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PREFACE

This Thesis is based on a program carried out over the past three
years on the topic of electron tunneling between superconductors. Its
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properties are which determine whether a material is a superconductor or
not. For simple metals this is put on a quantitative basis with
encouraging results. Secondly, it attempts to critically analyze the
value of tunneling as a method of phonon spectroscopy. It is shown that
this method gives excellent agreement with other reliable methods in the
location of critical points.' The T2-Pb-Bi alloy system, ranging from
3.2 electrons/atom to 4 electrons/atom is studied in this vein.

In many places in this Thesis, both in theoretical descriptions
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clarity and continuity.
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CHAPTER I

INTRODUCTION

1.1 HISTORICAL INTRODUCTION:

Since the discovery of the seemingly unnatural disappearance of
all d-c resistivity in mercury below 4.2°%k by Onnes1 in 1911, many
investigators have expended much time and effort in an attempt to explain
and describe many of the curious traits associated with this phenomenon
of superconductivityz. Since that time, it has been discovered that
many metals, alloyss, and even some semiconductors4’5, experience this
transition to a completely non-resistive state. In this Chapter, the
basic development of the thoughts and theories of the more prominent
investigators will be traced from the first macroscopic phenomenological
descriptions, some of which display amazing insight, to the present day
microscopic explanations. In conjuﬁction with these theories, the
results of certain key experiments which have inspired this trail will be

presented.

1.2 PHONOMENOLOGICAL THEORIES:

One of the first successful models proposed to incorporate the
reversibility of the process in a correct thermodynamic treatment, was the
two-fluid model of Gorter and Casimir6. It was suggested that below a
certain critical temperature, Tc, the electrons available for conduction

could be divided into two classes. Firstly, a fraction of these, ¢,
1



remained unchanged and remained ''normal" while the others (1 - ¢), it was
postulated, slipped into some sort of "superconducting' state in such a

manner that at
and at T = 0K, ¢ =0

By using this suggestion, and fitting results wherever possible to experi-
mental knowledge, a minimization of the free energy of the electrons at a

given T yielded the result:
4
¢ = (1/T)

Hence, the proportion of superconducting to normal electrons is seen to
increase very rapidly below Tc'

This model leads to rather good quantitative agrecment in pre-
dicting the electronic specific heat in the superconducting state, as
well as to an expression for the critical magnetic field (the applied
field required to drive the superconductor into the normal state) as a

function of temperature.

' 2
T
. H (1 - (T:) )
(o]

critical field at T = 0K

o=
n

where H

This agreement was not overly surprising since the theory was originally
based on experimental results and is consequently not much more than a
description.

In 1933 Meissner and Ochsenfeld discovered another curious pro-

perty of the superconducting state. A magnetic field impressed onto the



material penetratces only a few hundred angstroms into the bulk. 1In
addition, a magnetic ficld penctrating the material in the normal statc
is completely expelled as the sample is cooled through the transition
temperature.

This experimental fact inspired the development of the pheno-
menological, and yet very profound London equations8 by Heinz and Fritz
London. These electromagnetic equations described both the infinite con-
ductivity of a superconductor, and its perfect diamagnetic behaviour. It
is to be noted, however, that in their original form, the equations were
postulated not to egplain why superconductivity existed, but simply to
describe the phenomenon.

Using these equations, onc can also describe the shallow penetra-

tion of a magnetic field into a superconductor by:

-x/AL
B(x) = B(0) e
where B(0) = magnetic field at the surface of the
superconductor
x = distance into the superconductor
A;, = London penetration depth
2\ %
mc
= <:————7£> m = electron mass
nnse ¢ = velocity of light
e = electronic charge
n, = number of superconducting electrons in

the system



Of even more significance in some respects was the introduction
by F. London’ of the concept of the "stiff' wave function to describe the
ground state of the many-body superfluid. It is this rigid ground state
wave function with respect to small perturbations, suggesting that a
finite energy is required to create excitations in the system, that gave
the first hint of the existence of an energy gap in the excitation
spectrum,

Utilizing these concepts one can describe many of the phenomena
associated with superconductors, including the Meissner effect, zero
resistivity, frequency dependencelo, and the recently observed quantization
of fluxll’lz.

Pippard13 suggested a modification to the London equations in
order to explain certain experimental results. His non-local extension
implied that more than simple nearest neighbour interactions need be con-
sidered and that the superconducting electron is "aware'" of events
occuring over a rather large spatial range ( % 10-4 cms). As we shall see
later,this non-local concept is of central importance in the microscopic
theory of superconductivity.

In addition to these developments, there was a growing belief that
there was an energy gap14 in the spectrum of electron excitations in a
superconductor. Several different experiments had been performed on
various superconductors; thermal conductivityls, electronic specific heat,
ultrasonic and infra red absorption, all of which seemed to indicate the

existence of a gap in the energy spectrum,



1.3 DEVELOPMENT OF A MICROSCOPIC THEORY:

In 1950-51 it was found by Maxwell15 and Reynolds et a116 that

the critical temperature TC of various isotopes of mercury depended on

the atomic mass such that,

TCMG = constant

where a % %

Similar behaviour was found subsequently in other materials and the
obvious conclusion was drawn,namely, that on the microscopic scale, the
mechanism responsible for the onset of superconductivity must have some-
thing to do with the lattice of the material.

This experimental observation and conclusion inspired a more
intensive search between the years of 1950-1957 for the correct model to
describe the system. Frﬁhlich17 proposed that superconductivity arose
from the electron-phonon interaction, and displayed a good correlation
between his predicted and observed occurence of superconductivity in the
non-transition metals. In attempting to put this prediction on a firmer
basis and describe accurately the new state, he was confronted with diffi-
culty when he used a perturbation approach. This independen; particle
attack, using perturbation methods, could not describe the co-operative
features of a superconductor.

15,18 showed that one could deal with an electron gas by

Landau
describing excitations from the ground state in terms of ''quasiparticles'.
These quasiparticles were regarded as particles in a self-consistant

field of surrounding particles with long lifetimes. Due to the fact that



these are long lived particles, the excitations are very well defined.

Using the results of Frohlich, Cooper20 studied the simple problem
of a single pair of electrons interacting with cach other above the non-
interacting Fermi sea - via a two-body potential V first derived by
Frohlich. Using this simple model, Cooper proved that if this potential
was attractive, a bound state was formed into which this pair could fall.
He suggested that the instability of the normal phase and consequent on-
set of the superconducting state was due to many pairs of electrons falling
into these bound states. A simple summation of all the binding energies
involved indicated that this simple pair model was deficient and required
the work of Bardeen, Cooper and Schrieffer21 (hereafter referred to as
B.C.S.) to describe accurately the superconducting state. They considered
the simple Cooper problem with very strongly overlapping pairs, such that
there must be a large coherence between different pairs (dictated simply
by the Pauli principle).‘

Later work by Nambu22 and Eliashberg23 and Schrieffer24 incor-
porated the sophistication of retardation and lifetime effects which more

adequately and quantitatively described the basic interactions.

1.4 SUPERCONDUCTIVE TUNNELING:

One of the natural consequences of the B.C.S. description of a
superconductor was the existance of an energy gap for quasiparticle
excitations from the superconducting ground state. Indirect evidence of
this gapl4 had been accumulated for several years, but it was not until
the pioneer experiments of Giaever25 that the existence of the gap was

conclusively confirmed and found to agree very well with the predictions



of B.C.S. By causing electrons to tunnel from a normal metal thin film,
through an insulating oxide, into a thin-film superconductor, Giacver was
able to measure very accurately, from the current-voltage characteristics
of such a device, the energy gap of the superconductor in question.

This breakthrough inspired many cxperiments on a widc range of
superconductive materials, to measure energy gaps and comparc these with
the predicted B.C.S. values. It was Giaever et al26 who first noticed
slight deviations from the B.C.S. predicted excitation spectrum in lcad.
These deviations werc more extensively investigated by Rowell, Anderson
and Thomas27 and it was noted that there was a close correlation between
these deviations and the van love critical points in the phonon density
of states as determined by inelastic neutron scattering data28. A note-
worthy description of these deviations29 - in terms of damping effects
and retardation in systems with strong electron-phonon coupling - lead to
an inversion of this methodso, whereby using data obtained from a tunneling

experiment, a calculation was made of the product function a2 (w)F (w)

where F(w) phonon density of states

a2(w) = electron-phonon coupling function

This calculation opened the possibility of using this tunneling technique

as a valuable tool in phonon spectroscopy.

1.5 SCOPE OF THESIS:

It is hoped that this Thesis will bring an experimentalist closer -
to an understanding of the fundamental theoretical concepts in the field

of superconductivity. Where the derivations are tedious and void of any



physical insight results are simply quoted.

Chapter II provides a simple description of clectrons in solids,
of lattice vibrations, and how these interact.

Chapter III is a brief outline of the B.C.S. theory of super-
conductivity mainly as it is applied to the description of the energy gap.
The fundamental concepts are discussed at the expense of rigour.

In the next Chapter, a description of how one incorporates lifetime
effects into the electron-phonon-electron interaction is outlined and
the very important results of this incorporation are stressed.

In Chapter V, tunneling theory is discussed as it is applied to
electrons tunneling between superconductors, and it is shown how one can,
by employing this experimental technique, extract information about the
energy gap, as well as the phonon density of states.

The apparatus used in the experimental portion of this Thesis is
described in Chapter VI. Only where the techniques differ from standard ones,
or are new, is any attempt made to describe the systems in any detail.
Appropriate references are cited for situations where the methods are
indeed standard.

In Chapter VII, results of calculations of a?(w)F(w) for sodium,
potassium, aluminum and selected alloys of the thallium-lead-bismuth alloy
system are reported and the predicted superconducting nature of these
materials, derived from these calculations is discussed. Tunneling
experiments on these alloys are also reported and the comparison of the
results of predictions and experiments is striking. The validity of the
tunneling method as a spectroscopic tool to probe phonon densities of

states is outlined and its limitations are pointed out.



Finally, in an Appendix, an outline of some of the calculations
performed is presented and the theory behind such calculations is

described.



CHAPTER II

ELECTRONS AND PIHIONONS

In order to gain insight into any physical phenomenon, it is first
necessary to study, in some detail, the underlying constituents of that
phenomenon, and the interaction of these constituents. Only then can one
acquire any knowledge or understanding of the phenomenon and develop
predictions of a reliable nature.

Such is the case of superconductivity. In order to understand
and explain many of the properties associated with a superconductor, we
must critically examine the mechanisms responsible for these characteris-

tics. From the isotope effectls’16

27,29,30

, and from electron tunneling experi-
ments , it is now generally believed that, at least in simple
metals, the basic mechanism responsible for the superconducting state is
the electron-phonon interaction. Hence, it is essential, before one
investigates the properties and characteristics of a superconductor, that

one first consider the 'bare' constituents of this effect and how they

interact to produce the macroscopic result.

2.1 BARE PHONONS:

Let us consider ‘a three dimensional lattice which contains N

atoms, the equilibrium position of the lth

atom in that lattice given by
R(i). Suppose that the excursion of that atom from its equilibrium

10
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position is given by u(f) such that the actual position of the zth atom
is given by:

r(W=R® +u@®) e (2-1)

and that the interaction between two atoms £ and &' is given by

V(x(e) - x(2") )

We can very simply describe the Hamiltonian of such a system as the sum
of the kinetic energy of the atoms and the potential energy summed over

all combinations of atoms.

N N N
noe o B0 Ly Lvem -ren)
=1 2,0 --(2-2)
g9

In all of this discussion it is assumed that the primitive unit cell of
the lattice contains only one atom. Using a Taylor expansion, this
potential term can be expanded about the equilibrium point of the ion
positions to obtain to second order

v 52V

u () + T
5 2e'af aua(z)aus(n')

V=V +1I ——mrnr
0 a aua(l)

where the summations are over atomic positions and over the three directions
a= L, 2, 3.

In truncating this expansion at second order we are making the so-
called harmonic approximation. In order to describe effects such as

thermal expansion it is necessary to retain more terms, but for our
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purposes the harmonic approximation is adequate. Since we are near the
equilibrium point R(Y), the second term in this expansion goes to zero
and the constant term V0 is unimportant in this context.
In the harmonic approximation, the classical equation of motion
for the £'*" jon is given by:
dzua(l)

eM—— = T ¢ (8,2 [ 2 T 24
- I Gag(t2) uga) (2-4)

where ua(l) is the a-direction component of the excursion from equilibrium
of the zth ion and ¢GB(12') is the force in the ath direction on this ion

h

due to a unit displacement of the 2™ jon in the B direction:

8 R 32V
aB (2’!2‘ ) - .
auu(z)aus(z Y/ = meesea (2-5)

Clearly, from the definition of these force tensors:

006(2’2') = ¢Ba (2')2’) " """ (2-6)

Also, by the symmetry of the lattice, we expect:

byp (12 = 0o (1-2', 0)  —-eee- (2-7)

aB

From eqn, (2-4), we see that the motion of any ion in the system
is coupled to the motion of every other ion in the system. By using a
standard mechanical technique of obtaining the normal co-ordinates of a

system with 3N degrees of freedom, these equations can be decoupled by a
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transformation to these normal co-ordinates Q(k, A). This kth normal mode
has phonon frequency w(k, A) and polarization e(k, A), where to get all
possible solutions it is sufficient to restrict k to the first Brillouin
zone, and Ais a branch index.

We can write a solution for ua(z) to satisfy equation (2-4) in

the form

L 5 e (k0 e RO

u (2) = L
S 30 (2-8a)

while the momentum conjugate may be expressed in the form:

P = (8)° PO gyl M) oik-R()
5

where p(k, A) is the momentum conjugate of Q(k, A).

The justification of such a transformation into normal co-ordinates
now becomes apparent, for if we now substitute our solution (2-8a) into
the equation of motion (2-4), we can obtain an expression for the
Hamiltonian of such a system, in terms of these new co-ordinates, in a

very simplified form. The Hamiltonian (2-2) can now be written as:

+
H = b P+(£’ Mplk, A) + T “2(.1_(.1 A) Q (k,X)Q(_l_Q)‘)
2 kA 2

where p+(h, A)

n
gel
~
]

| =
-

>
~

and Q‘(E, A)

n
2
—~

1

| =
-

>
[
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as may be deduced from the conditions that ua(z) and Pa(z) be real.
This Hamiltonian is now in the very familiar form which describes
a harmonic oscillator field as decomposed into independent normal modes.
Because this Hamiltonian represents a collection of harmonic uncoupled
oscillators, we can quantize the system by imposing the quantization con-
31

dition for a harmonic oscillator. Following regular procedures™ , we

thus require that

[P(2), u(2"] n/i 6

Rt

and [P, pan)] [u(2),u(e")] =0

Hence it follows from (2-8 ) that:

[Pk, M), Qk', M)] = M/i g

Kkt

[Pk, A), p(k', A)] [QCk, A),Q(k', A)] =0

Finally, in order to make the notation workable, we make one more
transformation to an operator notation that will serve to create or
annihilate these quantized lattice vibrations (phonons). This transfor-

mation is written in the form:

pk, ) = (280 "5 @) - acka) )
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+
where these new operators a (k, A) and a(k, A) act to create or destroy
a phonon of wave vector k and energy hw.
The Hamiltonian of the system can now be written in the form:

H =2 Te(k, A) | a+(5, A) a(k, A) + %—l

B (2-13)

where we can look upon the product a+(53 A)a(k, A) as simply a number
operator determining the number of phonons of wave vector k in the A branch
of energy hw(k, A) we have in the system. The %—term is a manifestation

of the zero point energy--a concept very familiar in simple harmonic

oscillator theory.

2.2 BARE ELECTRONS AND THE ELECTRON PHONON INTERACTION:

Having considered the system of phonons, it is now necessary to
consider the other constituent of the electr;n-phonon interaction, namely
the electrons.

The common procedure employed here is to consider a system of
electrons in a lattice of ions all at their equilibrium positions. The
kinetic energy of the electron ‘is combined with the coulomb potential of
the electron-ion system and the system is expressed in terms of Bloch
waves for a single electron moving in a periodic potential.

Using the formalism of second quantization to treat the conduction

electrons, we can represent the electronic part of the total Hamiltonian

of the system as:
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+ . :
where C ks and Cks act to crcate and annihilate clectrons in the Bloch

state kK of energy ) with spin s. These operators satisfy the Fermi

anticommutation relations

{CES’ C_]S'S' } o= e_k_k_',SS'
------ (2-15)
and . .
{CEF’ CE'S'} {CkS 5. C k's'} =0

Now that we are in a position to write down the Hamiltonian for
the electrons in a system as well as for the phonons in a system, we must
consider the manner in which these two excitations in a solid are coupled
together. Let us recapitulate and consider the interaction of free
electrons with the ions, and denote by W(R(i) - r(2)) the interaction

th h

energy between the i electron at position R(i) and the 2™ jon at r(L).

The contribution to the llamiltonian can be written in the form:

I wRE) -1 ) = I WR,)
ig i

where W(R) = I w (R -1(2))
£

is the electron-ion interaction. But in second quantization notation, a

sum of one body electron operators I f(R(i) ) is transformed into:
i

3 +
d“R R) f(R R
J wR. (R) f(R) wn(_)

= I <p' | f S A
pp'op_lln 5z Sog



17

Hence the contribution of (2-16) to the total Hamiltonian beccomes

L <k+q| W|lk>C

§ C
gho k+qo Cko —em(2-17)

Next, we factor out the matrix element of the electron-ion potential:

-i(k+g) R ik.R
J e LwR-1r(2))e d”R
L

---(2-18)

<k+q|Wlk>-=

Interchanging the sum over 2 and the integration, and in the l'th

term carrying out a linear transformation from R - r(%) to R', we obtain:

<keq | W | k> = [% i -] J e LD R 1y GIKR' g3,

where we now define;

S(q) = %- ; gl (2-19)

as the structure factor, while the matrix element <k + g_lw IE? is the
pseudopotential form factorss. - Hence we may write the electron-ion

Hamiltonian as:

H= I S(q) <k+gql|wl|k>cC"

C
kog k+qg ko ------ (2-20)

Substituting our expressjon for the excursion of an ion from its equili-
brium r(2) = E(Q) + u(2) into the expression for the structure factor

(2-19) and expanding the exponential to first order, S(q) becomes:

S@'= § I eRD 1 | igue )
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When inserted back into the Hamiltonian (2-20) the first term gives the
crystal potential for the perfect lattice at its cquilibrium position.
The second term gives the clectron phonon interaction:

-ig R

k+qo ko

1 : '
H = I & i -iquu(®) <k +q | w| ke
—-(2-21)

To further reduce (2-21) it is convenient to substitute the solution for

u(2) from equation (2-8a) namely;

. o
. LQk, A) e (k, 2) KR

u(e) = I
(MN) ™ kA

where the sum over E_extends over the first Brillouin zone and M is the

(

ion mass. Performing this substitution yields;

1

Hn_o=— Q(k',A) (-ig.€(k'2)) <k+q|w|k> x 5. 0
P /WN kqk'o: P E K -gy kg tio
wws{Z=3T)

where we have used the fact that the sum

Lo Ak-ard

c'eao K e m e ae- -
N g k'-g,K (2-23)

where Kn is a reciprocal lattice vector.
Using the properties of a delta function, the sum over k' can be

carried out in (2-22) to yield

B & s I Q(q, A)(-iq.e(qr))x < k+q|w]k> c*. ¢
€p /Y MN BEPA a 1243 =1 - h"g’ _k.o
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where in both the normal co-ordinate Q and the polarization vector e
terms, q is to be rcad as reduced to the first Brillouin zone. Finally,
we use the transformation of the normal co-ordinates into phonon creation

and annihilation operators a+(5)A) a(k, A) from equation (2-12b), giving

us;

H

= & + +
vep ) l_(CPX gk_*ﬂ’l\’_:;\ ¢ ]_<_+SPC1<0 (a (-ﬂ’k) * a(_(_ls)\) )

where the electron-phonon coupling term g is given by:

: 1 ) ’
g = -i ([ ——m— .e(q,)) <k+q |w |k >
Beg.k), <2w(ﬂA)MN Sl =4 O (2-26)

Physically, we see that the qth normal mode pf (2-25) gives rise
to processes in which a phonon q is absorbed or a phonon -q is emitted
and the momentum transfer to the electron is given by En + q where Eﬂ
is a reciprocal lattice vector.

For the type of scattering (almost elastic from the electron
energy point of view), it is cleaf that the pseudopotential form factor
<5f9_|w |5_> in (2—26) is needéd only for both k and k+q on the Fermi
surface. Such form factors have been determined in the one orthogonal
plane wave (o.p.w) approximation by Harrison33. In this work, we shall
not in fact make use of the o.p.w. form factors, but employ instead the
Heine Abarengov form34 as tabulated by Harrisonss, which is expected to
be somewhat more reliable--since it is derived somewhat from experimental

data rather than worked out entirely from first principles.



2.3 THE ELECTRON-PHONON-ELECTRON INTERACTION:

In anticipation of the basic interaction causing the transition
to the superconducting state, let us now briefly consider the clectron-
clectron interaction as mediated by a phonon. Since the interaction
between electrons and phonons is so non-linear, we expect that any dis-
turbance in the electrons will alter the distribution of the phonons, and
this in turn will affect the distribution of electrons. Conscquently,we
can look upon this interaction as an electron-electron interaction simply
mediated by the phonons. This problem was studied in detail by
Frb’hlich35 assuming the interaction to be instantaneous (i.e. the
electrons respond instantaneously to a shift in their distributions).
Although it turns out to be an elegant and more simple problem to write
the theory of superconductivity in terms of an instantaneous reaction, in
truth due to the relatively low velocity of a phonon, retardation must be
considered. This will be outlined in Chapter IV. Nevertheless, the
result obtained by Frohlich, and later modified by Bardeen and Pines36 is
of great interest physically and was the inspiration for the BCS theory.

Fréhlich considered the interaction

2

k+g
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and calculated this new interaction between electrons to be of the form;

*

g 1 By 1 h@(qA)
v =_;_ I k',k'+g,X “k,k+q, . C;ac

- e )% thu(gn) )

'+q,0 Ch'o 'Cba»o

| = +

oo ! (Ekfg

where g is the coupling term defined by equation (2-26), and €, is the
energy of the Bloch state k, as contained in equation (2-14).
Probably the most significant contribution of all this work to

the theory of superconductivity is the recognition of the fact that in

the energy range

- | < he(g, V)

this interaction is attractive. Hcnce, in a certain small energy region
about the Fermi surface, the electron-phonon-electron interaction results
in an attractive term being added to the total Hamiltonian. This
physical result is all imbortant in the theory of superconductivity and

is necessary in understanding a basic model for a superconductor.



CHAPTER III
THE BCS THEORY OF SUPERCONDUCTIVITY AS APPLIED

TO THE DERIVATION OF AN ENERGY GAP

A very strange effect scems to be unfolding. The electron-phonon
interaction, the strength of which determines the resistivity of a
material, appears to be the same microscopic mechanism responsible for
this transition to a state of zero resistivity. Indeed, in simple metals
there seems to be a direct correlation between the resistivity of the
material and its superconducting transition temperature. Those pure
metals with high conductivities are not likely to have high superconducting
transition temperatures if, in fact, they superconduct at all. The
solution to this seeming contradiction will become clear in this Chapter
as we study the microscopic theory as presented by Bardeen, Cooper and

SchriefferZI, assuming the results of Frohlich.

3.1 COOPER'S SINGLE PAIR PROBLEM:

The first serious investigation of the microscopic mechanisms
responsible for the transition to the superconducting state was performed
by C00per20 in which he considered a single pair of electrons interacting
via some non-retarded potential V above a Fermi sea of non-interacting
particles. The Fermi sea serves to block the availability of some states
to be scattered into by virtue of the Pauli principle. Cooper studied
the scattering problem pictured in Figure 3.1 where we consider scattering

from the state |k - k > to the staﬁf |k' - k' >.
X Y
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occupied
states

FIGURE 3.1

SCATTERING PROBLEM CONSIDERED BY COOPER

Using the result from the work of Frohlich, Cooper showed that
if this non-retarded potential ka, , say, 1is at all attractive for
electrons diametrically across ;g; Fermi surface, a bound state will
result in which the two clectrons are coupled together.

To be more explicit, in this simple two-electron problem, Cooper

showed that the binding energy of the IE) -k> state is given by

=
]

ZwC / exp [W(—(z))—\_f] 1 » meees (3-1)

where ka, V for energies less than we

0 for energies greater than W,

and it is assumed that the density of states N(ek) is slowly varying in
the interval 0 < € < W, and may be approximated by N(0).
In the case of strong coupling (N(O)V >> 1)

W & N(0)Vu, »
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and in the case of weak coupling (N(0)V << 1)
W% 20  exp -
c N(O)V

On consideration of this Cooper problem, one immediately sees
that a bound state exists for arbitrarily weak interactions insofar as
they are attractive. This is an extremely important result as discovered
by Cooper. Following this it was suggested that superconductivity could
somehow be associated with the forming of many of these bound pairs at
the Fermi surface. |

In actuality, there is a very great difference between this
simple problem considered by Cooper, and a superconductor. Fortunately,
this difference can be simply dealt with by means of the notational
machinery at our disposal. Contrary to Cooper's assumption of single
pairs non-interacting with other pairs, we find that there are, on the
average, about 106 pairs whose wavefunctions overlap with the wave-
function of any one pair. Consequently, the isolated pair cannot be
considered and some coherence effects must be included. This, in essence
is why, although the binding energy of any individual non-interacting
bound pair is microscopic, in the total system the energy required to
destroy any bound pair is macroscopic. Another way of saying this is
that the single pair model exhibits an almost continuous spectrum above
the ground state, while, if one invokes the Pauli principle restrictions
when treating interactioﬁs between pairs, a macroscopic energy gap

above the ground state results.



3.2 THE GROUND STATE OF A SUPERCONDUCTOR:

We are now in a position to consider the ground state of a super-
conductor as introduced by BCS. It should be pointed out that in some
respects we must display a certain ruthlessness in ignoring ccrtain
interactions, although their energics are comparatively high, that are
not believed important in the transition to the superconducting state.

As discussed above, we can form a state with lower energy by
removing a pair of clectrons from tﬂc Fermi sea, and allowing them to
form a superposition of states above it. The next step, obviously is to
remove more than simply one pair and go to an even lower energy state.

If we remove enough of these pairs, however, we will reach the stage
where we can no longer treat them as individual, non-interacting pairs.
It can be shown by phase-space considcrations37 that when no current is
flowing in the superconductor, the greatest possible stability is
achieved if the pairs are chosen to have zero total momentum. Hence, we
see that the resulting energy is a minimum if we choose pairs of the
same value of total momentum (i.e. pairs k and -k). Exchange tends to
reduce the pairing interaction energy so that electrons of opposite spin,
as well as opposite momentum, are most favourable as partners.

In order to follow as closcly as possible the theory as set out
by BCS, we shall use the formalism of second quantization. llere the
creation and annihilation operators for electrons in Bloch states of a
metal are as previously described are given by C+kc and Ckc respectively.
Furthermore, as we are considering pairs of elect;;ns of equal and
opposite spin and momentum it is convenient to introduce pair creation

and annihilation operators;
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+ + -
b = O

| =

| =

Cos Ckt

where we see that b+k creates a pair in the state IE} - k+ >and b

k

annihilates a pair in that same state. By direct substitution we attain

the relations;

[bk,b*k,] = 0
[ iy ]
[Pebi ]

[b*k L ] = 0

1 - (nkﬁ + nk}) ______ (3-3)

where n oy and n_,, are the number operators for the states kt and -k+
respect;;ely. I;.should be emphasized here that although at first glance
one might suspect that these pairon operators are bcson operators and obey
Bose statistics, the factor (nk} % n_k+) represents the Pauli principle
restriction, disallowing pairs—io be ;;eated in states already occupied
either by other pairs or single particles. Hence, we are not considering
a Bose gas.

Having established the notation, we are now in a position to
write down the Hamiltonian for the reduced problem as has been outlined,

ignoring other interactions not altered by the transition into the super-

conducting phase. This Hamiltonian then has the form:



H = L
ko

“k "ko kk' 7 k' Ok
It has already been stated that under certain circumstances,
ka, is attractive (negative) and in this case, for the most stable

situation, it is clear that the ground state of “r has no pair state

ed
occupied by a single electron. Hence the ground state reduced

Hamiltonian can be written as:

red

The wave function for the ground state of this system is given by: '
Yy = 1 [u +v, b | 0>
o = b [t etk

where | 0 > is the vacuum state and uy and Vi describe the relative pro-

bability of occupation of each state. Vi is the amplitude probability

that a pair state is filled, while uy is the corresponding vacancy

amplitude. Of necessity,

lience this ground state wave function is just a product of all constituent
configurations with suitable occupational probability amplitudes.
Curiously enough, this wave function Wo is not an eigenstate of

the number operator Nop, the operator for the number of particles in the



system. To insist that this wave function be an cigcnstate of Nop in
changing the occupation of one pair state, we would be required to alter
the occupation of others in order to conserve No. Since this wave function
does not have a definite number of particles, we must minimize the energy,

subject to the constraint that the expectation value of Nop is No’ p

Using a Lagrangian multiplier scheme and considering Hored of equation

(3-5) it can be shown 21 that the quantity to be minimized is, in fact;

Minimizing this term we obtain for the ground state the relationships;

2 1. €k
u-k— = -2- (1 + EI(— ) ------ (3-83)
2 1 k
VE = -2' (1 - .[‘._ ) ------ (3-8b)
as well as the product
u, v, = —ﬁg
kX By e (3-9)

where Ek is defined by
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This is the energy required to crcate an cxcitation in the state | k > in

the superconducting state. The other paramecter 4, is the "cnergy gan"

k

parameter and it is seen to satisfy the integral equation

i L (3-11)

| =

b
k!

which thus takes the form (from (3-9) )

From (3-10) we see that in the superconducting case the energy required
to create a quasiparticle in the state | k > differs from that of the
normal -material by an energy Ak' This feature will be further discussed
in the next Section. R

This energy gap equation (3-12) is casily solved if certain
simplifying assumptions are made. For example, if it is assumed that
ka, is a simple non-retarded, E independent potential of the form

\Y = -Vo for | €x | < w,, Some cut off energy

= 0 outside this shell of We

then onec finds that the solution of (3-12) takes the form;

A = A for | e | <w

k 0 c

= 0 otherwise
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where A =

n
N
e
(g]
o]
>
te}
]
=z
(=]
L
<
o
| (P

in the weak coupling limit.

Having now determined the ground state of a superconductor one
can, by substituting this result into the ground state energy equation
(3-7) and subtracting the ground state energy of the normal phase, deter-

mine the condensation energy of a superconductor:

1 2 2 -2
W - WS = '§' N(O) AO = 2 N(O)wc exp [N-m:l

3.3 EXCITATIONS FROM THE GROUND STATL:

Suppose now we consider the injection of an electron into the
system in the state | kt > (its mate | -kv > being unoccupied). The
existence of this single particle occupying | kt+ > serves to block the
participation of the pair state.l kt - k+ > in the pairing interaction
and thus the energy of the interacting pairs is increased by (see

equation (3-7) );

2
-Zekyk- - 3 [ L ka,uk,vk,] UEYE_ ______ (3-14)

In blocking this state from interacting, recall, we have added a single

particle of energy €, to the system. We must add this term to the total



energy change, which is now given by:

2
e, L1-2v,"] + 2

A5 UE.VE. ______ (3-15)

where we have used the relation (3-11),

Vk,

K v&v u_k_v

Substituting our values for uy and Vi from equations (3-8a) and (3-8b)

into the above we obtain the energy difference between the ground state

and a single excitation, namely,

2 2
£k Ak
Excitation Energy = - * g ® Ek
k k -
2 2,
R S (3-16)

Thus we see that the minimum amount of energy required to add a single

particle excitation to the system is AkF = Ao in our approximation.

This requirement is graphically illustrated in Figure 3.2 where

a plot of Ek vs k is illustrated for both a normal material and a

superconducting material.

31
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FIGURE 3.2

Ek vs k PLOTS FOR A SUPERCONDUCTING AND NORMAL MATERIAL

Here we can graphically sce the difference between the supercon-
ducting and normal case; In the normal case, microscopic excitations
above the Fermi surface are possible, while in the superconducting case,
the minimum excitation as evidenced from Figure 3.2 is seen to be the
energy gap parameter Ao.

It should be pointed out that it is important to consider this
?k vs Kk curve for k values less than kp. We know that since the inter-
action has caused a smoothing out of the sharp jump in the single particle
occupation number, there is a finite probability of finding a state }_<_<}_<_F

empty where in the non-interacting case this probability would be zero.

Consequently, it is meaningful to consider the possibility of injecting
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a single particlec into a state below the Fermi surface. In all cases, we
find that the excitation cnergy Ek is positive.

If, on the other hand, wc—;crc to consider a closed system of
particles (i.e. we can't introducec electrons from an external source),
then from these considerations we see that the minimum energy required
to create an excitation from the ground statevis 2Ao; Aé to recmove the
electron from a bound pair state and another Ao to place it into a single
particle state. Alternatively, one can look upon‘this process as the
production of two single particle states and consequently the minimum
energy required is 2A0.

These considerations are important as we shall see in studying
the process of single-particle tunneling across an insulating barrier
between two superconductors. The process can be considered as the
removal and injection of electrons in a superconductor.

These excited states can be treated in a neat shorthand notation

if we judiciously choose new operators from the previously chosen

+ +
CEﬁC'Ef and C k¢C ‘Eﬁ

which annihilate and create pairs. As was pointed

out by Bogoliubov38 and Valatinsg, if new operators are formed as given

by
+ + :
Yre "% G Vi e (3-17a)
and &
Yae "9 * MG s (3-17b)

& +
and we consider the operation of this new operator y K on the ground

state wave function:
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then this Y+kf acting on the ground state creates a quasiparticle in the
state |E} > T- The components of Yﬁ} from equation (3-17a) ensure that
the | kt>state is filled and the I--k} >is empty.

Similarily, we sce that Yia destroys a quasiparticle in the

state Ikﬁ >. Thus one immediately has the results:

Y _k_f I \}'o > = l \{‘E-+ >

" | ¥ > = ¥

Yk+ ' Yo -k+ >

fyy | Xg® = O

Yt | ¥,> =0 e (3-18)

The last two of these operations are equal to zero as | Y7 is the
vacuum state for quasiparticles. These operators obey Fermi Dirac

statistics;

+
{YEG'Y.]_(_'U'} =- 6-&(_', 6001
} =

{Yk0|Yk'U'

Again we can determine the quasiparticle excitation energy by evaluating

=
=
n

< WE_I H|vY >

to find W - ws + E

| =

k

as previously shown.
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The advantages of this transformation is that it is easier to see
physically what happens to the system when a quasiparticle is created.
Consider for example, the Y+k+ operator of equation (3-17a). This is

simply an ordinary creation operator c* , of the state | kt> with

k4
amplitude corresponding to the probability of that state originally being

empty, and a normal annihilation operator C of the state | -k+ > with

-k+
amplitude corresponding to the probability of that state originally being
filled. The combination of these two opecrations makes the state | kt >

certainly filled and the state | -k+ > certainly empty. llence we can say
that the operator Y+k+ certainly creates a quasiparticle in the state

IE} >,



CHAPTER IV
FIELD THEORETIC TREATMENT OF TIME

RETARDED INTERACTIONS

We are now familiar with the basic interactions and concepts
determining the phenomenon of superconductivity. However, in this BCS
treatment of a superconductor, little is really known about the electron-
phonon-electron interaction ka, and in fact, the crudest solution

possible V = VO was uscd originally. Even with this simple approach,

kk'
however,surprisingly good agreement and accurate predictions resulted.
In real metals, we cannot treat the superconducting state as resulting
from unretarded interactions and undamped quasiparticles of the normal
state. Retardation and damping, we shall see, play important roles in
the description of a superconductor.

In this Chapter the techniques used to describe these effects are
outlined and the application of these techniques to explain certain
anomolous behaviour of lead is presented. We shall see, in fact, that

because of these retardation effects, interesting results can be extracted

concerning the phonon density of states.

4.1 TWO COMPONENT NAMBU FORMALISM:

In the Hartree Fock approximation, taking into account all the
interaction terms so far discussed, we find that we can write a modified

zero order Hamiltonian:
36
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TR N n¢ ...... (4-1)
where
”o = free electron Hamiltonian
Hye = lartree and Fock terms
H¢ = a pairing term
= E {¢'EF£ﬁctkf + hermitian conjugate}

We sec now, however, that the Hamiltonian is no longer a one-
particle Hamiltonian if this pairing term is added. This difficulty was
overcome by Nambu40, and independently with a similar treatment by

1 . : :
Gor'kov4 , where a two component spinor field was introduced,

C

k+
[ = *
k iy
and " .
L G (4-2)
where C+k+ and Ck+ are the usual creation and annihilation operators.

Then, from these definitions, and equations (2-15) we have the usual

anticommutation relations in matrix form;

kk'

where 1 is the 2 x 2 unity matrix.
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Using this redefinition of tcrms, we can now more conveniently

write the modified zero-order Ilamiltonian Ho' as:

! = + Py o
Hy' = Z wh[eﬁrs+¢£rljxp5+ I g

| =

where Ek = sum of free electron energy and Hartree Fock correction

‘k T %Y fup

and T, = Pauli spin matrices
(o 1> 1 0
T = > T =
. 1 0 * 0 -1

The use of this convenient formalism ecnables one to express the
system in terms of single, four-component Green's functions. More

explicitly, we define this four-component Green's function matrix as:

where I.O T is the ground state for No electrons and wk(t) = e
wk(O) e-1HO t. T is the Wick time ordering operator. -

- Parenthetically, a few words could perhaps be added at this point
about the physical significance of the Green's function approach. From

cquation (4-5), we can see that we are simply taking the inner product of

a state E_at time t = 0 with that time evolved state at a later time t.
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lience, squaring this term simply gives us, (having injected a particle
into a state k at time t = 0), the probability of the propagator being
in that same state after a time t. Clearly, with no damping effects (as
in the freec electron model) this probability is always unity and we can
;onsider the spectral energy distribution of such a Green's function as
a 6 function located at the energy of the state W If damping ecffects
are included, however, this idecal situation is not the case and there is
a finite probability that the propagator will scatter out of the original
state k in a time t into another state. No longer is the spectral encrgy
distribution a & function, but a smeared out Lorentzian function with
finite width owing to the finite lifetime of the particle in the k state.
Returning to equation (4-5), we can associate the diagonal
clements of this Green's function matrix G'll and G.22 with normal state
propagators, while the off-diagonal elements (the Cor'kov functionsAl)
are related to the amplitude of subtracting or adding a-pair of particles
to the system without creating ecxcitations. In Green's function formal-
ism, it is often convenient to Fourier transform these functions into w
space and work in terms of these energy propagators. For the non-interacting

system, we can write the true free electron Green's function in w space

in the Nambu notation as a 2 x 2 matrix, namely;

w1l + EE 13

G (k ) =
AL — (4-6)

U . . . R :
where i0 1is an incremental distance in the i direction.
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If we now write the irreducible self-energy for a propagator as
L(k, w) , which is again a 2x2 matrix, the most gecneral form that this

self-energy can take is of the form

kw) = [0- 2(k, @)] 0@ + gkw) g+ d(ke) T,

where Z(E_w) is a renormalization function for the free eclectron with a
real and imaginary part.

It should be noted that ¢(k w) in this general case need not be
real. In fact, the imaginary part of this function contrjbutes to the
damping rate of the quasiparticles.

Using Dyson's equation42;

¢l w = 67Nk W) - Bk W)

which relates the non-interacting Creen's function to the interacting
Green's function via this sclf-energy function, and our gencral expression
for the self-energy from equation (4-7), we have the matrix solution for

the general Green's function:

0 Z(kw) (1) + E(ke) 14 + ¢(kw) T,

Gk w) =
22k ) w® - ek w) - ¢ (k) + i0"
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4.2 THE GAP_EQUATIONS:

Using this up to now gcneral approach, one now usecs a self-
consistent perturbative approach to determine these functions ¢ and Z.
i.e. one expands Z(kw) to a given or prescribed order in terms of the
propagators G(kw) which themselves include this self-energy I (kw) to be
calculated.

It has been shown by Migdal43 that expanding to lowest order in
phonon and coulomb prOpagdtors will treat the electron-phonon interaction
exactly to order (m/l\l)l/2 N 10'2 where m = electron mass M = jion mass.

Within this approximation to first order, utilizing the familiar

rules for interpreting diagrams, one obtains for this self-ecnergy term

L(ke) = i J T6(k'w") T4 { f | Bk 'y |2 D, (k-k',0-0'")

+ vc(Efkf, w-u') }

Where VC(E—Kf, w-w') is a screened coulomb potential between electrons,
I 8 k' | is the clectron, phonon coupling term for the A'th rhonon branch
as EZ%ined in eqﬁation (2-26), and DA(ﬂJ e) is the Green's function for
the phonon propagator. Denoting the energy of the thh phonon by w(g})

to zcroth order Dx(ge) is given by

2 w(g))

D, (ae) =
; 62 - wz(g}) + i0*
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This set of intcgral equations now specifics the superconducting
state in terms of the phonon spectrum. More cxplicitly, recalling from
cquation (4-1) that we originally associated the pairing cnergy term with

the function ¢ (kw), a gap function A(kw) can now be defined such that;:

Ak w) = ¢k w)/ Z(k )

which, it turns out, is simply an encrgy dependent generalization of the
BCS energy gap of ecquation (3-12). In particular, the energy gap in the
quasi-particle excitation spectrum is obtained from the solution of this

encrgy dependent gap at A _. i.€. A(AO) = A

(o] O

" g . ¥ 4
After very involved but not unknown manipulative technlquc524’4 ,

and after comparison and equating of coefficients in equation (4-7),

these four dimensional equations can be reduced to a pair of coupled, one

dimensional integral equations involving an energy denendent gap function
23

A(w) and the renormalization function Z(w) of the form™ ™.

W

1 ¢ A(U)')
Aw) = DﬁID. J dw' Re . ‘% [k+ (') - N(O)ué]
20 Ay (W - 27w )*
...... (4-12)
w
. C
|1 - Z(w)]| w= N(O) J dw' Re 5 “"2 ,/\‘ [ K (wp")]
(w'™ - 8% (") )25

A(Ao)
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where W is a cut off in cnergy % 10w where the phonon contribution

NDEBYE

to this pair of equations has converged and further limits would not
result in a change in this portion of the contribution. Unfortunately,
this rapid convergence is not the case for the electron-electron repulsion

Vs as this term does not decrease rapidly for w > w In order to

DEBYE®

circumvent this problem, an effective ''pseudopotential u. is defined to

compensate for this region outside w, not considered. This corrected

potential method is an approximate method and still open to improvement.
5

It has been shown4‘ that this pscudopotential term can be given

approximately by:
E

F
u, = V¥, / 1 + N(0) Ve an ( a; e (4-13)
where EF = Termi enecrgy
Vc = spherical average of Ve
N(0) = density of electron states at

the Fermi surface

The kernels K | (w, w') in equation (4-12) are related to the contribution

from the phonons to these equations and are defined by;

I+

K+ (0, 0') = j dv al (V)F, (v) [ : : +]
(o]

5 AP .
w' + w+ v + il w' - w+ v - 10

where the product function

g | d’q
2

2
o, (V)F, (v) =
o & 87k

| 8pqr 212 80V - wlg, )
Foo<2kg a [ (4-15)
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In the above, the integral over momentum transfer q = k - k' is performed
throughout a sphere of radius ZkF (twice the Fermi momentum). This is
determined by assuming a spherical Fermi surface (free electron model)
and hence the maximum allowed q - transfer is the diameter of the Fermi
sphere. It is also assumed that the electron-phonon coupling term

gkk',x depends only on i (local approximation). These approximations
a;;ear to be sufficiently accurate for the work reported here. It is,

in fact,'possible to write a more general form for ai(v)FA(v) independent

of these assumptions, namely

| 2 ‘
g
I a%k f a%k! J—“%*—L 5 (v - w(k-k', 1)
2 Sr 5 ey
GA(V)FA(V) =
J %k
...... (4-16)

S

where the two integrals in k and k' are taken over the Fermi surface SF
and vF is the Fermi velocity. Equation (4-16) will reduce to (4-15) in
the appropriate limit.

Clearly, a summation over all possible phonon branches yields:

FWFW) = T WIF ) e (4-17)
' A

which simply describes all possible scatterings due to phonons of energy

v of a particular electron on the Fermi surface, to an arbitrary state on

SF averaged over all electrons at the Fermi surface.



Another way of saying this is that given an interacting Fermi
surface, this function describes all possible scatterings

This quantity az(v)F(v) is of central importance to the phenomenon
of superconductivity, as may be deduced from reflections as to the
significance of equation (4-12). This equation tells us that this term,
along with the electron;electron pseudopotential u. of equation (4-13) is

the determining factor for the onset of superconductivity in a material.

4.3 NUMERICAL SOLUTIONS OF THE GAP EQUATIONS:

Numerical solutions of these gap equations as applied to lead
were first obtained by Schrieffer et 3129 who chose a phonon density of
states distribution to roughly fit deviations from the BCS predicted
electron tunneling curves of Rowell et a127. The chosen F(w) consisted
of two Lorentzian functions, one centered at 4.4 meV with a half width of
0.75 meV and the other centered at 8.5 meV with a half width of 0.5 meV,
As little was known about the electron-phonon coupling parameter az(w),
it was assumed to be a constant in energy and was adjusted such that the
solution to these gap equations. yielded A(4) = 1.35 meV - the experi-
mentally observed value of the lead energy gap. From previous considera-
tions of Bogoliubov et 5145 and Morel and Anderson46, N(O)uc was

estimated to be:

N(O)\_xc & 0.11

This identical calculation has been repeated by the author using
an iterative technique, commencing with the very crude estimate

A(w) = Ao = 1.35 meV. Convergence to a stable solution occured in



FIGURE 4.1

Real (solid 1line) and imaginary (dotted line) parts of A(w)

from the solution of the Fliashberg gap equations for the

29

model a?(w)F(w) of Schricffer et al N(0)u_ = 0.11
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approximately eight iterations. This solution, identical to that as
originally solved by Schrieffer et al29 is illustrated in Figure 4.1.

The real part of A(w) = Al(m) is the solid line curve while the imaginary
part = Az(w) is represented by the dotted-line curve.

It is interesting to note a peak in the real part Al(m) at the
points w= Ao + o, and v = Ao *wy where CR and w, are the chosen trans-
verse and longitudinal peak points in the phonon density of states F(w).
This peaking in A(w) at these points indicates soﬁe sort of resonance
phenomenom in the phonon contribution to these gap equations. It should
also be noted that the imaginary part Az(w) is small until w approaches
a certain critical threshold for the emission of transverse phonons at
which point (Ao + wt) there is a sharp rise in Az(w). There is a similar
sharp rise in the region Ao *w, indicating a higher probability of
longitudinal phonon emission. This finite imaginary part Az(m), being of
the same order as the real part Al(w) indicates clearly that there is a
strong coupling of the electrons to the phonons in lead. This means that
for given electron energies there is a high probability for phonon
emission and hence a short lifetime for éertain states, The fact that

this imaginary part is comparable to the real part suggests that at

least in lead, the effect of the short lifetime is of major importance.



CHAPTER V

ELECTRON TUNNELING IN SUPERCONDUCTORS

Electron penetration through a region that is classically not
allowed is now well documented by experimental evidence., This non-
classical phenomenon was first applied to a theory describing a particle
decay47 of radioactive nuclides below the expected threshold level.
Later, Fowler and Nordheim48 applied the tunneling phenomenon to a theory
of field emission of electrons from metallic surfaces and developed the
fundamental field emission equation named after them.

The application of this phenomenon to describe current flow
through an oxide between two metals (more explicitly, superconductors)
'will be described in this Chapter. In addition, it will be shown that,
using this technique certain information about the superconductors used

can be extracted.

5.1 TUNNELING PROBABILITY:

To be specific, we are interested in the tunneling of electrons
from one thin metal film to another thrqugh an insulating barrier whose
lthickness is of the order of % 20 A°. It should be emphasized that the
quotation of 20 A° is quite an arbitrary figure as this thickness gives
reasonable agreement when inserted into the tunneling equations. No
conclusive evidence as to the thickness of these oxides used in these

48



FIGURE 5.1

Model of a tunnel junction as a finite potential barrier

between two metals.
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investigations has been reported.
This type of system, a metal-insulator-metal sandwich, can be
schematically represented by a well of electrons on either side of a

high potential barrier, as: illustrated in Figure 5.1, In this Figure:

\Y

applied voltage across the barrier

e = electron charge

EF' and EF & the Fermi energies associated with metals
1 and 2
¢(x) = the barrier height as a function of x

The standard text book solution31 of this tunneling problem, assuming
that the tunneling probability is small, tells us that the transmission
probability is given by:
16E, (4(x) - E_) -
X X

T = - exp [-%—J 2m[¢(x)-Ex]%dx]
¢(x)° ¢ - ~me=--(5-1)

where Ex = kinetic energy associated with the x component of velocity

‘hzk 2
X

= 2m 4

a.
]

barrier thickness

electron mass

3
n

A W.K.B. treatment is used to obtain this result. For low applied bias,
the height of the barrier is approximately a constant ¢(x) = ¢o and this

approximation allows us to simplify the transmission probability T to:



It should be noted that in this treatment the barrier penetration

is an exponentially decaying function of the barrier thickness, and
consequently from a practical point of view, this limits the thickness

to a small range for usable devices which operate on this principle.

5.2 THE TUNNELING EQUATIONS:

The Hamiltonian for the tunneling system was first set up by
Bardeen49 and later revised by Cohen, Falicov and Phillipsso. Using
this formalism, one can describe the complete tunneling system by an

effective Hamiltonian:

where H1 and H2 are the full Ilamiltonians for metals 1 and 2 in the

absence of tunneling between them, and HT is a Kind of interaction

operator which transfers electrbns between the two metals.,
H.= © T C',C_+ Hermitian conjugate ---(5-4)

T kp pk " kp

+ ; . - ;
where C X and Ck are the usual particle creation and annihilation operators

for metal 1 and C+R'and CR.are similar operators for metal 2. Tpk is the
matrix element between state k in metal 1 and p in metal 2. By a
straight forward analysisSI, it can be shown that this matrix element

reduces approximately to:
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2
\
T L S | Transmission
pk 4m LPZ
------ (5-5)
where Ve is the Fermi velocity.
This iaclgdes electrons with kinetic energies near the Fermi
h“k

energy EF = —755— for which these tunneling matrix elements are peaked

sharply for electrons moving in the x direction.

We are now in a position to consider the tunneling current across
the barrier with a given applied voltage V. Assuming that there is no
coulomb interaction between electrons of the different metals, and assum-
ing no interaction of the tunneling electron with the barrier, one can

calculate the rate of transfer of electrons from metal 1 to metal 2 as:

27 2
Maz = §= I D<ap [oby [Hp [ 0> [10,5]2 8(e,; + ey - o)
------ (5-6)
where | a, > and | b, > are the exact eigen states of the full Hamiltonians

of the individual metals, “1 and H2 respectively, with eigenvalues €a1

and €h2
i.e., Hy | a;>=¢,|a >
and H, Tby>= €y | by >

where €11 and €, are measured relative to the ground state energies in
1 and 2 respectively. Substituting for HT from equation (5-4) into

equation (5-6) yields:



-eV)

1*h2

" 2
o2 = Trk_ <a| CBJ 0 >< b, | cn- | 0>]x &,

At 0°K electrons cannot tunnel in the reverse direction as no states are
available.

Using the identity

we can rearrange equation (5-7) and it can be readily seen that the
current density is proportional to

eV

K +
0 AL 1 b2

Sw) s

. 80=y pz ¥ @ = V)
....... (5-8)
eV
- J RS W R 5 T S (5-9)
) _

where NT+(2)(E) is an effective tunneling density of states for metal 2

given by

(2) . 2
N (B) = = |<b,|cCc” |0,>|26(,., - E)
T+ . pb 2 2 j z b2 —
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and

1
N (B) = © |< a | CE.' 0, >|2 §(e,y - E)

5?1

Physically this NT+(2)(E) is the density of available states at energy

E in metal 2, while N _(1)(5) is the density of occupied states in metal

T
1 with energy E.

.Clcarly, this result tells us that we take an electron from
metal 1 of energy (eV - E) measured relative to that metal, and inject
it into metal 2 with energy E. This transition is proportional to the
product of the density of filled states in metal 1 and the density of
empty states in metal 2.

One can conveniently picture this single particle tunneling
process by invoking the dispersion curve for excitations presented in
Chapter III, where the excitation energy is givén by:

2 . 24
Ek = [_e—k— + Ak ]_"

(see Figure 3.2)

Using this model for excitations (single particle states) one
can first consider a junction of the type metal-insulator-superconductor
as is illustrated in Figure 5.2a.

In this tunneling process, an electron of state | kt > is extracted
from below the Fermi surface of the normal metal leaving behind a hole in

this state, and thereby creating an excitation energy €1 = | €y |.

—



FIGURE 5.2

E vs. k plots for (a) metal-insulator-superconductor
(b) superconductor-insulator-superconductor and the possible

tunneling paths.
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This electron can now be inserted into the state | k'> or | k" > as is

illustrated in the Figure. For example, if the particle is deposited in

L
| kt > an excitation energy of € = (ck,z + Ak,z)h will be imparted

to the superconductor. Of course, this event will occur only if the pair
state |k'4 - k'+ > is initially empty (the probability being uk,z).
Energy is conserved when lek| * gy = eV. As was mentioned previously,
however, we see that energy will also be conserved when the quasiparticle

is inserted into the state | k"4 >. Consider for the moment that 4, =

a constant Ao. Since we know that €pr = ', a substitution of this

_Ek'
equality into the equations defining uk2 and vk2 (equation (3-8) ), yields

the probability of state | k'+ - k"+ > being initially empty as

2
(] i
u ka .

bability that the tunneling process will occur, is given by:

From these occupation considerations, therefore, the pro-

Consequently, the tunneling process is not dependent on these coherence
terms u and v. Returning to Figure 5.2a, and‘invoking conservation of
energy considerations, we see that a tunneling event is not allowed
until a threshold bias defined by

A
()

V = —
e

is applied. Of course, this analysis is at an assumed temperature of

0°K. At finite temperatures, thermally excited quasi particles can

tunnel below this threshold bias due to the fact that their thermal energy
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satisfies this requirement.
In a similar fashion, one can consider the superconductor-

insulator-superconductor case as illustrated in Figure 5.2b,
In this case, as before, the particle in state | kt >can tunnel into
either the state |kf+ >or the state |Eﬂ+ >, In addition, however, one
should note that the particle in state | k* >can also tunnel to the
same two states. Employing this fact, and an identical argument as
before, one finds that again the coherence factors drop out and the pro-
bability of tunneling (with respect to the Pauli principle) is

2 2

uE + vk = 1,

At 0°K, there will be no current flow until the threshold bias

is applied. Again, finite temperature excitations will smear out this
A+ A’

expected sharp rise in the tunneling current at —g—s—————-, and in the

case of two dissimilar superconductors, a cusp in the current-voltage

characteristic will result at the bias

5.3 ‘TUNNELING DENSITY OF STATES:
44,51

It has been shown , using the sophistication of the Green's
function techniques in order to take into account lifetime effects, that

this effective tunneling density of states defined by equation (5-10) is
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given by:

N..,(w) = N(0) Re . T—
= <(m2 . A"'(:»))") ------ (5-11)

where Re refers to the real part component, N(0) = normal density of
states at the Fermi surface. A(w) = Al(m) + iAz(m) = complex energy
dependent gap function. In the case of a simple BCS superconductor

where A(w) = Ao’ we see that this solution to the tunneling density of

states reduces to

w
T I — (5-12)

= 0 for wc< Ao

as is expected. This function, the so called semiconductor model of a
supsrconductor, is illustrated in Figure 5.3. Although in some respects
this model is useful in interpreting tunneling data, care must be taken
in the analysis of results. In this respect, one must always bear in
mind that in this picture the states illustrated as being above the gap,
and ‘hence above the Fermi level, are really linear combinations of
quasiparticles existing above and below the Fermi surface (i.e. the
particles in |k'> and |k" > in our discussion of tunneling in this
Section,

We have previously seen that in considering retardation and life-
time effects, a complex energy dependent gap function A(w) results.
Consequently the detailed sfructure must be considered in equation (5-11)

and,we find that this density of states is no longer a simple function,



FIGURE 5.3 -

B.C.S. tunneling density of states NT(w). w is measured

from theAFermi surface.
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but it displays deviations from the simple BCS form of equation (5-12).
A solution to the gap equations (4-12) for a particular choice of
az(m)F(w) and N(O)uc will give us the form of this tunneling density of
states NT(w).

Returning to our expression for the tunneling current flow, we
can extract an expression for this term NT(w) in terms of our mecasurable
variables I and V. 1In the simplest case of metal 1 in the normal state
and metal 2 in the superconducting state, with recourse to equations

IS:Q) and(S-ll);'we obtain therrésult that:

(’91) |
dvV /s NT+(eV) eV
= = = Re <f \j>
(%)N N(0) / (ev)2 - A2(eV)

where <ﬂ> and <d—1> are the derivatives of the I-V characteristic
dv/ s dv/ N _

curves When the superconductor is in the superconducting and normal state
respectively. Therefore a tunneling experiment (at OOK) for a metal-
insulator-superconductor system will give us a direct measure of this
tunneling density of states NT(wL and hence information‘about the energy
dependence of the energy gap parameter A(w)-- which in turn yields infor-
mation about the phonon density of states, or more explicitly about
az(w)F(w).

Alternatively, if one assumes a particular form of az(w)F(w) and
N(O)uc, the gap equations (4-12), when solved for A(w), will give us a
particular form for NTt(w) and consequently predict the characteristics

of a tunneling experiment,



FIGURE 5.4

Experimental tunneling density of states NT(w) for lead
~ (solid line) compared with that predicted by the model

a2 (w)F(w) of Schrieffer et a1%? (dotted line).
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5.4 GAP SOLUTIONS FOR NT(w):

As was outlined in Section 4.2, these gap equations were

solvedzg’44

for a model F(w) closely resembling the phonon density of
states of Pb as determined from neutron scattering experimentssz, and an
adjustable parameter az(w) =a =a constant. It was found that there
was striking agreement in the predicted and experimental NTt(w) values in
view of the crude choice of F(w). The results of this comparison is
shown in Figure 5.4 using the solution to the gap equations illustrated
in Figure 4.1.

The physical reason for these deviations from the simple BCS
predicted value is as follows. Upon scrutiny, one observes that there is
a sharp deviation (drop) from the BCS expression at that point in energy

A It has already been implied that at this point of

o “transverse’
high density of phonon states available for scattering, attenuation is

very high. This attenuation is enhanced by the fact that there is a high
density of quasiparticle states available for the electron to fall into

at the edge of the gap (the singularity at the point A(Ao) ). Consequently,
a particle injected into a material at this prescribed energy has a high
probability of emitting a phonon wy and dropping to the state A(Ao).
Therefore, the lifetime of such particles is greatly reduced and this
lifetime'effect manifests itself as a decrease in the density of single
particle states at these prescribed energies. For a similar reason,

there is a large drop in this density of states at A(Ao) # Ylongitudinal’

To accurately determine the positions of maximum attenuation and

consequent sharp deviations from BCS predictions, and even more important,
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to discern any singularities in the phonon density of statesS3, it is
convenient to again differentiate the current-voltage characteristic554,
which gives one the derivative of NT(m). The sharp deviations from BCS
now show up as peaks (maxima and minima) and van Hove singularities in
F(w), recognizable from neutfon scattering experiments, have been
identifiedSS in these second derivative plots.

From Figure 5.4 and this discussion, it becomes apparent that if
one were sufficiently knowledgeable about the product function az(w)F(w),
one could reproduce the experimental results to a much better accuracy.
Alternatively, with enough insight and intuition, one could, from careful
inspection of the results of a tunneling experiment, extract the product
function az(m)F(w) to a better accuracy than was achieved by Schrieffer
et alzg.

A calculation of this inversion from experimental data to
az(m)F(m) has been performed for leadso, tin, indium, mercury51 and lead-
indium alloy556. An iterative procedure was employed commencing with an
experienced guess of az(w)F(w), solving the gap equations and then com-
paring with experiment. az(w)F(w) was adjusted accordingly, and the
procedure repeated. Using this type of an iterative method, an extremely
good fit to az(w)F(m) was calculated reproducing very well the tunneling

experiments. This function az(w)F(w) for lead, superimposed on a plot of

dzl vs V for an Pb-I-Pb junction, is illustrated in Figure 5.5. One can

dv? 2

see explicitly how. g—% varies with respect to a critical point or
dv
maximum in the product function uz(w)F(m).



FIGURE 5.5

2
a2 (w)F(w) for lead>? with a plot of g;%— vs. V for a

Pb-I-Pb junction.  is measured from ZAO.
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CHAPTER VI

SAMPLE PREPARATION AND EQUIPMENT

One of the major problems facing the experimenter in the production
of a tunnel junction suitable for the analysis of these effects in a
superconductor, is the fabrication of an insulating barrier some tens of
angstroms thick. Any small filaments or "shorts" of conductor through
this insulator will be the preferred path for current transfer due to
the relatively low probability for tunneling and hence any effects
associated with the tunneling phenomenon will be masked by conventional
conduction mechanisms.

The various methods used by investigators to fabricate these
tunnel junctions are outlined in this Chapter., In addition, the
techniques used to study the characteristics of the devices are described
and the advantages and disadvantages of these techniques over others

discussed.

6.1 JUNCTION CONSTRUCTION:

6.1-1 General Remarks -

There are two major requirements to be satisfied in order that a
reasonably uniform barrier be constructed. Firstly, the host metal onto
which the barrier is constructed should be reasonably smooth and free
from contamination.

65
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Secondly, the barrier matérial must be well bonded to the host metal in
order to prevent cracking and breaking of the barrier during thermal
cycling.

Vacuum deposited films satisfy the first criterion very well57
and the naturally grown oxide of the host material appears to be the best
candidate to fulfill the second requirement, When tunneling experiments
have been required on bulk materials, several investigators have polished
single crystal samples sufficiently smooth to thermally grow a uniform
oxide adequate for tunneling. Dietrich58 has reported successful tunnel-
ing experiments on tantalum prepared by electropolishing the tantalum,
subsequently followed by careful cleaning, thermally growing of a thin
oxide, and vacuum deposition of a metal over the oxide. Zavaritskiisg,
on the other hand, has produced clean, smooth surfaces of single crystal
tin by pouring molten tin onto optically flat glaés in a vacuum, and
cooling slowly. Subsequent oxidation of these smooth surfaces and
vacuum deposition of a metallic film has produced a junction of suitable
thickness for a tunneling_investigation of energy gap dependence on
crystallographic direction. Various attempts60 following these and other
methods have been attempted for single crystal lead but as yet have not.
met with success.

One of the more promising ﬁethods of preparing a tunnel junction
into bulk material is that of the point contact method61. With this
method an anodized point contact of Nb (or Ta, AL etc.) is brought into
contact with the bulk material under study. This material has been

previously oxidized so that on the surface there is an oxide much thicker
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than is conducive for good tunnel junctions. Upon cooling of the
system, the tip is pressed into the oxide until the penetration is
sufficient to allow a reasonable probability for tunneling. Surprisingly
enough, this method appears to produce useful tunnel junctions into bulk
materials but there is some question as to surface damage due to the
pressure of the tip causing results not indicative of the bulk material.

Another method, attempted successfully by this author was that
of vacuum evaporating a thin film of an insulating oxide onto an already
existing vacuum evaporated metallic film. Having deposited a 1000 '
film of lead, a layer of aluminum oxide was deposited by the slow
evaporation of aluminium in a 5 x 10"4 torr atmosphere of oxygen. Using
a thickness calibration described in a subsequent section, it was estimated
the thickness of this film ~ 20 8 . The evaporation was carefully con-
trolled over ~ 10 minutes to produce this film, This method displayed a
limited amount of success in that most of the samples prepared displayed
filaments or '"shorts' behaviour. Approximately 20% of the samples
attempted displayed tunneling as the dominant conduction mechanism. From
the low probability of success it was concluded that, wherever possible,
the naturally grown oxide was the best candidate,

Aluminum is a very likely material to serve as the base metal
onto which the oxide is grown for two reasons. Firstly,.even for
extremely thin films, aluminum deposits in a uniform and electrically
conducting manner. Conducting films, 75 R thick on the average are easily
produced. Secondly, aluminum oxidizes in atmospheric conditions very
rapidly to a thickness suitable for a tunneling barrier. A widely

accepted theory of oxidation62 of aluminum assumes that the tunneling of
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électrons through the oxide is necessary to further oxide growth.
Consequently, if this process is arrested before completion of the forma-
tion of the barrier, by the addition on the surface of the oxide of a
second metallic film, the tunneling probability is still finite and a

usable tunnel junction will result.

6.1-2 Fabrication Procedure -

A soda-glass microscope slide was used as a substrate onto which
the device was constructed. The slide previously was outgassed at about
ZOOOC, under a vacuum of about 1 mm of mercury, for several hours. It
was then washed using a commercial cleanser and carecfully rinsed with
distilled water. If the distilled water formed a smooth film over the
entire surface of the slide with no grease spots appearing, it was con-
sidered clean enough and the preparation procedure proceeded. Although
these steps were by no means considered elaborate cleaning procedures,
it was observed that there was no serious dependence of the device
characteristics on the degree of care taken beyond a certain minimum value
in the cleansing Operation63:

After cleaning, the substrate was placed in a vacuum-coating
unit and the base metallic film, in the form of a long s;rip was
deposited in a vacuum of less than 1 x 1(’)-5 torr. If the basis film was
aluminum, the vacuum was broken to air for 1-2 minutes, the substrate
was masked in such a fashion that cross strips could be deposited, and
the evaporation procedure for the material under study was carried out.
The final device was construgted to give a pattern of the form illustrated

in Figure 6.1,
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FIGURE 6.1

CONFIGURATION OF METAL-INSULATOR-METAL SANDWICHES

The larger pads at the ends of the strips were included to
facilitate the fastening of electrical leads to the films. To achieve
this end, indium was used as the solder to join the copper leads from
the sample holder to these pads. Indium was used as it gives good
electrical contacts and stands up well under thermal shocks. In addition
indium has a low melting point (156.2°C) and because of the fragility of
the tunnel junction, high temperatures applied in the region of the
barrier are not advisable. Using this procedure, tunneling junctions of
the type Ag-I-X have been manufactured wﬁere I refers to the insulating
barriers, and X refers to the superconductor under tesf.

In the literature, in discussing the characteristics of junctions,
investigators have referred to the 'resistance'" of the device. This is
purely an operational term in analogy with Ohm's law where the current
voltage characteristic is linear and a resistance can be defined. For a
tunnel junction, the I-V characteristic is approximately linear when the
constituents are in the normal state. Under these circumstances one

could refer to the 'resistance' of the junction but it should be pointed
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out that there is no power dissipation in the tunneling barrier and no
resistance as it is usually defined. Nevertheless, it is sometimes
convenient to catagorize junctions by their 'resistances'.

‘For the experiments described here it was convenient to produce
junctions with resistances of 10 - 1000 ohms. Higher resistance junctions
reduced tunneling currents unnecessarily and other conduction mechanisms
began to dominéte these characteristics thus masking out tunneling effects.

64,65 on the other hand, require lower

2

Josephson tunnel junctions
resistances, typically in the order of 10~ or 10'2 ohms,

Generally the base, or aluminum film deposited was Y 100 . The
thickness of these films was monitored by a method described in a sub-

56,58 that for very thin films of

sequent section. It has been noted
aluminum, the superconducting transition temperature was enhanced, and
since the transition temperature of bulk aluminum is 1.29K, which was
approximately the ultimate temperature of the cryostat used in this Thesis,
these enhanced transition temperatures were imperative for our study of a

_ superconductor-insulator;superconductor system. Utilizing this phenomenon,

some investigators67 have observed transition temperatures of thin AL

films as high as 4.5°K.

6.2 THE VACUUM COATING UNIT AND EVAPORATION TECHNIQUES:

6.2-1 Coating Unit -

An Edwards model 12E3 vacuum-éoating unit was employed in the
production of the thin films studied in this Thesis. With a liquid

nitrogen trap in the form of a spirally wound leﬁgth of %-" copper tubing
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at the throat of the diffusion pump, (to reduce backstreaming of diffusion
pump oil and to condense water and other vapours present), a vacuum of

A P 10'6 torr was obtainable although most evaporations were made in a
vacuum < 1 x 107° torr. This coating unit had a 12-inch bell jar with

a four position rotary filament holder to allow successive evaporations with-
out breaking vacuum. Further, the substrate was masked in such a fashion
that the mask could be changed with the aid of a mechanical access without
breaking vacuum. This mechanical access also served both as a filament

shutter, and as a device to successively feed materials to a hot filament.

6.2-2 Film Thickness Measurements -

Inside the coating unit very near the substrate, (and the same
distance from the source filament as the substrate), was mounted a 6Mc/s
A-T cut quartz crystal with gold electrodes on either face. It is well

known57

that for small changes in frequency of a quartz crystal oscillator,
the frequency shift is a linear function of the change in mass on the
surface. Hence an oscillator circuit external to the bell jar was
connected to this crystal and the frequency of oscillation was monitored
on a Hewlett Packard ﬁodel 3734A digital counter so that the mass of
material evaporated could be determined. Using a microbalance, slides
were weighed before and after evaporation of various materials and,
(utilizing figures for the bulk densities of these materials), a calibra-

tion curve of mass deposited on the substrate (and hence thickness,

assuming the density) versus frequency shift of the oscillator was obtained.



FIGURE 6.2

Thickness vs, frequency shift calibration curve for 6 Mc

quartz crystal used to determine deposited film thickness.
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FIGURE 6.3 -

Electron micrograph of (a) 500 R lead film (b) 120 R

aluminum film, Magnification = 30,000 X,
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Such a calibration is shown in Figure 6.2 where reasonable
linearity is observed. It should be emphasized that this calibration is
strictly for this experimental arrangement and a different piece of
apparatus would require a separate calibration.

It should also be pointed out that this is a measure of the
average thickness over aimacrosc0pic area and in certain materials is not
a particularly good measure of the actual thickness. Figure 6.3
illustrates this point quite clearly in which an electron micrograph of
a lead film evaporated onto a room temperature substrate, and measured
as 500 & thick, may be compared to a micrograph of a 120 R aluminum
film prepared in the same fashion at approximately the same rate of
evaporation, Clearly, on this scale (magnification 30,000 x) there are
large holes and islands on the lead film and in no way could it be con-
sidered uniform. In fact, it is quite surprising that an oxide can be
groﬁn on such a rugged surface uniformly enough to produce a tunnel
junction69. On fhe other hand, the aluminum film of 120 R displays
many small crystallites spread in a much more uniform fashion throughout
the film and hence thickness quotations are perhaps mbre meaningful,
Thickness quotations in the literature should be carefully examined as

to the method of measurement and the material used.

6.2-3 Film Fabrication Techniques -

Tungsten helical coils were used as filaments for the evaporation
of aluminum, It has been pointed out70 that even though alloying of the

tungsten occurs at high temperatures, the tungsten is reprecipitated from
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the melt as the aluminum evaporates and there is no significant contami-
nation in the aluminum film deposited.

Although the vapour pressures of lead, bismuth and thallium, the
three constituents of thg alloy system investigated in this Thesis are
approximately equal, it was found that a simple evaporation of the pre-
viously prepared bulk alloy from a molybdenum boat produced ambiguous
results in the tunneling characteristics which could most easily be
described as multigap behaviour--due to inhomogeneities or concentration
gradients through the thickness of the film. This demand for a more
reliable method for prepération bf the films resulted in the utilization
of a flash evaporation technique-evaporating tiny pellets of the alloy
in such a fashion that no concentration gradient could appear through the
film. Tiny pellets of the alloy were placed in a stainless steel tube
approximately 1' above a molybdenum boat, and a stainless steel ramrod
was inserted in the other end of the tube. The filament was heated far
above that temperature required to evapérate either constituent of the
alloy and the pellets, one by one, were pushed onto the filament by the
ramrod such that they evaporated very rapidly. Although there was con-
siderable difference in the size of these pellets, each pellet produced,
on the average, approximately 20 R of film. Hence throughout the film
it was hoped that only small local fluctuations of concentration would
result. This appeared to be the case as for all alloy concentrations
considered, unambiguous current-voltage chéracteristics indicated good gap
behaviour utilizing this method. The concentration of constituents of
the film, averaged throughout the film thickness, was measured by an

electron microprobe71 and it was found that the concentrations of the



FIGURE 6.4

Flash evaporation arrangement.
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constituents was within 5% of that of the bulk material. Since thallium
was extremely toxic, rubber gloves were used at all times in the handling
of this material, ‘

A schematic representation of this method is illustrated in

Figure 6.4.

6.3 ELECTRICAL CIRCUITRY:

6.3-1 Current-Voltage Characteristics-

For energy gap measurements, a dc voltage sweeé circuit has been
used. The circuit used to study these I-V characteristics is shown in
Figure 6.5a. The variable dc bias for the junctions was obtained from a
Harrison type 6200A programmable power supply which was resistance pro-
grammed by a variable external resistor included in the reference feed-
back circuit of the supply. For these experiments, a suitable voltage
time sweep was obtained with the aid of a reversible dc variable speed-
motor and a 10-turn, 10K ohm helipot resistor, A typical sweep speed
used in the experiments for I-V plots was ¥.1 millivolt per minute.
Current through the sample was monitored on the Y axis of a Moseley type
7001AX-Y recorder and the potential developed across it was monitored on

the X-axis.

6.3-2 Harmonic Detection Circuit -

As was pointed out in Chapter V, for studies of the tunneling
density of states function, it is extremely advantageous ' to investigate
in much more detail the fine structure of the current-voltage

characteristics. This closer scrutiny is achieved by differentiating the



FIGURE 6.5

(a) Circuitry used to measure I-V characteristics
(b) Circuitry used to measure derivatives of I-V

characteristics.
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- 2
original plot with respect to voltage i.e. by obtaining g%- and d1

dv
versus V. A standard and very convenient method of obtaining these

functions is by means of the a-c modulation or harmonic detection
technique.

If one applies a small amplitude sinusoidal signal vy sin wt
to the sample at angular frequency w, and detects the resulting current

through the sample at w or the first harmonic 2w, one obtained functions
2

that are proportional to the derivatives %% and Q_%_ respectively.

dv
To see this, suppose that the potential developed across the

sample is:

V = V0 + V1 sin wt = VO + 6V

where V° is the dc bias and V. is the amplitude of the modulation.

1

Further suppose that one can consider the Taylor expansion of current as

a function of voltage about the dc bias point. One consequently obtains

2
dI 1 a4 2
I(V) = I(V) + == SV ¢+ o— —= @V)
ot av|v T 2|y
(o]
. 3 4
3 %T 9.% V)3 + :—, 9—} 6V + oo
Foavd v av

+

higher order terms

Applying a sinusoidal function for 8V = V. sin wt we obtain, after

1

regrouping and suitable trigonometric substitutions.
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2 v12 a1 "14
I(V) - I(VO) = Iac = [ '(;2— " T + :lv— y —6: B T
o] (o]
3 5
dI 1 d'1 3 1 I 3
+ sin wt [a— V, + = — \'4 P e iz Vv 3 _-_]
VIV 1 8 3 1 19 5 1
dv vo dv Vo
2 4
’ 1 ) § 2 | d'l 4
teoswt (- 7 —3| Vi - 3m —7 Vi .
dv®|v dv'| Vv
0 (o}
3 . 5
. 1 471 3 1 d1 5
+ sin 3wt { - V," - Vi =
< A o >

+ cos 4ot (: -------------- -j>

+ higher order terms.

To first order in this expansion, we see that the fundamental frequency
detected will be proportional to the first derivative (:g%:)of the I-V
characteristic evaluated at the dc bias point VO. In addition the first

2
harmonic (2w) is proportional to the second derivative(jg—% of the

dv
characteristic. Experimentally, in the region of the characteristic that
is almost linear, it is observed by tuning to various harmonics of the

fundamental, that to the accuracy of the measuring instrument it is valid
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- to truncate each coefficient after its first term.

The circuitry used to measure these derivatives is illustrated
in Figure 6.5b. The oscillator (General Radio model 1311A) supplies a
1000 c/s or 500 c/s (depending upon whether g%- or gé%- is desired) on
top of the dc applied bias across a dropping resistor. The amplitude of
this signal must be small as compared to the sharpness of the detail on
the aurve to be investigated. If this ac modulation is too high, any
sharp structure (in this case the sharp edge of the energy gap or van
Hove singularities) will be smeared out. The signal to be detected across
a measuring resistor {s coupled to a Model 1034 Keithley transformer,
followed by a twin-T narrow band 1000 c/s amplifier72 suBsequent to
which it is fed to a PAR lock in amplifier. The dc signal from this
final stage is then inserted into the Y axis of the X-Y recorder.

For accurate recording of g%- measurements, an ac probe of
amplitude no greater than 50 u volts peak-to-peak was employed with no
appreciable smearing of the fine structure resulting, In the more subtle
non-linear‘regions above the energy gap,'due to the fact fhat the non-
linearities were not very pronounced, it was found that in order to
detect any harmonics of the fundamental signal it was necessary to increase
the amplitude of the fundamental at the possible expense of loss of the
recorded fine structure. Increasing the signal to approximately 250u V
peak-to-peak seemed to give the best balance between these two conflicting
problems, with no appreciable amount of smearing resulting.

Sensitivity was not the only problem confronting this method of

measurement as drift in the oscillator or amplifiers gave a slowly varying

time dependent signal not inherent inl‘the device.' Since low recorder
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sweep speeds were employed in these experiments (1 - 2 hours per single
trace), then such drift signals were, of necessity, required to be very
much smaller than those changes being detected from the device, if
accurate recordings were to be effected.

This simple detection system is adequate for purposes of compari-
son of predicted andlexperimental values (as will be discussed in‘the
next Chapter). If quantitative work (i.e. inversion of the gap equations
using experimental results) is to be carried out, however, a more elaborate
bridge network73 is required to balance out the large constant background

signal.

6.4 CRYOSTAT AND SAMPLE HOLDER:

6.4-1 Crxostat -

Most of this work was carried out in an Andonian type 3-litre
liquid helium dewar. Temperatures down to 1.10%K were obtained with the
aid of an Edwards ISC 3000, 3000 litres/min rotary pump connected to a
6-inch pumping line system, For such temperature measurements the helium
vapour ‘pressure was measured60 and conversion from vapour pressure to
temperature was achieved thfough the T58 sca1e74.

~

6.4-2 Sample Holder -

It was found that the simplest type of sample holder afforded
the most flexibility. Total immersion of the sample in liquid Pe4 at the
end of a long thin-walled stainless steel tube allowed the samples to be
introduced and removed from the cryostat while liquid was present. This

allowed rapid shock cooling of the sample and permitted the examination
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of several samples with one dewar-full of lb4. By this method, one could

very quickly decide whether a particular sample would yield useful results
or not thus permitting a subsequent rapid change of samples to be studied.
In addition, electrical contacts were sometimes known to come loose
during the cooling down of the sample, (probably due to dijfferential
contraction), and this quick change arrangement made immediate repairs
possible. Also, it was found that Pb-I-Pb and Sn-I-Sn samples gave
better tunneling characteristics if they were quickly immersed after
preparation. If slowly cooled, the same device would develop filaments
or shorts through the oxide during the cool down.

To minimize heat leaks, the lcads to the Sample were 0.003 inch
diameter copper wire with''enamel insulation, wound around the stainless

steel support tube which served as support for the sample holder.

6.4-3 Magnet -

Since this sample holder was of the immersion type, and tempcra-
tures above 4.2°K were not obtainable, it was sometimes necessary, in
order to measure (%VI‘ a /(% N parameters, (see equation (5-13)) to apply
a magnetic field to the device to drive it into the normal state. This
was achieved by the.{nsertion of a superconducting solenoid of niobium
suspended on the sample holder in such a fashion that the device would
be in the position of maximum' field. The magnet itself was powered by a
Harrison Lab model 520A power supply. Although normal-state studies were
principally achieved in this manner it was convenient on occasion, however,

to raise the temperature of the liquid helium bath to this end.



CHAPTER VII

RESULTS AND DISCUSSION

7.1 F(w) and a?(w)F(w):

Having determined the influence that the phonon density of states
has on the superconducting properties of a particular material, we are
now in a position to caiculate F(w), the phonon density of state, and
a?(w)F(w) the product function determining superconductivity, utilizing
the techniques outlinea in Appen&ix A. 1In this Thesis such calculations
have been applied in particular to the following materials, namely, Na,

K, A%, Pb, Pb_TL Pb_ T2 Pb, T2, , T2 Biz and T%, Bi The results of

822 764 A6 T8 9°

these calculations for the various materials studied are outlined in
Figures 7-1 and 7-9. As will be outlined in the next Section, the
detailed shape of some of these functions is suspect due to the non-
convergence of the force constant model used to calculate them. Although
the general shape of some of these functions may be incorrect (mosi pro-
bably in pure lead and high lead-concentration alloys), for bulk thermo-
dynamic properties and for the determination of superconductivity, it
appears to be adequate.

In each of these figures, the product function a2 (w)F(w) is
superimposed on the phonon density of states F(w). Since the units of
F(w) are given to be (meV)'1 while those of a?(w)F(w) are dimensionless,

the electron-phonon ocoupling function a?(w) has units of energy (meV).

84
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FIGURE 7.1

Calculated a?(w)F(w) (dotted line) as a function of
phonon energy w compared with density of phbnon states

F(w) (solid 1line) for sodium.
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FIGURE 7.2

Calculated a?(w)F(w) (dotted line) as a function of
phonon energy w compared with the phonon density of states

F(w) (solid line) for potassium,
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FIGURE 7.3
Calculated a?(w)F(w) (dotted line) as a function of phonon
energy w compared with the dénsity of phonon states F(w)

(solid line) for aluminum,
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FIGURE 7.4
P
Calculated o?(w)F(w) (dotted line) as a function of
phonon energy w compared with the phonon density of states

F(w) for Tz'gBi.l.
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FIGURE 7.5

Calculated a?(w)F(w) (dotted line) as a function of
phonon energy w compared to the density of phonon states

F(w) (solid line) of T# 8Bi 9
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FICURE 7.6

Calculated a2(w)F(w) (dotted line) as a function of
phonon energy w compared to the density of phonon states

F(w) (solid 1ine) in Pb 4T£ 6"
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FIGURE 7.7

Calculated o2(w)F(w) (dotted line) as a function of
phonon energy w compared with the phonon density of states

F(w) (solid line) in Pb T2

6 ".4°
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FIGURE 7.8

Calculated a2(w)F(w) (dotted line) as a function of phonon
energy w compared with the density of phonon states F(w)

(solid 1line) in Pb BTL 2
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FIGURE 7.9
Calculated 02(w)F(w) (dotted line) as a function of
phonon energy w compared with the ‘calculated density of

phonon states F(w) (dotted line) in lead.
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FIGURE 7.10
\ -
The coupling function a?(w) as a function of phonon energy

w for lead.
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It should be readily observed that this product function, so important in
the determination of superconductivity, has no more critical points than
the original density of states F(w). Also, it should be noted that the
original critical points in F(w) appear in exactly the same position in
energy in az(m)F(w). Hence, neglecting band structure, no new critical
points are generated in ai{w)F(w). Therefore, in performing a tunneling
experiment, the critical points that one associates with the product
function a? (w)F (w) are, in fact the critical points of the true phonon
dénsity of states F(w).

In the region of low energy, in each of the cases discussed, there
appears to be a linear relationship between o?(w)F(w) and w. This can be
understood, with recourse to equation (2-26), by noting that the electron-
phonon coupling term ngk'AIZ varies as % , thereby altering the w2
dependence of F(w) to w dependence of a?(w)F(w). In order to perhaps
more clearly illustrate this point, the function a2(w) for lead, obtained
simply by dividing a?(w)F(w) by F(w) is plotted in Figure 7-10.

Here we see that a?(w) is a smoothly varying function, divergent
as %- in the region of low w and slightly peaked in the region of the
longitudinal peak of F(w).

This peaking, which appears in all these materials to a greater
or lesser extent in the longitudinal or high energy region, is due to
the following reason. In the transfer of momentum q from an electron to
a phonon, there are two distinct types of processes. Firstly, there is
the simple or normal process where the total q given up by the electron

is taken up in the phonon. This process can simply be written:

L



26

where k and k' are the initial and final momentum states of the electron.
There is, however, another type of process, the so-called Umklapp
75
process ~ in which some of the momentum transfer is taken up by the com-
plete crystal, and the interaction can be written:
¢ - k!
E~ R =g * K
where Eﬂ is a reciprocal lattice vector. In a simplified reciprocal

lattice, these two processes can be illustrated, See Figure 7-11]

FIGURE 7-11
MOMENTUM TRANSFER PROCESSES

(The normal process is labeled as N and the Umklapp process as U.)

For normal processes (in the first Brillouin zone) we see that in
calculating the probability of transition from a k state to a k' state

(equation (2-26)), there is a dependence on the scalar product |e . q?
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where € is the polarization vector of the phonon q. For a normal process,
clearly |§_. ﬂJz is zero for pure transverse modes, and consequently,
inside the first Brillouin zone where we have normal processcs,'and where
phonons are approximately longitudinal or transverse, there is a very
high weighting of the longitudinal modes. For the contrasting case of
Umklapp processes, we see, with recourse to Figure 7-11, that |E.+ q . Elz
can, under certain circumstances, be greater for transverse modes than
longitudinal modes. On the average, for Umklapp processes, the longitu-
dinal and transverse modes will be approximately equally weighted.

Hence, in this calculation of a?(w)F(w), where we integrate over
a sphere of radius ZkF to include all possible scattcrinés, the longitu-
dinal peak will have a greater weighting than the transverse, the degree
of which will depend upon what fraction of the sphere 2kF is in the first
Brillouin zone,

This perhaps can be seen more clearly if one compares o?(w)F (w)
for materials where ZkE ju§t reaches outside the first zone (Na) and
materials where the first zone is not the major volume of this sphere
(Pb). In the former case,'the peaking of the o2 (w) coupling term is
very pronounced in the longitudinal peak region, indicating that normal
processes are the dominant scattering processes, while in the latter case,
there is a slight peaking in the longitudinal region, indicating an
almost equal weighting of the transverse with longitudinal modes. This
indicates that the major portion of the scattering involves Umklapp
processes.

Clearly then, the electron phonon coupling is much weaker with

transverse phonons when the Fermi surface is small, than in materidls
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whose Fermi surface extends substantially beyond the first Brillouin zone.

7.2 VALIDITY OF BORN. VON KARMAN ANALYSIS FOR

PHONONS IN LEAD:

As was mentioned earlier, the calculation of the o?(w)F(w) and
F(w) functions for Pb may be viewed with some suspicion. This calculation,
as outlined in Appendix A is performed utilizing a Born Von Karman 76,

8 nearest neighbour force constant analysis. It is found, however, that
these force constants are still fluctuating rather severely from those of
say a 7 nearest neighbour fit. Fortunately, a?(w)F(w) has been studied
rather extensively using the tunneling technique and a very carefully
determined a?(w)F(w) has been extracted. For purposes of comparison,
this a2(w)F(w) relationship and the calculated F(w) are superimposed in
Figure 7-12, The differences between these two functions, our first com-
parison with experiment, are very largeso and the validity of both
methods of determining these, functions must be questioned,

The reproducibility of the tunneling results for Pb as obtained
by many investigators is convincing enough evidence for the likely
validity of the experimentally determined a2(w)F(w) -- at least for thin
film observations. An electron diffraction investigation of the orienta-
tion of the crystallites of Pb on a thin film indicates that there is a
random orientation of such crystallites in such films which have thick-
nesses g 1500 R. Hence a tunneling experiment samples equally all

crystallographic directions. Due to the non-convergent force constant

model for lead, one then turns to this as a source of error.



FIGURE 7.12

A comparison of critical points of a2(w)F(w) obtained from
3
tunneling ?dotted line) and F(w) calculated from a

Born von Karman force constant analysis (solid line).
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The detailed nature of the discrepancies is worth considering.

In particular, a number of critical points are idéntifiable in the
tunneling curve which occur .at the same frequencies in the calculated
curve. The identifiable critical points are numbered in Figure 7-12.

The points 1, 2, 3, 5, and 7 can be seen reasonably clearly in the
tunneling curve at the same energies at which they occur in the calculated
curve, The points 8, 10, and 11 cannot be seen in the tunneling curve

but would probably require more resolution to be visible. On the other
h;nd, the points 4, 6, and 9 are in definite conflict; no trace of these
‘points appears in the tunneling.curve.

All these critical point determinations by this calculation were
located by finding the frequencies and their gradients for approximately
170,000 points in the Brillouin zone. The co-ordinates of these critical
points are listed in Table 7-1. One immediately sees that the critical
points which agree in the two curves are those which occur for q in high
symmetry directions. These are directly observed as extremes in the high
symmetry dispersion curvessz. On the other hand, the peaks of the calcu-
lated curve which.are not in the tunneling curve occur for q in off
symmetry directions and are therefore derived from the force constant
model. The positions of these off symmetry critical points are illustrated
in Figures 7-13, 7-14 and 7-15. Here energy contour maps for selected
symmetry planes on which these saddle points occur are drawn, locating
the turnovers,

In order to illustrate more fully the sensitivity of the force
constant model,F(w) has been calculated for a much cruder model based on
5 nearest neighbours. The comparison of this and the 8 nearest neighbour

MILLS MEMORIAL LIBRARY.
McMASTER UNIVERSITY,
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TABLE 7-1

The Position of the 11 Critical Points Observable in

F(w) of Figure 7-12. The Momentum Values are in Units

of 3} Where a is the Interionic Distance.

CRITICAL WAVE VECTOR COMPONENTS
POINT ‘ (in units of 2n/a)
q, by .
1 .500 500 000
2 .660 .000 .000
3 .750 .750 .000
4 .766 .234 .234
5 1.000 .500 - .000
6 797 .484 .109
7 | .750 .750 .000
8 .578 .578 .000
9 .734 .185 .185
10 .734 .000 .000

1 . .500 .500 .500



FIGURE 7.13

7

Equi-energy contours locating critical point 9 ony = z

plane of Brillouin zone,






FIGURE 7,14
Equi-energy contours locating critical point 6 on

X+y+2z= % plane of Brillouin zone.






FIGURE 7.15

7

Equi-energy contour map locating critical point 4 on

y = z plane of Brillouin zone.
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calculation is illustrated in Figure 7-16. The cruder model, of course,
represents a less successful fit to the highly ;tructured lead dispersion
curves in the symmetry directions. The difference between the two calcu-
lations is, however, apparent. The on-symmetry critical points have
shifted slightly while the peaks generated from the off-symmetry critical
points are comparatively much more affected. In addition, the position
of these critical points in the Brillouin zone shift about as the model
is slightly changed.

‘ It should also be noted that the cruder fit represents improved
agreement with the tunneling results. A similar effect is noted in the
work of Bennett’’ who achieves better qualitative agreemént with the
tunneling results by fitting Kubic harmonics to interpolate dispersion
curves to off-symmetry directions. In the case of materials with less
highly structured dispersion curves (for example the alloy PQAT%G)Zs we
shall see that much better agreement between tunneling experiments and the
Born von Karman calculation is achieved,

The conclusion thus appears to be that for highly structured
dispersion curves in symmetry directions, the interpolated off-symmetry
points are in error and the fitting of a more realistic model to lead
dispersion curves is necessary to give a more reliable density of states
F(w) and thus better agreement with tunneling curves,

Neutron scattering experiments in off-symmetry directions could
also be performed in order to locate these off-symmetry critical points.
One can conclude from this analysis that in the case that there are long

range forces (i.e. when the force constants do not converge over many

neighbours) the details of the resultant phonon density of states function



FIGURE 7.16

Phonon density of states F(w) for lead calculated from
an 8 nearest ncighbours model (solid line) and a 5 nearest

neighbours model (dotted line).
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should not be strongly trusted although it is probably adequate for
calculating bulk thermodynamic properties.

Another method of determining the phonon density of states is
utilized by Stedman et a178, where a mesh over the entire Brillouin zone
is determined and neutron scattering expefiments are performed for q-
vectors both in on and off symmetry dircctions; Employing this data, a
judicious interpolation of energy contours between the measured points is
performed and the density of phonon states F(w) calculated accordingly.
The results of such an investigation, along with the o?(w)F(w) relation-
ship from a tunneling experiment, is illustrated in Figure 7-17. The
general features of the two curves are encouragingly similar, but this
method of determining F(w) represents allarge amount of work in order to
cover the Brillouin zone with a sufficiently fipe mesh. It may be noted
that this method presents one with a formidable task, although it would
ideally yield the correct result, and a simpler approach to the solution
would perhaps lie in determining a more physically realistic model
amenable to the calculation of off-symmetry dispersion characteristics.
The pseudopotential mcthod79, capable of reproduction of measured disper-
sion curves of the simpler materials shows promise to this end, but
extensive refinements and concentrated effort must still be applied to

reproduce the more complicated detail in lead.

7.3 SOLUTION OF GAP EQUATION:

7.3-1 The Energy Gap A4,-

Having now determined the function a2 (w)F(w) we are now in a

position to make some realistic comparisons with experiment. Given



FIGURE 7.17

A comparison of a2 (w)F(w) obtained from tunncling30 (solid

line) and F(w) obtained by the method of Stedman et al78

(dotted 1line) for lead.
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a?(w)F(w) we can solve directly the Eliashberg gap equations (equation
(4-12) ) for an energy dependent energy gap A(w). To rclate this to a
more physically meaningful quantity, we can determine this solution for
A(Ao) (i.e. the value of the energy gap parameter at the edge of the
energy gap Ao). This Ao term is what is experimentally measured in the
course of a tunneling experiment.

The solution to these equations is obtained in an iterative
fashion as follows. The value of A(Ao)(or Ao) is guessed at+ and inserted
i;to the equations. The set of equations is then solved from this esti-
mate, thus yielding new values for Ao and A(w). This new solution is in
turn reinserted into these equations and the iteration p£oceeds. Depending
upon the strength of the electron-phonon coupling, error in an initial
guess, and the degree of convergence required, the number of iterations
needed for convergence may vary from about 4 to 12, In solving these
equations care must be taken that the contribution due to the phonons has
converged, thus including all enhancement due to the phonons. To achieve
this end, it was found that a.cut-off w, = 5 x (cut-off of longitudinal
peak) was an acceptable cut-off point to choose, with all contributions
beyond this point being negligible. The only parameter remaining is that
determining the electron-electron repulsion N(O)uc. The present knowledge
of this term appears to be quite limited as other investigators30 have

used this as a variable parameter to fit experimental results. This

" In most cases where the experiments had been performed before the calcu-

lations, this first guess consisted of the experimentally determined value

of Ao’ although it was found that any bad guess would converge to the game

answer.
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prulsion term, as was explained earlier, has not really converged at the
cut-off w, and an electron-electron pseudopotential must be introduced

to compensate for that part outside w, not considered in the integration.
This was first discussed by Bogoliubov, Tolmalov and Shirkov45 and given

approximately by;

( Ve

1 + N(0) Vc n (EF/mc)

where E. = Fermi energy
N(0) = normal density of states at Fermi surface

V_ = true screened Coulomb potential at the Fermi surface.
This term was further discussed and calculated for several materials by
Morel and Anderson46 but again these were approximate solutions and some

doubt as to the exact values still exists.

(i) Solution for Aluminum -

Using this approximate solution for u. and the a?(w)F(w) relation-
ship for aluminum calculated in Section 7.1, the gap equations for
aluminum were solved in the manner previously outlined. It was found

that the converged solution for these equations yielded as an energy

83
gap .

A = ,190 meV
0

Assuming the weak coupling limit for superconductivityZI, namely,



FIGURE 7.18

Comparison of the resulting a2 (w)F(w) for a choice of
form factor in the range 0 to 2 pF . The solid fine is
the Heine-Abarenkov pseudopotential form factor-- the

dotted line a more or less arbitrary distortion to this.
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this calculated energy gap corresponds to a transition tempcrature,

T, = 1.25%
which is in excellent agreement with the experimentally determined bulk
value of 1.18°K.
The effect of different pseudopotential form factors on the
calculation of the transition temperature is best illustrated by solving
the gap equations from the alternative pseudopotential iilustrated in

Figure 7-18. This gives an estimated gap

A(AO) = .12 meV

which corresponds to a critical temperature

which is not in very good agreement with experimentally measured values.
The choice of pseudopotential form factor is therefore quite important
and in the cases where it is available the Heine-Abarenkov form34, as
tabulated by Harrison79, is used.

The real and imaginary part of the energy gap function A(w)
obtained in the solution of these equations for aluminum is illustrated
in Figure 7-19. As in iprevious discussions, the real part A(w) has peaks

suggestive of resonances at the points of peaks in 0?2(w)F(w) with the



FIGURE 7.19

Real (solid line) and imaginary (dotted line) solutions

of A(w) for aluminum using a?(w)F(w) of Figure 7.3.
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imaginary part A,(w) increasing ranidly at these points, illustrating
the strong behaviour of the fundamental frequencies. It should be noted
that these solutions extend up to a much higher energy than the phonon
energy cut-off, due to the strength of multiphonon processes.

(ii) Solution for Alloys -

This procedure was repecated for the selected alloys for which the
a? (w)F(w) parameters were calculated, and related energy gaps were deter-
mined accordingly. Experimental values for the energy gaps of such
alloys were also obtained from tunneling measurements. The results of

those calculations, and of the experiments for these alloys are given in

Table 7-2.
TABLE 7-2
MATERIAL No. OF ELECTRONS/ N(0)u A CALC. A EXPT
ATOM = - 9
(meV) (meV)
Pb 4 .13 1.49 1.38 ¢ .05
PbgTL, 3.8 .12 1.37 1.27 + .10
Pb,TL, 3.6 A2 1.08 1.02 + .10
¢ . +
Pb, T2 3.4 .10 .67 .68 + .10
T2gBi, 3.4 .10 .67 .66 * .10
T24Bi, 3.2 .10 .38 .35 + .05

The errors quoted for the experimentally determined values include

both the instrumental measuring errors and such errors, arising from
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preparation problems, as might be associated with uncertainties in the
constituents of the alloys. Each experimentally measured value quoted
represents at least two different samples prepared in order to ascertain
consistency.

The values of N(O)uC have been determined from a range of
sources; calculated from the expression equation (7-1), from the work of

51, and from the estimates of Wu82.

McMillan and Rowell

From this comparison, we see fhat for most of the materials
listed, including aluminum reported earlier, the two values obtained are
within the somewhat uncertain estimate of the error. It should be noted
that the two materials pbAle and'TQSB{Z, possessing the same number of
electrons per atom and hence very similar sized Fermi surfaces also dis~
play very similar superconducting properties. This simiiarity will be
seen even more clearly in the next Section when tﬁe tunneling results
are présented.

From thié sort of analysis, one can clearly see what sort of an
effect electron concentration has on the superconducting properties.
Indeed, it is quite clear that the electron concentration has quite a
pronounced effect on the coupling of electrons to phonons and consequently

on the onset of superconductivity.

(iii) Solution for Sodium and Potassium -

In order to understand more easily why some materials superconduct
at higher temperature584, it is perhaps instructive to look at the
separate parameters which control a2(w)F(w) and try to estimate their
relative importance. Clearly a most important term which was just

illustrated is the size of the Fermi surface, The more the Fermi surface
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reaches out into the second and higher Brillouin zones, the more Umklapp
processes are possible and consequently the stronger will be the electron-
phonon coupling. This is illustratéd in equation (4-15) where the
integration over momentum transfer q extends over a sphere of radium ZkF.

The greater the value of k_, the greater will be the amount of phase

B
space available for the integration, so that superconductivity should be
greatly enhanced as a result.

To consider other variables cbntrolling the superconducting
nature of materials, we shall contrast two different metals whose pro-
perties are fairly well known and whose differences and similarities are,
in some ways, understood. Sodium and potassium are two such metals.

They have identical crystal structure and a valence of unity. Their
Fermi surfaces are nearly spherical and their phonon disﬁersion curves
are very similar except for a scaling factor. It is seen in Figures 7-1
‘and 7-2 that their energy distributions F(w) have much the same shape
except that the ratio of the average phonon eﬁergies of the two materials

s

is
w(Na)

= 1.635
w(K)

The appearance of the energy factor in the denominator of equation (2-26)
would favour K over Na as a more likely superconductor but this effect is
nearly cancelled out by the ion mass factor M, The ratio of the ion
masses in these two materials is

M(Na)

M(K)
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Next, in normalized units of where a = lattice parameter, these

0
two materials have identical Fermi surfaces. Hence, the phase space
integration is identical over the two materials and this does not affect
the result as to which will be the more likely superconductor. The
remaining term, which finally determines as to which material is more
likely to superconduct, is thus the pseudopotential form factor squared.
This quantity is substantially larger in sodium than in potassium, as
can be seen in Figure 7-20. In the end, it appears, from this analysis,
that sodium is more likely to superconduct than potassium. In fact, the
results for the gap calculation A(Ao) in these two systems as a function
- of different values of the electron-electron term are présented in

Table 7-3. Corresponding critical temperatures are also quoted using the

BCS relation between Ao and Tc' 1€ e -

TABLE 7-3
CRITICAL TEMPERATURE FOR SODIUM AND POTASSIUM AS A

FUNCTION OF THE COULOMB PART N(O)uC
Na K

N(O)u_ A (meV) TC(OK) . 8, (meV) T.(°K)

0.00 2.8 x 1073 18.5 x 1075 43 x 1073 3.0 x 1075
0,00 1.1 x10°7 7.0 x1073 12 x 1073 .8 x 1073
0.02 40 x 107 3.0 x 1073 02 x 107 13x 1073
0.03 a1 x 1073 7 x 1073 <.005 x 107> <33.0 x 107°
0.04 .02 x 1073 A3 x 1070 <€.005 x 1073 <<33.0 x 107°

3 -6

0.05 <.005 x 10~ <33 x 10



FIGURE 7.20
o
Comparison of the square of the pseudopotential form

factor in sodium and potassium.
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If there were no Coulombh repulsion at all (uc = 0) it is seen that
sodium would have a critical temperature of 18.5 millidegrees, while in
potassium it would only be 3 millidegrees. As the Coulomb repulsion
term N(O)uc is slowly switched on, these estimates are drastically
reduced. The Table ends at a N(O)uc value much less than what a
realistic value would be46. Since those critical temperatures as calcu-
lated, however, are exceedingly small, it was felt that no significant

purpose would be achieved by extending the calculations in question.

7.3-2 Tunneling Density of States-

In comparing calculated and experimentally obtained values for
the energy gap A(Ao), we are, in some ways, comparing the bu}k properties
of these materials. There is, however, an even more critical comparison
available when a tunneling experiment is performed on such a material.
‘As was outlined in Chapter V, we recall that the tunneling density of

states for electrons is given by the expression:

N (w) = N(0O)Re { R
T (5" = AZM)1
where A(w) = energy gap parameter
N(0) = density of electron states at the Fermi

surface in the normal state.

If we consider the case where one of the materials of a tunnel junction
is in the normal state, and one is in the superconducting state, we can

obtain, from equation (5-13), the expression:


http:obtain.ed
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(F)s _ Ml
dI N(0)
(v I

at T = 07K,

In addition, it was also noted that, the application of a
reasonable functional form to a2(w)F(w) to the solution of the gap
equations resulted in the appearance of detailed structure in the energy
gap parameter A(w), and consequent structure in the tunneling density of
states which, from the above equation, is reflected in the ratios of the
first derivatives of the current-voltage characteristics pf the device in
the superconducting and normal states. Further, it was pointed out that
the non-linearities and critical points in this experimentally determined
function were direct reflections of critical points in the product function
a?(w)F(w). (The details of this function were described in the first
Isection of this Chapter where it was noted that a2(w) was a smoothly
varying function.) Consequently, and assuming no effects due to band
structure, F(w) will have exactly the same critical points as a? (w)F(w)
and in turn NT(m) will have critical points at these same positions in
energy.

From considerations of equation (5-9) it may be noted that the
addition of a second superconductor, with a known NT'(w) distribution
factor, on the other side of the tunneling barrier does not present overly
great problems for analysis. This problem of an additional superconductor
on the othér side of the barriers, with NT'(w) known for this material

can be numerically'treated. In fact, in the case that aluminum is that
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other material, and it is advisable to consider thermal excitations above
the energy gap,(as experimentally it is difficult to attain temperatures
well below the Tc of aluminum) the addition of a temperaturc dependent
Fermi distribution function into equation (5-9) is easily effected and
the two superconducting densities of states can be convoluted to obtain
the resultant current-voltage characteristic, (%%J S / ( g%-)N versus
V characteristic. Practically, the addition of a known superconductor on
the other side of the junction has the experimental advanﬁage in that it
serves as a sharper probe at the gaﬁ edge with which to study the unknown
superconductor than would a normal state material with temperature

7

dependent Fermi distribution function.

(i) Aluminum as a Probe -

From the solution of the gap equations for aluminum utilizing the
calculated a?(w)F(w) of Figure 7-3 it is determined that the deviations

from the B.C.S. predicted tunneling density of states,

N.(w) = N(0) <- .“iﬁ—>
T . (W2 - 2t

(o]
B.C.S.

are very slight compared to the alloys considered and at the maximum
deviation point, which is well beyond the cut-off point fof the alloys
under study, the deviation from B.C.S. predictions is g .02%. Hence,
for the analysis of tunneling curves of devices of the type Af-insulator-
alloy, the NT(uD distribution parameter for the aluminum can be considered

as a simple B.C.S. distribution, with thermal excitations and predictions



FIGURE 7.21

7

Comparison of calculated (dotted line) and experimental
. . dI d7J
(solid line) <W) S <W) N VS V plot for

(a) Ae-I-Pb 41’2 6 junction

(b) A2-1-Tg 8Bi 2 junction at 1.1%

V is measured from A .. + A 4oy
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for the current-voltage characteristics of these particular fabrications
may thus be obtained with reccourse to equation (5-9). This prediction
of the deviation in aluminum is in agreement with other investigators85
who have carefully searched for these effects and have found them to be
of this order. As we shall see, however, such deviations.are indeed
negligible in comparison to those observed for the alloys investipated in

this Thesis.

(ii) NT(w) for the Alloys -

The gap equations were solved for those particular alloys that
displayed a reliable and converging force constant model. The most
reliable of the alloys considered in this respect were the two alloys
having electron concentrations of 3.4/atom -- i.e. Ph4T%6 and T%SB%Z’

In order to compare calculated tunneling characteristics with those of
experiment, the determined NT(w) parameter for each alloy was convoluted
with a B.C.S. NT(w) with thermal excitations at 1.1°K representing the
aluminum according to the prescription of equation (5-9). The results of
such a comparison with fhe normalized results of a tunneling experiment
for these two particular alloys are shown in Figure (7-21). The agree-
ment between that predicted from a calculated a?(w)F(w) and the actual
results 6f a tunneling experiment is striking. It should also be recalled
that excellent agreement was obtained with these particular alloys for

the calculation of Ao.

This procedure was repeated for alloys with slightly less reliable
force constant fits, namely, Pb_ T2, and TL,Bi, , and the results of such a

6 4 S |
calculation and comparison with experiment are illustrated in Figure 7-22.



FIGURE 7.22

Comparison of calculated (dotted line) and experimental
§ s dI dI v
(solid l1ne)(:av> S <:57> N Vs V plot for: .

(a) Ag-I-Pb 6T2

4

(b) AR-I-Tg 9Bi 1 junctions at l.loK

V is measured from A .. + A Aoy
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As expected, there are more discrepancies in these comparisons than in
the first set of alloys considered, but nevertheless, the overall agree-
ment is still good. 1In all of these alloys considered, however, there is
a disagreement which should be noted, namely, in the fundamental dip due
to the interaction of electrons with phonons of energy gréuped around

the longitudinal peak in the density of phonon states. This disagrecment
will be even more pronounced when we compare predicted and experimental
plots of ﬂz%— vs. V, the derivatives of the functions considered here.

Itd:hould also be pointed -out that using the present detection
system described in the previous Chapter, the difficulty in obtaining
enough sensitivity to display the deviations from B.C.S. predictions for
T%QB{I, and for materials with transition temperatures lower than this,
becomes formidable. 1In order to obtain better sensitivity and resolution
it would be necessary to employ a bridge circuit73 which would enhance
the signal to background ratio.

Another method of improving signal resolution would be to perform
these experiments on symﬁetric junctions of the type alloy-insulator-alloy.
One of the major problems associated with this fype of junction is, however,
in attaining constancy of toncentration of the constituents of the alloy.
The determination of concentration and homogeneity of the film is one of
the major experimental problems in an investigation of this type and the
addition of another film of the alloy and hence another variable, should
be avoided,

It should also be emphasized that the curves plotted in Figures

7.21 and 7.22 are ratios (g% ( ) . Since the measured tunneling
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curve in the normal statc is not of the linear form that would be
expected, <:g%l>N is not a constant., Rather, it is found to be an
asymmetric function slowly varying as a function of applied voltage with

very slight indications of structure at various applied biasesSI. Clearly
then, when determining the ratio

()] G

this slowly varying term must be taken into account in the course of

investigation. These normal state pronerties have been studied by Rowell
and McMillan86 as to whether or not the tunneling matrix eclement

remains unchanged in the transition from the superconducting to normal
states. Clcar evidence has been obtained by the above investigators

that in addition to non-linearities that could possibly be attributed to
the change in shape of the tunnel barrier, well defined structure has been
observed which was attributed to phonon emission in the oxide barrier

during the tunneling process.

7.3-3 Second Derivative Comparisons -

An even more spectacular and revealing, if somewhat less physically
meaningful method of comparison of experiment with predictions, is that
of comparing calculated and experimentally obtained plots of g%- vs V,
where o = <%\17 " I <%>N . Critical points in NT(m) or points of
maximum or minimqm slope are greatly amplified as a result of further
differentiating. |

In order to first determine the level of agreement that could be



FICURE 7.23

A comparison of experimental (solid line) and calculated

(dotted line) oL vs. V plot for a Ag-I-Pb junction at

av
_ (d1 d1
O =\dv/s av/N

The a?(w)F(w) used was

o}

1.17K.

V is measured from Ao # Ao

30

Ag Pb*

that of McMillan and Rowell
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expected in such a comparisonthe experimentally determined a? (w)F (w)
function for lead30 of TFigure 5.5 was inserted into the gap equations

and NT(m) determined. Then, in order to simulate an experiment, this
NT(w) was convoluted with a tunneling density of states NT'(w) for
aluminum at 1.1°K. g%— was then determined for such a hypothetical
junction. In this way, a meaningful comparison could be carried out with
the results of a tunneling experiment performed by the author on an
A2-I-Pb junction at 1.1°K and the results of such a comparison are
illustrated in Figure 7.23.

It should be noted that the above comparison determination was
performed with a view to applying a circular consistency check which
would serve as a standard for comparison. A very small disagreement
between calculated and experimental values of the tunneling density of

states or more explicitly in (dv) l( >N , will result in a sub-

stantial disagreement in a plot of vs. V so that we can very carefully

do

dv

determine agreement in this fashion.
In addition, it has been shown55 that a peak in the phonon density

of states, or more correctly in a?(w)F(w), will result in a 'sharp drop

in the effective tunneling density of states Np(w) (which is equivalent

to a sharp drdp ing. Thus by further differentiating this curve, a

sharp drop in o will be manifested as a minimum in %% and alternatively,

g%u Consequently, we

can very easily identify maxima and minima in this type of tunneling

a minimum in o?(w)F(w) will show as a maximum in

plot with singularities, or critical points in the phonon distribution of
the material in question. In this respect, the tunneling technique lends
itself as an efficient and rapid tool for phonon spectroscopy in a

superconductor.
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(i) With these factors in mind, g%-vs. V was calculated for a
An-I-Pb4T£6 junction at 1.1% employing a grid in a?(w)F(w) of Pthnﬁ

somewhat indicative of the a.c. sensing signal experimentally applied to
the device. A comparison of this calculated value and the experimentally
determined value is given in Figure 7.24.

It may be seen that the agreement in the positions in ecnergy of
the critical points (maxima and minima) is extremely good and in some
places the relative strengths of these different points show fair
agreement -- although in other places, there arc-clcarly large discrepancies.
Nevertheless, as this is a derivativc of the more physically meaningful

(#)-

pred1cted values is quite good.

Ny DParameter, the agreement between experimental and

This procedure is repeated for T28 where, (because the force
constant model is felt to be reliable), good agreement is expected, and
in T%QB{1 and Ph6T£4

~such calculations and experiments are given in Figure 7.25, 7.26 and 7.27

where fair agrcement should exist. The results of

respectively, where again it is seen that the positions of critical points
energy-wise are in excellent agreement with calculations based on neutron
scattering measurements. Further the relative strengths show agreement
in some areas, and disagreement in others.

For purposes of completeness, the materials that display a
suspect Born-von Karman analysis (PQBT%Z and Pb) are presented in
Figures 7.28 and 7.29. Although the bulk properties of a superconductor
are calculated in the case of these two materials with a fair degree of
Success, using the calculated o?(w)F(w) parameter, good agrecment between

the predicted and experimental values of critical points is not expected,.



FIGURE 7.24

Comparison of calculated (dotted line) and experimental
i ; do . s o
(solid line) v vs, V for An-I—Pb'4T1.6 junction at 1.1°K.

V is measured from Ao Thy Ao Pb A o e .
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FIGURE 7.25

Comparison of calculated (dotted line) and experimental

(solid line) g%— vs, V for Ag-I-Tg 8Bi 2 junction at l.loK.
V is measured from Ao Al + A0 Te 8Bi 2.
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FIGURE 7.26

Comparison of calculated (dotted line) and experimental

(solid 1line) %%- vs, V for Ag-I-T¢ qBi 1 junction at 1.1%.
V is measured from Ao Al + Ao Te gBi l‘
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FIGURE 7.27

A comparison of calcualted (dotted line) and experimental

4 s do o 5
(solid line) v Vs V for A!L-I-Pb.()TL.4 at 1.1 K. V is
measured from Ao AL + Ao Pb 6Tz 4.
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FIGURE 7.28

A comparison of calculated (dotted line) and experimental

(solid 1line) %% vs, V for Ag-I-Pb 8T2 2 junction at 1.1%.
V is measured from Ao AL + Ao Pb . Te

8 T2
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FIGURE 7.29

A comparison of calculated (dotted line) and expefimcntal

(solid line) vs., V for Ag-I-Pb junction at 1.1%K.

do
av

V is measured from Ao Ag + Ao Ph*
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Figure 7.29 is simply another manifestation of the disagreement cited in
Figure 7.12. As was pointed out earlier, somc of the critical points do,
in fact, agrec in both cases. Those that agree are related to critical
points determined by neutron scattering experiments in the on-symmetry
directions.

This comparison even further emphasizes the applicability of this
tunneling method, for certain materials and alloys as a convenient method
of critical point spectroscopy and as a guide to the more exacting neutron
scattering experiment, As a2(w) does not severcly change the features
of the phonon density of states F(w) in a?(w)F(w) the value of the Born-
von Karman analysis can be easily assessed by this spectroscopic method
of determination of the critical points. If a simple one-to-one compari-
son of critical points is not possible, a more extensive study of the two

methods is necessary.

(ii) The disagreement in the relative strengths of the different peaks
between those calculated and those experimentally observed cannot be
ignored. 1In all the alloys considered, it was observed experimentally
that there appeared to be an extensive amount of smearing in the region
of the longitudinal peak.

One must first ascertain whether this smearing is due to something
fundamental or simply a result of experimental smearing. The smearing
is clearly not due to the finite size of the a.c. probe used to differentiate
the tunneling characteristics as it appears to be energy dependent. In

addition, a reduction of the size of the test signal has no effect on the
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relative strengths of the different peaks. These experimental results
have been seen by other observcr587 for some of these alloys and it
appears from this reproducibility in different laboratories, that the
smearing is not induced experimentally.

Recently, Zavaritskii89 has reported tunneling experiments on
lead thin films evaporated onto a substrate at 4.2°K where a somewhat
similar effect was observed. It was noted that there was a substantial
difference between the tunneling curves obtained on such samples, and
those obtained from a sample prepared in the conventional manner with
the substrate at room temperature. In addition, it was found that upon
annealing the sample to room temperature, and then rc-cooiing, the
characteristics assumed the form generally accepted as those of lead.
The films prepared at low temperatures displayed a large amount of
smearing in the distinctive peaks in the g%- plot and in fact, much of
the fine detail was not there.

It is suggested that this phenomenon could be explained in terms
of Lifshitz's90 discussion of energy spectrum structure in disordered
condensed systems. Lifﬁhitz shows that in the vicinity of a boundary or
cut-off point of the spectrum, if a perturbation to the ideal system is
added (an impurity for example), a singularity that in the pure case may

vary
'VVw—wo
where W, is the cut-off value, now assumes the form

vexp (- Ab(e) (w - w )Y
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where wo' is the new cut-off value given by wo' H O, & V where V is the

\
perturbation added, ¢(c) is a function of the impurity concentration ¢ which
varies as &n c for low concentration, and A is a constant. The absolute
value of the constants in front of the exponential are difficult to deter-
mine but worthy of note is the fact that the functional form of this new
type of discontinuity is suggestive of the '"tail" at the high energy cut-
off in the a?(w)F(w) distribution shown in Figure 5.5 as determined by
McMillan and Rowcllso. ' In an ideal system this tail should not exist but
a thin film is far from an idcal system and the perturbation caused by
dislocations and small crystallite sizes could cause a singularity of
the functional form described above.

This development of a tail at the high end of the energy spectrum
is manifested also in the experimental %% plot$ of the alloys presented
in this work as the perturbation introduced takes the form of an impurity
site. Lifshitz shows, in addition, that the insertion of a perturbation
causes a smearing, not only at the cut-off of the spectrum, but throughout
the energy spectrum and in particular, at critical points.

In the calculation of a2(w)F(w) from a Born-von Karman force
constant analysis, it should be emphasized that no provision is made for
this disorder phenomenon. The material considered is assumed to be a
pure material of some hypothetical element whose properties are those of
the average of the constituents that make up the alloy. For example, the

ionic mass of this material of pbez(l-x) is assumed to be:

xM + (1-x) MTz

Malloy pb
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Hence, the calculation assumes that the bonding between adjacent
ions is of the type

Pthz(l‘x) - Pthl(l-x) - Pbez(l_x)

while in fact they may be of the form:

Pb - Pb or Tg - To or Pb - T2

Making this somewhat naive assumption, all finite lifetime effects for
phonons, which certainly do exist in an alloy, are ignored.

Hence, disordered alloys may be expected to prodice a broadening
in the critical points due to random differences in the forces between
various pairs of ions with the same geometrical arrangement. In essence,
this randomness will produce a fuzziness in the dispersion curves which
is inherent in‘anhallby system. While the ideal pure crystal will be
cxpected to display sharp phonon dispersion curves, alloys will not.

Unfortunately at this time, the resolution of neutron scattering
experiments is not sufficiently precise to determine the extent of this
uncertainty, especially in the higher energy longitudinal branches where
the errors quoted for the measurement of a neutron group are %15% of
the measured energy. Hence, until such resolution is increased to the
point where the very pure materials show very narrow scatter from a
central value, a mecasurc of the uncertainty of the energy of a particular
phonon is impossible. Hence, a Born-von Karman analysis of the dispersion
curves of an alloy where it is assumed the curve is very well defined is,
in some respects a "physically ideal' model while in actuality, disordered

force constants must be taken into account.



CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

In this Thesis, a surprising amount of success has been achieved
in determining the superconducting energy gap in lead, aluminum and
thallium-lead-bismuth alloys from information now available on lattice
vibrations in such materials, and the newly increased knowledge of the
electron-ion pseudopotential form factor. The main quantity to be calcu-
lated in the above determinations is the phonon contribution to the
Eliashberg gap equations which enters as the phonon density of states
F(w), modulated by an energy dependent electron-phonon coupling term
usually denoted by a?2(w). From this product function, o?(w)F(w), it has
been possible to calculate the superconducting energy gap A(AO) of the
above materials, much more carefully than has been possible in the past.
None of the estimates presented here varied from the experimentally
determined values by more than 10% in these materials. A small adjust-
ment of the appropriate coulomb pseudopotential term N(O)uc in these
equations, (which is not known very accurately at this time), would improve
the agreement in each case. A more accurate evaluation should be performed
of this coulomb repulsion term, which opposes the onset of superconductivity
and is so important in the solution of the Eliashberg gap equations. Tt
has aiso been shown that a small adjustment of the choice of the electron-

ion form factor, so as to change the corresponding a?(w)F(w) also has a

140
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profound effect on the evaluation of A(Ao).

As the Born-von Karman 8 nearest necighbour analysis of lcad
was shown to be suspect in certain regions due to critical points existing
in off-symmetry directions that had not experimentally been measured, the
agreement betwecn measured and predicted values of A(AO) for this
material was even better than perhaps expected.

In order to determine the validity of these predictions, a
tunneling investigation of selected thallium-lead-bismuth alloys has been
performed. As all the alloys had the same crystal structure (face centered
cubic) and the atomic masses of the constituents were approximately equal,
and since it was known from neutron scattering experiments that the phonon
density of states F(w) of this series of alloys did not change very dras-
tically, changes in the electron-phonon interaction strength of these
materials were primarily due to changes in the electron concentration
which in turn affected the superconducting nature of the alloys. Agrce-
ment between predicted apd experimentally observed A(Ao) was extremely
good for the entire series, cven when the Born-von Karman calculation of
F(w) was not too reliable.

In addition, the tunneling experiments on these alloys allowed
the comparison of critical points in the phonon energy spectrum between
those obtained by neutron scattering experiments and a force constant
analysis, and those obtained by tunneling. It was found that where
reasonable confidence in the force constant model used to calculate F(w)
was felt, extremely good agreement in the positions of the critical points
resulted, Also, fair agreement was experienced between the relative

strengths of these critical points derived using the two methods. The
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differences were felt to be due to the non-ideal nature of an alloy.
In the casc of sodium and potassium, the critical tempcraturcs

5 Ok This upper bound

(Tc) are estimated to be certainly less than 10
was obtained by progressively switching on the coulomb repulsion term
N(O)uC and at each stage computing a corresponding critical temperature.
This sequence of operations was terminated at a value of N(O)uc which
was still much less than a realistic value46 but which yielded a
critical temperature sufficiently small that it was felt uninteresting
to proceed further. To reduce this upper bound would have required more
extensive computational complications which did not seem warranted.
Throughout  this analysis no corrections were applied for the
possible deviation of the electronic density of states at the Fermi
surface from its free electron value. It was felt that any slight
deviations from the free electron Fermi sphere would be averaged out when
all possible scatterings were added up from any random point on the
surface to any other random point. For any large deviations, this
clearly is not true as some particular q valucs might be greatly enhanced
over others.
It is important also to note that in all determinations of
02 (w)F(w), the critical points do not shift in energy although their
relative strengths do. Also contrary to the expectation of Bennett77, no
new singularities are generated as a result of the cut-off at 2 kF in the
calculation of a2(w)F(w). In the free electron approximation, a?(w) is a
smoothly varying, although by no means a constant function, as there is
a divergence at low values of w. Generally the main longitudinal peak

region is more emphasized by the a?(w) function than is the transverse region.
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In light of the investigation described in this Thesis, it now
seems possible that the tunneling method described can be used as an
investigation tool for other matcrials.

Firstly, with improved sensing techniques and lower available
temperatures in view of the predictions of a2 (w)F(w) for aluminum one
could, using a symmetric junction Af-I-Ag, investigate the possibility of
determining experimentally the validity of this prediction. The limiting
factor in such an investigation would be the sensitivity of the sensing
device.

The effects of pressure on a simple superconductor, both from a
theoretical and experimental point of view using the techniques outlined
in this Thesis could also be investigated, Pressure on a material will
bring about changes in the phonon spectrum and its critical points, and
the strength of the electron phonon coupling term a?(w). Experiments
have recently been performed investigating the pressure dependence of
superconductors using the tunneling techniquegl and preliminary results
appear interesting. A comprehensive investigation of the effect of this
variable would prove fruitful.

Also, a comprehensive study of the transition temperatures of
noble transition elements and alloys has been carried out92’93, over a
wide range of materials and electron concentrations. It was found that
the filling up of the d-band supprésses the superconducting transition
temperature and in addition, materials with large magnetic susceptibilities
were not superconducting above 0.015°k. A possible explanation of this
correlation of parameters was given in terms of Berk and Schrieffer's

. 2 ; 9 . .
model of ferromagnetic spin correlations 4. These correlations effectively
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enhance the electron-electron repulsion term N(O)uc (for example in Pd,
this is many times the conventional coulomb pscudopotential) thus
diminishing the probability of a material to go superconducting. Transi-
tion metals in which the phonons have been measured using inelastic
neutron scattering experiments, possibly could be studied, and the
strength of these various contributions could be determined by a combined
experimental and theoretical approach. This investigation could

strengthen the knowledge of a somewhat unknown subject.



APPENDIX A

In this Appendix, a standara method will be described to calculate
the phonon density of states functién F(w), together with the modification
to that method as required in the determination of the product function
2?(w)F(w). The method used is a Born-von Karman analysis76 which is a
phenomenological fit of interatomic force constant strengths to reproduce
the measured dispersion curves. The actual Born-von Karman analysis for
the materials considered was carried out by other investigators and the

published 0°*°8

force constants are simply used in this analysis to
determine the dispersion curves in the off-symmetry directions which

are not measured, Proceeding in this fashion, one can determine the
phonon frequencies for points over all the Brillouin zone and, by summing
these, extract an estimate of the phonon density of states. As discussed
in Chapter 7 this analysis can be slightly erroneous in some cases, as it

is found in some materials that there are long-range forces, and thus this

type of model does not converge with a realistic number of force constants,

A.1 BORN-VON KARMAN ANALYSIS:

From Chapter II we see that there is a restoring force in the
lattice for disﬁlacements from equilibrium, much like a simple spring-
restoring force in the simple harmonic oscillating spring. From equation
(2-4) we can write the equation of motion for the & th ion as:
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d’u_(2)
- M ‘—2—— = L q’aB (lﬂ') ”B (,,9
dt L (A-1)
where M = mass of ion, Ua(l) is the a-direction component of the

excursion from equilibirum of the £'th ion and ¢aB(nn') is the force in
the ath direction on this ion due to a unit displacement of the 2'th ion '
in the B direction, Because of the periodicity of the lattice, these
atomic force constants (A.F.C.) do not depend expiicitly on the atoms

2 or &' but only on the distance R between them. For each type of

L’
neighbour (i.e. first nearest neighbour or second nearest neighbour)
there are a certain number of these independent constants., Consider, for
example a force-centered cubic lattice, and the first nearest neighbours
of the atom in the (0, 0, 0) position. There are twelve of these nearest
neighbours located on the faces and their co-ordinates are given by:

a a a

-

(110), (101)----- etc.

2
2

N

There are, at first glance 3 x 3 constants for cach atom and hence
3 x 3 x 12 constants altogether. Because of the high symmetry of the
cubic system, one can immediately eliminate most of these and reduce the

number of independent force constants to 3. Thus;

0x(110) = & .(110) = ¢ (101) = ----o- = - @,
Oy (110) = o (101) = -cuom- : -7
¥y, 10 = & (101) = @, (I01) ® commen = -8
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If we now consider the second nearest neighbours of the point
(0,0,0), it can be seen that there are six of these whose co-ordinates

are given by:

(2,0,0), 5 (0,2,0), % (0,0,2), 3 (Z,0,0), 5 (030), & (002

N ®

Again from symmetry considerations, the number of independent force

constants can be reduced to two and these are denoted by:

£, (200" = & (020) = meen = -a,

¢, (200) = §,(200) = ------ = -8,

This analysis can easily be extended to the general case of nth
nearest neighbours with co-ordinates %—(u, v, w). In the most general
case, u # v # w and there are 48 nearest neighboufs with 6 independent
force constants permitted by symmetry.

From the equation of motion (A-1), as previously described in

Chapter 2, a trial wave solution can be attempted of the form

1
v M

u (o) = e (g, A) expidg.RM® -w(@n t }

where _€ (gik) is the polarization vector of the normal mode w(q,X ) and

5(?) is the equilibrium position of the £'th atom, Inserting equation

a.R(H

(A-2) into equation (A-1) and multiplying both sides by e~ yields

% [;ie'iﬂi‘_(g)q,as (2,2') eiﬂ'R(g)J &(q, 1)

w?(g, ) g (@2) =
g

P
B
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It can be shown, however, that the quantity in the square brackets above
does not depend on 2. It is a function of q only and is called the

Dynamical matrix

1 -igR.
D@ = T g e S N (A-4)

Equation (A-3) may thus be written in the form:

o (g, \) ey (q, ) = e D o (@) eg (4, V).
B

which is just a simple eigenvalue problem for the 3 x 3 matrix D(q).
Thus, given the dynamical matrix at any point q in the Brillouin zone,
it is a simple mathematical problem to determine the three eigenvalues
w(q, A) , X =1, 3 and corresponding eigenvectors which form an ortho-
normal set, Turther, and from (A-5), it is clear that for any given 9,
D(q) is easily constructed from the force constants QaB(l,l )
Phonons can be measured using the inelastic neutron scattering
techniqﬁe. In this way one normally determines the dispersion curves
along high symmetry directions in the first Brillouin zone. It is also
common practice to vary the force constants ¢a8(m, 0) so as to obtain
the best possible fit to the dispersion curves for a specified number
of nearest neighbours. The number of parameters needed to achieve good
agreement depends, of course, on how structured the measured dispersion
curves are. In sodium and potassium, for instance, where the dispersion
curves show little detailed structure, a fifth nearest neighbour fit

gives essentially exact agrecment withithe data, To obtain good agreement
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in aluminum, which is a slightly more complicated case, one must go out

99,100 SPE

to 8 nearest neighbours. 1In lead, where large Kohn anomalies
observed, eight nearest neighbours gives only a reasonable overall fit,.

A good fit in this case would require more parameters. Nevertheless,

such fits are very useful since from the force constants one can calculate
in principle many interesting properties; for example, the resistivity

of a material101 or the superconducting energy gap.

Up to this point, all the constraints imposed on these force
constants are due to the symmetry of the crystal structure. If one also
considers thelnature of the-force system between neighbours, it can be
shown that76 if one limits the type of force considered to that of a
central force depending only on the magnitude |r| of the distance apart,
additional constraints can be imposed onto these force constants. These
additional constraints are listed in references cited28, however, a most
general force constant analysis aé outlined above considering only the
symmetric nature of the system is most desirable.

An additional constraint can be imposed upon these force constants
if the crystal is in equilibrium; i.e. the lattice constant distances
must be such as to minimize the total potential energy in the system.

In Table A-1 are listed the atomic force constants for pure lead
and for the T -Pb-Bi alloys at 100°K as tabulated by Ng98 for 8 nearest
neighbours, In Table A-2 are listed the atomic force constants for
aluminum97, sodium95 and potassium96. The treatment for A is to 8
nearest neighbours, while sodium and potassium it is to 5 nearest

neighbours,



TABLE A-1

ATOMIC FORCE CONSTANTS FOR Bi-Pb-Tg ALLOYS AT 100°K

IN UNITS OF DYNES/CM
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AFC Pb Pb T2 Pb (T 4 Pb ,T2 Bi ,T¢ g Bi T 4
oy 3933 4055 4603 4944 4679 4984
By -1280 -1111 -1333 -1532 -1448 -1485
Yy 4929 5270 5445 5540 5198 6161
@y 1617 976 407 43 151 65
B, 309 103 -128 -148 -129 107
ag -266 =252 -97 193 104 =26
Bs 41 59 -92 -150 -133 -44
Y3 349 147 53 -4 ~37 13
85 -58 -4 45 -8 -61 -66
oy 757 566 382 141 - 251 w5
By 105 -68 -9 -6 -60 -74
Y, 376 -51 -100 123 337 12
ac -288 -35 -64 ~142 -156 12
Be -341 -217 -26 67 40 ~7
Ye -347 -240 =21 - 93 64 -10
8¢ 20 68 -14 -79 ~73 7
o 34 50 -25 -81 1 11
Be <177 8 43 23 - 117 15
o -59 -97 -10 907 51 38
B 133 101 . 31 -38 -81 17
\C 30 40 26 -5 20 =25
8, 33 13 9 10 -7 4
€ 50 20 14 14 -10 7
z, 100 39 27 29 =31 13
ag 679 197 - 44 -114 -34 -131
185 88 -35 -7 39 78
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TABLE A-2
ATOMIC FORCE CONSTANTS FOR ALUMINUM (f.c.c.) SODIUM (b.c.c.)
AND POTASSIUM (b.c.c.) IN UNITS OF

OF DYNES/CM

AFC Az (at 80°K) AFC Na (at 90°K) AFC  K(9°K)
a 10107 o 1178 o, 786
B -1337 B, 1320 B, 895
Y, 11444
o, 2452 | o, 472 a, 432
B, -529 B, 104 B, 29
Oy =625 a,  -38 oy -41
B, -182 B, -4 By 12
Y, -148 Y5 <65 Y; -53
8 .

5 296 B _
a4 271 o, 52 u4 2
B, 321 B4 . B, -4
\7 -50 7 3 Y4 +75

84 14 8, 2.25
ag 461 o 17 ag
B 227 B 33 Be
Yg 198
5 888
a, 142
Bg -109
ay -64
B, -94
Yy -111
s, 12
- 18
) 36
Gg .534

Bg -116




FIGURE A-1

Irreducible 1/48th segment of the Brillouin zone for
(a) face centered cubic system

(b) body centered cubic system
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Having now briefly outlined the general method of the force
constant analysis, we are now in a position to calculate the phonon
density of states function F(w) and the product function o?(w)F(w). Tn a
cubic system, the Brillouin zone can be represented by an irreducible
1/48th segment of the zone. The complete zone, and ﬁence all of reciprocal
space can be generated from this irreducible zone. For a face-centered
cubic crystal system, reciprocal space is represented by a body-centered

cubic system and the 1/48th segment for this system is defined by the

planes:
ay = 1.0
9, * 0.0
q = qy
e e (A-6)

qy q,
+ q + q = _3_
x y z 2

where q is in reduced units of EE- and a; is the lattice distance, A

L

schematic diagram of this irreducible zone is shown in Figure (A-1).
Similarily, a body centered cubic system has a face centered cubic

reciprocal space, and this 1/48th segment'is defined by:

Y, 0.0

9% = 9,

a, = q

¥ o e (A-7)
qx + qy = 1
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This zone is illustrated in Figure A-1. The method of calculation follows
the method of Gilat and Raubenheimerloz, where the irreducible 1/48th
segment is divided into a finer mesh of equally spaced points. At cach
point in this mesh the phonon energies w(q, A) A = 1, 3, are calculated in

addition to their polarization vectors €(q, 1), and the gradients of

these dispersion curves at that point

Bulg, ) where A= 1,3
9q '
= , a= 1,3

The dispersion curve is linearly extrapolated to the edge of cube defined
by the fine mesh into which the 1/48th segment is divided, using the
calculation of the gradient as a recipe. The density of states is then
obtained by adding together the contributions from all the different small
cubes and all branches. In order for linear extrapolation to be adequate,
the mesh points (at which calculations are to be performed), should be
sufficiently fine.

This phonon density of states function for the material is

defined by:

3
R TS R R

where the integration is over the entire first Brillouin zone,
Recalling our definition of the product function a2 (w)F(w) from
equations (4-15) and (2-26), we see that:

2
al (w)F (w) ,_-,._.N.(.Q.)__._. b J d3& .I.E-_(‘_q)‘._)_‘_gnl. X |<kF+ﬂ|Q‘kF>lzd(w-m' (ﬂ)‘)
8rkp2 MN <2k, " gl w'(qn) — -



155

where the matrix element < k. +q [ w | 3F> for scattering from one point
on the Fermi surface to another is taken to depend only on the momentum
transfer q, and is denoted w(q). The integration in q space is now over

a sphere of radius 2k This is the maximum possible q-transfer between

o
a phonon and an electron on the Fermi sphere. In integrating over this
sphere, which penetrates out beyond the first Brillouin zone for most
materials, we see that Umklapp processes are being considered. Using a
prescribed functional form for w(q) the calculation can now proceed by
simply extending the voluﬁe to be considered to a 1/48th of a sphere of
radius ZkF. In material§ such as lead, where a sphere of radius 2kF
covers many of these irreducible zones, the computational time is clearly
a factor to be considered. Proceeding in this straightforward fashion,
to calculate az(m)F(m) one would require 10 - 15 times that computational
time required for the determination of F(w).

In order to keep this to a minimum, and because of the obvious
repeatability of the dispersion curves out into the second zone and beyond,
it is convenient to construct the sphere of 2kF from units of the irreduci-
ble 1/48th segment of the Brillouin zone. The phonon energies and polari-
zation vectors of a given point in this zoné need only be calculated once
and, by a suitable co-ordinate transformafion, all points in reciprocal
space can be represented. Thus, the use of this transformation represents
a large time-saving tool in the calculation of a2 (w)F (w) .

The co;ordinate transformations required to map this irreducible
zone out to fill up all of reciprocal space for face centered cubic and
body centered cubic structures are given in Table A-3. The extent of

these transformations is adequate for all the materials considered in
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TRANSFORMATIONS REQUIRED TO MAP 1/48th OF THE FIRST BRILLOUIN

ZONE OUT INTO FURTHER ZONES. FACE CENTERED CUBIC.
LA???éERggﬁkT  TRANSFORMATIONS LA???égRgg?;T TRANSFORMATTONS
' = ' = -
(000) qQ'y qy (200) Q'y =2 -q,
' - ’ U =
q'y Uy y =y
= ' =
1 z qz Z Z
] - . ' = -
(111) qQ', = 1-q (200) qQ', 2 qy
[ = 1- ' =
'y q y q,
- - ' =
z 1-q z a
' = ' = &
(111) Q' l+qz (200) a'y 2 q,
' = ]~ ' =
a’y q, q'y B
' = - =
Q', 1-q, qQ', ay
(111) a'y = l+q - (200) a', = 2+aq,
= - ! =
a'y l-q, Q' qy
' i - ' =
q', * 1-q. 1, ay,
1 - ' =
(111) gy ™ 1+qy (200) Q' 2+ qy
' - ' =
Y 1+a, y T %
qQ', = 1-q qQ‘', = q,
(111) qQ'y = 1+qx (200) 9’y = 2 +q,
' = 1+ ' =
Ty Uy Ty T Y
1, = 1+q, ' 1T; = 9
1] -
(111) q', = Ia,
! = 1+
q'y Yy
a', = 1-q,
' =
(111) g 1+q
a'y, = l4q,
' ‘= =
qQ', 1 ay
(111) q', = l+q
' = 1-
q'y q
q', = 1-q
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TABLE A-3a (Continued)'
RECTPROCAL RECIPROCAL N
LATTICE POINT TRANSFORMATIONS LATTICE POINT TRANSFORMATIONS
' o x ' = =
(220) Q'y 2-q,, (311) Q'y q,
' = 2- ' = =
q'y q, q y qy
= ' = -
. a, a, X
' = = ' = =
(220) % 2 qz (311) » qy
' = - ' = -
y ° 2-9 'y q,
' = ' = -
z qy a, Ay
(220) q'x = 2+qz (311) q'x = = G
' = 2- ' = =
q'y q, 'y q,
', = a, v, = - 9y
= i ' = -
(220) q'x 2+qy (311) & %
- ” ' -
vy = 29 y ¥y
! = ' = -
20, T 9 z 9y
(] - - ' = -
(220) 4l = 2 q, (311) » %
' = 2- ' = +
Ty Uy q'y Uy
1] - - -
Tz, * % 1, 1z
= ' = -
(220) Q', = 2+q, (311) a', "
' = 2- ' = -
Ty Uy q'y Uy
] - =
T, = 9 a’, *a,
' = -
(311) q'y %
! = +
y z
' - -
z x
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TABLE A-3b

TRANSFORMATIONS REQUIRED TO MAP 1/48th OF THE FIRST BRILLOUIN

ZONE OUT TO FURTHER ZONES. BODY CENTEPED CUBIC.

RECTIPROCAL ' RECIPROCAL .
LATTICE POINT TRANSFORMATIONS LATTICE POINT TRANSFORMATIONS
' - ' -
(000) Q' = a (110) Q' = 1+aq
' = ' = ] -
Ty = % y z
q', = f, s = 9
[ - - ' -
(110) L 1 ay, (110) Q'y 1 +q
] - 1 = ' = 1 +
'Y X '}’ qZ
z -~ Y a“, = qy
' = - =
(110) qQ'y 1 q, (110) q'x 1 + qy
')' = 1 - " q')’ = 1 - 2
) ' - 1 -
y = qy qQ’, = 4,
' - “ =
(110) q', = 1 + a, (110) Q'y 1+ qy
] ® = ' =
y = 179% y L
' - ' -
= q q = q
z y z X
' e ' = -
: (110) qQ', = 1 + qy (200) q', = 2 ay
' ' = 1 - ' =
Ty I y = %
q', = 4, qQ', = q,
' = ' = -
(110) 9’y - 1+ Qy (200) Q'y 2 qy
Q'y w 1= y 'y = A
q'z = 9 'z = 9
' & l ' -
(110) q*, * 1+ " (200) Q'y 2 + qy
' q|y = 1 + qy 'y = Q,
1, ® 9, ' * U,
(] — - . ' - -
(110) ', = 1=g9, (200) Q' 2 -aq,
v * Lo a'y = a,
' Yy = G q', = a,
' - ' &
(110) 1y = 1+ q, : (200) Q'y 2 + q,
' = 1 - ' =
¥ %y y T K
z - % z qy
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TABLE A-3b (Continued)

RECIPROCAL RECIPROCAL
LATTICE POINT TRANSFORMATIONS LATTICE POINT TRANSFORMATIONS
|l =
(200) . 2 + Ay
! =
Ty T Y
q Z = qZ
' <
(211) q'y = 2+q,
’ = 1 -
Ty y
qQ', = 1-aq
(211) q'x = 2 - qz
! & 1w
'Y qy
y = 1 + a,
' = -
(211) ot 2
' = 1 -
Y z
' = 1 -
Z X
' - -
(211) a', = 2-q
' = -
y z
' = -
Z 1 qy
' = -
(211) | 'y = 2-a,
1, - -
y = 1+ qZ
\J = . -
z 1 Uy
(211) q'x = 2 - qx
' w1 @
y A
' - -
: % 1 9y
(211) q'z = 2 - qx
! = 1+
q'y y
a, = 1-- z
(211) q'x = 2 - »
' = +
q y Y
' -
q°, = 1+ .
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this Thesis. It is to be noted, however, that one would be required to
extend these transformations further out into reciprocal space, if
materials with kF values greater than that for lead were to be considered.

Having this transformation available, it is now simply neccessary,
(a) to determine €(q)) and w(q)) for the irreducible 1/48th segment of
the first Brillouin zone as in the calculation of F(w), (b) apply the
transformation until q becomes greater than ZkF’ and (c) add up all
contributions.

In order to now determine o?(w)F(w) from equation (A-9) it is now
simply necessary to determine the form of the electron-ion from factor
w(q). The different calculations of this function have been discussed in
detail by Harrison79 and where available, w(q) takes the Heine-AbarenkovSAform
as tabulated by Harrison. For the alloys considered here and for which
this data was not available, a form supplied by Taylor81 appeared
reliable. Where neither of these was available, an interpolated value

between those reliable was utilized.
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