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CHAPTER |

INTRODUCT 1 ON

Many chemical processes are subject to catalyst decay in chemical
reactors, which justifies the study of catalyst decay problems. The decay
may be due to poisoning (e.g. a result of impurities contained in the
feed), To sin%ering (e.g. when the surface area of the catalyst is
reduced because of physical deterioration of the catalyst from high
operating temperature), or to fouling (e.g. when coké is deposited on
the catalyst).

Since catalyst activity has a history, the operation of such
reactors subject to decaying activity will depend upon the entire previous
history of the operating variables, and optimization of these are of prime
interest these days. The solution is well known for irreversible reactions

“,2,3,8 have emphasized different aspects of it.

and many workers
Included in the appendix is the "listing" for the general case of an
irreversible reaction, and also the one for finding the best isothermal
policy.

(,2) has considered the optimal temperature profile in

Jackson
a tubular reactor with a reversible exothermic reaction. The problem is
casily formulated, but no analytical solutions are avialable yet.

(5,6 have developed a general numerical method

Ogunye and Ray
for calculating the optimal control policy using a modified gradient

method for a reversible reaction.

N



In the subsequent pages, the necessary conditions for an optimum
policy will be derived theoretically. However, because of the complexity
of such systems, a numerical method together with the analytical develop~

ments is used to get a complete solution for reversible reactions.



CHAPTER Il |

STATEMENT OF THE PROBLEM

In this section the objective function, which has to be
maximized is defined. Also, all the assumpTions.reIaTed to the system
utilized (isothermal tubular reactor) are listed.

For the single tubular reactor with uni form temperature, the
following assumptions are required:

(1) There is a single reversible reaction. A material balance for a
plug flow reactor is in terms of catalyst activity ¢, temperature T,
conversion X. |

Aoy o oy, T, X0 2.1

ot 9z
where f{y, T, X) is the rate of reaction; Z is the space-time

(distance) through the bed, t is the time on stream and X = XO(T)

(7,8)

at Z = 0. The catalyst activity ¢ is defined as the ratio of

the rate of reaction with decayed catalyst to that with fresh catalyst.

(2) The activity of the catalyst ¢ is assumed to depend on temperature T

and ¢ itself, but not on conversion X, as follows:
dy _ . -
— = ~g@IK(T) Y = w‘ att =0 v (2.2)
at for Z in (0,0)
with 0 < g(y) < I. -Since the temperature in the reactor is assumed
to be uniform at any time, equation (2.2) implies that ¢ is uniform
over the distance Z.

(3)



(3) The change of activity ¢ is assumed to be negligible over a time
equal to the space time so that ¢ is effectively constant for
9X X

integration over Z and 57 << 37

(4) Kl and K2 are the rate constant of the forward and backward reactions
P
and are assumed fo be proporticnal to kP and k l respectively with
p = EI/EC and p, = EZ/Ec’ where E,| is the activation energy of the

reaction and Ec is the activation energy for the decay rate.

The problem now consists of maximizing the total amount of
reaction over a fixed total reaction time, 1, by choosing the rate
coefficient k (and hence T) at every instant. That is,

T ' ’ -
Max. P with P = j X(t)dt (2.3)
0 .
subject to

0 sk g£kgk¥ gk

o0 (<] *
Now following this section, rate expressions are inftroduced for
two kinetic models and the general treatment using the maximum principle

is derived.



CHAPTER |11

THEORETICAL DERIVATIONS

3.1 KINETICS:

In this section, for reversible reactions, two kinetic models

are derived for the rate expression,

For the reaction A > B, the rate of reaction is expressed as:

Rate = w[KI(T) F 0 - K, (M FZ(X)]
where F (X) = CY
: ! A
W
Fo00 = Cg

U and W are the reaction .ordersof the forward and backward
reactions. Reaction orders will now be expressed as order (U - W).
For our first kinetic model of order (1 - 1), at equilibrium

the rate is zero, which implies that the equilibrium conversion X

Keo

(1 + KEQ)

a function of temperatf'ure only.

is
A

equal to where KEQ—= KI/KZ’ and the equilibrium conversion is

In another form, for first order reactions in both directions,

Rate = - EEA- = (K, C, - K, C)¢ -
" I A~ "2 "B
- Egﬁ = [K,(C, -C, X, =-K/[(C, +C, X
ot VA, T A TAT T T2 T VAL A

(5)



Also,

dt o dt

The conversion (X) is defined as the fraction of reactant concentration

CA converted into product. CB is taken as zero so that CA is the
o o o
concentration of A achieved by reversing the reaction until CB = 0. The
o

scale of conversion is from zero to one.

Then, for reaction order (I - 1),
Rate = (KI + Kz)(XAE - Xy
= K(T) F(X, k)¢ , (3.1.1)

Now, compared with fthe irreversible cese, the rate of reaction is no
longer a product of functions of only one variable. This fact makes the
analytical solution much more complex, if not impossible,

Then equation (2.1) with assumption (3) is integrated to give

X, kX )
VK, KO = f 9 : (3.1.2)
X X, - X)
o AE

where Z = 8 is the end of the reactor.

Now consider our second kinetic model which is a first order

. st
reaction forward and a second order backward, A % B. In this case it is
fd
not profiTabIe to express the rate as a function of the equilibrium
conversion; therefore the rate is equal to w[Kl(l - X) - KZCA X2] and
o)
integrating all along the reactor yield
X, k,X )
_ © dx , (3.1.3)
ve = 2)
'Xo (K'(l - X) = KZCA X

o]



These two equations (3.1.2 and 3.1.3) for different kinetics provide one
éf the system equations, the other one is obtained from the rate of decay
of caTaiysT.

.‘In this section, the rate expressionsfor our two kinetic models
have peen shown and will be used subsequently althrough this work. Noficé
that Thése equations contain three variables. Knowing two of them will
yield the third one.

The next section applies Pontryagin's Maximum Principle to our
' system equations, and for the sake of simplicity the rate expressions
(3.{.1 and 3.1.3) are subsfifﬁfed by the feffer p because it Is frequ;n+ly

used through this work.

3,2 GENERAL CASE:

In the following pages, the general derivation of the optimal
policy is conveniently treated in the format of Pontryagin's Max imum

9,100 "ty roughout this paper all the implications related to

Principle
it are faken as known, and these derivations hold for all kinetic models.
Equation (2.2) can be written

L= b, = kg €0 (3.2.0)

with ¢{(0) = wi and ¥(t) > O

The system equations are

dP

_— = = °
™ X f
dv _ = I
- = ¢ £



where P and ¥ are the state variables. Now the adjoint variable P is

defined as

n o
iji = -1 o aiT
o=0 X
Then
. aXx 3¢
u = =g = =
© ©ap L ap
and
’ X 3
¥ = e T T ul =2
Y 3y
Since L2 0 and 39 - o,
aP aP

we have ﬁo = 0 so that Mg = constant at any time. From Pontryagin's
Max imum Principle, Theorem 7, implies that, for a fixed time problem and
variable endpoints Mo at the final time equals | (for a maximum) and all

the other adjoints to be zero also at the final time. Therefore, using

uoE o
Su o X 3¢ (3.2.2)
dt 3y oy

with | plz) = 0 if Pit) > 0

and uly) > 0O if p(t) = 0 .

The space time 6 is set to unity, so that 1 is the number of
space times. Equation (3.1.2), linking conversion to the activity and

temperature is rewritten then as

I X
K+ Ky = J X (3.2.3)
X F(X, k)
(o) :
where F(X: k) = (XA -X),



and for the second kinetic model with equation (3.1.3)

X .
- f X . (3.2.4)
X [K’(I - X) - K, con J

It is assumed that F, g and K are continuous functions of their arguments
and are twice differentiable, and that k and Xo are piecewise continuous
functions of time t.

The Hamiltonian H is defined by

or
HOp 1L, 1) = X0,k X(E)) + ug (k) (3.2.5)

The maximization of P in equation (2.1) is then equivalent,

(9,10)

according to Pontryagin's Maximum Principle , to requiring of an

optimal policy k' (1) that it satisfy

H LKL = oM Hep ut K1) (3.2.6)

k)
at almost any t and for all admissible values of k. In equation (3.2.6)
w+ and u+ are the solutions of equations (3.2.1) and (3.2.2) using

k+(T). | f k+(T) is the optimal policy, then one of the following three

conditions is necessary at any time 1t < 1: .

2 |

(a) Mo =0 and ZHah co K <kt <kx (327
3k ok

(b) Mahryso it K=k (3.2.8)
3k

) Mot <o it kY =k, (3.2.9)

3k



From equation (3.2.5) we have

Ik
Iw,

ak] k
u;f w:xo

(3.2.10)

Now, taking the partial derivative with respect to k on both sides of

equation (3.2.3) or (3.2.4) and with p = rate and XS the exit conversion

at any instant on the stationary path

XS
LS = pIX_,K) j -'-2— e
aklw’x X, © eklx'w
O
Substitution of (3.2.11) in (3.2.10) yields
XS .

tal = p(XS,k)[ -'—2-?-5’~~ X + BE
ok X 3k k

!w:U;T o e IX,w

The stationary policy S can be found and implies that

aH

: = 0
ok
lw,u,f
or X
S | 3 .
e = -k p(X_,k) L
. X 02 3K|
o P X,
along S.
Thus, along S the Hamiltonian is
X
S
H o= X_ - kp(X_,k) S LR dX
S S S X 2 akl
o? ¥,X
or, more compactly,
o = X, - Kk &%
2l x

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)



On any optimal path (in Appendix 1) the total derivative of the Hamiltonian

with time is

| e
i p(X,K) o (3.2.16)

dt o (X ,k) dt
o]

and gﬂ-(on S) = gﬁ-(generai).
dt dt

3.2.1 First Kinetic Model (Order | - 1|)

Equation (3.2.14) and (3.2.3) for the rate expression with

P

KI = AkP and K2 = Bk l is integrated to give

: Xs ) Xo
H = X_~-(p-p) X, (I =X, )| —
s S I Ac Ael x. - x
AE o
XAE - X5
+ (X, =-X) In{ —— [X (p = p,) +p I
AE ] X - X AE ! H
AE o]

———————— (3.2.17)
We see’ from equation (3.2.17) that the Hamiltonian on the stationary
policy is a function of X, Xo, and k.

Solving gﬂ-on the stationary policy

dt
dX
iﬁ(ons)=?ﬂ_9_)£+___3H o gk
dt ax dt  ox dt ak]x’k dt
dXO
For simplification, assume XO = constant so that —= = 0.
dt '
Now,
il (on S) = gﬁ-(general) (Appendix |)

dt dt



(p- pI)X (I--XA ) : ' X, = X

E AE S - dX
Ci- - X, (p-p )tp, dLI+an o> 0] =2
Keg -~ X AE 1Py A
=Xy ) (p=p ) ] (p=p,) (Xg=X )(zxAEx -X xAE)
k (xAE X5 _ (Xop - X)
X -
F X=X (X, _(p=p )4p.) + (X -x>zn(-ﬁ-E-—-—~X-°'-)
S %’ PAE PP TRy AE o X - X
. AE o)
o DXy =%g) (pmp ) + pl]] =0 | (3.2.18)

For the special case where p = p,, Equation (3.2.18) reduces to

X, =X
Cl-p, (1+ 2n( e 37X -
I X, = X dt
AE o}
which has two solutions
dxX _ . . -
IF - 0 lmplfes X ConsTan+I
or
. e
= - - P
X XAE (XAE XO) e

But when p = P» X,- is a constant and the second alternative solution

AE
is also X = ConsTanT2.~

However, many numerical examples have been tried and it apbears
that the second solution is not satisfied.

For the general case (p # p|) due to the complexity of Equation
(3.2.18) for the optimal policy on the stationary path, the analytical
solution cannot be at the moment completely derived. From here on,

theoretical development together with a numerical scheme will be worked

out for finding the optimal policy.



3,2.2 Second Kinetic Model (Order 1-2) -

The rate was expressed as

- 2
p =y [KI(I—X) - KZCA X~]
: o]
SO -
o _ ¥ -X) - 2
S - K EpIKI(I X) p!KZCAOX ] (3.2.19)
With Equations (3.2.14) and (3.2.19) we have
~ X
| 5 pK, (1-X)=p K,C, X7
Hoe = Xo = p(X_, k) L 1 dX (3.2.20)
S S s X p2
5 .

In this section (3.2), the general criteria from the Maximum
Principle has been used in our system equations. The necessary conditions
for an optimum are represenfed.in Equation (3.2.18) for the first kinetic
model {(Order I[-1).

Subdivisions 3.2.1 and 3.2.2 have been devoted fo repfesenT The
Hamiltonian on the stationary policy for our two kinetic models being

studied,

3.3 Endothermic Reaction

In tThis section, it is shown that for endothermic reactions of
order (1-1), the optimal temperature policy must end on the upperA
- constraint temperature in the following manner.

From Equation (3.2.10) since at the end of the process ﬁ = O;
we must have at the end

oH ax
3k
!w,u,*

But with Equations (3.2.15) and (3.2.17) assuming XO = 0 for the sake of



simplicity without loosing any general ity

: (p=p V(X (1=X, ) (K +K,)) (X, =X.)
X - [°°7S AE | 2" "AE 7S
3 | = ” . + % [XAE(p—pI)+p|] (3.3.1)
X,
. . . | X .
For an endothermic reaction, p is larger than Py» and 5K 1S
positive because all the terms inside Equation (3.3.1) are positive and
so at the end we will have %%~> O.v I+ means with Equation (3.2.8) that
for an endothermic reversible reaction of order (l-1), the optimal
~temperature policy must end on the upper bound and obviously will be a

rising temperature profile. The same conclusions holds for p = P

%é. is always positive, from Equation (3.2.15), X;

is always greater than the Hamiltonian.

Nofice that since

This is easily generalized for any order of reactions because
for all endothermic reaction, the conversion increase with temperature.

3.4 Exothermic Reaction

In this section it is shown that for exothermic reactions of order
(I=1) the optimal temperature policy does not héve to reach the upper
constraint any more; also from theoretical developments it is shown that
there exist for exothermic reaction a range of starting temperaturesfor
é reactor where no optimal pélicy can be derived and the method to find
these bound is explained.

For an exothermic reaction p is less Thah P and at the end

(p=p V(X CI=Xy ) WK +K,) (X =X )

i K * K [Xpetp-p2¥p, ]

negative + positive [negative + positive]



[T is no longer a necessary condition to end on the upper
constraint, because we cannot predict the sign of 3H/3k at the end.

But since for some values of p and P the policy would be to end on

the upper constraint, it is expected that it will still be a rising
temperature profile unless p = 0 which will be The limiting case.
3.4, Initial Temperature Limitation

For the exothermic reaction plotting the conversion versus Kk,
keeping the activity constant, gives the Kind of curve shown on Figure

8.

k

Schematic Diagram



Looking at the Hamilfénian on the stationary policy, we have

and also in general
H=X+un4¢ ¢ = -k gly) <0

Since ¢ is always negative and p is always positive and zero at the end
for a fixed time problem, we have u¢ < 0. It also implies that on any
optimal policy, we must have H < X, and H = X]c because at + =1, u = 0.
Also X is always positive, so H has to bé greater than or equal to zero.

IT is easily shown that for an exothermic reaction, upper and
fower bounds on the initial starting temperature can be found different
from those imposed on the reactor, where we will not have any stationay
policy because it does not satisfy the Maximum Principle.

A) Lower Bound (TI*)

X
koK
= : - v _ 1 X
for kI = k| we have HS =X=-Kk Sk
= negative

So this starting value of kI does not satisfy the Maximum Principle.



However, if there is no point of inflexion, there will be no lower bound

oﬁ the iniTialATemperafure; because X will be always greater than k 3X/dk.
If there is a point of inflexién, the lower bound on inffial

temperature is formed by.The point of tangency from the origin where

k 9X/3k is equal to X..

K

On the schemafic-diagram above, the lower and upper bound are
respectively A and B,
Analytically these limits are easily calculated. For the low

range this limitation arises when.

X. = k, 2 (3.4.1)



With Equation (3.2.3)

Xi = XAE(I—EXP(Y)) (3.4.2)

where Y = -wi(KI+K2)
By substitution of Equations (3.3.1) and (3.4.2) in (3.4.1)one has an

equation of one unknown ki

Xng CI=EXP(Y) 12X LOI-EXPY) (pmp ) (1=X, )+ (EXP(YD ) ¥ (K 4K, [Xe (p=p D4 ]

AE E
(3;4;3)
If Equation (3.4.3) can be satisfied for a starting initial
temperature, this temperature will be the fower bound.
The upper bound on the initial ftemperature is when '%é =,O;

therefore, at This’iniTial.femperafure, the initial conversion equals
the value of the Hamiltonian and we are able to operéfe the reactor at
this temperature for an infinitely short time because the conversion iIs
décreasing and the Haﬁiifonian has to be kept constant.

| This point is found analytically from Equations (3.3.1) and

(3.4.2) to give

) = CEXPOYDDX, (pp 2+p T, (K HK))  (3.4.4)

AE A

(I—EXP(Y)(p¥p|)(I—X
Again by trial and error this equation is easily solved to yield the
upper bound on initial temperature. |
As an illustration of this phenomenon for an exothermic reaction,
numerical solution for p = 0.6 and P| = 0.8 has given a maximum initial
temperature of 850°F for having a stationary policy, and no lower bound
has been found numerically for this example. For values of p = 1;2 and

P| = .6, minimum and maximum starting temperatures were 740°F and 830°F.

From the numerical examples run, it is believed that when the difference



between p and Py increases with P increasing, the range of initial
permissible temperature will decrease.

Now an inTeresTfng.quesfion is what would be the op+imum policy,
If there is 6ne, to operate the reactor for an initial temperature higher
than TI* ? Obviously There fs no stationary policy, the only possibility
remaining is a constrained policy. By way of contradiction the upper
constraint policy is rejected in this manner.

Assume the poliéy Is on the upper constraint. From Equation

oH

(3.2.8) 4> 0

We have
H = X+ u¢

X

oH _ e
w-oSktTE 2O

¥ .
Because %é-< 0 for an exothermic reaction where TI > TI’ it implies
that X250 then u < 0. Since u has fo be zero at the final time

%% > 0. On the other hand, from Equa+ionC3.252)we must have %% <0

at the end. Since u»is continuous (obtained from the solution of an
ordinary dif%erenfial equation), these ftwo conclusions are in contradiction.
Ouf hypothesis is then fnvalid and therefore this policy is rejected.

A priori the lower constraint policy cannot be rejected.

For endothermic reaction, these restrictions on the upper initial
temperature, do not appear because from Equations (3@3.!)'.%é- is always
pésifive.

In this latter section, iflhas been noted that for exothermic

reactions, it is no longer a necessary condition that the optimal tempe-

rature policy end on the upper constraint, also in many cases there



exisT severe restrictions on the starting temperature of a reactor to

have an optimal policy.

20



" CHAPTER IV

NUMERICAL SOLUTIONS

4.! METHODS
Iﬁ this scheme,'PonTryagin's Max imum Prinéiple is used; for

any optimal stationary policy; by guessing a temperature and iterating
so that the Hamiltonian remains consfanT,. So we fix the initial -
temperature and acTiviTy,»from equations (3}2.3)'andv(3,2.l7); and:
- calculate the initial conversion and the initial Hamiltonian. After
this process is initiated, for a small Timé increment, assume the same
temperature, and with it calculate the activity, the convgrsion,ana the
Hami [tonian., |f the consfahcy of the Hamiltonian is reépecfed; increment
the time, if not, assume another temperature until the calculated
Hamiltonian for this temperature hassurpassed the origiﬁal Hami [fonian
and with a Reguii—Falgf Techniqdé;~ffhd the exact temperature to satisfy
the constancy of the Hamiltonian. This procedure fs used repeTiTively;I,
4.2 Results

A) The first set of calculations were carried out for a reversible
reaction A 2l B being first order in both directions for a hypothetical

k
reactor where

FX, T = (X = X)
gy =

Eo/R = 15.000°K

¥ * e
K = 4.0 (T = 900°F)
Ky = 0.13 (T¢ = 700°F)
X = 0.0

(o]

‘pI ; = 1.0
. (21)


http:iterati.ng

22

The calculation method used here differs from Tﬁaf used in The
irreversible case in the following way: for the irreversible case, a
specified maximum conversion attainable for that reactor with the activity
equal to one was used to calculate the maximum rate constant of reaction.

*
So that K was a constant for any P value. For the reversible reaction,

since
* *
K, = Ak P
and
K. = BK Pl
2

are of Arrhenius form, keeping the Arrhenius constants A and B constant;

* *
different values of p and P would change Kl and K2.

Figure | to 8 shows the general behavior of the system variables

when there is no temperature constraint on the reactor.
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- B) Sensitivity Calculation

In Figure 9, for an endothermic reaction, Increasing the ratio
of p/pl‘wifh P, = constant increases the total time (1) and gives a more
slowly f(sing Temperafure\brofile, however the policy always reaches
The upper Temperafure constraint..

AFigure‘IO is for an exothermic reaction. Increasing the ratio
of p/pI with p = constant increases the total time but has practically
no effect on the temperature profile.

With Figureé Il and [2, for endothermic and exothermic reactions,
an fncrease in the initial temperature decreases the total time of‘_ i
reaction.

Figure 13 is for the special case where P=ps the same phenomena

Is observed.
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C) Endothermic Reaction

Figure 14 is the ftemperature profile with time which safisfies
The"condifions of optimality given by POnTryagin's‘Maximum Principle.

Figure 15 shows the equilibrium conversion and also the
conversion (exit conversion) with time. Notice that when the upper
Témpérafure coﬁsTrain+ is reached, the equilibrium conversion remains
consfanf, but the conversion decrease~because.fhe temperature cannot be
increased any more. However even if (X £~ X) increases rapidly after

A
the temperature has hit the constraint, The rate 6ow decreasés,bbecause
the activity is decreasing fas%er than (XAE - X) does (Figure 16).
Figure 17 indicates that no matter what the initial ftemperature

is, the initial conversion will always be greater than the Hamiltonian.
The initial Temperéfure of a stationary policy may be arbitrarily néar
the upper temperature constraint. This is explained theoretically
because %é- Is always.bosifive for an endofhérmic reaction.

Notice that Figure |7 is linear with k but has an exponential

shape with temperature.
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D) Exothermic Reactions

Thé graph of conversion versus the rate of decay on Figure I8
is typical for p less than ‘I, having novinflexi0n point, and the point
of tangency at k = 0; so there is no lower bound on initial starting
temperature.

Eigure-l9‘shows an ﬁpper bound of approximately 850°F on the
initial temperature, where above that point, the Initial conversion |
becomes lower than the Hamiltonian, which is not permissible. Figure 20 B
is the optimal temperature préfile for an exothermic reversible reaction.

On Figures 21 and 22, the conversion and the rate show the
inverse phenomena as observed for an endothermic reacfion,rwhich is
reasonable,

Figure 23 compares the temperature profile for a first order
reaction in both directions wiTh a first order reaction forward and a
second order reaction Sackward. Notice that for an order (1-2), the
temperature rises more slowly but the operating time is longer. From
this it is‘phedicTable that for an order (2-1) of reaction, the tempe-

rature would have fto rise faster but for a shorter opefafing Time.
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4.3 Conclusion and Discussion

Endothermic and exothermic reactions have a differénf behavior
with respect to the starting temperature. Exothermic reactions are.
subject to a lower and an upper bound on the initial starting temperature
while endothermic reactions have only a lower bound on the initial
temperature, different from the bound imposed on the reactor. These
bounds are also more restrictive on the initial starting temperature

VA
than the domain of temperature where 2 X 0

k% ~
For first order reactions, theoretical developmenfs based on
the maximum principle of Pontryagin have yielded sﬁch IﬁTeresTing
conclusions as:
. I. For endothermic reactions, the optimal temperature
policy must always reach the upper temperature constraint
while for .exothermic reaéfions this is not necessary.
This is eas%]y extrapolated for any order of reaction.
2. For 'exothermic reactions, there exists a range of
initial temperatures oufside of which no optimal policy
can start and it also excludes the isothermal policy on
- the upper Teﬁperafure constraint.
Complete numerical solutions are given'for reaction orders (1-1)
and (1-2) using a simple algorithm.
The results shown are-sjgnificanf in the sense that much
consideration should be devoted to the initial temperature at which
lTo start a reacTor;

The first kinetic model used of order (I-1) has always given

the optimal policy.
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However for a reaction order (1-2) in some cases even for these
A.inifiél temperatures where the initial Hamiltonian was positive and |
.greafef than the initial conversion, this method was not able to find
an optimal policy because after a small time increment the Hamiltonian
decreases; and increasing or decreésing the temperature would decrease
the Hamiltonian again. There seems fto be no optimal policy for these
starting temperatures, probably due to the high sensitivity of the
Hami lfonian with respect to the conversion.

The programming method is very geﬁeral and could be Qsed for

other kinetic modefs by making few changes in the Iiéfing.

MCMASTER UNIVERSITY LIBRARY.



SECTION V

SUMMARY AND FUTURE WORK

The problem of choosing a temperature policy with time to
makimize the total conversion over a fixed ftotal time 1 in a reactor
with uniform Temperafure and decaying catalyst has been solved. The
reaction is reversible and has a factorable rate of decay which is
independent of conversion, but the rate equation is not factorable.

The stationary policy is no longer constant conversion as it
was for irreversible reactions, except for P=Pp» buf it has To follow
the equilibrium conversion more or less closely.

Fixing the initial temperature is equivalent fto fixing the
total time, so for each initial temperature there corresponds one and
only one fotal time, the policy is unique for each value of T and is a
continuous function of time. TheAhjgher the initial femperature or XS
is, the fower the total fime of operation is.

Future work could be done with the rate of catalyst decay
expressed as a function of conversion, activity, and temperature. The
derivations will not be the same because the function describing the

activity with Time would be a partial derivative.

(51)
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NOMENCLATURE

E - activation energy for reaction (E) and decay (EC)
g - activity-dependent factor in decay rate,
0 < gly) <1
H - Hamiltonian function
k - rate constant of decay rate, k=k(T),
also decision variable
K - rate Consfahfrof reaction rate,
K~ ok
KEQ - equilibrium rate constant
P - ratio EI/EC
P - ratio E2/EC
S - stationary policy
T - time on stream
T ~ temperature
X - conversion of reaction, 0<X<|
XO -~ inlet conversion
Z - space time Th}ough reactor
0<o (6=
0 ~ space time of reactor = |
u - adjoint variable to ¢
t - - total reacfion‘+ime
p ~ rate of reaction
¢ - rate of decay
Y - catalyst activity, f-wl
u - order of the forward reaction
W - order of the backward reaction

(53)



Subscripts

f
S
I

*

1

final value, at + =t
value along arc of policy S
initial value

minimum attainable value

Superscripts

-+

*

value along optimal policy

maximum attainable value



APPEND I X

A.l Proof that for constant inlet bonVersion, the HamiiTonién is
constant with time.
L ]
From Equations (3.2.1), (3.2.2), (3.2.3), and (3.2.5) the time

derivative of H along any optimal path is in general

dqu, H o o oak
5K

aH _ oH di
3 ot 5%_ 3
(o]

5H
aF T 3y 9t T n

podt

o.

The fourth term is always zero because on a stationary policy, the
oH

Hamiltonian is maximized with respect fo the control k so 5E'—'O
and on a constrained policy %E-= 0. Then
dX
dH _ _ aH o+ X 3¢ o
oFC kW) gt gy gy b ax i
By Equation (3.2.5)
aH _ 9X 3¢
WO MW
and
oH _ -
i ¢ = -kg(y)
Therefore
‘ : dX
dH _ : 3¢ 3H- 8X ¢ o
IR e o i A A aX Gl
dXx
dH _  oH o)
- 3?5.5?- (General)
dX
For constant intet conversion dT =0 and H = constant.
Also from H = X + Q¢
Mo X
X X
o o

“(55)
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a“d o _ X
’ dX
YK+ (X )

O

Differentiating both sides with respeéf-fo XO gives -

X o X
aX p (X))
o o
and then
aH _ p(X) dXo

9F T Xy af
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APPENDIX A.2.1
Cf\f\[\

NPUT SO =CUTRUT)

INDUT aTAD

AKu= INITIAL RATE

AKKU= IRITIAL RATE

AKI= MINIMUY PATF CONSTANT CF DECAY RATEL

AKKT= NIFIV RATE CONSTANT OF REACTION

AU= MAXTHU PATt CONSTANT OF DECAY RATE

AKKU= MhXIMUm RATE CONSTART OF REACTION

EC= ACTIVATICN ENERGY EC/R S

XA= MAXIFJN CONMVERSION (ACTIVITY=14D WITH IMAXe TEMPERATURE )

CTUl

,/
/\J

Tlie OF REX
COMVERSICN
CECAY RATE;
REACTION

C

_IC_M e (K)
ACTIVITY

L ACTIVITY ON THE STATIUNARY PATH
L ACTIVITY ON THE UPPER CONSTRATIKT

THE LCOWER CONSTRAINT
PENT OGN THE STATIONARY PATH

THE UPPER C\-‘.«\;T\/\IHT

?"F‘PLACF THE Q/ TALYST
8)sX(8)»PSITH

I s AXU s AR T s AKKLU OsPST1sXEsXS»TETASPMEL 9N

FCH XY s DEF o FF

EAND o

SCG e TAUX e AKC
\_)[.f.: 1 b 1 \J
KIsFECsXAsPSIsTETAS KL

sNePaX5,T70
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11

10

W ®

112
15

14
16

18

17

19

20

AKKU= (14 /FG=14/C0) / (A TET
AKKU=(1e/DE~14/CD)/ (A¥PSIH TLTA)
GO TO 4
AKKJU=—(EDC~DEF) /TETA
AKE U=—(CDE=DEF) /(PSI*TETA)
AKO= (AKKO/ARKU) %% (14/P) %ALY
AKKI=(AKT/ZAKU) 5% PH*AKKU
IF(AKG=AKI) 566
AKU=AKT :
AKKuU=AKKI
ON THE LOWER COMSTRAINT TILL X=X5
GO TG 112
FP=—=N#*DE
PiizTle/(1e+PSIXAKKCHFP)
AA=1e+PSTHALKUXFP
IF(AAYRsTs T
IF (P=Pi2)8s9
PXA=—N#FG
PHAH-l. /{1e+AKKUNFPXAXPST)
IF(P-PMXA)1Ls11s11
AT 11 THE POLICY 1S ON CxU
WRITE(6+300) ‘
AKO=AXU
A U=AKL
GO TO 8
WRITE(Gs301)
WRITE(653221)
GO TO 4444
[F(XS=XA)12912912
WRITE(652302)
A U=ACU
PSIU=PS]
AKKO=AKKU
PST1=P5I1C
TATI=Ueu
T505=Ceu
GO TO 22
FIND P5I0 OM THE STATIONARY PATH=PSI 1F NO
TAT=0.0
PSIU=PS]
PST1=AKKO¥PSTO/AKKY
FGH=P ST %% (14/P)
GO TO 1%
IF(N=1)14515s14
PS1C=(~=CDE+DIF) Z(TETA®AKKO)
GO TO 16
PSTw={(1e/DE=1e/7CDY/(TETARAKKI®A)
FGH=PSTuU*x(1e/)
PSTI=AKKO*PSTU/ALKY
FIND TAI=Ueu IF NO C31
IF(M=1)17518s17
TATI=1e/AKI¥ALOG(PSI/P5I0)
GO TO 19
TAL=(PSTO#*% (=EC)=PSIx* (=LE) )/ (~EF )/ (=AK])
FIND THE TISD ON THE COMSTANRT C*JLVDILN
AAA=1+/P-EE
IF(ABS(AAA) =1 0E~5)20s 2121
TSOS=ALOG(PS11/PSI0) 7

A

{~AKOH#FGH)

c

L
W
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GO TO 22 59
21 TSOS=(PSI1F%FXY=PSIO#*XY )/ (XYX(-AKC*FGH))
27 XF=XS=PXAKKuXPSIO%Bxx
IF(XF)}5us51s51
50 WRITE(6+30U3)
WRITE(6:3221)
GO TO 4444
FIND PSIF BECAUSE AKKU 1S CTE.
51 IF(N=1)60:61+60
61 PSIF=—(ALOG({1«—XF)=DEF)/(TETA®*AKKU)
GO TO 62
60 PSIF=(1e/{1le=XF)I¥¥A~1a/CD)/ (TETA*AKLUY)
FIND TOTAL TIME TAUX
62 IF(M~=1)24223s24
23 TAUX=TSOS+TAI-ALCGIPSIF/PSILII*1. /AU
GO 70O 1232
24 TAUX=TSOS+TAI-(PSIF** (~EE)=-PSIL1**(-EL) )/ ((~EE)*AKU)
FIND IRTLURHL OF X DT
125 WRITE(ES3 ')”Flspbl- PSIl
WRITE(S 5 JP oM s ARG s AKK
WRITE (630 ()) 9TFT/\9X/\
WRITE(G6s3LTIPSIF aXFaX
TOU=TAUX=TS505~TAI
ATOU=TOU/36u .
ATAT=TAI/36u.
ATSOS=TS5057/36Uc,
ATA“X‘TAUX/?GCG.
WRITE(H-3:8) ”I
WRITE(6s30Y )AT
WRITE(é’jlu)ATUU
WRITE(63311)ATAUX
WRITE(S6s313)
WRITE(E.312)
CALL POLCAIT(PROFIT)
WRITE(6Hs214)
WRITE(6s312)
CALL PCLCST(ECSDCLLAR)
WRITE(6s315)
WRITE(6s312) _
CALL POLCAJICENT)
T‘TAL“PR”FITFDOlLA”+CENT
WRITE(6s316)PROFIT
WRITE( 65317)DWLL&
WRITE{(6+318)CENT
WRITE(6+315)TCTAL
TR=(TOTAL/XF=TAUX)/3600.
WRITE(64220) TR
WRITE(S6s321)
IF (MO0SE~10)44bl s 4645 s 4464
4444 CORNTINUE
2UO FOur\ 1\r\T(/L1\x'_‘)9)F]\,Q\‘)
201 FORMAT(2I10s32F1040)
300 FORMAT(1UXsG2HTHE POLICY IS ON THE UPPER CONSTRAINTeeeessP GREATER
1 THEN PMXA)
301 FORMAT(1CXs55HXS HAS BEEN TAKEN TOO BlGessees P LESS THEN P4 AND P
1IMXA)
302 FORMAT(ICOX s 69HTHE
1S5 GREATER THEN XA)

P
<

ot

P

N
U

POLICY 1S Ol THE UPPER CONSTRAINTesses BECAUSE X



http:FORMAT(2IJJ,3FlU.OJ

b

60

303 FORMAT(1uXs75HGIVE THE TOTAL TIME OR CHOOSE A GREATER YS.....dECAU
1SE XF WOULD BE NEGATIVE) .

304 FORMATIHEX s 4HPSI=0F 106538 10K 5HPSTIO=9F 1055 10Xs5HPSI1=3F10e5)

305 FORMAT(EXs4H P=4F10e5910Xs5H N=31105s10Xs4HAKO=3E12+5s50AKKO=sE]
1245)

306 FORMAT{SXs4H  M=9l10s10XsS5HTETA=F10s5+10Xs4H XA=9F10e5)

307 FORMAT(S5Xe5HPSTIF=9F10e7210UXs4H XF=sF1047s10Xs4H XS=3F1045)

308 FORMAT(10Xs38HTIME IN HOURS ON THE L OWER CONSTRAINT=3F1545)

309 FORMAT(10Xs38HTIME IN HOURS ON THE STATIONAPY PATH=,F15.5)

310 FORMAT(1OXs38HTIME IN HOURS ON THE UPPER CONSTRAINT=sF15.5)

311 FORMAT(1CXs38HTOTAL TIME IN HOURS TO OPERATE =3sF1545)

312 FORMATULI2Xs8HACTIVITY s 16Xs8HTIME(HR) s 16Xs 1OHCONVERSTION s 16X s LA4HTEMP
1ERATURE (K)) ' ,

313 FORMAT(5Xs23HON THE LOWER CONSTRAINTs//)

314 FORMAT (5X+22HON THE STATIONARY PATHs//)

315 FORMAT(5Xs23HON THE UPPER CONSTRAINT.//)

316 FORMAT(1UXs21HPROFIT ON THE LOWER CONSTRAINT=sLE15e47s/)

317 FORMAT (10Xs32HPROFIT ON TriE STATICONARY POLICY=3E15e47s/)

318 FORMAT(1CGXs31HFROFIT CN THE UPPER CCNSTRAINT=sL15e7s///)

319 FORMAT(ICXs13HTOTAL PROFIT=4E1547s//)

320 FORMATI1IUXs13HTRS FOR MAXe=3E1547)

321 FORMAT ({IHL)

4445 STOP

END

SUBROQUTINE PCLCAI(PRCFIT)
DIMENSICON TU4)sX(4)ePSIT4)
COMMON s PsAKT s AKUSARKI s AKKUsPLT sPSI0s P11 s XE s XSy TETASPMsEE o N
COMMOM TAT s TS0Ss TAUXSAKG s TOsBEAMI s BEANZ sFOGH e XY s ULF o FF
IF(TAI)1s1s2 :
1 PROFIT=0LeU
BEAMI=CeU
RETURN
2 L=1C0
AN=L
TI=TAI/AN
PROFIT=04U
B=le/PSI®xEE
C=—EE*AKI
M=
D=1e/ (1 e—Al)
AA=ALOG(] e =XE)
Bb=le/(1a=XE)}**(N~-1)
T(1)=0Ceu
Jd=L/2
DO 9 J=1lsJJ
DO 8 I=1.3
IF(M=1)3s4s3
PSIT(IN=PSI®EXP(-AKI*T{I))
GO TO 5
PSITOI ) =B+ =CHT(I)))*%*FF
IF{N=1)6s756 )
X{I)=1a~EXPIAA-PSITII)#AKKI®TETA)
GO TO 1¢v

~ v w En

(o))
»
H
)
o

*TETA®PSIT (L)X AKRIF(]-“XL) K (=S) )R (1e/(=5))
1
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22
24
23
25
27

26
30

27

28

31
33

34
35

50
39

PROFIT=PROFITHTI/R% (X (1) +4a%*X{2)+X(3))
T1)1=T(2)

CONTINUE

CALL TIMEX(TAISDTIME)

TT=0.C

DO 21 J=1lslvwy

I=1

IF(TT-TAI)22+28,28
IF(M~1123+24423
PSIT(1)=PSI*EXP{-AKI*TT)

GO TO 25

PSITII) =B+ (~CxTT))x*FF
IF(N=1)26527526
X{I)=1e=EXPLAA-PSIT(I)HAKKI*TETA)
GO TO. 30

X{I)=1e={ (=S)FTETAMPSIT(I)*ALKI+(Le=XE)** (=5))

ATT=TT/3600.
WRITE(6s321)PSIT(LI)sATT X (1)
TT=TT+0TIME
IF(J-10u)21515415

CONTINUE

BEAM1I=TT

TT=TAl

J=1uu

GO TO 22

RETURN
FORVATILIUXsF12e5910XsF12e2+1CXsF1Ze5)
END

SUBROUTINE POLCSTIECsDOLLAR)

COMMOMN Mo P s ART s AKUSALCT sAXKUsP ST sFSTOsPSI 1o XE s XS TETA PN
COMMON TATsTE0S s TAUX s AKX s TOsPREAMT s BEANMZ o F GH e XY s

IF(TS05)27+27+28
DOLLAR=U 4 v

BEAMZ=BEAM]

RETURN

R=1.0G

BE=—-AKC#FGH®X

CTE=PST 1 Akmu

AA=PSTO#xXY

bEgd=pPxM~(1.+F)
DOLLAR=XS*TS0S

CALL TIMEX(TS0SsDT1i4E)Y
CALL TINMOUBEAMLSDTIMESTALST)
DO U I=1s1lCy
IF(T-TAI-TS05)31 939439
IF(ABS(BBE)~1eE~-5 %3&7493%

o8]

PSITT=PSTU*EXP (~AKQ#FGH*(T~TAI))
GO T0O 35
PSITT=(AA+DBER{(T~-TAL) ) (1e/XY)

AKK=CTE/PSITT .
TEMP=TC/(1e ~R¥TO/LECHP )} ®ALOGIAKK/AKKUY )
CCT—T/BGC;.

CWRITE(6+322) JESITTsCCT e XS TEM

T—]*DTItﬁ
IF(I-10U)50s 37437
CONTINUE

BEAMZ=T

#(1e/(=5))

E‘“’ft

*

o

[

6l

Foof

N



>k

T=TAI4+TSOS
1=100
GO TO 31
37 RETURN
322 FORMAT{1UXsF12e¢531CXsF1265810XF1245910XsF1265)
END

SUBRCUTINE POLCAULCENT)
DIMENSION PSTIULG)Y s X(4)sT(4)
COMON MeP s AT s AKUSARKKT s AU PS Isr \I +DST 1 e XEe XS TETA ,P'W"
COMYON TATIsTSOSs TAUXsAKC e TOsBEAN AA2 sFGH XY s DEF o FT
L=10u

AN=

TI=(TAUX-TSOS-TAT) /AN

CENT=Ceu

T(1)=TS505+TAI

AA=PST1®x(—-CE)

CC=DEF

JJdd=L72

DO 29 J=1sJJJ

DO 38 1I=1s3

IF(M~1)33534533

24 PSIULI)=PSTLIHEXAP((T(I)-TSOS-TAL)Y®*(-AKUY)
GO TO 35

33 PSIULT)=(AA+{EEXARI) ¥ (T(1)=TAI-T30S) ) *%FF

35 IF(N=-1)36537136

37 X(1)=1e—EXP(CC~TETA®PSIUCT)*¥AKLU)

GO TQO 410
36 S=nN-1 ,
(I)-].'( (S *TETA¥PSIULT Y #AKKUH (1 e =X ) # [ =5))%0 (18 /{~5))
410 TOI+1)y=T(I)+T1
38 CONTIHJL
CEMT=CERTHTI /3% (X{1)+4 %X (2)+X(3))
T(1)y=T1(3)
30 CONTIMUE
TIME=TAUX~-TSOS-TAI
CALL TIMEX(TIMESDTIME)
SQ5=TAI+T5S0C
knLL TIHO(DEAM2 s UTIMEs 5089 TT)
I= .
DO 41 J=1ls1ul
, IFITT=TAUX)Y4 248448
42 TF(M=1)43 844543
Ly PSTUCTI)=PSTI#EXPITT~TSOS-TAT ) *(=AKU))
GO TO 145
43 PSTULT ) = (AA+(EERAKL) # {TT=TATI-TSOS) ) #¥%FF
145 IF(N=L)464T75406
47 X(I)=1e—EXPICC-TETAXPSTUCT pFALKU)
GO TO 411
L6, X{1)1=1 e~ ((SI#TETA#PSIULT )Y AKKU+ (T a=XE)#*¥{~5) ) %% (1 4/{~5))
411 BRIT=TT/36U0.
WRITE(6s323)PSTULT) oBITTSX(])
TT=TT+DTIME
IF(U=-100)41s45945

41 C\)\I Il\k:z
48 TT=TAUX
J=10U

GO 1O 42



K

324

x”

-

RETURN

FORMAT(IUX3F1245310X9F1265910XsF 120

END

SUBROUTINE TIMEX(TINMESDTIHE)
DIMEMNSION NO(15)
IF(TIME=1u%26C0e) 79898
CHECK=TIME/(1Le%3600)
NO(1)=IFIX(CHECK)

DO 1 IN=2s15
NOCIN)=NO(IN=1)/10.
IF(RO(IN)Y 29291

CONTINUE

WRITE(63324)

STOP

NXX=1U%% (IN=-2)

MUM=NG (IN=1) ¥ NXX

NOM=N UM XX

ANUM= MU :
DIFF1=(CHECK=ANUIM~Ce HHNXX)
IF(DIFF1)Y%s4s4

DT IME=ANUM

GO TO 5

ANCHM=NOM

DT IME=ANOM

GO 70 5

OTIME=2600e0

RETURN

DTIME=DTIMEX3600.0

RETURN

FORMAT (10X s L4HERROR TN TIHEX)
END

SUBROUTINE TINO(BEAMsDTIMESSCSsT)
DO 99 KK=lslwuol
IF(BEANM=505)55s7 777
BEAM=BEAM-DTIME

CONTINUE

T=BEAM+DT IME

RETURN

END

6400 END RECORD

lel6T

U6 3454°E-0U9 15000,

G 1 C.5 Ged57

U 1 1.0 De250

1o 16UE~C6 34540E-09 15000, - 049

0 1 145 Ue832
1e16CE=CH 34540E~09 15000, 0e9

o 1 Cab 0e9
1e16CE~U6 3e540E~59 15C00. et

v 1 Col Ue6T73
14160E=06 24540E-09 15000, 0e0Q

1e160E~U6 34540F-0

0 1
9

U 1 1.0 09
6400 END FILE

5)

lel
GC0.0
o
GOU
1.0
90uet
1.0
900, 0
1eO
90040
1.0
900U
10
9CU,LU

63


http:FOR~ATl1GX,Fl2.5,1JX,Fl2�5'10X,Fl2.51

A4312sLC4 Ul sT2L0 . DROUT
RUM(S) |
SETINDF. _ o 64
REDUCE . _
LGO. APPENDIX A.2.2.
' 640U END RECORD

PROGRAM 15T (10P

s

IS f{ kau rIn)w Tbr Be ST ISOTHERMAL FOLI
QUATIONS USEDeses DIF I)/JT"“'*PQI"*M
PATE K ATy P

VAR
P

f\
I
1D
bt
/—\W
5
™M
<
m
A
w.
—
oy
—
m
e
[l
T
)

s

; e MR R KR SY B L S 3 %

ACT= i1nliUe RATE CONSTANT GOF DECAY RATE

A U= MAXTHUM RATE CORSTANT OF DECAY RATC

EC= ACTIVATICN ERNERGY £EC/R

XAZ MAXIMUM CONVERSION (ACTIVITY=1e0 WITH MAXe TEMPERATURE )
F= INITIAL CORVERSIOH

TETA= SPACE TIME OF REACTOR

pP= RATIO E£/EC

PSI= ACTIVITY

M= CRULDER OF DECAY RATE

N= ORDER OF REACTION

Tou= MAXIMUN TEMP. (R) CORRESPUNDING TG AKU
TAdX: TOTA TI‘E I

DAYS

'sNaNalaNa¥aNa¥elaXaRalaNaNa¥aRaNaReRatala!

i TUsRsECSC
COMMON ACT
\ﬁO\'\[ __()
UO B5uu MOUSE=1s50
READ(S s 10UV )ARUSAKT s ECe XAsr ST« TLTAS X
READ(S 4104 ) MsN
READ(Ds 101 )P TAUX \
READ{5s105) TG eRsEC
TAUX=TAUR#EH40T L U
CTE=AKU/EXP(~EC/{(R*TU))
AKSUP=PSI#% (1 e—M)/ (TAUX®(1e~11))
IF({MeGTW&C) GO TO 1
TEMPL=-EC/R/ALOCGIAKTI/CTE)
TEMP2=~EC/R/ALOGIARSUR/CTE)
IF(AKSUPLGTWAKUY GO TU 1
IF(AKSUP LT« AKLY GO TO 2
AKU=AKSUP
1 ARGH Iﬂ:wkl
ARGMAX=AK
WRITE( 6312U)
CALL SEARCHARGMINs ARGHAX »PROFIT)
bTAJX"TA)X/dQ 006D _
WRITE(Gs1u2)BTAUXSTEMP sACT s PROFITeMaNsP
. IF(MOCSELEGeDBV)Y GO TO 3
GO T0O 5U0
2 TAUXM=PSTH%(1-M)/({1=)¥*AKT)
BTAUXM=TAUXIM/8640U60
WRITE(6s1u6)BTAUX BT AUNXY
500 CONTINUE



http:IF(~.GT.CI
http:L!-\CTIVITY:::}.Cl

3 STop
OU FORMATIZ2E1ve 3
101 FORFAT(2F1lu.u)
162
12+7/77)
104 FORMAT(2110)
105

1ATURE » ZUHYOUR
2M

FORMAT(
IXs6HPROFIT8X
ZLUE)

12¢

FORMAT(5XsE12e5

TImE PERMMISSIBLE
6EXs12HTIME

65
)Fl\)o

s 10XsE12e5210Xs012e5910X9E1245¢10Xs12310XsI235X9F5,

FORMAT (3F1uaU)
106 FORMAT(5Xs58HTHE

CWEST TEMPER
Tt MAXTaU

IS TOO LCOMG EVEN FOR THc
=ef 126407 Il DAY s/ /9 3THAND
ohe// /)

6EX e YLHTEMPERATURE(K Y »
RDER OF REACTICNsS5Xs

TOTAL TIwk
TOTAL Tikic IS
IS =512
If D/-\Y\)a
14HORDER CF DECAY s 10X 17HC

4R 8HACTIVITYs1C
THP VA

4

13
l6

17
18

19

60

20

37

21

22

END
SUBROUTINE SEARCHIARGHMINs ARGMAXsPRCFIT)

COMMON MeNsTAUXsPST s XEsPsAK]T TETAsALUs XA o TAUXM s s NF o R
COMMON TosRsECsCTESTENMP

COMMON ACT

NFLAG=U

T0=1.618u33298874

TMIN=ARGMIN

TMAX=ARGAX

T2=THMINF(THAX=TMINYI/ZTO

Ti=TMIN+(TMAX=T2)

CALL INTG(T1sP1)

CALL INTG(TZsP2)

PMAX=P?

TTMAX=T2

IF(NFLAGYSESDH 96

DO 33 I=1s50

IF(P2-P1)13:19s9

IF(T1-T2)1us1Usll

TMIN=TL

GC TO 12

TMAX=T1

T1=TUIN+(THAX=T2)

CALL INTG(TI1sP1)

GO TCQ 23
IF(T1I-T2)
TMIN=T2
GO TO 18
TMAX=T?2
T2=THAX=(T1~=THIN)

CALL INTG(T2sP2)

GO TO 23

ROS=T1-T2

IF(ABS{ROS)—1eCE~14)37+37260

IF{ROS)20+37+21

TMIN=T1

TMAX=T2

GO TC 22 ’ .
TTMAX=T1

GO TO 39

TMIN=T2

TMAX=

NFLAG=1

GO TO 4

CONTINUE

JTAUX

17517516




R

1.
90

’

39 IF(P1=-P214Cs40s41
4.0

41

13
14

32

10 TOI+1)=T(1)+T1
8 CONTINUE
PROFIT:PROFIT+TI/3.m(X(1)+4.‘X(Z)
T{1)y=T(3)
9 CONTINUE
P1=PROFIT .
TEMP==FEC/R/ALOGIAKOP/CTED
ACT=PSITI(I)
RETURN
END
6400 END RECORD
10160E~06 3e540E~09 1500GC. Ced
C U 1
5 306U
Oe0 1.0 150CCG. ¢

-~ v W

o

PROFIT=P2

RETURN

PROFIT=P1

RETURN

END

SUBROUTINE INTG(T1sP1)
DIMENSION T(4)sX{(4)sPOIT(4)

COMMON MeNes TAUXsPST s XEsPsAKT s TETAS AK

COM¥ON TOsRsECsCTE,TEMP
COMMOMN ACT
EE=M-1

“AA=ALOG(1e—XE)

AKOP=T1
A=N=-1

C=1l.-XE
D=1le=XA

TF(N=-1)2s13s2
AKKU= (1 e /D%% A~ o /CH3A)/LARTETA)

GO TO 14

AKLU=~(ALOG(D)Y-ALOGIC) ) /TETA

ﬁVkCO AKRU* A Kup/huv )P
=]UuU

AN=L

TI=TAUX/AN

PROFIT=CeU

B=1le/PSIx=ELD

C=—EE*AK]

AM=FLOAT () :

BR=1le/(1e~XE)H#*{}N=-1)

Tll)=Caet :

Jd=L/s2

DO 9 J=1sJJ

DO 8 I=1,3

IF(M=1)3s4s3

PSIT(I)=PSISEXP(=AKOP*T (1))

GO TO 5

PSITOI) = A{B+EERARCPRT(I )Y ®* {1/

IF(N-116s73&
(I1)=1e~EXPAA=PSTIT{I)*AKKOR*T

GO TO 10

S=aN-1

(—-EE))

X{I)=1eC=((S)HTETA PSIT(I)AAKmpDkSF)A

X3

e XA

S))
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,573 roan37<4n; # ARy 7HI*M°<¢> tax;rnv'
RINT, DS, TI, %, HAM, TINE: 7
4 “TﬂTTIﬁL BATE
2










‘-' . (%N = :VF"’ 3 L.‘I ,#P ‘ ' -ﬁ"P-. -
>3L2@‘Gﬁﬂﬁﬁﬁ.rvn DTIME D TAK IR
ﬂlaa,@dﬁﬁam A%Vl Ax%ag ;KNQ,CAG

')"') .
“?::KP<P¢ T*WO?}%_

FR V=DADRERR

K=(POHTR=ERRL~ POTI)IfPﬁT*(1.~FRRI)) -

IF CRRAe 2T, 8,5 e it .L.<

7 GASTINUE: gz, 2

SENESS] /TQ”*QLOQ((FAT*”+°OTI)ft(PAT* +PDT9)*DAD))
ﬂ*na.* TY-ARZIRANY]
jetuT iz ch"T1*cqr/0+(~P«I«V+AVRiyff ﬁ*VJD*A x**V1
UAT "“’\“’”l*{iq‘v, 'fngxz-*c.‘:! E e S B i

SINT A2 AN KI% XSS EIPLOR N A VVI!W*QIﬂTt

SINT22-SINT ok (= APYRAKK ; :
QINT 3= ((AMYIRANY L4, ARIN Y Amwtxpwwiﬁfc ﬁwv”xroﬁxﬂxvj*
+/0RSTINTL e S ‘
'-InT‘53-Q‘T”T‘5>k( AP}) ,'.&,V!( ><F',ﬁ"‘ L

RAM=X=DATEXC STNT1I4EINT 224511 T%’B

BETHRNE s o R v AR g |

g Han:cnﬂ 13 A ;,;r”~_-;,,

RETURY - ey R

r:n*) e
DATA o
zazﬁ v.v.

= T

4

4 *["'{"1
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