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CHAPTER I

INTRODUCTION

One of the,goals‘of modefn control engineering, is
fo control a particular system in some optihal manner. - Modern |
processés.suéh as nucleaf reactors, high-speed rolling mills,'
jet aircraft controllers, and spacecraft systems usually spe-
éify fine tolerances of operational limits. In gontrolling
these processes, the control problem may involve mininmizing
various parameters such as control energy and the time required
to go from one state to another. Although a number of computa-
tional methods have been developed for the solution of the op-
timal control problem, these are not suitable for the control
of many systems such as those mentioned. Because of the increa-
‘singly comprehensive nature and complexity of these systems, these’
methods are not suitaBle due to the large amount 6f computation
required, This is especially evident for the case of on-line
optimal control. In addition, some of these methods require a
complete and precise knowledge of the system parameters, which

are not often known.

One way of overcoming these difficulties, is to obtain

a reduced linear model of the high-order system, which is compu-
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tationally or analyticallyimore tractable than the cbmplex
system. This low-order model can then be.used for an approx-
imate computation of the optimal-control. The‘resﬁlting sub~
optimal control may often be sufficiently close to the actual’
optimum,‘bﬁt'in any éase, it may serve as the first approxi-
mation‘to¥the optimum. The reduced model may also be par-
tiéularly useful for the adéptive control of a system with slow-

ly varyiﬁg parameters,

In thé last five &ears a number of ﬁew methods
have been proposed for detefmining a low-order model for a high-
order system. Since the reduction techiniques are baéically dif-
ferent, a large number of different low-order models can be ob~-
tained for a given system. It would be desirable therefore, to
determine which of these ﬁodels would be most suitable for deter-

mining the sub-optimal control for the system.

A number of different reduction methods have been

1,2,3,4,5,6,7,8,9

proposed by various authors and applied to the

same test system 5’6’7.

This test system, selected so that it
would not be particularly suited for reduction by any one method,
is a realistic aircraft control system. Of the various models de-

rived, ten models representing as many different reduction methods

i




as possible, were selected. in order to maké a reéspnable
_comparison of the model suitability, all models selected were
of second order.

To investigate the suitébility of each model for
providing'a sub-optimal control of the system, two quadratic
cost functions to be minimized for the control interval were
selected. For the first, the closed—ioop optimal control of
- each reduced model was calculated and used to control the system
sub—optimally in an open-loop sense. The feduced model optiﬁal
feedback coefficients were then used to provideia closed-loop
sub-optimal control for the system. TFor the second cost function,
the optimal feedback coefficients wefe again calculated for each
model and‘used to provide sub-optimal feedback control for the
system. For each model, the resultant cost function was computed
and compared with the minimum attainable for tﬁe system. A com-
parison of the models‘was made with a view to. the relative dif-
ficulty of finding the model optimal feedback control and the sui-
tability of the resulting feedback coefficients in providing a sub-

optimal control for the system.

The material contained in the following chapters fol-

lows the order of the preceding discussion. The principle and appli-



cation of each method of reduction considered is discussed in
Chapter 2. Chapter 3 gives a brief éummary of optimal control
theofy, stresshg closed~loop or the feedback implementation

of optimal control, The reduced models considered are mentioned
in Chapterva, along with the procedures followed in using each
model to provide sub-optimal control for the system. The results
of the sub-optimal control of the system, and a comparison of
model features and suitability are included in Chapter 5. The

conclusions of this work are then drawn in Chapter 7.



CHAPTER 2

METHODS OF REDUCTION

‘2.0 . Introduction

In the past fiVe‘years a number of different ﬁethods
‘have been proposed for determining a low-order model for a high-
order system. They can be divided into two groups; (i) those
which'neglect the modes of the original system that contribute
little to the overall response aﬁd (ii) those which determiné
an optimum model of a given order so that the error between the
response of the model and that of the sfétem for the same input
is minimi;ed with respect to a specified criterion. A number
of methods, each using a different technique, have been selected
and are described briefly in this chapter. The modal methods
are discussed first and then the trajectory fitting methods.
Lastly, a transfer function reduction method is described which

does not fall into either‘of the two groups described above.

2.1 "Problem Formulation

The general problem in system model reduction may be

-5-
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stated as follows : given the nth order linear, time invariant,

controllable system described by

_}_.{_(t)_ A x(t) + Bu(t)

y(t) = Dx(t) veeees (2.1-1)

where x(t) is an n-dimensional state vector, u is a p-dimensio-

nal vector of forcing functions and y is the k-dimensional output

th

vector, find an m"~" order system (k< m< n) described by

:}gr(t) Al _)_c_r(t) + Br_\_.l_(t)

Yr(t) = Dexp(t) cerees (2.1-2)

éuch that for a specified set of inputs the reduced system response

is a satisfactory approximation to the original system response.

- The problem may also be equivalently stated in terms of the discrete-
time analog of equations 2.1-1 and 2.1-2. For single input-output
systems the problem may be stated in terms of the transfer functions

of the system and reduced model.




2.2 Modal Reduction Methods

1,2

The reduction methods proposed by Davison and

Mitra4

both result in reduced systems which retain specified
eigenvalﬁes of the originél system. They are also both pro-
jection methods although only Mitra has explicitly discussed
this aspect. Their common characteristics will be considered
first therefore. Mitra% has shown that these projection methods
can usefully be broken down into two steps. The first step
consists in choosing the modes to be discarded and the comstruc-
tion of a dynamic system with the same order as the original in
which these modes are uncontrollable (''decontrolling" step).

The second, "contraction'" step, is the synthesis of an mthP

order controllable system from the decontrolled system by retai-

ning the controllable modes.

The first problem is then to find a projection
operator P which operates on the original system to produce
a trajectory confined to an m-dimensional subspace, Sy of the
original n-dimensional state space S. That is, the decontrolled

trajectory is given by

2(t) = P x(t)

However, for gﬁt) to be a basis for a practically useful model, it



should also be the solution of a differential equation. The

additional requirement imposed is that gﬁt) should also satisfy
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It has been shown that if X(t) is to satisfy both
equations, it is necessary and sufficient that the projection
be along a subspace Sy, which is invariant under the linear trans-

formation A. 1In this case it is easy to show that

i = papt

B = PB

There is however, no a priori restriction on the choice of the
subspace Sy, on which to project, except that it must be disjoint
from Sy. The choice of subspace on which to project is the funda-
mental difference between the method due to Davison and that proposed

by Mitra.

In the method due to Davison, the subspace S1 projec-
ted on, is also invariant under the transformation A. The pro-
jector which projects both on and along subspaces invariant under
the linear transformation A, may be found by partitioning the matrix,

the columns of which are the generalized eigenvectors of A.

Tz] ceeens (2.2-1)

T= [Tl

where the eigenvectors comprising T; are those correspondending



to the eigenvalues to be retained. By defining

it has been shown 4

that the required projector is given by

Poa = T15
This equation is valid for c&mplex eigenvectors provided that
both parts of the complex conjugate pair are included in either
Ty or Ty.
In the resulting decontrolled system, since the (n-m) uncontrol-
lable modes of A are not excited, only m of the n components of
g'are linearly independent. Contraction consists of choosing a
suitable basis of dimension m, and a suitable set of m variabies.

A particular contraction may be specified by defining an n x m

matrix

m
. C = 59];0 n se e e (2.2"2)
Cy n-m

which spans the controllable subspace of 3, ﬁ, that is, Sq.

The coefficient matrices of the reduced system are then given

by 4,

_1 ~ _1 ~
Ap =C; 7 A1 C +C " Ag5 Cy

Cl—l ﬁl

=
2]
]

=
L]

r Dl Cl + D2 C2 ceao e (2-2”3)
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where A, 8, and D, have been partioned to conform to the
partioning of C. This representation of the contraction

step is valid for both Mitra's and Davison's methods.

For the method proposed by Davison, projection

is on and along subspaces invariant under A, and hence

C=Tl
where T; is given by equation 2.2-1.

If it is assumed that
D = [1,0]
an additional transformation is performed on the reduced

system to force

Dy = [I]

The reduced system equations are then given by

-1
Ap = A1t Ajp T3 T3

1

Br = Tll Sl B R (2.2-4)

The modification suggested by Davison (which provides
the correct steady-state step response) is obtained by modifying

the measurement equation from equation 2.1-2 to

y.(e) =D x.(t) + Zu(t) eeees (2.2-5)
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where Z 1s a correction term given by

-1 -1
Z Dr Ar B. - DA

v B

Equations 2.2-4 and 2.2-5 give the reduced model proposed by Davison.
The method proposed by Mitra involves choosing a subspace $§; so as

to minimize the projection error. This projection error is defined as

P T . . )
r) = L/ & - 2Tt -2H o) ae.
;0
i=1

where EF(t) and g} (t) are the responses of the original and decon-~
trolled systems to the ith input, p being the forcing function dimen-
sion. The weighting matrix Q is at least positive semi-definite.

The system response matrix is defined as

P T

wm = L | xie) xice)lde.
=1 0

For a specified class of inputs and a specified order of reduction
the projection error is a function only of the choice of subspace on
which to project, that is, the choice of modes to be retained.

Mitra 4 has derived an algorithm to solve the problem of choosing

this subspace. The following matrices R, Ry, and Ry, are defined as
R= [Rl R2] = [rl, Ty ees T rm+1 e rn]
and s, S,, and S, as

S = [Sl Sz] = [81, 87, s+« 8p ém+f oo én]



such that

R*S = I

where * denotes complex conjugate tfansposé;

The columns of RZ span the invariant subspace 32; along which

to project. The required projector is then given by

or equivalently by

Pa =I-R

*
52

As the columns of R, span a subspace invariant under A they must
be a linear combination of the eigenvectors'which span that sub-

space. If these eigenvectors which correspond to the modes to be

neglected, are denoted by

T2= [ tnl‘*'l, ttn_'_z * s tn]

then

where G is a (n~m)x (n-m) non-singular matrix. It has been shown that

G can be defined as

¢ =A 1/2 H*]—l

Q

where A Q and H form the eigen-system of
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*
I, T,

82 is given by

-1

S, = W™ r [Rz* wmLr

2 2]

Rl may be found as a (non-unique) éolution to the overdetermined

set of equations

%
SZ Rl = 0 cease (2.2-6)

The projector defined by the above procedure, minimizes
the projection error for projection along a specified subspace.

A search must then be made to determine which invariant subspace

to project along.

The contraction process for the optimal projection
method is also defined by equations2.2-2 and 2.2-3. However, for

this method C is defined by

C= R1

where Ry is defined by equation 2.2-6. The optimal projection
method requires considerably more computation than that proposed
by Davison.
In summary, both methods of reduction require knowledge
of all parameters of the original system. In addition, both require

finding the eigenvalues and eigenvectors of this system. They are
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directly applicable to multip}e input-output systems and can
easily be extended to discrete time systems. Since. both methods
require the retention of certain modes-and neglect of the rest,
these methods are most applicable to those systems which have

dominant eigenvalues.

2.3 Anderson's Method

Anderson 3 presents a method of system reduction
based on a geométrical coﬁSideration of the reduction problem
as dgveloped from the theory of linear vector spaces. The
state space eﬁuations are solved at regular time in:ervais up
to some limit at which only insignificant response changes occur.
These solutions are then substituted in the state space equations
which represent the unknown low order system and the parameters
evaluated which will give these solutions. The method is developed

for discrete time systems as represented by the following equations
x(1) = F x (i-1) + E u(i-1) veees (2.3-1)
y() = Dx (1)

which are of order n.

The reduced model of order m is given by the equations.v

_Jir(i) = Frir(i-l) + Ery_(i-l)
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2, (1) =D, x (1)

For simplicity, it is assumed that the order m of the reduced
system, is the same as the order of the original system output
vector and hence, Dy can be assumed to be I;. Also, it is
assumed that a linear transférmation has been applied, if neces-

sary, so that
D = [1, 0]

If the sequences which make up the trajectory of the original

system are written as

{ x(0), x(1), ..... x(k-1), x(k)}
{u(0), u(@), ..... u(k-1)}
{30, y), ..... y(k-1), y(k)}
and the x sequence written as two sequences of length k,
{x€0), x(1), ..... x(k-1)}
’{5(1),§(2), ceees x(K) )}

these are related by equation 2.3-1. Combining x(k) and u(k) as a
single vector, equation 2.3-1 can be written as
[x(1), x(2), ...x(K)] = [FE] | x(0) ...x(k-1)

u(0) ...u(k-1)
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The reduction is achieved by seeking [Fr E 1:,] such that

[y(1), 3(2), ...3(k)] = [F. E.] | y(0) ...y(k-1)

u(0) ...u(k-1)

Normally, this equation cann;t be satisfied exactly since the
y(k) are not only functions of y(k-1) and u(k-1) but also of
the (n-m) state variables which are not directly measured. How-
ever, a set [F,. E.] can be found, such that given the sequences
y(@©) ... y(k-1)
u(0) ... u(k-1)

it will generate a sequence [w(l) ...w(k)] which minimizes

e(l)=tr{ [y(L)-u(l); y(2)=u(2), ..y ~u0)] [y(L)-wl). ..y () -uk)]}

and which lies in the row space of the given sequence. The solu-

tion is well known and is given by

[Fr Er] = [y ...y&)] | y(0) ... y(k-1)
u(0) ... u(k-1)
where + denotes the pseudo-inverse of a matrix. The pseudo-inverse
is the inverse of a non-square matrix.’
Anderson's method can be extended to continuous systems.
Since the test system to be described later is single input-output,

D is a vector and hence [y(1), y(2) ... y(k)] is a vector and not

equal to the matrix [x(1), x(2), ... x(k)]
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For the continuous system »
[x(0), %(T), ... x(kD)] = [A B] [%(0), ...x(kD)

EKO), oo s u(kT)
The reduced system is to satisfy

(x(0), 2(D), .. x(D] = (A B] [ x0), ... x(kD)

u(0), ... u(kT)

as closely as possible. The dimension of x(kT) is m, the order
of the reduced model. The sdlu:ion, as before, is of the form '

of a pseudo-inverse solution

[Ap Byl = [x(0), +-. x(D] [x(0), ... x(km) "

u(0), ... u(kT)

that 1is

[Ar Byl = [x(0), «.. x(kD)] [X(0), ... x(kT)

u(0), ... u(kT)

x(0), ... x(kT) .'5(0), eo o x(KT)

u(0), ... u(kT) u(0), ... u(kT)

If the sequences of x and x are calculated for the input sequence
u, (u being constant between samples) then [Ar Br] can be directly
solved, As can be seen from the above brief description, all system
parameters must be known and the system vector differential equation

solved for kT samples. However, computationally this method is much
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easier tﬁan the previous two methods discussed, as it does

not require computation of eigenvalues and eigenvectors.

It also optimizes the trajectory fit by minimizing.the mean
squared error between the system and model trajectories. Un~
fortunately, it does require considerable data storage, espe-
cially if the system has a long settling time. Also, as the -
minimization is done over a finite time interval, the steady-
state error between the two trajectories is not forced to be

Zero.

2.4 Iterative Reduction Method

Sinha and Pille ° proposed a method of system model
reduction that requires onl& the measured input-output data
for the system at the sample points. This method is based on
an iterative application of the matrix pseudo-inverse algorithm,
. It determines the model of a specified order that minimizes the
mean squared error between the responses of the system and the
model to a given input.

The reduced discrete model may be expressed in terms

of the pulse transfer function

-1 -m

C(z) antaiz + ... t+a_z

H(z) = . 2ot an
R(z) 1 —blz—l o e -bnz—n

or the equivalent difference equation
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n n A
cy = X ayry_y + z bjci-j e (2.4-1)
jco j"l

where r(iT) and c(iT) are the input and response of the system

ét t=iT, and T is the sampling interval.
If the parameter vector ¢ is defined as

T
¢ = [ao, 81, .0 ambl, bz, se e bn]

—

and i ranges from 1 to some integer k
Agd = ck

Ay 1is the information matrix, whose ith row corresponds to equation

2.4-1, and
T

e = [cl, Cos see ck]
Again, as for Anderson's method the solution which minimizes the mean
~ squared error between the system and model responses is given by

~

b M
+
where A, is the pseudo-inverse of Ay.
To solve the above equation requires storage of a large amount of data,
especially if the mean squared error is to be minimized over a sufficiently
large interval with a reasonably high sampling rate. To over-come this
problem, a recursive algorithm is developed where a row is added to A,

and an alement to ck for each addi-
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tional pair of input-output data,

that is
A= |
+
ktl aTin
ok
c ==
“Kk+1 c
Cr+1
where
1 © [P Feooof Tremdl Sk Sk-1 *c* Ckentl]

Then the recursive algorithm for k> min+l

A

R R T
6 =06 4+ Pra ks1(cpy1- 2 91
—k+1l "k
1+ afy) Pud kil
P.a [P, a ]T
b = K2 k1Bl
k+l Tk

T
1+ 34 Bdn

The algorithms require no matrix inversion and the number of input-
output data points required in storage im just m + n + 2.

To start the algorithm, ik and Pk must be determined for the case

where k = p =m+ n + 1. This can be done since A, is a square matrix
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and the solutfons are given by

A=-1
o= M7

P = [A'If Ap]‘l
Recursive relationships have also been established so that matrix
inversion may be avoided completely.

The corresponding continuous-time system transfer function
H(s) can be determined from the low-order pulse transfer function
H(z). If the input between sampling instants is held constant,
H(z) may be regarded as the z- transfer function of H(s) preceded
by a sampler and a zero-order hold. This requirement is met in
the application of this method to the test system, when the input
_ig taken as a unit step.

Although this method is based on the same principle
as the Anderson method, the implementation is much easier. 1In
addition to requiring only the input-output data at sample points,
the requirement for storage of this data depends only on the order
of the assumed model, and not the number of iterations considered.
Also, since this method requires no matrix inversions, it yields
better results than those obtained by the other methods discussed.
However, as for Anderson's method, steady-state error between the

system and model responses is not forced to be zero.



22

2.5 Pattern Search Reduction Method

In the two trajectory-fitting reduction methods
discussed, the objective function to be minimized is con-
strained to be the sum of squares of errors. Sinha and
Bereznai © proposed a method of reduction which can provide
an optimum low-order model with respect to any specified error
criterion. If the output trajectory of the system given by

equations 2,1-1 is given by the sequence
{ y00), y(1), +..y(1), ...y(D}
where y(@i) = y(ty4),

a reduced model, given by equations 2.1-~2 is determined such

that its output trajectory given by the sequence
{ zr(O), Xr(l)’ ...zr(i), ...xr(I) }

minimizes the scalar error function
- T
J=floy (F)-y,(1))]

T
where w;

i is a weighting vector.

Alternatively, for a given value of J, the lowest order model (m)
is determined such that the resultant error is less than or equal to

J.
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Since the choice of error criterion has a direct
effect on the parameters of the reduced model, it is important
which criterion is chosen for minimization. In current prac-
tice the error function takes on one of two forms. For the

single input-output case the error function can be of the form

I
=1 wll yw-y @ll?

i=0
which is the sum of the weighted norms of the output error
raised to some power p. This function can represent the area
between the output curves or the mean squared error, depending
on the values ofwy and p. The error function can also take the
form
J = max{a|]| y()- y (D]}

i=0,I

which retains the value at one particular sample only, where
the deviation is maximum. Another form of this function can be
used to minimize the maximum perpendicular distance between the
output curves, which may be more useful than minimizing the maximum
vertical error.

After the error funcfion to be minimized has been chosen,
a pattern search technique is employed to find the model which mini-
mizes this function. Depending on whether the step response of the
system has overshoot or not, a simple second order model with a
pair of complex conjugate poles, or a simple first order model, is

chosen as starting point. If the optimum set of parameters haSa
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been found by the pattern search. program for a particular model
order, the order is increased by one and a new pattern search
initiated. This process is continued until the error criterion
is satisfied, or the desired order is reached.

As for the previous method discussed (Sinha and Pille)
the parameters of the system need not be known, and the output
sequence can be obtained either by solution of the vector differen-
tial equation at specified time intervals, or direct measurement
of the system output. This method requires considerably more com-
puter time than the iterative reduction method, and limitations
arise because of the poor convergence properties of the pattern
search algorithm, However, the flexibility provided by the choiée
of the criterion of optimization, may often lead to a model whichk
is more acceptable than that obtained using the least squares
criterion. The pattern search method can also be used to optimize,
with respect to a specific error criterion, a reduced model derived
using some other reduction method. A final advantage is thataswith
the iterative reduction method, it can be used in system identifi-

cation.

2.6 Step Response Reduction Method

Fellows, Sinha and Wismath 7 proposed a method of
model reduction, which allows direct calculation of the parameters
of a second order reduced model, from the step response of the
system. The features of the step response of a system most commonly
specified are (i) M~ maximum overshoot in the response, (ii) t_ -

P
time required to reach first peak, (iii) Sy - initial slope of the
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response curve, (iv) A- steady-state response to unit step,
) t]y - time required for the response to‘first reach half
- of the steady state value, and (vi) S; -lslope of the curve at
tj. A second érder model‘is then féund which will meet these

specifications precisely.

Depending on pole - zero configurations, second order
systems éan be divided into four classes. As most physical
systems are normally of the low-pass type, with more poles thén
zeros, the case with tWOkfinite zeros is not considered. The
four classés, along with their transfer functions, can be written
as:

(i) System with two real poles and no finite zero

K

Gl(S) =
(sta) (s+B)

(ii) System with a pair of complex conjugate poles and no finite

zZero.
K

(staf+sd)

G,(s) =

(iii) System with two real poles and one finite zero,

K(s+8)
(s+a) (s+8)

GB(S) = and

(iv) System with a pair of complex poles and one finite zero.

K(s+8)
G4(S) =

(o) 242

where K, a, B, and § are real numbers and o and B
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-

are constrained to be positive to ensure stability. Gl(é) and
G2(s) have zero initial slope and in addition Gj(s) represents
an overdamped system. The step response of each second order
model is well known and if written in the time domain, can bé
used to solve the model parameters in terms of the specified
step response features of the original system. For example, for
a system response which has zero initial slope and overshoot,
Go(s) would be chosen. Its time response and its derivative

are given by

K -0t -
e(¢) = - K e Sin(gt+ tan 15)

a2+82 B;G2+B

de(t) K

3 — e
¢ 8V/o2+p2

1

e—at[aSin (Bt + tan — B/a) -BCos(Bt+tan-1 B/a)]

- If the system step response features to be satisfied are given
as (A), (M), and (tp) the model parameters can be derived directly

from the resulting equations:

a = 1 in ( A - )
tp M-A
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K = A(a?+8?)

The other classes of second order models result in transcen-
dental equations, which although more difficult, can still

be solved. This reduction method's strongest feature is its
simplicity. It requires no ﬁnowledge of the.syxem other than
its unit step response and with the use of a transfer function
matrix, can be used to reduce multiple input-output system
models. Although it does not optimize the parameters, in order
to get the closest fit between trajectories, it can stress cer-
tain features of the system step response. Since the method
requires very little computation, the model derived can be used
as the first approximation for an optimization procedure,  such

as the pattern search method previously mentioned,

2.7 Chen & Shieh Method

Chen and Shieh 8 proposed a method of reduction
based on the continuad-fraction expansion of the system transfer
function, in polynomial form, starting from the constant terms.
If the system transfer function is given by

bg+ bysl+ ... + bysk
G(s) = 0 1

ag + alsl+ ...+ansn

the continued fraction is
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G(s) =

Hz + S Qo.(2-7—1) /

This continued-fraction expansion is equivalent to a Taylor—-series
expansion about s = 0. Also from a consideration of the final
value theorem, it follows that the quotients in the expansion
are in order of decreasing significance of their contributions
to the response as steady state is approached. Truncating the
continued fraction at a suitable stage gives a reduced system
transfer function of the desired accuracy. For a reduced modei
of order m, equation 2.7-1 is truncated after 2 m terms. Compu~-
tationally, the application of this method is quite simple and
can even be done by hand. ‘Although the transfer function parameters
must be known, the poles and zeros need not be calculated. The
‘resulting model gives the correct steady-state response, but the
approximation to the initial tramsient response may not be good.
Furthermore, the stability of the model is not guaranteed, even if
the original system is stable.

dhuang9 proposed a modification of this method so that
the initial system response may be more closely modeled. It.consists

of having alternate continued-fraction expansion from constant terms



29

first and then from highest-order terms. This is equivalent
to Taylor series expansiomsabout s = 0 and s = », The resulting

expansion is of the form

G(s) =

Again Z m terms are required for a reduced model of order m.
Although this modification may improve the Chen & Shieh model,
it can not be used for those systems for which the number of

poles exceeds the number of zeros by more than one. That is
n-%k>1

For these cases some of the coefficients become zero and hence
the model .is not as accurate.

The model reduction methods described in this chapter
represent as many different techniques as possible. They have been
applied to the same test system by Fellows, Sinha and Wismath 7,

Sinha and Pilles, and Sinha and Bereznai6, The models derived and

their application to optimal control will be given in Chapter 4.




CHAPTER 3

OPTIMAL CONTROL OF A LINEAR DYNAMIC SYSTEM

3.0 Introduction

In modern control systems, it is desirable to
control fhe system in such a way that a certain criterion
is maximized or minimized. Much theory has been developed
in recent years, so that this optimal control may be found,
with some degree of facility. This optimal control may either
take the form of an open-loop ddving function or sequence, or
a closed-loop feedback control. As this theory can be found

12,13

in most texts dealing with modern control systems
will only be briefly described in this chapter. Although both
open and closed-loop optimal control are discussed, the greater

emphasis is on closed-loop or feedback implementation of opti-

mal control.

3.1 General Optimal Control

In optimal control theory the basic problem is to find
the optimal control u(t) or the optimal control law

u = k[x(t),t]

which transfers the system given by

-30-




31

x = £(x, u, t)

from some given initial - state . to some final state,
while minimizing the integral cost function

tf
J= [ L(x, u, ) dt

ty

where ﬁiand tpare the initial and final times and L is a posi-

‘tive definite function of x, u, and t.

It has been shown 12 that solution of the above
problem requires solving the Euler equations, subject to the
boundary conditions of the problem. To simplify solution of

the Euler equations, the Pontryagin state function
H(x, u, A, t) = )\Tf(i, u, t) + L (x, u, t)

is formed, where the ) are Lagrangian multiplier or costate
functions. The Eulef equations can then be solved to find the

optimal control.

While theoretically straightforward, the solution
of the resulting Euler differential equations presents several
practical problems. The equations are in general, non-linear,
and time varying and require numerical solution on a digital

computer. Although this problem is not serious, it is almost
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insignificant compared to the‘two—point boundary-condition
- problem that is also involved. 1If the system is of'order n,
2n boundary conditions will be given for the solution of the
resulting 2n differential equatiﬁns. However, for the basic
case where x(ty) and x(tg) are specified, n of these conditiohs
are given at the initial time and n at the terminal time. It
’is not pogsible to integrate the differential equations forward
in time from the initial conditions 6r backward in time from
the terminal conditions. More generalized béundary conéitions
make the problem even more computationally difficult, This pro-
blem, although it can be solved using several élegant computatio--
nal schemes developed, yields an open-loop optimal control valid
only for that particular set of boundary conditions. If either
the initial state is changed, or any disturbances act on the
system the control u(t) found is no longer optimal. This is
a weakness of open-loop optimal control and a more desirable so- .

/

lution is the closedFloop or feedback optimal control.

3.2 Closed~-Loop Optimal Control With Quadratic Cost

By combining the Pontryagin method with concepts from
the second method of Liapunov, it is possible to remove the ne-
cessity for solving the two-point boundary condition problem, for

the particular case of a linear system with a quadratic cost function.
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This approach also yields an optimal contfol law uQE,t); This

optimal control is valid for a family of initial conditions, and

since it>is a function of x,results in ciosed-loop optimal con-

trol, thus minimizing the effects of system disturbances. 1t

has been shown 12 that by defining V(x, t) as the minimum value

of the cost function for an initial state z_at time t, that is
te

V(_}igt) = f L[Z‘_(T): u_(_’_‘_)T)’ T ldt ees(3.2-1)
t

the necessity of solving a two-point boundary condition problem
is removed. The optimal control can be found in terms of x,
VW(x,t) and t, and V(x,t) found by solving the Hamilton-Jacobi

equation

Hx,vV(x,t),t] + avV(x,t) =0
at

where V represents differentiation with respect to x. Although
it is aimost impossible to solve the Hamilton-Jacobi equation
even for trivial problems; it is possible to obtain a solution
in a relatively straightforward manner for one problem of sig-

nificant practical importance.

This problem, known as the linear control problem,
is the optimal control of the linear system

X=Ax+3Bu
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with a cost function
T

J = | [ (g_?qi + uTPu‘) dt | | eeea(3.2-2)
o .

where Q is at least positive semidefinite symmetric, P is

positive ﬁefinite symmetric, and u is unconstrained. Although

13

more genetal quadratic cost functions have been developed s

these give rise to much greater éomputational difficulty, and

as a result will not be considered here.

It has been shown also, that if V(x,t) is given by
T ,
V(E,t) - _}_{_ R(t)i . o-oo‘302"3)

where x is the initial state of the system, the Hamilton-Jacobi
equation can be solved to yield the well known matrix Riccati

equation

R(t) + Q - R(t) BP 1BTR(t) + R(t) A + ATR(t) = 0 v (3.2-4)
Since for fixed terminal State,

V(x,t) = 0 for x = Eﬂtf) and t=t.

and for the free terminal state,

V(§)tf) = 0 for any x
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R(t) is a positive definite symmetric matrix for all t<tg and

Rth) = 0

Although analytic methods are available for solving equa-
tion 3.2-4, they are unwieldy for any systems of higﬁer than second order.
On the other hand a solution may be obtained easily on a digital computer,
if the equation is integrated backward in time from the known terminal
condition, over the time of interest. The optimal control, found by
differentiating the Pontryagin state function with respect to u can then
be given as

Cu(x,t) = -KT(t)x ceee(3.2-5)

where KI(t) = p~1Tr(r)
The elements of K(t) are referred to as feedback coefficients, since
the optimal control consists of a time-weighted linear combination of

the state variables.

If the timé 1imit in equation 3.2;2 is taken as « rather
than T, the R matrix becomes constant, since for an infinite time interval
V(x,t3) = V(x,t3) for finite t; and t;. If an analytic solution of equation
3.2-4 i; known, the constant R matrix may be found by performing a limit
operation on the solution. The constant R matrix may also be found by in-
tegrating the matrix Riccati-equation backward in time, from the known
terminal condition R(») = 0 until a steady-state solution is reached. Alter-

natively, if R is constant R = 0
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and hence equation 3.2-4 becomes the reduced or degenerate

Riccati equation

1.T

ATR+rRA-rRBPIRR+Q=0 ve.(3.2-6)

For this method, the solution of n(n+l)/2 nonlinear algebraic
equations is required. 1In addition, to obtain a unique solution,

the requirement that R be positive definite must be enforced.

In this chapter a few of the concepts of optimal
control have been mentioned. The reasons for the desirability
of using linear optimal control, or feedback optimal control
with quadratic cost, have also been mentioned. Because of these
reasons only feedback optimal control will be considered in the
following chapters. The next chapter deals with the application
of these concepts to provide near-optimal control of the test

system.



CHAPTER 4

APPLICATION OF REDUCED MODELS IN THE CONTROL
OF A LINEAR DYNAMICAL SYSTEM

4.0 General

Very little work has been done to date, in using
a reduced model to find the optimal or sub-optimal control
of the original system. Mitra 10 has done some analytical
work in this area,but considers only the optimal—pfojection

reduction method.

This chapter deals with the use of reduced models
to provide suboptimal conﬁrol of a test system. The models,
derived using the reduction methods described in Chapter 2,
are first listed, and some comments made regarding the model
‘characteristics. Their application to the control of the test
system is then discussed. Finally, some comments are made re-
garding those model properties which affect their application

to optimal control.

4.1 The Reduced Models of the Test System

Felbws, Sinha, and Wismatﬁ 7, have used the modal
reduction mthods, Anderson's Method, the Chen and Shieh Method
and the step response method to derive reduced models for the
test system, described in Appendix A. Sinha and Pille 3 have
also derived a reduced model for this test system using the

iterative reduction method. Sinha and Bereznai 6 have derived

-37-
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a number of reduced models for the same s&stem, using various
criteria for optimization and the pattern search reduction me~
thod. Of‘theée, four were selected for ﬁse in sub-optimal
control‘of the test system. These models, chosen‘to‘repre-
sent as many different error criteria as possible, are as fol-
lows: |
+ (a) the model which minimizes the maximum perpendi-
cular érror‘between system.and model responses
(minima#-L),
(b) the model which minimizes the sum of the absolute

values of the sample error ( Zle|),

(c) the model which minimizes the sum of the squares

of the sample error (I ez), and

(d) the model which minimizes the sum of the squares
of the sample errors with no error in steady-state

response to a step input,

All models mentioned above,~weré constrained to be second order
models, since, for a proper comparison all reduced models would
have to be of the same order. These models, along with their pole

locations appear in Table I,

As can be seen from Table 1, the two modal reduction methods

have retained the pair of system complex poles nearest the jw axis.
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TABLE I

REDUCED MODELS OF THE TEST SYSTEM

Method of ;
Reduction Transfer Function Pole Locations
Davison's Method -.050525s + .55576 -2.05297 + j0.895322
s + 4.112593s + 5.02966
Steady-State Unit Step Response=.1105
Optimal Projection -,015929s,+ .56478 ' -2.02438 + 0.96465
Method s2 + 4.0488s + 5.0277
Steady-State Unit Step Response = .11233
Anderson’s .30961 -.9512+ j1.335
2
Method s + 1.902574s + 2.687909
Stea&y—State Unit Step Response = .1152
*
Sinha and Pille ‘ .3302 -1.0477 + §1.3375
Iterative Method 42 4 3 09545 + 2.8886
Steady-State Unit Step Response = ,114
Sinha and Bereznai  ,0254s + 0,2967 -1.213 +3j1.043
Pattern Search w3
(minimax 1) s* + 2.4257s + 2.5581

Steady-State Unit Step Response = ,1160




40
TABLE I (Continued)

Sinha & Bereznai .1536s + 0.01329 -.0957, - 1.250
Pattern Search 2 4+ 1,3456s + 0.1196
zleh
Steady-State Unit Step Response = ,1112
Sinha & Bereznai « 3960 -1.328 £3j1.286
Fattern Search 7 4 2.6569s + 3.4191
(zed)
Steady-State Unit Step Response = ,1158
Sinha & Bereznai 0.1019s + ,05359 -0.536+ jO.442

Pattern Search 32 4 3 ,0718s + 0.4823

( e with s.s.
constraint)

Steady~-State Unit Step Response = ,1111

Step Response ' .209768 -0,84520 + 31.08331
Method s? + 1.690396s + 1.887915
Steady-State Unit Step Response = ,1111
Chen & Shieh's 0.1299s + 0.01105 -1.04822, - 0.09822
Method s? + 1.14644s + 0.09941
Steady-State Unit Step Response = ,1112

SYSTEM STEADY-STATE UNIT STEP RESPONSE = .11111
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The authord felt that the effect of the real pole of the system
which is much closer to the origin, could be neglected without
much error, as there is also a real zero very near to it. As
the other reduction methods do not consider the poles or eigen-
values of the original system, new poles have been generated so
that they are able to duplicate more closely the response of

the test system.

The fact that a mean squared error criterion inherent-
ly stresses the closeness of fit between the transient part of
the system and model responses, is also confirmed in Table 1.
The models derived using Anderson's method, Sinha and Pille's

method and Sinha and Bereznai's Eez

method, which all employ
mean squared error minimization techniques, have significant
steady-state step response errors; In contrast, those which
stress steady-state response such as Sinha and Bereznai's Xle]

method and Chen and Shieh's method, have insignificant steady-

state step response errors.

Those features of the reduction methods and their re-
sulting models, which affect their application to near-optimal
control of the test system, will be discussed in later chapters.
The next section deals with the use of the reduced models in con-

trolling the test system.
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4.2 Use of Reduced Models in Open-Loop Sub-Optimal Control

- As stated in Chgpter 2, some of the reducfion methods
use trajectory fitting techniﬁues to derive the reduced model,
that is, they derive a model whose output trajectory apﬁroximates
that of the original system, if both.are driven by the same iﬁput.
‘It was decided therefore, to inveétigate the response of the sys-
tem, if it were driven by the optimal con;rol derived for each

model.

in order to use the optimal control theory discﬁssed
in Chapter 3, it was necessary to represent each model in phase
variable form; as described in Appendix C. ‘A cost functién was
then selected, and the optimal feedback coefficients found for
each model. The details of the derivation of the feedback co-
efficients, for each type of reduced model are also given in Ap-
pendix C. The reduced model was then driven from some initial
state zr(ti).to some final stage Er(tf)’ using closed-loop optimal
control. The resulting model optimal control

up(x,) = -KIx, (t) ceree(4.2-1)

was then used to drive the original system, using systém initial
and final conditions equivalent to those of the model. This sub-
optimal control was applied to the system in an open-loop sense,

as shown in Figure 4.1,
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Block Diagram of Open-Loop
Sub-Optimal Control of a
Linear Dynamical System
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For this method of control, the quadratic cost function selec-

ted was

31 =] ()2 + u(e)Dae ceeee(4.2-2)
0

where x1(t) = y(t) for the system

x; (t) ¥y (t) for the model.

As stated in Chapter 3, the infinite time interval results
in constant feedback coefficients, hence .simplifying conside-
rably, the determination of the model optimal control u.(x,).

Each model was driven from
x(0) = [10]  to x (= =[00]

and the model response and optimal control calculated at .04
second intervals. 1In order to drive the system to zero, a
total time interval of 80 seconds was required. The model op-
timal control was therefore calculated for a time interval of
80 seconds. Each model optimal control was then used to drive

the system from
T _ : T
x@0 =[{10....0] tox(80)=[00...0]

and the system response obtained for the same 80 second time
interval. In addition, the cost function given by equation 4.2-2,

was evaluated for the system for each case of sub-optimal control.
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To provide a basis for comparison, the minimum cost
was found for the system by obtaining the system optimal feed-
back coefficients, using the method described in Appendix C.2.

The system was again driven from
xT(0) = [L 0 ... 0] toxT(80) =[ 00 ...0],

this fime using closed-loop optimal control and the cost cal-
culated. This minimum cost can also be directly evaluated from
equation 3.2-3, and for this set of initial conditions is simply
equal to Rjj, the first element of the R matrix solution of equa-
tion 3.2-4 for the test system. The system and model responses
and costs were calculated using the methods and program descri~
bed in Appendix B. bThe results of this investigation are'sum-

marized in Table 2 in Chapter 5.

4.3 Use of Reduced Models in Closed-Loop Sub~Optimal Control

In the previous section, a method was described, which
uses a reduced model to provide sub-optimal control of the original
system. However, since the resulting control is open-loop, this
method has certain undesirable features. As mentioned in Chapter 3,
noise acting on the system will cause this control to be a poorer
approximation of the optimal. In additbn, as the initial state of

the system changes, the initial state of the reduced model must also
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be changed accordingly. This requires a new calculation of
the model optimal coatrol, for each set of initial conditions

for the system.

To circumvent these limitations, it was decided to
attempt driving the system using some‘form of feedback optimal
control. Since the reduced model 1s an approximation of the
system, the model optimal feedback coefficients can also be
regarded as an approximation of the system optimal feedback
coefficients. Once the model feedback coefficients have been
caléulated for a particular cost function, they can be used
to provide closed-loop sub-optimal control of the system. These
coefficients are used to provide a feedback path, as showﬁ in
Figure 4.2 and are valid for a family of system initial conditions.

1
The feedback coefficient vector K is given by

T
K = [Kep » Kpgs 0, oees O]
s

where Krl and Kr2 are the optimai'feedback coefficients derived

for the reduced model. It waa decided to minimize the same cost
function as before, given by equation 4.2-2., The required model

coefficients are therefore those derived for section 4.2, that is

open-loop sub-optimal control.



47

x'
b

I . c t—2a v(t)

+y+
0] -

Figure 4.2

Block Diagram of Closed-Loop
Sub-Optimal Control of a
Linear Dynamical System

For each pair of model coefficients, the system was driven from

x(0)T=[10 ...0] to x(80) = [0 ...0]

using the configuration of Figure 4.2, The system response
xl(t) = y(t) and the sub-optimal control

u(t) = K:E(t)
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were again calculated at .04 second intervals, for a total

time interval of 80 seconds. The cost function given by equa-
tion 4,2-2 was calculated for each case. The details of the
system response and cost function calculations are given in Ap-
pendix B. The results of tﬂis investigation are summarized

in Table 3, in Chapter 5. In addition to the reasons already
mentioned previously; this method of control is desirable

because of its simplicity of application.

As can be seen from the results and discussion given
in Chapter 5, the cost function

-]

3 = [ G (6)2 + u(t)2)de
0

seems to be somewhat insensitive to feedback coefficientl
variation, at least for this particular test system. It was
decided therefore, to investigéte near-optimal control of the
test system using another cost function. The cost function-

chosen was

o

I, = [ ()2 + 10 x, ()% + .1 u(e)®)de ... (4.2-3)
0

if

xl(t) = y(t) veee (4.2-4)
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and X, (t) = y(t) eeeo(6.2=4)

this cost function can be represented by

-]

I3 = [ G2 + (2 + u(®)Ddt ... (4.2-5)
0 |

where y(t) is either the system or model output.

Since some reduction methods employ trajectéry--
fitting techniques, the model output and its derivative.
with respect to time, are a good approximation of the system
output and its derivative. Also, since for sub-optimal control,
both model and system cost functions must be the same, it was
felt that the best choice of cost functions are those whose
terms are limited to the output, its derivative with respect
to time and the control input. This requires that the state
" variables for both system-and reduced models be in phase varia-
ble form. That is, the n state variables for a system of order

n, must represent the output and its n-1 derivatives.

From appendix A.1l, it can be seen that for the test
system, the conditions of equations 4.2-4 are met by modifying

the control vector B to include the effects of the system zero.
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These conditions are also satisfied for those reduced models
which have no zero. However, as also shown in Appendix C.2,

if the reduced model transfer function is given by

a s+ ﬂ
Gp(s) = —0—— eeee (4.2-6)

s2 + ds + ¢

even modifying the control vector Br will not satisfy the con-

ditions of equations 4.2-4. TFor these models

y(t) = %, (¢)

veees(4.2-7)

y(t) = xp(t) + a u(t)

If these results are substituted in equation 4.2-5 it is not
possible to have a cost function of the general quadratic form
given by equation 3.2-2, As a result, the cost functions for
the system and reduced models without zeros are equal and can

be given by equation 4.2-5. The cost function for those models
having a zero is somewhat different from the system cost and can

be given by equations 4.2-3 and 4.2-7.

The optimal feedback coefficients for both reduced
models and system were again calculated using the appropriate

cost functions as outlined in Appendix C.2, Unfortunately, with
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the exception of one model, for the reduced models having a
zero, either one of the feedback coefficients calcuiated was
negative. As there is a possibility of the resulting closed-
loop system becoming unstable, with é negative féedback co-
efficient, it was decided to define the state variables of
thése reduced models différently. If the reduced model trans=

fer function given by equation 4.2-6 is written as

x4 (s) y(s)
G_(s) = . S,
u(s) : x1(s)
= b » ((a/b)s+l))
»sz+ds+c

The state variable representation becomes

veeeo(4.2-8)
y(e) = [ 1 a/b] 'xl

The model optimal feedback coefficients were calculated
for the models having a zero using the cost function given by equa-

tion 4.2-3, with the state variables defined by equation 4.2-8. Al-
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though the cost function is different from that4for the system,
because of the definiton of the state variables, thé resulting
feedback coefficients are positive and can be used in sub-op-
timal control. 1In addition, thié definition of the state Varia—
bles, allows one to treat the model as having no zero and hence
to derive the feedback coefficients directiy, using.the formulae
given in Apﬁendix C.1. iThe choice of state variable represen-
tation and resulting effects will be discussed further in the

next chapter.

The system was driven from

kg?(O) =[10...0] to x¥(80) =1[0 .eu 0]

using the‘system optimal feedback coefficients derived for

the cost function J3 given by equation 4.2-5, and J3 was eva-
lﬁated for the 80 second total time interval. Again, as stated
for the first cost function considered, the minimum cost is also

equal to Ry;. The system was also driven sub-optimally from

x7(0) = [ 10 ...0] to x(80) = [0 ... 0]

using the configuration shown in Figure 4.2. The model feedback

coefficients used, were those derived for the second cost function

as explained .earlier in this section. The sub—optimal cost given
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" by J3,.was also calculated fo? each pair of feedback coefficients.
The system responses and costs for the above cases of optimal

and sub-optimal control, were‘calculated using the method and
program given in Appendix B, using time intervals of .04 seconds.
The results of this investigation are summarized in Table 4 in

Chapter 5.

As can be seen from Chapter 5, the results obtained
for closed-loop sub-optimal control are better than those for
the open-loop method. It was therefore decided that only. the

closed~loop method waild be applied for the second cost function.

‘In summary, this chapter has dealt only with the pro-
cedures followed for each investigation. Discussion of the re-
lative merits of the different procedures or techniques has
been kept to a minimﬁm in order to keep the chapter more coherent.
For the same reason, discussion of the results hés been limited
to those details required'for an explanation of the procedures
followed. A thorough discussion of.the results obtained for eacﬁ

investigation, is given in the next chapter.



CHAPTER 5

COMPARISON OF THE SUITABILITY OF REDUCED MODELS FOR

NEAR-OPTIMAL CONTROL OF THE TEST SYSTEM

5.0  General.

" In the preceding chapter, the ten reduced models were
used to prﬁvide an approximation of the optimal control for the
test system. The methods of application were described and some
comments made regarding the model characteristics. In this chap-
ter, the results are given for each method of sub~optimal control
and cost function used. Those features of the reduction methods
and their resuiting models, which affect their application to near-
optimal control of the test system are aiso discussed. The pre-
sentation of results follows the same order as that of the proce-
dures described in Chapter 4. From the results obtained, some ob-
servations aré made regarding the suitability of each method of sub-
optimal control, and the suitability of each model for providing this

control.

5.1 Results of the Cases of Sub—Optimal Control Investigated.

This section presents the results derived for the proce~-
dures outlined in Chapter 4. They are divided into three cases, (i)
open-loop sub-optimal control using the cost function given by equa-~

tion 4.2-2, (ii) closed-loop sub-optimal control using the same cost

-S54~



55

function, and (iii) closed-loop sub-optimal control using the cost

function given by equations 4.2-3 and 4.2-5.

The results for the open-loop sub-optimal control method
are summarized in Table 2. The R matrix solutions are not given,
as these are only used to calculate the model optimal feedback

‘

coefficients.

The results for the closed-loop sub-optimal control
method using the cost function given by equation 4.2-2 are summa-
rized in Table 3. The system optimal feedback coefficients are
included for comparison. 1In both tablés, the models are ordered
according to their suitability for providing near-optimal control

for the system.

The optimal system cost was calculated both by driving
‘the system using optimal feedback control and evaluating equation
3.2~3; The results for each are identical, hence providing a check

for the accuracy of the system response calculations.

The system optimal outﬁut trajectory is shown in Figure
5.1. Since the sub-optimal system trajectories are almost identical
for the cost function considered, only two are shown in Figure 5.2.
All the other system trajectories lie between these, The figure

time interval was selected as 40 seconds, since for the rest of the



TABLE 2

RESULTS FOR OPEN-LOOP SUB—-OPTIMAL CONTROL OF THE TEST SYSTEM

. SYSTEM COST
REDUCTION METHOD

OPT. SYSTEM COST

Pattern Search

1.00032
zle]

Chen & Shieh Method 1.00037

Pattern Search

Ie2 + 8.8, constraint 1.00725

i

Pattern Search
minimax _L

1.01080

Optimal Projection ' 3 97093
Method ;

Davison's Method . 1.01101
Pattern Search 1.01121
Xez ‘

Step Response Meth, @ 1.,01147

Iterative Method I 1.01156
i

]
i

Anderson's Method 1,01171

|
j
|
|
|

Optimal System Cost = 6,2490
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RESULTS FOR CLOSED-LOOP SUB-OPTIMAL CONTROL OF THE TEST SYSTEM

T ‘ SYSTEM COST
REDUCTION METHOD " K FOR MODEL
OPT. SYSTEM COST
Pattern Search [.11191 .04089] 1.0
min Zlel )
Chen & Shieh Method | [.11151 .04802] 1.0
Pattern Search [.10248 .05136] 1.00009
ZeZ with s.s.
} Pattern Search :
[.063007 .023785] 1.00219
minimax |
Pattern Search [.057717 .C21688] 1.00270
ze? -
Anderson's Method [.05740 .030097] 1.00280
Iterative Method [.05697 .0271302] 1.00282
Opt. Projection Meth.| [.05403 .018382] | 1.00302
Step Response Meth. [.05538 .032698) 1.00304
Davison's Method [.048960 .01338] ' 1.00360

SYSTEM OPTIMAL FEEDBACK COEFFICIENTS

6

[.11552 .06676 .016387 .001305 7.2799x10-5 1,4469x10° 1.7307x10-8]
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control interval, the response approaches zero asymptotically.

The results for the closed-loop sub-optimal control
method using the cost function given by equations 4.2-3 and 4.2-5,
are summarized in Table 4, The model R matrix solutions, although
not given, are those found if the model state space equations are
given by 4.2-8. The optimal system costs, calculated by driving
the system using optimal control and evaluating equation 3.2-3,

are identical and are included in Table 4.

The R matrices, derived if the model state_variables
are defined by equation 4.2-7, are positive definite. However,
the resulting feedback vector has one negative term because of
the definition of the control vector elements. Positive-feedback
coefficients occur for the Pattern Search (minimax L) model and are_’
given by
T

Kr = [1.7324 4.1704]

The sub-optimal system cost using these coefficients is 6.24710 and

is the minimum sub-optimal cost found for both methods of model repre-

sentation. The system optimal feedback coefficients are

3

KT = [1.446 6.3039 .80605 ,052908 1.8112x10" 7]

3x10™° 2.7x10"

The system optimal output ttajectdfy for the second cost
function is showﬁ in Figure 5.3 and the optimal control in Figure 5.4.
Figures 5.5 and 5.6 show the sub-optimal trajectories and controls re-

spectively, for the best and worst approximations of the optimal control.
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TABLE 4.
RESULTS FOR CLOSED-LOOP SUB-OPTIMAL CONTROL OF THE TEST SYSTEM USING J2

REDUCTION METHOD kT FOR MODEL ' SYSTEM COST
r MIN. SYSTEM COST
| | |
Pa;?:?“ Search [.53943 .890801]  1.02206
| | ?
Chen & Shieh [.53960 .9483] ' 1,02251
Method
Factern Search (5394026 2.8064] ' 1.04006
e with s.s. !
§5
Pattern Search |
a n !
e L [.56163 4.8868] . 1.06143
1
@,
Step Response Method . [.53939 4.9831] - 1.06625
i 1
| !
Opt. Projection Methoé [.54498 5.2135] ©1.06843
H |
1
Davison's Method 153657 5.11766] 1.06853
! i
|
| i
Pattern Search ZeZ | [.56088 5.4499] 1.06898
!
Iterative Method [.5540 5.6385] ' 1.,07272
Anderson's Method |  [.55799 5.7446] 1.07351

Minimum System Cost = 6.17478
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Since ten models are studied it is felt that the two extremes suffice

since all the.other sub-optimal trajectories and controls lie between

them.

This section has presented the results for each case of
sub-optimal control separately. The next sections will consider all '

the results as a whole.

5.2 Comparison with Respect to Computational Effort Required.

From Tables 2 and 3, it can be seen that the closed-loop
method of control approximates the optimal control for the system
more closely than the open-loop method for every model used. The
system costs are very close for the two methods of control, but this
is attributable to the fact that the first cost function is very in-
sensitive to feedback coefficient variation because of their small
magnitude. The closed-loop method of sub-optimal cont:91 results
in a closer approxiﬁation of the true optimum, In addition, in prac-
tical systems, the addition of noise and parameter variation make
closed-loop control more desirable. For the solution of the matrix
Riccati equation, those models which have no zero are more desirable
since the feedback coefficients can be directly calculated using the
formulae of Appendix C.2. However, those models which contain zeroes,

approximate the optimal control more closely, even when they are in

state variable rather than phase variable form, as can be seen from

Table 4, Since in this representation the formulae can also be used,
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computationally, a reduced model without‘a zero is no more desira-

ble.

‘§onsidering models containing zéroes, if the cost function
for the system is written in terms of the output and its derivatives,
the model should be represented in phase variable form. For the
~ test systeﬁ considered, this resulted in most ﬁodels having a negative
feedback cpefficient, because of one of the elements of the coﬁtrol
vector is also negative., The Pattern Search (minimaxl) which was
fourth best for all other cases considered, was the only model having
positive feedback coefficients. However, it approximated the optiqal
controi most closely, for the second cost function, when used in phase

variable form.

The patﬁern search method required m&fe computer time than
most other reduction methods, however, the resulting models are op-
timized with respect to a selected error criterion. They are also
‘consistently the most suitable models for apéroximating the system.
optimal concrol.. The‘increased.computation required is therefore jds-
tified. The ﬁodai feduction methods are tedioﬁs and require the cal-
culation of the eigenvalues, eigenvectors and ﬁodal matrix inverse.
Even though the modes fetained are those closest tb the jw-axis in
the s-plane, the resulting models are no more suitable than those
derived using much simpler methods. As expected, the Optimal Projec-

tion Model was slightly better than the Davison Model.
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To derive a first approximation of the optimal control,
one of the simpler reduction methods such as the Iterative or

Step Response Methods should be used.

Although the second cost function is more difficult to
apply, there is a better separation of sub-optimal costs and re-
sponses as can be seen from T;ble 4 and Figures 5.5 and 5.6. This
is due to the .lu2 term which allows larger feedback coefficients
and hence, a larger control input. Hence, variation in model para-
meters result in greater differences in the approximation of the oﬁ-
timal control. The suitability of different models is much more ap-

parent than for the first cost function.

5.3 Comparison of Model Suitability.

The results summarized in Tables 2,3 aﬁé 4_are very con-
sistent. The order of model suitability is basicaily unchanged,
between the different cases of sub-optimal control. 1In addition,
the most suitable models result in near-optimal control of the system,
For both cost functions, the system sub-optimal cost approaches the
true optimum even for the second cost function, where the model and

system costs are not truly identical,

For the first cost function, the suitability of the
different models may be more easily perceived if one compares the
feedback coefficients of Table 3 with the first two optimal feedback

coefficients for the system.
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Those reduction methods which optimize the model with
respect to some error criterion, result in models which are most
suitable for sub-optimal contr§1 applications. The most desirable
criterions are those which stress.the steady~-state part of the sys-

' tem response. The Pattern Search Je| criterion and ze2

with steady-
state constraint criterion, both stress the steady-state part, the

former more than the latter. In addition, the Chen & Shieh reduction
method stresses the steady-state part of the system response, becausge

of the expansion around s = 0,

The reduction methods which minimize the mean squared error,
are not as suitable because this criterion inﬁeréntly stresses theb
transient portion of the systeﬁ tespénse. Aé can be éeen from Tables
2,3 and 4, the three models resulting frém this criterion are equally _
suitable. Since the step response reduction method allows one to stress
selected system response features, the resulting model may be made more

suitable by stressing steady-state response,

The modal reduction methods result in models as suitable
as the mean squared error models. A better model may have been de-

rived if the pole closest to the origin had not been neglected.

In summary,the most suitable reductian methods are the
Pattern Search Method with error criterion which stress steady-state
and the Chen & Shieh method. The resulting sub-optimal controls and
trajectories are very near optimum as can be seen from Figures 5.1 to

5.6. The next chapter discusses the conclusions to be drawn froﬁ this work.



CHAPTER 6

CONCLUSIONS

Ten different reduced models have been applied, to pro-
vide sub-optimal control of a test system. The models were used
to provide both open-loop and feedback sub-optimal control for
one cost function, and only feedback sub-optimal coﬁtrol for ano-
ther. Since éach model was derived using a different reduction
method, the objective was to &etermine which reduced models were
most suitable for providing an approximation of the optimal control
of a system, Since the results obtained are quite consistent, some

conclusions may be drawn from this work.

For all models used, the feedback method of sub-optimal
control produced better results than the open-loop method. In
" additbn the feedback method was much easier to apply. For this
method, for both cost functions, the sub-optimal cost for the sys~
tem was very near to the system optimum for some models used. This-
method of using the model optimal feedback coefficients as an approx-
imation of the system optimal coefficients is useful and for some redu-
ced models results in a sufficiently close approximation of the system
optimal control for most practical purposes. Those models which are

computationally easier to handle, that is, those models having no zero,

-70-
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may be used to derive a first approximation of the optimal con-

trdl, the true optimum being found by some other method.

In general, it is‘uéually not poséible to find an ex-
plicit representation of the closed-loop optimal control for a
non-linear system. If a linear low-order model for the systeﬁ is
found, fhe ciosed—loop method of éub—optimal control may be used
to_épproximate the optimal control for the system. If necessary,

a better approximation may then be found using a search routine.

The desirability of using reduced;modeis to apprbximate ;

the optimal control of a complex system is also verified. Although

the test systém was only seventh order with one zero, if the model ép-
timum was used instead of the system, the reduction in computer time
requiréd to solve the matrix Riccati equation was enormous. Even for
those models which most closely approximated the system optimal response,
the computer time was one fortieth of that required for the system solu-
tion. In addiﬁon, the system parameters must be known in order to derive
the optimal feedback coefficieﬁts. Since some reduction methods reﬁuire
only the system response for a particular input, the system may be con-

trolled near-optimally without any knowledge of the system parameters.

If only a first approximation of the optimal control is re-

quired, it would be more desirable to use a reduced model having no zero.
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The model optimalvfeedback coefficients can be directly calculated
using the formulae previously mentioned. For those models with a
zero, the matrix Riccati equation must be integrated backward in
time until a steady-state solution is reached. This fact seems to
make reduced models having no zero, more suitable for on-line appli-
cations. However, even if the reduced model is represented in state
variable form, rather than phase variable, the approximate optimal
control is still better than that derived for those models without
-a zero. Since in this representation the formulae can also be used,
no added value may be given to a model because it does not contain a

Zero.

The order of model suitability is not basically different
for both cost functions and both methods of sub-optimal control. The
reduction methods which stress the steady-state or settling time part
of the system response result in reduced models which are most suita-
ble for suﬁ-optimal control. These methods include the pattern search
method which minimizes the sum of the absolute errors between the system
and model response, and the Chen & Shieh method. One weakness of the
Chen and Shieh method is that thé system transfer function must be known
and only single input-output systems can be considered. To a lesser extent
the ﬁattern search method which minimizes the sum of the squares of the

errors with steady-state constraint, also results in a
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suitable model. As expected, the methods which minimize the mean
squared error, all produce models which are equally good. Also, they
are not as suitable as those mentioned above, since a mean squared
error objective inherently stresses the transient part of the system
response. The modal reduction methods, although they require a know-
‘ledge of the system eigenvalues and eigenvectofs, and are computatio—
nally te&?ous, produce models which are no better than those &erived

using simpler reduction techniques.

From these results, it may be stated that those reduction
methods which optimize the low-~order model with respect to some obﬁec—
tive error function, produce models which are most suitable for opti-
mal control. If this objective function stresses the steady-state por-
tion of the modei and system responses, fhe order of suitability is in-
creased. Of the reduction techniques considered in this work, the pat-
~ tern search method results in models which are most suitable. Although

c
computationally 1ong,‘it requires no knowledge of the system parameters
and the objective error function may be chosen to stress any part or as-—
pect of‘the system response.. For a first approximation, the step response
method may be selected siﬁce it requires no knowledge of the system para-
meters, is computationally the easiest method to apply and stresses selec—

ted system response characteristics.

By choosing the appropriate reduction method, a second order

reduced model can be derived which can provide a very good approximation
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- of the optimal control for the system. If higher order reduced models
are derived, this approximate control may be made to approach the true

optimum.



APPENDIX A

THE TEST SYSTEM

A.l The Test System Transfer Function

For the sake of reality and validity, it was decided that
‘an authentic system model containing a reasonable number of cdmplex

poles, fairly distributed in the s-plane, was required.

Reduction techniques invariably neglect (to some extent)
the poles of the system which are located far from the origin since
these poles represent small time constants and their effects are
relatively short-lived. Sbme authors have taken examples in which
there are two sets of poles, one near the 5w-axis, aﬁd the other far
away from it. This restriction, besides being unrealistic, favors
the modal reduction methods which select certain modes to be retai-
- ned and neglect the rest. To avoid biased results, then, a trans-
fer function with poles distributed over the entire left-half plane
was preferred.'

14 vas one of the designs studied for

The system chosen
the current super-sonic transport aircraft. Figure A,1 shows the
block diagram of the system with variable parameters K1, K2, T,{

w,. To obtain reasonable pole-zero locations, the following para-

meter values were selected by the authors7(consiscent with design
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(SERVO) (ACTUATOR) (AIRCRAFT)
Pitch
rate
2500 1 Kl(ts + 1) C(s)
2 1s +
8% + 60s + 2500 1s + 1 __s_2+(2c)s‘_+ 1
“n1  Yn3
(s + 2)2
(s + .1) (s + 10) K2
(RATE GYRO)

(FILTER)

Figure A.1 ' Block Diagram for a Super Sonic Transport Airplane Design.
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~description and maintaining stability)

Kl = 0.2

K2 = 1.0

w 1= 2.5[r/s]
.ltlv,'lz

¢ = 0.707

With these‘parameter values, the transfer function of the test
system becomes

375000(s + 0.0833)
s/ + 83.648% + 4097.408° + 70341,9s%

(s

WO
i
L}

* 85370333 + 2814271s° + 3310875s + 281250

The characteristic equation of the system is given by F(s) =
Denominator of Transfer Funciion.

Since the roots of the characteristic equation are the poles of the
system and also the eigenvalues of the A matrix if the system is re~
presented in state space form, these are only mentioned once in Fi-

gure A,2,




Pole-Zero Map for the Test System

A o
x 40
Pole Locations
S(1) = -,0919324
$(2,3) = -2,0243829+ j.9646465
S(4,5) = —-7.6727492 + §13.444631 20
: —
s(6,7) = -32.0744 + 338.85934
| | | | x
l ] l l x '
~40 -30 -20 -10
Zero Location
| =20
Z(1) = -.083333
i | -40
y e

Figure A.2 Pole-Zero Pattern for the Test System.
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A.2 State Space System Representation

From the transfer function the state space equations
are developed., These are necessary both for calculating the sys-
tem time response and the calculation and implementation of opti-

mal, or sub-optimal control.

The state space equations, written in the general form
Xx=Ax+Eu

y=Cx

are not desirable. As stated in Chapter 4, it is necessary for the
state space representation to be in phase variable form. This means

specifically that

Xy and Xy =y
The state space equations for a single input-output system can then
be simply written

X =Ax+Bu

y = x

For this representation, the effects of the system zeroes are
compensated for by modifying the control vector. One of the

techniques 12 of accomplishing this is to proceed as follows:
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*

Letting x;= y(t) + by u(t)
xy= y(t) + by u(t) + by u(t)

etc.,

and applying the restriction that no derivatives of u(t) must ap-
pear in the vector differential equation, the elements of the con-
trol vector b, by, ;.. by can be solved for in terms of the trans-
fer function parameters. The resulting vector differential equa-

tion, can be written

as r. 1 B T T ¢ 7
X 0o 1 0 O 0. 0 0 Xy 0
x, 0 0 1 0 0 0 0 x| |0
X4 0 0 0 1 0 0 O x4 {0
x{"]0 0 0 0 1 0 o x, [*]0
xg 0 0 0 0 0 1 O x| |0
xg 6 0 0 0 0 0 1 x6{ |bg
b§7 I e T T B S B T A B e A N e
where a; = 281250
a, = 3310875
a, = 2814271
a; = 853703
ag = 70342
ag = 4097.4

83.64

)
~
(]
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and b6 = 375000

b7 = -31333751

now y=x

y =%

This representation has been used in all calculations
involving the test systém. In the above discussion x, y, and
u are functions of time, but for simplicity the (t) have been o-

mitteq.
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APPENDIX B

SOLUTION OF THE STATE SPACE EQUATIONS USING A DIGITAIL COMPUTER

B.1l Methods of Solution

The solution of the equations
x(t) = Ax(t) + Bu(t)

t
is x(t) = Alt-to) -x(tg) + At / e 8T Bu(r)dr

to

This equation can be solved by direct integration and then substitu-
tion of the required values for t. However, this method cannot be

used for high-order systems because of computational difficulty.

If ty 1s taken to be zero, which is not unduly restrictive,

the solution becomes

t
x(t) = eAtIEKO) + fe-AEu(t)dt]
0 v

In order to use a digital computer to solve the state space equations,
the solution must first be expressed in discrete form. The solution
becomes easier if the driving function, or input, is held constant
between sampling intervals, or can be suitably approximated by a se-

ries of step functions which can be considered constant between the
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sampling intervals. This condition is met‘when the systém is
driven sub-optimally in an open-loop sense since the optimal
control for the model is givén’as a serieé of values at the sam-
pling instants.

The solution can then be given by
o AT T | ‘
()T = AT x(k1) +  [e  Bu(kT)dt. veeo(B.1-1)
.o 0
where T = sampling interval

and k = sampling instant

If eAT and e~AT are represented in infinite series form as

eATS (I+AT + AT)z + sATz3 + oooo.) ""(B'l-z) »
! "3 |

and e~AT = (I-AT+(AT)Z = (AT)3 + ...)
21 3]

and equation B.l-1 integrated between the limits shown, the solution

becomes

x (k#1)T= AT x(kT) + [I-AT + (AT)2 - ....] Bu(kT)T  ...(B.1-3)
- - 2T T3]

vhere eAT is given by equation B.1-2,

This form of solution (later referred to as the series
expansion method), lends itself to machine computation. If the
two infinite series are first computed using a suitable truncation

criterion, equation B.1-3 can be solved iteratively by simply up-
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»

dating the initial conditions and control input.

However, this form of solution is not suitable for
feedback control where u(kT) = —K?g(kT). For this form of control
the responses may be best calculated using a numerical method of
integrating the ordinary differential equations. Although round-off
errors may become significant using these methods, these can be mi-
nimized by selecting a suitably small time interval. The numerical

d.15 It obtains

method selected is a fourth order Runge-Kutta metho
an approximate solution of the vector differential equation with gi-

ven initial conditions.

To obtain the value of the cost function for the total

time interval of interest, the value of the integrand of

-
J = fo(xTQx + uTPu)dt is obtained for each sample interval.
U
A Simpson's rule integration technique is then employed to evaluate
the integral of this equally spaced data. There is a subroutine
resident in the CDC 6400 computer library which combines Simpson's

rule and Newton's 3/8 rule to perform the necessary integration.

A general program is included in Appendix B.2 which cal-
culates the response of a system defined bybthe equations

é_s Ax + Bu

y = Cx

u = N[r(t)-KTx(t)]
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The program also evaluates the cost function for the total time
“interval of control and plots the output, control and desired

state variables using the line printer.

This program was used to compute all model and system
responses for the cases of model and system optimal control and
open-loop or closed-loop sub-optimal control of the system. The
sub-optimal costs and responses of the system were also computed
fof the case of open-loop sub-optimal control of the system, using
the series expansion method previously mentioned. There is good
agreement between the results of both methods of solution if a sam-
pling interval of .04 seconds is used., Since an 80 second control
- time is required to drive the system to zero, the system response

is computed for 2000 samples.

A smaller sample time produced results which agreed
closely with those produced by a .04 second interval (five figure
accuracy). For all calculations therefore, it was decided that a

.04 second time interval provided sufficient accuracy.

The program can be easily modified ‘to provide a punched
data deck of response or control values. However, these additions

are not included in this listing.
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APPENDIX B.2

COMPUTER PROGRAM FOR SOLUTION OF

STATE SPACE EQUATIONS USING A DIGITAL COMPUTER

GRAPHICAL TIME RESPONSE (GTRESP)
SUBPROGRAMS USED- CALCUs RUNGEsTRESPs YDOT
THIS PROGRAM CALCULATES THE RESPONSE s STATE VECTORs AND
CONTROL TRAJECTORIES GIVEN SOME INITIAL CONDITION AND

AFITHER OPEN-LOOP CR CLOSED-LOOP CONTROL

3
1000

1001
1002
1003
1004

© 1005

1006
1007
1008
1009
1010
1011
1012

60

INTEGER CHAR(15)

COMMON IPLOTsIVAR(1U)

DIMENSICN A(1Us1U)aCl1U)sBl1U)»AK(1u)sX(1C) sNAME(H)

DATA CHAR(1)sCHAR(2)sCHAR{3)sCHAR(4) sCHAR(5 ) »
8CHAR(6) s CHAR(T7) s CHAR(8) s CHAR(9) s CHAR(10U) sCHAR(11) »
7CHAR(12)sCHAR(12) sCHAR(14)sCHAR(15)/2H 192H 292H 332H 4>
4 2H 532H 692H 7s2H 832H 992H1Us2H Es2H Us2H Ys2H Rs2H /

INPUT AND OUTPUT FORMAT STATEMENT.

FORMAT(7F11e2)

FORMAT (1HUs1UXs8HTZERO = sF1lUe6s1UXsBHTF = sF10.6/
811Xs5HDT = sFlUebs13Xs7THFREQ = 915)

FORMAT (1HUs1UXs13H THE A MATRIX /)

FORMAT (6(E2Ce8)) \

FORMAT (1HUs1UXs19H INITIAL CONDITIONS /)
FORMAT (1HUs1UXs12H THE B MATRIX /)

FORMAT (1HUs1UXs16H FEEDBACK CQEFF. /)
FORMAT (1HUs1UXs8H GAIN = sE2U.8)

FORMAT (1HUs1uXs13H THE C MATRIX /)

FORMAT (8A2)

FORMAT (5Xs25HPROBLEM IDENTIFICATION - »5A4)
FORMAT (1TH1 94X 23HGRAPHICAL TIME RESPONSE)
FORMAT(/5X945(1H*))

FORMAT(8F1047)

IPROG = O

READ(5s1) (NAME(I)sI=195)sN
FORMAT (5A4s12)

DO 60 I=1,8

IVAR(I) = CHAR(15)

PRINT 1010

PRINT 1UU9s {NAME{(I)sI=1s5)
PRINT 1011

THE A MATRIX IS READ IN AND OQUTPUTTED
PRINT 1001
DO 2 I=1sN


http:6CE20.8l

AN O NN

87

TTREAD 35 (A(IsJ)sJ=1sN)
PRINT 1U02s (A(IsJ)s J=1sN)
> CONTINUE

THE B VECTOR ELEMENTS FOR THE SYSTEM ARE GIVEN

B{l) = 0OlU

B(2) = 0.0

Bl4) = CoU

B(5) = 0.0

B(6) = 375UUU.

B{7) = 375000.%0,08333-37500U%83e64

PRINT 1004

PRINT 1602s (B(I)sI=1sN)

"THE C VECTOR ELEMENTS ARE READ IN AND OUTPUTTED
READ 29 (C{I)sI=1sN) ‘
PRINT 1007
PRINT 1002s (C(I)sI=15N)

THE FEEDBACK COEFFICIENTS ARE READ IN AND wRITTEN
READ 1012s (AK(T)sT=1sN)

PRINT 1005 :

PRINT 1002s (AK(TI)sI=1sN)

READ 3» GAIN
PRINT 1u06s GAIN

THE INITIAL CONDITIONS ARE READ IN AND WRITTEN
READ 29 (X{I)sI=19N)

PRINT 1003 .

PRINT 1002s (X{I)sI=1sN)

THE PROGRAM TIME PARAMETER ARE READ IN ANRND WRITTEN
READ 3s TZERCsTFsDT»FREQ

IFQ = FREQ

PRINT 1000s TZEROsTFsDTsIFQ

PRINT 1011

THIS PART OF THE PROGRAM DETERMINES THE TRAJECTORIES
THAT ARE TO BE GRAPHED AND PREPARED THE PLOT SUBROUTINE

READ 10U8s (IVAR(I)»I=1+8)

DO 40 I=1s8

DO 30 J=1»15

IF(IVAR(I)=-CHAR(J)) 30925530
25 IVAR(I) = J
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GO TO 4U
30 CONTINUE
40 CONTINUE

MIN =1
MAX = 8
M= 8

419 DO 42 I=MINsMAX
IF(IVARIT)«NEW15) GO TO 42
M = MAX-1 ' ~ o ‘
IF(1.GTeM) GO TO 42
DO 43. J=1+M :

43 IVAR(J) = IVAR(J+1
GO TO 431 ;

42 CONTINUE
GO TO 432

431 MIN = 1
MAX = M
GO TO 419

432 1PLOT =M
IF(IPLOTLLTa2) GO TO 50
LIM = IPLOT-1

DO 44 I=1sLIM

MIN = I+1

DO 44 J=MINsIPLOT

IF(IVAR(III=IVAR(J)Y) G4944945
45 THOLD = IVAR(I)

IVAR(I) IVAR(J)

IVARCI) ITHOLD
44 CONTINUE

THE INTEGRATION PROCEDURE IS INITIATED BY CALLING DUBROUTINE
TRESP

50 CALL TRESP(AsXsBsAKsTZEROsTFsDTsIFQsNsGAINsC)
IPROG = IPROG+1
IF(IPROG-6)105204+20

20 5ToP
END
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SUBROUTINE CALCU(XsUsTaNsAKsGAINSR)
C THIS SUBROUTINE COMPUTES THE REFERENCE AND CONTROL INPUTS
DIMENSION X(1lu)s AK(10)
C BEGINNING OF ROUTINE TO DEFINE R THE OPEN-LCOP CCONTROL INPUT
1001 R = 0.0
1002 CONTINUE

C END OF ROUTINE TO DEFINE R(T)
Uu=R
DO 1 I=1sN
1 U = U=-AK(I)*X{])
U = UXGAIN
RETURN
END

SURRQUTINE RUNGE (NsFNsHsXsYsLoI)
C FOURTH ORDER RUNGE KUTTA INTEGRATION ROUTINE o
C THIS SURBRQUTIMNE PERFORMS THE ACTUAL INTEGRATI“N AND IS CALLEUD
C FOUR TIMES FOR EACH TIME INTERVAL :
DIMENSION Y(6UC) sPHI(6UU) sSAVEY(HVU)FNI(8)
I = I+1
GO TO (19293s495) 1
1L =1
RETURN
2 DO 600 J=1sN
SAVEY (J) = Y (J)
PHI(J)Y = FNULU)
600 Y(J) = SAVEY(UJ)+.5%H*¥FN(J)
X = X+.5*H
L =1
RETURN
3 DO 700 J=1sN
PHI(J) = PHI(J)+2.¥FN(J)
700 Y(J) SAVEY (J )} +.5%H¥FNTJ)
L' =1
RETURN
4 DO 800U J=1sN
PHI(J) = PHI(J)+2«¥FN(J)
800 Y(J) = SAVEY(J) +H*FN(J)
X X+ ¢ 5%H
L 1
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RETURN
5 DO 90U J=1sN
900 Y(J) = SAVEY(U)+{H/6e)*(PHI(JI+FN{J))
L =2
I =0
RETURN
END

SUBROUTINE TRESP(AsYsB9AK9X’XMAX9H9IFREQsN’GAINaC)
THIS SUBROUTINE IS THE MASTER SUBROUTINE WHICH CALLb THE OTHER THRE
SUBROUTINES IN THE INTEGRATION PROCEDURE
IT USES A FOURTH ORDER RUNGE-KUTTA ALGCRITHM TO INTEGRATE THE
LINEAR SYSTEM
THIS SURBRROUTINFE COMPUTES AND PLOTS TIME RESPONSE
USING CALCUSsRUNGESYDOT AND YB8VSX
INTEGER CHARILS)
COMMON IPLOTSIVAR{1G)
DIMENSION SKJ(1U199)sC(10)sSCOST(2001)9s0INT(200])
DIMENSION FN(10)sY{10)sAL10Us1U)sB(1U)sAK(10)
DATA CHAR(1)sCHAR(2) sCHAR(3)sCHAR(4) sCHARI(5)
8CHAR( &) sCHAR(7) s CHARI(8) s CHAR(9) s CHAR(1U) sCHAR(11) »
H4CHAR{12)sCHARI13) s CHAR( 14 ) sCHAR{15)/1H121H2s1H3s1H4 s
8IHS91H691HT7 9 1H891HO s 1HASIHE s 1HU s 1HY s IHR 1H /
24 FORMAT(2F1U4us2110)
25 FORMAT(8F1U.0)
28 FORMAT(// 98X s1HT 912Xs4HY(T) s 1UXs4HUIT) 94X
7 T{S5Xes1HXsI1leo4H(T)Y +3X))
29 FORMAT(1U(ELl446))
1000 FORMAT(/s5Xs33HMAXIMUM NUMBER OF POINTS EXCEEDED /)
PRINT 28y (Jsd=1s2)

AN NN

THIS SECTION CALCULATES THE COST FOR EACH TIME INTERVAL AND
STORES IT IN SCOST

OO NN

1COST =1

DO 4000 1=1,2001
4000 SCOST(I) = ULU

It =0




300

3000

350
450

451

J =0

COST = 0.0

KOUNT = IFREQ

CALL CALCU(Y sUsXsNsAKsGAINSR)
SCOST(ICOST) = Y(1)%%24U%%2
ICCST = ICOST+1

KOUNT = KOUNT+1
IF(KOUNT-IFREQ) 5053504350
KOUNT = ©

Pl = U,V

DO 451 I=1sN

Pl = P1+C{I)*Y(])

- PRINT 29y XsP1lsUs(Y(M)sM=1s2)

35
36
37
38
39
40

21
50

550
222

100
400

600

601

IF{IPLOTLEQ.O) GO TO 21

J o= J+1
IF(JeGTW101) GO TO 222
SKJlUs1) = X

DO 40 1 = 1s1PLOT

MM = IVARI(I)

IF(MMeEQWLO) GO TO 40
IF(MM.GTL1U0) GO TO 35
SKJ{Js1+1) = Y(MM)

G0 TO 4G

KNOW = MM-10

GO TO (3693793893919 KNOW
SKJ{JsI+1) = R-P1

GO TO 40
SKJ{JsI+1)
GO TO 4G
SKJ(JsI+1)
GO TO 40
SKJ(JsI+1)
CONTINUE
CONTINUE
CALL RUNGE (NsFNsHoXsYsLsII)

IF(L=-1) 1002005100

CALL CALCU(YsUsXasNsAKsGAINSR)

CALL YDOT{(AsYsFNsBsUsN)

GO TO 50

PRINT 160G

GO TO 4ud

IF(X=XMAX) 300s300+4C0

IF(IPLOT.EQeV) GO TO 403

PRINT 600

FORMAT (1H1950UX»15HSYSTEM RESPONSE//)
PRINT 601

FORMAT (48Xs8HVARIABLE s8Xs6HSYMBOL/ /)
DO 6U8 1 = 1sIPLOT

MM = IVAR(I)

IF(MMeGTo1lU) GO TO 6U3

]

U

P1

It

R

91
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PRINT 6025 IVAR(T)sCHAR(MM)
602 FORMAT(51Xs1HX»12513XsA1)
GO TO 6U8 _
603 KK = IVAR(I)=10
GO TC (6045605560656U7)s KK
604 PRINT 610 :
| GO TO 6U8 |
605 PRINT 611
GO TO 608
606 PRINT 612
GO TO 608
607 PRINT 613
608 CONTINUE '; |
610 FORMAT (5UXs5HERROR»12Xs1HE)
611 FORMAT(49XsT7HCONTROL»11Xs 1HU)
612 FORMAT(50Xs6HOUTPUT»11Xs1HY)
613 FORMAT(50Xs5HINPUT 212X 1HR)
CALL Y8VSX(SKJsJsIPLOT»10)

C THE COST FUNCTION IS WRITTEN FOR THE TIME INTERVAL

CALL QSF(HsSCOST»SINT»20U1)
COST = SINT(2uU1l)
403 PRINT 8000 COST

8000 FORMAT(1HOU91UXs%*JCOST = %sE1446)
C
RETURN
END

SUBROUTINE YDOT(AsYsXDOTsBaUsN)

THIS SUBROUTINE 1S USED TO COMPUTE ThE DERIVATIVES OF X WITH RESPECT
TO TIME FOR EACH TIME INTERVAL -
DIMENSION Y(1U)sA(10+10)s8(10)sXDOT(10)
DO 2 I = 1N

XDOT(I) = V.

DO 1 J=1,N

XDOTLI) = XDOT(I)+A(IsJg)%Y(J)

CONTINUE

XDOT(1) = XDOT(I)+B(I)*U

CONTINUE

RETURN

END
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SUBROUTINE Y8B8VSX{AsNsMsNGRID)
THIS SUBROUTINE PLOTS UuP T0 8 VARIABLES VERSUS TIME
THIS IS BOTH A X-T AND X=Y PLOT ROUTINE '
1T AUTOMATICALLY SELECTS LIMITo AND DIMENSIONS FOR THE GRAPH
COMMON TPLOTsIVAR(1U)
INTEGER CHARI(15)
DIMENSION A(1U199)sABSCA{11)sKAXIS(101)20RDIN(11)sTEMPY Q)
DATA CHAR{1)YsCHARI(2) sCHAR(3)sCHAR(4) sCHARI(5) s
7CHAR(E) pCHAR(7) s CHAR(8) s CHAR(G) s CHAR(10U) sCHAR(11) s
SCHAR(12)sCHAR(13)sCHAR( 14 ) sCHARI15)/1H1I21H2 s1H391H491HS s
21HEs1HT7»1H891HG s 1HAS IHEs 1HUs 1HY s IHR s 1H 7/
DATA ISTARSIIsIPERIDASH IBLANK/1H¥s1HI 91He s1H=»1H /
100 FORMAT (///7/99X511(E10.2))
101 FORMATI(E13.292Xs101A1)
102 FORMAT({15Xs10U1A1)
YMAX = A(1s2)
YMIN = A(1ls:2)
MP1 = M+1
DO 4 J=2sMP1
DO 4 I=1sN
IF(YMAX-A(TIsJ)) 19292
YMAX = -A(IsJ)
IFCYMIN=-AUTIsJ)Y)Y 43453
YMIN = Al{lsJ)
CONTINUE
YSHFT = 040
IF{YMIN) 59696
YSHFT = YMIN¥1uUUU/{YMAX~YMIN)
NM1 = N-1
DO 8 I=1sNM1
IP1 = I+1
DO.8 K=IP1sN
IF(A(Ks1I)=A(191)) 7488
7 DO 88 J=1sMP1
ATEMP = A(I9+J)
AlIsJ) = A(KsJ)
AlKsJ) = ATEMP
88 CONTINUE

W N e

[0\ 30N ]

8 CONTINUE
XMIN = A(ls1)
XMAX = A(N»21)

ABSCA(1) = XMIN

ABSCA(11) = XMAX

ORDIN({1) = YMIN

ORDIN(11) = YMAX

DO 9 I=2»1V

Z = 1-1 ‘

ABSCA(T) =(XMAX<XMIN)*#Z/1UO0+XMIN
9 CRDIN(I) = (YMAX=YMINI*#Z/1U U+YMIN

PRINT 100s(ORDIN(J)YsJ=1511)
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200
201
10
11
12
13
14

15

16

202

18
19

20
21
22

23
24

25
26

27

9%

STEPX = (XMAX-XMIN)/100.0
KDELX = 1

KLINE =1

LINE = 1

DO 26 IND=1sN
IF(NGRID.EQe.U} GO TO 20U
KSTEP = LINE

GO TO 2V1

KSTEP = (A(INDs1)=XMIN)/STEPX+1e5

DO 10 Uu=2sMP1

TEMRPY{J) = A{INDesJI#1UUeU/(YMAX=YMIN)-=YSHFT

IF(KLINE~LINE) 12912418
DO 13 1I=2,100

KAXIS(I) = IDASH
DO 14 [=1slulslu
KAXIS(I) = ISTAR -

IF(KSTEP=LINE) 15515917
DO 16 1=2sMP1

K = TEMPY(I)+1,5

MM = IVAR(I=-1)

KAXIS(K) = CHAR(MM)

PRINT 1V1sABSCA{KDELX) s (KAXIS(U)sU=1s101)
IF(NGRID+EQsU) GO TO 202
KLINE = KLINE+NGRID
ABSCA (KDELX) = A(KLINE»s1)
GO TO 24

KLINE = KLINE+10

KDELX = KDELX+1

GO TO 24

DO 19 1=251UU

KAXIS(I) = IBLANK

DO 20 I=151U1,10

KAXIS(1) = IPER
IF(KSTEP-LINE) 21521523
DO 22 1=2sMP1

K = TEMPY(I)+145

MM = IVAR(I-1)

KAXIS(K) = CHAR(MM)

PRINT 1u2s(KAXIS(J)»J=15101)
LINE = LINE+1
IF(LINE=102) 25525527
IF(KSTEP-LINE) 26511511
CONTINUE

RETURN

END
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APPENDIX C

SOLUTION OF THE MATRIX RICCATI EQUATION

C.1 Solution of the Matrix Riccati Equation for a

Second Order Model having no zero.

Solution of the matrix Riccati equation requires that
the reduced model be represented in state space form. To satis-
fy the requirements imposed in Chapter 4, the state variables

must be in phase variable form.

If the model has a transfer function given by

a

O ey

and X1y

Xp= X] =y

the vector differential equation becomes
x31 |0 1{xfl0] u
, %2 ~b =-c x2] |a
y=xp - .
Although x, y, and u are functions of time the (t) have been omitted

for simplicity.

-95-
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If the cost function is given by equation 3.2-2,

Q is given by

Qy Q)
1 %42
Q= _
%2 Q2
Ri1 Ry
and R =
R12 B2z

the matrix Riccati equation can be solved very simply.
It becomes only necessary to solve the degenerate Riccati equation
givenby

ATR+RA-RBPIBTR+ Q=0

The resulting algebraic equations are

1.2, 2 .

- - - -1,2 =
Ry1= cRyg = DRyy — P77aRyy Ryot Qo= 0

2(Ryo- cRpp) - P~la2Rg, + Qyp= 0

Since only one of the above equations is non-linear, and one equation
has only one element, the
R matrix elements can be calculated directly

b b2 + P“laan

p-1532

Rjp =
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R22 - —C + c2+ P‘182(2R12+ sz)

P"la2

Rj1 = cRys + bRyo + P'1a2R12R22 - Q12‘

. The feedback coefficients can be calculated froﬁ

T

Ky = P-1BIR

This procedure is computationally very simple and allows one to
represent the optimal feedback coefficients directly in terms of
the model and cost function parameters. It may therefore be use-
ful in on-line adaptive control applications, and the optimization

of a reduced model with respect to a system cost function.

C.2 SOLUTION OF THE MATRIX RICCATI EQUATION FOR THE SYSTEM

AND A SECOND ORDER MODEL CONTAINING A ZERO.

As stated in Appendix C.1l, the reduced model must first
be represented in state space in a phase variable form. If the model

transfer function is-given'by

as+b

G(s) = ~5
s“ + ds+c

and x; = y(t) + bgu(t)

32 = y(t) + boﬁ(t) + byu(t)
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By imposing the condition that.the coefficient of any derivative
of u(t) must equal zero in the vector differential equatiaon, the

phase variable vector differential euqation becomes

xy 01 a - u
‘ - +]

iz . -C "‘d b- ad
y=x1

Again for x, y and u the (t) have been-omitted.

The degenerate matrix Riccati equation results in
equations which cannot be easily solved. It is therefore neces-

sary to solve the matrix Riccati equation given by

R = RBP~1BTR - RA - ATR - @ ~ ceee(C.2-1)

This can be done easily on a digital computer since the above
equation represents a set of first-order ordinary differential equa-
tions. The terminal conditbn is known and is

R(tf) = 0

The matrix Riccati equation can then be integrated backwards in time
from the known terminal condition. Since the control interval for the
cost functions considered in this work is infinite, the R matrix is

constant and the integration can be continued until the solution con-
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-

verges to a steady-state value, or a desired degree of accuracy.
Only the steady-state values are required and hence the integra-
tion step-size may be as large as desired, wihout introducing
any errors in the final solution. This technique is also used

to solve equation C.2-1 for the test system.

A program is included in‘Appendix C.2 which solves
the matrix Riccati equationfor the seventh order te#t system,
This program uses é subroutine which is resident in the CDC 6400
computer library, which uses a fourth-order Runge-Kutta method
to perform the actual integration. Although the Runge-Kutta
method is inefficient compared to predictor-corrector methods,
it is stable and seif—starting, and the integrafibn step—-size

may be easily altered at any time during the calculatioms.

For the seventh-order system, a step size of .01 second;
‘has to be used to keep the R and ﬁ values within the computer maxi-
mum number bounds. Because of the magnitude of the test system para-
meters, choosing a larger step size causes thé matrix values to ex-

ceed these limits.

In the program, Subroutine FCT contains the 28 differen-
tial equations, rather than the general matrix notation of the right
hand side of equation C.2-1. Since only one test system is being

considered, it is felt that this representation is more desirable,
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as it minimizes the already long computer time required for the
program. This program can be used for any order model just by

changing the dimension variable.

The feedback coefficientsvcan be calculated once the

R matrix is known, using the equation

kT = p~13TR

Although this method is computatiomally longer than
the formulae solution given in Appendix C.1, it is more general
and may be used for any order system and cost function. Systems
with multiple inputs and outputs may also be handled with equal

facility.
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APPENDIX C.2

COMPUTER PROGRAM FOR SOLUTION OF

THE MATRIX RICCATI EQUATION FOR THE TEST SYSTEM

THIS PROGRAM 1S USED TO COMPUTE THE R MATRIX FOR THE SEVENTH ORDER SYSTEM
IT CALLS THE SUB ROUTINE RKGS wWHICH IS RESIDENT IN THE LIBRARY

THE PRMT ELEMENTS DEFINEC THE PARAMETERS OF INTEGRATION

THE Y ELEMENTS GIVE THE IMITIAL VALUES FOR YHE VARIABLES

DIMENSION Y(28)sPRMT(5)sAUX(8928)sDERY(28)

EXTERNAL FCTsQUTP

PRINT 1
1 FORMATI(5Xs%#SCLUTION OF MATRIX RICCATI EQN*/)
PRINT 2
2 FORMAT(1HUs1UXs*MATRIX COEFFICIENTOS*)
NDIM = 28
PRMT (1) = 8U,.0
PRMT(2) = OeU
PRMT(3) = —eul
PRMT(4) = 1UUs.
DO 10U I=1.28
DERY(I) = 1.U/28.0
10 Y(I) = 04,0

CALL RKGS(PRMTsYsDERYSNDIMs IHLFsFCT»QUTPsAUX)
PRINT 3s IHLF
3 FORMAT(1HU»1UXs*ERROR MESSAGE #513)
SToP
END . N

SUBRQUTINE OQUTP(TsRIRDOT > IHLFISNDIMsPRMT)
THIS SUBRQUTINE COMNTROLS THE OUTPUT OF THE PROGRAM :
IT SELECTS THOSE VALUES OF R ARND Re WHICH ONE WwANTS TO RETAIN
DIMENSION R(28)sRDOT(28) sPRMTI(5)
IF{T=80.0) 2192020
20 TCOUN = 80Q.U
GO TO 6
21 IF({TCOUN-T) =42V} 229757
22 CONTINUE
RETURN
TCOUN = T
PRINT 1s Te{R{I)sI=1928)
7 FORMAT(1XsFhe3s3Xs1ulE11e 4,1X)/]Vx,1u(51].4,1A)/1ux,1u(e]1 4,1X))
PRINT 1sIHLF»(RDOT(I)sI=1928)
RETURN
END

o~
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SUBROUTINE FCT(XsRsRDOT)

THIS SUBROUTINE CALCULATES THE DERIVATIVE CF R WITH RESPECT
TO TIME FCR EACH TIME INCREMENT

DIMENSION R(28)sRDOT(28)

THE FOLLOWING ARE THE PARAMETERS OF THE SEVENTH ORDER SYSTEM

A = 375000,V
B = 375UUU.%U.U8333

D1 = 28125Veu

D2 = 3310875.,U

D3 = 281427140

D4 = 85370340

D5 = 703424y

D6 = 409740

D7 = 83.64

T = B-A¥*D7

UA = SQRT(1V.u)*(A*R(6)+T*R(7))
UB = SQRT(1us)*(A%R(12)+T*R(13))
UC = SQRT(1us)*(AXR(17)+T#R(18))
UD = SQRT(1u.)*(A*¥R(21)+T*#R(22))
UE = SQRT(1u.)*(AXR(24)+T*R(25))
UF = SQRT{IVLIX{AXRI26)+T*R{27))
UG = SQRT(10.)%(A*R(27)+T*R(28))

THE FOLLOWING ARE THE . 28 NCONLINEAR EQUATIONS DEFINING THE
THE DERIVATIVE OF R WITH RESPECT TO TIME

RDOT(1) = UA##2+2,0%D1*R(7)=-1.0V
RDOT(2) = UA#UB4+DI*R(13)-(R(1)-D2%R(7))
RDOT(3) = UA*UC+D1*¥R(18)~(R(2)~-D3%R(7))

RDOT (4) =UA%UD+D1I*R(22)-(R(3)-D4*R (7))
RDOT(5)=UA*UE+D1I*R(25)=(R{4)=D5%*R (7))
RDOT(6)=UA*¥UF+D1*¥R(27)—(R{(5)-D6*R( 7))
RDOT(7)=UA*UG+D1*R(28)-(R(6)-DT*R(7))

RDOT(8)=UB**2-(R(2)-D2%R(13))=(R{2)-D2%#R(13))=10.
RDOT(9)=UB*#UC~(R(8)-D3*R(13))-(R(3)-D2%R(18))
RDOT(10)=UB*UD=(R(9)=D4*R(13))=(R(4)-D2*¥R(22))
RDOT(131)=UB*¥UE-(R(10U)=-D5%R(13))-(R{5)-D2%¥R(25))
RDOT(12)=UR*UF-(R(11)-D6*R(13))~-(R{6)-D2*¥R(27))
RDOT(13)=UB*¥UG—-(R(12)-D7#R(13))-(R{T7)=-D2%R(28))
RDOT(14)=UC*%2-2,0%(R(9)~D3%R(18))
RDOT(15)=UC*UD-(R(14)-D4*R(18))—-(R(10)~-D3%¥R(22))
RDOT(16)=UC*¥UE~(R(15)-D5%R(18))-(R(11)1-D3*R(25))
RDOT(17)=UC*UF=(R(16)-D6#R(18))-(R(12}~D3%*R(27))
RDOT(18)=UC*UG=-(R(17)-D7*R(18))—-(R(13)-D3%¥R(28))
RDOT(19)=UD*%2-2,U*(R(15)=D4*R(22))
RDOT(20)=UD*UE-(R(19)=DN5%R(22)1)-(R(16)-D4*R(25))

RDOT(21)=UD*UF-(R(20)=D6*¥R(22))-(R{17)-D4*R(27))
RDOT(22)=UD*UG—-(R(21)-D7#R(22))~-(R(18)-D4*R(28))



RDOT(23)=UE*##2-2,U%(R(20)~-D5%R(25}))
ROOT(24)=UE*UF=-(R(23)-D6*¥R(25))1-(R(21)=-D5%R(27))
RDOT(25)=UE*UG~(R(24)-D7*R(25))-(R{22)-D5%R(28))
RDOT(26)=UF*#2-2,U¥(R(24)-D6%¥R{27))

RDOT(27 ) =UF*#UG~(RI(261-DT7%*R(27))-(R(25)-D6%R(28))
RDOT(28)=UGH*2-2,ux(R(27)-DT7*R(28))

RETURN

END
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