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ABSTRACT 

A repulsive meson-meson interaction was suggested 

many years ago (1951 by Schiff) as a possible mechanism for 

nuclear saturation, but very little has been done since 

then. This is mainly because the meson field equation 

becomes nonlinear due to the meson-meson interaction. We 
l. ~-

realized that the nonlinear field equation cancbe analyti­

cally solvable, within classical and adiabatic approxima­

tions, if the space is reduced to a one-dimensional one. 

Within the above context we investigate the effect of the 

meson-meson interaction on nuclear forces. The approxi­

mations which Schiff used are critically examined. A varia­

tional method for determining the meson field, which Schiff 

suggested but did not fully investigate, is found to be a 

very efficient approximation. Finally, quantum corrections 

are briefly examined. 
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CHAPTER I 


INTRODUCTION 

It has long been recognized that a non-linear meson 

field may be useful in describing certain properties of the 

nuclear interaction. In 1951, Schiff1 introduced a term 

proportional to the fourth power of the meson field amplitude 

in the Lagrangian. His purpose was to explain two features of 

atomic nuclei, the first being saturation, and the second 

being the success of the independent-nucleon approximation 

used in shell-model calculations. Saturation occurs in nuclei 

consisting of more than about ten nucleons. For such nuclei, it 

is experimentally found that the binding energy per nucleon, B/A, 

is approximately constant. For somewhat heavier nuclei, it is 

found that the interior, or core, density behaves similarly. 

These experimental facts imply that the interaction between a 

pair of nucleons in the presence of other nucleons, as in nuclei, 

is less than that of a solitary pair of nucleons. If each nu­

cleon simply interacts pairwise with each other nucleon, the 

binding energy per nucleon and the density, will always increase 

with the addition of each nucleon to the system, until it col­

lapses. The shell-model, which works so well in predicting 

nuclear spectra and decay schemes, leads to a similar conclu­

sion. The two-body interactions in a nucleus are suppressed 

1 
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in favour of the interaction of each nucleon with the average 

nucleon density. It is thought that the individual nucleons 

feel only some sort of general force due to all the other nu­

cleons in the nucleus rather than a combination of strong, 

short-range, two body forces, even though it is known that the 

latter type of forces govern the behaviour of isolated, two­

nucleon systems. 

Use of non-linear meson fields is by no means the only 

method devised to account for the aforementioned behaviour of 

nuclei. Many other effects are considered, alone and in combi­

nation, to explain why heavy nuclei do not collapse. Repulsive 

core potentials, tensor and exchange forces, and the Pauli ex­

clusion principle all modify the nuclear potential in the de­

sired manner, to some extent. It is felt however that these 

may not be sufficient. Results of some calculations, which 

incorporate such effects, are given in reference 2. It is found 

that the value of B/A that these calculations can yield is less than 

the experimental.value by a few MeV for nuclei. Similar results are 

attainable for nuclear matter where the accepted value of 16 

MeV, obtained from the semiempirical mass formula, does not 

include Coulomb and surface effects which are important in nu­

clei and reduce the binding energy to about 8 MeV per nucleon. 

Alternatively, potentials can be adjusted such that the value of 

B/A is reproduced, but these lead to discrepancies in other 

nuclear properties, the most important being the two-nucleon 
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scattering data. In view of this rather unsatisfactory situa­

tion it is felt that investigation of a non-linear meson field 

would be worthwhile particularly since very little has been done 

following Schiff's attempt. 

Having now decided to determine the effects of a non­

linear meson theory, we must obtain a model with which we can 

pursue our investigation. It is generally true that non-linear 

equations are much more difficult to deal with than linear ones 

and in quantum field theory we have a further complication in 

that the fields themselves are quantized. For this reason we 

restrict most of the discussion to classical field theory. To 

investigate the validity of such an approximation we can estimate 

the quantum corrections. We expect that, for large field ampli­

tudes which in the quantum formulation result from the presence 

of many mesons in the system, the approximation will be best, 

just as the correspondence principle ensures that for large 

quantum numbers, quantum effects disappear. This is due to the 

fact that, in a system consisting of many bosons, the creation 

or annihilation of a single one from a given state, has a neg­

ligible effect. We further restrict ourselves to discussion of 

neutral scalar mesons. 

Following Schiff and others 3 , we consider a meson field 

¢, which interacts with the nucleon field through a Yukawa 

4interaction. The inclusion of a ~ ¢ term in the Lagrangian 

is due to consideration of a meson-meson interaction. The meson 

field equation is then non-linear, containing A¢ 3 . In the 
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usual linear theory which does not include the meson-meson 

interaction, the problem is soluble within the classical approxi­

mation and leads to a Yukawa potential between nucleons. The 

non-linear situation however is much harder to analyze and 

to our knowledge,little progress has been made, since Schiff, 

who resorted to variational calculations. For this reason we 

further simplify our model using as a guide, knowledge of 

4,5,6,7 . h' h . . ·1severa1 papers in w ic equations simi ar to ours are 

found to be exactly soluble. The analysis of one-dimensional 

(1-D) few-body atomic and molecular systems using the Hartree-

Fock approximation leads to equations which are of the same form 

as those arising in our investigation. Solution of our equations 

then parallels those used for the "atomic" system. We consider 

in the classical approximation, a one-dimensional system of 

point-source nucleons interacting with neutral, scalar mesons 

via a Yukawa interaction with a point-contact repulsion between 

the latter. 

Investigation of models as simple as the one proposed 

cannot be expected to yield results which are quantitatively 

comparable to those obtained from more realistic three dimensional 

(3-D) systems, but can be useful from a pedagogical viewpoint. 

Indeed, this is usually the justification given for carrying out 

such calculations. In our case the situation is complicated 

because of an important difference between the 1-D and 3-D 
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systems. It is found that a 1-D system of nuclear matter is 

saturated whether or not the meson-meson interaction is taken 

into account whereas saturation in a 3-D system is very sensitive 

to the strength of this interaction. In view cf this difference 

then, the model is proposed not as a means of explaining the 

saturation mechanism, but as a method of comparing the accuracy 

of approximations employed in realistic 3-D calculations. Since 

our model is simple, it is possible to carry out most calculations 

easily and to compare several different approximations with 

the "exact" result. Although suppression of the two-body interac­

tion in the many-nucleon system is investigated, our primary 

achievement is that we are able to propose a rather simple accurate 

approximation to the meson field amplitude which can be used to 

calculate the two-nncleon interaction energy. The success of 

this approximatior• for the 1-D system encourages us to believe 

that it may be the basis of a useful method for dealing with a 

J-D system as well. 

We begin our investigation by considering the simpler 

linear formulation. In Chapter II we neglect the meson-meson 

interaction and find that the field equation can be solved in a 

very general manner for any number of nucleons and that the 

energy of such a system is easily obtainable. Chapter III is 

concerned with the non-linear theory. The meson fields with 

one, two and three nucleon sources are obtained and the energy 

for each system is found. The possibility of three-body in­
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teractions is investigated. In Chapter IV, several approxima­

tions are tested and one is found to be surprisingly accurate. 

In our model there are two coupling-constants, A for the meson­

meson interaction and g for the meson-nucleon interaction which 

is taken to be of a Yukawa type. Nuclear matter and two-nucleon 

bound state calculations done in Appendix A, are used to test 

values of the two parameters which are used in the text. 



CHAPTER II 


A 1-D 	SYSTEM OF NUCLEONS IN THE ABSENCE 
OF A MESON-MESON INTERACTION 

The Lagrangian density L, of our system of nucleons 

and neutral scalar mesons is given by 

( 2 .1) 

where M, m and g are the nucleon mass, meson mass and coupling 

constant between mesons and nucleons, respectively. In quantum 

field theory, ~ and ¢ are the nucleon and meson field opera­

tors, but unless otherwise stated, we treat them simply as 

classical field amplitudes. Throughout the discussion we use 

units such that~ = c = 1. Energy and mass then have the same 

dimension. Form let us take the pion mass, namely 

139.6 MeV 	 -1
0.71 fm · m = 197.33 MeV fm = 

(Note: 	~c = 197.33 MeV fm in more familiar units.) The coupling 

-1constant g also has units of fm . Actual values for g and 

the non-linear parameter A, are discussed in Appendix A. 

The field equations Gan now be derived, starting with 

Hamilton's principle: 

ft2 
cS L dt = Q I (2.2) 

J 
tl 

7 
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where L is the Lagrangian for the system. In field theory 

this becomes 

J:u Jt2 dt Joo Ldx=O. (2.3) 

tl -oo 

This can then be expressed as 

2
t dt Joo {~ d 'CH d aL} d (2.4)acp - dt a¢ - dx W ocp x = o, 

J 
-oo 

and analagously for the nucleon field. This condition gives 

the usual Euler-Lagrange equation 

aL d aL d aL ( 2. 5)a(j) - dt a~ - dx W = 0 • 

Writing this explicity for (2.1), we have 

.. 2 * 
cp - cp II + m cp = g'ljJ 1jJ ( 2. 6a) 

and 

i ~ + 2~ ljJ II := - g¢ ljJ • (2.6b) 

These are the meson and nucleon field equations, which must be 

solved simultaneously in order to obtain a complete description 

of the system. Here, however, we consider only a first approxi­

mation to the nucleon field and solve explicitly the resulting 

meson field equation, (2.6a). In the linear case only, 

we can show how the result for an arbitrary nucleon field can 
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be obtained. We also limit discussion to the static situation 

in which ¢ is zero. It is expected that this will have a neg­

ligible effect as long as the nucleons can be considered to be 

moving slowly with respect to the mesons. Eq. (2.6a) then be­

comes 

( 2. 7) 

and it is apparent that this can be solved by the method of 

Green's functions. The right hand side of (2.7) is just the 

source term for the meson field. Eq. (2.7) can be written as 

V¢(x) - g~*(x)~(x) = 0 (2.8) 

with 

v ­

The boundary conditions are 

<[>(oo) = <f> 1 (oo) = <f>(-oo) = ¢'(-oo) = Q. ( 2. 9) 

Consider the Green's functions G (x), G (x) such that
1 2 

00VG (x) = 0 - < x < x' (2.lOa)
1 

and 

x' < x < 00 • (2.lOb) 

These must satisfy the relations 
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(2.lla) 

and 

which simply mean that G must be continuous at x = x' and 

its derivative must be discontinuous there. Then assume 

00G{x,x') = c u(x) - < x < x' (2.12a)
1

and 

G(x,x') = c v(x) x' < x < 00 , (2.12b)
2

where 

00Vu(x) = 0 - < x < x' (2.13a) 

and 

Vv(x) = 0 x' < x < 00 • (2.-13b) 

Equations (2.11) and (2.13) give 

= 1 -mlx-x' IG(x,x') {2. 14)2ni e 

It can be shown that 

<P (x) G{x,x')~ * (x')~(x')dx' (2.15) 

-oo 

satisfies (2.8), by substituting (2.14) into (2.15) and evalua­

ting V¢(x). Because of (2.13) we are assured that ¢(x) is the 

8solution to (2.7). (e.g. see Arfken ). 

We now substitute for ¢(x) in (2.6b) to obtain 
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i~ + 2~ 1/-" = - g
2 rG(x,x•iipt(x')ip(x')dx'•i/J. {2.16) 

-oo 

Recall now, that an operator in configuration space having 

the form 

N 
l: 

i<j=l 
V(x.,x.)

1 J 

is represented in Fock space (i.e. in the formalism of second 

quantization) as 

f dx J dx' 1/Jt(x')1/Jt(x)V(x,x')1/J(x),P(x') 

{e.g. see Schweber9 ). Then the term in the Schroedinger equa­

tion corresponding to V(x,x') in Fock space, is V(x.,x.), in 
1 J 

configuration space. This means that the nucleon potential 

is given by 

2V{x. ,x.) = -g G(x. ,x.) (2.17)
1 J 1 J 

We now consider a situation in which the nucleons are 

completely localized and their wavefunctions are simply of 

the form~*~= o(x-x.) where x. is the position of the nucleon. 
l l 

This is known as the adiabatic approximation. More generally 

consider 

N 
~ * {x)~{x) = l: o (x-xi) - ( 2 .18) 

i=l 

It is assumed that the source function f(x.) is the same for 
l 
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all nucleons. We see immediately from (2.15) that 

N 
= _g_ -ml x-x. I 

<PN (x) l: e i for N nucleons. (2.19)
2m i=l 

The general solution for N nucleons is simply a linear combi­

nation of the single nucleon solution. More importantly 

N N 
l: V(x.-x.) = -g 2 l: G(x.-x.) • (2.20)

l. J l. Ji<j=l i<j=l 

The potential for a system of nucleons is given by a simple 

sum of two body interactions. There are no N-body interac­

tions for N>2. 

Eq. (2.20) can be verified by explicitly evaluating 

(2.21) 

where 

2
H = ; n - Lm - LI , (2. 2 2) 

with TI being the momentum canonically conjugate to <f>. This is 

just ~, so in our static approximation 

N
1H = - L - LI = <PI 2 + ! m2<P2 - g l: o(x-x.) <P . (2.23)

m 2 2 l.i=l 

Lm, LI are the Lagrangian densities which describe separately 

the meson field and its interaction with the nucleon field. This 

gives the total energy of the system which overcounts the self-

energy of each N, so we must subtract the self-energy of N(N-2) 

nucleons in order to arrive at (2.20). 
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The final results for the linear system are: 

<Pl (x) = ifn e-mlx-xil ; 	 the meson field with one nucleon at (2.24) 
x = x .• 

1. 

2 
~m ; the self energy of a single nucleon. (2.25) 

2 
-9:_ -mr ,·H .. = 	 the interaction energy for two nucleons (2.26)

1.J 2m e 
separated by a distance r. 

Here, we note that (2.26) is the one-dimensional equi­

valent of a Yukawa potential which has the form 

-mr ev = 	 (2.27)r 

This follows from the 3-D form of (2.1). Note that in this 

case g is dimensionless. 

Since we were initially guided by the solution of the 

"atomic" systems, some comparison is in order. Lapidus 3 con­

siders the problem of two particles interacting via a potential 

given by 

V(x) = -A{8(x+a) + 8{x-a)} , 	 (2.28) 

which corresponds to the source term (2.18) in the two nucleon 

system. The resulting Schroedinger equation for the system 

then differs from (2.7) only slightly. The equation is 

112 
- M '±'" (x) + V(x)'l'(x) 	 = E'l'(x) (2.29)2 e 

where Me is the mass of the particles being considered 

and ~(x), the wavefunction for the system, is of the same 
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form as (2.19) with N=2 except that an odd parity solution is 

allowed. The linear combination of atomic orbitals as an ap­

proximation to the actual molecular orbitals {LCAO-MO) is then 

investigated. The result is that the approximation is good for 

larger "interatomic" distances, as expected. The fact that 

an equation similar to (2.19) does not hold exactly, is a direct 

consequence of the difference between (2.29) and (2.7), as can 

be seen from the following: 

(2.30) 

for a single nucleon. For N nucleons this can be written as 

N N 
= V E ~ 1 (xi) - g E f 1 (xi) = 0 , (2. 31) 

i=l i=l 

so that a linear combination of one-nucleon fields satisfies 

the many-nucleon equation. It is not possible to write a corres­

ponding equation for the atomic system because of the presence 

of the "extra" factor of ~(x) in (2.29). 

Concluding our discussion of the linear meson theory, 

we note that similar general results hold for the three-dimensio­

nal system: the meson fields are superposable and the interaction 

energy of a system of many nucleons is simply the sum of the pair 

interactions. We now turn our attention to a non-linear theory, 

but repeatedly return to the results of this section as a test 

of the non-linear results which must be identical in the limit of 

small A.. 



CHAPTER III 


A NON-LINEAR MESON FIELD 

As in Chapter II, we consider the Lagrangian density 

for the system. Here we introduce a term to account for the 

meson-meson interaction. 

L (x) = i1j>t~ - _!_ l/Jt' l/J' + gljJt l/Jcj> + .!.{¢2-¢,2 m2cj>2 - A cj>4}. ( 3 .1)2M 2 2 

The (positive) coupling constant between mesons, >., has units 

Of fm- 2 • It can be seen tha t t h e 1as t t erm o f eq. (3.1) cor­

responds to a point-contact repulsion between mesons, by noting 

that 

2 2cj> (x) cS (x-x') ¢ (x') dx' . (3. 2) 

The Euler-Lagrange relation then yields the field equations: 

( 3. 3a) 

and 
. 1 

iljJ + 2M l/J" = - g¢1j> (3. 3b) 

In the static approximation the meson field equation is 

(3.4) 

15 
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Here, unlike in Chapter II, we cannot find the solution for 

an arbitrary nucleon field, and resort immediately to the adia­

batic approximation. 

N 
2: o(x-x.} ( 3. 5} 

i=l l 

for N nucleons, with the ith being localized at x = x .. 
l 

The field equation for a single nucleon located at 

the origin is given by (3.5} as 

(3. 6} 


The solution of this is obtained by solving the corresponding 

homogeneous equation, 

(3.7} 


subject to certain restrictions. The first of these requires 

that the field amplitude be continuous everywhere and is known 

as the matching condition. The second requires that the deriva­

tive be discontinuous at the position of the nucleon. This jump 

condition is found by integrating (3.6} over a small region 

about the origin, which results in 

I 

-<P 1 
( 3. 8} 


The integral vanishes in the limit E + O since the field is 

continuous and the result, giving the relation for the dis­
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continuity in the derivative,is 

I I 

<P - <Po = -g . (3.9)
o+ 

The solution to (3.7) is found by multiplying by 2<f>' (x) and 

integrating so that 

= 2,i,2 + ~ ,f,4 + (3.10)m ~l 2 ~1 c · 

The integration constant must be zero so that (3.10) is satis­

fied for x + oo where <P and <fl' are zero. Separating variables 

and integrating yields 

(3.11) 

Making the substitution 

2 A. ,i,2= m ( 3 .12)+ 2 ~1 

results in 

2du 2 = x • (3.13) 
J u -m 

This can be solved to give the relation 

_!_ tn{~} + k = X I ( 3. 14)
2m u+m 

with k being the constant of integration. Then, replacing for 

u and rewriting, <f>{x) is obtained as 
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2 1/2 

<j> 1 ( x) = 2 [ 2~ ] (3.15) 

where the constant of integration is now a. The jump condition 

(3.9) gives the relation 

2 2 1/2 a{ l+a2 } 
(3.16)I4m [I] (l-a2) 2 = g 

which can be solved numerically to obtain a. The field ampli­

tude ¢ (x) is then known and is shown in Fig. la.1 

The energy associated with this system is just the self-

energy of a single nucleon and is evaluated using (2.21). Here 

H = 
1 '2 + m2<j>2 + ~ <j>4} - go (x) ¢ . (3.17)2{¢1 1 2 1 1 

21 2mSetting (3 = tna and y = ->.- givesm 

for x > 0 (3.18a) 

and 

¢ (x) = -y112csch m(x+S) for x < 0 . (3 .18b)
1 

Using the relation (3.10), the nucleon self-energy H1 , is writ­

ten as 

2cosh 2n(x+(3)dx _c_o_s_h__m,_(_x_-_S_)d_x_} (3.19)
4sinh 4m(x+S) sinh m(x-(3) 

0 

a-2gy1/2 
--2.. 
1-a 
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Then 

= - 2~Y (1 + coth
3

mB) - 2gy
1

/ 
2 	~ (3.20) 

1-a 

and upon replacing for B and substituting for g from (3.16) 

this becomes 

Hl = 4 
3 

my 
2 4 2 

a (a -6a -3) 
(1-a.2) 3 

(3.21) 

The substitution 2 u = 
2 

a 
T in eq. (3.16) gives 

2 
a Q= 

32m
4 # (3.22) 

for small A, so that 

2
lim g (3.23)-- Hl = - 4mA-+0 

which is identical to eq. (2.25) as expected. 

For a system of two nucleons (3.5) must be solved ex­

plicitly since the fields are not superposable. With nucleons 

at x = ±a, (3.5) becomes 

2 3II 

- m ¢ 2 - A¢ 2 = -g{o(x+a) + o(x-a)}. (3.24)¢ 2 

For this system the solution has two distinct forms depending 

upon which region is considered. In the exterior region, 

lxl ~ a, the field amplitude is irrunediately found to be 

(3. 25) 
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Note however that the constant a does not satisfy (3.16) and 

must be found from the matching and jump conditions. For the 

interior region, lxl 2 a, the solution is found to be quite 
I 

different. Multiplying by 2¢ and integrating gives
2 

(3.26) 


The integration constant K is non-zero since we do not expect 

that will be zero in this region; we do expect that it¢ 2 
I 

will have a minimum so that ¢ (0) = O. This leads to
2 

(3. 27) 

Then (3.26) becomes 

(3. 28) 

which can be rewritten as 

rf..' [(rf..2 _ rf..2)(~ rf..2 + m2 + t.. rf..2 )]1/2 ; cp (O) = cp •. (3.29)~2 = ~2 ~o 2 ~2 ~2 0 2 0 

Separating variables and integrating yield 

. *This gives 

(3.31) 


* A description of the Jacobian elliptic functions and of de­
tails leading to (3.32) is given in Appendix B. 
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or 
2 1/2 

<P 2 {x) = <P 0 nc(x[A.¢~ +m] Iµ> i lxl < a (3.32) 

-12 	 2 
µ = ( <P 2 + 2m ) ( 2¢ 2 + 2m ) 	 (3.33)

0 ;;- 0 A. 

Matching the field amplitudes at x = a gives 

2yl/2 	~ = <Ponc(uajµ) , (3.34) 
1-a 

2 . 2 1/2
where u = a[A.¢ + m ] This can be solved to yield

a 0 

1/2 2 2 1/2-y ± [y +<Po nc (ualµ)] 
a = , (3.35)

<Ponc(uajµ) 

and taking the upper sign ensures that a > 0. Imposing the 

jump condition at x = a gives 

(3. 36) 


which results in the relation 

2
1/2 

1/2 _a_(_l_+~a_2~) + _<P_o_<_A._¢~~-+_m__>~~·~s_n_<_u_a_l_µ_)_d_n_<_u_a_I_µ_)
2my 	 = g. (3. 37)2 	 2(l-a2 )	 cn (u jµ)

a 

Substituting (3.35) into (3.37) gives a relation which can be 

solved numerically to obtain ¢ and then a. Therefore ¢ 2 (x)0 

is determined by the four relations (3.25), (3.32), (3.35) and 

(3.37), and is shown in Fig. lb. 

The nucleon-nucleon interaction energy can now be 

evaluated using the relation 
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-co 

where r is the internucleon separation 2a. Eq. (3.28) can be 

used to simplify the first term. The integration is done nu­

merically using a simple Simpson's rule formula. For maximum 

accuracy, the function must be evaluated at exactly the posi­

tion of the cusps which occur at x = a and x = -a. The func­

tion H (r) is shown in Fig. 2. It is seen that for A + 0, this
2 

reduces to (2.26). Note that for A= 0 (3.34) and (3.37) can 

be solved analytically to obtain ¢ and a, though this was0 

avoided by observing (2.19). 

To investigate the possibility of many-body interac­

tions it is necessary to obtain the solution of the field equa­

tion for (at least) a three-nucleon system. For nucleons posi­

tioned at x = a, x =-band x = 0, (3.5) becomes 

" 2 3- ¢ + m ¢ + A¢ = g{o(x-a) + o(x+b) + o(x)}. (3.39)
3 3 3 

The corresponding homogeneous equation, 

(3.40) 

must then be solved for the four regions x ~ -b, -b : x : 0, 

0 _:: x ~ a and x > a. The forms of the solutions however, are 

identical to those obtained for the corresponding regions in 

the two-nucleon system. The matching and jump conditions are 

much more complicated though, resulting in a system of six 

equations which must be solved simultaneously. Matching field 
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amplitudes at x = -b, x = 0 and x = a gives 

(3.41) 


where 2 
[cp2 + 2m ] 

b y 
2 

[2cp~ + 2~ ] 


and cpb is the value of the field amplitude at the position 
I 

x = xb, where q, 3 = 0. Note that for sufficiently small b 

and a, the situation 

~ < -b I (3.42) 

is possible. The other relations are 

(3.43) 


and 
= 2 Yl/2 

a 
a--2 

1-a a 

I (3.44) 

where 

ub = - 2
xb p,q,b 

2 1/2 
+ m ] u a = -x a 

2P..<P a + 
2 1/2 

m ] 

and 

u2 = 2(a-x ) [/..¢a a + m2] 
1/2 

. 

The jump conditions are 
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2 1 2¢b(A¢~ + m ) / sn(u1 lµb)dn(u 1 lµb) 2myab(l +ab) 
= -g (3.45) 

en (ullµb) (1-ab) 

at X = -b t 

2 1/2 
+ m ) sn ( u Iµ ) dn ( u Iµ )a a a a 

2 en (u Iµ )a a 

= g (3.46) 

at x = O, and 

2 2 1/2
2mya (l+a ) ¢ (A¢ +m ) sn(u2 1µ )dn(u2 1Jl ) 

~~~-a~~-a- + a a a a = g (3.47) 

(1-aa) 

2 
en (u2 jµa) 


at x = a. This can be reduced to a system of four equations by 

solving for aa and ab as in (3.35). The field amplitudes are 

for x < - b , (3.48a) 

for - < x < 0 , ( 3. 4 8b) 

= ¢ nc (u Iµ ) for 0 < x < a (3.48c)a a a 

and 
1/2 -m(x-a)2y aae 

¢(x) = for (3.48d)3 

Here u a 

x > a 

The field amplitude ¢ (x) is shown in Fig. le. The interaction3 

energy of the system is then computed using the Hamiltonian 

density which gives 
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-oo 

(3.49) 

The contribution from the three-body interaction can then be de­

termined by comparing H (a,b) to the total contributions of the3 

two-body interactions. This can be written as 

(3.50) 

For the linear meson field (A=O} this is always zero but, as can 

be seen from Fig. 3, the meson-meson repulsion gives rise to 

a repulsive, three-body interaction. The upper plot shows that 

the total interaction energy of the three-nucleon system is 

greater (less negative) than the sum of the three, two-body 

interaction energies. Note that H (a,b) vanishes only for large
3 

a and b, but both plots clearly show that, as expected, v123 

vanishes when one nucleon is removed to infinity. The lower 

plot also indicates that v123 is symmetric with respect to ex­

change of a and b. Figure 4 shows the behaviour of v123 as a 

function of A. 

Summarizing, we have shown how the meson field equation 

can be ~olved when any number of localized nucleon sources are 

involved although the system of simultaneous transcendental 

equations which the problem is reduced to, becomes increasingly 
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complicated. Even though the solution for two or more nucleons 

can easily be found in terms of the well-known Jacobi ellipti­

cal functions, it must be evaluated numerically. The solution 

obtained, however, is the exact one for the model under consi­

deration so that we are now able to compare the accuracy of 

several approximations to the field amplitude and to the two­

nucleon interaction. 



Fig. la 	 The meson field amplitude for a single nucleon 

source. The lower plot shows the effect of the 

non-linear term in the field equation. 
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Fig. lb The two-nucleon field for different separations. 

LCThe second line, ( • • • •) , shows <P (x) . Note that
2 

it is plotted in all six diagrams. 
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Fig. le The meson field with three nucleon sources. The 

second diagram shows the situation referred to in 

( 3-42) • 



32 

4 

3 

x 

B 

2 1 
<Pb 

: -----,-­<Pa 

1 

A 
G 

12.920E-06 Fl'-;? 
;2.~57E-Ol FM-l 

5 

4 

x 

3 

2 

1 

0 
-5 -4 -3 -2 -1 0 

X CFMJ 

1 2 3 4 5 



x 

33 

4 

:: 
.· 

3 

x 

2 

1 

0
-5 -4 -3 -2 -1 0 1 2 3 4 5 

X (FMl 

5 

.. ' 

!\4 
: : 

1.000E+ 0 
A 4 .4 37 
G 

: : 

.. 

3 

2 

1 

0 
-5 -4 -3 -2 -1 0 l 

+0·1. FM -z 
F.M -l 

2 3 4 5 

X (FM l 



Fig. 2 The two-nucleon potential H (r}.
2 

(--} exact calculation 

( .... ) using <P~c (x) 

(----) -g<j>l(x) • 
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Fig. 3 	 The three-nucleon interaction energy. The 

first diagram compares H (a,b) with the sum3 

of the three, two-body interactions: 

---) H (a,b)3 

( ...... ) H2 (a) + H2 (b) + H2 (a+b) • 

The lower diagram shows v123 (a,b) for various 

values of the internucleon separation, b. 
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Fig. 4 The three-nucleon interaction energy v (a,b)123 

as a function of the non-linear parameter A. 
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CHAPTER IV 

POSSIBLE APPROXIMATION METHODS 

The results of Chapter II suggest alternatives to 

calculating ¢ (x) and H (r) directly when A f 0. Guided by
2 2 

(2.19) and (2.20) we consider two approximations for the 

interaction energy of the two-nucleon system. The first gives 

H (r) directly. In eq. (2.17), it is seen that -g ¢ (x) is2 1 

the exact expression for the two nucleon interaction energy 

when the source term is a delta function. In the non-linear 

system this becomes 

with the constant a given by (3.16). It can be seen that for 

large r the expression reduces to the correct value, namely 

zero, and in the other limit, 

216m3a 2 (l+a ) (4.2) 
A(l-a2 ) 3 

Eq. (2.19) suggests the approximation 


LC
¢ (x) = ¢ (x-a) + ¢ (x+a) , (4. 3)
2 1 1 

for the field amplitude of the two-nucleon system. ¢~C(x) 

is shown along with the exact result in Fig. 1. and as ex­

pected from (2.19), the agreement improves as Ais decreased. 
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This field can then be used in (3.38) to calculate H
2 

. Note 

that (3.28) is not satisfied. Using the example of (3.18), 

H (r) may be calculated analytically. Some details of the 

calculation, and the result are given in Appendix C. The 

result, which was also computed numerically as a check, is 

shown in Fig. 2. As can be seen, this approximation gives poor 

results for large A and small internucleon separation. For 

r = O, ¢~C(x) = 2¢ 1 (x) and 

(4.4) 

For the exact case, we cannot find a comparable ex­

pression for H2 (0). The interaction energy of the two-nucleon 

system, in the limit of zero separation, can be found by 

evaluating the self-energy of a one-nucleon system with 

doubled source strength. For A = 0 

(4.5) 

but this is not generally true. The energy is given by (3.21) 

but the constant a now satisfies the relation 

I I 

¢0 - ¢0 = -2g (4.6)I 

+ 

so that the limiting forms of H (0) for the different approxi­2 

mations are best compared numerically. 
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A third approximation is suggested by comparison of 

the actual field amplitudes ¢ 2 (x) and ¢~c(x) as in Fig. 1. 

From the plot it is seen that ¢~C(x) differs from the exact 

field amplitude by a factor that is approximately constant over 

the range shown, for a given separation r. It is in fact, 

this difference that is responsible for the deviation of the 

approximate energy from the correct value. We therefore con­

sider an improved form of the previous approximation. For the 

field amplitude take 

v LC
¢ (x,r) = c(r)¢ (x,r) (4.7)2 2 

where c(r) is a constant with respect to x. Here, we explicitly 

include the r dependence of the fields. We may now investigate 

a means of obtaining c(r). The usual variational theorem states 

that the energy of a system is actually a minimum, which can be 

expressed as 

o<H> = 0. (4. 8) 

In our static approximation (~ = O), the equivalent condition 

for field theory is 

0 f
00 

H($,$')dx = O. (4. 9) 

CO, 

where His the Hamiltonian density used in (3.38). This can 

be written in the form 
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r aH d aH
{a-¢ - dx d<I> I } Q<I> dX = Q I (4.10) 

-oo 

which is satisfied if 

aH d aH (4.11)0acp - dX d</> I = Q 

This is exactly eq. (3.5) which we solved to find <j>(x), so 

we see that, in the static approximation, minimizing the energy 

is equivalent to solving the field equation. It is interesting 

to note that since 

H = - L. (4.12) 

eq. (4.11) is identical to (2.5) if we neglect the second term. 

In order to obtain the best value of c(r) or in general, any 

variational parameter of a trial field, we find the parameter 

which results in the lowest energy. We are then assured that 

the energy will be greater than or equal to the exact value de­

pending on the trial field amplitude and variational parameter 

chosen. The accuracy of (4.7) can be seen by evaluating the 

two-nucleon interaction energy as done in the previous approxi­

mation. Comparison with the result of the exact calculation of 

eq. (3.38) shows that (4.7) is actually a very good choice for 

the trial field. The comparison is given numerically in Table 

1 rather than graphically in Fig. 2 so that the difference is 

most apparent. 
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1Schiff also used eq. (4.3) as an approximation to the 

field amplitude. Since the exact form of the 3-D field was not 

known, it was not possible to determine the accuracy of the 

approximation, though it was thought that the potential would 

be attractive near the origin. The potential obtained using 

(4.3), however, was found to be repulsive for small r. From 

Fig. 2, it is apparent that, for certain values of g, the 1-D 

potential behaves similarly, and knowing the "exact" potential 

we observe that the approximation (4.3) is very poor. Schiff 

then suggested the use of a trial field similar to (4.7) for 

small r, and suggested that the potential was likely to become 

attractive. Our calculations indicate that the approximation is 

indeed very good, being able to reproduce the "exact" form of 

the potential. We conclude that, at least in one dimension, the 

variational approach using a trial field of the form (4.7), is 

a reasonable method of dealing with the non-linear meson field. 
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Table 1. 	 Comparison of the Exact and Variational Interaction 
Energies 

-1g(fm ) r (fm) -H
2 

(r) (fm- 1 ) -H~ (r) ( fm -l) 

0.001 0.190 0.181 

0.481 0.0725 0.0681 

1.0 . 1.041 0.0334 0.0285 

2.561 0.00775 0.00528 

4.001 0.00265 0.00207 

0.001 0.165 0.159 

0.481 0.0837 0.0812 

0.75 1.041 0.0458 0.0431 

2.561 0.0129 0.0113 

4.001 0.00464 0.00423 

0.001 0.125 0.123 

0.481 0.0859 0.0795 

0.50 1. 041 0.0510 0.0505 

2.561 0.0170 0.0167 

4.001 0.00631 0.00624 



CHAPTER V 

DISCUSSION AND CONCLUSIONS 

We have found that we can solve the classical meson field 

equation for a system of neutral scalar mesons and any number of 

localized nucleon sources by reducing the problem to finding the 

solution of a system of simultaneous transcendental equations. 

The two-nucleon interaction can then be evaluated by numerically 

integrating the Lagrangian density. The results of most of 

the calculations done are best illustrated by the figures shown. 

First we consider the effects of the parameters g and A. The 

nucleon source strength g, determines the meson field amplitude 

and the last four diagrams in Fig. lb clearly show that increasing 

g results in an increase in thefiel.damplitude. By comparing 

the first and last diagrams in Fig. 2, it is seen that this re­

sults in a stronger attraction between two nucleons as well. 

This is expected since we usually think of the mesons being 

responsible for the nucleon-nucleon attraction and an increased 

meson field amplitude is due to the presence of more mesons in 

the system. The effect of introducing a repulsive meson-meson 

interaction in the model is just the.opposite. Increasing the 

strength of the repulsion, diminishes the meson field amplitude 

as can be seen from the first two diagrams in Fig. la. The 

last three diagrams of Fig. 2 show that this also reduces the 

two-nucleon interaction. 

45 
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We investigate the many-body interaction by finding the 

energy of a three-nucleon system and subtracting the three two­

body contributions. Fig. 3 shows that the three nucleon interac­

tion is repulsive; the attraction between the three nucleons 

is less than that which would arise if only pair-wise interactions 

were present. As expected, the interaction decreases as the 

nucleons become separated. In Figure 4 it is seen that, for 

a given value of the nucleon source strength g, there is a 

specific value of A for which the three-body interaction is a 

maximum. Like the two-nucleon interaction, v decreases (from123 

the maximum) as A is increased. 

We have shown that a variational-like theorem holds 

when the static approximation is employed and that a linear 

combination of one-nucleon fields is a good trial field for the 

two-nucleon system. The two-nucleon interaction can then be 

evaluated quite accurately using a single variational parameter 

which is a function of the nuclear separation. 
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APPENDIX A 

DETERMINATION OF THE PARAMETERS g AND A 

We consider nuclear matter in one dimension with a 

"volume" 2L. By comparing with a three dimensional (3-D} 

system, we obtain a relation between the density at nuclear 

saturation, and g and A. Approximating nuclear matter as a 

zero-temperature gas, we have one nucleon per state in phase 

space, with all states occupied up to the Fermi momentum 

The total number of nucleons in the volume isPf = 1f.kf • 

BL pf BL kf 
A =r 2L•4dp 

= = 	 (A. l}21Tfl 1T11 1T 

-pf 

where the factor 4 is due to the spin-isospin degeneracy of 

the nucleons. The density is 

(A. 2) 

The kinetic 	energy is given by 

pf 2 4L•p3 
3T = 2L•p • 4dp = f 

p (A. 3}
N J 2M 21Tn 3M1T~ 

-pf 

In the classical approximation, the total energy of the system is 

(A. 4} 
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with 4l = ~(x); The last term is simply the product of the 

energy density and the volume. The energy per nucleon is then 

(A. 5) 

As a first approximation, consider the simplified case, 

A = O. For the system to be stable, the energy per nucleon 

must be a minimum , and hence 

2aE: m 4' (A. 6)= -g + -- = 0 and ~ p I 

Replacing this in (A.5) gives the energy of stable system with 

density p 

[TIMp] 2 
(A. 7)e: ( p) = 9 6M 

The value of p for which this will be a minimum p is given by0 

2 2 
TI :r>. Po 2ae:(p) 

= - .2._ = 0 I (A. 8) 
ap 48M 22m 

so that 

2 
= [~] 24M (A. 9)Po mTih 

is the density of the saturated system. In 3-D however, there 

is no such Po· The kinetic energy per nucleon is proportional 

2to p / 3 with the result that the second term in (A.7) dominates 

for large p and the energy of the system decreases as p increases 

so that the system collapses. 
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We now demand that this density correspond to that in 

the region of constant density of heavy nuclei. We must however 

make the comparison between the 1-D and 3-D systems. For a 

spherical Fermi surface the density is given by 

k3 
A 4np2dp 47T Pf f s = = = --2 I (A.10)
v 3 3

(2nh) 3 ( 27Th) 67Tr 3 

0 

in 3 dimensions. A cubic Fermi surface results in 

3 k3 
A d3p Pf f c = = I (A.11)
v 3 7T3=r ( 2nh) 3 (nh) 

-pf 

and for a given density 

1/3 
(A.12)kfc = (~} kfs • 

Using the density 

P = 0.170 nucleons fm- 3 (A. 13)
0 

obtained from heavy nuclei, and remembering the degeneracy, 

p = ~ k3 (A. 14)
O 3 f s 

-1 
so that kfs = 1.36 fm . we now take the cubic Fermi surface 

as being more appropriate for comparison to a 1-D system so 

that kfc = 1.10 fm-l and p 0 = 1.40 nucleons fm- 1 • Then using 

(A. 9) I 

-1= 0.246 fm . 
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Using these values, 

E = -8.70 Mev or -0.044 fm-l with~= c = 1. 

This is not the same as the 15.68 Mev per particle predicted 

by the semiempirical mass formula which is not surprising since 

we do not expect a 1-D calculation to reproduce the energy of 

a 3-D system. 

With A f O, the situation is more complicated. Again, 

minimize (A.5) with respect to ~ to obtain 

(A.15) 

Using the general result for the roots of a cubic equation, we 

find only one real root: (eg. see Abramowitz and Stegun10 ) 

6 1/2 1/3 4m6 1/2 1/3 1/3 
~ = {[l+[ 4 m + l] ] +[1-[ + l] ] }•(g2 ~) (A.16) 

27g2 p 2A 27g2 p 2 A A 

We then replace this in (A.5) and differentiate with respect to 

p. Setting the result to zero and p = Po gives a relation between 

g and A. Choosing a value for g, we then solve for A. 

As a method of fixing the remaining parameter g, we now 

compare the binding energy and "radius" of our two nucleon system 

to that of the deuteron. Schroedinger's equation 

-1'12 d2 
- - -- VJ + V (x) VJ = (Ao 17)

2M dx2 
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with the potential V being taken as H (r) calculated in Chapter
2
 

III, is solved numerically, giving the wave function ~(x) and 


the binding energy Bd. The r.m.s. "radius" is then evaluated 


using the relation 


2 1/2 2 1/2 
= <x > ~*(x)x ~(x)dx] {A.18) 

-oo 

Results for some values of g are given in Table 2, and Fig. 5 

shows the form of ~(x). The values of the parameters given 

in the first two columns of Table 2 are related by the nuclear 

matter calculation. The energy per nucleon is minimized with 

respect to variation of the average field amplitude and nucleon 

density resulting in a single relation between the density and 

the two parameters. We then require that the Fermi level of 

our system correspond to that obtained from the Fermi gas model 

for heavy nuclei which fixes the nucleon density of the 1-D 
17 

-1
·system at p = 1.40 nucleons fm . The nucleon source strength 

g, is arbitrarily chosen and>. is then determined. In several 

of the figures shown, values of g and >. which are not determined 

by the nuclear matter calculation are also used to illustrate the 

effect of the meson-meson interaction. From Table 2 it can 

be seen that there is no single value of g for which all these 

quantities can be fitted to the experimental values. It is ~lear, 

however, that although an alternate method of determining the 

model parameters could be employed to obtain better agreement, 

the lack of 1-D experimental values available for comparison li­

mits the importance of actual values for the parameters. 
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Table 2. Binding Energy and Radius of the "Deuteron" 

g 

(fm- 1 ) 

>. 

(fm- 2 ) 

Bd 

(Mev) 

Rd 

(fm) 

B/A t 

(Mev) 

0.246 

0.30 

0.40 

a.so 

0.75 

1. 00 

3x10- 6 

0.39 

1.58 

3.67 

15.60 

44.37 

l. 73 

3.02 

5.57 

7.24 

7.64 

6.50 

3.64 

2.91 

2.26 

2.02 

1. 90 

1. 97 

8.31 

12.81 

19.32 

24.09 

31. 33 

35.02 

Exp. - 2.26 *2.1 15.68 

tThe last column gives the binding energy per nucleon as de­
termined by the nuclear matter calculation. 

*The experimental value taken as the radius of the deuteron 
depends on the definition used. Itmay vary by a few tenths 
of a Fermi, depending on whether the charge or structure ra­
dius is considered. (See e.g. Berardl6). 



Fig. 5 The wavefunction of a 1-D ".deuteron" 
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APPENDIX B 

Here, we give a short description of the Jacobian 

elliptic functions; these are well known and the description 

is intended solely for completeness. A full account of their 

properties may be found in reference 10. 

For our purposes, we are interested in the definition 


. . f . 1 11
given in terms o integra s , 

<I> de 
(B .1) 

u = (l-msin 2e) 112 .J 
0 

<I> is called the amplitude and 

<IJ=amu. (B. 2) 

From this define 

sn u = sin<I>; en u = cos<I> and an u = (l-msin2<I>) 112 . (B. 3) 

The oth~r functions are defined in terms of these; specifically 

1 
nc u = (B. 4)

en u 

When concerned about the parameter m, we write 

sn u = sn ( u Im) . (B. 5) 

The parameter m, must be between O and 1 to calculate 

the functions, but we can always transform such that this is 

. f" dl2satis ie • These functions are doubly periodic with quarter­
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periods given by:

r/2 r/2de deK = i iK' = i 
(l . 2e)1;2-msin (l-(l-m)sin2e) 1/ 2 

0 0 

For m = 0 or 1, the more familiar forms 

sn(ulo> =sin u; cn(ulo> =cos u; dn(ulo> = 1 
(B. 7) 

sn(ull) = tanh u; cn(ull) = dn(ull) = sech u , 

are obtained, as can easily be verified by evaluating (B.l). 

13Finally

sn(ulm}dn(ulm>d~ [nc(ulm)] = sc(u!m)dc(ulm) = 
2 

~ (B. 8) 
en (u Im> 

To see how we arrive at. (3.32), start with (B.l) then 

-1 tlet e = sec (b) so that 

u = 

=r y = bsec<J? 

b 

1/2 Jy 2 2 2 mb2 -1/2= b (1-m) - [ (t -b ) (t + l-m}] dt (B. 9) 

b 

2 2 2 -l 
Now make the substitution m = a (a +b ) , to get 

u = (B. 10) 

b 
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Using (B.3) and (B.4) 

nc(ujm) = sec<;!? = y_ (B. 11)
b 

or 

u = nc-
1 <s Im> (B. 12) 

This is exactly 16.4.49 of ref. 10. Eq. (3.30) can now be solved 

by letting 

b2 = tf.,2 . 2. 2m2 2
'l'o i a =-

A 
+ <P 

O 
and y = ¢, 

so that (3.30) becomes 

2 -1/2 


x = _!_2 [2¢20 + 21;1 ] nc-1 c.t­ -----=2-) • (B.13)
A A ~n 2m 

0 2¢~ + -A-

Herem is the meson mass; in III we write the parameter masµ 

to distinguish it from the former. (B.13) gives exactly (3.32). 

To calculate the Jacobian elliptic functions, we use 

14the Arithmetic-Geometric Mean (A.G.M.) . First calculate 

the A.G.M. scale: 

1 2 112 a = 1 i b = (l-m) / i c = m i mis the parameter. (B.14)0 0 0 

Then 

(B .15) 

c. 
continuing until 1 

< E where £ is the desired accuracyi the a. 
l 

number of iterations needed depends on m and the maximum is around 
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12. {Form= 1, we resort to {B.7).) Then find 

N 
{B .16)<PN = 2 ~u 

and from 

{B .17) 

calculate ~N-l ••. <P whence
0 

sn<ulm> = sin<P 0 , cn{ulm> = cos<P 0 ­

and {B.18) 

dn{ulm> = cos<P 0/cos{<P 1-<P ) .0
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APPENDIX C 

The interaction energy is calculated using (2.21) which 

becomes 

g{ (x-a) + (x+a) }<j>~c] d~ • (C. l) 

-oo 

First, observe that the direct terms give twice the self energy 

of a single nucleon field. i.e. 2H1 ; only the cross terms 

need to be explicitly evaluated. We are left with 

(C. 2) 

-oo 

We now integrate over the two regions separately since: 

1/2= - y cs ch m(x-a+f3) x < a<P + 

1/2
= y csch m(x-a-f3) i x > a<P + 


1/2

<P = - y csch m(x+a+f3) x < -a 

1/2
<P_ = y csch m (x+a-f3) i x > -a 

1with f3 = .R.n a. • m 

Consider now, the two regions Ixi <a and lxl >a . In the first 

' ' 2 coshm(x+a-f3)coshm(x-a-f3)
<P<P =-my (C. 3) 

+ - sinh2m(x+a-S)sinh 2m(x-a+S) 
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2 2 	 1 m ~ ~ 	 = - m y ---~---.,.~------.,.---------.,.~---~ (C. 4)+ 	 sinhm(x+a-S)sinhm(x-a+S) 

AY2 1 (C. 5)2sinh m(x+a-S)sinh m(x-a+S) 

2 2= 3 AY2 {sinh m(x+a-S)+sinh m(x-a+S)} (c. 6)
2 sinh3m(x+a-S)sinh 3m(x-a+S) 

Next, we. sum (C.3,4,5) to get 

2 {2-sinhm(x+a-S)sinhm(x-a+S)-coshm(x+a-S)coshm(x-a+S)} 
m Y 2 2 

sinh m(x+a-S) sinh m(x-a+S) 

which is reduced to 

4m2y{2-cosh2mx} 

{cosh2mx-cosh2m(a-S)} 2 

We integrate over Ix I < a using Gradshteyn and Ryzhik15 2. 443 

.1 and .3. The right hand side of equation (C.6) can be reduced 

to 

12m2y{cosh2mx·cosh2m(a-S)-l} 
3

{cosh2mx - cosh2m(a-S)} 

which 	can be integrated, again using Gradshteyn and Ryzhik 

2.443. In a similar manner we evaluate for lxl >a. The 

final result is 
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{4sinh2ma 2sinh2ma(3+cosh2m(a-S))
= 2my 2 

u sinh22m(a-S)•u 

(3cosh2m(a-S)+l) • I } + 4my{ (3-cosh2m~) (l-sinh2m(a-S)) 

1
sinh22m(a-S) sinh 2ma•u 

2sinh2m(a-S) + (l-3cosh2ma) • I }+ - 2gcf>+ (-a) I (C. 7) 
u 2 sinh22ma 2 

where u = [cosh2ma - cosh2m(a-S)] and 

2ma dx 
1 1 - f [cosh x-cosh2m(a-S)] 

-2ma 

I 2 = r -=[-c_o_s...-h-x-~-~-o-s...-h""'"2-m-a.....-] 
2m(a-S) 

From Gradshteyn and Ryzhik 2.443.3 

Tl + T2 
Il = 2 

.lln{T - T }sinh2m (a- (3) 
1 2 

and 
T3 + T41 . e-2ma}= .R,n{­ II2 sinh2ma T3 - T4 

where 

= 1 - cosh2m(a-(3)Tl 

sinh2m (a-S) tanhmaT2 = 

- cosh2maT3 = 1 

sinh2ma tanhm(a-S)T4 = 
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