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INTRODUCTION 

Background 

The object of a· band structure calculation is the 

theoretical determination of the single particle energies 

of the electrons in a solid. This involves two main steps: 

the choice of a realistic one-body crystalline potential 

and, in the non-relativistic case {which is the only case 

with which this work in concern~d}, the solution of 
.. 

Schrodinger's equation for a solid with that potential. 

The completely localized, or core levels, of the 
• 

potential are easily determined by the methods of atomic 

physics. One.method of solution for the band levels is a 

variational calculation using a complete set of· plane waves,· 
-~ -+ 

e 1A•r Because of the lattice periodicity only those wave 
,+

vectors which reduce to the k value of the desired Bloch 

state need be included. If the plane waves are orthqgonalized 

to the core levels, and a variational calculation is performed 

using a limited number of these orthogonalized plane waves 

(OPW's}, then the lowest roots of the secular equation will 

converge to the lowest band levels as the number of OPW's is 

increased. This is the orthogonalized plane wave (OPW) method, 

first proposed by Herring in 1940 {H40). This method is use

ful if proximity to convergence is reached with a small number 

1 
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.. 


of trial functions. 

In 1959 Phillips and Kleinman (PK59) showed that the 
.. 

OPW method is equivalent to solving the Schrodinger equation 

with an effective state-dependent potential, the pseudo-

potential, by expanding the solution of the variational cal

culation in plane waves. If convergence is good in an OPW 

calculation then the major contributi~n to the wave function 

comes from a single OPW. This corresponds to a pseudopoten

tial whose solution is dominated by a single plane wave, that 

is, a pseudopotential which nearly vanishes. This clarifies 

the free election type of behavior present in the simple 

metals, for which the OPW method is successful. The one-OPW 

approximation is useful because it provides acsimple form for 

the conduction wave functions, which can then be used to cal

culate many physical properties of the solid (e.g. total 

binding energy, vibration_spectrUI'!'l, positron annihilation 

characteristics). The pseudopotential method also permits 

good approximate calculations of the band structures of simple 

metals and semi-conductors by adjusting only a few parameters 

to fit experimental results (such as de-Haas-van Alphen data). 

Another modified plane wave approach for band struc

ture calculations is the augmented plane wave (APW) method. 

Here the procedure is to solve exactly for the wave functions 

in a sphere centred on each lattice point and employ the 

variational principle with plane waves to construct the wave 

functions in the interstitial regions. 
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A band structure calculation should be done self

consistently, that is, the core and conduction states should 

be the solutions for a potential which is constructed from 

the wave functions of these. states. I.n practice the 

difficulty is twofold: first, it is not clear what pre

scription to use on the wave functions to construct a poten

tial which takes good account of correlation effects; 

secondly, the computational problem is great since it is 

necessary to use the wave functions at many points of the 

Brillouin zone, at each of which they are described by a 

different combination of a number of trial functions. The 

first attempt at several iterations was that of Loucks and 

Cutler in 1964 (LC64) for beryllium, in which.the potential 

was constructed using as conduction wave functions the one

OPW solutions of. the preceding potential in the iterative 

procedure. Golin (G65) performed a more extensive self

consistent OPW calculation for arsenic in 1965. His work 

also contains a simplified method. for handling non-muffin

tin potentials. 

Objectives 

The convergence of the OPW method has been found to 

become poorer as the dominant angular momentum component of 

the band under consideration increases. Accordingly,it has 

been usefully applied to the s- and p-like bands of metals 

and semi-conductors but has not been successful (in its 
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unmodified form) in calculations of d-bands such as occur 

in transition metals. In the latter cases the difficulty 

of orthogonalizing to the outermost s and p core states is 

added to the problem of slow convergence. Neither of these 

difficulties is restrictive in the APW approach which has 

been successfully applied to the first transition series 

(M64). 

In comparison with the OPW method the APW approach 
I 

has some disadvantages: In the variational procedure many 

radial wave functions must be integrated for each trial 

energy in solving the secular equation. (It also follows 

from this that it contains no simple equivalent to the one

OPW approximation.} The trial wave functions have a dis

continuous slope at the surface of the APW sphere. Also, 

APW applications thus far have been restricted to muffin-tin 

potentials only and with this restriction self-consistency 

cannot be attained. 

The object of the present work is to modify the OPW 

. procedure to permit its application to transition metals 

while at the same time retaining its advantages in comparison 

to other methods of band structure computation. The initial 

aim was to find a simple approximation to the wave functions. 

(The specific problem at hand was a first principle calcula

tion of phonon dispersion relations in niobium for comparison 

with experiment. Such calculations for simple metals have 

made use of the one-OPW approximation.) The specific topic 
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of this thesis is the design and application of suitable 

modifications to cthe OPW approach. The emphasis in this 

work has been on the development of the method. 

In the first chapter the OPW and APW methods will 

be reviewed. The following chapter will contain a descrip

tion of modifications to the OPW method. The application 

of the modified method to the transition metal niobium and 

the resultant band structure will then be presented. 



CHAPTER I 


STANDARD PLANE WAVE METHODS 


OPW Method 
-The requirement is to solve Schrodinger's equation 

(l-1) 

for the conduction wave functions ~' where the one electron 

Hamiltonian in atomic units is 

H = -v2 + V(~). (l-2) 

(A word first on notat~on: ~ wi~l always denote a solution 

of (1-1) and the trial functions to be used in a variational 

calculation will be denoted by ~. Radial wave functions will 

be designated Rn1 {r), while the term 'radial wave function' 

will also be used loosely to mean Pn1 (r) = rRn1 {r); which of 

the two is meant will always be clear from the context or 

from the R-P notation. By 'core states' will be meant the 

completely localized solutions of (1-1) with the crystalline 

potential which is to be used to determine the conduction 

states*.) 

*Elsewhere these are sometimes called pseudo-core 
states since they differ from the true core states of the 
solid. The latter represent the true charge. distribution 
near the core and are the solutions of a differenf one-body 
potential. 

6 
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The potential is periodic in the lattice 
-+- +·

V { r+R.e.) = V { r) . {l-3) 

--+for all lattice vectors R
1

• In the following discussion 

the solid will be assumed to have a Bravais lattice structure. 

By the Bloch theorem the solutions will be of the form 
+

ijlk {r) {1-4) 
+

where uk{r} is periodic in the lattice. It follows directly 

that for any functions of this form 

(1-5) 

for some reciprocal lattice vector G (including the zero 

vector), where the matrix element implies.integration over 

the entire crystal. 

The contributions to the matrix element of the 

Hamiltonian (or unity} from each cell in direct space are 
1 

equal. This is easily shown as follows: Let f denote the 

integral, in which r varies over one ce11 centred at r = R
1 

and f denote the integral-with r varying over one cell 

centred at r=o. Then the contribution to the matrix element 

of the potential from the cell centred at R is
1 

1 

J ijlk+G ·c~> v er> wk er> dr 

1= J -i<k+G>·r <+>v<+> ik·r + +e uk+G r r e uk{r)dr 

By changing the variable of integration, this equals 
--+ --+ + ~ 

-i (k+G) • (r+R.,) --+ -+ ik • {r+R )
~ uk+G(r+R.t)V(r+Rt)e R. xIe 

._. --+ 
Uk {r+R.e,} d (r+R.e,) 

Using the periodicity of uk{r),and V(r) and noting that 
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iG·R.e. e 	 . =l, this equals 

·'i!: +

I -i(k+G)·t C+)v{+) 	 1A •r (+) d+ e 	 uk+G r r e uk r r 

+whic;ti is the same as the contribution from the cell at r=o. 

The same result holds for the matrix elements of v- 2 and 

unity. Hence in evaluating these matrix_ elements it_is 

sufficient to limit the range of integration to the cell at 

the origin of direct space only, assuming the functions to 

be of the Bloch form and remembering that conditions (1-5) 

apply. 

Let lw > = 11/JnR.m> denote the orthonormal set of c . 

core state solutions of (1-1) fo~ a specific wave vector. 

The following discussion will deal with this single wave 

vector 	only. Define a' projection operator, P, by 

P = 1 - r lw ><$ Ic c c 

Acting on an arbitrary function _this operator deletes that 

part of the function which is in the Hilbert space of the 

core states. An orthogonalized plane wave is defined by 

ltCk)> = Pjk> = jk> -	 E<1jl lk>lw > (1-6)c c c 

where lk> denotes a plane wave of wave vector k. Since the 

plane waves constitute a complete set, the OPW's are 

sufficient to represent any function in the Hilbert sub~ 

space of the conduction states. The <1/J ·1 k> 's are the c 

orthogonality coefficients specifying the amount of each 

core function which must be subtracted 
' 

from the plane wave 

to attain orthogonality. 
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Express the conduction solution I$> in terms of 

OPW's: 

Then, by the variational principle, the expectation value 

of the Hamiltonian will reach its minimum value W, with 

the set of coefficients ak' when the following matrix 

equation is satisfied: 

[[a] - w[s~ (a)= o (l-7a) 

where square brackets denote matrices, 

H•.
1J 

s .. = 
1J 

and (a] is the column matrix with elements ak. W is a 

solution when the determinant of the coefficients vanishes:

I[H) - W (s} = o (l-7b) 

Evaluation of Matrix Elements 

The matrix elements H.. and s .. are now evaluated: 
l.J l.) 

H1.J' = <'(k.) IHl~(k.)>]. . J 


= <k. I PHP I k . > 

1 J 

=<k.1<1-r I$,><$ .1>11c1-rl$ ><$ l>lk.>
1 c' c c c c c J 

= <k. IHlk.> - r <k. j$ ,><$·, lajk.> - !<k. IHI$»<$ lk.>
1 J c' 1 c c J c 1 c c J 

+ ! !<k. I$ ,><$ ,IHI$><$ lk.>
c' c 1 c c c c J 
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Using Hlw > = E lw > and <w , lw > = c c c c c 0c'c, 

H. . = <k. IHI k. > - r E , <k. I w ,><w , Ik. >
1J _1 J c' c 1 c c J 


- E Ec<kilwc><wclkJ.> + E Ec<kilwc><wclkJ.> 

c . c 

H. . = <k. IHI k. > - L E <k. '"' > < 1jl Ik. > (1-Sa)
1) 1 J c c 1 c c J 


Similarly, 


s. . = <$ Ck.> I$ Ck.>> 
1) 1 J 

= <k. !k.> - E<k. !ip ><1jl jk.> (1-Bb) 
1 J c 1 c c J 

The plane waves and core functions are chosen to 

- have normalization unity in a unit cell of volume .fl •
0 

The plane wavesin the r re~resentation are then: 
.;t -+

1<rlk> = -- e1..... •r 
. (no 

The OPW method as described is only useful if the core 

functions are easily determined. This will be the case if 

the potential is spherical about a lattice site within a 

sphere of some radius r _and the atomic-like core solutions 
0 

of.this spherical potential vanish at r$r • The core solu
0 

tions in the cell are then readily calculated by the methods 

of atomic physics and are of the form: 

Pn1 (r)
<rl 1jl > = (1-9)c r 

It will be assumed below that the core electrons fill 


closed shells. 
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The matrix elements of (l-8) will now be evaluated. 

Recall that the integration is only eve~ the unit cell at 

the origin of direct space and, by (1-5), the matrix 

elements vanish unless they connect states with wave 

vectors differing by a reciprocal lattice vector.· 

.~k. + 'k.~ +1 -1 . • r 1 . • r d+r<k • Ik .> = ,.... e 1 e J · 

1 J -'"o 
I 

2 	 .......-.. 

= k. ok k + v (G .. )

J i j 1) 

where 

(1-10) 


and Gij is the 	reciprocal lattice vector joining~ to kj°· 

= __!_ I PnR. (r)<tlJ lk>c ./..o. r 
0 

Expanding the plane wave in spherical harmonics, 

<lfl jk> = c 

where da:sineded~ and ek,$k,er and$r denote the direction of 

the k and ~ vectors. Therefore, 
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* <ljtc lk> = Fnt(k) Ytm ( ek I ~k) 

where co 

Pnt(r)41T . t 
Fnt(k) = l. j t (kr)r2dr . (1-11)r.

'-n.o J 
0 

Hence, the second term in (1-Sa) becomes 

E Ent <k. Ilj> t > < lj> t Ik. >
i n m n m Jntm 

Using the addition theorm for spherical harmonics, this 

equals 

1 
4if 

,..... =-+
where e .. denotesthe angle between k. and k. and Pn (x) is

l.J l. J . ~ 

the Legendre polynomial. _The OPW matrix elements are, then, 

for the case of a Bravais lattice: 

H.. = k.2 o){;~- fi1 
E (2t+1) E t F * t ( k . ) F t ( k . ) Pt (cos e . . ) c1.:..12a)

l.J J nt n n i n J l.J
l. J 

1 * s .. = E (2R.+l)F t (k. }F t (k.)Pt (Cose .. ) (l-12b)o~~ - 4-iTl.J n i n J l.J
l. J nt 

Pseudopotential Theory* 

Phillips and Kleinman (PK59) showed that the OPW 

, *Only the Phillips and Kleinman formulation of the 
pseudopotential and its relation to the OPW method are dis
cussed here. For a discussion of more recent work see the book 
by Harrison (Ha66) • 
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method is equivalent to a plane wav·e variational solution 
.. 

of Schrodinger's equation with the potential replaced by a 

pseudopotential. Expanding the solution in OPW's (an 

infinite number if necessary), 

.. 

Substituting in Schrodinger's equation, 

I: ak HI cf> (k) > = E. E ak I cf> (k) > 
k k . 

Using HI~ > = E I~ > and collecting terms,c c c 

I: ak(H+ E (E-E ) 1~ ><~ l>k> =EE aklk>
k c c c c . k 

which is equivalent to assuming a plane wave trial solution 

E aklk> to solve the equation with an effective Hamiltonian 
k 

2 - v + V(r) + VR' 

where VR = E (E-E ) I~ ><~ I c c c c 

is an effective repulsive potential. The pseudopotential is 

V + VR. Since V is attractive, cancellation will occur. If 

the cancellation is such that the pseudopotential nearly 

vanishes then the single plarawave lk> is a good approximation 

to the solution in the pseudopotential formulation; this 

corresponds to a one-OPW solution. Note that the pseudopoten
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tial is state dependent through E. 

Phillips and Kleinman have compared the Fourier 

transforms of the attractive and effective repulsive poten

tials in silicon for the cases of an s-like state and a 

p-like state, as shown in Figs. l~ In the s case the can

cellation is seen to be good at large.· k; however, the same 

is not true in the p case. They state that the orthogonal

ization procedure can be regarded as a way of including the 

radial kinetic energy in the core region, but not the 

angular kinetic energy. (In the p case, if the angular 

kinetic energy t(t+l}/r2 is explicitly added to the repulsive 

potential, then the cancellation (Fig. l(b}) is seen to be as 

full as in the s case.} Then, orthogonalization to the core 

states makes an OPW trial function a good approximation in 

the case of an s-state, a poorer approximation for a p-state 

and a very poor one in the d-band case. 

There is a second problem hindering the application 

of the OPW method to d-bands. The outer "core" functions, 

such as the 4s and 4p in niobium*, do not vanish at a radius 

less than half the nearest neighbor distance, but typically 

have values of P45 _ 0.1 and P4 : 0.2 for atomic-like wave= p . . 

functions normalized to J Pnt2 dr=l. These states are, then, 
0 

not completely localized but rather. form very narrow bands. 

This prevents proper orthogonalization of the plane waves ·to 

*The outer atomic configuration of niobium is 

(4s} 2 (4p) 6 (4d) 4 (Ss) 1 • 
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these states by the usual techniques; the numerical error 

introduced by improper orth~onalization becomes important 

when a large number of OPW's are included in the secular 

equation. If no attempt is made to orthogonalize to these 

states the lowest roots of the secular equation will 

correspond to these levels and the next highest solutions 

will correspond to the conduction band states. Such a 

procedure is unsatisfactory for two reasons: First, OPW's 

are plane wave-like in the interstitial regions and so are 

not well suited to represent the exponential behavior of 

core levels; secondly, it is a well known fact (MM43) that a 

small deviation from full convergence in the lowest root of 

a secular equation can lead to considerably larger devia

tions from the correct solution in higher roots. 

Crystalline Potential 

No mention has yet been made of the explicit form of 

the crystalline potential. It is often most convenient to 

approximate it as a sum of spherical potentials centred on 

lattice sites, 

V(r) =E vat (Ir-RR. I) (1-13) 
R. 

where Vat(r) is a spherical atomic-like potential. In the 

present work Vat(r) is constructed by overlapping free atom 

charge densities (see Chapter. 3 ·for a more detailed dis

cussion). Sometimes the conduction electrons have been 

approximated by plane waves and their contribution converted 

into a suitable spherical average about each lattice site. 
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However, this sometimes raises the problem of correcting 

for the overlap (e.g. for the case in which the conduction 

electrons are represented by a uniform charge distribution 

in the Wigner-Seitz sphere). Sometimes Vis approximated 

by a sum of non-overlapping potentials, as in the muffin-

tin form of Vat used to date in APW calculations. Overlap 

is advantageous from the point of view of building more of 

the correct directional asymmetry into the crystalline 

potential inside a particular unit cell. 

The potential explicitly enters an OPW calculation 

in two ways: first, it is required in direct space to 

solve for the core states; secondly, its Fourier transforms, 

v(G), are required in the OPW matrix elements. Golin (G65) 

has divided the total potential into two contributions, 

core and valence. The core contribution is expressed in 

the form (1-13); the valence contribution is handled prin

cipally by its Fourier transforms. This is a particularly 

convenient formulation for self-consistent calculations. 

The core potential is not varied throughout the calculation. 

After the first trial the Fourier transforms of the valence 

potential are directly determined from the band structure; 

this valence potential is then transformed into real space, 

spherically averaging about a lattice site, to allow cal

culation of the core states. 
'G ~ 

Using (l-13) and expanding e1 ·r in spherical 

harmonics, (1-10) takes the form (with or without overlap): 
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c; +o: 
OCJ 

411'vCG> = I rvat(r)sin(G·~)dr (l-14a)
G..0.o 


c; = o: 
0 


OCJ 

411'v(o) = r Vat(r)dr (l-14b).no I 
2 

0 

. Symmetrized Combinations 

As discussed above; the trial functions to be used 

in the OPW band structure calculation at point k in the 

first Brillouin zone are the OPW's of wave vector k + G for 

many reciprocal lattice vectors G.. In practice, however, 

the order of the secular equation can be greatly reduced at 

symmetry points of the zone: If the trial functions are 

taken to be linear combinations of OPW's which transform 

under rotation according to the columns of the irreducible 

representations of the group of the wave vector 
,,..
k, then, by 

theorems of group theory, e.g. (Ti64) , matrix. elements of 

the Hamiltonian and of unity will vanish between functions 

which do not correspond to the same column of the same 

irreducible representation.· Hence the secular determinant 

is effectively reduced to a number of lower order deter

minantal blocks along the diagonal, each of which can then 

be solved distinctly. The symmetrized combinations for 

many structures can be determined, for example, from 

Schlosser's generators (S62),and have also been tabulated 

by Luehrmann (L66). 
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APW Method 

Consider first the augmented plane wave method 

applied to a muffin-tin potential, th.at is, a. potential 

of the form (1-13) for which the spherical potential contri

butions on neighboring lattice sites do not mutually overlap. 

The .tleaof the APW method is to solve for each band wave 

function exactly in the muffin-tin sphere about each lattice 

point and variationally by plane waves in the interstitial 

regions. At each point k in the first zone consider choosing 

a trial energy value E, representing an estimate of the 

energy at that point in the particular band under considera

tion. For that energy the solution within the sphere is of 

the form: 

where the radial wave functions have been integrated out

wards from r=o for that energy and all values of t and m are 

to be included in the summation. The coefficients a m are
1

chosen so that this interior solution will match continu

ously to a plane wave at the sphere surface. The APW is then: 

+(k) 

(1-15) 

where E is a unit step function: 

e(x) = 1 for x~o 

£ (x) = o for x<o 

. \ 
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and r. is the radius of the muffin-tin.sphere. Consider 
1 

expanding the plane wave in spherical harmonics about the 

lattice point; then each radial component, proportional to 

j 1 (kr}, must be matched to the interior radial solution, 

R (E,r}, so that the coefficients are: 

1 * jt(k ri) 
atm = 4ni aoYtm(ek,~k) Rt(E,ri) 

Note that the slope of each spherical harmonic component 

is discontinuous, in general, at r:ri; only the amplitudes 

have been matched. 

The set of APW's with wave vectors = k+G~ is formed 
1 

for a certain number of reciprocal lattice vectors Gi and -
the trial solution is expanded in terms of these APW's. 

(In practice, symmetrized combinations of APW' s are used at · 

symmetry points; also, values of t greater than about 12 are 

ignored.) The desired solution E must satisfy a secular 

determinant: 

I [H] - E [s] I = o (1-16} 

where the notation is as in equations (1-7). Note that [H] 

and (s] are dependent on E because of the form of the solu

tion in the interior of the sphere and also through the 

matching coefficients a 1m. The determinant (1-16) is com

puted as a function of E (involving radial integrations for 

each value of E) and the zeros of the function are found. 

This procedure is repeated as more reciprocal.lattice vectors 
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G:" are included anq continues until the solution is considered 
l. 

to be converged. This is done separately for each value of 
,,..
k and for each band of interest. 

The problemswhich arise in applying the OPW method 

to d-bands do not occur in the APW approach. First, the ortho

gonalization to the outer core levels is not a problem since 

the core levels need not be computed; secondly, the inappro

priateness of plane wave components to represent d-bands is 

lessened because in practice the muffin-tin sphere is usually 

chosen to have a radius of half the nearest-neighbor distance 

and so the interstitial region to be represented by plane 

waves is quite small. 

No application of the APW method has yet been made 

for a potential other than a muffin-tin. Slater has proposed 

a perturbation approach for such a case· (Sl65). It also 

seems clear that in many cases the problem can be solved 

exactly by considering the analogy between APW's and OPW's 

(8165) • 



CHAPTER 2 


MODIFIED OPW METHOD 


As mentioned previously, difficulties arise in 

applying the OPW method to transition metals. Such an 

application would be useful, however, since the OPW method 

is formally simpler than the APW and has also been the 

basis of the self-consistent band structure methods 

developed so far; in addition, several applications of 

band structures have made use of one-OPW and pseudopotential 

approximations for simple metals and it would be useful if 

such work could be extended to transition metals. 

To the knowledge of the author the only successful 

application of the OPW method in the transition region is 

that of Callaway (CSSa, CSSb) to the energy bands of iron. 

In that case the s-bands were treated by the cellular 

method while the p- and d-bands were expanded in OPW's. To 

obtain convergence for the d-band points it was found 

necessary to add to the set of OPW's a function which is 

atomic d-like near the lattice site and vanishes in the 

interstitial regions. The addition of such cut-off functions 

is the basis of the modified OPW method employed in the 

present calculation, so Callaway's work will now be described 

in a little more detail. 

21 
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In iron the occupied conduction bands arise 

principally from the 3d and 4s atomic levels. For those· 

d-like points in the Brillouin zone which contain no s or 

p character (e.g. r 25 ,) the appropriate symmetrized combina

tions of OPW's contain spherical harmonic components of 

1~2 only. Since there are no core states with 1~2, no 

orthogonalization terms appear in these symmetrized combina

tions; thus the OPW expansion is identical to a plane wave 

expansion for these states. Callaway found the convergence 

to be very poor in such cases because it takes an exceedingly 

large number of plane waves to represent the rapid variation 

of the d-band wave functions near the core. This problem 

was overcome by adding to the basis set a function which 

represents the behavior well near the. nucleus and which 

vanishes with vanishing derivatives at the Wigner....:Seitz cell 

boundary; this very much improved the d-band convergence in 

the iron calculations. 

The atomic configuration of niobium is (ls} 2 (2s) 2 

(2p) 6 (3s} 2 (3p) 6 (3d) 10 (4s) 2 (4p) 6 (4d) 4 (Ss) 1 • The occupied 

conduction bands 
' 
arise principally from the 4d and Ss levels. 

The 4s and 4p states are the troublesome core levels: the 

atomic functions on adjacent lattice sites overlap slightly 

but enough to prevent proper orthogonalization of the plane 

waves to these states. A difference from the case of iron 

is that d-like symmetrized combinations of OPW's contain 



23 

terms representing orthogonalization to the 3d level; 

however, as discussed in the preceding chapter, this does 

not provide much help because the OPW method does not work 

well for d-like states. As in Callaway's case this problem 

was overcome by adding to the set of OPW's a function which 

is similar to the 4d atomic state near the lattice site but 

which vanishes before half the nearest neighbor distance. 

It is necessary to orthogonalize this cut-off function to 

the 3d core level since the variational principle is to be 

used. The problem of the troublesome 4s and 4p core levels 

was overcome in a similar way: Cut-off functions similar 

to 4s and 4p atomic states, but orthogonal to the lower 

states, were also added to the basis set, while the plane 

waves were orthogonalized to the levels up to and including 

the 3d only. For an s-like point, then, the lowest root of 

the secular equation corresponds to the 4s core level and 

the next lowest root is the desired s-like conduction band 

level. This was found to be a successful way of nandling 

the outer core states. Since the atomic-like 4s and 4p 

solutions of the crystalline potential have small amplitudes 

at the cell boundary they need only be modified slightly to 

be converted into cut-off functions. The variational calcu

lation then quickly converges to these levels; since the 

solutions of the secular equation corresponding to different 

roots are mutually orthogonal, the proper orthogonalization 
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is thereby introduced into the conduction band solutions. 

In summary, then, the basis set consists of 4s-, 

4p- and 4d-like cut-off functions and plane waves which 

have been orthogonalized to the core levels up to and 

including the 3d only. The formulation of the cut-off 

functions and the derivation of the additional matrix 

elements required by the introduction of the cut-off 

functions are now given. 

Lattice Harmonics and the Cut-Off Functions 

Define .a cut-off function 

co -+ P~~(r) 
~ntm (r) = r Ytm (e,~) (2-1) 

P~~ is to be similar to the atomic-like solution near the 

lattice site; ~~~m must be orthogonal to the lower core 

states and P~~ must vanish at some radius less than half 

the nearest neighbor distance. Also define 

Gen~ {r) _ Eco 11.H~co Cr> (2-2)ntm nt r 


co
This defines only the product Eco For the presentnt Gn1· 

this is sufficient; its usefulness will be clarified.later. 

In principle it is necessary to include in the 

basis set all values of m corresponding to each nt value. 

.In practice, however, the prob~em is simplified: Symmetrized 

combinations of spherical harmonics of different m values can 

be formed which transform according to the columns of ·the 
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irreducible representations of the group of the wave vector. 


By group theory the matrix elements of the Hamiltonian and 


of unity vanish between combinations unless they belong to 


the same column of the same irreducible representation. 


These linear combinations are called lattice harmonics. 


For example, in solving for the level r 25 , it is necessary 


to include only the combination i~ (Y21+Y2_1 > with 


symmetrized combinations of OPW's chosen to transform as yz. 


The lattice harmonics have been tabulated at all the 


symmetry points of several structures by Bell (B54). 


Since the lattice harmonics are real it is conven

ient to derive the cut-off matrix elements in terms of real 

angular wave functions which are here defined by: 

For m:fo: 

(-i}j ~ J' )Y ( e - Yom ( e I <I> ) + (-1) Y0 -m ( e t <I> ) . ( 2-3 )<I> ).e.mj ' = im .f2 ,., ,., 

where j takes on the values o and 1 only. 

For m=o: 

Y.e.oo ( e ' cf>> = Y.e.o <e ' cf>> 

The real angular wave functions are listed in Table 1.. The 


lattice harmonic combinations of these real angular wave 


functions are given in Table 2. 


As an example, 


·l l:. 
Y110 = il2 r 

= - - xsine coscf>.f2 CY11-Y1-1> r. 

z 

1 

=R. 
y100 cose r =Y10 =/J =/J 
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It is convenient that the matrix elements of the cut-off 

functions with the OPW's be real. To this end the 

normalization of the cut-off functions is chosen in the 

following way: 
. co 
Pnn {r)co = (i)-R. )<, (2-4)4'n.e.mj r 

Using (2-1) and (2-3), 

co = (i)-t(-i)j co +(-l)j~co ) (2-5)q,ntmj im ./7i (q,ntm ~n.e.-m 

The desired matrix elements are then: 

< q, c~ . IHI q, (k) >n;<,mJ 

<4>~~mjl4>Ck)> 

where q,(k) is an orthogonalized plane wave given in the unit 

cell by 
.;t ~ 

1 1 ..... •r<Hk> =-e ! 

/.no n.tm 
(core) 

where Fn1 (k) 

and Fn (k) is defined by (1-11).
1 

http:4'n.e.mj
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Matrix Elements 

Consider first the 

evaluate 

case m+o. It is convenient to 

(where da = sinedSd<P) 

(2-7) 


GO 

(r) G~~(r)dr (2-8) 

0 

Similarly, 


< ... co 1... co > = 0 0 I(Pco Pco) (2-9)
"'n'R.'m' "'ntm R.R.' mm' n'R.'' nt 

Using (2-51, (2-7) and (2-9), 

and 


< ... co 1...co > = ~ ~ ~ I(Pco Pco) (2-lOb)
"'n' R. 'm' j ' 'l'ntmj UR. R. t Umm I Uj j t _ n. t R. " n_t 

It is easily seen that ec;ruations (2-10) hold also for the 

case m=o. 

where - I 

< co I I co >41 n't'm'j' H <Pntmj (2-lOa) 



28 

In order to evaluate the matrix elements of the 

Hamiltonian between the cut-off functions and the OPW's 

first consider 

= <cj>co IHlk> - E Bn , t , ( k) < 4> ~~m IH Iijl n , t , m , >ntm n' t 'm' 
(core) 

because the cut-off functions have been explicitly 

orthogonalized to the core functions. Hence, 

* 1 eik•r ·r2drdNYtm (e '4>) ..... 
/-'lo 

Expanding the plane wave in spherical harmonics this reduces 

to 
4 Eco 

n- nt . t * ~co (2-11)1 Ytm (ek,cpk) I Gnt' rj t (k>) 
/..O..o 

QI) 

where I ~co rj t (k)) - Geo (r) rj R. (kr) drGnt' I nt 
0 

Using (2-5), (2-1), (2-3) and (2-11) it follows that for 

m+o 

<+~~mj IHI+ (k)> = (-) t /";..o E~ y tmj ( ak, +kl I ~~~ ,rj t Ck}) 

(2-12a) 
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Similarly, 

(2-12b) 

It is easily seen that equations (2-12) hold also for the 

case m=o. 

Form of Cut-Off Functions 


The explicit form of the cut-off radial wave 


function, P~~(r), has not as yet been mentioned. The pro

.. 
cedure is to integrate the radial Schrodinger equation out

wards from r=o for the correct Jl.-value for some appropriate 


co 
energy Eni· This function is then cut off at some r=r~ 

-and a tail is joined smoothly to it; the tail is chosen to 

·vanish at some r=r which is less than or equal to half the
1 

nearest neighbor distance. Let the product ·of '-rand f.he ··radial wave 
function 
for this E~~ be denoted by Q~~(r). In this work the tail 

has been chosen so that the unorthogonalized cut-off radial 

wave function, denoted by s~~(r), is given by: 

for o<r<rm 	 (2-13a)
(r)• l	Q~~ (r) 


a(l + cos q(r-r >) for 
 (2-13b)
0 

The three parameters a, q and r are chosen to satisfy the
0 

three conditions that the tail match Q~~ continuously with 

continuous first derivative at r=rm and vanish identically 
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at r=r • Specifically,
1 

a = (2-14) 

q = 1T (2-15) 

and r is determined by a trial and error procedure:
0 

For each trial value of r , q is determined by (2-15) and 
0 

then a is found by (2-14). The slopes of (2-13a) and 

{2-13b) are compared at r=r and the trial and error pro. m 

cedure continues until the slope .of (2-13b) equals that of 

(2-13a) • 

S~~(r) must then be orthogonalized to the. core 

functions of the same angular momentum t, so the final 

(orthogonalized) cut-off function is 

Pco Seo co(r) = (r) -- I: (2-16)nt nt an'tpn't(r)
n' 

00 

co cowhere an' t = f Pn't(r) snt(r) dr 

0 

and r is a sum over core states of angular momentum t. 
n' 

The application of the Hamiltonian to the cut-off 

function is now shown. 
co 

Co pnn(r)
H~ (r) = H ~ ntm r 
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From (2-16) and {2-13a), ' 

0co co H nR. (r) - EH"' (r) = "'nR.m ~ r n' 

( 
co 

= EnR. (r) 

Then, from (.2-2), 

E . co . p
E (r) {2-17a)n ' R. an ' R. n ' R.n' 

For r .::r~r : m R. 

From (2-16) and (2-13b), 

co
H~nR.m(r) =A+ B 

where 
)}(a(l +cos q(r-r

A = H 
r-

0 
Y1m(e,01) 

and 

co Pn'R. (r) 
B = H (- E an' R. Y1m(e,01)rn' 

Immediately, 

B = 

A= 

ft(R.+l) + 

r r 2 
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So, 

co 1 2{aq cos q(r-r )+a(l+cos q(r-r0)J( 1 <~;1 >+vat(r~Gn.e.(r) = 0 

- I: En'.e. a~~.e. Pn'.e.(r)l (2-17b)
n' 'j 

It should be noted that only the first derivative of 

the tail of the cut-off function has ~een matched at r=rm. 

This means that, in general, the second derivative is dis

continuous at rm as well as at r.e.. (At the latter. point 

the tail is a cosine function at its extremum and therefore 

has a non-vanishing second derivative.) These discontinuities 

must be kept in mind when applying the kinetic energy operator 

to the cut-off function. Specifically, G~~ is discontinuous 

at these points and so the integrals involving G00 must be n.e. 

evaluated accordingly. 

It should also be noted that there is no restriction 

to a muffin-tin potential in this modified OPW method. 

However, if the potential is of the form (1-13) with over

lapping spherical contributions then the cut-off functions 

must be made to vanish at a radius such that they do not 

extend into the overlap region; only then will the cut-off 

matrix elements as described above be corFect. 



CHAPTER 3 


APPLICATION OF THE MODIFIED OPW METHOD; 


BAND STRUCTURE OF NIOBIUM 


The modified OPW method described in the preceding 

chapter has been applied to the transition metal niobium. 

The details of this application and the resulting band 

structure are now presented. 

The lattice structure of niobium is body-centred 

cubic. The lattice constant has been taken, after 
0 

Wyckoff (W48), to be 3.30A. The first Brillouin zone for 

the bee structure is shown in Fig. 3, with the symmetry 

points and lines labelled in the notation of Bouckaert, 

Smoluchowski and Wigner (BSW36). 

The Potential 

A one-body potential used to calculate the con

duction electron states should contain the following con

tributions: 

the direct potential contribution from the ion 

cores; 

the self-consistent direct potential of the con

duction electrons; 

the exchange interaction between the conduction and 

core electrons; 

32 
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the correlation interaction between the conduction 

and core electrons; 

the exchange and correlation interactions among 

the conduction electrons; 

spin orbit coupling and other relativistic effects. 

It is uncertain how to appropriately treat the exchange. 

and correlation interactions. Instea~ of considering each 

contribution in detail, the prescription used by Mattheiss 

(M64) and other authors in APW calculations is adopted. 

In this approximation free atom charge densities placed on 

neighboring lattice sites are ·considered to overlap: The 

direct potential contributions are then spherically averaged, 

the core-conduction and conduction-conduction exchange 

·interactions are represented by the Slater free electron 

approximation and correlation and relativistic effects are 

ignored. This approach has been found to yield reasonable 

results when applied by Mattheiss in APW calculations for 

the first transition series. The procedure is now described. 

The charge density used is calculated from the free 

atom wave functions computed by Herman and Skillman (HS63) in 

the Hartree-Fock-Slater approximation. The direct and 

exchange contributions are treated separately. An approxi

mate crystal direct potential and charge density in a given 

cell is obtained by expanding the neutral atom direct poten

t.ials and charge densities of neighboring atoms about the
/ 
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origin, using Lowdin's alpha function expansion (Lo56), 

keeping only the R.=o terms in these expansions. The ex

change potential is taken in the Slater free-electron 

approximation to be proportional to the cube root of the 

overlapped charge density. 

Let P~1 denote the Herman and Skillman free atom 

wave functions for Nb. Then the (sperhically averaged) 

atomic charge density, pa, is given by: 

= cr (r)
--2 
4'11'r 

where 

.and wnR. is the occupation number for the orbital nt. 

(Note that wnR. = 2(2R.+l) for the closed shells, 4 for the 

4d shell and 1 for the Ss.) The direct atomic potential, 

a
vd , is then 

r °" 

Va = - -2Z - -2 

I cr(t)dt - 2 I 
cr(t)dt 

d r r t 


0 r 


These direct contributions are then superimposed and 

spherically averaged to give the crystal direct potential, 

Vd. The charge densities pa(r) are similarly s~perimposed 

and spherically averaged to give the crystal charge density 

p(r). The crystal exchange potential is taken to be 
3 1\ 1/3 +

Vex= -6 (- B'll' p(r)/ • The total crystal potential, V(r), · 
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is then defined as: 

where 
= { Va + Vex -c . for 

vat(r) 
o for r.e.<r 

where r.e. is half the nearest neighbor distance, the constant 

c is chosen so that Vat(r) vanishes· at r=r.e. and, as in the 

preceding chapters, the. subs-cript "at" is to be read "atomic

like". 

The resultant r Vat(r) is listed in Table 3. A 

Herman and Skillman mesh (HS63) has been used; Table 3 lists 

the value at each fourth mesh point only. (This potential 

includes the overlap from the first five sets of neighbors.) 

This form of the potential was chosen mainly because 

it is a simple prescriptic:>n which has lead to reasonable 

results in other transition metal band structure calcula

tions. Relativistic effects were ignored to simplify the 

calculations, particularly in view of the fact that the 

principal object of this work has been to modify the OPW 

method. (The effect of relativistic corrections is men

tioned later in this chapter, in the section "Discussion of 

Band Structure Results".) Of course it is to be remembered 

that, in theory, a self-consistent band structure calcula

tion should be made; a potential constructed as above would 

provide a suitable starting point in such a calculation. 
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Since the general features of band structure calculations 

have usually been found to be relatively insensitive to 

small changes in the potential, it would appear that the 

approximations made in constructing this potential are 

reasonable. However, as discussed later in this chapter· 

(see "Discussion of Band Structure Results"), the Fermi . 

level in the group V transition metals lies in a position 

such that relatively small changes in the band structure 

can lead to large variations in the shape of the Fermi 

surface. The dependence of the Fermi surface on the 

potential is, then, quite sensitive. 

The Core and Cut-Off-Functions 

The bound state solutions of the atomic-like 

problem with the potential vat(r) have been found; the 

energy levels are listed in Table 4. The 4s and 4p functions 

have been cut off as shown in Figs. 2(a) and 2(b); the 

dotted lines represent the tail portion of the function 

before cut-off, while the solid lines represent the cut-off 

function after orthogonalization to lower core states. The 

cut-off parameters, as discussed in the preceding chapter, 

are given in Table 5. It was found that there is no bound 

state solution corresponding to the atomic 4d level for 
.. 

this potential, so the radial Schrodinger equation was inte

grated_ for R.=2 and E= +l. 25 ry.dbergs; this energy was chosen 

because the resulting wave function was qualitatively of the 
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desired form. (Of course, the wave function near the core 

is insensitive to small changes in energy.) The 4d-like 

cut-off function is plotted in Fig. 2(c). 

The Band Structure Program 

A band structure program for a Bravais lattice 

using the modified OPW method has been written in Fortran 

for the McMaster University IBM 7040 computer. The input 

data to this program consists of: 

the r-mesh and mesh parameters;_ 

the volume of the unit cell; 

the pote~tial vat(r); 

the values n, R., Ent and the functions PnR. for the 

completely localized {inner) core states; 

. co co
the values n, R., En 0 and the functions P and"' . nR. 

Geo for the cut-off functions;nR. 

the value of the wave vector, k, .. in the first 

Brilloqin zone; 

the reciprocal lattice vectors, G, for which the 

OPW'.s of wave vector k+G are to be used; 

the symm~trized combinations of OPW's to be formed 

for the specific band level concerned; 

the required real angular wave functions of the 

cut-off functions and the lattice harmonic combinations of 

.these which are to be formed. 

The program first calculates the orthogonality 
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coefficients, Fn
1 

(k), the potential Fourier transforms, 

v(G}, and then the matrix elements given by equations 

(1-12), (2-10) and (2-12). This (unsymmetrized} matrix 

is then reduced by taking the lattice harmonic combinations 

of the real angular wave functions and the symmetrized 

combinations of OPW's and forming the matrix elements 

between these linear combinations. The.matrix equation 

(l-7a) is then solved by the following technique: 

(2-7a) 

Multiply on the left by the inverse of [s] 

where [1] denotes the unit matrix .• Thisis now a simple 


eigenvalue problem for the (non-symmetric) matrix [s-1a]. 

(The inverted matrix and the eigenvalues are found by the 


McMaster computer library subroutines.) 


Convergence 

The objective has been to attain convergence of 

the band structure to 0.01 rydbergs. The maximum possible 

number of OPW's have been inclu.ded subject to the conditions 

· that the dimension of the unsymmetrized matrix not exceed 

200 and the dimension of the symmetrized matrix not exceed 

50. This means that in most cases 150 to 200 OPW's have 


been included. Of course these conditions simply reflect 
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computer time and storage restrictions. 

Tables 6 show the degree of convergence at a few 

typical points: Table 6(a) lists the two lowest solutions 

of the secular equation as more OPW's are added to the 

basis set for r 1 ,an s-like combination. The lowest root, 

-3.106 ry, is the 4s outer core level, which is a narrow 

band arising from the 4s atomic-like solution which, from 

Table 4, has an energy of ~3.092 ry. The second lowest 

solution, 0.318 ry, is the bottom of the conduction band. 

The convergence of these two levels appears to be complete 

to the number of significant figures shown. Table 6(b) 

is a similar listing for a15 , a p-like combination. The 

lowest root, -1.517 ry, arises from the 4p atomic-like 

solution of energy -1.498 ry. The second lowest root is 

the desired conduction band solution. Tables 6(c) and 6(d) 

list the results for the d-like combinations r 25 , and b 2 , 

the latter shown at k=2; (~ 1 0,0), the halfway point of the 

b line. At first sight the level 62 might appear to be 

·completely converged since the root does not change in the 

third decimal point as 168 to 196 OPW's are included. 

However, this can obviously be misleading, since the same 

· situation occurs as 84 to 116 OPW's are included and yet 

the level drops by almost 0.01 ry from 116 to 168 OPW's. 

Perhaps all that can be said about the a-levels is that 

they might lower by a further 0.02 to 0.03 ry if an infinite 
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number of OPW's were included, although it is probable 

that they are better· converged than that. In this worst 

case the d-band levels relative to each other would be 

correct to the desired accuracy of 0.01 ry but, if the 

s-band is .as fully converged as it appears, then the s-d 

band gap at r, for instance, would be in error by 0.02 to 

0.03 ry. The p-band convergence appears to be similar to 

that of the d-band. (Better convergence for the higher 

bands, including the p-like levels, could probably be 

obtained by including Ss, Sp and Sd cut-off functions in 

the basis set.) 

The Band Structure 

The band structure has been computed at the points 

r' H' p . and N and along the lines ~ 6. I A and E • The results 

are listed in Table 7; the roots corresponding to the outer 

core solutions have been omitted and only those energy 

values which lie below 1.600 ry (that is, within 1.282 ry 

of the bottom of the conduction band) have been tabulated. 

These bands are also plotted in Figs. 4{a), (b) and (c). 

As discussed in the next section, the Fermi level is 

expected to lie slightly below r 25 ,. 

·Discussion of Band Structure Results 

Non-relativistic APW band structure calculations 

have been done for the following bee transition metals. 

In the first transition series: bee iron, (3d) 6 (4s) 2 ; 
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vanadium, (3d) 4 (4s) 1 ; chromium, (3d) 5 (4s) 1 ; in the third 

transition series: tungsten, (Sd) 5 (Gs) 1 • The iron 

calculation was done by Wood(Wo62) along all the symmetry 

directions and at several general points. He also calculated 

the corresponding density of states. The potential used was 

one previously employed.in cellular calculations. The 

vanadium and chromium calculations were performed by 

Mattheiss (M64) along the 6 direction only. The potential 

was constructed in the same manner as the present niobium 

potential except that the constant value of the potential 

outside the APW sphere was taken to be slightly different 

from the value at the sphere radius. The results were not 

sufficiently complete to permit a density of states computa

tion. The tungsten calculation also was done by Mattheiss 

(M65); it was sufficiently complete to permit a calculation 

of the density of states •. The prescription for the potential 

was the same as that used in the vanadium and chromium cal

culations. In addition, a limited APW calculation was done 

by Mattheiss for the second transition series metal 

molybdenum, (4d) 5 (5s) 1 , to determine the d bandwidth (M65). 

The results of the above band structure calculations 

have been compared by Mattheiss {M65); they have been found 

to be very similar. The most notable change is an increase 

in the d bandwidth from the first, to the third transition 

series: . 6d 5 E{H25 ,) - E{H12 > is taken as a measure of 

the d bandwidth. Mct:t.heiss' results are that chromium, 

http:employed.in
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molybdenum and tungsten have d bandwidths of 0.51, 0.68 and 

0.77 rydbergs respectively. This progressive increase is 

expected from tight-binding theory because the 3d, 4d and 

Sd free atom radial wave functions extend out progressively 

further so that the overlap of the functions on neighboring 

sites is progressively greater; this is clear, for instance, 

from the Hartree-Fock-Slater free atom wave functions of 

Herman· and Skillman (HS63). 

The tungsten band structure is compared with the 

present niobium results in Figs. 6: The solid lines are 

the niobium results as presented in Figs.4 and the dotted 

lines are the tungsten bands. The degree of similarity is 

evident. The d bandwidth, ~d' is 0.67 ry, which fits well 

into the bandwidth pattern discussed above. 

Because of the similarity among the bee transition 

metal calculations it is useful to assume a rigid band 

model: In this case, the density of states for these metals 

is approximated by the density of states which has been 

calculated for iron or for tungsten. The Fermi level is then 

determined by filling these states with the required number 

of conduction electrons. This has been done by Mattheiss 

for five and six conduction electrons, (M65), corresponding 

to, respectively, the group V metals vanadium, niobium and 

tantalum and the group VI metals chromium, molybdenum and 

tungsten: Using the rigid band approximation, Mattheiss has 

calculated the Fermi level and presented cross-sections of 
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the Fermi surface for the group V and group VI cases, both 

based on the iron and on the tungsten band structures. 

Mattheiss has found that the Fermi level for the group V 

metals lies slightly below r 25 ,, arid he has computed the 

shape of the Fermi surface on this basis. It is pointed out 

by him, however, that a small change in the band structure 

might lead to a vastly different Fermi surface. Thus, 

although the band structure itself may be relatively insensi

tive to a change in the potential (or to the effect of 

relativistic corrections), the shape of the Fermi surface 

may alter considerably. This question can only be answered 

by a self-consistent band structure calculation or by ex

perimental determinations of the Fermi surface. (Experi

mental data for the group V transition metals is limited 

due to the lack of pure single crystals.) 

No relativistic corrections have been made to the 

niobium band structure. The nature of spin-orbit coupling 

corrections is clear from Mattheiss' treatment for tungsten(M65). 

The results both of a relativistic APW calculation for 

tungsten by Loucks (Lo65) and the spin-orbit coupling 

corrections by Mattheiss show, for example, that the rela

tivistic splitting of the r 25 , level in tungsten is less 

than 0.03 ry; of course, it is expected to be less for 

niobium, which has atomic number 41 compared to z=74 for 

tungsten. 
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The present calculation for niobium tends to con

firm the validity of the rigid band approximation for· the 

bee transition metals. Because of the close similarity 

to the tungsten results, the density of states and Fermi 

surface of niobium that would follow from the present cal

culations are probably well approximated by the group V . 

calculation based on tungsten. It is to be emphasized, 

however, that both the inaccuracy in the potential and 

relativistic corrections could be causes of disagreement 

between the above Fermi surface predictions and future 

experimental Fermi surface measurements. 

Low Order Approximation 

In Fig. 5 the energies for the case in which only 

one symmetrized combination of OPW's is used are shown in 

dotted lines for three r bands. The converged values for 

these bands, as shown in Fig. 4(c), are reproduced in 

Fig. 5 in solid lines for the purpose of comparison. In 

the dotted line results the basis set consists of the cut

off functions plus one symmetrized combination of OPW's, 

and a secular equation of order 2 or more (depending on the 

riumber of lattice harmonic combinations of cut-off functions) 

is solved at each point in the band. 

Theerror in this low order approximation is seen to 

be a maximum of about 0.2 ry for the occupied bands •. This 

'is an order of magnitude worse than the one-OPW approxima

tion in simple metals: From Heine's results for aluminum 

{He57), the one-OPW approximation gives a result within 



45 

0.03 ry of the converged value. On the other hand, this 

low order approximation is·a considerable improvement over 

the one-OPW approximation for transition metals: For 

example, at k = (1/4, 1/4, 0) on the band for niobiumE2 

the one-OPW energy would be 1.3 ry, the low order approxi

mation (cut-off+ OPW's) is 0.75 and the converged value 

is 0.68. 

This approximation for the wave functions is 

obtained by computing the·matrix elements between the 

lattice harmonic combinations of the cut-off functions and 

the first symmetrized combination of OPW's for the band 

under consideration, solving the resulting secular equation 

for its eigenvalues and eigenvector~. The eigenvectors ' 

denote the amount of admixture between the cut-off functions 

and the OPW's. These eigenvectors for the three E bands 

of Fig. 5 are listed in Table 8: a 1 denotes the coefficient 

of a cut-off function with angular momentum i '· and b denotes 

the coefficient of the first sY1'.1'lnetrized combination of 

OPW's. The normalization of the eigenvectors is chosen so 

that b=l.00 in all cases. As an example, for the case of r 2 

the only cut-off function to be used is the d function with 

the lattice harmonic combination (imj) = (211) + (210) (see 

Table 2). Denote this function by $co and the first 

symmetrized combination of OPW's by $OPW(k). The solution 

is of the form: 
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From Table 8,_ the coefficients ad and b for k = (1/4,1/4,0) 

are 7.03 and 1.00 respectively. (Note that for the E1 band 

an s, p and two d lattice harmonic combinations of cut-off 

functions are to be used (see Table 2).) 

For a band having a symmetry which is dominantly of 

one spherical harmonic component throughout the band it is 

expected that the admixture of cut-off and OPW functions 

will be relatively constant across the band. This is pre

dicted on physical grounds since in such a case the wave 

function near the core will not change appreciably as the 

energy changes ·across a band, and the cut-off function 

represents the wave function near the core. The band E2 

is of this type. Although, from Table 8, the coefficients 

ad take on the values 7.96, 7.03 and 6.56 at three con

secutive points along the band, the effect of this variation 

of coefficients on the energy is very small: A calculation 

has been done for this band in which the coefficients at 

k = (1/4, 1/4, 0) (that is, from Table 8, ad=7.03 and 

b=l.00) have been used at the points k = (1/8, 1/8, 0) and 

(3/8, 3/8, 0). At both points the expectation value of the 

energy for this combination agreed to within 0.01 ry with 

the result using the correct coefficients of Table 8. 

It should be emphasized that the primary purpose of 

the present work has been a complete band structure calcula

tion and, the above is a low order approximation which is 

present in this modified OPW method. If the interest is 
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especially in a simple approximation to the wave functions 

there are two obvious improvements to be made to the above 

approach: First, a tight-binding combination of the d 

atomic states could be used instead of the d cut-off 

function; although numerical approximations would have to 

be made in computing the matrix elements between the 

tight-binding function and the OPW's, the d bands would 

probably be better represented. Secondly, there would be 

no need to use cut-off s and p functions; the plane waves 

could be orthogonalized to the ·outer core functions in .an 

approximate way. 



CONCLUSION 

The OPW method has been successfully modified to· 

permit band structure calculations in transition metals. 

The rate of convergence leavess::>mething to be desired; 

this disadvantage is felt mainly in computation time. 

The band structure of niobium computed by this method is 

similar to APW calculations in other bee transition metals, 

comfirming the validity of a rigid band approximation. It. 

is still an open question whether a modified OPW method, 

the APW method or some other approach will prove most 

successful in the self-consistent band structure calcula

tions which will probably be performed in the near future. 

A secondary result is a first principle low order 

approximation to the wave 
-
functions in transition metals. 

-Although its error is in the range of 10% to 20% it may 

be a step in the direction of more accurate approximations. 

In summary, it is believed that this work provides 

a proven alternative to the augmented plane wave approach 

and also opens up the possibility of applications in which 

the conduction electrons in transition metals are repre

sented in.a relatively simple way. 
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CAPTIONS FOR FIGURES 

Fig. 1 Fourier transforms of the attractive and 
effective repulsive potentials for Si .after 
Phillips and Kleinman (PK59) .. 

(a) s-like point 

(b) p-like point 

Fig. 2 The radial cut-off f unc.tions, co 
Pn.e.. 

(a) 4s 

(b) 4p 

(c) 4d 

Fig. 3 Brillouin 
lattice. 

zone for the body-centred cubic 

Fig. 4 Energy bands in niobium. 

Fig. 5 The low order approximation (dotted lines) 
compared with the converged results (solid 
lines) for three r bands. 

is 

Fig. 6 APW energy bands in.tungsten (dotted lines), 
after Mattheiss (M65) are compared to the 
niobium bands. 
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FIG 4 (b) 
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FIG 4 (c) 
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FIG 6 {b) 
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TABLE 1 


REAL ANGULAR WAVE FUNCTIONS Yirnj 


( 1rnj) Y1rnj 

(000) 1 

14; 

(100) [-f z-r 

(110) -ff Y.. 
r 

(111) xrFf 

ff 


2 2 2 
z -~(x +:;( )(200} 
2 r 

-Hf Y..!.
(210) 

24ir r 

· [-ff xz(211) 
r2 

(x -:i )(220} 
2

l&r r-J!! 
2 2 

(221) -Rf ~ 41f r 2 
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TABLE 2 

LATTICE HARMONICS IN TERMS OF THE REAL ANGULAR WAVE 
FUNCTIONS OF TABLE 1. COLUMN 1 SHOWS THE BSW NOTATION; 
COLUMN 2 IS THE NOTATION OF D. G. BELL (B54); COLUMN 3 
CONTAINS UNNORMALIZED LATTICE HARMONIC COMBINATIONS OF 
R.~2 ONLY. 

BSW DGB LATTICE HARMONICS(Jlmj) 

(1) (000)rl As 


rlS (x) A p (111) 


r12 (x 
2 
-y 

2 
) Ad (220) 

r25' (yz) Ad, (210) 


H same as r 

(1) B (000}.Pl s2 2(x -y ) (220}P3 Bd 
(x) (111) I (210)P4 BP• (l) (000) I (200) I (221)Nl Gs 

(z (x-y)} (211)+(210)
N2 Gd' 

(z(x+y)) (211)-(210)
N3 Gd''

2 2(x -y ) (220)N4 Gd 

(x+y) (111)- (110)
Nl' Gp' 

-(z) (100)N3' Gp 

(x-y) (111)+(110)
N4' Gp'' 


Al (l) (000) I (111) I (200) +/3(220)
Es 
A2 (y2-z2) (220)-13(200)Ed' 

A

2 
, (yz) Ed (210) 


As (y) Ep (110), (221) 

.A.1 (I) (000),(100)+(111)-(110},(211)-(210)-(221}Is 
(x-y) (111}+(110),(220),(211)+(210)A3 Ip 
(1) (000) I (111)- (110} I (200) I (221)El Ls 
(z (x-y)) (211)+(210)1: 2 Ld 
(z) (100) I (211)- (210)1: 3 LP, 

(x-y) (111)+(110} ,(220)
1: 4 LP 



64 

TABLE 3 


THE ATOMIC-LIKE POTENTIAL AS A FUNCTION OF x, 


WHERE r=0.25675x 

x r vat(r) x r vat(r) 

o.oo -82.0000 1.10 -33.2288 
0.01 -81.1273 1.18 -31.5998 
0.02 -80.2358 1.26 -30.0856 
0.03 -79.3396 1.34 -28.6767 
0.04 -78.4481 1.42 -27.3651 
0.05 -77.5670 1.50 -26.1435 
0.06 -76.6998 1.66 -23.2930 
0.07 -75.8485 1.82 -22.0204 
0.08 -75.0137 1.98 -20.3254 
0.09 -74.1957 2.14 -18.8158 
0.10 -73.3943 2.30 -17.4598 
0.12 -71.8392 2.46 -16.2355 
0.14 -70.3457 2.62 -15.1284 
0.16 -68.9114 2.78 -14.1278 
0.18 .-67.5350 2.94 -13.2236 
0.20 -66.2149 3.10 -12.4039 
0.22 -64.9487 3.42 -10.9685 
0.24 -63.7328 3.74 - 9.7337 
0.26 -62.5628 4.06 - 8.6434 
0.28 -61.4342 4.38 - 7.6678 
0.30 -60.3431 4.70 - 6.7904 
0.34 -58.2605 5.02 - 6.0001 
0.38 -56.2955 5.34 - 5.2876 
0.42 -54.4355 . 5 .66 - 4.6449 
0.46 -52.6711 5.98 - 4.0643 
0.50 -50.9944 6.30 - 3.5391 
0.54 -49.3982 6.94 - 2.6324 
0.58 -47.8761 7.58 - 1.8875 
0.62 -46.4229 8.22 - 1.2785 
0.66 -45.0343 8.86 - 0.7872 
0.70 -43.7070 9.50 - 0.4009 
0.78 -41.2258 10.14 - 0.1108 
0.86 -38.9603 10.46 0.0000 
0.94 -36.8886 
1.02 -34.9857 



------------------------

TABLE 4 


THE BOUND STATE SOLUTIONS OF THE 


ATOMIC-LIKE POTENTIAL OF TABLE 3 


Core· 	 ni En JI. 

ls -1358.5 
2s 187.66 

Inner 	 2p - 173.03 
3s 30.719 
3p 25.034 
3d 14.519 

4s 3.092Outer 4p 1.498 
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TABLE 6(a) 


CONVERGENCE OF rl {s-like) 


No. of 
OPW's 

0 
1 

13 
19 
43 
55 
79 
87 

135 
141 
153 
177 

No. of 
OPW's 

0 
2 

10 
26 
28 
52 
76 
92 

108 
132 
156 

Dimension of 
Reduced Matrix 

1 
2 
3 
.4 
5 
6 
7 
9· 
9 

10 
11 
12 

Lowest 

Eigenvalue 


-3.018 

-3.085 

-3.085 

-3.089 

-3.093 

-3.093· 

-3.100 

-3.102 


.-3.106 
-3.106 
-3.106 
-3.106 

TABLE 6(b) 


CONVERGENCE OF H1s<p-like) 


Dimension of Lowest 
Reduced Matrix Eigenvalue 

1 -l.335 
2 -1.468 
3 -1.473 
5 -1.489 
6 -1.490 
8 -1.495 

10 -1.495 
12 -1.503 
14 -1.507 
16 -1.514 
18 -1.517 

.Second Lowest 
· Eigenvalue 

0.330 
0.328 
0.326 
0.325 
0.325 
0.321 
0.320 
0.318 
0.318 
0.318 
0.318 

Second Lowest 

Eigenvalue 


1.479 
1.447 
1.429 
1.424 
1.424 
1.421 
1.415 
1.414 
1.409 
1.406 
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No. of 
OPW's 

0 
4 


28 

32 

40 

48 

96 


100 

124 

132 

156 

180 


TABLE 6(c) 

CONVERGENCE OF r25' (d-like) 

Dimension of 

Reduced Matrix 


1 

2 

4 

5 

6 

7 


10 

11 

13 

14 

16 

18 


Lowest 

Eigenvalue 


1.486 
0.786 
0.785 
0.781 
0.775 
0.772 
0.770 
0.769 
0.767 
0.764 
0.760 
0.758 
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TABLE 6(d) 


CONVERGENCE OF ti 2 · (d-like) AT (~ 1 0,0) 2 ir/a 


No. of Dimension of Lowest 
OPW's Reduced Matrix Eigenvalue 

0 1 1.486 
4 2 0.671 
8 3 0.668 

12 4 0.655 
20 5 0.651 
28 6 0.650 
32 7 0.648 
36 8 0.648 
40 9 0.648 
44 10 0.647 
52 11 0.642 
56 12 0.637 
60 13 0.637 
68 14 0.637 
76 15 0.635 
84 16 0.634 
92 17 0.634 

100 18 0.634 
. 108 19 0.634 

112 20 0.634 
116 21 0.634 
124 22 0.633 
132 -23 0.631 
136 24 0.631 
140 25 0.631 
144 26 0.630 
152 27 0.628 
156 28 0.628 
160 29 0.628 
168 30 0.627 
176 31 0.627 
184 32 0.627 
192 33 0.627 
196 34 0.627 
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TABLE 7 

CONDUCTION BANDS OF NIOBIUM 

Symmetr~ 

k 
Units of 

21f/a 
No. of 
OPW's 

Lowest 
Band Root 
(r~dbergs) 

Second 
Lowest 

Third 
Lowest 

r,l 	 ( 0 ,· 0' 0) 177 0.318 

(0,0,0) 192 0.932r12 
(0,0,0) 180 0.758r2s• 
(l,O,O) 156 1.4068 15 
(1,0,0) 196 0.4348 12 
(1,0,0) 184 1.1068 25' 

P3 	 (~'~'~) 192 0.998 

(~,,~ ,~) 192 0.645 1.563P4 
(~,~,()) 194 0.460 0.956Nl 

N2 	 (~,~,O) 192 0.612 

N3 	 (~,~,O) 196 1.159 

N4 (~,~,O) 192 0.990 

. (~,~,O) 198 0.873Nl' 

Al (l/8,0,0) 193 0.340 0.949 

Al (J..ii,0,0) 193 0.400 0.982 

Al (3/8,0,0) 193 0.480 1.025 

(~,0,0) 193 0.543 1.068Al 
(5/8,0,0) 193 0.551 1.131Al 

Al (3/4,0,0) 193 0.507 1.236 

(7/8,0,0) 193 0.458 1.352Al 

62 (1/8,0,0) 196 0.900 

(1/4,0,0) 196 0.819A2 
(3/8,0,0) 196 0.72162 
(~,0,0), 196 0.627A2 

(5/8,0,0) 196 0.546A2 
(3/4,0,0) 196 0.486A2 
(7/8,0,0) 196 0.449A2 
(1/8,0,0) 196 0.768A2' 

(J..ii,0,0) 196 0.79762' 
(3/8,0,0) 196 0.844A2' 

/cont'd .• 
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Table 	7 (continued) 

k Lowest 
Units of No. of Band Root Second Third 

Symmetry 21T/a OPW's (rydbergs) · Lowest Lowest 
( 

A2 I (~ '0 '0) 196 0.905 

A2 I (5/8,0,0) 196 0.974 

(3/4,0,0) 196 1.040A2' . 

(7/8,0,0) 196 1.089
A2' 

(l/8,0,0) 162 0.762
A5 

(1/4,0,0) 162 0.759
65 

(3/8,0,0) 162 0.769
65 

c~·,o,o) 162 0.800
A 5 


A 5 (5/8,o;o> 162 0.860 


(3/4,0,0) 162 0.946
65 

(7/8,0,0) 162 1.050
65 


(1/8,1/8,1/8) 189 0.381 0.842
A1 
(1/4,1/4,1/4) 189 0.522 1.059A1 

Al (3/8,3/8,3/8) 189 0.652 1.332 

(1/8,1/8,1/8) 126 0.733 0.934..i:\.3 
{l/4,1/4,1/4) 126 0.654 0.959A3 
(3/8,3/8,3/8) 126 0.623 1.000~ 
(1/8,1/8,0) 139 0.361 0.758 0.918El 

t' (~,~,O) 139 0.453 0.722 0.9221 
I: l 	 (3/8,3/8,0) 139 0.476 0.792 0.959 

I: 2 (1/8,1/8,0) 172 0.733 


(~,~,O) 172 0.678
I:2 

1:2 	 (3/8,3/8,0) 172 0.632 


(1/8,1/8,0) 174 0.804
I: 3 

(~,~,0) 174 0.922
t3 


E3 (3/8,3/8,0) 174 1.078 


t4 (1/8,1/8,0) 166 0.940 


(~,~,O) 166 0.953
t4 

I:4 	 (3/8,3/8,0) 166 0.981 
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TABLE 8 

TYPICAL EIGENVECTORS FOR THE LOW ORDER APPROXIMATION 
(CUT-OFF FUNCTIONS + ONE SYMMETRIZED COMBINATION OF OPW'S) 

~ 

k-value 
Symmetry Coefficients (1/8,1/8,0) (J..i,J..i,0) (3/8,3/8,0) 

a = 2.35 2.22 2.03tl s 

a = 0.466 0.862 1.16p . 

ad = 0.186 0.828 2.12 

0.322 1.43 3.68?d·= 

b = 1.00 1.00 1.00 

7.96 7.03 6.56 

1.00 1.00 1.00 

a = 0.690 0.739 0.766 p 

ad = -16 •. 4 -16.S -20.2 

b = .1.00 1.00 1.00 
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