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This paper discusses a method which uses directed graphs to 

reveal the underlying structure spreadsheet problems. Advantage is taken of 

the fact that there is a great deal of similarity among the two main classes 

of spreadsheet problems: those which are acyclic, and those involving 

cycles. For acyclic problems, a logical numbering can be assigned to cells, 

and the cell relationships may be shown in the form of a Cell Relationship 

Diagram (CRD . For cyclic problems, a pseudo CRD is used in order to break 

the cycles and derive pseudo-logical numberings for the cells. Cyclic 

spreadsheets are shown to contain fixed point problems, and three iterative 

numerical solution techniques (successive substitution, Newton-Raphson, and 

Gauss-Seidel) are described in terms of implementation and convergence 

properties, and demonstrated with several examples. 
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1. INTRODUCTION 

Electronic spreadsheet packages originated with the development of 

Visicalc (c) for the Apple II (c) microcomputer by Bricklin and Frankston in 

1979. Since then the growth in the variety and use of electronic 
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spreadsheet packages 

spurring the growth 

development of the 

has been at a tremendous rate, paralleling and 

in the business microcomputer population. Modern 

capability of electronic spreadsheets and related 

software has also continued to narrow the gap between the capability of 

spreadsheets and the financial planning packages which are the big brothers 

of the spreadsheet packages, but which have additional capabilities in 

forecasting and modeling techniques. Because of the expanding use of 

electronic spreadsheets, a wide variety of spreadsheet support software has 

also been developed to assist business users in detecting and preventing 

spreadsheet errors caused by incorrect formula and/or data entry (for 

example, [1, 4]) . This has become a maj or issue due to the importance and 

the complexity of some of the problems handled by these packages [6, 8, 11]. 

While the initial use of electronic spreadsheets was in business financial 

analysis and planning, there have been many other uses found for these 

packages in engineering, science and business [13, 14]. In particular, they 

are increasingly being used to solve problems which do not have closed form 

solutions [2]. To aid users, (particularly scientists and engineers) in 

solving analytical problems, certain special purpose commercial packages 

have been developed as adj uncts to spreadsheets. For example, What's Best! 

(c) uses a linear programming algorithm to optimize certain spreadsheet 

formulations developed using Lotus 123 (c). Other commercially available 

packages such as TK!Solver (c), which is not a spreadsheet program, use 

tabular formulations for ease of use, and are flexible enough to solve a 

wide variety of both linear and non-linear problems [10]. 

While there is clearly a widespread and growing use of electronic 

spreadsheets for problem solution, there is a certain amount of coherence 

in the apparent variety of problems which are being solved by these 
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methodologies. This paper explores some of the common structures, 

algorithms and methodologies which can be used to aid in solving problems 

using electronic spreadsheets. 

2. ELECTRONIC SPREADSHEET OPERATIONS 

An electronic spreadsheet is simply a multi-dimensional table (most 

applications are two-dimensional) in which data and/or operators are 

stored in various cells or addresses within the table. We will restrict 

this discussion to two- dimensional tables, without loss of generality. 

Operators within a particular- cell may define operations to be performed 

upon the contents of other cells (and sometimes upon the same cell) within 

the spreadsheet. To address a cell, we will specify its location within the 

table at address ij , which is the intersection of the i-th column and the j ­

th row (in most spreadsheets, the columns are actually ordered 

alphabetically, and the rows numerically). The content of a cell will be 

referred to as its value, which is the numerical result of calculations 

defined by the formula formed from the operators and/or constants which are 

also stored at that cell address. 

In general, a cell will be differentiated as being one of two types: 

Constant, denoted by C (ij ), and Formula, denoted by F (ij ). Two other cell 

types, Script and Null, are not relevant to this discussion. Constant cells 

have values which are self- determined entirely from the operators and/or 

constants within that cell. Formula cells contain formulas which are built 

from numerical constants, mathematical and relational operators, and 

functions, and depend in some way on the values of one or more other cells. 

Table 1 is a list of some of the operators and a few of the built-in 
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functions available in most spreadsheet packages. The rules for combining 

such operators and functions into formulas are similar to the rules used 

in Fortran and Basic, 

Table 1. 

Sample Spreadsheet Operators And Functions 

Arithmetic Operators Relational Operators Built-In Functions 

+ Add 

Subtract 

* Multiply 

I Divide 

" Exponentiate 

Equality SUM (  list) 

<> Not Equal To ABS (exprn) 

< Less Than COUNT ( list) 

> Greater Than LOOKUP (exprn,list) 

<� Less Than Or Equal To MAX.( list) 

>= Greater Than Or Equal To OR (exprnl,exprn2) 

AND (exprnl,exprn2) 

PMT (prn, int,term) 

AVG (list) 

In Table l, "list" is a set of cell addresses which may be written to 

indicate a set of adj acent cells, with notation such as ij:kl or ij .. kl, or 

as individual cell addresses which may or may not be in order. "exprn" 

may be an operator, constant, function or formula. 

3, PROBLEM STRUCTURE 

Figure 1 shows the relationships among the cells in a typical spreadsheet, 

in terms of directed arcs from each cell which is referenced to the cell (s) 

from which it is referenced. This graphical method of showing inter-cell 

relationships, along with the formulas and constants for the cells, will be 

referred to as a Cell Relationship Diagram (CRD). The numbers shown in the 
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bubbles at the ends of the cells represent a logical ordering which will be 

discussed below. Self- referencing cells are sometimes also desirable in 

spreadsheet control functions, as will be seen in some other examples, and 

these lead to self-loops in the corresponding cell relationship diagram. 

The lower part of Figure l shows the values calculated for the cells in this 

particular configuration. 

Because of the directional inter-cell relationships in a spreadsheet, a Cell 

Relationship Diagram such as the one shown in Figure 1 will have the same 

properties as a digraph (directed graph) in which a Formula or Constant cell 

is a vertex in the graph, and the arrows indicating the directional 

relationships in the CRD are arcs in the graph. 

Before continuing, some definitions from the theory of digraphs [15, 16] are 

useful: 

1) A walk W in a CRD is a finite sequence,_ 
consisting of vertices and 

arcs of the CRD alternately, and beginning and end�ng with vertices. 

2) A walk, all of whose vertices are distinct, is called a path. 

3) A walk whose first and last vertices coincide is called a closed 

walk. 

4) A closed walk all of whose vertices are distinct except the first 

and last is called a cycle. 

5) The number of arcs in a path is called the length of the path. The 

length of a cycle is similarly defined. 

6) The number of arcs beginning at a vertex u is called its outdegree, 

and the number of arcs ending at u is called its indegree. 
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FIGURE 1 

Sample Acyclic Cell Relationship Diagram 

A B c 
1 
2 1986 19 87 
3 INCOME 
4 
5 SALES 1 
6 SALES COST 2 
7 
8 NET SALES 6 
9 
10 EXPENSE 
11 
12 OPERATIONS 
13 ADMINISTR. 
14 
15 TOTAL EXPENSE 
16 
17 NET OP. REV. 8�Cl 5 15 
18 
19 GROWTH RATE 

Calculated Values For Above Cell Relationship Diagram 

A B c 
1 
2 19 86 1987 
3 INCOME 
4 
5 SALES 150000 165000 
6 SALES COST 80000 88000 
7 _ _.. ____ - -----

8 NET SALES 70000 77000 
9 
10 EXPENSE 
11 
12 OPERATIONS 32000 35200 
13 ADMINISTR. 12000 13200 
14 ----- - - ---=-

15 TOTAL EXPENSE 44000 48400 
16 ----- -----

17 NET OP. REV. 26000 28600 
18 
19 GROWTH RATE 0. 1 
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7) A graph that ignores the orientation of a directed graph is called 

its underlying undirected graph. A directed graph is said to be connected 

if the underlying undirected graph is connected. That is, there is a path 

between every pair of vertices in the underlying undirected graph. In this 

discussion, only connected CRDs will be considered. 

The following theorems [15] are stated without proof: 

1) A CRD is acyclic if it has no non-trivial closed walks. 

2) A CRD is cyclic if it has at least one non-trivial closed walk. 

3) Every walk is a path in an acyclic CRD. 

4) Every acyclic CRD has at least one source and at least one sink. 

Making use of these properties, we note that a Constant cell is the only 

cell type which has an indegree of zero ( it does not reference other cells). 

Hence, if one or more sources exist in a CRD then they must be Constant 

cells. Likewise, if sinks exist in a CRD then they must be Formula cells 

because Formula cells can have an outdegree of zero but must have a non- zero 

indegree. 

4. ACYCLIC CRDs 

A logical numbering can be assigned to an acyclic CRD, where the logical 

numbering is defined as a function N for a CRD with p vertices. N assigns 

to each vertex u of the CRD an integer N ( u) such that each of the integers 

1, 2, .. .  p is assigned to exactly one vertex, and if <u, v> is an arc, then 

N ( u) < N ( v). The CRD of Figure 1 is acyclic, and the numbers in the end 
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bubbles for all of the vertices (cells) represent one possible logical 

numbering of the CRD (there are usually many such numberings possible). 

In an acyclic CRD, the various relationships which are defined in the 

spreadsheet represent a set of recursive, causally ordered equations. 

Theorem: The cell values in a spreadsheet with no cycles can be determined 

correctly if the order in which the cell formulas are calculated is defined 

by a logical ordering on the associated acyclic CRD. 

Proof: Each Formula cell has one or more precursor cells. If the Formula 

cell value is to be calculated correctly, then the values of all its 

precursor cells must first be calculated correctly. If calculations are 

carried out in the order in which the cells are numbered, then any logical 

numbering on an acyclic CRD will automatically ensure that the precursor 

cell values will be calculated first. 

calculated correctly. 

Thus, . all cell values will be 

The default order of calculation in most modern spreadsheet packages will 

follow a pattern which is equivalent to a logical numbering of the 

corresponding CRD (it is often referred to as "natural order"). Older 

spreadsheet versions may, however, calculate cell values row-wise or column­

wise, and this can give rise to "forward references" and resulting· erroneous 

results. The only cure for such a problem, assuming that the spreadsheet 

formulas cannot be rearranged to eliminate forward references, is to re­

calculate the spreadsheet at least as many times as the maximum forward 

reference depth. This depth can be determined by tracing major cell 
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relationship patterns to determine how frequently these patterns "double 

back" through the spreadsheet. For example, a financial plan for a number 

of time periods with the formulas for each time period in a separate column, 

where there are dependencies involving revenue carryover from one period to 

the next, will often have a forward reference depth equal to the number of 

planning periods. 

For a variety of reasons we will want to consider paths between two vertices 

in a CRD. Let us denote the terminating vertex as t and the vertex from 

which the paths originate as the initial vertex s. The set of integers which 

describe each distinct path from s to t in a logically numbered CRD will 

have the property that they will be monotonically increasing. Suppose that 

there are a total of J paths from s to t, and that there are r. vertices in 
J 

the j -th path of this set. Then u. ( i) 1 <� i <= r. will refer to the 
J J 

logically ordered index assigned to the i-th vertex in the j -th path. 

To determine the impact on the value calculated for a terminal cell t due to 

changes in the value of an initial cell s, every one of the J paths which 

j oin these two vertices must be identified. The function V. (st) which 
J 

describes the relationship of vertex s to vertex t due to the j -th path 

between the vertices is given by 

V. ( st) = 

J 
F (F (F ( 

u. (r. ) u. (r. -1) u. (r.-2) 
J J J J J J 
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Here, Fk refers to the formula in cell k which calculates the cell value 

based upon internal cell parameters and constants as well as the values of 

other cells referenced by the formula. 

Note that V. ( st) is a complex analytical expression, and the actual value 
J 

attributed to cell t as a consequence of the value of cell s will be 

impossible to aetermine unless the variables in this expression are 

separable. There are, in general, many such complex contributions to the 

value of a particular cell in a CRD. However, the main interest here is in 

the relative sensitivity at cell t due to value changes at cell s. 

If V. ( st) (1 <= j <= J) is differentiable over the range of interest of the 
J 

various functions which describe it, then the sensitivity of the value in 

cell t to changes in a parameter P (s) of the formula for cell s can be 

determined by calculating the derivative of V ( st) with respect to P (s). 

This is a straightforward application of the chain rule for differentiation, 

and the result is 

j 

J 
z:: 

(2) 
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While equation 2 measures the absolute sensitivity, we may also be 

interested in the relative sensitivity, given by 

(3)o 

Note that equation 2 is a differential equation formulation of the well-

known "what-if?" question often asked of financial spreadsheet models. In a 

"what-if?" scenario, the sensitivity is measured numerically by substituting 

different values for the original value of the constant or parameter in 

question so the effect on other cell values may be observedo 

5. CYCLIC CRDs 

A cyclic CRD contains at least one cycle. For the cells on the cyclical 

walk (s), there is no logical numbering possible and hence the cell values on 

cyclical walks will ( except in very unusual circumstances) not be calculated 

correctly with one cycle of calculations. The existence of a cycle in a 

spreadsheet is detected and signaled automatically by many spreadsheet 

packages, since this is an error indicator if the cycle has not been 

deliberately inserted into the spreadsheet. However, there are many 

analytical problems which lead to cycles if they are to be solved with 

electronic spreadsheets. Typically these involve coupled linear or non-

linear equations which are otherwise solved by matrix inversion or by some 

iterative technique. With some care in developing the problem, solutions 
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can often be found easily through the adaptation for spreadsheet use of a 

variety of classical techniques. 

To simplify the initial discussion, let us consider CRDs with only one 

cycle. The extension to more than one cycle can be made easily. A CRD 

which contains either a cycle or a cell with a self-reference ( loop) cannot 

be assigned a logical numbering in the usual sense. Self - referencing cells 

will be used in the examples discussed below, but we will ignore any 

extensions to graph theory which may arise from their use. However, we will 

need to assign a pseudo-ordering to CRDs with cycles through an artifice 

which will allow us to discuss the order of the calculations. To assign a 

pseudo-ordering to a CRD containing a cycle, we select a suitable arc which 

is in the 

pseudo-cell 

be labeled 

cycle path, 

labeled c. 

u ( r - 1) (an 

and break this arc so it both enters and exits a 

The cell which this pseudo-cell now references will 

arc leads from u ( r-1) to c). The cell which 

references the pseudo - cell will be labeled u ( m). 

properties that it: 

The pseudo-cell c has the 

a) will be the last cell in the CRD for which a value is calculated, 

and 

b) retains its value which can then be released by some external 

control mechanism ( such as a "re-calculate") for use in cell u ( m) which 

references this pseudo-cell. 

By inserting a pseudo-cell, the cycle is removed from the CRD, allowing a 

pseudo-logical numbering 

the pseudo-cell does not 

to be assigned to the cells in the CRD. 

really exist in the implementation 

However, 

of the 

spreadsheet, and of course this artifice does not in any way resolve the 
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convergence difficulties associated with the cycle. A CRD with pseudo-

logical numbering will be referred to as a pseudo CRD. 

The following sections discuss various techniques which may be used to solve 

analytical spreadsheet problems with cyclical CRDs. 

5.1 SUCCESSIVE SUBSTITUTION 

Since the value of a pseudo-cell is the last one to be calculated in the 

CRD, equation 1 will give the value calculated for cell c based on the 

current values of cells along the pseudo-path which was the former cycle 

from u (m) to c. That is, with (r-m+l) cells along the path, 

V ( c) = Fe {F
u ( r-l) {F

u ( r - 2) { 
· · ·  

{F
u (m+l) {F

u ( m) (V(c'))}} . . . }}} (4) 

Here, V ( c') is a value passed on to cell u ( m) f�om a previous calculation 

for cell c. Note that, since the pseudo CRD is connected, the values of all 

cells in the CRD ( including those not in the pseudo- path) will be implicitly 

included in the results due to the interconnecting relationships expressed 

in the cell formulas along the path from u(m) to c. 

If we choose, we can now transfer the calculated value V ( c) for the pseudo-

cell c on to cell u ( m) and re-calculate the result in an iterative manner. 

This iterative process obviously applies to any arbitrary cell in the 

pseudo-path. Thus, for 
n n+l 

example, V ( u (m)) becomes V(u (m)) based on the 

value calculated in the previous iteration, giving rise to the equation 
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V (  ( u ( m)y+l 
""' F 

( ) 
{F {F 

( l) { . . .  {F 
( l) {

V ( u (m)Yl} .. .  } } } (5) 
u m  c u r- u m+ 

Equation 5 is clearly of the form 

n+l n 
x - G (x ) 

* * 
If the solution converges to a value x , then x is a fixed point of G. The 

method of replacing the current value of a cell with a new value calculated 

during the next iteration, in a spreadsheet containing cycles, is equivalent 

to the iterative method of "successive substitution" (also known as Picard's 

method). This technique will co�verge under the following conditions: 

If G is continuous and differentiable, the solution will converge to a fixed 

* 
point x provided that the initial value 

0 
x is in an interval I which 

* 
contains both x and G ( x), and there is some a <  1 such that 

IG' (x)I <= a for all x in I [17, p. 274]. 

Successive substitution is a technique which is automatically invoked 

whenever a cycle appears in a spreadsheet, since no additional mathematical 

formulation is required. It is also easy to use standard spreadsheet 

functions to "break" a cycle and insert starting values to serve as initial 

inputs for one or more cells to get the process started close to the 

expected solution. In most advanced spreadsheet packages the user may 

specify how many iterations should be performed on a spreadsheet containing 

one or more cycles. However, convergence may be slow and the choice of 

starting values will have a effect on the number of iterations required to 
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converge. Convergence is not possible at all in a spreadsheet with a single 

cycle unless the previously described conditions hold. 

Figure 2 is a pseudo CRD for an example of successive substitution used to 

solve a problem which has much application in multi-attribute utility theory 

(MAUT) [9] . Here, the weights k. for various model attributes are known, 
1 

and a multiplicative model is assumed. In the model, the total of the L 

attribute weights is 

i=L 
s - � 

i-1 

The equation which must be satisfied for the model scaling constant k is 

The 

* 
k 

scaling 

� * * 
.IT

1 
(l+k k. ) - 1 = G (k ) 

1= 1 

constant is the 

(6). 

fixed point of G, and must be evaluated 

iteratively. The unique root k
* 

lies in the ranges -1 < k
* 

< 0, 0 or 

* 
0 < k < oo when S > 1, 1, or < 1 respectively [9]. 

For - 1  < k
* 

< 0, G' is less than 1 and the successive substitution method 

will converge. 
* 

For k =0, G'=l > 0, G' > l, and successive 

substitution will not converge, so other techniques must be used in this 

region (the Newton-Raphson technique is applied to this problem below) . . The 

results for a particular set of weights k. when L = 3 are given in the 
1 
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A 

1 

2 kl ::: 

3 k2 = 

4 k3 = 

5 

6 

A 

1 
2 kl = 

3 k2 = 

4 k3 = 

5 
6 

FIGURE 2 

Iterative Solution Using Successive Substitution 

Pseudo Cell Relationship Diagram 

B 

0.5 1 

0.4 3 

c 

1+D2*B2 1 

@SUM B 2  .. B4) 4 It'n Count ::: 

@IF +B5>1 -.5 .5 5 

Convergent Values For 

B c 

0.5 0.738724 
0.35 0.603616 
0.4 0.477448 
1. 25 It'n Count = 

-0.5 

16 

D 

6 

Above CRD 

D 

�0.52255 

139 



second part of Figure 2. This particular problem contains one cycle with 

three pseudo-paths: <7,8,9,10, c, 7>, <7,9,10,c,7>, and <7, 10, c,7>. The 

problem is easily modified to contain any desired number of weights L, and 

the number of pseudo-paths will be equal to this number. All these paths 

are bisected by the pseudo-cell c. Note that the number of iterations 

necessary for convergence is shown, and is calculated by a self- referencing 

cell which is also used to control initial value assignment. The solution 

* 
of k = -. 5225 is given by the convergent value in cell 7. 

5. 2 NEWTON-RAPHSON METHOD 

While there are many iterative techniques which are applicable to the 

solution of non-linear equations and which therefore can be used to solve 

fixed point spreadsheet problem�, the most attractive of these is the direct. 

substitution method since it requires no additional programming. However, 

this method has a linear rate of convergence if it converges at all. There 

are other techniques which have higher convergence rates but which require 

additional programming to implement. The most attractive 
_
and widely used of 

these is the Newton- Raphson (NR) technique which has a quadratic convergence 

rate (17, p. 292] , and is frequently used for non-linear problem solution. 

The NR iteration formulation for fixed point problems is of the form 

n+l 
x 

17 

(7) 



If we let G ( x) equal the right hand side and x the left hand side of 

equation 1 respectively, combining this with the result of equation 2 for 

the partial first derivative of G, we obtain 

{8F 
( )/8F }.(8F /8F ( l)}. u. m c c u. r-

J J 

{8Fu. (r-l) /8F 
( _2)} .. . . .  (aF 

( +l)
;av 

( )} 
J 

u
j 

r 
j 

u
j 

m u
j 

m 
(8) 

where the partial derivatives are summed over all J pseudo- paths in the 

cycle. Equation 8 is normally not difficult to calculate for a given 

pseudo-CRD. 

From equation 7, let 

h ( x) - G (x) - x , 

so that 

* 
h(x ) 0. 

If h(x) is twice differentiable on some interval I containing a zero point 

* 
x d h h, ( ) 0 h h NR h d · 11 1f x

0 
i . an w ere x � , t en t e met o wi converge � s in some 

* 
neighborhood of x [17, p. 275]. 

While the NR method usually converges faster than direct substitution, the 

price is the formulation of the partial first derivative of G and its 

recalculation at each iteration. The NR technique also tends to be 

unstable, in that it may not converge without some initial searching of 

trial values until a starting value is selected which is near enough to a 

fixed point to allow convergence. There may be more than one fixed point, 

and each can be determined by appropriate selection of starting values. 

The conditions for convergence are not nearly as restrictive as they are for 
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successive substitution, which may converge much more slowly or not at all, 

no matter what starting value is selected. 

Figure 3 shows an application of the NR technique to the solution of the 

same MAUT problem solved in Figure 2. The pseudo-CRD shows the formulation 

of the problem in the same manner, but an additional section has been added 

for the calculation of the partial first derivative. There are three 

pseudo-paths as in Figure 2. The partial first derivatives on these pseudo-

paths, as described in equation 8, are calculated in cells <11, 12, 14>, 

<13, 15> and <16> respectively, with the total partial derivative calculated 

in cell <17>. This result may be verified by differentiating equation 6 

directly. The self-loop in cell 7 allows the previously calculated result 

for the value of the cell to be used in the next cycle of calculations. A 

change in this value is due to the result calculated through the pseudo­

cycle and entering this cell from the pre-cursor cell c. Note that the NR 

technique converged in 10 iterations, as compar�d to the 139 required for 

the successive substitution method in Figure 2, for the same problem. The 

solution of - .5225 is again shown in cell 7 in the lower part of the Figure. 

For this problem type, the NR technique will converge for any value of 

* * 
-1 < k < �. provided that an appropriate starting value near enough to k is 

selected. 
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6 

7 

8 

9 

10 

11 

12 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

A 

kl = 

k2 

k3 

A 

kl = 

k2 = 

k3 = 

Incr't. 

FIGURE 3 

Iterative Solution Using Newton-Raphson Method 

Pseudo Cell Relationship Diagram 

B c D E 

l+D2*B2 7 

2* l+D2*B3 

l+D2*B4 

@IF(+B5>1, -.5,.5) 5 

Derivative 

Path2 Total Deriv. 

11 

B9 *(l+D2*B3) 

BlO* l+D2*B4 

Convergent Values For Above CRD 

B 

0.5 
0.35 
0.4 
1. 25 
-0.5 
First 
Pathl 
0.5 
0.408553 
0.323157 
0.0 

c 

0.738724 
0.603616 
0.477448 
It'n Count = 

Derivative 
Path2 

0.258553 
0.204510 

20 

D E 

-0.52255 

10 

Calculations 
Path3 Total Deriv. 

0.241446 0.769 114 



5. 3 GAUSS-SEIDEL METHOD 

The Gauss-Seidel (GS) method is a well-known iterative technique for the 

solution of systems of linear equations, and may be preferred to Gaussian 

elimination or matrix inversion for certain very large systems. 

The standard form for a system of linear equations is 

(9) 

where there are k equations in k variables. Any such system may be 

transformed to 

x. = ( 1/ a . .  ) ( b  . -a. 1x1- a. 2
x

2 - , . .  -a. . 1x. 1-a. . 1x. 1- .. .. -a. kx., ) ( 10) 
1 l.1 l. l. l. 1, 1 - 1 - l., l.+ 1+ l. k 

for l <= i <= k. This is a multi-dimensional form of a fixed point problem. 

The GS iterative approach to the solution of this equation set is: 

n+l n+l n+l n n 
( 1/ a . .  ) ( b. -a .1x1. - a. 

2
x

2 
-. . .  -a. . 1x. 1- a. . 1x. 1-. . . .  -a. kx. ) ( 11) l.l. 1 1 l. l., 1- 1.- 1, 1+ 1+ l. K 

for l <= i <= k. The GS method will converge for �ny starting values of the 

variables, providing that the system of equations defined by equation 9 is 

strictly diagonally dominant (17, p. 251]. Strict diagonal dominance is 

defined by 

la · I  mJ 
< la I mm 

for 1 <= m <= k 

Figure 4 shows an application of the Gauss-Seidel method to the system 
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This system is seen to be diagonally dominant by inspection, so the Gauss-

Seidel method will converge. The equations, transformed according to 

equation 11, appear in the pseudo CRD in Figure 4. Note that, since there 

are three unknowns, there are three interleaved cycles which are broken by 

the three pseudo-cells shown in the Figure. The solutions for the three 

variables are (-.4970, - 3. 0359, 3.2395), and appear in the lower part of the 

Figure. This system converged in 24 iterations from starting values of 0 

for each of the three variables. 

This method is closely related to the successive substitution method used 

for single variable problems, and requires very little work to set up. 

Also, diagonal dominance may be achieved in some cases simply by the way the 

equations are ordered, improving the possibility of applying Gauss-Seidel 

iteration successfully to a wide range of linear systems. 

6. DISCUSSION 

This paper has discussed only a few of the well-known numerical techniques 

which may be adapted to spreadsheet solutions. For example, systems of non­

linear equations may also be solved by iterative techniques in much the same 

manner as systems of linear equations, with convergence depending upon 

certain local conditions on the related Jacobian matrix (12, p. 93]. This 

requires arranging the non-linear equation set into the form of a fixed 

point problem. For a broader viewpoint, the book by Arganbright [2] offers 

many hints on the development of solutions to a variety of related problems. 
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FIGURE 4 

Iterative Solution Using Gauss-Seidel Method 

Pseudo Cell Relationship Diagram 

c D E 

Variables Const: Coefficient Matrix 

F 

IF(B5<2,A2,C2+B2*D2+B3*E2+B4*F2) 

-3.2857 6 

3*E4+B4*F4 

7 13 0 

14 

15 

16 3.75 ...._ ___ ......... �,,,, 

4 

Convergent Values For Above CRD 

B c D E F 

Variables Const. Coefficient Matrix 

-0.49 70 -2.4 0 -0.2 0.4 

-3.0359 -3.2857 0.4286 0 0 .1428 

3.3239 3.75 -0.5 0.25 0 

24 
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While constraint equations were not discussed in this paper, a typical 

spreadsheet may include a wide variety of various types of constraints. For 

example, the templates provided by Cobb and Cobb [5] for a set of acyclic 

business spreadsheet problems almost all have numerous constraints invoked 

through cell formulas. Any of the methods discussed in this paper may be 

used for problems involving formula constraints, but the convergence 

conditions will generally not apply since the functions may not be 

continuous over the range of interest. In fact, because some of the 

constraints are usually tight in the solution, it has been found from 

experience that constraints usually enhance convergence. It is also 

necessary that there be a feasible region for each variable to be determined 

and that the starting value for each variable is in a feasible region. 

However, if the feasible region (s) is (are) not convex, there is no guarantee 

that the result (s) will converge to global solution (s). 

There are many spreadsheet packages available, but there are also many 

microcomputer packages on the market which are designed specifically to 

solve nonlinear optimization problems [7]. Most standard spreadsheet 

packages do not at the present time have the versatility or the capability 

to solve many of these problems directly, but with a little creativity along 

the lines discussed in this paper it is possible to handle some of the more 

tractable ones. At the same time, the capability of spreadsheets �s still 

developing so that there is little doubt that we will eventually see 

professional spreadsheet packages which will handle a much greater variety 

of optimization problems [3]. For example, the Smart Spreadsheet (c) from 

the related integrated package currently includes matrix manipulation 
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routines. An advantage of such extensions is the fact that many 

spreadsheet routines have been integrated with word processing, graphics and 

database software which allows much more inherent flexibility in the 

manipulation and presentation of data. 
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