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CHAPTER I 

INTRODUCTION 

One of the goals of modern control engineering, is 

to control a particular system in some optimal manner. Moderri 

processes such as nuclear reactors, high-speed rolling mills, 

jet airc~aft controllers, and spacecraft systems usually spe­

cify fine tolerances of operational limits. In controlling 

these processes, the control problem may involve minimizing 

various parameters such as control energy and the time required 

to go from one state to another. Although.a number of computa­

tional methods have been developed for the solution of the op­

timal control problem, these are not suitable for the control 

of many systems such as those mentioned. Because of the increa­

singly comprehensive nature and complexity of these systems, these 

methods are not suitable due to.the large amount of computation 

required. This is especially evident for the case of on-line 

optimal control. In addition, some of these methods require a 

complete and precise knowledge of the system parameters, which 

are not often known. 

One way of overcoming these difficulties, is to obtain 

a reduced linear model of the high-order system, which is compu­
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tationally or analytically more tractable than the complex 

system. This low-order model'can then be used for an approx­

imate computation of the optimal·control. The resulting sub­

optimal control may often be sufficiently close to the actual 

optimum, but in any case, it may serve as the first approxi­

mation to.the optimum. The reduced model may also be par­

ticularly useful for the adaptive control of a system with slow­

ly varying parameters. 

In the last five years a number of new methods 

have been proposed for determining a low-order model for a high­

order system. Since the reduction techniques are basically dif­

ferent, a .large number of different low-order models can be ob­

tained for a given system. It would be desirable therefore, to 

determine which of these models would be most suitable for deter­

mining the sub-optimal control for the system. 

A number of different reduction methods have been 

4 5 6proposed by various authors l,Z, 3 , , , , 7 ,s, 9 and applied to the 

same test system 5 , 6 , 7• This test system, selected so that it 

would not be particularly suited for reduction by any one method, 

is a realistic aircraft control system. Of the various models de­

rived, ten models representing as many different reduction methods 
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as possible, were selected. In order to make a reasonable 

comparison of the model suitability, all models selected were 

of second order. 

To investigate .the suitability of each model for 

providing a sub-optimal control of the system, two quadratic 

cost functions to be minimized for the control interval were 

selected. For the first, the closed-loop optimal control of 

each reduced model was calculated and used to control the system 

sub-optimally in an open-loop sense. The reduced model optimal 

feedback coefficients were then used to provide a closed-loop 

sub-optimal control for the system. For the second cost function, 

the optimal feedback coefficients were again calculated for each 

model and used to provide sub-optimal feedback control for the 

system. For each model, the resultant cost function was computed 

and compared with the minimum attainable for the system. A com­

parison of the models was made with a view to the relative dif­

ficulty of finding the model optimal feedback control and the sui­

tability of the resulting feedback coefficients in providing a sub­

optimal control for the system. 

The material contained in the following chapters fol­

lows the order of the preceding discussion. The principle and appli­
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cation of each method of reduction considered is discussed in 

Chapter 2. Chapter 3 gives a brief summary of optimal control 

theory, stresshg closed-loop or the feedback implementation 

of optimal control. The reduced models considered are mentioned 

in Chapter 4, along with the procedures followed in using each 

model to provide sub-optimal control for the system. The results 

of the sub-optimal control of the system, and a comparison of 

model features and suitability are included in Chapter 5. The 

conclusions of this work are then drawn in Chapter 7. 



CHAPTER 2 

METHODS OF REDUCTION 

2.0 Introduction 

In the past five years a number of different methods 

have been proposed for determining a low-order model for a high­

order system. They can be divided into two groups; (i) those 

which neglect the modes of the original system that contribute 

little to the overall response and (ii) those which determine 

an optimum model of a given order so that the error between the 

response of the model and that of the system for the same input 

is minimized with respect to a specified criterion. A number 

of methods, each using a different technique, have been selected 

and are described briefly in this chapter. The modal methods 

are discussed first and then the trajectory fitting methods. 

Lastly, a transfer function reduction method is described which 

does not fall into either of the two groups described above. 

2.1 Problem Formulation 

The general problem in system model reduction may be 

-5­
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stated as follows given the nth order linear, time invariant, 

controllable system described by 

~(t) = A ~(t) + Bu(t) 

z.(t) = Dx(t) •••••• (2.1-1) 

where ~(t) is an n-dimensional state vector, u is a p-dimensio­

nal vector of forcing functions and z. is the k-dimensional output 

vector, find an mth order system (k< m< n) described by 

•••••• (2.1-2) 

such that for a specified set of inputs the reduced system response 

is a satisfactory approximation to the original system response. 

The problem may also be equivalently stated in terms of the discrete-

time analog of equations 2.1-1 and 2.1-2. For single input-output 

systems the problem may be stated in terms of the transfer functions 

of the system and reduced model. 
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Modal Reduction Methods 

1 2 
The reduction methods proposed by Davison ' and 

Mitra4 both result in reduced systems which retain specified 

eigenvalues of the original system. They are also both pro­

jection methods although only Mitra has explicitly discussed 

this aspect. Their common characteristics will be considered 

first therefore. Mitra4 has shown that these projection methods 

can usefully be broken down into two steps. The first step 

consists in choosing the modes to be discarded and the construe­

tion of a dynamic system with the same order as the original in 

which these modes are uncontrollable ("decontrolling" step). 

The second, "contraction" step, is the synthesis of an mth 

order controllable system from the decontrolled system by retai­

ning the controllable modes. 

The first problem is then to find a projection 

operator P which operates on the original system to produce 

a trajectory confined to an m-dimensional subspace, S1 of the 

original n-dimensional state space S. That is, the decontrolled 

trajectory is given by 

;t(t) = p !_(t) 

However, for x(t) to be a basis for a practically useful model, it 
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should also be the solution of a differential equation. The 

additional requirement imposed is that i(t) should also satisfy 

~ A A 

x.= A ~(t) + B ~(t) 

It has been shown that if x(t) is to satisfy both 

equations, it is necessary and sufficient that the projection 

be along a subspace S2, which is invariant under the linear trans­

formation A. In this case it is easy to show that 

~ = PB 

There is however, no a priori restriction on the choic~ of the 

subspace S1, on which to project, except that it must be disjoint 

from 82• The choice of subspace on which to project is the funda­

mental difference between the method due to Davison and that proposed 

by Mitra. 

In the method due to Davison, the subspace s1 projec­

ted on, is also invariant under the transformation A. The pro­

jector which projects both on and along subspaces invariant under 

the linear transformation A, may be found by partitioning the matrix, 

the columns of which are the generalized eigenvectors of A • 

•••••• (2.2-1) 


where the eigenvectors comprising Ti are those correspondending 
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to the eigenvalues to be retained. By defining 

it has been shown 4 that the required projector is given by 

This equation is valid for complex eigenvectors provided that 

both parts of the complex conjugate pair are included in either 

In the resulting decontrolled system, since the (n-m) uncontrol­

lable modes of A are not excited, only m of the n components of 

x are linearly independent. Contraction consists of choosing a 

suitable basis of dimension m, and a suitable set of m variables. 

A particular contraction may be spec:f.fied by defining an n x m 

matrix 

c = m 
••••• (2.2-2) 

n-m 

which spans the controllable subspace of A, B, that is, S1. 

The coefficient matrices of the reduced system are then given 

by 4. 

• •••• (2.2-3) 
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where A, B, and D, have been partioned to conform to the 

partioning of C. This representation of the contraction 

step is valid for both Mitra's and Davison's methods. 

For the method proposed by Davison, projection 

is on and along subspaces invariant under A, and hence 

where T1 is given by equation 2.2-1. 

If it is assumed that 

D = (1ro0] 

an additional transformation is performed on the reduced 

system to force 

The reduced system equations are then given by 

' -1Ar = Au+ A12 T21 Tu . 

• •••• (2.2-4) 


The modification suggested by Davison (which provides 

the correct steady-state step response) is obtained by modifying 

the measurement equation from equation 2.1-2 to 

••••• (2.2-5) 
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where Z is a correction term given by 

Z = D A -l B - DA-l B 
r r r 

Equations 2.2-4 and 2.2-5 give the reduced model proposed by Davison. 

The method proposed by Mitra involves choosing a subspace S1 so as 

to minimize the projection error. This projection error is defined as 

E(T) = 
p 

l 
T

I (xi(t) - xi(t)TQ{xi(t) -xi(t)) dt. 

i=l 0 

where xi(t) and xi (t) are the responses of the original and decon­

trolled systems to the ith input, p being the forcing function dimen­

sion. The weighting matrix Q is at least positive semi-definite. 

The system response matrix is defined as 

p T 

W (T) = 

i=l 

For a specified class of inputs and a specified order of reduction 

the projection error is a function only of the choice of subspace on 

which to project, that is, the choice of modes to be retained. 

Mitra 4 has derived an algorithm to solve the problem of choosing 

this subspace. The following matrices R, R1 , and R2 are defined as 

0 

r +l m r ]n 

and s, s1 , and s2 as 



12 


such that 

R*S = I 

where * denotes complex conjugate transpose. 

The columns of R2 span the invariant subspace S2, along which 

to project. The required projector is then given by 

or equivalently by 

As the columns of R2 span a subspace invariant under A they must 

be a linear combination of the eigenvectors which span that sub­

space. If these eigenvectors which correspond to the modes to be 

neglected; are denoted by 

then 

where G is a(n-m)x(n-m)non-singular matrix. It has been shown that 

G can be defined as 

1/2 -1 
G = [A H*] 

Q 

where A Q and H form the eigen-sys tem of 
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is given bys2 

Rl may be found as a (non-unique) solution to the overdetermined 

set of equations 

••••• (2.2-6) 


The projector defined by the above procedure, minimizes 

the projection error for projection along a specified subspace. 

A search must then be made to determine which invariant subspace 

to project along. 

The contraction process for the optimal projection 

method is also defined by equation:;2.2-2 and 2.2-3. However, for 

this method C is defined by 

where R1 is defined by equation 2.2-6. The optimal projection 

method requires considerably more computation than that proposed 

by Davison. 

In summary, both methods of reduction require knowledge 

of all parameters of the original system. In addition, both require 

finding the eigenvalues and eigenvectors of this system. They are 
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directly applicable to multiple input-output systems and can 

easily be extended to discrete time systems. Since.both methods 

require the retention of certain modes-and neglect of the rest, 

these methods are most applicab~e to those systems which have 

dominant eigenvalues. 

Anderson's Method 

3
Anderson presents a method of system reduction 

based on a geometrical consideration of the reduction problem 

as developed from the theory of linear vector spaces. The 

state space equations are solved at regular time intervals up 

to some limit at which only insignificant response changes occur. 

These solutions are then substituted in the state space equations 

which represent the unknown low order system and the parameters 

evaluated which will give these solutions. The method is developed 

for discrete time systems as represented by the following equations 

~(i) = F x (i-1) + E ~(i-1) ••••• (2.3-1) 

z.(i) = Dx (i) 

which are of order n. 


The reduced model of order mis given by the equations. 


x {i) = F x (i-1) + E u(i-1)-r· r-r r­
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For simplicity, it is assumed that the order m of the reduced 

system, is the same as the order of the original system output 

vector and hence, Dr can be assumed to be Im• Also, it is 

assumed that a linear transformation has been applied, if neces­

sary, so that 

D = [Im O] 

If the sequences which make up the trajectory of the original 

system are written as 

{ ~(O), ~(1), ~(k-1)) ~(k)} 

{ ~(O), ~(l), ~(k-1)} 

{ x_(O), x_(l), x_(k-1)' x_(k)} 

and the ~ sequence written as two sequences of length k, 

{ ~(O), ~(1), ~(k-1)} 

{~(1), ~(2), ~(k)} 

these are related by equation 2.3-1. Combining x(k) and u(k) as a 

single vector, equation 2.3-1 can be written as 

[~(l), ~(2), •••~(k)] = [FEJ r;co) .. ·~<k-1i 
l.¥.<o) ...~(k-1~ 
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The reduct·ion is achieved by seeking [Fr Er] such that 

[z_(l), x_(2), •••z(k)] = [Fr Erl 	 lz.(O) •••x_(k-1)] 

L~(O) ••• u(k-1) 

Normally, this equation cannot be satisfied exactly since the 

z.(k) are not only functions of y:(~-1) and ~(k-1) but also of 

the (n-m) state variables which 	are not directly measured. How­

ever, a set [Fr Erl can be found, such that given the sequences 

z(O) x_(k-1) 

~(O) ~(k-1) 

it will generate a sequence [w(l) ••• w(k)] which minimizes 

T
e(k)=tr{ [x_(l)-w(l), z.(2)-w(2), •••z.(k)-w(k)] [z.(1)-w(l) •••z.(k)-w(k)]} 

and which lies in the row space of the given sequence. The solu­

tion is well known and is given by 

[Fr Erl= [z_(l) •••z.(k)J [z(O) ••• z_(k-1)]+ 

u(O) ••• ~(k-1) 

where + denotes the pseudo-inverse of a matrix. The pseudo-inverse 
is the inverse of a non-square matrix. · 

Anderson's method can be extended to continuous systems. 

Since the test system to be described later is single input-output, 

D is a vector and hence [y(l), y(2) ••• y(k)] is a vector and not 

equal to the matrix [x(l), x(2), ••• x(k)] 
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For the continuous system 

[!.(O), x(T), ••• ~(kT)] = [AB] r~(O), •• ·!.(kT)J

L:(0) , 	 ••• u (kT) 

The 	reduced system is to satisfy 

[!.(O), !.(T), !.(kT)] = [~ Br] . [!.(O), ••• x(kT)J 

u(O), ••• u(kT) 

as closely as possible. The dimension of x(kT) is m, the order 

of the reduced model. The solution, as before, is of the form 

of a pseudo-inverse solution 

~(kT)] r~(O)' ~(kT)l+ 

Lu(O), u(kT)J 

that is 

• •• ~(kT)] 12C(O), ••• ~(kT~ 

Gi<o), ... u(krJ 

. { 	 1-x(O), ... ~(kT)l ~(O), ... ~(kT)l TJ-l 


Lu(O), ••• u(kT~ h(O), ••• u(kT) 


If the sequences of ~ and !. are calculated for the input sequence 

u, (u being constant between samples) then [Ar Br] can be directly 

solved. As can be seen from the above brief description, all system 

parameters mu.st be known and the system vector differential equation 

solved for kT samples. However, computationally this method is much 
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easier than the previous two methods discussed, as it does 

not require computation of eigenvalues and eigenvectors. 

It also optimizes the trajectory fit by minimizing.the mean 

squared error between the system and model trajectories. Un­

fortunately, it does require considerable data storage, espe­

cially if the system has a long settling time. Also, as the 

minimization is done over a finite time interval, the steady-

state error between the two trajectories is not forced to be 

zero. 

Iterative Reduction Method 

Sinha and Pille 5 proposed a method of system model 

reduction that requires only the measured input-output data 

for the system at the sample points. This method is based on 

an iterative application of the matrix pseudo-inverse algorithm. 

It determines the model of a specified order that minimizes the 

mean squared error between the responses of the system and the 

model to a given input. 

The reduced discrete model may be expressed in terms 

of the pulse transfer function 

C(z) 
H(z) • ­

R(z) 1 -b1z -1 

or the equivalent difference equation 
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m n 

ci • 	 l ajri-j + I bjci-j ••• (2.4-1) 

j•O j•l 

where r(iT) and c{iT) are the input and response of the system 

at t•iT, and T is the sampling interval. 

If the parameter vector + is defined as 

T 
; • [ao, a1, ••• 8m b1, b2, ••• bnJ-

and i ranges from 1 to some integer k 

Ak is the information matrix, whose 1th row corresponds to equation 

2.4-1, and 

Again, as for Anderson's method the solution which minimizes the mean 

squared error between the system and model responses is given by 

.... +
lk • Air.£k 

+
where Ak is the pseudo-inverse of Ak• 


To solve the above equation requires storage of a large amount of data, 


especially if the mean squared error is to be minimized over a sufficiently 


large interval with a reasonably high sampling rate. To over-come this 


problem, a recursive algorithm is developed where a row is added to Ak 


and an alement to Sk for each addi­
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tional pair of input-output data, 

that is 

where 

~+1 = 

Then the recursive algorit~m for k> m+n+l 

A T "' "' qi P~ k+l (ck+l- !!.k+l h)= 4> + 
--k+l i< 

1 + .4+1 p~ k+l 

The algorithms require no matrix inversion and the number of input-

output data points required in storage is just m + n + 2. 
,.. 

To start the algorithm, ~ and Pk must be determined for the case 

where k = p = m + n + 1. This can be done since Ak is a square matrix 
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and the solut~ons are given by 

p = [AT A rl 
p p p 

Recursive relationships have also been established so that matrix 

inversion may be avoided completely. 

The corresponding continuous-time system transfer function 

H(s) can be determined from the low-order pulse transfer function 

H(z). If the input between sampling instants is held constant, 

H(z) may be regarded as the z- transfer function of H(s) preceded 

by a sampler and a zero-order hold. This requirement is met in 

the application of this method to the test system, when the input 

is taken as a unit step. 

Although this method is based on the same principle 

as the Anderson method, the implementation is much easier. In 

addition to requiring only the input-output data at sample points, 

the requirement for storage of this data depends only on the order 

of the assumed model, and not the number of iterations considered. 

Also, since this method requires no matrix inversions, it yields 

better results than those obtained by the other methods discussed. 

However, as for Anderson's method, steady-state error between the 

system and model responses is not forced to be zero. 
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Pattern Search Reduction Method 

In the two trajectory-fitting reduction methods 

discussed, the objective function to be minimized is con­

strained to be the sum of squares of errors. Sinha and 

Bereznai 6 proposed a method of reduction which can provide 

an optimum low-order model with respect to any specified error 

criterion. If the output trajectory of the system given by 

equations 2.1-1 is given by the sequence 

<z<o>, z<1>, •••z(i), •••z(I)} 

where 

a reduced model, given by equations 2.1-2 is determined such 

that its output trajectory given by the sequence 

minimizes the scalar error function 

J = f[wI (z(i)-Zr(i))J 

where wi is a weighting vector. 

Alternatively, for a given value of J, the lowest order model (m) 

is determined such that the resultant error is less than or equal to 

J. 
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Since the choice of error criterion has a direct 

effect on the parameters of the reduced model, it is important 

which criterion is chosen for minimization. In current prac­

tice the error function takes on one of two forms. For the 

single input-output case the error function can be of the form 

I 

J = l w.I I y(i)-y (i)I IP
i . ri=O 

which is the sum of the weighted norms of the output error 

raised to some power p. This function can represent the area 

between the output curves or the mean squared error, depending 

on the values ofwi and p. The error function can also take the 

form 

i=O,I 

which retains the value at one particular sample only, where 

the deviation is maximum. Another form of this function can be 

used to minimize the maximum perpendicular distance between the 

output curves, which may be more useful than minimizing the maximum 

vertical error. 

After the error function to be minimized has been chosen, 

a pattern search technique is employed to find the model which mini­

mizes this function. Depending on whether the step response of the 

system has overshoot or not, a simple second order model with a 

pair of complex conjugate poles, or a simple first order model, is 

chosen as starting point. If the optimum set of parameters ha83 
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been found by the pattern search program for a particular model 

order, the order is increased by one and a new pattern search 

initiated. This process is continued until the error criterion 

is satisfied, or the desired order is reached. 

As for the previous method discussed (Sinha and Pille) 

the parameters of the system need not be known, and the output 

sequence can be obtained either by solution of the vector differen­

tial equation at specified time intervals, or direct measurement 

of the system output. This method requires considerably more com­

puter time than the iterative reduction method, and limitations 

arise because of the poor convergence properties of the pattern 

search algorithm. However, the flexibility provided by the choice 

of the criterion of optimization, may often lead to a model which 

is more acceptable than that obtained using the least squares 

criterion. The pattern search method can also be used to optimize, 

with respect to a specific error criterion, a reduced model derived 

using some other reduction method. A final advantage is thataswith 

the iterative reduction method, it can be used in system identifi­

cation. 

Step Response Reduction Method 

7Fellows, Sinha and Wismath proposed a method of 

model reduction, which allows direct calculation of the parameters 

of a second order reduced model, from the step response of the 

system. The features of the step response of a system most commonly 

specified are (i) M- maximum overshoot in the response, (ii) tp ­

time required to reach first peak, (iii) s0 - initial slope of the 
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response curve, (iv) A- steady-state response to unit step, 

(v) - time required for the response to first reach halft 1 

of the steady state value, and (vi) - slope of the curve ats1 

ti· A second order model is then found which will meet these 

specifications precisely. 

Depending on pole - zero configurations, second order 

systems can be divided into four classes. As most physical 

systems are normally of the low-pass type, with more poles than 

zeros, the case with two finite zeros is not considered. The 

four classes, along with their transfer functions, can be written 

as: 

(i) System with two real poles and no finite zero 

KG (s) = 

1 (s-kl) (s+B) 


(ii) System with a pair of complex conjugate poles and no finite 

zero. 
K 

(iii) 	System with two real poles and one finite zero, 

K(s+o) andG3(s) = 
(s+a) (s+B) 

(iv) System with a pair of complex poles and one finite zero. 

K(s+o) 

where K, a, S, and o are real numbers and a and B 
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are constrained to be positive to ensure stability. G1 (s) and 

G2(s) have zero initial slope and in addition G1(s) represents 

an overdamped system. The step response of each second order 

model is well known and if written in the time domain, can be 

used to solve the model parameters in terms of the specified 

step response features of the original system. For example, for 

a system response which has zero initial slope and overshoot, 

G2(s) would be chosen. Its time response and its derivative 

are given by 

K K -at 	 -1c(t) = ~,..,....==.ii""===- e Sin(8t+ tan 8) 
8/a2+eZ 

dc(t) 
dt = 	~Kr=======- e-at[aSin (Bt + tan-l 8/a) -8Cos(Bt+tan-l 8/a)] 

8~4~ 

If the system step response features to be satisfied are given 

as (A), (M), and (tp) the model parameters can be derived directly 

from the resulting equations: 

a = 1 ln 
tp 
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2.7 

The other classes of second order models result in transcen­

dental equations, which although more difficult, can still 

be solved. This reduction method's strongest feature is its 

simplicity. It requires no knowledge of the sy;t:em other than 

its unit step response and with the use of a transfer function 

matrix, can be used to reduce multiple input-output system 

models. Although it does not optimize the parameters, in order 

to get the closest fit between trajectories, it can stress cer­

tain features of the system step response. Since the method 

requires very little computation, the model derived can be used 

as the first approximation for an optimization procedure, ·such 

as the pattern search method previously mentioned. 

Chen & Shieh Method 

8Chen and Shieh proposed a method of reduction 

based on the continu~d-fraction expansion of the system transfer 

function, in polynomial form, starting from the constant terms. 

If the system transfer function is given by 

bo+ b1sl+ ••• + bksk 
G(s) = 

ao + a1sl+ •••+ansn 

the continued fraction is 
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1 
G(s) = 

sHl + 

H2 + s ••• (2.7-1) 
H + s3 


H4 + 


This continued-fraction expansion is equivalent to a Taylor-series 

expansion about s = O. Also from a consideration of the final 

value theorem, it follows that the quotients in the expansion 

are in order of decreasing significance of their contributions 

to the response as steady state is approached. Truncating the 

continued fraction at a suitable stage gives a reduced system 

transfer function of the desired accuracy. For a reduced model 

of order m, equation 2.7-1 is truncated after 2 m terms. Compu­

tationally, the application of this method is quite simple and 

can even be done by hand. Although the transfer function parameters 

must be known, the poles and zeros need not be calculated. The 

resulting model gives the correct steady-state response, but the 

approximation to the initial transient response may not be good. 

Furthermore, the stability of the model is not guaranteed, even if 

the original system is stable. 

Chuang9 proposed a modification of this method so that 

the initial system response may be more closely modeled. It consists 

of having alternate continued-fraction expansion from constant terms 
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first and then from highest-order terms. This is equivalent 

to Taylor series expansiou;about s = 0 and s = ®• The resulting 

expansion is of the form 

1 
G(s) = 

Hz+ 1 

Again 2 m terms are required tor a reduced model 0£ order m. 

Although this modification may improve the Chen & Shieh model, 

it can not be used for those systems for which the number of 

poles exceeds the number of zeros by more than one. That is 

n - k~l 

For these cases some of t~e coefficients become zero and hence 

the model is not as accurate. 

The model reduction methods described in this chapter 

represent as many different techniques as possible. They have been 

applied to the same test system by Fellows, Sinha and Wismath 7 , 

Sinha and Pille5, and Sinha and Bereznai6 • The models derived and 

their application to optimal control will be given in Chapter 4. 



3.0 

CHAPTER 3 

OPTIMAL CONTROL OF A LINEAR DYNAMIC SYSTEM 

Introduction 

In modern control systems, it is desirable to 

control the system in such a way that a certain criterion 

is maximized or minimized. Much theory has been developed 

in recent years, so that this optimal control may be found, 

with some degree of facility. This optimal control may either 

take the form of an open-loop drlving function or sequence, or 

a closed-loop feedback control. As this theory can be found 

. 12 13 in most texts dealing with modern control systems ' it 

will only be briefly described in this chapter. Although both 

open and closed-loop optimal control are discussed, the greater 

emphasis is on closed-loop or feedback implementation of opti­

mal control. 

3.r General Optimal Control 

In optimal control theory the basic problem is to find 

the optimal control u(t) or the optimal control law 

u = k[~(t),t] 

which transfers the system given by 

-30­
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. 
x = f(x, u, t) 

from some given initial ·-state to some final state, 

while minimizing the integral cost function 

tf 

J = f L(.!!_, u, t) dt 


ti 


where t:i_ and t.f are the initial and final times and L is a posi­

tive definite function of x, u, and t. 

It has been shown 12 that solution of the above 

problem requires solving the Euler equations, subject to the 

boundary conditions of the problem. To simplify solution of 

the Euler equations, the Pontryagin state function 

H(.!!_, u, A , t) = ATf (x, u, t) + L (x, u, t) 

is formed, where the A are Lagrangian multiplier or costate 

functions. The Euler equations can then be solved to find the 

optimal control. 

While theoretically straightforward, the solution 

of the resulting Euler differential equations presents several 

practical problems. The equations are in general, non-linear, 

and time varying and require numerical solution on a digital 

computer. Although this problem is not serious, it is almost 
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insignificant compared to the two-point boundary-condition 

problem that is also involved. If the system is of order n, 

2n boundary conditiOjS will be given for the solution of the 

resulting 2n differential equations. However, for the basic 

case where .?£(ti) and _!(tf) are specified, n of these conditions 

are given at the initial time and n at the terminal time. It 

is not possible to integrate the differential equations forward 

in time .from the initial conditions or backward in time from 

the terminal conditions. More generalized boundary conditions 

make the problem even more computationally difficult. This pro­

blem, although it can be solved using several elegant computatio­

nal schemes developed, yields an open-loop optimal c.ontrol valid 

only for that particular set of boundary conditions. If either 

the initial state is changed, or any disturbances act on the 

system the control u(t) found is no longer optimal. This is 

a weakness of open-loop optimal control and a more desirable so­

lution is the closed-loop or feedback optimal control. 

3.2. Closed-Loop Optlmal Control With Quadratic Cost 

By combining the Pontryagin method with concepts from 

the second method of Liapunov, it is possible to remove the ne­

cessity for solving the two-point boundary condition problem, for 

the particular case of a linear system with a quadratic cost function. 
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This approach also yields an ~ptimal control law u(~,t). This 

optimal control is valid for a family of initial conditions, and 

since it is a function of ~,results in closed-loop optimal con­

trol, thus minimizing the effects of system disturbances. It 

has been shown 12 that by defining V(x, t) as the minimum value 

of the cost function for an initial state x at time t, that is 

tf 

V(x,t) = f L[~(-r), u(x,T), T ]dT ••• (3.2-1) 
t· 

the necessity of solving a two-point boundary condition problem 

is removed. The optimal control can be found in terms of ~, 

V'V(x,t) and t, and V(x,t) found by solving the Hamilton-Jacobi 

equation 

H[x,V'V(x,t),t] + cV(x,t) = 0 
at 

where V represents differentiation with respect to x. Although 

it is almost impossible to solve the Hamilton-Jacobi equation 

even for trivial problems, it is possible to obtain a solution 

in a relatively straightforward manner for one problem of sig­

nificant practical i.mportance. 

This problem, known as the linear control problem, 

is the optim~l control of the linear system 

x=Ax+ Bu 
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with a cost function 

T 

T T 
J = f (X·Q.?S. + u PU:) dt •••• (3:2-2) 

0 

where Q is at least positive semidefinite symmetric, P is 

positive ?efinite symmetric, and u is unconstrained. Although 

13 more general quadratic cost functions have been developed 

these give rise to much greater computational difficulty, and 

as a result will not be considered here. 

It has been shown also, that if V(x,t) is given by 

V(x, t) = x T R(t).?!_ •••• (3.2-3) 

where x is the initial state of the system, the Hamilton-Jacobi 

equation can be solved to yield the well known matrix Riccati 

equation 

Since for fixed terminal state, 

••• (3.2-4) 

and for the free terminal state, 
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R(t) is a positive definite symmetric matrix for all t<tf and 

R(.tf) • 0 

Although analytic methods are available for solving equa­

tion 3.2-4, they are unwieldy for any systems of higher than second order. 

On the other hand a solution may be obtained easily on a digital computer, 

if the equation is integrated backward in time from the known terminal 

condition, over the time of interest. The optimal control, found by 

differentiating the Pontryagin state function with respect to u can then 

be given as 

u(x, t) • -KT(t).!_ •••• (3.2-5) 

where • p-lBTR(t) 


The elements of K(t) are referred to as feedback coefficients, since 


the optimal control consists of a time-weighted linear combination of 


the state variables. 


If the time limit in equation 3.2-2 is taken as • rather 

than T, the R matrix becomes constant, since for an infinite time interval 

V(x,t1) • V(x,t2) for finite t1 and t2• If an analytic solution of equation 

3.2-4 is known, the constant R matrix may be found by performing a limit 

operation on the solution. The constant R matrix may also be found by in­

tegrating the matrix Riccati-equation backward in time, from the known 

terminal condition R(•) • 0 until a steady-state solution is reached. Alter­

natively, if R is constant R • 0 
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and hence equation 3.2-4 becomes the reduced or degenerate 

Riccati equation 

••• (3.2-6) 

For this method, the solution of n(n+l)/2 nonlinear algebraic 

equations is required. In addition, to obtain a unique solution, 

the requirement that R be positive definite must be enforced. 

In this chapter a few of the concepts of optimal 

control have been mentioned. The reasons for the desirability 

of using linear optimal control, or feedback optimal control 

with quadratic cost, have also been mentioned. Because of these 

reasons only feedback optimal control will be considered in the 

following chapters. The next chapter deals with the application 

of these concepts to provide near-optimal control of the test 

system. 



CHAPTER 4 

APPLICATION OF REDUCED MODELS IN THE CONTROL 
OF A LINEAR DYNAMICAL SYSTEM 

4.0 General 

Very little work has been done to date, in using 

a reduced model to find the optimal or sub-optimal control 

of the original system. Mitra 10 has done some analytical 

work in this area,but considers only the optimal-projection 

reduction method. 

This chapter deals with the use of reduced models 

to provide suboptimal control of a test system. The models, 

derived using the reduction methods described in Chapter 2, 

are first listed, and some comments made regarding the model 

characteristics. Their application to the control of the test 

system is then discussed. Finally, some comments are made re­

garding those model properties which affect their application 

to optimal control. 

4.1 The Reduced Models of the Test System 

Felhws, Sinha, and Wismath 7 have used the modal 

reduction mthods, Anderson's Method, the Chen and Shieh Method 

and the step response method to derive reduced models for the 

test system, described in Appendix A. Sinha and Pille 5 have 

also derived a reduced model for this test system using the 

iterative reduction method. Sinha and Bereznai 6 have derived 

-37­



38 


a number of reduced models for the same system, using various 

criteria for optimization and the pattern search reduction me­

thod. Of these, four were selected for use in sub-optimal 

control of the test system. These models, chosen to repre­

sent as many different error criteria as possible, are as fol~ 

lows: 

(a) 	 the model which minimizes the maximum perpendi­

cular error between system and model responses 

(minimax ..L), 

(b) 	 the model which minimizes the sum of the absolute 

values of the sample error ( rlel), 

(c) 	 the model which minimizes the sum of the squares 

of the sample error (E e2), and 

(d) 	 the model which minimizes the sum of the squares 

of the sample errors with no error in steady-state 

response to a step input. 

All models mentioned above, were constrained to be second order 

models, since, for a proper comparison all reduced models would 

have to be of the same order. These models, along with their pole 

locations appear in Table I. 

As can be seen from Table 1, the two modal reduction methods 

have retained the pair of system complex poles nearest the jw axis. 
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TABLE I 

REDUCED MODELS OF THE TEST SYSTEM 

Method of 
Transfer Function Pole LocationsReduction 

Davison's Method -.050525s + .55576 -2.05297 ± j0.895322 

s 2 + 4.112593s + 5.02966 

Steady-State Unit Step Response=.1105 

Optimal Projection -.015929s 1+ .56478 -2.02438 ± j0.96465 
Method 

s2 + 4.0488s + 5.0277 

Steady-State Unit Step Response = .11233 

Anderson's .30961 -. 9512 ± jl. 335 

s2 + l.902574s + 2.687909Method 

Steady-State Unit Step Response = .1152 

• 
Sinha and Pille .3302 -1.0477 ± jl.3375 

Iterative Method s2 + 2.0954s + 2.8886 

Steady-State Unit Step Response = .114 

Sinha and Bereznai .0254s + 0.2967 -1. 213 ± j 1. 043 
Pattern Search 

s2 + 2.4257s + 2.5581(minimax .L) 

Steady-State Unit Step Response = .1160 
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TABLE I (Continued) 

Sinha & Bereznai .1536s + 0.01329 -.0957, - 1.250 

Pattern Search s2 + 1.3456s + 0.1196 

Steady-State Unit Step Response = .1112 

Sinha & Bereznai .3960 -1. 328 ± j 1. 286 

Pattern Search 
s2 + 2.6569s + 3.4191 

Steady-State Unit Step Response • .1158 

Sinha & Bereznai 

Pattern Search 

(I: e2 with s.s. 
constraint) 

0.1019s + .05359 

s2 + 1.0718s + 0.4823 

-0.536± j0.442 

Steady-State Unit Step Response = .1111 

Step Response .209768 -0.84520 ± jl.08331 

s2 + l.690396s + 1.887915Method 


Steady-State Unit Step Response = .1111 


Chen & Shieh's 0.1299s + 0.01105 -1.04822, - 0.09822 

s2 + l.14644s + 0.09941Method 

Steady-State Unit Step Response = .1112 

SYSTEM STEADY-STATE UNIT STEP RESPONSE • .11111 
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The authord felt that the effect of the real pole of the system 

which is much closer to the origin, could be neglected without 

much error, as there is also a real zero very near to it. As 

the other reduction methods do not consider the poles or eigen­

values of the original syste~, new poles have been generated so 

that they are able to duplicate more closely the response of 

the test system. 

The fact that a mean squared error criterion inherent­

ly stresses the closeness of fit between the transient part of 

the system and model responses, is also confirmed in Table 1. 

The models derived using Anderson's method, Sinha and Pille's 

method and Sinha and Bereznai's Ee2 method, which all employ 

mean squared error minimization techniques, have significant 

steady-state step response errors. In contrast, those which 

stress steady-state response such as Sinha and Bereznai's Elel 
method and Chen and Shieh's method, have insignificant steady­

state step response errors. 

Those features of the ·reduction methods and their re­

sulting models, which affect their application to near...:optimal 

control of the test system, will be discussed in later chapters. 

The next section deals with the use of the reduced models in con­

trolling the test system. 
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Use of Reduced Models in Open-Loop Sub-Optimal Control 

As stated in Chapter 2, some of the reduction methods 

use trajectory fitting techniques to derive the reduced model, 

that is, they derive a model whose output trajectory approximates 

that of the original system, if both are driven by the same input. 

It was decided therefore, to investigate the response of the sys­

tem, if it were driven by the optimal control derived for each 

model. 

In order to use the optimal control theory discussed 

in Chapter 3, it was necessary to represent each model in phase 

variable form, as described in Appendix C. A cost function was 

then selected, and the optimal feedback .coefficients found for 

each model. The details of the derivation of the feedback co­

efficients, for each type of reduced model are also given in Ap­

pendix C. The reduced model was then driven from some initial 

state ~(ti) to some final state ~(tf), using closed-loop optimal 

control. The resulting model optimal control 

Ur(~) = -Ki~(t) ••••• (4.2-1) 

was then used to drive the original system, using system initial 

and final conditions equivalent to those of the model. This sub­

optimal control was applied to the system in an open-loop sense, 

as shown in Figure 4.1. 
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For this method of control, the quadratic cost function selec­

ted was 

00 

Ji =f (x1 (t) 2 + u(t)2)dt ••••• (4.2-2) 
0 

where x1(t) = y(t) for the system 

x1(t) = Yr(t) for the model. 

As stated in Chapter 3, the infinite time interval results 

in constant feedback coefficients, hence .simplifying conside­

rably, the determination of the model optimal control urC!r>· 

Each model was driven from 

xT(O) = [1 OJ to xT(oo) = [O O]
-r -r 

and the model response and optimal control calculated at .04 

second intervals. In order to drive the system to zero, a 

total time interval of 80 seconds was required. The model op­

timal control was therefore calculated for a time interval of 

80 seconds. Each model optimal control was then used to drive 

the system from 

xT(O) = [ 1 0 •••• O] to xT(80) • [ 0 0 ••• O] 

and the system response obtained for the same 80 second time 

interval. In addition, the cost function given by equation 4.2-2, 

was evaluated for the system for each case of sub-optimal control. 
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4.3 

To provide a basis for comparison, the minimum cost 

was found for the sy3tem by obtaining the system optimal feed­

back coefficients, using the method described in Appendix C.2. 

The system was again driven from 

xT(o) = [1 O ••• O] to xT(80) = [ O O ••• O], 

this time using closed-loop optimal control and the cost cal­

culated. This minimum cost can also be directly evaluated from 

equation 3.2-3, and for this set of initial conditions is simply 

equal to R11, the first element of the R matrix solution of equa­

tion 3.2-4 for the test system. The system and model responses 

and costs were calculated using the methods and program descri­

bed in Appendix B. The results of this investigation are sum­

marized in Table 2 in Chapter 5. 

Use of Reduced Models in Closed-Loop Sub-Optimal Control 

In the previous section, a method was described, which 

uses a reduced model to provide sub-optimal control of the original 

syste~. However, since the resulting control is open-loop, this 

method has certain undesirable features. As mentioned in Chapter 3, 

noise acting on the system will cause this control to be a poorer 

approximation of the optimal. In addit:bn, as the initial state of 

the system changes, the initial state of the reduced model must also 
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be changed accordingly. This requires a new calculation of 

the'model optimal control, for each set of initial conditions 

for the system. 

To circumvent thes~ limitations, it was decided to 

attempt driving the system using some form of feedback optimal 

control. Since the reduced model is an approximation of the 

system, the model optimal feedback coefficients can also be 

regarded as an approximation of the system optimal feedback 

coefficients. Once the model feedback coefficients have been 

calculated for a particular cost function, they can be used 

to provide closed-loop sub-optimal control of the system. These 

coefficients are used to provide a feedback path, as shown in 

Figure 4.2 and are valid for a family of system initial conditions. 
I 

The feedback coefficient vector K is given by 

T 

K = [Kr1 , Krz, O, •••• O] 


s 

where Krl and Krz are the optimal 
/ 

feedback coefficients derived 

for the reduced model. It waa decided to minimize the same cost 

function as before, given by equation 4.2-2. The required model 

coefficients are therefore those derived for section 4.2, that is 

open-loop sub-optimal control. 
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Sub-Optimal Control of a 
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For each pair of model coefficients, the system was driven from 

~(O)T = [ 1 0 ••• OJ to ~(80) = [ 0 ••• O] 

using the configuration of Figure 4.2. The system response 

x (t) = y(t) and the sub-optimal control1 

u(t) = K~(t) 
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were again calculated at .04 second intervals, for a total 

time interval of 80 seconds. The cost function given by equa­

tion 4.2-2 was calculated for each case. The details of the 

system response and cost function calculations are given in Ap­

pendix B. The results of this investigation are summarized 

in Table 3, in Chapter 5. In addition to the reasons already 

mentioned previously, this method of control is, desirable 

because of its simplicity of application. 

As can be seen from the results and discussion given 

in Chapter 5, the cost function 

J1 = J (x1 (t)2 + u(t)2)dt 
0 

seems to be somewhat insensitive to feedback coefficient 

variation, at least for this particular test system. It was 

decided therefore, to investigate near-optimal control of the 

test system using another cost function. The cost function· 

chosen was 
ClO 

J 2 = f (x1 (t) 2 + 10 x2(t)2 + .1 u(t)2)dt •••• (4.2-3) 

0 

if 

x (t) = y(t) •••• (4.2-4)
1 
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and X2(t) = y(t) •••• (4.2-4) 

this cost function can be represented by 

•••• (4.2-5) 

where y(t) is either the system or model output. 

Since some reduction methods employ trajectory-

fitting techniques, the model output and its derivative 

with respect to time, are a good approximation of the system 

output and its derivative. Also, since for sub-optimal control, 

both model and system cost functions must be the same, it was 

felt that the best choice of cost functions are those whose 

terms are limited to the output, its derivative with respect 

to time and the control input. This requires that the state 

variables for both system-and reduced models be in phase varia­

ble form. That is, the n state variables for a system of order 

n, must represent the output and its n-1 derivatives. 

From appendix A.l, it can be seen that for the test 

system, the conditions of equations 4.2-4 are met by modifying 

the control vector B to include the effects of the system zero. 
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These conditions are also satisfied for those reduced models 

which have no zero. However, as also shown in Appendix C.2, 

if the reduced model transfer function is given by 

a s + b 
•••• (4.2-6)= 

s 2 + ds + c 

even modifying the control vector B will not satisfy the con­
r 

ditions of equations 4.2-4. For these models 

••••• (4.2-7) 

y(t) = x2(t) +a u(t) 

If these results are substituted in equation 4.2-5 it is not 

possible to have a cost function of the general quadratic form 

given by equation 3.2-2. As a result, the cost functions for 

the system and reduced models without zeros are equal and can 

be given by equation 4.2-5. The cost function for those models 

having a zero is somewhat different from the system cost and can 

be given by equations 4.2-3 and 4.2-7. 

The optimal feedback coefficients for both reduced 

models and system were again calculated using the appropriate 

cost functions as outlined in Appendix C.2. Unfortunately, with 
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the exception of one model, for the reduced models having a 

zero, either one of the feedback coefficients calculated was 

negative. As there is a possibility of the resulting closed-

loop system becoming unstable, w·ith a negative feedback co­

efficient, it was decided to define the state variables of 

these reduced models differently. If the reduced model trans~ 

fer function given by equation 4.2-6 is written as 

x (s)1 
= 

u(s) 

b " ((a/b)s+l)}= 

The state variable representation becomes 

[ ~l] ~ r0 1 ] rx1] + [o1u 
x2 L-c -d lx2 b J 

•.••. (4.2-8) 

y(t) = [ 1 

The model optimal feedback coefficients were calculated 

for the models having a zero using the cost function given by equa­

ti6n 4.2-3, with the state variables defined by equation 4.2-8. Al­
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though the cost function is different from that for the system, 

because of the definiton of the state variables, the resulting 

feedback coefficients are positive and can be used in sub-op­

timal control. In addition, this definition of the state varia­

bles, allows one to treat the model as having no zero and hence 

to derive the feedback coefficients directly, using the formulae 

given in Appendix C.l. The choice of state variable represen­

tation apd resulting effects will be discussed further in the 

next chapter. 

The system was driven from 

xT(o) = [ 1 O ••• O] to xT(80) = [ O ••• O] 

using the system optimai feedback coefficients derived for 

the cost function J 3 given by equation 4.2-5, and J 3 was eva­

luated for the 80 second total time interval. Again, as stated 

for the first cost function considered, the minimum cost is also 

equal to Rll• The system was also driven sub-optimally from 

xT(O) = [ 1 0 ••• O] to xT(80) = [ 0 ••• O] 

using the configuration shown in Figure 4.2. The model feedback 

coefficients used, were those derived for the second cost function 

as explained .earlier in this section. The sub-optimal cost given 
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by J 3 , was also calculated for each pair of feedback coefficients. 

The system responses and costs for the above cases of optimal 

and sub-optimal control, were calculated using the method and. 

program given in Appendix B, using time intervals of .04 seconds. 

The results of this investigation are summarized in Table 4 in 

Chapter 5. 

As can be seen from Chapter 5, the results obtained 

for closed-loop sub-optimal control are better than those for 

the open-loop method. It was therefore decided that only. the 

closed-loop method 'Wluld be applied for the second cost function. 

In summary, this chapter has dealt only with the pro­

cedures followed for each investigation. Discussion of the re­

lative merits of the different procedures or techniques has 

been kept to a minimum in order to keep the chapter more coherent. 

For the same reason, discussion of the results has been limited 

to those details required for an explanation of the procedures 

followed. A thorough discussion of the results obtained for each 

investigation, is given in the next chapter. 



C~TER 5 

COMPARISON OF THE SUITABILITY OF REDUCEl> MODELS FOR 

NEAR-OPTIMAL CONTROL OF THE TEST SYSTEM 

5.0 General. 

· In the preceding chapter, the ten reduced models were 

used to provide an approximation of the optimal control for the 

test syst.em. The methods of application were described and some 

comments made regarding the model characteristics. In this chap­

ter, the results are given for each method of sub-optimal control 

and cost function used. Those features of the reduction methods 

and their resulting models, which affect their application to near­

optimal control of the test system are also discussed. The pre­

sentation of results follows the same order as that of the proce­

dures described in Chapter 4. From the results obtained, some ob­

servations are made regarding the suitability of each method of sub­

optimal control, and the suitability of each model for providing this 

control. 

5.1 Results of the Cases of Sub-Optimal Control Investigated. 

This section presents the results derived for the proce­

dures outlined in Chapter 4. They are divided into three cases, (i) 

open-loop sub-optimal control using the cost function given by equa­

tion 4.2-2, (ii) closed-loop sub-optimal control using the same cost 
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function, and (iii) closed-loop sub-optimal control using the cost 

function given by equations 4.2-3 and 4.2-5. 

The results for the open-loop sub-optimal control method 

are summarized in Table 2. The R matrix solutions are not given, 

as these are only used to calculate the model optimal feedback 

coefficients. 

The results for the closed-loop sub-optimal control 

method using the cost function given by equation 4.2-2 are summa­

rized in Table 3. The system optimal feed·back coefficients are 

included for comparison. In both tables, the models are ordered 

according to their suitability for providing near-optimal control 

for the system. 

The optimal system cost was calculated both by driving 

the system using optimal feedbac~ control and evaluating equation 

3.2-3. The results for each are identical, hence providing a check 

for the accuracy of the system response calculations. 

The system optimal output trajectory is shown in Figure 

5.1. Since the sub-optimal system trajectories are almost identical 

for the cost function considered, only two are shown in Figure 5.2. 

All the other system trajectories lie between these. The figure 

time interval was selected as 40 seconds, since for the rest of the 
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TABLE 2 


RESULTS FOR OPEN-LOOP SUB-OPTIMAL CONTROL OF THE TEST SYSTEM 


SYSTEM COST 
REDUCTION METHOD 

OPT. SYSTEM COST 

Pattern Search 
1.00032 

tie! 


Chen & Shieh Method 
 1.00037 

_l 
...... 

' 

Pattern Search I 
! 
I 

t e2 + s.s. constraint 1.00725 
J 

Pattern Search 1.01080 
minimax ..L 

Optimal Projection 	: 
' 1.01093

Method 
! 

! 
IDavison's Method 1.01101 
' 
i 

i 

Pattern Search 	 I 
i 1.01121 

te2 	 l 

I 
IStep Response Meth. 1.01147 

l 
l 

lIterative Method 	 ' 1.01156 

! 
! 

Anderson's Method 1 1.01171 

Optimal System Cost • 6.2490 
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TABLE 3 57 

RESULTS FOR CLOSED-LOOP SUB-OPTIMAL CONTROL OF THE TEST SYSTEM 

SYSTEM COST . KT FOR MODELREDUCXION METHOD r OPT. SYSTEM COST 

Pattern Search 1.0[ .11191 .04089) 
min tlel 

-
1.0Chen & Shieh Method (.11151 .04802) 

Pattern Search 1.00009(.10248 .05136) 
te2 with s.s. 


Pattern Search 

1.00219(.063007 .023785) 

minimax ..L 


Pattern Search 
 1.00270[ .057717 .021688) II
I: e2 


Anderson's Method 
 1.00280[ .05740 .030097) 

1.00282[ .05697 .0271302)Iterative Method 

. 
1.00302Opt. Projection Meth. [ .05403 .018382) 

1.00304[ .05538 .032698)Step Response Meth. 

1.00360[.048960 .01338) Davison's Method 

SYSTEM OPTIMAL FEEDBACK COEFFICIENTS 


[.11552 .06676 .016387 .001305 7.2799xl0-5 1.4469xl0-6 l.7307xl0-8 ) 




58 

control interval, the response approaches zero asymptotically. 

The results for the closed-loop sub-optimal control 

method using the cost function given by equations 4.2-3 and 4.2-5, 

are summarized in Table 4. The model R matrix solutions, although 

not given, are those found if the model state space equations are 

given by 4.2-8. The optimal system costs, calculated by driving 

the system using optimal control and evaluating equation 3.2-3, 

are identical and are included in Table 4. 

The R matrices, derived if the model state variables 

are defined by equation 4.2-7, are positive definite. However, 

the resulting feedback vector has one negative term because of 

the definition of the control vector elements. Positive feedback 

coefficients occur for the Pattern Search (minimaxJ.) model and are 

given by 

KT • (1.7324 4.1704)
r 

The sub-optimal system cost using these coefficients is 6.24710 and 

is the minimum sub-optimal cost found for both methods of model repre­

sentation. The system optimal feedback coefficients are 

KT• (1.446 6.3039 .80605 .052908 l.8112xl0~3 3xlo-5 2.7xl0-7J 

The system optimal output trajectory for the second cost 

function is shown in Figure 5.3 and the optimal control in Figure 5.4. 

Figures 5.5 and 5.6 show the sub-optimal trajectories and controls re­

spectively, for the best and worst approximations of the optimal control. 
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TABLE 4. 

RESULTS FOR CLOSED-LOOP SUB-OPTIMAL CONTROL OF THE TEST SYSTEM USING J2 

REDUCTION METHOD KT FOR MODEL 
r 

1 SYSTEM COST 
MIN. SYSTEM COST 

I 

I 

Pattern Search 
r le I 

(.53943 .890801] 
! 
! 1.02206 

Chen & Shieh 
Method 

1I 
' i 

I
I 

(.53960 .9483] 

I 

I 
I 

I 
! 

1.02251 

I 	 i 

Pattern Search 	 I 
I (5394026 2.8064] ' 1.04006 

re2 with s.s. 

I 
Pattern Search 

minimax .L (.56163 4.8868] 
\ 

1.06143
' ·, 

i 
i 
! 

i 

Step Response Method 	
' 

(.53939 4.9831] 
j 

I 

1.06625 
I 

I 	 ' 
I 

' 
Opt. Projection Method (.54498 5.2135] 1.06843 

i I 

i 
l 
' 

1.06853Davison's Method [.53657 5.11766) 
I 	 I 
I 	 i 
I 	 ~ 

Pattern Search 2:e2 
i 
I 
I 

I 

I 
[.56088 5.4499) 

I 

I 
! 
! 

1.06898 

Iterative Method 
! 
i (.5540 5.6385] i 

I 
1.07272 

i 
! 

Anderson's Method 	 i (.55799 5.7446) 1.07351 

i 
; 

Minimum System Cost • 6.17478 
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Since ten models are studied it is felt that the two extremes suffice 
. 

since all the other sub-optimal trajectories and controls lie between 

them. 

This section has presented the results for each case of 

sub-optimal control separately. The next sections will consider all 

the results as a whole. 

Comparison with Respect to Computational Effort Required. 

From Tables 2 and 3, it can be seen that the closed-loop 

method of control approximates the optimal control for the system 

more closely than the open-loop method for every model used. The 

system costs are very close for the two methods of control, but this 

is attributable to the fact that the first cost function is very in­

sensitive to feedback coefficient variation because of their small 

magnitude. The closed-loop method of sub-optimal control results 
' 

in a closer approximation of the true optimum. In addition, in prac­

tical systems, the addition of noise and parameter ~ariation make 

closed-loop control more desirable. For the solution of the matrix 

Riccati equation, those models which have no zero are more desirable 

since the feedback coefficients can be directly calculated using the 

formulae of Appendix C.2. However, those models which contain zeroes, 

approximate the optimal control more closely, even when they are in 

state variable rather than phase variable form, as can be seen from 

Table 4. Since in this representation the formulae can also be used, 
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computationally, a reduced model without a zero is no more desira­

ble. 

Considering models containing zeroes, if the cost function 

for the system is written in terms of the output and its derivatives, 

the model should be represented in phase variable form. For the 

test system considered, this resulted in most models having a negative 

feedback cpefficient, because of one of the elements of the control 

vector is also negative. The Pattern Search (llinimaxl) which was 

fourth be'st for all other cases considered, was the only model having 

positive feedback coefficients. However, it approximated the optimal 

control most closely, for the second cost function, when used in phase 

variable form.· 

The pattern search method required more computer time than 

most other· reduction methods, however, the resulting models are op­

timized with respect to a selected error criterion. They are also 

consistently the most suitable models for approximating the system 

optimal control. The increased computation required is therefore jus­

tified. The modal reduction methods are tedious and require the cal­

culation of the eigenvalues, eigenvectors and modal matrix inverse. 

Even though the modes retained are those closest to the j~-axis in 

the s-plane, the resulting models are no more suitable than those 

derived using much simpler methods. As expected, the Optimal Projec­

tion Model was slightly better than the Davison Model. 
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5.3 

To derive a first approximation of the optimal control, 

one of the simpler reduction methods such as the Iterative or 

Step Response Methods should be used. 

Although the second cost function is more difficult to 

apply, there is a better separation of sub-optimal costs and re­

sponses as can be seen from Table 4 and Figures 5.5 and 5.6. This 

is due to the .lu2 term which allows larger feedback coefficients 

and hence, a larger control input. Hence, variation in model para­

meters result in greater differences in the approximation of the op­

timal control. The suitability of different models is much more ap­

parent than for the first cost function. 

Comparison of Model Suitability. 

The results summarized in Tables 2,3 and 4 are very con­

sistent. The order of model suitability is basically unchanged, 

between the different cases of sub-optimal control. In addition, 

the most suitable models result in near-optimal control of the system. 

For both cost functions, the system sub-optimal cost approaches the 

true optimum even for the second cost function, where the model and 

system costs are not truly identical. 

For the first cost function, the suitability of the 

different models may be more easily perceived if one compares the 

feedback coefficients of ·Table ·3 with the first two optimal feedback 

coefficients for the system. 
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Those reduction methods which optimize the model with 

respect to some error criterion, result in models which are most 

suitable for sub-optimal control applications. The most desirable 

criterions are those which stress the steady-state part of the sys­

tem response. The fattern Search ~el criterion and te2 with steady­

state constraint criterion, both stress the steady-state part, the 

former more than the latter. In additfon, the Chen & Shieh reduction 

method stresses the steady-state part of the system response, because 

of the expansion around s • O. 

The reduction methods which minimize the mean squared error, 

are not as suitable because this criterion inherently stresses the 

transient portion of the system response. As can be seen from Tables 

2,3 and 4, the three models resulting from this criterion are equally 

suitable. Since the step response reduction method allows one to stress 

selected system response features, the resulting model may be made more 

suitable by stressing steady-state response. 

The modal reduction methods result in models as suitable 

as the mean squared error models. A better model may have been de­

rived if the pole closest to the origin had not been neglected. 

In summary,the most suitable reduction methods are the 

Pattern Search Method with error criterion which stress steady-state 

and the Chen & Shieh method. The resulting sub-optimal controls and 

trajectories are very near optimum as can be seen from Figures 5.1 to 

5.6. The next chapter discusses the conclusions to be drawn from this work. 



CHAPTER 6 

C 0 N C L U S I 0 N S 

Ten different reduced models have been applied, to pro­

vide sub-optimal control of a test system. The models were used 

to provide both open-loop and feedback sub-optimal control for 

one cost function, and only feedback sub-optimal control for ano­

ther. Since each model was derived using a different reduction 

method, the objective was to determine which reduced models were 

most suitable for providing an approximation of the optimal control 

of a system. Since the results obtained are quite consistent, some 

conclusions may be drawn from this work. 

For all models used,, the feedback method of sub-optimal 

control produced better results than the open-loop method. In 

additbn the feedback method was much easier to apply. For this 

method, for both cost functions, the sub-optimal cost for the sys­

tem was very near to the system optimum for some models us~d. This 

method of using the model optimal feedback coefficients as an approx­

imation of the system optimal coefficients is useful and for some redu­

ced models results in a sufficiently close approximation of the system 

optimal control for most practical purposes. Those models which are 

computationally easier to handle, that is, those models having no zero, 
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may be used to derive a first approximation of the optimal con­

trol, the true optimum being found by some other method. 

In general, it is usually not possible to find an ex­

plicit representation of the closed-loop optimal control for a 

non-linear system. If a linear low-order model for the system is 

found, the closed-loop method of sub-optimal control may be used 

to approximate the optimal control for the system. If necessary, 

a better approximation may then be found using a search routine. 

The desirability of using reduced models to approximate · 

the optimal control of a complex system is also verified. Although 

the test system was only seventh order with one zero? if the model op­

timum was used instead of tht! system, the reduction in computer time 

required to solve the matrix Riccati equation was enormous. Even for· 

those models which most closely approximated the system optimal response, 

the computer time was one fortieth of that required for the system solu­

tion. In addition, the system parameters must be known in order to derive 

the optimal feedback coefficients. Since some reduction methods require 

only the system response for a pa~ticular input, the system may be con­

trolled near-optimally without any knowledge of the system parameters. 

If only a first approximation of the optimal control is re­

quired, it would be more desirable to use a reduced model having no zero. 
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The model optimal feedback coefficients can be directly calculated 

using the formulae previously mentioned. For those models with a 

zero, the matrix Riccati equation must be integrated backward in 

time until a steady-state solution is reached. This fact seems to 

make reduced models having no zero, more suitable for on-line appli­

cations. However, even i·f the reduced model is represented in state 

variable form, rather than phase variable, the approximate optimal 

control is still better than that derived for those models without 

a zero. Since in this representation the formulae can also be used, 

no added value may be given to a model because it does not contain a 

zero. 

The order of model suitability is not basically different 

for both cost functions and both methods of sub-optimal control. The 

reduction methods which stress the steady-state or settling time part 

of the system response result in reduced models which are most suita­

ble for sub-optimal control. These methods include the pattern search 

method which minimizes the sum of the absolute errors between the system 

and model response, and the Chen & Shieh method. One weakness of the 

Chen and Shieh method is that the system transfer function must be known 

and only single input-output systems can be considered. To a lesser extent 

the pattern search method which minimizes the sum of the squares of the 

errors with steady-state constraint, also results in a 
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suitable model. As expected, the methods which minimize the mean 

~quared error, all produce models which are equally good. Also, they 

are not as suitable as those mentioned above, since a mean squared 

error objective inherently stres~es the transient part of the system 

response. The modal reduction methods, although they require a know­

ledge of the system eigenvalues and eigenvectors, and are computatio­

nally ted~ous, produce models which are no better than those derived 

using simpler reduction techniques. 

From these results, it may be stated that those reduction 

methods which optimize the low-order model with respect to some ohjec­

tive error function, produce models which are most suitable for opti­

rnal control. If this objective functi.on stresses the steady-state por­

tion of the model and system responses, the order of suitability is in­

creased. Of the reduction techniques considered in this work, the pat­

tern search method results in models which are most suitable. Although 
I' 

computationally long, it requires no knowledge of the system parameters 

and the objective error function may be chosen to stress any part or as­

pect of the system response. For a first approximation, the step response 

method may be selected since it requires no knowledge of the system para­

meters, is computationally the easiest method to apply and stresses selec­

ted system response characteristics. 

By choosing the appropriate reduction method, a second order 

reduced model° can be derived which can provide a very good approximation 

http:functi.on
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of the optimal control for the system. If higher order reduced models 

are derived, this approximate control may be made to approach the true 

optimum. 



A.l 

APPENDIX A 


THE TEST SYSTEM 


The Test System Transfer Function 

For the sake of reality and validity, it was decided that 

an authentic system model containing a reasonable number of complex 

poles, fairly distributed in the s-plane, was required. 

Reduction techniques invariably neglect (to some extent) 

the poles of the system which are located far from the origin since 

these poles represent small time constants and their effects are 

relatively short-lived. Some authors have taken examples in which 

there are two sets of poles, one near the j~-axis, and the other far 

away from. it. This restriction, besides being unrealistic, favors 

the modal reduction methods which select certain modes to be retai­

ned and neglect the rest. To avoid biased results, then, a trans­

fer function with poles distributed over the entire left-half plane 

was preferred. · 

The system chosenl4 was one of the designs studied for 

the current super-sonic transport aircraft. Figure A.l shows the 

block diagram of the system with variable parameters Kl, K2, T,~ 

~n· To obtain reasonable pole-zero locations, the following para­

meter values were selected by the authors7(consistent with design 
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description and maintaining stability) 

Kl - 0.2 

K2 • 1.0 

l; - 0.707 

With these parameter values, the transfer function of the test 

system becomes 

C(s) 
R(s) 

• 
37SOOO(s + 0.083l) 

s7 + 83.64s6 + 4097.40s5 + 70341.9s4 

+ 853703sj + 281427ls2 + 3310875s + 281250 

The characteristic equation of the system is given by F(s) • 

Denominator of Transfer Function. 

Since the roots of the characteristic equation are the poles of the 

system and also the eigenvalues of the A matrix if the system is re­

presented in state space form, these are only mentioned once in Fi­

gure A.2. 
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State Space System Representation 

From the transfer function the state space equations 

are developed. These are necessary both for calculating the sys­

tem time response and the calculation and implementation of opti­

mal, or sub-optimal control. 

The state space equations, written in the general form 

:i • A x + E -u-

are not desirable. As stated in Chapter 4, it is necessary for the 

state space representation to be in phase variable form. This means 

specifically that 

and 

The state space equations for a single input-output system can then 

be simply written 

i: • ,A x + B u 

For this representation, the effects of the system zeroes are 

compensated for by modifying the control vector. One of the 

12techniques of accomplishing this is to proceed as follows: 
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Letting x1• y(t) + b0 u(t) 

x2- y(t) + b0 ~(t) + b1 u(t) 

etc. 

and applying the restriction that no derivatives of u(t) must ap­

pear in the vector differential equation, the elements of the con­

trol vector b1, b2, ••• b7 can be solved for in terms of the trans­

fer function parameters. The resulting vector differential equa­

tion, can be written 

as 
0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 0 0 

- 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 

0 

0 

0 

where a1 • 281250 

3310875 

2814271 

a2 • 

a3 • 

a4 • 853703 

as. 70342 

a6. 4097.4 

a7 - 83.64 
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and 	 b6 • 375000 

b7 • -31333751 

now 

• 

This representation has been used in all calculations 

involving the test system. In the above discussion.!_, y, and 

u are functions of time, but for simplicity the (t) have been o­

mitted. 
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APPENDIX B 

SOLUTION OF THE STATE SPACE EQUATIONS USING A DIGITAL COMPUTER 

Methods of Solution 

The solution of the ·equations 

x(t) • Ax(t) + Bu(t) 

t 

is ,!.(t) • eA(t-to) ·.!.<to) + eAt f e-AT Bu(T)dT 

to 

This equation can be solved by direct integration and then substitu­

tion of the required values for t. However, this method cannot be 

used for high-order systems because of computational difficulty. 

If to is taken to be zero, which is not unduly restrictive, 

the solution becomes 

,!_Ct) 

In order to use a digital computer to solve the state space equations, 

the solution must first be expressed in discrete form. The solution 

becomes easier if the driving function, or input, is held constant 

between sampling intervals, or can be suitably approximated by a se­

ries of step functions which can be considered constant between the 
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sampling intervals. This condition is met when the system is 

driven sub-optimally in an open-loop sense since the.optimal 

control for the model is given as a series of values at the sam­

pling instants. 

The SO'lution can then be given by 

T 
.?!,(k+l)T • eAT .?!_(kT) + fe-Aau(kT)dt. • ••• (B.1-1) 

0 

where T • sampling interval 

and k • sampling instant 

If eAT and e-AT are represented in infinite series form as 

eAT. (I+AT + (tT)2 + (AT)3 + .••.. ) •••• (B.1-2) 
! 3 ! 

and e-AT ~ (I-AT+(AT)2 • (AT)3 + ••• ) 
~ ~ 

and e~uation B.1-l integrated between the limits shown, the solution 

becomes 

.?!. (k+l)T• eAT .?!_(kT) +[I-AT+ (AT) 2 - •••• ] Bu(kT)T ••• (B.1-3)
"2T Jr 

where eAT is given by equation B.1-2. 

This form of solution (later referred to as the series 

expansion method), lends itself to machine computation. If the 

two infinite series are first computed using a suitable truncation 

criterion, equation B.1-3 can be solved iteratively by simply up­
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dating the initial conditions and control input. 

However, this form of solution is not suitable for 

feedback control where u(kT) • -KTx(kT). For this form of control 

the responses may be best calculated using a numerical method of 

integrating the ordinary differential equations. Although round-off 

errors may become significant using these methods, these can be mi­

nimized by selecting a suitably small time interval. The numerical 

method selected is a fourth order Runge-Kutta method. 15 It obtains 

an approximate solution of the vector differential equation with gi­

ven initial conditions. 

To obtain the value of the cost function for the total 

time interval of interest, the value of the integrand of 

'00 

J • J (xTQx + uTPu)dt is obtained for each sample interval. 
0\) 

A Simpson's rule integration technique is then employed to evaluate 

the integral of this equally spaced data. There is a subroutine 

resident in the CDC 6400 computer library which combines Simpson's 

rule and Newton's 3/8 rule to perform the necessary integration. 

A general program is included in Appendix B.2 which cal­

culates the response of a system defined by the equations 

x • Ax + Bu 

y • Cx 

u • N(r(t)-KTx(t)] 



The program also evaluates the cost function for the total time 

interval of control and plots the output, control and desired 

state variables using the line printer. 

This program was used to compute all model and system 

responses .forthe cases of model and system optimal control and 

open-loop or closed-loop sub-optimal control of the system. The 

sub-optimal costs and responses of the system were also computed 

for the case of open-loop sub-optimal control of the system, using 

the series expansion method previously mentioned. There is good 

agreement between the results of both methods of solution if a sam­

pling interval of .04 seconds is used. Since an 80 second control 

time is required to drive the system to zero, the system response 

is computed for 2000 samples. 

A smaller sample time produced results which agreed 

closely with those produced by a .04 second interval (five figure 

accuracy). For all calculations therefore, it was decided that a 

.04 second time interval provided sufficient accuracy. 

The program can be easily modified ·to provide a punched 

data deck of response or control values. However, these additions 

are not included in this listing. 
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APPENDIX B.2 

COMPUTER PROGRAM FOR SOLUTION OF 

STATE SPACE EQUATIONS USING A DIGITAL COMPUTER 

.c GRAPHICAL TI~E RESPONSE CGTRESPJ 
C SUBPROGRAMS USED- CALCU, RUNGE,TRESP, YDOT 
C THIS PROGRAM CALCULATES THE RESPONSE '.STATE VECTOR' AND 
C CONTROL TRAJECTORIES GIVE~ SOME INITIAL CONDITION AND 
C FITHER OPEN-LOOP OR CLOSED-LOOP CONTROL 

INTEGER CHARC15l 
COM~ON IPLQT,IVARClUJ 
DIMENSION Al1u,1u1,c11u1,e11uJ,AKC1uJ,XC1C1,NAMEISl 
DATA CHAR<1J,CHAR(2)tCHARC3),CHAR(4),CHARIS)' 

8CHAR ( 6 I 'CHAR ( 7 I 'CHAR ( 8 I 'lH/\ R ( 9) 'CHAR ( 1 U J 'CHAR ( 11 l ' 
7CHAR(l?l,CHAR(J3),CHAR<l4J,CHARC15l/2H 1'2H 2'2H 3'2H 4, 
4 2H 5,2H 6'2H 7,zH g,2H 9,2H1u,2H E,2H u,2H y,zH R,2H I 

c 
C INPUT AND OUTPUT FORMAT STATEMENT 
c 

3 f".'OR.'·1A TC 7F 11. 2 l 
1000 FOR~AT (lHu,1ux,sHTZERO = ,FlU.6,lUXt5HTF = 'Fl0.6/ 

811X,5HDT = 'Flu.6,13X,7HFREQ = ,151 
1001 FORMAT (1HU,luX,13H THE A MATR~X /) 
1002 FORMAT (6CE20.8l) 
1003 FORVAT (]HU,1UX,19H INITIAL CONDITIONS /) 
1004 FORMAT ClHU,lUX,13H THE B MATRIX /) 
1005 FORMAT IIHu,luX,16H FEEDBACK COEFF. /) 
1006 FOR~AT (lHu,10x,sH GAIN= 'E2U.8) 
1007 FORMAT <1Hu,1uX,13H THE c_ MATRIX /l 
1008 FORMAT 18A2l 
lOOQ FOR~AT 15X,25HPROBLEM IDENTIFICATION - '5A4J 
1010 FORMATl1Hl,4X,23HGRAPHICA~ TI~E RESPONSE) 
1011 FOR~ATC/5X,45(1H*ll 
1012 FORMATC8Fl0.7) 

c 
c 

IPROG = 0 
10 READ(5,1J !NAME<Il,I=lt5l'N 

1 FORMAT (5A4,I2l 
DO 60 I=l,8 

60 	 IVAR( I) = CHARI 15) 
PRINT lUlO 
PRINT 1~09,INAME!Ild=l,5) 

PRINT lUll 
c 
C THE A MATRIX IS READ IN AND OUTPUTTED 

PRINT 1001 
QO 2 I=ltN 

http:6CE20.8l
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READ 3, (A(I,J),J=l,Nl 
PRINT 1G02' (A(J,J), J=l,N) 

2 CONTINUE 
c 
C THE B VECTOR ELEMENTS FOR THE SYSTEM ARE GIVEN 
c 

8( 1) = o.u 
B(2) = o.o 
P,(J) = o.o 
8(4) = c.o 
8(5) = o.u 
B~6) = 375Uuu. 
B(7l = 375oco.*o.cg333-375uou.*B3.64 
PRINT 1004 

c 
C .THE C VECTOR ELEMENTS ARE READ IN AND OUTP0TTED 

READ 3, (C<I l'I=l,NI 
PRINT 1U07 
PRINT 1002, (C(l),I=l,N) 

c 
C THE FEED~ACK COEFFICIENTS ARE R~AD IN AND ~RITTEN 

READ 1012• (,AK(JhI=1,Nl 
PRINT 1005 
PRINT 1002, (AK<IJ,I=l,N> 

c 
READ 3, GAIN 
PRINT 1U06, GAIN 

c 
C THE INITIAL CONDITIONS ARE READ IN AND WRITTEN 

READ 3, (X(l ),J=l,Nl 
P R I N T l ·o 0 3 
PRINT 1uo2, (X(l),I=.l,N> 

c 
C THE PROGRAM TIME PARAMETER ARE READ IN AND WRITTEN 

READ 3, TZERO,TF,DT,FREQ 
IFQ = FREQ 
PRINT iooo, TZERO,TF,DT,IFQ 
PRINT lGll 

c 
C THIS PART OF THE PROGRAM DETERMINES THE TRAJECTORIES 
C THAT ARE TO bE GRAPHED AND PREPARED THE PLOT SuBROuTINE 
c 
c 

READ 10v8' (IVAR( I l '1=1'8l 

DO 40 I=l,8 

DO 30 J=l,15 

IF( IVAr~( I )-CHAR(J)) 3u,z5,30 


25 IVAR<IJ = J 


http:375oco.*o.cg333-375uou.*B3.64


88 


GO TO 40 
30 CONTINUE 
40 CONTINUE 

MIN = 1 
MAX = 8 
M = 8 

419 DO 42 I=MIN,MAX 
IF(IVAR(Il.NE.15) GO TO 42 
M = MAX-1 
IF( I.GT.Ml GO TO 42 
DO 43.J=I,M 

43 IVAR(J) = IVAR(J+l) 
GO TO 431 

42 CONTINUE 
GO 'TO 432 

431 MIN = I 
MAX = M 
GO TO 419 ' 

432 I PLOT = M 
IF ( IP LOT.LT. 2 l c;o ro 50 
LIM = IPLOT-1 

DO 44 I=l,LIM 
MIN = I+l 
DO 44 J=MIN,IPLOT 
IF( IVAR( I l-IVAR(J) l 44,44,45 

45 !HOLD= IVAR(Il 
IVAR( I) = IVAR(J) 
IVAR(J) = !HOLD 

44 CONTINUE 
c 
C THE INTEGRATION PROCEDURE IS INITIATED BY CALLING ~UBROUTINE 
C TRESP 
·c 

50 CALL TRESP(A,x,s,AK,TZERO,JF,DT,1FQ,N,GAIN,Cl 
IPROG = IPROG+l 
IF<IPROG-6)10,20,20 

20 STOP 
END 
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SUBROUTINE CALCU<x,u,f,N,AK,GAIN,Rl 
C THIS SUBROUTINE COMPUTES THE REFERENCE AND CONTROL I~PUTS 

DIMENSION XllVJ, AKllUl 
C BEGINNING OF ROUTINE TO DEFINE R THE OPE~-LOOP CONTROL INPUT 

1001 R = O.O 
1002 CONTINUE 

C END OF ROUTINE TO DEFINE RITJ 
U ::: R 
DO 1 I=l,N 

1 U = U-AKIIl*X(Il 
U = U*GAIN 
RETURN 

END 


SUBROUTINE RUNGE (N,FN'H'X'Y'L'Il 
C FOURTH ORDER RUNGE KUTTA INTEGRATION ROUTINE 
C fHJ~ SURROUTTNE PERFOR~S THE ACTUAL INTEGRATION AND IS CALLEU 
C FOUR TIMES FOR EACH TIME INTERVAL 

DIMENSION Y(6UC),pHJ(6Uu),SAVEY<6Uu),FN(8) 

I = I+l 

GO TO <1,2,3,4,5) ,z 

1 	 L = 1 
RETURN 

2 	 DO 600 J=l'N 

SAVEY(J) = Y(J) 

PHl(J) = FN(J) 


600 	 Y(J) = SAVEYIJl+.5*H*FN(J) 

X = X+.5*H 

L 	= 1 
RETURN 


3 DO 700 J=l'N 

PHIIJ) = PHI(J)+2.*FN(J) 


700 Y(J) = SAVEY(Jl+.5*H*FN<Jl 

L. 	= 1 
RETURN 


4 DO SOU J=l,N 

PHI{J) = PHI(J)+2.*FN(J) 

800 	 Y(Jl = SAVEY(J) +H*FN(J) 

X = X+.5*H 

L 	= 1 
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RETURN 
5 DO 90G J=l'N 

900 Y(J) = SAVEY(J)+(H/6.l*<PHI<Jl+FN(J)) 
L = 2 
I = 0 
RETURN 
END 

SUBROJTINE fRESP(A,y,B,AK'X,XMAX,H,IFREQ,N,GAIN'C) 
c THIS SUBROUTINE rs THE MASTER SvBROUTINE WHICH CALLS THE OTHER THRE 
C SUBROUTINES IN THE INTEGRATION PROCEDURE 
C IT USES A FOURTH ORDER RUNGE-KUTTA ALGORITHM TO INTEGRATE THE 
C LINEAR SYSTEM 
C THIS SUBROUTINE COMPUTES AND PLOTS TI~E RESPONSE 
C USING CALCU,RUNGE,YDOT AND YBVSX 

INTEGER CHtd~(l5l 


COMMON IPLQT,IVAR(lOl 

DIMENSION SKJ(lvl,9),C(lvl,SCOSTl2Uv1l,~INT<2u01l 


DIME NS I ON F N ( 1 0 l 'Y ( 1 U l 'A ( l lh 1U l ' B ( 1 u l 'AK ( 10 l 

DATA CHAR(lJ,CHAR(2J,CHARl3J,CHAR(41,CHAR(5), 


8CHARl6),CHAR(7),CHARl8l,tHAR(9),CHARl1uJ,CHAR(ll), 

4CHAR(l?J,CHARl13),(HAR1141,CHAR(l5l/1Hl'1H2,1H3'1H4' 

81H5,lH6,lH7,lH8,lH9,lHA,1HE,lHU,lHY,lHR,lH I 


24 FORMAT(2Fl0.J,2IlU) 

25 FORMAT(8Fl0.0) 

28 FORMAT(//,gX,lHT,12X,4HY(T),luX,4HU(T),4X, 


7 7<5X,1HX,Il,4H(1) ,3X)) 

29 FORMAT(1U(El4.6) l 


JOOO FORMAT(/,5X,33H~AXIMUM NUMBER OF POINTS EXCEEDED /) 

PRINT za, (J,J=1,21 

c 
C THIS SECTION CALCULATES THE CO~T FOR EACH TIME INTERVAL AND 
c STORES IT IN scosT 
c 

ICOST = 1 

DO 4000 I=1'2U01 


4000 scosT1ri = u.o 

I I = 0 




c 
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j = 0 

COST = o.o 

KOUNT = I Fr~EQ 


300 	 CALL CALCU(Y,u,x,N,AK,GAINtR) 

SCOST(ICOSTl = Y(ll**2+U**2 

!COST = ICOST+l 


3000 KOUNT = KOUNT+l 
IF(KOUNT-IFREOl 50,350,350 


350 KOUNT = 0 

450 Pl = u.u 


DO 451 I=ltN 
451 Pl= Pl+C<Il*Y(Il 


PRINT 29, X,p1,LJ,(Y(MJ,M=l,2l 

IF<IPLOT.EO.Ol GO TO 21 

j = J+l 

IF<J.GT.101) GO TO 222 

SKJ(Jtll = X 

DO 4U I = ltIPLOT 

MM = I VAR (I l 

IFIMM.EQ.OJ GO TO 40 

IF(MM.GT.10) GO TO 35 

SKJ(Jd+ll = YU.-:Ml 

GO TO t1U 


35 KNO\-J = MM-1(; 

GO TO (36,37,3a,39J' KNOW 


36 SKJ(J'1+ll = R-Pl 

GO TO 40 


3 7 SKJ ( J '1+1) = U 

GO TO 40 


38 SKJ(J, I+l l = Pl 

GO TO 4Q 


39 SKJ<Jd+ll = R 

40 CONTINUE 

21 CONTINUE 

50 CALL RUNGE (N,FN'H'X'Y'L'IIJ 


IF(L-ll l00,?.00,100 

200 CALL CALCU(Y,u,x,N,AK,GAIN,Rl 


CALL YDOT(A,Y,FN'B'U,Nl 

550 GO TO 50 

222 PRINT 1000 


GO TO 4v0 

100 IF<X-XMAXl 3uG,3oc,400 

400 IF<IPLOT.EO.Ul GO TO 403 


PRINT 600 
600 FORMAT <lHl,50X,15HSYSTEM RESPONSE//} 

PRINT 601 
601 	 FORMAT 14BX,BHVARIABLE,8X,6HSYMBOL//) 

DO 608 I = 1,IPLOT 
MM= IVAR(!) 
IF(MM.GT.lUl GO TO 6U3 

http:IF<IPLOT.EO.Ul
http:IF(MM.GT.10
http:IFIMM.EQ.OJ
http:IF<IPLOT.EO.Ol
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PRINT 602,IVAR(Il,CHAR(MMl 

602 FORMAT<51X,1HX,I2,13X,All 


GO TO 6U8 

603 KK = IVAR(I)-10 


GO TO (604,6U5,606,6U7), KK 

604 PRINT 610 


GO TO 6U8 

605 PRINT 611 


GO TO 608 

6 0 6 PR,I NT 6 1 2 


GO TO 6CJ8 

607 PRMH 613 

608 CONTINUE 

610 FORMAT (5JX,5HERROR,12X,1HE> 

611 FOR~AT(49X,7HCONTROL,11X,1HU) 


612 FORMAT(5QX,6HOUTPUT,11X,1HY> 

613 FORMAT(5UX,5HINPUT,12X,lHRl 


CALL YBVSX<SKJ,J,IPLOT,10) 
c 
c THE COST FUNCTION rs WRITTEN FOR THE TIME INTERVAL 
c 

CALL Q$F(H,ScosT,SINT,zu01> 

COST = SINT(2UU1) 


403 PRINT auoo, COST 


8000 FORMAT<1Hu,1ux,*JCOST = *'El4.6) 
c 


RETURN 

END 


SUBROUTINE YDQT(A,Y,xooT,~,0,Nl 
c THIS SUBROUTINE rs USED To COMPUTE ThE DERIVATIVES OF x WITH RESPECT 
C TO TIME FOR EACH TIME INTERVAL 

DI~ENSION Y!lU),A(lO,lOJ,8(10),XDOT(lO) 
DO 2 I = l'N 
XDOT(I) = u. 
DO 1 J=l,N 
XDOT(Il = XDOT<I>+A(I,Jl*YCJ) 

1 CONTINUE 
XDOT (I) = XDOT CI) +B (I l *U 

2 CONTINUE 
RETURN 
END 
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SUBROUTINE YBVSXCA'N'M'NGRID> 
C THIS SUBROUTINE PLOTS UP TO 8 VARIABLES VER~US TIME 
c THIS rs BOTH A X-T AND X-Y PLOT ROUTINE 
C IT AUTOMATICALLY ~ELECTS LIMIT~ AND DIMENSIONS FOR THE GRA~H 

CO~MON IPLQT,IVA~ClU} 

INTEGER CHARC15l 

DIMENSION A<1u1,9),A8SCAClll,KAXISClOll'ORDIN<11>,TEMPYC9) 

DAT A CHAR C 1 l 'CHAR ( 2 l 'CHAR ( 3 l 'CHAR ( 4 l 'CHAR ( 5)' 


7CHAR(61zCHARC7l,CHAR(B),tHAR(9),CHARC10l,CHAR<111, 
5CHAR(J2),CHAR<l3J,CHAR(l4l,CHAR<l5lllHl'lH2,lH3'1H4'1H5' 
21H6,lH7,lH8,lH9,lHA,1HE'lHU,lHY,lHR'lH I 

DATA ISTAR,JI,IPER,IDASH,IBLANK/lH*'lHI,lH.,lH-,lH I 

100 FOR~AT {////,9x,11<E1u.21) 

101 FOR~ATCE13.2,2x,1u1All 


102 FORMATc15x,1~lAl) 


YMAX = A(l,2} 

YMIN = A(l,2) 

MPl = M+l 

DO 4 J=2,MP1 

DO '+ I= 1, N 

IFCYMAX-A(J,Jl l 1,2,2 

1 YMAX = -A ( I 'J l 

2 IFCYMIN-ACJ,JI I 4,4,3 

3 YMIN = A(hJI 

4 	 CONTINUE 


YSHFT = O•(J 

IFCY:vlINl 5,6,6 


5 	 YSHFT = YMIN*l0u.u/CYMAX-YMINl 
6 	 NMl = N-1 


DO 8 I=l,NMl 

IPl = I+l 

DO 8 K=IPl'N 

IFCACK,ll-A(I,lll 7,3,3 

7 	 DO 88 J=l,MPl 

ATEMP = A(I,Jl 

A(I,JI = A(K,J) 

A(K,Ji = ATEMP 


88 CONTINUE 

8 CONTINUE 


XMIN = ACld) 

XMAX = A(Ndl 

ABSCA(l) = XMIN 

ABSCA(lll = XMAX 

ORDIN(l) = YMIN 

ORDINlll} = YMAX 

DO 9 I=2'10 

Z = I-1 

ABSCA(I) =<XMAX-XMINl*Z/1~.0+XMIN 


9 	 ORDIN(IJ = (YMAX-YMINl*Z/lU.u+YMIN 

PRINT 100,(0RDINCJl,J=l,lll 


http:9x,11<E1u.21
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STEPX = (XMAX-XMINl/100.0 

KDELX = 1 

KLINE = 1 

LI NE = 1 

DO 26 IND=l'N 

IF(NGRID.EQ.Ul GO TO 20U 

KSTEP = LINE 

GO TO 2Lil 


200 	 KSTEP = CACIND,ll-XMINl/STEPX+l.5 
201 DO 10 J=2,MP1 

10 TEMPY(J) = ACIND,Jl*lU0.0/(Y~AX-YMINl-YSHFT 
11 !F(KLINE-LINEl 12,12,18 
12 DO 13 I=2dUO 
13 KAXIS(Il = IDASH 

DO 14 I=ldU1'1U 

14 KAXIS<Il = !STAR 


IF(KSTEP-LINEl 15,15,17 

15 	 DO 16 I=2,MP1 


K = TEMPYCil+l.5 

MM = IVAR< I-1 l 


16 	 KAXIS<Kl = CHAR(MMl 
17 	 PRINT lvl,ABSCAl~DELXl,(KAXIS(Jl 'J=l,101) 

IF(NGRID.EQ.u) GO TO 202 
KLINE = KLINE+NGRID 
ABSCA<KDELXl = A(KLINE,ll 
GO TO 24 

202 	 KLINE = KLINE+lO 
KDELX = KDELX+l 
GO TO 24 

18 DO 19 I=2'1uu 

19 KAXISCII =!BLANK 


DO 20 I=ldld'10 

20 KAX IS (I l = I PER 


!F(KSTEP-LINEl 21,21,23. 

21 	 DO 22 I=2,MP1 


K = TEflt.PY( I l+l.5 

MM = IV AR ( I -1 l 


22 KAXIS(Kl = CHAR(MMl 

23 PRINT lv2,(KAX!S(J),J=l,101) 

24 LINE = 'LINE+l 


IFCLINE-102) 25,25,27 

25 IFCKSTEP-LINEl 26,11,11 

26 CONTINUE 

27 RETURN 


END 

http:TEflt.PY
http:IF(NGRID.EQ.Ul
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APPENDIX C 


SOLUTION OF THE MATRIX RICCATI EQUATION 


Solution of the Matrix Riccati Equation for a 

Second Order Model having no zero. 

Solution of the matrix Riccati equation requires that 

the reduced model be represented in state space form. To satis­

fy the requirements imposed in Chapter 4, the state variables 

must be in phase variable form. 

If the model has a transfer function given by 

a 
G(s) • 2 

s +cs+ b 

and x1• y 

the vector differential equation becomes 

0 1 0 ux1 x1 

[. J [ ]~ H1
, ~2 • -b -c x2_ a 

Although x, y, and u are functions of time the (t) have been omitted 

for simplicity. 

-95­
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If the cost function is given by equation 3.2-2, 

Q is given by 

and 

the matrix Riccati equation can be solved very simply. 

It becomes only necessary to solve the degenerate Riccati equation 

givE11by 

The resulting algebraic equations are 

Since only one of the above equations is non-linear, and one equation 

has only one element, the 

R matrix elements can be calculated directly 

p-la2 

/ 
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R22 • -c +/c2+ p-1~2(2R12+ Q22) 

p-la2 

The feedback coefficients can be calculated from 

This procedure is computationally very simple and allows one to 

represent the' optimal feedback coefficients directly in terms of 

the model and cost function parameters. It may therefore be use­

ful in on-line adaptive control applications; and the optimization 

of a reduced model with respect to a system cost function. 

SOLUTION OF THE MATRIX RICCATI EgUATION FOR THE SYSTEM 

AND A SECOND ORDER MODEL CONTAINING A ZERO. 

As stated in Appendix C.l, the reduced model must first 

be represented in state space in a phase variable form. If the model 

transfer function is given by 

. ....,..___as+ bG(s) 
_ 

s2 + 	ds+c 

and 	x1 • y(t) + bou(t) 

x2 • y(t) _+ b0u(t) + b1u(t) 
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By imposing the condition that.the coefficient of any derivative 

of u(t) must equal zero in the vector differential equation, the 

phase variable vector differential euqation becomes 

Y • x1 

Again for.!_, y and u the (t) have been"omitted. 

The deg~nerate matrix Riccati equation results in 

equations which cannot be easily solved. It is therefore neces­

sary to solve the matrix Riccati equation given by 

•••• (C.2-1) 

This can be done easily on a digital computer since the above 

equation represents a set of first-order ordinary differential equa­

tions. The terminal conditbn is known and is 

R(tf) • 0 

The matrix Riccati equation can then be integrated backwards in time 

from the known terminal condition. Since the control interval for the 

cost functions considered in this work is infinite, the R matrix is 

constant and the integration can be continued until the solution con­
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verges to a steady-state value, or a desired degree of accuracy. 

Only the steady-state values are required and hence .the integra­

tion step-size may be as large as desired, w:flhout introducing 

any errors in the final solution. This technique is also used 

to solve equation C.2-1 for the test system. 

A program is included in Appendix C.2 which solves 

the matrix Riccati equationfor the seventh order test system. 

This program uses a subroutine which is resident in the CDC 6400 

computer library, which uses a fourth-order Runge-Kutta method 

to perform the actual integration. Although the Runge-Kutta 

method is inefficient compared to predictor-corrector methods, 

it is stable and self-starting, and the integration step-size 

may be easily altered at any time during the calculations. 

For the seventh-9rder system, a step size of .01 seconds 
•

has to be used to keep the R and R values within the computer maxi­

mum number bounds. Because of the magnitude of the test system para-· 

meters, choosing a larger step size causes the matrix values to ex­

ceed these limits. 

In the program, Subroutine FCT contains the 28 differen­

tial equations, rather than the general matrix notation of the right 

hand side of equation C.2-1. Since only one test system is being 

considered, it is felt that this representation is more desirable, 

• 
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as it minimizes the already long computer time required for the 

program. This program can be used for any order model just by 

changing the dimension variable. 

The feedback coefficients can be calculated once the 

R matrix is known, using the equation 

Although this method is computationally longer than 

the formulae solution given in Appendix C.l, it is more general 

and may be used for any order system and cost function. Systems 

with multiple inputs and outputs may also be handled with equal 

facility. 
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APPENDIX C.2 


COMPUTER PROGRAM FOR SOLUTION OF 


THE MATRIX RICCATI EQUATION FOR THE TEST SYSTEM 


C THIS PROGRAM IS USED TO CO~PUTE THE R MATRIX FOR THE SEVENTH ORDER ~YSTEM 
C IT CALLS THE SUB ROUTINE R~GS WHICH IS RESIDFNT IN THE LidRAKY 
C THE PRMT ELEMENTS DEFINE THE PARA~ETERS OF INTEGRATION 
C THE Y ELEMENTS GIVE THE INITIAL VALUES FOR ,HE VARIA~LES 

DIMENSION Y(?AJ,PRMT(5),A0X(8,28l,DERY(28l 
EXTERNAL FCT,OUTP 
PRINT 1 

l FORMATC5X,*SCLUTION OF ~ATRIX RICCATI EON*/) 
PRINT 2 

2 FORMAT(lH0,lvX,*MATRIX COEFFICIENTS*! 
ND I "1 = 28 
PRrv~T C1) = 80. 0 
PRMT<2l = o.o 
PR~·~ T ( 3} = -·. v l 
PRMT(4J = lvU. 
DO 11.J I=l,28 
DERY(!) = l.J/28.0 

10 Y(IJ
CALL 

= O.O 
RKGS(PR~T,Y,DERY,NDIM,IHLF,FCT,OUTP,A0Xl 

PRINT 3, IHLF 
3 FOR~AT(lH~,l~X,*ERROR MESSAGE *'131 

STOP 
END • 

SUBROUTINE ouTp(T,R,RDQT,IHLF,NDIM,PRMTJ 
C THIS S\..JBROUTINE CONTROLS THE OUTPUT OF THE PROGRA1•\ 
C IT SELECTS THOSE VALUES OF R AND R. ~HICH ON~ ~ANTS TO RETAIN 

DI~ENSION R(28l,RDOT<28J,PRMT<5J 
IF<T-80.0J 21,20,2u 

20 TCOUN = 80.u 
GO TO 6 

21 IF(<TCOUN-Tl-.2vJ 22,7,7 
22 CONTINUE 

RETURN 
7 TCOUN = T 
6 PRINT 1' T,(R(I),I=I,28) 
1 FOR~AT(IX,F6.3,3X,1v<Ell•4'1Xl/JvX,lU(EIJ.4,lA)/10X,1v(EJl•4'1Xll 

PRINT 1,IHLf,(RDOT(IJ,I=l,28l 
RETURN 
END 
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SUBROUTINE FCT(X,R,RDOTl 
C THIS SUBROUTINE CALCULATES THE UERIVATIVE OF R ~ITH RESPECT 
C TO TIME FOR EACH TIME INCREMENT 

DIMENSION R!28J,RDOT(28l 
c 
C THE FOLLO~ING ARE THE PARA~ETERS OF THE SEVENTH ORDER SYSTE~ 
c 

A = 375UOv.u 
B = 375uuO.*U.U8333 
Dl = 28125Uev 
DZ = 3310875.U 
D3 = 2814271.0 
04 = 853703.U 
05 = 70342.v 
06 = 4097.U 
D7 = 83.64 
T = B-A*D7 

c 
UA = SQRT(lv.v)*(A*R(6l+T*R(7ll 

UB = SQRT(lv.l*(A*R(l2l+T*R(13l) 
UC = SQRT(lv.l*(A*R(17l+T*R(l8ll 
UD = SQRT(lv.)*(A*R(2ll+T*R<22ll 
UE = SQRT(lv.l*(A*R(24l+T*R(25ll 
UF = SQRT(l~.lXIA~R(26l+T*Rl271l 
UG = SQRT(lU.l*(A*R(27l+T*R(28ll 

c 
C THE FOLLOWING ARE THE 28 NONLINEAR EQUATIONS DEFINING THE 
C THE DERIVATIVE OF R WITH RESPECT TO TIME 
c 

RDOT(lJ = UA**2+2.U*Ol*R(7l-l.U 
RDOT(2) = UA*UB+Ol*R(l3l-IR(ll-D2*R<7ll 
RDOT(3l = UA*UC+Dl*R(l8l-(R(2l-D3*RC7J l 
RDOT(4J=UA*UD+Dl*R(22l-CRC3l-D4*R(7l l 
RDOTl5)=UA*UF+Dl*R!25l-IR14J-D5*R(7ll 
RDOTl6l=UA*UF+Dl*R<27l-(R(5l-06*R(7ll 
RDOT(7J=UA*UG+Ol*R(28l-(R(6J-D7*R(7ll 
RDOT(8)=UR**2-(R(2l-D2*R(l3l1-(R(2l-DZ*R(l3ll-IO. 
RDOT(9l=UB*UC-(R(8l-D3*R(l3ll-(R(3l-D2*R(l8ll 
RDOT(lUl=uB*UD-(R(9l-D4*R(l3ll-(R(4l-D2*R!22)) 
RDOT<lJ l=UB*UE-(R(l0l-D5*R(l3ll-(R(5J-D2*R(25ll 
RDOT(l2l=UR*UF-(R(1Jl-D6*R(l3l l-(R(6l-D2*R(27ll 
RDOT(l3l=UB*UG-(R(J?l-D7*R(I3ll-(R(7J-D2*R(Z8ll 
RDOT(14l=~C**2-2.U*(R(9l-D3*R< 18ll 
RDOT<l5l=UC*UD-(R(l4l-D4*R(l8ll-(R(l0l-D3*R(22ll 
RDOf(l6l=UC*UE-<R<l5l-05*R<l8ll-(R(lll-D3*R(25l l 
ROOT(l7l=UC*UF-(R(l6l-D6*R(l8ll-(R(l2l-D3*R(27l l 
RDOT(l8l=UC*UG-(R(l7l-D7*R(18ll-(R(l3l-D3*R(28l l 
RDOT(lGl=UD**2-2.U*(R(l5)-04*R<22l) 
RDOT(20J=UO*UE-(R(l9l-D5*R<22ll-(R(l6l-D4*R(25ll 
RDOT(21l=UD*UF-(R(2Ul-D6*R(22ll-(R(17l-D4*R<27l l 
RDOT<22l=UD*UG-(R(21l-D7*R(22ll-(R(l8l-D4*R(28) l 
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RDOT(23l=UE**2-2.U*(R(20)-D5*R(25l l 
RDOTIZ4l=UE*UF-(R(23l-D6*R(25Jl-IR<2ll-D5*R(27) l 
RDOT(25l=UE*UG-(R(24l-D7*R(25l l-IRl22l-D5*R(281 l 
RDOTC26l=UF**Z-2.u*(R(24J-D6*R(27l l 
RDOTl27l=UF*UG-(Rl26l-D7*Rl27JJ-(R(25l-D6*Rl28ll 
RDOT(28l=UG**2-2.u*IR(27l-D7*Rl28ll 
RETURN 
END 
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