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CHAPTER 1 

INTRODUCTION 

A process consisting of a series of events occurring 

in continuous time when interest is concentrated on the in­

dividual occurrences of the events themselves constitutes a 

point process. The emissions from a radioactive source or 

accidents occurring in time are examples of a series of point 

events, with the events being distinguished only by their 

positions in time. 

In this thesis stationary processes, in which the 

time origin is an arbitrary point, will be dealt with, and 

for simplicity it is assumed that there is zero probability 

that two or more events occur simultaneously. There are basi­

cally two ways of looking at point processes; in terms of the 

number of events occurring in fixed time intervals or in terms 

of intervals between events. 

The purpose of this thesis is to study various methods 

of analysing point processes by means of the square wave trans­

formation. Figure 1-1 and Figure 1-2 are examples of a point 

process and the square wave transformation of it. 

1 
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Fig. 1-1 Point Process X(t) 

-~, t 

.....__ 

Fig. 1-2 Square Wave of .the Point 

Process X(t) 

A point process can easily be transformed into a 

square wave by means of a flip-flop device at each pulse. 

The resulting square wave can be fed into an analyser to cal­

culate the auto-covariances and spectral density function. 

The ease of instrumentation for calculation of information 

from the square wave makes it very practical to work with. 

In chapter (2) of this thesis the basic'definitions 

and notations are described. Probability analysis of point 

processes is dealt with in chapter (3) and spectral analysis 

in chapter (4). The square wave transformation is introduced 

in chapter (4) and is analysed using spectral analysis in 

order to extract the statistical properties of the original 

point process. In chapter (5) the computational results and 

conclusions from utilizing the methods discussed in chapters 



3 

(3) and (4) are summarized. Appendix A gives a detailed 

account of the experimental time series employed and the com­

putational results from using the methods in chapter (3). 

Appendix B consists of the corresponding spectral analysis 

of the different point processes. All computations were done 

on the I.B.M. 7040 computer and the FORTRAN lV programs used 

in the time series analysis are exhibited.in Appendix C. 

http:exhibited.in


CHAPTER 2 


DEFINITIONS AND NOTATIONS 

A stochastic process is defined as a collection 

{X(t),teT} of random variables. The set Tis called the index 

set of the process. No restriction is placed on the nature of 

T. The two important cases are when T~{0,±1,±2, •••• } or 

T~{0,1,2, •••. } in which case the stochastic process is said to 

be a discrete parameter process or when T={t:-~<t<~} or 

T={t:t~O}, the continuous parameter process. 

A special case of a stochastic process is the point 

process which can be defined in the following manner. Let a 

sequence of events occur at the instants ti where i~l, 

ti+1>ti and t1>0. Then, this. time sequence will be denoted by 

X(t), te {t1,t2, ••.• }, a discrete parameter process, so that if 

X(t) is a stochastic process which describes the time of occur­

rence of events which are considered to occur for an infinitesi­

mal duration, then X(t) is a point process. For example, con­

sider events occurring periodically in time with period B. Then 

X(t), te{t, t , ••.• It.= i·B}is a point process.
1 2 1 

In the analysis of any process only a finite record of 

observations is available, so that the index set of the process 

can be considered as the time interval (0,T]. The truncated 
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sample function is defined by XT(t) as XT(t) = X(t) O<t~T 

= 0 elsewhere 

Let n be the number of events in the observation 

period T, and let T be any fixed time interval length. Then 

n(t) is the number of events occurring in the time interval 

(O,t] and ni(T) is the number of events in the interval 

(Ci-1) T1iT]. 

Unless otherwise stated, the time series is assumed 

to be stationary. This means that all statistical properties 

depend upon differences XT(ti)-XT(tj) rather than on the time 

points XT(ti) and XT(tj) themselves. Let A 1 , A 2 , ••••••••• be 

arbitrary sets on the real axis, and ThA 1 , ThA 2 , •••••• be the 

sets obtained by translating through h. Let N(A) be the number 

of events in A. The point process is stationary if the two 

sets of random variables 

N(A 1), N(A 2 ) , ••••••••••• ,N(Ak); 

N(ThA 1 ), N(ThA 2 ), ••••••• ,N(ThAk) 

have the same joint distribution for all initiai sets A 1 , A 2 , ••• 

Ak and all real hand all k=l, 2, ••••••.•• 

The time series XT(t) has the sample mean value function 

T 

µ=~ 1XT(t) dt 

0 

T 

=l L ~(t)
T t=l 
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for the continuous and discrete value case respectively. 

The sample autocovariance function RT(k) is defined 

by 

RT(k) = E{[XT(t)-µ]• [XT(t+k)-µ]} 

T-ikj 

= jkj <T~ j 
0 

= 0 jkj ~T 
T-ikl

and 

= ~ fu [XT(t)-µ]•[XT(t+[k[)-µ] k=O, ±1, •• ,± (T-1) 

= 0 k= ±T , ± ( T+l) , •••• 

The sample spectral density function is defined by 

T T 

FT( w) 
= l (' e -ikw RT(k) dk = ~ ~ cos kw RT(k) dk 

2TI j 
-T 0 

T 

=1L e-ikw R (k) = l R (0) + !2TI k=-T T 2TI T TI 

for the continuous and discrete parameter cases respectively. 

Let A(t), the number of events per unit time, be the 

(probability) rate of occurrence of an event. The Poisson 

process is an important stochastic process which serves as a 

mathematical model for empirical phenomena like the arrival of 
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calls at a telephone exchange, the emission of particles from 

a radioactive source, and the occurrence of serious coal­

mining accidents. Consider point events occurring singly in 

time with the rate of occurrence A(t) = A, a constant. If 

N(t,t+At} is the number of events in the interval (t,t+At] 

then assume that, as At+o+ 

prob' {N(t,t+At) = O} = 1-AAt+O(At}, 

prob' {N(t,t+At) = l} = AAt+O(At}, 

so that prob {N(t,t+At)>l} = O(At), 

where O(At} denotes a function tending to zero more rapidly 

than At. Also assume that N(t,t+At) is independent of occur­

rences in (0,T]. A stochastic process of point events satis­

fying these conditions is called a Poisson process of rate A. 



CHAPTER 3 

PROBABILITY ANALYSIS 

In this chapter various methods of analyzing the inter­

vals between events and the number of events in fixed time in­

tervals are considered in order to determine if the point pro­

cess is random, or generated by some probability mechanism or 

follows some pattern which can be determined from a sample of 

the process. 

GRAPHICAL METHODS 

(1) The intervals between successive events xi are 

plotted as a function of i or against the time at the mid­

point of the interval. Trends in the interval length will be 

indicated. This is equivalent to plotting the time interval 

between pulses of the square wave. Fig. 3-1 

(2) If the intervals between events a~e independent 

of time then xi versus i will form a scatter diagram. Then a 

frequency polygon or histogram can be formed to determine the 

probability distribution (if it exists) of the interval lengths. 

Fix a time interval length x such that mx = max xi, where it is 

i=l, •••• ,n 

suggested that 12~~25, depending upon the sample size n. 

8 
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Then count the number nj(x) of interval lengths xi that 

belong in the interval (Cj-l)x,jx], j=l, ....•. ,m. Plot 

nj(x) versus j for a frequency polygon or form a bar graph 

of nj(x) as base for a histogram. The histogram approximates 

the density function for large n. Fig. 3-2 

RANDOM SERIES 

If the series of events is random, that is the times 

of occurrences are independently and identically distributed 

from the uniform distribution, then it is called a Poisson 

process since the number of events in a fixed time length has 

the Poisson distribution. The Poisson process when graphed 

reveals the following, 

(1) xi versus i will be a scatter diagram showing 

that xi is independent of i, 

(2) the histogram formed for the interval lengths 

between events will approximate an exponential density function. 

This is proved as follows. Assume that X(t) is a Poisson pro­

cess with rate of occurrence A. Take a new time origin at t 
0 

• 

If t 0 +Z is the time of the first event after t 0 , the random 

variable z is independent of whether an event occurs at t 0 and 

of occurrences before t 0 • 

Let P(x) = prob{Z>x}. To determine the distribution of z, 

let P(x+~x) 	 = prob{Z>x+~x} ~x>O 

= prob{Z>x and no event occurs in (t
0 
+x, t 0+x+~x]} 

= prob{Z>x}prob{no event occurs in (t 0+x,t 0+x+~x] IZ>x} 



x·l. 
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Fig. 3-1 Interval lengths xi versus i for a point process X(t) 
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Fig. 3-2 Histogram of interval lengths of a point process X(t) 
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P(x+6x) = P(x) {l~A6x+0(6x)} 

= P(x) - AP(x)6x + P(x)0(6x) 

Then 

lim P(x+6x) - P(x) = P~(x) = ~AP(x) 
6x+O 6x 

dP(x) = -AdX 
P(x) 

loge P(x) = -Ax+k 

P(x) = Ke~AX 

Since P(O) =prob {Z>O} = 1 , 


The distribution function of z is 1 - e-Ax, the probability 


density function is d (1-e-AX) = Ae-AX (x>O) 

dx 

PROPERTIES OF RANDOM PROCESSES 

If the time series is random then inferences can be 

made about A• The intervals between successive events have 

the exponential distribution with probability density function 

f<x) = Ae-AX, and rate of occurrence A. 

Let x1 , x2, ••••• , Xrn be m intervals from this distribu­

tion. Let s = '!_ ~ and x = s/m. Then s has the probability.., 
density function 

f<s> = A(AS)m-le-AS s>O 
(m-1) 1 

a gamma distribution, and x is distributed as 
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g(x} = mX(mXx}m-le-mxx x>O 
(m-1) ! 

These results are verified by finding the moment generating 


function of the random variables s and xi. 


Ms(t) = E{ets} is the moment generating function of the random 


variable s. 


since s is the sum of m indepen­

dent and identically distributed random variables xi• 

Now 

r (A-tle-(A-t)xdx 
= 

0 

= 

Then 

Ms(t} = lJMx. (t) 
t ]. 

Now, if two random variables have the same moment generating 

function then these random variables have the S{iffie probability 

distribution (by the uniqueness theorem for moment generating 

functions). 

The random variable y with the distribution 
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h(Y) = 1 y«E-le-Y/B 0 <y<m 

r (cz)Ba: 


= 0 elsewhere 

where a:>O, B>O, r(a:) = (cx:-1) 1 has the gamma distribution, 

= (1-Bt)-a: , t<l/B. 

Now Ms(t) =( 1 )m = (1-t/>.) -m 
1-t/). 

and is the moment generating function of a random variable 

with the gamma distribution where ~=m, B=l/). 

Then 

m-1 -).Sf (s) = 1 s e 

(m-1) ! (l/).)M 


-).s= ).().s)m-l e 

(m-1) l 


MxCt) = M.!(t) = Ms(t/m) is the moment generating function for.. 
the random variable x. 

. 
M (t/m) = (1-t/m).)-m , then a:= m, B = l/m).5 

and 

g(~) = m).(m).~)m-1 e-m).~ 
(m-1) ! 

The following properties can be established: 

(1) g(~) has mean 1/). and variance l/(m).2), 

(2) as m increases g(x) becomes normally distributed, 

(3) ~ is a sufficient estimator for 1/)., 
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(4) 2AX is distributed as x2 with 2 degrees of freedom, 

(5) 2mAx is distributed as x2with 2m degrees of freedom. 

Using this information a confidence interval for A 

with probability l-2a: is 

"2 ,.a:, .... 
2mx 

If there are two random series of events with m1 and 

intervals and means and respectively, then the hypo­m2 x 1 x 2 

thesis that Al= Az can be tested by the F distribution with 

2m 1 and 2m 2 degrees of freedom. Then F = Al x1 I (Az ~ ) with 

2m1 and 2mz degrees of freedom. If there are more than two 

rates of occurrence then the F test can not be used to test 

2the homogeneity of the Ai" A special application of the x

test, known as Bartlett's test, may be applied. 

Considerable computation can be saved by applying an 

F test to the largest and smallest variance before Bartlett's 

test. If the F test indicates that the largest variance is 

not significantly different from the smallest one, then it is 

reasonable to assume that the variances lying in between do 

not differ significantly from the smallest one. The applica­

tion of the x2and F tests to the analysis of the time inter­

vals depends on the assumption of homogeneity (A is not a 

function of time). There are several tests of homogeneity, 

one of which is the g test, another is the previously mentioned 

Bartlett's test that all. Aj_are equal. These tests, which are 
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based on interval lengths, can be used as tests of randomness. 

TESTS OF RANDOMNESS 

(1) g test 

Let Xin be the largest among m independent intervals 


and let x be the mean interval length. The statistic g = xm 

mx 

has a probability relation which has been compiled by 

Fisherl. To determine whether the length of an interval is 

significant under the hypothesis of randomness, a signifi­

cance level a: is selected and_ ga: is computed from tables 2 • 

. g is calculated and if_ g>ga: then the longest interval between 

events is significant and the series is not random. 

Since this test is based on the largest among the m 

independent intervals, then it is possible that measurement 

errors or some other conditions have created an interval 

length which is an outlier. If the graph of xi versus i 

indicates an interval length much larger than any other, it 

is possible that the g test will reject the hypothesis of 

randomness if this value is used for Xm even though the sample 

is homogeneous. If the sample containing such a large devia­

tion is not representative, or if the occurrence of such a 

1 Fisher, R.A. Proc. Roy. Soc. A,125,54, (1929) 

2 Fisher, R.A. Contributions to Mathematical Statis­

tics, Chapman and Hall, London, (1950) 
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large deviation is unlikely in a sample from the population 

in question, then it is necessary to reject this observa­

tion. However, if large deviations occur in a number of 

samples the presence of additional factors of intermittent 

character may be responsible. 

(2) Bartlett's Test 

If the sequence of intervals is divided up into K 

sets of mi successive intervals where vi2 is the estimate of 

variance from sample i, and v2 is the estimate of the pooled 

v2 tmiVi 2 
variance, = i=• 

t. mi 

then Bartlett's test requires the calculation of 
K 

2x = 2.3026 {log 10 v2 ~ Cmi-1> - '/:. Cmi-l}log 10 vi2 }/C
i.•• 

where C = l+(t+ - -+ )/3(K-l},,.., m1 1 m K 

x2The distribution of x2 is approximately with K-1 degrees 

of freedom and the approximation is reasonably accurate if 

the mi-1~5, i=l, 2 ••• , K. 

When all samples are of the same size m,then 

x2 = 2.3026[(m-l}Klog1ov2 - (m-1} L
IC 

log1ovi2 ]/C,., . 

where c = l+(K+l}/[3K(m-l}] 

If x2 <x 2 with K-1 degrees of freedom,then the hypo­

thesis of homogeneity is accepted. 
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If a set of interval lengths are independent and ex­

ponentially distributed with parameter A, then the mean and 

variance of the interval lengths are l/A and l/A~ res­

pectively. Divide a sequence of interval lengths up into K 

sets of m successive intervals. Let x. be the mean interval 
l.. 

length of theith set, and let the intervals be independent 

and exponentially distributed with parameter Ai· The vari­

ance, Vi 2, of this set can be estimated by Xi 2 since Xi is a
1 

sufficient estimator for l/Ai. Now, under the hypothesis that 

all the Ai are equal, the K sets will constitute a set of Km 

interval lengths which are exponentially distributed with 

parameter A• The variance of this pooled series, v~, can be 
K 

estimated by (_..!._ t'xi\2since the parameter A will have 1 rx. 
J.K ,., j -~ 

K ~·• 

as an estimator of l/A. 

The hypothesis that all the Aj_are equal can be tested 

by computing x2 and 

= 2.3026[2(m-l) Klog(l tx.)- 2(m-l) t::. log xi]/C
K L•I J. L•I 

where C = 1 +(K+l)/[3K(m-l] 

DEPARTURE FROM RANDOMNESS 

TRENDS AND CYCLES 

There are two types of sequences in time. One is a 

slowly moving function of time which is often called a trend, 



18 


and is exemplified by a polynomial of fairly low degree, 

S ( t) = Ci(} + a 1t + • • o o + aqt 
q 

I t=t 1 I t 2 I • • • tn °• I 

Another type of sequence is cyclical, such as a finite 

Fourier series, 

'I. 
s(t) = bo + L: (biCOSAit + cisinAit), t=t 1 , t 2 , •• ,,tn· 

t=• 

Trends or cycles in the rate of occurrence or number of 

occurrences can occur as functions of time and the interval 

lengths between successive events as a function of the inter­

val index. 

Consider a point process, where the time interval be­

tween the events occurring at time ti and ti+l is xi+l = 2Xi 

and x 1 = B, a constant. Then the interval lengths of the pro­

cess are x 1 = B, = 2B, .•• , xj = 2j-1a, •••••x 2 

For events occurring at the times t 1, t 2 , ••• , tj,···· then 

the time of the jth event at tj is 

tj = t 2i-lB = B(2j-l),., 
The jth event occurs at time tj so that n(tj) = j. 

Then 
n (t ·) 

t· = B (2 J -1) or
J 

n(t) = [ log2 { (B+t) /B }l 

where [log2{(B+t)/B}] denotes the largest integer less 

than or equal to log 2{(B+t)/B}. 
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Then, n(t) = g(t) = [log2{(B+t)/B}] and 
i-1

xi = h (i) = 2 B. 

If a function s(t), which is a polynomial int of 

specified degree q, is assumed, then the problem is to estimate 

the coefficients a 0 , a 1 , •••• , aq on the basis of observations 

X(t 1), X(t 2) , •••• , X(~) of the sample series. In the case 

of the Fourier series the problem is to estimate the coeff i­

cients bo, bi and Ci,i = 1, 2, ••• , q. 

In either case the estimation can be done by the 

method of least squares, the estimates of the parameters being 
" 

the values of the constants which minimize ~{X(t.) - s(t.)} 2 
~ 1. 1. 

INTERVALS WITH PROBABILITY DISTRIBUTIONS 

If the sample from a point process is independent of 

time then it can be specified by the intervals between events, 
..

and these intervals· {xi\., can be used to construct a histogram 

in order to infer information about the probability distribu­
2tion of the x .• A x test can then be used to determine the 

1. 

goodness of fit of the theoretical distribution •to the sampled 

data. 

SUPERPOSITION OF PERIODIC SERIES OF EVENTS 

If the series of events is periodic with period B be­

tween successive events, then ni (L) versus i will approximate a 

straight line with constant ordinate value, and n(t) versus t 

will be n(t) = [t/B], where the square brackets denote the 

largest integer less than or equal to the argument. The 
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graph of xi versus i will be a series of points with 

constant ordinate value B. 

Now if the series is generated by the superposition 

of several periodic sources, then only the pooled output can 

be used to determine the periods Bi. If the.series is long 

and the number of sources is small, it is possible to deter­

mine the Bi exactly and to assign each event to its appropri­

ate source. 

This can be done by forming the histogram for the in­

terval lengths between successive events. This will be boun­

ded by a point concentration about B1 , the smallest of the Bi. 

The graph of xi versus i will give the exact value of the upper 

bound B1 • Next, find an interval of length B 1 and from it 

build up the output of the first source by repeated additions 

and subtractions of B1 • Delete this set of events from the 

pooled series of events and analyse the remaining events to 

find the next smallest period. 

As soon as the frequencies become very small or if 

two or more of the smallest frequencies are very close together, 

then this method is not practical. The frequency distribution 

of intervals is insensitive since the frequency curve is very 

nearly exponential except when the number of frequencies is 

small, or the frequencies are far apart. In order to detect 

whether the interval distribution is exponential (Poisson pro­

cess) or merely a pooled output from periodic sources, then 
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the variance time curve analysis is necessary. 

VARIANCE TIME CURVE 

Let V(t) be the variance of the number of events 

occurring in time (0, T]. If the series is random with mean 

rate of occurrence A then V(t) = At. To find V(t) for the 

pooled output of periodic sources first consider a single 

source with period Bi. Let Yi= l/Bi. Then Y·t = n·+ a·J. J. J. 

where ni is an integer, O~ai<l. Taking observations at equi­

distant intervals t 1 , t 2 , •••• then an interval of length tj 

contains either ni or ni+l events from this source and the 

limiting frequency of intervals containing ni+l events. is a. 
l. 

since Yitj = Yitj-1 + ai . Let Y = 1 be the occurrence of 

ni+l events and Y = O the occurrence of ni events. 

Prob {Y=l} = ai, Prob {Y = O} = 1-ai and Y has the bi­

nomial distribution with mean ai and variance aiCl-ai). 

Since the different sources are independent, then for 
H 

N sources V(t) = ~ai(l-ai). If tis very large compared 
L•I 

V(t) << t tyi = tA where l/A is the mean interval between 
~sl 

successive events. 

As t increases, ai takes each value between 0 and 1 

equally often giving ai(l-ai) an average value of J/6. For 

large t, V(t) oscillates about an average of N/6. Therefore 

a graph of V(t) versus t will differentiate between a random 
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process and a pooled series from N periodic sources. 

In order to calculate V(t) the series is divided 

into m intervals of length T (T~2T/n provided good results 

in estimating the number of sources for the examples in 

Appendix A) such that ni(T) is small. 

Let Yi = ni(T) 

Let u1 r = Y1+Y2+ •••••••••••• +yr 

r
u2 = Y 1 +y 2 + • • • • • • ·• • • • • • +yr+1 


U 
r 
m-r+l = Ym-r+l+ •••••••••••+ym 


Calculate t(uir)2, tuir, ( t u·r )2
. 1 

t•1 t=1 ""' M 

and s = f:(uir)2 - (t uir/M)2 where M = m-r+l ,., L•I 

" Now calculate V(rT) = ( 3M )s 
3M2 -3Mr+r 2-l 

" V(rT) is the estimate of the variance of the number of events 

in an interval rT. Now plot V(rT) versus rT or r for a 

number of r to obtain an estimate of the variance time curve. 



CHAPTER 4 


SPECTRAL ANALYSIS 

Since the point process X(t) is defined only at the 

time points t1, t2, ••••• , it is necessary to transform the 

one-dimensional sequence into a discrete or continuous two­

dimensional stochastic process so that the autocovariance 

function and corresponding spectral density function can be 

calculated. 

The sequence of intervals {X1, X2 1 ••••• } between 

successive events can be used to describe the point process, 

the time parameter being the serial number of the event. By 

dividing the time axis into a large number of narrow intervals 

of width dt, and counting the number of events in each inter­

val, a new process, dN(t), is obtained. Another way of study­

ing the process is to convert the sequence of pulses or events 

into a square wave by means of a flip-flop device at each 

pulse. 

INTERVAL LENGTHS 

The sequence of interval lengths {x 1, X2, ••••• } has 

the mean value function u(t) = E{~} = u and variance 

V(Xi) = cr 2• This sequence is considered as a stationary 

23 
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real-valued process in discrete time. With a finite sample 

{X1 , X2 , •••• ,Xn} the sample autocovariance function Rr(K) 

is defined as R:ri (K) = 1 L (Xi -u) • (Xi+ I KI -u) 
n-IKI i•• 

K=O, ±1, ••• ,±(n-l) 

and the corresponding spectral density function tr<w) is 

defined as 

R.r (K) 

where RT (O) = cr 2 

OCCURRENCE RATE 

Consider the process· {dN(t)} where dN(t) is the 

number of events in the interval (t,t+dt]. 

Let E{dN(t)} = u(t) = u. 
dt 

The covariance function for this stationary stochastic pro­

cess is defined by R(K) = E(dN(t) ·dN(t+K)\ - u 2 ,' K>O. 
<dt>2 I 

For K<O R(K) = R(-K) and for K=O, R(O) = cr 2 

where 

a 2= E([d~~t)] 2) - u2. For all K, the complete 

covariance function is R(K) = cr 2 o(K) + R(K) where o(K) is 

the Dirac delta function, the probability density function 

of a probability distribution located entirely at the point 
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K=O. The spectral density function for dN(t) is defined by 

00 

Few> = _l_s e-iKw R(K)dK. 
2 1T •oo 

However for any time interval (O,T], only a finite 

number of intervals of length dt are used, transforming 

{dN(t)} into a discrete valued process. The autocovariance 

function and spectral density function would be calculated 

as described for the sequence of interval lengths. 

SQUARE WAVE y t} 
a 

t. ~ t._ It. 
~ t 

b 

Fig. 4-1 

The point process X(t} defined at t1, t2, .•• ,tn in 

the interval (0,T] can be transformed into a continuous pro­

cess Y(t) by a square wave. Then Y(t) takes the values a and 

b alternately at each occurrence for the length pf time until 

the next occurrence (Figure 4-1}. Now the problem is to 

derive information about the original process X(t) by corre­

lation and spectral analysis of the square wave Y(t}. In 

order to determine if spectral analysis can yield as much in­

formation as probability analysis, a probability distribution 

for the occurrence of interval lengths or sign changes can not 

be assumed. Then, it is necessary to calculate the sample 
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mean value function and autocovariance function and then the 

spectral density function from the observed time series. 

Without loss of generality, it can be assumed that the 

transformation of the time series to a square wave begins 

with Y ( t) assigned the value a. For the process Y ( t), the · 

sample mean value function is easily calculated, 

T 

u = 1SY(t)dt = 
To 

where [n/2] denotes the largest integer less than or equal 

to n/2. The sample autocovariance function RT(K) is 

T·llCI 

RT(K) = ~ ~ [Y(t)-u]·[Y(t+[K[l -u]dt [K[<T 

0 

T•llcl 


2= 1 f Y(t)•Y(t+IKl)dt - u IKl<T 
T J 

0 

Since Y(t) and Y(t+IKI) only assume the values a and b 

+ 

then Y(t)•Y(t+IKI) = a 2 

b2 

T·llCI 

and 1 r Y(t) .Y(t+IKl)dt = l{r (K) .a2+r2 (K) .b2 +1 
TT J 

0 

where r 1 (K) and r 2 (K) are to be determined. 
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The only problem in determining R.rCK) is that of 

calculating r 1 (K) and r 2 (K), which is computationally diffi­

cult. r 1 (K) and r 2 (K) can be calculated for any particular 

value of K or at equidistant intervals 6K, where 6K can be 

taken as small as required. Then RT(K) is not restricted as 

in the discrete valued case of interval lengths, to a maximum 

number of estimated values equal to the total number of point 

events. 

T 

u2RT(O) = 1 rY(t) •Y(t)dt ­
T 

0 

c~111 

= a2x2i-l + L b2x2i) - u2~( ~ 
~-· '~ 

where [n/2] denotes the largest integer less than or equal to 

the argument n/2. 

It is necessary to calculate the spectral density 

function from the sample autocovariances without any assump­

tions about the distribution of interval lengths. Once a 

method for estimating the spectral density function is deter­

mined, its effectiveness can be determined by comparing these 

results to the spectrum obtained by taking the Fourier trans­

form of the theoretical autocovariance function. 

In order to estimate the autocovariances of the square 

wave the following method is suggested. For 0<K<T fix a 

value of K and determine the minimum value of the integers m1 
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and m2 such that K< [: X. and K< L X . • 
·-1 i - . n-1+1
~-	 ~=· 

m 

Let L Xi-K = Wm and L
ln 

Xn-i+1-K = Vn-m:l-1 so that 
l'.=1 I L"f 	 i 

w = (Wm,, ~tl I • • • Xn) = (Wm1 ' wm:-1-1 ' •••• 'wn)
I 

where v. 
1.. 

= X·l. i =l, • •••I n-m 

W· = X· j=m +l, ••• ' nJ J 

Now arrange the n-ma+l and n-m1+l elements in columns 

_ ........_______....; I
V1 Wm 

V2 Wm.+1 

Vn-Inz.+l 

The graphic representation of V and W is given by Figure 4-2. 

Y( ) 
v. 	 ~ 

x. 
 )(l 


v.._ 
 .... 

x. 	

J-+-~n_.,.w--~-.,j
....~+-==-K--11+-I- t 

Y( ) 

w... 

)(.... .__ 
t--K ,, 	 w.., 

J_...__0_..,__LJ+--w-"-.-1 t 

Fig. 4-2 	 The square wave as denoted by V and w respec­

tively. 
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Take the two elements of the first row, V1 and Wm, , 

pick the smallest element and record it and the indices 1 

and m1 of these two interval lengths. Subtract the smaller 

element i.e. min{V1 1 Wml from the two interval lengths in 

the first row, v1 and Wm,. Either one element is now zero, 

or both are if v1 = Wm,. An.y interval length in the first 

row reduced to zero by subtracting the smaller element from 

it is replaced by the next interval length in that column. 

If V1-min {V 1, Wml is zero it is replaced by V2, and if 

wm, -min {v1, w~,l is zero it is replaced by Wn1i+l and the new 

interval index or indices are recorded. If V1-min {vlt Wm/ 

or W m, -min{V 1, Wm}
I 

is not zero then the index of this re­

duced interval length remains the same. For example 

v = ( 2. 0I I 2. Oi I 1. Qi I 2. O+ I 2. O.r , 1. o, I 0. 57 } 

W = ( 0 • 5, , 2 • Oz , 1. 03 , 2 • O+ , 2 • O; , 1 • O, , 1. 07 , 1. Oa } 

are obtained from a point process with eight events 

where X 1 = 2 • 0 , X 2 = 2 • 0 , X 3 = 1. 0 , X 4 = 2 • 0 , X s = 2 • 0 , 

X 6 = 1. 0 , X 7 = 1. 0 , X a = 1. 0 and K = 1. 5 • 

Then v w 
2. oj o. 51 

2 •Oz 2 •Oz 

1. 0, 1. O, 
2. O+ 2. 0+ • 
2. O.. 2. Or 
1. o~ i. o, 
o.s. 1.0, 

1. 0, 

min{Vl' wml = min{2.01 , 0.5,} = 0.5 with indices (1,1) 

v1-min{ V l' Wm( = 2. 01 -0. 5 = 1. 5 1 

http:min{2.01
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~ -min{V1, Wzn} = 0.51 -0.5 = O, so that Wzn+l = 2.0i 
I I I 

replaces Wm = O. 51 • 
I 

The new array is v w 
1. 5 2. O:i. 
2. 0,1. 1. 01 
1. Oi 2. O+ 
2. 01 2 .o .. 
2. o,. 1. o, 
1.04 1.0"7 
0. 5, 1. Qi' 

Now the procedure is repeated taking 1.51 and 2.0a as the 

new entries in the first row. 

min { 1.51 , 2.02.} = 1.5 with indices (1,2), 

1.51 -min{1.5 1 t 2.02.} = Q, and element v
2 

= 2.Q iS 

moved into the first row. 

2. o, -min{ 1. s, , 2. Oz. } = O. Sa. , and this is the reduced 

interval length for the second column. 

The new array is v w 
2. Oz. 0.5 
1. o. 1. O, 
2. O+ 2. o.. 
2. Os- 2.0r 
1.0, 1. 0, 
0. 57 1. 0' 

1. o, 

and the same procedure is repeated on the elements 2.0~ and 

o.s~. At each step the values of the smallest element and the 

interval indices are recorded and are used to calculate r 1 (K) 

and r 2 (K). If both indices are odd, then both intervals were 

from Y(t) =a, and if both are even they are fromY~t) = b. 

The sum of these minimum lengths with both indices odd is the 

http:min{1.51
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value of r 1 (K) and the sum with both indices even is the 

value of r 2 (K) • For a series with a large number of occur­

rences this method involves long tedious computations. With 

the aid of a computer R.r(K) can be easily calculated for 

various values of K. A computer program for this is given in 

Appendix c. 

From the preceding example the following was obtained, 

minimum value 
0.5 
1.5 
0.5 
1.0 
0.5 
1.0 
0.5 
1. 5 
0.5 
1.0 
0.5 
0.5 
0.5 
0.5 

and r (K) = 1.5,1 

indices 
1 1 odd 
1 2 
2 2 even 
2 3 
2 4 even 
3 4 
4 4 even 
4 5 
5 5 odd 
5 6 
5 7 odd 
6 7 
6 8 even 
7 8 

r 2 (K) = 2. 0 • 

Then ~(K) = 	 1 { r 1 (K) .a2+r2 (K)b2+ [T-1 Kl -r1 (K) -r:2 (K) ] ab} 
T 

R.r<l.5) = 1 [1.5 + 2 + (12-3.5) (-1)] 
12 

= -5/12 

where a 	 = -b = 1. 



CHAPTER 5 


COMPUTATIONAL RESULTS AND CONCLUSIONS 

Probability analysis, using the methods in Chapter 2, 

reveals that no single test for randomness is effective, but 

that a combination such as Bartlett's test and the variance 

time curve analysis is necessary. If the intervals between 

events have a probability distribution, this can be effectively 

x2determined by a histogram and a test of fit. The pooled 

output from several periodic sources can be distinguished 

from a Poisson process by means of the variance time curve, 

and the number of periodic sources can be determined. Unless 

the number of periods is small and the periods far apart, the 

histogram analysis of the pooled output will not reveal any 

information about the constituent periods. The computational 

results for several examples appear in Appendix A. 

Spectral analysis of the interval lengths and occur­

rence rate yielded very little information. However, a spec­

tral analysis of the square wave produced some very interes­

ting results. While spectral analysis of the square wave did 

not determine ·if a process was random or not, it did distin­

guish between the pooled output of several periodic sources 

and a random or "near random" point process. The "near 

32 
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random" process was the result of splicing two random pro­

cesses with rates of occurrence over (O,t) and overA1 A2 

(t, 2t) to form a single point process over (0, 2t). While 

spectral analysis of the square wave could not distinguish 

between the random and "near random" series, no study was 

made to find out if they could be distinguished, and if so, 

under what conditions. 

For the examples with the intervals having a proba­

bility distribution, spectral analysis of the square wave re­

vealed a function which closely approximated the density 

function of the interval lengths. The autocovariance function 

can be calculated in terms of the inverse Laplace transform of 

a function involving the Laplace transform of the interval 

lengths [3]. However, some examples dealt with in Appendix B 

have truncated distributions, since the interval lengths have 

to be positive, and the Laplace transforms of these functions, 

as well as most density functions, have not been tabulated. 

The spectral density functions for the square wave of time 

series with the different density functions can be calculated 

and graphed, and the resulting graphs used to identify the type 

of point process. 

The only available information from probability analy­

sis of a pooled series from several periodic sources is the 

number of constituent periodic series. The method of spectral 

analysis to determine constituent frequencies was then applied 



34 


to the pooled series in order to see if this would locate the 

periods. Spectral analysis of the interval lengths and occur­

rence rate of the pooled series revealed little information, 

but analysis of the square wave revealed peak frequencies wj, 

located in the range (0, TI). Furthermore, it was observed 

that the peak frequencies wj/TI corresponded to a linear com­

bination of the occurrence rates of the periodic sources and 

that the number of peaks was related to the number of periods. 

After examining the spectrum for many pooled series (almost 

20, with some examples given in Appendix B) and encountering 

the same results in all of them, the following conjecture was 

made. It appears that for N periodic sources with periods Bi 

and rates of occurrence Ai (i=l, 2, •..N; N small), spectral 

analysis of the square wave of the pooled output results in the 

occurrence of 2N-l peaks of FT(w) at frequencies wj' j=l, 2 ••• , 
,,. 

2N-1 • If A . = wj/TI, then each Aj is a function of A1 ,A 2 , •• ,AN
J 

and is equal to the absolute value of a linear combination of 

the A.,
l 

N-1j=l, 2 I • • •I 2 

where K=2, •.•• I N. 

N-1The 2 possible sign changes for the aK' K=2, ••.•• , N account 

for the 2N-l peak frequencies. 

The proof of this conjecture is hindered by the fact 

that no one has produced a model to describe the superposition 

series of several periodic sources. A model to describe the 
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pooled output from two periodic sources with periods B1 and 

B2 , B1 <B 2 , is X(t) = Y(t)+R(t) where Y(t) is a periodic point 

process with period (B1+B2)/(B2-B1) and R{t) is a point pro­

cess with the intervals between events having a uniform dis­

tribution over (O, B1). This was obtained by analysis of the 

frequency of the interval length B1 from the pooled output. 

Further analysis in this direction may prove rewarding, but it 

is possible that no closed expression exists to describe the 

pooled series since the interval lengths tend to an exponential 

distribution as the number of sources increases [4]. The 

effect of increasing the number of sources has not been inves­

tigated yet, examples with N=2, 3, and 4 periodic sources are 

given in Appendix B, and all computational results pertaining 

to Chapter 4. 



APPENDIX A 

In order to evaluate the information obtainable from 

probability and spectral analysis, several types of point 

processes were generated and analysed. 

TABLE A-1 

EXAMPLE TYPE OF PROCESS NUMBER OF EVENTS 

Pl Poisson process with mean rate 

of occurrence A = 0.167 250 

P2 Point process consisting of a 

Poisson process with A1=0.203 

over the time period (0,600] 

and a Poisson process with 

P3 

A2 = 0.297 over (600,1200] 

Poisson process with mean rate 

300 

of occurrence A = 0.208 250 

Sl Superposition of 4 periodic point 

processes with periods 2.00, 2.27, 

5.15, 8.23 250 

S2 Superposition of 4 periodic point 

processes with periods 1.93, 2~89, 

3.83, 3.96 250 

36 
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EXAMPLE TYPE OF PROCESS NUMBER OF EVENTS 

Gl Point process with the intervals 

between events Gaussian distri­

buted with density function 

F(x) = _L EXP{ -1/2 (x-u) 2 /er 2}
n::;cr 

G2 

where u = 1. 50 and cr = 0. 50 

Point process with the intervals 

between events Gaussian distri­

250 

Rl 

buted with u = 6. 0 and cr = 2. 0 

Point process with the intervals 

between events having a Rayleigh 

distribution with density function 

250 

R2 

Fcx) = x EXP{ -1/2 (x/r) 2} 
~ 

where .r2 = 2. 0 

Point process with the intervals 

between events having a Rayleigh 

250 

distribution with .r2 = 5.0 250 

Examples Pl, P2, P3, were generated using a table of 

random numbers. In order to obtain a point process with 

Gaussian distributed interval lengths, a computer subroutine 

was used to obtain a series of random Gaussian distributed 

numbers with mean zero and any standard deviation,cr. The sub­

routine generates two uniformly distributed numbers on (0,1), 
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x and y. These are used to give two elements of the list as 

(-2 log x)V2cos 2TIY and (-2 log x)lhsin 2Tiy. By a transla­

tion of the origin to -3~, negative numbers were eliminated 

and a mean u = 3cr was obtained. The interval lengths with 

a Rayleigh distribution were generated by using the proba­
" 

bility integral transform y=fFct>dt 
l 2 0 

where f (t) = t e- ~(t/~ . This transformation maps the posi­
? 

tive real line into the interval from zero to one, and y has 

the uniform distribution. Then y = F(x) = JF<t>dt and 
0 

x = 2r2 ·log y. Random numbers on the 

interval (0, 1) were generated by a subroutine which computed 

a string of pseudorandom numbers zi by the relation 

zi= azi-l (modulo m). Values of x were calculated by solving 

the equation x = I /2r2 1 log YI I (y takes on the values zi>· 

GRAPHICAL METHODS 

For each example the interval lengths xi were plotted 

versus i, but only for the first 40 or 50 interval lengths 

since these were considered as a representative sample from 

each point process. If the graph of xi versus i indicated 

that the interval lengths were independent of time, then the 

histogram of interval lengths was formed, (Figure A-1 to 

Figure A-9) • 

Examination of the graphs for each example reveals 

several examples which appear to be Poisson processes, Pl, P2, 

P3, Sl and 82. For each one of these examples xi versus i is 
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Fig. A-l(a} Interval lengths versus index for example Pl. 

Fig. A-l(b} Histogram of interval lengths for example Pl. 
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Fig. A-2(a) Interval lengths versus index for example P2. 

Fig. A-2(b) Histogram of interval lengths for example P2. 
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Fig. A-3(a) Interval lengths versus index for example P3. 


Fig. A-3(b) Histogram of interval lengths for example P3. 



• • 

42 x. 

J 

I 


]~ 
' . 

i 

10 20 30 40 


Fig. A-4(a) Interval lengths versus index for example Sl. 
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Fig. A-4(b) Histogram of interval lengths for example Sl. 
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Fig. A-S(a) Interval lengths versus index for example S2. 
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Fig. A-S(b) Histogram of interval lengths for example S2. 
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F~g. A-6(a) Interval lengths versus index for example Gl. 


,_Jl­n, 1 

i I I I 
,__,,,,. '.·i II I 

I ' 

I 	I I 
I 	 lj i 

nI l 

II l 
!I 	 lI II . . 	 I 
l 
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Fig. A-7(a) Interval lengths versus index for example G2. 
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Fig. A-7(b) Histogram of interval lengths for example G2. 
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Fig. A-8 (a) Interval lengths versus index for example Rl. 
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Fig. A-9(a) Interval lengths versus index for example R2. 
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Fig. A-9(b) Histogram of interval lengths for example R2. 
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a scatter diagram and the histogram of interval lengths 

approximates the probability density function of the expo­

nential distribution. Tests for randomness were then tried 

in an attempt to identify the type of process as Poisson or 

not. The test based on interval lengths, Bartlett's test, 

was tried first and then compared with other tests based on 

the number of ·occurrences in an interval length. 

TESTS FOR RANDOMNESS 

BARTLETT'S TEST 

Each example was divided up into K = 10 equal series 

of m = n/K interval lengths, and 

i = 1 •••••• , K was calculated for the K setsX·:L = 

of interval lengths. Then x2· was calculated and the hypo­

thesis that all the Ai are equal was tested at the 5% level 

by calculating x2 with K-1 degrees of freedom . 
•'IS, K·l 

K 

x2 = 2.3026[2(m-l) log c!L'x.)
K i:1 J.. 

C = 1 + (K+l)/[3K(m-l)] 


The results are tabulated along with the results from other 


tests of randomness (TABLE A-3). 


KOLMOGOROV-SMIRNOV TEST 


This test for randomness is a measure of the maximum 

deviation of n(t) from the straight line joining the points 

(0, 0) and (T, n). For a sample of size n in a continuum 

(0 I T] 
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n"Dn = max I n(t) - n·t/TI is calculated. 
O~t~T 

To test the hypothesis· of randomness, a significance level a 

is selected, and a critical value of Ena' which is tabula­

ted for particular n and a,is selected. If n·Dn>Ena' the 

hypothesis that the series is random is rejected. Instead 

of finding Ena for a particular n and a from tables the 

approximations En. 95 ~ l.3581ri: 

En.99 ~ 1.628 in 
were used. 

RECTANGULAR DISTRIBUTION TEST 

The time interval (0,T] was divided up into m = 25 

equal time intervals of length • for each example. Oi, the 

number of events observed in the interval (<i-1)•, i•] 

i=l, • • ••I m and E = n••/T were calculated. Then 

x 2 = L"' (Oi-E)2 /E was evaluated. 
i:rt 

x2The upper and lower limits of for a 95% confidence inter­

val and m-1 = 24 degrees of freedom are x 2 • 975 ,_24= 39.4 and 

X~o2s, 24 = 12.4 respectively. 

VARIANCE TIME CURVE 

In order to distinguish between a Poisson process 

and the pooled output of several periodic sources the variance 

time curve was calculated for the examples whose histogram of 

interval lengths appeared exponentially distributed. The 

series was divided up into small intervals of length•, and 

y. = n. (• ') was calculated.
1 1 
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Ui
r 

= Yi+Yi+l .•.• +Yi+r-1 was calculated for i=l, 2, ••• ,M 

and r = 1, 2, ••. , 15 where M = 100. 

Then 

V(r<) = [t.(Uir)2 
- (t.U{/Mf]•[3M/(3M 2-3Mr+r 2-l)] 

':I ~cl 

was tabulated and graphed (TABLE A-2, Figure A-lO(a) to A-lO(d)) 

TABLE A-2 

vcr•> 
A 

V (r•) 
A 

V (r•) 
A 

V(r<) 
A 

V(r<) 

r EX Pl EX P2 EX P3 EX Sl EX S2 

1 2.11 2.61 2.43 0.56 0.89 

2 3.68 6.47 5.46 0.68 0.59 

3 5.43 10. 3 8.17 0.63 0.67 

4 6.61 14.9 10.9 0.61 0.61 

5 7.88 20.9 13.8 0.54 0.54 

6 9.19 27.9 17.1 0.78 0.69 

7 11.3 35.3 20.0 0.67 0.90 

8 13.4 43.9 23.1 0.24 0.37 

9 15.9 53.0 25.4 0.58 0. 80 

10 18.2 61. 4 26.8 0. 67 " 0.58 

11 20.0 70.2 28.1 0.81 0.77 

12 22.2 80. 4 29.4 0.75 0.88 

13 23.2 91. 5 30. 3 0.52 0.46 

14 25.0 102. 30.4 0.88 0.83 

15 26.8 113. 31.5 0.76 0.84 

MILLS MEMORIAL UBRARY 
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Fig. A-lO(a) Variance time curve for example Pl. 
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Fig. A-lO(b) Variance time curve for example P2. 
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F~g. A-lO(c) Variance time curve for example Sl 
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Fig. A-lO(d} Variance time curve for example S2. 
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The results for the various tests for randomness are 

tabulated in order to compare their accuracy. (TABLE A-3) 

TABLE A-3 

Example Bartlett's 
Test 

x2 

Kolmogorov-Smirnov 
Test 
n •D_,... • 9 5 lim •• 9 9 lim . 

Rect. 
Dist. Test 

x2 

Variance 
Time 
Curve 

Pl 

P2 

P3 

Sl 

S2 

6.80 

19. 58 

5.96 

0.26 

0.22 

~ 

13.2 21.5 25.7 

35.0 23.5 28.2 

15.7 21. 5 25.7 

2.31 21.5 25.7 

2. 70 21. 5 25.7 

14.8 

29.2 

20.8 

1.40 

2.40 

Linear 

Linear 

Linear 

Oscil­
lates 
Oscil­
lates 

The .95 upper bound for Bartlett's Test is 16.92 and the .95 

bounds for the rectangular distribution test are [12.4, 39.4]. 

It is quite apparent that there is no single test of 

randomness that is effective for all point processes, and 

that a combination of tests such as the variance time curve 

and Bartlett's test is necessary. 

INTERVALS WITH PROBABILITY DISTRIBUTION 

The histogram of the following examples indicate 

that the intervals may have a probability distribution. 
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TABLE A-4 
Probability Density 

Example Distribution Function Mean 
-1..xPl EXPONENTIAL l/A.f <x) = t..e 

x>O 


= 0 


otherwise 


P2 
 EXPONENTIAL F<x> where t..=A.1 . 1/A. 1 

on (0,600] 


EXPONENTIAL 
 f (x) where A.=t.. 2 l/A.2 

on (600,1200] 


P3 
 EXPONENTIAL - -
-+{ (x-µ )2}

Gl GAUSSIAN g (x) = e cr µ 
pcr 

x>O 

=O x~O 

G2 GAUSSIAN - -
-~/r)2Rl RAYLEIGH h (x) = x e r/ITl2-

r2 -
x>O 

= 0 x~O 

R2 RAYLEIGH - -

Variance 

l/t..2 

1/\2 

l/t..i 

-

cr 2 

-

r 2 (2- 11 )
2 

-
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The sample mean x and sample variance Sx2 were calcu­

lated for the sequence of interval lengths{xi}~, for each 

example where 
l'I 

x = ~-5_ I 

'"' n 

s 2 = t (x;-x) 2 ,x 
&:I n-1 

2The statistics x and sx were used as estimates of 

the mean and variance respectively of the theoretical distri­

bution. A x2test of fit was then used to determine the good­

ness of fit of the histogram to the theoretical distribution. 

Example Pl is worked out in detail. 

Ex. Pl x = 5.996, A = l/x = 0.167, sample size n = 250 

The exponential curve to fit the histogram would be 

fCx) = 0.167e-O.lG?x • For the interval length L = [a,b) 

let P(L) equal the area under fCx) for a~x<b. 

Then L 

p (L) = ~F(x}dx = e-Aa_e-Ab 


a 

= e-0.167a -e-0.167b 


The expected number of interval lengths L is calcula­

ted as nP(L), and the observed number of interval lengths of 

length L are recorded. (TABLE A-5) 
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TABLE A-5 
Interval Length

L::: [a b) 
Probability of L 

p (L) 
Expected 
Number E 

Observed 
Number 0 

[0,1.0) 0.154 38.5 44 

[l.0,2.0) 0.130 32.5 29 

[2.0,3.0) 0.110 27.5 29 

[3.0,4.0) 0. 09 3 23.3 26 

[4.0,5.0) 0.079 19.3 18 

[5.0,6.0) 0.067 16. 8 21 

[6.0,7.0) 0.056 14.0 12 

[7.0,8.0) 0.048 12.0 16 

[8.0,9.0) 0.041 10.3 5 

[9.0,10.0) 0.034 8.5 11 

[10.0,11.0) 0.029 7.3 4 

[11. 0 , 12. 0) 0.024 6.0 2 

[12.0,13.0) 0.021 5.3 3 

[13.0,14.0) 0.017 4.3 7 

[14.0,15.0) 0.015 3.8 4 

[15.0,16.0) 0.013 3.3 3 

[16.0,17.0) 0.011 2.8 2 

[17.0,18.0) 0.009 2.3 3 

[18.0,19.0) o. 007 1. 8 1 

[19.0,20.0 0.007 1.8 3 

[20.0,21.0) 0.005 1. 3 0 

O, E and lo-El are tabulated in K cells. When the 

class frequency E is less than five the adjoining cells are 

added to ensure a class frequency of five or more. (TABLE A-6) 
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Observed 
0 

!Expected 
E 

44 29 29 26 

39 33 28 23 

TABLE A-6 

18 

19 

21 12 16 5 11 4 

17 14 12 10 9 7 

2 

6 

3 14 

5 8 

5 

6 

7 

7 

lO-El 5 4 1 3 1 4 2 4 5 2 3 4 2 6 1 0 

x2K = 16 cells Calculate = L:'co-E~ ~ 16.5 
E 

If x2 >x 2 K-p-l,. 95 the hypothesis that the interval 

lengths are exponentially distributed is rejected at the 5% 

level. The number of degrees of freedom, K-p-1, consists of 

the number of cells K, minus the number p of parameters esti­

mated, minus one. 

X
2 14,.95 = 23.7 

The results for all examples were tabulated. (TABLE 

A-7). 

Under the hypothesis that the point processes have a 

probability distribution, the x2 test of fit accepts the 

hypothesis that the histogram of the interval lengths is a 

good fit to the theoretical distribution. 
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TABLE A-7 
Sample SampTe Test of f :CT:i 

Exam...E_le Mean Variance Mean Variance x2 .95 lim. 

Pl 6.00 36.0 6.00 29.35 16.5 23.7 

P2 4.93 

over (0.600] 24.3 4.00 13.86 18.7 21.0 

3.37 

over (600,1200] 11.4 

P3 4.81 23.1 4.79 22.69 13.6 22.4 

Gl 1.50 0.25 1.48 0.22 8.8 15.5 

G2 6.00 4.0 5.93 3.46 9.3 22.4 

Rl 1.80 0. 86 1.74 0.84 16.2 26.3 

R2 2. 80 2.15 2.93 2.34 12.6 19. 7 

SUPERPOSITION OF EVENTS 

Consider the point process constructed by pooling 

three periodic point processes with periods 1. 40, 3. 6 3 and 

7.81. The graph of xi versus i is bounded at = 1.40x 1 

and the histogram of interval lengths reveals a bound at one 

end, maximum of the xi (Fig. A-11). The series of events 

with period B = 1.40 can be deleted from the pooled series. 

Then the graph of xi versus i is bounded above by xi= 3.63 

and this series of events with period B = 3.63 can be deleted 

fro~ the pooled series. The constituent periods can be deter­

mined and each point can be assigned to its proper source, 
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Fig. A-11 (a) 	 Interval lengths versus index for a 

pooled series. 

~ 

' 

r­
...­ .--­

t-­ 1--­
1-­ I-

Fig. A-ll(b) Histogram of intervai lengths for the 

pooled series. 

i 
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but only if the periods are not close together. 

Series Sl and S2 are not bounded by a particular 

value of Xi, so that the periods can not be found in the 

above manner. However, the number of periodic sources can be 

found by employing the variance time curve. Sl oscillates 

about 0.65 and S2 about 0.68. Since N/6 = 0.65, Sl is the 

pooled output of N = 4 periodic sources and S2 is also the 

pooled output of 4 periodic sources. This is the only infor­

mation that can be derived from these processes by this method 

of analysis. 



APPENDIX B 

SPECTRAL ANALYSIS 

INTERVAL LENGTHS 

The sequence of interval lengths {Xi}C. with mean 

µ and variance cr 2 = RT(O) has the sample autocovariance 

function 
'l'\•l"I 

~(K) = 1 ~(Xi-µ) (Xi+ IKl - µ) IKl=O, 1 ••• ,n-1. 
n-1 Kl t:1 

)\ 

RT(K) was calculated using the statistics X = 	 1 [:xi 
n L:I 

and 
n 

S 2 = 1 \"'(X.-X) 2 as estimates of the meanµ and variance--L.. 1n-1 Lal . 

cr 2 respectively. Then the spectral density function 

or 

was estimated at equidistant intervals of w for O~w~TI, so 

that values of fT(wj) were recorded for wj = 2Tij/n, j=O,l, •• ,n/2. 

~(K) was estimated for K=l, 2, •. ,n/5 and K=l, 2, •.. ,n-1. 

Using n-1 autocovariances resulted in negative values of 

f T<wj) for values of wj near TI, while using only twenty per 

61 
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cent of the autocovariances reduced this variability of 

f T ( wj) • The estimate of fT< w) /cr 2 versus w was graphed for 

several of the examples. (Fig. B-1 to B-6) 

Spectral analysis of the interval lengths of the ex­

amples revealed very little information about the frequency 

distribution of the interval lengths. For the superposition 

of several periodic sources one or more peak frequencies was 

located. For example Fig. B-5, the superposition of two 

periodic sources with periods B1 = 2.0, B2 = 2.27, and 

A1 = 0.500, A2 = 0.441 where Ai= l/Bi i=l,2 had one peak 

frequency at wj where j=ll7, n=250. Then wj/TI = 0.936 and 

A1+A2 = 0.941. However, no relationship between the peak 

frequencies and rates of occurrence of the constituent 

periodic sources could be determined for the pooled output of 

three and four periodic sources. For example,Fig. B-6 records 

two peak frequencies and wj/TI={0.704 j=88 (n=250). 

0.952 j=ll9 

This example is the superposition of three periodic sources 

with B1=1.93, B2=2.89, B3=8.27 and A1+A 2+A 3=0.985, 

A1+A 2-A 3=0.743. Example Sl (Fig. B-2) with four periodic 

sources has only two peak frequencies revealed and 

Wj/TI =f 0.704 j=88 (n=250) • 

0.800 j=lOO 

However, no linear combination~A 1 +a 2 A 2 +••••• +aNAN, where 

ai = {~i and N is the number of periodic sources, 

was close to the values of wj/TI. 
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I 

I 

L-~~~~~--1.J-~~~~~~~~~~--\,'--~~~~~~~~~~~~-t-l w 
1T 

Fig. B-1 	 Spectral density function of the interval lengths 

for example Pl. 

~ 
Fig. B-2 Spectral density function of the interval lengths 

for example Sl. 
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Fig. B-3 	 Spectral density function of the interval lengths 

for example Gl. 

F cw> 

I 

I 


Fig. B-4 Spectral density function of the interval lengths 

for example R2. 
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intervalFig. B-5 Spectral density function of the 

for a pooled series from 2 periodic sources. 

Fig. B-6 Spectral density function of the interval lengths 

for a pooled series from 3 periodic sources. 
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OCCURRENCE 	 RATE 

The process· {dN(t)} was obtained by dividing up the 

point process X(t) into n intervals of equal length -r and coun­

ting the number of occurrences ni(-r) in the ith interval i=l, 

2, •••• , n. Then 

= { d~~t>} 	 fni~T>[ 


L 
n 

n. ( ) 
µ = '1 	 I·=· n-r 

cr 2 = 1 t(n. 	(,) µ)2 = R (O)_ 
·-- i 	 T 
n-1 ~·· -r 

..... (
RT(K) = 1 L ni<d -7(ni~(,) -j

n-1 Kl l=• I 

=and FT Cw j) = _l_ f1+2 r COSl>jK!<.r (K) 1 w·
J 

21Tj/n 
21T 1(:1 CJ 2 

0'2 j = 0, 1, •• ,n/2 

were calculated. The estimate of Frew) /r 2 versus w was 

graphed for several of the examples (Fig. B-7 to B-9). Very 

little information was obtained by this method of analysis 

other than the observation that the spectrum of the occurrence 

rate resembled the spectrum of the interval lengths for the 

superposition of several periodic sources. 
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~ L__.l__~~_JJ__µ_~~~~~~-~\~j~~w 

Fig. B-7 	 Spectral density function of.the occurrence rate 


for example Pl. 


~ 

II 
I 
j 

I 

~I 


Fig. B-8 Spectral density function of the occurrence rate 

for example SL 
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I I 
7T 


Fig. B-9 	 Spectral density function of the occurrence rate 

for example Gl. 

SQUARE WAVE 

The spectral density function 

= -2:_ {1+2L RT (K) cosKw } wj = 27T j/n' j,=0,1,2, •.. n/2 

2 7T K cr2 

was calculated using n=250 values of ~(K) at equidistant 

intervals of length ~K~T/Sn. This was done for square wave 

values a=l, b=-1 and a=l, b=O for all examples. There was no 

.significant difference in the spectral density estimates ob­

tained except about very low frequencies. This was attribu­

ted to the 	meanµ which dominates the contribution to f(w) at 

zero frequency a~ well as frequencies close to zero. The 
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effect is reduced by subtracting the sample mean from the 

autocovariances but some effect still persists. When a=l, 

b=-1 the sample mean tends to be closer to zero than when 

a=l and b=O. ·For this reason only, the results of spectral 

analysis are given for a=l, b=-1. 

f T<wj) was calculated using the first 16 autocovariances only, 
(1 z 

(Fig. B-10 to B-16) 

Spectral analysis of the square wave transformation 

appears to yield more information about the point process and 

the frequency distribution of its interval lengths than the 

other two methods of spectral analysis. Some of the experi­

mental results can be compared with the theoretical results. 

The autocovariance function R(K) can be written as 

M 

R(K) = lim _!_ JT(x)T(x+K)dx 
M+oo 21T 

-M 
where T(x) is the square wave. It has been shown by F. Brooks 

and N. Diamantides that 

R<K> = 1 1 _ 1f 1-Fcs> }
2 - 2 u L ls 2 ( 1+f( s ) ) 

where r;s) denotes the Laplace transform of the density 

function Fcx) of the interval lengths,u denotes the mean of 

f Cx), and L-1 denotes the inverse Laplace transform. 

SUPERPOSITION OF PERIODIC SERIES OF EVENTS 

For the examples of the superposition of periodic 

s~urces,peaks were observed in the square wave spectral 
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Fig. B-lO(a) Spectral density function of the square wave 

for example Pl. 

1T 

Fig. B-lO(b) 	 Spectral density function of the square wave 

for example Pl (16 autocovariances). 
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w 

71' 

Fig. B-ll(a) 	 Spectral density function of the square wave 

for example Gl. 

71' 

F~g. B-ll(b) Spectral density function of the square wave 

for example Gl (16 autocovariances). 
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Fig. B-12(a) Spectral density function of the square wave 

for example R2. 

1T 

Fig. B-12(b) 	 Spectral density function of the square wave 

for example R2 (16 autocovariances). 
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\ 

I 
\ 

Fig. B.,..13 the square wave 

1T 

for a periodic process. 

Fig. B-14 Spectral density function of the square wave 

for the pooled series from 2 periodic sources. 

1 w 
1T 
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Fig. B-15 Spectral density function of the square wave 

for a pooled series from 3 periodic sources. 

Fig. B-16 Spectral density function of the square wave 

for example Sl. 
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estimates as was the case with interval and occurrence rate 

analysis, but more peaks were obtained. In order to discover 

the relationship (if any) of these peaks to the constituent 

periods, the superposition process was studied for examples 

with one, two, three and then four periodic sources. 

For a single periodic source with period B and rate 

of occurrence A = l/B, the square wave can be considered as 

an approximation of the sine curve Z(t) = sinwt where 

w = TI/At radians per unit time. Then the occurrences at the 

time instants B, 2B, •••. are the zeroes of Z{t) = sinwt,t>O 

where w = TI/At= TI/B = TIA. (Fig. B-17) 

y (t) 

. .... ,--.--..- .. 
, 

,• ..... .. . .. .. .. .. , 

. ~ 

~ 

,., .., .. . ,•.
I . t•. ,. . • 

,, • 

"· .... , .., ...L, 

I+ 
~ 

At + I 

Fig. B-17 Square wave approximation of a sine wave. 

For a single periodic source of period B the spectrum f Cw) 

consists of a single peak at w = TI/B, and information about 

the rate of occurrence and period is directly available. 

Fig. B-13 is the spectrum of the periodic point process with 

B=l.83, calculated for values of w where w = 2Tij, 
n 

j=O,l, ••.• ,n/2 and n=250. The peak occurred at j=68 and 

since w = TIA A =<2.68 = 0.544. Then B ::< 1/0.544 = 1.84 
250 
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and the period can accurately be estimated. 

For two periodic sources with periods B1 = 2.00 and 

B2 = 2.27 and mean rates of occurrence Al = 0.500 and 

= 0.441, spectral analysis of the pooled output revealedA2 


two peaks at wj where j=7 and j=ll8. (Fig. B-14) 

A A 

j=7, and A2 = wj/TI, j=ll8. Then J.. l = 0 • 0 5 6 
A 

and A2 = 0. 9 4 4 

and 1'1"'A1-A2 = 0.059 

A2"'A1+A2 = 0.941 

since Wj = 2 TI j I j=O, 1, • • • • I n/2, n=250. 
n 

Fig. B-15 is an example of three periodic sources 

pooled together: B 1 = 1.93 A1 = 0.518; B2 = 2.89,. A2 = 0.346; 

= 8.27, = 0.121. Spectral analysis of the square waveB 3 1' 3 

of the pooled output revealed peaks at frequencies wj where 
A 

j=6, 37, 93 and 123 (n=250). Then Ai= 0.048, = 0.296,A2 
A 

A3 = 0.744 and A4 = 0.984. 
A 

A1+A2+A3 = 0.985"'A4 
A 

1'1+A2-A3 = 0.743"'A3 
A 

1'1-1'2+1'3 = 0.293"'1'2 


A1-A 2-A 3 = 0.05l"'Ai 


Since w = TIA and w can be measured by f cw) only in the range 

[0,TI] then A can be measured for O~A~l. Since values of A>l 

are possible, then the original time series X(t) of length T 

can be converted to time cT, where c is a positive constant. 

Then each periodic series of period Bi is transformed into a 
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periodic series of period cBi with rate of occurrence 

Ai= l/cBi. For C>l, there exists a number such that Ai<lc 0 

for all C>c 0 , so that any rate of occurrence can be decreased 

in magnitude by lengthening the period of the original time 

series. Similarly, any rate of occurrence can be increased 

for c d. Since 1T L Ai is the largest frequency obtained in 
l 

spectral analysis of the square wave of the pooled series, 

then if 2:: Ai>l this frequency is outside the measurable 
L 

range [0,1T]. Then, it is necessary to convert the pooled out­

put in time T to a pooled output in time cT. Then each con­

stituent periodic series is converted to time cT, so that c 

can be taken sufficiently large to ensure that c-11TL::" Ai<1T. 
i. 

For example, consider the two periodic series with periods 

Bi=l.21, B2=1.38 and mean rates of occurrence Al=0.826 and 

Since L Ai >l; then only one peak frequency should be dis­
L 

covered initially. Spectral analysis of the square wave re-
A • ( 13 )

vealed a single peak at wj' j=l3, so that Al= 21T 250 

= 0.104. However, the variance time curve indicated two 

sources so that the other peak must be at a near zero fre­

quency or greater than w=1T. Converting the original series 

to time cT where c=2.0 revealed two peaks at wj' j=6 and 97. 

Then c-1~ 1 = 0.048 andc- 1 ~ 2 = 0.776 so that Al= 0.096 and 
A 

A2 = 1.552. Once again A 1+A 2 ~A 2 
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Since the frequency wj; j:6 is very close to zero, then c- 1 ~1 

will not give a value of A1 that is as accurate as that ob­

tained in time T. To determine A1 and A2 the equations 

A l - A 2 = 0 • 10 4 

A1+A2 = 1.552 

should be used. The constituent periods Bl and B2 can then 

be determined. 

Spectral analysis of the square wave of example Sl in 

time T revealed peaks at wj where j=l7, 32, 47, 78, 109, 

(F.i.g. B-16). Peaks were found at j=8, 16, 24, 39, 54, 63, 79 

for the series in time cT with c=2.0 (Fig. B-18(anand at 

j=7, 66 for time cT with c=0.25 (Fig. B-18 (b)). The corres-
A 

ponding values of A= w./TI (n=250) were 
J 

i 

7 0.056 0.014 

66 0.528 0.132 

32 0.256 

47 0.376 

78 0.624 

109 0.872 

63 0.504 1.008 

79 0.632 1. 264 



F <w> 79 

Fig. B-lB(a) Spectral density function of the square wave 

for example Sl in time 2T. 

1-..!~~4--i--4--/.~1.,-,l--~-/.~~.L.~l.-J~~t--+--+--f-~~~~~~~~~--t- w 
TI/4 

Fig. B-lB(b) Spectral density function of the square wave 

for example Sl in time T/4. 
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Then 
A 

= ::::A 1 0.014 IAi -A 2-A 3+A 41 = 0.015 
A 

2 
:::: 

1 2 3 4 
A = 0.132 A -A +A -A = 0.131 
A 

A = 0.256 IA -A -A -A I = 0.255
3 

:::: 

1 2 3 4 
A 

A = 0.376 A -A +A +A = 0.375 
4 

:::: 

1 2 3 4 
A 

A = 0.624 :::: A +A -A -A = 0.625 
5 1 2 3 4 

,. 
:::: =A = 0.872 A +A -A +A 0.869 

6 1 2 3 4 
A 

7 
:::: 

1 2 3 4 
A = 1. 008 A +A +A -A = 1.013 
A 

A = 1. 26 4 :::: A +A +A +A = 1.257 . 8 1 2 3 4 

It appears that for N periodic sources, N small, with 

periods B1<B2< •••• <BN and rates of occurrence Al, A21··· AN 

respectively, then spectral analysis of the square wave of the 

pooled output results in the occurrence of peaks of f Cw) at 
A A 

frequencies w1, w21···· If Ai= wi/w then each Ai is a 

function of A1 , , •••• , AN and Ai is equal to the absoluteA2 

value of a linear combination of the A·, j=l, •••. , N;
J 

A 

Ai = IcqA1+0.2A2+. ··.+a.NANI 

where K=2, ..• ,N.and °'K = [+l 

-1 

There are 2N-l possible combinations of 0.1 , ... , °'N which 

N-1accounts for the occurrence of 2 peaks of F{w) at w1, w2, 

w3, • · · ·, w2"H; each frequency corresponding to a ~i' i=l, •• ,2N-l. 

Using the variance time curve, the number N of 

periodic sources can be determined and spectral analysis of 
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N-1the square wave could be used to locate the 2 peak fre­

quencies. Then a series of equations would have to be solved 

f . h ~ . 1 2N-l.or by order1ng t e Ai,· 1= , ••.• , With N=4 and 8 peak 
h h h 

frequencies, then by ordering and relabelling A 1 SA 2~ ••••• <A 8 

where 
h 

Aa = A 1 + A 2+ A3+ A 4 

AS 
h 

and Ai+= A1-A2+A3+A4 

This yields two sets of possible equations, one of which is 

linearly dependent so that another equation has to be substi­
h 

tuted for As = Al+A2-A 3-A4· As N increases the number of 

possible sets of equations also increases, and the autoco­

variance function tends to an exponential function. 
. N-1If the Ai, 1=1, •.•• 2 are ordered and relabelled 

(if necessary) so that ~ 1<~2 <, •• , <~ 2"'-L1<~ 2N-•, then 

AN = A2N-l - A2N-1_1 
2 

and AN-l = A2N-l 

2 

All that is necessary is to determine the three largest f re­

quencies and to use these to calculate estimates of AN and 

AN-1' and then BN and BN-1• Then by calculating the jth order 

differences in interval lengths x.. where
1J 
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X·.1] i=l, 2, n-j j<n• • • • I 

j=l, 2, 

and comparing these with the estimates of BN and BN-l the 

exact periods and occurrences corresponding to the time series 

with these periods can be determined. Considering example Sl 

A.N 1. 264-1. 008 = 0.128"' 
2 

1.264-0.872 = 0 .196A.N-1 "' 
2 


BN "' l/A.N = 7.81 


BN-1 "' l/A.N-1= 5 .10 


and the differences Xij were calculated to determine the 

periods exactly. The 6th order differences X(ti+6)-X(ti) 

located a period of length 5.15, part of the difference 

table is given in TABLE B-1. 

TABLE B-1 

xii j_=6 OCCURRENCES 

4.85 

5.15 x (ts 7) - X(t51) 

5.67 . 
. 

4.00 

5.15 X(t63) - X(t57) 

4.33 . . 
6.00 

5.15 X(t69) - X(t63) 

4.75 
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The periodic series with period 5.15 can then be eliminated 

from the pooled process. Although the estimate of B4=8.23 
A 

is not very good this could be improved. Since Aa=l.264 

the original series could be converted to time cT where c=l.5, 
A 

yielding a more accurate estimate of A8. Even this is not 

necessary since one periodic source has been eliminated from 

the pooled series. Spectral analysis of the deleted pooled 

N-2
series will only locate 2 peak frequencies now, and the 

remaining periods can be found by working with successive de­

leted series. 

It appears that a model to describe the pooled out­

put of several periodic processes would be helpful, but as 

yet no such model has been found in the available journals. 

A model to describe the special case of two pooled periodic 

processes is now given. Future analysis in this direction 

might prove rewarding. 

Let x1 (t) be a periodic point process with period B1 

and X2 (t) a periodic point process with period B2 , where 

B1<B 2 and B1 1 B2 are mutually irrational. Let X(t) be the 

point process obtained by pooling X1 (t) and X2(t). In the 

case of a pooled output of two periodic point processes, it 

has been observed that there is a pattern to the occurrence 

of the interval length equal to the smallest period B1. 

For example consider X1(t), x 2 (t) defined at t1, t21•· 

such that X1(tj) = j ·B1 

X2(tj) = j•B2 for j=l, 2, .•••• 
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When 	 B1=2.00, B2=2.27 and Xi=X(ti+1)-X(ti) i=l, 2, •.•• 

x 15= 2.00 

X30= 2.00 

X47= 2.00 

X79= 2.00 


X94= 2.00 


X109= 	2.00 

The first occurrence of X .=B 1 is x 15 , the next x 30 ·etc. so 
J. 

that if n1 and are the number of occurrences of X1 (t) andn 2 

X2 (t) between occurrences of Xi=B 1 then the following is ob­

served 

OCCURRENCE OF 
B1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

INTERVAL n1 n2 

X1s 8 7 

x30 8 7 

X47 9 8 

x6 2 8 7 

X79 9 8 

X94 8 7 

X10 9 8 7 

X126 9 8 

X141 8 7 

X1sa 9 8 



85 

x 15 = X n1 +n2 


x 30 = X2Cn1 +1\2) 


= 
x 47 X 3Cn1 ·Hl2)+2 


x 62 = X4(n1 +n2)+2 


x 7 9 = x s(n1 -tn2)+4 


The Kth occurrence of Bi is the interval length XK(ni+n 2)+m 


where m is a non-negative integer. It appears that some form 


of periodicity exists which determines the index i=K(n 1+n 2)+m 


of the Kth interval length with X i=B 1 


x i(tj) = j •B 1 is the time of the jth occurrence of B1 and 


x2 ( tj) = j •B 2 is the time of the jth occurrence of B 2 • 


Consider Xi = X2(ti) - X1(ti) 


Then X· = i •B2-i •B 1 = i•(B 2-B 1) so that {x. } is an increasing
J. J. 

sequence of interval lengths, which increases by a factor of 

i(B2-B1) >B1 

iB 2> (i+l) B 1 

X2(ti) >X1 (ti+l) 

Since B1<B 2, then X1(ti)<X2(ti) 

For x1(ti) <X 1Cti+l> <X2 (ti) 

and for Xi \B 1, X2 (ti-1) <XI (ti)• 

Then the first occurrence of an interval length equal to B1 
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Let a 2 = B1/(B 2-B 1). Then i/~ = [a 2] is the smallest in­


teger which denotes the number of interval lengths from X2(t) 


before the first interval of length B1• The number of inter­


val lengths from X1(t) for an interval of length B1 will be 


the largest integer j satisfying j•B1<i•B2. 


Then 


j < ( B1 )· B2 
B2-B1 Bl 

j < B2/(B2-B1) 

Let = B2/(B 2-B 1). Then i 1(l) = [a 1] is the integer whicha 1 

denotes the number of interval lengths from X1(t) to get the 

first interval of length B1. 

Then i1(l) + i1<2> = [a1] + [a2] is the number of interval lengths 

necessary to obtain the first interval length Xi=B 1, i=i _l(l)+i 1(2). 

Since a 1 = B2/(B 2-B 1) = 1 + B1/B 2+ B1
2/B2(B2-B1) and 

a2 = B1/B2 + B1 2/B2 (B 2-Bi) then 

= a 2+1 and [a 1] = [a 2+1] = [a 2] +la 1 

The first occurrence of Xi = B1 occurs when Xi>B 1 and 

Xi<2B 1• If Xi>2B 1 then X2 (ti)>X 1{ti+2> and the interval of 

length B1 has occurred at least twice. 

i(B2-B1)>2B1 

i > 2B1 = 2a1 
B2-B1 

so th.at i 2C2>= [2a 2] is the number of interval lengths from 
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the process X2 (t) before the second occurrence of Xi=B 1. 

In general then the Kth occurrence of an interval of length 

and i> KBl = Ka2. 
B2-B1 

Then ii2)= [Ka 2] denotes the number of occurrences of inter­

val lengths from the process X2 (t) before the Kth occurrence 

of Xi = B1 and ii1' = [Ka 1] the number of interval lengths 

for Xi= B1. The occurrence of the Kth interval length B1 is 

Since [Ka 1] + [Ka 2] + [K{a 1+a 2)] in general then the occur­

rence of the interval of length B1 is not periodic with period 

a1+a2 = {B1+B2)/{B2-B1). However a1 and a2 can be written as 

tegers and O~s<l. Then 

[Ka 1] + [Ka 2] = [K(n 1+s)] + [K(n 2+s)] = K{n 1+n 2) + 2[Ks] 

[K{a 1+a 2 )] = [K(n 1+n 2+2s)] = K{n 1+n 2 ) + [2Ks]. 

Writing Ks as Ks = n+r where n is a non-negative integer and 

Osr<l then 2[Ks] = 2nt and [2Ks] = [2n+2r] ~ 2n+[2r]. 

0<2r<2 so tha,t O<r< :Y2[2r] = 

%5r<l 

Thus [2Ks] = 2[Ks] or 2[Ks]+l 

For all intents and purposes then, we can consider 

[Ka 1] + [Ka 2 ] ~ [K(a 1+a 2 )] so that the occurrence of B1 is 

periodic with period (B 1+B 2 )/{B 2 -B 1). 

Assume that the periods Bi' {i=l, ••• ,N) from periodic sources 
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are positive numbers and are mutually irrational in the sense 

that there exists no set of positive or negative integers ni' 

not all zero, such that .L niB; = O. The generalized form of
i=l ... 

Weyl's theorem 3 states that if {a} denotes the fractional 

part of a and if a 1 , a 2 , •••• , aK are irrational numbers them­

selves mutually irrational, then the sequences [{na 1 }], ••••• , 

t{naK}J are independently uniformly distributed over (O, 1) 

for n=l, 2, 

For any pooled output of periodic sources the largest 

interval length possible is equal to the smallest period B 1 • 

If this upper bound B1 is removed then the sequence of inter­

val lengths is uniformly distributed over the interval (0, B1 ). 

For the case of the superposition of two periodic 

sources then the pooled series X(t) can be expressed as 

X(t) = Y(t)+Z(t) 

where Y(t) is a periodic point process with period (B 1 +B 2 )/(B 2-B 1 ) 

and Z(t) is a point process with the intervals between events 

having the uniform distribution over the interval (0, B1 ). 

Weyl, H. (1916) Math. Ann. 77,313. 3 



APPENDIX C 


C TO CALCULATE THE AUTOCOVARIANCES AND SPECTRAL DENSITY FUNCTION 

C OF THE SQUARE WAVE WITH VALUES Wl AND W2 

C TIME IS THE LENGTH OF THE TIME SERIES XIT), AND AUTOCOVARIANCES 

C WILL BE CALCULATED FROM 0 TO HMAX AT INTERVALS OF HK 

TIME=370.43 

HMAX=74.0 

HK=0.30 

Wl=l.O 

W2=-l.O 

DIMENSION X(500),A(l000), 8(1000), C(lOOO>, DllOOO), SDF(500,15), 

1 V(l500J,T(600l 

C READ IN THEN INTERVAL LENGTHS X(Il. 

N=250 

READ(5,2l (X(IJ,I=l,Nl 

2 FORMATIF8.3) 

I I =O 

DUM=O. 

DO 10 I= 1, N, 2 

10 DUM=X(Il+DUM 

89 




90 

SMEAN=(Wl*DUM+W2*(TIME-DUM))/TIME 

VAR=(Wl*Wl*DUM+W2*W2*(TIME-DUMJ l/TIME-SMEAN*SMEAN 

WRITE(6,15l SMEAN,VAR 

15 FORMATllH-,2ox,7H MEAN =,F10.5,1ox,11H VARIANCE =,F10.5) 

l'i R I T E ( 6 ' 1 8 ) 

18 FORMATl1H-,32X,3H K=,1ox,7H COV(Kl) 

C CALCULATE Ml=KPl AND M2=KP2 

HH=HK 

320 L2=0 

RK=O. 

DO 20 I= 1, N 

RK=X(Il+RK 

IFIHH.GT.HMAXl GO TO 400 

IFIHH.LT.RKl GO TO 30 

IF(L2.EQ.Ol GO TO 25 

L2=0 

GO TO 20 

25 L2=1 

20 CONTINUE 

30 KPl=I 

KMB=N-KPl+l 

blll=RK-HH 

JJ=KPl+l 

DO 40 J=JJ,N 
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K=J-KPl+l 

40 B(KJ=X(J) 

SK=O. 

DO 80 I=l,N 

M=N-I+l 

SK=X<Ml+SK 

IF(HH.LE.SKl GO TO 90 

80 CONTINUE 

90 KP2=M 

A(KP2l=SK-HH 

JJ=KP2-l 

DO 100 J=l,JJ 

100 A(Jl=X(Jl 

c CALCULATE THE AUTOCOVARIANCES AND STORE IN D(IIl 

Ll=O 

J=l 

K=l 

Yl=O. 

Y2=0. 

YlY2=0• 

R=ACJ) 

S=BCK> 

200 Z=AMINlCR,Sl 

IFCL1.EQ.L2l GO TO 110 

YlY2=YlY2+Z 

GO TO 130 
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110 	 IF(Ll.EQ.Ol GO TO 120 

Y2=Y2+Z 

GO TO 130 

120 	Yl=Yl+Z 

130 	 R=R-Z 

S=S-Z 

IF(R.EQ.O.) GO TO 140 

K=K+l 

IF(K.GT.KMB> GO TO 300 

S=B(Kl 

IF(L2.EQ.Ol GO TO 150 

L2=0 

GO TO 200 

150 	 L2=1 

GO TO 200 

140 	 J=J+l 

IF(J.GT.KP2l GO TO 300 

R=A(Jl 

IF(Ll.EQ.Ol GO TO 160 

Ll=O 

GO TO 200 

160 Ll=l 

GO TO 200 

300 COV=Yl*Wl*Wl+Y2*W2*W2+YlY2*Wl*W2 

COV=COV/(TIME-HH>-SMEAN*SMEAN*(l.O-HH/TIMEl 

http:IF(Ll.EQ.Ol
http:IF(L2.EQ.Ol
http:IF(Ll.EQ.Ol
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310 	 FORMAT(lH ,zox,2F20.8) 

II=II+l 


C(Ill=HH 


D(II>=COV 


HH=HH+HK 


!F(HH.GT.HMAX) GO TO 400 


GO TO 320 


C TO COMPUTE ESTIMATES OF THE SPECTRAL DENSITY FUNCIION 

C IF WEIGHTING IS TO BE USED, TO COMPARE WITH THE FIRST ESTIMATE 

c USING THE WEIGHTS 1 - K/M WHERE M IS IHE NUMBER OF LAG~' K=ltM 

c THEN PUT MAX=l LAGS FROM 2 TO LMAX WILL BE DONE IN STEPS• 

c 	 OF 2 

400 	MAX=l 


U'iAX=64 


L=l 


PIE=3.14159265 


G=HMAX/HK 


M=INT(Gl 


NN=l26 


430 	 DO 410 J=ltNN 


SUM=O. 


DO 420 I=ltM 


R=<FLOAT(J-ll*C(Il*2•0*PIE)/250.0 


S=COS (R) 


SUM=(D(I)*Sl/VAR +SUM 
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420 	CONTINUE 

SDFCJ,Ll = (1.0+2.0*SUM)/CZ.O*PIEl 

410 	 CONTINUE 

IFCMAX.LT.ll GO TO 440 

IFCL.EQ.ll GO TO 490 

IF(M.GE.LMAXl GO TO 440 

490 	 M=B*L 

L=L+l 

GO TO 430 

440 WRITE(6,450l 

450 FORMAT(lH-,15X,4H J= ,20X,27H SPECTRAL DENSITY ESTIMATES) 

WRITEC6,460l 

460 	FORMATCIH-,3ox,13H NO WEIGHTING,5x,15H WITH WEIGHTING) 

DO 470 J=l,NN 

jj=J-1 

470 	WRITE(6,480lJJ, CSDF(J,Ilt I=l,Ll 

480 	 FORMATC1H-,15X,I4,12X,9Fl0.5) 

STOP 

END 

http:IFCL.EQ.ll
http:IFCMAX.LT.ll


95 

C TO COMPUTE THE MEAN VARIANCE AND AUTO-COVARIANCES OF A PROCESS 

C X(T) 

C N IS THE TOTAL NUMBER OF OBSERVATIONS OF X(Tl 

C M IS THE NUMBER OF AUTO-COVARIANCES TO BE CALCULATED, M = N-1 IS 

C THE MAXIMUM NUMBER. COV(N) = VARIANCE IN THIS PROGRAM 

DIMENSION X(l000lt COV(l000), SDFC400,20lt V(200Q), T(5001 

N=250 

M=N/5 

C READ IN THEN INTERVAL LENGTHS OR OCCURRENCE RATES X(Il. 

READ(5,21 (XCil,I=ltNl 

2 FORMAT(F20.8l 

SMEAN=O. 

DO 10 J=l,N 

10 SMEAN=SMEAN+X(Jl 

SMEAN=SMEAN/FLOAT(N) 

DO 20 K=ltM 

NP=N-K 

DUM=O. 

DO 30 J=l,NP 

I=J+K 

30 DUM = DUM + CX(Jl-SMEANl*(X(Il-SMEANl 

20 COV<Kl=DUM/FLOATCNPl 

VAR=O. 
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DO 40 J=l,N 


DUM=X(Jl-SMEAN 


DUM=DUtvi*DUM 


40 	VAR=DUM+VAR 


COV(Nl=VAR/FLOAT(N) 


V.JRITE(6,50) 


50 FORMAT(lH-,2ox,12H THE MEAN 1s,2ox,16H THE VARIANCE Is,2ox,20H THE 

1 COVARIANCES AREl 

WRITE(6,60l SMEANtCOVINl 

60 FORMATllH-,1ox,F20.s,1ox,F20.s,30x,3H K=) 

DO 65 K=ltM 


65 WRITE(6,70l K,COV(Kl 


70 FORMAT(lH-,90X,I5t3XtF20.8l 


c TO COMPUTE ESTIMATES OF THE SPECTRAL DENSITY FUNCTION 

c IF WEIGHTING IS TO BE USED, TO COMPARE WITH THE FIR~I E~IIMAIE 

c USING THE WEIGHTS 1 - KIM WHERE M IS THE NUMBER OF LAGSt K=l,M 

c THEN PUT tviAX:;:l LAGS FROM 2 TO LMAX WILL BE DONE lN ~IEP~• 

c OF 2 

MAX=l 

LMAX=l6 

L=l 

PIE=3.14159265 

NN=N/2+1 

130 DO 110 J=ltNN 

http:FORMAT(lH-,90X,I5t3XtF20.8l
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SUM=O. 


DO 120 K=l'M 


R=(FLOAT(J-ll*FLOAT(Kl*2•0*PIEl/FLOAT(N) 


S=COS<Rl 


SUM=(COV(Kl*Sl/COV(Nl +SUM 


IF(L.LT.2l GO TO 120 


SUM=(l.0-FLOAT(Kl/FLOAT(Mll*SUM 


120 	CONTINUE 

SDF(J,Ll = <1.0+2.0*SUM)/(2.0*PIEl 

110 	 CONTINUE 

IF(MAX.LT.ll GO TO 140 

IF(L.EQ.ll GO TO 190 

IF(M.GE.LMAXl GO TO 140 

190 	M=2*L 

L=L+l 

GO TO 130 

140 WRITE(6'150l 

150 FORMAT(lH-,15x,4H J= ,2ox,21H SPECTRAL DENSITY ESTIMATES) 

ltJRITEC6'160l 

160 	FORMAT(lH-,3cx,13H NO WEIGHTING,5X,15H WITH WEIGHTING) 

DO 170 J=l,NN 

JJ=J-1 

170 WRITE(6,180lJJ, (50F(J,Il' I=l,Ll 

180 FORMAT(lH-,15X,I4tl2X,9Fl0.5l 

http:FORMAT(lH-,15X,I4tl2X,9Fl0.5l
http:IF(L.EQ.ll
http:IF(MAX.LT.ll
http:IF(L.LT.2l
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