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Abstract 


In this thesis, we investigate several inferential issues regarding the lifetime 

data from exponential distribution under different censoring schemes. For reasons of 

time constraint and cost reduction, censored sampling is commonly employed in prac­

tice, especially in reliability engineering. Among various censoring schemes, progres­

sive Type-I censoring provides not only the practical advantage of known termination 

time but also greater flexibility to the experimenter in the design stage by allowing 

for the removal of test units at non-terminal time points. Hence, we first consider 

the inference for a progressively Type-I censored life-testing experiment with k uni­

formly spaced intervals. For small to moderate sample sizes, a practical modification 

is proposed to the censoring scheme in order to guarantee a feasible life-test under 

progressive Type-I censoring. Under this setup, we obtain the maximum likelihood 

estimator (MLE) of the unknown mean parameter and derive the exact sampling 

distribution of the MLE through the use of conditional moment generating function 

under the condition that the existence of the MLE is ensured. Using the exact distri­

bution of the MLE as well as its asymptotic distribution and the parametric bootstrap 

method, we discuss the construction of confidence intervals for the mean parameter 

and their performance is then assessed through Monte Carlo simulations. 
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Next, we consider a special class of accelerated life tests, known as step-stress 

tests in reliability testing. In a step-stress test, the stress levels increase discretely at 

pre-fixed time points and this allows the experimenter to obtain information on the 

parameters of the lifetime distributions more quickly than under normal operating 

conditions. Here, we consider a k-step-stress accelerated life testing experiment with 

an equal step duration T. In particular, the case of progressively Type-I censored 

data with a single stress variable is investigated. For small to moderate sample sizes, 

we introduce another practical modification to the model for a feasible k-step-stress 

test under progressive censoring, and the optimal T is searched using the modified 

model. Next, we seek the optimal T under the condition that the step-stress test 

proceeds to the k-th stress level, and the efficiency of this conditional inference is 

compared to the preceding models. In all cases, censoring is allowed at each change 

stress point fr, i = 1, 2, ... , k, and the problem of selecting the optimal Tis discussed 

using C-optimality, D-optimality, and A-optimality criteria. 

Moreover, when a test unit fails, there are often more than one fatal cause for 

the failure, such as mechanical or electrical. Thus, we also consider the simple step­

stress models under Type-I and Type-II censoring situations when the lifetime dis­

tributions corresponding to the different risk factors are independently exponentially 

distributed. Under this setup, we derive the MLEs of the unknown mean parameters 

of the different causes under the assumption of a cumulative exposure model. The 

exact distributions of the MLEs of the parameters are then derived through the use 

of conditional moment generating functions. Using these exact distributions as well 

as the asymptotic distributions and the parametric bootstrap method, we discuss the 

construction of confidence intervals for the parameters and then assess their perfor­
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mance through Monte Carlo simulations. 

KEY WORDS: A-optimality; accelerated life-testing; C-optimality; change­

point; competing risks; conditional inference; conditional moment generat­

ing function; confidence interval; cumulative exposure model; D-optimality; 

exponential distribution; maximum likelihood estimation; order statistics; 

parametric bootstrap method; progressive Type-I censoring; step-stress 

model; tail probability; Type-I censoring; Type-II censoring 
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Chapter 1 

Introduction 

1.1 Accelerated life-test 

In industrial and system engineering, reliability theory plays an important 

role. As the customers and users are constantly looking for products and systems 

with high quality and longer life, the reliability assessment or life-testing has become 

an essential and integral part of the manufacturing process. In order to guarantee the 

service life and performance of a product, or even to compare alternative manufactur­

ing designs, life-testing under normal operating conditions is obviously most reliable. 

However, due to continual improvement in manufacturing design and technology, one 

often experiences difficulty in obtaining sufficient information about the failure time 

distribution of the products. As the products become highly reliable with substan­

tially long life-spans, time-consuming and expensive tests are often required to collect 

enough failure data, which are necessary to draw inference about the relationship of 
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lifetime with external stress variables (i.e., covariates) such as temperature, pressure, 

vibration, and cycling rate. In such situations, standard life-testing methods are 

not suitable, especially when developing prototypes of potential new products. This 

difficulty is overcome by accelerated life-test (ALT) wherein the units are subjected 

to higher stress levels than normal in order to cause rapid and more failures in a 

short period of time. ALT is popular in industrial quality assurance and reliability 

engineering, and it allows the experimenter to apply more severe stresses to obtain 

information on the parameters of the lifetime distributions more quickly than would 

be possible under normal operating conditions. Some key references in the area of 

accelerated life-testing include Nelson and Meeker (1978), Nelson (1990), Meeker and 

Escobar (1998), and Bagdonavicius and Nikulin (2002). 

There are three major types of stress loadings in ALT. They are: 

• 	 Constant-stress ALT: the selected high stress level is maintained until the end 

of the experiment; 

• 	 Step-stress ALT: the stress level is discretely increased on the surviving test 

units of an experiment at some pre-fixed time points; 

• 	 Progressive-stress ALT (also known as Linearly increasing stress ALT): the 

stress level is continuously (linearly) increased until the designed threshold level 

of the stress is reached, 

and one can also create other possible variations by combining any of the modes de­

scribed above. In this thesis, our focus is mainly on addressing some of the inferential 

issues related to the step-stress failure data, and so the next subsections are devoted 

2 
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..............................................................................______,. 

A ,.. ~ 

.....................................,______....... 


Time 

~ ,.. 
~ 

! 

Stress 
Level 

Figure 1.1: Stress Loading Scheme of a 

3-level Step-stress Accelerated Life-test 

to the current statistical modeling approach of the step-stress ALT in more detail. 

1.1.1 Step-stress life-test 

As mentioned briefly earlier, among various stress loading schemes, the step-

stress ALT allows the experimenter to gradually increase the stress levels at some 

fixed time points during the experiment. vVe have graphically illustrated how the 

step-stress ALT proceeds in Figure 1.1. Here, s0 is the stress level at the normal 

operating condition while s1 , s2 , s3 are the design stress levels in order. The pre­

determined stress change time points are denoted by T 1 and T 2 , while Tc denotes the 

termination (censoring) time point of this step-stress test. Under this setup, the life­

3 
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test initially starts at the level 8 1 until time r 1 at which point the stress level changes 

to 8 2 . Then, the stress is maintained at that level until time T2 at which the stress 

level increases to 8 3 . Then, this final stress level is kept constant until the experiment 

is terminated at time Tc· 

Once the failure data are collected from an ALT, it is then necessary to come 

up with a physically motivated and reasonable statistical model in order to estimate 

the underlying distribution of failure times under normal condition, the reliability or 

some other characteristics about the product under study. Since it is usually required 

to extrapolate the data from higher stress levels to normal (lower) working stress, the 

model needs to explain the effect of rising stress levels on the remaining life-time of 

products. That is, it should relate the stress levels to the progress of the acceleration 

of failure. For analyzing the step-stress failure data, there are three models studied 

in the literature. They are: 

• Tampered random variable model, proposed by DeGroot and Goel (1979); 

• 	 Cumulative exposure model, proposed by Sedyakin (1966) and further discussed 

and generalized by Bagdonavicius (1978) and Nelson (1980); 

• 	 Tampered failure rate model, proposed by Bhattacharyya and Zanzawi (1989) 

and later generalized by Madi ( 1993). 

Rao (1992) has shown that for the step-stress ALT, if the life-time distributions under 

the two stress levels belong to the same scale-parameter family, then the cumulative 

exposure model is equivalent to the tampered random variable model. Also, if the 

life-time distribution belongs to a class of life distributions having the property of 

4 
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setting the clock back to zero, then the tampered failure rate model is equivalent to 

the tampered random variable model. For a concise review of step-stress ALT, one 

may refer to Gouno and Balakrishnan (2001). 

1.1.2 Cumulative exposure model 

Among the three models suggested for the step-stress ALT in the preceding 

subsection, our interest specifically lies in the cumulative exposure model. It assumes 

that the residual lifetime of units depends only on the current cumulative fraction 

failed and the current stress. That is, if the surviving units are held at the current 

stress, they will fail according to the cumulative distribution function (CDF) for that 

stress level but starting at the previously accumulated fraction failed. Hence, there 

is no memory of how the fraction has accumulated at the stress change time point. 

Since the key (implicit) assumption in analyzing the failure data from an ALT is that 

there is an effect of cumulative damage history due to the rising stress levels, this is 

well reflected in the cumulative exposure model. 

Let us now formulate the distribution function of the life-time variable T of 

a test unit under the simple step-stress ALT (i.e., two stress levels) with the single 

stress change point T. Given Fi, the life-time distribution of a test unit when it is 

held at the constant stress level si for i = 1, 2, the CDF of Tis derived according to 

the cumulative exposure assumption and it is given by 

ifO<t<T
F (t) = { 	F1( t) 

F2(.;- + t - T) if T :S t < 00 

where.;- is the solution of F2(.;-) = F1(T) (viz.,~= F2- 1(F1(T))). This implies that 

5 
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Figure 1.2: Life-time Distribution under the Cumulative 


Exposure Model for an Arbitrary 4-level Step-stress Test 
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when the stress level increases, the distribution is switched in such a way that the 

distribution at the higher level starts at the previously accumulated fraction. Thus, 

the continuity of the overall distribution is effectively preserved at each stress change 

time point. 

We have graphically illustrated this aspect in Figure 1.2. It describes the 

cumulative distribution of the life-time of a test unit under an arbitrary 4-level step­

stress ALT when the cumulative exposure model holds. In the upper plot of Figure 

1.2, the four black solid lines correspond to the continuous CDFs of the life-time 

of a unit at constant stress levels. The steeper the distribution is, the higher the 

corresponding stress level is. The red line then depicts how the CDF under the step­

stress condition is obtained according to the cumulative exposure model. Starting 

from the CDF at the lowest stress level, the distribution shifts horizontally to the 

CDF at the higher level whenever the stress change occurs. By joining these four 

segments, a continuous life-time distribution based on the cumulative exposure model 

is produced, which is presented in the lower plot of Figure 1.2. 

1.2 Censored data 

For any statistical analyses, a complete collection of data is the most favorable 

scenario prior to the actual analysis step as the inference made is considered relatively 

resistant to the uncertainty. In reality, however, statistical analysts and practitioners 

frequently encounter situations where the data are not all observable. Then, it is 

questionable whether comparable inference based on the incomplete sample can be 
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developed analogous to the complete sample case. One type of such incomplete data 

which arises commonly in practice is censored data. Censored data arise when the 

experiments involving lifetimes of test units (e.g., machines, products, patients, etc.) 

have to be terminated before collecting complete observations (e.g., time to failure 

or death). For many pragmatic reasons such as cost reduction and time constraint, 

intentional censored sampling is unavoidable and it is a typical feature associated 

with the data especially from reliability testing and survival analysis. Ever since 

the necessity and importance of censoring have been recognized, properties of order 

statistics associated with various censoring schemes and inferential procedures based 

on censored samples have been studied extensively in the literature. 

1.2.1 Type-I and Type-II censoring situations 

Among var10us types of censoring, the two fundamental modes of (right) 

censoring which have been studied extensively in the literature are Type-I and Type­

II censoring situations. Within these, right censoring is the most predominant and 

natural form. That is, failure observations are missing beyond the censoring time of 

the test (i.e., to the right). Type-I right censoring occurs when the experiment is 

terminated at a prefixed time T, independent of the failure times. Hence, no failures 

would be observed beyond this time point T. This known termination time point 

makes Type-I censoring feasible for actual implementation and it provides a practical 

advantage when one designs a life-test. Prefixing the time of termination, however, 

makes the number of failures random and this may result in ineffective inference with 

high variability when the failure observations are too few or insufficient. 
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While Type-I censoring restricts the duration of the test, conventional Type-II 

censoring restricts the number of failures to be observed. As such, in Type-II right 

censoring, there would be a prefixed number r so that the experiment is terminated 

at the time of the r-th failure and all the remaining units are removed from the 

experiment. As one can see, in contrast to Type-I censoring, the number of failures 

is the pre-specified quantity for Type-II censoring while the time of termination is 

now random. This censoring scheme guarantees r failure observations and thus, it 

provides enormous help when one is planning a test. The principal disadvantage is, 

however, that the experimenter can not know in advance exactly how long it will take 

to complete the test since the test termination time is unknown for Type-II censoring. 

Hence, from a management point of view, Type-II censoring is a bit impractical and 

as a result, its application is less common than Type-I censoring in practice. For 

additional details and references regarding Type-I and Type-II censoring, one may 

refer to the early work of Epstein and Sobel (1953), Mann, Schafer and Singpurwalla 

(1974), Lawless (1982), Cohen and Whitten (1988), and Balakrishnan and Cohen 

(1991). 

1.2.2 Progressive censoring situations 

More recently, a generalized form of censoring called progressive censoring 

(PC) has been discussed in the literature. The concept of PC was first introduced by 

Herd (1956) in his Ph.D. thesis entitled Estimation of the parameters of a population 

from a multi-censored sample. The subject was further developed by Cohen (1963) 

and it has attracted considerable attention since then. The importance of PC lies in its 
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efficient exploitation of the available resources compared to the traditional sampling. 

For an elaborate overview of various developments on PC, interested readers may 

refer to Cohen (1991), Balakrishnan and Aggarwala (2000), Viveros and Balakrishnan 

(1994), and the recent discussion paper by Balakrishnan (2007). 

PC can also be either Type-I or Type-II, and in fact, it includes both the 

conventional Type-I and Type-II censoring situations as special cases. Progressively 

Type-I right censored samples are observed when a pre-specified number (or propor­

tion) of unfailed units are continuously removed during the experiment at each pre­

determined time point until the time of termination is reached. On the other hand, 

progressive Type-II right censoring corresponds to the situation where a pre-specified 

number of surviving units are continuously withdrawn from the experiment at each 

failure time observed until the pre-determined number of units have failed from the 

life-test. Both censoring schemes provide greater flexibility to the experimenter in the 

design stage by allowing for the removal of operating test units at non-terminal time 

points of the test. Those withdrawn unfailed test units are typically used in other 

experiments in the same or at a different facility. If no intermediate censoring takes 

place but the censoring is allowed only at the terminal time point of an experiment, 

these PC schemes simply reduce to the conventional Type-I and Type-II censoring 

situations, respectively. 
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1.3 Scope of the thesis 

In this thesis, we discuss some of the inferential issues related to life-time data 

from exponential distribution under several censoring schemes described in the last 

section. Each chapter has been composed in such a way that it is self-containing as 

much as possible and it stands alone with its own literature review whenever deemed 

appropriate. 

We begin Chapter 2 with the exact inference for a progressively Type-I cen­

sored life-test with equi-spaced censoring points. For small to moderate sample sizes, 

we propose a simple modification to the censoring scheme for a feasible life-test under 

Type-I PC. Under this setup, the MLE of the unknown mean parameter is obtained 

and its exact sampling distribution is derived through the use of conditional mo­

ment generating function under the condition to ensure the existence of the MLE. 

Using the exact distribution of the MLE as well as its asymptotic distribution and 

the parametric bootstrap method, we discuss the construction of confidence intervals 

for the mean parameter and their performance is then assessed through Monte Carlo 

simulations. An example is also presented to illustrate all the methods of inference 

developed here. 

In Chapter 3, we discuss the optimal progressive Type-I censoring scheme in 

the context of a k-level step-stress ALT with an equal step duration under the as­

sumption of cumulative exposure model described earlier in Section 1.1. That is, 

censoring is allowed only at each stress change time point. For small to moderate 

sample sizes, we propose another suitable modification to the model previously con­

sidered by Gouno, Sen and Balakrishnan (2004), and the optimal step duration is 
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searched for this model under C-optimality, D-optimality, and A-optimality criteria. 

Next, we discuss the determination of optimal step duration under the condition 

that the step-stress test proceeds to the k-th stress level, and the efficiency of this 

conditional inference is compared to that of the previous case. 

When a test unit fails, there are often two or more fatal causes governing the 

failure mechanism of the unit. These are known as competing risks. In Chapter 4, we 

consider the simple step-stress model under Type-II censoring when these different 

risk factors are independently exponentially distributed, while the same situation is 

considered under Type-I censoring in Chapter 5. Applying the techniques developed 

in Chapter 2, we obtain the MLEs of the unknown mean parameters of the different 

risk factors in both cases. The exact distributions of the MLEs are then derived 

through the use of conditional moment generating functions. Subsequently, using 

these exact distributions along with the asymptotic distributions and the parametric 

bootstrap method, we discuss different ways to construct confidence intervals for 

the unknown parameters and then assess their performance through Monte Carlo 

simulations. The methods of inference discussed here are also illustrated with suitable 

examples. 

Finally, in Chapter 6, we describe some interesting problems currently being 

investigated and worth considering for future research in the area of step-stress ALT 

under censoring. 
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Chapter 2 

Exact Inference for 

Progressively Type-I Censored 

Exponential Failure Data 

2.1 Introduction and motivation 

We have discussed the general idea of progressive censoring situations in Sec­

tion 1.2.2. Even though both Type-I and Type-II PC schemes have their own virtues 

and shortcomings, Type-I PC in comparison to Type-II PC provides a significant ad­

vantage of the known termination time point for a life-test, which makes Type-I PC 

quite appealing for actual implementation. However, despite such a practical benefit, 

most of the inferential work carried out in the literature of PC have mainly focused 

on Type-II rather than Type-I situation. This is because Type-I PC poses some 
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difficulties in developing exact inference as well as in studying the theoretical proper­

ties of ordered failure times arising from such a censoring scheme, while Type-II PC 

possesses more tractable mathematical properties. In fact, this analytical predica­

ment originates from the random nature of the failures occurring within each time 

interval, giving rise to a possibility that the life-test under Type-I PC may terminate 

before reaching the planned terminal stage, without yielding any failure observations, 

or both. Consequently, the inferential analysis for progressively Type-I censored 

data is approximation-based and numerical in nature; see, for example, Cohen (1963, 

1966, 1975, 1976, 1991), Ringer and Sprinkle (1972), Wingo (1973, 1993), Cohen 

and Norgaard (1977), Nelson (1982), Gibbons and Vance (1983), Cohen and Whitten 

(1988), Balakrishnan and Cohen (1991), and Wong (1993). Gajjar and Khatri (1969) 

considered the Type-I PC situation in which at each censoring time the population 

parameters change, and discussed the corresponding inference for log-normal and lo­

gistic distributions. Sampford (1952) and London (1988) have studied the suitability 

of Type-I PC model for the case wherein patients randomly withdraw from a study 

before its termination. Chatterjee and Sen (1973) and Majumdar and Sen (1978) dis­

cussed nonparametric tests under Type-I PC, while Sinha and Sen (1982) considered 

clinical trials with staggered entry times and random withdrawals under the model 

of Type-I PC. Recently, Gouno, Sen and Balakrishnan (2004) and Han et al. (2006) 

have considered the model for a multiple step-stress test with exponential lifetimes 

under equi-spaced Type-I PC and discussed the problem of determining the optimal 

interval duration using several optimality criteria based on the Fisher information 

matrix. 

In this chapter, our objective is to devise the method for exact inference re­
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garding a life-test from which the available data are progressively Type-I censored. 

Here, we consider equi-spaced k intervals with T denoting the uniform duration be­

tween the consecutive censoring time points. Under the assumption that the lifetime 

of each test unit is independently exponentially distributed, we obtain an explicit 

expression for the MLE of the unknown mean parameter in Section 2.2. For small to 

moderate sample sizes, a practical modification is suggested to the Type-I PC scheme 

in Section 2.3 in order to guarantee a feasible life-test under Type-I PC with an ar­

bitrary number of censoring time points. In Section 2.4, we then derive the exact 

sampling distribution of the MLE through the use of conditional moment generating 

function under the condition that the existence of the MLE is ensured. Using the ex­

act distribution of the MLE as well as its asymptotic distribution and the parametric 

bootstrap method, Section 2.5 discusses the construction of confidence intervals for 

the unknown mean parameter and their performance is then assessed through Monte 

Carlo simulations in Section 2.6. An example is presented in Section 2. 7 to illustrate 

all the methods of inference discussed here. A brief concluding remark is made finally 

in Section 2.8. 

2.2 Model description and MLE 

In order to describe a life-testing procedure involving Type-I PC, we must 

first choose k ordered time points for censoring: T1 < T2 < · · · < Tk. Now, for 

i = 1, 2, ... , k, let us denote ni for the number of units failed in time interval [Ti-l, Ti) 

and Yi,l to be the l-th ordered failure time of ni units during the i-th time interval, 

l = 1, 2, ... , ni, while ci denotes the number of units randomly removed or censored 
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Figure 2.1: Schematic Representation of a Progressively 


Type-I Censored Life-test with k Censoring Time Points 


at time Ti· Furthermore, let Ni denote the number of units operating and remaining 

on test at the start of the i-th time interval (viz., Ni = n - I::~:,; nj - I::~:,; cj). 

Under this setup, a progressively Type-I censored life-testing experiment pro­

ceeds as follows (see Figure 2.1 for a diagrammatic illustration). A total of N1 = n 

test units is initially placed at time To 0 and tested until time T1 at which point 

c1 live items are randomly withdrawn from the test. In this first time interval, a 

random number of n1 failure times is also collected and the test is continued on 

N 2 = n - n1- c1 units until time T2 , at which point c2 items are randomly withdrawn 

from the test, and so on. Finally, at time Tk, all the surviving items are removed, 

thereby terminating the life-test. Note that since n = 2::7=1(ni + ci), the number of 

. . . . . ""k ""k-i N Ob . 1 hsurv1vmg items at time Tk is ck = n - L..,i=l ni - L..,i=l Ci = k - nk. v10us y, w en 

there is no intermediate censoring (viz., c1 = c2 = · · · = ck-l = 0), this situation 

corresponds to a life-test under the conventional Type-I right censoring as a special 

case. 
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Under the assumption that the lifetime of a test unit follows an exponential 

distribution, the probability density function (PDF) and the cumulative distribution 

function (CDF) of the failure time of a test unit are given by 

f (t) - ~ exp ( - ~), t > 0, (2.2.1) 

F (t) = 1 - S (t) = 1 - exp ( - ~) , t > 0, (2.2.2) 

respectively for e> 0. For convenience, no notational distinction will be made in this 

chapter between the random variables and their corresponding realizations. Also, we 

adopt the usual conventions that I:;:~ aj - 0 and TIT=~ aj _ 1. Then, the joint 

probability density function (JPDF) of n = (n1,n2, ... ,nk) and y = (y1,y2, ... ,yk) 

with Yi = (Yi,1, Yi,2, ... , Yi,nJ is obtained as 

(2.2.3) 

where 

(2.2.4) 
i=l 
n; 

(2.2.5) 

l=l 

.6.i Ti-Ti-1, i = 1, 2, ... 'k. 

Note that Ui in (2.2.5) is precisely the Total Time on Test statistic at the i-th time 

interval, while Din (2.2.4) is the total number of failure observations until Tk· Now, 

using (2.2.3), the log-likelihood function of e can be written as 

1 k 

Z(e) = -Dloge- eLui 
i=l 

from which the MLE of e is readily obtained as 

~ 1 k 

e= nLui· (2.2.6) 
i=l 
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We can easily see that the MLE of edoes not exist if D = 0. That is, at least one 

failure must be observed from the life-test in order to be able to estimate e. This 

imposes the condition D ;::::: 1 in order to guarantee the existence of the MLE of e. 

Since it is apparent from Corollary A.2 in Appendix A that 

Ji,~ Pr [D ;::::: 1] = 1, 
T1<;-+00 

increase in the sample size asymptotically ensures the existence of e. However, for 

a small sample size, this is not the case unless the experimenter is prepared with 

extremely long test duration, which is definitely not practical. Therefore, for a small 

sample size, which is common in reliability experiments, the analysis of the lifetime 

data under Type-I PC has to be a conditional one based on the condition that D;::::: 1. 

2.3 	 Progressively Type-I censored life-testing 

with small samples 

Fully implementing the pre-determined PC scheme c = (c1 , c2 , ... , ck-i) in 

the model bears an inherent mathematical lapse since there is a positive probability 

that all the test units cease before reaching the planned k-th interval, resulting in an 

early termination of the life-test. For this reason, the assumption of a large sample 

size is required in order to guard enough surviving items to be censored at the end 

of each time interval and the analysis of progressively Type-I censored data has been 

approximately done under this assumption. 

As mentioned in the previous section, however, in a reliability experiment, 
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the sample size is usually small and there might be severe censoring due to various 

reasons such as budgetary constraints and facility requirements. Under such circum­

stances, the assumption of a large sample size will be unreasonable and therefore, a 

modification is necessary in order to guarantee a feasible PC scheme. One simple 

and natural modification is first to decide on a sequence of fixed numbers of unfailed 

items to be removed at the end of each time interval. Then, if, at any censoring 

time point during the test, the number of surviving items is less than or equal to 

the pre-determined number of items to be censored at that point, all the remaining 

items will be removed and the test is terminated. Since the number of live units at 

the end of each time interval before censoring takes place is random, the proposed 

change essentially makes the number of progressively censored units also random. 

In order to revise the model according to the proposed modification, we first 

define a vector of non-negative integers 

* (* * * )C = Cl, C2, ... 'Ck-l 

such that z::7,:-11 ci < n. Note that c* is composed of fixed constants defining the 

(desired) number of surviving items to be removed at each censoring time point. 

Then, the actual number of censored items at the end of the i-th time interval is 

for i = 1, 2, ... , k - 1. 

Since all the remaining items are withdrawn from the test at Tk, one could also state 

ct: = n - z::7,:-11 c; so that ck = Nk - nk. When ci = Ni - ni 2: 0, the life-test 

terminates at the end of the i*-th time interval, where i* is the minimum of such 

i's satisfying ci = Ni - ni· Consequently, this results in Ni*+l = Ni·+2 = · · · = 

Nk = 0, ni•+i = ni•+2 = · · · = nk = 0, and Ci•+1 = Ci•+2 = · · · = ck = 0 since 
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Ni+l = Ni - ni - ci· Hence, the proposed modification effectively allows the life-test 

to terminate earlier than scheduled whenever there are insufficient items remaining 

on the test. We should also point out that c = (c1, c2 , ... , Ck-I) is random under this 

setup. When c* = (0, 0, ... , 0) = Ok-I, we also have c = Ok-I and it is clear that 

this case corresponds to a life-test under the conventional Type-I right censoring. In 

addition, if ck > 0 or nk > 0 (equivalently, Nk = nk +ck > 0), it implies that the 

life-test has proceeded onto the last k-th time interval. 

2.4 Conditional distribution of MLE 

From here on, let us assume that the k time intervals of the life-test under 

Type-I PC are uniformly spaced (viz., ~i = T > 0 for i = 1, 2, ... , k). Then, in 

order to find the exact distribution of Bunder the condition D ~ 1, we first derive 

the conditional moment generating function (CMGF) of Bdenoted by Mc(t). Using 

a simple conditioning argument, it can be expressed as 

Mc(t) = E[et0[n ~ 1] 
tE[et0[n = d] x Pr[n = d[D ~ 1] (2.4.1) 
d=l 

for some t in the neighborhood of zero. The explicit expression of Mc(t) is obtained 

in (A. 7) using the lemmas and corollaries presented in Appendix A. Subsequently, 

by inverting Mc(t), we can establish the following theorem regarding the conditional 

distribution of B, the proof of which is also presented in Appendix A. 
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Theorem 2.4.1. The conditional PDF of e) given D 2: 1, is 

n d ( d)f8(x) = f 8(x!D 2: 1) = L L I:c~j 1 x- rn,j; d, 8 , (2.4.2) 
d=l { n:D=d} j=O 

where 

(2.4.3) 

cfBJ_ 
n,J (2.4.4) 

,y>O 
1(y ; a,..\) for a,,\ > 0. (2.4.5) 

, otherwise 

Corollary 2.4.1. The conditional mean and variance of e are 

E[e] = e+BB(e) 

and 

(2.4.6) 

where the terms of bias and mean squared error are given by 

n d 

'BJ (2.4.7)A '"""" '"""" '""""BB(e) = ~ ~ ~ c~,j Tn,j 

d=l { n:D=d} j=O 

and 

(e2 )' A - A 2 - n d [BJ 2
lvfSEB(e) - E[(e - e) J - L L L cn,j d + Tn,j ' (2.4.8) 

d=l {n:D=d} j=O 

respectively. 
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Proof. These expressions follow readily from (2.4.2). D 

As presented above, the conditional distribution of fJ, given D 2: 1, is a gen­

eralized mixture of gamma distributions. The expression for its mean clearly reveals 

that fJ is a biased estimator of B. The expressions for the moments given in Corollary 

2.4.1 can be used to calculate the standard error of the estimate. vVe can also derive 

an expression for the tail probability by integrating the conditional PDF of fJ given 

above. This expression, presented in the following corollary, is used to construct the 

exact confidence interval for e later in Section 2.5. 

Corollary 2.4.2. The tail probability of e is given by 

(2.4.9) 

where 

max {O, c}, 

E>O{!oo 'Y(Y; a, l)dy =loo rta)yo-ie-'dy ' 
r(c; a) 

2.5 Confidence intervals 

In this section, we discuss different methods of constructing confidence inter­

vals ( Cis) for the unknown parameter e. Based on the exact conditional distribution 

of the MLE from Theorem 2.4.1, we can construct the exact CI fore. Since the exact 
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conditional distribution of () is quite complicated, we also present the approximate CI 

for () based on the asymptotic distribution of the estimator for a large sample size. 

Finally, the parametric bootstrap method is used to construct a CI for (). 

2.5.1 Exact confidence interval 

In order to guarantee the invertibility of the pivotal quantity for the parameter 

e, we assume that the tail probability of epresented in Corollary 2.4.2 is a mono­

tonically increasing function of e. Several authors including Chen and Bhattacharya 

(1988), Gupta and Kundu (1998), Kundu and Basu (2000), Childs et al. (2003), 

Balakrishnan et al. (2007), Balakrishnan and Xie (2007a,b), and Balakrishnan et al. 

(2008) have all used this approach for constructing exact Cis in different contexts. 

Like these authors, we are unable to establish the required monotonicity in an ana­

lytical way due to the complex structure of the pivotal quantity in (2.4.9). However, 

the extensive numerical computations seem to support this monotonicity assumption 

(see Figure 2.2). 

Let us now construct the exact 100(1 - a)% CI for(). We first denote ()L and 

eu to be the lower and upper bounds of the two-sided CI for e, respectively. Then, 

by the monotonicity assumption, they are the unique solutions of the equations 

Pr [e> eobs] = ~ 

and 

Pr [{J > eobs] = 1 _ ~, 

respectively, where eobs is the bias-corrected observed value of the MLE of e. That 
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IS, eobs = {Jobs - fJ<;}s(fJ), where {Jobs is simply the observed value of the MLE of () 

and fJgbs(fJ) is the observed value of the bias B8(B) given in (2.4.7) at 0 ={Jobs. One 

remark to be made is that if one wants to be mathematically strict, {Jobs should be 

used rather than eobs in the above two equations for obtaining OL and Ou. In many 

sampling situations, however, extremely slow increase of Pr [fJ > {Jobs J with respect to 

0 does not enable us to find Ou in reasonable time and range. Hence, because of this 

empirical reason, the use of eobs is recommended in order to obtain the two-sided CI 

for 0 as this adjustment enhances the steepness of the probability function without 

deteriorating the performance of the exact CI. 

Since 0L and Ou can not be expressed in an explicit closed form, they are 

numerically obtained by solving the following two non-linear equations using some 

iterative techniques such as the bisection method, Newton-Raphson method or Brent's 

method: 

a _ ~ """"""' ~ dBL] r(.!!:..../eobs _ T .\ . d) (2.5.1)2 L L L n,J 0 \ n,J I ' ' 
d=l {n:D=d} j=O L 

a
1- - ~ """"""' ~ dBu] f (..!!:_/eobs - T . \ . d) (2.5.2)L L L n,J 0 \ n,J I ' ' 2 

d=l {n:D=d} j=O U 

where Tn,j, c~~ and r(· ;a) are as defined earlier. Note that the coefficients c~~ in 

the above two equations are functions of e. Hence, before solving for the confidence 

limits, we replace 0 in C~~ in an appropriate manner. That is, OL is substituted for 

0 in C~~ of (2.5.1) and likewise Ou for 0 in C~~ of (2.5.2). 
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2.5.2 Approximate confidence interval 

As the sample size grows, the MLE exhibits some special characteristics which 

are asymptotically optimal. First of all, under certain regularity conditions, the 

MLE is asymptotically unbiased and efficient. That is, its bias tends to zero and 

its variance achieves the Cramer-Rao lower bound as the sample size increases to 

infinity. Furthermore, its distribution approaches that of a normal with the variance 

given by the inverse of Fisher information; see Silvey (1975), and Casella and Berger 

(2002) for details. Thus, inference about the unknown parameter can be based on 

the asymptotic normality of the MLE. In this subsection, we present an approximate 

method to construct the CI fore using these properties of the MLE for large sample 

sizes. Although the exact method described in the preceding subsection is preferable, 

its computation encounters some difficulties for large samples. On the other hand, the 

approximate method provides not only the computational ease but also reasonable 

probability coverage (close to the nominal level) when the sample size is large. This 

finding is further discussed in Section 2.6. 

First, the observed Fisher information of e is given by 

d2l(B) 
dB2 

D 
{]2 

with Ui as defined in (2.2.5). Upon inverting, we obtain the asymptotic variance of 

{J as V0 = 1;;1 (B) = e2/ D. Since {J is asymptotically unbiased for e, we can then 

use (e- e) / Fo as the pivotal quantity for e to construct two-sided 100(1 - a )3 
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approximate CI for (), which is given by 

(max{0, 0- Za/2Fo}, 0+ Za/2Fo), 

where z0 ; 2 is the (1 - a/2)-th quantile of a standard normal distribution. 

2.5.3 Bootstrap confidence interval 

In this subsection, we construct the CI for e using a parametric bootstrap 

method, viz., the bias-corrected and accelerated (BCa) percentile bootstrap method; 

see Efron (1987), Hall (1988), and Efron and Tibshirani (1993) for details. Compared 

to the ordinary percentile bootstrap intervals or the Studentized-t bootstrap intervals, 

the BC a percentile bootstrap intervals are known to perform better. Before we obtain 

the BCa percentile bootstrap CI for e, the following algorithm is implemented to 

generate the bootstrap sample of size B based on the original progressively Type-I 

censored sample of size D: 

Step 1 Given the initial sample size n, the k censoring time points (i.e., iT for 

i = 1,2, ... ,k), the desired censoring scheme c* = (c;:,c;, ... ,ck_1) with ck= 

n - 2::7,:-11 c;, and the original progressively Type-I censored sample of size D, 

calculate 0, the MLE of(), from (2.2.6). 

Step 2 Generate a simple random sample of size n from exponential distribution 

with mean parameter e obtained from Step 1, and sort them in an ascending 

order. 

Step 3 Initialize i = 1 and N{ = n with N:;_ = N; = · · · = N; = 0 and ni = n2 = 

· · · = nk = 0. 
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Step 4 Count the number of the ordered sample points in the interval [(i - l)r, ir) 

and store it as ni. Let y*i = (y!, 1 , y!,2 , ... , Y!,n;) be those collected sample points 

in the given interval. 

Step 5 After taking out ni selected sample points in Step 4, further reduce the pool 

of the sample points by randomly choosing and removing ci points from the 

remaining Nt - ni points if Nt - ni > ci. Otherwise, terminate this loop and 

go to Step 7. 

Step 6 Assuming Nt-ni > ci in the previous step, the reduced sample now contains 

Nt+i = Nt-ni-ci ordered points. Unless i = k, increment i by 1 (i.e., i = i+l) 

and repeat the procedure from Step 4. 

Step 	7 Based on the simulated progressively Type-I censored observations y* = 

(y* 1 , y* 2 , ... , y\), calculate the new MLE of(), denoted by f)*, from (2.2.6). 

Step 	8 Repeat Steps 2-7 B times. Then, arrange all the values of ()* in an ascending 

order to obtain the bootstrap sample of 

{ O*[l] 	 < 0*[2] < ... < O*[B]}. 

With the bootstrap sample generated as above, we now obtain the two-sided 

100(1 - 0:)% BCa percentile bootstrap CI for() as 

( O*(aB], t}*[f3B]) , 

where 

;i:. (A 	 + Zo ­ Za/2 )
0: = '¥ Zo 

1 - a(zo - Za/2) 
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and 

f3 = <I! (z + zo + Za/2 ) .
0 1 - a(zo + za.;2) ' 

see Efron and Tibshirani (1993). Here, <I!(·) denotes the CDF of the standard normal 

distribution and the value of the bias-correction z0 is given by 

l::B=l 1(e*[J] < e))
A ­ <I!-1 ( Jzo - ----B----'- ' 

where <P- 1 (-) denotes the inverse of the standard normal CDF and J( ·) is an indicator 

function that takes on the value 1 if the argument is true and 0 otherwise. A good 

estimate of the acceleration factor a is suggested to be 

where e(j) is the MLE of() based on the original progressively Type-I censored sample 

with the j-th observation deleted (i.e., the jackknife estimate) for j = 1, 2, ... , D and 

D 

{JO = 2_ '"" eUJ
D~ . 

j=l 

2.6 Numerical study 

In order to evaluate the performance of all the different methods of construct­

ing Cis discussed in Section 2.5, a Monte Carlo simulation study was carried out and 

the results are detailed in this section. In particular, the study is to examine a see­

nario in which a practitioner has to deal with small sample sizes and high censoring 

proportions, bringing the life-test to termination earlier than scheduled with a high 
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probability. Hence, the value of the mean parameter was chosen to be () = 6.0 with 

the initial sample size n being 10 and 20. For the purpose of illustration, we also con­

sidered several different choices for the uniform interval duration T with the number 

of the planned censoring points k ranging from 2 to 4. For fixed n and k, the pre-fixed 

Type-I PC scheme was determined by a given censoring proportion 0 < 7r* < 1 so 

that c: = n7r* for i = 1, ... , k - 1. Based on 1000 Monte Carlo simulations with 

B = 1000 bootstrap replications, the true coverage probabilities of the 903, 953 and 

993 Cis for() were then determined. The results are presented in Tables 2.1-2.5 along 

with the estimated mean widths and bounds of the Cis from this simulation. 

Although the crude approximate method based on the asymptotic normality 

of the MLE is quick and easy, one major problem associated with it is that it does not 

necessarily take the parameter space into account when constructing the CI. There 

is no built-in procedure to prevent this and as a result, the lower bounds of the 

approximate Cis frequently hit below zero for small sample sizes or for high levels of 

confidence even though the parameter () can take only a positive value in this setting. 

In order to turn such intervals into sensible ones, the negative lower bounds were all 

replaced by zero in Tables 2.3-2.5. 

From Table 2.1, we clearly see that the exact method performs very well as its 

Cis attain the actual coverage probabilities close to the nominal levels. Similar be­

havior is also observed for the Cis based on the BCa bootstrap method. However, the 

performance of the approximate Cis is unsatisfactory for a small sample size as their 

actual coverage probabilities are well below the specified nominal levels in most cases. 

A possible explanation for this may rely on the high degree of skewness for the exact 

distribution of fJ and hence, a much larger sample size is required to justify the use 
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Table 2.1: Estimated Coverage Probabilities (in 3) 


based on 1000 Simulations with e= 6.0 and B = 1000 


Nominal CL 903 953 993 


n k 7!"* 

2 603 

10 3 303 

4 203 

2 803 

20 3 403 

4 253 

T Exact Approx Boot Exact Approx Boot Exact 

3 90.4 85.8 90.6 95.4 87.5 95.8 99.4 

4 91.6 87.9 91.2 95.4 90.3 94.4 99.6 

5 91.2 89.2 87.8 97.2 90.8 94.6 99.8 

3 92.6 84.7 90.6 97.4 89.1 94.8 99.6 

4 91.8 87.9 88.6 96.4 88.2 91.8 99.6 

5 92.8 86.4 88.6 96.0 91.6 95.4 99.0 

3 90.4 87.7 89.0 97.0 89.6 96.8 98.8 

4 92.2 86.5 89.4 95.8 90.9 93.8 99.6 

5 92.0 85.5 86.6 97.0 89.7 93.8 99.4 

3 91.8 90.5 90.0 95.2 92.0 92.6 99.0 

4 91.2 89.4 89.2 95.8 91.0 95.0 99.6 

5 90.2 90.7 89.8 95.8 92.8 93.8 99.6 

3 91.8 89.4 89.0 97.0 90.l 95.2 99.0 

4 91.0 90.6 91.0 95.2 93.4 94.4 99.0 

5 91.4 89.8 91.2 96.0 93.3 95.0 99.6 

3 90.2 89.0 90.4 95.4 92.8 95.4 99.4 

4 90.4 88.8 89.0 96.4 91.9 93.8 99.2 

5 90.6 88.7 90.6 95.2 91.1 93.2 99.4 

Approx Boot 

94.1 98.2 

95.2 99.0 

95.1 98.2 

94.8 99.2 

95.3 98.6 

94.7 98.4 

94.1 98.2 

93.9 98.6 

94.6 99.2 

96.2 98.4 

97.1 99.2 

97.1 98.4 

96.l 99.2 

94.6 98.6 

96.4 98.4 

96.8 99.0 

96.5 99.0 

96.l 99.4 
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Table 2.2: Average Widths of Confidence Intervals 


based on 1000 Simulations with e= 6.0 and B = 1000 


Nominal CL 903 953 993 


n k 7r* 

2 603 

10 3 303 

4 203 

2 803 

20 3 403 

4 253 

T Exact Approx Boot Exact Approx Boot Exact 

3 9.604 13.848 16.277 12.812 14.626 20.881 20.451 

4 9.813 11.202 15.555 12.832 13.217 20.281 17.895 

5 9.508 9.743 12.943 11.957 12.006 16.158 18.459 

3 9.863 10.025 14.791 13.008 12.187 19.112 18.515 

4 9.516 9.402 12.539 12.169 11.237 16.275 18.605 

5 9.042 8.488 10.966 11.503 10.313 13.878 17.428 

3 9.453 9.186 13. 758 12.120 11.154 17.933 18.875 

4 9.112 8.712 11.092 11.737 10.308 13.828 17.826 

5 8.672 8.090 9.790 10.950 9.847 12.610 16.558 

3 7.685 8.694 10.730 9.520 10.533 15.556 13.567 

4 6.885 7.241 8.618 8.498 8.612 11.688 12.381 

5 6.517 6.664 7.773 8.101 7.740 10.164 11.227 

3 7.272 7.216 8.840 8.854 8.520 11.229 12.888 

4 6.784 6.542 7.303 8.422 7.647 9.583 12.461 

5 6.313 6.171 6.875 7.823 7.147 8.451 11.023 

3 6.489 6.515 7.520 8.185 7.726 9.450 12.517 

4 6.383 6.058 6.722 7.630 7.027 8.536 11.410 

5 5.924 5.556 6.237 7.466 6.691 7.899 10.428 

Approx Boot 

18.323 29.182 

15.746 29.913 

14.316 27.248 

15.402 29.664 

14.061 27.701 

13.006 23.304 

14.095 27.956 

12.844 22.848 

12.498 18.296 

13.108 24.835 

11.398 19.605 

10.149 15.186 

10.940 18.996 

10.019 15.747 

9.585 13.300 

10.231 15.775 

9.188 12.371 

8.853 10.989 
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Table 2.3: Average Bounds of 903 Confidence Intervals 

based on 1000 Simulations with()= 6.0 and B = 1000 

7r* T Exact CI Approximate CI n k BCa Bootstrap CI J 
(2.451, 12.055) (0.878, 14.726) 3 (3.691, 19.968) 

(2.801, 12.614) 2 4 (1.333, 12.536) (3.372, 18.927) 603 

(3.032, 12.540) (1.708, 11.451) 5 (3.361, 16.304) 

(2.913, 12. 776) (1.484, 11.510) (3.492, 18.283) 3 

4 (3.134, 12.651) (1.853, 11.254) 10 3 303 (3.407, 15.946) 

4 203 

2 803 

20 3 403 

4 253 

5 

3 

4 

5 

3 

4 

5 

3 

4 

5 

3 

4 

5 

(3.249, 12.291) 

(3.075, 12.528) 

(3.268, 12.380) 

(3.340, 12.012) 

(3.331, 11.016) 

(3.561, 10.447) 

(3.763, 10.281) 

(3.636, 10.908) 

(3.805, 10.589) 

(3.846, 10.159) 

(3.669, 10.157) 

(3.940, 10.323) 

(3.946, 9.870) 

(2.068, 10.556) 

(1.820, 11.006) 

(2.119, 10.832) 

(2.263, 10.352) 

(2.397, 11.092) 

(2.829, 10.070) 

(3.111, 9.776) 

(2.815, 10.030) 

(3.068, 9.610) 

(3.231, 9.402) 

(3.057, 9.572) 

(3.255, 9.313) 

(3.310, 8.866) 

(3.463, 14.430) 

(3.534, 17.292) 

(3.506, 14.597) 

(3.472, 13.262) 

(3. 708, 14.438) 

(3.828, 12.445) 

(3.954, 11.727) 

(3.824, 12.664) 

(3.857, 11.160) 

( 4.022, 10.897) 

(3.909, 11.429) 

(3.973, 10.695) 

( 4.003, 10.240) 
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Table 2.4: Average Bounds of 953 Confidence Intervals 

based on 1000 Simulations with () = 6.0 and B = 1000 

[n 71"* BCa Bootstrap CIApproximate CIExact CITk 

(2.844, 23.725) (0.262, 14.888) (2.192, 15.004) 3 

(2.995, 23.276) (0.531, 13.748) (2.512, 15.344) 42 60% 

(3.021, 19.179) (0.821, 12.827) (2.692, 14.649) 5 

(2.834, 21.946) (2.610, 15.618) (0.634, 12.822) 3 

(2.933, 19.208) (0.988, 12.225) (2.826, 14.995) 430%10 3 

(3.035, 16.913) (2.926, 14.429) (1.274, 11.587) 5 

(3.059, 20.992) (0.954, 12.108) (2.782, 14.902) 3 

(3.010, 16.838) (2.971, 14.707) (1.276, 11.583) 420%4 

(3.095, 15.704) (3.028, 13.978) (1.490, 11.336) 5 

(3.564, 19.120) (1.572, 12.105) (2.992, 12.513) 3 

(3.582, 15.270) (3.248, 11.746) (2.121, 10.733) 42 80% 

(3.707, 13.871) (2.468, 10.208) (3.493, 11.593) 5 

(3.475, 14.704) (2.109, 10.629) (3.298, 12.152) 3 

(3.606, 13.189) (3.511, 11.933) (2.442, 10.089) 440%20 3 

(3.673, 12.124) (2.595, 9.742) (3.572, 11.395) 5 

(2.422, 10.148) (3.587, 13.037) (3.422, 11.607) 3 

(3.700, 12.236) (2.641, 9.668) 25% 4 (3.570, 11.200) 4 

(3.766, 11.665) (3.739, 11.206) (2.794, 9.484) 5 
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Table 2.5: Average Bounds of 99% Confidence Intervals 

based on 1000 Simulations with e= 6.0 and B = 1000 

n k 7r* T Exact CI Approximate CI BCa Bootstrap CI 

3 (1.711, 22.162) (0.005, 18.328) (2.213, 31.395) 

2 603 4 (1.935, 19.830) (0.021, 15.767) (2.265, 32.178) 

5 (2.193, 20.652) (0.062, 14.379) (2.233, 29.480) 

3 (2.019, 20.534) (0.013, 15.415) (2.072, 31.736) 

10 3 303 4 (2.289, 20.893) (0.040, 14.101) (2.278, 29.979) 

5 (2.400, 19.828) (0.094, 13.100) (2.365, 25.669) 

3 (2.258, 21.134) (0.034, 14.129) (2.299, 30.255) . 

4 203 4 (2.435, 20.261) (0.102, 12.947) (2.360, 25.208) 

5 (2.506, 19.065) (0.191, 12.688) (2.368, 20.664) 

3 (2.493, 16.061) (0.434, 13.542) (2.733, 27.568) 

2 803 4 (2. 779, 15.160) (0.872, 12.270) (2.959, 22.564) 

5 (2.922, 14.149) (1.264, 11.413) (3.001, 18.188) 

3 (2.777, 15.665) (0.858, 11.798) (2.949, 21.945) 

20 3 403 4 (3.047, 15.508) (1.229, 11.248) (3.118, 18.865) 

5 (3.045, 14.068) (1.478, 11.063) (3.154, 16.455) 

3 (3.033, 15.550) (1.223, 11.454) (3.072, 18.846) 

4 253 4 (3.175, 14.585) (1.538, 10. 726) (3.090, 15.461) 

5 (3.198, 13.626) (1. 750, 10.603) (3.116, 14.105) 
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of the asymptotic approach to construct Cls. Moreover, from Table 2.2, we observe 

that the widths of the Cis obtained from the exact method are quite comparable to 

those from the approximate method. On the other hand, the parametric bootstrap 

method exhibits unduly large interval widths compared to the other methods in gen­

eral. Therefore, among the different approaches we have considered for constructing 

Cls, the performance of the exact method is overall the best with respect to both the 

interval widths and probability coverages. 

Nevertheless, we realize from both Tables 2.1 and 2.2 that a larger sample size 

eventually improves the probability coverages and widths for both the approximate 

and BCa bootstrap Cis. As the sample size grows, the large computational time 

as well as the unstable precision becomes a problematic issue for constructing Cis 

by the exact method. Hence, based on a more comprehensive simulation study, we 

recommend the use of the bootstrap approach to construct the Cis for ewhen the 

initial sample size is considerably large since it offers computational feasibility and 

also performs quite well in terms of probability coverages for large sample sizes (e.g., 

n 2: 30). 

2. 7 Illustrative example 

In order to illustrate the methods of inference described in the preceding 

sections, a progressively Type-I censored sample was generated from the complete 

dataset presented in Nelson (1990, p.129). The original dataset contains n = 19 

observations on the times (in minutes) to breakdown of insulating fluid in a test 
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conducted at the electrical stress of 36 kilovolts. The test employed two parallel 

plate electrodes of a certain area and gap with the constant electrode geometry. We 

considered k = 5 equi-spaced censoring time points and the uniform interval duration 

of T = 2 minutes in order to generate the desired sample. The pre-fixed censoring 

scheme was chosen to be c* = (3, 0, 3, 5) for this life-test. From the initial sample 

size of n = 19, we observed a total of D = 8 failure times (i.e., overall 583 right 

censoring) and they are presented in Table 2.6 along with the realized values of other 

essential variables. 

It is noted from Table 2.6 that although it was planned to run this life-test 

until the end of the 5th interval, it was actually terminated earlier than scheduled 

since there were no more units remaining on test after the 4th censoring took place. 

From the dataset given above, the observed MLE of eis calculated from (2.2.6) and it 

is found to be !Jobs = 10.861. Using this estimate in place of e, the observed values of 

the bias, standard error and mean squared error of iJ are obtained from (2.4.6)-(2.4.8) 

to be 

0.946, 


4.910, 

-obs A 

lvfSE0 (e) 25.004, 

{Jobs _respectively. Hence, the bias-corrected observed value of iJ is simply (jobs 

The Cis for eare also presented in Table 2. 7 using all three methods described 

in Section 2.5. Since the exact Cis for erequire the monotonicity of the tail probabil­

ity function of e, we provide a numerical justification of this assumption by plotting 
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Table 2.6: Progressively Type-I Censored Sample from n = 19 


Breakdown Times (minutes) of Insulating Fluid at 36 kV 


in Nelson (1990, p.129) with k = 5, T = 2 and c* = (3, 0, 3, 5) 


'/, Ni Failure Times (Yi) ni Ci ui 

1 19 0.19, 0. 78, 0.96, 1.31 4 3 33.24 

2 12 2.78 1 0 22.78 

3 11 4.67, 4.85 2 3 19.52 

4 6 7.35 1 5 11.35 

5 0 NA 0 0 0.00 

Total I D = s i 11 II s6.89 I 

Table 2.7: Interval Estimation for ebased on the Progressively Type-I 


Censored Insulating Fluid Breakdown Data in Table 2.6 with B = 1000 


CL Exact CI Approximate CI BCa Bootstrap CI 

90% (5.962, 18.379) (4.545, 17.178) (6.580, 22. 777) 

953 (5.458, 20.983) (3.335, 18.388) (5.886, 29.240) 

99% ( 4.626, 27.592) (0.970, 20.753) (5.056, 42.594) 
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Figure 2.2: Tail Probability Plot of fJ, Pr [e > t)obsJ, with respect to() 

and Exact 903 Confidence Interval for () from the Progressively 

Type-I Censored Insulating Fluid Breakdown Data in Table 2.6 
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the tail probability with the bias-corrected observed value of the MLE from the sam­

ple. From Figure 2.2, it is evident that the plot shows the monotonically increasing 

behavior of the tail probability with respect to the unknown parameter e. In addition, 

the two horizontal lines corresponding to the values of a./2 and 1 - a./2 for a.= 0.10 

are overlaid in Figure 2.2 to illustrate how the exact Cis are constructed by inverting 

the tail probability of e. For example, the values of efrom the two intersecting points 

are the unique solutions of Eqs. (2.5.1) and (2.5.2), respectively, and together they 

provide the exact 903 CI for e. 

From Table 2.7, we observe that the exact Cis are quite comparable to the Cis 

obtained by the approximate method while the BCa bootstrap Cis are much wider in 

all cases. This empirically justifies the superiority of the Cis by the exact method since 

they provide better coverage probabilities, closer to the nominal levels than those of 

the approximate Cis for similar interval widths (see Table 2.1). Moreover, compared 

to the BCa bootstrap Cis, the exact Cis have narrower interval widths giving higher 

specificity even though both perform equally well in terms of probability coverages 

(see Table 2.2). 

2.8 Summary and conclusions 

In this chapter, we have discussed the progressively Type-I censored life-test 

with uniformly spaced k intervals when the lifetimes of the test units are from expo­

nential distribution. For small sample sizes, we have proposed a practical modification 

to the censoring scheme for a feasible test under Type-I PC. We have then derived 
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the MLE of the unknown mean parameter e and its exact conditional distribution 

through the use of the CMGF. We have also proposed several different procedures 

for constructing Cis for e. We have then conducted a simulation study to assess the 

performance of all these procedures and a numerical example has been presented to 

illustrate all the methods of inference developed in this chapter. Based on the results 

of a more comprehensive simulation study, our recommendation for constructing Cis 

for e is to use the exact method whenever possible, especially in the case of small 

sample sizes (e.g., n < 30) since the other two methods are unsatisfactory in terms of 

probability coverages or widths. For larger sample sizes, however, the BCa percentile 

bootstrap method is more appropriate due to its computational ease as well as for its 

probability coverages being close to the nominal levels. 
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Chapter 3 

Optimal Step-stress Testing for 

Progressively Type-I Censored 

Data from Exponential 

Distribution 

3.1 Introduction and motivation 

We have introduced the general idea of ALT and its special class known as the 

step-stress testing earlier in Section 1.1. During the past two decades, the problem of 

optimal scheduling of the step-stress sampling scheme has attracted great attention 

in the reliability literature. Miller and Nelson (1983) initiated research in this area by 

assuming that the lifetimes are exponentially distributed and complete failure data 
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are available under two stress levels (i.e., the case of a simple step-stress model). The 

basic model used was the one proposed by Sedyakin (1966), which is referred to in 

the literature as the cumulative exposure model. Bai, Kim and Lee (1989) extended 

the results of Miller and Nelson (1983) to the case of time-censored data, and the 

case of three stress levels was dealt by Khamis and Higgins (1996). For the general 

k-level, M-variable case, some numerical investigation was undertaken by Khamis 

(1997). Khamis and Higgins (1998) also considered the problem under a Weibull 

distribution for the lifetimes of units subjected to stress. Yeo and Tang (1999) inves­

tigated the optimality problem in the situation when a target acceleration factor is 

pre-specified. Inferential issues with the cumulative exposure model under exponen­

tiality were discussed by Xiong (1998) and Xiong and Milliken (1999). Balakrishnan 

et al. (2007) derived the exact conditional distributions of the MLEs under the as­

sumption of exponential failures and Type-II censoring. Recently, Gouno, Sen and 

Balakrishnan (2004) tackled the problem of determining the optimal stress change 

points for a general k-level model under the large-sample case when the available 

data are progressively Type-I censored; see also Han et al. (2006) for some related 

comments. 

The main focus of this chapter is to build a feasible ALT model combined 

with PC for a small to moderate sample size, and then to investigate the choice of 

optimal change points of the stress levels with or without the condition that the 

life-test proceeds to the last stage of stress. A practical modification is suggested to 

the asymptotic model discussed by Gouno, Sen and Balakrishnan (2004) for a feasible 

step-stress analysis under a PC scheme with an arbitrary number of stress levels. Here, 

we consider the equi-spaced step with T denoting the duration of each testing stage. 
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Since we must decide upon the length of an inspection interval, this setup for a k-step­

stress test seems reasonable and pragmatic. Using three different optimality criteria 

(viz., variance, determinant and trace), the efficiency of the conditional approach to 

the optimality problem is also discussed, and a comparison of the numerical results 

from the asymptotic and the modified models is presented as well. 

3.2 Model description and MLEs 

Compared to the conventional censoring, PC provides more flexibility to the 

experimenter in the design stage by allowing the removal of test units at non-terminal 

time points and is therefore highly efficient and effective in utilizing the available 

resources. In order to describe the step-stress testing procedure implemented with a 

popular form of PC, progressive Type-I censoring, let us first define x1 < x2 < ... < 

Xk to be the ordered stress levels to be used in the test. Then, for i = 1, 2, ... , k, let ni 

denote the number of units failed at stress level Xi (i.e., in time interval [(i- l)r, iT)) 

and Yi,l denote the l-th ordered failure time of ni units at xi, l = 1, 2, ... , ni, while 

ci denotes the number of units censored at time fr. Furthermore, let Ni denote the 

number of units operating and remaining on test at the start of stress level xi (viz., 

Ni = n - I:~:; nJ - I:~:; CJ) . 

Under this setup, a step-stress test with an equal step duration T proceeds as 

follows. A total of N1 =n test units is initially placed at stress level x1 and tested 

until time T at which point the stress is changed to level x2 and c1 live items are ran­

domly withdrawn from the test. The test is continued on N2 = n - n 1 - c1 units until 
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time 2r, when the stress is changed to level x3 and c2 items are withdrawn from the 

test, and so on. Finally, at time kr, all the surviving items are withdrawn, thereby 

terminating the life-test. Note that since n _ 2::7=1 ( ni + ci), the number of surviving 

items at time kr is ck = n - I:7=l ni - 2=7~11 ci = Nk - nk. Obviously, when there is 

no intermediate censoring (viz., c1 = c2 = · · · = ck-l = 0), this situation corresponds 

to the k-level step-stress testing under Type-I right censoring as a special case. Now, 

the following assumptions are crucial for constructing subsequent step-stress models. 

Assumptions 

(i) A cumulative exposure model holds; 

(ii) 	 For any stress level, the lifetime of a test unit follows an exponential distribution; 

(iii) At stress level 	xi, the mean time to failure (MTTF) of a test unit, ei, is a 

log-linear function of stress given by 

(3.2.1) 


where the regression parameters a and (3 are unknown and need to be estimated. 

Under the assumptions (i) and (ii), the PDF of a test unit is 

i-1 

f(t) 	 = fi(t - (i - l)r) IT Sj(r)
j=l 

(i -	 1)r :::; t :::; iT for i = 1, 2, ... , k - 1 
if { 

(k-	l)r:::; t < oo for i = k 

(3.2.2) 
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where fi(t) = 2_ exp (- !_). The corresponding CDF is then given byei ei 

F(t) 	 = I - [[t S,(r)] S,(t - (i - l)r) 

for i 	= 1, 2, ... , k - 1if { 	 (i - 1)r ::; t ::; iT 

(k- l)r::; t < oo for i = k 

(3.2.3) 

where 

As in Chapter 2, no notational distinction will be made in this chapter be­

tween the random variables and their corresponding realizations. Also, we adopt the 

· h '\"'m-l O d Tim-l 1 Th . (3 2 2) dusua1 convent10ns t at ~j=m aj an j=m aj - . en, usmg . . an 

(3.2.3), the joint probability density function (JPDF) of n = (n1 , n 2 , ... , nk) and 

Y = (Y1, Y2, ... , Yk) with Yi= (Yi,1, Yi,2, ... , Yi,nJ is obtained as 

k 	 N· 1 U ) (3.2.4)l [ k l ( k!J(y, n) = [ II (N ~·n·)! II Bin; exp - Li ' 
i=l l l i=l 	 i=l l 

where 
n; 

ui = 	 L(Yi,j - (i - l)r) +(Ni - ni)T, i=l,2, ... ,k. (3.2.5) 
j=l 

Note that ui in (3.2.5) is precisely the Total Time on Test statistic at stress level Xi· 

Now, using (3.2.4) and assumption (iii), the log-likelihood function of (a, f3) can be 

written as 

k k k 

z(a, f3) =-a :L ni - f3 :L nixi - :Lui exp[-(a+ f3xi)J. (3.2.6) 
i=l i=l i=l 

45 




Ph.D. Thesis - D. Han 	 McMaster - Mathematics and Statistics 

After differentiating l(a., /3) in (3.2.6) with respect to a and /3, we obtain the likelihood 

equations as 

a k k 

o= aa. Z(a., /3) - I: ni +I: ui exp[-(a+ j3xi)L 
i=l i=l 

a k k 

0 = 8j3l(a.,j3) - L nixi + L Uixi exp[-(a+ /3xi)]. 
i=l i=l 

The MLEs & and /3 are then obtained as simultaneous solutions to the following two 

equations: 

As shown above, & and /3 are non-linear functions of random quantities, which 

make it impossible to find their exact marginal/joint distributions for exact inference. 

Thus, statistical inference with these MLEs are based on the asymptotic distributional 

result that the vector (a, /3) is approximately distributed as a bivariate normal with 

mean vector (a.,/3) and variance-covariance matrix [In(a.,/3)]- 1 , where ln(a.,/3) is the 

Fisher information. 

3.3 	 k-level step-stress test under progressive 

censoring with small samples 

As addressed in Chapter 2, prefixing c = (c1 , c2 , ... , ck_i) in the model bears 

an inherent mathematical lapse as there is a positive probability that all the test 
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units cease before reaching the planned k-th stress level, failing to fully apply the pre­

determined PC scheme c. In Gouno, Sen and Balakrishnan (2004), a large sample 

size, small global censoring proportions, and a small number of stress levels were 

assumed in order to guard enough surviving items to be censored at the end of each 

stress level. As a result of these assumptions, we had to restrict our search for optimal 

r in the region defined by 

i = 2, 3, ... , k}, 

where 

j 

with Gj(r) = IJ Si(r) 
i=l 

and 7rj = ci/n denoting the overall censoring proportion at stress level Xj, J 

1,2, ... ,k- l. 

Although C is interpreted as a region to ensure the availability of sufficient 7 

items at the end of each stage to censor from, a careful look reveals that it only does 

that on average but not for each sample. This is an inevitable problem associated 

with the basic protocol of step-stress testing. Even in the case of a simple step-

stress test, the assigned n test units could be all exhausted before the experiment 

reaches the second stress level x 2 , resulting in an early termination of the life-test. 

Besides, in a reliability experiment, the sample size is usually small and there might 

be severe censoring due to various reasons such as budgetary constraints and facility 

requirements. Under such circumstances, the assumptions made by Gouno, Sen and 

Balakrishnan (2004) are violated and therefore, a modification is required to their 

proposed model so that a feasible PC scheme can be guaranteed. Apart from the one 

suggested in Chapter 2, another modification which can be entertained in practice is 
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to decide on a fixed proportion of unfailed items to be removed at the end of each 

stage, rather than to decide on a global proportion over the initial sample size. Again, 

since the number of live units at the end of each stage before censoring takes place is 

random, the proposed change essentially makes the number of progressively censored 

units also random. 

In order to revise the model according to the newly proposed modification, we 

first define a vector of proportions 

* ( * * * )7T' = 7r1' 7r2' ... ' 7rk-1 ' 

where 0 :::; 7ri < 1 for i = 1, 2, ... , k - 1. Note that 7T'* is composed of fixed constants 

defining the proportion of surviving items to be censored at each stress transition. 

Thus, 7ri = cifn, the overall censoring proportion at the i-th stage defined over the 

total number of testing units is distinguished from 7ri. Since all the remaining items 

are withdrawn from the test at the end of stress level xk, one could also state 7r'k = 1. 

In this setting, the number of censored items at the end of stress level xi is 

for i = 1,2, .. . ,k- l, (3.3.1) 

where T(·) is a discretizing function of one's choice, mapping its argument to a non­

negative integer. T(·) could be one of round(·), floor(·), ceiling(·) and trunc(·), for 

example. Since 0:::; 7ri < 1, we have 0:::; ci :::; Ni - ni for i = 1, 2, ... , k - 1. When 

ci = Ni - ni 2:: 0, the life-test terminates at the end of the i*-th stage, where i* is the 

minimum of such i's satisfying ci = Ni - ni. Consequently, this results in Ni*+l = 

since Ni+1 = Ni - ni - Ci· Hence, under the proposed modification, we allow the 

life-test to terminate before reaching the last stress level Xk· We should also point 
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out that c = (cI, c2, ... , Ck-I) is random as well as 7r = c/n = (7rI, 7r2, ... , 7rk-I) under 

this setup. When 7r* = (0, 0, ... , 0) =Ok-I, we have c =Ok-I and 7r =Ok-I, and it is 

clear that this case corresponds to the case of a k-level step-stress testing under Type­

! right censoring. In addition, if Ck> 0 or nk > 0 (equivalently, Nk = nk +ck> 0), it 

implies that the life-test has proceeded onto the last stress level Xk· 

The definition of ci in (3.3.1) nevertheless complicates the derivation of dis­

tributions of associated random quantities. For simplicity, we shall assume in all 

subsequent derivations that 

for i = 1, 2, ... , k - 1, 	 (3.3.2) 

as T((Ni-ni)?ri) ~ (Ni-ni)1r';. Then, by using the following properties of the counts 

and order statistics, we can derive the expectation of Ni and also obtain the Fisher 

information matrix In(a, ,8). Proofs of all the subsequent lemmas and theorems are 

presented in Appendix B. 

Properties : 

(1) The random variable nI has a binomial distribution with parameters ( n, FI (T)). 

For i = 2, 3, ... , k, given nI, n 2 , ... , ni-I, the random variable ni has a binomial 

distribution with parameters (Ni, Fi (T)). 

(2) 	 Given nI, n 2 , •.. , ni, the random variables (Yi,j - (i - l)r), j = 1, 2, ... , ni, are 

distributed jointly as order statistics from a random sample of size ni from a 

right-truncated exponential distribution with PDF fi, 7 (z) = ~~~~ for 0 :S z :ST 

and i = 1, 2, ... , k. 
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Lemma 	3.3.1. For i = 1, 2, ... , k, 

i-1 

E[Ni] = 	 n II S1(r)(l - 7rj). (3.3.3) 
j=l 

Theorem 3.3.1. Under the proposed modification, the Fisher information matrix is 

i=l i=l (3.3.4)In(a, /3) 	= n k k

L A(r)xi LAi(r)x: 
i=l i=l 

where 
i-1 

Ai(r) = 	 Fi(r) II S1(r)(l - 7rj). (3.3.5) 
j=l 

3.4 	 Optimality criteria and existence of 

optimal stress change points 

In this section, we define different optimality criteria for determining an op­

timal stress duration r. These objective functions are purely based on the Fisher 

information matrix In (a, /3) derived in the preceding section. Unlike Ai (T) in Gouno, 

Sen and Balakrishnan (2004), Ai(r) in (3.3.5) is positive for all r > 0. This, in turn, 

eliminates any disconcerting anomalies and ensures a positive determinant of In(a, f3) 

as well as a positive variance function. Since the censoring is performed based on 

the number of surviving units at the end of each stage, the case of censoring beyond 

what is available on test is completely avoided. Therefore, there is no restriction on 

the search region for the optimal r in this case (i.e., Cr= {r: r > O}). 
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3.4.1 C-optimality 

In an ALT experiment, researchers often wish to estimate the parameters of 

interest with maximum precision and minimum variability. In the step-stress setting 

under consideration here, such a parameter of interest is the mean lifetime of a unit 

at the use-condition (viz., 80 ). For this purpose, we consider an objective function 

from (3.3.4) as 

</>(T) - n AVar(log00 ) = n AVar(& + JJx0 ) 

- n (1,x0)1~ 1 (a,,B)(:J 

2 L
k 

Ai(T)(xi - xo) 2 
i=l (3.4.1)

k k

LL Ai(T)Aj(T)(xi - xi)2 
i=l j=l 

where AVar stands for asymptotic variance and x 0 is the normal use-stress. The C-

optimal T (viz., Tc) is the one that minimizes </>(T) in (3.4.1). In the case of k = 2 

(i.e., the case of a simple step-stress test), the objective function in (3.4.1) under the 

C-optimality can be shown to reduce to 

Ai(T)(x1 - xo)2+ A2(T)(x2 - xo)2 
</>(T) = 

Ai(T)A2(T)(x2 - x 1 ) 2 

(1 + ~) 2 e---+-- (3.4.2)
A1(T) A2(T)' 

Theorem 3.4.1. In the case of a simple step-stress test under progressive Type-I 

censoring, there exists an optimal step duration Tc which is the unique solution of the 

equation </>'(T) = 0. 

51 




Ph.D. Thesis - D. Han McMaster - Mathematics and Statistics 

3.4.2 D-optimality 

Another optimality criterion often used in planning ALT is based on the 

determinant of the Fisher information matrix, which is the same as the recipro­

cal of the determinant of the asymptotic variance-covariance matrix. Note that the 

overall volume of the asymptotic joint confidence region of (a, /3) is proportional to 

II;;1 (a, /3) 1112 at a fixed confidence level. In other words, it is inversely proportional 

to !In (a, /3) I112 , the square root of the determinant of In (a, /3). Consequently, a larger 

value of !In (a, /3) I would correspond to a smaller asymptotic joint confidence ellipsoid 

of (a, /3), and thus a higher joint precision of the estimators of a and /3. Motivated 

by this, our second objective function is simply given by 

8(7) n-2 IIn(o., /3)1 
1 k k 

2LL Ai(T)Aj(T)(xi - xj) 2• (3.4.3) 
i=l j=l 

The D-optimal T (viz., Tjj) is obtained by maximizing (3.4.3) for the maximal joint 

precision of (&,fl). For k = 2, the objective function (3.4.3) under the D-optimality 

reduces to 

(3.4.4) 


Theorem 3.4.2. In the case of a simple step-stress test under progressive Type­

! censoring, the D-optimal stress change point Tjj is the solution of A~ (T)A2 ( T) + 
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3.4.3 A-optimality 

Another optimality criterion considered in our study is based on the sum of 

marginal Fisher information terms of the parameters of the model. It is identical to 

the sum of the diagonal elements, that is, trace of In(o:, .8). Like the D-optimality, 

the A-optimality criterion is a general measure of the size of the Fisher information 

In(o:, /3). The A-optimal T (viz., TA.) maximizes the objective function defined by 

1 
a(T) = -tr(In(o:, /3))

n 
k k k 

- LAi(T) + LAi(T)x; = LAi(T)(l +x;). (3.4.5) 
i=l i=l i=l 

In the case of the simple step-stress test (k = 2), the objective function in (3.4.5) 

under the A-optimality simply becomes 

(3.4.6) 


Theorem 3.4.3. For the simple step-stress test under progressive Type-I censoring, 

the A-optimal stress change point is 

A 1 +xiwhere Q1 = (1 - 7ri)(l + x§)' 

x2 - x2 
and it exists when 2 

2
1 > 7r~. Otherwise, TA. does not exist. 

1 + x 2 
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3.5 	 Conditional analysis of k-step-stress test 

under progressive censoring 

As mentioned earlier, all the distributional results in Gouno, Sen and Balakr­

ishnan (2004) have been established under the assumption of large n, small 7r/s and 

small k in order to ensure sufficient items left for censoring at every stress change. 

The assumption is actually equivalent to the life-test terminating at the very last 

stress level Xk· In that respect, the distributional properties and analysis carried out 

by these authors should be regarded as conditional ones, subject to that assumption. 

Conditional analysis is particularly useful as we deal with a finite sample size because 

the assumption of an infinite sample size is not a practical one. 

In this section, we adopt the notation and intermediate results from Sections 

3.2 and 3.3, and formulate the distributional results required to tackle the problem 

of selecting an optimal stress duration using the conditional approach. Since the 

probability of premature termination of a life-test with a small sample size is much 

greater than the one with a large sample size, the derivation of the distributional 

results for a finite sample case is based on the condition that the planned censoring 

scheme is fully applied to the test. That is, there are enough testing units for censoring 

at each stress change. This condition is translated into the set { n : N2 > 0, N3 > 

0, ... , Nk > O}, where { n : Ni > O} defines a set of all the possible values n = 

(n1, n 2, ... , nk) can take on satisfying the condition Ni > 0 (i.e., successful censoring 

at time (i - l)T for i = 2, 3, ... , k). As we find that 

{n: Nk > O} c {n: Nk-i > O} c · · · c {n: N1 - n > O} = {n}, 
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the condition simply yields {n: N2 > 0, N3 > 0, ... , Nk > O} = {n: Nk > 0}. This 

proves that the condition of successful censoring at every stress level is equivalent to 

the condition of the test proceeding to the last stress level xk. The probability of 

Nk > 0 is then easily obtained from the following lemma. 

Lemma 3.5.1. For i = 1, 2, ... , k - 1, 

(3.5.1) 


where 

for i = 1, 2, ... , k - 1 
(3.5.2) 

for i = k 

Corollary 3.5.1. Fork stress levels, the probability of a life-test proceeding to stress 

level xk is 

(3.5.3) 

Proof. Since Nk ~ 0, we obtain from Lemma 3.5.1 that 

With the above results, the following lemma gives an expression for the ex­

pected number of failures observed at each stress level, conditioned on Nk > 0. For 

this purpose, we denote Ee[ · ] = E[ · INk > OJ for the conditional expectation given 
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Lemma 3.5.2. For i = 1, 2, ... , k) 

(3.5.4) 

Theorem 3.5.1. For i = 1, 2, ... , k) 

where 
[H1(r)]n-1 . 

i-l fori=l,2, ... ,k-171"*'
{Vi(r) = fIJ=1[HJ+1(r)] J 

0, for i = k 

and 

E[ni] = n [D, S;(r)(l ~ 7rj)l F;(r). 

We are now set to derive the Fisher information matrix In (a, /3), conditioned 

on Nk > 0, using the results presented above along with the following lemma. 

Lemma 3.5.3. For i = 1, 2, ... , k) 

(3.5.5) 

where E[Ni] is as given in (3.3.3). 

Theorem 3.5.2. The Fisher information matrix, conditioned on Nk > OJ is given by 

i=l i=lIn(a, /3) = n (3.5.6)k k 

LAi(T)xi LAi(r)xT 
i=l i=l 
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where 

A;(r) - n(l !1~~r)]") [(1- V,(r))F,(r) +;, (1 - H,(r))V,(r)] 

- 1 - S;(r)(! ­[~1(r)Jn m irj)] 
x [(1 - Vi(1))Fi(1) +1(1- Hi(1))Vi(1) exp(a + ,8xi)]. (3.5.7) 

Before presenting numerical results, we make a remark on the asymptotic 

behavior of the distributional results obtained in this section. For this purpose, we 

first need to observe a simple property of recursive equation (3.5.2) as given below. 

Theorem 3.5.3. For i = 1, 2, ... , k, we have 0::; Hi(1) < 1. 

From this property, it is apparent that 0 < H 1(7) < 1, and so it follows 

immediately from (3.5.3) that 

lim Pr(Nk > 0) = 1 - lim [H1 ( 1)]n = 1. 
n---+oo n---+oo 

As expected, it reveals that the probability of a k-level step-stress test terminating 

at level xk converges to 1 as the sample size n increases. Based on this observation, 

the following limits result: 

lim Vi(1) 
n-H)Q 

lim Ec[ni] = E[ni],
n->oo 

lim Ec[Ni] = E[Ni]
n->oo 

for i = 1, 2, ... , k. Consequently, from (3.5.7) in Theorem 3.5.2, we get 

lim nAi(1) = E[Ni]Fi(1) = E[ni],
n->oo 
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which is identical to nAi(r) in (3.3.5) defined earlier in Theorem 3.3.l. Thus, we 

observe that all the distributional results obtained in this section by conditioning 

on Nk > 0 ultimately converge to the unconditional results in Section 3.3 when the 

sample size n gets larger. Since the conditional information matrix of a and /3 in 

Theorem 3.5.2 eventually approaches the unconditional information matrix presented 

in Theorem 3.3.1, it is clear that the optimization results based on these information 

matrices should produce close results for large n. In other words, conditioning does 

not make much difference to the analysis when the initial sample size is large. 

As done in Section 3.4, we can also define objective functions based on the 

conditional information matrix in (3.5.6) for determining optimal step duration using 

C-optimality, D-optimality, and A-optimality criteria. Unfortunately, the complexity 

of Ai(r) in (3.5.7) makes it impossible to analytically prove the existence of the opti­

mal r even in the case of a simple step-stress testing. Nevertheless, the determination 

of optimal T can be done numerically. 

All the optimality criteria considered here, as well as some other information­

based criteria, have been used extensively in the design selection process for linear 

designed experiments. In the context of step-stress ALT, however, C-optimality is 

the only criterion which has been explored and the D-optimality was considered as 

an alternative criterion by Gouno, Sen and Balakrishnan (2004). Here, we suggest 

A-optimality as another criterion to be used in the design selection process. From a 

practitioner's viewpoint, the choice of the optimality criterion will be certainly guided 

by the objective of the experiment. In cases where the planner is more interested in 

the precise estimation of the MTTF e0 at the normal use-condition, C-optimality is 

surely the criterion of choice. On the other hand, if one is more concerned about 
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estimating the mean function given in assumption (i) or estimating the regression 

parameters a and (3 with high precision, a more reasonable criterion of choice should 

be D-optimality or A-optimality. 

3.6 Numerical results 

A numerical study was conducted in order to investigate the existence of the 

optimal stress change points and to evaluate them as a function of varying parameters 

(viz., the sample size, MTTF, the number of stress levels, and the degree of censoring). 

For the purpose of illustration, we considered equi-spaced stress levels as Xi = x0 +id 

with the use-stress level x 0 = 10 and the stress increment d = 5. Under this setup, 

optimizing with respect to either the C-optimality or the D-optimality criterion is 

independent of the values of x 0 and d in the framework of Section 3.4. On the other 

hand, optimizing with respect to the A-optimality criterion is sensitive to the choice 

of x 0 and d. Moreover, optimization based on the conditional distribution results in 

Section 3.5 inherently depends on the sample size n under any optimality criterion 

since the sample size largely influences the probability of the test terminating at stress 

level xk. We also chose the ordered MTTF as 

i = 1, 2, ... 'k - 1, 0 < p < 1, 

with selected choices of e1 and p. Under this setup, therefore, a decreasing geometric 

sequence of MTTF is simulated with an increasing arithmetic sequence of stress levels. 

Tables 3.1 and 3.2 present the values of r(:, Tn and TA determined from the 

model in Section 3.3 for a feasible PC scheme. Rather than the specific values of the 
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Table 3.1: Optimal Stress Change Points under the Modification 


of Ci = (Ni - ni)7ri with the Expected Overall PC Proportion being 10% 


k=2 k=3 k=4 

'lri = 0.1 T*c T*D T*A T*c T*D T*A T*c T*D T*A 

p = 0.1 91.6 60.6 30.9 10.1 6.6 3.1 1.0 0.7 0.3 

(JI = 100 p = 0.3 93.6 72.7 64.l 31.4 21.6 16.2 9.9 6.7 4.7 

p = 0.5 95.1 81.2 87.7 45.5 34.6 30.9 21.4 15.9 13.2 

p = 0.1 274.9 181.7 92.8 30.4 19.9 9.2 2.9 2.1 1.0 

(JI = 300 p= 0.3 280.7 218.0 192.4 94.2 64.7 48.7 29.6 20.0 14.l 

p = 0.5 285.4 243.5 263.0 136.6 103.8 92.8 64.l 47.7 39.5 

p = 0.1 458.2 302.9 154.7 50.7 33.1 15.4 4.8 3.4 1.6 

(JI = 500 p = 0.3 467.8 363.3 320.6 157.0 107.9 81.1 49.3 33.4 23.5 

p = 0.5 475.7 405.8 438.3 227.7 173.0 154.7 106.7 79.6 65.9 
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Table 3.2: Optimal Stress Change Points under the Modification 


of ci = (Ni - ni}rr; with the Expected Overall PC Proportion being 203 


k=2 k=3 k=4 

'Tri = 0.2 T*c T*
D T*A T*c T*D T*A 

T*c T*D T*A 

p = 0.1 76.3 52.3 29.5 7.2 5.1 2.8 0.6 0.5 0.3 

e1 = 100 p = 0.3 77.9 63.1 59.1 20.8 16.3 13.9 5.0 4.2 3.6 

p = 0.5 78.4 69.3 79.0 30.0 25.3 25.4 10.8 9.4 9.4 

p = 0.1 228.8 156.9 88.4 21.5 15.4 8.5 1. 7 1.4 0.8 

e1 = 300 p = 0.3 233.6 189.2 177.3 62.5 49.0 41.6 15.0 12.5 10.8 

p = 0.5 235.3 207.9 237.0 90.1 76.0 76.1 32.4 28.2 28.1 

p = 0.1 381.3 261.5 147.4 35.9 25.7 14.2 2.9 2.3 1.4 

e1 = 500 p = 0.3 389.4 315.3 295.5 104.2 81.7 69.4 25.0 20.8 17.9 

p = 0.5 392.2 346.6 395.0 150.2 126.6 126.8 54.0 47.1 46.8 
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optimal stress durations, the tables are intended to provide a qualitative insight into 

the way the optimal choice changes as a function of the relevant parameters. To be 

able to compare the results with those from the large-sample results of Gouno, Sen and 

Balakrishnan (2004), the overall PC proportion was kept uniform on average for all 

stages. That is, we let E[ci] = mri or simply 7f"; = E[_;~i(T) for i = 1, 2, ... , k - 1, 

where Ki is constant for all i. Tables 3.3 and 3.4 present the values of the censoring 

proportion K; at the optima achieved by the time points presented in Tables 3.1 and 

3.2, respectively. 

Surprisingly, Tables 3.1 and 3.2 are identical to the ones presented in Gouno, 

Sen and Balakrishnan (2004) even for the newly added A-optimality criterion. With 

the chosen parameters, the optimal stress change points under a large sample (i.e., 

early termination of a test disallowed) coincide with the optimal points under the 

modification of censoring by proportion (i.e., early termination of a test allowed) as 

long as the number of items progressively censored at each stress level is the same 

on average. Nevertheless, the advantages of the modified model in Section 3.3 are 

clear when a practitioner or a test designer has to deal with a small sample size, 

high censoring proportions, or quite a few stress levels. Such situations prohibit us 

from using the protocol based on a large sample because the search region CT for the 

optimal T may not be defined at all. However, the modified model suggested here 

does not impose any restrictions on CT and consequently, the optimal stress change 

points can be searched for any combinations of the parameter values. 

We now summarize the findings from Tables 3.1 and 3.2 below: 

• It is observed that Tc > TD > TA except for the simple step-stress case with p = 
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0.5. This order, however, is a consequence of the specific setting chosen and does 

not necessarily hold for general stress levels. For the example considered here, 

the differences among Tc, Tn and TA. are more pronounced for the simple step-

stress case and they reduce rapidly as the number of stress levels k increases. 
T* T* 

Also, for a given k and p, the ratios ...!2 and _Q seem to remain constant over TD TA 
varying ranges of 81 , and they form a decreasing function of the overall PC 

proportion. 

• 	 The optimal values in Table 3.1 dominate the corresponding values in Table 

3.2. Interestingly, for a fixed k and p, the percentage reduction in the optimal 

values in Table 3.2 with respect to the corresponding ones in Table 3.1 remains 

reasonably constant across the choices of 81 . For k = 2, for instance, the ratio 
T* 	 * 
~,Table3 · 2 is roughly stable around 83.23 with p fixed. Asp increases, T~,Table3 · 2 , 

T C,Table3.l TC,Table3.l 
T* T* 
~,Table3 · 2 and ~,Table3 · 2 decrease slightly for a given k. The dependence on p, 

TD,Table3.l TA,Table3.l 

however, is less noticeable for smaller values of k. These ratios also decrease 

steadily with increasing k. 

• 	 The behavior of the optimal T as a function of the MTTF values is also inter­

esting. For fixed k and p, as 8 1 increases, Tc, Tn and TA. increase in a manner 

such that the ratios Tc/81, T0/81 and TA_/81 are constant across the values of 

8 1. This translates to Tc, Tn and TA. being fixed percentiles from the stage-1 

distribution, irrespective of the value of 81. This feature prevails in both Tables 

3.1 and 3.2. 

• 	 As the shrinkage amount p increases with 8 1 and k fixed, Tc, Tn and TA. all 

increase in such a way that the ratio of the increase is independent of the values 
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of 01 . Intuitively, this means that the more severe the successive stress levels are 

(viz., smaller p), the more likely it is to observe failures in a short time interval. 

Hence, the choice of the optimal r automatically forces the experiment to be 

terminated faster. The only exception is the simple step-stress case where it 

seems that p has very little effect in determining the optimal r, especially Tc· 

• Tc, Tn and rA. decrease quite rapidly as a function of k. In fact, both Tables 

3.1 and 3.2 demonstrate that for k = 4 and small values of p, these optimal 

values are in the lower tail of the stage-1 life distribution. Consequently, it may 

frequently force to terminate the first stage of a life-test even before observing 

any failures. In that case, one practical strategy may be to continue the first­

stage testing beyond Tc, rn or rA.. 

Furthermore, the behavior of the objective functions were consistent for every 

optimality criterion. Figure 3.1 represents these behaviors under the modification 

introduced in Section 3.3. It presents the plots of ¢(r), i5(r) and a(r) for k = 2, 3, 4 

with 01 = 100, p = 0.3, and the expected overall PC proportion 'Tri = 0.1. The 

optimal stress change points are marked by the red dots, and the vertical dotted lines 

indicate the upper bounds of r beyond which it is not possible to make the expected 

overall PC proportion uniform for all stress levels. For k = 2, 3, 4, these bounds are 

230.3, 77.2, 24.5, respectively, and the bound decreases quite rapidly as k increases. 

As depicted in the figure, irrespective of the values of k, ¢(r) is a convex function 

with a unique minimum while i5(r) and a(r) are concave giving a unique maximum. 

As mentioned earlier, Tables 3.3 and 3.4 list the values of 7r; required to 

produce each optimal r in Tables 3.1 and 3.2. We see that these fixed PC proportions 
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Figure 3.1: Plots of the Objective Functions for Each Optimality Criterion 


under the Modification of Ci = (Ni - ni)7r; with el = 100, p = 0.3, 


and the Expected Overall PC Proportion at 103 (viz., 'Tri= 0.1) 
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r-3 

O'l 
O'l 

7r; = 0.2 

Optimality 

p = 0.1 

p = 0.3 

p = 0.5 

c 

n*1 

0.43 

0.44 

0.44 

Table 3.3: Fixed PC Proportions under the Modification of ci = (Ni - ni)'Tr; 

for the Expected Overall PC Proportion at 103 with 81 = 100, 300, 500 

7r; = 0.1 

Optimality 

p = 0.1 

p = 0.3 

p = 0.5 

c 

n*1 

0.25 

0.25 

0.26 

k=2 k=3 k=4 

D A c D A c D 

n*1 n*1 n*1 n*2 n*1 n*2 n*1 n*2 n*1 n*2 n3 n*1 n*2 n*3 

0.18 0.14 0.11 0.34 0.11 0.23 0.10 0.16 0.10 0.12 0.37 0.10 0.12 0.27 

0.21 0.19 0.14 0.45 0.12 0.29 0.12 0.23 0.11 0.17 0.62 0.11 0.15 0.37 

0.23 0.24 0.16 0.47 0.14 0.33 0.14 0.29 0.12 0.22 0.65 0.12 0.18 0.42 

A 

n*1 n*2 

0.10 0.12 

0.10 0.14 

0.11 0.17 

n*3 

0.18 

0.27 

0.34 

Table 3.4: Fixed PC Proportions under the Modification of ci = (Ni - ni)n; 

for the Expected Overall PC Proportion at 203 with 81 = 100, 300, 500 

k=2 

D 

n*1 

0.34 

0.38 

0.40 

A 

n*1 

0.27 

0.36 

0.44 

c 

n*1 n*2 

0.21 0.56 

0.25 0.65 

0.27 0.67 

k=3 

D 

n*1 n*2 

0.21 0.45 

0.24 0.53 

0.26 0.58 

A 

n*1 n*2 

0.21 0.34 

0.23 0.47 

0.26 0.58 

n*1 

0.20 

0.21 

0.22 

c 

n*2 

0.27 

0.31 

0.36 

n*3 

0.65 

0.80 

0.85 

n*1 

0.20 

0.21 

0.22 

k=4 

D 

n*2 

0.26 

0.30 

0.34 

n*3 

0.56 

0.69 

0.75 

n*1 

0.20 

0.21 

0.22 

A 

n*2 

0.26 

0.29 

0.34 

n*3 

0.46 
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are at least the overall PC proportion specified, and for a fixed k and p, they form 

an increasing sequence (i.e., 7r; < 7r; < · · · < 7rz_1) in order to keep the overall PC 

proportion uniform. In general, 7ri is the highest for the C-optimality and the lowest 

for the A-optimality criterion. Of course, the higher the overall PC proportion is, 

the higher the fixed PC proportions are. One remark to make about these fixed PC 

proportions at the optima is that they do not depend on the value of 81 but slightly 

increase with p. The dependence on p, however, is little for the first stage of the test. 

Similarly, we also constructed the objective function for each optimality cri­

terion, using the conditional distribution results established in Section 3.5. Tables 

3.5 and 3.6 present the results of this numerical study for a simple step-stress case 

with varying sample sizes. Again, to be able to compare the results with those from 

Gouno, Sen and Balakrishnan (2004) as well as the values in Tables 3.1 and 3.2, the 

expected overall PC proportion was kept constant by setting Ec[c1] = n7r1 or simply 

* n7r1 _ 7r1(l - [F1(T)]n) * 
7r1 = E [ ] - S ( ) . Tables 3.7 and 3.8 present these values of 7r1 n - c n 1 1 T 

at each optimal T in Tables 3.5 and 3.6, respectively. From Tables 3.5 and 3.6, it 

is also noted that with the chosen parameters, the sample size required to produce 

the same optimal change points as in Tables 3.1 and 3.2 is at least 20. Intuitively, 

this means that the probability of a simple step-stress test terminating at the second 

stage is effectively 1 if the sample size is 20 or larger. Hence, we have numerically 

shown that the optimal T conditioned on Nk > 0 converges to the unconditional one 

as the sample size increases. 

Unfortunately, for small sample sizes, TA_ does not exist globally since the 

objective function a(T) keeps increasing over the unrestricted range of T. Thus, in the 

case of nonexistent TA_, the choice of the optimal T is completely up to the decision of 

67 




Ph.D. Thesis - D. Han McMaster - Mathematics and Statistics 

Table 3.5: Optimal Stress Change Points of the Simple Step-stress Testing (k = 2) 

under the Condition of Nk > 0 with the Expected Overall PC Proportion being 103 

1T1 =0.1 

n=5 n = 10 n 2: 20 

T*c T*D 
T*

A 
T*c T*D T*A T*c T*

D 
T*

A 

(31.4)a 60.6 30.9119.6 71.2 93.6 60.8 91.6(30.9)p = 0.1 

DNEb 64.1123.2 90.6 95.7 73.3 72.7(64.6) 93.6p= 0.3B1 = 100 

87.7113.6 97.7 81.2130.5 DNE 82.5 (92.8) 95.lp = 0.5 

92.8213.7 274.9 181.7358.7 (94.2) 280.7 182.5 (92.8)p = 0.1 

192.4271.7 DNE 287.2 220.0 280.7 218.0369.7 (193.7)p = 0.3B1 = 300 

263.0340.9 243.5391.6 DNE 293.l 247.6 (278.4) 285.4p = 0.5 

154.7302.9597.9 356.2 (157.0) 467.9 304.1 (154.7) 458.2p = 0.1 

320.6452.9 467.8 363.3616.1 DNE 478.7 366.7 (322.9)p = 0.3B1 = 500 

438.3405.8652.6 568.1 DNE 488.5 412.7 (463.9) 475.7p = 0.5 

adoes not exist globally but locally exists under the constraint of F(T) ::; 0.8 or equivalently 

T ::; B1 log 5 

bdoes not exist globally or locally 
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Table 3.6: Optimal Stress Change Points of the Simple Step-stress Testing (k = 2) 

under the Condition of Nk > 0 with the Expected Overall PC Proportion being 20% 

n=5 n = 10 n;::: 20 

7r1 = 0.2 T*c T*D T*
A 

T*c T*D T*A T*c T*D T*A 

p = 0.1 87.1 56.9 (29.9) 76.8 52.4 29.5 76.3 52.3 29.5 

B1 = 100 p= 0.3 89.8 71.2 DNE 78.5 63.3 59.4 77.9 63.1 59.1 

p = 0.5 91.9 81.8 DNE 79.1 69.8 81.3 78.4 69.3 79.0 

p = 0.1 261.3 170.8 (89.6) 230.4 157.1 88.4 228.8 156.9 88.4 

B1 = 300 p = 0.3 269.3 213.6 DNE 235.5 189.9 178.1 233.6 189.2 177.3 

p= 0.5 275.8 245.3 DNE 237.4 209.3 243.8 235.3 207.9 237.0 

p = 0.1 435.5 284.6 (149.3) 384.0 261.9 147.4 381.3 261.5 147.4 

B1 = 500 p = 0.3 448.8 356.0 DNE 392.5 316.5 296.8 389.4 315.3 295.5 

p= 0.5 459.6 408.8 DNE 395.7 348.8 406.3 392.2 346.6 395.0 
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a practitioner. In some cases, a(T) exhibits a local maximum, and in order to capture 

this, we have imposed a constraint upon the search region for TA. that the probability 

of observing a failure at the first stage should be at most 80%. That is, F(T) ::::; 0.8 

or equivalently T ::::; 81 log 5. A summary of the findings from Tables 3.5 and 3.6 is as 

follows: 

• 	 The order of Tc > Tv > TA. is again maintained except for the cases of p = 0.5, 

but this is merely an outcome of the specific setting chosen. For a given n and 
T* T* 

p, 	the ratios _Q and ....12. seem to remain constant irrespective of the value of 81 .TD TA 
• 	 The optimal values in Table 3.5 are larger than the corresponding values in 

Table 3.6. For a fixed n and p, the ratios of the optimal values in Table 3.6 to 

the corresponding values in Table 3.5 remain nearly constant across the choices 
* 

f 8 1 	 h . TC Table3.6 hl bl do 1 . For examp e, when n = 5, t e ratio *, is roug y sta e aroun 
Tc,Table3.5 

T*T*C,Table3.6 * A,Table3.6 dw 	 T D,Table3.6 72.0 /O for fixed p. As p increases, * , * and * ecrease 
T C,Table3.5 T D,Table3.5 T A,Table3.5 

slightly for fixed n. These ratios also form an increasing convergent sequence 

as n increases. 

• 	With n and p fixed, T(:;, Tv and TA. increase as 81 increases in such a way that 

the ratios Tc/81, Tf.;/8 1 and TA_/81 are invariant no matter what the value of 81 

is. This is interpreted as T(:, Tv and TA. being fixed percentiles from the stage-1 

distribution, irrespective of 81 . This characteristic is persistent in both Tables 

3.1 and 3.2. 

• 	With 81 and n given, as p increases, T(;, Tv and TA. all increase in such a way 

that the ratio of the increase is independent of the choice of 81 . Nevertheless, 

the effect of p appears to be slight in determining the optimal T, especially T(:;. 
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• 	 As n increases, T(;, T}J and TA_ all decrease but converge to their respective 

unconditional ones. 

Figure 3.2 describes the behavior of the objective functions under each opti­

mality criterion. The plots of ¢(T), b(T) and a(T) are shown fork= 2 with n = 5, 

Bi = 300, and the expected overall PC proportion 7ri = 0.2. The optimal stress 

change points are marked by the red dots. The figure reveals that independent of the 

value of p, rp(T) is convex with a unique minimum and b(T) yields a unique maximum 

with a horizontal asymptote at 0. Under the chosen setting, on the other hand, a(T) 

yields a constrained local maximum only when p = 0.1 and it decreases asp increases. 

The value of 7l'r for each optimal T in Tables 3.5 and 3.6 are tabulated in 

Tables 3.7 and 3.8, respectively. Again, these fixed PC proportions are greater than 

the specified overall PC proportion. We also observe that 7l'r is generally the highest 

for the C-optimality and the lowest for the A-optimality criterion under the chosen 

setting. Moreover, the fixed PC proportions get higher if the overall PC proportion 

increases, just like in Tables 3.3 and 3.4. What is interesting about these fixed PC 

proportions is that they are not dependent on Bi but exhibit a very slight increment 

with p. As expected, they form a decreasing convergent sequence to the unconditional 

7!'~ as n increases. 

In an attempt to assess the efficiencies of the different approaches to the op­

timization problem and to contrast the results obtained here, pairwise ratios of the 

optima under each criterion were calculated based on the optimal stress change points 

determined by Gouno, Sen and Balakrishnan (2004) and by the results developed 

here. Since Tables 3.1 and 3.2 yield not only the identical stress change points but 
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Figure 3.2: Plots of the Objective Functions for Each Optimality Criterion 

of the Simple Step-stress Testing (k = 2) under the Condition of Nk > 0 

with n = 5, 81 = 300, and the Expected Overall PC Proportion n1 = 0.2 
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Table 3.7: Fixed PC Proportions 7ri of the Simple Step-stress Testing (k = 2) 


under the Condition of Nk > 0 for the Expected Overall 


PC Proportion at 103 with B1 = 100, 300, 500 


71"1 = 0.1 n=5 n = 10 n ?: 20 

Optimality c D A c D A c D A 

p = 0.1 0.28 0.20 (0.14) 0.25 0.18 (0.14) 0.25 0.18 0.14 

p = 0.3 0.28 0.23 DNE 0.26 0.21 (0.19) 0.25 0.21 0.19 

p= 0.5 0.29 0.27 DNE 0.26 0.23 (0.25) 0.26 0.23 0.24 

Table 3.8: Fixed PC Proportions 7ri of the Simple Step-stress Testing (k = 2) 


under the Condition of Nk > 0 for the Expected Overall 


PC Proportion at 203 with B1 = 100, 300, 500 


n=5 n ?: 2071"1 = 0.2 n = 10 

Optimality AD c D A D Ac c 

0.45 0.35 (0.27) 0.43 0.34 0.27 0.43 0.34 0.27p = 0.1 

DNE 0.36p = 0.3 0.46 0.39 0.44 0.38 0.36 0.44 0.38 

0.46 0.43 DNE 0.44 0.40 0.40 0.44p = 0.5 0.45 0.44 
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also exactly the same optima compared to the results in Gouno, Sen and Balakrish­

nan (2004), the efficiency between the modified (unconditional) model and the large 

sample model is not different with respect to the matched overall PC proportions. On 

the other hand, the efficiency of the conditional method relies upon the sample size 

n. Table 3.9 presents the ratios of the conditional optima to the unconditional ones 

for the simple step-stress case with varying sample sizes. Although these ratios are 

invariant across the values of 81 , how they change with respect to other parameters 

is noticeable. vVith small n, large p and small 7r1 , we find that the efficiency of the 

conditional approach is higher for both C-optimality and D-optimality. For both op­

timality criteria, however, the differences become negligible as n gets larger since the 

conditional optima eventually converge to the unconditional ones obtained from the 

modified model. Another interesting observation is that irrespective of the sample 

size, the constrained TA_ presented in Tables 3.5 and 3.6 attains the local optimum that 

is identical to the global maximum attained by TA_ from the modified (unconditional) 

model. Therefore, one can always choose to increase the efficiency of the conditional 

approach under the A-optimality criterion by selecting an arbitrary T which bears 

a higher optimum than the one achieved by TA_ from the unconditional model. For 

boosting the efficiency, however, one must be prepared to take a drastic increase in 

the whole test duration, too. 
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Table 3.9: Efficiency of the Simple Step-stress Testing (k = 2) 


under the Condition of Nk > 0 for the Expected Overall 


PC Proportion at 103 & 203 with 01 = 100, 300, 500 


Optimality 

1.09 1.04 (1.00) 1.00 1.00 1.00 1.00 1.00p = 0.1 (1.00) 

1.10 DNE 1.001.09 1.01 1.00 1.00 1.00p = 0.3 (1.00)71"1 = 0.1 

1.10 1.16 DNE 1.00 1.03 1.00 1.00p = 0.5 (1.00) 1.00 

1.02 1.001.05 (1.00) 1.01 1.00 1.00 1.00 1.00p = 0.1 

DNE1.05 1.06 1.01 1.00 1.00 1.00 1.00 1.00p = 0.371"1 = 0.2 

1.11 DNE1.06 1.00 1.00 1.00 1.00 1.00 1.00p = 0.5 
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Chapter 4 

Exact Inferenee for a 

Simple Step-stress Model 

with Competing Risks for Failure 

from Exponential Distribution 

under Type-II Censoring 

4.1 Introduction and motivation 

As mentioned in Section 1.1, the step-stress ALT allows gradual increase of the 

stress levels at some pre-fixed time points during the experiment. This testing method 

has attracted great attention in the reliability literature. Sedyakin (1966) proposed 
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one of the fundamental models in this area, known as the cumulative damage or 

cumulative exposure model. Recently, Balakrishnan et al. (2007), Balakrishnan and 

Xie ( 2007 a, b), and Balakrishnan et al. (2008) have all discussed different inferential 

issues regarding the ALT under the assumption of this cumulative exposure model. 

Furthermore, in reliability analysis, it is common that a failure is associated 

with one of several fatal risk factors the test unit is exposed to. Since it is not usually 

possible to study the test units with an isolated risk factor, it becomes necessary 

to assess each risk factor in the presence of other risk factors. In order to analyze 

such a competing risks model, each failure observation must come in a bivariate 

form composed of a failure time and the cause of failure. It is also assumed here 

that these competing risk factors are independent in the absence of covariates. Cox 

(1959), David and Moeschberger (1978), Klein and Basu (1981, 1982), and Crowder 

(2001) have all investigated the competing risks models and considered some specific 

parametric lifetime distributions for each risk factor. In addition to multiple causes 

of failure, censoring is also common in reliability experiments for various reasons as 

discussed in Section 1.2. Among different censoring schemes, the conventional Type­

II right censoring corresponds to the situation when the experiment gets terminated 

once a pre-specified number of failures are observed. 

In this chapter, we consider the simple step-stress model (i.e., two stress levels) 

under Type-II censoring when the lifetime distributions of the different risk factors 

are independently exponentially distributed. In Section 4.2, we present the MLEs 

of the mean parameters of the different risk factors and show that these MLEs do 

not always exist. The conditional MLEs are therefore proposed and the exact con­

ditional distributions of these MLEs are derived in Section 4.3. Based on the exact 
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distributions of the MLEs, we propose exact confidence intervals for the unknown 

mean parameters in Section 4.4. We also present the asymptotic distributions of the 

MLEs and the corresponding asymptotic confidence intervals as well as the confi­

dence intervals from a parametric bootstrap method. In Section 4.5, the performance 

of these confidence intervals is evaluated in terms of probability coverages via Monte 

Carlo simulations. In Section 4.6, we present a numerical example to illustrate all 

the methods of inference developed in this chapter, and some concluding remarks are 

finally made in Section 4. 7. 

4.2 Model description and MLEs 

A random sample of n identical units is placed on a life test under the initial 

stress level s 1 . The successive failure times are then recorded along with the infor­

mation about which risk factor caused each failure. At a pre-fixed time T, the stress 

level is increased to s2 and the life test continues until a pre-specified r (::; n) number 

of failures are observed. When r is taken to be n, then a complete set of failure 

observations would result for this simple step-stress test (i.e., no censoring). Suppose 

each unit fails by one of two fatal risk factors and the time-to-failure by each com­

peting risk has an independent exponential distribution which obeys the cumulative 

exposure model. Let eij be the mean time-to-failure of a test unit at the stress level 

si by the risk factor j for i, j = 1, 2. Then, the CDF of the lifetime Tj due to the risk 
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factor j is given by 

1 - exp { - e~i t} ifO<t<T 
G;(t) = G;(t;81;,82;) = { 

1 - exp { - -1 T - - 1 (t - T)} if T :'.St< 00 
B1j B2j 

for j = 1, 2, and the corresponding PDF of Tj is given by 

1- exp { - _1_ t} if 0 < t < T 
9j(t) = gj(t; B1j, B2j) = { Bij Bij 

- 1 1exp { - _l_T - - (t - T)} if T :::; t < 00 
B2j B1j B2j 

for j = 1, 2. Since we will observe only the smaller of T1 and T2 , let T =min {Ti, T2} 

denote the overall failure time of a test unit. Then, its CDF and PDF are readily 

obtained to be 

F(t) = F(t; 8) = 1 - (1 - G1 (t)) (1 - G2 (t)) 

1 - exp { - ( e~ 1 + e~J t} if 0 < t < T 

{ 
1-exp{ - (e~ 1 + e~2 )T- (e!1 + e~ 2 )(t-T)} if T :'.S t < 00 

(4.2.1) 

j(t) 

if Q < t < T 

if T :'.S t < 00 

(4.2.2) 

respectively, where(}= (81,82 ) with (Ji= (Bi1,Bi2 ) for i = 1,2. Furthermore, let C 

denote the indicator for the cause of failure. Then, under the assumptions specified 

earlier, the joint PDF of (T, C) is given by 

if Q < t < T 

if T :'.S t < 00 

(4.2.3) 
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for j, j' = 1, 2 and j' =f:. j. We also denote the relative risk imposed on a test unit 

before r due to the risk factor j by 

e-1 
7r1i = Pr[C = jlO < T < r] = 0_1 li 0_1 , j = 1, 2. ( 4.2.4) 

11 + 12 

Similarly, the relative risk after T due to the factor j is denoted by 

e-1 
7r2j = Pr[C = jlT 2: r] = 0-1 2i 0-1 • j = 1,2. (4.2.5) 

21 + 22 

They are simply the proportion of failure rates in the given time frame. One can then 

easily see from ( 4.2.3)-( 4.2.5) that T and C are independent given the time frame in 

which a failure has occurred. 

Let us now define 

N1i the number of units that fail before r due to the risk factor j, 

N 2i the number of units that fail after T due to the risk factor j 

for j = 1, 2. If we let N1. denote the total number of failures before T and N2 . 

the total number of failures after T, then according to the testing scheme, we have 

N 1. = N 11 + N12 and N2. = N21 + N22 with N1. + N2. = r :Sn. With the life-testing 

scheme described above, the following ordered failure times will then be observed: 

where n 1 . denotes the observed value of N1 .. For notational simplicity, let us express 

N = (N1 , N 2) with Ni= (Ni1 , Ni2) for i = 1, 2, and let n denote the observed integer 

vector of N. 

Since each failure time is also accompanied by the corresponding cause of 

failure, let c = (ci, c2 , ... , Cr) be the observed sequence of the cause of failure cor­

responding to the observed failure times t = (ti:n, hn, ... , tr:n)· Then, under the 
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assumption of the cumulative exposure model, we formulate the likelihood function 

of (} based on this Type-II censored data as 

for 0 < t1:n < · · · < tn1 .:n < T ~ tn1.+l:n < · · · < tr:n < 00, where 

ni.

L ti:n + ( n - ni-)T, (4.2.7) 
i=l 

U2 = L
r 

(ti:n - T) + (n - r)(tr:n - T). (4.2.8) 
i=n1.+l 

Note that ui is precisely the Total Time on Test statistic at the stress level Si. From 

the likelihood function in (4.2.6), one can easily see that the MLE of Bij does not exist 

if nij = 0 for any i, j = 1, 2. That is, at least one failure caused by each risk factor 

must be observed at each stress level in order to estimate (} simultaneously. This 

imposes the condition that Nii 2: 1 for all i, j = 1, 2 and consequently, we have to 

ensure 4 ~ r ~ n in the planning stage of the experiment. In general, r has to be at 

least the product of the number of stress levels implemented and the number of fatal 

risk factors under consideration. Once this condition is fulfilled, the log-likelihood 

function of(} is readily obtained from ( 4.2.6) as 

t(e) t(eJ(t,c)) =logL(e) 

- log n! - ~ nii log Bii - (2- + 2-) U1 - (2- + 2-) U2
(n - r)! .~1 Bu 012 B21 B22 

i,J­
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from which the MLE of ()ii is readily obtained as 

i,j = 1,2. (4.2.9) 

Remark 4.2.1. In the model considered above, we have not assumed any relationships 

among the mean failure times by the two risk factors under the two stress levels. In 

some situations, we may know that some particular relationships hold among them; 

for instance, ()2j = Pi()lj with known Pi (0 < Pi < l} for j = 1, 2. In that case, the 

MLE of (} exists whenever at least one failure occurs by each risk factor, and their 

exact distributions can be derived explicitly. One can also use the likelihood ratio test 

statistic to test the multiple hypotheses H0 : ()2j = Pi()li for specified Pi 's. 

Remark 4.2.2. The model proposed above can be easily extended and generalized to 

accommodate multiple stress levels and multiple competing risks. In fact, the model 

under consideration is also general in the sense that it includes its marginal models as 

special cases. For instance, when en, ()21 ---+ oo or ()12 , ()22 ---+ oo, the limiting case of 

the above model is the simple step-stress model without the competing risk structure. 

If we rather let T ---+ oo, then the model conve.rges to the ordinary single stress model 

(i.e., one stress level only) with two competing risks. 

4.3 Conditional distributions of MLEs 

To find the exact distributions of {)ii, we first derive the conditional moment 

generating function (CMGF) of {)ii, conditioned on { Ni'i' 2: 1 for i', j' = 1, 2 and 

I::i',i'=l Ni'i' = r }. Let 6 be the set of positive integer vectors that N can take on 
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satisfying this condition. That is, 

6 {n nij 2: 1 for i,j = 1,2 and t nij = r}. 
2,J=l 

Then, the given condition is equivalent to N E 6. For notational convenience, we 

denote Mij(t) for the CMGF of eij, i,j = 1, 2. We can then write 

Mij(t) - E[ete;1 1N E 6] 
LE[eteijlNi = ni] xPr[N = nJN E 6] (4.3.1) 
nE6 

for i, j = 1, 2. Using the lemmas presented in Appendix C, the joint probability mass 

function ( JPMF) of N is given by 

for n = (n11,n12,n21,n22) E 6, where rrij are as defined in (4.2.4) and (4.2.5) and 

F(T) = 1 - exp { - (~ + _l) T}. (4.3.2)
Bu B12 

We then simply have 

Pr [N = n]
Pr [N = n IN E 6 ] = '"" [ = J , n E 6. (4.3.3) 

L...mE 6 Pr N m 

Subsequently, E [et8;1 INi = niJ (for i, j = 1, 2) can be derived using the lemmas 

presented in Appendix C. Then, by inverting Mij(t), the CMGF of eij, we can estab­

lish the following theorems regarding the conditional distribution of eij' the proofs of 

which are presented in Appendix C. 

Theorem 4.3.1. The conditional PDF of B1j, given NE 6, is 
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for j = 1, 2, where 

c[1J 
n,jk 

'Y(Y ; a,,\) 

Corollary 4.3.1. The first two raw moments of B1i are 

(4.3.6) 

{ 

otherwise 

,y>O 
for a,,\> 0. (4.3.7) 

_\Cl! a-1 ->..y 
r(a) y e 

0 

and 

~~ c[l] { nl.(n1. + 1) (~ ~)-2 2 
- ~~ n,jk n2 () + () + Tljk 

nE6 k=O lj 11 12 

2n1. ( 1 1 )-l }+- -+- T1jk ,
nli ()11 e12 

respectively, for j = 1, 2. 


Proof. These expressions follow readily from ( 4.3.4). D 


Theorem 4.3.2. The conditional PDF of B2j, given NE 6, is 

(4.3.8) 
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for j = 1, 2, where 

(4.3.9) 

and 1(· ; a, A) is as defined in (4.3. 7). 

Corollary 4.3.2. The first two raw moments of () 2j are 

and 

respectively, for j = 1, 2. 

Proof. These expressions follow readily from ( 4.3.8). D 

For j = 1, 2, the distribution of B1j, conditioned on N E 6, is a generalized 

mixture of gamma distributions while the conditional distribution of ()2j is a true 

mixture of gamma distributions since c~l in (4.3.9) is the conditional JPMF of N, 

given N E 6. The expressions for the expected values clearly reveal that ()ij is 

a biased estimator of ()ij for all i, j = 1, 2. The expressions for the first two raw 

moments given in Corollaries 4.3.1 and 4.3.2 can be used to calculate the standard 
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errors of the estimates. We can also derive the expressions for the tail probabilities 

by integrating the conditional PDFs of fjij given above. These expressions, presented 

in the following corollary, are used to construct exact confidence intervals for ()ij later 

in Section 4.4. 

Corollary 4.3.3. The tail probabilities of fjij (for i, j = 1, 2) are given by 

and 

- L C~2l r (n2j (f- + f-) f, ; n2·), 
nECS 21 22 

where 

max{O, c}, 

{ foo 'Y(Y; <>, l)dy ~loo f(~)ya-le-•dy , t>O 

4.4 Confidence intervals 

Different methods of constructing confidence intervals ( Cls) for the unknown 

parameters ()ii are discussed in this section. Based on the exact conditional distribu­

tions of the MLEs from Theorems 4.3.1 and 4.3.2, we can construct exact Cls for ()ij· 

Due to the complexity of the exact conditional distributions of fJij, we also present 

the approximate Cls for ()ii based on the asymptotic distributions of the estimators 
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for a large sample size. Finally, the parametric bootstrap method is used to construct 

Cis for eij· 

4.4.1 Exact confidence intervals 

In order to ensure the invertibility of the pivotal quantities for the parameters 

eij, we assume that the tail probability of eij presented in Corollary 4.3.3 is mono­

tonically increasing with respect to eij for each i, j = 1, 2. As in Section 2.5, we are 

unable to establish the required monotonicity in an analytical way due to the complex 

structure of the exact distributions of the pivotal quantities. The extensive numerical 

computations, however, seem to support this monotonicity assumption (see Figure 

4.1). 

Let us now construct the exact 100(1-a)% CI for B1j, j = 1, 2. We first denote 

efj and eG for the lower and upper bounds of the two-sided CI for B1j' respectively. 

Then, by the monotonicity assumption, they are the unique solutions of the equations 

[ A Ab] a
Pr B1j > Bf/ = 2 

and 

A A obs] a 
Pr B1j > B1j = 1- ­[ 

2' 

respectively, where BfJ8 is simply the observed value of the MLE of elj· Since efj and 

BG can not be expressed in an explicit form, they are numerically obtained by solving 

the following two non-linear equations using some iterative techniques such as the 
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bisection method, Newton-Raphson method or Brent's method: 

( 4.4.1) 

(4.4.2) 

for j = 1, 2 with j' =f. j, where Tijk, C~~~k and f(· ;a) are as defined earlier. Note that 

the coefficients C~~~k in the above two equations are functions of 8. Hence, before 

solving for the confidence limits for fixed j' we replace elj in c~~~k in an appropriate 

manner. That is, efj is substituted for B1j in C~~~k of ( 4.1) and likewise Bf; for B1j in 

C~~~k of (4.2). The observed values of the MLEs are also substituted for all the other 

unknown parameters in the expressions given above. 

Using a similar argument, the two-sided 100(1 - a)% CI for B2j, denoted by 

(e~j' e~)' can be numerically obtained as the unique solution of the following two 

non-linear equations: 

~ cr2J r( .(2- _1 )e'abs. ) (4.4.3)
2 L.....t n n2J eL. + e I 2j ' n2. ' 

nE6 2J 21 

a
1- - - ~ cr2J r ( .(2- _1) e'abs . ) ( 4.4.4) 

2 - L.....t n n2J eu + e ., 2j ' n2. 
nE6 2J 21 

for j = 1, 2 with j' =f. j where e2~s is an observed value of the MLE of e2j, and c~l 

and f(· ;a) are as defined earlier. In the above two equations, the coefficients cl2l 
are functions of () and thus, for fixed j, e~j is substituted for e2j in c~l of ( 4. 3) and 

likewise e~ for e2j in cl2l of ( 4.4) before solving the equations. Again, the other 

unknown parameters are replaced by the observed values of their respective "YILEs in 

the above expressions. 
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4.4.2 Approximate confidence intervals 

As discussed in Section 2.5.2, the MLEs exhibit asymptotically optimal char­

acteristics when the sample size grows. Under certain regularity conditions, the MLEs 

are asymptotically unbiased and efficient. That is, their bias tends to zero and their 

variances achieve the Cramer-Rao lower bounds as the sample size grows to infin­

ity. Furthermore, their distribution approaches normal with the variance-covariance 

matrix given by the inverse of the Fisher information matrix; see Silvey ( 1975), and 

Casella and Berger (2002) for details. Hence, inference about the unknown param­

eters can be based on the asymptotic normality of the MLEs. In this subsection, 

we present an approximate method to construct Cis for ()ij using these properties 

of the MLEs for large sample sizes. Although the exact method described in the 

preceding subsection is preferable, its computation encounters some difficulties for 

large samples. On the other hand, the approximate method provides not only the 

computational ease but also a good probability coverage (close to the nominal level) 

when the sample size gets large. This finding is further discussed in Section 4.5. 

Let us first denote the (expected) Fisher information matrix of () by 

where 

Iij:i'j' = -E [ 8l(O) = { E [ - i = i' and j = j'l ~: + ~t'l , 
[J()ij [J()i, j' 

0 otherwise 

with U1 and U2 being as defined in (4.2.7) and (4.2.8), respectively. It is clear that 

IE(O) is a diagonal matrix and by substituting {Jij for ()ij, the observed Fisher infor­
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Table 4. 7: Average Widths of Confidence Intervals based on 1000 Simulations 


with ()11 = 6.0, 012 = 12.0, 021 = 3.0, B22 = 6.0, n = 40, r = 30 and B = 1000 


953 993
Nominal CL I 903 


Parameter T Exact Approx Boot Exact Approx Boot Exact Approx 

1 35.421 12.627 16.093 41.213 15.046 21.041 54.793 19.773 

2 18.864 7.380 9.718 20.447 8.794 13.187 30.406 11.558 

3 8.485 5.818 7.067 13.252 6.933 9.084 18.291 9.111 
811 

4 6.869 5.329 6.000 9.065 6.350 7.535 15.697 8.345 

5 5.901 4.870 5.298 7.225 5.803 6.452 12.023 7.626 

6 5.234 4.649 4.968 6.417 5.539 6.094 11.776 7.280 

1 66.671 38.387 25.034 76.901 45.741 28.688 83.608 60.114 

2 48.090 27.734 33.713 56.240 33.047 42.926 70.153 43.431 

3 32.826 21.038 29.332 42.244 25.068 40.402 65.338 32.945 
812 

4 21.354 17.826 23.415 28.351 21.241 32.684 44.428 27.916 

5 18.070 15.848 20.567 22.859 18.884 30.161 34.862 24.817 

6 15.948 14.360 18.568 20.045 17.111 25.531 30.218 22.488 

1 2.434 2.261 2.338 2.974 2.694 2.824 4.167 3.540 

2 2.864 2.597 2.786 3.537 3.095 3.408 5.095 4.068 

3 3.460 3.023 3.310 4.342 3.602 4.098 6.563 4.734 
821 

4 4.120 3.393 4.137 5.369 4.043 5.280 9.062 5.314 

5 6.454 4.261 5.153 9.323 5.077 6.562 18.807 6.672 

6 10.662 5.299 6.446 15.384 6.314 8.435 35.594 8.298 

1 8.621 7.331 9.028 10.893 8.736 12.081 16.719 11.481 

2 9.999 7.978 11.340 13.005 9.506 15.346 21.553 12.493 

3 17.434 11.099 14.204 22.537 13.225 19.108 38.199 17.381 
822 

4 28.243 13.704 17.190 36.297 16.330 22.580 60.667 21.461 

5 41.147 15. 726 18.583 53.024 18.738 23.147 85.390 24.626 

6 60.692 17.684 18.222 74.906 21.072 22.897 108.851 27.694 

Boot 

29.681 

24.267 

14.990 

11.539 

9.346 

8.650 

32.394 

57.971 

64.914 

56.474 

52.738 

45.642 

3.890 

4.819 

6.123 

8.380 

10.690 

13.424 

21.151 

26.297 

31.251 

34.379 

33.388 

31.464 
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Table 4.8: Average Bounds of 903 Confidence Intervals based on 1000 Simulations 

with e11 = 6.0, e12 = 12.0, e21 = 3.0, e22 = 6.0, n = 40, r = 30 and B = 1000 

Approximate CI Parameter T Exact CI BCa Bootstrap CI 

1 ( 4.628, 40.049) (1.109, 13.736) (4.172, 20.265) 

2 ( 4.446, 23.310) (2.923, 10.304) (4.146, 13.864) 

en 
3 (4.459, 12.944) (3.409, 9.227) (4.234, 11.302) 

4 ( 4.518, 11.387) (3.695, 9.024) ( 4.318, 10.318) 

5 ( 4.586, 10.487) (3.815, 8.685) (4.307, 9.605) 

6 ( 4.633, 9.867) (3.920, 8.569) ( 4.344, 9.312) 

1 (6.718, 73.389) (0.000, 34.771) (8.360, 33.393) 

2 (7.076, 55.166) (1.430, 29.164) (8.135, 41.848) 

3 (8.293, 41.119) (3.699, 24.737) (8.131, 37.464) 
e12 

4 (7.606, 28.960) ( 4.818, 22.644) (7.831, 31.246) 

5 (7.731, 25.801) (5.489, 21.337) (7.952, 28.519) 

6 (7.717, 23.665) (5.860, 20.220) (8.090, 26.658) 

1 (2.172, 4.606) (1.933, 4.194) (2.070, 4.409) 

2 (2.086, 4.950) (1.782, 4.380) (2.000, 4. 786) 

3 (2.004, 5.464) (1.617, 4.640) (1.876, 5.187) 
e21 

4 (1.850, 5.970) (1.378, 4.771) (1.767, 5.904) 

5 (1. 782, 8.236) (1.116, 5.377) (1.645, 6.798) 

6 (1.689, 12.352) (0. 752, 6.050) (1.528, 7.974) 

1 (3.928, 12.549) (2.905, 10.236) (3.908, 12.936) 

2 (3.601, 13.600) (2.392, 10.370) (3.710, 15.050) 

3 (3.572, 21.006) (1.528, 12.627) (3.611, 17.816) 
e22 

4 (3.387, 31.630) (0.550, 14.255) (3.630, 20.820) 

5 (3.180, 44.327) (0.000, 15.315) (3.654, 22.237) 

6 (2.993, 63.685) (0.000, 16.248) (3.357, 21.579) 
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Table 4.9: Average Bounds of 953 Confidence Intervals based on 1000 Simulations 

with B11 = 6.0, B12 = 12.0, B21 = 3.0, B22 = 6.0, n = 40, r = 30 and B = 1000 

Parameter T Exact CI Approximate CI BCa Bootstrap CI 

1 ( 4.278, 45.491) (0.000, 14.946) (3.826, 24.867) 

2 ( 4.354, 24.801) (2.216, 11.011) (3.850, 17.036) 

en 
3 (4.467, 17.719) (2.852, 9. 785) (3.947, 13.031) 

4 (4.573, 13.638) (3.184, 9.534) (4.032, 11.566) 

5 (4.599, 11.824) (3.349, 9.151) (4.005, 10.457) 

6 (4.664, 11.081) (3.475, 9.014) (4.065, 10.159) 

1 (5.958, 82.859) (0.000, 38.448) (7.437, 36.125) 

2 (6.536, 62.776) (0.000, 31.820) (7.422, 50.348) 

3 (7.613, 49.857) (1.684, 26.752) (7.500, 47.902) 
812 

4 (6.907, 35.258) (3.111, 24.352) (7.238, 39.921) 

5 (7.057, 29.916) (3.971, 22.855) (7.559, 37.720) 

6 (7.072, 27.117) ( 4.484, 21.596) (7.488, 33.019) 

1 (2.038, 5.012) (1.716, 4.410) (1.906, 4.730) 

2 (1.940, 5.477) (1.534, 4.629) (1.818, 5.226) 

3 (1.844, 6.186) (1.328, 4.930) (1.678, 5. 776) 
821 

4 (1.683, 7.052) (1.053, 5.096) (1.553, 6.833) 

5 (1.592, 10.915) (0.708, 5.785) (1.408, 7.970) 

6 (1.479, 16.862) (0.244, 6.558) (1.280, 9.715) 

1 (3.590, 14.483) (2.203, 10.938) (3.572, 15.653) 

2 (3.258, 16.263) (1.628, 11.134) (3.360, 18.706) 

3 (3.169, 25.706) (0.465, 13.690) (3.223, 22.331) 
822 

4 (2.947, 39.245) (0.000, 15.568) (3.171, 25.751) 

5 (2. 714, 55. 738) (0.000, 16.821) (2.988, 26.135) 

6 (2.509, 77.414) (0.000, 17.942) (2.773, 25.670) 
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Table 4.10: Average Bounds of 99% Confidence Intervals based on 1000 Simulations 


with Bu = 6.0, 012 = 12.0, B21 = 3.0, B22 = 6.0, n = 40, r = 30 and B = 1000 


Exact CI Approximate CI Parameter 7 
 BCa Bootstrap CI 

811 


812 


821 


822 


1 


2 


3 


4 


5 


6 


1 


2 


3 


4 


5 


6 


1 


2 


3 


4 


5 


6 


1 


2 


3 


4 


5 


6 


(3.149, 57.942) 

(3.590, 33.996) 

(3.733, 22.024) 

(3.822, 19.519) 

(3.857, 15.880) 

(3.930, 15. 706) 

(4.148, 87.756) 

(5.359, 75.512) 

(6.548, 71.886) 

(5.777, 50.205) 

(5.952, 40.813) 

(6.001, 36.219) 

(1.804, 5.970) 

(1.687, 6.782) 

(1.568, 8.131) 

(1.395, 10.457) 

(1.269, 20.075) 

(1.129, 36.723) 

(3.026, 19.745) 

(2.690, 24.244) 

(2.522, 40.721) 

(2.261, 62.927) 

(2.014, 87.404) 

(1.802, 110.652) 

(0.000, 17.309) 

(0.835, 12.393) 

(1.762, 10.874) 

(2.187, 10.532) 

(2.437, 10.063) 

(2.604, 9.884) 

(0.000, 45.634) 

(0.000, 37.012) 

(0.000, 30.690) 

(0.000, 27.689) 

(1.004, 25.822) 

(1. 796, 24.284) 

(1.293, 4.834) 

(1.047, 5.115) 

(0.762, 5.496) 

(0.418, 5.731) 

(0.000, 6.583) 

(0.000, 7.550) 

(0.830, 12.311) 

(0.134, 12.627) 

(0.000, 15. 768) 

(0.000, 18.133) 

(0.000, 19.765) 

(0.000, 21.253) 

(3.247, 32.928) 

(3.343, 27.610) 

(3.440, 18.430) 

(3.512, 15.051) 

(3.488, 12.834) 

(3.541, 12.190) 

(6.171, 38.565) 

(6.290, 64.261) 

(6.416, 71.330) 

( 6.233, 62. 707) 

(6.499, 59.237) 

(6.448, 52.090) 

(1.568, 5.458) 

(1.432, 6.250) 

(1.263, 7.386) 

(1.103, 9.483) 

(0.928, 11.618) 

(0.795, 14.219) 

(2.976, 24.127) 

(2.750, 29.047) 

(2.559, 33.810) 

(2.423, 36.801) 

(2.144, 35.532) 

(1.845, 33.309) 
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observation is apparent for the exact Cls and the approximate Cls. This is not 

surprising because when Tis small, the number of failures before Twill be fewer than 

those after T and so inference for 01j will not be very precise requiring much wider 

intervals than 02j for a fixed level of confidence. However, as T increases, the situation 

is reversed providing more information about 01j as compared to 02j and in turn, the 

width of the interval is shortened for 01j while it is lengthened for 02j. 

As the sample size grows, the larger computational time as well as the unstable 

precision (especially for 01j, j = 1, 2) becomes a problematic issue for constructing Cls 

by the exact method. Hence, based on the simulation study, we recommend the use 

of the bootstrap approach to construct Cls for Oij when r and n are considerably large 

since it offers computational feasibility and also performs reasonably well in terms of 

probability coverages and widths for large sample sizes. But, for small sample sizes 

(say, r ::; n ::; 40), the exact method developed here is the one that is recommended. 

4.6 Illustrative example 

We have simulated a Type-II censored sample from a simple step-stress test 

with two competing risks in order to illustrate the methods of inference described in 

the preceding sections. The dataset was generated with the following choices of the 

parameters: 

Bu = 8.96, 012 = 12.18, 021 = 4.48, 022 = 4.06 

along with the stress change time point T = 3. In this setup, when the stress level 

increases, there is a 503 decrease in the mean time to failure caused by the risk factor 
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1 and a 673 decrease in the mean time to failure caused by the risk factor 2. Also, at 

the initial stress level, there is a 583 chance for a test unit to fail by the risk factor 

1 but it drops to 473 after the increment of the stress level at T. From the initial 

sample size of n = 25 with r = 20 for 203 right censoring, the observed times to 

failure are presented in Table 4.11 below. 

From this dataset, we have nn = 7, n 12 = 5, n21 = 4, n22 = 4 and hence, the 

observed MLEs of Bii are found from ( 4.2.9) to be 

A A A A 

en = 7.510, B12 = 10.514, B21 = 4.128, B22 = 4.128. 

The Cis for eii are also presented in Table 4.12 using all three methods described in 

Section 4.4. Since the exact Cis for eij require the monotonicity of the tail probability 

functions of {)ij, we provide the numerical justification of this assumption by plotting 

the tail probabilities with the observed values of the MLEs from the sample. From 

Figure 4.1, it is evident that all the plots show the monotonically increasing behavior 

of the tail probabilities with respect to the unknown parameter eij for each i, j = 1, 2. 

In addition, the two horizontal lines corresponding to the values of a/2 and 1 - a/2 

for a = 0.10 are overlaid in each plot of Figure 4.1 to illustrate how the exact Cis are 

constructed by inverting the tail probabilities of {)ii· In the first plot of Figure 4.1, for 

example, the values of Bn from the two intersecting points are the unique solutions 

of Eqs. ( 4.4.1) and ( 4.4.2), respectively, and together they provide the exact 903 CI 

for Bn. 

From Table 4.12, we observe that the exact Cis are always wider than the other 

two intervals. The approximate method provides the narrowest Cis in general while 

the BCa bootstrap Cis are sometimes narrower and at other times wider than the 
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Table 4.11: Type-II Censored Sample from n = 25 units on a Simple 


Step-stress Test with Two Competing Risks, T = 3 and r = 20 


Stress Level 1 

(before T = 3) 

Failure Time Failure Cause 

0.145 1 

0.289 1 

0.345 2 

0.382 1 

0.575 2 

0.577 1 

1.126 1 

1.588 1 

1.597 2 

1.772 1 

2.428 2 

2.744 2 

Stress Level 2 

(after T = 3) 

Failure Time Failure Cause 

3.105 1 

3.537 2 

3.608 2 

3.621 1 

3.640 2 

3.814 1 

4.514 2 

4.946 1 
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Table 4.12: Interval Estimation based on the Type-II Censored 


Step-stress Data in Table 4.11 with B = 1000 


Parameter CL Exact CI Approximate CI BCa Bootstrap CI 

Ou = 8.96 

90% 

95% 

99% 

( 4.065, 14.534) 

(3.647, 16.912) 

(3.031, 23.207) 

(2.841, 12.178) 

(1.947, 13.073) 

(0.198, 14.821) 

(4.253, 13.572) 

(3.906, 15.606) 

(3.375, 22.179) 

90% (5.213, 23.442) (2.780, 18.247) (5.691, 20.453) 

812 = 12.18 95% 

99% 

( 4.635, 28.457) 

(3.755, 43.314) 

(1.298, 19. 729) 

(0.000, 22.625) 

(5.216, 24.401) 

( 4.534, 34.546) 

821 = 4.48 

90% 

95% 

99% 

(1.902, 13.310) 

(1.633, 19.177) 

(1.162, 83.142) 

(0. 733, 7.524) 

(0.083, 8.174) 

(0.000, 9.445) 

(1.706, 10.861) 

(1.412, 14.185) 

(1.097, 26.105) 

822 = 4.06 

90% 

95% 

99% 

(1.902, 13.310) 

(1.633, 19.177) 

( 1.162, 83.142) 

(0.733, 7.524) 

(0.083, 8.174) 

(0.000, 9.445) 

(1.956, 12.303) 

(1.637, 18.534) 

(1.263, 30.015) 
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Figure 4.1: Plots of Tail Probabilities of iJiJ, Pr [iJiJ > iJ7Js J , with respect to eiJ and 

Exact 903 Confidence Intervals for eiJ from the Step-stress Data in Table 4.11 
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approximate ones. This is so since the coverage probabilities for the approximate Cls 

and the bootstrap Cis are significantly lower than the nominal levels (see Tables 4.1 

and 4.6). vVe also note from Table 4.12 that the Cis for B11 are consistently narrower 

than those for B12 . The primary reason for this is that when B11 is smaller than B12 , 

we expect a relatively large number of failures to occur before T by the risk factor 1 

than by the risk factor 2, resulting in lower variability in the estimation of Bu than 

B12 , and vice versa. It is also interesting to observe from Table 4.12 that the exact Cls 

for B21 and B22 are identical as well as their approximate Cls. This is to be expected 

because the exact method and the approximate method both depend on the observed 

values of the MLEs and the MLEs are sensitive to the number of failures caused by 

each risk factor before and after T. Since n 21 = n 22 = 4 in this example, the realized 

values of B
' 
21 and B

' 
22 happen to be equal and this in turn yields the same estimates 

for the tail probabilities of fJ21 and fJ22 (see Figure 4.1). Consequently, the inference 

regarding B21 and B22 comes out be identical in this case. 

4.7 Summary and conclusions 

In this chapter, we have discussed the simple step-stress model under Type-II 

censoring when the lifetimes corresponding to different risk factors have indepen­

dent exponential distributions. We have derived the MLEs of the unknown mean 

parameters Bij under the assumption of a cumulative exposure model and their ex­

act conditional distributions through the use of the CMGF. We have also proposed 

several different procedures for constructing Cis for Bij· We have then conducted a 

simulation study to assess the performance of all these procedures and a numerical 
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example has been presented to illustrate all the methods of inference developed in 

this chapter. Based on the results of the simulation study, our recommendation for 

constructing Cls for ()ij is to apply the exact method whenever possible, especially 

in the case of small sample sizes (e.g., r :::; n:::; 40) since the other two methods are 

unsatisfactory in terms of probability coverages. For larger sample sizes, however, the 

BCa percentile bootstrap method is more appropriate because of its computational 

ease as well as for its improved probability coverages being close to the nominal levels. 
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Chapter 5 

Exact Inference for a 

Simple Step-stress Model 

with Competing Risks for Failure 

from Exponential Distribution 

under Time Constraint 

5.1 Introduction and motivation 

In Chapter 4, we have developed the method of the exact inference for the 

simple step-stress model under Type-II censoring. In this chapter, we consider the 

simple step-stress model under time constraint (i.e., Type-I censoring) when the life­
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time distributions of the different risk factors are independently exponentially dis­

tributed. Type-I right censoring corresponds to the situation when the experiment 

gets terminated at a pre-fixed time point. Compared to the Type-II censoring, it 

has the clear advantage of the known termination time for the test, which makes it 

more appealing for the actual implementation in the test design. In Section 5.2, we 

present the MLEs of the mean parameters of the different risk factors and show that 

these MLEs do not always exist. The conditional MLEs are therefore proposed and 

the exact conditional distributions of these MLEs are derived in Section 5.3. Based 

on the exact distributions of the MLEs, we propose exact confidence intervals for the 

unknown mean parameters in Section 5.4 along with the confidence intervals from 

the asymptotic distributions of the MLEs and the parametric bootstrap method. In 

Section 5.5, the performance of these confidence intervals is evaluated in terms of 

probability coverages via Monte Carlo simulations. In Section 5.6, we present a nu­

merical example to illustrate the methods of inference developed in this chapter, and 

some concluding remarks are finally made in Section 5. 7. 

5.2 Model description and MLEs 

A random sample of n identical units is placed on a life test under the initial 

stress level 8 1 . The successive failure times are then recorded along with the infor­

mation about which risk factor caused each failure. At a pre-fixed time T, the stress 

level is increased to 8 2 and the life test continues until a pre-specified censoring time 

Tc (> T). When all n units fail before Tc, then a complete set of failure observations 

would result for this simple step-stress test (i.e., no censoring). Suppose each unit 
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fails by one of two fatal risk factors and the time-to-failure by each competing risk 

has an independent exponential distribution which obeys the cumulative exposure 

model. Let eij be the mean time-to-failure of a test unit at the stress level si by the 

risk factor j for i, j = 1, 2. Then, as in Section 4.2, the CDF of the lifetime Tj due to 

the risk factor j is given by 

G;(t) = G;(t; e,;, e2j) = { 
if Q < t < T 

if T:::; t < 00 

for j = 1, 2, and the corresponding PDF of Tj is given by 

1- exp { - -1 t} if 0 < t < r 
111 111gj(t) = gj(t; e1j, B2j) = { j j 

1 1- exp { - -1 T - - (t - r)} if T :::; t < oo 
f!2i 81i 821 

for j = 1, 2. Since we will observe only the smaller of T1 and T2 , let T =min {T1 , T2 } 

denote the overall failure time of a test unit. Then, its CDF and PDF are readily 

obtained to be 

F(t) = F(t; 0) = 1 - (1 - G1 (t)) (1 - G2 (t)) 

1 - exp { - ( 11 ~ 1 + 8~J t} if 0 < t < T 

{ 
1 - exp { - ( 8 ~ 1 + 8 ~2 ) T - ( 11!1 + 8!2 ) ( t - T)} if T ::; t < 00 

(5.2.1) 

f (t) 

ifO<t<r 

if T :S t < 00 

(5.2.2) 

respectively, where 0 = (01,02 ) with Oi = (Bii,ei2 ) for i = 1,2. Furthermore, let C 

denote the indicator for the cause of failure. Then, the joint PDF of (T, C) is given 
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by 

gj(t)(l - Gj'(t)) 

_1 ex { _ (-1 + _1)t} if Q < t < T
01j p 011 012{ 
_1 exp { _ (-1 + _1)T _ (-1 + _1) ( t _ T)} if T :::; t < 00 
02j 011 012 021 022 

(5.2.3) 

for j, j' = 1, 2 and j' -=/- j. We also denote the relative risk imposed on a test unit 

before T due to the risk factor j by 

e-1 
rr1j=Pr[C=jf0<T<T] = _ 1 lj _ 1 , j = 1, 2. (5.2.4) 

()11 + ()12 

Similarly, the relative risk after T due to the factor j is denoted by 

e-1 
rr2j = Pr[C = jfT 2:: T] = _ 1 

2j _ 1 , j = 1, 2. (5.2.5) 
()21 + 822 

They are simply the proportion of failure rates in the given time frame. One can then 

easily see from (5.2.3)-(5.2.5) that T and C are independent given the time frame in 

which a failure has occurred. 

\Nith the life-testing scheme described above, the following ordered failure 

times will be observed: 

where n 1 . denotes the observed value of N 1 ., the total number of failures before T. 

Similarly, n .. denotes the observed value of N .. , the accumulated number of failures 

until Tc according to the testing scheme. If we let N 2 . denote the total number of 

failures between T and Tc so that N1 . + N 2 . = N .. :::; n, then we can express 

Nij the number of units that fail between 0 and T due to the risk factor j, 

N 2j the number of units that fail between T and Tc due to the risk factor j 
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for j = 1, 2 such that N1 . = Nu+ N12 and N2. = N21 + N22 . Let us denote N = 

(N1 , N 2 ) with Ni = (Ni 1 , Ni2 ) for i = 1, 2, and let n denote the observed integer 

vector of N. 

Since each failure time is also accompanied by the corresponding cause of 

failure, let c = (c1 , c2 , ... , en .. ) be the observed sequence of the cause of failure cor­

responding to the observed failure times t = (ti:n, hn, ... , tn ..:n)· Then, under the 

assumption of the cumulative exposure model, we formulate the likelihood function 

of e based on this Type-I censored data as 

L(8) = L(Bi(t,c)) 

(n :~ .. )! {IT fr,c (ti:n, ci)} { . ft fr,c (ti:n, ci)}{1 - F(Tc)} n-n.. 
i=l i=n1.+l 

2
n! -n·.} { ( 1 ({ rr e.. ' 1 exp - - + -1 ) U1 - -1 + -1 ) U2 }

(n - n .. )! i,j=l iJ Bu B12 B21 822 

(5.2.6) 

for Q < t1:n < · · · < in1 .:n < T ~ in1 .+l:n < · · · < tn.. :n < Tc, where 

n .. n1. + n2. = (nu+ n12) + (n21 + n22), 


U1 L
n1. 

ti:n + (n - ni-)T, (5.2.7) 

i=l 

n.. 

U2 - 2= (ti:n - T) + (n - n.. )(Tc - T). (5.2.8) 
i=n1.+l 

Note that Ui is the Total Time on Test statistic at the stress level si· From the 

likelihood function in (5.2.6), one can easily see that the MLE of eij does not exist if 

nij = 0 for any i, j = 1, 2. That is, at least one failure caused by each risk factor must 

be observed at each stress level in order to estimate e simultaneously. This imposes 

the condition that Nij 2:: 1 for all i, j = 1, 2 and consequently, the acceptable sample 
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size needs to be much larger than 4 in the planning stage of the experiment. In 

general, n has to be at least the product of the number of stress levels implemented 

and the number of fatal risk factors under consideration. Once this condition is 

fulfilled, the log-likelihood function of e is readily obtained from (5.2.6) as 

l(8) l(81(t,c)) = logL(8) 

log n! - ~ niJ log eiJ - (2- + 2-) U1 - (2- + 2-) U2
(n - n .. )! _6 ell e12 e21 e22 

2,J=l 

from which the MLE of eiJ is readily obtained as 

i,j = 1,2. (5.2.9) 

Remark 5.2.1. Again, in the model considered above, we have not assumed any 

relationships among the mean failure times by the two risk factors under the two 

stress levels. In some situations, we may know that some particular relationships 

hold among them; for instance, e2J = PJelJ with known PJ (0 < PJ < l) for j = 1, 2. 

In that case, the MLE of 8 exists whenever at least one failure occurs by each risk 

factor, and their exact distributions can be derived explicitly. One can also use the 

likelihood ratio test statistic to test the multiple hypotheses H 0 : e2J = PJelJ for 

specified PJ 's. 

5.3 Conditional distributions of MLEs 

To find the exact distribution of eiJ, we first derive the CMGF of eiJ, con­

ditioned on {Ni'J' 2: 1 for i',j' = 1,2 and L~',J'=lNi'J'::; n}. Let 6 be the set of 
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positive integer vectors that N can take on satisfying this condition. That is, 

6 = {n nij ~ 1 for i,j = 1, 2 and .t nij::;; n}. 
i,J=l 

Then, the given condition is equivalent to N E 6. For notational convenience, we 

denote Mij(t) for the CMGF of {Jij, i, j = 1, 2. We can then write 

M1i(t) - E [et9ij IN E 6 J 

L E [et9ij IN1= n1J xPr [N= n IN E 6 J (5.3.1) 
nE6 

and 

M 2i(t) 	 - E [et92 j IN E 6 J 

- LE[et02 j IN1. = n1., N2 = n 2J xPr [N = nlN E 6 J (5.3.2) 
nE6 

for j = 1, 2. From the lemmas presented in Appendix D, we find that N has a 

multinomial distribution with its JPMF as 

for n = (nu, n12, n21, n22) E 6, where 1rij are as defined in (5.2.4) and (5.2.5) and 

F(t) is as given in (5.2.1). Hence, we simply obtain 

Pr[N~njNE6] ~ L Pr[N[n2 r nE 6. (5.3.3) 
mE 6 Pr 	N m 

Subsequently, E[et9ijlN1= n 1] and E[et92jlN1.= n1., N2 = n2] (for j = 1,2) can 

be derived using the lemmas presented in Appendix D. Then, by inverting lVlij(t), 

the CMGF of {Jij, we can establish the following theorems regarding the conditional 

distribution of {Jij, the proofs of which are presented in Appendix D. 
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Theorem 5.3.1. The conditional PDF of B1j, given NE 6, is 

for j = 1, 2, where 

c[1J
n,jk 

and 1(· ; o:, .\) is as defined in (4.3. 7). 

Corollary 5.3.1. The first two raw moments of B1j are 

and 

~~ d1J { nl.(n1. + 1) (-1 _l)-2 
2 

- ~~ n,jk n2 e + e + Tljk 
nE6 k=O lj 11 12 

2n1. 1 1 -1 }+ -- ( -- + - ) T1jk , 
nlj Bu 812 

respectively, for j = 1, 2. 

Proof. These expressions follow readily from (5.3.4). D 

119 




Ph.D. Thesis - D. Han McMaster - Mathematics and Statistics 

Theorem 5.3.2. The conditional PDF of 82j, given NE 6, is 

for j = 1, 2, where 

c[2J 
n,jk 

and 1(· ; a,>-) is as defined in (4.3. 7). 

Corollary 5.3.2. The first two raw moments of B2j are 

and 

respectively, for j = 1, 2. 


Proof. These expressions follow readily from ( 5.3. 7). D 


As presented above, for i, j = 1, 2, the conditional distribution of {Jij, given 

N E 6, is a generalized mixture of gamma distributions. The expressions for the 
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expected values clearly reveal that eij is a biased estimator of eij for all i, j = 1, 2. 

The expressions for the first two raw moments given in Corollaries 3.1 and 3.2 can 

be used to calculate the standard errors of the estimates. We can also derive the 

expressions for the tail probabilities by integrating the conditional PDFs of {Jij given 

above. These expressions, presented in the following corollary, are used to construct 

exact confidence intervals for eij later in Section 5.4. 

Corollary 5.3.3. The tail probability of eij is given by 

for i, j = 1, 2, where 

max {O, E}, 

00 00 1i(Y; a, l)dy = - -yo.-le-Ydy t:>O 
E E f(a){1 1

f(c ; a) 
1 

Remark 5.3.1. The model proposed in Section 5.2 and the distributional results 

obtained above can be easily extended and generalized to accommodate multiple stress 

levels and multiple competing risks. In fact, the model under consideration is also 

general in the sense that it includes its marginal models as special cases. For instance, 

when eu, e21 ___, 00 or e12, e22 ___, oo, the failure of a test unit will be caused by a single 

risk factor with probability 1. Hence, the limiting case of the proposed model is the 

simple step-stress model under Type-I censoring without the competing risk structure, 

which was considered by Balakrishnan et al. (2008 ). Consequently, the distributional 

results derived above simply reduce to those obtained by Balakrishnan et al. ( 2008) 

when ell) e21 ___, 00 or e12, e22 ___, 00. On the other hand, if we rather let T ___, 00' then 
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the model developed here converges to the ordinary single stress model (i.e., one stress 

level only) with two competing risks. 

5.4 Confidence intervals 

In this section, we discuss different methods of constructing Cis for the un­

known parameters eiJ. Based on the exact conditional distributions of the MLEs from 

Theorems 5.3.l and 5.3.2, we can construct exact Cis for eij· Since the exact condi­

tional distributions of {)ij are quite complicated, we also present the approximate Cis 

for eij based on the asymptotic distributions of the estimators for a large sample size. 

Finally, the parametric bootstrap method is used to construct Cis for eiJ. 

5 .4.1 Exact confidence intervals 

As in Section 4.4.1, in order to guarantee the invertibility of the pivotal 

quantities for the parameters eij' we assume that the tail probability of {)ij presented 

in Corollary 5.3.3 is a monotonically increasing function of eiJ for each i, j = 1, 2. 

Although this assumption can not be verified in an analytical way due to the complex 

structure of the exact distributions of the pivotal quantities, extensive numerical 

computations seem to support this monotonicity assumption (see Figure 5.1). 

Let us now construct the exact 100(1 - a)% CI for ()ij, i, j = 1, 2. We first 

denote et and e~ for the lower and upper bounds of the two-sided CI for eiJ, respec­

tively. Then, by the monotonicity assumption, they are the unique solutions of the 
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equations 

and 

A Ab] a 
[Pr Bii >Bf/ = 1 - 2' 

respectively, where Bfj8 is simply the observed value of the MLE of eii in this case. 

Since Bfj and eg can not be expressed in an explicit form, they are numerically 

obtained by solving the following two non-linear equations using some iterative tech­

niques such as the bisection method, Newton-Raphson method or Brent's method: 

" ~ c[i] r ( ( 1 1 ) leAobs > • ) (5.4.1)- LL n,jk nij e~ + ei '/ \ ij - Tijk ' ni. ' 2 
nES k=O tJ J 

a 
- " ~ c[i] r ( ( 1 1 ) leAobs \ )o1- -

2 - LL n,jk nii eu. + ei ., \ ii - riik/ , ni· (5.4.2) 
nES k=O tJ J 

for i,j = 1,2 with j' =I- j, where Tijk, c~:ik and r(· ;a) are as defined earlier. Note 

that the coefficients C~!ik in the above two equations are functions of fJ. Hence, 

before solving for the confidence limits for fixed i and j' we replace eij in c~:jk in an 

appropriate manner. That is, Bfj is substituted for eii in c~:ik of (5.4.1) and likewise 

eg for eii in C~!ik of (5.4.2). The observed values of the MLEs are also substituted 

for all the other unknown parameters in the expressions given above. 

5.4.2 Approximate confidence intervals 

In this subsection, we present an approximate method to construct Cis for 

eij using the asymptotically optimal properties of the MLEs for large sample sizes. 

Although the exact method described in the preceding subsection is preferable, its 
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computation again encounters some difficulties for large samples. On the other hand, 

the approximate method provides not only the computational ease but also a good 

probability coverage (close to the nominal level) when the sample size is large. This 

finding is further discussed in Section 5.5. 

Let us first denote the (expected) Fisher information matrix of (} by 

IE (0) = [ Iij:i'j'] ..., ., ' 
i,J,i ,J =1,2 

where 

, i = i' and j = j' 

otherwise 

with U1 and U2 being as defined in (5.2.7) and (5.2.8), respectively. It is clear that 

Is(O) is a diagonal matrix and by substituting fJij for ()ij, the observed Fisher infor­

mation matrix of (J is simply 

. (nuI 0 (fJ) = diag -A-,
er1 

Upon inverting this matrix, we obtain the asymptotic variance of fJij as 
A2 
()"

Vij = ....2..., i,j = 1, 2. 
nij 

Since fJij is asymptotically unbiased for ()ij, we can then use 

{Jij - ()ij 
i,j=l,2y'v0 ' 

as a pivotal quantity for ()ij to construct two-sided 100(1 - a)% approximate CI for 

()ij, which is given by 

(max{0, {Jij - Za/2~}, {Jij + Za/2~), i,j = 1,2, 

where za;2 is the (1 - a/2)-th quantile of a standard normal distribution. 
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5.4.3 Bootstrap confidence intervals 

We also construct the Cis for ()ij using the bias-corrected and accelerated 

(BCa) percentile bootstrap method. Before we obtain the BCa percentile bootstrap 

Cis for ()ij, the following algorithm is implemented to generate the bootstrap sample 

of size B based on the original Type-I censored sample of size n.. : 

Step 1 Given the stress change time point T, the right censoring time point Tc, the 

initial sample size n and the original Type-I censored sample of size n.. , calculate 

fJij, the MLEs of ()ii for i, j = 1, 2, from (5.2.9). 

Step 	2 Generate a random sample of (Tu, T12 ) of size n, where Tn and T12 are 

independently from exponential distributions with mean parameters en and 

012 , respectively. For each pair of (Tu, T12 ), take the minimum of the two 

values as well as the corresponding index of the minimum (e.g., record 1 if Tu 

is smaller than T12 , else record 2). Let T 1 be the vector of the minima and C 1 

be the vector of the indices. 

Step 3 Sort the elements of T 1 in an ascending order and permute the elements 

of C 1 in a corresponding manner. Let Vi:n < · · · < Vn:n denote the ordered 

elements of T 1 . 

Step 4 Find nr. such that Vni.:n < T:::; Vni.+l:n· Then, for 1:::; k:::; nr., set tk:n to be 

the value of Vk:n and set nij to be the number of j's in the first nr. elements of 

the permuted C 1 for j = 1, 2 (viz., ni1 + ni2 = ni.). 

Step 5 Generate a random sample of (T21 , T22 ) of size 'r/ = n - ni., where T21 and 

T22 are independently from exponential distributions with mean parameters ()21 
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and ()22 , respectively. Again, for each pair of (T21 , T22), take the minimum of 

the two values as well as the corresponding index of the minimum. Let T 2 be 

the vector of the minima and C 2 be the vector of the indices. 

Step 6 Sort the elements of T 2 in an ascending order and permute the elements of 

C2 correspondingly. Let w1:11 < · · · < w11:11 denote the ordered elements of T 2. 

Step 7 Find n;. such that Wn2.: 11 < (Tc - T) :'.S: Wn2.+l:7J· Then, for 1 :'.S: k :'.S: n2., set 

t~i.+k:n to be the value of (wk: 11 + T). Also, set n2i to be the number of j's in 

the first n;. elements of the permuted C2 for j = 1, 2 (viz., n21 + n22 = n;.). 

Step 8 Based on T, Tc, n, n;j and the ordered observations t* = (ti:n• ... , t~~.:n), 

calculate the new MLEs of ()ii• denoted by Bii for i, j = 1, 2, from (5.2.9). 

Step 9 Repeat Steps 2-8 B times. Then, for fixed i and j, arrange all the values of 

e;j in an ascending order to obtain the bootstrap sample 

{{J*[lJ < {J*[2] < ... < {J:[BJ} i,j = 1, 2.
lJ lJ lJ ' 

With the bootstrap samples generated as above, we now obtain the two-sided 

100(1 - a)% BCa percentile bootstrap CI for ()ii as 

i,j = 1, 2, 

where 

( A zo;ij - Zo./2 )
aii = <I> Zo·ij + __A_(_A____)

' 1 - aij Zo;ij - Zo./2 

and 

f3 ( A zo;ij + Zo./2 ) 
ii = <I> zo;ij + AA ;

1 - aij ( zo;ij + zo.;2) 
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see Efron and Tibshirani (1993). As usual, <I>(·) denotes the CDF of the standard 

normal distribution and the value of the bias-correction zo;ij is given by 

"B ( A*[k] A ) 
A ­ -1 (L..,k=l J eij < eij ) 
zo;ij - <I> B , i,j = 1,2, 

where <I>- 1(-) denotes the inverse of the standard normal CDF and J(-) is an indicator 

function that takes on the value of 1 if the argument is true and 0 otherwise. A good 

estimate of the acceleration factor aij is suggested to be 

i,j = 1,2, 

where e~l is the MLE of eij based on the original Type-I censored sample with the 

k-th observation deleted from the failures that occurred at the stress level Si by the 

risk factor j (i.e., the jackknife estimate) fork= 1, 2, ... , nij, and 

i,j = 1,2. 

5.5 Numerical study 

In order to evaluate the performance of all the different methods of construct­

ing Cis discussed in Section 5.4, a Monte Carlo simulation study was conducted and 

the results are presented in this section. As in Section 4.5, the values of the param­

eters were chosen to be 811 = 6.0, 812 = 12.0, 821 = 3.0, and B22 = 6.0 to illustrate a 

particular scenario under which the increased stress level causes 503 loss of the mean 

time to failure by any single risk factor and the chance of a test unit to fail by the 
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risk factor 1 is twice as high as the chance to fail by the risk factor 2 before or after 

the change in the stress levels. The initial sample size n was chosen to be 15 and 30, 

and several different choices were made for the stress change time point r while the 

censoring time point Tc was fixed at 6. Based on 1000 Monte Carlo simulations with 

B = 1000 bootstrap replications, the true coverage probabilities of the 903, 953 and 

993 Cis for f)ij were determined. The results are presented in Tables 5.1-5.10 along 

with the estimated mean bounds and widths of the Cls from this simulation. 

Again, it was observed that the lower bounds of the approximate Cis frequently 

hit below zero for small sample sizes or for high levels of confidence even though the 

parameters f)ij can take only positive values in this setting. In order to make such 

intervals sensible ones, the negative lower bounds were all replaced by zero in Tables 

5.3-5.5 and 5.8-5.10. 

From Table 5.1, we clearly see that overall the exact method performs the 

best as its Cls possess the actual coverage probabilities to be much closer to the 

nominal levels than the other Cis based on different methods. On the other hand, 

the performance of the approximate Cis and the BCa bootstrap Cis is unsatisfactory 

for a small sample size as their actual coverage probabilities are quite below the 

specified nominal levels in most cases. A possible explanation for this may be due to 

the high degree of skewness in the exact distributions of eij and hence, a much larger 

sample size is required to justify the use of the asymptotic approach to construct 

Cls. Moreover, from Table 5.2, we observe that the widths of the Cis obtained from 

the approximate method and the parametric bootstrap method are unduly narrow 

compared to those of the exact Cls in general. Serious underestimation of the interval 

width again provides a reason for the poor probability coverages of the approximate 
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Table 5.1: Estimated Coverage Probabilities (in%) based on 1000 Simulations 

with Bu = 6.0, 6112 = 12.0, 6121 = 3.0, 6122 = 6.0, n = 15, Tc= 6 and B = 1000 

993Nominal CL I 903 953 

Parameter T Exact Approx Boot Exact Approx Boot Exact Approx Boot 

Bu 

1 

2 

3 

4 

92.0 

91.5 

90.8 

91.6 

84.0 

88.7 

88.6 

88.7 

74.1 

85.6 

88.1 

88.3 

95.2 

95.3 

95.2 

95.4 

89.6 

91.6 

90.8 

92.l 

79.7 

91.0 

92.5 

92.7 

98.8 

98.5 

98.7 

99.l 

94.2 

95.9 

95.3 

95.4 

86.6 

94.6 

96.9 

97.7 

5 90.9 90.5 84.3 96.0 94.7 90.1 99.0 97.4 96.4 

812 

1 

2 

3 

4 

5 

88.2 

88.9 

89.3 

89.9 

90.5 

85.3 

85.3 

87.0 

87.6 

90.8 

80.4 

81.0 

80.6 

84.3 

84.0 

90.3 

93.3 

94.l 

95.0 

95.4 

85.4 

86.9 

90.3 

90.6 

92.9 

85.4 

87.9 

86.3 

88.2 

88.3 

97.9 

98.5 

98.0 

98.7 

99.3 

85.7 

93.0 

93.9 

94.7 

96.5 

92.7 

94.5 

92.8 

94.5 

92.9 

821 

1 

2 

3 

4 

5 

91.5 

94.l 

95.3 

95.8 

91.0 

86.6 

87.8 

86.7 

87.5 

76.0 

88.9 

90.9 

86.2 

77.2 

80.l 

95.9 

98.3 

98.4 

97.5 

95.5 

93.4 

91.9 

89.5 

90.2 

80.2 

94.0 

94.7 

90.8 

84.3 

86.3 

99.7 

99.9 

99.6 

99.8 

99.5 

95.6 

94.9 

93.9 

94.0 

87.1 

98.8 

98.8 

96.3 

94.2 

93.5 

822 

1 

2 

3 

4 

93.l 

92.6 

91.8 

89.9 

86.5 

86.l 

83.4 

76.8 

85.l 

82.2 

78.3 

80.5 

95.6 

95.9 

95.1 

94.3 

89.6 

89.2 

85.9 

80.0 

89.5 

88.l 

86.7 

88.2 

99.4 

99.1 

99.2 

98.6 

93.6 

93.1 

90.0 

85.8 

93.0 

94.9 

96.2 

94.7 

5 89.4 53.8 54.3 94.0 58.9 60.8 98.6 69.6 67.4 
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Table 5.2: Average Widths of Confidence Intervals based on 1000 Simulations 

with eu = 6.0, e12 = 12.0, e21 = 3.0, e22 = 6.0, n = 15, Tc= 6 and B = 1000 

Nominal CL I 903 953 993 

Parameter T Exact Approx Boot Exact Approx Boot Exact Approx Boot 

en 

812 

821 

822 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

30.868 

17.356 

13.040 

11.954 

10.507 

42.403 

34.519 

28.931 

24.927 

23.048 

6.084 

9.240 

13.451 

17.170 

19.711 

20.265 

25.123 

28.526 

27.973 

23.034 

16.815 

15.729 

12.214 

10.359 

9.405 

24.880 

33.558 

34.661 

32.818 

32.222 

4.653 

5.651 

7.629 

8.669 

5.953 

15.135 

16.330 

15.136 

12.642 

7.040 

8.945 

15.198 

15.504 

13.233 

11.667 

8.360 

17.930 

24.861 

28.028 

29.640 

6.550 

7.709 

8.574 

7.468 

4.470 

16.793 

15.236 

12.829 

9.071 

4.700 

26.505 

19.795 

17.232 

15.046 

14.149 

41.416 

29.992 

32.019 

35.488 

34.237 

7.936 

11.006 

14. 726 

18.735 

24.289 

23.941 

24.050 

24.525 

27.958 

29.391 

19.275 

17.838 

14.143 

12.170 

11.137 

27.551 

37.505 

38.845 

36.913 

36.427 

5.583 

6.570 

8.652 

9.700 

6.649 

17.377 

18.307 

16.917 

14.120 

7.869 

9.986 

18.194 

19.700 

17.622 

15.624 

9.313 

20.134 

28.748 

33.337 

36.230 

8.889 

10.274 

10.746 

8.885 

5.126 

20.594 

18.283 

14.965 

10.417 

5.312 

34.080 

31.710 

24.743 

21.694 

19.328 

40.139 

51.042 

44.985 

44.276 

45.010 

13.399 

18.334 

24.477 

28.966 

30.654 

32.537 

35.825 

39.752 

41.897 

35.902 

23.054 

21.264 

17.079 

15.020 

14.042 

33.122 

44.897 

46.352 

43.936 

43.335 

7.006 

7.959 

10.314 

11.593 

7.997 

20.691 

21.818 

20.245 

16.969 

9.488 

11.521 

23.288 

28.907 

28.635 

26.536 

10.843 

23.356 

34.330 

42.032 

47.546 

15.605 

16.401 

15.168 

11.332 

6.050 

27.735 

23.488 

18.351 

12.339 

6.120 
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Table 5.3: Average Bounds of 903 Confidence Intervals based on 1000 Simulations 

with 8n = 6.0, 812 = 12.0, 821 = 3.0, 822 = 6.0, n = 15, Tc= 6 and B = 1000 

Parameter T Exact CI Approximate CI BCa Bootstrap CI 

811 

812 

821 

822 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

(1.856, 32.725) 

(2.606, 19.962) 

(2.931, 15.971) 

(3.024, 14.978) 

(3.354, 13.861) 

(2.038, 44.440) 

(3.121, 37.641) 

(3.757, 32.687) 

(4.014, 28.941) 

(4.211, 27.259) 

(1.712, 7.796) 

(1.549, 10. 789) 

(1.308, 14.759) 

(0.980, 18.150) 

(0.561, 20.272) 

(2.477, 22.742) 

(2.066, 27.189) 

(1.653, 30.180) 

(1.136, 29.109) 

(0.582, 23.616) 

(0.142, 16.957) 

(0.718, 16.446) 

(1.368, 13.582) 

( 1.854, 12.213) 

(2.224, 11.629) 

(0.036, 24.917) 

(0.215, 33.773) 

(0.520, 35.181) 

(0.842, 33.661) 

(1.184, 33.406) 

(1.018, 5.670) 

(0.695, 6.346) 

(0.322, 7.951) 

(0.083, 8.752) 

(0.008, 5.961) 

(0.540, 15.675) 

(0.257, 16.587) 

(0.100, 15.235) 

(0.023, 12.665) 

(0.001, 7.041) 

( 4.387, 13.332) 

(4.137, 19.335) 

(3.916, 19.420) 

(3.637, 16.870) 

(3.764, 15.432) 

(5.796, 14.156) 

(7.519, 25.449) 

(7.919, 32.780) 

(7.464, 35.491) 

(7.790, 37.429) 

(1.733, 8.283) 

(1.596, 9.304) 

(1.646, 10.220) 

(1.699, 9.167) 

(1.267, 5.737) 

(3.816, 20.610) 

(3.439, 18.675) 

(3.296, 16.125) 

(2.639, 11.711) 

(1.543, 6.242) 
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Table 5.4: Average Bounds of 953 Confidence Intervals based on 1000 Simulations 

with Bu = 6.0, B12 = 12.0, B21 = 3.0, B22 = 6.0, n = 15, Tc = 6 and B = 1000 

Parameter 

B11 

B12 

B21 

B22 

T 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

Exact CI 

(1.458, 27.963) (0.024, 19.300) (3.890, 13.877) 

(2.221, 22.016) (0.242, 18.079) (3.613, 21.808) 

(2.591, 19.823) (0.641, 14.784) (3.506, 23.205) 

(2.771, 17.817) (l.044, 13.214) (3.284, 20.906) 

(2.849, 16.998) (1.396, 12.533) (3.411, 19.036) 

(1.585, 43.001) (0.003, 27.554) (5.063, 14.376) 

(2.485, 32.477) (0.034, 37.538) (6.463, 26.597) 

(3.156, 35.175) (0.117, 38.962) (6.840, 35.588) 

(3.649, 39.137) (0.227, 37.140) (6.450, 39.788) 

(3. 758, 37.995) (0.343, 36.769) (6.815, 43.045) 

(1.518, 9.454) 

(1.336, 12.342) 

(l.085, 15.811) 

(0. 789, 19.524) 

(0.457, 24.746) 

(2.108, 26.049) 

(1.699, 25.749) 

(l.274, 25.799) 

(0.883, 28.841) 

(0.477, 29.868) 

Approximate CI 

(0.636, 6.219) 

(0.331, 6.901) 

(0.100, 8.752) 

(0.013, 9.713) 

(0.001, 6.650) 

(0.166, 17.543) 

(0.051, 18.358) 

(0.014, 16.931) 

(0.002, 14.122) 

(0.000, 7.869) 

BCa Bootstrap CI 

(1.523, 10.412) 

(1.366, 11.640) 

(1.358, 12.103) 

(1.376, 10.261) 

(l.029, 6.155) 

(3.227, 23.821) 

(2.862, 21.144) 

(2. 706, 17.671) 

(2.144, 12.561) 

(1.256, 6.568) 
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Table 5.5: Average Bounds of 993 Confidence Intervals based on 1000 Simulations 


with ell = 6.0, e12 = 12.0, e21 = 3.0, e22 = 6.0, n = 15, Tc= 6 and B = 1000 


T Exact CI Approximate CI Parameter BCa Bootstrap CI J 
(1.076, 35.156) 1 
 (0.000, 23.054) (2.952, 14.473) 

2 
 (1.680, 33.391) (0.007, 21.271) (2.677, 25.965) 

(1.976, 26.719) (0.053, 17.132) (2.622, 31.529) 3
en 
4 
 (2.024, 23.718) (0.152, 15.172) (2.495, 31.130) 

(2.707, 22.035) (0.257, 14.299) 5 
 (2.521, 29.057) 

1 
 (1.115, 41.253) (0.000, 33.122) (3.835, 14.678) 

2 
 (1.859, 52.900) (0.000, 44.897) (4.758, 28.114) 

(2.225, 47.210) 3 
 (0.001, 46.353) ( 4.978, 39.309) B12 

(2.623, 46.899) 4 
 (0.003, 43.939) ( 4.649, 46.682) 

(2.917, 47.927) (0.007, 43.342) ( 4.864, 52 .411)5 


1 
 ( 1.217, 14.616) (0.103, 7.109) (1.152, 16.757) 

2 
 (1.025, 19.359) (0.027, 7.986) (0.938, 17.339) 

(0.817, 25.294) 3 
 (0.002, 10.316) (0.862, 16.030) B21 

4 
 (0.595, 29.562) (0.000, 11.593) (0.853, 12.185) 

(0.342, 30.996) 5 
 (0.000, 7.997) (0.655, 6.705) 

1 
 (1.473, 34.010) (0.003, 20.694) (2.275, 30.010) 

2 
 (1.208, 37.032) (0.001, 21.819) (1.942, 25.430) 

(0.928, 40.680) (0.000, 20.245) (1.784, 20.135) 3
B22 

4 
 (0.675, 42.572) (0.000, 16.969) (1.391, 13.729) 

(0.369, 36.271) 5 
 (0.000, 9.488) (0.812, 6.933) 
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Table 5.6: Estimated Coverage Probabilities (in 3) based on 1000 Simulations 

with Bn = 6.0, 812 = 12.0, 821 = 3.0, 822 = 6.0, n = 30, Tc= 6 and B = 1000 

I Nominal CL I 903 95% 99% 

Parameter T Approx Boot Approx Boot Approx Boot 

1 88.7 88.6 93.2 93.2 96.2 97.5 

2 89.7 91.6 93.5 94.3 95.6 98.4 

Bn 3 91.8 89.6 94.5 94.9 97.6 99.2 

4 90.4 89.l 93.5 94.2 96.6 99.1 

5 89.8 89.4 93.5 94.9 96.6 98.5 

1 87.2 89.l 91.8 92.7 95.3 95.2 

2 87.4 87.9 91.7 93.0 95.6 96.5 

B12 3 89.3 87.6 93.0 93.7 96.3 97.7 

4 88.2 88.8 92.5 94.6 95.8 98.l 

5 89.6 89.6 93.l 94.7 96.2 97.9 

1 88.8 90.8 92.l 95.5 95.9 99.1 

2 89.9 90.9 93.6 95.2 95.8 98.7 

B21 3 88.8 89.9 92.3 95.2 95.2 99.2 

4 89.7 88.5 92.9 92.7 95.7 97.2 

5 87.6 88.5 91.0 89.9 93.5 96.8 

1 89.9 89.9 92.0 94.7 95.6 98.7 

2 89.5 91.2 93.3 95.0 96.l 97.7 

822 3 88.3 86.l 91.8 93.l 95.6 96.9 

4 86.1 88.2 91.9 92.8 94.8 97.4 

5 88.5 85.8 92.0 93.8 93.7 98.6 
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Table 5. 7: Average Widths of Confidence Intervals based on 1000 Simulations 

with Bu = 6.0, B12 = 12.0, B21 = 3.0, B22 = 6.0, n = 30, Tc = 6 and B = 1000 

I Nominal CL I 903 953 993 

Parameter T Approx Boot Approx Boot Approx Boot 

1 15.056 14.909 17.182 18.355 20.577 23.613 

B11 

B12 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

8.982 

7.205 

6.325 

5.777 

34.066 

30.355 

24.681 

21.937 

19.326 

2.830 

3.627 

12.057 

8.598 

7.381 

6.529 

18.522 

30.016 

30.481 

28.657 

27.838 

3.311 

4.267 

10.629 

8.582 

7.536 

6.883 

38.123 

34.476 

28.491 

25.646 

22.790 

3.372 

4.317 

16.269 

11.384 

9.522 

8.273 

20.906 

36.408 

39.138 

38.754 

37.332 

4.208 

5.647 

13.482 

11.178 

9.885 

9.038 

45.590 

41.188 

34.475 

31.536 

28.497 

4.431 

5.624 

27.324 

19.494 

15.838 

13.115 

23.947 

45. 720 

56.013 

59.471 

60.826 

6.776 

10.062 

B21 3 

4 

5 

4.424 

6.887 

8.280 

6.189 

7.948 

6.830 

5.237 

7.891 

9.265 

8.359 

10.245 

8.068 

6.601 

9.476 

11.072 

14.638 

15.304 

10.121 

1 

2 

9.613 

12.389 

13.785 

15.185 

11.333 

14.337 

18.765 

20.206 

14.170 

17.356 

32.297 

31.214 

B22 3 

4 

5 

16.001 

16.415 

12.224 

16.493 

13.641 

7.868 

18.106 

18.384 

13.651 

20.360 

16.190 

9.042 

21.600 

21.959 

16.407 

27.598 

20.362 

10.715 
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Table 5.8: Average Bounds of 90% Confidence Intervals based on 1000 Simulations 

with 8 11 = 6.0, 8 12 = 12.0, 821 = 3.0, 822 = 6.0, n = 30, Tc = 6 and B = 1000 

Parameter T Approximate CI BCa Bootstrap CI 

1 (0.956, 16.012) (4.111, 19.020) 

2 (2.361, 11.343) (3.898, 15.955) 

Bu 3 (2.984, 10.189) (3.950, 12.548) 

4 (3.284, 9.609) (4.080, 11.461) 

5 (3.449, 9.226) (4.156, 10.685) 

1 (0.333, 34.400) (7.588, 26.110) 

2 (1.538, 31.893) (7.765, 37.780) 

812 3 (2.720, 27.400) (7.561, 38.041) 

4 (3.611, 25.548) (7.625, 36.282) 

5 ( 4.239, 23.564) (7 .860, 35.698) 

1 (1.709, 4.539) (2.029, 5.340) 

2 (1.493, 5.120) (1.911, 6.178) 

821 3 (1.103, 5.527) (1.788, 7.978) 

4 (0.538, 7.425) (1.744, 9.692) 

5 (0.080, 8.360) (1.851, 8.681) 

1 (2.113, 11.726) (3.768, 17.553) 

2 (1.392, 13. 781) (3.529, 18.715) 

822 3 (0.643, 16.643) (3.758, 20.251) 

4 (0.204, 16.618) (3.599, 17.241) 

"0 (0.021, 12.245) (2.782, 10.650) 
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Table 5.9: Average Bounds of 953 Confidence Intervals based on 1000 Simulations 

with 811 = 6.0, 812 = 12.0, 821 = 3.0, ()22 = 6.0, n = 30, Tc = 6 and B = 1000 

Parameter T Approximate CI BCa Bootstrap CI 

1 (0.383, 17.566) (3.586, 21.941) 

2 (1.579, 12.208) (3.558, 19.827) 

3 (2.297, 10.879) (3.634, 15.019) t911 

4 (2.678, 10.215) (3.774, 13.296) 

(2.896, 9.779) 5 (3.863, 12.135) 

1 (0.065, 38.188) (6.509, 27.415) 

2 (0.576, 35.052) (6.810, 43.218) 

3 (1.355, 29.846) (6.741, 45.879) t912 

4 (2.052, 27.698) (6.887, 45.641) 

5 (2.643, 25.433) (7.134, 44.466) 

1 (1.438, 4.810) (1.874, 6.083) 

2 (1.150, 5.467) (1.741, 7.388) 

3 (0.715, 5.952) (1.591, 9.950) t921 

4 (0.235, 8.127) (1.500, 11.744) 

(0.013, 9.278) 5 (1.542, 9.609) 

1 (1.320, 12.654) (3.394, 22.159) 

2 (0.678, 15.015) (3.120, 23.326) 

3 (0.218, 18.324) (3.224, 23.584) t922 

4 (0.042, 18.426) (3.017, 19.207) 

5 (0.002, 13.653) (2.305, 11.348) 
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Table 5.10: Average Bounds of 993 Confidence Intervals based on 1000 Simulations 


with 811 = 6.0, 812 = 12.0, 821 = 3.0, 822 = 6.0, n = 30, Tc= 6 and B = 1000 


T Approximate CI BCa Bootstrap CIParameter 

(2.676, 26.289) 1 
 (0.025, 20.603) 

(2.819, 30.142) 2 
 (0.417, 13.899) 

(1.050, 12.228) (3.048, 22.543) 3
811 


(3.217, 19.054) 4 
 (1.513, 11.399) 

(3.332, 16.447) (1.822, 10.861) 5 


( 4.870, 28.817) 1 
 (0.001, 45.591) 

(5.042, 50.762) 2 
 (0.037, 41.226) 

(0.152, 34.627) (5.203, 61.216) 3
812 


4 
 (0.363, 31.900) (5.483, 64.954) 

(0.589, 29.086) (5.684, 66.510) 5 


(0.909, 5.340) (1.597, 8.373) 1 


(0.522, 6.146) (1.431, 11.493) 2 


(0.182, 6.783) (1.219, 15.858) 3
821 


(0.022, 9.498) 4 
 (1.036, 16.339) 

(0.000, 11.072) (1.033, 11.154) 5 


(0.297, 14.467) (2.730, 35.027) 1 


(0.072, 17.428) (2.395, 33.609) 2 


(2.322, 29.920) (0.010, 21.610) 3
822 


(0.000, 21.959) (2.092, 22.453) 4 


(0.000, 16.407) (1.576, 12.291) 5 
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Cls and the BCa bootstrap Cls. 

Nevertheless, we realize from Table 5.6 that a larger sample size eventually im­

proves the probability coverages for both the approximate Cis and the BCa bootstrap 

Cis. As the sample size grows, the larger computational time as well as the unstable 

precision (especially for B1j, j = 1, 2) becomes a problematic issue for constructing 

Cls by the exact method. Hence, based on the simulation study, we recommend the 

use of the bootstrap approach to construct Cls for eij when the initial sample size 

is considerably large since it offers computational feasibility and also performs quite 

well in terms of probability coverages and widths for large sample sizes (e.g., n ~ 30). 

But, for small sample sizes (say, n up to 30), the exact method developed here is the 

one that is recommended. 

5.6 Illustrative example 

We have simulated a Type-I censored sample from a simple step-stress test 

with two competing risks in order to illustrate the methods of inference described 

in the preceding sections. The dataset was generated with the same choices of the 

parameters as in Section 4.6 as follows: 

011 = 8.96, B12 = 12.18, 021 = 4.48, 022 = 4.06 

along with the stress change time point T = 3 and the censoring time point Tc = 6 for 

an equal step duration. In this setup, when the stress level increases, there is a 503 

decrease in the mean time to failure caused by the risk factor 1 and a 673 decrease in 

the mean time to failure caused by the risk factor 2. Also, at the initial stress level, 
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there is a 583 chance for a test unit to fail by the risk factor 1 but it drops to 473 

after the increment of the stress level at T. From the initial sample size of n = 25, 

we observed a total of n.. = 23 failure times (i.e., 83 right censoring) and they are 

presented in Table 5.11. 

From this dataset, we have n 11 = 7, n 12 = 5, n21 = 5, n 22 = 6 and hence, the 

observed MLEs of Oii are found from (5.2.9) to be 

811 = 8.299, 812 = 1i.620, 821 = 3.855, 822 = 3.213. 

The Cis for Oii are also presented in Table 5.12 using all three methods described in 

Section 5.4. Since the exact Cis for Oij require the monotonicity of the tail probability 

functions of Oij, we provide the numerical justification of this assumption by plotting 

the tail probabilities with the observed values of the MLEs from the sample. From 

Figure 5.1, it is evident that all the plots show the monotonically increasing behavior 

of the tail probabilities with respect to the unknown parameter Oij for each i, j = 1, 2. 

In addition, the two horizontal lines corresponding to the values of a./2 and 1 - a./2 

for a. = 0 .10 are over laid in each plot of Figure 5 .1 to illustrate how the exact Cis are 

constructed by inverting the tail probabilities of Bii· In the first plot of Figure 5.1, for 

example, the values of Ou from the two intersecting points are the unique solutions 

of Eqs. (5.4.1) and (5.4.2), respectively, and together they provide the exact 903 CI 

for Ou. 

From Table 5.12, we observe that in comparison to the exact Cis, the ap­

proximate method always provides narrower Cis while the BCa bootstrap Cis are 

sometimes narrower and at other times wider. This is so since the coverage proba­

bilities for the approximate Cis are significantly lower than the nominal levels while 
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Table 5.11: Type-I Censored Sample from n = 25 units on a Simple 


Step-stress Test with Two Competing Risks, T = 3 and Tc = 6 


Stress Level 1 Stress Level 2 

(before r = 3) (after r = 3) 

Failure Time Failure Cause Failure Time Failure Cause 

0.011 1 3.246 2 

0.273 2 3.362 2 

0.395 1 3.498 1 

1.173 1 3.774 2 

1.477 1 3.879 1 

1.608 2 4.024 1 

1.890 1 4.169 2 

2.066 2 4.438 2 

2.133 2 4.882 2 

2.577 1 5.343 1 

2.706 1 5.670 1 

2.787 2 
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Table 5.12: Interval Estimation based on the Type-I Censored 


Step-stress Data in Table 5.11 with B = 1000 


Exact CI Parameter CL Approximate CI BCa Bootstrap CI 

(4.619, 16.642) 903 (3.140, 13.460) ( 4.006, 15.052) 

( 4.186, 19.482) 011 = 8.96 953 (2.151, 14.448) (3.539, 18.037) 

993 (3.485, 27.218) (0.219, 16.380) (0.000, 21.909) 

(5.870, 27.521) (3.072, 20.167) (6.142, 30.571) 903 

(5.250, 33.818) 012 = 12.18 953 (1.435, 21.805) (5.453, 33.018) 

(4.269, 53.014) 993 (0.000, 25.005) ( 4.530, 63.678) 

(1.968, 9.215) 903 (1.019, 6.691) (2.089, 11.984) 

(1.749, 11.435) (0.476, 7.235) 953 (1.889, 20.592) 021 = 4.48 

(1.393, 18.968) 993 (0.000, 8.296) (1.613, 35.663) 

(1. 735, 7.000) 903 (1.055, 5.370) (1.663, 7.135) 

953 (1.554, 8.424) 022 = 4.06 (0.642, 5. 783) (1.431, 9.482) 

(1.257, 12.827) 993 (0.000, 6.591) (1.165, 17.168) 
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Figure 5.1: Plots of Tail Probabilities of eij' Pr [{Jij > Bfj8 ]' with respect to eij and 

Exact 903 Confidence Intervals for eij from the Step-stress Data in Table 5.11 
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those for the bootstrap Cis seem to fluctuate around the nominal levels (see Tables 

5.1 and 5.6). We also note from Table 5.12 that the Cls for ell are consistently 

narrower than those for e12 . The primary reason for this is that when en is smaller 

than e12 , we expect a relatively large number of failures to occur before T by the risk 

factor 1 than by the risk factor 2, resulting in lower variability in the estimation of 

ell than e 12 , and vice versa. The same intuition also applies to explain the wider Cis 

for e21 compared to those for B22 in Table 5.12 although the differences in this case 

are smaller. 

5. 7 Summary and conclusions 

In this chapter, we have discussed the simple step-stress model under time 

constraint when the lifetimes corresponding to different risk factors have indepen­

dent exponential distributions. We have derived the MLEs of the unknown mean 

parameters eij under the assumption of a cumulative exposure model and their ex­

act conditional distributions through the use of the CMGF. We have also proposed 

several different procedures for constructing Cls for eij· We have then conducted a 

simulation study to assess the performance of all these procedures and a numerical 

example has been presented to illustrate all the methods of inference described in 

this chapter. Based on the results of the simulation study, our recommendation for 

constructing Cls for eij is to use the exact method whenever possible, especially in 

the case of small sample sizes (e.g., n .. ::; n < 30) since the other two methods are 

unsatisfactory in terms of probability coverages. For larger sample sizes, however, the 

BCa percentile bootstrap method is more appropriate because of its computational 
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ease as well as for its improved probability coverages being close to the nominal levels. 
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Chapter 6 

Future Research 

In this chapter, we will outline the directions of some possible future research 

that are currently being considered following the research work presented in this 

thesis. We first describe some of the ways to generalize and extend the models 

considered here. Then, we will discuss further inferential issues which need to be 

investigated for the models considered here as well as for the models from other 

related topics in the context of ALT. 

6.1 Generalizations and extensions 

In Section 3.2, one of the crucial assumptions for constructing the k-level 

step-stress model with the two regression parameters a and f3 is that at each stress 

level, MTTF of a test unit is a log-linear function of stress. Although this log­

linear link function is a simple and reasonable approach based on various empirical 
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models studied in physical acceleration, it is of interest to consider other choices of 

link functions to explore different stress-dependent physical processes causing failure 

of a test unit. It is particularly desired to see how such a modification affects the 

results of the inference on the regression parameters and to search for some robust 

link functions for modeling the stress-response relationships. 

In Chapters 4 and 5, we have developed the exact inference for the simple 

step-stress models under different censoring schemes, in particular, Type-I and Type­

II censoring situations. As noted in Remarks 4.2.2 and 5.3.1, it is of natural interest 

to extend and generalize the proposed models to accommodate multiple stress levels 

(i.e., k > 2) and multiple competing risks, and to develop the inferential methods 

in such situations. For more comprehensive inference under censoring, we are also 

interested in devising the inferential methods for these generalized models under more 

advanced forms of censoring schemes such as progressive Type-I / Type-II censoring 

and Type-I / Type-II hybrid censoring situations. 

We also note that the proposed inference in Chapters 2, 4 and 5 is conditional 

based on the existence of the MLEs and this in turn introduces the complexity to 

the exact conditional distributions of the MLEs in all cases. One possible problem 

of interest is to see how this conditioning will change and improve the precision and 

accuracy of the estimation in the two-sample or multi-sample situations. That is, 

two or more samples are independently obtained from the identically designed simple 

step-stress test with the competing risk structure under some possible censoring, and 

we wish to develop efficient inference for the unknown parameters upon combining 

these samples together. 

In this thesis, we have explored several inferential issues regarding the fail­
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ure data from exponential distribution. Exponential distribution is a simple scale­

parameter distribution which is characterized by its constant hazard rate and lack-of­

memory (memoryless) property. It is thus used to model a long fl.at intrinsic failure 

portion of the bathtub curve where most test units spend most of their lifetimes, and 

it is also used to model the failure time of non-wearing down and non-repairable test 

units. Nevertheless, it lacks some flexibility in fitting a variety of failure time data 

mainly due to its simple structure. Therefore, it is desired to develop inferential meth­

ods for the step-stress models with the competing risk structure when the lifetime 

distributions of the different risk factors are identical or non-identical and when they 

are different from exponential. Some popular choices for the lifetime distributions will 

be Weibull, gamma, lognormal, etc. Due to the added complexity of the distribution 

models, however, it is not possible to devise methods of exact inference in these cases 

and consequently, the inference for the parameters will be done numerically based on 

the asymptotic normality of the MLEs; see, for example, Balakrishnan and Kateri 

(2008). 

6. 2 Related problems of interest 

In order to construct the exact confidence intervals for the unknown mean 

parameters in Sections 2.5.1, 4.4.l and 5.4.1, we have made a crucial assumption that 

the tail probability of the MLE is a monotonically increasing function of the parameter 

of interest. This is required to guarantee the invertibility of the pivotal quantity of 

the parameter and the same assumption was made by many authors for constructing 

the exact Cis in different contexts. However, the proof of this monotonicity could not 
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be established due to the complicated structure of the pivotal quantities. Recently, 

Balakrishnan and Iliopoulos (2008) have derived a general method which can be 

used to show that the MLE of an exponential mean is stochastically increasing under 

different censoring schemes. Therefore, one of the main research problems which need 

to be solved is to establish the analytical proof of the required monotonicity for the 

simple step-stress models with the competing risk structure under different censoring 

schemes. 

For the simple step-stress models discussed in this thesis, the main objective 

of the inference was the exact point and interval estimation under different censoring 

schemes. Another important topic in inference is the tests of hypotheses on the mean 

parameters. As mentioned in Remarks 4.2.1 and 5.2.1, no assumptions have been 

made about the relationships among the MTTFs of the risk factors at the different 

stress levels. Even for the simple step-stress model with no competing risk structure, 

the problem of testing a hypothesis in an exact way has not been solved yet in 

literature. Hence, we are currently developing the method of testing a hypothesis 

based on the exact conditional distribution of the likelihood ratio test statistic in 

order to test H0 : 81 = 82 against Ha : 81 > 82, where 8i is the MTTF at the stress 

level si for i = 1, 2. 

Since the exponential distribution is the underlying distribution of different 

risk factors in the models considered in Chapters 4 and 5, we are also interested 

in devising a method to test the goodness of fit (GOF) of the distribution from a 

real dataset collected. This is necessary for the model verification and to measure 

the validity of the assumed failure time distribution under the cumulative exposure 

model. In addition, it is also of interest to investigate the optimal censoring schemes 
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and optimal stress change time points for these models using some suitable objective 

functions of choice. 

Moreover, in Chapters 4 and 5, we have assumed the independence of the dif­

ferent risk factors in the simple step-stress models. In reality, however, it is likely that 

these risk factors interact with each other to cause the failure of a test unit and thus, 

to improve the previous models with a practical aspect, we should incorporate some 

sort of dependence or correlation structure among the risk factors into the model. 

One way to accomplish this is via the choice of some multivariate distributions, and 

we are currently in the process of constructing the simple step-stress model under 

the cumulative exposure assumption with the dependent competing risks based on 

the Marshall-Olkin bivariate exponential distribution. Among several multivariate 

exponential distributions, we have specifically selected the Marshall-Olkin multivari­

ate distribution since this is the only distribution which reproduces the CDF for the 

simple exponential step-stress model (with no competing risks) as its marginal; see 

Balakrishnan and Basu (1995) for details. 

For analyzing the failure time data from the step-stress tests, the implicit 

assumption is that the effect of the stress increase is instantaneous to the lifetime of 

a test unit. However, it may not be the case in practice and there may be certain 

amount of time taken until the stress change brings the full effect to the lifetime 

distribution of the test unit. Thus, it is of interest to work on how to model and 

analyze such lagging times of the stress change effect with the current framework of 

the step-stress models. 

Another interesting problem for which the step-stress model gives insight into 

the modeling approach is as follows. We would like to test the reliability of a system 
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which is composed of two components and the system fails only when both compo­

nents fail. In a sense, this is a parallel system since the system failure time is the 

maximum of the component failure times. However, the characteristic feature of this 

system is that the failure of one component increases the stress load to the other 

component of the system. Thus, the surviving component inside the system will ex­

perience the step-stress condition at a random time point of the stress increase. It 

is of interest, therefore, to develop inferential methods to analyze the failure data in 

this situation. 
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Appendix A 

Lemmas and Proof of Theorem 

in Chapter 2 

Lemma A.1. The joint probability mass function (JPMF) of n = (n1, n 2, ... , nk) is 

given by 
k 

p(n) = g(:•) {F(L'>,)}"'{1 - F(L'>;)t'-n', (A.1) 

where D.i =Ti - Ti-l and F(t) is as defined in (2.2.2). 

Proof. (A.1) follows immediately by straightforward integration of the JPDF of ( n, y) 

given in (2.2.3) with respect toy. D 

Corollary A.1. Since 0 :S: ni :S: Ni, we easily see that 

n 1 "' Binomial (n, F( 6 1)), 

(ni I n1, n2, ... , ni-1) "' Binomial (Ni, F(D.i)) 
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for i = 2, 3, ... , k. 

Corollary A.2. The probability of observing at least one failure is 

with c'k = n - 2:::7~11 c: and F(t) is as given in (2.2.2}. 

Proof. Using the JPMF of n obtained in (A.l), 

Pr [D =0] = Pr [n =Ok] = p(Ok) 

k kg { 1 - F(~)}"-i::;:\ 'j =exp { - ~ ~ r,cj} {A.2) 

which readily gives the result. 0 

Lemma A.2. The CMGF of e, conditioned on D ~ 1, is 

(A.3) 

fort < l/B, where ~i =Ti - Ti-l and F(t) is as defined in (2.2.2). 

Proof. It can be shown that given n 1 , n 2 , ... , ni, the random variables (Yi,l - 7i_1), 

l = 1, 2, ... , ni, are distributed jointly as order statistics from a random sample of 

size ni from a right-truncated exponential distribution at ~i· The PDF and CDF of 

this right truncated distribution are, respectively, 

and 
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for 0 < t < 6i, where f (t) and F(t) are as given in (2.2.1) and (2.2.2). Then, via 

straightforward integration with respect to y, we obtain 

E[et0ln = d] 

k ( te)-n; (N·) { ( ( te)) }n;{ ( ( te)) }N;-n;L IJ 1 - d niz F 6i 1 - d 1 - F 6i 1 - d 
{n:D=d} z=l 

:L p(n) 
{n:D=d} 

(A.4) 

fort< l/e, and for d= 1, 2, ... , n, 

Pr[D=dlD::o:l]={l-Pr[D=O]r I; p(n), (A.5) 
{n:D=d} 

where p(n) and Pr[D = o] are as given in (A.l) and (A.2), respectively. Since we 

have from (2.4.1) that 

Mc(t) - tE[et0ID = d] x Pr[D = dlD;::: 1], (A.6) 
d=l 

(A.3) is readily obtained upon substituting the expressions of (A.4) and (A.5) in (A.6) 

along with Corollary A.2. D 

Corollary A.3. In the case of Type-I PC with equi-spaced time intervals (viz., 6i = 

T > 0 for i = 1, 2, ... 'k), the CMGF of e, conditioned on D;::: 1, is 

(A.7)M,(t) =t {Id}t, c~\ exp { t Tn,j} (1 - d;B )-d, 

where Tn,j and C~~ are as defined in (2.4.3) and (2.4.4), respectively. 

Proof. After setting 6i = T > 0 in (A.3), the above result is derived by binomial 

expansion of the term (I - exp { - ~ ( 1 - t:) }r 
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One remark is made for the equations given in (A.3) and (A.7) as well as in 

(2.4.2) since they all contain the notation of summation over the set { n : D = d}. 

This set simply defines a collection of all the possible values n = (n1,n 2 , ... , nk) can 

take on satisfying the condition D = d (i.e., the total number of failure observations 

is d for 1 ::; d ::; n). For numerical implementation of this summation, one suggested 

method is to expand it iteratively in the following way: 

11i' 11'!
2= p(n) = 2= 2= 

{n:D=d} 

where 

u N * u
T/i ' i - Ci < T/i

{ 
0 , otherwise 

TJf x J (n - d < t cj) , 
J=l 

i-1 

TJf - d- I: nj 

j=l 

ford= 1, 2, ... , n. Here, J(-) is an indicator function as used in Section 2.5.3. Now, 

in order to obtain the exact conditional distribution of ein Theorem 2.4.1, we require 

the following lemma. 

Lemma A.3. Let Y be a gamma random variable with shape parameter a > 0 and 

scale parameter ,\ > 0. That is, 

Y"'"' Gamma(a,,\) 

with its PDF as given in (2.4.5). Then, for any arbitrary constant 6, the PDF of 
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X = Y + 6 is given by 

)..°' 
f(a) (x - 15)°'-le-.:\(x-<l) ' x>b 

1(x - 6 ; <>, .\) ~ { (A.8) 

0 otherwise 

and its moment generating function is of the form 

t <.A. (A.9) 

Proof. (A.8) and (A.9) are derived readily from the properties of the gamma distri­

bution and the definition of the moment generating function; see Johnson, Kotz and 

Balakrishnan (1994). D 

Proof of Theorem 2.4.1: Applying the inversion theorem of a moment generating 

function to the result from Corollary A.3 in conjunction with Lemma A.3, we can 

obtain the exact conditional PDF of e, given D 2:: 1. Hence, the result. D 
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Appendix B 

Proof of Lemmas and Theorems 

in Chapter 3 

Proof of Lemma 3.3.1: The expression in (3.3.3) can be verified by induction. Fol­

lowing the usual convention, we have E[N1] = n for i = 1 in (3.3.3). Now, suppose 

that (3.3.3) holds for i = i'. Using (3.3.2) in conjunction with Property (1) and the 

(E[Ni'] - E[ni'])(l - n;,) 

- E[Ni']Si'(r)(l - n;,) 
i' 

- n IT Sj(r)(l - nj), 
j=l 

which is precisely the expression in (3.3.3) for i = i' + 1. Hence, the result. D 
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Proof of Theorem 3.3.1: Using Properties (1) and (2), the expected value of Ui in 

(3.2.5) is 

E[U,j - E [ t,(y,,; - (i - l)T)l+ (E[N,j - E[n,])T 

- E[n;j (e, - T;.i~;) + (E[N,j - E[N,]F;(T))T 

- E[Ni]Fi(T)Bi = E[ni] exp( a+ ,8xi), 

for i = 1, 2, ... , k. The matrix In(a,,8) can then be expressed as 

where 

k k k 

few = E[- :~, l(a, fl) l = L E[Ui] exp[-(a + ,8xi)] =l:=E[ni] = n LA(T), 
i=l i=l i=l 

k k k 

Iaf3 = E[ - a:;fll(<>,fl)l = L E[Ui] exp[-(a+ ,8xi)]xi = LE[ni]xi = n L Ai(T)xi, 
i=l i=l i=l 

k k k 

1(3(3 = E[- :;2 1(a,fl)l = L E[Ui] exp[-(a+ ,8xi)]x; = LE[ni]x; = n L Ai(T)xz, 
i=l i=l i=l 

with Ai(T) redefined by using Lemma 3.3.1 as 

D 

Proof of Theorem 3.4.1: The first two derivatives of (3.4.2) with respect to T are 

</J'(T) 
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where 

A1(r) F1(r) = 1- S1(r), A~(r) = ; 1S1(r), A~(r) = - 81~S1 (r), 
A2(r) F2(r)S1(r)(l - 7r;) = (1- S2(r))S1(r)(l - 7r;), 

A;(r) [ :, 82(r) - e~ F2(r)] 81(r)(l - ?r;), 

A;(r) = -[:18,(r) + 01
2
02 82(T) - ; 1F,(r)] 81(7)(1- 7r;). 

Since A1(r) > 0 and A{(r) < 0 for all r > 0, A1(r)A{(r) - 2[A~(r)] 2 < 0, making 

the first term of</>''(r) positive for all r > 0. Furthermore, A2 ( T) > 0 and 

[ 1 2 1 * 2l-F2(r) 8~S2(r) + 8182 S2(r) - 8rF2(r) [S1(T)(l - 7r1 )] 

-2 [:, 82(7) - J/2(Tf[81(r)(! - ";)]' 

2-{Ji8,(r )F,(T) + :l [8,(TJI' - 01 02 8,(r )F,(r) + e~ [F2(TJI'} (81 (r) ( i - ";)]' 

- -{:58,(r) + [ e~ 8,(r) - J/2(ri]'}[81(T)(1 - ";)]' <0 

for all T > 0, making the second term of </>'' (T) positive, too. Therefore, ¢(T) is 

convex as </>" (T) > 0 for all T > 0. Hence, Tc satisfying </>' (Tc) = 0 minimizes ¢(T) for 

k = 2. 

Proof of Theorem 3.4.2: Differentiating (3.4.4) with respect to T, we obtain 
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D S1(r) D S2(r) . 
where Q1 = F1(r) and Q2 = F2(r). Now, we observe that b(r) monotomcally 

increases when Qf > 1 or equivalently when T < fh log 2 since Qf > 1 implies 

8' (T) > 0. In other words, when the chance of a unit to survive the first stress level 

exceeds 503, b(r) increases. Besides, we see that 01 > 02 according to (3.2.1) from 

assumption (iii) because the MTTF decreases as the stress increases (i.e., x1 < x2). 

Then, the following is true: 

01 > 02 <¢:::::::? S1(r) > S2(r) <¢:::::::? Fl(r) < F2(r). 

· · h QD QD d QD 01QD QD 01QD QD ( 01)It 1s then obv10us t at 1 > 2 an so, 2 < 1 = 1 ·1 + 02 1 + 02 1+ 02 

If Qf ( 1+ ::) < 1 or equivalently if r > 01 log ( 2 + :: } 8'(r) < 0 and 8(r) 

monotonically decreases. Since 6' (T) is absolutely continuous in T, there is r 0 E 

(e1 log2,01 log ( 2 + !:)) such that 8'(r[,) = 0. As 8'(r) changes the sign around 

Tv, Tv maximizes b(r). D 

Proof of Theorem 3.4.3: Differentiating (3.4.6) with respect to T, we get 
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Therefore, a(r) monotonically increa.ses when r < 02 log [ ( 1 + :: ) (1- Qf)-1] and 

decrea.ses when r > 02 log [ ( 1 + :: ) ( 1 - Q~ )-1] . The turning point of a(r) which 

maximizes a(r) is then r.:. = e, log [ ( 1 + :: ) (1 - Q~1- 1]. From the derivation, 

x2 - x2 
2 1however, 1A_ is only defined when 0 < Qf < 1 or equivalently when 7r~ < 2 . 

1 + x 2 

Otherwise, we have 

and so a(1) is ever increasing in 1. That is, 1A_ is unbounded if Qf 2:: 1. D 

Proof of Lemma 3.5.1: We shall establish this result by induction. Using (3.3.2) 

and Property (1), (3.5.1) with i = k - 1 is 

Now, let us suppose that (3.5.1) holds for i = i' + 1. Then, for i = i', we get 

N;1 

Pr(Nk = Oln1, n2, ... , ni'-1) = L Pr(Nk = Oln1, n2, ... , ni'-1, ni' )p(ni' ln1, n2, ... , ni 1 -1) 

N;1

L [Hi'+1 ( T )]N;'+ 1p(ni1 ln1, n2, ... , ni 1-1) 

- n~o[H,, +1 (7 )](N.,-n,, )(1-•;,J (:::) [F,, (7 )]"" [Si'(r)]N,,-n,, 

' 

- (Fi'(1) + Si'(1)[Hi'+1(1)] 1-1r:1 )N;t = [Hi'(1)]Ni', 
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which completes the proof. 

Proof of Lemma 3.5.2: We shall establish this result by induction. When i = 1, 

(3.5.4) becomes 

which conforms to the lemma. Assuming now that the lemma holds for i = i', the 

binomial theorem along with definition (3.5.2) yields the left-hand side of (3.5.4) at 

i = i' + 1 as 

E [Ni'+l [Hi'+l ( T)]Ni'+l] 

E [E [(Ni' - ni' )(1 - Jr;,) [Hi'+l ( T)](N;i-n;' )(l-7r;,) ln1, n2, ... , ni'-1] J 


E [Ni' (FH T) + Si 1 ( T) [Hi'+l ( T)] 1-7r:, )N;i-l] (1 - 7r;,)[Hi'+1(T)] 1-7r:, Si' (T) 


E [N,,[ Hi'(T) IN"l ( 1 - 7[;,) ( H., (~.~:i,,(T)) 


n[H1(T)]n [}] (1 - 'ffj) ( 1 ­ d,\:i)], 

which completes the proof. 0 

Proof of Theorem 3.5.1: By partitioning the support of n = (n1 , n 2, ... , nk) into 

two mutually exclusive sets, { n : Nk > 0} and {n : Nk = 0}, the conditional expec­
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tation of ni, given Nk > 0, can be obtained as 

Ec[ni] E[nijNk > OJ 
1 

Pr(Nk > 0) L niPJ(n) 
{n:N1t>O} 

1 _ [~l(T)]n [E[ni] - L niPJ(n)] 
{n:N1t=O} 

1 - \!i(T) 
E[ni] 1 - [H1(T)]n' 

where PJ(n) is the JPMF of n = (n1 , n2 , ... , nk) and 

1 
Vi(T) = E[ni] L niPJ(n), 

{n:N1t=O} 

for i = 1, 2, ... , k. Note that Nk = 0 implies nk = 0 since 0 ~ nk ~ Nk, and thus 

Vk(T) = 0. Now, from Property (1) and Lemma 3.3.1, 

E[n,] ~ E[N,]F;(r) ~ n [Il S;(r)(! - "j)l F,(r), 

for i = 1, 2, ... , k. Using Lemma 3.5.1, (3.3.2), Property (1), (3.5.2), and Lemma 

3.5.2 along with the property of iterated expectation and the binomial theorem, we 

obtain 

L niPJ(n) E[niPr(Nk = Oln1,n2, ... ,ni)J 
{n:Nk=O} 

E [E [ni[Hi+l (T)ri+1 [n1, n2, ... 'ni-1]] 

E [ t n;[H,+i (r )J(N,-n.)(1-.;J (:)[Fi(T )]n, [S,(T )jN'-n,l 
Fi(T)E [Ni (Fi(T) +Si(T) [Hi+l (T)]1-7l"i) N;-l] 

i ~:~ E [Ni[Hi (T) JN;] 

[ ( )J nFi(T) rri-l( * ( Fj(T)) 

n H1 T Hi(T) j=l 1 - 7rj) 1 - Hj(T) ' 
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for i = 1, 2, ... , k - 1. Therefore, 1/i(T) is simplified, for i = 1, 2, ... , k - 1, as 

n [fi Sj(T)(l - 7rj)l Fi(T) 
J=l 

_ [H1(T)]n fi [HJ+1(T)j 1-7rj 

Hi(T) j=l Hj(T) 

[H1(T)Jn-1 
i-1 [H ( )]7r* 'nj=l j+l T J 

which completes the proof of the theorem. 

Proof of Lemma 3.5.3: We shall establish this result by induction. First of all, it 

is valid when i = 1 since the left-hand side of (3.5.5) produces Ec[N1] = Ec[n] = n 

and its right-hand side yields E[N1]1 - ~i(T~~](T) = E[N1] = E[n] = n as V1(T) = 
1- H1 T n 

[H1 (T)]n- 1. Let us then assume that (3.5.5) holds for i = i'. Using Theorem 3.5.1, 
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(3.5.5) at i = i' + 1 leads to 

Ec[Ni'+1] - Ec[Ni' - ni' - ci'] = (Ec[Ni1]- Ec[ni'])(l - 7r;,) 


1 - Hi1(T)Vi1(T) 1 - Vi1(T) ) * 

(- E[Ni'] l-[H1(T)]n -E[ni']l-[H1(T)]n (l-7ri,) 

E[Ni'] * 
- l _ [Hi(T)]n (Si'(T) - (Hi'(T) - Fi1(T))Vi1(T))(l - 7ri,) 

- l -~.t(~)Jn (Si'(T) - Si'(T)[Hi'+i(T)J1-7r71Vi1(T))(l - 7r;,) 

E[Ni']Si' (T) * 
- l _ [Hi(T)]n (1 - Hi'+1(T)Vi1+1(T))(l - 7ri,) 

since Vi1(T) = Vi'+i(T)[Hi'+i(T)]?r;, 

_ E[N·i J1 - Hi'+1(T)V°i1+i(T) 

i +l 1- [H1(T)]n 


Hence, the result. D 

Proof of Theorem 3.5.2: Using Properties (1) and (2) and the results of Theorem 

3.5.1 and Lemma 3.5.3, the expected value of (3.2.5), conditioned on Nk > 0, is 

Ec[Ui] = Ee [t(Yi,j - (i - l)T)l + TEc[Ni] - TEc[ni] 
J=l 

- E<fn;] ( B, - T ii~~) + T E,[N;] - T E,[n;] 


- E[N,]F;(r) ( 1~[ii~~]") (o, - F;~r)) + rE[N,] ( ll--~~:i~i:)) 

E[Ni] [ ]- l _ [Hi(T)]n (1 - Vi(T))BiFi(T) + T(l - Hi(T))\!i(T) 

for i = 1, 2, ... , k. The Fisher information matrix In(a, /3), given Nk > 0, is then 
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expressed as 

Jcand 1cond )
In(O!, (3) = ( aa 

a(3 

' Jcond 1cond 
a(3 (3(3 

where 

k k 
1cond = E[ :~2 l(a,/3)] = L Ec[Ui] exp[-(a+ (3xi)] = n LAi(T), 

i=l i=l 
0 ­aa 

Jcond Eo[- a:~/3l(a,j3)] = L
k 

Ec[Ui] exp[-(a+ (3xi)]xi = n L
k 

Ai(T)xi,a/3 = 
i=l i=lk k 

1cond 
(3(3 =Ee [ - :;l(a, /3)] = L Ec[Ui] exp[-(a+ (3xi)]x; = n LAi(T)x;, 

i=l i=l 

with Ai(T) redefined by using the expression of Ec[Ui] as 

1 1
Ai(T) = -Ec[Ui] exp[-(a+ (3xi)] = -()Ec[Ui] 

n ni 

- n(l _E1~iT))") [(1 - V;(T))F;(T) +;. (1 - H;(T))V;(T)]. 

Substituting the result of Lemma 3.3.l for E[Ni] in Ai(T) above, we obtain (3.5.7). 0 

Proof of Theorem 3.5.3: We shall establish this result by induction. Since Hk(T) = 

0 and Hk-i(T) = Fk-i(T) < 1, the relation is clearly valid for i = k and i = k - 1. 

Assuming now that it holds for i = i' + 1, we find 

since 0 :::; K;, < 1 

¢::::::> Fi1(T):::; F'i'(T) + Si'(T)[Hi'+i(T)] 1-7r:, < Fi'(T) + Si1(T) 


¢::::::> Fi'(T) :::; Hi'(T) < 1 


==} 0:::; Hi'(T) < 1. 


Hence, Hi(T) is always bounded between 0 and 1 for i = 1, 2, ... , k. 
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Appendix C 

Lemmas and Proof of Theorems 

in Chapter 4 

Lemma C.1. The JPMF ofN = (N1,N2), where Ni= (Nii,Ni2), i = 1,2, is given 

by 

for n = (n1 , n2 ), where ni = (ni1 , ni2 ), i = 1, 2, and nij are non-negative integers 

satisfying :L7,j=l nij = r :::; n. Here, 1rij are as defined in (4.2.4) and (4.2.5) and 

F(T) is as given in (4.3.2). 

Proof. For fixed n = (n11 , n 12 , n 21 , n 22 ), we let the realized values of Ni· be ni· = 

nil + ni2 for i = 1, 2 still holding n 1. + n 2 . = r. Then, by conditioning on N1. = n 1., 
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we have 

Pr[N = n] - Pr[N = n!N1. = ni-] Pr[N1. = ni-] 

Pr[N1 = n1IN1. = ni-] Pr[N2 = n2IN1. = ni-] Pr[N1. = ni-] 

- Pr [Nu =nu IN1. = ni-] Pr [N21 = n21 IN2. = n2.] Pr [N1. = ni.], 

(C.2) 

where the second equality results from the fact that given N1. = n1., N 1 and N 2 are 

independent. Now, it can be easily shown that 

for j = 1, 2, 

(N2jlN2. = n2.) '"'"' Binomial(n2 ., n 2j) for j = 1, 2, 

N 1 . Binomial(n, F(T)) 

for the model under consideration and thus, ( C. l) follows by substituting the binomial 

probability mass functions in (C.2). 

Using the result in Lemma C.l, we can further simplify the expression of the 

denominator in (4.3.3). Let us first denote m = (m1,m2) where mi= (mi1,mi2) and 

mi. =mil+ mi2 for i = 1, 2. Analogous to nij and ni., mij and mi. are non-negative 

integers which satisfy 2=7,j=l mij = m 1 . + m 2 . = r:::; n. Then, using (C.l) along with 

the binomial theorem, we have 
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(C.3) 

Lemma C.2. The CMGF of B1j, conditioned on NE 6, is 

ni. 

NI1j(t) = LL c~~~k 
nE6 k=O 

(C.4) 

for j = i, 2; where Tijk and C~~~k are as defined in (4.3.5) and (4.3.6), respectively. 

Proof. Under the life-testing scheme outlined in Section 4.2, let us denote 

for the ordered failure times before T, where N 1 . is the total number of failures before 

T. Then, it can be shown that their joint distribution, conditioned on N 1 = n 1, is 

identical to the joint distribution of all order statistics from a random sample of size 

n 1 . = n 11 +n12 from the right truncated distribution at T; see Arnold et al. (1992) and 

David and Nagaraja (2003) for details. The PDF and CDF of this right truncated 

distribution are, respectively, 

and 
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for 0 < t < T, where F(t) and f(t) are as given in (4.2.1) and (4.2.2). Then, by using 

straightforward integration and binomial expansion, we derive 

for t < ( 8~ 1 + 8~ 2 ), j = 1, 2. Since we have from ( 4.3.1) that 

M 1j(t) E[et&ijlNE6] 
- LE[et&ijlN1 =n1 ] xPr[N=nlNE6] (C.6) 

nE6 

for j = 1, 2, (C.4) is readily obtained upon using (C.5) and (4.3.3) in (C.6) along with 

Lemma C.l. D 

Lemma C.3. The CMGF of B2j, conditioned on NE 6, is 

(C.7) 

for j = 1, 2, where c~2l is as defined in (4-3.9). 


Proof. Again, under the life-testing scheme described in Section 4.2, let us denote 
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for the ordered failure times after T. We also denote N2 . = r - N1 . for the restricted 

number of failures after T. Then, it can be shown that the conditional joint distribu­

tion of these failure times, given N 2 = n 2 , is the same as the joint distribution of the 

order statistics from a Type-II right censored sample of size n2 . = n21 + n22 initially 

derived from a random sample of size n - n1 . (or n - r + n2 .) with the left truncated 

distribution at r; see Arnold et al. (1992) and David and Nagaraja (2003) for details. 

The PDF and CDF of this left truncated distribution are given, respectively, by 

f(t) F (t) = F(t) - F(r)andfLr(t) = 1 - F(r) LT 1 - F(r) 

for T:::; t < oo, where F(t) and J(t) are as given in (4.2.1) and (4.2.2). Then, from 

the results on the distribution of spacings from an exponential distribution, it follows 

that 

)-n2l _ t .
( (C.8) 

n2i ( 8~ 1 + 8~2 ) 
fort< ( 8!1 + 8!2 ),j=1,2. From (4.3.1), we have 

M 2j(t) E [et82i IN E 6 J 

- L E[et82ilN2 = n2] x Pr[N = nlN Es] 
nE<5 

for j = 1, 2 and thus, upon using (C.8) and (4.3.3) in conjunction with Lemma C.1, 

(C.7) immediately follows. D 

Proof of Theorems 4.3.1 and 4.3.2: Applying the inversion theorem of a mo­

ment generating function to the results from Lemmas C.2 and C.3 in conjunction 

with Lemma A.3 in Appendix A, we can obtain the exact conditional PDFs of {)ij, 

given NE 6 for i, j = 1, 2. Hence, the result. D 

171 




Ph.D. Thesis - D. Han McMaster - Mathematics and Statistics 

Appendix D 

Lemmas and Proof of Theorems 

in Chapter 5 

Lemma D.1. The JPMF ofN = (N1,N2), where Ni= (Nil,Ni2), i = 1,2, is given 

by 

n 2 Jr.n··_'J }IJPr[N = n] {(n11 , n 12 , n 21 , n22, n - n ..) iJ=l '' 


X { F(r)}ni. { F(rc) - F(r)} n 2 . {1 - F(rc)}n-n.. (D.1) 


for n = (n1 , n2 ), where ni = (ni1 , ni2 ), i = 1, 2, and nij are non-negative integers 

such that L;,j=l nij = n .. ::::; n. Here, 1rij are as defined in (5.2.4) and (5.2.5) and 

F(t) is as given in (5.2.1). 

Proof. For fixed n = (n11 , n12 , n2 1 , n22), we let the realized values of Ni. be ni. = 

ni1 +ni2 for i = 1, 2 and let the observed value of N .. be n .. still holding n 1.+n2 . = n ... 
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Then, by conditioning on N 1 . = n 1 . and N 2 . = n 2 ., we have 

Pr[N = n] Pr[N = n!N1. = ni., N2. = n2.] Pr[N1• = ni., N2. = n2.] 

Pr[N1 = n1JN1. = ni., N2. = n2.] Pr[N2 = n2JN1. = ni., N2. = n2.] 

x Pr [N1. = n1., N2. = n2.JN.. = n ..] Pr [N.. = n ..] 

Pr[Nu = n11JN1. = ni-J Pr[N21 = n21IN2. = n2.] 

x Pr[N1 . = n1.JN.. = n ..J Pr[N.. = n..J, (D.2) 

where the second equality results from the fact that given N 1 . = n 1 . and N2 . = n2 ., 

N 1 and N 2 are independent. Now, it can be easily shown that 

(N1jJN1. = n1.) '"'"' Binomial (n1., 1f1j) for j = 1, 2, 

(N2jJN2. = n2.) Binomial (n2., 1f2j) for j = 1,2,'"'"' 

. . ( F(T))(Ni.JN.. = n .. ) Binomial n . ., F(Tc) , 

N .. Binomial (n, F(Tc)) 

for the model under consideration and thus, (D.l) follows by substituting the binomial 

probability mass functions in (D.2). D 

Using the result in Lemma D.1, we can further simplify the expression of the 

denominator in (5.3.3). Let us first denote m = (m1 , m 2 ) where mi= (mi1 , mi2 ) and 

mi. = mi1 + mi2 for i = 1, 2. Analogous to nij and ni_, mij and mi. are non-negative 

integers which satisfy L;,j=l mij = m 1 . + m 2 . = m .. ::; n. Then, using (D.l) along 

with the binomial theorem, we have 
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L Pr[N=m] 
mE6 

x{F(T)}m1.{F(Tc) - F(T)}m2.{l - F(Tc)f-m.. 

t (,:) {1- F(r,)}"-m I:' (:J{F(r)} m, {F(r,) - F(r)}m, 
m.. =4 m1.=2 

x[~: (::}~"n;;" }[~: (::}~"n~"} 
t (,:){1 - F(r,)}"-m I:' (:;) {F(r)}m, {F(r,) - F(r)}m, 
m.. =4 m1.=2 

(D.3) 


Lemma D.2. The CMGF of B1j, conditioned on NE 6, is 

ni. 
1 1 ) t< ( -+­M1j(t) = LL c~~jk 

ell e12 
nE6 k=O 

(D.4) 

for j = 1, 2, where T1jk and C~1,jk are as defined in (5.3.5) and (5.3.6), respectively. 

Proof. Under the life-testing scheme outlined in Section 5.2, let us denote 

{ 0 < T1:n < T2:n < · · · < TN1 .:n < T} 

for the ordered failure times before T, where N1 . is the total number of failures before 

T. Then, it can be shown that their joint distribution, conditioned on N 1 = n 1, is 

identical to the joint distribution of all order statistics from a random sample of size 

n 1. = n 11 +n12 from the right truncated distribution at T; see Arnold et al. (1992) and 
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David and Nagaraja (2003) for details. The PDF and CDF of this right truncated 

distribution are, respectively, 

and 

for 0 < t < T, where F(t) and J(t) are as given in (5.2.1) and (5.2.2). Then, by using 

straightforward integration and binomial expansion, we derive 

fort< (e~1 + e~2 ), j = 1,2. Since we have from (5.3.1) that 

M1j(t) E [et011 JN E 6 J 

- LE[et011[N1 =n1] xPr[N=n[NE6] (D.6) 
nE6 

for j = 1, 2, (D.4) is readily obtained upon using (D.5) and (5.3.3) in (D.6) along 

with Lemma D .1. 

Lemma D.3. The CMGF of fJ 2i, conditioned on NE 6, is 

nz. 

M2j(t) = I: I: c~~k 
nE6 k=O 

(D.7) 

for j = 1, 2, where T2jk and C~~~k are as defined in (5.3.8) and (5.3. 9), respectively. 
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Proof. Again, under the life-testing scheme described in Section 5.2, let us denote 

for the ordered failure times between T and Tc· We also denote N2 . = N .. -N1 . for the 

total number of failures between T and Tc. Then, it can be shown that the conditional 

joint distribution of these failure times, given N 1 . = n 1 . and N 2 = n 2 , is the same 

as the joint distribution of all order statistics obtained from a random sample of size 

n2. = n 21 + n 22 from the distribution left truncated at T and right truncated at Tc; 

see Arnold et al. (1992) and David and Nagaraja (2003) for details. The PDF and 

CDF of this doubly truncated distribution are given, respectively, by 

and 

for T ::; t < Tc, where F(t) and f(t) are as given in (5.2.1) and (5.2.2). Then, by using 

straightforward integration and binomial expansion, it follows that 

E [et82j [N1. = ni., N2 = n2] 

1 1fort < 	(-e + -e ) • j = 1, 2. From (5.3.2), we have
21 22 	 , 

M2j(t) 	 - E[et82 j[N Es] 
- L E[et82j[N1. = ni., N2 x Pr[N = n[N Es]= n2] 

nE6 
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for j = 1, 2 and thus, upon using (D.8) and (5.3.3) in conjunction with Lemma D.l, 

(D.7) immediately follows. D 

Proof of Theorems 5.3.1 and 5.3.2: Applying the inversion theorem of a mo­

ment generating function to the results from Lemmas D.2 and D.3 in conjunction 

with Lemma A.3 in Appendix A, we can obtain the exact conditional PDFs of ei1, 

given NE 6 for i, j = 1, 2. Hence, the result. D 
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