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SCOPE AND CONTENTS: 


The Fermi surfaces of antimony and its alloys with 

up to 0.29 atomic percent tin are studied using the de Haas-

van Alphen effect. Several models for the conduction and 

valence bands are compared with experiment. The alloying be­

haviour is considered with reference to both rigid and non­

rigid band pictures. Reasonable agreement is obtained with the 

rigid band model 

ii 



ABSTRACT 


The de Haas-van Alphen effect has been used to measure 

the Fermi surface areas, cyclotron masses and Dingle temperatures 

in antimony and its alloys containing less than 0.3 percent tin. 

The Fermi surface of each alloy was similar to the pure antimony 

surface. However the hole surface increased in size and the 

electron surface shrunk since tin removes electrons from the 

alloy. The cyclotron masses increased and decreased for holes 

and electrons respectively, giving a definite indication of non­

parabolic conduction and valence bands. The cyclotron masses were 

found from the temperature dependence of the dHv~ amplitude after 

interfering dHvA frequency components were removed by a Fourier 

analysis technique. The Dingle temperature increased roughly 

linearily with tin concentration. 

A comparison of the hole and electron Fermi surface 

volumes with the number of tin atoms added to the alloys shows 

that one tin atom removes one electron from the alloy as ex­

pected from the unit valence difference between antimony and 

tin. This value is higher than that found by other workers 

using different techniques. 

The shapes of the energy bands along with the cyclo­

tron masses have been compared with several band models. An 

ellipsoidal band provides a rough overall description of both 

holes and electrons while an ellipsoidal nonparabolic band 
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describes the mass behaviour on alloying more accurately. A 

pseudopotential band calculated using the method and potential 

of Falicov and Lin (1967) was also compared with the data. 

The observed relative frequency changes were used to 

compare the data with the rigid band model of alloying. The 

bands are rigid for low concentrations. At higher concentrations 

there are deviations apparently caused by the cyclotron mass 

change and an axial ratio change in the hole Fermi surface. 
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CHAPTER I 

:INTRODUCTION 

The de Haas-van Alphen (dHvA) effect is a useful 

tool to study the Fermi surface properties of a pure metal 

or alloy. The dHvA frequencies give directly the extre­

mal cross-sectional areas of the Fermi surface while the 

temperature and magnetic field dependence allow the cyclotron 

mass and Dingle temperature to be found. If the areas, cyc­

lotron masses and Dingle temperatures are known over the en­

tire Fermi surface, then, in certain circumstances the rad­

ius vector, velocity vector and scattering time can be found 

for any point on the Fermi surface. 

The problem of alloys is an interesting and natural 

extension of the large amount of experimental and theoretical 

work done in pure metals over the last twenty years. An 

alloy differs from a pure metal mainly by the greater number 

of impurity scattering centers introduced into it. These 

scattering centers destroy the periodicity of the crystal 

lattice and broaden the electron states. One of the main 

results of alloy studies has been to show that in spite of 

the destruction of the periodicity, alloys still behave in 

the same way as do pure metals, although the increased 

scattering time often makes experimental measurements much 

more difficult. 

1 
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The present work was undertaken to determine how the 

Fermi surface of antimony alloyed with a small amount of tin 

differed from the pure antimony Fermi surface and whether the 
• 

differences observed were in agreement with theories of alloy­

ing, particularly the rigid band theory. Previously, galvano­

magnetic studies have been made on antimony alloys with less 

than 0.8% tin (Epstein and Juretschke 1963) and for con­

centrations between 2 and 8% tin (Saunders and Oktu 1968). 

Also Ishizawa and Tanurna (1965) have made dHvA measurements 

on 0.1% Sn alloy. These authors indicated that the band shapes 

do not change greatly with alloying. The Fermi surface in­

•
creased and decreased for holes and electrons respectively. 

However, such measurements were not very sensitive to the 

detailed shape of a Fermi surface, in contrast to the high 

sensitivity to shape of a detailed dHvA experiment. This 

previous work suggested that only 0.3 electrons per atom were 

removed by adding tin, a value much smaller than the valence 

difference of one between antimony and tin. Theoretically such 

a large discrepancy was not expected. 

Chapter II provides a theoretical background of the 

dHvA effect along with a description of energy bands and 

Fermi surfaces in both pure metals and alloys. Chapter III 

describes the experimental techniques and apparatus necess­

ary to measure a dHvA signal. Chapter IV gives a detailed 

background discussion of pure antimony and its Fermi surface 

and also of antimony-tin alloys and their properties. The 
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preparation of alloys and experimental results are considered 

in Chapters V and VI while in Chapter VII comparisons of ex­

periment are made with alloy theories and band shapes expec­

ted from theory. Chapter VIII contains the conclusions of 

the study. 



CHAPTER II 

THEORETICAL BACKGROUND 

A. The dHvA Effect 

The dHvA effect is an oscillatory variation in the 

magnetization of a metal as a function of magnetic field 

H. In general, a pure metal single crystal, temperatures 

below 20°K and magnetic fields of the order of 10 kG are 

needed to observe the effect. In a magnetic field, the 

electrons populate quantized energy levels called Landau 

levels. The separation of the Landau levels depends on the 

magnetic field. The effect arises from the emptying of the 

Landau levels as a level is raised above the Fermi energy, 

the energy above which no level is occupied. There is a 

change in energy of the electronic system as electrons go 

to levels at lower energy. 

The Pauli exclusion principle prevents more than one 

electron from occupying any quantum state. Since the energy 

availabl~ to an electron at low temperature is very small, 

only those electrons that lie quite near the Fermi level 

can change their states by moving up slightly in energy to 

occupy an empty state above the Fermi level. These electrons 

give rise to all the low temperature properties measured with 

the dHvA effect. Since a magnetic field exerts no force in 

the direction parallel to the field, the orbit of each electron 

4 
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occurs in a plane perpendicular to the field. The magnetic 

field cannot change the energy of an electron so an orbit 

occurs only at the Fermi energy, thereby tracing out a path 

on the Fermi surface. Usually the orbits are closed, mean­

ing the electron repeats the same path many times, but this 

need not be true in all cases. Open orbits exist but can­

not be detected with the dHvA effect. As the crystal is ro­

tated in the magnetic field, the orbits change shape and 

size. The dHvA effect measures directly the extremal cross-

sectional areas perpendicular to the field of each orbit. 

By knowing the cross-sectional areas of the Fermi surface 

at different angles i.n the crystal, the entire shape of the 

Fermi surface can of ten be deduced. 

The full expression for the oscillatory magnetization 

is (in spherical polar coordinates) (Lifshitz and Kosevich 

1955, Gold 1968 for a review) 
2 

M. = - e'fi Ai (27TeH)l/21 
3 

Ai,-l/2 
J. 4* •'ii i 2 

41T mi akll 

A 1 A 1 1
aF, aF. 

x [H - F . ae~ 8 - Ii' . sine 3$' $J 
l. l. 

x [I; 
r=l 

F. m. * 
x sin(2nr[-[=- - yil:;:. i'>cos{~rgi _mi)] (1) 
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In this equation, A. is the extremal cross-sectional area 
J. 

of the Fermi surface and is related to the dHvA frequency 

F. by the equation
J. 

F ..i!_ A
i = 2rre i 

The oscillatory term has a phase of 2rrr(F./H - y.)~ rr/4 so 
l. l. 

oscillations are periodic in reciprocal field. The - and + 

indicate a maximum or minimum cross-sectional area. * m. is 
l. 

the cyclotron mass, an electron effective mass averaged over 

an orbit. The cyclotron mass is defined by 

m * (lA) 

so it describes the change cf area for a change of energy E. 

The Dingle temperature TD is a scattering parameter indica­

ting the lifetime of an orbiting electron. It is related to 

the scattering time T by 

gi is a spin splitting factor. The term la 2Ai/akH2 1 is the 

curvature of the Fermi surface at the extremum. If the cur­

vature is small, many electrons have similar orbits and the 

dHvA amplitude is large. If the curvature is large, the dHvA 

amplitude is correspondingly small. The hyperbolic sine 

term contains the main temperature (T) effect on the amplitude. 

In certain cases l/sinh(x) ~ 2e-x. Then the temperature and 

Dingle temperature can be combined into an effective temperature 

T + T 0 . 'l'he summation over r contains the harmonic content 

of the oscillations. Usually the fundamental (r=l} is the 
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m.* 
largest term unless the term cos(; rgi~") interferes by 

giving a spin splitting zero. In good crystals, harmonics 

up to 5th or 6th order can be se_en quite easily. Note that 

the direction of M. is not in the direction of H but is de­
1 

viated to some extent by the shape of the Fermi surface as 
ClF. ClF. 

expressed in the coefficients ae 1 and ~ 
J. 

Only at places 

where these coefficients are zero is M. parallel to the field. 
J. 

The subscript i is included to permit several extremal or­

bits to be present simultaneously. This often occurs so the 

total magnetization is given by 

M' = r. M. 
i J. 

The remaining symbols in Eq. (~) have their usual meanings. 

B. Energy Bands a.nd Fermi Surface 

Having seen what can be determined experimentally from 

the dHvA effect, it is useful to discuss three types of energy 

bands and the corresponding Fermi surfaces that will be needed 

later. Pure metals will be considered first arid then alloys. 

In a metal, the simplest approximation is the free 

electron model. The equation of the band is 

in atomic units (k in au, E in rydbergs). The Fermi surface 

is a sphere with cyclotron mass of 1 everywhere. Only the 

alkali metals come close to being described by this model. 
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However, by bringing the crystal lattice structure and po­

tential into consideration, this simple model forms the 

basis of more realistic theories. 

The crystal structure defines the Brillouin zone 

of the metal. In general the Brillouin zone boundaries in­

tersect the Fermi sphere, so the sphere is broken up into 

many pieces. Each piece forms part of the new Fermi sur­

face. The Harrison construction (Harrison 1966c)gives a 

procedure for building up the new Fermi surface. ~here 

are now many small and large sections of Fermi surface, each 

with its own dHvA frequencies. Some pieces will be holes 

rather than electrons. The effective masses will no longer 

be unity and will vary over the surface. This model called 

the one-OPW model has been very successful in explaining 

many of the complicated shapes found in different metals and 

is widely used as a basis for more exact calculations. 

Harrison (1966c) shows many Fermi surfaces of this type as 

a function of valence and crystal structure. In the one-

OPW model, the lattice potential is not needed at all. 

It is the small pieces of Fermi surface predicted 

by the one-OPW bands that are relevant to antimony and its 

alloys. Further discussion is limited to them, ignoring 

the large multiply connectedFermi surfaces found in some 

other metals. The ellipsoidal parabolic band is useful in 

many cases. This band has the form 
k 2 k 2 

E = + -Z-+ z (2)
m2 m3 
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where E is the Fermi energy and k are wavevector compo­x, y, z 


nents. The Fermi surface is an ellipsoid and any cross-


sectional area is an ellipse. The major and minor axes 

E 3/2are v'm E, v'm E and v'm E and the volume is 4rr/3v'm1m
2

m •1 2 3 3 

·The area in the xy plane is 

r1 2A = rr(m m E (3)
xy . 1 2 


and the cyclotron mass in this plane is 


1 aA 
m * = = (4)xy 7T aE 

The band effective masses m1 ,m2 ,m can be found by inverting3 

the cyclotron mass values •. In antimony, this band gives a 

good first approximation to the actual Fermi surface for both 

electrons and holes. 

The ellipsoidal parabolic band is modified if there is 

a neighbouring band having nearly the same energy. If selec­

tion rules allow the bands to interact, the two bands will 

repel one another making the energy gap b~tween them larger. 

These bands were found in narrow gap semiconductors, where 

they were treated by Kane's (1957) k·p perturbation theory. 

The band has the form (Lax et al. 1960) 

k 2 
+ _)/__ + (5)

m..,... 

The Fermi surface is still an ellipsoid, but the energy de­

2pendence is modified by the E /Eg term. Eg is the energy 
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gap between the two bands. The area in the xy plane is 

A xy = 7rv'm1m2 E (l+E/Eg ) 
(6) 

and the cyclotron mass is 

(7) 

2The volume is 47r/3v'm1m2m3 (E+E /Eg) 312 

Eq. (5) describes an ellipsoidal non-parabolic band. 

Both the ellipsoidal, parabolic and non-parabolic 

bands can be changed by adding terms of 3rd and 4th order in 

k to describe non-ellipsoidal shapes. This introduces new 

parameters that must be determined from experiment. These 

higher order terms will not be considered except as a nu­

merical approximation to the pseudopotential bands described 

later. 

When the lattice potential is included along with 

the one·-OPW Fermi surface, some one-OPW pieces may disappear 

and others will have their shapes and sizes changed. Pseudo-

potential calculations are a generalization of the one-OPW 

model. The pseudopotential (Harrison 1966a) is not the full 

ion core potential, but a reduced interaction that varies 

much more smoothly through the lattice. The smoothing re­

sults from the orthogonalization of the atomic core states 

to the valence and conduction bands in the initial des­

cription of the system. The pseudo wavefunctions have no 
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bound states, in contrast to the real wavefunction, and 

interact only weakly with the lattice. The real and 

pseudo wavefunctions are similar in regions away from 

the atomic cores. The eigenenergies of the pseudowave­

function can be found quite easily by perturbation theory. 

Degenerate wave-functions require degenerate state per­

turbation theory (involving matrix diagonalization) while 

others can simply be treated with second order perturba­

tion theory. The characteristic equation (Harrison 1966b) 

11v.. -o .. 	(T •. -E) ll=O 
J. J l.J l.J 

must be solved where T .. = (k - G.) 
2 is the kinetic energy,. l.J 1

v.. = <k - G. jVlk - G.> is the potential energy and G. are
l.J l. J 	 l. 

reciprocal 	lattice vectors. The basis states are the plane 

1 iq·r k . . . . waves lq> = n e • is a point i.n reciproca1 space 

where the eigenenergies E are found. If the determinant 

is N by N, there will be N energy values fork, giving N 

bands. Some bands may be degenerate. The size of N de­

pends on the metal being considered. Large N gives more 

accurate solutions but several metals have been well de­

scribed by a 2 x 2 matrix. Antimony requires a large N 

(89) for good convergence of the energy values (Falicov 

1966). It is often sufficient to approximate the pseudo-

potential Vij by a function which depends only on the 

difference of reciprocal lattice vectors IG. - G.I and 
l. J 
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not on k (local pseudopotential). This local approxi­

mation has been quite successful in practice for a number 

of metals. Harrison (1966) and Cohn and Heine (1970) give 

useful insight and information on the general properties 

of pseudopotentials and their application to predictions of 

many different properties of metals. 

C. Alloys 

Only binary, substitutional alloys, or solid solu­

tions will be discussed. In these alloys, an impurity 

atom replaces a host atom on the host site. It is assumed 

that the replacement is random, so no regions unusually 

high in impurity concentration are formed. There are small 

charges from the pure host lattice parameters as the con­

centration increases and local strains around each impurity, 

but there are no new phases formed. 

· Consider the effect of adding an impurity atom with 

valence difference Z from the host. If N is the number of 

impurities added then ZN electrons are gained or lost depend­

ing on the sign of z. Since the Fermi level defines the 

boundary between occupied and unoccupied states, changing N 

raises or lowers the Fermi level. The rigid band model 

(Heine 1954) assumes that the energy bands of the alloy are 

the same as those of the host but the Fermi energy is 

shifted. The changed Fermi level exposes new regions of the 

host energy bands to study. In this way, the energy depend­

ence of the bands can be found. 
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The band overlap energy is the energy difference 

between the top of the hole band and the bottom of the elec­

tron band. It is the sum of the electron and hole Fermi 

energies if both are considered positive. If the individual 

band shapes are kept the same, but the overlap energy is 

allowed to vary (Heine 1954) , then this gives deviations 

from the rigid band model. More complicated departures 

from the rigid band theory involve both overlap energy 

shifts and shape changes. The combined effect is considered 

in the pseudopotential description. 

The pseudopotential formulation allows the changes of 

lattice parameters to be included in a straightforward way 

and also permits the pseudopotential itself to be adjusted 

to account for the impurities added. The same procedure 

outlined for the pseudopotential calculation of a pure metal 

is used with the correct values for lattice parameters and 

pseudopotential change. A full band calculation is usually 

required for each alloy 

The pseudopotential appropriate for a metal atom 

transplanted to another lattice depends only on the ratio 

of the atomic volume~ and dielectric constant E(q) for 

the.original and final lattices (Cohen 1970b). If the old 

lattice is A and the new lattice is B, then 

V(A in B) = V(A in A) ( B) 
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The atomic volume term results from normalization, while 

the dielectric constant comes from the requirements of 

screening. There is a tabulation of pseudopotentials and 

atomic volumes by Cohen (1970a). The dielectric constants 

can be calculated from the carrier density. The pseudo­

potential of the alloy is an average over the host and im­

purity atoms (Harrison 1966d). If Bis the host then 

V = (1-c)V(B in B) + cV(A in B) (9) 

where c is the atomic concentration. This is correct if c 

is small. If c is large then V(B in B) should be corrected 

for the change of dielectric constant. If the host and im­

purity are similar, the alloy pseudopotential will nearly 

be the same as the host pseudopotential. For 1% tin in 

antimony, the alloy pseudopotential is only· about .1% diff­

erent from the antimony value. In the antimony-tin alloys, 

the change of lattice parameter on alloying causes a larger 

effect than the pseudopotential difference. 

_Another way of looking at the alloy problem is to 

consider scattering from the impurities. If, for simplicity, 

there is only one impurity in a region of radius R, with 

R being large with respect to impurity potential range, then 

the effect of adding the impurity is to change the boundary 

condition of the wavefunction at R (Kittel 1963a). If the 

wavefunctions are written as partial waves as is customary 
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in scattering theory, then there is a phase shift n between 

the old (k') and new (k) boundary conditions of the form 

kR + n = k'R 

If nis small, then the energy shift at any point in k space 

is 

(10) 


from the Born approximation which gives the rigid band model 

if aER is not a function of k (Kittel 1963a). In general, 

n is not small so an exact numerical solution must be used 

rather than the Born approximation. This is related to the 

screening since each impurity must be surrounded by an elec­

tron cloud which shields the impurity potential at large dis­

tances. The Friedel sum rule given below describes the 

phase shifts nL necessary to provide this screening for an 

. impurity of valence difference z. 

(11) 


nL is often negligible for L>2 or 3. If the potential is 

known, nL can be directly calculated from the Schrodinger 

equation. 



CHAPTER III 


METHOD AND APPARATUS 

The low-frequency modulation method (Poulsen 1971) 

was used ~o detect the dHvA signal. This method requires a 

small, alternating current magnetic field to be applied to 

the sample along with the main field H • Then the magnetic
0 

field at any time can be written as 

H(t) = H + h sinwt 	 (12)
0 

where h is the amplitude of the fluctuating field and w is 

its angular frequency. If the Lifshitz~Kosevich expression 

(Eq. 1) ·for the 	magnetization is written as 

M= A(H) sin(2rrF/IHI + ~) 	 (13) 

then substituting Eq. (12) into Eq. (13) gives {after using the 

00 

cos(x sine) = J (x) + 2 E J N(x) cos(2N8)
0	 2N=l 

and 
00 

sin{x sine)= 2 	 r J 2N+l{x) sin([2N+l]8)) 
N=O 

for the time derivative of M the series 

00 

-·A(H) L: 2nwJ (A)sin(nwt+nrr/2)nn=l 

x sin (H2TIF + <P + !!!.) 	 (14)
2 

0 

16 
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where A. = 2TIFh (Gold 1968a). The value of A given here only
H 2 

0 

applies if hi jH as occurs in this experiment. If this is
0 

not the case, see Gold (1968a). Thus the time derivative of 

M is a series of harmonics of the modulation frequency. If 

H is changed slowly with time (as compared with w) then each 
0 

harmonic is modulated by a frequency characteristic of the 

dHvA frequency F and the magnetic field sweep speed. 

The apparatus is shown in block form in Fig. 1. The 

harmonics are integral multiples of 517 Hz. This frequency 

is low enough to allow nearly complete penetration of the 

sample by the modulation field. If this is not true, then 

the expression for the amplitude, but not the frequency, in 

Eq. (14)is modified (Gold 1968b). One harmonic is chosen by 

filters in the detection system and this harmonic is demodu­

lated by a phase sensitive detector driven at the harmonic 

frequency followed by a low pass filter. All the measure­

ments reported were made at the second harmonic frequency 

(1034 Hz) . Since A and A are slowly varying functions of 

H , the final output is a low frequency sinusoid with a 
0 

field dependent amplitude. In general, there are several 

different frequencies present, so the oscillations are re­

corded digitally on magnetic tape along with the magnetic 

field values. These data are then Fourier analyzed to find 

the frequency components. In practice, the signal to noise 

ratio and the resolution allow components with amplitudes 

less than 1% of the largest component to be seen and frequency 



Figure 1 Block diagram of experimental system 
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separations of 'VlT to be achieved. 

The driving-detection system consists of two con­

centric coils, the outer one to provide the modulation field 

(<200 gauss) and the inner one to pick up the change of mag­

netization of the sample inside. Each coil is split to allow 

the sample to be turned. The main magnetic field is provided 

by a 55 kG Westinghouse superconducting solenoid. The field 

can be driven either linearly in time or so the reciprocal 

field varies linearly in time. This last feature is very 

convenient since the dHvA oscillations are periodic in recip­

rocal field and not field. 

The cyclotron mass was calculated from the temperature 

dependence of the dHvA amplitude at constant field. The tem­

perature was found by measuring the liquid He 4 vapor pressure 

above the sample space with a Texas Instruments precision 

pressure gauge. The pressure was controlled by a Cartesian 

diver regulator in the pumping line. Temperatures between 

4.2°K and l.2°K were obtained. A discussion of the analysis 

required for the cyclotron mass is given in the section on ex­

perimental results. 

The Dingle temperature was found from the field vari­

· ation of the dHvA amplitude at constant temperature. The 

cyclotron mass must be found first in order to calculate 

the Dingle temperature. The discussion of this analysis is 

also postponed for a later section. 



CHAPTER IV 

PROPERTIES OF MATERIALS 

A. Properties of Antimony 

Antimony (Sb) is element number 51, a brittle, 

silver colored metal which crystallizes in the rhombohedral 

system. It has a density of 6~69 gm/cm3 , an atomic weight of 

121.75 and 5 valence electrons in shells Ss 2 and Sp3 • Since 

it is a rather poor conductor of _electric current, it is 

often referred to as a semimetal along with the related me­

tals bismuth and arsenic. 

The crystal structure is A7(rhombohedral), a struc­

ture which has a three fold axis (trigonal, T) as its highest 

symmetry direction. There are three mirror planes 120° apart 

intersecting parallel to the trigonal axis. A two fold 

(binary) axis lies in each mirror plane perpendicular to the 

trigonal axis. A third axis perpendicular to both the binary 

and trigonal is usually defined and called the bisectrix axis. 

The antimony structure can be formed by first stretching a 

face centered cubic lattice along its body diagonal, thus 

forming a primitive cell lattice angle a < 60° and then plac­

ing in each face centered cubic site a basis of two atoms 

pointing along the body diagonal. In a face centered cubic 

lattice, the primitive cell is a rhombohedron with an angle 

of 60°. The separation of the two atoms is defined as 2µ 

20 
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where µ is called the internal displacement parameter. If 

µ=1/4 and a=600 , then the lattice is simple cubic. The latt­

ice parameters of antimony at 4.2°K are in hexagonal co­

ordinates: a= 4.3007A~ c = ll.222A~ u = .23362 (Barrett 1963). 

The rhombohedral angle a and the rhombohedral edge length 

aR are found from the formulae (Wood 1963) 

• 

These equations give aR = 4.4897A0 and a = 57.2320 • 

It appears that the crystal structure of antimony can 

be understood by the band structure and lattice energy con­

siderations of Weaire and Williams (1971) who showed that the 

theoretical minimum energy structure for arsenic as found from 

a pseudopotential calculation was in excellent agreement with 

experiment. 

The reciprocal space structure is more useful in con­

sidering the properties of the electron bands and Fermi sur­

faces than is the real space structure. The first Brillouin 

zone is shown in Fig. 2 with important symmetry points mark­

ed with standard symbols. Since there are two atoms per unit 

cell, each cell contributes ten electrons and therefore the 

electron volume in k space is five Brillouin zones. In an­

timony, there is an overlap to the sixth zone so there are a 

small number of holes in the fifth zone along with electrons 

in the sixth. The A7 lattice structure, along with useful 

information on the reciprocal lattice vectors is described by 



Figure 2 First Brillouin zone of antimony 
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Falicov and Golin (1965). 

The Fermi surface of antimony has been directly 

studied for many years by various techniques. Some of the 

more recent work is mentioned below. Windmiller (1966) has 

made a complete study of the dHvA frequencies. His data con­

sidered along with the band structure of Falicov and Lin (1966) 

show that the antimony Fermi surface consists of six small hole 

pieces and three small electron pieces. The hole pieces are 

located near the T point at the point H. The only symmetry 

present at His a mirror plane .. The electrons are found at 

the L point. The electron surface has a mirror plane and also 

inversion symmetry. The inversion symmetry is an important 

feature, since without it, it is not possible to uniquely in­

vert the dHvA frequency data to find the Fermi surface rad­

ius. The electron surface has been inverted by Ketterson and 

Windmiller {1970). Windmiller points out: that neither elec­

trons or holes exist in ellipsoidal pockets, but in pockets that 

areellipsoids bent by about five degrees. The radio fre­

quency size effect measuremeni:;.s of Herod et al. (1971) are 

in good agreement with the dHvA data, even. to the extent 

that describing the hole surface as if it had inversion symmet­

ry leads to reasonable agreement with the dHvA areas. Cyc­

lotron masses have been found by Windmill.er in his dHvA study 

and also by Datars and Vanderkooy (1964) using cyclotron re­

sonance. There have been a number of galvanomagnetic studies 

done on antimony (Epstein and Juretschke 1963, Tanuka et al. 

http:Windmill.er
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1968). These experiments give only indirect information on 

the Fermi surface. Finally, optical data of Nanney (1963) 

and Dresselhaus and Mavroides (1966) show various energy 

gaps and structure in the reflectivity in the region 0.1 

to 0.5 eV. These appear to be associated with transitions 

occuring near the Fermi energy. 

The theoretical band structure and Fermi surface of 

antimony has been investigated by Falicov and Lin (1966) 

using a local pseudopotential formulation. It was necessary 

for them to diagonalize an 8~ by 89 matrix to get good con­

vergence of the energy values. According to their calcu­

lations, the electrons are located at the point L while the 

holes are found at H. It is shown that three electron pock­

ets and six hole pockets are sufficient to supply all the 

carriers required to make the number of holes and electrons 

equal. This equality is. necessary because the lattice struc­

ture and valence make _antimony a compensated metal. The 

areas, cyclotron masses and tilt angles of the Fermi sur­

faces are in reasonable agreement with experiment, especially 

for the electrons. The lack of inversion symmetry for the 

hole surface makes calculation more difficult and less accur­

ate. There are several band gaps suggested by the theory but 

it is not yet clear which gaps should be associated with the 

gaps found experimentally. It appears that the observed 

transitions of ~ 0.1 eV in energy cannot occur at the L and H 

points since the Fermi energy is greater than this energy. 



Figure 3 Phase diagram of antimony-tin 
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~· Properties of Antimony - Tin Alloys 

Tin (Sn) is element number SO, with an atomic weight 

3of 118.67. The density of tin (7.31 g/cm ) is 10% greater 

than that of antimony. Tin also has a different crystal 

structure. It is tetragonal AS with lattice constants 

a = S.83A0 and c = 3.18A0 and thus deviates from cubic in a 

different way than antimony. The valence is four, one less 

2 2
than that of antimony, with electrons in shells ss and Sp • 

Since the elements are adjacent in the periodic table, both 

the atomic size factor and valence difference are favorable 

for forming single phase solid solutions even though the 

crystal structure difference weighs slightly against it. 

The phase diagram is shown in Fig. 3. When tin is added to 

antimony in small amounts, the· antimony crystal structure is 

left unchanged, but the lattice angle a and the lattice con­

stant aR change slightly. There are no data on the change 

of internal displacement parameter µ. The results of X-ray 

measurements by Bowen and Jones (1931) and Hagg and Hybinette 

(19 35) are shown in Table I. These authors a~,d standard texts 

Table I 

wt% rhomb. edge rhomb. angle 
·Sn length A0 degrees 

o.o 4.506 57.08 

2.0 4.521 56.65 

4.0 4.528 56.S3 

7.0 4.532 56.22 

9.5 4.540 5S.96 
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(Hansen 1958) indicate that the solid solution limit is 9 to 

10% tin. The phase diagrams as published are uncertain in 

this region. Above 10% there is a two phase region formed 

from the solid solution and the compound SbSn (see Fig. 3). 

One author (Ellwood) suggests the limit occurs around 3% tin. 

In any case, 3% is much higher than the concentrations used 

in the present experiment. Another point to consider is po­

sition of the phase boundary at 1°K. Galvanomagnetic studies 

at 77°K with alloys up to 8% tin (Saunders 1968) showed no 

unusual behaviour and our results do not indicate any effects 

of two phases at 1°K and low concentrations. 

The galvanomagnetic properties of antimony with 0.2 

and 0.8 at % tin were studied by Epstein and Juretschke (1963) 

and by Saunders and Oktu (1968) who used from 2 to 8% tin. 

The latter authors found an extra set of holes appearing at 

these high concentrations. These holes are expected on 

Falicov's {1966) model since pushing down the Fermi level by 

adding tin will expose a small hole pocket on the TW line near 

T. A rough calculation indicates that a few percent tin should 

be sufficient to produce this new pocket. There is also the 

possibility that the main hole pieces become connected to the 

smaller ones to form a Fermi surface similar to that of arsenic. 

One dHvA experiment has been reported on antimony-tin 

alloys by Ishizawa and Tanuma (1965). These authors deter­

mined the sign of the two carrier types present in antimony 

by noting the frequency changes on alloying. The concentration 
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used was nominally 0.1 at %. 

A Mossbauer study was made on both the tin in antimony 

solid solution and the antimony in tin solution by Ruby et al. 

(1970). The screening of the impurity is quite high in both 

cases since only small changes in wavefunction were found ex­

perimentally. 



CHAPTER V 

PREPARATION OF ALLOYS 

The alloys were grown from 99.9999% pure antimony 

and tin. .Two methods were used to add the tin: the ele­

ments were directly mixed in the appropriate amounts or 

pieces of a 3% master alloy were diluted with extra anti­

mony. 

For either case, the constituents were chipped in­

to coarse pieces and added to a vycor tube. Vycor is nec­

essary because of the high melting point of antimony (630°C). 

The tube was first cleaned with an HF, HN0 solution and3 

then internally coated with carbon formed by decomposing ben­

zene with a hot flame. This carbon layer was quite durable 

and prevented the ingot from sticking to the tube after melt­

ing. The tube was evacuated and sometimes refilled with 

helium gas to reduce the evaporation of antimony. A small 

ring shaped heater outside the tube allowed a 1/2 in. por­

tion of the ingot to be melted at any one time. The ingot 

was then zone levelled (Pfann 1966) by slowly sweeping the 

heater back and forth along the tube 15 or 20 times. This 

process is the reverse of zone refining and gives a fairly 

uniform concentration of tin along. the ingot except for the 

last end that is frozen. The distribution constant k de­
0 

fined as the ratio of the concentration of tin in the solid 

29 
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to the concentration of tin in the liquid is ~ 0.3 as es ti-

mated from the phase diagram. The sweep speed of ~ 2 in/hr 

makes the effective k 
0 

larger. k 
0 = 1 is the condition fur 

most effective zone levelling. Another important parameter 

in this process is the total length to molten zone length 

ratio. The alloys were grown with this ratio between 8 and 

15. 

The final ingots were 4 to 5 inches long with several 

long parallel grains making up the bulk of the sample. Some 

. grains showed a considerable amount of lineage, i.e., each 

grain consisted of several smaller crystallites misoriented 

with respect to one another by 1 or 2 degrees. This struc­

ture caused considerable difficulty in choosing a dHvA sample 

since the slight misalignment causes severe beating patterns 

in the dHvA frequencies, obscuring some of the desired infor­

mation. Several attempts were made to seed the alloys as done 

by Epstein (1962). A single crystal of antimony was touched 

to the alloy at the molten end after the zone levelling was 

finished and then the zone heater was passed down the ingot 

for the last time. This method was not successful in grow­

ing large crystals. However, it was found that adjusting the 

ingot thickness allowed quite large single crystals to be 

grown with the zone heater. This effect is due to the heat 

flow in the ingot itself. If the temperature gradients are 

suitable, certain crystals will dominate the growth, even if 

several crystals start to grow at the beginning. The other 
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crystals are forced to grow out towards the edges of the 

ingot and stop growing altogether after a time. Several 

single crystal bars about 4 in.long and 3/8 in.diameter were 

grown in this way. This type of growth also suppressed the 

lineage problem. 

It was necessary to anneal the alloys after zone 

levelling to further homogenize the tin concentration. Each 

alloy was annealled at 600°C for about one week. The anneal­

ling time was judged in the following way. Several dHvA 

measurements were made with different samples and annealling 

times. It was found that unannealled samples of the same con­

centration showed less change of dHvA frequency from a pure 

antimony reference frequency than did those annealled for a 

time. A comparison of the dHvA frequencies of samples anneal­

led one, then two weeks indicated no significant change. All 

the samples used for measurements were therefore annealled 

for ~ 1 week at 600°C. Again, a helium atmosphere was used 

to reduce the vaporization loss of antimony. 

A small single crystal sample suitable for the dHvA 

apparatus was spark cut out of an ingot. The presence of 

the prominent trigonal cleavage plane and the binary slip 

lines on its surface made rough orientation of each crystal 

rather easy. The samples were cubes of about 2 mm per side 

cut nearly along the binary and bisectrix axes. These cry­

stals were mounted on a glass rod with water-soluble cement 

and oriented by back reflection Laue photographs so the 
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appropriate axis (binary or bisectrix) was aligned horizontal­

ly. The crystal was then inserted into the sample holder 

while still mounted on the glass rad and glued into place 

with Glyptal cement. After the cement had dried, the glass 

rod was removed and the sample was ready for experiments. 

The transfer was done on a special device designed to pre­

serve the orientation found from the X-ray photographs. The 

accuracy of orientation of the crystals as estimated from 

the degeneracy of the dHvA frequency branches was better 

than 1/2 degree. 

Two methods were tried in analysing the alloys for 

their tin content. First, an X-ray microprobe was used. 

This machine detects the X-rays given off when a sample is 

excited by bombardment with a high energy electron beam. 

The ratio of the X-ray intensity of an element in a sample 

to that of a known concentration of the element gives (after 

a few correction factors) the proportion of the element in 

the sample. A useful feature of this machine is its abi­

lity to analyse in regions of about one cubic micron, thus 

showing up concentration differe~ces on a very small scale. 

Unfortunately, for the low concentrations used in our alloys, 

the accuracy was very poor. 

The second method used atomic absorption analysis. 

If the light of a discharge tube made from the element to 

be detected is -shone on a gas containing that element, some 

of the light will be absorbed because of the excitation of 
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the element in the flame. A spectrometer selects certain 

wavelengths for study. An element is put into gaseous form 

by atomizing a liquid solution containing the element with 

a gas burner. The absorption is measured with respect to 

changes caused by a known concentration. For tin, about 100 

( pg/ml concentration in liquid solution gives good sensitivity. 

The main problem with our alloys is the· difficulty of dis­

solving the large excess of antimony (~ 99.7%) present while 

still preserving a suitably high concentration of tin. The 

usual solution for dissolving antimony is concentrated HCl 

with some HN0 3 added (aqua regia). Powdering the alloy in 

a steel tube makes solution easier. The solution cannot be 

concentrated safely by evaporation because of the volatile 

nature of tin chlorides. It was found that one gram of alloy 

dissolves in about 10 ml of acid, giving a reasonable concen­

tration of tin but limiting the total quantity of solution 

to 10 to 20 ml. This amount was sufficient. The concentra­

tions found, along with the nominal concentrations are shown 

in Table II. All the concentrations are lower than expected 

Table II 

nominal Atomic abs Atomic abs 
Alloy. cone cone cone 

# wt.% Wt.% at.% 

1 .10 .034 .035± 11% 
2 .23 .17 .17 ± 5% 

3 .36 .22 .23 ± 1.5% 

4 .46 .23 .24 ± 1% 

5 .65 .41 .42 ± 1% 
6 ~80 .so .51 ± 1% 

7 • 50 .28 .29 ± 1% 
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according to the nominal concentration of tin. 



CHAPTER VI 

EXPERIMENTAL RESULTS 

The dHvA measurements were made in the trigonal­

bisectrix and trigonal-binary planes. The trigonal­

bisectrix plane contains a maximum and the minimum prin­

cipal branch frequency while the trigonal-binary plane 

contains the other principal ·branch maximum. These three 

extremal frequencies give the basic shape of each Fermi 

surface pocket. 

Figures 4 to 9 show the dHvA frequenci.es as a func­

tion of angle for six samples in the two planes. Samples 

with concentrations greater than .28 wt.% tin did not show 

any dHvA effect. Table III lists the maximum and minimum 

frequencies for the principal branches. The harmonic and 

sum frequencies found in the Fourier analysis have been 

removed from the figures. The six hole pieces are always 

twofold degenerate so only three hole branches at most 

appear. All three occur in the trigonal-binary plane while 

only two appear in the trigonal-bisectrix plane. The split­

ting of the degeneracy in this plane which is caused by slight 

misorientation of a crystal is a good indicator of the accur­

acy of crystal alignment. The degeneracy of the three elec­

tron pockets behaves in the same way. The data are fairly 

complete for the hole surface, except at the highest concen­

tration but the higher frequency parts of the electron 

surface could not be detected in our experiments. 

35 
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Figure 4 	 dHvA frequencies of pure antimony in the 

trigonal-binary and trigonal-bisectrix 

planes. 



36 

300------------------------------------­

270 


240 


210 


180
-0 
CJ) 

~ 150
-
>­
(.) 

z 120 

w 
::::> 
0 
w 90 

0::: 
LL 

60 


30 


BIN 
0 

Sb 

• Holes 

+ Electrons 

a Wind mi Iler 

TRIG 
BIS I l ~Rl11 I L I 


90 60 30 0 30 60 90 120 150 180 

ANGLE (deg) 




Figure 5 	 dHvA frequencies of antimony with 0.034 wt% 

tin in the trigonal-binary and trigonal­

bisectrix planes. 



37 

270 


240 


210 

180-0 
CJ) 

-~ 150 

>­
~ 120 
w 
::) 

0 
w 90a:: 
LL 

60 


30 


BIN 
0 90 60 

.034 °/o Sn 

• holes 
+ electrons 

TRIG BIS · TRIG 


30 0 30 60 90 120 150 180 

ANGLE (deg) 



Figure 6 	 dHvA frequencies of antimony with 0.17 wt% 

tin in the trigonal-binary and trigonal­

bisectrix planes. 
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, Figure 7 	 dHvA frequencies of antimony with 0.22 wt% 

tin in the trigonal-binary and trigonal­

bisectrix planes. 



39 
300--~-----------._..,.--,.._..____~...,....,--...,.........,...,....... 


270 


240 


210 

-0 

180 

(/) 

-~ 
>­
(.) 

z 
w 
:::> 
0 
w
a:: 90 
LL 

60 

30 

0 

150 

•holes 
+electrons 

•22 °/o Sn 


~ 

BIN TRIG BIS TRIG 

90 60 30 0 30 60 90 120 150 180 

ANGLE (deg) 



Figure 8 	 dHvA frequencies of antimony with 0.23 wt% 

tin in the trigonal-binary and trigonal­

bisectrix planes. 
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Figure 9 dHvA frequencies of antimony with 0.28 wt% 

tin in the trigonal-bisectrix plane. 
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TABLE III 

dHvA frequencies, cyclotron masses and Dingle temperatures in Sb and Sb alloys 

Trigonal Bisectrix Trigonal-Binary 

m * eonc. el. freq. 
(-)e (TD)e. hole freq. ~ (TD)h hole freq. hole freq. 

at.% min. (T) m min • ( T ) "'"In max. (T) max. (T)(OK) (OK) 

o.oo 68 0.080 2.9 61. 5 0.063 2.5 197 216 

0.035 61 0.078 4.5 67.0 0.064 3.3 211 234 

0.017 46.5 0.063 7.6 83 0.072 6.2 249 281 

0.23 38 0.058 - 95 0.078 - 271 

0.24 34 0.057 8.5 101 0.076 11.5 287 

0.29 26 0.054 - 109 0.085 
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The overall quality of the data decreas-es as the con­

centration increased, since alloying r.aises the Dingle 

temperature (Table III). Figures 10 and 11 show the prin­

cipal hole and electron branches respectively for the diff­

erent concentrations. Notice that the hole frequencies in­

crease and electron frequencies decrease as tin atoms are added. 

Figure 12 shows the increase and decrease of the four ex­

tremal frequencies versus concentration. The frequencies 

found in pure .antimony are in good agreement with the values 

of Windmiller (1966) • 

The maximum and minimum frequencies in the trigonal­

bisectrix plane are 90° apart if the Fermi surface is an 

ellipsoid. The data indicate there is a 5° deviation from 

90° for the hole surface. There is not sufficient infor­

mation t:o determine the deviation for the electrons. The 

angle of deviation remains constant with alloying as does 

the angular position of the maximum and minimum frequencies 

with respect to the trigonal axis. 

The frequencies were obtained from the original data 

by F'ourier analysis. The basic program relied on the Fast 

Fourier Transform (FFT) algorithm, an efficient way of con­

puting the Fourier coefficients of equally spaced, digitized 

data. Subsidiary programs were used for magnetic tape de­

coding and preparatory analysis of the data. 

The cyclotron masses were found at the principal 

electron and hole minima in the trigonal-bisectrix plane 



Figure 10 Principal hole dHvA frequencies compared 

as a function of concentration. 
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Figure 11 Principal electron dHvA f r~quencies compared 

as a function of concentration. 
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Figure 12 Extremal frequencies for electrons and 

holes versus concentration. 
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from the temperature dependence of the dHvA amplitude at 

constant field. If the mass is large, the mass is found by 

plotting the natural logarithm of the ratio of amplitude to 

temperature against temperature for the frequency of interest. 

This gives a straight line, whose slope is proportional to 

the mass and inversly proportional to the field. The constant 

does not have any significance, being a complicated function 

of unknown quantities. Unfortunately this simple expression 

only applies if the approximation sinh(x)~ex/2 can be made. 

This is true if x > 3 with an error of <.25%. Since 

* x = 14.69 m T 
H 

where H is in tesla, T in degrees Kelvin and m * in free elec­

tron masses, the smallest value of x that occurs in the present 

apparatus is x ~ 3 m* if the minimum temperature of ~1°K and 

maximum field of ~5T are used. If m* > 1. the above approxi­

·'mation is reasonable. Antimony and its alloys have m*~.l 

so the full expression for the dHvA amplitude must be used. 
21T2k 

From Eq. (1) and (14), the amplitude is (et= B = 14.69
etl 

f (m*) Te-am*Tn/H J 2 ( 2 TI fh/H2) 
y(T) = (15) 

H1 / 2 sinh(am*T/H) . 

A more convenient form results if Eq. (15) is normalized by 

dividing through by y(T ) at constant H. This gives
0 

T sinh(am*T /H)
0 (16)- T sinh(am*T/H)

0 
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This is a function of one unknown, m*, and can be solved in 

two ways. 

The first makes use of the fact that sinh(x) = ex/2 

(l-e-2x) so the term l-e-2x can be treated as a correction 
y T 

factor. The slope of ln( y ~ ) vs. T
0 
-T is used to find a 

0 

first estimate of the mass. With this estimate, the correct­

ion factor 

l-e-2cx.m*T/H) 
ln( -2a.m*T /H

1-e o 

is applied and a second estimate of the mass is made. This 

process is repeated several times until the value of mass con­

verges. It is obvious that this procedure is .an extension of 

the method for finding large masses mentioned previously. 

The second method is more direct since it minimizes 

the least squares expression 

Yi T0 sinh (ctm*T0 /H) ) 2 
~ y--T:° - _s..,..i_n.,_h...,.(_ct_m_T-.-;=-H...,..)­(
1 0 1 1 

One variable minimizations of this type are easily done numeri­

cally, for instance by the golden section alogrithm. The re­

sults are nearly identical to those of the previous method. 

The directness and speed of t4e minimization procedure pro­

bably make it the better choice. 

The main difficulty that occurs when calculating the 

cyclotron mass is separating the effects of the different 

dHvA frequencies. If there are only two frequencies present 
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which beat together, it is possible to separate the two 

components fairly easily (Everett 1970). If the frequency 

separation is large, electronic filtering will remove or 

suppress the unwanted frequencies. However, in many cases, 

there are two or more similar frequencies of comparable 

amplitude. A Fourier transform can separate the different 

frequencies and allow each frequency peak to be isolated. 

The peaks are not delta functions, but have some frequency 

width associated with them. This width contains informa­

tion on the envelope function of the particular d.HvA f re­

quency. Eq. (15) describes the envelope function of a single 

dHvA frequency. For simplicity, consider the .case of Fig.13 

with two d.HvA components F and F 2 • Suppose the cyclotron1 

mass of F is required (Fl is lower frequency) • To remove1 

the effects of F2 , the components not associated with Fl 

are set to zero (Fig. l.3b). The isolation must be done with 

the Fourier transform sine and cosine coefficients rather 

than the amplitude as suggested in Fig. 13. The sine and 

cosine coefficients of F1 are used in an inverse Fourier 

transform to restore the field dependence of F alone.1 

Then one of the previously discussed methods of finding the 

cyclotron mass is applied. 

Two related problems occur with the inverse Fourier 

transform. If the F and F2 widths are large and F2-F is1 1 

small, .then the overlap of the two peaks will have made the 

individual Fourier components inaccurate in this region, 



Figure 13a 

Figure 13b 

Figure 13c 

Figure 13d 

Typical Fourier peaks before 

frequency separation. 

Separated Fourier peak. Dashed lines 

are an approximation to the truncated 

tails of the peak. 

Cyclotron mass for pure antimony as a 

function of reciprocal field. 

Cyclotron mass for .23 wt% Sn alloy 

as a function of reciprocal field. 



so 


FREQUENCY 
(a) 

_.,, I " ........ 


FREQUENCY 
(b) 

0.10 

.......................................................................
0.08 .. . . . . . . . .. . . .. . . . . ..e 0.06 · .... 

*' Sb electronsE 0.04 

0.02 

0
o.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

RECIPROCAL FIELD (Tesla- 1 
) 

(c) 

0.10 
.. ... ... . . 

0.08 .·.·······.·· ··.....·· .. ··......· ..·....····· ..... .·0 ··..·········E 0.06
*' .23 °/o Sn holesE 0.04 

0.02 

00.2. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

RECIPROCAL FIELD (Tesla-1
) 

(d) 



51 


so the inverse Fourier transform will also be inaccurate. 

For our alloys, this was not a serious problem since the 

frequencies were always well separated compared with the 

peak width. Also, there is in general a background present 

in the Fourier analysis. When F1 is isolated, there is a 

step at each end of the passband caused by the background and 

perhaps a slight frequency overlap with F 2 • When the in­

verse Fourier transform is done, these steps generate devia­

tions in the amplitude at the upper and lower fields. These 

deviations can be suppressed by approximating the missing 

tails of peak F to a function A/IF-F1 1 which removes the
1 

discontinuity in function value (Fig. 13b). A discontinuity 

in the slope will remain. 

The cyclotron mass can now be found as a function of 

field. Two results from our analysis are shown in Fig. 13c and 

d. The upper and lower ends show variation caused by residual 

discontinuities. An average over the central region gives the 

value of the cyclotron mass. Fig. 13c shows the good results 

obtained when there is a large signal to noise ratio and high 

frequency resolution resulting from a pure sample. Fig. 13d 

shows similar results in an alloy where the signal quality 

and frequency resolution was poorer because of the higher 

Dingle temperature. This system of analysing the cyclotron 

mass allows us to avoid the problems of field dependent varia­

tions (Everett 1970) and enables us to average over field. 

The cyclotron mass values presented in Table III and shown in 



52 


Fig. 14 are the averages obtained in this way except for the 

.29 at% sample. The electron and hole masses at this con­

-centration were determined from 10 and 12 oscillations. 

on a strip chart recorder without any Fourier analysis. 

Notice that there is a significant change with concentration 

for both holes and electrons. The values obtained in 

·antimony are a few percent lower than those found by 

Windmiller (1966). 

The Dingle temperature is related to the field varia­

tion of the amplitude at constant temperature. After the cy­

clotron mass has been found, the Dingle temperature is cal­

culated from the slope of 

ln(.Z. IH sinh(am*T/H) J2(Ao) 

y · {H sinh (am*T/HJ J 2 (;q)


0 
0 

vs. reciprocal field difference l/H - l/H • The same frequency
0 

separation method used for the cyclotron mass was also used 

here to separate different dHvA components. The values of 

Dingle temperature are shown in Table III. The Dingle tempera­

ture increases roughly linearly with concentration. 

The number of carriers present in the metal is directly 

proportional to the volume of the Fermi surface. The volume is 

easily calculated if the Fermi surface is approximated by an 

ellipsoid since, in that case, 

where F1 , F and F are the three extremal frequencies. It is2 3 
shown by Aurbach et al. (1971) by using an eighth order spher­

ical harmonic approximation to the antimony electron 



Figure 14 	 Cyclotron mass of hole and electron 

minima in the trigonal-bisectrix plane 

versus concentration. 
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surface that the number of carriers as deduced from the 

Fermi surface volume is S.543xlo19/cm3 • A calculation 

(Windmiller 1966) using the ellipsoidal approximation gave 

S.54xlo19/cm3 • Since the electron surface is bent ~4° 

from an ellipsoid and the hole surface is bent ~6°, it 

appears that the ellipsoidal approximation is quite ade­

quate for calculating the volumes of the hole Fermi surface. 

For the electron pocket, there is no information on 

the maximum frequencies except in pure antimony. Therefore 

it is necessary to estimate the volume by assuming that the 

relative lengths of the major and minor axes remain the same 

in the alloys. If P is defined as the ratio of the alloy 

minimum frequency to the antimony minimum frequency, then 

the volume of the alloy Fermi surface is 

V(ALLOY) = P3/ 2 V(Sb) 

For the holes, the data are more complete. The three 

highest concentration alloys lack the trigonal-binary maxima. 

These have been extrapolated from the three lower values to 

allow for a shape change with concentration. The extrapolated 

values are 304T, 308T and 328T •. The missing trigonal bisec­

trix maximum (297T) for the 0.29 at% alloy has been found in 

the same way. A shape change of the hole surface is clearly 

indicated by the differences in the trigonal bisectrix maxi­

mum to minimum frequency ratios found in antimony and the 

alloys. This ratio gives a measure of the relative axial 

lengths in the ellipsoidal approximation. The ratio is 3.2 
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in pure antimony and declines to 2.8 for a .24 at % Sn alloy. 

This is a 13 percent change suggesting that the hole surface 

is becoming less elongated. 

Table IV shows the total electron and hole carrier 

densities. The total allows for the three electron and six 

hole Fermi surface pockets. The total change of carrier 

density is compared with the number of tin atoms added. 
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~ABLE IV 

Carrier density 	in Sb and Sb(Sn) alloys and the change of 
density from that of pure Sb 

cone. :fl: of Sn :fl: of el. :fl: of holes "t:otal change total change 
at.% /crn3 /crn3 /crn3 /crn3 /:fl: of SnSn 

o.oo o.ox1019 

0.035±11% l.2x1019 

0.17 ±5% s.1x1019 

0.23 ±1. 5% 7.6xlo19 

0.24 ±1 % 7.9xlo19 

0.29 ± 1% 9.6xlo19 · 

S.55xlo 19 

~.74Xl019 
19 

3.11xlO 

2.oax1019 

l.96Xl019 

l. sax1019 

5.52xlo19 

6.1ax1019 

B.19x1019 

9.6lx1019 

10.2 x1019 

11.1 x1019 

l.44Xl019 

s.oax1019 

7.5JX1019 

8.24Xl019 

9.5 x10 19 

1.20 

.89 

.99 

1.04 

.99 



CHAPTER VII 

DISCUSSION 

A. Rigid Band Model 

When an atomic concentration C of impurities is 

added to a pure metal, the rigid band model assumes that no 

change of band structure will take place but that the electron 

concentra tion per atom is changed by ZC where 2: is the valence 

difference between the host and impurity. This can be written 

in terms of a Fermi energy shift ~E(Heine 1954) as 

~E = 	 ZC (17)
~(EF) 

where D (EF) is the density of states in the pure metal at
0 

the Fermi energy EF. This expression assumes ~E is small and 

D (EF) is not strongly energy dependent. Heine (1954) de­
0 

fines a parameter 

A-A 
R= A

0 (18)
ZC

0 

where A-A is the change of Fermi surface area A from the 
0 

area A ~f the pure metal. A useful expression results if 
0 

A is expanded about A in a Taylor series in energy of the 
0 

type 

(19) 

Pu~ting Eq. (19) into Eq. (18) and using the definition of 
I 

cyclotron mass (Eq. lA) to provide the second derivative of 

A with E 

_2TT (3m*) = (~\ 	 (20)
112 aE o \ 3E2

1 Jo 
57 
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gives 

1 (21)+ 2 

rAfter writing 

and using Eq. (17) for AE, Eq. (21) becomes 

m* (m~ + m* (C))27T 0R= +- (22)
- 11.2A \: 2m •

0
0 

m*(C) is the cyclotron mass as a function of concentration 

as shown in Fig. 14. If the change of mass with concentra­

tion is negligible, the bracketed term in Eq. (22) becomes 

unity and Heine's result is obtained. The ± sign in Eq. (21) 

and (22) indicates whether the Fermi surface areas increase 

or decrease on alloying. The rigid band model can be com­
F-F 

pared with experiment by plotting -p-2- against c. Eq.(22) 
0 

can be rearranged to give 

F-Fo ZC 
-p- =1°leF D (EF) 

0 0 0 

(m~ +2m* (CV 
(23) 

. -2 
The value of D 

0 
(EF) is 4.67xl0 /atom/eV. This has been 

calculated from the electronic specific heat constant 

(Mccallum and Taylor 1967 , Zebouni and Blewer 1967). A 

plot of Eq. (23) is presented as the dashed lines in Fig. 15 

where the simple rigid band model with m*(C) = m* is shown as 
0 



Figure 15 	 Comparison of observed frequency shifts for 

electrons and holes at trigonal-bisectrix 

minima with simple (solid lines) and mass­

dependent (dashed lines) rigid-band theories. 
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the solid lines. The agreement is quite good for the elec­

tron branch and lower concentrations of the hole branch but 

deviates somewhat at the two highest hole concentrations. 

Part of this deviation is due to the shape change found for 

the hole band. 

The carrier concentration can be calculated from the 

dHvA frequencies using the ellipsoidal approximation. Table 

IV shows the carrier densities, total carrier density change, 

the number of tin atoms added and the ratio of the carrier 

density change to the tin density. The last column indicates 

that all the tin atoms are effective in changing the carrier 

concentration. The average value of carrier density change 

to tin atom density is 1.03, quite close to the rigid-band 

prediction of 1.00. A combination of error in the tin con­

centrations and the approximations made in calculating the 

electron volume probably accounts for the observed deviations. 

If the rigid-band model holds exactly, the results suggest 

that the electron pocket has been slightly underestimated 

in size, indicating that the electron axial ratio increases 

slightly with concentration. The fact that the number of 

carriers agrees quite well with the rigid-band model implies 

that the deviation found in Fig. 15 is caused by changes not 

accounted for by the simple rigid-band model. It appears 

that Ishizawa and Tanuma (1965) had less tin in their sample 

than they thought because the change in frequency is too 

small for their stated concentration according to our results. 
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Also, Epstein and Juretschke (1963) found tin removes 0.3 

electrons per atom, less than that found here. No evidence 

of an extra set of holes as suggested by Saunders and Oktu 

(1968) was found. This is not too surprising since the con­

centrations of our alloys were considerably less. Extrapo­

lation of our change of electron density with alloying in­

dicates that the electron pocket will be empty at ~0.35 at. 

% Sn. This is in disagreement with previous workers (Epstein 

and Juretschke 1963, Brown and Lane 1941) who suggested from 

1 to 2 at % is required. Finally, when our results are ex­

trapolated to the case of antimony doped with atoms of val­

ence 6 such as tellurium, it is sugges~ed that the hole carriers 

in the valence band will disappear at approximately 0.35 

atomic percent. 

B. Band Shapes 

The three band txpes considered in Chapter II will 

be discussed: the ellipsoidal parabolic band, the ellipsoi­

dal nonparabalic Kane (1957) band and finally a pseudopoten­

tial band. 

The ellipsoidal parabolic band is described by Eq. (2) 

and predicts ellipsoidal Fermi surfaces and energy indepen­

dent cyclotron masses. This band can be taken as a first 

approximation to the actual Fermi surface of antimony to 

describe the gross features. However, it does not predict 

any change of shape with concentration as observed, non-ellip­

soidal behaviour or energy dependent cyclotron masses. This 
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band does enable certain calculations to be made easily, such 

as the carrier concentration, and will be useful later in the 

calculation of the energy band overlap. 

The form of ellipsoidal nonparabolic band is given 

in Eq. (5) where when Eg is large Eq.(S) reduces to Eq.(2). 

In the case of antimony and its alloys, there is reason to 

expect Eg to be small for both the electron and hole bands 

(Falicov and Lin 1966). The energy surfaces are again ellip­

·soids but the cyclotron mass is now energy dependent. The cyclo­

tron mass and Fermi surface area in the xy plane are given 

by Eq. (7) and (6). These equations can be combined to give 

(24) 


m2e3 
where F (= 2 Axy (au))xy 3 is the dHvA frequency in the xy

4h e

0 1/2
plane and m

0 
= (mlm2) . A plot of Eq. ( 24) using F instead 

of A for the electron and hole minima is shown in Fig. 16. The 

fitted least squares line has a n~gative intercept for holes 

and a positive intercept for electrons. The scatter of the 

data points makes the intercept value i_naccurate. The intercept 

of the el'ectron line gives m /m ~ 0.012 and hence Eg ~ o.o6eV.
0 

,_. 

The slope of the line is more accurately determined and gives 

a value of the k·p matrix element Ep(=Eg/m ). The matrix 
0 

element is 7.3ev for holes and 5.0eV for electrons. These 

values compare with 20eV forIII-V semiconductors (Ehrenreich 1969) 



Figure 16 	 Comparison of observed masses and frequencies 

to least squares linear fit predicted by a Kane 

nonparabolic band. 
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and 8 eV for bismuth-antimony (Ellett et ·al. 1966). The 

ellipsoidal nonparabolic model describes the mass changes 

reasonably well and gives some insight into the band inter­

actions, but it cannot explain the deviation from ellipticity 

or change of axial ratio with concentration. 

The pseudopotential bands are based on the work of 

Falicov and Lin (1966) for pure antimony. They diagonalized 

an 89 by 89 determinant to find the energy bands and Fermi 

surfaces using a pseudopotential of the form (U in Ry., q in au) 

2.1564 (q - 2. 367)U(q) = 2exp[3.260(q -2.803)+1] 

We have done a similar calculation using the same pseudopoten­

tial to examine the hole and electron Fermi surfaces in more 

detail. 

A grid of points was chosen in k-space around each 

pocket center and energy values were found for each point. 

Part of the grid is shown in Fig. 1 7 and 18. The area shown 

corresponds to the trigonal-binary maximum for both electrons 

and holes in the mirror plane. Since the electron surface 

has inversion symmetry only half the surface is needed. The 

dividing line in Fig. 18is the Brillouin zone boundary. 

The axes on the planes are at an arbitrary but fixed angle 

from the trigonal so that each surface is described roughly 

in its principal coordinates. Notice that the electron 

minimum energy occurs at (0.0,0.0)-the L point - as it must 



Figure 17 Pseudopotential hole energy grid in the 

trigonal-binary mirror plane. 
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Figure 18 	 Pseudopotential electron energy grid 

in the trigonal-binary mirror plane. 

Cut-off line is the Brjllouin zone 

boundary. 
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from symmetry while the hole maximum does not appear to be 

exactly at (0.0,00) - the H point. This happens because the 

H point has no special significance in the zone other than 

being a reference location near the center of the hole pocket. 

The energies are given in millirydbergs with respect to a 

band bottom of 0.000 Ry. The hole energy values include spin­

orbit coupling to a nearby band with a spin-orbit constant of 0.02 

Ry. Other grids parallel to the ones shown were obtained to 

describe the Fermi surface away from the mirror plane. 

The contour lines indicate the shape of the Fermi 

surface with energy. Both surfaces are approximately ellipsoi­

dal as expected. More exact comparisons were made by expand­

ing the energy E in a power series in k up to fourth order and 

least squares fitting this series to the grid points. Using 

this series, cross-sectional areas and cyclotron masses were 

calculated numerically for any orientation. Fourteen para­

meters were used to describe the electron surface and twenty­

two for the hole surface. The extremal hole surface areas are 

not central so a search was made for the maximum area correspon­

ding to a dHvA frequency. The results are sununarized in Table 

v. The Fermi energy EF is referred to the band edge and con­

centrations are estimated from a comparison of the calculated 

minimum areas with the data. The alloy calculations were 

made by changing the Fermi energy to fit measured dHvA fre­

quencies. This is using a rigid-band approach to alloying. 

The choice of a Fermi energy is a problem in these 
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'l'ABLE V 

Results of a pseudopotential calculation of the 
Fermi surface of Sb and Sb(Sn) alloys 

'l'rigonal-bisectrix plane-holes 

*· est.cone. EF min. freq. max.freq •. m. theor. Observedminat.% (T) (T) max./min. max./min.Ry •. m £reg.ratio freg. ratio 

-.025 .003 57 248 .14 4.4 3.2 


.23 .006 95 375 .13 4.0 2.8 


Trigonal-bisectrix plane-e,lectrons 

est.cone. min. freq. max.freq. 
'k 

thecr.EF mmin 
at.% (T) (T) max./min.. Ry. m freq. ratio 

o.oo .010 68.S 427 .073 6.2 

.23 .006 37 234 .060 6.3 
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calculations. Since in pure antimony the number of electrons 

and holes are equal, a direct way of determining the Fermi 

energy is to search numerically for an energy giving equality 

of carriers. This cannot be done here since the spin-orbit 

splitting suppresses the hole band slightly below the electron 

band. This is a failing of either the pseudopotential or the 

spin-orbit calculation. However, a meaningful choice of Fermi 

energy in each band can be made by using a Fermi energy that 

correctly predicts one experimental value, in this case the 

minimum frequency and then using this energy to find the re­

maining undetermined frequencies and masses. 

The theoretical hole surface does not describe the 

observed surface very well. The theoretical frequency ratios 

are too large making the calculated carrier density 25% too 

great. The calculated masses are twice the observed values 

and do not show much change with concentration. The model 

does predict a shape change of nearly the same percentage 

as found from the data. 

The theoretical electron surface agrees more closely. 

The masses are nearly the observed size and show the down­

ward trend with concentration found experimentally. The fre­

quency ratio increases very slightly with concentration. In 

Falicov and Lin's (1966) paper, it was noted that the electron 

surface was described much better by the pseudopotential than 

was the hole surface. Part of this was attributed to the 

difficulties of calculation when the pocket has no inversion 
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synunetry. ' 

c. Non-rigid Bands 

We have investigated some possibilities for non­

rigid bands. The ellipsoidal parabolic model was used to 

estimate the band overlap energy E defined as the sum of
0 

the hole and electron Fermi energies. For non-rigid bands, 

E can change with concentration. E is constant within 
0 0 

experimental error for all the alloys with a value of 0.016 

Ry. It is interesting to compare this number with the values 

of 0.013 and 0.012 Ry. found from the two pseudopotential 

alloy calculations. The bands are rigid as found before. 

The energy shifts of the centers of the pseudopoten­

tial bands were calculated allowing for changes of lattice 

constant and pseudopotential on alloying to check the rigid­

band model in the pseudopotential calculation. The alloy 

lattice constants were taken from Table I except for the in­

ternal displacement parameter which was estimated for the 

alloys from the work of Morosin and Schirber (1969). The 

energy shifts were rv O. 0008 Ry/ at % Sn. These are insigni­

ficant for concentrations of .25% or less. 

A final comparison can be made with the scattering 

theory of Soven (1972). We have calculated the difference 

potential between the pseudopotentials of antimony and tin 

and estimated the s-wave phase shift 8 from the Born approxi­
0 

mation and from a numerical solution of the scattering equation 
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+ V(r) - k 2)u k(r) = Oo, 

Both give a value of o0 ~0.l. This number can be used with 

Seven's predictions for s and p wave_ scattering. Soven's 

results indicate that ~ 80% of the rigid band energy shift 

s_hould be expected for this value of o • We find about 100% 
0 

of the rigid band prediction. The difference is not surprising 

considering the assumptions made in the theory coupled with the 

problem of determining a pseudopotential difference accurately. 



CHAPTER VIII 

CONCLUSIONS 

The hole and electron energy bands of pure antimony 

and antimony-tin alloys with up to 0.29 at % tin have been 

studied using the dHvA effect. At the highest concentration, 

the hole frequencies have increased by ~ 75% over the pure 

antimony values while the electron frequencies have been 

reduced to less than half their original sizes. The cycle­

tron masses were found from the temperature dependence of 

the amplitude at the principal hole and electron branch mini-

ma. A Fourier transform method was used to separate the 

amplitudes of the different dHvA components. The hole mass 

increased by 35% while the electron mass decreased by nearly 

32%· These mass changes are direct indications of nonpara­

bolic conduction and valence bands. The Dingle temperature 

increases approximately linearly with concentration from the 

2.5°K value of pure antimony to more than three times this 

value at .24 at % tin. 

The rigid-band predictions without any corrections for. 
changes of lattice parameter describe the observed frequency 

shifts quite well at low concentrations. At higher values 

there is a deviation caused by the mass and Fermi surface 

shape changes. Our data allow calculations of Fermi surface 

volumes and the corresponding electron and hole carrier den­

sities. One tin atom removes one electron from the alloy as 

expected from the valence difference. This is different but 

72 
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more reasonable than tliat found by previous workers. If 

the electron carrier density is extrapolated to higher con­

centrations our results suggest that the electron pocket dis­

appears at~ 0.35 at.% tin. A similar extrapolation for the 

holes implies that the hole band is empty at ~ 0.35 at.% of 

a hexavalent element such as tellurium. 

Various features of the data have been related to 

different band models. A Kane (1957) ellipsoidal nonpara­

bolic band was used to describe the mass change with concen­

tration. The k·p matrix element deduced from the data was 

7.3 eV for holes and 5.0 eV for electrons. The mass and 

shape changes are compared with Falicov and Lin's (1966) band 

structure calculation in antimony. A fourth order expansion 

of the electron and hole surface was made from energy values 

found from diagonalizing an 89 x 89 pseudopotential determin­

ant. The resulting functional form enabled the properties of 

the Fermi surface to be calculated. The electron band of the 

alloys is described much better by this model than is the hole 

band. A calculation based on the ellipsoidal parabolic model 

indicates that the band overlap· is constant throughout our 

concentration range. An estimate of the scattering phase shift 

was found from the pseudopotential difference of antimony and 

tin and used to predict the deviation from rigid band behaviour 

as calculated by Soven {1972). The theoretical deviation was 

larger than that observed experimentally. 
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