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The present knowledge of lattice dynamics in particular solids 

is applied to the theory of strongly coupled superconductors. From 

existing phonon data, the product function a2 (w)F(w) is determined in 

various materials, where a 2 (w) is the electron-phonon coupling term, and 

F(w) is the phonon density of states of that material. The Eliashberg 

gap equations are solved for these particular materials using this pro­

duct function and predictions of the superconducting energy gap 6(6 ) and 
0 

tunn~ling electron density of states NT(w) are made. 

Tunneling experiments are performed on selected Tt-Pb-Bi alloys 

where this phonon information is available and comparisons are made both 

of the predicted and obtained 6(A ) and the tunneling density of states 
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years on the topic of electron tunneling between superconductors. Its 

purpose is two-fold. Firstly, it seeks to investigate what the important 

properties are which determine whether a material is a superconductor or 

not. For simple metals this is put on a quantitative basis with 

encouraging results. Secondly, it attempts to critically analyze the 

value of tunneling as a method of phonon spectroscopy. It is shown that 

this method gives excellent agreement with other reliable methods in the 

location of critical points. The Tt-Pb-Bi alloy system, ranging from 

3.2 electrons/atom to 4 electrons/atom is studied in this vein. 

In many places in this Thesis, both in theoretical descriptions 

and experimental details, rigour is sacrificed in an effort to preserve 

clarity and continuity. 
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CHAPTER I 

INTRODUCTION 

1.1 HISTORICAL INTRODUCTION: 

Since the discovery of the seemingly unnatural disappearance of 

all d-c resistivity in mercury below 4.2°K by Onnes1 in 1911, many 

investigators have expended much time and effort in an attempt to explain 

and describe many of the curious traits associated with this phenomenon 

of superconductivity2• Since that time, it has been discovered that 

3 d 	 . d 4,5 . h.many meta1s, a 11 oys , an even some sem1con uctors , experience t 1s 

transition to a completely non-resistive state. In this Chapter, the 

basic development of the thoughts and theories of the more prominent 

investigators will be traced from the first macroscopic phenomenological 

descriptions, some of which display amazing insight, to the present day 

microscopic explanations. In conjunction with these theories, the 

results of certain key experiments which have inspired this trail will be 

presented. 

1.2 	 PHONOMENOLOGICAL THEORIES: 

One of the first successful models proposed to incorporate the 

reversibility 	of the process in a correct thermodynamic treatment, was the 

6two-fluid model of Gorter and Casirnir . It was suggested that below a 

certain critical temperature, T , the electrons available for conduction c 

could be divided into two classes. Firstly, a fraction of these, $, 

I 



2 

remained unchanged and remained "normal" while the others (1 - cp), it was 

postulated, slipped into some sort of ''superconducting" state in such a 

manner that at 

T = T , cf> = 1c 


and at T = 0°K 4> = 0
' 

By using this suggestion, and fitting results wherever possible to experi­

mental knowledge, a minimization of the free energy of the electrons at a 

given T yielded the result: 

= {T/T ) 4 
c 

Hence, the proportion of superconducting to normal electrons is seen to 

increase very rapidly below T . c 

This model leads to rather good quantitative agreement in pre­

dieting the electronic specific heat in the superconducting state, as 

well as to an ~xpression for the critical magnetic field (the applied 

field required to drive the superconductor into the normal state) as a 

function of temperature. 

H = H (1 ­c 0 cn2i
c 

where H = critical field at T = 0°K 
0 

This agreement was not overly surprising since the theory was originally 

based on experimental results and is consequently not much more than a 

description. 

In 1933 Meissner and Ochsenfeld discovered another curious pro­

perty of the superconducting state. A magnetic field impressed onto the 
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material penetrates only a few hundred angstroms into the hulk. In 

addition, a magnetic field penetrating the material in the normal state 

is completely expelled as the sample is cooled through the transition 

temperature. 

This experimental fact inspired the development of the pheno­

8menological, and yet very profound London equations by Heinz and Fritz 

London. These electromagnetic equations described both the infinite con­

ductivity of a superconductor, and its perfect diamagnetic behaviour. It 

is to be noted, however, that in their original form, the equations were 

postulated not to explain why superconductivity existed, but simply to 

describe the phenomenon. 

Using these equations, one can also describe the shallow penetra­

tion of a magnetic field into a superconductor by: 

B(x) = B(O) 

where B(O) = magnetic field at the surface of the 

superconductor 

x = distance into the superconductor 

London penetration depth~L = 

= ~ mc2~ ~ m = electron mass 
nn e c = velocity of lights 

e = electronic charge 

n = number of superconducting electrons in 
s 

the system 



Of even more significance in some respects was the introduction 

9by F. London of the concept of the "stiff" wave function to descrihe the 

ground state of the many-body superfluid. It is this rigid ground state 

wave function with respect to small perturbations, suggesting that a 

finite energy is required to create excitations in the system, that gave 

the first hint of the existence of an energy gap in the excitation 

spectrum. 

Utilizing these concepts one can describe many of the phenomena 

associated with superconductors, ihcluding the Meissner effect, zero 

10resistivity, frequency dependence , and the recently observed quantization 

11, 12 
0 f- fl ux . 

13Pippard suggested a modification to the London equations in 

order to explain certain experimental results. His non-local extension 

implied that more than simple nearest neighbour interactions need be con­

sidered and that the superconducting electron is "aware" of events 

-4occuring over a rather large spatial range ( % 10 ems). As we shall see 

later,this non-local concept is of central importance in the microscopic 

theory of superconductivity. 

In addition to 	these developments, there was a growing belief that 

14there was an energy gap in the spectrum of electron excitations in a 

superconductor. Several different experiments had been performed on 

15 . 	 d h 1 d . . 1 . . f. }various supercon uctors; t erma con uct1v1ty , e ectron1c spec1 ic 1eat, 

ultrasonic and infra red absorption, all of which seemed to indicate the 

existence of a . gap in the energy spectrum • . 
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1.3 	 DEVELOPMENT OF A MICROSCOPIC THEORY: 

. 15 16In 1950-51 it was found by Maxwell and Reynolds et al that 

the critical temperature T of various isotopes of mercury depended on 
c 

the atomic mass such that, 

T Ma = constant 
c 

where 

Similar behaviour was found subsequently in other materials and the 

obvious conclusion was drawn,namely, that on the microscopic scale, the 

mechanism responsible for the onset of superconductivity must have some­

thing to do with the lattice of the material. 

This experimental observation and conclusion inspired a more 

intensive search between the years of 1950-1957 for the correct model to 

17describe the system. Frohlich proposed that superconductivity arose 

from the electron-phonon interaction, and displayed a good correlation 

between his predicted and observed occurence of superconductivity in the 

non-transition metals. In attempting to put this prediction on a firmer 

basis and describe accurately the new state, he was confronted with diffi· 

culty when he used a perturbation approach. This independent particle 

attack, using perturbation methods, could not describe the co-operative 

features of a superconductor. 

18 19 	 .Landau ' showed that one could deal with an electron gas by 

describing excitations from the ground state in terms of "quasiparticles". 

These quasiparticles were regarded as particles in a self-consistant 

field of surrounding particles with long lifetimes. Due to the fact that 
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these are long lived particles, the excitations are very well defined. 

Using the results of Frohlich, Cooper20 studied the simple problem 

of a single pair of electrons interacting with each other above the non­

interacting Fermi sea - via a two-body potential V first derived by 

Frohlich. Using this simple model, Cooper proved that if this potential 

was attractive, a bound state was . formed into which this pair could fall. 

He suggested that the instability of the normal phase and consequent on­

set of the superconducting state was due to many pairs of electrons falling 

into these bound states. A simple summation of all the binding energies 

involved indicated that this simple pair model was deficient and required 

21the work of Bardeen, Cooper and Schrieffer (hereafter referred to as 

B.C.S.) to describe accurately the superconducting state. They considered 

the simple Cooper problem with very strongly overlapping pairs, such that 

there must be a large coherence between different pairs (dictated simply 

by the Pauli principle). 

23 24
Later work by Nambu22 and Eliashberg and Schrieffer incor­

porated the sophistication of retardation and lifetime effects which more 

adequately and quantitatively described the basic interactions. 

1.4 SUPERCONDUCTIVE TUNNELING: 

One of the natural consequences of the B.C.S. description of a 

superconductor was the existance of an energy gap for quasiparticle 

. . f G. h h . f ht he pioneer experiments iaever t at t existence t 

excitations from the superconducting ground state. Indirect evidence of 

14this gap had been accumulated for several years, but it was not until 

25 o e o e gap was 

conclusively confirmed and found to agree very well with the predictions 
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of B.C.S. By causing electrons to tunnel from a normal metal thin film, 

through an insulating oxide, into a thin-film superconductor, ~iacver was 

able to measure very accurately, from the current-voltage characteristics 

of such a device, the energy gap of the superconductor in question. 

This breakthrough inspired many experiments on a wide range of 

supcrconductive materials, to measure energy gaps and compare these with 

the predicted B.C.S. values. It was Giaever et a1 26 who first noticed 

slight deviations from the B.C.S. predicted excitation spectrum in lead. 

These deviations were more extensively investigated by Rowell, Anderson 

and Thomas 27 and it was noted that there was a close correlation between 

these deviations and the van Hove critical points in the phonon density 

of states as determined by inelastic neutron scattering data 28 A notc­

29. . f h d . . . f d . ffworthy descr1pt1on o t ese ev1at1ons - in terms o amping e ects 

and retardation in systems 	with strong electron-phonon coupling lead to 

30 an inversion of this method , whereby using data obtained from a tunneling 

experiment, a calculation was made of the product function a 2 {w)F(w) 

where F(w) = phonon density of states 

a 2 (w) = electron-phonon coupling function 

This calculation opened the possibility of using this tunneling technique 

as a valuable tool in phonon spectroscopy. 

1.5 SCOPE OF THESIS: 

It is hoped that this Thesis will bring an experimentalist closer 

to an understanding of the fundamental theoretical concepts in the field 

of superconductivity. Where the derivations are tedious and void of any 
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physical insight results are simply quoted. 

Chapter II provides a simple description of electrons in solids, 

of lattice vibrations, and how these interact. 

Chapter III is a brief outline of the B.C.S. theory of super­

conductivity mainly as it is applied to the description of the energy gap. 

The fundamental concepts are discussed at the expense of rigour. 

In the next Chapter, a description of how one incorporates lifetime 

effects into the electron-phonon-electron interaction is outlined and 

the very important results of this incorporation are stressed. 

In Chapter V, tunneling theory is discussed as it is applied to 

electrons tunneling between superconductors, and it is shown how one can, 

by employing this experimental technique, extract information about the 

energy gap, as well as the phonon density of states. 

The appara~us used in the experimental portion of this Thesis is 

described in Chapter VI. Only where the techniques differ from standard ones, 

or are new, is any attempt made to describe the systems in any detail. 

Appropriate references are cited for situations where the methods are 

indeed standard. 

In Chapter VII, results of calculations of a 2 (w)F(w) for sodium, 

potassium, aluminum and selected alloys of the thallium-lead-bismuth alloy 

system are reported and the predicted superconducting nature of these 

materials, derived from these calculations is discussed. Tunneling 

experiments on these alloys are also reported and the comparison of the 

results of predictions and experiments is striking. The validity of the 

tunneling method as a spectroscopic tool to probe phonon densities of 

states is outlined and its limitations are pointed· out. 
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Finally, in an Appendix, an outline of some of the calculations 

performed is presented and the theory behind such calculations is 

described. 



CHAPTER II 

ELECTRONS AND PHONONS 

In order to gain insight into any physical phenomenon, it is first 

necessary to study, in some detail, the underlying constituents of that 

phenomenon, and the interaction of these constituents. Only then can one 

acquire any knowledge or understanding of the phenomenon and develop 

predictions of a reliable nature. 

Such is the case of superconductivity. In order to understand 

and explain many of the properties associated with a superconductor, we 

must critically examine the mechanisms responsible for these characteris­

16tics. From the isotope effect15 , , and from electron tunneling experi­

27 29 ' 30 , 1· t . 11 b 1. d th t 1 t . . 1ment s , is now genera y e 1eve a , at eas in s1mp e 

metals, the basic mechanism responsible for the superconducting state is 

the electron-phonon interaction. Hence, it is essential, before one 

investigates the properties and characteristics of a superconductor, that 

one first consider the "bare' 1 constituents of this effect and how they 

interact to produce the macroscopic result. 

2.1 BARE PHONONS: 

Let us consider ·a three dimensional lattice which contains N 

atoms, the equilibrium position of the 1th atom in that lattice given by 

R(~). Suppose that the excursion of that atom from its equilibrium 

10 
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position is given by u(1) such that the actual position of the 1th atom 

is given by: 

------(2-1) 


and that the interaction between two atoms 1 and 1' is given by 

V(r(1) - ~(1') ) 

We can very simply describe the Hamiltonian of such a system as the sum 

of the kinetic energy of the atoms and the potential energy summed over 

all combinations of atoms. ,' 

N 	 N N E2 (1) 	 1
H = 2: + 2: v(!(1) - _r(1 ') )

2M 	 2
1=1 	 1,1' --(2-2) 

1-# 9, ' 

In all of this discussion it is assumed that the primitive unit cell of 

the lattice contains only one atom. Using a Taylor expansion, this 

potential term can be expanded about the _equilibrium point of the ion 

positions to obtain to second order 

v = v + 2: av u (1) + 2: ua(t)us(1') + 
0 la aua (1) a 

H'ae 
------(2-3) 


where the summations are over atomic positions and over the three directions 

a = 1, 2, 3. 

In truncating this expansion at second order we are making the so-

called harmonic approximation. In order to describe effects such as 

thermal expansion it is necessary to retain more terms, but for our 
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purposes the harmonic approximation is adequate. Since we arc near the 

equilibrium point R(~), the second term in this expansion goes to zero 

and the constant term V is unimportant in this context. 
0 

In the harmonic approximation, the classical equation of motion 

for the t'th ion is given by: 

d 2u (R..) 
- M a = r ------(2-4) 

dt 2 R,' f3 

where u (t) is the a-direction component of the excursion from equilibriuma 

of the 1th ion and ~aa(U') is the force in the a th direction on this ion 

due to a unit displacement of the 1,th ion in the B direction: 

~as (t,.t') 
------(2-5) 

Clearly, from the definition of these force tensors: 

= ~Sa ( 1 ' ' .t) ------(2-6) 

Also, by the symmetry of the lattice, we expect: 

~as (.t,.t') cI>aS (.t-.t', O) ------(2-7) 

From eqn. (2-4), we see that the motion of any ion in the system 

is coupled to the motion of every other ion in the system. By using a 

standard mechanical technique of obtaining the normal co-ordinates of a 

system with 3N degrees of freedom, these equations can be decoupled by a 



13 

transformation to these normal co-ordinates Q(~, A). This kth normal mode 

has phonon frequency w(~, A) and polarization£(~, A), where to get all 

possible solutions it is sufficient to restrict k to the first Brillouin 

zone, and Ais a branch index. 

We can write a solution fo'r u (t) to satisfy equation (2-4) in 
a 

the form 

= 1 u (t) 	 Q(!:_,A) !a(!:_, A) e i !:_' ~(~)
1a (MN)~ 	 ------(2-8a) 

while 	the momentum conjugate may be expressed in the form: 

p (R.)
·a 

------(2-8b) 

where p(~, A) is the momentum conjugate of Q(~, A). 

The justification of such a transformation into normal co-ordinates 

now becomes apparent, for if we now substitute our solution (2-8a) into 

the equation of motion (2-4), we can obtain an expression for the 

Hamiltonian of such a system, in terms of these new co-ordinates, in a 

very simplified form. The Hamiltonian (2-2) can now be written as: 

Q+ (Js , A) Q(]$,A )+ 
p (1$, 	 A)p(J$, A) + 


2 
 2 
------(2- 9) 


where 

and 



as may be deduced from the cone.ii tions that u ( R.) and P ( 9,) be real. 
a a 

This llamiltonian is now in the very familiar form which describes 

a harmonic oscillator field as decomposed into independent normal modes. 

Because this liamiltonian represents a collection of harmonic uncoupled 

oscillators, we can quantize the system by imposing the quantization con­

31dition for a harmonic oscillator. Following regular procedures , we 

thus require that 

[P cR.), u u •)] = n/ i ou, 

and [P ( t), p( R.' )] = ~ ( R.), u (R.' )] = 0 

---:---(2-10) 

Hence it follows from (2- 8) that: 

[Pc~, A), QC~',>.)]= n/~ okk' 

[pC~, ).) , p(~', A)] = [QC~, A), QC~', A)] = 0 
--------(2-11) 

Finally, in order to make the notation workable, we make one more 

transformation to an operator notation that will serve to create or 

annihilate these quantized lattice vibrations Cphonons). This transfor­

mation is written in the form: 

k A) =(ttw(kA)~ !:z i aC-~>.) )p C_, . 2 / 
------C2- 12a) 

Q(.15_, A) =(2..,(~A))~ (a(.15_, A)+ a•(-.15_, 	 A) 

------c 2- l 2b) 
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where these new operators a + 
(~, A) and a(~, A) act to create or destroy 

a phonon of wave vector ~ and energy tlw. 

The Hamiltonian of the system can now be wri ttcn in the form.: 

H = E nw(~, A) a+c~' Al a c~' ). ) + _21 I 
kA 

------(2-13) 

+where we can look upon the product a (~, ).)a(~, ).) as simply a number 

operator determining the number of phonons of wave vector k in the A branch 

of energy ~w(~_, A) we have in the system. The } term is a manifestation 

of the zero point energy--a concept very familiar in simple harmonic 

oscillator theory. 

2.2 BARE ELECTRONS AND THE ELECTRON PHONON INTERACTION: 

Having considered the system of phonons, it is now necessary to 

consider the other constituent of the electron-phonon interaction, namely 

the electrons. 

The common procedure employed here is to consider a system of 

electrons in a lattice of ions all at their equilibrium positions. The 

kinetic energy of the electron ·is combined with the coulomb potential of 

the electron-ion system and the system is expressed in terms of Bloch 

waves for a single electron moving in a periodic potential. 

Using the formalism of second quantization to treat the conduction 

electrons, we can represent the electronic part of the total Hamiltonian 

of the system as: 

EH e.t = ------(2-14)ks 
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where c\~.s and els act to create and annihilate electrons in the Bloch 

state k of energy £k with spin s. These opcrators 1 satisfy the Fermi 

anti commutation relations 

+ 
={Cks' C k's' } ~~',ss' 

------(2-15)
and 

+ + 
{Cks' ck's'} = {cks ' c k's'} = 0 

Now that we are in a position to write down the Hamiltonian for 

the electrons in a system as well as for the phonons in a system, we must 

consider the manner in which these two excitations in a solid are coupled 

together. Let us recapitulate and consider the interaction of free 

electrons with the ions, and denote by W(R(i) - r(i)) the interaction 

energy between the ith electron at position R(i) and the 1th ion at r(i). 

The contribution to the Hamiltonian can be written in the form: 

W(R.)I w (B(i) - ~(1) ) = I 
-1

H i 

------(2-16) 

where W(~) = 

is the electron-ion interaction. But in second quantization notation, a 

sum of one bo9y electron operators I f(B(i) ) is transformed into: 
i 

= I < E.' I f I I:> c•n'o CT'lCl 
pp 'C1 .L i.._­
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Hence the contribution of (2-16) to the total ll amilton i an becomes 

w I k > ---(2-17) 

Next, we factor out the matrix element of the electron-ion potential: 

i~.~ 3 

< ~ + g_ I w I~ > = E w(R - r(!) ) e d R 


1 - ­
---(2-18) 

Interchanging the sum over 1 and the integration, and in the !,th 

term carrying out a linear transformation from R - ~(!) to i_', we obtain: 

where we now define; 

S(g_) 1 ------(2-19)= N ~ 

as the structure factor, while the matrix element . <k + .9.. lw I~> is the 

pseudopotential form factor33 • · Hence we may write the electron-ion 

Hamiltonian as: 

------(2-20) 

Substituting our expression for the excursion of an ion from its equili­

brium !_(!) = ~(~) + ~(!) into the expression for the structure factor 

(2-19) and expanding the exponential to first order, S(g_) becomes: 

sCg)'= 1 
N 
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When inserted l>ack into the llamiltonian (2-20) the first term gives the 

crystal potential for the perfect lattice at its equilibrium position. 

The second term gives the electron phonon interaction: 

H 
ep 

1 
N 

--(2-21) 

To further reduce (2-21) it is convenient to substitute the solution for 

~(t) from equation (2-Sa) namely; 

. 0
1 ik.R(t)

e-­~(t) = ~ 
(MN) 2 

where the sum over k extends over the first Brillouin zone and M is the 

ion mass. Performing this substitution yields; 

1 
QC_k•, ~q c-in ._d_k, A.l) <_k•n Iwl_k> x 6 c• cII = 

cp ~ .:i · .:i ~· -g,isn _t+g__a ko 

---(2-22) 

where we have used the fact that the sum 

1 
N \' -n, K ------(2-23)- ~ 11 

where K is a reciprocal lattice vector. n 

Using the properties of a delta function, the sum over k' can be 

carried out in (2-22) to yield 

H = 1 Q(~, A.)(-i.9._•£(_g_A))X < _t+.9._lwl~ C+ Cep _t+p ~arMN 
------(2-24) 



where in both the normal co-ordinate Q and the polarization vector £ 

terms, q is to be read as reduced to the first Brillouin zone. Finally, 

we use the transformation of the normal co-ordinates into phonon creation 

and annihilation operators a+(~,A) a(~, A) from equation (2-12b), giving 

us; 

------(2-25) 

where the electron-phonon coupling term g is given by: 

L 

g.!5.+s.,.!5_>. = -i Cw(~A)M) ,, 9..· £(9._, A) 
------(2-26) 

Physically, we see that the qth normal mode of (2-25) gives rise 
I 

to processes in which a phonon ~ is absorbed or a phonon -~ is emitted 

and the momentum transfer to the electron is given by K + n where K -n ..::.1. -n 

is a reciprocal lattice vector. 

For the type of scattering (almost elastic from the electron 

energy point of view), it is clear that the pseudopotential form factor 

<~+g_ Iw I~> in (2-26) is needed only for both ~ and ~+~ on the Fermi 

surface. Such form factors have been determined in the one orthogonal 

33plane wave {o.p.w) approximation by Harrison • In this work, we shall 

not in fact make use of the o.p.w. form factors, but employ instead the 

Heine Abarenkov form34 as tabulated by Harrison33 , which is expected to 

be somewhat more reliable--since it is derived somewhat from experimental 

data rather than worked out entirely from first principles. 
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2.3 TllE ELECTRON-PHONON-ELECTRON INTERACTION: 

In anticipation of the basic interaction causing the transition 

to the superconducting state, let us now briefly consider the electron-

electron interaction as mediated by a phonon. Since the interaction 

between electrons and phonons is so non-linear, we expect that any dis­

turbance in the electrons will alter the distribution of the phonons, and 

this in turn will affect the distribution of electrons. Conscquently,we 

can look upon this interaction as an electron-electron interaction simply 

mediated by the phonons. This problem was studied in detail by 

35Frohlich assuming the interaction to be instantaneous (i.e. the 

electrons respond instantaneously to a shift in their distributions). 

Although it turns out to be an elegant and more simple problem to write 

the theory of superconductivity in terms of an instantaneous reaction, in 

truth due to the relatively low velocity of a phonon, retardation must be 

considered. This will be outlined in Chapter IV. Nevertheless, the 

36result obtained by Frohlich, and later modified by Bardeen and Pines is 

of great interest physically and was the ·inspiration for the BCS theory. 

FrBhlich considered the interaction 
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and calculated this new interaction between electrons to be of the form; 

* 
1 g k' ,k'+Q,A gk,~+q,AhW(gA)v = 2 l: 

1s_,~·~ (£!<._+s. - £k) 2 - ("hw(qA) ) 2 >.aa' 
------(2-27) 

where g is the coupling term defined by equation (2-26), and Ek is the 

energy of the ' Bloch state ~' as contained in equation (2-14). 

Probably the most significant contribution of all this work to 

the theory of superconductivity is the recognition of the fact that in 

the energy range 

Ie: ck I < hw(g_, A)~ + !l ­

this interaction is attractive. licnce, in a certain small energy region 

about the Fermi surface, the electron-phonon-electron interaction results 

in an attractive term being added to the total Hamiltonian. This 

physical result is all important in the theory of superconductivity and 

is necessary in understanding a basic model for a superconductor. 



CHAPTER III 


TllE BCS THEORY OF SUPERCONDUCTIVITY AS APPLIED 


TO THE DERIVATION OF AN ENERGY GAP 


A very strange effect seems to be unfolding. The electron-phonon 

interaction, the strength of which determines the resistivity of a 

material, appears to be the same microscopic mechanism responsible for 

this ~ransition to a state of zero resistivity. Indeed, in simple metals 

there seems to be a direct correlation between the resistivity of the 

material and its superconducting transition temperature. Those pure 

metals with high conductivities are not likely to have high superconducting 

transition temperatures if, in fact, they superconduct at all. The 

solution to this seeming contradiction will become clear i11 this Chapter 

as we study the microscopic theory as presented by Bardeen, Cooper and 

21Schrieffer , assuming the results of Frohlich. 

3.1 	 COOPER'S SINGLE PAIR PROBLEM: 

The first serious investigation of ·the microscopic mechanisms 

responsible 	for the transition to the superconducting state was performed 

20by Cooper in which he considered a single pair of electrons interacting 

via some non-retarded potential V above a Fermi sea of non-interacting 

particles. The Fermi sea serves to block the availability of some states 

to be scattered into by virtue of the Pauli principle. Cooper studied 

the scattering problem pictured in Figure 3.1 where we consider scattering 

from the state lk - k > to the state lk' - k' >. 
-, -	 22 - ) ­
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FIGURE 3.1 

SCATTERING PROBLEM CONSIDERED BY COOPER 

Using the result from the work of FrBhlich, Coop~r showed that 

if this non-retarded potential Vkk' , say, is at all attractive for 

electrons diametrically across the Fermi surface, a bound state will 

result in which the two electrons are coupled together. 

To be more explicit, in this simple two-electron problem, Cooper 

showed that the binding energy of the -k> state is given by'~-' 
w = 2w c I exp { N(~)V] - 1 ------(3-1) 

where = v for energies less than wvkk' c 

0 for energies greater than= WC 

and it is assumed that the density of states N(£k) is slowly varying in 

the interval 0 < £k < wc and may be approximated by N(O). 

In the case of strong coupling (N(O)V >> 1) 


W% N(O)Vw
c 
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and in the case of weak coupling (N(O)V << 1) 

W 'II 2wc exp ( N(~)v) 

On consideration of this Cooper problem, one immediately sees 

that a bound state exists for arbitrarily weak interactions insofar as 

they are attractive. This is an extremely important result as discovered 

by Cooper. Following this it was suggested that superconductivity could 

somehow be associated with the forming of many of these bound pairs at 

the Fermi surface. 

In actuality, there is a very great difference between this 

simple problem considered by Coopc~ and a superconductor. Fortunately, 

this difference can be simply dealt with by means of the notational 

machinery at our disposal. Contrary to Cooper's assumption of single 

pairs non-interacting with other pairs, we find that there are, on the 

average, about 106 pairs whose wavefunctions overlap with the wave­

function of any one pair. Consequently, the isolated pair cannot be 

considered and some coherence effects must be included. This, in essence 

is why, although the binding energy of any individual non-interacting 

bound pair is microscopic, in the total system the energy required to 

destroy any bound pair is macroscopic. Another way of saying this is 

that the single pair model exhibits an almost continuous spectrum above • 

the ground state, while, if one invokes the Pauli principle restrictions 

when treating interactions between pairs, a macroscopic energy gap 

above the ground state results. 
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3.2 TllE GROUND STATE OF A SUPERCONDUCTOR: 

We are now in a position to consider the ground state of a super­

conductor as introduced by BCS. It should be pointed out that in some 

respects we must display a certain ruthlessness in ignoring certain 

interactions, although their energies are comparatively high, that are 

not believed important in the transition to the superconducting state. 

As discussed above, we can form a state with lower energy by 

removing a pair of electrons from the Fermi sea, and allowing them to 

form a superposition of states above it. The next step, obvious!~. is to 

remove more than simply one pair and go to an even lower energy state. 

If we remove enough of these pairs, however, we will reach the stage 

where we can no longer treat them as individual, non-interacting pairs. 

37.d . h h .I t can be 1 by p hase-space cons1 crat1ons t at wen no current~1own is 

flowing in the superconductor, the greatest possible stability is 

achieved if the pairs· are chosen to have zero total momentum. Hence, we 

see that the resulting energy is a minimum if we choose pairs of the 

same value of total momentum (i.e. pairs ·k and-~). Exchange tends to 

reduce the pairing interaction energy so that electrons of opposite spin, 

as well as opposite momentum, arc most favourable as partners. 

In order to follow as closely as possible the theory as set out 

by BCS, we shall use the formalism of second quantization. llere the 

creation and annihilation operators for electrons in Bloch states of a 

+metal are as previously described are given by C kcr and c10 respectively. 

Furthermore, as we are considering pairs of electrons of equal and 

opposite spin and momentum it is convenient to introduce pair creation 

and annihilation operators; 
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+b+ c• 
k = c kt -H 

------(3-2) 
bk = c

-H ckt 

where we see that b+k creates a pair in the state l~t - ~+ > and bk. 

annihilates a pair in that same state. By direct substitution we attain 

the relations; 

= = 0 

= ------(3-3) 

where nkt and n-k+ are the number operators for the states kt and -k+ 

respectively. It should be emphasized here that although at first glance 

one might suspect that these pairon operators are bcson operators and obey 

Bose statistics, the factor (nk~ + n-k+) represents the Pauli principle 

restriction, disallowing pairs to be created in states already occupied 

either by other pairs or single particles. Hence, we are not considering 

a Bose gas. 

Having established the notation, we are now in a position to 

write down the Hamiltonian for the reduced problem as has been outlined, 

ignoring other interactions not altered by the transition into the super­

conducting phase. This Hamiltonian then has the form: 
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II = l: + rred 
ko kk' ------(3-4) 

It has already been stated that under certain circumstances, 

Vkk' is attractive (negative) and in this case, for the most stable 

situation, it is clear that the ground state of JI d has no pair state re 

occupied by a single electron. Hence the ground state reduced 

Hamiltonian can be written as: 

Ho = rred r 
k kk' 

------(3-5) 

The wave function for the ground state of this system is given by: 

'I' = I o > 
0 ------(3-6) 

where I 0 > is the vacuum state and uk and vk describe the relative pro­

bability of occupation of each state. vk is the amplitude probability 

that a pair state is filled, wh.ile uk is the corresponding vacancy 

amplitude. Of necessity, 

= 1 

llence this ground state wave function is just a product of all constituent 

configurations with suitable occupational probability amplitudes. 

Curiously enough, this wave function 'I' is not an eigenstate of 
0 

the number operator N , the operator for the number of particles in the . op 
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system. To insist that this wave function be an eigenstate of N in op 

changing the occupation of one pair state, we would be required to alter 

the occupation of others in order to conserve N . Since this wave function 
0 

does not have a definite number of particles, we must minimize the energy, 

subject to the constraint that the expectation value of N is N , i.e • 
. op o 

< '¥ N 'I' > = N 
0 op 0 0 

Using a Lagrangian multiplier scheme and considering H0 
red of equation 

21(3-5) it can be shown that the quantity to be minimized is, in fact; 

W= L + ------(3-7)k 

Minimizing this term we obtain for the ground state the relationships; 

Uk 
2 

= .!. . (1 + 
£k 

) ------(3-8a)
2 Ek 

Ek_2 1 
= (1 ) ·------(3-8b)vk 2 E

k 

as well as the product 

= 
------(3-9) 

where Ek is defined by 

~ 
E 2 ,.~2'k = £~ + u[ J ------(3-10) 
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This is the energy required to create an excitation in the state I ~ > in 

the superconducting state. The other parameter L\ is the "energy gan" 

parameter and it is seen to satisfy the integral equation 

='\ ------(3-11) 

which thus takes the form (from (3-9) ) 

= 

------(3-12) 

From (3-10) we see that in the superconducting case the energy required 

to create a quasiparticle in the state I ~ > differs from that of the 

norm<l1 ·material by an energy .6k. This feature wi 11 be further discussed 

in the next Section. 

This energy gap equation (3-12) is easily solved if certain 

simplifying assumptions are made. For example, if it is assumed that 

Vkk' is a simple non-retarded, ~independent potential of the fonn 

= -V 	 for £k I< we' some cut off energy
0 

= 0 outside this shell of w c 

then one finds 	that the solution of (3-12) takes the form; 

= 	 for I £k I < w c 

otherwise= 0 
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w 
where 6 = c 

0 

sinh [ N(~)V J 
0 

2w expc N(~)V J 
0 ------(3-13) 

in the weak coupling limit. 

liaving now determined the ground state of a superconductor one 

can, by substituting this result into the ground state energy equation 

(3-7) and subtracting the ground state energy of the normal phase, deter­

mine the condensation energy of a superconductor: 

1 2 2w - w = I N(O) 6 = 2 N(O)w expn s 0 c 

3.3 EXCITATIONS FROM THE GROUND STATE: 

Suppose now we consider the injection of an electron into the 

system in the state I ~t > (its mate I -~-t >being unoccupied). The 

existence of this single particle occupying I ~t > serves to block the 

participation of the pair state I kt - k-t > in the pairing interaction 

and thus the energy of the interacting pairs is increased by (sec 

equation (3-7) ); 

------(3-14) 


In blocking this state from interacting, recall, we have added a single 

particle of energy £k to the system. We must add this term to the total 
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energy change, which is now given by: 

[ 1 - 2vk 
2 .J + 

------(3-15) 

where we have used the relation (3-11), 

E vkk' uk, vk,
k' 

Substituting our values for uk and vk from equations (3-8a) and (3-8b) 

into the above we obtain the energy difference between the ground state 

and a single excitation, namely, 

2 2
£k Ak 


Excitation Energy = + = 
~Ek k 

= ------(3-16) 

Thus we see that the minimum am9unt of energy required to add a single 

particle excitation to the system is AkF ~ 6 in our approximation.
0 

This requirement is graphically illustrated in Figure 3.2 where 

a plot of Ek vs k is illustrated for both a normal material and a 

superconducting material. 
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F 


SUPERCONDUCTING NORMAL 


FIGURE 3.2 


Ek vs k PLOTS FOR A SUPERCONDUCTING AND NORMAL MATERIAL 


Here we can graphically see the difference between the supercon­

ducting and normal case. In the normal case, microscopic excitations 

above the Fermi surface are pos_sible, while in the superconducting case, 

the minimum excitation as evidenced from Figure 3.2 is seen to be the 

energy gap parameter ~o 

It should be pointed out that it is important to consider this 

E.k. vs k curve for k values less than kF. We know that since the inter­

action has caused a smoothing out of the sharp jump in the single particle 

occupation number, there is a finite probability of finding a state~<~ 

empty where in the non-interacting case this probability would be zero. 

Consequently, it is meaningful to consider the possibility of injecting 
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a single particle into a state below the Fermi surface. Jn all cases, we 

fin<l thnt the excitation energy l\ is positive. 

If, on the other hand, we were to consider a close<l system of 

particles (i.e. we can't introduce electrons from an external source), 

then from these considerations we sec that the minimum energy required 

to create an excitation from the ground state is 2A ; A to remove the 
I 0 0 

electron from a bound pair state and another 6 to place it into a single
0 

particle state. Alternatively, one can look upon tl1is process as the 

production of two single particle states and consequently the minimum 

energy required is 260 • . 

These considerations are important as we shall see in studying 

the process of single-particle tunneling across an insulating barrier 

between two superconductors. The process can be considered as the 

removal and injection of electrons in a superconductor. 

These excited states can be treated in a neat shorthand notation 

if we judiciously choose new operators from the previously chosen 

Cktc-k~ and c•ktc•_k~ which annihilate and create pairs. As was pointed 

38 39 0

1 . b d v 1 . f f d .out by Bogo iu .ov an a at1n , J new operators are orme as given 

by 

+ + 
y = kt Uk C kt - vkc-H ------(3-17a) 

and + 
= +Y_H ukc-k+ vkckt -----~(3-17b) 

+
and we consider the operation of this new operator y k on the ground 

state wave function: · 
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+ 
y kt ' 0 > = "'kt > 

then this y 
+kt acting on the ground state creates a quasiparticle in the 

state l~t > • The components of ykt from equation (3-17a) ensure that 

the I kt> state is filled and the I -~-t >is empty. 

Similarily, we see that ykt destroys a quasiparticle in the 

state l~t >. Thus one immediately has the .results: 

+ 
'I' > = y kt 'l'kt >0 

= 'l' _H >' 0 > 

'¥ > = 0 
0 

'l' > = 0 ------(3-18)
0 

The last two of these operations are equal to zero as I 'i' > is the 
0 

vacuum state for quasiparticles. These operators obey Fermi Dirac 

statistics; 

+ 
{yk yk' '} = a ' o 

+ + 
{yk yk' '} = {y k y k' ,} = 0 

a ' cr a ' cr 

Again we can determine the quasiparticle excitation energy by evaluating 

W
k 
· = < 'k I H I 'i'k > 

to find 
wk = w 

s + Ek 

as previously shown. 
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The advantages of this transformation is that it is easier to see 

physically what happens to the system when a quasiparticlc is created. 

Consider for example, the y+kt operator of equation (3-17a). This is 

simply an ordinary creation operator C+kt of the state I kt> with 

amplitude corresponding to the probability of that state originally being 

empty, and a normal annihilation operator c_k+ of the state I -~-t > with 

amplitude corresponding to the probability of that state originally being 

filled. The combination of these two operations makes the state I ~t > 

certainly filled and the state I -~-t > certainly empty. llcnce we can say 

that the operator y +kt certainly creates a quasiparticle in the state 

I~+ >. 



CHAPTER IV 


FIELD THEORETIC TREATI-1ENT OF TIME 

RETARDED INTERACTIONS 

We are now familiar with the basic interactions and concepts 

determining the phenomenon of superconductivity. However, in this BCS 

treatment of a superconductor, little is really known about the elcctron­

pl1onon-electron interaction Vkk' and in fact, the crudest solution 

possible Vkk' = V was used originally. Even with this simple approach,
0 

howcver,surprisingly good agreement and accurate predictions resulted. 

In real metals, we cannot treat the superconducting state as resulting 

from unretarded interactions and undamped quasiparticles of the normal 

state. Retardation and damping, we shall see, play important roles in 

the description of a superconductor. 

In ·this Chapter the techniques. used to describe these effects are 

outlined and the application of these techniques to explain certain 

anomalous behaviour of lead is presented. W~ shall see, in fact, that 

because of these retardation effects, interesting results can be extracted 

concerning the phonon density of states. 

4. 1 TWO COMPONENT NAMBU FORMALISM: 

In the Hartree Pock approximation, taking ·into account all the 

interaction terms so far discussed, we find that we can write a modified 

zero order Hamiltonian: 
36 
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fII = H + llllF + H ------(4-1)
0 0 4> 

where 
H = free electron Hamiltonian 

0 

1 = llartree and Fock terms\ ·IF 

a pairing termH<P = 
~ + + 

= + hermitian conjugate}E {<P kcktc-H 
k 

We sec now, however, that the Hamiltonian is no longer a one-

particle Hamiltonian if this pairing term is added. This difficulty was 

overcome by Nambu40 , and independently with a similar treatment by 
41 .

Gor'kov , where a two component spinor field was introduced, 

= 

and 
+ + 

(C kt C_H) ------(4-2)
"' k 

where C +kt and Ckt are the usual creation and annihilation operators. 

Then, from these definitions, and equations (2~15) we have the usual 

anticommutation relations in matrix form; 

= 

where 1 is the 2 x 2 unity ~atrix. 
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Using this redefinition of terms, we can. now more conveniently 

write the modified zero-order Hami 1tonian ·JI ' as: 
0 

H ' = I: I: 
0 

k k 
------(4-3) 

where lk = sum of free electron energy and Hartree Fock correction 

= 

and T. = Pauli spin matrices 
1 

= c_:) 
------(4-4) 

The use of this convenient formalism enables one to express the 

system in terms of single, four-componc11t ~rcen's functions. More 

explicitly, we define this four-component Green's function matrix as: 

0 > 

------(4-5) 

iH 't 
0where I 0 > is the ground state for N electrons and iJ>k(t) = e 

-iH 't o 
0 T is the Wick time ordering operator. 

Parenthetically, a few words could perhaps be added at this point 

about the physical significance of the Green's function approach. From 

equation~~), we can see that we are simply taking the inner product of 

a state k at time t = 0 with that time evolved state at a later time t. 



llcncc, squaring this term simply gives us, (having injected a p<Jrticlc 

into a state k at time t = 0), the prohahility of the propagator being 

in that same state after a time t. Clearly, with no damping effects (as 

in the free electron model) this probahility is always unity .and we can 

consider the spectral energy distrihution of such a Green's function as 

a cS function located at the energy of the state ui • If damping effects 
0 

are included, however, this ideal situation is not the case and there is 

a finite probability that the propagator wil 1 scatter out of the original 

state k in a time t into another state. No longer is the spectral energy 

distribution a o function, but a smeared out Lorentzian function with 

finite width owing to the finite lifetime of the particle in the k state. 

Returning to equation (4-5), we can associate the diagonal 

elements of this Green's function matrix ~. 11 and G. with normal state22 
41

propagators, while the off-diagonal elements (the Cor'kov functions ) 

are related to the amplitude of subtracting or adding a pair of particles 

to the system without creating excitations. In Green's function formal­

ism, it is often convenient to Fourier transform these functions into w 

space and work in terms of thes.e energy propagators. For the non-interacting 

system, we can write the true free electron Green's function in w space 

in the Nambu notation as a 2 x 2 matrix, namely; 

G (k w) = 
0 ­

------(4-6) 

where iO+ is an incremental distance in the i direction. 



If we now write the irrcducihlc self-energy for a propa gator as 

~(~, w) , which is n~ain a 2x2 matrix, the most general form that this 

self-energy can take is of the form 

= [l - Z(~, w)] w(l) + 


------(4-7) 


where Z(~ w) is a renormalization function for the free electron with a 

real and imaginary part~ 

It should be noted that $(~ w) in this general case need not be 

real. In fact, the imaginary part of this function contributes to the 

damping rate of the quasiparticlcs. 

Using Dyson's equation42 
; 

G
-1 (!_ w) = G -l(k w) 1:(~ w)

0 ­

------(4-8) 

which relates the non-interacting fireen's function to the interacting 

Green's function via this self-energy function, and our general expression 

for the self-energy from equation (4-7), we have the matrix solution for 

the general Green's function: 

G(~ w) = 
2 

+ 1·o+£ (~ w) 
------(4-8a) 



41 

Using this up to now general approach, one now uses a self-

consistent perturhativc approach to determine these functions ~ and Z. 

i.e. one expands r(Js_w) to a given or prescribed order in terms of the 

propagators G(~w) which themselves include this self-energy r.(~CJl) to be 

calculated. 

I t has been sh own hy n ~ t at expan 1ng to owes or er in·u1· ~da1 43 h d · 1 t d · 

phonon and coulomb propagators will treat the electron-phonon interaction 

t., -2exactly to order (m/M) ' ~ 10 where m = electron mass M = ion mass. 

Within this approximation to first order, utilizing the familiar 

rules for interpreting diagrams, one obtains for this self-energy term 

dw' 
+ v (k-k', w-w') } c-­

2lT ------(4-9) 

Where v (k-k', w-w') is (I scrcc_ncd coulomh potential between electrons,
c-­

1 gkk'). I· i.s the electron, phonon coupling term for the A,th phonon branch 

as defined in e~uation (2-26), and DA(:i_, £) is the Green's function for 

the phonon propagator. Denoting the energy of the qAth phonon by w(QA) 

to zeroth order DA(n£) is given by 

-~-~(ClA)DA Cu. £) = 
. £ 

2 
- w 

2
(g_).) + 1·o• 

---~--(4-10) 



This set of integral equations now spcc:i fies the supcrconductj np, 

state in terms of the phonon spectrum. r1orc cxpl ·icit1y, rcc~llin.r. from 

c~uation (4-1) that we originally associ~te<l the pairing energy term with 

the function <P(~w), a gap function t:.(~w) can now he defined such that; 

6(~ w) = qi(~ w)/ Z(~ w) 
------(4-11) 

which, it turns out, is simply an energy dependent generalization of the 

BCS energy gap of c~uation (3-12). In particular, the energy gap in the 

quasi-particle excitation spectrum is obtained from the solution of this 

energy dependent gap at 6 • i.c. 6(6 ) = 6 
0 0 0 

. 24 44After very involved but not unknown manipulative techniques ' 

and after comparison and equating of coefficients in equation (4-7), 

these four dimensional equations can be reduced to a pair of coupled, one 

dimensional integral equations involving an energy de11endent gar> function 
. 23 

6 (w) and the renormalization function Z(h.i) of the form . 

w c 6 (w') 
N(0) )

6 (w) = dw' Re [K (~')- N(O)u] 
Z(w) J [ .(w? - k ) 

+ c 
t:. (6) t:. 2 (w r) ) ). 

0 

------(4-12) 

w' ) iJdw' Re _ (wpi ')_--r;; [KII - Z(w) I w = 
{ (w' 2 - 6

2 (w') ) i 
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where w c is a cut off in energy ~ l0111fH'.BYE where the phonon contribution 

to this pair of cciuations has converged and further limits would not 

result in a change in this portion of the contribution. tJnfortunatcly, 

this rapid convergence is not the case for t11c electron-electron repulsion 

vc, a.s this term does not decrease rapidly for w > wDEBYE. In order to 

circumvent this problem, an effective "pseudopotcntial" u is defined to 
c 

compensate for this region. outside wc not considered. This corrected 

potential me~ho<l is an approximate method and still open to improvement. 

It has been shown45 that this pscudopotential term can he given 

~pproximately by: 

EF 
u = Vc I 1 + N(0) Vc .e.n ( -- ) ------(4-13)

c WC 

where 	 = Fermi energyEF 

v = spherical 	average of v c 	 c 

N(O) = 	 density of electron states at 
the rcrmi surfnee 

The kernels K ± (w, w') in equation (4-12) are related to the contribution 

from· the phonons to these equations and are defined by; 

co 

K ± (W, 	 WI) = J dv a). 
2 

(v).F). (v) 
1 - ± 

iO+ 
0 	

[w. 1 

iO... J+ 	w + v + w' - w + v ­

------(4-14) 

·where the product function 

. 2 
I gkk' ,). I o (v - w(g_, ).) 

------(4-15) 



In the above, the integral over momentum transfer~= ~ - ~' is performed 

throughout a sphere of radius 2kF (twice the Fermi momentum). This is 

determined by assuming a spherical Fermi surface (free electron model) 

and hence the maximum allowed q - transfer is the diameter of the Fermi 

sphere. It is also assumed that the electron-phonon coupling term 

gkk,, A depends only on g_ (local approximation). These approximations 

appear to be sufficiently accurate for the work reported here. It is, 

in fact, possible to write a more general form for a~(v)FA(v) independent 

of these assumptions, namely 

2 

d2k 1 lgkk',).-1
f d2k f 6 (v - w(~-~', ")3

(2n) VF 
SF SF2 

ma). (v) FA (v) 

------(4-16) 


where the two integrals in k and k' are taken over the Fermi surface SF 

and vF is the Fermi velocity. Equation (4-16) ,will reduce to (4-15) in 

the appropriate limit. 

Clearly, a summation over all . possible phonon branches yields: 

a 2 (v)F(v) = r a). 
2 

(v) F). (v) ------(4-17) 
). 

which simply describes all possible scatterings due to phonons of energy 

v of a particular· electron on the Fermi surface, to an arbitrary state on 

SF averaged over all electrons at the Fermi surface, 



Another way of saying this is that given an interacting Fermi 

surface, this function describes all possible scatterings 

This quantity a 2 (v)F(v) is of central importance to the phenomenon 

of superconductivity, as may be deduced from reflections as to the 

significance of equation (4-12). This equation tells us that this term, 

along with the electron-electron pseudopotential u of equation (4-13) is c 

the determining factor for the onset of superconductivity in a material. 

4.3 NUMERICAL SOLUTIONS OF THE ~AP EQUATIONS:- ·- - -­
Numerical solutions of these gap equations as applied to lead 

were first obtained by Schrieffer et a1 29 who chose a phonon density of 

states distribution to roughly fit deviations from the BCS predicted 

electron tunneling curves of Rowell et ai 27 
. The chosen F(w) consisted 

of two Lorentzian functions, one centered at 4.4 mcV with a half width of 

0.75 meV and the other centered at 8.5 meV with a half width of 0.5 meV, 

As little was known ahm1t the electron-phonon coupling parameter a 2 (w), 

it was assumed to be a constant in energy an~ was 'adjusted such that the 

solution to these gap equations. yielded 6(6 ) = 1.35 meV - the experi­
0 

mentally observed value of the lead energy gap. From previous considera­
. 45 . . 46 

tions of Bogoliubov et al and Morel and Anderson , N(O)uc was 

estimated to be: 

N(O)u % .0.11 . c 

This ide~tical calculation has been repeated by the author using 

an iterative technique, commencing with ·the very crude estimate 

~(w) = ~o = 1.35 meV. Convergence to a stable solution occured in 



FIGURE 4.1 

Real (solid line) and imaginary (dotted line) parts of ~(w) 

from the solution of the F.liashherg gap equations for the 

model ~2 (w)F(w) of Schrieffer ct .a1 29 N(O)u = 0.11 c 
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approximately eight iterations. This solution, identical to that as 

originally solved by Schrieffer et a1 29 is illustrated in Figure 4.1. 

The real part of A(w) = A1(w) is the solid line curve while the imaginary 

part - A2(w) is represented by the dotted-line curve. 

It is interesting to note a peak in the real part ~1 (w) at the 

points w= A + wt and w = /). + w where wt and w1 are the chosen trans­
0 0 t 

verse and longitudinal peak points in the phonon density of states F(w). 

This peaking in A(w) at these points indicates some sort of resonance 

phenomenom in the phonon con.tribution to these gap equations. It should 

also be noted that the imaginary part A2(w) is small until w approaches 

a certain critical threshold for the emission of transverse phonons at 

which point (6 +wt) there is a sharp rise in 62(w). There is a similar 
0 

sharp rise in the region 6 + wt, indicating a higher probability of 
0 

longitudinal phonon emission. This finite imaginary part 62(w), being of 

the same order as the real part A1(w) indicates clearly that there is a 

strong coupling of the electrons to the phonons iri lead. This means that 

for given electron energies there is a high probability for phonon 

emission and hence a short life.time for certain states~ The fact that 

this imaginary part is comparable to the real part suggests that at 

least in lead, the effect of the short lifetime is of major importance. 



CHAPTER V 


ELECTRON TUNNELING IN SUPERCONDUCTORS 

Electron penetration through a region that is classically not 

allowed is now well documented by experimental evidence~ This non- · 

classical phenomenon was first applied to a theory describing a particle 

decay47 of radioactive nuclides below the expected threshold level. 

Later, Fowler and Nordheim48 applied the tunneling phenomenon to a theory 

of field emission of electrons from metallic surfaces and · developed the 

fundamental field emission equation named after them. 

The application of this phenomenon to describe current flow 

through an oxide between two metals (more explicitly, superconductors) 

will be described in this Chapter. In addition, it will be shown that, 

using this technique certain information about the superconductors used 

can be extracted. 

5.1 TUNNELING PROBABILITY: 

To be specific, we are interested in the tunneling of electrons 

from one thin metal film to another through an insulating barrier whose 

thickness is of the ·order of % 20 A0 
• · It should be emphasized that the 

quotation of 20 A0 is quite an arbitrary figure as this thickness gives 

reasonable agreement when inserted into the tunneling equations. No 

conclusive evidence as to the thickness of these oxides used in these 

48 




FlfiURE 5.1 

Model of a tunnel junction as a finite potential barrier 

between two metals. 
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investigations has been reported. 

This type of system, a metal-insulator-metal sandwich, can he 

schematically represented by a well of electrons on either side of a 

high potential barrier, as; illustrated in Figure 5.1, In this Figure: 

v = applied voltage across the barrier 

e = electron charge 

1 


EF . and EF 
2 = 	the Fermi energies associated with metals 


1 and 2 


cf> (x) = the barrier height as a function of x 

The standard text book solution31 of this tunneling probr~m, assuming 

that the tunneling probability is small, tells us that the transmission 

probability is given by: 

. 116Ex (4>(x) - Ex) 	
d 

= - exp [- i I 2m [ cf> (x) - E x J ~ dx J 
f(X) 2 

0 ------(5-1) 

where E = kinetic 	energy .assoc~ated with the x component of velocity
x 

il2k 2 ' 

= x 
2m · 

d barrier thickness 

m = electron mass 

A W.K.B. treatment is used to obtain this result. For low applied bias, 

the height of the barrier is approximately a constant cf>(x) ; cf> and this 
0 

approximation allows us to simplify the tran.smission probability T to: 
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T = exp [ - ~ [ 2m ( il> - Ex) J ~ d J 
0 

------(5-2) 

It should be noted that in this treatment the barrier penetration 

is an exponentially . decaying function of the barrier thickness, and 

consequently from a practical point of view, this limits the thickness 

to a small range for usable devices which operate on this principle. 

S. 2 THE TUNNELING EQUATIONS: 

The Hamiltonian for the tunneling system was first set up by 

49Bardeen and later revised by Cohen, Falicov and Phillips50 . Using 

this formalism, one can describe the complete tunneling system by an 

effective Hamiltonian: 

------(5-3) 

where H1 and H2 are the full Hamiltonians for metals 1 and 2 in the 

absence of tunneling between them, and HT is a kind of interaction 

operator -which transfers electrons between the two metals. 

E T k C +kc + Hermitian conjugate ---(5-4) 
~ ~ _E. 

+where C k and Ck are the usual particle creation and annihilation operators 

+for metal 1 and C E. and CE. are similar operators for metal 2. TPk is the 

matrix element between state!._ in metal 1 and E. in metal 2. By a 

51straight forward analysis , it can be shown that this matrix element 

reduces approximately to: 
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T 2 = ~ I Transmission 
~ 4m 

------(5-5) 

where VF is the Fermi velocity. 

This i~cludes electrons with kinetic energies near the Fermi 
h k 2 

energy EF = F for which these tunneling matrix elements are peaked2m 

sharply for electrons moving in the x direction~ 

We are now in a position to consider the tunneling current across 

the harrier with a given applied voltage V. Assuming that there is no 

coulomb interaction between electrons of the different metals, and assum­

ing no interaction of the tunneling electron with the harticr, one can 

calculate the rate of transfer of electrons from metal 1 to metal 2 ast 

E 
ab 

------(5-6) 

where I a > and I h > are the exact eigen states of the full Hamiltonians
1 2 

of the individual metot"s, H1 and H2 respectively, with eigenvalues £ai 

and , · £ 112 

where £al and £bZ are measured relative to the ground state energies in 

1 and 2 respectively. Substituting for HT from equation (5-4) into 

equation (S-6) yields: 
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------(5-7) 

At o°K electrons cannot tunnel in the reverse direction as no states are 

available. 

Using the identity 

f dw &(cal - w) . ..I ~cb 2 + w - eV) " 

we can rearrange equation (5-7) and it can be readily s~~n that the 

current density is proportional to 

~ o ( cal - w ) ~ (cb2 + w - eV) 

-------(5-8) 

eV 

N (2)(E) N (l) (eV - E) dE -------(5-9)= I T+ T­
0 

where NT+ (Z)(E) is an effective tunneling density of states for metal 2 

given by 

N ( 2)(E) = C + .fo2 >12 e, (e:b2 - E)T+ . E. ----(5-10) 
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and 

Physically this NT+ (2
)(E) is the density of available states at energy 

E in metal 2, while NT- (~)(E) is the density of occupied states in metal 

1 with energy E. 

Clearly, this result tells us that we take an electron from 

metal 1 of energy (eV - E) measured relative to that metal, and inject 

it into metal 2 with energy E. This transition is proportional to the 

product of the density of filled states in metal 1 and th~ density of 

empty states in metal 2. 

One can conveniently picture this single particle tunneling 

process by ' invoking the dispersion curve for excitations presented in 

Chapter III, where the excitation energy is given by: 

2 J !~t>. ­= k . 

(see Figure 3.2) 

Using this model for excitations (single particle states) one 

can first consider a junction of the type metal-insulator-superconductor 

as is illustrated in Fig~re 5.2a. 

In this tunneling process, an electron of state I ~t > is e~tracted 

from below the Fermi surface of the normal metal leaving behind a hole in 

this state, and thereby creating an exc~tation energy Eal= I ·ck I· 



FJr,URE 5.2 

E vs. k plots for (a) metal~insulator-superconductor 

(b) superconductor-insulator-superconductor and the possible 

tunneling paths. 
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This electron can now be inserted into the state I ~'> or I ~· > as is 

illustrated in the Figure. For example, if the particle is deposited in 

2 2 ~I ~t > an excitation energy of Ebz = (Ek' + 6k' ) will he imparted 

to the superconductor. Of course, this event will occur only if the pair 

state l~'t - ~'~>is initially empty (the probability being uk, 2). 

Energy is conserved when le::kl + e::b2 = eV. As was mentioned previously, 

however, we see that energy will also be conserved when the quasiparticle 

is inserted into the state I kt'+ >. Consider for the moment that 6k = 
a constant 6 • Since we know that e::k' = -e::k"' a substitution of this 

0 

equality into the equations defining u~2 and vk2 (equation (3-8) ), yields 

the probabiIity of state I ~"+ - k"~ > being initially empty as 

,,2 2
Uk = Vk1 • From these occupation considerations, therefore, the pro­

bability that the tunneling process will occur, is given by: 

:: 1 

Consequently, the tunneling process is not dependent on these coherence 

terms u and v. Returning to Figure S.2a, and invoking conservation of 

energy considerations, we see that a tunneling event is not allowed 

until a threshold bias defined by 

l!i 
0v = ­e 

is applied. Of course, this analysis is at an assumed temperature of 

o°K. At finite temperatures, thermally excited quasi particles can 

tunnel below this threshold bias due to the fact that their thermal energy 
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satisfie~ this requirement. 

In a similar fashion, one can consider the superconductor-

insulator-superconductor case as illustrated in Figure S.2b. 

In this case, as before, . the particle in state I ~t >can tunnel into 

either the state l~'t >or the state l~'t >. In addition, however, one 

should note that the particle in state f't >can also tunnel to the 

same two states. Employing this fact, and an identical argument as 

before, one finds that again the coherence factors drop out and the pro­

bability of tunneling (with respect to the Pauli principle) is 

2 2
Uk + Vk = 1. 

At o°K, there will be no current flow until the threshold bias 

A + A ' 
· O 0v = 

e 

is applied. Again, finite temperature excitations will smear out this 
6 + 6 ' 

expected sharp rise in the tunnelin~ current at 0 0 , and in the e 

case of two dissimilar superconductors, a cusp in the current-voltage 

characteristic will result at the bias 

v = 
e 

5.3 ·TUNNELING DENSITY OF STATES: 

It has been shown44 , 51 , using the sophistication of the Green's 

function techniques in order to take into account lifetime effects, that 

this effective tunneling density of states defined by equation cs ~ 10) is 
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given by: 

NT:!:(w) =N(O) Re 
------(5-11) 

where Re refers to the real part component, N(O) = normal density of 

states at the Fermi surface. 

dependent gap function. In the case of a simple BCS superconductor 

where A(w) = A , we see that this solution to the tunneling density of 
0 

states reduces to 

NT± (w) = N(O) ( w :\ for w > A 
0 

/w2 - A 2-)
0 ------(5-12) 

= O for w < A 
0 

as is expected. This function, the so called semiconductor model of a 

superconductor, is illustrated in Figure 5.3. Although in some respects 
·\ 

this model is useful in interpreting tunneling data, care must be taken 

in the analysis of results. In this respect, one must always bear in 

mind that in this picture the states illustrated as being above the gap, 

and 1hence above the Fermi level, are really linear combinations of 

quasipartitles existing above and below the Fermi surface (i.e. the 

particles in Ik' > and Ik" > in our discussion of tunneling in this 

Section. 

We have previously seen that in considering retardation and life­

time effects, a complex energy dependent gap function A(w) results. 

Consequently the detailed structure must be considered in equation (S-11) 

and1we find that this density of states is no longer a simple function, 



FIGURE 5.3 

B.C.S. tunneling density of states NT(w). w is measured 

from the Fermi surface. 
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hut it displays deviations from the simple BCS form of equation (5-12). 

A solution to the gap equations (4-12) for a particular choice of 

a 2 (w)F(w) and N(O)u will ~ive us the form of this tunneling density of 
c 

states NT(w). 

ReturninR to our expression for the tunneling current flow, we 

can extract an expression for this term NT(w) in terms of our measurable 

variables I and V. In the simplest case of metal 1 in the normal state 

and metal 2 in the superconducting state, with recourse to equations 

(5:_ 9) and(S-11); ·we obtain ther result that: 

·~)( dV s NT±(eV) 


N(O) 


( di\where are the derivatives ~f the I-V characteristicand dV) N 

curves when the superconductor is in the superconducting and normal state 

respectively. Therefore a tunneling experiment (at o°K) for a metal-

insulator-superconductor system will Rive us a direct measure of this 

tunneling density of states NT(w4 and hence information about the energy 

dependence of the energy gap parameter 6(w)-- which in turn yields infor­

mation about the phonon density of states, or more explicitly about 

a (w)F(w). 

2Alternatively, if one assumes a particular form of a (w)F(w) and 

N(O)uc' the gap equations (4-12), when solved for 6(w), will give us a 

particular form for NT±(w) and consequently predict the characteristics 

of a tunneling experiment. 

2



FIGURE 5.4 

Experimental tunneling density of states NT(w) for lead 

(solid line) compared with that predicted by the model 

a2 (w)F(w) of Schrieffer et a1 29 (dotted line). 
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5.4 	 GAP SOLUTIONS FOR NT{w): 

As was outlined in Section 4.2, these gap equatjons were · 

solved29 •44 for a model F(w) closely resembling the phonon density of 

. d ans t at es 	o Pb as et ermined rom t .f d . f neutron scat er1ng experiments 52 , an 

adjustable parameter a2(w) = a = a constant. It was found that there 
0 

was striking agreement in the predicted and experimental NT±(w) values in 

view of the crude choice of F(w). The results of this comparison is 

shown in Figure 5.4 using the solution to the gap equations illustrated 

in Figure 4.1. 

The physical reason for these deviations from the simple BCS 
I 

predicted value is as follows. Upon scrutiny, one observes that there is 

a sharp deviation (drop) from the BCS expression at that point in energy 

6
0 

+ wtransverse· It has already been implied that at this point of 

high density of phonon states available for ~cattering, attenuation is 

very high. This attenuation is enhanced. by the fact that there is a high 

density of quasiparticle states available for the electron to fall into 

at the edge of the gap (the singularity at the point 6(6 ) ). Consequently,
0 

a particle injected into a material at this prescribed energy has a high 

probability of emitting a phonon wt and dropping to the state 6(6 ).
0 

Therefore, the lifetime of such particles is greatly reduced and this 

lifetime effect manifests itself as a decrease in the density of single 

particle states at these prescribed energies. For a similar reason, 

there is a large drop in this density of states at 6(6
0 

) + wlongitudina1· 

To accurately determine the positions of maximum attenuation and 

consequent sharp deviations from BCS predictions, and even more important, 
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to discern any singularities in the phonon density of states53 , it is 

. . d . ff . h 1 h . . s4convenient to again 1 . erent1ate t e current-vo tage c aracter1st1cs , 

which gives one the derivative of NT{w). The sharp deviations from BCS 

now show up as peaks (maxima and ·minima) and van Hove singularities in 

F(w), recognizable from neutron scattering experiments, have been 

l"dent1"f1"ed55 1n· th second d · t• o s.ese er1va ive p1 t 

From Figure 5.4 and this discussion, it hecomes apparent that if 

one were sufficiently knowledgeable about the product function a 
2 (w)F(w), 

one could reproduce the experimental results to a much better accuracy. 

Alternatively, with enough insight and intuition, one could, from careful 

inspection of the results of a tunneling experiment, extract the product 

function a 2(w)F(w) to a better accuracy than was achieved by Schrieffer 

29et a1 . 

A calculation of this inversion from experimental data to 

2 30 51 a {w)F(w) has been performed for lead , tin, indium, mercury and lead­

56indium alloys . An iterative procedure was employed commencing with an 

experienced guess of a2(w)F(w), solving the gap equations and then com­

paring with experiment. a2(w)F{w) was adjusted accordingly, and the 

procedure repeated. Using this type of an iterative method, an extremely 

good fit to a2(w)F(w) was calculated reproducing ~ery well the tunneling 

experiments. This function a2(w)F(w) for lead, superimposed on a plot of 

2d I vs V for an Pb-I-Pb junction, is illustrated in Figure S.S. One can 

dV2 2 
see explicitly how. d ~ varies with respect to a critical point or 

dV 
maximum in the product function a2(w)F(w). 



FIGURE S.S 

30 d21 
a2 (w)F(w) for lead · with a plo.t of - ·- vs. V for a 

dV2 
Pb-I-Pb junction. w is measured from 26 . 

0 

·. 
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CHAPTER VI 

SAMPLE PREPARATION AND EQUIPMENT 

One of the major problems facing the experimenter in the production 

of a tunnel junction suitable for the analysis of these effects in a 

superconductor, is the fabrication of an insulating barrier some tens of 

angstroms thick. Any small filaments or "shorts" of conductor through 

this insulator will be the preferred path for current transfer due to 

the relatively low probahility for tun~eling and hence a~y effects 

assoc'iated with the tunneling phenomenon will be masked by conventional 

conduction mechanisms. 

The various methods used by ' investigators to fabricate these 

tunnel junctions are outlined in this Chapter. In addition, the 

techrtiques used to study the characteristics of the devices are described 

and the advantages and disadvantages of these techniques over others 

discussed . . 

6 .1 	 .JUNCTION CONSTRUCTION: 

6~1-1 General Remarks ­

There are two major requirements to be satisfied in order that a 

reasonably uniform barrier be constructed. Firstly, the host metal onto 

which the barrier is constructed should be reasonably smooth and free 

from contamination. 

65 
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Secondly,' the barrier material must be well bonded to the host metal in 

order to pr-event cracking and breaking of the barrier during thermal 

cycling. 

Vacuµm deposited films satisfy the first criterion very we11 57 

and the naturally grown oxide of the host material appears to be the best 

candidate to fulfill the second requirement, When tunneling experiments 

have been required on bulk materials, several investigators have polished 

single crystal samples sufficiently smooth to thermally grow .a uniform 

oxide adequate for tunneling. Dietrich58 has reported successful tunnel­

ing experiments .on tantalum prepared by electropolishing the tantalum, 

subsequently followed by careful cleaning, thermally grow'ing of a thin 

59oxide, and vacuum deposition of a metal over the oxide. Zavaritskii , 

on the other hand, has produced clean, smooth surfaces of single crystal 

tin by pouring molten tin onto optically flat glass in a vacuum, and 

cooling slowly. Subsequent oxidation of these smooth surfaces and 

vacuum deposition of a metallic film has produced a junction of suitable 

thickness· for a tunneling_investigation of energy gap dependence on 

crystallographic direction. Various attempts60 following these and other 

methods have been attempted for single crystal lead but as yet have not. 

met with success. 

One of the more promising methods of preparing a tunnel junction 

into bulk material is that of the point contact method61 With this 

method an anodized point contact of Nb (or T~, At etc.) is brought into 

contact with the bulk material under study. This material has been 

previously oxidized so that on the surface there is an oxide much thicker 
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than ~s conducive for good tunnel junctions. Upon cooling of the 

system, the tip is pressed into the oxide until the penetration is 

sufficient to allow a reasonable probability for tunneling. Surprisingly 

enough, this method appears to produce useful tunnel junctions into bulk 

materials but there is some question as to surface damage due to the 

pressure of the tip causing results not indicative of the bulk material. 

Another method, attempted successfully by this author was that 

of vacuum evaporating a thin film of an insulating oxide onto an already 

existing vacuum evaporated metallic film. Having deposited a 1000 ~ 

film of lead, a layer of aluminum · oxide was deposited by the slow 

evaporation of aluminium in a 5 x 10-4 torr atmosphere of oxygen. Hsing 

a thickness calibration described in a subsequent section, it was estimated 

the thickness of this film ~ 20 ~ . The evaporation was carefully con­

trolled over ~ 10 minutes to produce this film. This method displayed a 

limited amount of success in that most of the samples prepared displayed 

filaments or "shorts" behaviour. Approximately 20% of the samples 

attempted di.splayed ·tunneling as the dominant conduction mechanism. From 

the low probability of success it was concluded that, wherever possible, 

the naturally grown oxide was the best candidate. 

Aluminum is a very likely material to serve as the base metal 

onto which the oxide is grown for two reasons. Firstly, even for 

extremely thin films, aluminum deposits in a uniform and electrically 

conducting manner. Conducting films, 75 Rthick on the average are easily 

produced . . Secondly, aluminum oxidizes in atmospheric conditions very 

rapidly to a thickness suitable for a tunneling barrier. A widely 

accepted theory of oxidation62 of aluminum assumes that the tunneling of 

..... 
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eleetrons through the oxide is necessary to further oxide growth. 

Consequently, if this process is arrested before completion of the forma­

tion of the barrier, by the addition on the surface of the oxide of a 

second metallic film, the tunneling probability is still finite and a 

usable tunnel junction will result. 

6.1-2 · Fabrication Procedure ­

A soda-glass microscope slide was ·used as a substrate onto which 

the device was constructed. The · slide previously was outgassed at about 

2000 C, under a vacuum of about 1 mm of mercury, for several hours. It 

was then washed using a commercial cleanser and carefully 
,,. 

rinsed with 

distilled water. If the distilled water formed a smooth film over the 

entire surface of the slide with no grease spots appearing, it was con­

sidered clean enough and the preparation procedure proceeded. Although 

these steps were by no means considered elaborate cleaning procedures, 

it was observ.ed that there was no serious dependence of the device 

characteristics on the degree of care taken beyond a certain minimum value 

. h 1 . . 63 . 1n t e c eans1ng operation • 

After cleaning, the substrate was placed in a vacuum-coating 

unit and the base metallic film, in the form of a long strip was 

5deposited in a vacuum of less than 1 x 10· torr. If the basis film was 

aluminum, the vacuum was broken to air for 1-2 minutes, the substrate 

was masked in such a fashion that cross strips could be deposited, and 

the evaporation procedure for the material under study was carried out. 

The final device was constructed to give a pattern of the form illustrated 

in Figure 6.1 .. 

http:observ.ed
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FIGURE 6.1 


CONFIGURATION OF METAL-INSULATOR-METAL SANDWICHES 


The larger pads at the ends of the strips were included to 

facilitate the fastening of electrical leads to the films. To achieve 

this end, indium was used as the solder to join the copper leads from 

the sample holder to these pads. Indium was used as it gives good 

electrical contacts and stands up well under thermal shocks. In addition 

indium has a low melting point (156.20 C) and because of the fragility of 

the tunnel junction, high temperatures applied in the region of the 

barrier are not advisable. Using this procedure, tunneling junctions of 

the type At-1-X have been manufactured where I refers to the insulating 

barriers, · and X refers to the superconductor under test9 

In the literature, in discussing the characteristics of junctions, 

investigators have referred to the "resistance" of the device. This is 

purely an operational term in analogy with Ohm's law where the current 

voltage characteristic is linear and a resistance can be defined. For a 

tunnel junction, the 1-V characteristic is approximately linear when the 

constituents are in the normal · state. Under these circumstances one 

could refer to the "resistance" of the junction but it should be pointed 
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out that there is no power dissipation in the tunneling barrier and no 

resistance as it is usually defined. Nevertheless, it is sometimes 

convenient to catagorize junctions by their "resistances". 

For the experiments described here it was convenient to produce 

junctions with resistances of 10 - 1000 ohms. Higher resistance junctions 

reduced tunneling currents unnecessarily and other conduction mechanisms 

began to dominate these characteristics thus masking out tunneling effects. 

. t• 64,65 h h h d . 1J osephson t unne 1 JUnc ions on t e ot er an , require ower 

resistances, typically in the order of 10-l or 10-2 ohms. 

Generally the base, or aluminum film deposited was ~ 100R The 

thickness of these films was ·monitored by a method described in a sub­

68sequent section. It has been noted66 , that for very thin films of 

aluminum, the superconducting transition temperature was enhanced, and 

0since the transition temperature of b~lk aluminum is 1.2 K, which was 

approximately the ultimate temperature of the cryostat used in this Thesis, 

these enhanced transition temperatures were imperative for our study of a 

superconductor-insulator-superconductor system. Utilizing this phenomenon, 

6 7 hsome 	 investigators· . ob d rans1tion. . temperatures of th . Anave ser.ve t in ~ 

films as high as 4.S°K. 

6.2 	 THE VACUUM COATING UNIT AND EVAPORATION TECHNIQUES: 

6.2-1 Coating Unit ­

An Edwards model 12E3 vacuum-coating unit was employed in the 

production of the thin films studied in this Thesis; · With a liquid 

nitrogen trap in· the form of a spirally wound length of } " copper tubing 
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at the throat of the diffusion nump, (to reduce backstreaming of diffusion 

pump oil and to condense water and other vapours present), a vacuum of 

-6 
~ 1 x 10 torr 	was obtainable although most evaporations were made in a 

-5 vacuum ~ 1 x 10 torr. This coating unit had a 12-inch bell jar with 

a four position rotary filament holder to allow successive evaporations with­

out breaking vacuum. · · Further, tbe substrate was masked in such a fashion 

that the mask could be changed with the aid of a mechanical access without 

breaking vacuum. This mechanical access also served both as a filament 

shutter, and as a ·device to successively feed materials to a hot filament. 

6.2-2 Film Thickness Measurements ­

Inside the coating unit very near the substrate, (and the same 

distance from the source filament as the substrate), was mounted a 6Mc/s 

A-T cut quartz crystal with gold electrodes on either face. It is well 

57known that for small changes in frequency of a quartz crystal oscillator, 

the frequency shift is a linear function of the change in mass on the 

surf~ce. Hence an oscillator circuit exi~rnal to the bell jar was 

connected to this crystal and the frequency of oscillation was monitored 

on a Hewlett Packard model 3734A digital counter so that the mass of 

material evaporated could be determined. Using a 'microbalance, slides 

were weighed before and after evaporation of various materials and, 

(utilizing figures for the bulk densities of these materials), a calibra­

tion curve of mass deposited on the substrate· (and hence . thickness, 

assuming the density) versus frequency shift of the oscillator was obtained. 



FIGURE 6.i 

Thickness vs~ frequency shift ·calibration curve for 6 Mc 

quartz crystal used to determine deposited film thickness. 
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FIGURE 6.3 

Electron micrograph of (a) 500 ~ lead film (b) 120 ~ 

aluminum film. Magnification =30,000 X. 
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Such a calibration is shown in Fi~ure 6.2 where reasonable 

linearity is observed. It should be emphasized that this calibration is 

strictly for this experimental arrangement and a different piece of 

apparatus would require a separate calibration. 

It should also be pointed out that this is a measure of the 

average thickness over a macroscopic area and in certain materials is not 

a particularly good measure of the actual thickness. Figure 6.3 

illustrates this point quite clearly in which an electron micrograph of 

a lead film evaporated onto a room temperature substrate, and measured 

as 500 ~ thick, may be compared to a micrograph of a 120 R aluminum 

film prepared in the same fashion at approximately the same rate of 

evaporation. Clearly, on this scale (magnification 30,000 x) there are 

large holes and islands on the lead film and in no way could it be con­

sidered uni form. In fact, it is quite surprisi.ng that an oxide can be 

grown on such a rugged surface uniformly enough to produce a tunnel 

. .JUnct1on69 On the other hand, the aluminum film of 120 R displays 

many · small crystallites spread in a much more uniform fashion throughout 

the film and hence thickness quotations are perhaps more meaningful. 

Thickness quotations in the literature should be carefully examined as 

to the method of measurement and the material used. 

6.2-3 Film Fabrication Techniques ­

Tungsten helical coils were used as filaments for the evaporation 

of aluminum. It has been pointed out70 that even though alloying rif the 

tungsten occurs at high temperatures. the tungsten is reprecipitated from 

http:surprisi.ng
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the melt as the aluminum evaporates and there is no significant contami­

nation in the aluminum film deposited. 

Although the vapour ~ressures of lead, bismuth and thallium, the 

three constituents of the alloy system investigated in this Thesis are 

approximately equal~ it was found that a simple evaporation of the pre­

viously prepared bulk alloy from a molybdenum . boat produced ambiguous 

results in the tunneling characteristics which could most easily be 

described as multigap behaviour--due to inhomogeneities or concentration 

gradients through the thickness of the film. This demand for a more 

reliable method for preparation of the films resulted in the utilization 

of a flash evaporation technique-evaporating tiny pellets·- of the alloy 

in such a fashion that no concentration gradient could appear through the 

film. Tiny pellets of the alloy were placed in a stainless steel tube 

approximately l" above a molyhdenum boat, and a stainless steel ramrod 

was inserted in the other end of the tube. The filament was heated far 
I 

above that temperature required to evaporate either constituent of the 

alloy and the pellets, one by one, were pushed onto the filament by the 

ramrod such that they evaporated very rapidly. Although there was con­

siderable difference in the size of these pellets, each .Pellet produced, 

on the average, approximately 20 £ of film. Hence throughout the film 

it was hoped that only small local fluctuations of concentration would 

result. This appeared to be the case as for all alloy concentrations 

considered,unambiguous current-voltage characteristics indicated good gap 

behaviour utilizing this method. The concentration of constituents of 

the film, averaged throughout the film thickness, was measured by an 
' 71 

electron microprobe and it was found that the concentrations of the 



FIGURE 6.4 

Flash evaporation arrangement. 
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constituents was within 5% of that of the bulk material. Since thallium 

was extremely toxic, rubber gloves were used at all times in the handling 

of this material. 

A schematic representation of this method is illustrated in 

Figure 6.4. 

6.3 	 ELECTRICAL CIRCUITRY: 

6.3-1 Current-Voltage Characteristics-

For energy gap measurements, a de voltage sweep circuit has been 

used. The circuit used to study these I-V characteristics is shown in 

Figure 6.Sa. The variable de bias for the junctions was ~obtained from a 

Harrison type 6200A programmable power supply which was resistance pro­

grammed by a variable external resistor included in the reference feed­

back circuit of the supply. For these experiments, a suitable voltage 

time sweep was obtained with the aid of a reversible de variable speed -­

motor and a 10-turn, lOK ohm helipot resistor, A typical sweep speed 

used in the experiments for 1-V plots was ~.1 millivolt per minute. 

Current through the sample was _monitored on the Y axis of a Moseley type 

7001AX-Y recorder and the potential developed across it was monitored on 

the X-axis. 

6.3-2 Harmonic Detection Circuit ­

As was pointed out in Chapter V, for studies of the tunneling 

density of states function, it is extremely advantageous : to investigate 

in much more detail the fine structure of the current-voltage 

characteristics. This closer scrutiny is achieved by differentiating the 



FIGURE 6.5 

(a) 	 Circuitry used to measure 1-V characteristics 

(b) 	 Circuitry used to measure derivatives of 1-V 

characteristics. 
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2 
. . 1 1 t . th t t lt . b bt · · di d d Ior1g1na p o w1 resnec o vo age 1.e. y o ain1ng ""Tf[ an ~-

av dV2 


versus V. A standard and very convenient method of obtaining these 


functions is by means of the a-c modulation or harmonic detection 


technique. 


If one applies a small amplitude sinusoidal signal v sin wt
1 

to the sample at angular frequency w, and detects the resulting current 

. through the sample at w or the first harmonic 2w, one obtained functions 

di d2I .
that are proportional to the derivatives . av and --2 respectively. 


dV 

To see this, suppose that the potential developed across the 


sample is: 

v =v0 + v.1 sin wt :: v0 + 0v 

where V is the de hias and v is the amplitude of the modulation. 
0 1 

Further suppose that one can consider the Taylor expansion of current as 

a function of voltage about the de bias point. One consequently obtains 

1 
+ 3T 

+ higher order terms 

Applying a sinusoidal function for ~V =v sin wt we obtain, after1 

regrouping and suitable .trigonometric ; substitutions. 



RO 


v 2 v 4 
1 1I (V) - I (V ) = - + --+

0 I ac • [ ------ ]
4 64 

+ cos 2wt . ( . .!_ d2I V 2 - 418 d4I V 4 
4 dV2 V 1 dV4 1 --------- )o Vo 

1 v 3 1+ sin 3w.t (- d 
3II 1 - 3842i dV3 V 

0 

+ cos 4wt (-------------- ) 

+ higher order terms. 

To first order in this expansion, we see that the fundamental frequency 

detected will be proportional to the first derivative ~~~)of the 1-V 

::~::::r::::ci:v:::::::i::a:h:0d:h:i::c:::n:e::~at::ea(d:~~)ion0:h:h:irst 

dV 

characteristic. Experimentally, in the region of the characteristic that 

is almost linear, it is observed by tuning to various harmonics of the 

fundamental, that to the accuracy of the measuring instrument it is valid 
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. to truncate each coeffici~nt after its first term. 

The circuitry used to measure these derivatives is illustrated 

in Figure 6.5b. The oscillator (General Radio model 1311A) supplies a 


di d21 .

1000 c/s or 500 c/s (depending upon whether dV or dV2 is desired) on 

.top of the de applied bias across a dropping resistor. The amplitude of 

this signal must be small as compared to the sharpness of the detail on 

the <llrve to be investigated. If this ac modulation is too high, any 

sharp structure (in this case the sharp edge of the energy gap or van 

Hove singularities) will be smeared out. The signal to be detected across 

a measuring resistor is 
) 

coupled to a Model 1034 Keithley transformer, 

f 0 72 . T b d 1000 I l 0 b/ t t 

which it is fed to a PAR lock in amplifier. The de signal from this 

final stage is then inserted into the Y axis of the X-Y recorder~ 

di 

f o11owedby a twin- narrow an c s amp 1 ier su sequen o 

For accurate recording of dV measurements, an ac probe of 

amplitude no greater than SO µ volts peak-to-peak was employed with no 

appreciable smearing of the fine structure resulting~ In the more subtle 

non-linear regions above the energy gap, due to the fact that the non­

linearities were not very pronounced, it was found that in order to 

detect any harmonics of the fundamental signal it was necessary to increase 

the amplitude of the fundamental at the possible expense of loss of the 
/

recorded fine structure. Increasing the signal to approximately 250µ V 

peak-to-peak seemed to give the best balance between these two conflicting 

problems, with no appreciable amount of smearing resulting. 

Sensitivity was not the only problem confronting this method of 

measurement as drift in the oscillator or amplifiers gave a slowly varying 

time dependent signal not inherent irt f ~he device. · Since low recorder 
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sweep speeds were cmploved in the~e experiments (1 - 2 hours per sinnlc 

trace), then such drift signals were, of necessity, required to be very 

much smaller than those changes being detected from the device, if 

accurate recordings were to be effected. 

This simple detection system is adequate for purposes of compari­

son of predicted and experimental values (as will be discussed in'· the 

next Chapter). If quantitative work (i.e. inversion of the gap equations 

using experimental results) is to be carried out, however, a more elaborate 

bridge network73 is required to balance out the large constant background 

signal. 

6.4 	 CRYOSTAT AND SAMPLE HOLDER: 

6.4-1 Cryostat ­

Most of this work was carried out in an Andonian type 3-litre 

liquid helium dewar. Temperatures down to l.l0°K were .obtained with the 

aid of an Edwards ISC 3000, 3000 litres/min rotary pump connected to a 

6-inch pumping line system. For such temperature. measurements th~ helium 

' 60 vapour pressure was measured . and conversion from vapour pressure to 
/ ' 	 . 74temperature was achieved through the t 58 scale . 

6.4-2 Sample Holder ­

It was found .that the simplest type of sample holder afforded 

4the most flexibility. Total immersion of the sample in liquid Pe at the 

end of a long thin-walled stainless steel tube allowed the samples to be 

introduced and removed from the cryostat while liquid was present. This 

allowed rapid shock cooling of the sample and permitted the examination 
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of several samples with onP. dewar-full of He 4 . By this method, one could 

very quickly decide whether a particular sample would yield useful results 

or not thus permitting a subsequent rapid change of samples to he studied. 

In addition, electrical contacts were sometimes known to come loose 

during the cooling down of the sample, (prohably due to differential 

contraction), and this quick change arrangement made immediate repairs 

possible. Also, it was found that Pb-I-Pb and Sn-I-Sn samples gave 

better tunneling characteristics if they were quickly immersed after 

preparation. If slowly cooled, the same device would develop filaments 

or shorts through the oxide duri~g the cool down. 

To minimize heat leaks, the leads to the sample 'ere 0.003 inch 

diameter copper wire with !~e~amel insulation, wound around the stainless 

steel support tube which served ·as support for the sample holder. 

6.4-3 Magnet ­

Since this sample holder was of the immersion type, and tempcra­

otures above 4.2 K were not obtainable, it was sometimes necessary,_ in 

order to measure(~~ )s I ( ~~)W parameters, (see equation (5T13)) to apply 

a magnetic field to the device to drive it into the normal state. This 
'\ 

was achieved by the insertion of a superconducting solenoid of niobium 

suspended on the sample holder in such a fashion that the device would 

be in the position of maximum .l 'field. The magnet itself was powered by a 

Harrison Lab model 520A power supply. Although normal-state studies were 

principally achieved in this manner it was convenient on occasion, however, 

to raise the temperature of the liquid helium bath to this end. 
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CHAPTER VII 


RESULTS AND DISCUSSION 


7 .1. ·F(w) and · a2 (w)F (w): . 

Having determined the influence that the phonon density of states 

has on the superconducting properties of a particular material, we are 

now in a position to calculate r(w), the phonon density of state, and 

a2 (w)F(w) the product functi.on determining superconductivity, utilizing 

the techniques outlined i.n Appendix A. In this Thesis such calculations 

have been applied in particular to the following materials, namely, Na, 

K, At, Pb, P~8T~2 , Pb.6T~4 , Pb~Tt.6 , Tt.8Bi.z and T~, Bi.,9 . The results of 

these calculations for the various materials studied are outlined in 

Figures 7-1 and 7 ~9. As will he outlined in the ~ext Section, the 

detailed shape of some of these functions is suspect due to the non-

convergence of the force constant model used to calculate them. Although 

the general shape of some of these functions may be incorrect (most pro­

bably in pure lead and high lead-concentration alloys), for bulk thermo­

dynamic properti~s and for the determination of s~perconductivity, it 

appears to be adequate. 

In each of these figures, the product function a2 (w)F(w) is 

superimposed on the phonon density of states F(w). Since the units of 

F(w) are given to be (meV)-l while those of a2 (w)F(w) are dimensionless, 

the electron-phonon ooupling function a 2 (w) has units of ener·gy (meV). 
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FIGURE 7.1 

Calculated a2 (w)F(w) (dotted line) as a function of 

phonon energy w compared with density of phonon states 

F(w) (solid line) for sodium. 
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FIGURE 7.2 

Calculated n2 (w)F(w) (dotted line) as a function of 

phonon energy w compared with the phonon density of states 

F(w) (solid line) for potassium, 
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FIGURE 7.3 

Calculated a2 (w)F(w) (dotted line) as a function of phonon 

energy w compared with the density of phonon states F(w) 

(solid line) for aluminum. 
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FIGURE 7.4 

Calculated a 2 (w)F(w) (dotted line) as a function of 

phonon energy w compare~ with the phon.on density of states 

F(w) for Tt. 9Bi. 1 • 
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FICiURE 7.5 

Calculated a2(w)F(w) (dotted line) as a function of 

phonon energy w compared to the density of phonon states 

F(w) (solid line) of T~. 8nt. 2 • 
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FI~URE 7.6 

Calculated a2(w)F(w) (dotted line) as a functiori of 

phonon energy w compared to the density of phonon states 

F(w) (solid line) in Pb. 4Tt~ 6 • 
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FIGHRE 7 ~ 7 

Calculated cx 2 {w)F{w) {dotted line) as· a function of 

phonon energy w compared with the phonon density of states 

F(w) {solid line) in Pb. 6Tt~ 4 • 
• ) 
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FIGURE 7.8 

/ 

Calculated a2 (w)P(w) (dotted line) as a function of phonon 

energy w compared with the density of phonon states F(w) 

(solid line) in Pb. 8Tt. 2. 
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FIGURE 7.9 

/' 

Calculated ~. 2 (w)F(w) (dotted !_inc) as a function of 

phonon energy w compared with the '·calculated density of 

phonon states F(w) (dotted line) in lead. 
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FICiURE 7.10 

\ 

The coupling function a2 (w) as a ftllction of phonon energy 

w for lead. 
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It should be readily observed that this product function, so important in 

the determination of superconductivity, has no more critical points than 

the original density of states F(w). Also, it should be noted that the 

original critical points in F(w) appear in exactly the same position in 

energy in a 2 (w)F(w). Hence, neglecting hand structure, no new critical 

points are generated in a~w)F(w). Therefore, in performin~ a tunneling 

experiment, the critical points that one associates with the product 

function a2(w)F(w) are, in fact the critical points of the true phonon 
. 

density of states F(w). 

In the region of low energy, in each of the cases discussed, there 

appears to be a linear relationship between a2(w)F(w) and w. This can be 

underst~od, with recourse to equation (2-26), by noting that the electron­

phonon coupling term lg!~'Al2 varies as ~ , thereby altering the w2 

dependence of F(w) to w dependence of a2 (w)F(w). In order to perhaps 

more clearly illustrate this point, the function a 2 {w) for lead, obtained 

simply by dividing a2 (w)F{w) ·by F{w) is plotted in Figure 7-10. 

Here we see that a 2 (w) is a smoothly varying function, divergent 

1as in the region of low w and slightly peaked in the region of the 
w 

longitudinal peak of F(w). 

This pe~king, which appears in all these materials to a greater 

or lesser extent in the longitudinal or high energy region, is due to 

the following reason. In the transfer of momentum .9.. from an electron to 

a phonon, there are two distinct types of processes. Firstly, there is 

the simple· or no:rJ!lal process where the total .9.. given up by the electron 

is taken up in the phonon. This process can simply be written: 

k k' = g_ 



where k and k' are the initial and final momentum states of the electron. 

There is, however, another type of process, the so-called lJmklapp 
75 

process in which some of the momentum transfer is taken up by the com­

plete crystal, and the interaction can be written: 

k k' = 9.. + ~ 

where K is a reciprocal lattice vector. In a simplified reciprocal-n 

la.ttfce, these two processes can be illustrated~ See Figure 7-11 .J 

0 


FIGURE 7-11 

MOMENTUM TRANSFER PROCESSES 

(The normal process is labeled as N and the Umklapp process as U.) 

For normal processes (in the first Brillouin zone) we see that in 

calculating the probability of transition from a k state to a k' state 

(equation ~-26)),there is a dependence on the scalar product I~, .9..1 2 
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where £ is the polarization vector of the phonon .9..· For a normal process, 

clearly I~. _g_l 2 is zero for pure transverse modes, and consequently, 

inside the first Brillouin zone where we have normal processes, and where 

phonons are approximately longitudinal or transverse, there is a very 

high .weighting of the longitudinal modes. For the contrasting case of 

Umklapp processes, we see, ·with recourse to Figure 7-11, that I~+ g_. ~_1 2 

can, under certain circumstances, be greater for transverse modes than 

longitudinal modes. On the average, for Umklapp processes, the longitu­

dinal and transverse modes will be approximately equally weighted. 

Hence, in this calculation of a2(w)F(w), where we integrate over 
~ 

a sphere of radius 2k~ to include all possible scattcrin~s, the longitu­

dinal peak will have a greater weighting than the transverse, the degree 

of which will depend upon what fraction of the sphere 2kF is in the first 

Brillouin zon~. 

This perhaps can be seen more clearly if one compares a2(w)F(w) 

for materials where 2kF just reaches outside the first zone (Na) and 
• I 

materials where the first zone is not the major volume of this sphere 

(Pb). In the former case, the peaking of the a2(w) coupling term is 

very pronounced in the longitudinal peak region, indicating that normal 

processes are the dominant scattering processes, while in the latter case, 

there is a slight peaking in the longitudinal region, indicating an 

almost equal weighting of the transverse with longitudinal modes. This 

indicates that the major portion of the scattering involves umklapp 

processes. 

Clearly then, the electron phonon coupling is much weaker with 

transverse phonons when the Fermi surface is small, than in materills 
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whose Fermi surface extends substantially beyond the first Brillouin zone. 

7. 2 VALIDITY OF BORN: · VON KARMAN. ANALYSIS FOR 

PHONONS IN LEAO .. 

As was mentioned earlier, the calculation of the n2 (w)F(w) and 

F(w) functions for Pb may be viewed with some suspicion. This calculation, 

as outlined in Appendix A is performed utilizing a Born Von Karman 76 , 

8 nearest neighbour force constant analysis. It is found, however, that 

these force constants are still fluctuating rather severely from those of 

say a 7 nearest neighbour fit. Fortunately, n2 (w)F(w) has been studied 

rather extensively using the tunneling technique and a ve·ry carefully 

determined n2 (w)F(w) has been extracted. For purposes of comparison, 

this n2 (w)F(w) relationship and the calculated F(w) are superimposed in 

Figure 7-12. The differences between these two functions~ our first com­

parison with experiment, are very large80 and the validity of both 

methods of determining these
1 
-functions must he questioned. 

The reproducibility of the tunneling results for Pb as obtained 

by many investigators is convincing enough evidence fo! the likely 

validity of the experimentally determined n2 (w)F(w) -- at least for thin 

film observations. An electron diffraction investigation of the orienta­

tion of the crystallites of Pb on a thin film indicates that there is a 

random orientation of such crystallites in such films which have thick­

nesses ~ 1500 R. Hence a tunneling experiment samples equally all 

crystallographic directions. Due to the non-convergent force constant 

model for lead, one then turns to this as a source of error. 



FIGURE 7.12 

A comparison of critical points of a2 (w)F(w) ohtained from 
3

tunneling ?dotted line) and F (w) calculated from a 

Born von Karman force constant analysis (solid line). 
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The detailed nature of the discrepancies is worth considering. 

In particular, a number of critical points are identifiable in the 

tunneling curve which occur .at the same frequencies in the calculated 

curve. The identifiable critical points are numbered in Figure 7-12. 

The points 1, 2, 3, 5, and 7 can be seen reasonably clearly in the 

tunneling curve at the same energies at which they occur in the calculated 

curve. The points 8, 10, and 11 cannot be seen in the tunneling curve 

but would '. ·probably require more resolution to be visible. On the other 
. 

hand, the points 4, 6, and 9 are in definite conflict; no trace of these 

·points appears in the tunneling ~ curve. 

All these critical point determinations by this talculation were 

located by finding the frequencies and their gradients for approximately 

170,000 points in the Brillouin zone. The co-ordinates of these critical 

points are listed in Table 7-1. One immediately sees that the critical 

points which agree in the two curves are those which occur for s_ in high 

symmetry directions. These are directly observed as extremes in the high 

d
. . 52symmetry 1spers1on curves . On the other hand, the peaks of the calcu­

· lated curve which are not in the tunneling curve occur for _g_ in off 

symmetry directions and are therefore derived from the force constant 

model. The positions of these off symmetry critical points are illustrated 

in Figures 7-13, 7-14 and 7-15. Here energy contour maps for selected 

symmetry planes on which these saddle points occur are drawn, locating 

the turnovers. 

In order to illustrate more fully the sensitivity of the force 

constant model,F(w)' has been calc~lated for a much cruder model based on 

5 nearest neighbours. The comparison of this and the 8 nearest neighbour 

MILLS MEMORIAL LIBRARY. 
McMASTER UNIVERSIT.'t 



TABLE 7-1 

The Position of the 11 Critical Points Observable in 

F(w) of Figure 7-12. The Momentum Values are in Units 

2of w Where . a is the lnterionic Distance. 
a 

CRITICAL WAVE VECTOR COMPONENTS 
POINT (in units of 2w/a) 

I' qx qy qz 

1 .sno .soo •. 000 

2 .660 .ooo .000 

3 .750 .750 .000 

4 .766 .234· .234 

5 1,000 .soo . .ooo 

6 .797 .484 .109 

7 .750 .750 .ooo 

8 .578 .578 .. ooo 

9 ,734 ,185 .185 

10 .734 .ooo .ooo 

11 ~. 500 .soo ,500 
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FIGURE 7.13 

Equi-energy contours locating critical point 9 on y = z 

plane of Brillouin zone. 
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FIGURE 7.14 

Equi-encrgy 	contours locating critical point 6 on 

3 x + y + z c plane of Brillouin zone.2 
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FIGURE 7 .15 


Equi-energy contour map locating critical point 4 on 

y = z plane of Brillouin zone. 
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calculation is illustrated in Figure 7-16. The cruder model, of course, 

represents a less successful fit to the highly structured lead dispersion 

curves in the symmetry directions. The difference between the two calcu­

lations is, however, apparent. The on-sY!"metry critical points have 

shifted slightly while the peaks generated from the off-symmetry critical 

points are comparatively much more affected. In addition, the position 

of these critical point~ in the Brillouin zone shift about as the model 

is slightly changed. 

It should also be noted trat the cruder fit represents improved 

agreement with the tunneling results. A similar effect is noted in the 

work of Bennett77 who achieves better qualitative agreement with the 

tunneling results by fitting Kubic harmonics to interpolate dispersion 

curves to off-symmetry directions. In the case of materials with less 

highly structured dispersion curves (for example the alloy PbAT~6) 28 we 

shall see that much better agreement between tunneling experiments and the 

Born von Karman calculation is achieved~ 

The conclusion thus appears to be that for highly structured 

dispersion curves in symmetry directio~s, the interpolated off-symmetry 

points are in error and the fitting of a more realistic model to lead 

dispersion curves is necessary to give a more reliable density of states 

F(w) and thus better agreement with tunneling curves. 

Neutron scattering experiments in off-symmetry directions could 

also be performed in order to locate these off-symmetry critical points. 

One can conclude from this analysis that in the case that there are long 

range forces (i.e. when the force constants do not converge over many 

neighbours) the details of the resultant phonon density of states ~1nction 



FIf;lJR E 7 • 16 

rhonon density of states F(w) for lead calculated from 

an 8 nearest neighbours model (solid line) and a 5 nearest 

neighbours model (dotted line). 
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should not be strongly trusted although it is probably adequate for 

calculating bulk thermodynamic properties. 

Another method of determining the phonon density of states is 

utilized by Stedman et a1 78 , where a mesh over the entire Brillouin zone 

is determined and neutron scattering experiments are performed for q­

vectors both in on and off symmetry directions. Employing this data, a 

judicious interpolation of energy contours between the measured points is 

performed and the density of phonon states F(w) calculated accordingly~ 

The results of such an investigation, along with the a2(w)F(w) relation­

ship from a tunneling experiment, is illustrated in Figure 7-17. The 

general features of the two curves arc encouragingly similar, but this 

method of determining F(w) represent~ a larp.e amount of work in order to 

cover the Brillouin zone with a sufficiently fine mesh. It may be noted 

that this method presents one with a formidable task, although it would 

ideally yield the correct result, and a simpler approach to the solution 

would perhaps lie in determining a more physically realistic model 

amen'able to the calculation of off-symmetry dispersion characteristics. 

The pseudopotential mcthod79 , capahle of reproduction of measured <lisper­

sion curves of the simpler materials shows promise to this end, but 

extensive refinements and concentrated effort must still he applied to 

reproduce the more ~omplicated detail in lead. 

7.3 	 SOLUTION OF GAP EQUATION: 

7.3-1 The Energy Gap ~ -0

Having now determined the function a2 (w)F(w) we are now in a 

position to make some realistic comparisons with experiment. Given 



FIGURE 7.17 

A comparison of a2 (w)F(w) obtained from tunnclinR30 (solid 

78line) and F(w) obtained by the method of Stedman et at

(do~~ed line) for lead. 
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a2 (w)F(w) we can solve directly the Eliashberg gap equations (equation 

(4-12) ) for an energy dependent energy gap 6(w). To relate this to a 

more physically meaningful quantity, we can determine this solution for 

6(6 ) (i.e. the value of the energy gap parameter at the edge of the 

energy gap 6 ). This 6 term is what is experimentally measured in the 
0 0 

course of a tunneling experiment. 

The solution to these equations is obtained in an iterative 

fashion as follows. The value of 6(6 )(or 6 ) is guessed att and inserted 
0 0 

into the equations. The set of equations is then solved from this esti­

mate, thus yielding new values for 6 and 6(w). This new solution .is in 
0 

~ 

turn reinserted into these equations and the iteration proceeds. Depending 

upon the strength of the electron-phonon coupling, error in an initial 

guess, and the degree of convergence required, the number of iterations 

needed for convergence may vary from ahout 4 to 12. In solving these 

equations care must he taken that the contribution due to the phonons has 

converged, thus including all enhancement due to the phonons. To achieve 

this end, it was found that a cut-off wc = S x (cut-off of longitudinal 

peak) was an acceptable cut-off point to choose, with all contributions 

beyond this point being negligible. The only parameter remaining is that 

determining the electron-electron repulsion N(O)u • The present knowledgec 

of this term appears to be quite limited as other investigators30 have 

used this as a variable pa!ameter to fit experimental results. This 

t 	 In most cases where the experiments had been performed before the calcu­

lations, this first guess consisted of the experimentally determined value 

of 6 , although it was found that any bad guess would converge to the same 
0 

answer. 
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c 

repulsion term, as was explained earlier, has not really converged at the 

cut-off w and an electron-electron pseudopotential must he introduced 
c 

to compensate for that part outside wc not considered in the integration. 

This was first discussed by Bogoliubov, Tolmalov and Shirkov45 and given 

approximately by; 

v cu :: 

------(7-1) 

where EF = Fermi energy 

N(O) = normal density of states at Fermi surface 
/ 

= true screened Coulomb potential at the Fermi surface. 

This term was further discussed and calculated for several materials by 

Morel and Anderson46 but again these were approximate ~olutions and some 

doubt as to the exact values still exists. 

(i) Solution for Aluminum - . 


Using this approximate solution for u and the a 2 (w)F(w) relation­
c 

ship for aluminum calculated in Section 7.1, the gap equations for 

aluminum were solved in the manner previously outlined. It was found 

that the converged splution for these equations. yielded as an energy 

83 gap 

b = .190 meV 
0 

Assum1ng t • he weak coup i.1· ng 1·im1•t ·f or supercontiuct1v1ty. . 21 , name1y, 



Flr:URE 7.18 

Comparison of the resulting a2 (w)F(w) for a choice of 
/

form factor in the range 0 to 2 PF . The solid line is 

the Heinc-Aharenkov pseudopotential form factor-- the 

dotted line a more or less arbitrary distortion to this. 
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211 
kT

0 = 3.52, 
c 

this calculated energy gap corresponds to a transition temperature, 

T = 1.2S°K c 

which is in excellent agreement with the experimentally determined bulk 

value of 1.18
0 

K.• 

The effect of different pseudopotential form factors on the 

calculation of the transition temperature is best illustrated by solving 
I' 

the gap equations from the alternative pseudopotential illustrated in 

Figure 7-18. This gives an estimated gap 

11(6 ) = .12 meV 
0 

which corresponds to a critical temperature 

T = c 

which is not in very good agreement with experimentally measured values. 
L 

The choice of pseudopotential form factor is therefore quite important 

34and in the cases where it is available the Heine-Abarenkov form , as 

~ d b H . . dtabulate y arr1son79 , 1s use . 

The real and imaginary part of the energy gap function 6(w) 

obtained in the solution of these equations for aluminum is illustrated 

in Figure 7-19. As in· 1previous discussions, the real part 6(w) has peaks 

suggestive of resonances at the points of peaks in a2(w)F(w) with the 



FIGURE 7.19 

/ 

Real (solid line) and ima~innry (dott~d line) solutions 

of ~(w) for aluminum using a2 (w)F(w) of Figure 7.3. 
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imaginary part 62(w) increasing ranidly at these points, illustrating 

the strong behaviour .of the fundamental fre<"f_uencies. It should be noted 

that these solutions extend up to a much higher energy than the phonon 

energy cut-off, due to the strength of multiphonon processes. 

(ii) Solution for Alloys ­

This procedure was repeated for the selected alloys for which the 

a 2 (w)F(w) parameters ~ere calculated, and related energy gaps were deter­

mined accordingly. Experimental valties for the energy gaps of such 

alloys were also obtained from tunneling measurements. The results of 

those calculations, and of the experiments for these alloys are given in 

Table 7-2. 

TABLE 7-2 

MATERIAL No. OF ELECTRONS/ N(O)u fl CALC. fl EXPT c 0 0ATOM· 
(meV) (meV) 

Pb 4 .13 1.49 1.38 ± .OS 

3.8 .12 L37 1.27 ± .10p~8T~2 

3.6 .12 1.08 1.02 ± .10p~6T~4 

3.4 .10 .67 . .68 ± .10p~4T~6 

3.4 .10 .67 .66 ± .10T~8B~2 

3.2 .38 .35 ± .OST~9B~l .10 

The errors quoted for the experimentally determined values include 

both the instrumental measuring errors and such errors. arising from 
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preparation problems, as mi~ht he associated with uncertainties in the 

constituents of the alloys. Each experimentally measured value quoted 

represents at least two different samples prepared in order to ascertain 

consistency. 

The values of N(O)u have heen determined from a range of c 

sources; calculated from the expression equation (7-1), from the work of 

51 82McMillan and Rowell , and from the estimates of Wu • 

From this comparison, we see that for most of the materials 

listed, including aluminum reported earlier, the two values obtained are 

within the somewhat uncertain estimate of the error. It should be noted 
,. 

that the two materials Pb.4n ..ft and T~8 Bi_2 , possess in~ the same number of 

electrons per atom and hence very similar sized Fermi surfaces also dis• 

play very similar superconducting properties. This similarity will be 

seen even more clearly in the next Section when the tunneling results 

are presented. 

From this sort of analysis, one can clearly see what sort of an 

effect electron concentration has on the superconducting properties. 

Indeed, it is quite clear that the electron concentration has quite a 

pronounced effect on the coupling of electrons to phonons and consequently 

on the onset of superconductivity. 

(iii) Solution for Sodium and Potassium ­

In order to understand more easily why some materials superconduct 

at higher temperatures 84 , it is perhaps instructive to look at the 

separate parameters which control a 2 (w)F(w) and try to estimate their 

relative importance. Clearly a most important term which was just 

illustrated is the size of the Fermi surface~ The more the Fermi surface 
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reaches out into the second and higher Brillouin zones, the more Umklapp 

processes are possible and consequently the stronger will be the electron-

phonon coupling. This is illustrated in equation (4-15) where the 

integration over momentum transfer~ extends over a sphere of radium 2kF. 

The greater the value of kF, the greater will be the amount of phase 

space available for the integration, so that superconductivity should be 

greatly enhanced as a result. 

To consider other variables controlling the superconducting 

nature of materials, we shall contrast two different metals ~1ose pro­

perties are fairly well known and whose differences and similarities are, 

in some. ways, understood. Sodium . and potassium arc two s.uch metals. 

They have identical crystal structure and a valence of unity. Their 

Fermi surfaces are nearly spherical and their phonon dispersion curves 

are very similar except for a scaling factor. It is seen in Figures 7-1 

·and 7-2 that their energy distributions F(w) have much the same shape 

except that the ratio of the average phonon energies of the two materials 

is 

w(Na) 
= 1.635 

w(K) 

The appearance of the energy factor .: in the denominator of equation (2-26) 

would favour K over Na as a more likely superconductor but this effect is 

nearly cancelled out by the ion mass factor M. The ratio of the ion 

masses in these two materials is 

M(Na) 
-- = ,59 
M(K) 
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2Next, in normalized units of '1T where a = lattice parameter, these a o
0 

two materials have identical Fermi surfaces. Hence, the phase space 

integration is identical over the two materials and this does not affect 

the result as to which will be the more likely superconductor. The 

remaining term, which finally determines as to which material is more 

lik~ly to superconduct, is thus the pseudopotential form factor squared. 

This quantity is substantially larger in sodium than in potassium, as 

can be seen in Figure 7-20. In the end, it appears, from this analysis, 

that sodium is more likely to supcrconduct than potassium. In fact, the 

results for the gap calculation 6(6 ) in these two ~ystems as a function 
0 

of different values of the electron-electron term are presented in 

Table 7-3. Corresponding critical temperatures are also quoted using the 

BCS relation between A and T . i · . ;r: 1· ·: 

0 c 

TABLE 7-3 

CRITICAL TEMPERATURE FOR ·soDIUM AND POTASSIUM AS A 

FUNCTION OF THE COULOMB PART N(O)u 
. c 

Na K 
N(O)u

c 6 (meV)
0 

T (°K) c 6 (meV)
0 

T (°K) c 

0.00 	 2.8 ·x 10-3 18,S x 10-3 .43 x 10-3 3.0 x 10-3 

10-3 ·' 10-3 10-3 10-30.01 1.1 x 7.0 x ."12 x 	 .8 x 

0.02 .40 x 	10-3 3.0 x 10-3 .02 x 10-3 .13 x 10-3 
I 

0.03 .11 x 10-3 
.1 x 10-3 <.005 x 10-3 <33.0 x 10-6 

0.04 .02 x 10-3 .13 'X 10-3 « .oos x 10-3 «33.0 x 10-6 

o.os <.005 x 10-3 <33 x 10-6 



FIGURE 7.20 

Comparison of the square of the pseudopotential form 

factor in sodium and potassium. 
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If there were no Coulomh repulsion at all (u = O) it is seen that . c 

sodium would have a critical temperature of 18.S millidegrees, while in 

potassium it would only be 3 millidegrees. As the Coulomb repulsion 

term N{O)uc is slowly switched on, these estimates are drastically 

reduced. The Table ends at a N{O)u value much less than what a c 

realistic value would be 46 ' . Since those critical temperatures as calcu­

lated, however, are exceedingly small, it was felt that no significant 

purpose would be achieved by extending the calculations in question. 

7.3-2 Tun~eling D~nsity of States-

In comparing calculated and experimentally obtain.ed values for 

the energy gap 6(6 ), we are, in some ways, comparing the bu~k properties
0 

of these materials. There is, however, an even more critical comparison 

available when a tunneling experiment is performed on such a material. 

·As was outlined in Chapter V, we recall that the tunneling density of 

states for electrons is given by the expression: 

w
NT(w) = N(O)Re { } 

(w2 - ~2M)!:z 

where 	 6{w) = energy gap parameter 

N(O) = 	 density of electron states at the Fermi 
surface in the normal state. 

If we consider the case where one of the materials of a tunnel junction 

is i.n the normal state, and one is in the superconducting state, we can 

obtain, from equation (5-13), the expression: 

http:obtain.ed
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( di )av s 
:a: 

( di ) 
. CIV 1N 

at T = o°K. 

In addition, it was also noted that, the application of a 

reasonable functional form to a2(<i1)F(w) to the solution of the ~ap 

equations resulted in the appearance of detailed structure in the energy 

gap parameter 6(w), and consequent structure in the tunneling density of 

states which, from the above equation, is reflected in the ratios of the 

first derivatives of the current-voltage characteristics of the device in 
/ 

the superconducting and normal states. Further, it was pointed out that 

the non-linearities and critical points in this . experimentally determined 

function were direct reflections of critical points in the product function 

n2(w)F (w). (The details of this function were described in the first 

section of this Chapter where it was noted tha:t a2(w) was a smoothly 

varying function.) Consequently, and assuming no effects due to band 

structure, F{w) will have exactly the same critical points as a2 (w)F(w) 

and in turn NT(w) will have critical points at these same positions in 

energy. 

From considerations of equation (5-9) it may be noted that the 

additio~ of a second superconductor, with a known NT'(w) dlstribution 

factor, on the other side of the tunneling barrier does not present overly 

great problems for analysis. This problem of an additional superconductor 

on the other side of the barriers, with N1 '(w) known for this material 

can be numerically treated. In fact, in the case that aluminum is that 
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other material, and it is advisable to consider thermal excitations above 

the energy gap,(as experimentally it is difficult to attain temperatures 

well below the T of aluminum) the addition of a temperature dependent
c 

Fermi distribution function into equation (S-9) is easily effected and 

the two superconducting densities of states can be convoluted to obtain 

I C i!. ) versusthe resultant current-voltage characteristic, dV N 

V characteristic. Practically, the addition of a known superconductor on 

the other side of the junction has the experimental advantage in that it 

serves as a sharper probe at the gap edge with which to study the unknown 

superconductor than would a normal state material. with temperature 

dependent Fermi distribution function. 

(i) Aluminum as a Probe ­

From the solution of the gap equations for aluminum utilizing the 

calculat~d a2(w)F(w) of Figure 7-3 it is determined that the deviations 

from the B.C.S. predicted tunneling density of states, 

= N(O) ( w )
(w2 - fl 2)~

0 

are very slight compared to the all~ys considered and at the maximum 

deviation point, which is well beyond the cut-off point for the alloys 

under study, the deviation from B.C.S. predictions is ~ .02%. Hence, 

for the analysis of tunneling curves of devices of the type At-insulator­

alloy, the NT(w) distribution parameter for the aluminum can be considered 

as a simple B.C.S. distribution, with thermal excitations and predictions 



FH~URE 7. 21 

(' 

Comparison of caJculatcd (dotted line) and experimental 

(solid line) c~~) s I ( ~D N VS. v plot for 

(a) Al-I-Ph. 4T1. 6 junction 

{b) A!-1-Tt Bi junction at 1.10 K.8 .2 


V is measured from ~oA! + ALLOY
60 
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for the current-voltage characteristics of these particular fabrications 

may thus be obtained with recourse to equation (5-9). This prediction 

. 1 . . t . th tho f tile ev1at1on 1n a . . um1num 1s. 1n agreemen w1 o . t. 85d er 1nves 1gators 

who have carefully searched for these effects and have found them to be 

of this order. As we shall see, however, such deviations arc indeed 

negligible in comparison to those observed for the alloys investi~atcd in 

this Thesis. 

(ii) NT(w) for the Alloys ­

The gap equations were solved for those particular alloys that 

displayed a reliable and converg.ing force constant model. The most 

reliable of the alloys considered in this respect were the two alloys 

having electron concentrations of 3.4/atom -- i.e. P~4r~6 and T~8B~2 . 

In order to compare calculated tunneling characteristics with those of 

experiment, the determined NT(w) parameter for each alloy was convoluted 

.with a B.C.S. NT(w) with . th~rmal excitations at lil°K representing the 

aluminum according to the prescription of equation (5-9). The results of 

such a comparison with the normalized results of a tunneling experiment 

for these two particular alloys are shown i~ Figure (7-21). The agree­

ment between that predicted from a calculated a 2 (w)F(w) and the actual 

results 6f a tunneling experiment is striking. It should also be recalled 

that excellent agreement was obtained with these particular alloys for 

the calculation of ~0 • 

This procedure was repeated for alloys with slightly less reliable 

force constant fits, namely, P~6TtA and T~9B~1 , and the results of such a 

calculation and comparison with experiment are illustrated in Figure 7-22. 



FIGURE 7.22 

Comparison of calculated (dotted line) and experimentil 

(solid line) ( ~~) s Ic~~) N VS. v plot for~ / 

junctions at 1~1°K 

Vis measured from 6 At + ALLOY0 60 
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As expected, there are more discrepancies in these comparisons than in 

the first set of alloys considered, but nevertheless, the overall agree­

ment is still good. In all of these alloys considered, however, there is 

a dis.agreement which should he noted, namely, in the fundamental dip due 

to the interaction of electrons with phonons of energy grouped around 

the longitudinal peak in the density of phonon states. This disagreement 

will be even more pronounced when we compare predicted and experimental 

c121
plots of - - vs. V, the dcrivatives of the functions considered here.

2dV
It should also be pointed -out that. using the present detection 

system described in the previous Chapter, the difficulty ~n obtaining 

enough sensitivity to display the deviations from B.C.S. ~rcdictions for 

T~9 B~1 , and for materials with transition temperatures lower than this, 

becomes formidable. In order to obtain better sensitivity and resolution 

i•t wou ld be necessary to emp oy a br1 ge c1rcu1t. . 73 h. h wou ld enhance1 .d w 1c 

the signal to background ratio. 

Another method of improving signal resolution would be to perform 

these experiments on symmetric junctions ·of the type alloy-insulator-alloy. 

One of the major problems associated with this type of junction is, however, 

in attaining constancy of concentration of the constituents of the alloy. 

The determination of concentration and homogeneity of the film is one of 

the major experimental problems in an investigation of this type and the 

addition of another film of the alloy and hence another variable, should 

be avoided. 

It should also be emphasized that the curves plotted in Figures 

7. 21 and 7. 22 are ratios (M) s I ( :~)N, • Since the measured tunneling 
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curve in the normal state is not of the linear form that would be 

expected, ( ~~ )N is not a constant. Rather, it is found to be an 

asymmetric function slowly varyin~ as a function of applied voltage with 

very slight indications of structure at various ·applied biases51 • Clearly 

then, when determining the ratio 

this slowly varying term must be taken into account in the course of 

investigation. These normal state properties have been studied hy Rowell 

and McMillan86 as to whether or not the t~nneling matr~ .element 

remains unchanged in the transition from the superconducting to normal 

states. Clear evidence has been obtained by the above investigators 

that in addition to non-linearities that could possibly be attributed to 

the change in shape of the tunnel barrier, well defined structure has been 

observed which was attributed to phonon emission in the oxide barrier 

during the tunneling process. 

An even more spectacular and revealing, if somewhat less physically 

meaningful method of comparison of experiment with predictions, is that 

dcrof comparing calculated and experimentally obtaine~ plots of dV vs V, 

where o = ( ~~) I ( ~~) N • Critical points in NT(w) or points of
5 

maximum or minimum slope are ~reatly amplified as a result of further 

differentiating. 

In order to first determine the level of agreement that could be 



FIGURE 7.23 

A comparison of 	experimental (solid line) and calculated 

d<J(dotted line) 	 dV vs. V plot for a At-I-Pb junction at 

0
1.1 K. 

a = (¥v)s 

V is measured from A

0 
Al + A

0 
Pb~ The a2(w)F(w) used was 

that of McMillan and Rowe11 30 • 
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expected in such a comparisonilie experimentally determined a 2 (w)F(w) 

function for lead 30 of ri.gure 5.5 was inserted into the gap equations 

and NT(w) determined. Then, in order to simulate an experiment, this 

NT(w) was convoluted with a tunneling density of states NT'(w) for 

aluminum at l.1°K. ~~ was then determined for such a hypothetical 

junction. In this way, a meaningful comparison could be carried out with 

the results of a tunneling experiment performed by the author on an 

Al-I-Pb junction at 1.10 Kand the results of such a comparison are 

illustrated in Figure 7.23. 

It should be noted that the above comparison determination was 

performed with a view to applying a circular consistency~hcck which 

would serve as a standard for comparison. A very small disagreement 

between calculated and experimental values of the tunneling density of 

states or more explicitly in c~~) s Ic~~)N ' will result in a sub­

stantial disagreement in a plot of ~~ vs. V so that we can very carefully 

determine agreement in this fashion. 

In addition, it has been shown55 ·that a peak in the ·:phonon density 

of states, or more correctly in a2 (w)F(w), will result in a ·sharp drop 

in the effective tunneling density of states NT(w) (which is equivalent 

to a sharp drop in q. Thus by further differentiating this curve, a 

sharp drop in a will be manifested as a minimum in ~~ and alternatively, 

a minimum in a 2 (w)F(w) will show as a maximum in do Consequently, we
dV" 

can very easily identify maxima and minima in this type of tunneling 

plot with singularities, or critical points in the phonon distrihution of 

the material in question. Jn this respect, the tunneling technique lends 

itself as an efficient and rapid tool for phonon spectroscopy in a 

superconductor. 
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(i) With the~c factors in rnjnd, ~~ vs. V was calculated for a 

A1-l-Pb4T1£ junction at 1.1°K employing a grid in a 2 (w)F(w) of Ph4Tt£ . ·'' . .' ) 

somewhat indicative of the a.c. sensing signal experimentally applied to 

the device. A comparison of this calculated value and the experimentally 

determined value is given in Figure 7.24. 

It may be seen that the agreement in the positions in energy of 

the critical points (maxima and minima) is extremely good and in some 

places the relative strengths of these different points show fair 

agreement -- although in other places, there arc clearly large discrepancies. 

Nevertheless, as this is a derivative of the more physically meaningful 

c~~) s I ( ~~) N parameter' the agreement between experimental and 

predicted values is quite good. 

This procedure is repeated for T~8B~ 2 where, (because the force 

constant model is felt to he reliable), good agreement is expected, and 

in T~9B~1 and P~6T~4 where fair agreement should exist. The results of 

such calculations and experiments are given in Figure 7.25, 7.26 and 7.27 

respectively, where again it is seen that the positions of critical points 

energy-wise are in excellent agreement with calculations based on neutron 

scattering measurements. Further the relative strengths show agreement 

in some areas, and disagreement in others. 

For purposes of completeness, the materials that display a 

suspect Born-von Karman analysis (P~8T:2 and Pb) are presented in 

Figures 7.28 and 7.29. Although the bulk properties of a superconductor 

are calculated in the case of these two materials with a fiir degree of 

success, using the calculated a2 (w)F(w) parameter, good agreement between 

the predicted and experimental values of critical points is not expected. 



FIGURE 7.24 

Comparison of 	calculated (dotted line) and experimental 

do o(solid line) dV vs. V for At-I-Pb 04Tt. 6 junction at 1.1 K. 

V is measured from 6 At + Pb. Tt .0 60 4 . 6 
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FIGURE 7.25 

Comparison of calculated (dotted line) and experimental 

(solid line) ~~ vs. V for At-I-Tt. 8Bi. 2 junction at l.1°K. 

V is measured from 6 A0 + 6 T n· · 
0 ~ o R, 08 1. 2 
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FIGURE 7.26 

Comparison of calculated (dotted line) and experimental 

(solid line) ~~ vs. V for At-I-n.. 9Bi.l junction at 1.1°K. 

Vis measured from A0 At+ A0 Tt.gBi.l. 
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PICiURE 7.27 

A comparison of calcualtcd (dotted line) and exp~!imental 

do o
(solid line) dV vs. V for At-1-Pb. 6Tt. 4 at I.I K. V is 

measured from Al + A Pb. T1 . .60 0 6 4 
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FIGURE 7.28 

A comparison of calculated (dotted line) and experimental 

do o(solid line) vs. V for At-I-Pb T.t junction at 1.1 K . 
dv • 8 • 2 

V is measured from ~o An + 6 
,., o Pb • B T.t •2 • 
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FimmE 7. 29 

/'

A comparison of calculated (dotted line) and experimental 

do o(solid line) dV vs. V for At-I-Pb junction at 1.1 K. 

V is measured from !!. Al. + 11 Pb.
0 0 
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Figure 7.29 is simply another manifestation of the disagreement cited in 

Figure 7.12. As was pointed out earlier, some of the critical points do, 

in fact, agree in both cases. Those that agree are related to critical 

points determined by neutron scattering experiments in the on-symmetry 

directions. 

This comparison even further emphasizes the applicability of this 

tunneling method, for c~rtain materials and alloys as a convenient method 

of critical point spectroscopy and as a guide to the more exacting neutron 

scattering experiment. As a 2 (w) docs not severely change the features 

of the phonon density of states P(w) in a 2 (w)F(w) the value of the Born­

von Karman analysis can be easily assessed by this spectroscopic method 

of determination of the critical points. If a simple one-to-one compari­

son of critical points is not possible, a more extensive study of the two 

methods is necessary. 

(ii) The disagreement in the relative strengths of the different peaks 

between those calculated and those experimentally observed cannot be 

ignored. In all the alloys considered, it was observed experimentally 

that there appeared to be an extensive amount of smearing in the region 

of the longitudinal peak. 

One must first ascertain whether this smearing is due to something 

fundamental or simply a result of experimental smearing. The smearing 

is clearly not due to the finite size of the a.c. probe used to differentiate 

the tunneling characteristics as it appears to be ener~y dependent. In 

addition, a reduction of the size of the test signal has no effect on the 
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relative strengths of the different peaks. These experimental results 

87have been seen by other observers for some of these a)loys and it 

appears from this ·reproducibi Iity in different laboratories, that the 

smearin~ is not induced experimentally. 

89 h. k .. d 1 · .Recent 1y, Zavar1ts 11 as reporte tunne 1ng experiments on 

lead thin films evaporated onto a substrate at 4.20 K where a somewhat 

similar effect was observed. It was noted that there was a substantial 

difference hetween the tunneling curves obtained on such samples, and 

those obtained from a sample prepared in the conventional manner with 

the substrate at room temperature. In addition, it was found that upon 

annealing the sample to room temperature, and then re-cooling, the 

characteristics assumed the form generally accepted as those of lead. 

The films prepared at low temperatures displayed a large amount of 

· dasmearing in the distinctive peaks in the dV plot and in fact, much of 

the fine detail was not there. 

It is suggested that this phenomenon could be explained in terms 

.. f h . ' 90 d . . f . d . d dof L1 s 1tz s 1scuss1on o energy spectrum structure 1n 1sor ere 

condensed systems. Lifshitz shows that in the vicinity of a boundary or 

cut-off point of the spectrum, if a perturbation to the ideal system is 

added (an impurity for example), a singularity that in the pure case may 

vary 

'V { w - w 
0 

where w is the cut-off value, now assumes the form 
0 

(w - w ')-3/2 }"' exp {- >.cf>(c) 
0 
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where w ' is the new cut-off value given by w ' = w + V where V is the 
0 0 0 

\ 

perturbation added, $(c) is a function of the impurity concentration c which 

varies as ln c for low concentration, and ~ is a constant. The absolute 

value of the constants in front of the exponential are difficult to deter­

mine hut worthy of note is the fact that the functional form of this new 

type of discontinuity is suggestive of the "tail" at the high energy cut­

off in the a 2 (w)F(w) distribution shown in Figure 5.5 as determined by 

Mc~tillan and RowcII 30 . 1 In an ideal system this tail should not exist hut 

a thin film is far from an ideal system and the perturbation caused hy 

dislocations and small crystallite sizes could cause a singularity of 

the functional form described above. 

This development of a tail at the high end of the energy spectrum 

dcris manifested also in the experimental dV plots of the alloys presented 

in this work as the perturbation introduced takes the form of an impurity 

site. Lifshitz shows, in addition, that the .insertion of a perturbation 

causes a smearing, not only at the cut-off of the spectrum, but throughout 

the energy spectrum and in particular, ~t critical points. 

In the calculation of a2(w)F(w) from a Born-von Karman force 

constant analysis, it should be emphasized that no provision is made for 

this disorder phenomenon. The material considered is assumed to be a 

pure material of some hypothetical element whose properties are those of 

the average of the constituents that make up the alloy. For example, the 

ionic mass of this material of PbxTl(l-x) is assumed to he: 

M = +alloy 
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Jiencc, the calculation assumes that the bonding between adjacent 

ions is of the type 

' 

while in fact they may be of the form: 

Pb - Ph or T.t - T.t or Pb - Tl 

Making this somewhat naive assumption, all finite lifetime effects for 

phonons, which certainly do exist in an alloy, are ignored. 

Hence, disordered alloys may be expected to produce a broadening 

in the critical points due to random differences in the forces between 

various pairs of ions with the same geometrical arrangement. In essence, 

this randomness will produce a ·fuzziness in·the dispersion curves which 

is inherent in ' an ,alloy system. While the ideal pure crystal will be 

expected to display sharp phonon dispersion curves, alloys will not. 

Unfortunately at this time, the resolution of neutron scattering 

experiments is not sufficiently vrecise to determine the extent of this 

uncertainty, especially in the higher energy longitudinal branches where 

the errors quoted for the measurement of a neutron group are ~15% of 

the measured energy. Hence, until such resolution is increased to the 

point where the very pure materials show very narrow scatter from a 

central value, a measure of the uncertainty of the ener~y of a particular 

phonon is impossible. Hence, a Born-von Karman analysis of the dispersion 

curves of an alloy where it is assumed the curve is very well defi.ned is, 

in some respects a "physically ideal" model while in actuality, disordered 

force constants must be taken into account. 



) 

CHAPTER VIII 


CONCLlJSIONS AND RECOMMENDATIONS 

In this Thesis, a surprising amount of success has been achieved 

in determining the superconducting energy gap in lead, aluminum and 

thallium-lead-bismuth alloys from information now available on lattice 

vibrations in such materials, and the newly increased knowledge of the 

electron-ion pseudopotentjal form factor. The main quantity to be cal.cu­

lated in the ahove determinations is the phonon contribution to the 

Eliashberg gap equations which enters as the phonon density of states 

F(w), modulated by an energy dependent electron-phonon coupling term 

usually denoted by a 2 (w). From this product function, a2 (w)F{w), it has 

been possible t0 calculate the superconducting energy gap ~(~0) of the 

above materials, much more carefully than has been possible in the past. 

None of the estimates presented here varied from the experimentally 

determined values by more than 10% in these materials. A small adjust­

ment of the appropriate coulomb pseudopotential term N(O)u in these c 

equations, (which is not known very accurately at this time), would improve 

the agreement in each case. A more accurate evaluation should he performed 

of this coulomb repulsion term, which opposes the onset of superconductivity 

and is so important in the solution of the Eliashberg gap equations. Jt 

has also been shown that a small adjustment of the choice of the elcctron­

ion form factor, so as to change the corresponding a2 (w)F(w) also has a 

140 
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profound effect on the evaluation of /\(/\).
0 

As the Born-von Karman 8 nearest ncighhour analysis of lead 

was shown to be suspect in certain regions due to critical point~ existing 

in off-symmetry directions that had not experimentally hccn measured, the 

agreement between measured and predicted values of 6(t.. ) for this 
0 

material was even better than perhaps expected. 

In order to determine the validity of these predictions, a 

tunneling investigation of selected thallium-lead-bismuth alloys has been 

performed. As all the alloys had the same crystal structure (face centered 

cubic) and the atomic masses of the constituents were approximately equal, 

and since it was known from neutron scattering experiments that the phonon 

density of states F(w) of this series of alloys did not change very dras­

tically, changes in the electron-phonon interaction strength of these 

materials were primarily due to changes in the electron concentratjon 

which in turn affected the s.urerconducting nature of the alloys. Agree­

ment between predicted and experimentally observed 6(t.. ) was extremely
0 

good for the entire series, even when the Born-von Karman calculation of 

F(w) was not too reliable. 

In addition, the tunneling experiments on these alloys allowed 

the comparison of critical points in the phonon energy spectrum between 

those obtained by neutron scattering experiments and a force constant 

analysis, and those obtained by tunneling. It was found that where 

teasonable confidence in the force constant model used to calculate F(w) 

was felt, extremely good agreement in the positions of the critical points 

resulted. Also, fair agreement was experienced between the relative 

strengths of these critical points derived using the two methods. The 
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differences were felt to be due to the non-ideal nature of an alloy. 

In t11e case of sodium and potassium, the critical temperatures 

(T ) are estimated to he certainly less than 10-S °K. This upper hound c 

was obtained hy progressively switchin~ on the coulomh repulsion term 

N(O)uc and at each stage computing a corresponding critical temperature. 

This sequence of operations was terminated at a value of N(O)u which 
c 

was still ~uch less than a realistic valuc46 hut which yielded a 

critical temperature sufficiently small that it was felt uninteresting 

to proceed further. To reduce this upper bound would have required more 

extensive computational complications which did not seem warranted. 

Throughout · this analysis no corrections were applied for the 

possible deviation of the electronic density of states at the Fermi 

surface from its free electron value. It was felt that any slight 

deviations from the free electron Fermi sphere would be averaged out when 

all possible scatterings were added up from any random point on the 

surface to any other random point. For any large deviations, this 

clearly is not true as some particular g_ ·valucs might be greatly enhanced 

over others. 

It is important also to note that in all determinations of 

a 2 (w)F(w), the critical points do not shift in energy although their 

re1 . s do. Al so contrary to t he expectation of Bennett77 , noat1ve strength . 

new singularities are generated as a result of the cut-off at 2 kF in the 

calculation of a2 (w)F(w). In the free electron approximation, n2 (w) is a 

smoothly varying, although by no means a constant function, as there is 

~ divergence at low values of w~ Generally the main longitudinal peak 

region is more emphasized by the a2(w) function than is the transverse region. 
\ 
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In light of the investigation described in this Thesis, it now 

seems possible that the tunneling method described can be used as an 

investigation tool for other materials. 

Firstly, with improved sensing techniques and lower available 

temperatures in view of the predictions of a 2 (w)F(w) for aluminum one 

could, using a symmetric junction /\.t-I-M,, investigate the possib:i Ii ty of 

determining experimentally the validity of this prediction. The limiting 

factor i.n such an investigation would he the sensitivity of the sensing 

device. 

The effects of pressure on a simple superconductor, both from a 

theoretical and experimental point of view using the techniques outlined 

in this Thesis could also be investigated. Pressure on a material will 

bring about changes in the phonon spectrum and its critical points, and 

the strength of the electron phonon coupling term a 2 (w). Experiments 

have recently been performed investigating the pressure dependence of 

. 91superconductors using the tunneling technique and preliminary resu1ts 

appear interesting. A comprehensive inv~stigation of the effect of this 

variable would prove fruitful. 

Also, a comprehensive study of the transition temperatures of 

92 93noble transition elements and alloys has been carried out , , over a 

wide range of materials and electron concentrations. I~ was found that 

the filling up of the cl-band suppresses the superconducting transition 

temperature and in addition, materials with ' large magnetic susceptibilities 

were not superconducting above 0.01S°K. A possible explanation of this 

correlation of parameters was given in terms of Berk and Schrieffer's 

moc.l e 1 o f erromagnet1c spin· corre a · 94 . ese corre1a ions effcc 1ve1yf · 1 t ions Th t . t. 
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enhance the electron-electron repulsion term N(O)u (for example in Pd,
c 

this is many times the conventional coulomb pscudopotcntial) thus 

diminishing the probahility of a material to go superconducting. Transi­

tion metals in which the pl1onons have heen measured using inelastic 

neutron scattering experiments, possibly could be studied, and the 

strength of these various contributions could be determined by a combined 

experimental and theoretical approach. This investigation could 

strengthen the knowledge of a somewhat unknown subject. 



APPENDIX A 

In this Appendix, a standard method will be described to calculate 

the phonon density of states function F(w), together with the modification 

to that method as required in the determination of the product function 

a 2 (w)'F(w). The method used is a Born-von Karman analysis76 which is a 

phenomenological fit of interatomic force constant strengths to reproduce 

the measured dispersion curves. The actual Born-von Karman analysis for 

the materials considered was carried out hy other investigators and the 

9published 95 , s force constants are simply used in this analysis to 

determine the dispersion curves in the off-symmetry directions which 

arc not measured. Proceeding in this fashion, one can determine the 

phonon frequencies for points over all the Brilloujn zone and, hy summing 

these, extract an estimate of the phonon density of states. As discussed 

in Chapter 7 this analysis can be slightly erroneous in some cases, as it 

is found in some materials that there are long-range forces, and thus this 

type of model does not converge with a realistic number of force constants. 

A.l BORN-VON KARMAN ANALYSIS: 

From Chapter II we see that there is a restoring force in the 

lattice for displacements from equilibrium, much like a simple spring­

restoring force in the simple harmonic oscillating spring. From equation 

(2y4) we can write the equation of motion for the 1 ·th ion as: 

145 
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- M = l: 
.t '8 ------(A-1) 

where M = mass of ion, U (1) is the a-direction component of the 
a . . 

excursion from equilibirum of the !'th ion and ~a8 (.t1') is the force in 

the ath direction on this ion due to a unit displacement of the .t'th ion 

in the B direction. Because of the periodicity of the lattice, these 

atomic force constants (A.F.C~) do not depend explicitly on the atoms 

1 or 1' but only on the distance R between them. For each type of11 , 

neighbour (i.e. first nearest neighbour or second nearest neighbour) 

there are a certain number of these independent constants. Consider, for 

example a force-centered cubic lattice, and the first nearest neighbours 

of the atom in the (O, 0, 0) position. There are twelve of these nearest 

neighbours located on the fac~s and their co-ordinates are given by: 

a tt a a a 
2 (110), 2 (101), 2 (011), (110), (101)----- etc.2 2 

There are, at first glance 3 x 3 constants for each atom and hence 

3 x 3 x 12 constants altogether. Because of the high symmetry of the 

cubic system, ·one can immediately eliminate most of these and reduce the 

number of independent force constants to 3. Thus; 

~ (110) = •yy (110) = • (101) = ------ ­xx zz 

• (110) = • (101) = ~· ~ ~ -- = xy xz 

~ zz (110) = = •xx (101) = ------ = 
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If we now consider the second nearest neighbours of the point 

(0,0,0), it can be seen that there are six of these whose co-ordinates 

are given by: 

a a a a """ a ~ a ­2 (2,0,0), 2 (0,2,0), 2 (0,0,2), 2 (L,0,0), 2 (~Lp), 2 (~0_,2) 

Again from symmetry considerations, the number of independent force 

constants can be reduced to two and these are denoted by: 

4>xx(200) = ~yy(020) = 

4> 
yy 

(200) = ~zz(200) =··------ = 

This analysis can easily be extended to the g~neral case of nth 

nearest neighbours with co-ordinates I (u, v, w) ~ In the. most general 

case, u ~ v ~ w_and there are · 48 nearest neighbours with 6 independent 

force constants permitted by symmetry. 

From the equation of motion (A-1), as previously described in 

Chapter 2, a trial wave solution can be attempted of the form 

11 (t) = 1 (g_, ). ) expi {g_ • ~(~) w(_g ).) t } 

rM 


------(A-2) 

where _£ (~ A) is the polarization vector of the normal mode w(g_,). ) and 

!!,(~) is the equilibrium position of the !'th atom. Inserting equation 

(A-2) into equation (A-1) and multiplying both sides by e-q.~(i) yields 

1 . 
"' . -i~(~) { ') ig_.R(i)J ( ')2: M [:"' 1e 4> t , t e · £0 g_, I\ 

B R..' a 8 µ 

------(A-3) 
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It can be shown, however, that the quantity in the square brackets above 

does not depend on !. It is a function of 9.. only and is called the 

Dynamical matrix 

= 	 r --·---(A-4) 
m 

Equation (A-3) may thus be written in the form: 

= 	£ Da.B (g) e:.e Cg_, >-) • 
B ------(A-5) 

which is just a simple eigenvalue problem for .the 3 x 3 matrix D(g). 

Thus, given the dynamical matrix ·at any point 9.. in the Brillouin zone, 

it is a simple mathematical problem to determine the three eigenvalues 

w(q, ).) ). = 1, 3 and corresponding eigenvectors which form an ortho­

normal set~ Further, and from ~-5), it is clear that for any given g_, 

D(g_) is easily constructed from the force constants 4>a.B (!, t ') . 

Phonons can be measured using the inelastic neutron scattering 

technique. In this way one normally determines the dispersion curves 

along high symmetry directions in the first Brillouin zone. It is also 

common practice to vary the force constants ~a.S(m, 0) so as to obtain 

the best possible fit to the dispersion curves for a specified number 

of nearest neighbours. The number of parameters needed to achieve good 

agreement depends, of course, on how structured the measured dispersion 

curves are~ In sodium and potassium, for instance, where the dispersion 

curves show little detailed structure, a fifth nearest neighbour fit 

gives essentially exact agreement with t the data, To obtain good agreement 
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in aluminum, which is a .sli2htly more complicated case, one must go out 

to 8 nearest neighbours. In lead, where large Kohn anomalies99 ,lOO are 

observed, eight nearest neighbours gives only a reasonable overall fit. 

A good fit in this case would requir~ more parameters. Nevertheless, 

such fits are very useful since from the force constants one can calculate 

in principle many interesting properties; for example, the resistivity 

. 1101 h d .of a mater1a or t e supercon uct1ng energy gap. 

Up to this point, all the constraints imposed on these force 

constants arc due to the symmetry of the crystal structure. If one also 

considers the nature of the force system between neighbours, it can be 

shown that76 if one limits the type of force .considered to that of a 

central force depending only on the magnitude lrl .of the distance apart, 

additional constraints can be imposed onto these force constants . . These 

d28dd . . 1 . 1° d . f . h ta 1t1ona constraints are 1ste 1n re .erences cite , owever, a mos 

general force constant analysis as outlined above considering only the 

symmetric nature of the system is most desirable. 

An additional constraint can be imposed upon these force constants 

if the crystal is in equilibrium; i.e. the lattice constant distances 

must be such as to minimize the total potential energy in the system. 

In Table A-1 are listed the ato~ic force constants for pure lead 

0 98and for the Tt-Pb-Bi alloys at 100 K as tabulated by Ng for 8 nearest 

neighbours. In Table A-2 are listed the atomic force constants for 

. 97 d" 95 d . 96a 1um1num , so 1um an potassium The treatment for ft!-. is to 8 

nearest neighbours, while sodium and potassium it is to S nearest 

neighbours. 
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TABLE A-1 


ATOMIC FORCE CONSTANTS FOR Bi-Ph-T .t ALLOYS AT l00°K 


IN UNITS OF DYNES/CM 


AFC Pb Pb. 8Tt. 2 Pb. 6T! ~ 4 . Pb 
04

T.t 
06 Bi. 2H, .S Bi. 1Tt 09 

3933 4055 4603 4944 4679 4984al 

·1280 -1111 -1333 -1532 -1448 -1485Bl 
yl 

a2 

4~29 

1617 

5270 

976 

5445 

407 

SS40 

-­ ·43 . 
5198 

·-15i_ __ 
6161 

65_.. 

B2 309 103 -128 -148 -129 107 

a3 -266 -252 -91 193 104 -26 

B3 41 59 -92 -150 -133 -44 

Y3 349 147 53 -4 -37 -72 

03 -58 -4 45 -8 -61 -66 

a4 757 566 382 141 251 -3 

84 105 -68 -9 -6 -60 -74 

Y4 376 -51 -100 123 337 12 

as 	 -288 -35 -64 ;..142 -156 12 

-341 -217 -26 67 40 -785 
-347 -240 -21 93 64 -10 . Y5 

20 68 -14 -79 .-73 	 7?s 
34 so -25 -81 	 I 11a6 

-177 8 43 23 117 1586 

a7 -59 -97 -10 97 51 38 

87 133 101 31 -38 -81 17 

Y7 30 40 26 -5 20 -25 

07 33 13 9 10 -7 4 

£7 50 20 14 14 -10 7 

l; 100 39 27 29 -21 13 

679 197 44 -114 -34 -131~8 	 ·­
185 88 -35 -7 39 78Bs 



------- -----

- --- - ----------

151 

TABLE A-2 

ATOMIC FORCE CONSTANTS FOR ALUMINUM (Lc~c.) SOOIUM (h.c.c.) 

AND POTASSIUM (b. c. c.) IN UNITS OF 

OF DYNES/CM 

AFC At (at 80°K) AFC Na (at 90°.K) APC K(9°K) 

a 10107 1178 786al al1 
81 -1337 BJ 1320 81 895 

y1 11444 

a2 2452 (J.2 472 a2 432 

82 -529 84 104 82 29 
. -----------.... ·--­

a -625 ()3 -38 ()3 ,. -41
3 

133 -182 03 -.4 B3 12 

-148 -65 -53Y3 Y3 Y3 

<5 -296


3 ._._ ... _.__ - ­--·-------------­
271 52 2a4 a4 

321 -1 -484 B4 
· -SO y · 3 .75Y44 

Q14 2.2504 4 
..---------·-----·- - ·-­

461 17 6as as 

227 33 4f35 85 
198 

888 
- ·----- -----­

142 

-109 

-64 

-94 

-111 

12 
18 . 

36 
---~--------

ag -534 
as -116 



FIGURE A-1" 

Irreducible l/48th segment of the Brillouin zone for 

(a) face centered cubic system 

(b) body centered cubic system 
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( b) 




153 

Having now briefly outlined the general method of the force 

constant analysis, we are now in a position to calculate the phonon 

density of states function F(w) and the product function a 2 (w)r(w). Jn a 

cubic system, the Brillouin zone can he represented hy an irreducible 

1/48th segment of the zone~ The complete zone, and hence all of reciprocal 

space can he generated from this irreducible zone. For a face-centered 

cubic crystal system, reciprocal space is represented by a body-centered 

cubic system and the l/48th segment for this system is defined by the 

planes; 

1.0qx = 

0.0qz = 

·qx = qy 

------(A-6) 
qy = qz 

3 
qx + qy + qz = 2 

2n 
and aL is the lattice distance~ Awhere q is in reduced units of -­

.aL 

schematic diagram of this irreducible zone is shown in Figure (A-1'). 

Similarily, a body centered cubic system has a face centered cttbic 

reciprocal space, and this l/48th segment is defined by: 

o.oqz = 

qx = qy 

qy • qz 
------(A-7) 

+ 1qx qy = 
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This zone is illustrated in Fi~ure '.A-1. The method of calculation follows 

the method of Gilat and Raubenheimer102 , where the irreducible l/48th 

segment is divided i.nto a finer mesh of equally spaced points. At each 

point in this mesh the phonon energies w(g_, A) A = 1, 3, are calculated in 

addition to their polarization vectors :_(g_, ~). and the gradients of 

these dispersion curves at that point 

where >. • 1, 3 

(l • 1, 3 

The dispersion curve is linearly extrapolated to the edge of cube defined 

by the fine mesh into which the l/48th segment is divided, using the 

calculation of the gradient as a recipe. The density of states is then 

obtained by adding together the contributions from all the different small 

cubes and all branches. In order for linear extrapolation to be adequate , 

the mesh points (at which calculations are to be performed), should be 

sufficiently fine. 

This phonon density of states function for the material is 

defined by: 

1F(w) = N I: ~ •· ( w - . w ' (g_ A) ) 
A ------(A-8) 

where the integration is over the entire first Brillouin zone. 

Recalling our definition of the product function a 2 (w)F(w) from 

equations (4-15) and (2-26), we see that: 
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where the matrix element < kr.+~ f w I ~p> for scattering from one point 

on the Fermi surface to another is taken to depend only on the momentum 

transfer g_, and is denoted w(_g_),. The integration in q space is now over 

a sphere of radius 2kF. This is the maximum possible q-transfer between 

a phonon and an electron on the Fermi sphere. In integrating over this 

sphere, which penetrates out beyond the first Brillouin zone for most 

materials, we see that Umklapp processes are being considered. Using a 

prescribed functional form for w(g) the calculation can now proceed by 

simply extending the volume to be considered to a l/48th of a sphere of 

radius 2kF. In materials such as lead, where a sphere of radius 2kF 

covers many of these irreducible zones, the computational time is clearly 

a factor to be considered. Proccedin~ in this straightforward fashion, 

to calculate a 2 (w)F(w) one would require 10 - 15 times that computational 

time required for the determination of F(w). 

In order to keep this to a minimum, and because of the obvious 

repeatability of the dispersion curves out into the second zone and beyond, 

it is convenient to construct the sphere .of 2kF from units of the irreduci­

thble 1/48 segment of the Brillouin zone. The phonon energies and polari­

zation vectors of a given point in this zone need only be calculated once 

and, by a suitable co-ordinate transformation, all points in reciprocal 

space can be represented. Thus, the use of this transformation represents 

a large time-saving tool in the calculation of a2 (w)F(w). 

The co-ordinate transformations required to map this irreducible 

zone out to fill up all of reciprocal ~pace for face centered cubic and 

body centered cubic structures are given in Table A-3. The extent of 

these transformations is adequate for all the materials considered in 
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TRANSFORMATIONS REQUIRED TO MAP l/48th OF THE FIRST BRILLOUIN 

ZONE OUT INTO FURTHER ZONES. FACE .CENTERED CUBIC. 

RECIPROCAL 	 RECIPROCAL . TRANSFORMATIONS 	 TRANSFORMATIONSLATTICE POINT 	 LATTICE POINT 

(000) 	 q' = q:x {200) q' 2 - qx x c x 
q' = qy q' = qyy y 
q' z = qz q' z = qz 

(111) 	 q' = 1-q (200) q' = 2 - qx z x y 
q' 1-q q' = y = y y qx 
q' 1-q q'z = x 	 z = qz 

I: ­(111) q' = l+q 	 (200) q' 2 qx z 	 x z 
Dq' = 1-q 	 <l ' <lxy y y 

q' = 1-q q' II qyz x 	 z 

(111) 	 q' = l+q (200) q' :s 2 + qzx y x 
q' = 1-q q' = qxy z y 
q' = 1-q q' = qyz x 	 z 

(111) 	 q' = l+q (200) q' = 2 + qyx y x 
q' = l+q qt = qxy z y 
q' :: 11..q q' = qzz x 	 z 

(111) q' :: l+q 	 (200) q' :: 2 + qxx x x 
q' = l+q q' = qyy y y 
q' :: l+q q' = qzz z 	 z 

(111) 	 q' = l+qx x 

q' = l+q


y y 

q' z = 1-qz 


(111) 	 q' x = l+qx 

q' = l+q


y z 

q' . • 1-q
z y 

. (111) q' = 1 + qx x 

q' 1-q
II 

y z 

q' = 1-q
z y 



157 

TABLE A-3a (Continued)' 

RECIPROCALREf.IPROCAL TRANSFORMATIONS TRANSFORMATIONSLATTICE POINTLATTICE POINT 

(311) q' :::: 3. - q(220) q' = 2-q x z 
q' = 2-q 

x y 
q' = 1 - qy x y y 

q' • qz q' = 1 - qxz z 

(220) q' = 2°-q (311) q' = 3 - qx z x y 
q' = 2-q q' = 1 qzy x y 
q' = qy q' = 1 - qxz z 

(220) q' = 2+q (311) q' = 3 - qxx z x 

:cq' = 2-q q' 1 - qzy x y 
q' = qy q 'rZ = 1 - qz y 

(220) q' = 2+q (311) ' 'l' = 3 - qxx y x 
q' = 2-q q' = 1 + q 

y x y z 
z' = qz q' = 1 - qz z y 

(220) q' = 2-q {311) q' = 3 - qxx z x 
q' = 2-q q' = 1 + q 

y y y y 
q' = qx q' = 1 - qzz z 

(220) q' = 2+q (311) q' = 3 - qxx z x 
q' = 2-q q' = 1 qyy y y 
q' = q' = 1 + q qxz z z 

(311) q' = 3 - qx y 
q' = 1 + q

y z 
q' = 1 - qxz 
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TAR LE A-3h 

TRANSFORMATIONS REQUIRED TO MAP l/48th OF TJJE FIRST BRILLOUIN 

ZONE OUT TO FURTHER ZONES. BODY CENTEPED CUBIC. 


RECIPROCAL tRANSFORMATIONSLATTICE POINT 

(000) q' = qxx 
q' = qyy 
q' z = qz 

(110) q' = I - qx y 
q' 1= qxy 
q' = qzz 

(110) q' : 1 qzx 
q' y = 1 qx 
q' = qyz 

(110) q' = 1 + qx z 
q' = 1 qxy 
q' = qyz 

(110) q' = 1 + qx y 
q' = 1 - qy x 
q' = qzz 

(110) q' = 1 + q
x x 

q' = 1 qyy 
q' = qzz 

(110) q' = 1 + qx x 
q' :::: I + qy y 
q' = qzz 

(110) q' 1 x = qz 
q' y = 1 qy 
q' = qxz 

(llO) q' = 1 + qx z 
q' y = 1 qy 

I: qxq' z 

RECIPROCAL 

LATTICE POINT 


(110) 

(110) 

(110) 

(110) 

(200) 

(200) 

(200) 

(200) 

(200) 


TRANSFOPMATTONS 

q' = 1 + qx x 
q' = 1 qz-y 

q' = 
qyz 

q' = 1 + qx x 
q' = 1 + qzy 

q' z = qy 


q' = 1 + qx y 
q' y = 1 - qz 
q' = qxz 

. q 'x = 1 + qy 
q' = 1 + qy z 
q' = qxz 

q' = 2 - qxx 

q' = 
qyy 

q' = 
qzz 

q' x = 2 - qy 
q' = qxy 

q' = 
 qzz 

q' = 2 + qyx 

q' = qx
y 

q' = 
 qzz 

q' = 2 - qx z 
q' y = qx 
q' :::: qyz 

q' = 2 + qzx 

q' :::: 
 qxy 

q' 
z = 'ly 
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TABLE A-3b (Continued) 

RECIPROCAL RFCIPROCALTRANSFORMATIONS TRANS FORMATIONSLA'ITICE POINT LATTICE POINT 

(200) q' 2 += qxx 

q' y = qy 


q'z = qz 

(211) q' = 2 + q . x z 

q' = I - q
y y 
q' z = 1 - qx 

(211) q' = 2 - qzx 

q' = 1 - q
y y 
q' = 1 + qz x 

(211) q' = 2 - qx y " 
q' = 1 - qy z 

q' z = 1 - qx 


(211) q' = 2 - qx x 

q' = 1 - q
y z 

q' z = 1 - qy 


(211) .l q' = 2 qyx 

q' i · + 
= qzy 

q' = ·1 - qx
z 

(211) q' = 2 - qxx 

q' = I + q

. Y z 


q' z = 1 - qy 


(211) q' = 2 - qxz 

q' = 1 + q


y y 

q' = l · - q
' z. z 

(211) q' = 2 - qxx 

q' = 1 + q
y y 

q' z = 1 + qz 
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this Thesis. It is to he noted, however, that one would be required to 

extend these transformations further out into reciprocal space, if 

materials with kF values greater than that for lead were to be considered. 

Having this transformation available, it is now simply necessary, 

(a) to deteTminc ~(!!.~) and w{!l_~) for the irreducible l/48th segment of 

the first Brillouin zone as in the calculation of F{w), (b) apply the 

transformation until g_ becomes greater than 2kF' and (c) add up all 

contributions. 

In order to now determine a2 (w)F(w) from equation (A-9) it is now 

simply necessary to determine the form of the electron-ion from factor 

w(g_). The different calculations of this function have been discussed in 

79 34detail by Harrison and where available, w(~) takes the Heine-Abarenkov form 

as tabulated by Harrison. For the alloys considered here and for which 

this data was not:.available, a form supplied by Taylor81 appeared 

reliable. Where neither of these was available, an interpolated value 

between those reliable was utilized. 
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