COMPUTATIONAL STUDY OF THE OPTIMIZATION OF A CATALYTIC REACTOR FOR A REVERSIBLE REACTION WITH CATALYST DECAY

DEDICATION

To my wife, Michelle

COMPUTATIONAL STUDY OF THE OPTIMIZATION OF A CATALYTIC REACTOR FOR A REVERSIBLE REACTION WITH CATALYST DECAY

BY

Jean-Guy DROUIN, B.Sc.A.

A Project Report

Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the

Requirements for the Degree

Master of Engineering

McMaster University

September 1969

ACKNOWLEDGEMENTS

The author owes a great deal to the advice and assistance of the advisor, Dr. C.M. Crowe.

Appreciation is extended to Dr. S.I. Lee and Mr. N. Therien for their stimulating discussions concerning many aspects of optimization theory.

To my wife for making all the graphs.

To Mr. K. Burrill for reading the manuscript and correcting many grammatical errors.

He also wishes to acknowledge the financial assistance obtained through McMaster University.

TABLE OF CONTENTS

CHAPTE	R		Page
١.	INTF	ODUCTION	
2.	STAT	EMENT OF THE PROBLEM	3
3.	THEC	RETICAL DERIVATIONS	5
	3.1 3.2	Kinetics Genera! Case	5 7
		3.2.1 First Kinetic Model (Order 1-1) 3.2.2 Second Kinetic Model (Order (1-2)	11
	3.3 3.4	Endothermic Reactions Exothermic Reactions	13 14
		3.4.1 Initial Temperature Limitation	15
4.	NUME	RICAL SOLUTIONS	21
	4.1 4.2 4.3	Method Results Conclusion and Discussion	21 21 49
5.	SUMM	ARY AND FUTURE WORK	51
BIB	LIOGRA	РНҮ	52
NOM	ENCLAT	URE	53
APF	ENDICE	S	55
	A1.1	Derivation of the Hamiltonian with Time	55
	A2.1	Computer Listing of the Numerical Solution for the Irreversible Reaction given the Conversion on the Stationary Policy	57
	A2.2	Computer Listing for the Optimal Isothermal Irreversible Reaction	64
	A2.3	Computer Listing of the Numerical Solution for A Reversible Reaction of Order (1-1)	67
	A2.4	Computer Listing of the Numerical Solution for a Reversible Reaction of Order (1-2)	72

FIGURE INDEX

		Page	
1.	Relation Between k and T	23	
2.	Behavior of the System Variables for an Endothermic Reaction	24	
3.	Behavior of the System Variables for an Exothermic Reaction	25	
4.	Equilibrium Conversion Versus time	26	
5.	Conversion versus Time	27	
6.	Temperature versus Time	28	
7.	Product of $\psi(K_1 + K_2)$ versus Time	29	
8.	Rate versus Time	30	
9.	Effect of p on the Total Time	32	
10.	Effect of p, on the Total Time	33	
11.	Effect of the Initial Temperature for an Endothermic Reaction	34	
12.	Effect of the Initial Temperature for an Exothermic Reaction		
13.	Effect of the Initial Temperature when $p = p_{\parallel}$	36	
14.	Optimal Temperature Policy for an Endothermic Reaction	38	
15.	Conversion versus Time for an Endothermic Reaction	39	
16.	Rate versus Time for an Endothermic Reaction	40	
17.	Initial Temperature Effect on the Hamiltonian and the Conversion (Endothermic)		
18.	Rate Constant of Decay Rate versus Conversion for an Exothermic Reaction		
19.	Initial Temperature Effect on the Hamiltonian	44.	

		Page
20.	Optimal Temperature Profile for an Exothermic Reaction	45
21.	Conversion versus Time (Exothermic)	46
22.	Rate versus Time (exothermic)	47
23.	Effect of the Reaction Orders on the Temperature Profiles	48

MASTER OF ENGINEERING (1969) (Chemical Engineering) McMASTER UNIVERSITY Hamilton, Ontario.

TITLE	:	Computational Study of the Optimization of a Catalytic Reactor for a Reversible Reaction with Catalyst Decay.
AUTHOR	:	Jean-Guy Drouin, B.Sc.A
SUPERVISOR	•	Dr. C.M. Crowe
NUMBER OF PAGES	:	vi, 76
SCOPE AND CONTENTS		

The optimal temperature policy with time is sought which maximizes the total amount of reaction in a fixed time in a tubular reactor with uniform temperature and decaying catalyst for a single reversible reaction.

A numerical procedure together with theoretical developments is used to solve this problem for two kinetic models. The problem is treated in the format of Pontryagin's Maximum Principle.

Computer listings are given in the Appendix for the following cases

A) Optimal policy for irreversible reactions

B) Optimal policy for isothermal irreversible reactions

C) Optimal policy for reversible reactions.

vi

CHAPTER I INTRODUCTION

Many chemical processes are subject to catalyst decay in chemical reactors, which justifies the study of catalyst decay problems. The decay may be due to poisoning (e.g. a result of impurities contained in the feed), to sintering (e.g. when the surface area of the catalyst is reduced because of physical deterioration of the catalyst from high operating temperature), or to fouling (e.g. when coke is deposited on the catalyst).

Since catalyst activity has a history, the operation of such reactors subject to decaying activity will depend upon the entire previous history of the operating variables, and optimization of these are of prime interest these days. The solution is well known for irreversible reactions and many workers (1,2,3,4) have emphasized different aspects of it. Included in the appendix is the "listing" for the general case of an irreversible reaction, and also the one for finding the best isothermal policy.

Jackson^(1,2) has considered the optimal temperature profile in a tubular reactor with a reversible exothermic reaction. The problem is easily formulated, but no analytical solutions are avialable yet.

Ogunye and Ray^(5,6) have developed a general numerical method for calculating the optimal control policy using a modified gradient method for a reversible reaction.

(1)

In the subsequent pages, the necessary conditions for an optimum policy will be derived theoretically. However, because of the complexity of such systems, a numerical method together with the analytical developments is used to get a complete solution for reversible reactions.

CHAPTER 11

STATEMENT OF THE PROBLEM

In this section the objective function, which has to be maximized is defined. Also, all the assumptions related to the system utilized (isothermal tubular reactor) are listed.

For the single tubular reactor with uniform temperature, the following assumptions are required:

(1) There is a single reversible reaction. A material balance for a plug flow reactor is in terms of catalyst activity ψ , temperature T, conversion X.

$$\frac{\partial X}{\partial t} + \frac{\partial X}{\partial Z} = f(\psi, T, X)$$
(2.1)

where $f(\psi, T, X)$ is the rate of reaction, Z is the space-time (distance) through the bed, t is the time on stream and $X = X_{o}(t)$ at Z = 0. The catalyst activity ψ is defined^(7,8) as the ratio of the rate of reaction with decayed catalyst to that with fresh catalyst.

(2) The activity of the catalyst ψ is assumed to depend on temperature T and ψ itself, but not on conversion X, as follows:

$$\frac{d\psi}{dt} = -g(\psi)k(T) \qquad \psi = \psi_i \text{ at } t = 0 \qquad (2.2)$$

$$for Z in (0.0)$$

with $0 \leq g(\psi) \leq 1$. Since the temperature in the reactor is assumed to be uniform at any time, equation (2.2) implies that ψ is uniform over the distance Z.

- (3) The change of activity ψ is assumed to be negligible over a time equal to the space time so that ψ is effectively constant for integration over Z and $\frac{\partial X}{\partial t} << \frac{\partial X}{\partial Z}$
- (4) K_1 and K_2 are the rate constant of the forward and backward reactions and are assumed to be proportional to k^p and k^{p_1} respectively with $p = E_1/E_c$ and $p_1 = E_2/E_c$, where E_1 is the activation energy of the reaction and E_c is the activation energy for the decay rate.

The problem now consists of maximizing the total amount of reaction over a fixed total reaction time, τ , by choosing the rate coefficient k (and hence T) at every instant. That is,

Max. P with P =
$$\int_0^{\tau} X(t) dt$$
 (2.3)

subject to

$$0 \leq k_{\infty} \leq k \leq k^* \leq k_{\infty}$$

Now following this section, rate expressions are introduced for two kinetic models and the general treatment using the maximum principle is derived.

CHAPTER III

THEORETICAL DERIVATIONS

3.1 KINETICS:

In this section, for reversible reactions, two kinetic models are derived for the rate expression.

For the reaction A $\frac{1}{2}$ B, the rate of reaction is expressed as:

where $F_1(X) = C_A^U$

$$F_2(X) = C_B^W$$
.

U and W are the reaction orders of the forward and backward reactions. Reaction orders will now be expressed as order (U - W).

For our first kinetic model of order (1 - 1), at equilibrium the rate is zero, which implies that the equilibrium conversion X_{A_E} is equal to $\frac{K_{EQ}}{(1 + K_{EQ})}$ where $K_{EQ} = K_1/K_2$, and the equilibrium conversion is

a function of temperature only.

In another form, for first order reactions in both directions,

Rate =
$$-\frac{dC_A}{dt}$$
 = $(\kappa_1 C_A - \kappa_2 C_B)\psi$
 $-\frac{dC_A}{dt}$ = $[\kappa_1 (C_{A_o} - C_{A_o} X_A) - \kappa_2 (C_{B_o} + C_{A_o} X_A)]\psi$

Also,

$$-\frac{dC_A}{dt} = C_A \frac{dX_A}{dt}$$

The conversion (X) is defined as the fraction of reactant concentration $C_{A_{O}}$ converted into product. $C_{B_{O}}$ is taken as zero so that $C_{A_{O}}$ is the concentration of A achieved by reversing the reaction until $C_{B_{O}} = 0$. The scale of conversion is from zero to one.

Then, for reaction order (1 - 1),

Rate =
$$(K_1 + K_2)(X_{A_E} - X)\psi$$

= $K(T) F(X, k)\psi$ (3.1.1)

Now, compared with the irreversible case, the rate of reaction is no longer a product of functions of only one variable. This fact makes the analytical solution much more complex, if not impossible.

Then equation (2.1) with assumption (3) is integrated to give

$$\psi(K_{1} + K_{2})_{\theta} = \int_{X_{0}}^{X(\psi, k, X_{0})} \frac{dX}{(X_{A_{F}} - X)}$$
(3.1.2)

where $Z = \theta$ is the end of the reactor.

Now consider our second kinetic model which is a first order reaction forward and a second order backward, $A \stackrel{st}{\xrightarrow{}} B$. In this case it is

not profitable to express the rate as a function of the equilibrium conversion; therefore the rate is equal to $\psi[K_1(1 - X) - K_2C_A_o X^2]$ and integrating all along the reactor yield

$$\psi \theta = \int_{X_{0}}^{X(\psi,k,X_{0})} \frac{dX}{(K_{1}(1-X) - K_{2}C_{A_{0}}X^{2})}$$
(3.1.3)

These two equations (3.1.2 and 3.1.3) for different kinetics provide one of the system equations, the other one is obtained from the rate of decay of catalyst.

In this section, the rate expressions for our two kinetic models have been shown and will be used subsequently althrough this work. Notice that these equations contain three variables. Knowing two of them will yield the third one.

The next section applies Pontryagin's Maximum Principle to our system equations, and for the sake of simplicity the rate expressions (3.1.1 and 3.1.3) are substituted by the letter ρ because it is frequently used through this work.

3.2 GENERAL CASE:

In the following pages, the general derivation of the optimal policy is conveniently treated in the format of Pontryagin's Maximum Principle^(9,10). Throughout this paper all the implications related to it are taken as known, and these derivations hold for all kinetic models.

Equation (2.2) can be written

$$\frac{d\psi}{dt} = \phi(\psi, k) = -kg(\psi) \leq 0$$

(3.2.1)

with $\psi(0) = \psi_i$ and $\psi(\tau) \ge 0$

The system equations are

$$\frac{dP}{dt} = X = f^{\circ}$$
$$\frac{d\psi}{dt} = \phi = f^{\dagger}$$

where P and ψ are the state variables. Now the adjoint variable μ_{j} is defined as

 $\dot{\mu}_{i} = -\sum_{\alpha=0}^{n} \mu_{\alpha} \frac{\partial f^{\alpha}}{\partial X^{i}}$

Then

 $\dot{\mu}_{O} = -\mu_{O} \frac{\partial X}{\partial P} - \mu_{I} \frac{\partial \phi}{\partial P}$

and

$$\dot{\mu}_{\parallel} = -\mu_{0} \frac{\partial \psi}{\partial \psi} - \mu_{\parallel} \frac{\partial \phi}{\partial \psi}$$

Since $\frac{\partial X}{\partial P} = 0$ and $\frac{\partial \phi}{\partial P} = 0$,

we have $\dot{\mu}_0 = 0$ so that $\mu_0 = \text{constant}$ at any time. From Pontryagin's Maximum Principle, Theorem 7, implies that, for a fixed time problem and variable endpoints μ_0 at the final time equals 1 (for a maximum) and all the other adjoints to be zero also at the final time. Therefore, using $\mu = \mu_1$

$$\frac{d\mu}{dt} = -\frac{\partial X}{\partial \psi} - \mu \frac{\partial \phi}{\partial \psi}$$

$$\mu(\tau) = 0 \quad \text{if} \quad \psi(\tau) > 0$$
(3.2.2)

with and

 $\mu(\tau) \ge 0 \quad \text{if} \quad \psi(\tau) = 0.$

The space time θ is set to unity, so that τ is the number of space times. Equation (3.1.2), linking conversion to the activity and temperature is rewritten then as

$$\psi(K_1 + K_2) = \int_{X_0}^{X} \frac{dX}{F(X, k)}$$
(3.2.3)

where

 $F(X, k) = (X_{A_{F}} - X),$

and for the second kinetic model with equation (3.1.3)

$$\psi = \int_{X_0}^{X} \frac{dX}{[K_1(1-X) - K_2 C_A X^2]}$$
(3.2.4)

It is assumed that F, g and K are continuous functions of their arguments and are twice differentiable, and that k and X_{O} are piecewise continuous functions of time t.

The Hamiltonian H is defined by

$$H = \sum_{i=0}^{n} \mu_{i} f^{i}$$

or

$$H(\psi,\mu,k,t) = X(\psi,k,X_{(t)}) + \mu\phi(\psi,k)$$
 (3.2.5)

The maximization of P in equation (2.1) is then equivalent, according to Pontryagin's Maximum Principle^(9,10), to requiring of an optimal policy $k^{+}(t)$ that it satisfy

$$H(\psi^{+},\mu^{+},k^{+},t) = Max_{k(t)}H(\psi^{+},\mu^{+},k,t) \qquad (3.2.6)$$

at almost any t and for all admissible values of k. In equation (3.2.6) ψ^+ and μ^+ are the solutions of equations (3.2.1) and (3.2.2) using $k^+(t)$. If $k^+(t)$ is the optimal policy, then one of the following three conditions is necessary at any time $t \leq \tau$:

(a)
$$\frac{\partial H}{\partial k}(k^+) = 0$$
 and $\frac{\partial^2 H}{\partial k^2}(k^+) < 0$ $k_* < k^+ < k^*$ (3.2.7)

(b)
$$\frac{\partial H}{\partial k}(k^{+}) \ge 0$$
 if $k^{+} = k^{*}$ (3.2.8)
(c) $\frac{\partial H}{\partial k}(k^{+}) \le 0$ if $k^{+} = k_{*}$ (3.2.9)

From equation (3.2.5) we have

$$\frac{\partial H}{\partial k|_{\psi,\mu,+}} = \frac{\partial X}{\partial k|_{\psi,X_{O}}} + \mu \frac{\phi}{k}$$
(3.2.10)

Now, taking the partial derivative with respect to k on both sides of equation (3.2.3) or (3.2.4) and with p = rate and X_s the exit conversion at any instant on the stationary path

$$\frac{\partial X}{\partial k|_{\psi,X_{o}}} = \rho(X_{s},k) \int_{X_{o}}^{X_{s}} \frac{1}{\rho^{2}} \frac{\partial \rho}{\partial k|_{X,\psi}} dX \qquad (3.2.11)$$

Substitution of (3.2.11) in (3.2.10) yields

$$\frac{\partial H}{\partial k|_{\psi,\mu,\uparrow}} = \rho(X,k) \int_{X_0}^{X_s} \frac{1}{\rho^2} \frac{\partial \rho}{\partial k|_{X,\psi}} dX + \frac{\mu\phi}{k}$$
(3.2.12)

The stationary policy S can be found and implies that

$$\frac{\partial H}{\partial k|} = 0$$

$$\mu \phi = -k \rho(X_{s}, k) \int_{X_{o}}^{X_{s}} \frac{1}{\rho^{2}} \frac{\partial \rho}{\partial k|_{X, \psi}} dX \qquad (3.2.13)$$

along S.

Thus, along S the Hamiltonian is

$$H_{s} = X_{s} - k_{\rho}(X_{s}, k) \int_{X_{o}}^{X_{s}} \frac{1}{\rho^{2}} \frac{\partial \rho}{\partial k} dX \qquad (3.2.14)$$

or, more compactly,

$$H_{s} = X_{s} - k \frac{\partial X}{\partial k}$$
(3.2.15)

or

On any optimal path (in Appendix 1) the total derivative of the Hamiltonian with time is

$$\frac{dH}{dt} = \frac{\rho(X,k)}{\rho(X_{o},k)} \frac{dX_{o}}{dt}$$
(3.2.16)

and $\frac{dH}{dt}$ (on S) = $\frac{dH}{dt}$ (general).

Equation (3.2.14) and (3.2.3) for the rate expression with $K_1 = Ak^p$ and $K_2 = Bk^{p_1}$ is integrated to give

$$H_{s} = X_{s} - (p - p_{1}) X_{A_{E}} (1 - X_{A_{E}}) \left[\frac{X_{s} - X_{o}}{X_{A_{E}} - X_{o}} \right] + (X_{A_{E}} - X_{s}) \ln \left(\frac{X_{A_{E}} - X_{s}}{X_{A_{E}} - X_{o}} \right) \left[X_{A_{E}} (p - p_{1}) + p_{1} \right] ------ (3.2.17)$$

We see from equation (3.2.17) that the Hamiltonian on the stationary policy is a function of X, X_0 , and k.

Solving $\frac{dH}{dt}$ on the stationary policy

 $\frac{dH}{dt} (on S) = \frac{\partial H}{\partial X} \frac{dX}{dt} + \frac{\partial H}{\partial X} \frac{dX_o}{dt} + \frac{\partial H}{\partial k} \frac{dk}{X_k} \frac{dk}{dt}$

For simplification, assume $X_0 = \text{constant}$ so that $\frac{dX_0}{dt} = 0$. Now,

$$\frac{dH}{dt} (on S) = \frac{dH}{dt} (general)$$
 (Appendix I)

$$\begin{bmatrix} 1 - \frac{(p-p_{1})X_{AE}(1-X_{AE})}{(X_{AE} - X_{O})} - [X_{AE}(p-p_{1})+p_{1}][1+n]\frac{X_{AE} - X_{S}}{X_{AE} - X_{O}}] \frac{dX}{dt} \\ + \frac{X_{AE}(1-X_{AE})(p-p_{1})}{k} [- \frac{(p-p_{1})(X_{S}-X_{O})(2X_{AE}X_{O}-X_{O}-X_{AE}^{2})}{(X_{AE} - X_{O})} \\ + (X_{S}-X_{O})(X_{AE}(p-p_{1})+p_{1}) + (X_{AE}-X_{O}) \ln(\frac{X_{AE} - X_{S}}{X_{AE} - X_{O}}) \\ + [(2X_{AE}-X_{S})(p-p_{1})+p_{1}]] \frac{dk}{dt} = 0$$
(3.2.18)

For the special case where $p = p_1$, Equation (3.2.18) reduces to

$$[1-p_{1}(1 + ln(\frac{X_{AE} - X_{S}}{X_{AE} - X_{O}}))] \frac{dX}{dt} = 0$$

which has two solutions

 $\frac{dX}{dt} = 0$ implies X = Constant

or

$$X = X_{AE} - (X_{AE} - X_{O}) e^{\frac{T}{P}}$$

But when $p = p_1$, X_{AE} is a constant and the second alternative solution is also X = Constant₂.

However, many numerical examples have been tried and it appears that the second solution is not satisfied.

For the general case $(p \neq p_{\parallel})$ due to the complexity of Equation (3.2.18) for the optimal policy on the stationary path, the analytical solution cannot be at the moment completely derived. From here on, theoretical development together with a numerical scheme will be worked out for finding the optimal policy.

3.2.2 Second Kinetic Model (Order 1-2)

The rate was expressed as

$$\rho = \psi \left[K_{1}(1-x) - K_{2}C_{A_{0}}x^{2} \right]$$

so

$$\frac{\partial \rho}{\partial k} = \frac{\psi}{k} \left[\rho_1 K_1 (1-x) - \rho_1 K_2 C_A x^2 \right]$$
(3.2.19)

With Equations (3.2.14) and (3.2.19) we have

$$H_{S} = X_{S} - \rho(X_{S}, k) \int_{X_{O}}^{X_{S}} \left[\frac{\rho K_{1}(1-X) - p_{1} K_{2} C_{AO} X^{2}}{\rho^{2}} \right] dX \qquad (3.2.20)$$

In this section (3.2), the general criteria from the Maximum Principle has been used in our system equations. The necessary conditions for an optimum are represented in Equation (3.2.18) for the first kinetic model (Order 1-1).

Subdivisions 3.2.1 and 3.2.2 have been devoted to represent the Hamiltonian on the stationary policy for our two kinetic models being studied.

3.3 Endothermic Reaction

In this section, it is shown that for endothermic reactions of order (I-I), the optimal temperature policy must end on the upper constraint temperature in the following manner.

From Equation (3.2.10) since at the end of the process μ = 0, we must have at the end

$$\frac{\partial H}{\partial k}\Big|_{\psi,\mu,\dagger} = \frac{\partial X}{\partial k}\Big|_{\psi,X_0}$$

But with Equations (3.2.15) and (3.2.17) assuming $X_{0} = 0$ for the sake of

simplicity without loosing any generality

$$\frac{\partial X}{\partial k}\Big|_{\psi, X_{O}} = \frac{(p-p_{1})(X_{S})(1-X_{AE})}{k} + \frac{\psi(K_{1}+K_{2})(X_{AE}-X_{S})}{k} [X_{AE}(p-p_{1})+p_{1}] (3.3.1)$$

For an endothermic reaction, p is larger than p_1 , and $\frac{\partial X}{\partial k}$ is positive because all the terms inside Equation (3.3.1) are positive and so at the end we will have $\frac{\partial H}{\partial k} > 0$. It means with Equation (3.2.8) that for an endothermic reversible reaction of order (1-1), the optimal temperature policy must end on the upper bound and obviously will be a rising temperature profile. The same conclusions holds for $p = p_1$. Notice that since $\frac{\partial X}{\partial k}$ is always positive, from Equation (3.2.15), X_I is always greater than the Hamiltonian.

This is easily generalized for any order of reactions because for all endothermic reaction, the conversion increase with temperature. 3.4 Exothermic Reaction

In this section it is shown that for exothermic reactions of order (1-1) the optimal temperature policy does not have to reach the upper constraint any more; also from theoretical developments it is shown that there exist for exothermic reaction a range of starting temperaturesfor a reactor where no optimal policy can be derived and the method to find these bound is explained.

For an exothermic reaction \boldsymbol{p} is less than \boldsymbol{p}_1 and at the end

$$\frac{\partial H}{\partial k} = \frac{(p-p_1)(X_s(1-X_{AE}))}{k} + \frac{\psi(K_1+K_2)(X_{AE}-X_s)}{k} \left[X_{AE}(p-p_1)+p_1\right]$$

negative + positive [negative + positive]

It is no longer a necessary condition to end on the upper constraint, because we cannot predict the sign of $\partial H/\partial k$ at the end. But since for some values of p and p₁ the policy would be to end on the upper constraint, it is expected that it will still be a rising temperature profile unless p = 0 which will be the limiting case. 3.4.1 Initial Temperature Limitation

For the exothermic reaction plotting the conversion versus k, keeping the activity constant, gives the kind of curve shown on Figure 18.

Х

Looking at the Hamiltonian on the stationary policy, we have

$$H_s = X_s - k \frac{\partial X}{\partial k}$$

and also in general

$$H = X + \mu \phi \qquad \phi = -k g(\psi) < 0$$

Since ϕ is always negative and μ is always positive and zero at the end for a fixed time problem, we have $\mu\phi \leq 0$. It also implies that on any optimal policy, we must have $H \leq X$, and $H = X_f$ because at $t = \tau$, $\mu = 0$. Also X is always positive, so H has to be greater than or equal to zero.

It is easily shown that for an exothermic reaction, upper and lower bounds on the initial starting temperature can be found different from those imposed on the reactor, where we will not have any stationay policy because it does not satisfy the Maximum Principle.

So this starting value of \boldsymbol{k}_{l} does not satisfy the Maximum Principle.

However, if there is no point of inflexion, there will be no lower bound on the initial temperature, because X will be always greater than k $\partial X/\partial k$.

If there is a point of inflexion, the lower bound on initial temperature is formed by the point of tangency from the origin where k $\partial X/\partial k$ is equal to X.

On the schematic diagram above, the lower and upper bound are respectively A and B.

Analytically these limits are easily calculated. For the low range this limitation arises when

$$X_{i} = k_{i} \frac{\partial X}{\partial k}$$
(3.4.1)

$$X_{1} = X_{AF}(1 - EXP(Y))$$
 (3.4.2)

where $Y = -\psi_i(K_1 + K_2)$

By substitution of Equations (3.3.1) and (3.4.2) in (3.4.1) one has an equation of one unknown k.

$$x_{AE}^{(1-EXP(Y))=X_{AE}^{(1-EXP(Y)(p-p_1)(1-X_{AE})+(EXP(Y))\Psi(K_1+K_2)[X_{AE}^{(p-p_1)+p_1}]}$$

If Equation (3.4.3) can be satisfied for a starting initial temperature, this temperature will be the lower bound.

The upper bound on the initial temperature is when $\frac{\partial X}{\partial k} = 0$, therefore, at this initial temperature, the initial conversion equals the value of the Hamiltonian and we are able to operate the reactor at this temperature for an infinitely short time because the conversion is decreasing and the Hamiltonian has to be kept constant.

This point is found analytically from Equations (3.3.1) and (3.4.2) to give

$$(I-EXP(Y)(p-p_{|})(I-X_{AE}) = (-EXP(Y))[X_{AE}(p-p_{|})+p_{|}]\psi_{i}(K_{|}+K_{2}) \quad (3.4.4)$$

Again by trial and error this equation is easily solved to yield the upper bound on initial temperature.

As an illustration of this phenomenon for an exothermic reaction, numerical solution for p = 0.6 and $p_1 = 0.8$ has given a maximum initial temperature of $850^{\circ}F$ for having a stationary policy, and no lower bound has been found numerically for this example. For values of p = 1.2 and $p_1 = 1.6$, minimum and maximum starting temperatures were $740^{\circ}F$ and $830^{\circ}F$. From the numerical examples run, it is believed that when the difference between p and $p_{||}$ increases with $p_{||}$ increasing, the range of initial permissible temperature will decrease.

Now an interesting question is what would be the optimum policy, if there is one, to operate the reactor for an initial temperature higher than T_I^* ? Obviously there is no stationary policy, the only possibility remaining is a constrained policy. By way of contradiction the upper constraint policy is rejected in this manner.

Assume the policy is on the upper constraint. From Equation (3.2.8) $\frac{\partial H}{\partial k} \ge 0$

We have

 $H = X + \mu \phi$

$\frac{\partial H}{\partial k} = \frac{\partial X}{\partial k} + \frac{\mu \phi}{k} \ge 0$

Because $\frac{\partial X}{\partial k} < 0$ for an exothermic reaction where $T_I > T_I^*$, it implies that $\frac{\mu \phi}{k} > 0$ then $\mu < 0$. Since μ has to be zero at the final time $\frac{d\mu}{dt} > 0$. On the other hand, from Equation(3.2.2) we must have $\frac{d\mu}{dt} < 0$ at the end. Since μ is continuous (obtained from the solution of an ordinary differential equation), these two conclusions are in contradiction. Our hypothesis is then invalid and therefore this policy is rejected. A priori the lower constraint policy cannot be rejected.

For endothermic reaction, these restrictions on the upper initial temperature, do not appear because from Equations (3.3.1) $\frac{\partial X}{\partial k}$ is always positive.

In this latter section, it has been noted that for exothermic reactions, it is no longer a necessary condition that the optimal temperature policy end on the upper constraint, also in many cases there exist severe restrictions on the starting temperature of a reactor to have an optimal policy.

CHAPTER IV

NUMERICAL SOLUTIONS

4.1 METHODS

In this scheme, Pontryagin's Maximum Principle is used, for any optimal stationary policy, by guessing a temperature and iterating so that the Hamiltonian remains constant. So we fix the initial temperature and activity, from equations (3.2.3) and (3.2.17), and calculate the initial conversion and the initial Hamiltonian. After this process is initiated, for a small time increment, assume the same temperature, and with it calculate the activity, the conversion and the Hamiltonian. If the constancy of the Hamiltonian is respected, increment the time, if not, assume another temperature until the calculated Hamiltonian for this temperature has surpassed the original Hamiltonian and with a Reguli-Falsi technique, find the exact temperature to satisfy the constancy of the Hamiltonian. This procedure is used repetitively. **4.2** Results

A) The first set of calculations were carried out for a reversible reaction A \neq B being first order in both directions for a hypothetical reactor where k_2^k

$$F(X, T) = (X_{AE} - X)$$

$$g(\psi) = \psi$$

$$E_{C}/R = 15.000^{\circ}K$$

$$k^{*} = 4.0 (T^{*} = 900^{\circ}F)$$

$$k_{*} = 0.13 (T_{*} = 700^{\circ}F)$$

$$X_{o} = 0.0$$

$$\psi_{I} = 1.0$$
(21)

The calculation method used here differs from that used in the irreversible case in the following way: for the irreversible case, a specified maximum conversion attainable for that reactor with the activity equal to one was used to calculate the maximum rate constant of reaction. So that K^* was a constant for any P value. For the reversible reaction, since $\kappa_{1}^{*} = A \kappa^{* p}$ $\kappa_{2}^{*} = B \kappa^{* p}$

and

are of Arrhenius form, keeping the Arrhenius constants A and B constant different values of p and p₁ would change
$$K_1^*$$
 and K_2^* .

Figure 1 to 8 shows the general behavior of the system variables when there is no temperature constraint on the reactor.

TIME

figure 3

TIME

TIME

B) Sensitivity Calculation

In Figure 9, for an endothermic reaction, increasing the ratio of p/p_1 with p_1 = constant increases the total time (τ) and gives a more slowly rising temperature profile, however the policy always reaches the upper temperature constraint.

Figure 10 is for an exothermic reaction. Increasing the ratio of p/p_1 with p = constant increases the total time but has practically no effect on the temperature profile.

With Figures II and I2, for endothermic and exothermic reactions, an increase in the initial temperature decreases the total time of reaction.

Figure 13 is for the special case where $p=p_1$; the same phenomena is observed.

TIME

TIME

ы 5

C) Endothermic Reaction

Figure 14 is the temperature profile with time which satisfies the conditions of optimality given by Pontryagin's Maximum Principle.

Figure 15 shows the equilibrium conversion and also the conversion (exit conversion) with time. Notice that when the upper temperature constraint is reached, the equilibrium conversion remains constant, but the conversion decrease because the temperature cannot be increased any more. However even if $(X_{AE} - X)$ increases rapidly after the temperature has hit the constraint, the rate now decreases, because the activity is decreasing faster than $(X_{AE} - X)$ does (Figure 16).

Figure 17 indicates that no matter what the initial temperature is, the initial conversion will always be greater than the Hamiltonian. The initial temperature of a stationary policy may be arbitrarily near the upper temperature constraint. This is explained theoretically because $\frac{\partial X}{\partial k}$ is always positive for an endothermic reaction.

Notice that Figure 17 is linear with k but has an exponential shape with temperature.

48.je.);; () :

TIME (DAY)

D) Exothermic Reactions

The graph of conversion versus the rate of decay on Figure 18 is typical for p less than 1, having no inflexion point, and the point of tangency at k = 0; so there is no lower bound on initial starting temperature.

Figure 19 shows an upper bound of approximately 850^oF on the initial temperature, where above that point, the initial conversion becomes lower than the Hamiltonian, which is not permissible. Figure 20 is the optimal temperature profile for an exothermic reversible reaction.

On Figures 21 and 22, the conversion and the rate show the inverse phenomena as observed for an endothermic reaction, which is reasonable.

Figure 23 compares the temperature profile for a first order reaction in both directions with a first order reaction forward and a second order reaction backward. Notice that for an order (1-2), the temperature rises more slowly but the operating time is longer. From this it is predictable that for an order (2-1) of reaction, the temperature would have to rise faster but for a shorter operating time.

figure 20

TIME (DAY)

TIME (DAY)

4.3 Conclusion and Discussion

Endothermic and exothermic reactions have a different behavior with respect to the starting temperature. Exothermic reactions are subject to a lower and an upper bound on the initial starting temperature while endothermic reactions have only a lower bound on the initial temperature, different from the bound imposed on the reactor. These bounds are also more restrictive on the initial starting temperature than the domain of temperature where $\frac{\partial^2 X}{\partial t^2} \leq 0$

For first order reactions, theoretical developments based on the maximum principle of Pontryagin have yielded such interesting conclusions as:

- For endothermic reactions, the optimal temperature policy must always reach the upper temperature constraint while for exothermic reactions this is not necessary. This is easily extrapolated for any order of reaction.
- 2. For exothermic reactions, there exists a range of initial temperatures outside of which no optimal policy can start and it also excludes the isothermal policy on the upper temperature constraint.

Complete numerical solutions are given for reaction orders (1-1) and (1-2) using a simple algorithm.

The results shown are significant in the sense that much consideration should be devoted to the initial temperature at which to start a reactor.

The first kinetic model used of order (1-1) has always given the optimal policy.

However for a reaction order (1-2) in some cases even for these initial temperatures where the initial Hamiltonian was positive and greater than the initial conversion, this method was not able to find an optimal policy because after a small time increment the Hamiltonian decreases; and increasing or decreasing the temperature would decrease the Hamiltonian again. There seems to be no optimal policy for these starting temperatures, probably due to the high sensitivity of the Hamiltonian with respect to the conversion.

The programming method is very general and could be used for other kinetic models by making few changes in the listing.

SECTION V

SUMMARY AND FUTURE WORK

The problem of choosing a temperature policy with time to maximize the total conversion over a fixed total time τ in a reactor with uniform temperature and decaying catalyst has been solved. The reaction is reversible and has a factorable rate of decay which is independent of conversion, but the rate equation is not factorable.

The stationary policy is no longer constant conversion as it was for irreversible reactions, except for $p = p_1$, but it has to follow the equilibrium conversion more or less closely.

Fixing the initial temperature is equivalent to fixing the total time, so for each initial temperature there corresponds one and only one total time, the policy is unique for each value of τ and is a continuous function of time. The higher the initial temperature or X_s is, the lower the total time of operation is.

Future work could be done with the rate of catalyst decay expressed as a function of <u>conversion</u>, activity, and temperature. The derivations will not be the same because the function describing the activity with time would be a partial derivative.

(51)

BIBLIOGRAPHY

1.	Jackson, R., The Application of Mathematical Models in Chemical Engineering, Research, Design and Production, Institution of Chemical Engineers, London, 1965, p 32.
2.	Jackson, R., Trans. Inst. Chem. Engrs. 45, T160 (1967).
3.	Szepe, S., Ph.D. Thesis, Illinois Institute of Technology (1966).
4.	Crowe, C.M., A.I.Ch.E. National Meeting, Cleveland, Ohio, May 1969.
5.	Ogunye, A.F., and W.H. Ray, Trans. Inst. Chem. Engrs. 46, T225 (1968).
6.	Ogunye, A.F. and W.H. Ray, A.I.Ch.E. National Meeting, Cleveland, Ohio, May 1969.
7.	R.B. Anderson, Academic Press (1968).
8.	Daizo Kunii and Octave Levenspiel, Fluidization Engineering, Wiley 1969 p 355.
9.	Pontryagin, L.S., VG. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenka, <u>The Mathematical Theory of Optimal Processes</u> , John Wiley, New York (1962).
10.	Halkin, H., In Leitmann, G. (Editor), Topics in Optimization, Chap. 6, Academic Press, New York (1966).

(52)

NOMENCLATURE

Е	-	activation energy for reaction (E) and decay (E $_{ extsf{C}}$)
g	-	activity-dependent factor in decay rate, 0 < g(ψ) < 1
Н	-	Hamiltonian function
k	-	rate constant of decay rate, k=k(T), also decision variable
К	-	rate constant of reaction rate, $K \sim k^P$
к _ё	-	equilibrium rate constant
р Р	-	ratio E ₁ /E _C
PI	-	ratio E ₂ /E _C
S	-	stationary policy
+	-	time on stream
T.		temperature
X	_	conversion of reaction, 0 <x<1< td=""></x<1<>
X		inlet conversion
Z	-	space time through reactor 0 < 0 (0 = 1)
Θ	_ *	space time of reactor ≡ I
μ		adjoint variable to ψ
τ	-	total reaction time
ρ	-	rate of reaction
ф		rate of decay
ψ	-	catalyst activity, ≤ ψ _T
u	-	order of the forward reaction
W	_	order of the backward reaction

Subscripts

f		final value, at $t = \tau$
S	-	value along arc of policy S
I	-	initial value
×	-	minimum attainable value

Superscripts

- + value along optimal policy
- * maximum attainable value

APPENDIX

A.I Proof that for constant inlet conversion, the Hamiltonian is constant with time.

From Equations (3.2.1), (3.2.2), (3.2.3), and (3.2.5) the time derivative of H along any optimal path is in general

$$\frac{\partial H}{\partial H} = \frac{\partial H}{\partial \psi} \frac{d\psi}{d+} + \frac{\partial H}{\partial \mu} \frac{d\mu}{d+} + \frac{\partial H}{\partial X} \frac{dX}{d+} + \frac{\partial H}{\partial k} \frac{dk}{d+}$$

The fourth term is always zero because on a stationary policy, the Hamiltonian is maximized with respect to the control k so $\frac{\partial H}{\partial k} = 0$ and on a constrained policy $\frac{dk}{dt} = 0$. Then

$$\frac{dH}{dt} = -kg(\psi) \frac{\partial H}{\partial \psi} + \frac{\partial H}{\partial \mu} \left(- \frac{\partial X}{\partial \psi} - \mu \frac{\partial \phi}{\partial \psi} \right) + \frac{\partial H}{\partial X} \frac{dX_o}{dt}$$

By Equation (3.2.5)

$$\frac{\partial H}{\partial \psi} = \frac{\partial X}{\partial \psi} + \mu \frac{\partial \phi}{\partial \psi}$$

and

$$\frac{\partial H}{\partial \mu} = \phi = -kg(\psi)$$

Therefore

$$\frac{dH}{dt} = -kg(\psi)\left[\frac{\partial X}{\partial \psi} + \mu \frac{\partial \phi}{\partial \psi}\right] - \frac{\partial H}{\partial \mu}\left[\frac{\partial X}{\partial \psi} + \mu \frac{\partial \phi}{\partial \psi}\right] + \frac{\partial H}{\partial X} \frac{dX}{dt}$$

$$\frac{dH}{dt} = \frac{\partial H}{\partial X_0} \frac{dX_0}{dt}$$
 (General)

For constant inlet conversion $\frac{dX_o}{dt} = 0$ and H = constant.

Also from $H = X + \mu\phi$

$$\frac{9X}{9H} = \frac{9X}{9X}$$

(55)

 $I = \int_{x_0}^{x} \frac{dX}{\psi(K_1 + K_2)(X_{AE} - X)}$

Differentiating both sides with respect to X gives

$$\frac{\partial X}{\partial x} = \frac{\rho}{\rho} \frac{(X)}{(X)}$$

and then

and

 $\frac{dH}{dt} = \frac{\rho(\chi)}{\rho(\chi)} \frac{d\chi}{dt}$

DROUIN A4312. 57 RUN(S) SETINDF. **REDUCE**. APPENDIX A.2.1 LGO. 6400 END RECORD 1 PROGRAM TST (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT) Ċ С CATALYST DECAY REACTOR SINGLE BED (OPTIMAL POLICY) WRITTEN BY * JEAN-GUY DROUIN MC.MASTER UNIVERSITY THE 4 TH. MARCH 1969 × PSI * KK = INT(DX/(1-X) * * N)EQUATION USED\$D(PSI)/DT=-K*PSI**M ⊹ C C ****** ***** SYMBOLS C C AKU= INITIAL RATE CONSTANT OF DECAY RATE C AKKU= INITIAL RATE CONSTANT OF REACTION C AKI= MINIMUM RATE CONSTANT OF DECAY RATE С AKKI= MINIMUM RATE CONSTANT OF REACTION С AKU= MAXIMUM RATE CONSTANT OF DECAY RATE C AKKU= MAXIMUM RATE CONSTANT OF REACTION С EC/R EC= ACTIVATION ENERGY С (ACTIVITY=1.0 WITH MAX. TEMPERATURE) XA= MAXIMUM CONVERSION C TETA= SPACE TIME OF REACTOR Ć XE= INITIAL CONVERSION С M= ORDER OF DECAY RATE С N= ORDER OF REACTION С P= RATIO E/EC С TO= MAXIMUM TEMP.(K) CORRESPONDING TO AKU С PSI= INITIAL ACTIVITY С PSID= INITIAL ACTIVITY ON THE STATIONARY PATH C PSI1= INITIAL ACTIVITY ON THE UPPER CONSTRAINT С TAI= TIME ON THE LOWER CONSTRAINT С TSOS= TIME SPENT ON THE STATIONARY PATH С TOU= TIME ON THE UPPER CONSTRAINT С TR= TIME TO REPLACE THE CATALYST С C С DIMENSION T(8),X(8),PSIT(8),PSIU(8) COMMON M, P, AKI, AKU, AKKI, AKKU, PSI, PSIO, PSII, XE, XS, TETA, PM, EE, N COMMON TAI, TSOS, TAUX, AKO, TO, BEAM1, BEAM2, FGH, XY, DEF, FF DO 4444 MOOSE=1,10 READ(5,200)AKU,AKI,EC,XA,PSI,TETA,XE READ(5,201)M,N,P,XS,TO A=N-1B=1.-XS C=1.-XE D=1.-XA EE = M - 1CD=C**A FF=1./(-EE)FG=D**A DE=B**A CDE=ALOG(B)DEF=ALOG(C) EDC=ALOG(D) $XY=1 \cdot / P - M + 1 \cdot$ IF(N-1)2,3,2

	2	AKKU=(1./FG-1./CD)/(A*TETA) AKKU=(1./DF-1./CD)/(A*PSI*TETA)
		GO TO 4
	3	AKKU=-(EDC-DEF)/TETA
		AKKU = -(CDE - DEF)/(PSI * LEIA)
	4	$AKV = (AKKU/AKKU/ **(1 \cdot / P) * AKU)$
		IF(AKG-AKI)5.6.6
	5	AKU=AKI
		AKKU=AKKI
*		ON THE LOWER CONSTRAINT TILL X=XS
	6	PM=1.7(1.+PST*AKKG*EP)
		AA=1 + PSI * AKKO* FP
		IF(AA)8,7,7
	7	IF(P-PM)'8,9,9
	. 9	FPXA=-N*FG
		$PMXA=\pm \cdot 7(1 \cdot + AKKU*PPXA*PS1)$
*		AT 11 THE POLICY IS ON C*U
	11	WRITE(6,300)
	•	AK0=AKU
		AKK0=AKKU
	• • • •	
	10	WR11E(6,301)
		60 TO 4444
	8	IF(XS-XA)12,12,13
	13	WRITE(6,302)
		AK0=AKU
	,	
		PSI1=PSI0
		TAI=0.0
		TSOS=0.0
		GO TO 22
×	1.0	FIND PSID ON THE STATIONARY PATHEPSI IF NO C*I
	12	PSI0=PSI
		PSI1=AKKO*PSI0/AKKU
		FGH=PSI0**(1./P)
		GO TO 19
	112	1+(N-1)14915914
	15	GO = TO = 16
	14	PSIU=(1./DE-1./CD)/(TETA*AKK0*A)
	16	FGH=PSIU**(1./P)
		PSI1=AKKO*PSIU/AKKU
*		FIND $ A =0.0$ IF NO C*1 I=(M=1,1,2,3,0,1,7)
	18	TAI=1./AKI*ALOG(PSI/PSIO)
	10	GO TO 19
	17	TAI=(PSIO**(-EE)-PSI**(-EE))/(-EE)/(-AKI)
¥		FIND THE TIME ON THE CONSTANT CONVERSION
	19	$AAA=1 \cdot / P - EE$
	2 0	1Γ(ABS(AAA)=1•0E=3)20921921 TSOS=Δ[OG(PSI1/PSI3)/(-ΔΚθ*EGH)
	<i></i> ~	

GO TO 22

21 TSOS=(PSI1**XY-PSI0**XY)/(XY*(-AKO*FGH))

- 22 XF=XS-P*AKK0*PSI0*B**N
- IF(XF)50,51,51 50 WRITE(6,303)
 - WRITE(6,321)
 - GO TO 4444

×

⋇

-X-

- FIND PSIF BECAUSE AKKU IS CTE.
- 51 IF(N-1)60,61,60
- 61 PSIF=-(ALOG(1.-XF)-DEF)/(TETA*AKKU) GO TO 62
- 60 PSIF=(1./(1.-XF)**A-1./CD)/(TETA*AKKU)
- FIND TOTAL TIME TAUX
- 62 IF(M-1)24,23,24
- 23 TAUX=TSOS+TAI-ALOG(PSIF/PSI1)*1./AKU GO TO 125
- 24 TAUX=TSOS+TAI-(PSIF**(-EE)-PSI1**(-EE))/((-EE)*AKU)
- FIND INTEGRAL OF X DT
- 125 WRITE(6,304)PSI,PSI0,PSI1 WRITE(6,305)P,N,AKO,AKKO
 - WRITE(6,306)M,TETA,XA WRITE(6,307)PSIF,XF,XS TOU=TAUX-TSOS-TAI ATOU=TOU/3600. ATAI=TAI/3600. ATSOS=TSOS/3600. ATAUX=TAUX/3600. WRITE(6,308)ATAI WRITE(6,309)ATSOS
 - WRITE(6,310)ATOU WRITE(6,311)ATAUX
 - WRITE(6,313)
 - WRITE(6,312)
 - CALL POLCAI (PROFIT)
 - WRITE(6,314)
 - WRITE(6,312)
 - CALL POLCST(EC,DOLLAR)
 - WRITE(6,315)
 - WRITE(6,312)
 - CALL POLCAU(CENT)
 - TOTAL=PROFIT+DOLLAR+CENT
 - WRITE(6,316)PROFIT
 - WRITE(6,317)DOLLAR
 - WRITE(6,318)CENT
 - WRITE(6,319)TOTAL
 - TR=(TOTAL/XF-TAUX)/3600.
 - WRITE(6,320)TR
 - WRITE(6,321)
 - IF(MOOSE-10)4444,4445,4445
- 4444 CONTINUE
 - 200 FORMAT(2E10.3,5F10.0)
- 201 FORMAT(2110,3F10.0)
- 300 FORMAT(10X,62HTHE POLICY IS ON THE UPPER CONSTRAINT.....P GREATER 1 THEN PMXA)
- 301 FORMAT(10X,55HXS HAS BEEN TAKEN TOO BIG.... P LESS THEN PM AND P 1MXA)
- 302 FORMAT(10X,69HTHE POLICY IS ON THE UPPER CONSTRAINT.... BECAUSE X 1S GREATER THEN XA)

```
303 FORMAT(10X,75HGIVE THE TOTAL TIME OR CHOOSE A GREATER XS....BECAU
    1SE XF WOULD BE NEGATIVE)
 304 FORMAT(5X,4HPSI=,F10.5,10X,5HPSI0=,F10.5,10X,5HPSI1=,F10.5)
 305 FORMAT(5X,4H P=,F10.5,10X,5H N=,I10,10X,4HAK0=,E12.5,5HAKK0=,E1
    12.5)
 306 FORMAT(5X,4H M=,110,10X,5HTETA=,F10.5,10X,4H XA=,F10.5)
 307 FORMAT(5X,5HPSIF=,F10.7,10X,4H XF=,F10.7,10X,4H XS=,F10.5)
 308 FORMAT(10X,38HTIME IN HOURS ON THE LOWER CONSTRAINT=,F15.5)
 309 FORMAT(10X, 38HTIME IN HOURS ON THE STATIONARY PATH=, F15.5)
 310 FORMAT(10X,38HTIME IN HOURS ON THE UPPER CONSTRAINT=,F15.5)
 311 FORMAT(10X,38HTOTAL TIME IN HOURS TO OPERATE
                                                            =,F15.5)
 312 FORMAT(12X,8HACTIVITY,16X,8HTIME(HR),16X,10HCONVERSION,16X,14HTEMP
    1ERATURE(K))
 313 FORMAT(5X,23HON THE LOWER CONSTRAINT,//)
 314 FORMAT(5X, 22HON THE STATIONARY PATH, //)
 315 FORMAT(5X,23HON THE UPPER CONSTRAINT,//)
 316 FORMAT(10X,31HPROFIT ON THE LOWER CONSTRAINT=,E15.7,/)
 317 FORMAT(10X,32HPROFIT ON THE STATIONARY POLICY=,E15.7,/)
 318 FORMAT(10X,31HPROFIT ON THE UPPER CONSTRAINT=,E15.7,///)
 319 FORMAT(10X,13HTOTAL PROFIT=,E15.7,//)
 320 FORMAT(10X, 13HTR. FOR MAX. =, E15.7)
 321 FORMAT(1H1)
4445 STOP
     END
     SUBROUTINE POLCAI (PROFIT)
     DIMENSION T(4), X(4), PSIT(4)
     COMMON M, P, AKI, AKU, AKKI, AKKU, PSI, PSIO, PSII, XE, XS, TETA, PM, EE, N
     COMMON TAI, TSOS, TAUX, AKO, TO, BEAM1, BEAM2, FGH, XY, DEF, FF
     IF(TAI)1,1,2
   1 PROFIT=0.0
     BEAM1=0.0
     RETURN
   2 L=100
     AN=L
     TI=TAI/AN
     PROFIT=0.0
     B=1./PSI**EE
     C=-EE*AKI
     AM=M
     D=1 \cdot / (1 \cdot - AM)
     AA = ALOG(1 - XE)
     BB=1./(1.-XE)**(N-1)
     T(1) = 0 \cdot 0
     JJ=L/2
     DO 9 J=1,JJ
     DO 8 I=1,3
     IF(M-1)3,4,3
  4 PSIT(I) = PSI \times EXP(-AKI \times T(I))
     GO TO 5
   3 PSIT(I)=(B+(-C*T(I)))**FF
   5 IF(N-1)6,7,6
   7 X(I) = 1 - FXP(AA - PSIT(I) * AKKI * TFTA)
     GO TO 10
  6 S = N - 1
     X(I)=1.-((S)*TETA*PSIT(I)*AKKI+(1.-XE)**(-S))**(1./(-S))
 10 T(I+1) = T(I) + TI
  8. CONTINUE
```

¥

PROFIT=PROFIT+TI/3.*(X(1)+4.*X(2)+X(3)) 61 T(1) = T(3)9. CONTINUE CALL TIMEX(TAI, DTIME) TT=0.0DO 21 J=1,100 I = 1IF(TT-TAI)22,28,28 22 IF(M-1)23,24,23 24 PSI1(I)=PSI*EXP(-AKI*TT) GO TO 25 23 PSIT(I)=(B+(-C*TT))**FF 25 IF(N-1)26,27,26 27 X(I)=1.-EXP(AA-PSIT(I)*AKKI*TETA) GO TO 30 26 X(I)=1.-((-S)*TETA*PSIT(I)*AKKI+(1.-XE)**(-S))**(1./(-S)) 30 ATT=TT/3600. WRITE(6,321)PSIT(1),ATT,X(I) TT=TT+DTIME IF(J-100)21,15,15 21 CONTINUE 28 BEAM1=TT TT = TAIJ=100 GO TO 22 15 RETURN 321 FORMAT(10X,F12.5,10X,F12.5,10X,F12.5) END SUBROUTINE POLCST(EC,DOLLAR) COMMON M, P, AKI, AKU, AKKI, AKKU, PSI, PSIO, PSII, XE, XS, TETA, PM, EE, N COMMON TAI, TSOS, TAUX, AKC, TO, BEAM1, BEAM2, FGH, XY, DEF, FF IF(TSOS)27,27,28 27 DOLLAR=U.U BEAM2=BEAM1 RETURN 28 R=1.0 BB=-AK0*FGH*XY CTE=PSI1*AKKU AA=PSI0**XY BBB = P * M - (1 + P)DOLLAR=XS*TSOS CALL TIMEX(TSOS,DTIME) CALL TIMO(BEAM1,DTIME,TAI,T) DO 50 I=1,100 IF(T-TAI-TSOS)31,39,39 31 IF(ABS(BBB)-1.E-5)33,34,34 33 PSITT=PSI0*EXP(-AK0*FGH*(T-TAI)) GO TO 35 34 PSITT=(AA+BB*(T-TAI))**(1•/XY) 35 AKK=CTE/PSITT TEMP=TC/(1.-R*TC/(EC*P)*ALOG(AKK/AKKU)) CCT=T/3600. WRITE(6,322)PSITT,CCT,XS,TEMP T=T+DTIME IF(I-100)50,37,37 50 CONTINUE 39 BEAM2=T

∻

		T=TAI+TSOS			6
		I=100 · ···			
		GO TO 31			
3	37	RETURN			
32	22	FORMAT(10X,F12.5,10X,F12.5,10X,F12.5,10X,	F12•5)		
		END			
×					
		SUBROUTINE POLCAU(CENT)			
		DIMENSION PSIU(4),X(4),T(4)			
		COMMON M, P, AKI, AKU, AKKI, AKKU, PSI, PSIO, PSI	1,XE,XS	,TETA;PM	1, EE, N
		COMMON TAI, TSOS, TAUX, AKO, TO, BEAM1, BEAM2, F	GH,XY,D	EF,FF	
		1=100			
		TI = (TAUX - TSOS - TAI)/AN			
		CENT=0.0			
		T(1) = TSOS + TAI			
		A = PSII + *(-EF)			
		DO 38 I=1.3			
		$E = (M - 1) 32 \cdot 34 \cdot 33$			
~		$\frac{1}{1} \left(\frac{1}{1} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{2} \right) = \frac{1}$			
3	>4	CO TO 25			
_		DO TO DD Dotolity (AAL(FEMAKU)×(T/1)_TAI_TSOS)**EE			
1	33	PSIU(1) = (AA+VEE*AKU) * (1(1) = (A1+VEE*AKU) * (A1+VEE*AKU)			
	55	$\frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}$			
	37	X(I) = I + EXP(CC + ETA*PSIO(I)*AKKO)			
		GO TO 410			
3	36	S=N-1	C X X Y Y I		
		X(I) = 1 - ((S) * IE A*PS1U(I) * AKKU+(I - XE) **(-5))**(1./(-5/)	
4]	0	T(I+I)=I(I)+II			
3	38	CONTINUE			
		CENT=CENT+T1/3*(X(1)+4.*X(2)+X(3))			
	·	T(1) = T(3)			
3	39	CONTINUE			
		TIME=TAUX-TSOS-TAI			
		CALL TIMEX(TIME,DTIME)			
		SOS=TAI+TSOS			
		CALL TIMO(BEAM2,DTIME,SOS,TT)			
		$\mathbf{I} = 1$			
		DO 41 $J=1,100$			
		IF(TT-TAUX)42,48,48			
۲.	+2	IF(M-1)43,44,43			
. 4	¥4	PSIU(I)=PSI1*EXP((TT-TSOS-TAI)*(-AKU))			
		GO TO 145			
۲	÷3	PSIU(I)=(AA+(EE*AKU)*(TT-TAI-TSOS))**FF			
14	+5	IF(N-1)46,47,46			
4	+7	X(I)=1EXP(CC-TETA*PSIU(I)*AKKU)			
		GO TO 411			
L	+6	X(I)=1((S)*TETA*PSIU(I)*AKKU+(1XE)**(1./(-S)	
4]	1	BBTT=TT/3600.			
		WRITE(6,323)PSIU(I),BBTT,X(I)		-	
		TT=TT+DTIME			
		IF(J-100)41,45,45			
L	+ 1	CONTINUE			
1	18	TT=TAUX	•		
_	. 0	J=100			
		60 10 42			

45 RETURN

×

×

×

```
323 FORMAT(10X,F12.5,10X,F12.5,10X,F12.5)
END
```

SUBROUTINE TIMEX(TIME, DTIME) DIMENSION NO(15) IF(TIME-10*3600.)7,8,8 8 CHECK=TIME/(10.*3600.) NO(1)=IFIX(CHECK) DO 1 IN=2,15 NO(IN)=NO(IN-1)/10. IF(NO(IN))2,2,1 1 CONTINUE WRITE(6,324) STOP 2 NXX=10**(IN-2) -NUM=NO(IN-1)*NXX NOM=NUM+NXX ANUM=NUM DIFF1=(CHECK-ANUM-0.5*NXX) IF(DIFF1)3,4,4 3 DTIME=ANUM GO TO 5 4 ANOM=NOM DTIME=ANOM GO TO 5 7 DTIME=3600.0 RETURN 5 DTIME=DTIME*3600.0 RETURN 324 FORMAT(10X,14HERROR IN TIMEX) END SUBROUTINE TIMO(BEAM, DTIME, SOS, T) DO 99 KK=1,10000 IF(BEAM-SOS)55,77,77 77 BEAM=BEAM-DTIME 99 CONTINUE 55 T=BEAM+DTIME RETURN END

· · · · · · · · · · · · · · · · · · ·					
• 6400 END REC	EORD				
1.160E-06 3.540E-09	15000• •	0.9	1.0	1.0	0.0
0 1	0.5	0.557	900.0		
1.160E-06 3.540E-09	15000.	0.9	1.0	1.0	0.0
	1.0	0.250	900.0		
1.160E-06 3.540E-09	15000.	0.9 .	1.0	1.0	0.0
0 1	1.5	0.532	900 <u>.</u> 0		
1.160F-06 3.540F-09	15000.	0.9	1.0	1.0	0.0
0 1	0.5	0.9	900.0		
1.160E-06 3.540E-09	15000.	0.9	1.0	1.0	°0•0
Ü 1	C•1	0.673	900.0		
1.160E-06 3.540E-09	15000.	0.9	1.0	1.0	. 0.0
0 1	1•5	•761	900.0		
1.160E-06 3.540E-09	15000.	0.9 .	1.0	1.0	0.0
0 1	1.0	0.9	900.0		
• 6400 END FIL	_E			-	

	1C4000.T200		•		DRO	UΙ
A43129	(<u>)</u> (<u>4</u> 000) 1 <u>2</u> 00 • − − − − − − − − − − − − − − − − − − −					
SETINE)F_				64	
REDUCE						
I GO.	APPENDI	X A.2.2.				
1	6400 END RECORD					
	PROGRAM TST (INPUT, OUTPUT, TAPE	5=INPUT,	TAPE6=OU	JTPUT)		
C	***************************************	******	******	*********	****	¥-
С	*****	*******	*******	****	***********	*
C	THIS PROGRAM FINDS THE BEST IS	OTHERMAL	POLICY	FCR_IRRE	VERSIBLE REA	AC
C	EQUATIONS USED D(PSI)/DT=-	-K*PSI**M				
С	RATE=K(T)*H	?SI*(1X	}★米N	VIN V V V V V V X	- 	
С	*****	*********	*******	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*******	ж
C	**************************************	NECAN DAT	жажжжжж т.Е	*******		~
C	AKI = MINIMUM RATE CONSTANT OF	DECAT RA	t L. T T			
,C	AKU= MAXIMUM RATE CONSTANT OF	DECAY RA	I C			
C	EC= ACTIVATION ENERGY EC/R	VITV-1 O	NITH M	AV TEMOR	DATHRE'N	
C.	XA= MAXIMUM CONVERSIONACTI	$v \downarrow i \downarrow - \downarrow \bullet 0$	23 T 1 1 1 1 1 1 1 1 1	NA HLUFL	NATORC /	
C	XEE INTITAL CONVERSION					
C	DE DATIO EXEC		· .			
C .	P = RATIO L/LC P = ACTIVITY	•				
C	M= ORDER OF DECAY RATE					
C	N= ORDER OF REACTION					
C	TU= MAXIMUN TEMP.(K) CORRESPON	DING TO A	ΑΚυ			
Č	TAUX= TOTAL TIME IN DAYS		•			
Ċ	*****	****	******	*******	**********	×
Ċ	*****	*****	*******	*******	*****	*
0	DIMENSION T(4),X(4),PSIT(4)					
	COMMON M, N, TAUX, PSI, XE, P, AKI, T	ETA,AKU,	ХА			
	COMMON TU,R,EC,CTE,TEMP			-	•	
	COMMON ACT					
	MOOSE=0					
	DO 500 MOOSE=1,50	tana menangan kang sebut				
	READ(5,100)AKU,AKI,EC,XA,PSI,I	EIA, XE				
	READ(5,104)M,N					
ta an	READ(5,101)P, TAUX					
	READ(5,105) 10, R, EC	•				
	TAUX=TAUX*86400.0					
	C1E=AKU/EXP(-EC/(R*TU))					
	AKSUP=PSI**(1 - M)/(IAUX*(1 - M)))				
	IF (M.G1.C) GO TO I					
					-	
	TEMPZERECTRIALUG(ANSUPICIC)					
	I = (AKSUP + T + AKU) = GO = TO = T					
	AVH-AVSHD		•			
1	ADGMIN-AKI					
. 1	ARGMAX=AKU					
	WRITE(6 , 120)					
	CALL SFARCH (ARGMIN, ARGMAX, PROF	IT)			•	
	BTAUX=TAUX/86400.0					
	WRITE(6,102)BTAUX, TEMP, ACT, PRO)FIT,M,N,F	P .			
	IF(MOOSE,EQ.50) GO TO 3	-				
•	GO TO 500					
2	TAUXM=PSI**(1-M)/((1-M)*AKI)					
	BTAUXM=TAUXM786400.0	•				
	WRITE(6,106)BTAUX,BTAUXM					
500	CONTINUE		tere a			
3 STOP 65 100 FORMAT(2E10.3,5F10.0) 101 FORMAT(2F1U.U) 102 FORMAT(5X,E12.5,10X,E12.5,10X,E12.5,10X,E12.5,10X,I2,10X,I2,5X,F5. 12:///) 104 FORMAT(2110) 105 FORMAT(3F10.0) 106 FORMAT(5X,58HTHE TOTAL TIME IS TOO LONG EVEN FOR THE LOWEST TEMPER 1ATURE, 20HYOUR TOTAL TIME IS =, E12.4, 7H IN DAY, //, 37HAND THE MAXIMU 2M TIME PERMISSIBLE IS = +E12.4+///) 120 FORMAT(6X,12HTIME IN DAYS, 6X,14HTEMPERATURE(K), 4X,8HACTIVITY,10 1X,6HPROFIT,8X,14HORDER OF DECAY,10X,17HORDER OF REACTION,5X,7HP VA 2LUE) END SUBROUTINE SEARCH(ARGMIN, ARGMAX, PROFIT) COMMON M,N,TAUX,PSI,XE,P,AKI,TETA,AKU,XA,TAUXM,L,NF,RTAUX COMMON TU,R,EC,CTE,TEMP COMMON ACT NFLAG=0 TO=1.61803398874 TMIN=ARGMIN TMAX=ARGMAX 4 T2=TMIN+(TMAX-TMIN)/TO T1=TMIN+(TMAX-T2)CALL INTG(T1,P1) CALL INTG(T2,P2) PMAX = P2TTMAX=T2 IF(NFLAG)6,5,6 5 DO 23 I=1,50 6 IF(P2-P1)13,19,9 9 IF(T1-T2)10,10,11 10 TMIN=T1 GO TO 12 11 TMAX=T112 T1=TMIN+(TMAX-T2)CALL INTG(T1,P1) GO TO 23 13 IF(T1-T2)17,17,16 16 TMIN=T2GO TO 18 17 TMAX=T218 T2=TMAX-(T1-TMIN)CALL INTG(T2,P2) GO TO 23 19 ROS=T1-T2 IF(ABS(ROS)-1.0E-14)37,37,60 60 IF(ROS)20,37,21 20 TMIN=T1 TMAX = T2GO TO 22 37 TTMAX=T1 GO TO 39 21 TMIN=T2TMAX=T1 22 NFLAG=1 GO TO 4 23 CONTINUE

	39	IF(P1-P2)40,40,41
	40	PROFITEP2
	1. 1	
	4 I	PETUDN
		FND
		SUBROUTINE INTG(T1,P1)
		DIMENSION T(4),X(4),PSIT(4)
		COMMON M, N, TAUX, PSI, XE, P, AKI, TETA, AKU, XA
		COMMON TO,R,EC,CTE,TEMP
		COMMON ACT
		EE = M - 1
		AA = ALOG(1 - XE)
		AKOP=T1
		A = N - 1
		$C=1 \cdot -XE$
		$D=1 \cdot -XA$
	-	1F(N-1)2,13,2
	2	$AK(U=(1 \bullet / U * * A^{-1} \bullet / C * * A) / (A^{*} + E + A)$
	10	$\frac{1}{10} \frac{1}{10} \frac$
	13	AKKOP = (ALOG(D) - ALOG(C) / / ILIA
	14	AKKOP = AKKO*TAKOPZAKOZ**P
	22	
	52	PROFIT=0.0
		B=1./PSI**FF
		C = -FF * AKI
		AM=FLOAT(M)
		BB=1./(1XE)**(N-1)
		$T(1) = 0 \cdot 0$
		JJ=L/2
		DC 9 J=1,JJ
		DO 8 I=1,3
		IF(M-1)3,4,3
	4	PSIT(I) = PSI * EXP(-AKOP * T(I))
		GO TO 5
	3	PSII(1) = (B+EE*AKOP*I(1)) **(1 • / (-EE))
	5	$\frac{1}{1} \left(N-1 \right) 6 \left(\frac{1}{2} \right) 6 \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2$
	1	$X(I) = I \cdot - EXP(AA - PSII(I) * AKKOP*(EIA)$
		60 10 10
	6	S=N-1
	10	$X(1)=1 \cdot 0^{-1}((3)^{-1}C_{1}A^{P}S_{1}C_{1}^{P}A^{P}K_{0}C_{1}^{P}B_{1}^{P}A^{P}S_{1}^{P}C_{1}^{P}$
	ц С Ц	CONTINUE
	Ū.	PROFIT=PROFIT+TI/3, *(X(1)+4, *X(2)+X(3))
		T(1) = T(3)
	9	CONTINUE
		P1=PROFIT
		TEMP=-EC/R/ALOG(AKOP/CTE)
		ACT=PSIT(I)
		RETURN
		END
. . 1		6400 END RECORD
1.	160	E-06 3.540E-09 15000. 0.9 1.0 1.0
		\cdot 0 1
1.5	.	30.0
-900) • O_	$1 \cdot 0$ $1 \cdot 0$ $150 \cdot 0$ 0 0 0 0 0 0 0 0 0

66

0.0

ORD11

APPENDIX A.2.3

100. OPTIMAL POLICY FOR A REVERSIBLE REACTION (FIRST ORDER ON BOTH DIR-110 120. ECTIONS) GIVEN THE INITIAL TEMPERATURE(F) WRITTEN BY JEAN-GUY DROUIN ; AUGUST 1969 130. 140. 150. 166. SYMBOLS 170 186 190. TI=STARTING TEMPERATURE (F) 200. AP: ACTIVATION EMERGY RATIO E1/EC 11 213. U " F2/FC AP1= TS=UPPER BOUND ON TEMPERATURE (F) 000 230. CTE: ARRHENIUS CONSTANT 040. PEISIMITIAL ACTIVITY 250. PEIE=FINAL ACTIVITY 267. DTIME: TIME INCREMENTATION (ARBITRARY UNITS) OFLITAW-BATE CONSTANT INCREMENTATION 070 XAE= COUILIBRIUM CONVERSION 200 202. X=CONVERSION 330. INITIAL CONVERSIONES. " HAM=HAMILTONIAM 312. 7000 TAUX=TOTAL TIME OF OPERATION 330. 3400 3500 360 370 COMMON TIME, PSI, AP, AP1, A, F, PSIT, M, MAE, MAM 380 COMMON IKL, DTIME, DELTAK, I 390 COMMON AKK1, AKK2, GON, KRS 400 READ, TI, AP, AP1, TS D.T.P. 410 E=15000 410 E=15000. 480 CTE=1.69001E+9 430 TIL=(TL-32)*5./9.+273. 447 TSS=(TS-32)*5./9.+273. 450 AM=CTE*EXP(-E/TII) 460 AKH=CTF* EXP(-E/TSS) 470 PSI=1. 480 DTIME=. 31 490 11.=0 500 DELTAK: 5 510 A=1. 520 3=1. 530 TAUX=100. 540 KRS=1 550 TK1 = 0 560 LIST=0 570 111=1 580 IJY=1 590 EPS=1.0E-5

ORD11 CONTINUED

```
600 TIME=0.0
610 ZZ=DTIME
620 AKK1=AK**AP*A
630 AKK2=AK**AP1*B
640 XAE=AKK1/(AKK1+AKK2)
650 X=XAE*(1.-EXP(-PSI*(AKK1+AKK2)))
GGG HAMØ=Y-(AP-AP1)*(1.-YAE)*X+(XAE-X)*ALOG((XAE-Y)/XAE)*(XAE*(AP-AP1
670 +)+AP1)
680 COV=HAMO
690 HAMSHAMO
700 RATEI=RSI*(AKK1+AKK2)*(MAE-M)
710 AAA=Y/XAE
720 CC=XAE-Y
730 PRINT, "PSI
                                   X
                      TEMP(F)
                                          MAE
                                                 (XAE-X)
                                                             X/XAE HAM TIME"
740 PRINT41, PSI, TI, M, NAE, CC, AAA, HAM, TIME
750 41 FORMAT(F7.5, F3.3, 6F7.5)
760 IF (HAM-Y) 2, 513, 613
770 G13 PRINT, "INITIAL TEMPERATURE IS TOO HIGH"
780 STOP
780 PRINT, ft, "INITIAL RATE =",RATEI
800 IF(HAM)195,106,106
310 105 PRINT, "INITIAL TEMPERATURE IS TOO LOW"
820 STOP
333 106 CONTINUE
840 2 TIME=TIME+DTIME
850 I=0
860 J=0
870 DIREAK
SED CALL PROCES(AK)
300 20 IF((HAM-HAM0)-EPS)10,12,13
966 13 IF(J-1)56,60,50
910 66 AM1=AK-DELTAK
. OPA AKZEAK
 930 32 GALL PROCES(AK1)
 947 HAMI=HAM
 950 CALL PROCES(AM2)
960 HAM2=HAM
 977 CALL REGULI (HAM1, HAM2, AK1, AK2, HAM2, AK)
 980 IF (AK-AKU) 92, 94, 94
 990 92 CONTINUE
 1000 IKL=0
 1010 PSI=PSIT
 1020 GO TO 12
 1030 94 CED=AK-AKU
 1040 LL=1
 1050 DE= AKH- AK1
· 1050 TIME=TIME-DTIME
 1070 MX=DTIME*DE/(DE+GED)
 1999 TIMESTIMESYX
 1000 DTIME=XX
```

ORD11 CONTINUED

```
1100 LIST=1
1110 MN=10
1120 102 CALL PROCES(AKU)
1130 IF(IJK-1)49.48.49
1140 48 PSIF=-ALOG(1.-COW/XAE)/(AKK1+AKK2)
1150 TAUX=TIME+ALOG(PSIT/PSIF)/AMU
1160 IJK=2
1170 49 CONTINUE
1188 AK=AKU
1190 PSI=PSIT
1200 GO TO 12
1210 50 1=1
1220 AK=AK-DELTAK
1230 CALL PROCES(AK)
1249 GO TO 20
1250 10 IF(1-1)30,40,30
1260 AD AK1=AK+DEL TAK
1270 AK2= AK
1280 GO TO 32
1290.30-1=1
1300 AK=AK+DELTAK
1310 CALL PROCES(AK)
1320 GO TO 20
1330 12 DBB=%/XAE
1340 CC=XAE-Y
1350 RS=PSIT*(AKK1+AKK2)
1360 RST=PSIT*AK
1370 RATE=RS*CC
1380 IF(LL-1)500,400,500
1390 500 IF(X-COV)300,400,400
1400 300 PRINT, "CONVERSION IS LOVER THAN THE HAMILTONIAN"
1410 PRINT, PSIT, TEMP, X, XAE, CC, BBB, HAM, TIME
1420 STOP
1430 400 CONTINUE
1440 IF(NN-18)89,69,69
1450 69 CONTINUE
1460 TEMP=-E/ALOG(AK/CTE)-273..
1470 TEMP=TEMP*9./5.+32.
1430 PRINT51, PSIT, TEMP, X, YAE, CC, BBB, HAM, TIME
1493 51 FORMAT (F7.5, F8.3, 6F7.5)
1500 PRINT,↑
1510 PRINT, "ACTIVITY BY AK =";PST
1520 PRINT, "ACTIVITY BY AKK1+2=",RS
1530 PRINT, "RATE=",RATE, 11
1540 IF (TIME-TAUX) 77, 78, 78
1550 77 MM=1
1560 IF(LIST-1)2,125,2
1570 89 MM = MM+1
1580 BOSS= NM
1590 IF(LIST-1)2,125,2
```

```
ORD11 CONTINUED
```

```
1600 125 IF(KRS-1)225,245,225
1610, 245 DTIME=ZZ-XX
1620 DIREAKU
1630 TIME=TIME+DTIME
1649 KRS=2
1650 NN=3095
1660 GO TO 102
1670 225 TIME=TIME+ZZ
1630 DTIME=77
1690 GO TO 102
1700 78 PRINT. **, "TOTAL TIME=", TAUX, "FINAL ACTIVITY=", PSIF
1712 STOP
1720 END
1730 SUBROUTINE PROCES(AK)
1740 COMMON TIME, PSI, AP, AP1, A, B, PSIT, Y, MAE, HAM
1750 COMMON IKL, DTIME, DELTAK, DIR
1760 COMMON AKK1, AKK2, COM, KRS
1770 4 PSIT=PSI*EXP(-(AK+DIR)/2.*DTIME)
1720 AKK1=AK**AP*A
1700 AKK2=AK**AP1*B
1860 XAE=AKK1/(AKK1+AKK2)
1810 X=YAE*(1.-EXP(-PSIT*(AKK1+AKK2)))
1520 IF(KES-2)7, 5.8
1830 7 CONTINUE
1840 HAM=X-(AP-AP1)*(1.-XAE)*X+(XAE-X)*ALOG((XAE-X)/XAE)*(XAE*(AP-AP1
1950 +)+AP1)
1860 GO TO 13
1870 S HAMECOW
1380 18 IF(UKL)122,122,123
189C 123 CONTINUE
1900 PRINT, "HAMILTONIAN = ", HAM, " CONTROL K = ", AK
1910 122 CONTINUE
1920 RETURN
1930 15 STOP
1940 END
1950 SUBROUTINE REGULI(HAM1, HAM2, AK1, AK2, HAMØ, ARG3)
 960 COMMON TIME, PSI, AP, AP1, A, B, PSIT, X, XAE, HAM
1970 EPS1=1.0E-5
1980 FUNCI=HAMI-HAMC
1000 FUNC2=HAM2-HAM0
2000 ABC= FUNC1*FUNC2
2010 IE(ABC)1,1,2
2022 1 ARG1=AK1
2030 AR62=AK2
2040 GO TO 53
2050 2 PRINT, "STOP IN REGULI TEMPERATURE IS TOO LOW"
2060 STOP
2070 53 ARG3=ARG1+FUMC1*(ARG2-ARG1)/(FUMC1-FUMC2)
2080 CALL PROCES(ARG3)
2090 FUNC3= HAM-HAMD
```

ORD11 CONTINUED

2100 DIFF=FUNC3 2110 IF(ABS(DIFF)-EPS1)58,58,57 2120 58 RETURN 2130 57 BB=FUNC1*FUNC3 2140 IF(BB)61,58,59 2150 59 ARG1=ARG3 2160 FUNC1=FUNC3 2170 GO TO 53 2180 61 ARG2=ARG3 2190 FUNC2=FUNC3 2200 GO TO 53 2210 END 2220 SDATA 2230 400. .6 .8 900. ORD12

APPENDIX A.2.4

100.	***************************************
110.	OPTIMAL POLICY FOR A REVERSIBLE REACTION OF ORDER 1-2 GIVEN THE
120.	INITIAL TEMP. (F). BY J. G. DROHIM AHGHET 1969
130.	大大学大学大学大学大学大学大学大学大学大学大学大学大学大学大学大学大学大学大
140.	
150	CANDUI C
160	olimoru A
170	
120	TI-STADTING TEMPEDATHDE (E)
100	AD-ACTIVATION ENERGY DATIG TIVES
2000	ADI- " " TOJEO
0100	TC-HODED DOUND ON TEMPEDATUDE (E)
007	DEELADDUENTUG CONCEANS
07 12	DET TUTTIAL ACTIVITY
4000	FOITURE ADDIVIN
2400	PSIFERINAL ACTIVITY
2213.	DITCHETINE INCREMENTATION (ARBITRARY UNITS)
2010	DELIAKERAIE CONSIANT INCREMENTATION
2730 .	XAE=EQUILIBRIUM CONVERSION
280.	X=CONVERCION
292.	INITIAL CONVERSION =0.0
302.	HAM=HAMILTONIAN
310.	TAUX=TOTAL TIME OF OPERATION
320.	
330.	***************************************
340.	***************************************
350.	
365 (COMMON TIME, PSI, AP, API, A, B, PSIT, X, XAE, HAM
3.7 0 (COMMON IKL, DTIME, DELTAK, DIR
333 (COMMON AKKI, AKK2, COU, KRS, CAD
393 (COMMON XC
400 1	READ.TI.AP.AP1.IS
413 1	E=15000.
420 1	CAØ=1.
430 .	(0=0.
440 1	CTE=1,69001F+9
450	TTT=(TT-32)*5./9.+273.
46.0	TSS=(TS-32)×5,/9,+273,
173	AK-CTEXEXP(-F/TII)
Aga.	AVU-CTE* FYP(-F/TSS)
400	PCI-1
500	TIME- 11
516	
500	DELTAV- 5
SZA.	
510	D-10
550	TAUX-100
500	INDA-1000
500	ANO - 1 T11 - 7
DIN S	INC-4
Del	
596	WH = 1

ORD12 CONTINUED

```
600 IJK=1
610 EPS=1.0E-5
620 TIME=0.0
630 ZZ=DTIME
640 AKK1=AK**AP*A
650 AKK2= AK**AP1*B
660 PSIT=PSI
670 CALL HAMM
680 HAMO=HAM
690 COU=HAM0
700 HAM=HAMØ
710 RATEI=PSI*(AKK1*(1.-X)-AKK2*CAG*X*X)
723 PRINT373
735 373 FORMAT(4X, 4HPSI , 10X, 7HTEMP(F), 10X, 1HX, 10X, 3HHAM, 10X, 4HTIME)
740 PRINT, PSI, TI, X, HAM, TIME
750 PRINT, 11, "INITIAL RATE =", PATEI
750 PRINT, 11, "INITIAL
760 IF(HAM)105,106,106
770 106 IF (HAM-X) 2, 613, 613
780 613 PRINT, "INITIAL TEMPERATURE (F) IS TOO HIGH"
790 STOP
300 105 PRINT, "INITIAL TEMP(F) IS TOO LOW"
810 STOP
820 2 TIME=TIME+DTIME
330 JEO
840 1=0
850 DIR=AK
860 CALL PROCES(AK)
870 20 IF (HAM-HAMO)10, 12, 13
880 13 IF(J-1)50,60,50
890 60 AKI=AK-DELTAK
900 AK2=AK
910 32 CALL PROCES(AK1)
920 HAMI=HAM
930 CALL PROCES(AK2)
940 HAM2=HAM
950 CALL REGULI (HAM1, HAM2, AK1, AK2, HAM0, AK)
960 IF(AM-AMU)92,94,94
977 92 IKL=0
980 PSI=PSIT
990 GO TO 12
1000 94 CED=AK-AKU
1010 LL=1
1020 DE=AKU-AKI
     TIME=TIME-DTIME
1039
     XX=DTIME*DE/(DE+GED)
1340
1050 TIME=TIME+XX
 OGG DTIME=XX
1070 1 IST=1
1080 NN=10
1090 102 CALL PROCES(AKU)
```

ORD12 CONTINUED 1100 IF(IJK-1)49,48,49 1110 48 SS=AKU**AP*A 1120 SST: AKU**AP1*8 1130 DAM=SORT(4.*SS*SST*CA0+SS*SS) 1140 ZRS=-SS-DAM 1150 ZRST=-SS+DAM 1160 RSU=-2,*SST*CA0 . 1170 PSIF=1./DAM*ALOG((RSU*COV+ZRS)*(RSU*X0+ZRST)/(RSU*COV+ZRST)/(RSU 1180 +*X0+ZRS)) 1190 TAUX=TIME+ALOG(PSIT/PSIF)/AKU 1200 IJK=2 1210 49 AK= AKU 1220 PSI=PSIT 1230 GO TO 12 1240 50 1=1 1250 AK=AK-DELTAK 1260 CALL PROCES(AK) 1270 GO TO 20 1250 10 IF(I-1)30,40,30 1290 48 AK1=AK+DELTAK 1300 AK2=AK 1310 GO TO 32 1320 30 J=1 1330 AK=AK+DELTAK 1340 CALL PROCES(AK) 1350 GO TO 20 1360 12 CONTINUE 1370 RATE=PSIT*(AKK1*CA0*(1.-X)-AKK2*CA0*CA0*X*X) 1380 IF(LL-1)500,400,500 1390 500 IF(X-COV)300,400,400 1400 300 PRINT, "CONVERSION IS LOWER THAN THE HAMILTONIAN" 1410 PRINT, PSIT, TEMP, X, HAM, TIME 1420 STOP 1430 400 IF(NN-10)89,69,69 1440 69 CONTINUE 1450 TEMP=-E/ALOG(AK/CTE)-273. 1460 TEMP=TEMP*9./5.+32. 1470 PRINT, PSIT, TEMP, X, HAM, TIME 1480 PRINT,↑ 1490 PRINT, "RATE=",RATE,↑↑ 1500 IF(TIME-TAUX) 77, 78, 78 1510 77 MN=1 1520 IF(LIST-1)2,125,2 1530 89 NN= NN+1 1540 BOSS= NM 1550 IF(LIST-1)2,125,2 1560 125 IF(KRS-1)225,245,225 1570 245 DTIME=ZZ-XX 1580 DIR=AKU 1590 TIME=TIME+DTIME

ORD12 CONTINUED

```
1600 KRS=2
1610 NN=BOSS
1620 GO TO 102
1630 225 TIME=TIME+ZZ
1640 DTIME=ZZ
1650 GO TO 102
1660 78 PRINT, 11, "TOTAL TIME=", TAUX, "FINAL ACTIVITY=", PSIF
1670 STOP
1680 END
1690 SUBROUTINE PROCES(AK)
1700 COMMON TIME, PSI, AP, AP1, A, B, PSIT, X, XAE, HAM
1710 COMMON IKL, DTEME, DELTAK, DIR
1720 COMMON AKK1, AKK2, COM, KRS, CAO
1730 4 PSIT=PSI*EXP(-(AK+DIR)/2.*DTIME)
1740 AKK1=AK**AP*A
1750 AKK2=AK**AP1*B
1760 CALL HAMM
1770 18 IF(IKL)122,122,123
1730 123 CONTINUE
1790 PRINT, "HAMILTONIAN = ".HAM." CONTROL K = ".AK
1800 122 RETURN
1319 15 STOP
1820 END
1830 SUBROUTINE REGULI (HAM1, HAM2, AK1, AK2, HAM0, ARG3)
1840 COMMON TIME, PSI, AP, API, A, E, PSIT, X, XAE, HAM
1850 EPS1=1.0E-5
1860 FUNC1=HAM1-HAM0
1870 FUNC2=HAM2-HAMO
1889 ABC: FUNC1*FUNC2
1896 IF (ABC) 1, 1, 2
1900 1 ARG1=4K1
1910 ARG2=AK2
1920 GO TO 53
1930 2 PRINT, "STOP IN REGULI TEMP. IS TOO LOW"
1940 STOP
1950 53 ARG3=ARG1+FUNC1*(ARG2-ARG1)/(FUNC1-FUNC2)
1967 CALL PROCES(ARG3)
1970 FUNC3=MAM-HAMO
1980 DIFF=FUNC3
1990 IF(ABS(DIFF)-EPS1)58,58,57
2000 53 RETURN.
2010 57 BB: FUNC1*FUNC3
2020 IF(BB)61,58,59
2030 59 ARG1=ARG3
2040 FUNC1=FUNC3
2050 GO TO 53
2060 61 ARG2=ARG3
2070 FUNC2=FUNC3
2089 GO TO 53
2090 END
```

ORD12 CONTINUED

76

2100 SUBROUTINE HAMM 2110 COMMON TIME, PSI, AP, AP1, A, R, PSIT, X, XAE, NAM 2126 COMMON IKL, DTIME, DELTAK, DIR 2139 COMMON AKK1, AKK2, COW, KRS, CAG 2140 COMMON YO 2150 RIX=AKK1*AKK2*CAO 2160 FOX=SORT(4.*RIX+AKK1*AKK1) 2170 CAT=AXY2*CAC*(-2.) 2189 POTI=-AKK1-FOX 2195 POT2=-AKK1+FOX 2200 DAD=(CAT*XC+POT1)/(CAT*XC+POT2) 2212 ERR=EXP(PSIT*FOX) 2220 ERRI=DAD*ERR 2230 X=(POT2*ERR1-POT1)/(CAT*(1,-ERR1)) 2240 LF(KRS-2)7,8,8 2250 7 CONTINUE SINT1=1./FOX*ALOG((CAT*X+POT1)/((CAT*X+POT2)*DAD)) Q=-4.*RIX-AKK1*AKK1 SINT11=(SINT1*CAT/O+(-CAT*Y+AKK1)/(-O*Y))*AP*AKK1 2290 DATE: AKK1*(1. - X) - AKK2*CA 0*X*X 23300 SINT2=AKK1*(X-2.)/(0*X)+AKK1/0*SINT1 2310 SINT 22= SINT 2*(-AP)*AKK1 2320 SINT3=((AKK1*AKK1+2.*RIX)*X-AKK1*AKK1)/(-AKK0*0*0*X)+2.*AKK1 2330 +/0*SINT1 2340 SINT33=SINT3*(-AP1)=AKM2*CA9 2350 HAM=Y-DATE* (SINT11+SINT22+SINT33) 2360 RETURN 2410 800. .6 .8 900.