MORSE CODE
COMMUNICATION AID
FOR

THE HANDICAPPED

MORSE CODE
COMMUNICATION AID
FOR

THE HANDICAPPED

by

E. G. CALLWAY, B. ENG.

A Project
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree

Master of Engineering

McMaster University

April 1981

MASTER OF ENGINEERING (1981) McMASTER UNIVERSITY
Department of Engineering Physics HAMILTON, ONTARIO.

TITLE: Morse Code Communication
Aid for the Handicapped

AUTHOR: E.G. Callway, B.Eng.

SUPERVISOR: Dr. Ralph Bloch

NO. OF PAGES 122, vi

ABSTRACT

A microprocessor driven display was built and prog-
rammed for the storage and reproduction of Bliss symbols.

An explanation is offered for the success of the symbol
language in teaching the handicapped.

The hardware was designed to be inexpensive enough
for classroom use, but still deliver adequate flexibility and
resolution. Due to the complexity and variety of the symbols
a method of data compaction was developed to reduce the
required storage space.

Initial tests are presented and suggestions are made

for continuing the work.

ii

ACKNOWLEDGEMENTS

The author would like to thank Dr. R. Bloch, Chedoke
Hospital, for his advice and guidance. Appreciation is also
expressed to Ted Bojanowski, Madeleine Harris, Ted Iler and
Tony Wallace for their continual advice and support.

Special thanks are due to Dr. J. Russell for the

interest he took in the project.

iii

TABLE OF CONTENTS

Page

CHAPTER I INTRODUCTION 1
1.0 Communication Aids for the Handicapped 1

1.1 The Morse Code as a Communication Aid 2

1.2 Previous Work and Basic Requirements 2

CHAPTER II THE MORSE CODE 4
2.0 Basic Description 4

2.1 Code Sample 5

2.2 Decoding 6

2.3 Code Characterization Displays 8

2.4 Decoder Functions 9

2.5 General Decision Strategies 13

2.6 Decision Problems and Approaches 14

CHAPTER III THE DECODING PROGRAM 20
3.0 Timing 20

3.1 Input 20

3.2 Histograms 21

3.3 Morse/ASCII Conversion 21

3.4 Slow Adaptability 22

3.5 Threshold Setting 22

3.6 Out of Range Correction 28

CHAPTER IV HARDWARE - AIMS AND DEVELOPMENT 30
4.0 Hardware Requirements 30

4.1 Patient Interface 30

4.2 Automatic Keyer 35

4.3 Detailed Keyer Operation 37

4.4 Footswitch/Keyer Results ‘ 40

4.5 Audio Input Board 40

4.6 Digital Input Board 46

4.7 Microprocessor System 48
CHAPTER V RESULTS AND CONCLUSIONS 51
5.0 Testing and Results 51

5.1 Trial Unit 53

5.2 Conclusions and Recommendations 53

iv

Page

APPENDICES
A Morse Code Characters and Program Commands 56
B Flowcharts 58
C Monitor Program 82
D Morse Decoding Program 98
REFERENCES 121

Figure

1.
2.
3.

5.

1
8.

10.
11.
12.
13.
14.
15.

LIST OF FIGURES

Histograms

Scatter Plot

Teletype Histogram
Tektronix Histogram
Threshold Histograms
Rancho Footswitch
Metal Footswitch
Wooden Footswitch
Keyer Schematic

Final Footswitch
Audio Input Schematic
PLL Tests

Digital Input Schematic
Development System
Trial Unit

vi

Page

10
11
12
23
33
33
36
38
41
42
45
47
49
54

CHAPTER I

INTRODUCTION

1.0 Communication Aids for the Handicapped

The inability to communicate with other people can
make life difficult and unrewarding. Since the most common
form of communication is speech, lack of speech can be seen
as a serious handicap.

Communication aids enable a person with a speech,
visual, auditory or motor disorder to communicate with other
people. Those with handicaps in these areas are often down-
graded, as a lack of words is unfairly equated with a lack
of ideas.

The purpose of this project was to provide a non-vocal
cerebral palsied person with a portable means of communi-
cation using Morse code. An appropriate review of cerebral
palsy can be found in Day (4). Briefly, it is a neurological
disorder, present at birth and nonincreasing, which causes wide-
spread motor disabilities. Its effecté vary from slight tre-
mors and weakness to a complete lack of control over voluntary
movements, including speech.

In this case, the subject was a young man confined to a

wheelchair and possessing extremely limited speech, but of

normal intelligence. He had some COnfrol over his feet and
was able to turn the pages of a book and type slowly with
them. For practical reasons of size and weight a typewriter
could not be permanently attached to his wheelchair. An
electronic keyboard with an eye-level display might have
worked, but it would have still required a ruggedized QWERTY
keyboard small enough to be unobtrusive, but large enough

to be worked with the feet. For use outdoors either unit
would be unsuitable as they could not be operated with a

shoe.

1.0 The Morse Code as a Communication Aid

It was decided to try the Morse code as a method of
communication. Unlike a typewriter, a single switch can be
used to send the whole code, thus solving the problems of
size and ruggedness. Morse code is fairly compact, with
common letters such as E or T being a single dot or dash,
while Z is much longer. This fortuitous arrangement is only
valid for English.

The main disadvantage is that most people do not under-
stand the code. It was felt that a simple and reliable deco-

ding device could be built using microprocessor technology.

1.2 Previous Work and Basic Requirements

Schemes for the automatic decoding of Morse code have

always been popular, but not necessarily cheap or effective.

Most of the research in this area is performed by amateur
radio operators and various military organizations, each

for their own purposes. Bell (2) presents the military view
with its aim of increased surveillance with less manpower.
For ham radio operators it becomes possible to communicate
more enjoyably be removing some of the hard work. Recently
there has been work on microprocessor based decoders, but
they tend to require large volumes of code for initiali-
zation (1) or require fairly good code (12). The first requi-
rement cannot be met due to the short conversations, and the
second because of the nature of the sender. It was felt that
a better algorithm could be developed for this use.

Unlike receiving, sending the code is fairly easy, and
in fact the subject learned to send it within one week. By
contrast, this author still cannot understand the code
without the aid of the device developed here!

The items generated by this project were a footswitch
interface to send the code, an adaptive software program to
interpret it, and recommendations for the hardware required

to produce a portable unit.

CHAPTER IT

THE MORSE CODE

2.0 Basic Description

Morse code is an internationally recognized binary
(on-0ff) coding scheme for the transmission of letters and
numbers. Although it was originally designed to be sent and
received by human operators, it can also be used with
mechanical or electronic devices.

Each character consists of a unique sequence of one to
six MARKS (on) separated by SPACES (off). The marks and
spaces, or ELEMENTS, have several different lengths. Marks
of time duration 1 are called DOTS, and those of lengths 3
are DASHES, SYMBOL SPACES ‘of length 1 are used inside a
letter, CHARACTER SPACES of length 3 separate characters,
and WORD SPACES of duration 7 divide words.

The absolute timing of the elements does not matter as
long as they maintain the 1:3:7 ratios. The dot is usually
designated as the speed determining element. By not fixing
the speed, operators can work from 5 to 60 words per minute
(Guenther,9), often limited by skill of the receiver.

Machine to machine transfers can proceed at higher rates.

Grappel and Hemenway (8) state that the reciprocal of

the speed in words per minute corresponds roughly to the
dot length in seconds for normal text. Thus, at an average
speed of 10 words per minute, the dots and symbol spaces
would be 0.1 second long.

Bell (2) was unable to find a standard value for the
bandwidth of Morse code, but used 3 times the reciprocal of
the dot length as a working value. This figure is important
when designing analog input circuitry to reduce noise while
retaining information. The bandwidth of machine code could
be rigorously calculated, but hand sent code is too depen-

dent on human factors for meaningful results.

2.1 Code Sample

To send a message, such as "I am hot", it is neces-
sary to find the correct code for each letter, and then
join the individual codes with the correct spaces. A table
of the various character codes is given in Appendix A.

There is no provision for upper or lower case in the code.

Individual codes:

Complete message:

T a m h o = (text)
. . . - - - s w4 - - (code)
11 1 3 3 3 1111 333 3 (mark times)

1 7 1 3 7 111 3 11 3 (space times)

It can be seen that information is contained in both the

marks and spaces.

2.2 Decoding

To decode a message it is first necessary to take each
element and decide its relative length: 1, 3 or 7. For well
sent, low noise code, the wide ratios (1:3 and 3:7) make
this an easy task, even for a mediocre operator or simple
machine.

Because the spaces clearly define the beginning and
end of letters and words, it merely remains to look up the
individual letter codes and produce a copy of the message.

The above tasks can be implemented easily to produce
a simple decoder at low cost. The Morse-A-Letter (11) is an
example of such a device, available as a kit for $150.

Unfortunately, Mofse code is rarely received under
ideal conditions. Human operators cannot exactly duplicate
the 1:3:7 ratios, and during a long message both the ratios
and overall speed will vary. Bell (2), Guenther (9), Freimar
(5) and other detail some of these changes, including the
variations which may occur inside a single character.

For most applications the signal has been received via
a radio link, and is further corrupted by noise and fading.

For reliable decoding of Morse code, the machine must

be adaptive in some way. It may only adjust its overall

humber of
arks

w
(8]
1

15

| "
0 Ti o] I o o e
a0 ty €0 icC 153 150 I(lO 240 Duration
’ (msecc)

a) Bell, Reference 2.

nyRAGEf’D AVERAGE = 3.81
’

time
—_—
A ——

l[lHW‘TITm)

MARK

Ll

——
+

"“AVERAGE"
OCCURRENCE

.

AVERAGE =4.97

SPACE

AVERAGE =1.13
j

b) Hickey, Reference 10.

Figure 1. Histograms

speed, such as the Automatic Fist Follower (7), it may com-
pensate for deviations in the 1:3:7 ratios (3), or it may
even perform some textual analysis based on a rudimentary

knowledge of English (10).

2.3 Code Characterization Displays

In order to analyze a Morse signal, most researchers
have found it helpful to have a graphical representation of
the main characteristics.

Hickey (10) and Bell (2) used histograms, shown in
Figure 1. The horizontal axis is time, and the positive
vertical axis shows the number of marks with that duration.
The negative vertical axis displays the space information,
inverted for clarity. In both cases, some of the important

characteristics of Morse code are shown:

1. There are more dots than dashes, and more symbol spaces
than character or word spaces.

2. The dot cluster is narrow with an obvious midpoint.

3. The dash cluster is wide, and the midpoint may not be
clearly defined (flat top, raéher than peak) .

4. The symbol space cluster is as well-defined as the dot
cluster, with nearly the same midpoint.

Sis The character spaces are poorly grouped.

6. The word spaces are not grouped at all.

Point 1 is inherent in any Morse transmission of text,

but 2 to 6 are peculiar to hand sent code. It can be seen that
the 1:3:7 ratios are not exactly followed.

Guenther (9) used scatter distribution plots which are
able to show the changes when one element follows another.
For the example shown in Figure 2, it can be seen that
dashes following word or character spaces (groups D and E)
are longer than dashes after symbol spaces (group F). This
particular type of information cannot be easily seen on the
histogram displays. The frequency of occurence information
is slightly obscured by the scatter plots as it changes
from height to dot density.

For this project, the histogram method was chosen as it
offers a good display of information with minimal hardware
and software requirements. The output was first presented
on a Teletype printer (Figure 3), but the program was
changed to use a Tektronix graphics terminal (Figure 4).

This gave a higher quality display and much faster output.

2.4 Decoder Functions

Any decoding device must perform several basic
functions:
1. Separate the marks into dots and dashes.
This is the least difficult operation as the dots and
dashes are usually well sent, preserving the 1:3 ratio or

even making it larger (3).

0.6

o
il
w
o
=z
(o
uv
W o
w

0.3

SPACE DURATION
0.2

Figure 2.

00T & DASH (ALL)

RECORDING SESSION 2

10

o . @ A 9 W .
e -
. %
. .
n 2lme e
or ,’ ‘e
- e v s
2 o .
== .,
- 14 % e
s .
- s .
epess . .
— - @,
P "% eg
- =l L= e
e .6 X" s
= ~eg
= - T, .
=i £S5 % @
3 .
=4 22l * o e 1
< e wim (ST ™ &
i -3
- o & e .
- S « a we
w5 il 0 Y
- = et ..
’Q.. - &% & Ll ° P
— F R P N
o *Tey 3 - .
c o T
7 . " £
= . K .
‘r. . ’--‘. -
. 8 ety
- - >
. . ®
Loty
.
-1 ® - * .n.- M %
%
- - . e * -
... ° -
.
—d -
.
- .
4 .
-
-
.
- -
- T "
L .
-
.
=
<
T v v ¥ T [v v v v v | LN B

0.0 0.1 0.2 0.3 0.4 0.5
PULSE DURATICON (SECGNDS)

Scatter Plot. (Guenther, Ref. 9)

L
0.6

11

M Mark Data
x S Space Data

Occurences

Length

S S H H

x ‘n wn X) 0

x x x 5 o A
v nwn n n n

!(.3 b VMVDEIINDDODILIDDRIDIIDODDINIXE

O—=NMINOVrVEPCDVAWLOO—-NOTVNIOFDeCOLVAWLO~NMmeNOooe @O0 Wik

0123456789ABCDEFOI23456189ABCDEFOI23A56789ABCDEF0123456789ABCDEF

Figure 3. Teletype Histogram

SPEED 8236 MARK THRESHOLD 87 SPACE THRESHOLD ©9 Computed Parameters

Length

Occurences

LD wn
o e
-)
° |
-
(&}
O -
oeJo
0=
A0-
.D.
£0-
Y
[y DU

ST ?e?e?éeqqgme;zsezesnecosre1zz4¢7esne¢os

Character Spaces Word Spaces

““~Symbol Spaces

MO ODODOWRNNASGLINA—E® O—=NNWIAUNNA QWD DOOMM

Fig. 4 Annotated Tektronix Histogram

i

13

2 Separate the spaces into symbol, character and word.

The spaces are never sent with as much care as the
marks. Blair (3) and Guenther (9) agree that a more comp-
licated decision process is needed for the spaces.

3. Based on the character spaces which have been found,
divide the data stream into characters, decode and
output them.

If the character spaces have been correctly found, and
if the marks were properly identified, the final conversion
from Morse to text is a simple operation using a look-up
table. When the above processes produce an invalid charac-
ter, there is a choice between printing an error message,
and reassigning the various elements using a modified deci-
sion technique in an attempt to find a valid character.

This correction procéss may be quite involved in the
larger devices (11).

4. Based on the word spaces, output spaces between words.
Although word spaces are the most variable type of

space, their identification is not critical, as a missing

space between words rarely causes a loss of understanding.

2.5 General Decision Strategies

Hickey (10) noted that there are three basic approaches

to the manual Morse problem:

1. Macro: You can accumulate statistical information on an

14

operator and use this data to make decoding decisions.
2. Micro: You can make your decisions on a mark to mark
basis, sometimes called the "idiot dot" method.
3. Hybrid: You can compromise these two methods and come up
with a hybrid algorithm.
Method 1 requires a memory large enough to contain all
the timing information in a message, but should give the
best results. Method 2 requires very little computer time
or space, but is the least reliable. Successful devices,
such as MAUDE (6), use the hybrid approach.
A common method is to keep an average speed parameter
which varies slowly, and an average dot time which uses
only the last few characters. The decision thresholds are
calculated from empirical formulas using the dot average.
The short "time constant" on the dot average allows trac-
king of fast speed changes, while the slower responding

speed parameter inhibits locking on t.. noise (8).

2.6 Decision Problems and Approaches

1. Decoding Delays:

The methods which build up a large body statistical
information about an operator require a large sample of
code to be effective, thus delaying decoding. Guenther (9)
tried to quicken the process by decoding initially with one

set of rules, then switching to a better set when more code

13

had been received.

For use as a conversational communication aid, the
long initialization times of most methods are unacceptable.
Since the code will be sent very slowly (possibly 1 w.p.m.)
it is important to have each letter decoded as quickly as
possible.

2. Non-Code Activation:

Due to the nature of the sender, there are periods
when the code switch is involuntarily activated. If some of
the simpler averaging techniques are used, after several
non-code "words", the program will have locked on to that
style, losing its memory of the sender's true characteristics.
This is similar to the problems caused by noise and
interference in the radio case, and is why "idiot dot"
strategies fail.

Since a non-code sequence is obvious to an observer,
(because of the sender's physical involvement) no attempt
was made to block decoding during one. It would require a
complex program to have the computer recognize invalid
input. The decoding algorithm was deéigned so that inputs
which are not similar to previously received code do not
affect the decoding thresholds unless prolonged.

3s Space Problems:
Problems ariée when there is poor distinction between

the symbol and character spaces. If a long group of marks

16

is received with no obvious character space in the string,
a good receiver can separate the string into characters
using his knowledge of valid letter codes, combined with
his expectations based on context.

Machines find this difficult unless they contain rules
and vocabulary from the language being decoded. An easier
method is to mix timing and simple language rules such as
in the MAUDE decoder. Rules such as "The longest of 6 suc-
cessive spaces is almost always a character space" allowed
the machine to divide a string of poor code into letters.

If the division resulted in an invalid character, a modified
set of rules was tried. (6)

The bad grouping of the various space types not only
causes incorrect decoding (due purely to the bad sending),
but also makes it difficult to calculate best values for
the space thresholds, compounding the errors. In this pro-
gram the threshold setting process does disregard poorly
grouped information as mentioned above, but in addition the
initially calculated symbol/character threshold is averaged
with the dot/dash threshold, which is more reliable. For
perfectly sent code these two thresholds should be equal.

4. Correction Routines:

McElwain and Evens (l11l) reported good success with a

"degarbling" program to correct machine received code. It

was given a vocabulary list of every woréd which might be

17

used in the message, along with the received, partially
decoded text, and some timing information. Based on this
it could correct many of the errors in the received text.
This would be useful in a military situation where the con-
text is unknown but the vocabulary prescribed. It allows
large volumes of readable text to be produced with little
operator attention.

In ordinary conversation the vocabulary is large, but
the context is known - such as replies to questions. It was
found in preliminary tests that a reply never had to be
completely spelled out, as the listener could correctly
guess the full statement after a few letters or words. For
this reason no error correction routines were included in
this design. This works well in a conversational environ-

ment, but might be inadequate for other uses.

5. Effects of Incorrect Decisions:

Most of the schemes examined use variations of the
following method. The element being processed (on line
or from memory) is examined and a decision made as to its
nature (dot/dash, symbol/character/wofd). This decision is
used as part of the character currently being assembled for
decoding. If the element was classified incorrectly, the
current character will be incorrect. Error correction

schemes may help if an invalid character was produced.

18

One incorrect character is not a problem, but each
element is then used to update a running average, as in:
DOT AVG. = DOT AVG. + NEW DOT/8 - DOT AVG./8
DASH AVG. = DASH AVG. + NEW DASH/8 - DASH AVG./8
(This keeps running averages of the typical dot and dash,
with each new element given a weight of 0.125.)

The various averages are used to calculate the thres-
holds, as in:

MARK AVG. = DOT AVG./4 + DASH AVG./2

(For perfectly weighted 1:3 code, this produces a threshold
at 1.75, an empirically better value than value 2, which might
have been expected.) (after 1)

Unfortunately, any incorrectly classified element is
averaged into the wrong place.

The effect of this is that a period of bad code or
noise is not only incorrectly decoded (which may be unavoi-
dable), but is also used to calculate incorrect thresholds
which prolong decoding errors into periods of good code.

Most of the element classification errors occur when
an element is received with a timing value near a threshold
value. These elements are poorly grouped with respect to
the average of their intended value. If these elements are
included in the average calculations, even if they are cor-

rectly classified, poor threshold values must result.

19

Elements near present threshold values cannot however
be explicitly and permanently excluded from calculations as
they may be important if the operator has changed speed.

The decoding algorithm outlined in the next chapter
tries to use only well-grouped data, ignoring data which

may represent noise or odd code.

CHAPTER III

THE DECODING PROGRAM

Some of the main features of this program are:
3.0 Timing

A software timer is used instead of external counters.
This gives maximum adaptability and minimizes the hardware
requirements. At the slow code speeds anticipated, the non-
timing portions of the program do not significantly distort
the timing, so the delays through various paths were not
equalized, but ignored. A single speed parameter is used,
with an estimated useful range of 300 to 1.

All timing in the program is in the arbitrary, dyna-

mically variable units determined by the speed parameter.

3.1 Input

The code input is sampled under program control, ins-
tead of using an interrupt. It was felt that an interrupt
based system was too susceptible to noise, as it must
respond to every input change, however short. When fully
adapted to a code style, an average length dot is sampled
8 times, a dash 24 times. While adapting, the program will

decode correctly if a dot is sampled from 2 to 20 times.

20

21

The program will lock on to code over a much wider range.

3.2 Histograms

As each mark or space finishes, its length (in arbit-
rary timing parameter units) is stored in a histogram type
table. There are separate tables for marks and spaces. The
tables allow for a length from 1 to 64 timing units, with a
maximum count in each entry bin of 64 occurences. When any
bin in either the mark or space table reaches 64 counts,
the data in both tables is divided by 2. This prevents
software overflows and allows new data to slowly take over
from the old. The histograms are smoothed with a moving
window and used for threshold calculations.

The smoothed data can be displayed on a graphics ter-
minal as an actual histogram. This is useful for checking
the overall quality of the code and the validity of the

threshold setting algorithm.

3.3 Morse/ASCII Conversion

As each element comes in, it is shifted into a charac-
ter holding register) using "0" for dots and "1" for
dashes. When a character space is found, the data in the
character holding register is used directly as a memory
address pointing to the equivalent ASCII in a look-up table.
This method is simple and fast while requiring a minimum of

space for the table.

22

Two 6 mark characters produce ambiguous addresses and

are dealt with separately.

If it is desired to put out more than one character
per Morse input, such as a "CR/LF", then a special case

subroutine must be written.

3.4, Slow Adaptability

After the thresholding process has decided dot or dash
each mark time is compared to 8 or 24 respectively. If the
time was short, the overall speed is increased by a small
increment, and vice versa. This action slowly forces the
program into the correct speed range. As it works slowly,
noise or bad code will not really affect the speed unless
prolonged for dozens of marks, an unlikely event. Due to
its poor quality, the space data is not used.

Initially this was the only adaptation mechanism in
the program, but it could not be made fast-responding with-
out the program becoming unstable during bad code. It also

required perfect 1:3 ratio code, which is rarely sent.

35 Threshold Setting

Figure 4 shows a typical histogram and 5 shows an
idealized version. If point 7 can be reliably found,

then the critical dot/dash and element/character

23

Computed
Threshold

Occurences

a) Marks

1 1 Computed
Threshold

Occurences

b) Spaces

Figure 5. Threshold Histograms.

24

decisions can be properly made.

Blair (3) used histogram data, by assuming an initial
threshold value, then calculating an empirical "goodness
of separation" based on various statistical parameters.

The threshold estimate was moved until the "goodness of
separation" was maximized. This method requires a lot of
computation and would not be suitable for real time app-
lication, but the basic idea is excellent.

The stylized histogram in Figure 5 provides the
basis for the method chosen. It was found that code from
different sources always had similarly shaped histograms.

The most important similarities are that the dot peak is
consistently higher than the dash peak, and the symbol

space peak higher than the character space peak. The work
space peak is not well-defined and often cannot be found.
The "noise level" between peaks is lower than the peaks,

and consists of elements which were poorly timed. The peaks
are shown with flat tops, but this is not essential.

To find the threshold (dot/dash or symbol/character):

L. Find point 1: '

An entire histogram is searched for the largest value,
point 1. If two points have this wvalue (1 and 1'), then the
rightmost one is taken because it should be closer to the
threshold. This largest peak is always the dot or symbol

space peak. The position and value of point 1 are noted.

25

2.5 Find point 2:

The histogram is searched from point 1 to the right
for the data point which is 1/2 or less than the value at
point 1. If this point does not occur before the dash peak
the code is of very bad quality and cannot be decoded. Only
its position is noted, as its value was used to find it.

3. Find point 3:

The first estimate of the threshold is found by calcu-
lating point 3, which is the position as far to the right of
point 2 as point 2 is to the right of point 1. Its value
is ignored, because it contains the bad data that this met-
hod was designed to avoid.

4. Find point 4:

The histogram is now searched for the largest data
value from point 3 to the end. This will be the dash or
character peak. . If two bins contain this value the leftmost
one is chosen as this will be closer to the threshold. The
position and value are noted.

5. Find point 5:

The histogram is searched froﬁ point 4 to the left for
the first bin whose value is 1/2 or less than that of point
4. If the code is very bad the noise floor could be higher
than this 1/2 value, which would extend the search to the left
side of the first peak. To avoid this, the search will stop

at point 3, even if the desired value was not found. Code

26

that bad would be unreadable anyway, but a good threshold
value must still be chosen to aid the slow adaptation.
Only the position of this point is used.

6. Find point 6:

The second estimate of the threshold is found by cal-
culating point 6, which is as far to the left of point 5 as
point 5 is to the left of point 4. Just the position is
taken as the value contains questionable data.

T v Find point 7:

Point 7 is the arithmetic average of points 3 and 6.
This is the estimate of the threshold. If either line 1-2-3
or 4-5-6 has a shallow slope it is possible for point 3 to
be to the right of point 6. This does not affect the choice
of point 7, as it just means that 1-2-3 crosses 4-5-6 above

rather than below the horizontal axis.

8.8. Space Correction:

The above seven operations are performed separately
for the mark and space data, so that the only tie between
the thresholds should be the overall program speed. This
allows for different distributions of the marks and spaces.
It also is useful for very slow code (less than 1 w.p.m.)
so that long spaces can be used without long marks.

It was found however that the space data is never as
well-grouped as the mark data. This becomes a problem when

small code samples are obtained, as it may take a long time

27

to build up the space peaks properly. For this reason the
space threshold estimate obtained from steps 1 to 7 is
averaged with the value for the mark threshoid to obtain
the final space value. It was found that this helped
decoding in almost all cases.

9. Character/Word Threshold:

The space between words in regular Morse code is 7 dot
times long. These word spaces should appear as a third peak
in the space histogram, but rarely do, so a continuation
of the above methods cannot be used to find it.

The character/word threshold is set at 3.5 times the
symbol/character threshold, or 7 dot times (assuming a sym-
bol/character value of 2 dot times). Normal code would give
a value between 3 and 7, but it was found that for this
application the character spaces were as long as ordinary
word spaces. This operation is not critical for conversa-
tional use.

The threshold setting method has been shown to find a
good threshold value. No math other than integer addition,
subtraction, and division by shifting'is used, giving a
high speed. It can be seen that a simple curve fit is
actually done to find the horizontal position of the inter-
section of lines 1-2-3 and 4-5-6, which should be at the
low point between the two distributions. Only very basic

assumptions are made about the shape of the histograms,

28

without fixing the time ratios at 1:3 or the valley at a
certain distance between peaks. Any time bins which do not
have counts to a value of at least 50% of the closest peak
are automatically excluded from the calculations, as are
all bins on the far sides of the peaks which also do not
contain information about the threshold position.

The most important objective has been achieved, and
that is any elements which were incorrectly classified when
first received are not averaged into the wrong place to
perpetuate the initial error. Instead they are put into the
histogram where they belong in time-relation to previously
received elements. If they were part of a legitimate speed
change, new peaks will form in the correct place to give a
correct threshold, and if they were errors of low occurence
they will be completely ignored.

If reasonable quality code is received, a useable
threshold is usually found after the receipt of less than a

dozen marks, giving the required fast initialization time.

3.6 Out of Range Correction

If the program is running far too quickly, then the
dashes will time out to the maximum of 64, rather than the
ideal 24. If a mark of length 64 is detected, the timing
constant is doubled (to slow the program and halve the

counts) and the program is restarted with clear histograms.

29

This allows one to start without having to make an
initial guess at the code speed. The program will restart
on each mark until the timing constant is within range.
This mechanism can be fooled by holding down a key to pro-
duce a long mark, so an automatic keyer should be used
which cannot produce marks longer than those required.
Spaces are not checked in this manner as a long space could
be just a pause in sending, not a change of speed.

If the program is far too slow, a mark may only be
sampled once. There is no explicit mechanism to deal with
this case, as a typical key bounce would also be sampled
once and a speed halving mechanism (as above) would cause
the program to lock onto that noise. The normal threshold
setting process can deal with this condition, for if all
the marks go into the 1 bin rather than being spread around
8 and 24, the histogram fiils up and empties quickly. This
lets the slow adaptation and threshold mechanisms function
effectively by quickly removing data stored at an earlier
speed. This is a slower correction than for the opposite
case above, but it is stable unless the number of noise marks
greatly exceeds the number of true marks. Code of such
bad quality is not expected in this application.

Flowcharts are given in Appendix B and the assembled

code is in Appendix D.

CHAPTER IV

HARDWARE - AIMS AND DEVELOPMENT

4.0 Hardware Requirements

The hardware falls into three main categories:

1. Patient Interface - physical movement to audible code
2. Digital Interface - audio signal to digital input
3. Processor and Display - digital input to visible letters

The ideal system would consist of a single switch con-
nected directly to an input port on a one chip microproces-
sor. An output port would drive a speaker with clean code
for audio feedback, while another drove a display with the
reconstructed characters. ' Very little other hardware would
be required, asall the timing and switch debouncing would
be performed in software. The computer and the display
would be lightweight and low powered. The system used for
development was more complex, but at all stages decisions

were made with the above criteria in mind.

4.1 Patient Interface

In any manual Morse system a key is required to trans-
late the operator's movements into a string of dots and

dashes, providing an electrical signal for transmission and

30

31

an audible one for the operator. The audio feedback may
come from a directly connected buzzer, monitoring of the
transmitted signal, or the mechanical action of the key.
Keys vary from a simple switch to dual switches with mech-
anisms for automatically timing perfect dots, dashes

and spaces,

Normally code is sent with the hand, but in this case
the subject only had reliable control over his right foot,
so this point was chosen for the interface. During
the largest muscle spasms it was unuseable, but good action
was available at most times.

At an early point in the project, it was decided not to
use a direct electrical connection between the subject and
the processor. In its place the audio signal from the
keyer was picked up by a microphone and conditioned for use
by the computer. This appioach allowed all test sessions to
be recorded on a cassette recorder in any location suitable
to the subject. Whether the code was "live", taped in the
subject's home, or from a shortwave radio, it could all be
processed the same way and stored easily for reevaluation.
It also solved the problem of electrically isolating the
subject from the equipment, which was line-powered except
for the keyer.

One final benefit was that verbal comments on the pro-

gress of the session were recorded at the appropriate times

3.2

and were thus more valuable than written notes. This was
especially useful in analyzing the earlier sessions, as the
character sent could rarely be recognized but was often
framed by comments which described the true intent and the
mistake.

The first key to be tried was a "Rancho"l footswitch
switch connected directly to a 1l2-velt battery and a
Mallory Sonalert (Figure 6). The Sonalert was chosen because
of its low power consumption, high efficiency and sine wave
audio output. The last quality was found to be useful in
triggering the phase locked loop detector described below.
Ordinary buzzer sources produced complex audio waveforms
which were hard to detect against background noise.

The switch could be placed in a loose-fitting shoe
or sandal and was cosmetically the most pleasing, but it had
a large amount of contact bounce. This was not a problem in
gait studies due to the higher pressure available for con-
tact closure, but the effect was intolerable for machine
read Morse code.

It became apparent that the subject was making a
valiant effort to send correct code, but he could not time
out the dots and dashes properly with the single switch.

It was decided that a dual action switch was needed, with

lDeveloped at Rancho Los Amigos for gait studies

Figure 6.

Figure 7.

Rancho Footswitch

Metal Footswitch.

2.3

34

one position for dots and another for dashes. The author
designed and built the footswitch in Figure 7. The metal
loop enclosed the big toe of the right foot and pivoted
in a similar way. Two microswitches sensed motion up or
down from the rest position to trigger a dash or dot
respectively. This orientation was chosen as the subject
could press down more easily and more dots are used than
dashes. The restoring force from each direction could be
varied independently by changing the microswitches.

To complement this, a keyer was designed by Tony
Wallace2 with two separate inputs which would result in
an audio tone of dot or dash length when activated.

Further trials were conducted with this equipment and
new problems appeared. The footswitch required the foot to
remain motionless while the toe pivoted up and down. The
subject however found it eésier to curl his toes down and
push his foot up and down, which did not activate the
switch properly. The switch also had to be flexible 1like
the Rancho switch or else much stronger, as it was easily
damaged.

The keyer had no automatic space delays, so although
perfect length marks were being sent, a dot and dash could
be sent simultaneously. Holding a switch down produced one
mark, but another often appeared on release due to contact

bounce. The square wave oscillator and small speaker pro-

2 : g
Electronic Technologist, Chedoke Rehabilitation Centre

35

duced an excellent signal for the ear, but it was not
recognized over background noise by the equipment. The
length of the tones, and hence the overall speed, could not
be easily varied.

Another footswitch was designed and constructed.
(Figure 8) Two microswitches were mounted into the wooden
frame and activated by pressing the clear plastic cover plates.

This design was more rugged and easier to activate.

4.2 Automatic Keyer

The author designed and built a fully automatic keyer
which can send perfect dots or dashes, but with the addi-
tion of a perfect symbol space between them. If the foot-
switch is held down the keyer will produce a string of dots
and spaces. If it is then suddenly pushed up, the dot in pro-
gress is finished, the symbol space timed out, and the
switches sampled. If the dash switch is still activated, a
dash is begun and the switch can then be released. The
dashes are also auto-repeating if required.

There is a semi-automatic mode in which a switch has
to be released and reactivated before a mark is repeated,
although the minimum space timing is still produced.

In the manual mode either switch activates the tane

for as long as it is closed with no automatic timing.

Figure 9.

Wooden Footswitch.

36

37

Since the design is fully synchronous without using
monostables, the speed can be varied over a wide range with
all timings (dot, dash, space) in the correct ratio. The
Sonalert was used again for the advantages outlined above.
The unit was built with CMOS technology and has a quiescent
power drain of microwatts. For this reason and to simplify
operation no power switch was included. The battery can be

from 4 to 9 volts with no change in operation.

4.3 Detailed Keyer Operation

In the manual mode either switch can directly activate

the output through ICIa,D3 and Ql. The trigger signal to
the timing circuits is shorted to ground through D1 and
SWlb.
In the automatic mode IC6 is the timing oscillator
which sets the code rate.. IC5 is a decade counter with 10
activehgghciecoded outputs, clocked by IC6. If no switches
have been closed:
1. IC5 is in the "0" state, closing the trigger sampler
formed by IClb and IClc.
2. IC3a is off turning off IC6, the clock.
3. IC3b is off, turning off the output.
When a switch is closed, the trigger signal gated
through IClb and IClc:

1. Sets IC3a to turn on IC6 and start the clock.

+ “SPEED"
" R1 o
DOT”
s 5t K : e | ~5R8
+ Q “SEMI- 10n
i ¢ B 7 (V7Y SAT) LM YOS [y 37
> 100n SWia's o3l s 820k
C RC |,
2 R
| ta . 2 AST 6 aks
n PC 3«
+ af3
“DASH"” R2 F) W S
100k =
! 9 +
J2 C2 a[—-—J v D3 sonalert
>_T100n : . 02 R7yOLUME "
Q Pt o +
3‘ 3bj (red) Yo
RS
22k R8 1k
at
RE —orL
1C | + | Gnd . 100 J3 KEY
1,2 CD4O11 |14 | 7 Lo T'l()n r(ouT
3,4 CDLO13| 14 v

7
5 CD4017|16| 8
7

i +.
L-“AA’T'L +_l£s _lg _JQB SW1 in "AUTO" position

6 CD4LO47| 14 L
cells —= — iteh,
D1-3 1N914 T ’l;ua ’FOn ’FOn There is no power switch
D4 red led B
Q1 2N2222

Figure 9. Keyer Schematic

8¢

39

2n Sets IC3b to turn on the output through D2 and Ql.

3. Clocks IC4a to latch the input - 1 for dash, 0 for dot.
Because the input is latched, a change in the switches will
not change the timing.

IC2a, b and c select the count from IC5 which will stop
the output, based on the switch latched in IC4a. A dot is
stopped by the "1" count, a dash is stopped by the "3"
count, giving the correct timing.

Using a dot as an example:

1s The output is on during the "O" count after triggering
This is one clock cycle long.

o The rising edge of the "1" count, gated by IC2a, b and
c, clocks IC3b to the zero state, turning off the output
and ending the dot.

3. During the "1" count, the output is off and the input is
locked out. This ines the required symbol space.

4. One clock cycle later, the falling edge of the "1" count
clocks IC3a to the zero state, which turns off the clock
and resets IC5 to the "0" state.

5. As IC5 is reset to "0" the switch sampler of ICla and b
opens again to check the switches, ending the cycle.

The dash sequence is identical, except the "3" count
is used instead of the "1" count.

In the semi-automatic mode, the signal which ends the

mark also clocks IC4b to the "1" state. The trigger signal

40

is then grounded out through the Q output and Dl1. When both
keys have been released, IC4b is reset through ICld. The
effect of this is that a switch must have been released
after the completion of the mark (i.e. during the symbol

space or later) and then reclosed to send another mark.

4.4 Footswitch/Keyer Results

Sequences such as "dot dash dot" (R) became "down up
down" with little regard for timing. The only requirement
was that a switch had to be held until the mark began, and
the switch for the next mark had to be activated (or the
last one released) by the time the previous symbol space
was finished. Due to the very slow speeds available and the
fact that the switches were locked out when not being sam-
pled, good "noise immunity" from involuntary movements was
achieved.

This equipment was tried and the only improvements
needed were a reorientation and height adjustment of the
upper switch, but its overall performance was finally good
enough to test the software.

A final footswitch was built incorporating the needed

adjustments ((Figure 10) and it performed satisfactorily.

4.5 Audio Input Board

The basis of this circuit, shown in Figure 11, is IC3,

a phase locked loop tone detector. This approach was chosen

41

Figure 10. Final Footswitch (on wheelchair mounting).

I

42

C3 10p C6 4p7
R2 M
&, o C2 R1 . R6 3M3
MIC 50n 10k GAIN ——AANA—
8

,: o1 L)|
> 10nT
GC L‘

K

R17

LEVEL"
(internal

® 500k

Figure 11.

Audio Input Schematic

RN
270R
/
“DETECTOR" d*cn
(yellow) 120R “T 6us
decoded - +5
tone
“LEVEL" (red)
%5 D6
41 mic
D3 SW1 v
C13 R22 > SELECT
100n 390R ewt 4 Rep aux
3 3 AN
:{ & 100k J2 “AUX”
: L R21
“TUNE" “i50n 4700]
& 311 5 12NN931TQ bOt
“EXT 6v >'—>|'j_—‘—|'_‘+ +5 o
LJ3 c18 - power to digital board D6,7 led
AC/DC 220u - : .
h T -use only if J6 pin5 D8 1N4004
is unpowered 1C1 LM 3900
I1C2 4N 26
IC3 LM567

43

over simple amplitude detection as it gives excellent
rejection of background noise. As outlined in reference 13,
there are design tradeoffs involving detection bandwidth,
speed of response, @and noise immunity.

Switch SW1 selects a high gain microphone input or a
direct input for tape playback. Gain control R5b and D3, D6
form a nonlinear input network to aid noise rejection. At
low gain levels (large inputs) the signal must overcome the
forward voltage drop on the diodes, so low level noise is
partially inhibited. D6 was also intended to function as
a level indicator, but the signal required to activate it
was too large.

R22 and D4-5 clip any input to 1 volt peak to peak. If
larger signals are allowed IC3 tends to detect harmonics of
low frequency signals. Cl5 and R23-24 determine the centre
detection frequency, allowing tuning from 700 Hz to 3000 Hz.
Cl4 affects detection bandwidth and loop response time,
while Cl6 is part of a filter on the output switch. These
two capacitors were varied considerably from design values
to optimize switching times and dropout rejection. R25-26
add some ~hysterisis to the output, and Cl7 increases this
feedback during switching transitions.

IC1-2 are an AGC (automatic gain control) amplifier
for microphone inputs. ICla provides a gain of 100, with

3db rolloffs at 300 Hz (Rl1l, C2) and 16 KHz (R2, C3). OQl and

44

R3 are the variable gain attenuator necessary for AGC
action. IClb is the amplifier inside the AGC loop, and it
also lowers the upper 3db point to 10 KHz. The external gain
control varies the gain of this section from 27 to 150,
exclusive of the attenuator. It may seem odd to have this
control inside the loop, but it limits the maximum gain for
low level signals when low gain is selected. Combined with
the nonlinear network of R5b, D3, D6, at low gain levels
low level signals are not well amplified by IClb and are
further rejected at the nonlinear network. By reducing
these unwanted signals IC3 performs more reliably. High
gain is available when required, but it should only be

used in quiet surroundings.

D1-2 and C9-10 form a voltage doubler for AGC detec-
tion. Attack time is approximately 20ms (R11+R13, C1l0) and
decay time 15s (R14, Cl0). IClc adds a dc gain of 2 to the
AGC control signal.

IC2 gates the AGC signal to Cl0 so that it is only
increased to lower the gain when a tone has been detected
by IC3. This stops high room noise from lowering the gain
of the system and relates it more closely to the level of
the desired signal.

Tests were done in a noisy room (fan noise) using the
Sonalert Keyer and a microphone pickup several feet away.

As Figure 12 shows, good digital signals were produced for

Figure 12. Phase Locked Loop Tests.

a) High ambient noise (short space, long mark)

b) Low ambient noise (long space, long mark)

46

both low and high noise inputs.

For tracking of noisier or faster code, one could add
a bandpass filter in front of the microphone amplifier with
its tuning coupled to the phase locked loop. This would
greatly increase noise rejection and allow other time cons-

tants to be relaxed for better tracking of fast code.

4.6 Digital Input Board

This is a simple circuit (Figure 13) to condition the
detected tone from the audio board and allow the direct use
of single or double keys.

The three input circuits are identical and require a
switch closure to ground for a mark. R25 is a pullup resis-
tor and R26, C25 form a low pass filter with a cutoff near
70 Hz to reduce noise from IC3 or external keys. R27-28 and
IC4 form a Schmitt triggef to square the signal for digital
use. D10-11 give a visual indication of external switch
activation.

IC5-6 combine the three possible inputs into two data
lines. Pin 1 is high for a tone mark or the dot switch and
Pin 2 is high for the dash switch. Both pins high indicates
an error. SW2 informs the software whether a single or
double switch is being used. Pins 1, 2 and 4 connect to
data lines 0, 1 and 2 respectively on an input port on the

microprocessor. The dual key and SW2 sense software was not

+5 R28

output
R255 R R2T AN 16
decoded 2k2 22k 1k 3 pin no's
v v .
tone _L-_f-c25 ? *

1 1
T oo v 4| 5 P <
1 12
2 5 11 2
R30 R31 3 ~12

22k 1k

“DoT/ |\ > + D10
SINGLE” _y* L
>__¢ T'lOOn . n 12 P
“DoT”
(red) R37 .
AAA— + 5 —<
+5 R36 390R ’
R34
22k
D11
‘DASH JS_ c27
h T100n oL L N DASH
(green)
s <
N\
'_'_ZE)‘ “DOUBLE"{ "SINGLE "
EDSIRE
IC +5 | 6nd 2
L CD404L |1 |8 ::D° +5 5
5 CD4O11 |14 |7 : power to audio board -e=
6 CD&001 {14 |7 V°lo J6: Shell is ground
Figure 13. Digital Input Schematic

Ly

48

needed or written during development, but its addition

would be trivial.

4.7 Microprocessor System

The microcomputer used for development is shown in
Figure 14. It is based on the single board demonstration
unit marketed by Tektron Inc. using the RCA 1802 CMOS
microprocessor. It was chosen as its power requirements are
a few milliamps at 5 volts, and it is thus suited for the
ultimate goal of a portable device. It is an 8-bit machine
with sixteen general purpose 8-bit registers and a suitable
instruction set. Apart from RAM and ROM it is nearly a one
chip processor, as the clock oscillator, DMA, interrupt
and I/0 ports are provided on the chip. Further details can

be found in reference 16.

The system used for development was more complex than
the capabilities of the chip might imply. The unit had to
drive TTL circuits, which required buffering the data and
address lines. The final system would be completely CMOS
and the microprocessor could drive everything directly. Two
serial I/0 ports, including a cassette interface, were
included, as well as a hexadecimal led display and an ASCII
keyboard. On the demonstration board itself was an 8-bit
latched output port driving eight leds and a hexadecimal

keypad which was enlarged and brought out to the front

Figure 14.

Development System.

49

50

panel. Memory consisted of 2K of RAM, but the first 512
bytes were replaced with EPROM containing the monitor.

The monitor program given in Appendix C allowed edit-
ing and execution of programs, and also contained utility
routines for driving the various interfaces. Operation is
based on the ASCII keyboard and the hexadecimal display,
but it can be run from a terminal with less flexibility.

Circuitry for this system is not given as it does not
relate directly to the final system. As pointed out above,
that would consist of a one board computer without the ex-

tra buffering and peripheral capabilities.

CHAPTER V

RESULTS AND CONCLUSIONS

5.0 Testing and Results

Testing involved two main areas, testing with the
patient and without. Both the hardware and the software
were initially developed using the general rules for Morse
code, and then modified as required.

The footswitch progressed from a single switch and a
buzzer to a dual switch designed for the feet, plus an auto-
matic keyer. The final combination of an adjustable wooden
frame and microswitches covered in plexiglass proved to be
functionally adequate and quite rugged. Required pressure
for activation was easily varied by inserting foam rubber
under the plexiglass. For a patient with weaker movements and
more control it should be possible to place a single or
dual switch entirely within a shoe using the Rancho type
switch.

The automatic keyer was found to be necessary due to
the subject's relatively poor control compared to a normal
Morse operator. In this respect Morse code with its timing
requirements might not be the ideal code for the cerebral
palsied. Again, for a subject with better control the keyer

51

52

may not be needed, or could be incorporated into the soft-
ware.

The program began as a short decoder of ideal code
with fixed dot/dash ratios. This performed perfectly in
tests using perfect code from another 1802 system, but
failed miserably using hand sent code. The final program
was much longer than anticipated (as usual!), but produced
readable code. Some tests were conducted using code from a
shortwave radio using the phase locked loop detector desc-
ribed in the hardware section. This code was being sent at
rates up to 20 times those anticipated for this project,
but readable code was still produced. One caution to oOthers
trying this test is that amateur radio operators often use
a bewildering array of abbreviations which at first appear
to be bad decoding. Due to international regulations, it is
unfortunately illegal to réproduce here any of those tests.

Tests with the patient were quite brief due to logistic
problems. These sessions were taped however and used repea-
tedly. It was found that for use as a conversational aid
extra non-standard characters had to be added to do things
such as blank the display and perform a carriage return.

Due to the very long times between letters the automatic
letter space should be deleted and replaced with a special

space code, although this was not done.

53

5:1 Trial Unit

Near the end of the project a summer student built a
portable decoder based on the work presented here. (15) The
result, shown in Figure 15, consisted of the footswitch and
keyer, the processor, the battery and charger, and a 20
character alphanumeric display. The size of the battery was
due mainly to the fluorescent display.

Several trials were conducted with this apparatus on a
wheelchair and it fulfilled the regquirements. At the present
time, intermittent electrical failures are preventing its use,

but a more reliable unit will be produced.

542 Conclusions and Recommendations

The main objectives of the project were met, in that
Morse code was shown to be.a feasible means of portable
communication for a cerebral palsied person.

Improvements can now be made all round, due to a better
understanding of the problem, and more compact and lower
power technology. Studies of the histograms generated by the
user should be made so that the decoding algorithm can be
tailored to the user. Convenience features can be included,
such as the facility for the unit to operate as a computer
terminal. A liquid crystal display would allow week long
operation on a single charge, or a smaller battery. The ac-

tual switch required depends on the individual user, as with

54

ial Unit.

i o

15.

Figure

55

all aids, but a lighter and more visually pleasing switch
could be designed.

It should be noted that most of the above improvements
are aesthetic (editing,lower weight, etc.) rather than func-
tionally essential. It is the author's experience however
that unless an aid is almost invisible in its active and
passive states it is apt to be rejected by the user.

In closing, an aid is only useful if it is used! It
is the author's hope that further work will be done in this
area, both in clinical trials and final placing of devices with

the handicapped.

APPENDIX A

MORSE CODE CHARACTERS

AND

PROGRAM COMMANDS

56

B HR4OHIZ OH"MHOOQ WY

Z 2 R m

b

57

MORSE CODE CHARACTERS

N - . L o = = == Period s o =
3 Qg === 2 . . == = Comma - = 5 g -
- P o —- = 3 . . . Question . . - -
s 0 = o= g = 4 . . o = Error s @ & 3
R « — 5 . Colon = = =
= S . 6 = o« 2 o s Semicolon - - -
. P o= T == o w s Bracket = 5 = =
. U s = 8 = = = 5 3 Backslash - . . -
V « - - 9 = = = =
= = w. - - 0= = == =
X
Y
Z

PROGRAM COMMANDS FROM ASCII KEYBOARD

Restart at 03E0, call monitor for new sp ed

Output histogram immediately, wait for more commands
Send "COPY" command to graphics terminal, wait
Restart at 03F6, some histogram, speed and thresholds
Set non-auto mode, restart at 03F6 (cancel a "Z")
Clear histograms and continue '

Divide histogram data by 2 and continue

Set automatic mode (output a histogram on any overflow)

APPENDIX B

FLOWCHARTS

58

59

PROGRAM OVERVIEW

reset all counters and histograms

A

input intial value for time constant

(TIMER entry)

delay for 1 time constant

jump to KEYUP
routine

No (enter key down routine)

put keyup time into histogram

is
timer

N

Yes ful

9 No

increment ke& down timer

2%

60

PROGRAM OVERVIEW (continued)

(enter KEYUP routine)

previous

mark Dash
Dot
put "o0" into character put "1" into character
register register
?
perfect
dot No
Yes

adjust time constant
slightly to correct
overall speed

&

rtut key down time into histogram

L

increment count of marks in present character

4
N,

7
(continued\next page)

PROGRAM OVERVIEW

l

check keyup timer

j///fﬁ£;T\\\\
character

|

61

(continued)

Yes‘\\\isjiﬁ///' No

decode Morse

output character

and

increment keyup timer

calculate new decision

threshold values

output inter
word space

1

S
4

A
<

i\
timer

ful Yes

No

increment keyup timer

take appropfiate action

N

N
/

jump to Timer entry
continue timing

62

MORSE O03DE-03FF

(:enter RSTRT 030Ej> ;L
(full restart) reset some reglisters to 00
RC.0 = time of keyup

R9.0 = time of key down

00 in RC.0 monitor RC.1 = no. of marks In
flag for data entry a character
R9.1 = dot/dash (0/1)

enter MORSE O03EO
(starting point)

shift register
enter TIME 0400
(timing loop)
03E6 in R3, 3 in X set X
up R3 as program counter

] RD in RF get timing para-
meter, prop. to 1/speed

output "FO0" to format
serial port 2

is
RF = decrement RF
RESET Q flag 000 N
Y
CALL SIN this calls the
monitor as a subroutine to input parallel port 1, 1Isb
input initial speed to RD, = 0, key up; 1sb = 1, down
type "R" to return here
. is
@ter RSTR2 O03EF A key JUMP to UP
(partial restart) up Y
& N
10 in RE.1, RE.O0 = mark i
& space threshold preset keyup ‘JUMP to STDN k,
=00 Y |key still down
CALL MASG with Q = 0, ‘N (key just down) 1
set histograms to zero is
keyup S
=40 Y (overflow)
Cnter RSTR1 03F6 _
(semi restart) N (time Is 0.K.,) A
CALL UBIN bin keyup time
CALL CRLF output "CR" &
"LF" to show (re)start
1 N JUMP to AUT
7 Y |bin is full
(cont. on next page) N

N
L4

AUT? 0568-057F

O7EE in R7 = auto-
flag memory address

1

get M(R7) =

auto-flag

07F0

in R7 =

1/0 add

JUMP to HIST
output hist

RESET Q

J

N JUMP to STDN

JUMP to UP2

The "AUT" section of code-is
in a difficult position. It
acts like a subroutine, but
in fact "Q"
mine the '"return" address.

enter STDN 0421
cont. prev. pg.

00 in RC.O
key up timer

reset

JUMP to TIME
- T

increment key down timer

is used to deter-

N

63

up

0L2C-0L7F

JUMP to STUP
key still up

Y (key just up)

R9.0 - RE.1 in D = key
down - mark threshold

Y (mark = dash)

N (mark = dot)

shift a 0 into 1sb of R9.1
signifying last mark = dot

R9.0 - 08 in D = mark -
perfect dot time
R |
JI
shift a 1 into Isb of R9.1

cause last mark was dash

R3.0 - 18 in D = mark -

perfect dash time

JUMP to UP1k _
Y |[speed is OK
(next page)
N L

RD + 1 In RD this raises
timing constant = slower

RD - 2 in RD
Y ‘leffect'ly -1
N

oLyuB
Pg .

enter UP1
cont. prev.

64

CALL DBIN bin down time
i
Q
set Y
N

increment RC.1 no. of

Reset Q‘__)lJUMP to AUT bin is full

enter UP2

0456 return from
*\from AUT, no histogram

key down timer

JUMP to LOUT
output letter

find 3,5 «» RE.0 = inter-
character space, ICS

output '"20" =

Y |ASCI| "space"

N

J

increment RC.O0 keyup time

r

L

N

keyboard
data

marks in this character
” enter STUP ou§§>
N \cont. prev. pg.
00 in R9.0 reset

JUMP tol
KCHK

JUMP to TIME

continue
timing

} N
Y (timer full) \,
N
Y (no marks, !
no letter) .
normal
Y

4

65

")

enter UP1 ouyB
cont. prev. pg.
CALL DBIN bin down time
i
Q Reset Q JUMP to AUT bin is full
set Y
N ‘enter UP2 0LS56 return fro
W\from AUT, no histogram
increment RC.1 = no. of
marks in this character
(enter STUP 0458
W —\cont. prev. pg.)
00 In R9.0 reset

key down timer

Y (timer full)

| JUMP to
KCHK

keyboard
data

v

Y (no marks,
no letter).

JUMP to TIME continue

normal timing

JUMP to LOUT
output letter

I WS

find 3.5 = RE.O
word space,

inter-

llzoll
"space"

l

output
ASCl 1

Y

N

increment RC.0

keyup time

r

L

N

7

LOUT 0480-0uB

0

output R9.1 to POP1
on leds for visual

put morse register

check

(optional)

is
RC.1
N =06

Y (character has 6 marks)

letter load "7"] 3
\, "?" Y 4
N
i .
letter load ":" \
n:n Y 4
N (not "?" or ":")
i ,
RC.1 load "«" 5
>06 Y |overrun
N (6 or fewer)
R9.1 AND 3F in RF.0 mask in lower

6 morse bits,

1 of 64 addresses

05 in RF.1

high address

load M(RF)

desired ASCII

letter

&

output character

!

increment RC.0

= keyup timer

RC.0

in M(O7EF) save keyup timer

)

JUMP to THRM

find new thresholds

67

KCHK 0uB8-0LFC

keyboard
data

SET Q for
hist/?2

JUMP to RSTRT
full restart

CALL MASG
fix hist

Jr

JUMP to HIST
for histogram

JUMP to RSTR1

N
7

JUMP to START the data

0210 in RA = address for was not a valid command
serial port 2 routine
1 \,/~ oL
output copy command "ESC", SAUT here if "N" or "Z"
"ETB" to graphics terminal O07EE in R7 = auto flag
memory address
0201 in RA = address for I
serial port 1 routine input keyboard in M(R7)
, E] "Z" = auto, "N" = n.auto

07F0 in R7 = 1/0 address

JUMP to RSTR1
Y |semi restart

JUMP to TIME contlinue
N N decoding after '"N", '"Z"
P4

MASG 03C0-03D4

0580 in RF = start add
of raw histogram data

RETURN
(RF=0600)

68

UBIN, DBIN 0540-055E

enter UBIN 0540
bin key up timer

80 + RC.0 in D = offset

get M(RF)
hist data

data/2 in

00 in D

D

L A

D in M(RF) = fixed data

increment RF

I

BIGM 055F-0565

N

double time constant

shift RD left by one to

b

JUMP to RSTR2
semi restart

+ key up time = low add

enter DBIN 0545
bin key down time

D

JUMP to
BIGM

N

CO + R9.0 in D = offset

+ key down = low add

D in RF.0 = low address

= actual time + offset
05 in RF.1 = high address
M(RF) in D = present count

Y |bin full

increment count, store
it back into M(RF)

JUMP to SMTH

this smooths
histogram data

SMTH 0760-079F

0580 in RF = start add
of raw histogram data

0680 in RO = start add
of smoothed data

69

get data(N+1) from M(RF)

0 in X RO used for math

get data(N) from M(RF)
(N is a dummy index)

multiply data(N) by 2

D in M(RO) = 2+*data(N)
into smooth data(N)

data(N+1) + data(N-1) +
2*data(N) in M(RO)

k

)
M(RO) + 2 in D add 2
to correct round-off

D/4 in M(RO) divide
and store final result

decrement RF = data(N-1)

get data(N;l) from M(RF)

data(N-1) + 2xdata(N) in

D = result so far

D in M(RO) = result so
far into smooth area

increment RO = next
smooth bin

RETURN |
(done)

Y (a bin full)

Jff

CALL MASG this divides
histograms by 2 as Q=1

RF + 2 in RF = data(N+1)

L N
4

Note: smoothed data(N) =
(data(N-1) + 2+data(N) +
data(N+1) + 2)/4

Output llCRll'llLFll & ">ll

[ReTURN]

LTOR 0710-0723

entry: half peak in RC.1
start address of search
in R9

00 in RF.,O

exit: RF.0 = # of bins

from peak to first bin
{=1/2 peak from left

to right

9 in X R9 is mem. pointer

¥

RC.1 - M(RY9) in D find
half peak - new data

increment RF bin pointer
§ |
increment R9 memory add.

RETURN

Note: LTOR and RTOL are
very similar and differ
in direction of scan and
overrange criteria.

70

RTOL 0728-073F

entry: half peak in RC.1
start address in R9.0

00 in RF.O

lowermost bin # in RE.O0 for
spaces, RE.l1 for marks

Q = 0, spaces; Q = 1,marks

exit: RF.0 = # of bins from
peak to first bin <= peak
from right to left

9 in X R9 is mem., pointer

(done)

R9.0 - 80 in D subtract

space offset

D - 40 extra
mark offset

D<=
RE.
N
7 in X
RETURN
\ 2

increment RF bin counter

decrement R9 mem pointer

.
ra

FMAX 0740-075D

enter

00 in RC.1, RC.0 reset
max. value and bin #

00 in RF.O
N |right max

* l
9 in X R9 is used as a

memory pointer for math
|

<

N

71

conditions on entry:

Q = 0 to find right maximum
Q =1 to find left maximum

RF.0 has lowest bin number

to be searched.

R9 has that memory address.

conditions on exit
RC.0 has the bin number with

the maximum data value.
RC.1 has that data value.

RC.1 - M(R9) in D find current max. - new data

A

(r. max, N
change on

< or =) Y (1. max, change if < only)

Y (never change’
if current > new)

Y (left max, no
change on =)
%ii N (must be <, change)

>
rd

M(R9) in RC.1 hold new data as max. value

RF.0 in RC.0 hold new bin # as max. bin #

&

increment RF point (logically) to next bin

increment R9 point (memory) to next bin

< R9.0=
<

NWY(R9=
(continue) 0600 or 05BF)

{7 in X |—3RETURN

as usual done

ADD50 0700-070F

entry: peak value in RC.1
peak bin # in RC.0
Q 1 for marks
Q 0 for spaces

exit: half peak in RC.1
actual memory add.
of peak in R9.0

< enter}

00 in RF.0 reset
bin counter

1

(RC.1)/2 in RC.1 find
half maximum value

is
Q ,
set Y (marks)

N (spaces)

load 80 = load CO =
space offset mark offset

g

D + RC.0 in R9.0 offset
+ peak bin # = low address

L

RETURN

12

73

THRM 0600-0638B

(enter)

06C0 in R9 start address of smoothed mark data

l

reset Q to find right maximum in FMAX

l

CALL FMAX find right maximum (dot peak, point 1)

[

set Q for mark routine in ADDSO

CALL ADDS0 fix data from FMAX

SUB LTOR find bin 50% or less than dot peak (point 2)

RC.0 + 2*RF.0 in D, RF.0 (counter) & RE.1 (left stop)
find bin twice as far from peak as 50% bin, estimate
of threshold based on dot peak and start point for
dash peak search (point 3)

D + CO in R3.0 convert this to a memory address

1

set Q to find left maximum in FMAX

CALL FMAX find left maximum (dash peak, point 4)

|

set Q for mark routine.in ADDSO

CALL ADD50 fix data from FMAX

SUB RTOL find bin 50% or less than dash peak (point 5)

RC.0 - 2*RF,.0 in D find bin twice as far from dash peak
as 50%2 bin, estimate of threshold based on dash peak,
(point 6)

L——'>(continued next page)

http:routine.in

74

THRM (continued previous page)

!

(RE.1 + D)/2 in RE.1 average two estimates (dot, dash)
for mark threshold, store it in RE.1 (point 7)

L

JUMP to THRS

THRS 0640-067F

This routine is very similar to THRM, and differs
only. IRCS refers to the

the intracharacter space.

in detall
intercharacter space, and |ACS to

(enter}

0680 in R9 start address of smoothed space data
reset Q to find right maximum in FMAX
CALL FMAX find right maximum (1ACS peak, point 1)

reset Q for space routine in ADDSO

1

CALL ADD50 fix data from FMAX

SUB LTOR find bin 50% or less than

T _

RC.0 + 2+*RF.0 in D, RF.0 (counter) & RE.O (left stop
find bin twice as far from peak as-50% bin, estimate

of threshold based on IACS peak and start point for
IRCS peak search (point 3)

IACS peak (point 2)

D + 80 in R9.0 convert this to a memory address

set Q to find left maximum In FMAX

1

find left maximum (IRCS peak, point 4)

CALL FMAX

Lﬁ(continued next page)

75

THRS (continued previous page)
reset Q for space routine in ADDSO
CALL ADD50 fix data from FMAX
SUB RTOL find bin 50% or less than IRCS peak (point 5)
RC.0 - 2*RF.0 in D find bin twice as far from IRCS peak
as 50% bin, estimate of threshold based on IRCS peak,
(point 6)

(RE.0 + D)/2

in RE.O

average two estimates (I1ACS,|RCS)

for space threshold,

store

it

in RE.O

|

(RE.O + RE.1)/2 in RE

0

space threshold with estimate for the mark threshold,

to the low '"quality" of the space

in RE.O (point 7)

information, store

average this estimate for the

due
it

\!

JUMP to CLUP

L

"07B0-07BD

L

display new thresholds

CLUP

SUB DISPY

00

in R9.0

reset R9.0 for use as key down timer

I

00

in RC.1

reset RC.1 to count number of marks/character

r

01

in R9.1

preset morse shift register with leading 1

M(O7EF)

in RC.0 restore key up time value to RC.0

&

JUMP to TIME

thresholds found, continue regular timing

XYOUl O02EO0-02F1

entry:
in M(O7F1), y

(enter)

M(O07F1) in RO.O
get x coordinate

8 bit x coordinate
in M(0O7F2)

M(07F2) in RO.,1,
get y coordinate

D

|

SHIFT D right 3 times

get

high 5 bits of y coordinate

1

D OR 20
identifier

add "high y byte"

]

output "high y byte"

R0O.1 in D

get y coordinate

SHIFT D left 2 times
2 lower bits to O

set

|

D in M(O7F0) save
mediate y value

inter-

L

RETURN

At this point the
y value

main program.

intermediate
in M(O7F0) can have
the two lowest bits set by the
This would allow

the full 10 bit accuracy of
the graphics terminal to be

used,

76

XYOU2 O02F8-030D
entry: intermediate y
value in M(07F0)

(enter)
M(07F0) in D get Inter-
mediate y value
D AND 1F mask in low 5
bits
D OR 60 add "low y

byte" identifier

output "low y byte"

in D get x coord.

RO.0O

SHIFT D right 3 times
get high 5 bits of x

|

D OR 20 add "high x
byte" identifier

l

output "high x byte"

RO.0 in D

get x coord.

SHIFT D left 2 times
0 into 2 lowest bits

D OR 40 add "low x
byte'" identifier

output "low x byte"

)

RETURN

77

LTTR 0220-024B

entry: RC.0 = F1 for x axis, F2 for y axis; a low mem. add.
Q = 0 to letter in +'ve direction (x or y) and v.v.
RC.1 = screen address increment per letter

M(07F1) = x coordinate, M(07F2) = y coordinate
R9.0 = last position to be lettered, +/- 1

enter

00 in RF.O OF in RF.O
first letter| N Y |[first letter

) L

output GS set terminal into graphics mode

CALL XYOUl, XYOU2 output x & y coordinates

[

output US set alphanumeric mode at x & y coordinates

l

RF.0 AND OF in RF.1 put low 4 bits of axis count in RF.1

CALL 1HOUT output ASCI! equivalent to letter axis

|

RC.0 in R7.0 R7 now points to x or y value to be changed

[

M(R7) + RC.1 in M(R7) increment screen address as needed

increment RF.O0 decrement RF.0
+'ve direction| N Y |-'ve direction
o Z
> <

N (continue)

Y (finished this axis)

RETURN]

78

HIST 0250-036E

(enter)

CALL CRLF output a carriage return & line feed to port 1

1

0210 in RA point RA to routine for serial port 2

.

output "BEL" inform operator of histogram

output "ESC" & "FF" erase graphics screen

FFFF In RF set up delay loop while screen clears

Jf_—_'"——"

decrement RF

AN
7
F1 in RC.0 letter x axis O4 in RC.1 x increment
O4 in M(O7F1) x offset 61 in M(07F2) vy offset
3F in R9.0 1last count + 1 0 in Q positive increment
CALL LTTR letter x axis in positive direction, 0 to 3E
F2 in RC.0 letter y axis 05 in RC.1 vy increment
00 in M(0O7F1) x offset 11 in M(07F2) vy offset
FF in R9.0 1last count -1 1 in Q negative increment
CALL LTTR letter negative y axis, F to 0
F2 in RC.0 letter y axis 05 in RC.1 y increment
00 in M(O7F1) x offset 66 in M(07F2) vy offset
10 in R9.0 1last count + 1 0 in Q positive increment
CALL LTTR letter y axis in positive direction, 0 to F

L

JUMP to TEKH output data to labelled axes

TEKH

(enter)

79

0310-036E

is output first

in M(O7F1)

x offset

entry: Q = 0, space data
05
06C0 in RC start

of mark data

0680
Y N Jof space data
N . (enter TEK1 031

in RC start

66 in M(O7F2) vy
offset for marks

N

\

¥ N

)

60 in M(O7F2) vy
offset for spaces

i)

\from next page

output "GS"

next coordinate pair will define dark vector

CALL XYOUul, Xyou2

dark vector to start of next bar (x,0)

1

M(RC) + 1.25

inD

scale smoothed histogram data

M(O07F2)+D in M(07F2)
marks, vector up,
find offset + data

&

M(07F2)-D in M(07F2)
spaces, vector down,
find offset - data

AKX

CALL XYOUl ‘- output "high y byte'", upper 5 bits of 10

1

M(RC) AND 03 in D

get data again, mask

in 2 lowest bits

M(O07F2)+D in M(07F2)
add correction

IM(07F2)-D
Y N |subtract correction

in M(07F2)

CALL XYOU2 output "

low y byte",

lower 5 bits of 10,
"low x byte'" and "high x byte'" (only 8 significant bits)

AL———é(continued next page)

80

cont. TEKH 0351
from prev. page

increment RC point to next histogram data byte

M(07F1) + 04 in M(O07F1) increment x coordinate

JUMP to TEK1
spaces not done

N (spaces done)

set Q for'mark output

JUMP to TEKH back
to start, begin
mark output

JUMP to TEK1
marks not done

Y (done)

reset Q

d

JUMP to OUPAR output parameters and headings

OUPAR 0370-03AF

00
BA

X coord
coord

in M(O7F1)
in M(O7F2)

non
<

outp
to s

ut 1D (control "GS")
elect graphics mode

1

CAL
coo

L XYOUl,XYOU2 send
rds as dark vector

output 1F (control '"us")
to set alpha mode

0

address of headings

2B0 in RC = start

CALL

HEAD output "SPEED"

CAL
the

L RDOUT output RD,
speed parameter

0287

in RC = next heading

CALL HEAD output
""MARK THRESHOLD"

RE.1
outp

in RF.1 CALL 2HOUT
ut mark threshold

02CB

in RC = next heading

CALL HEAD output
""'SPACE THRESHOLD"

L

81

HEAD 03B6-03BC

start address of ASCI|
list is in RC

c

get ASCII data from
M(RC), increment RC

data RETURN
= 00 Y

output ASCII| data to
selected serial port

P |

N

]

RE.O0 in RF.1 CALL 2HOUT
output space threshold

0201 in RA select
serial port 1 again

)

JUMP TO KCHK this is
the end of the histogram

APPENDIX C

MONITOR PROGRAM

82

83

MONITOR OPERATION

Most of the monitor resides in EFROM from 0000 to
01FF. The two serial output drivers sit in RAM from 0200
to 021F and must be relocaded hefore use. To start the
monitor hit "Reset" and "Run" on the front panel. The
available commands are all single Key commands which are
immediately acted upon, no carriage return is required.
All addresses or data are displayed on the & digit hexa-
decimal display above the ASCII kKeyboard. RD is displayed
in the left four digits and RE in the right.

Key Functicn

break sInterupts the processor and restarts the
ymonitor at 0000, This may be used at any time to regain
scontrol from a bad program which has NOT used R1.,

space sNoermally numeric data goes to RD, but after the
yspace bar is pressed data goes to RE. After the next
ycommand data flow returns to RD.

0-9, A-F jiEnters hexadecimal numbers to RD or RE.

7 3The data in M(RD) is displayed in RE.0, RE.1=00
I jUse after "7?" to display successive locations,
! 3The data in BRE.Q is entered into M(RD), If "i"
is hit againy RD is advanced by 1| and RE.1=00, New data
can now be entered in RE.

% yStart execution of a program at M(RD) with RO
as RP. R3 should be made RP at the start of that program.
P JAll the data from M(RD) to M(RE) is moved down
sby cne to M(RD+1) to M(RE+1). This is useful but any jump
jaddresses must be corrected by hand.

G jAny data from serial port 1 is dumped into
iM(RD) to M(RE). When (RE-RD) bytes have been collected or
3if there were any errors the program returns to the
symenitors This is usually used for leoading from a cassette.

W 3All the data from M(RD) to M(RE) is dumped out
;jserial port 1+ This is usually used to record a cassette.
R 3;If the monitor was called as a subroutine by

ja running program this command is used to return to that
sprogram. This is useful for entering data during execution
TT 31This is a two Key command. The data from M(ED)
jyto M(RE) is output to serial port 1 as double hexadecimal
3yASCII characters, with each pair followed by "CR" & "LF".
3This is used to obtain listings on the Teletype.

o 1This is the same as "TT" except that the address
315 output at the beginning and at every nnn0 address.

Many useful routines are hidden in the monitor and
can be called by other programs. The whole monitor can be
called, with return effected by "R". Some routines will
return automatically if "Q" is set,

84

1/0 PORTS & FLAG ASSIGNMENTS

The three "N" lines from the 1802 are decoded to seven
lines (called "DEC N") to allow direct access to seven I1/0
ports.

Code Mnemonic Comments
61 OUT SER1 1This is serial port 1, a UART which

jdrrives an FS5K cassette, 20 ma loop TTY, and EIA RS 232
syinterfaces. Baud rate is 110 or 600, format is 7 or 8 bits
jwith optional parity, selectable by front panel switches.
;EF3 = 1 signifies transmitter busy, EF3 = 0, ready.

69 INP SERI1 3sThis is serial input port 1, and it
jis configured the same way as the output pert. The three
yinput interfaces are OR‘dy so only cone should be used at
jtime. Input and output may proceed simultaneously. UART
serror flags are OR'd onto a flag: EFl = 1 means error,
sEF1 = 0, no error. EF2 = 0 means new data ready, EFZ2 = 1
1no data. There is a front panel switch to cconnect EF2 to
jthe DMA so tapes may be loaded with no bootstrap at 0000,

62 OUT POPIL ;Parallel output port 1, a set of &8
jyleds on the CPU card and a dip connector.
&8 INP HEX 3This is the hex Keybocard on the front

;jpanels If the CPU is in the locad mode, each pair cf hex
jdigits will be DMA'd inte M(R0O). It can be read with BA.

63 QUT DISP ;0utput to the hex led display. The
jdata must be formatted by subroutine DISPY. This display
jis used extensively by all programs.

6B INP ASKETY ;Input the ASCII encoded Keyboard.
yEF4 = 1 means new data, EF4 = 0, no data.

64 OUT POP2 i1This is a one bit (DO) output port

jused by the morse program to cutput the sampied kKey as
ja checK on sampling rate. It is not essential,

6C INP 4 jNot used.
65 OUT S ;Not used.
6D INF S ;Not used.
66 OUT SERZ2 3;Output data to serial port 2. This

iport has 20 ma TTY and EIA RS 232 interfaces. The baud
ycan be set on the backK panel from 75 to 4800,

6E INFP SERZ2 s Input data “rom serial port 2.

67 OUT CONZ 3;This sets the control register on
yserial port 2. D7=PI, DE=5BS, D5=WLS1, D4=WLSE2, D3=PS5,
1D2-D0 are not used. Output "F0" to set 8 data bits, no
jparity and 2 stop bits.,

6F INP PIP1 3D7=1 if serial port 2 is ready to
jsend, D&=1 for new data ready, D3=1 for any errors. D4
sand D3 are not used. D2 - DO connect to the morse inter-

yface, DO=1 for Key down.

;Some

85

LAEBELS

labels are entry points of significance, but most

jare merely for internal branches and deserve no comment.

Add.
0000

0030
0033
0036
003E
004E
0070
0074
007D
008D
0058
00A4
00AS
00E8
00CO
00DB
00DC
00E2
00E3
00F 4

00F9
00FC
0100
0101
0112
0113

0120
0121
0134
0136
0147
0150
0157
013D
0161
016C
0170

Label
START

CHECK
SIN
DIN
S1
S1B
ATOF
NUM
MOSH
LRE
SHOV?
LOGAN
LOOK
RENM
MOD
SOVER
SRX 4
HOVER
HXOUT
INPUT

KB?
GOTIT
EXITC
SUR
EXITR
RETRN

WRITE
TFRE?
PUSH
MPUSH
PDONE
GET
DELAY
SER?
GMORE
MSER?
GDONE

Comments
sBeginning of monitor, resets all reguired
jregisters. The interrupt is rnot enabled
juntil this is complete. Many routines and
sthe interrupt come to this point.
;IFf @=1, executes an SCRT RETURN from here.
jEnter monitor here as a3 subroutine.
sEnter here if input already in RF. 1,

e oy

;dJump here if monitor recognizes hex A to F
yand here if 0 to 9.

Here from locok routine to examine next add.
Routine to examine memory. Not a subroutine.
R

ocutine to medify memory. Net a subroutine.

SEP subroutine to shift D right four places.

L L T L R L e R R T T

;SEP subroutine to output to hardware display
3 SCRT subroutine waits for input from serial
iport 1 or the ASCII Keyboard. Data returned
syin M(RX) anmd RF.1.,

B LA T 1]

1SEP subroutine for subroutine calls by SCRT.

3
ySEP subroutine for SCRT subroutine exits.,

1See RCA 1802 Users Manual for SEP and SCRT.
;jCassette or paper tape dump. Not subroutine.

-

2
s;Routine to make a holes Not a subroutine.

Routine to input tapes. Not a subroutine.

WP B W WP WP S S W

86

LAEBELS
Add. Label Comments
0178 TTY sRoutines for hex/ASCII dumps. Not subroutine
0188 MORTY 3
01E8B NOTTP 3
01A1 NCADD 3
01CE RDOUT ;SCRT subroutine outputs RD as 4 hex/ASCII,
01DA CRLF 3SCRT subroutine outputs anm ASCII "CR"™ & "LF"
01E2 ZHOUT ;5CRT output subroutine,2 hex/ASCII from RF.1
OlF2 1HOUT ;SCRT output subroutine; !l hex/ASCII from RF.1
0200 S1DON 3
0201 SOUT! ;SEP subroutine ocutputs D to serial port 1.
0202 S10K? 3
020F SZ2DON 3
0210 SOUT2 3S5EP subroutine outputs D to serial port 2.
0214 T20K? 3

MONITOR REGISTER ASSICGNMENTS

Register Initial Value Use

RO 0000 ;jReset internally by 18025 initial
spreogram counter (RP)/ RP after "$" command/ DMA pointer.

R1 0000 iRP after interupt to restart mon-
jyitor, reset before interrupt reenabled. To ensure correct
sinterrupt action, Rl should NEVER have other uses.

R2 07EQ ;Stack pointer for SCRT addresses.

R3 0007 sRP for mest programs.

R4 0101 1RP for SEP routine CALL for SCRT.

RS 0113 sRP for SEP routine RETURN for SCRT.

RE i ;Scratchpad for CALL and RETURN,.

R7 07F0 sRX for most programs. O7F0 is a
jfree location for I/0 and R7 should point here when not
1in use+ The area from 07E1 to O7FF is available as a stack
jfor data, but only O07F0 is used by the monitor.

R8 00DC sRP for SEP routine SRX4.

RS9 = s ;Scratchpad

RA 0201 sRP for SEP routine SOUTI.,

REB 00E3 sRP for SEP routine HXOUT.

RC --00 1Scratchpad, RC.0 is used as a flag.

RD = R 1Basically scratchpad, but since RD

115 ocutput to the

j for addresses or data.

jtime RD is modified.
RE
RF

led display,

it is used by many routines
The display should be updated each

1Same as RD,
;Scratchpad.

Add.

0000
0002
0003
0003
0006
0007
0008
000A
000B
000C
000D
000E
000F
0011
0012
0013
0014
0015
0017
0018
001A
001E
001D
001E
0020
0021

0023
0024
0026
0027
0028
002A
002B
002C
00ZE
00ZF

Code

F8
B3
F8
A3
D3
7A
F8
Al
B1
E8
AC
EB
F8
A4
B4
E3
AA
F8
BA
Fé&
A2
F&
A8
F&
AB
F&
A7
F&
B2
B7
F8
AS
E3
70
C4
C4

00

07

00

01

02

EO

DC

E3

FO

o7

~
)

Label
START

87

MONITOR PROGRAM

Mnemonic

LDI
PHI
LDI
PLO
SEF
REQ
LDI
PLO
PHI
PHI
PLO
PHI
LDI
PLO
PHI
PHI
PLO
LDI
PHI
LDI
PLO
LDI
PLO
LDI
PLO
LDI
PLO
LDI
PHI
PHI
LDI
PLO
SEX
RET
NOP
NOP

00
3
07
3

3

o

-

Q= w) o N

~

\J(JJUIG\INO\JWD:'N[DUMM:DODUIALOmnm'—*HO

w

Comments
sLoad 0007 in R3 for use as
jthe program counter (RP).

. o

sMake R3 = RP

3;I1f monitor restarted from
ygump or interupt, Q flag
smay rneed to be reset.
slnitialize the registers
;yas required.

Y

;0000 R1
107E0 RZ
;0101 R4
10113 RS
;07F0 R7
;00DC RS
;0201 RA
;00E3 RE

00 RC.O

LR T TR LY T T T LA LI LA I L T

1Make R3 = RX, This enables
sthe RET to locad the immed-
yiate byte and enable the
sinterrupt. R3=RP, R7=RX

88

MONITOR PROGRAM

Add. Code Label Mnemonic Comments

0030 39 33 CHECK BN@ SIN ;dmp 1 if @=0,else return
0032 DS RETURN jto calling program

0033 D4 00F4 SIN SUE INPUT ;Cet input from device

0036 9F DIN GHI F sInput into D

0037 FF 20 SMI 20 sSubtract 20, 0 if “"space”
00339 3A 3E ENZ S1 idmp if not

003B 1IC INC C jMake RC.0 » 0, data to RE
003C 30 30 BR CHECK j3;Back for more input

003E FF 01 S1 SMI 01 ySubtract 01, 0 if "1!"

0040 32 CO BZ MOD ;jdmp to modify memory if so
0042 FF 03 SMI 03 1Subtract 03, 0 if "$"

0044 32A 4E ENZ S1E jdmp if not

0046 8D CLO D jPut RD into RO, and begin
0047 A0D PLO O jexecution of a new program
0048 9D GHI D jwith RO as the FC, The FPC
0049 EO PHI © ;should be changed back to
004A DO SEP 0 1BE3 by the new program.
004B FF 1{E SiB SMI 1E 3Subtract 1B, 0 if "7?",
004D 3B 74 BM NUM 3I1f negy, was 0 to 9, input it
004F 32 AS BZ LOOK sdmp to looK at memory if "7?°"
0051 FF 08 SMI 08 ;Subtract 08, 0 if "G"

0053 3B 70 EM ATOF 3If neqy was A to Fy input it
0055 C2 01350 LBZ GET ydmp to GET if "G"

0058 FF 08 SMI 0S ;Subtract 09, 0 if "P"

005A C2 0134 LBZ PUSH j3Jdmp to PUSH if "P"

005D FF 02 SMI 02 sSubtract 02, 0 if "R"

00SF Cs6 LSNZ) iSKip 2 if not

0060 DS RETURN ;Return to the program

0061 00 IDL jwhich calied the moniter
0062 FF 02 SMI 02 sSubtract 02, 0 if "T"

0064 C2 0178 LBZ TTY ;ydmp to TTY routines if "T"
0067 FF 03 SMI 03 sSubtract 03, 0 1f "W"

0069 CZ 0120 LEZ WRITE jJmp to write 1if "W"

006C DI SEF 1 3If no command recognized,
006D 00 IDL jthere was an error, so
006E 00 IDL jrestart monitor.

006F 00 1DL ;

Add.

0070
0072
0073
0074
0075
0076
0077
0078
0079
007A
007C
007D
007E
0080
0081
0082
0083
0084
0085
00886
0087
00g&8
008A
008B
008D
008E
008F
0030
0031
0092
0093
0094
0095
0097
0098
0099
003A
008B
003D
00A0
00A1
00A2

Code

F&
F4
57
FO
FE
FE
FE
FE
57
F8
A9
8c
3A
8D
FE
AD
9D

-
r
i

ED
FO
FE
3B
1D
30
8E
FE
AE
9E
7E
BE
FO
FE
3B
1E
o7
29
g9
3A
D4
30
00
00

09

04

t=3Y)

S8

a8

98

7D
01
30

AR

Label
ATOF

NUM

MOSH

LRE

SHOV?

MONITOR

Mriemenic
LDI 09
ADD

STR 7
LDX

SHL

SHL

SHL

SHL

STR 7
LDI 04
PLO 9
GLO C
ENZ LRE
GLO D
SHL

FPLO D
GHI D
SHLC

PHI D
LDX

SHL

BNF SHOV?
INC D

ER SHOV?
GLO E
SHL

PLO E
CHI E
SHLC

PHI E
LDX

SHL

ENF SHOV?
INC RE
STR 7
DEC RS9
GLO 9
BNZ MOSH
SUB DISPY
BR CHECK
IDL

IDL

89

PROGRAM

Comments
;Add 09 to the ASCII from
sA to F to remove offset
1Restore it like 0 to 8
yHere if it was 0 to 9
15hift left by 4 to remove
ylast of offsets There 1is
synow a hex number in D4 to D7
jof the D register.
;Save it
;jLoad RS.0 with the number of
yshifts to be done.
yI1f RC.0=0, shift hex to RD
;Else jmp to leoad RE
1This section of code shifts
sRD left by one in a 16 bit
yshift. This leaves a 0 in
jthe 1sb.

-

3y
1Shift done here

;Get the hex character

1Shift the msb into DF

3I1f 0, check if shifting done
s;Else inc RD, ie set Isb to 1
;Check if shifting done

1This is the same as 0080 to
;008A, but the hex is shifted
syinto RE because RC.0 > 0.

LR T TR P LR Ty

1Save the shifted hex
;Dec the shift counter
;Cet the counter

syJdmp for more if not 0
31+ done, display result,
;then back for more.

e LA 1

Add.

00A4
00AS
00A6
00A7
00AS3
00AA
00AD
00AE
00AF
00BO
00E3
00E4
00E6
0CB8&
O00EA
O0BB
00ED
00BE
O0OEF
00CO
00C1
00C2
00C4
00C5S
00C8
00C9
00CA
00CB
00CE
00CF
00D1
00D3
00D4
00D7
00D9
00DA

00DB
00DC
00DD
00DE
00DF
00EO

Code

1D
0D
AE
FS
EE
D4
cs
DS
00
D4
9F
FF
32
F&
AC
30
00
00
00
SE
SD
FE
EE
D4
cs
DS
00
D4
SF
FF
3A
1D
D4
30
00
00

D3
F6
F6
Fé&
F6
30

LOOK

00

01AE

00F4
49

A4

00 RENM

36

MOD
00

01AB

00FA

21
B8

01AE
30

SOVER

SRX4

30

Label
LOGAN

MONITOR

Mnemonic
INC D

LDN D

PLO E

LDI 00
PHI E

SUB DISPY
LSN@
RETURN
IDL

SUB INPUT
GHI F

SMI 49

BZ LOGCAN
LDI 00
PLO C

ER DIN
IDL

IDL

IDL

GLO E

STE D

LDI 00
PHI E

SUB DISPY
LSEN@
RETURN
IDL ’
SUB INPUT
CHI F

SMI 21
ENZ RENM
INC D

SUB DISPY
BR CHECK
IDL

IDL

SEP 3
SHR

SHR

SHR

SHR

BR SOVER

90

PROGRAM

Comments
sPoint to next mem., location.
3yThis is the beginning of the
jroutine to examine memory.

sPus the data in RE.Q and
sblank RE. 1.
1Dispiay M(RD) in RE.O.

1Skp 2 if @=0, else since one
ylocation was displayed,
jreturn to calling program.
3Go and get an input;

sjput it into D.

sSubktract 49, 0 if "I".

3I1f so, jump to lookK agzain,
yIf noty, reset RC.,0 (not
j;always needed), and jump to
ymonitor to check last input.

3
1MOD is the routine to modify

12 memory location. The piece
jof data in RE.0 is put into
s1M{RED).

;B]arlk RE.1.

-

3

sDisplay that.

1SKp 2 if @=0, else since cne
slocation was modified;
syreturn to calling program.
yGo and get an input,

sput it into D.
1Subtract 21, 0 1§ "1%,
3I1f not, back to monitor,

jelse point to next location
jand display that address.
1Go back to the monitor and
jenter data for that location
iNote that data goces to RE.

;Return to calling program.
1This is an SEP subroutine
swhich shifts the D register
jright by four places, It
jputs 0°s into D4 to D7,
yOver and cut

Add. Code Label Mriemonic
00EZ D3 HOVER SEP 3
00E3 FA OF HXOUT ANI OF
00ES FEB OF XRI OF
00E7 S7F STR 7
00EE 89 GLO 9
O00ES FC 10 ADI 10
O00EB A9 PLO 9
00EC F1 OR

00ED 57 STR 7
O00EE 63 OUT DISP
00EF 27 DEC 7
00F0 30 EZ2 ER HOVER
00F2 00 IDL

00F3 00 I1DL
1This is the input subroutine,
jinput from

00F4 35 F9 INPUT B2 KEB?
00F6 69 INP SERI
00F7 30 FC BR GOTIT
00FS 3F F4 EE? BN4 INPUT
O00FE &E INP ASKEY
00FC BF CGOTIT PHI F
00FD DS RETURN
00FE 00 IDL

00FF 00 IDL
3This 1s the SUB subroutine.
jvia the RCA SCRT

0100 D3 EXITC SEP 3
0101 EZ SUR SEX 2
0102 96 CHI 6
0103 73 STXD
0104 86 GLO 6
0105 73 STXD
0106 93 GCHI 3
0107 EB6 PHI 6
0108 83 GLO 3
0109 A6 PLO 6
010A 46 LDA 6
010B E3 CHI 6
010C 46 LDA 6
010D A3 PLO 3
010E E7 SEX 7
010F 30 00 BR EXITC
0111 CoO iDL

MONITOR

91

PROGRAM

Comments
sReturn to calling program
1This is an SEP subroutine
jwhich outputs a single hex
ydigit to the correct place
;in the led display. Enter
jwith the digit in DO to D3
jof Dy, and the digit # minus
jone in D4 to D7 of RE9.0, so
3FO is leftmost digit, and
160 is the rightmest digit.,
3;This digit # is upped by 10.
;Over and cut. Note that this
sroutine depends heavily on
ythe display hardware.
It loops until it finds an

the ASCII Keybecard or serial interface 1.

;dmp if no serial input
sElse input it

;dmp a bit

jLoop if no kKeyboard either.
sElse input it

;Salt 1t away

;Over and out

- wy

It is used to call subroutines

(Standard Call and Return) conventions.

;Go to the called subroutine.
iR2 points to the return
jaddress stackK.

jPush RBE onto stack and
yleave stack at a free
jlocation.,

;Copv old RP (R3) into Fb

jto save, it.

yR6 now points to twe byte
jinline address in calling
;program, Get it and put it
sinto R3 as 1t is the start
;0f the called routine.

3

jPut R7 back as RX as R2 only
jpeints to the subroutine
jaddress stack.,

92

MONITOR PROGRAM

This is the RETUREN subroutine. It is used to return from
a subroutine called by standard RCA SCRT technigues. This
and the above routines are not used for SEP subroutires.

Add. Code Label Mmemonic Comments

0112 D3 EXITR D3 sReturn to calling preogram.
0113 96 RETRN GHI & ;Copy RE into R3 so it will
0114 B3 PHI 3 scontain the return program
0115 86 GLO & jcounter,

0116 A3 PLO 3 3

0117 EZ2 SEX 2 1R2 points te the return
0118 60 IRX jaddress stackK, Decrement
0119 72 LDXA jit from the free location soO
011A AB PLO 6 jit points to the previously
011E FO LDX ;jstored value of R6 and put
011C B6 PHI 6 jit back into R6.

011D E7 SEX 7 ;Put R7 back as RX.

O11E 30 12 BR EXITR ;0Over and out

1This is the "W" (Write) routine:. It is used to dump
symemory locations via serial output port 1, The data is
1sent out as a stream of 8 bit bytes, but final format
ydepends on the UART control switches, It is not converted
jto hex or ASCII, so this is the routine for writing to
jcassettes, The data from M{(RD) to M(RE) is sent out.

0120 ED WRITE SEX D 1RD is used for output (RX).
0121 36 21 TFRE? E3 TFRE? jLoop “till transmitter free.
0123 61 OUT SERI ;Output byte and advance RD.
0124 E7 SEX 7 3R7 = RX for display.

0125 D4 01AE SUEB DISPY 3;Display advanced address.
0128 D4 01C4 SUB SRERD ;Sub for 16 bit RE-RD and
0128 33 20 BGE WRITE j3back for more if REX=RD.
012D CB LSN@ 1Skp 2 if @=0, else this was
012E D5 RETURN jcalled as a subroutine, so
012F 00 IDL jyreturn to calling program.
0130 DI SEP 1 ;Done, so back to monitor.
0131 00 IDL

0132 00 IDL

o B we

0133 00 IDL

http:r�etu.rn

83

MONITOR PROGRAM

3This is the "P" (Push) routine., All the data from M(RD) te
sM(RE) is pushed down by one location., This is useful for
jinserting an instruction, but all jumps must be corrected.

Add. Code Label Mnemonic Comments

0134 4D PUSH LDA D ;Get the first byte & advance
0135 ES PHI 9 ;Save it.

0136 0D MPUSH LDN D ;Get the second byte.

0137 AS PLO 9 ;Save that tco.

0138 99 GHI 9 1Get the first one again.
0139 5D STR D sPut it in new location.
013A 85 GLO 9 ;Get the second one again.
013B ES PHI 9 ;Save it as new first byte.
013C D4 01AB SUB DISPY jLCisplay advanced address.
013F D4 01C4 SUER SRERD 3;Sub for 16 bit RE-RD.

0142 3B 47 BL FDONE j;Jump ahead if done

0144 1D INC D jElse increment RD

0145 30 36 BR MPUSH jand go back for more.

0147 C5 FPDONE L3SN@ iSkp 2 if @=0, else this was
0148 DS RETURN jcalled as a subroutine, so
0149 00 IDL jreturn to calling program.
014A Di SEP 1 1Done;, so back te menitor.
014 00 IDL ;IDL from 014E to 014F inc.

iThis is the "G" (Get) routine, It is used to input a

jstring of data bytes into memory from M(RD) to M(EE) from
jserial port 1, Parity depends on the freont panel switches.
3iThis is the routine for loading a cassette or paper tape.

0150 69 GET INF SER1 3;Input to clear UART flags.
0151 FE& FF LDl FF~ sLoad FFFF into RY9 for use as
0133 BS PHI 9 ja timing constant. A delay
0154 F8 FF LDI FF jis used s0 the cassette
0156 AS PLO 9 sinterface can stabilze.
0157 29 DELAY DEC 9 ;Decrement timing constant.
0158 B9 CHI 9 ;Get the high 8 bits.

0159 C4 NOP s1Extra delay.

015A C4 NOP -~

015B 2A 57 ENZ DELAY jLoop until RS.1 = 00,

015D 35 SD SER? B2 SER? sTiny loop until data appears
015F 34 50 Bl GET ;Start again if error.

0161 69 GMORE INP SER! ;Get some data (finally!!l)
0162 35D STR D jand store it.

0163 1D INC D sIncrement memory pointer.
0164 D4 01AB SUB DISPY 3;Display peointer.

0167 D4 01C4 SUB SRERD ;Sub for 16 bit RE - RD

016A 3B 70 EL GDONE jand jump ahead if done.
016€ 35 6C MSER? B2 MSER? jWait for more serial,

016E 32C 61 EN1 GMORE 3;BacK for more if no error.
0170 CS GCDONE LSN@ 3SKp 2 if @=0, else this was
0171 D5 RETURN jcalled as a subroutine, so
0172 00 IDL jreturn to calling program.

0173 Di SEP 1 3All done, bacK to monitor

94

MONITOR PROGRAM

iThese are the two teletype routines, "TT" and "TP".

;TT takes seguential 8 bit memory locations and outputs
jthem as two hex ASCII characters - so 11000101 would

;he sent out as C35. Each pair of characters 1s followed by
1a line feed/carriage return. TP is similar except that the
jstarting address and every nn00 address is also output.
sThese routines are used for teletype listings,. The memory
jfrom M(RD) to M(RE) is output,

Add. Code Label Mnemonic Comments

0174 00 IDL 3

0175 00 IDL S

0176 00 IDL 5

0177 00 IDL 5

0178 D4 00F4 TTY SUB INPUT ;Get second letter of inst-
017B 9SF GHI F sruction and put it into D.
017C FF 50 SMI 50 ySubtract 50, 0 if "P", put
017E EC PHI C jresult in RC.1 for flag use.
017F D4 0O1DA SUB CRLF 3;0Output a CR and LF.

0182 9C GHI C ;Get flag and

0183 3A BE BENZ NOTTP j;4ump a bit if not TP.

0185 D4 0iICE SUB RDOUT 3;0Output RD to serial port 1.
0188 D4 01DA MORTY SUB CRLF ;0Output a CR and LF.

018E 4D NOTTP LDA D ;Get the data, put it in RF.1
018C BF PHI F yand advance the peointer.
018D D4 O1EZ2 SUB 2HOUT 3;Sub teo output two characters
0130 D4 01AEB SUB DISPY ;Display advanced pointer.
0193 9C GHI C ;Cet flag and

0194 3A Al BNZ NOADD jdon’t output add. if not TP.
0196 8D GLO D 1Get low 8 bits of pointer,
0137 FA OF ANI OF symask in lower 4 bits only.
0198 3A Al ENZ NOADD 3Jump if address not = nn00.
01SB D4 01DA SUEB CRLF 3;Output a CR and LF.

01SE D4 01CE SUE RDOUT j;Output RD.

01A1 D4 01C4 NOADD SUB SRERED ;Sub for 16 bit EE - RD.

01A4 33 B8 BEGE MORTY 3;CGo back, for more if not done
01A6 CS5 LSN@ 1Skp 2 if @=0, else this was
01A7 DS RETURN jcalled as a subroutine; so
01A8 00 IDL syretrun to calling program.
01A9 Di SEP 1 Al done, bacK toc monitor

01AA 00 1DL ;

95

MONITOR PROGRAM

3This is the display subroutine. When it is called the
jcurrent contents of RD and RE are output to an eight digit
shexadecimal led displays. The display is self scanning and
yrefresh by the program is not required. The display should
ybe updated whenever RD or RE is changed.

Add. Code Label Mnemonic Comments

0OlAE F8 FO DISPY LDI FO ;Preset RS.0 for use by HXOUT
01AD AS PLO S 3

01AE 9D CHI D ;Get the high 8 bits of RD,
01AF D& SEP 8 sSub to shift right by four.
01BO DB SEP B 1Sub to output first (left-
0O1B1 9D GHI D ymest) digit, get RD.1 again,
O01B2 DB SEP B ;Output second digit.

013 8D GCLO D ;Cet the low 8 bits of RD,
01B4 D8 SEP 8 1Shift right by four.

01ES DE SEP B ;Output third digit.

01B6 8D GLO 8 ;Get RD.0 again.

01E7 DE SEP B ;Output fourth digit.

01B&8 9E GHI E ;Get the high 8 bits of RE.
01ES D8 SEP 8 3Shift right by four.

Ol1EA DB SEP E ;Output fifth digit.

01BE SE GHI E ;Get RE.1 =again,

01BC DB SEP B yOutput sixth digit.

O01ED &8E GLO E ;Get the low 8 bits of RE.
O1BE D8 SEP 8 1Shift right by four.

01EF DE SEP B ;Output seventh digit.

01C0 8E GLO E ;Get RE.0 again.

01C1 DB SEP B ;Output eighth digit.

01C2 DS RETURN jReturn to calling program.
01C3 00 IDL 3

3This routine performs a 16 bit subtraction, RE - RD.

3Only the signy, in DF, is returned.

01C4 8D SRERD GLO D ;Cet low. 8 bits of RD and put
01C5 57 STR 7 3it in a free location.,

01C6 8E GLO E ;Get low 8 bhits of RE.

01C7 F7 SM 31D-M(RX) = RE.O0-RD.O0.

01€C8 9D CHI D 1Get high 8 bits of RD and
01C9 57 STR 7 jput it in a free location,
01CA SE GHI E ;Get high 8 bits of RE.

0ICEB 77 SMB sRE.1 - RD.1 - Borrow.

01CC DS RETURN jReturn to calling program.

01CD 00 IDL 3

;This

Add.

01CE
01CF
01DO
01D3
01D4
01D5
01D8
01DS

1This

01DA
01DC
01DD
01DF
O1EO
01E1

3This
jan 8

01E2
O1E3
OlE4
01ES
01E6
01E9
01EA
01EC
01ED
01F0
O1F1

sThis

0O1F2
01F3
01F3
01F6
01F7
01FS
O1FB
01FC

96

MONITOR PROGRAM

is a routine to output RBRD as 4 ASCII characters.

Code

SD
BF
D4
=)
EF
D4
D3
00

routine outputs a

F&
DA
F&
DA
D5
00

routine outputs two ASCII hexadecimal
bit number

9F
B9
De
EF
D4
a9
FA
BF
D4
DS
00

O1EZ2

01E2

0D

0A

01F2

OF

01F2

Label
RDOUT GHI
PHI
SUE
GLO
PHI
SUB

Mrniemonic

D

F
2HOUT
D

F
HOUT

RETURN
IDL

LDI OD
SEP A
LDI 0OA
SEP A
RETURN
IDL

CRLF

in RF.1.
2HOUT GHI F
PHI 9
SEP 8
PHI F
SUB
GHI 9

ANI OF
PHI F

SUB 1HOUT
RETURN
IDL

Comments
the high 8 bits of RD
put them in RF.1
to output two characters
the low 8 bits of RD
;and put them in RF.1.
;Sub to output two characters
jReturn to calling program.

.

Y

;Cet
yand
;Sub
;Get

"CARRIAGE RETURN" & "LINEFEED".

yLoad ASCII for "CR".
;Sub to output D.
sjLoad ASCII for "LF".

;Sub to output D.
tReturn to calling program.

.
*

characters from

;Cet data passed from program
sjHide it somewhere.

1Sub to shift right by four.
jPut it in RF.1.

3Sub to output one character.
;Get original data again and
ymasK in lower four bits.
jPut it in RF. 1.

3Sub to output cone character.
jReturn to calling program.

-

t]

routine outputs one ASCII hex chéradter from the
jlower four bits of RF.1.

9F
FF
9F
c7
FC
FC
DA
DS

0A

07
30

iHOUT GHI F
SMI 0A
GHI F
LSNF
ADI 07
ADI
SEP A

RETURN

;Get data
;Subtract

passed from program
0A, <0 if 0 to 9.
;Get data again, but leave DF
1Skp 2 if neg, was 0 to 9.
;Add partial offset if A to F
;Add offset for 0 to F.

3Sub to ocutput D.

sReturn to calling program.,

yThis

MONITOR

97

PROGRAM

is the subroutine to output the contents of D to

yserial
jydeoes require RX to

Add.

O1FD
O1FE
O1FF
0200
0201
0202
0204
02035
0206
0208

;This
sport

port 1.

Code

00
00
00
D3
S7
36
61
27
30
00

is
2,

jinstead

sport
;an
31t

yjsoftware rather than switches,

is

input

jcontrol

3This routine is not used by the monitor.
jpeint to O07F0 on entry.

020F
0210
0211
0213
0214
0215
0216
0218
021A
0Z21E
021C
021D
021F

D3
37
F&
A7
6F
FE
3B
F&
A7
66
27
30
00

02

00

Label

S1DON
SOUT1
S10K?

It does not modify any registers,
a free memory

point to

Mnemonic
IDL

IDL

IDL

SEP 3
STR 7

E3 S10K?
OUT SERI1
DEC 7

BR S1DON
IDL

but
location.

Comments
Y
sNote that RX must be R7
jon entry.,
jReturn to calling program.,
jPut D into memory.
s;Loop “till transmitter free.
;Output data.
;sRestore RX value.
;Done, so get out.

3IDL's (00) until OZ20F.

the routine to output the contents of D to serial

If RA is set to
of SOUT! whernever an SEP A
harder to use as the status must be read

instruction and cannot be checked with the flags.

is more flexible as the control

0210

this routine will be used
(DA) is executed. This
in with

register is set with
but because of this the

register must be set before calling this program.

FF

14
FO

OF

S2DON
S0UTZ2

T20K?

SEP 3
STR 7
LDI FF
PLO 7
INP PIP1
SHL

BENF T20K?
LDI FO
PLO 7
OUT SERZ2
DEC 7

BR SZDON
IDL

3into DF,

RX must be R7 and

Location O07FF must be free.

sReturn to calling program.
;Save D in 07F0.
;Point to a free

3
s Input parallel pert 1.

sPut tramsmitter status bit

loop until ready.

jPoint to stored D in normal
31/0 location and

jocutput data.

jRestore RX value and

jget out.

Y

location.

APPENDIX D

MORSE DECODING PROGRAM

98

99

MORSE PROGRAM

is the Morse code decoding program. Program segments
than numerical order.

yThis

yare more in
Add. Code
03DE F& 00
03DF AC
03E0 F8 03
03E2 B3
03E3 F8 E6
03E3 A3
03E6 D3
03E7 ES3
03E8 &7
03E9 FO
03EA E7
03EB 7A
03EC D4 0033

jroutine.

legical

Label
RSTRT

MORSE

Enter a 4

jdisplay (typ. 0000

03EF
03F1
03F2
03F3
03F6
03F9
03FB
03FC
03FD
03FE
03FF
0400
0401
0402
0403
0404
0405
0407
0408
040A
040B
040D
040E
040F

F8 10
AE

BE

D4 03CO
D4 O1DA
F8 00
AC

EC

A9

E9

7A

9D

BF

&D

AF

8F

32 0A
2F

30 04
9F

3A 07
6F

64

27

RSTR2

RSTR1

TIME

TIM1

TIM3

TIM2Z

Mrie
LDI
PLO
LDI
PHI
LDI
PLO
SEP
SEX
OQuUT
{(da
SEX
REQ
SUE

hex digit
to 0300),

LDI
PLO
PHI
SUB
SUB
LDI
PLO
PHI
PLO
PHI
REQ
GHI
PHI
GLO
PLO
GLO
BZ

DEC
BR

GHI
BNZ
INP
ouT
DEC

monic
00

03

ta)

7

SIN

10

E

E
MASG
CRLF
00

mMmTMomMg wwon

TIMZ
F

TIM1
9
TIM3
PIP1
POP2
7

Commerits
sProgram restarts here, RC.0
jis a monitor flag, reset it.
sProgram starts here. R3 is
1set for use as RP.

. o e

;Make R3 be RP.

sMake R3 be RX as well. This
swi'l output "FO0" to serial
jport 2 to set the UART.
;Make R7 be RX.

;Reset the @ flag.,

;Call the monitor as a sub-
intial speed in the lefthand
then type "R" to return.
sPreset RE.1 and RE.0, the
smark and space thresholds
jrespectively, to "10%.

sSub to zero histograms, @=0,
;Output a "CR"™ & "LF".
jReset various registers:
;RC.0 time of Keyup

sRC:1 # of Keydowns in letter
31R9.0 time of Keydown

sR8.:,1 Morse shift register
jReset the @ flag.

sThis is the start of the
jbasic timing loop. The
s;timing constant 1s moved
sfrom RD to RF.

;Check RF.O0,

jgump ahegad if zero,

jelse decrement RF,

yand jump back for more.
;Check RF.1, and jump bkack
jif not also zero,

jelse input Morse port, and
joutput it to a one bit (DO)
jport to check sampling.

Add.
0410
0412
0414
0415
0417
0419
041EB
041E
a2 h
0421
0423
0424
0425
0428
042A
04247
042C
042D
042F
0430
0431
0432
0433
0433
0436
0437
0438
0439
043E
043D
043E
043F
0441
0442
0443

1At this point,

jwas of a perfect

0445
0447
0448
0449
044A
044B
044E
04350
0451

32
1D
CF
2D
2D
D4
39
7A
co

4B SPD?

0545 UP1
S4

03568

MORSE

Code Label Mnemonic

FA 01 ANI 01

32 2C BZ UP

=18 GLO 8

32 21 BZ STDN

FF 40 SMI 40

32 21 BZ STDN

D4 0540 SUB UBIN

Ci1 0568 LzZ@ AUT?
istogram bin was full,

F& 00 STDN LDI 00

AC PLO C

29 GLO S

FF 40 SMI 40

22 00 BEZ TIME

19 INC 39

30 00 ER TIME

8C UP GLO C

3A 58 ENZ STUP

SE GHI E

57 STR 7

83 GLO 9

F7 SM

33 3D BCE DASH

99 GHI S

FE SHL

ES PHI 9

&9 GLO S

FF 08 SMI 08

30 43 ER SPD7?

99 DASH GHI 9

FE SHL

FC 01 ADI 01

ES PHI S

s GLO 9

FF 18 SMI 18

BZ UP1
INC D
LSDF

DEC D
DEC D
SUE DBIN
BN@ UPZ2
REQ

LBR AUT?

50

DF=1
and

100

PROGRAM

Comments
1Mask in lIsb, O=up, l=down.
sdamp if Key up.
yIf kKeyup timer zero, then
;Key was down before;, so jmp.
3yIf timer = 40, timer has
jreached limit, so jump.
jElse sub to bin Key up time
;If @ was set by EIN, then
jump to AUT? for action.
;Reset Key up timer.,

.

Y

;Get Key down timer,
ysubtract 40, zero if full,
350 jump back teo timer.
1Otherwise increment Key
jdown counter and 3o to timer
jHere i1f Key up; get timer.
sydJump if 0, was up before.
1Else get mark threshold.
sPut it in free location.
jGet Key down timer,; find
sKey down - mark threshold,
jdJump 1f »>= 0, it was a dash.
;Get Morse shift register.,
;Shift left, O=dot into isb.
;Put it back,

;Cet timer AGAIN!!I

sSubt, 08, 0 if perfect dot.
syJump ahead teo check speed.
;Get shift register.,

1Shift left, 0 into Isb.

yAdd 01, 1=dash into 1sb.
jPut it back,

;Get timer again.

;Subt. 18, 0 if perfect dash.

the D register is zero if the dot or dash
length.
;s (dot > 08 or dash > 18),

if the speed is too fast
DF=0 if too slow.

;Jump 1f D=0, no change.
sIlncy(slower) timing constant
;SKip 2 if DF=1, speed was
;fast, else dec. by 2, effec-
jtively by 1, raise speed.
3Sub to bin Key down.

sydmp if @=0, no bins full,
jelse reset @,

yand jump for action.,

Add.,
0454
0455
0457
0438
043A
045B
045C
045E
0460
0461
0463
0464
0465
0466
0467
0469
04EA
046EB
046C
046D
046E
046F
0470
0471
0472
0473
04753
0477
0478
0479
047 B
047D
047E
047F
0480
0481
0482
0483
0484
0485
0487

Code

9C
FC
EC
F8
AS
8cC
FF
32
9C
32
8E
57
&c
E7
a2
8E
F6
S7
8E
FE
FE
F7
57
ac
F7
3A
F&
DA
1C
3F
20
00
00
00
99
o7
62
27
SC
FF
3A

01

00

40

79

69

80

78
20

00
B8

06
9A

Label

Up2

STUP

UP4

UPS
UP3

LOUT

MORSE

Mnemonic
GHI C
ADI 01
PHI C
LDI 00
PLO S
GLO C
SMI 40
BZ UP3
CHI 9
BZ UP4
CLO E
STR 7
GLO C
SM

BZ LOUT
GLO E
SHR

STR 7
GLO E
SHL

SHL

SM

STR 7
GLO C
SM

BNZ UPS
LDI 20
SEP A
INC C
BEN4 TIME
BR KCHK
iDL

IDL

IDL

GHI 9
STR 7
OUT POP1
DEC 7
GHI C
SMI 06
BNZ NO6&

101

PROGRAM

Comments
;Get counter for number of
iKey downs in a letter incre-
iment and restore it.
1Feset Key down timer.
%
;Get Key up timer,
ysubt. 40, 0 if timer full,
jgump if so.
3;1f RC.0=0, there are no
jelements 1n letter, s0 jump.

.3Get space threshecld,and put

3it in a free location.

;Get Key up timer and find
sKey up - space threshold,
s3I+ 0y, now output letter.
sFind inter-character space:
4*EE00 - REO 0/2
3.5*RE. 0O

perfect morse it should
e 3.0, but hand sent is
etter with this ratio.

ut ICS in free location.
et Key up timer and find
ey up - ICS

ydump 1f not zero, no space.
jLoad ABCII "space”,

;Output to serial port 1
sIncrement Key up timer.
;Jump to timer if no Key-
sboard input, else go and
jsee what 1t is.

;Following section outputs
1a letter,

sGet Morse shift register,
jput it in a free location,
joutput it to 8 leds for a
jvisual check of dots/dashes,
;Check if & Key downs in
jyletter, jump if not for
jstandard decoding.

—

O

n
n

o)
3
]

P W B P P WP AP WP

Toooom

102

MORSE PROCRAM

sThe next segment of code is for Morse characters with
jexactly six elements as some require different decoding.

Add. Code Label Mnemonic Comments

0489 89 GHI S ;Cet Morse shift register and
048A FF 4C SMI 4C jsubtract Morse "7?".

048C 3A 92 BNZ NO7? s;dJump 1f not that,

048E F& 3F LDI 3F selse load ASCII "7?" and

0430 30 A8 BER MOUT yJump to output it.

0482 FF 2C NO7? SMI 2C ;Subtract further offset,
0494 3A A0 ENZ OKLET jjump if not O,

0496 F& 3ZA LDI =A jelse load ASCII ":" and

0438 30 A8 ER MOUT jJump to output it.

;The remaining & element characters are handled normally.
1At this peoint the D register holds # of Key downs - six.

049A 3E AD NO6 BEL OKLET 3If less than six, oK, but if

049C F8 2A LDI 2A synot load ASCII "*" for over-
049E 320 A8 ER MOUT jrun and jump to ocutput 1t.
04A0 399 OKLET GHI 9 ;Get Morse shift register,
04A1 FA 3F ANI 3F sjmask in lower & bits, put
04A3 AF PLO F 3it in RF.0 as low address.
04A4 F8& 05 LDI 05 ;Put high address in RF.1,
04A6 BF PHI F ipoint to Meorse/ASCII table.
04A7 OF LDN F ;Get ASCII
04A8 DA MOUT SEP A ;jand output it.
04A9 1IC INC C sIncrement Key up timer.
04AA 27 DEC 7 ;FPoint to free memory (0FEF).
04AE 8&C GLO C ;Get Key up timer,
04AC 357 STR 7 ysave it in memory, and point
04AD 60 IRX jback to I/0 location (O07F0).
04AE CO 0600 LBER THRM j;Jump to find new thresholds.
04E1 00 IDL 3
04B2 00 IDL 3
04E3 00 iDL 3
04B4 00 IDL 3
04ES 00 IDL 3
04B6 00 IDL 3

b

04E7 00 IDL

103

MORSE PROGRAM

sThe next segment of code checks for input from the ASCII
jkeyboard and acts accordingly.

Add.

04B8
04EA
04BEB
04ED
04CO
04C2
04CS
04C7
04CS
04CB
04CC
04CE
04CF
04D1
04D2
04D4
04D5
04D7
04D%
04DC
04DE
04EQ
04EZ2
04E3
04ES
04E7
04ES
04EA
04ED
04EE
04F1
04F3
04F6
04F7
04F8
04FS
04FA
04FB
04FD
04FE
O4FF

Code Label

3F
EE
FF
c2
FF
cz
FF
2A
Fe
AA
Fa
DA
F8
DA
FE
AA
30
FF
c2
FF
32
FF
7a
32
FF
2A
7B
D4
7A
Co
FF
CA
27
27
6B
60
60
30
00
00
00

ES KCHK

2F
03DD
19
0250
03
D7
10

1B

17

01

BE

02 NOKO
03F6

01

F6&

0A

EA
01
F1

03C0 GOMAS
03F6
01 Z7?

0000
SAUT

00

Mnemonic
BN4 KCHK
INP ASKEY
SMI 2F
LBZ RSTRT
SMI 19
LBZ HIST
SMI 03
ENZ NOKO
LDI 10
PLO A
LDI 1E
SEP A
LDI 17
SEP A
LDI 01
PLO A

BR KCHK
SMI 02
LBZ ESTRI1
SMI 0t
BZ SAUT
SMI 0A
REQ

BZ GOMAS
SMI 01
BNZ 27
SEQ

SUE MASGC
REQ

ER RSTRI1
SMI 01

LENZ START

DEC 7

DEC 7

INP ASKEY
IRX

IRX

BR TIME
IDL

IDL

IDL

Comments
sLoop until Keyboard input.
s Input Keyboard into D, M(EX)
;Subtract ASCII "/".
;Complete restart i1f "/"
1Subtract again, 0 if "H".
sOutput histogram if "H".
1Subtract again, 0 if "K",
sjdump if not, else point
jregister A to output
jroutine for serial port 2.
;Output "ESC" & "ETB" to
sserial port 2, This sends
;a2 copy command teo the
;TeKtronix Graphics Terminal.
;Point register A back to the
jroutine for serial port 1,
jBack for more input.
tSubtract again, 0 if "M".
3I1f so partial restart.
sSubtract again, 0 1f “N",
yIf so, jump to cancel auto.
;Subtract again, 0 if "X",
;Reset @ (will clear hist.)
sIf "X", go clear histograms.
jSubtract again, 0 if "Y".
sJump if not, else
jset @ (will histeogram/2)
sand divide hist. data by 2.
sReset @ (X & Y return here)
sand do partial restart,
1Subtract AGAIN!, 0 1f "Z7,
3sI1f not,, invalid, to monitor.
sHere if "Z2" or "N", point to
jlocation for auto command,
3 {(07EE) and put input there.
1"E2" for auto, "N" nonauto.
jPoint back to I/0 location.
;Go bacK to timing loop.

e S W

104

MORSE PROGRAM

3This is the leookup table to convert Morse to ASCII.

jA register is preset to 0000 0001 and the elements are
yshifted into the Isb, 0 for dot and | for dash. The
jyleading 1| shows the beginmning of the character, The letter
3"L" is "+-+«"and would appear as 0001 0100, The upper two
jbits are set to 00, This forms the lower eight bits of the
jaddress, and 05 is the offset for the high eight bits.
1This scheme is memory efficient, but causes characters

jwith six elements to show up anywhere in the table.

yThis is only a problem for "?" and ":", 50 these are dealt
jwith in software., "@" 15 used for an invalid character,
sand "<" for the Morse error "+seieeee™y

Add. Data Character Add. Data Character
0500 3C < ve e 0520 35 S v
0501 40 @ 0521 34 4 DR O
0502 43 E 0522 40 @

0503 o4 T = 0523 33 3 see==
0504 49 I . 0524 40 @

035035 41 A - 0525 40 @

0506 4E N - 0526 40 @

0507 4D M -- 0527 32 2 aa--=
0508 53 S 03528 40 @

0509 29 U sz 03529 40 @

050A o2 R +-. 052A 3B 3 == =y
0S0B 57 W == 052B 40 @

050C £ D -.. 0352C 40 @

050D 4B K =-.- ’ 032D SB L g Sy
05S0E 47 G --. 052E 40 @

050F 4F Q --- 032F 31 1 oy
0510 48 H o 0530 36 B i
0511 56 V LN T 0531 SF = T4 T
0512 46 F L) 0532 2F / T e T e
0513 40 @ 0533 2C ’ gy g S
0514 4C L a=wa 0534 40 i

0515 .?.E + ¢ T8 T T 0535 40 @

0516 S50 P o= 0336 40 @

0517 44 g g==e 0537 40 ®

0518 42 B T e 0538 37 7 TT ek
0519 28 X =pa= 0539 40 @

0S2A 43 C =u=y 053A 40 @

051B 59 Y me=s 053E 40 &

051C SA Z ey 053C 38 8 ---us
031D S91 Q@ --.- 053D 40 @

0S1E 40 e 05S3E a9 g ==~=y
051F 40 @ 0353F 30 D s

105

MORSE PROGRAM

1This is the subroutine to enter the mark and space times
yinto their respective histegrams, The raw space data is
;stored from 0580 to O0SEF, the raw mark data from 03CO

Add. Code Label Mnemonic Comments

0340 8C UBIN CLO C sEnter here to bin space,get
0541 FC 80 ADI 80 skey up timer, add offset,
0543 30 4D BR SP yand jump ahead,

045 &9 DEBIN GLO S sEnter here for mark, get
0546 FF 40 SMI 40 stimer, subtract 40, jump 1f
0548 33 SF EGE BIGM 3»=0, therefore overflow.
054A 89 GLO 9 syI1f ok, get timer again, add
054EB FC CO ADI CO joffset.,

054D AF SP PLO F sFor mark or space; put data
0S4E F&8 035 LDI 05 ;plus offset into RF.0, and
0550 BF PHI F syhigh address into RF. 1.

syThe value from the timer, e.g. 2C, is used to peoint to the
32Cth bin of the appropriate histogram., The number 1in the
12Cth bin indicates the number of times the particular
jtimer reached exactly 2C before the Key changed.

0551 OF LDN F ;Get the data from that bin.
0552 FF 3F SMI 3F ;Subt. 3F (63), 0 if full.
0554 7E SEQ 1S5et @ in case it’'s full.
0555 32 5C BZ BIND sIf full, jump out with Q=1.
0357 7A REQ@ ’ ;Not full, so reset @,

0358 OF LDN F yand get data again from bin.
0559 FC 01 ADI 01 sIncrement the data

055B SF STR F jand restore it.

055C CO 0760 BIND BR SMTH sDoney, jmp to smooth routine.

sProgram ends up here if Key down timer overflowed. This

jusually means the overall speed is far too high.

055F 8D BIGM GLO D ;The timing constant is

0560 FE SHL jstored in RD, and this is
0561 AD FLO D jshifted left by one in a 16
0562 9D GHI D sbit shift, This multiplies
0363 7FE SHLC sythe constant by 2 and halves
0564 ED PHI D jthe speed of the timer.

0565 CO O3EF LER RSTR2 ;Do a partial restart with

jthe rnew slower speed and zeroed histograms.,

syThe binning subroutine sets the @ flag

106

MORSE PROGRAM

if a bin is full.

;On return to the Key up or Key down routines the flag
115 sampled.,

If set,
jcheckKs the auto histegram flag stored

control

passes to this routine

which

in 07EE. This

315 not a subroutine as it can return to different places.

3I1f entered from the Key down section, @
sthe key up section resets @ first.,

jwhere to return if no histogram was required,

Add.

0568
0369
0356A
036ER
0356C
056E
0371
0574
0575
0578

;0580
;05C0O

;This is the subroutine to clear

3(@=1) the raw histogram data.

Add.

03Co0
03C2
03C3
03CS
03C6
03C7
03Cce
03C9
03CA
03CB
03CC
03CD
03CE
03D0
03D1
03D2
03D4

Code

27
27
72
60
FF
cz
oF
7A
co
00

to
to

SA
0230
0454

0421

Label

AUT?

Mnemonic
DEC 7
DEC 7
LDXA

IRX

SMI SA
LBZ HIST
LEN@ UPZ2
REQ

LER STDN
IDL

is still set, but
Q@ tells this section

Comments
sjPoint to location which
sholds auto flag.
3;Get 1t and point back to
jfree location (O07F0).
ySubtract SA, 0 1f "Z".
;If soy, jump for histogram,
yI1f @=0, back to Key up;
jelse reset @
yand backK to kKey down.
syIDL's to OS7F inc.

05BF contains raw histogram data for spaces.
O03FF contains raw histogram data for marks.

Code

F&
BF
F&
AF
8F
C6
D3
00
C5
OF
F6
CL
F&
SF
iF
30
00

03

80

00

C6

Lakel

MASG

MAS?

Mnemonic
LDI 0S5
PHI F
LDI 80
PLO F
GLO F
LSNZ
RETURN
IDL
LSENQ
LDN F
SHR

L5@

LDI 00
STR F
INC F
BR MAS?
IDL

(@=0) or divide by twe

Comments
sPut high address pointer
yinto RF. 1.,
sLow address is start of raw
yspace data, markKs folleow.
sIf RF.0=00, then done.
1SKip two 1f not done,
jelse return.
Y .
1SKip two if Q=0 (clear),
jelse get data from bin and
jshift right to halve it.
1Skip two if @=1 (halve),
jelse load 00 to clear.,
jPut new data inteo bin
sand increment pointer.
jLocep back for more.
syIDL's to 03DC inc.

107

MORSE PROGRAM

yThis is the smoothing subroutine., It is a continuation of
jthe binning subroutine which returns from here. The raw
jhistogram data from 0580-035BF, 05SCO-03FF is smoothed by
32 simple algorithm and stored from 0680-06EF, 06C0-06FF.
if a bin was full,

s The

Add.
0760
0762
0763
0763
0766
0768
0769
076A
076E
076C
076D
076E
076F
0770
0772
0774
0776
0778
0779
077 A
077k
077C
077D
077E
0780
0782
0784
0785
0786
0787
0788
078A
078B
078C

Q@ flag

Code

Fe
EF
Fe
BO
FE
AD
AF
EO
OF
FE
50
2F
SF
FF
32
FF
32
OF
F4
S0
1F
IF
8F
32
FF
32
OF
F4
50
FO
FC
FE
FE
50

03
06

g0

7F
7B
40

p—
&

&7
g0
87

02

is still

Label
SMTH

SMTH1

EDAT

EDAT2

set

Mriemonic

LDI
PHI
LDI
PHI
LDI
PLO
PLO
SEX
LDN
SHL
STR
DEC
GLO
SMI

BEZ EDAT

SMI

BZ EDAT

LDN
ADD
STR
INC
INC
GLO

BZ BDATZ2

LDI

BZ EDATZ2

LDN
ADD
STR
LDX
ADI
SHR
SHR
STR

03
F
06
0
80

0
E
0
F

7F
40

F

mmTo

80

F

0

02

0

Comments
;jLoad 0580 inmto RF, point to
yraw data, 0680 into RO,
;space for smoothed data.

R A T

;R0 used for math,; make 1t RX
;Get raw data(N)

ymultiply by 2,

jstore it in smooth space.
sPoint to raw data(N-1).,

s I+ RF=057F, out of data
jstorage area,

3so jump ahead.

;I # EF=03BF, marks intruding
jinto spaces; so jump ahead.
;Get raw data(N-1) and add it
jto Z¥raw data(N).

jPut result in smoothed area.
jPoint to raw data(N+1).

-

3

s;If RF=0600, out of data,

;jso jump ahead.

sIf RF=0580, spaces intruding
jinto marks, so jump ahead.
;Get raw data(N+1) and add it
jte value from line 0779

;Put resplt in smoothed area.
;Get result so far,

jadd two for rounding.
sDivide by four

3
yand store result,

jThe data was smoothed with the following formula:
+ rawi(n-1) + rawfn+l) + 2)/4

3y smeothin)

(2%¥rawin)

108

MORSE PROGRAM

yThis is the continuation of the smoothing routine,

Add. Code Label Mnemonic Comments

078D 60 IRX sjPoint to next smooth space.
078E 80 GLO © s3I+ RO net 0700, rot done,
078F 3A 6B BNZ SMTH1 3so jump back for more;

0781 E7 SEX 7 ;else restore R7 as RX.

0792 CD LS@ 3y I1f @=0, no bins full,

0793 D5 RETURN jso return, otherwise sKip 2.
0794 00 1DL 3

0795 D4 03CO SUB MASG ;Sub to MASG, @=1, so data/Z2,
0788 D4 O1DA SUB CRLF ;Output "CR" & "LF"

079E F& 3E LDI 3E ;Load ASCII ">" and output it
079D DA SEP A jto show histogram change.
078E DS RETUEN sReturn with @ still set for
079F 00 IDL jauto histegram check.,

sThe next set of routines computes the mark and space
jthresholds from the smoothed data« The main routine begins
jat 0600, but the subroutines are presented first,

3;They 2ll rely on the position of the data within memoery.
;This subroutine returns the maximum value of a markK or
jspace histogram in RC.1 and the bin number (00 to 3F),
ynot the memory address, in RC.,0., If @ is set the leftmost
ymaximum is returned and if @ is reset, the rightmost.
;jThese values are different if two bins equal the maximum.
1R9 contains the starting address of data and RF.0 centains
ythe bin number of that start data as not all scans start
jfrom bin 00 when lcoKing for the leftmost maximum.

Add. Code Label Mnemonic Comments

0740 F8 00 FMAX LDI 00 jReset bin number

0742 AC PLO C sand maximum value,

0743 BC PHI C 3

0744 CD Lsa s3I+ right maximum set RF.O
0745 AF PLO F jto 00, else leave 1t alone.
0746 C4 NOP 3

0747 ES MAXM SEX 9 1Make RS be RX for math use.
0748 9C GHI C 1Get current maximum and sub-
0749 FS SD ytract data pointed to by RS9,
074A 3B 53 EL NCHG sI1f lessy, no change, so jump.
074C CS LSN@ 1SKip two 1f rightmost max.,
jthat means change on »>=, If leftmost max, change on > only
074D 32 53 BZ NCHG jdJump if leftmost and equal.
074F 09 LDN S ;If a change, get new maximum
0750 BC PHI C jand put it in RC.1.

0751 8F GLO F ;Get new bin number and put

0752 AC PLO C jit in RC.O0.

109

MORSE PROGRAM

3This is a continuation of the "FMAX" subroutine.

Add. Code Label Mnemonic Comments

0753 1F NCHG INC F yImcrement bin number

0724 18 INC 9 jand memory pointer,

0755 &89 GLO 9 3If R9=0600, mark scan done,
0756 32 5C BZ MAXD jjump ahead.

0738 FF C0O SMI CO yIf RS=05BF, space scan done,
07SA 3A 47 ENZ MAXM jelse jump backK for more.
07r3C E7 MAXD SEX 7 jFestore R7 as RX

075D D3 RETURN jand get out.

073E 00 IDL sThis next subroutine takes
075F 00 IDL jthe data passed from FMAX
jand sets it up for later use. Enter with @=1 for marks.
0700 F&8 00 ADDS0 LDI 00 jReset RF.0

0702 AF PLO F 3

0703 39C GHI C ;Get maximum peak height.
0704 F6 SHR ydivide by twe

0705 EC PHI C jand put it back.

0706 F8 80 LDI 80 1Get space offset

0708 C5 LSNQ ;skKip 2 if spaces

07098 F& CoO LDI CO jelse get mark offset.

070E 57 STR 7 sPut offset in 07F0.

070C 8C GLO C ;Cet maximum bin. number
070D F4 ADD ;add offset for low address
070E AS PLO S jand put it in R9.0.

070F DS RETURN -

3This subroutine finds the first occurence of a bin

3 <= (maximum height)/2 while searching left to right.
jEnter with start address of search in RS9, (maximum)/2
yin RCy1y, and 00 in RF.0., On exit RF.0 contains the number
sof bins from the peakK to <= (peak)/2.

Add. Code Label Mnemonic Comments

0710 00 IDL yIDL's tp 0713 inc.

0714 E9 LTOR SEX 9 ;Make RS9 be RX

0715 9C MOLR GHI C 1Get 1/2 peakK and

0716 F7 SM ;subtract data.,

0717 33 22 BGE LROK 3;0Out if bin found,

0719 19 INC S selse increment peointer
071A IF INC F syand bin offset.

071EB &9 GLO S sIf R9=0700

071C 32 22 BZ yget out, end of marks.
071E FF CO SMI CO sI1f R9=06C0, end of spaces,
0720 3A 1S BNZ MOLR jelse jump kbacK for more.
0722 E7 LROK SEX 7 jRestore R7 as RX,

0723 DS RETURN 3

0724 00 IDL yIDL°s to 0727 inc.

1This subroutine
it searches from right to
y for marks.

Add.

0728
0729
072A
072B
072D
072E
072F
0731
0732
0734
0735
0736
0737
0738
0739
073A
073B
073C
073E
073F

1This

Add.

0600
0602
0603
0605
0606
0607
060A
060B
060D
060E
0611

Code

ES
gC
F7
33
Er
a9
FF
C3
FF
a7
8E
€S
SE
C4
F7
29
1F
3B
E7
DS

80

40

28

Label

RTOL

RLOK

Mnemonic

SEX
GHI
SM

BGE
SEX
GLO
SMI

LSN@

SMI
STR
GLO

LSN@

GHI
NOP
SM

DEC
INC

9
C

RLOK
7

9

80

40
7
E

E

9
E

BEM RTOL

SEX

7

RETURN

110

MORSE PROGRAM

is similar to the one above except that
left. @=0 for spaces and @=1
RE.0 and RE.1 ceontain leftmost stop addresses.

Comments
;1Make RS be RX
1Get 1/2 peak and subtract
;data.
;Out 1if bin found,
jelse restore R7 as RX.
3;Get memory peinter and
jsubtract spaces offset.
1SKip 2 if spaces, else
jsubtract extra mark offset.
;Stuff it in O7FQ
;Get overange for spaces,
1skKip 2 i1f spaces,
jelse get it for marks.

Y
;yCompare pointer and overange

jDecrement memory pointer,
jincrement bin coutner,

3 If minus, back for more,
;else restore RX

yand get out.,

is the routine to calculate the mark threshold.

s3It calls the above three routines, FMAX, LTOR, & RTOL.
1In the first part
shistogram peak generated by dots.

Code

F8
ES
F&
A9
7A
D4
7B
F8
BS
D4
D4

06

Co

0740

0700
0714

Label

THREM

"peakK"” or

Mnemonic

LDI
PHI
LDI
PLO
REQ
SUB
SEQ
LDI
PHI
SUE
SUB

06
=
co
9

FMAX

06

9
ADDS0
LTOR

"maximum” refers to the

Comments
306C0 into RE9, start address
jof smoothed mark data.

’ W e

jReset Q, shows right maximum
;Sub to find right maximum.
1Set @, shows marks.

jPut partial address in R9.1.

]
3Sub to fix data.
;Sub to find S5S0% peak bin.

3This
Add.
0614
0613
0616
0617
0618
0619
061A
0B1E
061D
061E
0620
;From
0621
0622
0625
0627
0628
0629
062C
0BZ2F
0630
0631
0632
0633
0634
0635
0636
0637
0638
06329
063C

111

MORSE PROGRAM

is the continuation of the mark threshold routine.
Code

&F
S7
ac
F4
Fa
EE
AF
FC
A9
F&
E9

this point

7B
D4
F&
E9
7B
D4
D4
EF
FE
57
5C
F7
57
SE
F4
F6
BE
co
00

co

06

0740
06

0700
0728

0640

Label

Mnemonic

GLO
STR
GLO
ADD
ADD
PHI
PLO
ADI
PLO
LDI
PHI

“beak

SE@
SUE
LDI
PHI
SEQ
SUE
SUB
GLO
SHL
STR
GLO
SM

STR
GHI
ADD
SHR
PHI
LER
IDL

1This is the routine to
3In the first part

Add.

0640
0642
0643
0645
0646
0647
064A
064B
064D

Code

F&
BS
F&
AS
7A
D4
7A
Fa
B9

06

80

0740

06

Label

THRS

“peak”
shistogram peak generated by the
Mnemonic

LDI
PHI
LDI
PLO
REQ
SUB
REQ
LDI
PHI

Comments

F ;Get distance from peak
7 jand stuff into O7FO0.
C ;Cet peak bin # and
sfind bin twice as far from
ipeak as 50% bin.
E tPut it in RE.1 as left step
F jand also into RF.0.
CO ;Add offsets to make this
9 ;a8 memory address in RIS in
06 jthe smoothed markK rarnge.
9 3
refers to the dash cluster.

;Set @ to find left maximum.
FMAX ;Sub to find left maximum,
06 jPut partial address in E3.1.
9 3
;S5et @ for marks,
ADDS0 3Sub to fix data.
RTOL 3Sub to find 50% peak bin.
F sGet distance from peak,
jydouble 1t
7 sand stuff it in O7F0,
C ;GCet peak bin # and find
jbin twice as far from peak
7 yas 50% and stuff it in O07FO0.
E ;Add same result from dot
;jpeak and divide by two to
3jfind estimate for mark
E ythreshold, put it in RE.1.

THRS j;Jump for space threshold.,

yIDL's to 063F inc.

calculate the space threshold.

or "maximum”, refers to the

intra-character spaces.
Comments

06 ;0680 into R9, start address
9 jof smoothed space data.
g0 -+
E 3
;Reset @, shows right maximum
FMAX 3Sub to find right maximum,
;Reset @, shows spaces.
06 ;Put partial address in RS.1.
E 3

112

MORSE PROGRAM

1This is the continuation of the space threshold routine,

Add. Code Label Mnemonic Comments

064E D4 0700 SUE ADDS0 ;Sub to fix data.

0651 D4 0714 SUB LTOR 3Sub to find 50% peak bin.
0654 8&F GLO F ;Get distance from peak
0655 57 STR 7 yand stuff into OFFO0.

0656 8&C GLO C ;Get peak bin # and

0657 F4 ADD ;find bin twice as far from
0658 F4 ADD speak as 50% bin.

0659 AE PLO E sPut it in EE.0 as left stop
065A AF PLO F sand also into RF.0.

065B FC 80 ADI 80 ;Add offsets to make this
065D A8 PLO 9 ya memory address in RS in
065E F8 06 LDI 06 ythe smoothed space range.
0660 E9 PHI 9 :

jHere "peakK" refers to the inter-character space cluster,

0661 7E SEQ ;5et @ to find left maximum.
0662 D4 0740 SUE FMAX 3;5ub to find left maximum.
06ES FE8 06 LDI 06 jPut partial address in RS.1.
0667 ES PHI 9 3

0668 7A REQ jReset @ for spaces.

0669 D4 0700 SUEB ADDS0 ;Sub to fix data.

066C D4 0728 SUE RTOL 3Sub to find 50% peakK bin.
066F 8F GLO F ;Cet distance from peak,

0670 FE SHL ’ jdouble it

0671 57 STR 7 syand stuff 1t in O7F0.

0672 &C GLO C ;Get peakK bin # and find

0673 F7 SM sbin twice as far from peak
0674 57 STR 7 jas 50% and stuff it in O7F0.
0675 8E GLO E 1Add result from intra-space
0676 F4 ADD ;peak and divide by two for
0677 Fb SHR ;first estimate of space

0678 57 STR 7 sthreshold, put it in O7F0.

jDue the poor "quality"” of the inter-character space peak,
jit is averaged with the markK threshold which would be the
jsame for perfect code.

0679 SE GHI E :Get mark threshold and

067A F4 ADD jsimply average with estimate
067B F6 SHR joust calculated, Store this
067C AE PLO E jfinal result in RE.O

067D CO 07EO LBER CLUP j3jJump to cleanup loocse ends,

113

MORSE PROGRAM

3yThis short routine follows the space threshold calculation
jto clear up various odds and ends.

Add.
07A0
07 EQ
07B3
07 ES
07 BB
07E7
07 E9
07 EA
07EBE
07 EC
O07ED

Code Label Mnemonic Comments

00 IDL yIDL's to O7AF inc.

D4 01AB CLUP SUB DISPY ;Display new threshoids.
F8 00 LDI 00 3

A9 PLO 9 jReset Key down timer and
BC PHI C jcounter for Key downs in
F& 01 LDI 01 scharacter. Set Morse shift
ES PHI 9 jregister to 01,

27 DEC 7 jPoint to stored RC.0,

7 LDXA jget it, peint to 0FFO0,
AC PLO C syrestore RC.0.

CO 0400 LBER TIME j;Jump back to timer,

jThese are the cocmmands which the program recognizes from
jan ASCII Keyboard. They are immediately recognized, so
sno carriage return is required.

/

™~

Festart at 03DD, sub to monitor to enter new speed,
press "R" to return.

OQutput histogram immediately, wait for more commands.

Send hardcopy command to graphics terminal, wait for
mere commands.,

Festart at 03F6, same histeogram, speed and thresholds.
Cancel autohistograms, continue at 0400,

Zero raw histogram data, restart at 03F6.

Divide raw histogram data by two, restart at 03F6.

Set automatic mode for histograms., If any raw bin is
full, the program stops and ocutputs a histogram. The
raw data is divided by two, but until the program is
restarted the smoothed data is untouched,; so other
copies can be made:. This command continues at 0400,

"N" or "Z" can be pressed at any time during normal
program execution. The cther commands all disrupt
deceoding. Any command not in the above table will
cause a restart of the entire system to the moniter.,

114

MORSE PROGRAM

3 The above routines were all essential to decoding Morse
jcodes The remaining sections are only needed to output
shistograms to the Tektronix graphics terminal., Register A

jpoints to the routine for serial port 2, neot 1 as usual.
3A lot of manipulation is necessary because the plotter
jworks on a 1024X by 779Y absolute matrix, with each letter
314X by 22Y, and the histogram reguires 64X by 31Y
snumbered positons, each divisible by four!!! Calculations
jcan only be dene in integer math, so there are problems.
1This subroutine numbers an axis 0 to F repeatedliy.

Add. Code Label Mnemonic Comments

0220 F8&8 00 LTTR LDI 00 300 into RF.0 if not @,
0222 CS LSN@ ;OF if @, start number of
0223 F8 OF LDI OF shex-numbered axis.

0225 AF PLO F 3

0226 F8 1D MLTR? LDI 1D 1Output "GS" to set

0228 DA SEP A sgraphics mode.

0229 D4 0ZEQ SUE XT0U1 3;0utput XY coordinates.
022C D4 0ZF8 SUB XTY0OUZ 3

022F F8 1IF LDI 1F ;Output "US" to set

0231 DA SEP A ja phanumerics mode.

0232 8&F GLO F ;Get axis ccocunter, mask in
0233 FA OF ANI OF ;lower 4 bits, put them
0235 BF PHI F 3in RF.1 and output them as
0226 D4 01iF2 SUEB 1HOUT 3a single hex digit.

3RC.0 contains the low address of the current ccordinate
jbeing lettered: F1 for X or F2 fcr Y; high address 07,
sRC.1 contains the axis coordinate increment: 04 for

shorizontal, 05 for vertical. RS8.0 holds stop count

jfor axis, 3F horizontal, FF or 10 vertical.

0239 &cC GLO C sTransfer low address to RX.
0Z23A A7 PLO 7 1RX points to ceoordinate.
0238 9C GHI C ;Get coordinate increment,
023C F4 ADD jadd it on,

023D 73 STXD yrestore coordinate.

023E F8 FO LDI FO sPo:nt RX back te Q7F0.

0240 A7 PLO 7 3

0241 _F INC F sIncrement axis counter, but
0242 C3S LSN@ 3if @ was set; decrement
0243 2F DEC F jcounter by 2, effectively
0244 2F DEC F sby 1.

0245 8F GLO F ;Get axis counter and

0246 57 STR 7 ;stuff it in O7FO0.

0247 B89 GLO 9 ;CGet stop count and

0248 F7 SM jsubtract,

0249 3A 26 BNZ MLTR? jjump back for more if not
024E DS RETURN sequal, else return.

024C 00 IDL yIDL's to 024F inc.

115

MORSE PROGRAM

jThese two subroutines output an XY coordinate to the
yaraphics terminal which requires 10 bit X and Y values,
jbroKen into four 5 bit ASCII characters. Enter with an
38 bit X value in 07F! and Y in O07F2. Normally call XYOUZ2
yimmediately after XTOUl, but to obtain the full 10 bit
jprecision available, the two Isb’'s in the Y value can be
jadded at that point.,

Add. Code Label Mnemonic Commerits

02E0 60 XTOUl IRX jPoint to X value,

02E1 72 LDXA jget it and point to Y.
02E2 A0 PLO © ;X into RO.O,

02E3 FO LDX jget Y,

0ZE4 BO PHI 0 1Y into RO,

02ES 27 DEC 7 sPoint to 07F0,

02E6 27 DEC 7 :

02E7 F6 SHR ;Get high S Y bits in lower
02E8 F6 SHR 13 positions.,

02E9 F6 SHR :

02EA F9 20 ORI 20 iOR in identifier and
02EC DA SEP A joutput high Y byte.

02ED 930 GHI © ;Get T againy,

02EE FE SHL sput 0°s in two Isb’s
0ZEF FE SHL yand stuff it in O07FO0.
02F0 57 STR 7 A

02F1 DS RETURN sReturn for possible meds te
jtwo isb’s to get 10 bit Y coordinate if reqguired.

02F2 00 IDL ’ yIDL'S to 02F7 inc.

02F8 FO XYOU2 LDX ;CGet Y value back,

02F9 FA 1F ANI 1F jmask in lower 3 bits only
02FE F9 60 ORI 60 3sOR in identifier and
02FD DA SEP A joutput low Y byte.

02FE &0 GLO 0 ;Get X value and

02FF F®6 SHR sput high S bits in lower
0300 F6 SHR 15 positions.

0301 F6 SHR 3 ,

0302 F9 20 ORI 20 sOR in identifier and
0304 DA SEP A joutput high X byte.

0305 &0 GLO 0 ;Get X again and

0306 FE SHL jput 0°s in twe lsh’s.
0307 FE SHL %

0308 FA 1C ANI 1C sMask in required bits,
030A F9 40 ORI 40 3OR in identifier and
030C DA SEP A joutput low X byte.

030D D5 RETURN 3All done, get out.

030E 00 IDL 5

- -

030F 00 IDL

116

MORSE PROGRAM

yThe above three subroutines are called by this section
swhich handles the overhead for lettering the axes,
3This is the actual start of the histogram routine.

Add., Code Label Mnemonic Comments

0250 D4 01DA HIST SUB CRLF ;Output a "CR" & "LF"

02533 F8 10 LDI 10 yPoint RA to ocutput routine
0255 AA PLO A ;for serial port 2.

0256 F8 07 LDI 07 ;Output "BEL" to inform
0258 DA SEP A joperator of histogram.
0259 F8 1B LDI 1B yOutput "ESC" & "FF" to
025B DA SEFP A jerase screen.

025C F8 0C LDI 0OC 3

0Z5E DA SEP A s

02Z5F F8 FF LDI FF 3This is a delay while
0261 BF PHI F jthe screen clears.,

0262 AF PLO F sFFFF inteo RF

0263 ZF SCR? DEC F :

0264 9F GHI F 1Get RF.1, jump back if not
0265 3A 63 BNZ SCR? jzeroy else delay over.
0267 FE& F1 LDI F1 ;Set up te label horizontal
269 AC PLO C jaxis (see LTTR for expl.)
026A F8 04 LDI 04 3F1 in BEC.0 = X axis

026C EC PHI C 304 in RC.1 = increment
026D 60 IRX 304 in O7F1 = X offset
026E 57 STR 7 361 in O7F2 = 7Y offset
026F 60 IRX 33F in R9.0 = last count+l
0270 F8 61 LDI 61° s 0 in Q = pos. incr.
0272 73 STXD 3

0273 27 DEC 7 jPoint to O7F0 again.

0274 F8 3F LDI 3F 3

0276 AS PLO 9 -

0277 7A REQ 3

0278 D4 0220 SUB LTTR ;Go and letter X axis,
027B F8 FF LDI FF 3F2 in RC.0 = T axis

027D AS PLO 9 305 in RC.1 = increment
027E F8 F2 LDl F2 300 in O07F1 = X offset
0280 AC PLO C 311 in O7F2 = Y offset
0281 F&8 05 LDI 05 3FF in R9.0 = last count-1
0283 EC PHI € s 1 inm @ = neg. incr.
0284 F8 11 LDI 11 3

0286 60 IRX H

0287 60 IRX H

0288 73 STXD 3

0289 F8 00 LDI 00 H

028B 73 STXD ;Point to O7F0 again.

028C 7B SE@ S

028D D4 0220 SUB LTTR jLetter Y axis from F to 0.

Add .
0290
0292
02393
0294
0295
0297
02398
029A
029B
023C
029D
0240
02A3
1This
s The
0310
0312
0313
0314
0316
0317
0318
031A
031E
031D
031E
0320
0321
0323
0324
0325
0326
0328
0329
032C
032F
0330
0331
0332
0333
0334
0335
0336
0337

117

MORSE PROGRAM

Code Label Mrnemeonic Comments

F8& 10 LDI 10 ;Continue lettering axes,
AS PLO 9 3F2 in RC.O0 = Y axis

60 IRX 305 in RC/1 = increment

60 IRX 300 in 07F1 = X offset

F8 66 LDI 66 366 in O07F2 = Y offset

73 STXD 310 in RS.0 = last count+l
F& 00 LDI 00 3y 0 in Q@ = pos. incr.

73 STXD ;Point to O7F0 again.

C4 NOP 3

7A REQ H

D4 0220 SUE LTTR sLetter Y axis from 0 to F.
CO 0310 LER TEKH ;Continue with histogram.
00 IDL 3yIDL"s to 02AF inc.

section outputs the data to the histogram.
smoothed data is used, but this is easily changed.

F8 06 TEKH LDI 06 sEnter with @=0, spaces.

BC PHI C ;0680 in RC = spaces, if @=0
60 IRX 106CO0 in RC = markKs, if @=1
FE& 05 LDI 0S5 305 in O07F1 = X offset

57 STR 7 360 in O7F2 = Y offset, @=0
60 IRX 166 in 07F2 = Y offset, Q=1
F& 80 LDI 80 3

CS LSN@ -

F& CO LDI CO -

AC PLO C 3

F8 60 TEK1 LDI &0 3

cS LSN@ 3

F& 66 LDI 66 3

73 STXD x

27 DEC 7 jPoint to O7F0 again.

C4 NOP 3

F8 1D LDI 1D " 30utput "GS", make this dark
DA SEP A jvecter to new position.

D4 0ZEO SUB XT0OU1l ;0utput coordinates.

D4 02F8 SUB XY0U2 3

60 IRX 3

60 IRX sPoint R7 to Y coordinate.
C4 NOP 3

0C LDN C 1Get smoothed data pointed
F6 SHR jto by RC,

Fb SHR jdivide by 4,

EC SEX C 3

F4 ADD yadd that to original,

E7 SEX 7 yin effect multiply by 1.25,

118

MORSE PROGRAM

;oooooooocontinuatian of histogl"‘amoocoooooo

;In order to fit histogram onto screen with even spacing,
ythe very last (3Fth) bin is not output. This is not a
sproblem as there should be no useful information there.

Add. Code Label Mnemonic Comments

0338 CD Ls@ 1SKip 2 if @=1, marks.

0339 FS SD ;Spaces, vector down, soO
033A C4 NOP ysubtract data from cffset.
0338 L5 LSN@ ;S5Kip 2 if @=0, spaces.

033C F4 ADD yMarks, vector up, so add
033D C4 NOP jdata to coffset.

033E 73 STXD ;Store T coordinate in 07F2,
033F 27 DEC 7 ;point back to O7FO0.

0340 C4 NOP 2

03241 D4 0Z2EOQ SUB XT0OU1 ;5ub to cutput high Y byte.
0344 0C LDN C ;yGet data againy,

0345 FA 03 ANI 03 smask inm lower 32 bits only.
0347 CD LS@Q 1SKip 2 if @ = 1 = marks,
0348 F5S SD jelse spaces; subtract.,

0348 C4 NOP >

0=z4A C5 LSN@ ;SkKip 2 if @ = 0 = spaces,
034B F4 ADD jelse marks, add. Store
034C C4 NOP jthis result back in 07FZ2.
034D 57 STR 7 ;This adds the two Isb’'s to
034E D4 02F8 SUE XT0UZ2 ;Y for 10 bits, output it.
0331 1IC INC C sIncrement RC, point to next
0352 60 IRX ' ;data; increment RX,

0353 FO LDX jget X coordinate.

0354 FC 04 ADI 04 sAdd 04, move along axis,
0356 57 STR 7 jrestore it,

0357 60 IRX s;Point RX to T coordinate.
0358 8C GLO C ;Get low data pointer,

0359 FF BF SMI1 EF jsubtract BF, neg if still
035B CF LSDF jspaces; sKip 2 if positive.
035C 30 1E BER TEK1 sNeg,; jump back, more spaces
035E 7B SEQ 1Set @ for marks,

035F 27 DEC 7 spoint to O7F0 again.

0360 27 DEC 7 s;If above subtraction was 0,
0361 32 10 BZ TEKH sback to START mark output.
0363 &0 IRX jElse point to O07F2 = Y,
0364 60 IRX :

0365 FF 40 SMI 40 ;Subtract 40 from previous
0367 3A 1E BNZ TEK1 jresult, if nonzero, back
0369 7FA REQ s for more spaces, else reset
036A 27 DEC 7 1@, point back to 07F0,

036B 27 DEC 7 H

036C CO 0370 LER OUPAR jand jump ahead to output

036F 00 IDL jparameters,

119

MORSE PROGRAM

yThis section outputs the speed and thresholds to the
sgraphics terminal

Add.
0370
0371
0372
0374
0373
0377
0378
037C
037E
037F
0382
0385
0387
0388
038A
03BE
03ED
038E
03291
0394
0396
0397
039A
039B
039C
039F
03A1
03A2
03AS
03A6
03A7
03AA
03AC
03AD
03E0
3This

ystart of data stack

03B6
03E7
03B8
03E9
03BA
03BB
03BC

Code

60
60
F&
73
F&
73
C4
F8
DA
D4
D4
F&8
DA
F8
EC
FE&
AC
D4
D4
F&
AC
D4
9E
BF
D4
F&
AC
D4
8E
BF
D4
F8
AA
co
00

short subroutine outputs

4C
C6
D3
00
DA
30
00

BA

00

1D
02EOQ
02F8
iF
02
BO
03B6
01CE
B7
03E6
O1E2
CB
03E6
O1E2
01

04B8

E6

Label

Mriem

OUPAR IRX

HEAD

IRX
LDI
STXD
LDI
STXD
NOP
LDI
SEP
SUB
SUB
LDI
SEP
LDI
PHI
LDI
PLO
SUB
SUB
LDI
PLO
SUEB
GHI
PHI
SUE
LDI
PLO
SUEB
GLO
PHI
SUB
LDI
PLO
LBR
IDL

in
LDA
LSNZ
RETU
IDL
SEP
ER H
IDL

onic

EA

00

1D

A
XYOU1l
XyYouz
1F

&

02

C

BO

c
HEAD
RDOUT
B7

C
HEAD
E

F
2HOUT
CB

Cc
HEAD
E

F
2HOUT
01

A
KCHK

at the top of the histogram.

Comments
300 in O7F1 X offset
1BA in OFFZ2 T cffset

FUE TR T

sPeint back to 0FFO0.
sNOP"s to 037B inc.
;Output "GS" for dark vector

b
;Output coordinates for

;first lettering position.
;0utput "US" for alpha-
snumeric mode.

sPoint RC to the start of
jthe first heading stack
jat 02EO0.

3

;Output first heading.
;Output speed from RD.
sPoint RC to second heading.

3
;Output second heading.

yMove markK threshold to RF.1

.

]
;Output it as 2 hex digits.,
sPoint RC to third heading.

.
L)

;Output third heading.
1Put space threshold in RF.1

Y
;Output it as 2 hex digits.,

tHistogram finished, point
sRA to routine for port 1,
jwait for Keyboard input.
3IDLs to 03ES inc.

ASCII headings. Enter with

RCy returns when first 00 found.

C

RN

A
EAD

1Get heading element,
yskip 2 if nonzero,
yelse return.

A
;Output heading and

sgump backK for more.
yIDL’s to 03BF inc.

3yThis is the heading data.

Add.

02E0
0ZEl

02B2
02E3
02E4
0ZES
02B6
02E7
02B8
02E9
02BA
02ERB
02BC
0ZED
02BE
0ZEF
02C0
02C1

02C2
02C3
02C4
02CS
02C6
02C7
02C8

Code

53
50
45
45
44
20
00
20
20
20
20
4D
41
52
4B
20
54
48
52
45
55
48
4F
4C
44

Character

DroIrumxoI-

Each

Add.

02C9
02CA
02CE
02CC
02CD
02CE
02CF
0ZDo0
02D1
02D2
02D3
02D4
02D3
02D6
0z2D7
02D8&
02D9
02DA
02DB
02DC
02DD
02DE
02DF

MORSE PROGRAM

120

stack ends with 00.

Code
20
00
20
20
20
20
53
50
41
43
45
20
54
48
S52
45
53
48
4F
4C
44
20
00

Character
space
end
space
space
space
space

n
m

OroITumAaI Sy MODTWM

space
end

10.

121

REFERENCES

Bedzyk, W.: "Machine Translation of Morse Code Using a
Microprocessor", NTIS, AP-785-130, June 1974, pp. 1-113.

Bell, E.: "Processing of the Manual Morse Signal Using
Optimal Linear Filtering, Smoothing and Decoding", NTIS,
AD-A019-493, Sept. 1975, pp. 1-156.

Blair, C.: "On Computer Transcription of Manual Morse",
Journal of the Association for Computing Machinery,
July 1959, Vol. 6, No. 3, pp. 429-442.

Day, R.: "Communication Aids for Cerebral Palsied
Children", M. Eng. Thesis, McMaster University, Hamilton,
Ontario, Sept. 1976.

Freimer, M.; Gold, B.; Tritter, A.: "The Morse Distribu-

tion", IRE Transactions on Information Theory, March
1959; pp. 25-3l.

Gold, B.: "Machine Recognition of Hand-Sent Morse Code",
IRE Transactions on Information Theory, March 1959,
pp. 17-24.

Gonzales, C.; Vogler, R.: "Automatic Radiotelegraph
Translator and Transcriber", Ham Radio, Nov. 1971,
pp. 8-23.

Grappel, R.; Hemmenway, J.: "Add the 6800 Morse Keyer
to Your Amateur Radio Station", BYTE, Oct. 1976,
pp. 30-35.

Guenther, J.: "Machine Recognitién of Hand Sent Morse
Code Using the PDP-12 Computer", NTIS, AD-786-492,
Dec. 1973, pp. 1-153.

Hickey, W.: "The Computer Versus Hand Sent Morse Code",
BYTE, October 1976, pp. 12-17, 1l06.

11.

12.

13,

14.

15.

16.

122

McElwain, C.; Evens, M.: "The Degarbler - A Program for
Correcting Machine Read Morse Code", Information and
Control, 1962, Vol. 5, pp. 368-384.

Reyer, S.; Steber, G.: "The Morse—-A-Letter", Popular
Electronics, Jan. 1977, pp. 37-43.

Signetics Analog Data Manual, "Phase Locked Loops",
1977, pp. 807-860.

Smith-Vaniz, W.: Barrett, E.: "Morse to Teleprinter Code
Converter", Electronics, July 1, 1957, pp. 154-158.

Triggs, R.: "Morse Code Communication Aid", Chedoke Hos-
pital Internal Report, Hamilton, Ontario, Sept. 1979.

User Manual for the CDP1802 COSMAC Microprocessor, RCA
Corporation, 1976, pp. 1-115.

	Structure Bookmarks

