01E5 BF PHI F ; Pu. t i t in RF. 1 • 
01E6 D4 01F2 SUB lHOUT ;Sub to output one character. 
01E9 99 GHI 9 ;Get original data again and 
01EA FA OF ANI OF ;masK in lower four bits. 
01EC BF PHI F ; Put i t i r1 RF. 1 • 
OlED D4 01F2 SUB 1HOUT ;Sub to output one character. 
01FO D5 RETURN ;Return to cal ling program. 
01F1 00 IDL 

;This routine outputs one ASCII hex chara~ter from the 
;lower four bits of RF.1. 

01F2 9F 1HOUT GHI F ;Get data passed fr·om program 
01F3 FF OA SMI OA ;Subtract OA, <O if 0 to 9. 
01F5 9F GHI F ;Get data again, but leave DF 
01F6 C7 LSNF ;SKp 2 i f neg, was 0 to 9. 
01F7 FC 07 ADI 07 ;Add partial offset if A to F 
01F9 FC 30 ADI ;Add offset for 0 to F. 
01FB DA SEP A ;Sub to output D. 
OlFC D5 RETURN ;Return to calling program. 



97 


MONITOR PROGRAM 


;This is the subroutine to output the contents of D to 
;serial port 1. It does not modify any registers, but 
;does require RX to point to a free memory location. 

Add. Code Label Mnemonic Comments 
OlFD 00 IDL ; 
01FE 00 IDL ;Note that RX must be R7 
OlFF 00 IDL ;on entry. 
0200 D3 SlDON SEP 3 ;Return to cal ling program. 
0201 57 SOUT1 STR 7 ;Put D into memory. 
0202 36 02 5101<? B3 SlOK? ; Loop ' t i l l t r· ans mi t t er f r e e • 
0204 61 OUT SER1 ;Output data. 
0205 27 DEC 7 ;Restore RX value. 
0206 30 00 BR S1DON ;Done, so get out. 
0208 00 IDL ;IDL's <OO> until 020F. 

;This is the routine to output the contents of D to serial 
;port 2. It RA is set to 0210 this routine \lJi l l be used 
;instead of SOUT1 whenever an SEP A <DA> is executed. This 
;port is harder to use as the status must be read in with 
;an input instruction and cannot be checked with the flags. 
;It is more flexible as the control register is set with 
;software rather than switches, but because of this the 
;control register must be set before cal ling this program. 
;This routine is not used by the monitor. RX must be R7 and 
;point to 07FO on entry. Location 07FF mu.st be free. 

020F D3 S2DON SEP 3 ;Return to cal l i ng program. 
0210 57 SOUT2 STR 7 ;Save D in 07FO. 
0211 FB FF LDI FF ;Point to a free location. 
0213 A7 PLO 7 ; 
0214 6F T201<? INP PIP! ;Input para\ le l port 1 • 
0215 FE SHL ;Put transmitter status bit 
0216 3B 14 BNF T20K? .; into DF, loop until r·ead y. 
0218 FB FO LDI FO ;Point to stored D in normal 
021A A7 PLO 7 ;I/O l oc.a t ion and 
021B 66 OUT SER2 ;output data. 
021C 27 DEC 7 ;Restore RX value and 
021D 30 OF BR S2DON ;get OU t • 
021F 00 IDL 



APPENDIX D 

MORSE DECODING PROGRAM 

98 




99 

MORSE PROGRAM 

;This is the Morse code decoding program. Program segments 
;are more in logical than numerical order. 

Add. Code Label 
03DE F8 00 RSTRT 
03DF AC 
03EO F8 03 MORSE 
03E2 B3 
03E3 FB E6 
Q:3E5 A3 
03E6 D3 
03E7 E3 
03E8 67 
03E9 FO 
03EA E7 
Q:3EB 7A 
03EC D4 0033 
;routine. Enter a 4 
;display (typ. 0000 
03EF F8 10 RSTR2 
03F1 AE 
0:3F2 BE 
03F3 D4 03CO 
03F6 D4 OlDA RSTRl 
03F9 F8 00 
03FB AC 
03FC BC 
03FD A9 
03FE B9 
03FF 7A 
0400 9D TIME 
0401 BF 
0402 8D 
0403 AF 
0404 BF TIM1 
0405 32 OA 
0407 2F TIM3 
0408 30 04 
040A 9F TIM2 
040B 3A 07 
040D 6F 
040E 64 
040F 27 

Mnemonic 
LDI 00 
PLO C 
LDI 03 
PHI 3 
LDI E6 
PLO 3 
SEP 3 
SEX 3 
OUT CON2 
(data> 
SEX 7 
REQ 
SUB SIN 
hex digit 
to 0300), 
LDI 10 
PLO E 
PHI E 
SUB MASG 
SUB CRLF 
LDI 00 
PLO C 
PHI C 
PLO 9 
PHI 9 
REQ 
GHI D 
PHI F 
GLO D 
PLO F 
GLO F 
BZ TIM2 
DEC F 
BR TIMl 
GHI 9 
BNZ TIM3 
INP PIPl 
OUT POP2 
DEC 7 

Comments 
;Program restarts heret RC.O 
;is a monitor Flag, reset it. 
;Program starts here. R3 is 
;set for use as RP. 

; 
; Ma~(e R3 be RP. 
;Make R3 be RX as wel 1. This 
;wi '. l output "FO" to ser·ia l 
;port 2 to set the UART. 
; Mai<~e R7 be RX. 
;Reset the Q f \ag. 
;Call the monitor as a sub­
intial speed in the lefthand 
then type "R" to return. 
;Preset RE.1 and RE.O, the 
;marK and space thresholds 
;respectively, to "10"• 
;Sub to zero histograms, Q=O. 
;Output a "CR" & "LF". 
;Reset various registers: 
;RC.O time of Keyup 
;RC.1 #of Keydowns in letter 
;R9.0 time of keydown 
;R9.1 Morse shift register 
;Reset the Q Flag. 
;This is the start of the 
;basic timing loop. The 
;timing constant is moved 
; fr·om RD to RF. 
;Ched< RF.O, 
;Jump ah~ad if zero, 
;else decrement RF, 
;and Jump back for more. 
;Check RF.1, and Jump bacK 
;if not also zero, 
;else input Morse port, and 
;output it to a one bit <DO> 
;port to checK sampling. 



100 


MORSE PROGRAM 

Add. Code Label Mnemonic Comments 
0410 FA 01 ANI 01 ;MasK in lsb, O=up, l=down. 
0412 :32 2C BZ UP ;J.J.mp if ~<ey up. 
0414 BC GLO 8 ;If Keyup timer zero, then 
0415 32 21 BZ STDN ;Key was down before, so Jmp. 
0417 FF 40 SMI 40 ;If timer = 40, timer has 
0419 32 21 BZ STDN ;reached limit, so JUmp. 
041B D4 0540 SUB UBIN ;Else sub to bin Key up time 
041E Cl 0568 L3Q AUT? ;If Q was set by BIN, then 
;a histogram bin was full, so Jump to AUT? for action. 
0421 F8 00 STDN LDI 00 ;ReEet Key up timer. 
0423 AC PLO C ; 
0424 89 GLO 9 ;Get Key down timer, 
0425 FF 40 SMI 40 ;subtract 40, zero .if full, 
0428 32 00 BZ TIME ;so Jump bacK to timer. 
042A 19 INC 9 ;Otherwise increment Key 
042A 30 00 BR TIME ;down counter and go to timer 
042C SC UP CLO C ;Here if Key up, get timer. 
042D 3A 58 BNZ STUP ;Jump if o, was up before. 
042F 9E GHI E ;Else get marK threshold. 
0430 57 STR 7 ;Put it in free location. 
0431 89 CLO 9 ;Get Key down timer, find 
0432 F7 SM ;Key down - mark threshold. 
04:33 33 3D BGE DASH ;Jump if >= O, it was a dash. 
0435 99 CHI 9 ;Get Morse shift register. 
0436 FE SHL ;Shift left, O=dot into lsb. 
0437 B9 PHI 9 ;Put it bacK. 
0438 89 CLO 9 ;Get timer AGAIN!!! 
0439 FF 08 SMI 08 ;Subt. 08, 0 if perfect dot. 
043B 30 45 BR SPD? ;Jump ahead to check speed. 
043D 99 DASH CHI 9 ;Get shift register. 
043E FE SHL ;Shift left, 0 into lsb. 
043F FC 01 ADI 01 ;Add 01, l=dash into lsb. 
0441 B9 PHI 9 ;Put it back. 
0442 89 GLO 9 ;Get timer again. 
0443 FF 18 SMI 18 ;Subt. 1~, 0 if perfect dash. 
;At this point, the D register is zero if the dot or dash 
;was of a perfect length. DF=l if the speed is too fast 
;Cdot > 08 or dash> 18), and DF=O if too slow. 
0445 32 4B SPD? BZ UPI ;Jump if D=O, no change. 
0447 1D INC D ;Inc. (slower> timing constant 
0448 CF LSDF ;SKip 2 if DF=lt speed was 
0449 2D DEC D ;fast, else dee. by 2, erfec­
044A 2D DEC D ;tively by 1, raise speed. 
044B D4 0545 UP1 SUB DBIN ;Sub to bin Key down. 
044E 39 54 BNQ UP2 ;Jmp if Q=O, no bins full, 
0450 7A REQ ;else reset Q, 
0451 CO 0568 LBR AUT? ;and Jump for action. 



101 


MORSE PROGRAM 

Add. Code Label Mnemonic Comments 
0454 9C UP2 GHI c ;Get counter for number of 
0455 FC 01 ADI 01 ;Key downs in a letter incre­
0457 BC PHI c ;merit and r·estore i t. 
0458 F8 00 STUP LDI 00 ;Reset Key down ti mer·. 
045A A9 PLO 9 ; 
045B BC GLO c ;Get Key up timer, 
045C FF 40 SMI 40 ;subt. 40, 0 if timer fu l 1, 
045E 32 79' BZ UP3 ; JUmp it SO+ 
0460 9C GHI 9 ; If RC. O=O t there are no 
0461 32 69 BZ UP4 ;elements i r1 letter, so JUffip+ 
0463 SE GLO E . ; Get space threshold, and put 
0464 57 STR 7 ; i t in a fr·ee location. 
0465 BC GLO c ;Get K.ey up ti mer· and find 
0466 F7 SM ; K.ey up - space threshold. 
0467 32 80 BZ LOUT ; If o, now output letter. 
0469 SE UP4 GLO E ;Find inter-character space~ 
04E·A F6 SHR ; 
046B 57 STR 7 ;ICS = 4*RE.O - RE.0/2 
046C BE GLO E ; = 3+5*RE.O 
046D FE SHL ;For perfect morse it should 
046E FE SHL ;be 3. o, bu.t hand sent is 
046F F7 SM ;better· \lJi th this ratio+ 
0470 57 STR 7 ;Put ICS in free location. 
0471 BC GLO c ;Get Key up timer and find 
0472 F7 SM ;Key u.p - ICS 
0473 3A 78 BNZ UP5 ;Jump if not zer·o, no space. 
0475 FB 20 LDI 20 ;Load ASCII "space". 
0477 DA SEP A ;Output to serial port 1 
0478 1C UP5 INC c ; In cr·emen t Key up timer. 
0479 3F 00 UP3 BN4 TIME ;Jump to timer· if no Key­
047B 30 BB BR KCHK ;board input, else go and 
047D 00 IDL ;see what i t is. 
047E 00 IDL ;Fol lowing section outputs 
047F 00 IDL ;a letter·. 
0480 99 LOUT GHI 9 ;Get Mor·.se shift r·eg ister·, 
0481 57 STR 7 ;put it in a free location, 
0482 62 OUT POP1 ;oLtput it to 8 leds for a 
0483 27 DEC 7 ;visual checK of dots/dashes. 
0484 9C GHI c ;Check if 6 Key downs in 
0485 FF 06 SMI 06 ; letter, JUmp if not for 
0487 8A 9A BNZ N06 ;standar·d decoding. 



102 


MORSE PROGRAM 

;The next segment of code is for Morse char-acters with 
;exactly six elements as some requir-e different decoding. 

Add. Code Label Mnemonic Comments 
0489 99 GHI 9 ;Get Mor-se shift register- and 

u ? ..048A FF 4C SMI 4C ;subtract Mor-se - . 
048C 3A 92 BNZ NO? ;Jump i f not that, 

.. ? ..048E F8 3F LDI 3F ;else load ASCII and 
0490 30 AB BR MOUT ; JUmp to output it. 
0 492 FF 2C NO? SMI 2C ;Sub tract further offset, 
0494 3A AO BNZ OK LET ;Ju.mp if not o, 

.. : ..0496 FB 3A LDI 3A ;else load ASCII and 

0498 30 A8 BR MOUT ; JUmp to output i t. 


;The remaining 6 element characters are handled nor-mall Y• 

;At this point the D register holds # of Key dO\JJnS - six. 


049A 3B AO N06 BL OK LET ; If less than six, ol<, but if 

049C FB 2A LDI 2A ;not load ASCII .. *" for over­
049E 30 AB BR MOUT ;run and JUmp to output i t. 

04AO 99 OK LET GHI 9 ;Get Mor-se shift register, 

04A1 FA 3F ANI :3F ;masK in lower- 6 bi ts, put 

04A3 AF PLO F ; i t in RF.O as low addr-ess. 

04A4 FB 05 LDI 05 ;Put high addr·ess in RF. 1, 

04A6 BF PHI F ;point to Morse/ASCII table. 

04A7 OF LDN F ;Get ASCII 

04A8 DA MOUT SEP A ;and output i t • 

04A9 lC INC c ;Increment Key u.p timer. 

04AA 27 DEC 7 ;Point to free memory <07EF>. 

04AB BC GLO c ;Get Key up timer, 

04AC 57 STR 7 ;save it in memory, and point 

04AD 60 IRX ;bacK to IIO location <07FO >. 

04AE co 0600 LBR THRM ;Jump to find new thresholds. 

04B1 00 IDL 

04B2 00 IDL 

04B3 00 IDL 

04B4 00 IDL ; 

04B5 00 IDL ; 

04B6 00 IDL ; 

04B7 00 IDL ; 




103 


MORSE PROGRAM 


;The next segment of code checks for input from the ASCII 
;Keyboard and acts accordingly. 

Add. Code Label Mnemonic Comments 
04B8 3F B8 KCHK BN4 KCHK ;Loop until keyboard input. 
04BA 6B INP ASKEY ;Input Keyboard into D, MCRX> 
04BB FF 2F SMI 2F ;Subtract ASCII "/"+ 

04BD C2 03DD LBZ RSTRT ;Complete restart if "/" 
04CO FF 19 SM I 1 9 ; Sub tr· act again, 0 i f "H" • 
04C2 C2 0250 LBZ HIST ;Output histogr·am if "H". 
04C5 FF 03 SMI 03 ;Subtract againt 0 if "I<"'• 
04C7 3A D7 BNZ NOKO ;Jump if not, else point 
04C9 F8 10 LDI 10 ;register A to output 
04CB AA PLO A ;routine for serial port 2. 
04CC FB 1B LD I 1 B ; Output "ESC" & "ETB" to 
04CE DA SEP A ;serial port 2+ This sends 
04CF F8 17 LDI 17 ;a copy command to the 
04D1 DA SEP A ;Tektronix Graphics Terminal. 
04D2 F8 01 LDI 01 ;Point register A back to the 
04D4 AA PLO A ;routine for serial port 1. 
04D5 30 BB BR · KCHK ;Back for more input. 
04D7 FF 02 NOKO SMI 02 ;Subtract again, 0 if "M". 
04D9 C2 03F6 LBZ RSTR1 ;IF so partial restart. 
04DC FF 01 SM I 01 ; Subtract again, 0 i f "N" • 
04DE 32 F6 BZ SAUT ;If so, Jump to cancel auto. 
04EO FF OA SM I 0 A ; Sub tr· act again, 0 i f "X" ~ 
04E2 7A REQ ; R·eset Q <will cl ear hist.) 
04E3 32 EA BZ GOMAS ;If "X", go clear histograms. 
04E5 FF 01 SM I 0 1 ; Sub tract a g a i n , 0 i f " Y " • 
04E7 3A Fl BNZ Z? ;Jump if not, else 
04E9 7B SEQ ;set Q <will histogram/2) 
04EA D4 03CO GOMAS SJB MASG ;and divide hist. data by 2. 
04ED 7A REQ ;Reset Q <X & Y return here) 
04EE CO 03F6 BR RSTR1 ;and do partial restart. 
04F1 FF 01 Z? SMI 01 ;Subtr·act AGAIN!, 0 if "Z". 
04F3 CA 0000 LBNZ START; If not,, invalid, to monitor. 
04F6 27 SAUT DEC 7 ;Here if "Z" or "N", point to 
04F7 27 DEC 7 ;location for auto command, 
04F8 GB INP ASKEY ;C07EE> and put input there. 
04F9 60 IRX ;"Z" for auto, "N" nonauto. 
04FA 60 IRX ;Point bacK to I/O location. 
04FB 30 00 BR TIME ;Go bacK to timing loop. 
04FD 00 IDL 
04FE 00 IDL ; 
04FF 00 IDL ; 



104 


MORSE PROGRAM 

;This is the lookup table to convert Morse to ASCII. 
;A register is preset to 0000 0001 and the elements are 
;shifted into the lsb, 0 for dot and 1 for dash. The 
;leading 1 shows the beginning of the character. The letter 
;"L" is ".- •• "and would appear as 0001 0100. The upper t\1JO 

;bits are set to 00. This forms the lower eight bits of the 
;address, and 05 is the offset for the high eight bits. 
;This scheme is memory efficient, but causes characters 
;with six elements to show up anywhere in the table. 
;This is only a problem for"?" and":", so these ar·e dealt 
;with in soft war·e. "@" is used f or an invalid character, 
; and " < " f or· t he Mor· s e e r-r or· • • • • • • 

Add. Data Char·acter Add. Data Character 
0500 3C < •••••• 0520 35 5 •• t •• 

0501 40 @ 0521 34 4 •••• ­
0502 45 E 0522 40 @ 

0503 54 T 0523 33 3 • f • 

0504 49 I • • 0524 40 @ 

0505 41 A 0525 40 @ 

0506 4E N 0526 40 @ 

0507 4D M 0527 32 2 •• 
0508 53 s ... 05 28 40 @ 

0509 
050A 
050B 

55 
52 
57 

u 
R 
w 

•• ­
• - • .- -

0529 
052A 
052B 

40 
:3B 
40 

@ 

; 
@ 

-.-.-. 
050C 
050D 

44 
4B 

D 
K 

•• 
- .­ 052C 

052D 
40 
5B 

@ 

[ -.--.­
050£ 47 G 052E 40 @ 

050F 4F 0 052F 31 1 
0510 
0511 

48 
56 

H 
v 

• • • •... -
0530 
0531 

36 
5F 

6 • ••• 
- t • t -

0512 46 F .. -. 0532 2F I • • - • 
0513 40 @ 05:33 2C •• 
0514 
0515 
0516 

4C 
2E 
50 

L 

p 

••.-.-.­.- -. 
0534 
0535 
0536 

40 
4,0 
40 

@ 

@ 

@ 

0517 4A J 0537 40 @ 

0518 B - ... 0538 37 7 - ­ ••• 
0519 
052A 
051B 

58 
43 
59 

x 
c 
y 

• • 
- .-. 
- .-­

0539 
053A 
05:3B 

40 
40 
40 

@ 

@ 

@ 

051C 5A z - -.. 053C :38 8 - - - •• 
051D 51 Q - -.- 053D 40 @ 

051E 40 @ 053E 39 9 
051F 40 @ 053F 30 0 ----­



105 


MORSE PROGRAM 


; Th i s i s the subr· out i ri e to en t er the mar K. and spa c e t i mes 
;into their respective histograms. The raw space data is 
; st or·ed from 0580 to 05BF, the r·aw marK data from OSCO 
;to 05FF. 

Add. Code Label Mnemonic Comments 
0540 BC UBIN GLO c ;Enter her·e to bin space, get 
0541 FC 80 ADI 80 ; ~<e Y up timer·, add offset, 
054:3 30 4D BR SP ;and JUmp ahead. 
0545 89 DBIN GLO 9 ;Enter her-·e for· marl-<, get 
0546 FF 40 SMI 40 ; ti mer·, subtr·act 40, JUmp if 
0548 33 5F BGE BIGM ;>=O, ther-·e fore over· fl ow. 
054A 89 CLO 9 ; I f oK, get ti mer· again, add 
054B FC co ADI co ; offset. 
054D AF SP PLO F ;For mark or space, put data 
054E f 8 05 LDI 05 ;plus offset into RF.O, and 
0550 BF PHI F ;high addr·ess into RF. 1. 

;The value from the timer, e.g. 2C, is used to point to the 
;2Cth bin of the appropriate histogram. The number in the 
;2Cth bin indicates the number of times the particular 
;timer reached exactly 2C before the Key changed. 

0551 OF LDN F ;Get the data from that bin. 
0552 FF 3F SMI 3F ; Sub t. 3F ( 63), 0 if f u l l • 
0554 7B SEQ ;Set Qin case it's ful J. 
0555 32 SC BZ BIND ; If fu l l, Jump out \l.' i th Q= 1. 
0557 7A REQ ;Not full, so reset Q, 
0558 OF LDN F ;and get data again from bin. 
0559 FC 01 ADI 01 ;Increment the data 
055B SF STR F ; and r·estore it. 
055C CO 0760 BIND BR SMTH ;Done, Jmp to smooth routine. 

;Program ends up here if Key down timer overflowed. This 
;usually means the overall speed is far too high. 

' 
055F SD BIGM CLO D ;The timing constant is 
0560 FE SHL ;stored in RD, and this is 
0561 AD PLO D ;shifted left by one in a 16 
0562 9D GHI D ;bit shift. This multiplies 
0563 7E SHLC ;the constant by 2 and halves 
0564 BD PHI D ;the speed of the timer. 
0565 CO 03EF LBR RSTR2 ;Do a partial restart with 
;the new slower speed and zeroed histograms. 



106 


MORSE PROGRAM 

;The binning subroutine sets the Q flag if a bin is ful I. 
;On return to the Key up or Key down routines the flag 
;is sampled. If set, control passes to this routine which 
;checKs the auto histogram flag stored in 07EE. This 
;is not a subroutine as it can return to different places. 
;If entered from the Key down section, Q is still set, but 
;the ~<:.ey up section resets Q first. Q tel Is this section 
;where to return if no histogram was required. 

Add. Code Label Mnemonic Comments 
0568 27 AUT? DEC 7 ;Point to location \Vh i ch 
0569 27 DEC 7 ;holds au.to flag. 
056A 72 LDXA ;Get i t and point back to 
056B 60 IRX ; f r·ee location C07FO>. 
056C FF 5A SMI 5A ; Sub tr· act 5A, 0 i t "Z .. • 
056E C2 0250 LBZ HIST ; I f so, JU.mp for· hi stogr·am. 
0571 C9 0454 LBNQ UP2 ; I f Q=O, bad<: to ~.ey up, 
0574 7A REQ ;else r·eset Q 
0575 co 0421 LBR STDN ;and back to ~:.ey dO\IJr1 t 

0578 00 IDL ; I DL 's to 057F inc+ 

;0580 to 05BF contains raw histogram data for spaces. 
;05CO to 05FF contains raw histogram data for marks. 

;This is the subroutine to clear (Q=O> or divide by two 

;<Q=l> the raw histogram data. 


Add. Code Label Mnemonic Comments 

03CO FB 05 MASG LDI 05 ;Put high addr·ess pointer 

03C2 BF PHI F ;into RF. 1, 

03C3 FB 80 LDI 80 ;Low addr·ess is start of rau1 

03C5 AF PLO F ;space data, marKs fol low. 

03C6 BF MAS? GLO F ; I f RF. 0=00, then done. 

03C7 C6 LSNZ ;SKip two i f not done, 

03C8 D5 RETURN ;else re tur·n. 

03C9 00 IDL ; 

03CA C5 LSNQ ;Skip two 

' 
if Q=O (clear>, 


03CB OF LDN F ;else get data From bin and 

03CC F6 SHR ;shift r· i gh t to halve it t 

03CD CD LSQ ; SV. i p t\IJO if Q=1 <halve>, 

03CE FB 00 LDI 00 ;else load 00 to clear. 

03DO 5F STR F ;Put new data into bin 

03D1 1F INC F ;and incr·ement pointer. 

03D2 30 C6 BR MAS? ;Loop bacK for· more. 

03D4 00 IDL ; I DL' s to 03DC inc. 




107 


MORSE PROGRAM 

;This is the smoothing subroutine. It is a continuation of 
;the binning subroutine which returns from here. The raw 
;histogram data from 0580-0SBF, 05C0-05FF is smoothed by 
;a simple algorithm and stored from 0680-06BF, 06C0-06FF. 
; The Q flag is st i l l set if a bin \1Jas f u l l • 

Add. 
0760 
0762 
0763 
0765 
0766 
0768 
0769 
076A 
076B 
076C 
076D 
076E 
075F 
0770 
0772 
0774 
0776 
0778 
0779 
077A 
077B 
077C 
077D 
077E 
0780 
0782 
0784 
0785 
0786 
0787 
0788 
078A 
078B 
078C 

Code 
F8 05 
BF 
F8 06 
BO 
F8 80 
AO 
AF 
EO 
OF 
FE 
50 
2F 
BF 
FF 7F 
32 7B 
FF 40 
:32 7B 
OF 
F4 
50 
1F 
lF 
BF 
32 87 
FF 80 
32 B7 
OF 
F4 
50 
FO 
FC 02 
F6 
F6 
50 

Label 

SMTH 


SMTHl 


BDAT 


BDAT2 

Mnemonic 
LDI 05 
PHI F 
LDI 06 
PHI 0 
LDI 80 
PLO 0 
PLO F 
SEX 0 
LDN F 
SHL 
STR 0 
DEC F 
CLO F 
SMI 7F 
BZ BDAT 
SMI 40 
BZ BDAT 
LDN F 
ADD 
STR 0 
INC F 
INC F 
CLO F 
BZ BDAT2 
LDI 80 
BZ BDAT2 
LDN F 
ADD 
STR 0 
LDX 
ADI 02 
SHR 
SHR 
STR 0 

Comments 
;Load 0580 into RF, point to 
;raw data, 0680 into RO, 
;space for smoothed data. 

; 
; 
;RO used for math, maKe it RX 

;Get raw data<N> 

; mu l t i p l y b y 2, 

;store it in smooth space. 

;Point to raw data<N-1>. 

;If RF=057F, out of data 

; st or· age a r· ea , 

; so Ju.mp ahead • 

;If RF=05BF, marKs intruding 

;into spaces, so JUmp ahead. 

;Get raw data<N-1> and add it 

;to 2*raw data<N>. 

;Put result in smoothed area. 

;Point to raw dataCN+l). 

; 
;If RF=0600, out of data, 

;so Jump ahead. 

;If RF=0580, spaces intruding 

;into marKs, so Jump ahead. 

;Get raw dataCN+l) and add it 

;to value from line 0779 

;Put resµlt in smoothed area. 

;Get result so far, 

;add two for rounding. 

;Divide by four 

; 
;and store result. 

;The data was smoothed with the fol lowing formula: 
; smooth(n) = C2*raw(n) + rawCn-1> + raw<n+l> + 2)/4 



108 


MORSE PROGRAM 


;This is the continuation of the smoothing routine. 

Add. Code Label Mnemonic Comments 
078D 60 IRX ;Point to next smooth space. 
078£ 80 GLO 0 ; If RO not 0700, not donet 
078F 3A 6B BNZ SMTHl ;so JUmp bacK for moret 
0791 E7 SEX 7 ;else restor·e R7 as RX. 
0792 CD LSQ ; If Q=Ot no bins f u l l t 

0793 D5 RETURN ;so returnt other·w i se sK. ip ,.., 
.c.... 

0794 00 IDL ; 
0795 D4 03CO SUB MASG ;Sub to MASG, Q= 1 t so data/2. 
0798 
079B 

D4 
FB 

OlDA 
3E 

SUB 
LDI 

CRLF 
3E 

;Output "CR" & "LF" 
;Load ASCII .. >.. and OU. tpu t i t 

079D DA SEP A ;to shO\JJ hi stogr·am change. 
079E D5 RETURN ; Re tur·n with Q stil I set for· 
079F 00 IDL ;auto his togr·am checK. 

;The next set of routines computes the marK and space 

;thresholds from the smoothed data. The main routine begins 

;at 0600t but the subroutines are presented first. 

;They all rely on the position of the data within memory. 

;This subroutine returns the maximum value of a marK or 

;space histogram in RC.1 and the bin number COO to 3F}, 

; not the me mor y add r·ess , i n RC • 0 • I f Q i s s e t the I e f t most 

;maximum is retur·ned and if Q is reset, the rightmost. 

;These values are different if two bins equal the maximum. 

;R9 contains the starting address of data and RF.O contains 

;the bin number of that stirt data as not all scans start 

;from bin 00 when looKing for the leftmost maximum. 


Add. Code Label Mnemonic Comments 

0740 FB 00 FMAX LDI 00 ;Reset bin number 

0742 AC PLO c ;and maximum value. 

0743 BC PHI c ; 

0744 CD LSQ ; I f right maximum set RF.O 

0745 AF PLO F ;to oo, ,else leave it alone. 

0746 C4 NOP ; 

0747 E9 MAXM SEX 9 ;Make R9 be RX for math use. 

0748 9C CHI c ;Get current maximum and sub­
0749 F5 SD ;tr·act data pointed to by R9. 

074A 3B 53 BL NCHG ; If less, no change, so Jump. 

074C cs LSNQ ;SKip two i f r· igh tmost max., 

;that means change on >=. If leftmost max, change on > only 

074D 32 53 BZ NCHG ;Ju.mp if leftmost and equal • 

074F 09 LDN 9 ; If a change, get new maximum 

0750 BC PHI c ;arid put it ir1 RC. 1. 

0751 BF CLO F ;Get new bin number· and put 

0752 AC PLO c ; i t in RC.O. 




109 


MORSE PROGRAM 


;This is a continuation of the "FMAX" subroutine. 

Add. Code Label 
0753 lF NCHG 
0754 19 
0755 89 
0756 :32 SC 
0758 FF CO 
075A 3A 47 
075C E7 MAXD 
075D D5 
075E 00 
075F 00 
;and sets it up for 
0700 FB 00 ADD50 
0702 AF 
0703 9C 
0704 F6 
0705 BC 
0706 F8 80 
0708 C5 
0709 F8 CO 
070B 57 
070C SC 
070D F4 
070E A9 
070F D5 

Mnemonic 
INC F 
INC 9 
GLO 9 
BZ MAXD 
SMI CO 
BNZ MAXM 
SEX 7 
RETURN 
IDL 
IDL 
later use. 
LDI 00 
PLO F 
GHI C 
SHR 
PHI C 
LDI 80 
LSNQ 
LDI CO 
STR 7 
GLO C 
ADD 
PLO 9 
RETURN 

Comments 
;Increment bin number 
;and memory pointer. 
;If R9=0600, mark scan done, 
;Jump ahead. 
;If R9=05BF, space scan done, 
;else Jump bacK for more. 
;Restore R7 as RX 
;and get out. 
;This next subroutine taKes 
;the data passed from FMAX 
Enter with Q=1 for marks. 

;Reset RF.O 
; 
;Get maximum peaK height. 
;divide by two 
;and put it back. 
;Get space offset 
;skip 2 if spaces 
;else get mark offset. 
;Put offset in 07FO. 
;Get maximum bin . number 
;add offset for low address 
;and put it in R9~0. 

;This subroutine finds the first occurence of a bin 
; <= <maximum height)/2 while searching left to right. 
;Enter with start addr·ess of sear·ch in R9, (maximum)/2 
;in RC.1, and 00 in RF.O. On exit RF.O contains the number 
;of bins from the peak to <= CpeaK)/2. 

Add. Code Label Mnemonic Comments 
0710 00 IDL ;IDL's tp 0713 inc. 
0714 E9 LTOR SEX 9 ; Ma~<e R9 be RX 
0715 9C MOLR GHI c ;Get 1/2 peak and 
0716 F7 SM ;subtract data. 
0717 33 22 BGE LROK ;Out i f bin found, 
0719 19 INC 9 ;else increment pointer 
071A lF INC F ;and bin offset. 
071B 89 GLO 9 ; If R9=0700 
071C 32 22 BZ ;get OU t t end of marl-c:s. 
071E FF co SMI co ; If R9=06CO, end of spaces, 
0720 3A 15 BNZ MOLR ;else JUmp back for mor·e. 
0722 E7 LROK SEX 7 ;Restore R7 as RX. 
0723 D5 RETURN ; 
0724 00 IDL ; I DL' s to 0727 inc. 



110 


MORSE PROGRAM 

;This subroutine is similar to the one above except that 
;it searches from right to left. Q=O for spaces and Q=l 
;for marks. RE.O and RE. 1 contain leftmost stop addresses. 

Add. Code Label Mnemonic 
0728 E9 RTOL SEX 9 
0729 9C GHI C 
072A F7 SM 
072B 33 3E BGE RLOK 
072D E7 SEX l 

072E 89 GLO 9 
072F FF 80 SMI 80 
0731 C5 LSNQ 
0732 FF 40 SMI 40 
0734 57 STR 7 
0735 SE CLO E 
0736 C5 LSNQ 
0737 9E GHI E 
0738 C4 NOP 
0739 F7 SM 
073A 29 DEC 9 
073B 1F INC F 
073C 3B 28 BM RTOL 
073E E7 RLOK SEX 7 
073F D5 RETURN 

Comments 
; Ma~<e R9 be RX 
;Get 1/2 peak and subtract 
;data. 
;Out if bin found, 
;else restore R7 as RX. 
;Get memory pointer and 
;subtract spaces offset. 
;Skip 2 if spaces, else 
;subtract extra mark offset. 
;Stuff it in 07FO 
;Get overange for spaces, 
;skip 2 if spacest 
;else get it for marks. 
.. 
' ;Compare pointer and overange 

;Decrement memory pointer, 

;increment bin coutner. 

;If minus, back for more, 

; e I se restor·e RX 

;and get out. 


;This is the routine to calculate the mark threshold. 

;It calls the above three ~outines, FMAX, LTOR, & RTOL. 

; In the f ir·st part "peaK" or "maximum" refers to the 

;histogram peak generated by dots. 


Add. Code Label Mnemonic Comments 

0600 FB 06 THRM LDI 06 ;06CO into R9, start address 

0602 B9 PHI 9 ;of smoothed mark data. 

0603 FB co LDI co 

0605 A9 PLO 9 ; 

0606 7A REQ ;Reset Q, shows right maximum 

0607 D4 0740 SUB FMAX ;Sub to find right maximum. 

060A 7B SEQ ;Set Q, ShO\JJS marl.(s, 

060B F8 06 LDI 06 ;Put partial addr·ess in R9. 1. 

060D B9 PHI 9 ; 

060E D4 0700 SUB ADD50 ;Sub to fix data. 

0611 D4 0714 SUB LTOR ;Sub to find 50% peaK bin. 




111 


MORSE PROGRAM 


;This is the continuation of the marK threshold routine. 
Add. Code Label Mnemonic Comments 
0614 8F GLO F ;Get distance from peak 
0615 57 STR 7 ;and stu.f f into 07FO. 
0616 SC GLO c ;Get peak bin # and 
0617 F4 ADD ;find bin twice as far· fr· om 
0618 F4 ADD ;peak as 50~ bin. 
0619 BE PHI E ;Put it in RE. 1 as left stop 
061A AF PLO F ;and also into RF.O. 
061B FC co ADI co ;Add offsets to make this 
061D A9 PLO 9 ; a memory address in R9 in 
061E F8 06 L:J I 06 ;the smoothed marK r·ange. 
0620 B9 PHI 9 ; 
;From this point "peak" r·efer·s to the dash cluster·. 
0621 7B SEQ ;Set Q to find left maximum. 
0622 D4 0740 SJB FMAX ;Sub to find left maximum. 
0625 F8 06 LDI 06 ;Put partial address in R9. 1. 
0627 B9 PHI 9 ; 
0628 7B SEQ ;Set Q for· mark.s. 
0629 D4 0700 SUB ADD50 ;Su.b to fix data. 
062C D4 0728 SUB RTOL ;Sub to find 50% pea~~ bin. 
062F 8F GLO F ;Get distance from peaK, 
0630 FE SHL ;doubie it 
0631 57 STR 7 ;and stuff it in 07FO. 
0632 5C CLO c ;Get peaK bin # and find 
0633 F7 SM ;bin t~1Jice as far from pea~< 

0634 57 STR 7 ;as 50% and stuff it in 07FO. 
0635 9E GHI E ;Add same resu. l t fr· om dot 
0636 F4 ADD ;peak and divide by two to 
0637 F6 SHR ;find estimate for· mar·~< 

0638 BE PHI E ;threshold, put it in RE. 1. 
0639 co 0640 LBR THRS ;Jump for· space thr·esho l d. 
063C 00 IDL ;IDL's to 063F inc. 

;This is the routine to calculate the space threshold. 

; In the f ir·st part "peak" or· "maximum", refers to the 

;histogram peak generated by the intra-character spaces. 

Add. Code Label Mnemonic Comments 

0640 F8 06 THRS LDI 06 ;0680 into R9, start address 

0642 B9 PHI 9 ;of smoothed space data. 

0643 F8 80 LDI 80 ; 

0645 A9 PLO 9 ; 

0646 7A REQ ;Reset Q, shows right maximum 

0647 D4 0740 SUB FMAX ;Sub to find right maximum. 

064A 7A REQ ;Reset Qt shows spaces. 

064B F8 06 LDI 06 ;Put partial address in R9.1. 

064D B9 PHI 9 ; 




112 


MORSE PROGRAM 


;This is the continuation of the space thr·esho l d routine. 

Add. Code Label Mnemonic Comments 
064E D4 0700 SUB ADD50 ;Sub to fix data. 
0651 D4 0714 SUB LTOR ;Sub to find 50% peaK bin. 
0654 BF CLO F ;Get distance from peal< 
0655 57 STR 7 ;and stuff into 07FO. 
0656 BC GLO c ;Get peaK bin # and 
0657 F4 ADD ;find bin tuJice as far· from 
0658 F4 ADD ;peaK as 50% bin. 
0659 AE PLO E ;Put it in RE.O as left stop 
065A AF PLO F ;and also into RF.O. 
065B FC BO ADI 80 ;Add offsets to make this 
065D A9 PLO 9 ; a memory address in R9 in 
065E F8 06 LDI 06 ;the smoothed space r·ange. 
0660 B9 PHI 9 

; Her·e "peak" refer·s to the inter-character· space cluster. 

0661 7B SEQ ;Set Q to find left maximum. 
0662 D4 0740 SUB FMAX ;Sub to find left maximum. 
0665 FB 06 LDI 06 ;Put partial address in R9. 1. 
0667 B9 PHI 9 ; 
0668 7A REQ ;Reset Q for spaces. 
0669 D4 0700 SUB ADD50 ;Sub to fix data. 
066C D4 0728 SUB RTOL ;Sub to find 50% peaK bin. 
066F BF GLO F ;Get distance from peak, 
0670 FE SHL ;double it 
0671 57 STR 7 ;and stuff it in 07FO. 
0672 BC GLO C ;Get peak bin # and find 
0673 F7 SM ;bin twice as far from peak 
0674 57 STR 7 ;as 50% and stuff it in 07FO. 
0675 BE GLOE ;Add result from intra-space 
0676 F4 ADD ;peak and divide by two for 
0677 F6 SHR ;first estimate of space 
0678 57 STR 7 ; threshoJ d, pu.t it in 07FO. 
;Due the poor "quality" of the inter-character space peak, 
;it is averaged with the marK threshold which would be the 
;same for perfect code. 
0679 9E GHI E ;Get mark threshold and 
067A F4 ADD ;simply average with estimate 
067B F6 S~R ;~ust calculated. Store this 
067C AE PLO E ;fin3l result in RE.O 
067D CO 07BO LBR CLUP ;Jump to cleanup loose ends. 



113 


MORSE PROGRAM 


;This short routine follows the space threshold calculation 
;to clear up various odds and ends. 

Add. Code Label Mnemonic Comments 
07AO 00 IDL ; I DL' s to 07AF inc. 
07BO D4 01AB CLUP SUB DI SPY ;Display new thr·esho ids. 
07B3 F8 00 LDI 00 ; 
07B5 A9 PLO 9 ;Reset ~(e y down ti mer· and 
07B6 BC PHI c ; cour1ter for Key dO\IJnS in 
07B7 F8 01 LDI 01 ; char·acter·. Set Mor·se shift 
07B9 B9 PHI 9 ; r egister· to 01. 
07BA 27 DEC I ;Point to stored RC. O, 
07BB 72 LDXA ;get it, point to 07FO, 
07BC AC PLO c ;restore RC.O. 
07BD co 0400 LBR TIME ;Jump bad< to timer. 

;These are the commands which the program recognizes from 
;an ASCII Keyboard. They are immediately recognized, so 
;no carriage return is required. 

I 	 Restart at 03DDt sub to monitor to enter new speed, 
pr·ess " R " t o re turn • 

H 	 Output histogram immediately, wait for more commands. 

K 	 Send hardcopy command to graphics terminal, wait for 
mor·e commands. 

M 	 Restart at 03F6, same histogram, speed and thresholds. 

N 	 Cancel autohistograms, continue at 0400. 

X 	 Zero raw histogram data, restart at 03F6. 

Y 	 Divide raw histogram data by two, restart at 03F6. 

Z 	 Set automatic mode for histograms. If any raw bin is 
full, the program stops and outputs a histogram. The 
raw data is divided by two, but until the program is 
restarted the smoothed data is untouched, so other 
copies can be made. This command continues at 0400. 

"N" or "Z" can be pressed at any time during normal 
program execution. The other commands all disrupt 
decoding. Any command not in the above table will 
cause a restart of the entire system to the monitor. 



114 


MORSE PROGRAM 


;The above routines were all essential to decoding Morse 
;code, The remaining sections are only needed to output 
;histograms to the Tektronix graphics terminal. Register A 
;points to the routine for seria l port 2, not 1 as usual. 
;A lot of manipulation is necessary because the plotter 
;works on a 1024X by 779Y absolute matrix, with each letter 
;14X by 22Y, and the histogram requires 64X by 31Y 
;numbered positons, each divisible by four!!! Calculations 
;can only be done in integer math, so there are problems. 
;This subroutine numbers an axis 0 to F repeatedly. 

Add. Code Label Mnemonic Comments 
0220 FB 00 LTTR LDI 00 ;00 into RF.O if not Q, 
0222 CS LSNQ ;OF if Q, start number of 
0223 FB OF LDI OF ;hex-numbered axis. 
0225 AF PLO F ; 
0226 ~8 lD MLTR? LDI lD ;Output "GS" to set 
0228 DA SEP A ;graphics mode. 
0229 D4 02EO SUB XYOUl ;OLtput XY coordinates. 
022C D4 02F8 SUB XYOU2 ; 
022F F8 1F LDI 1F ;Output "US" to set 
0231 DA SEP A ;a·phanumerics mode. 
0232 BF CLO F ;Get axis counter, masK in 
0233 FA OF ANI OF ;lower 4 bits, put them 
0235 BF PHI F ;in RF.1 and output them as 
0236 D4 01F2 SUB 1HOUT ;a single hex digit. 
;RC.O contains the low address of the current coordinate 
;being lettered: Fl for X cir F2 for Y; high address 07. 
;RC.1 contains the axis coordinate increment: 04 for 
;horizontal, 05 for vertical. R9.0 holds stop count 
;for axis, 3F horizontal, FF or 10 vertical. 
0239 BC CLO C ;Transfer low address to RX. 
023A A7 PLO 7 ;RX points to coordinate. 
023B 9C CHI C ;Get coordinate increment, 
023C F4 ADD ;add it on, 
023D 73 STXD ;restore coordinate. 
023E FB FO LDI FO ;Po~nt RX bacK to 07FO. 
0240 A7 PLO 7 ; 
0241 :F INC F ;Increment axis counter, but 
0242 CS LSNQ ;if Q was set, decrement 
0243 2F DEC F ;counter by 2, effectively 
0244 2F DEC F ; by 1 • 
0245 BF CLO F ;Get axis counter and 
0246 57 STR 7 ;stuff it in 07FO. 
0247 89 CLO 9 ;Get stop count and 
0248 F7 SM ;subtract, 
0249 3A 26 BNZ MLTR? ;Jump bacK for more if not 
024B D5 RETURN ;equal, else return. 
024C 00 IDL ;IDL's to 024F inc. 



115 


MORSE PROGRAM 


;These two subroutines output an XY coordinate to the 
;graphics terminal which requires 10 bit X and Y values, 
;broken into Four 5 bit ASCII characters. Enter with an 
;8 bit X value in 07F1 and Y in 07F2. Normally call XYOU2 
; immediately after XYOU1, but to obtain the Full 10 bit 
;precision available, the two lsb's in the Y value can be 
;added at that point. 

Add. Code Label Mnemonic Commer1 ts 
02EO 60 XYOU1 IRX ;Point to x valu.e, 
02E1 72 LDXA ;get i t and point to Y. 
02E2 AO PLO 0 ;X into RO. O, 
02E3 FO LDX ;get Yt 
02E4 BO PHI 0 ;Y into RO. 1. 
02E5 27 DEC 7 ;Point to 07FO. 
02E6 27 DEC 7 ; 
02E7 F6 SHR ;Get high 5 y bi ts in l O\JJe r· 
02E8 F6 SHR ;3 positions. 
02E9 F6 SHR ; 
02EA F9 20 ORI 20 ;OR in identifier and 
02EC DA SEP A ;output high y byte. 
02ED 90 GHI 0 ;Get y again, 
02EE FE SHL ;put 0 .. s in t \JJO lsb's 
02EF FE SHL ;and stuff it in 07FO. 
02FO 57 STR 7 ; 
02F1 D5 RETURN ;Return for· possible mods to 
;two lsb's to get 10 bit y coordinate if required. 
02F2 00 IDL ; I DL' S to 02F7 inc. 
02F8 FO XYOU2 LDX ;Get y value bacK, 
02F9 FA 1F ANI 1F ;masK in l o\ver 5 bits only 
02FB F9 60 ORI 60 ;OR in identifier· and 
02FD DA SEP A ;output low y byte. 
02FE 80 GLO 0 ;Get x value and 
02FF F6 SHR ;put high 5 bi ts in l O\ver 
0300 F6 SHR ;5 positions. 
0301 F6 SHR ; 
0302 F9 20 ORI 20 ;OR in identifier and 
0304 DA SEP A ;output high x byte. 
0305 80 GLO 0 ;Get x again and 
0306 FE SHL ;put O's in t \VO lsb's• 
0307 FE SHL ; 
0308 FA 1C ANI 1C ;MasK in required bi ts, 
030A F9 40 ORI 40 ;OR in identifier and 
030C DA SEP A ;output low x byte. 
030D D5 RETURN ; All done, get out. 
030E 00 IDL ; 
030F 00 IDL 



116 


MORSE PROGRAM 

;The above three subroutines are cal led by this section 
;which handles the overhead for lettering the axes. 
;This is the actual start of the histogram routine. 

Add. Code Label Mnemonic Comments 
0250 D4 01DA HIST SUB CRLF ;Output a "CR" & "LF" 
0253 F8 10 LDI 10 ;Point RA to output routine 
0255 AA PLO A ;for serial port 2. 
0256 F8 07 LDI 07 ; Output "BEL" to inf or·m 
0258 DA SEP A ;operator of histogram. 
0259 F8 1B LDI 1B ;Output "ESC" & "FF" to 
025B DA SEP A ; er·ase scr·een. 
025C F8 OC LDI OC 
025E DA SEP A ; 
025F F8 FF LDI FF ;This is a delay while 
0261 BF PHI F ;the screen clears. 
0262 AF PLO F ;FFFF into RF 
0263 2F SCR? DEC F ; 
0264 9F GHI F ;Get RF.11 JUmp bacK if not 
0265 3A 63 BNZ SCR? ;zero, else delay over. 
0267 FB Fl LDI Fl ;Set up to label horizontal 
0269 AC PLO C ;axis (see LTTR for expl.) 
026A F8 04 LDI 04 ;Fl in RC.O = X axis 
026C BC PHI C ;04 in RC.1 = increment 
026D 60 IRX ;04 in 07F1 = X offset 
026E 57 STR 7 ;61 in 07F2 = Y offset 
026F 60 IRX ;3F in R9.0 = last count+1 
0270 FB 61 LD I 61 . ; 0 in Q = pos. in er. 
0272 73 STXD ; 
0273 27 DEC 7 ;Point to 07FO again. 
0274 F8 3F LDI 3F 
0276 A9 PLO 9 ; 
0277 7A REQ ; 
0278 D4 0220 SUB LTTR ;Go and letter X axis. 
027B F8 FF LDI FF ;F2 in RC.a = Y axis 
027D A9 PLO 9 ;05 in RC.1 = increment 
027E F8 F2 LDI F2 ;00 in 07F1 = X offset 
0280 AC PLO C ;11 in 07F2 = Y offset 
0281 F8 05 LDI 05 ;FF in R9.0 = last count-1 
0283 BC PHI C ; 1 in Q = neg. incr. 
0284 F8 11 LDI 11 ; 
0286 60 IRX 
0287 60 IRX ; 
0288 73 STXD ; 
0289 F8 00 LDI 00 ; 
028B 73 STXD ;Point to 07FO again. 
028C 7B SEQ ; 
028D D4 0220 SUB LTTR ;Letter Y axis from F to o. 



117 


MORSE PROGRAM 

Add. Code Label Mrremonic Comments 
0290 F8 10 LDI 10 ;Continue lettering axes. 
0292 A9 PLO 9 ;F2 in RC.O = Y axis 
0293 60 IRX ;05 in RC. 1 = increment 
0294 60 IRX ;00 in 07F1 = X offset 
0295 F8 66 LDI 66 ;66 in 07F2 = Y offset 
0297 73 STXD ;10 in R9.0 = last count+! 
0298 F8 00 LDI 00 ; 0 in Q = pos. incr. 
029A 7:3 STXD ;Point to 07FO again. 
029B C4 NOP 
029C 7A REQ ; 
029D D4 0220 SUB LTTR ;Letter Y axis from 0 to F. 
02AO co 0310 LBR TEKH ;Continue with histogram. 
02A3 00 IDL ;ID~'s to 02AF inc. 
;This section outputs the data to the histogram. 
;The smoothed data is used, but this is easi l )' changed. 
0310 FB 06 TEKH LDI 06 ;Enter with Q=01 spaces. 
0312 BC PHI C ; 0680 in RC = spacest if Q=O 
0313 60 IRX ; 06CO in RC = mar·Ks, if Q= 1 
0314 FB 05 LDI 05 ;05 in 07F1 = X offset 
0316 57 STR 7 ;60 in 07F2 = Y offset, Q=O 
0317 60 IRX ;66 in 07F2 = Y offset, Q=l 
0318 F8 80 LDI 80 
031A C5 LSNQ 
031B FB CO LDI CO 
0:31D AC PLO C ; 
031E FB 60 TEK1 LDI 60 
0320 C5 LSNQ 
0321 F8 66 LDI 66 ; 
0323 73 STXD ; 
0324 27 DEC 7 ;Point to 07FO again. 
0325 C4 NOP ; 
0826 FB 1D LDI 1D ; 0 u t p u t " GS " , mat( e t h i s d a r· t< 
0:328 DA SEP A ;vector to new position. 

0329 D4 02EO SUB XYOU1 ;Output coordinates. 

032C D4 02F8 SUB XYOU2 

032F 60 IRX ; 

0330 60 IRX ;Point R7 to Y coordinate. 

0331 C4 NOP ; 

0332 oc LDN C ;Get smoothed data pointed 

0333 F6 SHR ; to by RC, 

0334 F6 SHR ;divide by 4, 

0335 EC SEX C ; 

0336 F4 ADD ;add that to original, 

0337 E7 SEX 7 ;in effect multiply by 1.25. 




118 


MORSE PROGRAM 

; •••••••• continuation of histogram+•••••••• 

;In order to Fit histogram onto screen with even spacing, 

;the very last (3Fth} bin is not output. This is not a 

;problem as there should be no useful information there. 


Add. 
0338 
0339 
033A 
033B 
033C 
033D 
0:33E 
033F 
0340 
0341 
0344 
0345 
0347 
0348 
0:349 
034A 
034B 
034C 
034D 
034E 
0351 
0352 
0353 
0354 
0355 
0857 
0358 
0359 
0:35B 
035C 
035E 
035F 
0360 
0361 
0363 
0364 
0365 
0367 
0359 
036A 
036B 
036C 
036F 

Code 
CD 
F5 
C4 
C5 
F4 
C4 
73 
27 
C4 
D4 02EO 
oc 
FA 0:3 
CD 
F5 
C4 
C5 
F4 
C4 
57 
D4 02F8 
lC 
60 
FO 
FC 04 
57 
50 
SC 
FF BF 
CF 
30 1E 
7B 
27 
27 
32 10 
60 
60 
FF 40 
3A 1E 
7A 
27 
27 
co 0370 
00 

Label Mnemonic 
LSQ 
SD 
NOP 
LSNQ 
ADD 
NOP 
STXD 
DEC 7 
NOP 
SUB XYOUl 
LDN C 
ANI 03 
LSQ 
SD 
NOP 
LSNQ 
ADD 
NOP 
STR 7 
SUB XYOU2 
INC C 
IRX 
LDX 
ADI 04 
STR 7 
IRX 
CLO C 
SMI BF 
LSDF 
BR TEK1 
SEQ 
DEC 7 
DEC 7 
BZ TEKH 
IRX 
IRX 
SM! 40 
BNZ TEK1 
REQ 
DEC 7 
DEC 7 
LBR DUPAR 
IDL 

Comments 
;SKip 2 if Q=l, marks. 
;Spaces, vector down, so 
;subtract data from offset. 
;Skip 2 if Q=O, spaces. 
;Marks, vector up, so add 
;data to offset. 
;Store Y coordinate in 07F2, 
;point back to 07FO. 
; 

;Sub to output high Y byte. 

;Get data again, 

;mask in lower 3 bits only. 

;Skip 2 if Q = l = marks, 

;else spaces, subtract. 

; 
;Skip 2 if Q = 0 = spaces, 

;else marks, add. Store 

;this result bacK in 07F2. 

;This adds the two lsb's to 

;Y for 10 bits, output it. 

;Increment RC, point to next 

;data, increment RX, 

;get X coordinate. 

;Add 04, move along axis, 

;restore it. 

;Point RX to Y coordinate. 

;Get low data pointer, 

;subtract BF, neg if still 

;spaces, skip 2 if positive. 

;Neg, Jump back, more spaces 

;Set Q for marKs, 

;point to 07FO again. 

;IF above subtraction was o, 

;back to START mark output. 

;Else point to 07F2 = Y. 

; 
;Subtract 40 from previous 
; r·esu. l t, if nonzero, bacK 
;for more spaces, else reset 
;Q, point bacK to 07FOt 
; 
;and JUmp ahead to output 
;parameters. 



119 


MORSE PROGRAM 

;This section outputs the -speed and thresholds to the 
;graphics terminal at the top of the histogram. 

Add. Code Label Mnemonic Comments 
0370 60 OUPAR IRX ;00 in 07Fl = X offset 
0371 60 IRX ;BA in 07F2 = Y offset 
0372 FB BA LDI BA 
0374 73 STXD 
0375 F8 00 LDI 00 ; 
0377 73 STXD ;Point back to 07FO. 
0378 C4 NOP ;NOP~s to 037B inc. 
037C FB 1D LDI lD ;Output "GS" for· darK vector 
037E DA SEP A ; 
037F D4 02EO SUB XYOU1 ;Output coordinates for 
0382 D4 02F8 SUB XYOU2 ;first lettering position. 
0385 FB 1F LDI 1F ;Output "US" for alpha­
0387 DA SEP A ;numeric mode. 
0388 FB 02 LDI 02 ;Point RC to the start of 
038A BC PHI C ;the first heading stack 
03BB F8 BO LDI BO ;at 02BO. 
03BD AC PLO C ; 
038E D4 03B6 SUB HEAD ;Output first heading. 
0391 D4 01CE SUB RDOUT ;Output speed from RD. 
0394 FB B7 LDI B7 ;Point RC to second heading. 
0396 AC PLO C ; 
0397 D4 03B6 SUB HEAD ;Output second heading. 
039A 9E GHI E ;Move marK threshold to RF.1 
039B BF PHI F ; 
039C D4 01E2 SUB 2HOUT ;Output it as 2 hex digits. 
039F FB CB LDI CB ;Point RC to third heading. 
03A1 AC PLO C ; 
03A2 D4 03B6 SUB HEAD ;Output third heading. 
03A5 SE GLOE ;Put space threshold in RF.1 
03A6 BF PHI F ; 
03A7 D4 01E2 SUB 2HOUT ;Output it as 2 hex digits. 
03AA FB 01 LDI 01 ;Histogram finished, point 
03AC AA PLO A ;RA to routine for· por·t 1t 
03AD CO 04B8 LBR KCHK ;wait for Keyboard input. 
03BO 00 IDL ;IDL's to 03B5 inc. 
;This short subroutine outputs ASCII headings. Enter with 
;start of data stack in RCt returns when first 00 found. 
03B6 4C HEAD LDA C ;Get heading element, 
03B7 C6 LSNZ ; s~< ip 2 if nonzer·o. 
03B8 DS RETURN ;else return. 
03B9 00 IDL ; 
03BA DA SEP A ;Output heading and 
03BB 30 B6 BR HEAD ;Jump bacK for more. 
03BC 00 IDL ;IDL's to 03BF .inc. 



120 

MORSE PROGRAM 


;This is the heading data. Each stack ends with oo. 

Add. Code Char·ac ter Add. Code Character· 
02BO 53 s 02C9 20 space 
02B1 50 p 02CA 00 end 
02B2 45 E 02CB 20 space 
02B3 45 E 02CC 20 space 
02B4 44 D 02CD 20 space 
02B5 20 space 02CE 20 space 
02B6 00 end 02CF 53 s 
02B7 20 space 02DO 50 p 

02B8 20 space 02Dl 41 A 
02B9 20 space 02D2 4:3 c 
02BA 20 space 02D3 45 E 
02BB 4D M 02D4 20 space 
02BC 41 A 02D5 54 T 
02BD 52 R 02D6 48 H 
02BE 4B K 02D7 52 R 
02BF 20 space 02D8 45 E 
02CO 54 T 02D9 53 s 
02C1 48 H 02DA 48 H 
02C2 52 R 02DB 4F 0 
02C3 45 E 02DC 4C L 
02C4 5:3 s 02DD 44 D 
02C5 48 H 02DE 20 space 
02C6 4F 0 02DF 00 end 
02C7 4C L 
02C8 44 D 



121 


REFERENCES 

1. 	 Bedzyk, W.: "Machine Translation of Morse Code Using a 
Microprocessor", NTIS, AP-785-130, - June 1974, pp. 1-113. 

2. 	 Bell, E.: "Processing of the Manual Morse Signal Using 
Optimal Linear Filtering, Smoothing and Decoding", NTIS, 
AD-A019-493, Sept. 1975, pp. 1-156. 

3. 	 Blair, C.: "On Computer Transcription of Manual Morse", 
Journal of the Association for Computing Machinery, 
July 1959, Vol. 6, No. 3, pp. 429-442. 

4. 	 Day, R.: "Communication Aids for Cerebral Palsied 
Children'', M. Eng. Thesis, McMaster University, Hamilton, 
Ontario, Sept. 1976. 

5. 	 Freimer, M.; Gold, B.; Tritter, A.: "The Morse Distribu­
tion", IRE Transactions on Information Theory, March 
1959, pp. 25-31. 

6. 	 Gold, B.: "Machine Recognition of Hand-Sent Morse Code", 
IRE Transactions on Information Theory, March 1959, 
pp. 17-24. 

7. 	 Gonzales, C.; Vogler, R.: "Automatic Radiotelegraph 
Translator and Transcriber", Ham Radio, Nov. 1971, 
pp. 8-23. 

8. 	 Grappel, R.; Hemmenway, J.: "Add the 6800 Morse Keyer 
to Your Amateur Radio Station~, BYTE, Oct. 1976, 
pp. 30-35. 

9. 	 Guenther, J.: "Machine Recognition of Hand Sent Morse 
Code Using the PDP-12 Computer", NTIS, AD-786-492, 
Dec. 1973, pp. 1-153. 

10. 	Hickey, W.: "The Computer Versus Hand Sent Morse Code", 
BYTE, October 1976, pp. 12-17, 106. 



122 

11. 	McElwain, C.; Evens, M. : "The Degarbler - A Program for 
Correcting Machine Read Morse Code", Information and 
Control, 1962, Vol. 5, pp. 368-384. 

12. 	Reyer, S.; Steber, G.: "The Morse-A-Letter", Popular 
Electronics, Jan. 1977, pp. 37-43. 

13. 	Signetics Analog Data Manual, "Phase Locked Loops", 
1977, pp. 807-860. 

14. 	Smith-Vaniz, W.: Barrett, E.: "Morse to Teleprinter Code 
Converter", Electronics, July 1, 1957, pp. 154-158. 

15. 	Triggs, R.: "Morse Code Communication Aid", Chedoke Hos­
pital Internal Report, Hamilton, Ontario, Sept. 1979. 

16. 	User Manual for the CDP1802 COSMAC Microprocessor, RCA 
Corporation, 1976, pp. 1-115. 


	Structure Bookmarks

