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ABSTRACT

This report is divided into two parts. The first part
contains the results of a simulation performed by the two-phase
thermohydraulics code Firebird.

The second part of this report deals with the "water packing"
problem. Its mathematical and physical interpretationé are discussed
in detail and a method for identifying a transition node together
’with an alternate mathematical treatment of the boiling boundary are

also included.
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CHAPTER 1
CODE VERIFICATION

1.1 Introduction

Firebird is abthermohydraulics simulation code which was
developed in the thermohydraulics branch of Atomic Energy of Caﬁada |
Ltd. in Meadow?a]e, Ontario. The main features of this code are:‘.

(i) Homogeneous two-phase flow médel ‘

(i) Implicit so]ution of the equations By the method of

porsching

(iii) Derivative smoothing across phase boundaries.

This report outlines the simulation of some éxperiments usihg
Firebird. These experiments which were scaled down versions of
actual reactor networks were performed by Westinghouse Canada Ltd.

Verification of test #592 was first performed by an "old"
version of Firebird. This "old" version_is a special versioh of Fire-
bird which was re-arranged by S.M. Chu, of the thermohydraulics branéh,

'td model a single pipe blowdown and emergency cbre cooling injection. |
This version retains the essential features of Firebird, e.g.:

numerical scheme, properties formulation, derivative smoothing, etc.
Results obtained with this version are reported in Séction 1.3.2.

Another version of Firebird was then used to simulate the
same experiment (#592). This version contained a flow regime indicator
and could account for density variation in stratified flow. Results

obtained with this version are reported in Section 1.3.3.



1.2 Changes Made to 01d Code |

I The data blocks containing the time variation of the injection
pressure and downstream of the break preséure were hade identiéal to
those of test #592. ‘These boundafy conditions were obtained from
computer p]otS of the actual eXperimenta] results. These plots are '
shown on Figures 1.2.1, 1.2.2 and 1.2.3.

A sTight]y modification was also made to account.for the
difference in initial temperature between the top and the bottom pin,
in the "old" version mentioned in the previous section the. initial
temperatures were assumed to be vertically uniform. The verticalv
variation in temperature was accounted for by specifying the exact
initial temperatures of the top and bottom pins and finding the otherf
values by interpolation assuming a linear variation as a function of

vertical distance (see Appendix A for Tisting).

1.3 Results
1.3.1 Plotting Convention

- The comparison of the experimenta] results of test #592 and
the results predicted by Firebird are shown 6n Figures 1.3.1 to 1.3.7.

The plotting convention is as follows:

Solid line = Experimental results

Circles = Predictions made by the "old" version of Firebird

]

Triangles = Predictions made by the "o1d" version with initial
temperature variation

Dots Predictions made by the newer version of Firebird

i

(with flow regime indicator and allowance for

density variation)
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1.3.2 The Oid Version

As can be seen in Figures 1.3.1 to 1.3.6 agreement between
experimental déta and predfctions are generally very good, howe?er the
following discrepancies are noteworthyi

(i) The code seems to have over prédictéd the rewetting fime
for the bottom pins and underpredicted for the top ones in the heated
section. |

(i) The outlet header axis temperature was also overpredicted
up to about 100 secs, but there was good agreement after'that.

Aside from the points mentioned above there was excéllent
agreement betweeen the experimental results and the predictions made

by this "old" version of Firebird.

1.3.3 The Modified Version

The results obtained with this version of Firebird do not
differ very much from those obtained with the old version. The
mispredictions here are the same as the ones reported on sectfon 1.3.2,
-and again aside from these discrepancies there was excelient'agreemént
between the experimental results and the predictfons made Sy this

modified version of Firebird.

1.4 Conclusion
The thermohydraulics simulation code Firebird has been success-
fully used to simulate the single channel-single ended cold water

injection test #592 performed by Westinghouse Canada Limited.



The overall agreement between the code predictions and the

experimental results were generally excellent.
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CHAPTER 2
THE WATER PACKING PROBLEM
2.1 Problem Definition

In the porching implicit scheme used in Firebird, the solution

variables are:

M = Nodal mass
U = Total internal energy
W = Mass flow rate at the node boundaries

The nodal pressure is advanced in time by the formula
™ = "+ ap (2.1.1)

where Ap is approximated by:
- {ap ap | »
Ap [aM}UAM + [aU]MAU ) ; (2.1.2)

and the partial derivatives above are evaluated at time level nat.

The partial derivatives of equation 2.1.2 are discontinuous
at the phase boundaries and severe pressure spikes can result if one
attempts to simuléte a phase transition using this meihod.

The discontinuity at a 2 phase-superheated boundary is some-
what mild and poses no problem of prattical important. .Thefsubcooled-
2 phase discontinuity is severe and will be considered.here.

The physical keason behind this phenomenum is not difficult
to understand. Consider a node L units long which initially édntains
superheated steam. At time t = 0 subcooled water starts to move

from the left boundary towards the right with a constant velocity v

14
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so that it will reach the right hand boundary at
-+ =L , ' :
t=to=c _ | | (2.1.3)

The homogeneous quality of this node can then be given as a

function of time as:

> t=0

x(t) ={ 0<x<1 O<t<t, .~ (2.1.4)
< > ’
>0 t_tf

"~ Let's now consider what happens if we try to appiy equation
2.1.2 to update the pressure in this particular problem. For 0 < t < tf"

The pressure at a new time step is given by:

1l _ n ap (s | : |
Pog = P2y * [aM]2¢AM2¢ + {55]2¢AU2¢ ~ (2.1.5)

where the subscript 2¢ implies that these are in the 2-phase region.

For t 2 tf the new pressure is given by:
ntl _ n . {3p ap .
Ps Py + [aM)fAMf + [BU)fAUf - (2.1.6)

where the subscript f means that these derivatives are in the subcooled

region.

' ]
] v

<~ L

Figure 2.1.1: A transition Node
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Subtracting equation 2.1.5 from equation 2.1.6 and using the

symbol Ap for the change in pressure over one time step we get:

3\

_ 0 18
(apg - 8py,) = [{55; MM - {5§)2¢AM2¢]

f

(2p) y. - (2
* [{au)fAUf REl

The left hand side of. the above equation is an expression

AU, ]

(2.1.7)

for the change in the change in pressure which is produced when -one

attempts to use this method of solution for a subcooled-two phase

boundary. If this change is large it will cause a pressure spike.

We can work through a simple numerical example to get a

feeling for the magnetudes inv

olved.

Consider three adjacent nodes

as in Figure 2.1.2. The characteristics of the problem are as follows:

~Dimensions

AXy = Xy = AXg = m
_ _ 2
A] = A2 = A3 = Tm
- - - 1m3

—> & 1> e 17

X R N
W, W, M

Figure 2.1.2: Threee adjacent nodes in the staggered mesh system.



Initial Condition

Py =Py = P3= 1 MPa

X = slightly subcooled
_ 103

X, = 10

uy = 0 m/sec

u, = 14.62 m/sec

uy = 0 m/sec
Fluid = water

Boundary Conditions

Py 2 P3 = constant = 1 MPa

w1 = 0, M1 and U] Held constant
Time Step

DT = 0.01 secs

At this thermodynémic state the properties are foundlto be:

©
i}

5.147 kg/m; be = 887.0 kg/m>

e = 2.582%10° J/kg; e, = 7.615%10%/kg

f
Thus the initial value of the independent variables are:

Mass:

R

] V]pf = 887.0 kg
° _ V2 ‘
2 xvg + (1—x)vf

- Mass Flow Rate:

= 757.3 kg

W] =0
o o0
WZ = = 887.0*14.62 = 1.297*10" kg/sec
AX]
w3 =0

17


http:887.0*14.62

o

e = 6.754+10% Joules

[
1

8

0
u, = Mz[leg + (1-x2)ef] = 5,750*10 JouTes

For simplicity let the time increment of the independent

variables be given by the simple exp]icit'sbheme:

_ n_.n
: N n N, N n n
L= s AW o = ULWL) + (p. D
Ay = 005 W g - ughy) + (p5 )
. n,.n n n n ny
. = . . + . - . . .
AUy = Atlug (U5 3 + Py_q) - ugyq (U5 + py)d

In the above equations all factors which included Ax, A or V were
ignored since they have unit value in this problem.
The solution can now be advanced in time

1st Time Step

Time = DT = 0.01 secs

‘Mass

4

AM, = 0.01 (1.297*10" - 0) = 129.7 kg

2

eml =W - =
<M, = M2 + AM2 = 757.3 + 129.7 = 887.0 kg

Mass Flow Rate

B, = 0.014(0 - 14.62%1.207%10%) + 03 = -1.896%10% XL

W= W - 4 3. A kg -
..w2 -1w2 + sz = 1,297*%10" -~ 1.896*10 1.107*}0 soc
M 4 '

1.2 _ 1.107%10° _
U2 - 3870 12.48 m/sec

=
-
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= 0.01'{(14.62*1.297*]04—0)¢+ 0} ='1.896*103159— '

Aw3 sec

3 w; =Wy + oMy = 0+ 1.896*10% = 1.896*10° kg/sec
1 3 1 1
1 W3 1 goe*10% _
U3 = M] Ty 2.138 m/sec
2
Energy ‘
MU, = 0.01{14.62(6.754*10%+10%) - 0} = 9.889*10 Joules

.:U; = U+ au, = (5.750+0.9889)*10° = 6.739%10° Joules
Quality
1 V- Mg
X, = [ ] = 0 (slightly subcooled)
2 M vg - Ve _
Pressure
= |9p ap
4P, (aM]UAMz ¥ [aU]MAUZ

5.151*103*129.7 + 6.860*10-3*9.889*1 /

1

1.030*104 Pascals

The partiallderivatives used above are calculated in Appendix 1.

N p; = pg + bp, = 1.010*106 Péscals

‘Enthalpy 1 ]
1 (% o (YPy 1 0 1
Mo My ” My
- [ 8 6+ _ 5 Joules
= \887.0] [6.739%10° + 1.010*10°] = 7.609*10 kG

The solution can now be advanced one more time step. Node

#2 is already completely filled with water thus its.properties will



be in the subcooled region.

2nd Time Step

. Time = 2.0*%DT = 0.02
Mass
MM, = 0.01 (1. 107*10%

2
2

- 1.896*10%) = 91.74 kg

M = M)+ M = 978.7 kg

Mass F]ow Rate

MW, = 0.01 {(0-12.48%1. 107%10%) + (108-1.010%10° )}
= 1.482%10% kg/sec

4 _1.482%10% = 9. 588*]03-53—

+ AW, = 1.107*10 sec

2 ¥
2 2
2 3
2 _ "2 _ 9.588*10
U2 = '-2- = **8‘8—"7:-0—"'“ =.10.81 m/sec
1

4

| AW3 = 0.01 {(12.48*1.107*10 —2.138*].896*]03)_+ 0.010*106}

= 1.441%10° kg/sec

2 _ 1 _ 3 3 _ 3 kg
W3 = W3 + AW3 = 1.896*10 +‘1.441*10 = 3.337*10 sec
L, W 3 |

2 _ 3 _ 3.337*10° _

2

Energy

20

AU, = 0.01 {12.48(6.754+10%+10°) - 2.138(6.739*10%+1.01%10%)1

= 6.999%107 Joules

g - u; + AU, = 6.739%10% + 6.999%107 = 7.439%10% Joules

We are now in the position to update the pressufe once again.

However the partial derivatives used are taken from the subcooled



region this time, the details of this calculation can be found in

Appendix 1.
Pressure
= |3p 13p
Ap, [aM}UAM + {aM)MAU
=‘1.126*106*9].74 + 3.945*10'1*6.999*107

1.300%10% Pascals

.Kpg = p; + Ap, = 1.319*108 Pascals -

The effect of this pressure rise on the velocity fie1d can

also be calculated:

"3rd Time Step

Time = 3.0*DT = 0.03 secs

" 'Mass:

AM 3

o = 0.01 (9.588*10

-3.337%10%) = 62.51 kg

2 _ 3
M, = My + aM, = 1.041*10° kg

Mass Flow Rate
MW, = 0.01 {(0-10.81*9.588*10%) + (108-1.319%10%)}

= -1.310%10° kg/sec

3= 2 _ 3 6‘__ 6 kg .
W, w2 + AW = 9.588%10° - 1.310%10 = -1.300+10 o
W3 w106
U = % = 2130070 . g pgguq03 B
M 1.041*10 Sec

2 v
MWy = 0.01 {(10.81%9.588%10°

= 1.310%10% Kkg/sec

- 3.410%3.337%10%) + (1.319*108-10%)}


http:1.126*106*91.74
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W3 = W5+ ai = 3.337410% + 1.310%10% = 1.310%10% kg/sec
3 W Laond® 3
U3 = 3= = 1.258*10" m/sec

M5 1.041%10

The change in the change in pressure for the second node of
this example can now be calculated from equation 2.1.7:
8 4 8

(Apf-Ap2¢) = 1.309%10" - 1.030*10" = 1.309*10" Pascals |

Thus in this case the change in the change in préssure és
the node filled up is err one hundred times the nodal pressure
itself which in reality is an extremely severe pressure spike, tﬁis
sudden rise in pressure was so gigantic in fact that it caused a
splitting flow of hypersonic proportion.

Clearly this is a completely non-physical pheﬁomenum. From

the mathematical point of view it is quite easy to explain why these

peculiar solutions are being obtained. The partia1 derivatives of
pressure are highly discontinuous at the phase boundaries,_and in

fact they are not even defined at these boundaries, this can be

easily verified by referring to the usual p-v-T diagram of figure 2.1.3.
The Tines of constant temperature on the surface of this diagram are
not smooth at the phase boundaries, which implies in fact that (gg)

does not exist there. And since (%ﬁ) is a function of (%%) it can
easily be concluded that (%ﬁ) does not exist.at these boundaries

eithér. The same types of argument can be used fori(%%) if ﬁne

consideres the lines of constant specific volume.



e

Pressure

/gouo + LIQUID

o
£
¢

i)

-

23



24

Thus at the phase boundaries the partial derivatives of
pressure with respect to the independent variables are not only_
highly discontinuous but they do not exist there, thus any attempt to

simulate a transition node with a set of partial differential equations

is clearly inconsistent since by definition differential equations
can only represent processes which are continuous and differentiable.
Thus in general the results of such a simulation cannot tepresent the o _ 
physical behaviour of the process‘being'simu1ated and it is quite.con-
ceivab]eb(as it was shown by the numberical example WOrked out) that'v
in some cases these results will have no similarity to the real
phenomenum whatsoever.

The partial differential equations approach can be used 6n
both sides of the boi1iﬁg boundary but not across it. The boiling
boundary itself cannot be included in the solution domain of these
P.D.E. énd must be treated separately.

Before we consider a new approach to the problem we must
first be able to identify these transition nodes. This will be done

in the next section.

Consider three adjacent nodes as in figure 2.2.1. 1In
accordance with the staggered mesh used in the porsching scheme
the thermd static properties are défined at the node Centré and the
mass flow rate at the node boundaries. |

We would 1ike to be able to systematica11y identify when

the jth node becomes a transition node just by knowing the thermo-
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namic properties at all three nodes.

e Yl M Y M U
® - e > e —>
,,,,, Y Y Wy
(3-1) j (3+1)

Figure 2.2.1: Three adjacent nodes in the staggered mesh system.

Let Y be a number which contains five binary digits.

Y=A A A, A A

172737475
where:
A, = phase of (§-1)*" node 0 if x<0
A2 = phase of jth node = |
A; = phase of\(j+1)th node 1 if x20
Ay = flow direction of (j-1)*" node _’ 0 if -ve
A5‘E flow direction of jth node . 1 if +ve

Thus for example the configuration of figure 2.2.2 has

associated with it a value of Y of:

Two ‘
Subcoo]ed__%> Phase‘Sm*_SubcooTed
(i-1) J (3+1)

Figure 2.2.2: A'particular combination of flow directions and thermo-

dynamic phases.
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Y - 01010 = ]ODecimal

The total number of possible combinations amounts to thrity
two. Let the symbols 18 and 2@ represent subcooled and two-phase
properties resbective]y. A pictorial representatidn of all the

possible combinations can be drawn:

Decimal Equivalent A-l A2 A3 A4 A5 Symbolic phasic diagram
0 00000 | '
1 0000 1 - _
2 00010 R LA
3 000 11
4 00100
6 00110
7 00111
8 01 00O
9 01 00 1 /

10 01010 {1820 1 10
1 01 0 1 1
12 01100
14 01 110
15 01 1 11
16 10000
17 100 01 op |19 | 10
18 10010
19 10 0 1 1
20 10100
21 1 01 01 20 | 18] 20
22 10110
23 101 1 1
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Decimal Equivalent A] A2 A3 A4 A5 , Symbolic phasic diagram
24 11000 ...
25 1T 1T 0 01 20207 | 1p
26 1T 101 0
27 1T 1 0 11
28 T 1 100 oo
29 1T 1 1 01 20 | 20 | 29
30 11T 110
11T 1T 11

31

By referring to the symbolic phasic diagréms for the different
‘ccmb%ﬁaffbns %t can be seen that fn one tfme step fhe f611ohfng
~combinations (their decimal equivalent) will never make the jth node
go through the subcooled two‘phase transition:

| Combination: 0, 1, 2, 3, 4, 5, 6, 7, 8, 16, 17, 18, 19, 28,
29, 30, 31 e | |

In fact the only ones that may pose a problem are:

Combinations: 8, 10, 11, 14, 15, 24, 26
The other combinations can never make the jth node go through a subé
;ooled two phase transition over the span of one time step. |

It is thus possible to identify when a node may go through a |
transition so that some precautionary measures may be taken.

This method of identification has been implemented in one
version of Firebird and is fully operational now. See Appendix 3 for

the Tisting.

2.3 The Method of Power Series Expansion

As it was shown in Section 2.1 of this report the "water-
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packing" problem occurs because one tries to use a set of differential
equations to represent the discontinuous processes which occur across
a boiling boundary. However on each side of this boundary all the
thermodyhamic properties are differentiable and continuous and have
continuous first derivatives, thus they can rightfully be represented
by the differential equations approach.

In this section a brocedure for dealing with the bbi]ing |
boundary is proposed. This procedure cén accurately locaté the
boundary position and gives an approximate value of the thermo-
dynamic proeprtiés on each side by thevmethod of power series expansion.
It is assumed here fhat the properties at the boundary are in the
saturated state.

Consider a boiling boundary which is going through a node

bounded by the co-ordinates zj and z as in figure 2.3.1. Let

J+1
the position of the boiling boundary be denoted by Ze where:

Zj < Zf < Zj__H

At the boiling boundary the density and internal energy per

unit volume are given by

R . M . U' — —
H.]-l _) Uﬁ ? :\/7 G B HSH ,Ujﬂ
fup S

i
|
) T

di-1 9

Figure 2.3.1: The boiling boundéry.'

—p— -
o
oo

S

T
Jgu | Srt2
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P=pf
u=pe=pfef=uf

The vlaue of these properties at other places in the node can

be approximated by a first order Taylor series expansion.

ps + (z- zf) {az)f for z<z

o(z) = ' : _ . - (2.3.1)
pe + (z-2.) {2&, for z>z :
f f 32) 541 f
+ ( ) au] f
z-z¢ 321f or z<z¢ v
u(z) = (2.3.2)
£t (z-z,) { for zsz
For simplicity let the nodal volume be Vj = Aj(ZJ+I -z.)
j+l ’ ' . _
;M,=A.J o(2)dz . (2.3.3)
il .
J
j+1 ' _
;= Ay J u(z)dz | (2.3.4)
Z.
J

Substituting for p(z) from equation 2.3.1 into equation 2.3.3:

¥
=
It

;= M Iz Log + (z-2¢) [az] ldz
%5

J+
+ I [pf + (z-zf)[%%) Jdz}
Ze il

= Mpo(z..1-2.) + |22 [ZE.; 77 ]Zf
PRGNS T g2 fiz;
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,  | o 2 »
= A, {pf(Z #1723 ) [ Zlf[zf(zj—O.SZf) - 0.5 zj]

(ap ) 2
+ {az]z+][zj+1(0‘52j+1 zf) + 0.5 zf]} (2.3.5)

Following the same procedure we get a similar expression for

J :
= u 2
> | A, {Uf(zJ+1 -z.) + {52)f[zf(zj-0752f)>-O.SZj]
£ |2 17 (0.52,-2;,,) + 0.525,, T3  (2.3.6)
CEIETE b AR A Al Rt L S a3

~ The properties at the adjacent node can also be approximated by:

i 2
i = Ay Jz Log + (Z‘Zf)[az).+]]d2}
J+1 J
A. {olzs,nmzs,q) + ra}’ [o. 522 - zz.] J+2
A A L L SO £ P £z ]
Mj+] Aj+1{pf(zj+2 Zj+]) + \azxj+1[2j+2(0.523+2 Zf)
'Zj+](0-52j+'l"zf)]} ] k ) (2.3.7)

and similarly:

- 3u -
Ui = A tUelzgupmzg00) [ lJ [23+z(° 52540 - 2¢)

-24,7(0.525,1-2) 1} | © (2.3.8)
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The value of the partial derivatives at the positioﬁ z

Jti
can thus be obtained from equations 2.3.7 and 2.3.8."
[_8_9_} : ..... MJ+]....J+.I[pf(ZJ+2 J‘ﬂ)] ...... (2 3 9)
32) 501 Pjl254p10-5254572¢) = 24,4{0.524,4-2,)] . |
'{92} = Yje1 "Aj+1[Uf(zj+2’Zj+1)] o (2‘3 10)
j+1 Aj+1[zj+2(0.52j+2—zf) - zj+](0.5zj+]-;fTI

The values above can now be substituted into equations 2.3.5

and 2.3.6:
- - * -
R 3] _ Mi-Asop(25,0-25) 142, ,(0.525 o-2,)-25 4 (0. 52 +172¢)
3z £ DENOM
. | )
_ (Mj+]—Aj+]pf(Zj+2-Zj+])]*[Zj+](0.52j+]ﬁzf).+.0,52f] (2 3 ]])
DENOM ; . o
au) [Uj'AjUf(zj+1'Zj)]*[zj+2(0'52j+2’zj)'zj+](0'52j+1'zf)]
3z £ DENOM -
2
DENOM ' iy
where:

J+](0 52 f)]

The partial derivatives given by equations 2.3.11 and 2.3.12
are fully determined except for Ze which is not known. However its
value can be calculated by the following method: Tlet's assume that

%g-is constant across the boundary

),
dz £ dz j+1
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(- 0, (0, .0,
> {ap f~azif au f 32 f 9p j+]-az“j+ o Lau j+]'az j+1 (2’3’]3)
The partial derivatives of pressure with respect to & and u
can be found by knowing the local thermodynamic state which is the

case here. If we substitute for

B B 8 2
[az se17 Rz B3z 8z} ¢

from equations 2.3.9 to 2.3.12 respectively into equation 2.3.13 we |
then have an equation in which the only unknown fs ze and it can be
solved for. |
| One the value of zZe is known then the partial derivatives of §
and uwr.t. the distance z at the boiling boundary are completely
determined by the expressions given by equation 2.3.1] and 2.3.12
respectively.

The thermodynamic properties on both sides of the boiling
boundary can now be fully established. The node which contains
this boundary can now be divided into two smaller ones such that
the first one on the left exactly contains all the water. By following
this process at all time steps the boiling boundary will always
coincide with a node boundary, and since the pressure is not defined
at these boundaries the discontinuities there will not cause any
problem. This procedure merely isolates these discontinuities thus
making sure that these partial differential equations are truiy

defined in their entire domain.
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APPENDIX 1

Al.1 The Partial Derivatives of Water in’the Two-Phase Region

By definition

v=2xv_ + (1-x)v
h g f (A1.1.1)

xhg + (l-x)hf
Sdy = xdvg f vgdx + dvf(1-x) - vfdx

dh

xdhg +»hgdx + dhf(l—x) - hfdx

dv - xdyg-(1—x)dvf dh - xdhg—(l-x)dhf '

> dx = (\_’g'vf) ) (hg‘hf)

Multiplying both sides of the above equatibn by (vg-vf)*(hg—hf):
> (vg—vf)[dh - xdhg - (1—x)dhf]
= (hg-hf)[dv - xdvg - (1—x)dvf] o | (A1.1.2)

The specifib enthalpy h can be expressed as:

- U, pv ;
h=u+pyv-= Tl | , (A1.1.3)

where V is the nodal volume

cdh = drqu = Y _ bV
cdh = drau = Y+ v oap - BY an]
1 U, pv
B SCES LU TR
N dh = A-hdM + dU + Vdp]  (A1.1.4)

Also the specific volume is given by:
ve=d o= am (A1.1.5)
M.. 2 . . el

34
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Substituting for dh and dv from above into equation Al.1.2:
. l' . N .

i | (vg-vf){Wﬂ—hdM+dU+Vdp]—xdhg - (1-x)dhf}

-(h -h ){—z-dM - de - (1-x)dvf} . (A1.1.6)

The differentials of specific enthalpy and specific volumes
at saturation which appear in the equation above can be expressed as:
dh
dhS [dp ] dp v S
dv : (A1.1.7)
s .
s Eﬁfﬂ dp

[

dv
Thus equation Al1.1.6 can be rewritten as:
(vgv NG + QU] + dp[M - x( ) (1-x)( )]}
= (hy hf){dM[ %] + dp[- X( ) (1 X)( )]}
Multiplying through by M
dh dh
- dpL{vg-veV - Mx(gpY) - M(1-x)(a-5f)]
' d
+{hg-he) (g —=2) + M(1- X)( )]}

=dhlh(v -ve) = v(hg-he)] - dUL(vg-v)T

Thus
h{v_-v.) - v(h _-h.) _
) _ g f g f
(En%}u = DENOM (A1.1.8)
~(v_-v.) ’
ap) £ o
[E%)M = ~DENOM— ‘ (al.1.9)

where:



_ : c.dy _..dvy
DENOM = M{(hg—hf)[x(aaﬂo + (1~x)(35f)}

..dh ...dh
(g v Ix(gd) + (10 (gD - vD

~ At p =1 Mpa and X = 10"3 the value of the thermodynamic

properties for saturated steam and water mixture are given by ]:

3 3

= 1.127%1073 'E" = 1.943%107! I

Ve T kg

= 7.626%10° Joules, . h = 2. 776*106 Joules

h kg kg

(=}

f

-2 m3
kg

~(dh . ' 3
f m
[d—p—} 1.922*1 0 -k—- (

&

xvg + (1-x)vf

Q.LQQ.

) 3.859*%10°

5 dv 5
-11 . g - _ -7 m

1]

v

-3 !fi
kg

3 " 0.999%1.127%1073 = 1.320%10

1077%1.943*10

=
]

xhg + (1-x)hf

3 6

1073+2.776%10° + 0.999%7.626%10° = 7.646+10°

~.DENOM = 757.3{(2.776-0.7626)*10%%[-1.852%1071°

+0.999%5.903*10” '] - (1.943 - 0.01127)*10” 1*[3.859*10™°

+0.999%1,922%10"

- 1.320%107373
= 757.3{-3.425%10"% - 3.684%107%}
DENOM = -28.16

) Fﬂq _ h(vg—vf)-v(hg-hf)
U

" |3M DENOM

36
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=1[§§i%g)*{7.646*105(1f943*1a*1_1.127*10*3)

6

- 1.320*10_3(2.776*10 ~7;626*105)}.

(ap) . _ 3'Pascal
> {SM] 5.151*10 kg
T
_'(lp_ -K(V-Vf)
sl M DENOM
. -l i )

78.16 ~ Joule

A1.2 The Partial Derivatives of Subcooled Water

The specific volume of subcooled water at any giVen state

(p,h) can be evaluated by Agee's polynomia]s2
Veip = v(p,h) | | . (A1.2.1)
“dv = [av]dp + [av]dh - (A1.2.2)
.. p ah ‘ L3 -

The specific enthalpy in british units can be expressed as:

= pv. _ U _pv __
h=u+sT=g*5m

+
o>
i

.[%}[U + %¥Ej
=.dh [ }{[dU + 5V4 dp].-'[%)[u %‘g¥zl_dM}

> dh {[dU + ] - hd¥}

5 7 dp
Also



where DENOM = M[[g—;')—)+ v [i‘i]]

38

- Substituting for dh and dv into equation All2.2 we get:

.{;ZJdM [ap}dp i [M][av][hdm - (dU + —«:lp)]

Multiplying the above equation by M and rearrdnging:
oV , V. 9V

=dM[h%%- v] - dU[ 7l

v
°__3_E_] =h '-a-ﬁ -V
U

1) 1 | C (A1.2.3)
s : .
_fov | -
ap) _"leh |
au)M DENOM | (A1.2.4)

5.4 |3hy

A simple computer program was written to calculate the partial

derivatives given by equations A1.2.3 and Al.2.4. A listing of this

program as well as the result output are attached at the end of this

The value of these derivatives are found to be:

)

[%%}u ~ 1.126%10° &‘-{—g—@l (A1.2.5)

apl -1Pascal ",. :
[SU]AM 3.945%107 1 23¢aL | (A1.2.6)

f
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.é! MAIN.262

<

c
169
c

.

.

.

.

.

.
.

.
.
.

+
.

GET QUALITY OF ALL NODES

- DUMMY«PRHG(Y )=-PRKF (1)

IF(DUMMY.EQ.0.) GOTO

69
» XXX (1)e (HENT(1)=PRHF(I))/DUMNY

CONTINUE

‘RUL(I)e0.

RUR(I)sUOL(I)

-XI' MAIN,262

[y
wu
e

4° 2.0 52 o a0 s 0 e 4o e e e e s 0

ZSEC+0.1 .
IF(TINE.GT.5.0) ZSEC'0.0
IF(TIME.GT.5,5) ZSEC=0.1
DO 155 I=1,NE

THE NEXT FEV LINES LOCATES THE BOILING BOUNDARY AND
EVALURTES RIGHT AND LEFT NODAL VOLUMES ...

Miel-1 ,_

m2el+l

IF(1.EQ.1) Misy -

IF(1.EQ.NE) M2eNE _

DUMMY2 « XXX (M1 )

1F(1.E0.1) DUNMY2e=0,35

burny. DUNMYZ —XXX( M2)

IF (DUMMY ,EG.0.) GOTO 158

IF (XXX(1),GE.1.0) GOTO 158

RULCT)=( DUMMY2 ~ DUMMY 3 % VOL(I)

IF(RUL(I).LT.0.) RULLI)=0,
IF(RVL(TDLGT.VOLCI)) RUL(T)I=VOL(T)
DUHHY3'DUMHV2¥XXX£NE)

IF (DUMMY3.GE.8.) RUL(1)=0,

IF(IPINJ.EQ.1) GOTO 151

IF(PINJ.LE.PRESS(1)) RUL(I}e0,
IF(PINJ,LE,PRESS(1)) GOTO 151 . ,
IPINJ»1 ‘ .
CONTINUE

IF(XXX(I JLT.0,) RUL(T)eVOL(I)
RUR(I )=V ( )-RUL(1) ) :
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CONTINUE

'I‘ ll

RX 1S A BINARY DIGIT WHICH TAKES THE UALUE OF ONE IF OUALITV IN THE
' NODE IS GREATER THAN 2ERO , OTHERWISE IT TAKES THE VALUE OF ZERO

RU IS EQUAL TO. ONE IF FLOW IN THE NODE IS POSITIVE
OTHERWISE IT IS EQUAL TO ZERO

RX(I)e0.
RU(I)=0,
IF(XXX(]1) G T.9.) RX(1
IF(FLOU(TI).GT.0.) RU(
CONTINUE

CALL BOILING(NE)

)el, ’ <
I =1, : .



’

PR—

. SUBROUTINE BO!LIHG(NE) Y
X COMMON/STABK/SUEV(78),SU0L(70), DPRESM(78),DPRESU(70)

'C - COMMON/SOIL/RX(79), RU(?O) RUL(?@J RUR(70),XXX(72}

Ig . . a R
.€ THIS SUBROUTINE HANDLES BOILING BOUNDARY DISCONTINUiTIﬁS}
:g BY EXPRESSING THE DERIVATIVES IN THE TRANSITION NODE AS A
:C ) COMBINATION OF THE DERIURTIUES‘OF THE INCOMING FLUID ...
+ :

.C

'c

.c

'C

'c

DO 300 I«1,NE
VOL=RUL(T}+RUR(I)

. Mis1-1

. IF(I.EQ.1) Mist

. H8'1+1

. IF(1.EQ.NE) M2eNE

: .

% - . . .
:g D IS THE DECIMAL EQUIVALENT OF A BINARY NUMBER DEFINED ACCORDING
:gf TO A PRE~SET CONVENTION .... ITS RANGE FROM 0 TO 31 .REPRESENTS

:g ALL POSSIBLE COMBINATIONS OF PHASE STATE & FLOUW DIRECTIO?S e

.c f ' ' : |

. DUMMY L «RX (M1 ) o '
. IF(1,EQ.1) DUMMYis@, , ) ‘

+ T . . : B

. DUMMY2SRU(M1) : L L o

. IF(1.EQ.1) DUMMY2s1.

.C D - 16.91DUMMYL+8, 0*RX(I)*4 PIRX(M2)+2, e*DUHHYE*RU(I)

:g | , | .

. IF(D.NE.8.AND,D.NE.12.AND,D.NE.24.AND.D.NE.26) GOTO 100

. DPRESM(I )+ (RUL(I)XDPRESM(I }+RUR(I JXDPRESM(M2)) /UL

. DPRESU(1 )« (RUL(I1)3DPRESUCE )+RVR (1 )¥DPRESU(NZ ) )/VOL

. GOTO 300 | e

;100 CONTINUE

144
: "‘) H


http:IFCD.NE.8.AND.D,NE.12.AND,D.NE.a~~AND.D.NE.26
http:IFCI.EO.NE

	Structure Bookmarks



