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The dispersion relations in Platinum have been 

measured at 90°K by the inelastic scattering of thermal 

/ / 
neutrons. Born-von Karman models of the force system 

have been calculated by a process of linear least squares 

fitting to the dispersion curves. Fourth neighbour forces 

with weaker interactions extending to at least sixth 

neighbours are required to fit the data. A frequency 

distribution has been computed using the force constants 

of the most realistic model. 

Some interesting anomalous behaviour in the {OJJ)T1 
branches of both Platinum and Palladium has been investi-

gated in detail at temperatures of 90,296 and 473°K. A 

qualitative analysis indicates that the behaviour is caused 

by the Kohn effect though its manifestation is rather 

unusual. 
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CHAPTER I 

INTRODUCTION 

1. Outline of Thesis 

These measurements were prompted by Miiller's work 

(1968,1969) on Palladium. In the [OsslT1 branch of the 

dispersion curves he found an anomalous increase of slope 

which could not be satisfactorily explained. This effect 

had not been observed in Nickel (Birgeneau et al. 1 1964) 

nor in Copper (Svensson et al. 1 1965) which are, like 

Palladium, face centred cubic metals. 

Platinum is also an f .c.c. metal. It lies in the 

same group of the periodic table as Palladium and Nickel. 

Nickel is ferromagnetic at room temperature , Palladium is 

nearly so, Platinum is not. The study of Platinum could very 

well shed more light on the Palladium anomaly. Even were 

there no anomaly the force system of Platinum is of interest 

in its own right. Experiments on Platinum have already 

been performed by Orlich and Drexel (1968). However, their 

results are incomplete and not very precise since they were 

obtained by time of flight methods. The dispersion curves 

can be measured more precisely with a crystal spectrometer. 

For these reasons a study of the lattice dynamics of Platinum 

was undertaken. In Section 2 of this chapter we discuss 

briefly the history of such measurements. Sections 3 and 4 
~ , 

are devoted to explanations of the Born-von Karman theory of 

Lattice Dynamics and the theory of neutron scattering. 

-1-
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Chapter 2 contains an analysis of the results in 

Platinum at 90°K. " " The force constants of the Born-von Karman 

models are fitted to the measured dispersion curves. From 

the most realistic model a frequency distribution is calcu-

lated and used to evaluate Cv (specific heat) as a function 

of temperature. 

In Chapter 3 the anomalous behaviour of Palladium and 

Platinum is considered in detail. Measurements of the [OsslT1 

branch in Platinum at temperatures of 90, 296 and 473°K are 

reported. Off-symmetry measurements have been made in the 

(100) plane of Palladium in an attempt to determine the 

extent of the anomaly. An explanation of the anomaly as a 

Kohn Effect is advanced. 

2. Lattice Dynamics: An Historical Sketch 

The study of Lattice Dynamics is an attempt to correlate 

the motions of the atoms in a solid with the macroscopic 

thermodynamic properties of the solid. In the early part of 

this century there was no experimental information about these 

atomic motions. In lieu of this various models were put forward 

to explain the observed values of specific heats (Cv) . 

Einstein (1907) proposed that all the atoms in a solid 

be treated as simple harmonic oscillators. All these oscill-

ators were to have the same frequency. The number of oscill-

ators was chosen to give the correct number of degrees of 

freedom. This procedure gave values of C which tended to 
v 

the correct high temperature limit but gave only qualitative 
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agreement at low temperatures, the values of Cv descending too 

rapidly with temperature. 

The Einstein frequency distribution was just a delta 

function about some one frequency. The obvious next step 

was to propose a more complicated distribution. In 1912 two 

new models were put forward. Debye suggested that the fre-

quency of the atomic oscillations should be a linear function 

of the wave vector. This amounted to considering a solid as 

an isotropic elastic continuum, which is a sound approach in 

the region where wavelengths are much greater than interatomic 

spacings. As we shall shortly see the extension to shorter 

wavelengths is not valid, but at any rate the frequency 

distribution arising from this hypothesis is proportional to 

the square of the frequencies. A maximum 'cut-off' frequency 

is chosen by normalizing the number of frequencies to the 

number of degrees of freedom. Values of C calculated in this v 

approximation agreed well with the experimental values at high 

and low(where Cv ~ T3 )temperatures for most materials though 

metals required a correction for the electronic specific 

heat contribution (Sommerfeld• 1928). In the intermediate 

temperature region, however, the agreement was not satis-

factory. This was because the real frequency distribution 

was more complicated yet. 

The other model proposed in 1912 was that of Born and von 

Karman. Where Einstein had suggested a set of uncoupled 

harmonic oscillators they, to use Born's own words, "remarked 

at once that Einstein's monochromatic formula ought to be 
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improved by taking the coupling of the vibrations into account". 

This procedure gives rise to dispersion in the frequency-wave 

vector relations. Since these relations had not been measured 

there was no way of deciding whether this approach was more 

correct than Debye's. Because of this and because the Debye 

model was simple and gave good qualitative results the ideas 

of Born and von K~rm~n lay dormant until the 1940's when 

measurement of the dispersion relations became possible. 

The two most useful probes for measuring the oscillatory 

properties of solids are neutrons and X-rays. Of these two, 

neutrons are far and away the superior tool. The reasons for 

this are simple. Both X-rays and neutrons have wavelengths 

of the order of interatomic spacings. At these wavelengths 

the energies of X-rays are ~sooo e.v. while those of neutrons 

are only of the order of tenths of an electron volt. This 

last is the same order of magnitude as the oscillatory energies 

of atoms in a solid. Thus while both X-rays and neutrons are 

ideal for measuring static properties of solids, where only 

momentum transfer is involved, only neutrons can provide the 

energy resolution necessary for accurate measurement of 

dynamic properties. 

Notwithstanding this the first measurements of dis­

persion curves were made with X-rays since they were available 

before the advent of high flux reactors provided neutrons in 

sufficient quantities. It was suggested by Laval (1941) that 

the dispersion relations could be inferred from the intensities 

of thermal diffuse scattering of X-rays. The first measure-
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ments were made by Olmer (1948) in the (100) direction of 

Aluminium. Work on 8-Brass (Cole and Warren1 1952), Iron 

(Curien,1952), Copper (Jacobsen,1955) and Aluminium (Walker, 

1956) followed. In all these measurements corrections for many 

different factors had to be made to the measured intensities. 

Bearing in mind that absolute intensities are difficult things 

to measure in the first place, it is not surprising that most 

of these measurements were quantitatively incorrect. However 

they did indicate the dispersion that Born and von Karm~n had 

predicted. 

In 1954 Placzek and Van Hove suggested that the dispersion 

relations could be measured by the inelastic scattering of 

thermal neutrons. Others had had the same idea and experi-

mental work was already under way when this paper appeared. 

Aluminium was the first material to be studied in this fashion 

by Brockhouse and Stewart (1955,1958) and Carter, Hughes and 

Palevsky (1957). These initial results were not very accurate 

but by 1958 Brockhouse and Iyengar had made measurements in 

Germanium with an accuracy of 4-5%. The real flowering of the 

subject awaited the development of the Triple Axis Crystal 

Spectrometer and the subsequent ability to make measurements 

with constant momentum or constant energy transfer (Brockhouse, 

1961). Since that time results have been obtained for many 

~ ~ materials and the theory of Born and von Karman has been 

µsed extensively in analyzing these measurements. At the 

same time other force models have been proposed since the 
/ / 

Born-von Karman model is unsatisfactory on at least two 
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counts. First the atomic motions are not strictly harmonic 

and second the model yields only the magnitudes of the forces 

between the atoms. It tells nothing of the sorts and conditions 

of the forces. For the purposes of this thesis these drawbacks 

are not serious. The model will be quite sufficient for 

our present needs. In the next few pages we will describe 

the lattice dynamics of Platinum in terms of this model. 
, , 

3. The Born-von Karman Theory of Lattice Dynamics 

Platinum is a face centred cubic metal having one atom 

per unit cell. The equilibrium positions of the atoms are 

the lattice points given by 

I-1 

+ + + 
where i 11 i 2 and i 3 are integers and a 1 , a 2 and a 3 are the basis 

vectors of the lattice (in this case they are (~,~,O},(~,O,~), 

(O,~,~). These atoms are continuously oscillating about their 

equilibrium positions. We want to calculate the dynamics of 

these oscillations using the theory of Born and von K~rm~n 

(1912). To do this we must make some approximations. 

First we must assume that each atom can be treated as 

an integral unit. That is, we do not have to worry about 

the separation of nucleus and electrons. We say that the 

electrons move so much faster then the nucleus that they 

follow its motion adiabatically (hence the name 'Adiabatic 

Approximation'). That such an approximation is valid in a 

metal where some of the electrons are known to be free is a moot 

point. However Ziman (1964) and Cochran (1965) have shown 

that an ion and its electronic screening charge can be treated 
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as a neutral 'pseudo-atom' which, with a suitably defined 

crystal potential, will lend itself to calculations of this 

sort. 

The other assumption we must make is called the Harmonic 

Approximation. We propose that each atom makes only small 

oscillations about its equilibrium position, which enables us 

to treat each atom as an harmonic oscillator. The potential 

energy (¢) of the lattice will consist of a static equilibrium 

term (¢ ) and a part that depends on the oscillations of the 
0 

atoms. Suppose the displacement of the ith atom from its 

equilibrium position is ~(i). We may expand the potential 

energy as a Taylor's series in these displacements. 

~ = ~ o \: Jau:tl.)) oua (!.) +{. :J auJ~t aua ( l. 'J 1u" (!.) ua ( l.' l I-2 

i:s 
+ higher order terms 

where a,S are Cartesian co-ordinates and the sums are carried out 

over all co-ordinates of all atoms. The partial derivatives in this 

expression are evaluated at the equilibrium positions of the atoms. 

The Harmonic Approximation consists of ignoring all terms 

-+ 
of higher than second order in u(t). This restriction does 

not allow us to calculate such properties as thermal expansion 

or phonon lifetimes. Such anharmonic properties may be cal-

culated by introducing the higher order terms as a perturbation 

of the harmonic situation. These 'quasi-harmonic' calculations 

will not be discussed here. The Harmonic Approximation will 

suffice for our purposes. 

We can simplify the expression for ¢ in a number of ways. 
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First we note that aua1t) is the net force on the ~th atom in 
a. 

the a.th direction. In equilibrium this force must be zero. 

Therefore the second term in Eq. 1-2 vanishes. If we now 

simplify the 

nor:::::r::a::~~):g= I-3 

then Eq. 1-2 becomes 

4> = 4> 0 +f E 4>a.f3(t,t')ua.(t)u13 (t') I-4 
t, a. 
t: 13 

In order to set up the equations of motion of the lattice 

we must also know the kinetic energy of the atoms. This may 

be written as 
.!_ M [l'.'la.(t)]2 T = E !· 5 2 t, a. 

where M is the mass of the Platinum atom. So the Hamiltonian 

of our system becomes 

j(_=T+<f> 

= ~ M E [ua.(t)]
2 

+ 4>0 +fE 4>a.13(t,t')ua.(t)u13Ct') 
t,a. t,a. 

t; 13 
Using Hamil ton's equations we can work out the equation of 

motion of the £th atom. This equation is 

M ii (t) = a. E 4>a.l3(t,£')u13 (t') 
t I f3 

I-6 

I-7 

The term on the right hand side of Eq. 1-7 is the net 

force exerted on the atom at t in the a.th direction. The 

4>a.l3(t,£') can therefore be interpreted as force constants. 

That is they represent the force in the direction a. on the 

tth atom when the atom at t' is displaced a unit distance 

in the direction 8. From the translational symmetry of 

the lattice such a force constant can depend only on the 

+ + 
separation, rt- rt, of the atoms at t and t'. Further there 

is no reason why we should not translate the origin to the 
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lattice site t. Then the equation becomes 

I-8 

The equation we want to solve is now set up. We would 

like eventually to determine the atomic force constants since 

they can tell us something of the nature of the forces between 

the atoms. Let us now consider a travelling wave solution of 

the form 

1 -i[wt-q·~(t)] u (t) = - u e -
a. IM a. 

I-9 

where ua = a constant times a unit polarization vector (!a.(q,j)). 

w = the angular frequency of the wave 

and 
-+ 
q = the wave vector 

substituting this into Eq. 1-8 we obtain 

Define 

2 w u a 
1 = M E ~ a(t')ua 

t'S aµ µ 

,-+ -+ ) 1q·r(t' e 

-+ 1 ,-+ -+( ') 
D,.,,a(q) = -E ~ (t') eiq·r t 

u.µ M t, a8 

Then Eq. 1-10 becomes 

I-10 

I-11 

I-12 

-+ 
The DaS(q) are the elements of the so called Dynamical Matrix. 

For each value of q there will be three equations, one for 

each Cartesian co-ordinate. These three equations will have 

a solution if 8.Jld.only if 

det. lna. 8 - w2
oa 8 1 = o I-13 

Hence for each value of q there will be three frequencies, 
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i.e. three modes of oscillation. It now remains to determine 

+ 
how many values of q there are. 

This we do by imposing boundary conditions on the 

crystal. We shall use the 'cyclic' boundary conditions of 
,, / 

Born and von Karman, to wit: 

u ( .t+ L) = u ( Q,) I-14 

where 
+ + + + 
r(L) = L1 (a1 ) + L2 Ca2 ) + L3 Ca 3 ) I-15 

= some lattice vector. 

The product N = L1L2L3 gives the number of unit cells in the 

volume over which we insist the wave function must repeat. 

Now we know from the Bloch theorem that a wave in a crystal 

lattice can only differ by a phase factor from lattice point 

to lattice point, i.e. 

u{.t+L) I-16 

The.refore from our boundary condition 1-14 we see that 
+ + 

eiq·r{L) = 1 

Hence considering translations in the direction of the three 

unit vectors we see that 
,+ + ,+ + .+ + 

eiq•Llal = eiq•L2a2 = eiq·L3a3 = 1 I-17 

Then a may be written as 

~ hl + h2 + h3 
~ 2 ( b + ) q = TI L 1 + L b2 + L b3 

I-18 

1 2 +3 
where h 1 ,h2 and h 3 are integers and b1 ,b2 and 

+ 
b 3 are basis 

vectors of the reciprocal lattice with the property that 

+ + a.·b.=o .. 
l J lJ 

An inspection of the expression for u (Q,) will show 
a 

that we can restrict the values of q to those provided by 

I-19 



11 

the following range of integers: 

hl - -L1/2 to L1/2 

h2 - -L2/2 to L2/2 

h3 - -L /2 3 to L3/2 

This 
-+ 

range of q defines the first Brillouin zone. (Cross 

sections of the 100. and lI'O p·lanes in the reciprocal lattice 

of a face centred cubic lattice are shown in Fig. I-1. The 

boundaries of the first Brillouin zones in these planes are 

outlined) • 
-+ 

Any other values of q can be re1ated to values 

within this zone by the addition of a suitable reciprocal 

lattice vector. 
-+ 

All the possible values of q are therefore 

covered by the values of q within this zone. We see that 

there are N (=:t.1 L2L3 } such values. Since there exist three 

-+ 
frequencies for each value of q we may conclude that our 

crystal has 3N possible modes of vibration. 

It would seem then that assiduous measurement of the 

values of w for various wave vectors will allow us to cal-

culate the interatamic force constants. We will shortly 

show that it is possible to measure the frequency-wave vector 

relations. Is it now possible to invert this data to yield 

the force constants? Unless we also know the polarization 
-+ 

vectors (~) corresponding to each w it is not. In general 

the polarization vectors are difficult to assign. If however 

the wave vector q points in a major symmetry direction the 

Dynamical Matrix factorizes and the polarization vectors are 

fixed by the symmetry of the lattice. The waves in this case 

can only be transverse or longitudinal which as we shall see 
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greatly simplifies the measurements. Also the expression 

for w2 becomes linear in the force constants. It may be 

written 

13 

2 
Mw = L ¢n(l-cos(nnq/qm)) I-20 

n 

for a particular branch in a given symmetry direction. Here 

qm is one half the distance from the origin to the nearest 

reciprocal lattice point in the specified symmetry direction 

and ¢n is a linear combination of interatomic force constants 

¢aB for which q·~(t') is a constant (see Eq. 1-10). Since 

q.t:(tt}=aconstant defines a plane perpendicular to q the 

¢n are called interplanar force constants. (Foreman and Lomer 

1957). 

Now we have sufficient information to invert these 

w2
-q relations and obtain values for the ¢n· Given enough 

linear combinations ¢n we may solve for the ¢as's. In a 

face centred cubic crystal this may be done provided we con-

sider only interactions out to fourth nearest neighbours, 

If we try to solve for more neighbours we get more unknown 

¢a
8

1 s than equations. In this case we may use the symmetry 

of the crystal to apply additional constraints to the force 

constants. The constraint equations necessary to solve six 

and eight neighbour models are given in Table II-3. 

To sum up then, the Born-von Karman theory predicts 

that there will be dispersion in the frequency-wave vector 

relations. If these relations can be measured in the major 

symmetry directions then we can Fourier analyze the curves to 

determine the interatomic force constants. Let us now see 
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how we can use neutrons to make these measurements. 

4. Scattering of Neutrons from Single Crystals 

We want to consider the scattering of neutrons from a 

system of N atoms. We will assume some interaction potential 

V(r) which depends only on the separation of neutron and 

nucleus. In the first Born approximation (Schiff,1968) the 

differential scattering cross section per unit energy per 

unit solid angle is (Van Hove 1954) 

;r2cr -+ 
a?f§E" =A S(Q,w) I-21 

Where 

m
2 

k' I + 2 A= [ exp(iQ·~)V(r)dr] 
4n2i'i 5 ko 

and 

+ 
S(Q,w) 

N 
= E g(n)I< ml E exp(iQ-~.)ln>l 2 o(E 1 -E0 --f'lw) 

n j=l J 

and m = the mass of the neutron 

+ 
Q = the momentum transfer to the system 

fl.w -- the energy transfer to the system 

E0 ,E 1 = the· incident and scattered neutron energies 

k k' o' = the incident and scattered wave vectors 

Im>' In> = the initial and final states of the scattering system 

g (n) = a statistical population factor for the state In> 

This cross section may be split into a coherent and an 

incoherent part (Placzek and Van Hove,1954), the first arising 

from the ordered motions of the atoms, the second from the vari-

ation of the scattering length from atom to atom. We are 

interested in the coherent part, in particular the one phonon 



coherent cross section. We may ignore the incoherent 

scattering since, in our measurements, it gives rise only 

to a continuous background with no distinctive features. 

This is tantamount to assuming the scattering length to be 

the same for all atoms in the system. 

Now we must define the interaction potential V(r). 

We do not know its actual form but the so called 'Fermi 

pseudopotential' (Fermi,1936) serves the purpose. 

2 

15 

V (r) = c27ra1l ) o (r) 
m I-22 

where a = scattering length of the system's nuclei. 

Then Eq. 1-21 becomes 
a2a 2 + 

/ !Al: k I /k S (Q ) ffiE" =a ll o . ' w I-23 

Evidently then if we wish to determine the scattering cross 

section the variables to measure are energy and momentum 

transfer to and from the system. 
+ 

If we now insert the values of r. (which we know from 
J 

+ 
the discussion of the previous section) in S(Q,w) and perform 

the necessary manipulations we end up with a series of terms 

describing the various processes that can occur within the 

scattering system. The cross section for one such process, 

the creation (or annihilation) of a single phonon is 

3 a2 k' + (27r) 'flN/V exp [-2W(Q}] 
ko 

N. (q) 

[ 
+ l 

+ + + 2 
x [Q·~(g,j)] 

+ 
2mw. (q) 

J 

N~(q)+l 

+ + + 
o(Q-2'ITT -q)o(E -E'-~w) 

0 
I-24 



where 

+ 
W(Q) = 

N = the number of atoms in the volume v 
.!_< [Q·~ (R,)] 2> 
2 .., 

and exp(-2W(Q)) = the Debye-Waller factor 

-+ 
N. (q) = 

J 

-+ -1 
[exp(~wj (q)/kT)-1] 

= the Bose-Einstein population factor for 

phonon annihilation processes 

-+ 
N. (q)+l =the population factor for phonon creation 

J 

processes 

+ 
T = a reciprocal lattice vector 

1Cq,j) =the polarization vector of the phonon 

Phonon creation processes are those in which the incident 

neutrons lose energy upon scattering; phonon annihilation 

16 

processes, those in which the incident neutrons gain energy. 

There are other processes which may occur within the 

scattering system. For instance, the neutrons might be 

scattered elastically. In this case the conditions on the 

energy and momentum are 

E = E' 
0 
+ -+ 
Q = 2rrT 

+ 
for some T I-25 

In general this Bragg scattering yields very sharp and intense 

peaks in the. scattered neutron distribution. It will not be too 

difficult to separate such peaks from the one phonon neutron 

groups. There are also processes in which more than one phonon 

is created (or destroyed). Then the dynamical conditions are 

I-26 
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Such processes will give no sharp peaks in the scattered 

distribution. The scattering will contribute to the back-

ground of course but it will be a continuous contribution. 

Under these circumstances it should be relatively easy to 

separate the groups of neutrons scatteredby one phonon 

processes from the rest of the scattered neutrons. 

Let us now consider the one phonon cross section 

(Eq. 1-24) in some detail. First we see that neutrons which 

create or annihilate a phonon will be scattered in groups 

having well defined values of energy and momentum 

+ 

E -E' = hw 
0 

+ + + + + 
k -k' = Q = 2TIT+q 

0 I-27 

Each pair (w,q) will belong to one of the branches (j) of the 

dispersion curves and will give one point on that branch. We 

want to know what factors in Eq. 1-24 can be arranged to 

optimize the intensity of the neutron group for a given 
+ 

phonon. (w,q). 

Consider the term (Q·!) 2 • It will be to our advantage 
+ + 

to make Q as nearly parallel as possible to the ~ we want. 

we have already mentioned (see Sec. 1-3) that in a direction 

of major symmetry the waves must be either wholly transverse or 

+ 
wholly longitudinal (i.e. ~ must be either perpendicular or 

+ + . 
parallel to q). If then Q is nearly parallel to the desired 
+ 
~ it will be nearly perpendicular to the two other polarization 

. (+ +) 2 . 1 b . + d 1 vectors. That is Q·~ wil e a maximum for one ~ an near y 

zero for the other two since the three polarization vectors 

are mutually perpendicular. 
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In addition to fixing the direction of Q we would do well 

to make IOI as large as possible. Here the restriction is 

that if Q gets too large the Debye-Waller factor (exp(-2W(Q)) 

becomes small. However IOI is likely to be limited by the 

values of lk
0
1 and lk' I before this factor becomes important. 

The temperature of the sample can also affect the 

measurements. At low temperatures (~1°K) the population 

factor N. becomes very small making phonon creation processes 
J 

the only practicable measurements. At temperatures near the 

melting point the amplitudes of oscillation become large 

and the Debye-Waller factor gets small. Neither of these 

considerations affect the present measurements very strongly 

since the work was done between 90 and 473°K. 

The directi.on and magnitude of Q then seem to be the 

principal factors controlling the intensity. We want to be 

able to pre-select both these quantities. As well, we want 

the capability of holding Q(i.e.q) constant while scanning 

through the range of w (or vice versa). All these conditions 

can be met with a Triple Axis Crystal Spectrometer (Brock-

houseJ1961) which we shall investigate in the next chapter. 

http:directi.on


CHAPTER II 

THE LATTICE DYNAMICS OF PLATINUM 

1. Introduction 

We mentioned in Section I-1 that the primary reason 

for studying Platinum was to see if it would display anomalous 

behaviour similar to that observed in Palladium. We will be 

discussing this aspect of the problem in Chapter III where 

a possible explanation of the effect in both metals is 

advanced. In this chapter the anomaly is ignored while the 

general force system of Platinum is elucidated using a Born-
, , 

von Karman model. From the most realistic model a frequency 

distribution is calculated and used to evaluate C as a v 

function of temperature. 

The measurement of the dispersion curves was made at 

90°K. This temperature was chosen, rather then room temper-

ature
1
in order that any anomalous behaviour might be enhanced 

(see Chapter III). All this work was done on the McMaster University 

Triple Axis Spectrometer at Chalk River. Before we plunge into 

a detailed discussion of the measurements a description of this 

instrument is in order. 

2. Triple Axis Spectrometer 

We have seen that in order to measure one phonon pro-

cesses we must be able to observe various energy transfers and 

various momentum transfers. In addition we want to be able to 

hold one of these quantities constant while scanning the range 

-19-
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of the other. Therefore we want to be able to control the 

incident and scattered energies (E and E') and the incident 
0 

+ + 
and scattered momenta (k

0 
and k') both in magnitude and 

direction. We can do all this with a Triple Axis Spectre-

meter. This instrument has been discussed in detail by 

various authors, (Brockhouse 1 1961; Brockhouse et al.
1
1964; 

Iyengar
1
1965; Rowe 1 1966; Brockhouse et al.

1
1968). A schematic 

diagram of the apparatus used in these measurements is given 

in Fig. II-1. With the aid of this diagram let us briefly 

consider the operation of such a spectrometer. 

A beam of white neutrons emerging from a reactor is 

monochromated by Bragg reflection from the (220) planes of 

a Copper crystal. In our case a double reflection mono-

chromator (Brockhouse, deWit, Hallman and Rowe, 1968 ) is 

used. Since the monochromated beam always emerges parallel 

to the incident beam the monochromator may be inserted 

directly in the beam tube behind the reactor face. This 

obviates the need for cumbersome movable shielding which always 

accompanies a single crystal monochromator. Rotating the 

monochromator gives a continuous range of values of E (and 
0 

hence lk I ). The monochromatic beam is allowed to fall on 
0 

the sample (S) after passing through a suitable collimator 

(C 2 ). A good deal of collimation is provided simply by the 

length of the beam tube (C
0 

and c1 ) and c2 can be varied to 

suit the needs of an individual experiment. 

The direction of k is fixed relative to the reciprocal 
0 

space of the sample by rotating the sample (angle ~ in Fig. II-1). 
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The direction of k' is fixed by setting the analyzing unit 

to some angle ~ with respect to the direction 0£ the incident 

beam. E' and hence the magnitude of k' are set by Bragg 

reflection from another Copper crystal (this time from the 

(200) planes). Again the rotation of this crystal provides 

a continuous range of values for E'. The neutrons scattered 

by this final reflection are detected by a He 3 counter (B) • 

The second detector (A) records background radiation in the 

the analyzer unit. Soller slit collimators are placed be-

tween the sample and the analyzing crystal (c 3) and between 

the crystal and the counter cc 4). The latter provides only 

very coarse collimation. 

The most convenient way to use this spectrometer is 

in the 'Constant-Q' mode (Brockhouse,1961). We said earlier 

+ 
that one of q or w needs to be held constant while the other 

is varied. Suppose we fix the momentum transfer Q = ~·-1 . 
0 

Let us also fix the incident energy E . 
0 

If we vary E' by 

+ 
rotating the analyzing crystal we will also vary k' (since 

~2k2 + . 
E = ~). Therefore the only way to keep Q constant is to 

vary the direction of k
0 

and k' in concert with the variation 

in E'. With the triple axis spectrometer this is done by 

+ 
changing~ and~ (i.e. by changing.the orientation of k with 

0 

respect to the reciprocal space of the sample and bv chanqing 

the scattering angle. The beginning and end points of two 

'Constant-Q' phonons are shown in Fig. I-1. 

Alternatively we might have held E' constant and varied 

E
0

• In some circumstances this is the better of the two methods. 
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Again, with this instrument it is equally possible to keep 

the energy transfer constant while scanning through Q(i.e.q). 

This 'Constant·-E' method provides better resolution than 

'Constant-Q' where the slope of the dispersion curve is very 

-+ 
steep (as for instance near the origin of q). All these 

various methods have been discussed in detail by Brockhouse 

et al. (1961). We shall not linger upon them here. Nor 

will we go into the details of the spectrometer operation. 

There are various aspects, such as focussing, which are 

functions of the types and arrangements of monochromators 

and collimation. These things are peculiar to each spectro-

meter. 

3. Experimental Results 

All the present measurements were made on the spectre-

meter described above. The Constant-Q mode was used through-

out the work. 

The single crystal of Platinum used as a sample was a 

cylindrical boule with a [100] axis at an angle of about 20° 

to the cylinder's axis. It was grown by Materials Research 

Corporation and was about 2" long by 1/4" in diameter. It 

had a mosaic spread of about 12' as measured by rocking the 

crystal against a reflection from the (311) plane of a perfect 

Germanium crystal. The stated purity of the material used 

was 99.99%. 

Various incident energies were used in the course of 

the measurements. Table II-1 gives the incident energies in 

units of frequency, wavelength, and energy. It also gives the 



angles of reflection from the (220) plane of the Copper 

monochromator. The rest of this discussion will be 

carried on in frequency units. 

Table II-1 

The various incident energies used in the experiment are 

given here, in units of energy, frequency and wavelength. 

28M is the angle of scattering from the (220) plane of the 

Copper monochromator. 

28M E v ;>.. 

12 (Degrees) (m. e. v.) (10 cps) ( Ao) 

82.18 29.00 7.0157 1.6798 

70.76 37.35 9.0299 1.4800 

63.12 45.70 11.0498 1.3379 

55.54 57.70 13.9513 1.1907 

The lower transverse branches were studied thoroughly 
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at high resolution in an attempt to ferret out any anomalous 

behaviour. 
12 The incident frequency here was 7.02 x 10 cps. 

some of the lowest frequencies were measured with vertical 

collimation of the order of 0.6° as well as horizontal 

collimation of the same order in the incident beam. Most 

of the measurements were made with horizontal collimation 

only 1 jn both the incident and scattered beams. 

The other branches of the dispersion curves were 

measured with higher incident frequencies. In order to 

get decent intensities for the neutron groups at the zone 
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boundaries in the longitudinal branches it was necessary 

to 12 use an incident frequency of 13.9 x 10 cps (with 

consequent loss of resolution). This state of affairs was 

not unexpected since the crystal was not overly large and 

intensities are not very high at 90°K anyway. In most cases 

it was possible to obtain reasonably well formed neutron 

groups. Fig. II-2 shows a representative sample of these 

groups, one from each branch. 

The resultant dispersion curves are shown in Fig. II-3, 

where frequency is plotted against reduced wave vector for 

the four major symmetry directions. The symmetry points and 

directions are labelled after the style of Bouckaert et al. 

(1936). A list of frequencies is given in Table II-2. The 

[OsslT1 branch is listed separately in Table III-1. The 

velocities of sound have been calculated from the elastic 

constants of Macfarlane and Rayne (1965) and compared to the 

initial slopes of the dispersion curves. The slopes of the 

solid straight lines in Fig. II-3 represent these sound 

velocities. The agreement can be seen to be quite satisfactory. 

We note in passing the obvious kink in the [OsslT1 

branch. The curve has a point of minimum slope at reduced 

12 wave vector s~0.33 and frequency ~1.s x 10 cps. Beyond 

this point the slope increases before decreasing to zero in 

the normal way. The effect is similar though not identical 

to that observed in Palladium. As we said this matter will be 

fully discussed in Chapter III. For now we will ignore it. 
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Figure II-2: Representative neutron groups from each of the 
branches of the dispersion curves of Platinum. The three qroups 
in the centre column were measured at hi0h resolution. 
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Table II-2: Normal mode frequencies (units of Jn 12cps.) for 

Platinum at 90°K. The T 
1 

branch is listed in 

Table III-1. 

BRANCH r; FREQUENCY BRANCH r; FREQUENCY 

(OOr;]T 0.10 0.48 (0.02) [Or;r;JT 2 0.10 0.70 (0.02) 
0.15 0.75 (0.02) 0.15 1.05 (0.02) 
0.20 1.01 (0.02) 0.20 1.38 (0.02) 
0.25 1.23 (0.02) 0.25 1. 72 (0.02) 
0.30 1.48 (0.03) 0.30 2.03 (0.02) 
0.35 1.71 (0.02) 0.35 2.36 (0.04) 
0.40 1.98 (0.02) 0.40 2.53 (0.03) 
0.45 2.22 (0.02) 0.45 3.10 (0.03) 
0.50 2.45 (0.03) 0.50 3.47 (0.03) 
0.55 2.70 (0.02) 0.55 3.85 (0.02) 
0.60 2.93 (0.03) 0.60 4.21 (0.03) 
0.65 3.09 (0.03) 0.70 4.87 (0.03) 
0.70 3.30 (0.03) 0.80 5.36 (0.05) 
0.80 3.57 (0.04) 0.90 5.66 (0.07) 
0.90 3.76 (0,04) 1.00 5.84 (0.08) 
1.00 3.84 (0.05) 

(Or;q L 0.10 1. 49 (0.04) 
[OOT;)L 0.20 1.99 (0.05) 0.15 2.14 (0.03) 

0.30 2.79 (0.04) 0.20 2.82 (0.04) 
0.40 3.52 (0.05) 0.25 3.40 (0.05) 
o.so 4.19 (0.03) 0.30 3.94 (0.05) 
0.60 4.77 (0.03) 0.325 4.20 (0.08) 
0.70 5.18 (0.03) 0.40 4.77 (0.05) 
0.80 5.56 (0.04) 0.50 4.95 (0.06) 
0.90 5.73 (0.05) 0.60 4.93 (0.05) 
1.00 5.84 (0.08) 0.75 4.33 (0.07) 

0.90 3.89 (0.06) 
[s s s ) T 0.10 0.76 (0.02) 1.00 3.84 (0.05) 

0.15 1.07 (0.02) 
0.20 1.41 (0.03) c1r;o1A 0.10 3.78 (0.08) 
0.25 1.74 (0.02) 0.30 3.49 (0.04) 
0.30 2.10 (0.02) 0.40 3.36 (0.05) 
0.40 2.63 (0.02) o.so 3.28 (0.05) 
a.so 2.90 (0.02) 

llsOJ7T 0.10 5.73 (0.09) 
[r;r; r;) L 0.10 1. 76 (0.05) 0.20 5.58 (0.07) 

0.15 2.64 (0.03) 0.30 5.28 (0.07) 
0.20 3.44 (0.06) 0.40 4.95 (0.07) 
0.30 4.77 (0.04) 0.50 4.65 (0.07) 
0.40 5.60 (0.04) 0.60 4.44 (0.08) 
o.so 5.85 (0.05) 0. 75 4.03 (0.05) 
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4. Discussion and Analysis of Results 

With the exception of the [Oss1T 1 branch the dispersion 

curves of Fig. II-3 are what one would expect for a face 

centred cubic metal. They are in reasonable agreement with 

the time of flight measurements of Orlich and Drexel (1968) 

though these latter results are incomplete and do not show 

the anomaly in the T1 branch. 

The accuracy of the frequencies listed in Table II-2 

is decided by considering the width, shape and counting 

statistics of the neutron groups (Brockhouse et al., 1962~ 

Woods et al., 1962~ Birgeneau et al., 1964). This method, 

which was generally used in earlier measurements of this 

type is now believed (Svensson et al., 1965) to yield errors 

which are of the order of two standard deviations. That is 

the errors listed in Table II-2 are probably too large. They 

may be considered as upper limits on the possible errors. 

Miiller (1969)rafter a careful analysis of the possible sources 

of error in a triple axis spectrometer puts the accuracy of 

the frequencies at about 0.7 to 0.8%. So the frequencies 

in Tabie II-2 are probably a little more accurate than is 

indicated. 

Having the dispersion curves we can now proceed to cal­

culate the interatomic force constants. These will give us 

some indication of the general forces between the atoms in the 

lattice. We should remember that we are dealing with a metal 

and hence the force constants are inadequate in that they do 

not take into account the free electrons and their screening 
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effects. The measured frequencies have been analyzed using 

Born-von Karman models having different numbers of nearest 

neighbours. The elastic constants of Macfarlane and Rayne have 

been included in these fits. They enter the calculations with 

roughly the same weights as the low frequency phonons. The 

methods used in all these calculations are described by 

Svensson et al. (1965). The computer programs used were theirs. 

As we said in Chapter I there is not sufficient ortho­

gonal information in the symmetry directions of an f .c.c. lattice 

to work out anything more complicated than a fourth nearest 

neighbour model. In order to include more neighbours in the 

fitting process we must impose axially symmetric constraints 

on some of the long range force constants (Brockhouse et. al., 

1967). There are two constraints required for a six neighbour 

model and four for an eight neighbour model. These constraint 

equations are given at the end of Table II-3. 

When no constraints are used and forces extending to 

fourth neighbours are considered a quite reasonable fit is 

obtained. In Fig. II-4 the fitting error (which is a statistical 

estimate of the goodness of fit)is plotted against the number 

of neighbours used in the fit. We see that it drops signi­

ficantly to fourth neighbours and hardly at all beyond that. 

The only branch that is not well fitted by a fourth neighbour 

model is the [O~~]T 1 branch. The inclusion of more distant 

neighbours improves this fit. Of course we expect this, since 

increasing the number of neighbours merely increases the 

number of Fourier coefficients which will make it easier to fit 
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any non-smooth curve. 

A sixth neighbour model fits all the branches (including 

the [Oss1T
1 

branch) quite nicely. The use of more neighbours 

gives a better mathematical fit to the data but the errors on 

the long range force constants become so large that one cannot 

assign any physical meaning to the force constants themselves. 

The force constants calculated for fourth, sixth, and eighth 

neighbour models are given in Table II-3. The errors, which 

are calculated from the errors assigned to the frequenciesJ 

are shown in brackets. 

After inspecting these force constants we may conclude 

that the forces out to fourth neighbours are relatively 

strong with first neighbour forces being far and away the most 

dominant. Beyond this there are weaker long range forces 

extending to at least sixth neighbours. There is one aspect 

of these force constants which is a little unusual and which 

will bear some discussion. In all three of the models the 

fourth neighbour force constants 4XX and 4XY are unusually 
/ ~ 

large. In Table II-4 the force constants for Born-von Karman 

models of Platinum, Palladium, Nickel, Copper and Silver are 

compared. Nickel lies in the same group of the periodic table 

of the elements as Palladium and Platinum. Copper is irmnediately 

adjacent to Nickel as is Silver to Palladium. In Nickel and 

Copper 4XX and 4XY are ~4 or 500 dynes/cm. In Silver they are 

only of the order of 100 dynes/cm. In both Palladium and 

Platinum they are very much larger. This irregularity appearing 

in both these metals might well stem from the anomalous behaviour 
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Table II-3: Atomic force constants(units of dynes/cm.) for 
/ , 

three Born-von Karman models of Platinum. 

AFC 4 NEIGHBOURS 6 NEIGHBOURS 8 NEIGHBOURS 

lXX 25727 [150] 25886 [155] 26358 [ 348] 
lZZ -7795 [206] -7061 [216] -7168 [494] 
lXY 30675 [ 281) 29967 [300) 30353 [ 490) 

2XX 5821 [275] 4027 [323) 4708 [430] 
2YY -1364 [163] -891 [177) -567 [190] 

3XX 2629 [ 93] 1706 [139] 1861 [381) 
3YY 105 [ 80) 240 [ 94) 16 [227) 
3YZ 1657 [ 94) 869 [172) 1212 [ 201] 
3XZ 1406 [ 59) 1345 [ 63] 1014 [115) 

4XX -1976 [ 76) -2490 [ 92) -2663 [103) 
4ZZ 397 [118) -376 [ 161) -238 [203] 
4XY -3318 [111] -2564 [ 195] -2691 [510] 

5XX 651 [ 75] 24 [ 323] 
5YY 30 [ 22] -34 [139] 
5ZZ -47 [ 25] -36 [190] 
5XY 232 [ 28] 4 [165] 

6XX 422 [ 79] 244 [113] 
6YZ -198 [105] -474 [172] 

7XX 240 [163] 
7YY -52 [ 19 5] 
7ZZ 110 [ 53] 
7YZ 59 [ 19] 
7XZ 89 [ 28] 
7XY 177 [ 50) 

0xx 548 (120) 
8YY -87 [ 86] 

Constraint Equations Force Constant Matrix 

1) 9(5YY)-(5XX)-8(5ZZ)=O nxx nXY nXZ 
2) 3(SXX)-3(5YY)-8(5XY)=O 
3) 3(7YZ)-(7XY)=O nXY nYY nYZ 
4) 2(7XZ)-(7XY)=O 

nXZ nYZ nZZ 
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Table II-4: A comparison of atomic force constants (uni ts of 

dynes/cm.) in Pt,Pd,Ag,Cu and Ni. 

AFC Pt. Pd. Ag. Cu. Ni. ------
lXX 26358 19337 10808 13160 17319 
lzz -7168 -2832 -1815 -1489 -436 
lXY 30353 22423 12394 14880 19100 

2XX 4708 1424 506 453 1044 
2YY -567 210 -340 -345 -780 

3XX 186] 744 546 573 842 
3YY 16 249 247 321 263 
3YZ 1212 163 322 252 -109 
3XZ 1014 708 262 342 424 

4XX -2663 -1142 -22 99 402 
4ZZ -238 -223 63 -190 -185 
4XY -2691 -1370 156 424 660 

5XX 24 -6 -155 -121 -85 
5YY -34 -207 -60 15 7 
5ZZ -36 -232 -47 32 18 
5XY 4 76 -36 -51 -35 

6XX 244 154 -105 -111 
6YZ -474 330 -362 -337 

7XX 240 70 15 31 
7YY -52 67 -2 39 
7ZZ 110 -20 -36 -89 
7YZ 59 -22 9 
7XZ 89 -32 22 13 
7XY 177 -65 44 26 

8XX 548 72 -39 -201 
8YY -87 6 176 54 



of the T1 branches. We will shortly attempt to establish 

whether it does or not. For the moment we will assume it 

normal and proceed to calculate a frequency distribution. 
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The sixth neighbour model seems the most realistic so we will 

use the force constants derived from that model as our start-

ing point. 

These force constants can now be used to calculate 
+ 

frequencies for any wave vector (q) in reciprocal space. If 

enough of these frequencies are calculated they can be sorted 

into channels of some given width in frequency and the number 

of frequencies in each channel can be established. This will 

give a distribution of frequencies g(v) which can be used in 

calculating thermodynamic properties as we shall see. A dir-

ect method of calculation, involving diagonalization of a 3 x 3 

matrix for each point in reciprocal space, is too time consuming. 

Various methods of approximation have been developed. Here we 

have used the method of Gilat and Raubenheimer (1966) in which 

frequencies are calculated directly at only a limited number of 

. . + . 
points in q-space while the other necessary frequencies are ob-

tained by interpolating between these calculated points. We 

should perhaps point out that because of the symmetry of the 

crystal these calculations need only be performed in the 

irreducible 1/48 th synnnetry element of the first Brillouin 

zone. 

The resultant frequency distribution is shown in Fig. II-5. 

The calculations were performed with a bin width of 0.01 x 1012 

cps. The smooth curve in the figure was drawn through the cal-
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culated histogram. The critical points in this distribution 

can all be correlated with the stationary values and cross 

over points of the dispersion curves. We should note here 

that all the frequencies are calculated using force constants 

derived by fitting measurements in the symmetry directions 

only. We are assuming that the model is sufficient to yield 

correct values for the frequencies at off-symmetry points in 

reciprocal space. Strictly speaking we should go and measure 

some off-symmetry points and see if the force constants pre­

dict accurately the frequencies at those points. However this 

has been done for both Palladium and Copper {Miiller, 1969) 

and there the models do predict the correct frequencies, on 

the average. It was not thought necessary to repeat this 

process here. 

As a check on our frequency distribution we can use 

it to calculate the specific heat as a function of tempera-

ture. However in doing this we assume that the frequencies 

{and hence g{v)) are independent of temperature. This is not 

so and in order to get any decent values for the specific heat, 

especially at high temperatures one must use a more sophisticated 

approach than the Harmonic approximation. HoweverJfor tempera­

tures less than-"100°1< or so values calculated in this approxi­

mation should agree with the measured values. If they do not 

then something is wrong with the force model. So what we are 

about to do provides us with a check on our model. 

In the harmonic approximation the total internal energy 

may be written as 



where 

hv g(v) dv 
[exp (Bhv}-l)] 

v = the maximum frequency of the crystal 
m 

B = l/kT 

k = the Boltzmann factor 

T = the temperature. 

g(V) must be normalized to the total number of modes of 

oscillation, i.e. 

Then the 

J
vmo ·g(v) dv = 3N 

specific heat at constant volume is given by 

CV = r~1V = k r:m (Shv) 2 exp(Bhv)g(v)dv 
[exp (Bh\)-ll] 2 

These calculations have been done using the g(v) obtained 
0 
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II-1 

II-2 

II-3 

at 90 K. Cv is plotted as a function of temperature in Fig. 

II-6. Shown also are the measured values of C (specific heat 
p 

at constant pressure) which have been compiled by Hultgren 

et. al. (1963}. Below 100°K the agreement is very good. It 

would seem that there is nothing drastically wrong with our 

model within the limits of the Harmonic approximation. 

Let us leave this for now and return to a discussion of 

the force constants. We noticed that the fourth neighbour 

terms 4XX and 4XY were unusually large. Since this behaviour 

is common to both Palladium and Platinum it might well be re­

lated to the anomalies in the T1 branches: So far we have paid 

scant attention to these. Let us now remove them completely 

and replace the anomalous branch by a smooth curve. Then we can 
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recalculate the force constants and see whether 4XX and 4XY 

still remain large. 

We know (see Chapter I) that any symmetry branch can 

be fitted by an expansion in terms of the interplanar force 

constants 

2 
Mw = E ¢n(l-cos(nrrq/'Iro)) II-4 

n 
In most f .c.c. metals (Ni, Cu, Ag) the T1 branch can be well 

fitted using only the first two te:trms of the expansion. With 

some manipulation the equation becomes 

~2 = Al[sin2 (TI~)+A2/Alsin2 (~~)] II-5 

where v = w/2rr = frequency 

and A2/A1 = ¢ 2/¢1 

A1 may be fixed by assuming the frequency measured at the zone 

boundary to be beyond the region of the anomaly. This is a 

safe assumption since the frequency is identical to that observed 

at the zone boundary in the [OOsJ direction where no anomaly 

was found. Now a value for A2/A1 may be chosen and frequencies 

calculated for the same values of s as were measured. This 

pseudo-T1 branch is then fitted to the other measured frequencies 

using a Born-von Karman model. The value of A2/A1 finally used 

is that which gives the minimum fittinq error. The value finally 

chosen was A2/A1 = 0.09. 

Now we have a smooth T1 branch which is as much in tune 

with the other branches as we can make it. We again consider 

the force constants. Table II-5 shows that they are not signi-

ficantly changed from their previous values. In particular 4XX 

and 4XY are still overly large. We may therefore conclude that 

the odd values of these force constants do not originate solely 
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Table II-5: Atomic force constants(units of dynes/cm.) for 

Platinum at 90°K when the anomalous T1 branch 

is replaced by a smooth curve. 

AFC 4 NEIGHBOURS 6 NEIGHBOURS 8 NEIGHBOURS 

lXX 26243 [154) 26325 [165) 26168 [350] 
lZZ -7331 [ 211) -7171 [217) -6773 [ 495] 
lXY 29913 [286) 29405 [306) 29616 [ 491] 

2XX 5706 [277) 4961 [342] 5537 [433] 
2YY -847 [167] -851 [179) -686 [ 191] 

3XX 1937 [108) 1833 [140) 1628 [382] 
3YY 203 [ 82] 119 [100) 246 [230) 
3YZ 881 [102] 702 [178] 639 [202) 
3XZ 1131 [ 63] 1153 [ 68) 1015 [121) 

4XX -2426 [ 85) -2573 [ 93) -2638 [104] 
4ZZ 567 [130] 298 [169] 65 [208] 
4XY -2577 [139] -1943 (202] -2011 [514] 

5XX 219 [ 94] 142 [325] 
5YY 72 [ 26} -137 [140] 
5ZZ 54 [ 31] -172 [190] 
5XY 55 [ 36] 105 (165] 

6XX 180 [ 86] 2 [114] 
6YZ -194 [117] 39 [180) 

7XX 54 [171] 
7YY 110 [196] 
7ZZ 75 [ 53] 
7Y -6 [ 22] 
7XZ -10 [ 32] 
7XY -19 [ 59] 

0xx 221 [146] 
8YY 100 [118] 
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in the anomalous behaviour of the T
1 

branch. 

To sum up we may say that the force system of 

Platinum seems adequately described by a sixth neighbour 

Born-von K~rm~n model. First neifhbour forces are dominant but 

relatively large forces exist out to fourth neighbours. 

The longer range forces are much weaker. These conclusions 

are supported by the good fit obtained to the dispersion 

curves and by the good agreement of calculated and measured 

specific heats in the harmonic region (TrJ100°K). The 

unusual values of the fourth neighbour force constants 

do not appear to be related to the anomalous behaviour 

of the T
1 

branch. The detailed consideration of this 

behaviour is the subject of the next chapter. 



CHAPTER III 

ANOMALOUS LATTICE VIBRATIONS IN PALLADIUM AND PLATINUM 

1. Introduction 

It was pointed out in Chapter I that the present work 

was provoked by Miller's discovery of anomalous behaviour in 

Palladium. There was a pronounced increase in slope in the 

[OssJT1 branch of the dispersion curves, with a much smaller 

possible effect in the [sss]T branch. The effect was very broad 

and it was difficult to say where it began and ended. Measure­

ments made at temperatures of 8, 90, 120, 296, 673 and 853°K 

demonstrated that the anomaly weakened and eventually disappeared 

as the temperature was increased. 

For various reasons the possibility of the anomaly being 

a Kohn effect (see next section) was dismissed. Firstly the 

Kohn effect is expected to manifest itself as a sharp singularity 

in the dispersion curves. The observed effect was not sharp. 

Secondly the Kohn effect is not expected to depend strongly on 

temperature (at least for temperatures as far below the melting 

point as these were). Thirdly initial attempts to find Kohn 

vectors which would account for the anomaly were not successful. 

There were two Kohn surfaces which crossed the [Ossl direction at 

~~o.4 but the anomaly seemed to be centred at s~0.35. Initially 

it was thought that the Kohn anomaly,if it was present at all, 

would only modulate the shape of the principle anomaly. 

Another possibility that was considered and dismissed 

was that impurities in the Palladium crystal were causing the 

-43-
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effect. Palladium will become ferromagnetic if sufficient 

magnetic impurities are added to it. However a spectrographic 

analysis of a piece of the crystal revealed that the amount 

of magnetic impurities in the sample was an order of magnitude 

less than the amount required to make Palladium magnetic. 

This was the state of affairs at the time the present 

measurements were commenced. A number of lines of attack have 

been pursued. Firstly to ensure that impurity effects were 
I 

not important
1

a second crystal of very pure Palladium was 

procured and the measurements in the T1 branch repeated. 

Secondly measurements were made in certain off-symmetry 

directions in Palladium to determine the extent of the anomaly. 

In addition the T2 branch was thoroughly measured at 90°K. 

Thirdly it was decided to investigate Platinum since it lies 

in the same group of the period table as Palladium. Lastly the 

T1 branch of Nickel was measured at 90°K since Nickel also 

lies in this group. 

The result of all this endeavour has been the resurrection 

of the Kohn effect explanation. Though detailed calculations 

are very difficult to make a qualitative analysis indicates that 

this is the cause of the anomalies in both Palladium and Platinum. 

Before proceeding to describe the measurements let us briefly 

discuss the Kohn effect. 

2. The Kohn Effect 

In Chapter I we discussed the validity of the Adiabatic 

approximation in metals. We cited the calculations of Ziman 

(1964) and Cochran~-< 1965 )as showing that an ion and its electronic 
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screening charge could be treated as a neutral pseudo-atom 
/ / 

which can be used in Born-von Karman models. In these cal-

culations one considers the effect of introducing a small 

charge distribution into a gas of free electrons. The 

electrons will attempt to screen this charge distribution and 
+ 

some interaction potential Vs(k) will result. This potential 

is 
+ 

inversely proportional to a dielectric function E(k) defined 

as 

[i + 

+ + 

J 

+ 6TINe 2 4k2 - k 2 2kf + k 
E(k) = 1 + k2E 

F ln III-1 
+ + 

8kfk 2k - k F f 

where N = the number of free electrons 
+ 
k = some wave vector 

+ 
Ef ,kf = the Fermi energy and wave vector respectively 

(divided by ~) 

From this expression we see that there will be some logarithmic 
+ + + 

singularity at k = 2kF. The resultant discontinuity in Vs(k) 

means that the forces between the pseudo-atoms must change. Hence 

we would expect some sort of discontinuity in the dispersion 

curves at this wave vector. The physical reason for this 

behaviour is that the electrons all have wave vectors less 

+ + 
than kF(by definition of the Fermi surface). If k becomes greater 

+ 
than 2kF the electrons can no longer screen the ions effectively 

and hence the forces between the ions will change substantially 
+ + 

at k = 2kf. Therefore the frequencies of oscillation must 

change. The resultant kink in the dispersion curves is called 

the Kohn effect (Kohn, 1959). Because the Fermi surface in 

metals is relatively sharp we would expect a sharp discontinuity 



in the dispersion curves. 

Of course the Fermi surface in most metals is not 

spherical. The above results can be generalized so that a 

-+ 
Kohn effect will occur wheriever the momentum transfer Q is 
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Q = k - k 2 1 III-2 
-+ -+ 

where k2 and k1 are any two points on the Fermi surf ace having 

parallel tangents. Given the Fermi surface it is not difficult 

to sort out vectors across the surface which should yield Kohn 

effects in the symmetry directions. What is difficult is to 

calculate the magnitude of any such effect. We will not attempt 

to do this here. our analysis will be concerned with establish-

ing the possible positions of Kohn anomalies. 

3. Experimental Results 

The [Or;;r;;JT1 Branch of Platinum 

Frequencies were measured at closely spaced points along 

the [Or;;r;;JT1 branch under the conditions of high resolution 

described in Chapter II. More widely spaced measurements were 

made at a different incident frequency of 9.03 x 1012 cps. These 

latter results are in good agreement with the high resolution 

measurements. A list of frequencies measured at three tempera-

tures is given in Table III-1. The T1 branch of Platinum at 90°K 

is compared to that of Palladium at 8°K in the upper part of 

Fig. III-1. The solid symbols represent those measurements 

made with vertical collimation and an incident frequency of 

12 7.02 x 10 cps.: the open squares those with the same incident 

energy but no vertical collimation. The open triangles represent 

measurements made with higher incident energies. The slopes of 



Table III-1: Normal mode frequencies in the T1 branch of 

Platinum at 90,296 and 473°K. 

90 K 296 K 473 K 

0.100 0.580 (0.02) 0.510 .(0.02) 0.495 (0.02) 
0.125 0.660 (0.02) 0.635 (0.02) 
0.150 0.835 (0.02) 0.780 (0.02} 0.750 (0.02) 
0.175 0.900 (0.02) 0.860 (0.02) 
0.200 1.050 (0.02) 1.005 (0.02) 0.970 (0.02) 
0.225 1.125 (0.02) 1.085 (0.02) 
0.250 1.255 (0.02) 1.210 (0.02) 1.180 (0.02) 
0.275 1.345 (0.02) 1.300 (0.02) 1.270 (0.02) 
0.300 1.430 (0.02) 1.390 (0.02) 1.375 (0.02) 
0.325 1.510 (0.03) 1.485 (0.02) 1.470 (0.02) 
0.350 1.540 (0.03) 1.570 (0.02) 1.560 (0.02) 
0.375 1.650 (0.03) 1.665 (0.02) 1.670 (0.02) 
0.400 1.770 (0.03) 1.775 (0.02) 1.780 (0.02) 
0.425 1.895 (0.02) 1.900 (0.02) 1.900 (0.02) 
0.450 2.020 (0.02) 2.025 (0.02) 2.045 (0.02) 
0.475 2.165 (0.02) 2.155 (0.02) 
0.500 2.255 (0.02) 2.290 (0.02) 2.275 (0.02) 
0.525 2.400 (0.02) 2.390 (0.02) 
0.550 2.510 (0.02) 2.530 (0.02) 2.515 (0.02) 
0.575 2.660 (0.02) 2.620 (0.02) 
0.600 2.810 (0.02) 2.780 (0.02) 2.750 (0.02) 
0.625 2.860 (0.02) 
0.650 3.080 (0.02) 3.025 (0.02) 
0.700 3.27 (0.03) 3.230 (0.02) 
0.800 3.57 (0.03) 
0.900 3.76 (0.04) 
1.000 3.84 (0.05) 
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the solid straight lines are the velocities of sound described 

in the last chapter. 

The lower part of Fig.III-1 shows the slopes of the 

two dispersion_curves plotted as a function of s· This type 

of plot gives a much more graphic representation of the anomalous 

behaviour than do the dispersion curves themselves. The 

various symbols have the same meanings as those in the upper 

part of the diagram. The arrows in the figure will be explained 

shortly. 

Thorough measurements along the other transverse branches 

did not indicate any more anomalous behaviour except possibly 

in the [Os~]T2 branch. There does seem to be some small effect 

in this branch but the measurements were made at two different 

incident energies and it is difficult to compare them accurately 

enough to define the behaviour. 

The work described above was done at 90°K. The T1 

branch has also been measured at 11 296 and 473°K under the same 

experimental conditions. The results are shown in Fig. III-2. 

Table III-1 gives a list of the frequencies. The anomaly is 

seen to weaken at higher temperatures in much the same way as 

in Palladium 

Anomalous Behaviour in Palladium 

The second crystal of Palladium was used to remeasure 

the T1 branch at a temperature of 296°K. This crystal was about 

half the size of the original one, being a cylindrical boule 

of length 2" and diameter 1/4". A [100) axis lay along the axis 

of the cylinder which made the geometrical arrangement very 
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good for measurements in the (100) plane. These measurements 

were made under the same conditions as Miiller's earlier work. 

The results are shown in Fig. III-3 where they are compared to 

Miiller's measurements. The anomaly occurs in exactly the 

same way as before. 

The extent of the anomaly has been measured in the 

(100) plane of the original Palladium crystal. Measurements 

were made along directions making angles 8 = 7.5, 15, 22.5, 

30 and 37.5° with the [Ossl axis. Along each of these dir-

ections it was thought necessary to go out a distance equal 

to 0.6 of the distance between reciprocal lattice points in 

the [Ossl direction. Most of the work was done at 90°K, the 

only exception being in the direction 8 = 15°. This was done 

at 8°K by Dr. Miiller. All the measurements were made at an 

12 incident frequency of 7.02 x 10 cps. A list of the fre-

quencies in these directions is given in Table III-2. The 

slopes of these dispersion curves are shown in Fig. III-4. 

We can see that the anomaly has petered out by 8 = 30°. In 

the [00~] direction (8=45°) there is of course no effect. 

Such off-symmetry measurements were not made in Platinum 

since it was thought that the results would be very similar 

to those in Palladium. 

The (Os~)T2 branch of Palladium was .not measured in 

great detail by Miiller. In the present work measurements were 

made at intervals of 0.025 in~. This work was done at a 

temperature of 90°K using an incident frequency of 11.04 x 10
12 

cps. The curve and its slopes are presented in Fig. III-5. 
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Table III-2: Normal mode frequencies(units of lo12cps.) in 

off-symmetry directions in the (100) plane of 

Palladium. 

8= angle from [110] direction 

s 7.5 15.0 22.5 30.0 

0.075 0.500 0.640 
0.100 0.615 0.685 0.740 0.865 
0.125 0.770 0.835 0.915 1.045 
0.150 0.890 0.980 1.075 1.270 
0.175 1.020 1.140 1.262 1. 425 
0.200 1.120 1.295 1.400 1.600 
0.225 1.245 1.420 1. 575 1. 800 
0.250 1.310 1. 520 1.700 '1. 990 
0.275 1. 405 1.620 1.900 2.180 
0.300 1.500 1.795 2.045 2.360 
0.325 1.685 1.950 2.225 
0.350 1.835 2.140 2.405 2.730 
0.375 2.025 2.265 2.580 
0.400 2.150 2.465 2.775 3.110 
0.425 2.355 2.605 2.950 
0.450 2.515 2.785 3.150 3.487 
0.475 2.690 2.905 3.305 
0.500 2.865 3.105 3.475 
0.525 3.055 3.230 
0.550 3.215 3.430 
0.575 3.380 3.570 
0.600 3.530 
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There is no evidence of the type of anomaly seen in the T1 

branch. 

The (Oss)T1 branch of Nickel has also been measured 

in detail at 90°K. Incident frequencies of 11.04 and 7.02 

12 x 10 cps were used. The results are shown in Fig. III-6. 

There may, perhaps, be something untoward occuring but it 
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is not the same type of behaviour as is observed in Platinum 

and Palladium. 

4. Analysis and Discussion of Results 

First we may say that we are definitely dealing with 

a real effect and not some by-product of impurities. That 

the effect should occur in two samples of Palladium and in 

Platinum is proof enough of this. Also it would seem likely 

that the anomaly does not have its origin in the nearly 

magnetic properties of Palladium. 

Let us briefly compare the anomalies in the two metals. 

We can see from Fig. III-1 that the effects are not identical. 

For low s the frequencies of the T
1 

branches are nearly the 

same. The dispersion curves begin to dip at about the same s· 

At higher values of s the behaviours of the two differ. In 

Palladium the curve bends up aqain, rising to the velocitv 

of sound line before beginning to level off to the zone 

boundary. Platinum does not do this. Though the dispersion 

curve starts to rise again it does not rise as steeply as in 

Palladium. In fact it ends up looking as if the upper half 

of the curve had been displaced from the lower half along s. 
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The differences are pointed up more clearly by the slope plots 

of Fig. III-1. We can see that the effect in Platinum seems 

to extend over a wider range than it does in Palladium. 

The Fermi Surface: Some Possible Kohn Anomalies 

The Fermi surfaces of Platinum and Palladium have been 

calculated by Krogh Andersen and Mackintosh(l968) using a 

relativistic augmented plane wave method. The calculated 

surfaces are in good agreement with the extremal areas derived 

from the de Haas-van Alphen measurements(see Krogh Andersen 

and Mackintosh). The Fermi surfaces consist of three parts: 

1) a r-centred electron surface, 2) an open, d-like hole sur­

face having the topology of cylinders extending in the(lOO) 

direction and intersecting at the points X, 3) a set of d-like 

hole surfaces having the forms of ellipsoids of revolution, 

centred at the points X. Cross sections of these surfaces in 

the (lOO)and (11'0) planes are shown in Fig. III-7. We shall 

concentrate our attention on the (100) plane. In particular 

we shall be interested in the open hole surfaces intersecting 

at the pair.ts X. We can see immediately that there are numerous 

pairs of points on this surface having parallel tangents. 

Suppose that for some such pair we call the vectors from the 
+ + 

origin (f) to the two points, k 2 and k 1 . Then the set of all 
+ + 

the vectors k 2-k 1 is the set of all possible Kohn vectors arising 

from this surface. If we translate all these vectors to a 

common origin (r) then their tips will form a number of loci 

which will be Kohn anomaly surfaces. Some of these surfaces 

will extend beyond the first Brillouin zone. Since in this, 
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as in all matters of this sort, we must maintain translational 

symmetry we can reflect all these surf aces back into the 

first zone by adding a suitable reciprocal lattice vector. 

This is just equivalent to mapping all the above surfaces 

about adjacent reciprocal lattice points. 

We can use a computer to make all these calculations. 

First it is necessary to describe the Fermi surface mathe­

matically in terms of a polynomial which is adjusted to fit 

a number of closely spaced points. After this the polynomial 

may be solved for points having the same slope and the vectors 

separating these points can be translated to the origin. When 

this process is repeated for the full gamut of slopes we 

end up tracing out the necessary Kohn surfaces. These surfaces 

are shown in Figs. III-8 & III-9. Note that we differentiate between 

equivalent and non-equivalent points on the Fermi surface. 

In Fig. III-7 the points A and B are equivalent while A and 

C are not, though all the vectors AB, AC and BC are possible 

Kohn vectors. Both equivalent and non-equivalent points yield 

valid Kohn surfaces. The only reason for the distinction is 

to be sure of the origin of the various surfaces. 

Now from Figs. III-8 & 9 we see that there. are four points 

where Kohn surfaces cross the [Ossl direction. The surface 

at lowest s comes from non-equivalent points, the next from 

equivalent points, the third from non-equivalent points and the 

one at largest s from equivalent points again. For the first 

three crossings there are two Kohn surfaces intersecting in 

the [Ossl direction. For the last crossing there is only one 
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Figure III-8: One quarter of the first Brillouin zone 
in tfie (100) plane of Platinum. The heavy solid lines 
represent possible Kohn surfaces arising from equivalent 
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line represents the part of the Fermi surf ace used to 
obtain these Kohn surfaces. 
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surface. 

The broken and solid arrows of Figs. III-1 and III-3 

correspond to the intersections with the [Oss] direction of 

the broken and solid lines in Fig. III-8. In Fig. III-1 we 
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can see that the range of these intersections corresponds to 

the regions of the anomalies. Moreover we see that in 

Palladium the Kohn vectors lie in a narrower region than in 

Platinum. This is rather encouraging since we have already 

noted that the anomaly in Palladium is somewhat narrower than 

it is in Platinum. Though the general regions coincide it is 

difficult to say anything definite about any particular Kohn 

vector. However it is worth noting that in Pd, at least, 

the Kohn vectors having the lowest s lie just at the point 

where the rate of change of slope is greatest. The same sort 

of behaviour is seen in the off-symmetry branches of Palladium 

in Fig. III-4. Also in these directions we observe that the 

range of the Kohn vectors spreads out as the angle e increases. 

At the same time the anomaly seems to be broadening along the 

s axis. 

Now, though this proliferation of Kohn vectors may 

coincide with the areas of increased slope it does not explain 

the initial dip in the dispersion curves at s~0.35. Why, 

forinstance, do the curves not go straight out as far as the 

first Kohn vector before anything untoward occurs? For this 

we have not been able to find a suitable explanation. The 

other point that is difficult to understand is why the anomaly 

should weaken with increasing temperature. Ordinary Kohn 
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anomalies (such as those observed in Pb) are not expected to 

become appreciably less sharp at temperatures as far below 

the melting points as these are. (The melting points of 
0 

Palladium and Platinum are respectively 1552 and 1769 C.) 

It may be that the Fermi surf aces of these metals become 

less well defined at these temperatures. The disappearance 

of the anomalies could correspond to an increased uncertainty 

in the length of the Kohn vectors. At the moment however this 

is all vain speculation. More experiments are being planned 

for the future, especially in the off-symmetry directions. 

In summary then the anomalies in Palladium and Platinum 

appear to be real. They do not seem to arise from impurities, 

magnetic or otherwise. The Kohn effect yields a plausible, if 

vague, explanation of the behaviour in the T1 branches. The 

smaller effects in the other branches can probably be accounted 

for in the same way. However the theory is not complete 

inasmuch as it fails to predict the temperature dependence of 

the.anomaly. 

TAMAM SHUD 
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APPENDIX I 

Numerical frequency distribution corresponding to Fig II-5 
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