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CHAPTER I 

INTRO DUCTI ON 

111e first cyclotron resonance experiment in metals was performed 

by Fawcett (1956) in tin and copper. The most useful experimental 

geometry for a cyclotron resonance experiment in metals was proposed by 

Azbel' and Kaner (1956), who predicted that subharmonic resonances would 

exist because of the presence of a microwave skin depth. Subharmonic 

resonances were subsequently observed in tin by Kip, Langenberg, Rosenblum, 

and Wagoner (1957). The first cyclotron resonance experiment to report a 

detailed study of the anisotropy of the cyclotron effective mass, and to 

identify those masses with orbits on the Fermi surface, was an experiment 

on copper by Kip, Langenberg, and Moore (1961). Detailed cyclotron 

resonance results have since been reported in bismuth (Khaikin, Mina, and 

Edel'man, 1963), sodium and potassium (Grimes and Kip, 1963), copper (Koch, 

Stradl i ng, and Kip, 1964), antimony (Datars and Van<lerkooy, 1964), gold 

(Langenbcrg and Marcus, 1964), aluminum (Spong and Kip, 1965), cadmium 

(Galt, Merritt, and Klauder, 1965, and Shaw, Eck, and Zych, 1966), and 

zinc (Shaw, Sampath, and Eck, 1966). 

In a metal with a multiply-connected Fermi surface, knowledge 

of the existence of open orbits, and of the range of magnetic-field 

directions for which they exist, can be extremely useful in ascertaining 

the connectivity of the surface and the size and orientation of connecting 

arms. This information can he obtained from magnctoresistance experiments 

using single-crystal samples. A review paper by Fawcett (1964) surveys 
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the experiments that have been done, and the results obtained. 

When this experiment was started, no detailed information was 

available about the Fermi surface of mercury. Anomalous skin effect 

results had been reported by Pippard (1947), and de Haas - van Alphen 

effect measurements had been made on unoricnted crystals by Verkin, 

Lazerev, and Rudenko (1951), and on crystals oriented using their magnetic 

anisotropy by Shoenberg (1952). Gustafson, ~1ackintosh, and Zaffarano 

(1963) had completed a positron-annihilation experiment on liquid and 

solid mercury. Mercury could be obtained commercially in a very pure 

form, which made it feasible to attempt a cyclotron resonance experiment. 

The results of this experiment, along with the knowledge obtained from a 

magnetoresistance experiment ', were expected to yield detailed information 

about the Fermi surface of mercury. The appearance of oscillations in 

the microwave surface impedance, which have been identified as quantum 

oscillations, has permitted a further extension of the kryowledge of the 

Fermi surface gained from these experiments. 
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CHAPTER II 


THEORY 


A. Motion of an Electron in Electric and Magnetic Fields 

When an electron is acted upon by electric and magnetic fields, 

the force on the particle is given by the Lorentz equation, 

- ~ 1 ~ ~F = e(t + - v x HJ, (II-1)
c 

where the first term shows the response to an electric field, and the 

second to a magnetic field. Using de Broglie's relation for the dependence 

of energy on wave number, 

2 2 2 

E=L=!!....L
2m 2m ' 

.... d~ .:. ... 1 .. ­
F = ..::::.:.. =Tl k = e (E + - v x H) • (II-2)

dt c 

First consider the effect of a uniform electric field only, 

Here h k = e E, so that in the absence of collisions between electrons 

and defects in the crystal lattice, the momentum of the electrons increases 

linearly with time. This is equivalent to a motion of the whole Fermi 
.... 

sphere in k-space. In the presence of lattice defects, an equilibrium 

current density is established, which can be described by a small shift 

of the Fermi surface in the direction of current flow. 

In a constant magnetic field, the electron experiences a force 

normal to both the magnetic field direction and to its direction of 

motion. It then follows a helical orbit, spiralling about the magnetic 
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field direction. The representative point of the electron moves around 

the Fermi surface at the intersection of the Fermi surface with a plane 

normal to H. For a free electron, the representative point moves around 

the Fermi surface at the cyclotron frequency, 

e H 
w = c m c 

For other than free electrons, we define the "cyclotron effective mass" 

using 

e H w (II-3)c * m c 
c 

Note that this is not the same as the dynamical effective mass of the 

electron,. given by 

2 
1 1 a E--;- = -r ---;z- • 
m h ak 

The cyclotron effective mass is a property of an orbit, while the dynamical 

effective mass is a property of a particular electronic state. 

A useful geometrical representation of the cyclotron frequency 

is the following. If an electron is described as a wave with wave-number 

k, then the. group velocity of that wave is given by 

a E (k) 
ak 

For an anisotropic medium, this ·can be written: 

v (k) = i ~k E (k) (II-4) 
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The representative point of the electron, rotating around the Fermi 
.... 

surface at frequency w in a plane perpendicular to H, makes one completec 

rotation in a time 

fT = w2rr = ch dk • (II-5) 
c el-I v..1. 

.... 
where vJ. is the component of v in the plane perpendicular to H at the 

point 
~ 

k. Here we have used equation (II-2) for an electron in a constant 

magnetic field. Equation (II-4) can be written: 

1 a E 
v = (II-6) 

.1. 'h 'dkJ. 

.... 
where kL is the component of k in the plane of the orbit, and normal to 

the Fermi surface. 

* eH m = c w c c 

but 1 en f dk from (II-5), 
wc = 27reH VJ. 

* eH ch f dkm c = c 2neH v..L. 

112! dkj_= 2iT using (II-6),Cit dk 

2 
l1 aA = (II- 7)z:rr at 

-where A is the area of the orbit in k-space in the plane normal to ~ H. 

Equation (II-4) shows that the velocity of an electron in real 

space is perpendicular to a surface of constant energy, the Fermi surface. 

Under the action of the Lorentz force, in a constant magnetic field, the 
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.... 
value of kH, the component of k 

~ 

parallel to H, is unchanged, and is a 

.... ­constant of the motion • . In a plane perpendicular to II, k changes along 

curves of constant energy, i.e., on the Fermi surface. Let kJ.. be the 

two-dimensional wave vector in the plane normal to H, and p be the vector 

describing the orbit in real space in a plane normal to H. Then we can 

write 

e .:... ....
k.l = - p x H. 

c ' 

Thus, as the representative point rotates around the Fermi surface in 

k-space, the electron in real space describes an orbit which has the same 

shape, but is rotated by n/2 about the magnetic field direction, and 

changed in size by a factor c/eH. 

Since the electrons move in periodic orbits with frequency w ,
c 

it might be expected that these orbits lead to a set of discrete energy 

levels, quantized in units of h w • In the presence of a magnetic field,c 

the classical Hamiltonian for a free electron takes the form 

e ... 2
H = (p -- A) I 2m,c 

~ 

where A is the vector potential. The electrons in the magnetic field 

must satisfy the Schrtldinger equation, 

~ 

If we take H in the z direction and choose a gauge where 
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A = (o, H , o),
x 

Schr(5dinger' s equation 

2 
n. 2 ien H 

- 2m 'iJ "' + me 

= EtJJ 

becomes 

2 

x ~+ ~H 
2 

ay 2mc 

2 

x"' 

(I I-8) 

Following Ziman 

lJJ (x, y, z) 

(1964), equation (II-8) has the solution 

i (By + k z)= u(x)e z . 

This leads to an equation for u: 

(B - eH x) 2,11 = o 
he r 

2 2 
n. k 

Letting E ' = E -
2m

z , and rearranging, 

2 2 


- ~m 4 + (:~ x - ~st u(x) = E 
1 

u(x), 

ax 

which is the equation for a simple harmonic oscillator, of frequency 

eH w =~ , centered on the point x = hS/mw . The energy levels of the 
c me c 

oscillator are given by: 

2 2 

E = (n + .!.) 'hw + !!__ k


2 c 2m z 

The electron orbits are quantized in the plane perpendicular to the 

magnetic field direction, but motion along the magnetic field direction is 

unchanged. In a magnetic field, the electrons condense on a discrete set 
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of energy levels in 
~ 

k-space, in such a way that the average density of 

states is unchanged. Since the energy levels depend on ft (through w ) , 
c 

the distance between levels increases as the magnetic field increases, and 

the number of levels inside the Fermi surface decreases. 

B. Cyc lotron Resonance 

1. Physical Picture 

Since electrons spiral about the direction of a constant magnetic 

field with a frequency equal to the cyclotron frequency, it is possible to 

cause resonance with a microwave field of suitable frequency. In metals, 
22 3 

the carrier density is so high (approximately 10 I cm. ) that the microwave 

field only penetrates to a depth of the order of the classical skin depth o, 

given by 

2 

6 = { me 
2 

)1/2 
2irne 

. 

For a microwave frequency f 
10 

= 10 
-1 

sec. and in a magnetic field of 10 kG, 
.. 5 

the skin depth is of the order of 10 cm., while the orbiting carriers 
-3 

have an orbit radius of the order of 10 cm. The proper experimental 

geometry was first suggested by Azbel' and Kaner (1956). If the sample is 

mounted so that it forms one wall of a microwave cavity, and a constant 

magnetic field is parallel to the sample surface, the carriers spiralling 

in and out of the skin depth resonate with the microwave electric field 

if they return to the skin depth at the same point in an r.f. period during 

each cycle of their rotation. Consequently, resonance will occur whenever 

we= w/n, where w is the applied r.f. frequency, and n is an integer. 
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This region, in which the radius of the carrier orbit is much greater 

than the skin depth, is called the anomalous skin effect region. If the 

microwave frequency is constant, and the magnetic field is slowly changed, 

*cyclotron resonance signals will occur for H = m cw/e, and for H = H /n.c c c 

The signals at H /n are called subharmonic resonances because there the 
c 

cyclotron frequency is a subharmonic of the microwave frequency. In order 

for the resonance to occur, the electron should rotate through at least 

one orbit before it is scattered, i.e., the condition w T>l must hold,
c 

where T is the relaxation time of the electrons. Experiments are performed 

at liquid helium temperatures, and on single crystals with few impurities 

in order to assure that T is large. This experiment should not be confused 

with cyclotron resonance in semiconductors (see, e.g., Dresselhaus, Kip, 

and Kittel, 1955, and Dexter, Zeiger, and Lax, 1956), where carrier densities 

are low. In semiconductors, resonance between the carriers and the r.f. 

field takes place when the cyclotron frequency of the orbiting carriers is 

equal to the microwave frequency, and subharmonic resonances only occur 

because of a non-spherical Fermi surface. In metals, subharmonics occur 

because of the existence of the skin depth, and for any shape Fermi 

surface. The presence of the skin depth also accounts for another difference 

in the two types of cyclotron resonance -- at resonance the power absorbed 

is a maximum in semiconductors, but a minimum in metals. In both cases 

the conductivity is a maximum at resonance, but in metals the skin depth 

is an inverse function of the conductivity, so that the net effect is an 

absorption minimum. 
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The origin of the resonance effect has been described by Pippard 

(1962). The electric current at the point rat time t, which is caused 

by an electron moving with velocity v, depends on the past history of that 

electron. If it was given an impulse by the microwave field at regular 

intervals in the past, its motion at time t will be a function of these 

impulses, and of a relaxation time that governs the remaining effect of 

past impulses. This decay will be exponential, with time constant T, and 

will be represented by a term of the form exp. (-2n/w T). During each c 

revolution, the electron also gains or loses in phase with the oscillating 

field, by an amount (2nw/w ). The conductivity will then contain a term c 

of the type 

00 

{- 2nn + i 21Twn}F = E exp. 
w 1' wn=O c c 

[ 2TI . 21Tw] -1 
= {l - exp. ----1 }

W T w c c 

It is the oscillations of the function F that cause the resonance effect. 

Pippard (1962) has also shown that in the extreme anomalous limit (2>>o, 

where 2 is the carrier's mean free path), the surface impedance varies as 
-l/ 3 

a and is given by 

-1/3 
z0

Z (H) = a (o) F 
00 00 

z0where (o) is the surface impedance in the extreme anomalous limit at 
00 

zero magnetic field, and a is a constant factor, of order 1. 

For an ellipsoidal or spherical energy surface, the cyclotron 
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frequency is the same for all electrons on the surface, and thus the 

cyclotron mass is the same for all orbits. An expression for the cyclotron 

mass was formulated by Shockley (1953). For an ellipsoidal energy surface, 
2 2 2 

E = px + Py + Pz 
2m 2m 2m x y z 

In a magnetic field with direction cosines a, S, y, 

* -{ mx my mz }1/2 (I I-9)2 2 2m - (m a + m s + m y ) , 
x y z 

and measurement of the effective mass in a few directions allows the 

energy surface to be completely determined. Our results will show that 

the second zone electron lenses in mercury can be approximated (rather 

poorly) by an ellipsoid of revolution. For a Fermi surface of arbitrary 

shape, the cyclotron mass is a function of kH, and resonance signals 

result from extremal orbits on the Fermi surface, where there are a large 

number of carriers with approximately the same cyclotron mass. Figure l 

shows an extended Fermi surface, containing two extremal sections. For 

the two orbits shown, aA/akH = 0, and these are called stationary -orbits 

because the electron has zero velocity along the magnetic field direction, 

returning to the skin depth at the same point in real space as it goes 

around its orbit again and again. 

If the r.f. electric field is polarized along the direction of 

the constant magnetic field, another extremal section contributes to 

resonance. Here the r.f. currents flow in the same direction as the 

const ant magnetic field, and perpendicular to the direction of motion of 
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-~> H 

FIGURE 1 


A Simple Extended Fermi Surface 


the electrons in the stationary orbits described. These electrons will 

not be very effective in carrying current along the magnetic field direction. 

A resonance effect will come from carriers near elliptic limiting points 

on the Fermi surface, which are moving along the magnetic field direction 

with a velocity v ~VF' where vF is the Fermi velocity. Because of their 

large velocity along the magnetic field direction, limiting point resonances 

require flat, smooth sample surfaces, and a magnetic field that is 

accurate ly aligned parallel to the sample surface. 
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When the magnetic field direction is not parallel to the sample 

surface, stationary orbits are still effective in producing resonances, 

although the number of carriers contributing to the resonance will be 

reduced, since the electrons on the edge of the effective zone, which have 

small velocities along the magnetic field direction, will be less effective 

in producing resonance. This reduces the mass spread of the effective 

electrons, however, which may tend to sharpen the resonance. Since the 

microwave field changes in phase as well as in amplitude as the electron 

goes deeper into the metal, this change of phase may broaden the resonance 

line, or cause it to split (since the Fermi surface is centrally symmetric, 

there will be the same number of electrons spiralling up into the skin 

· depth as are spiralling down out of it). The effects of field tipping are 

discussed in several papers (see, for example, Koch, Stradling, and Kip, 

1964, Langenberg and Marcus, 1964, and Spong and Kip, 1965) and several 

theories have been advanced to explain the observed effects. In this 

experiment the sample surface is not perfectly flat, since we are using 

the central portion of the free crystal surface, and no tilting effects 

have been observed. The effect of a rough crystal surface is simply a 

lowering of the effective mean free path of the electrons, an effect that 

will be much more pronounced for limiting point resonances than for 

stationary orbits. 

2. 	 Azbel' - Kaner Theory 

Azbel' and Kaner (1956) first proposed cyclotron resonance 

experiments in metals with the magnetic field parallel to the sample surface, 
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and their theoretical calculation (Azbel' and Kaner, 1958) has become 

the standard reference. Theoretical calculations were also done by Heine 

(1957), and by Mattis and Dresselhaus (1958). Heine formulated the problem 

using Pippard's "ineffectiveness concept" (only those carriers whose 

direction of motion is within an angle B 6/i with the surface are effective 

in transport of current, where Bis of order unity), which results in an 

answer very similar to that obtained by Azbel' and Kaner. Mattis and 

Dresselhaus solved the Boltzmann transport equation, with the boundary 

condition of specular reflection at the sample surface. Specular reflection 

is a rather artificial boundary condition, since the reflection is almost 

surely diffuse, but since the electrons actually participating in resonance 

are not reflected at all, the final result is changed only slightly from 

the result using diffuse reflection. They have also attempted a quantum 

mechanical formulation of the problem which gives similar results at low 

magnetic fields, but at higher fields predicts that the dominant behaviour 

will be a de Haas - van Alphen type of variation of the surface impedance. 

Azbel' and Kaner (1958) determined the surface impedance tensor 

Zµv under anomalous skin effect conditions, and with a magnetic field 

applied parallel to the sample surface. The surface impedance tensor Z 
µv 

was defined by 

2 

E (o) = ~ . Z J , 


µ v=l µv \) 

where Z = R + i µv µv 

and µ , v = x , y. 
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E (o) is the electric field in the absence of a magnetic field. They
µ 

solved for E (H), using Maxwell's equation, and the Boltzmann transport
µ 

equation for the relationship of a perturbation f 1 to the equilibrium 

Fermi distribution f : 

2e f ... f 
0 

-:- dJ = - ~ v l dpx Py dpz 


1

f = 

0 l + 


af 

- - 0iwf1 . + v eE.v ~ z 

where f1 (z = O, v >O) = 0 is the condition for diffuse reflection of z 

electrons at the surface of the metal. A relaxation time was introduced: 

af 1)
( at coll. = T 

In the resonance region, the surface impedance of the metal was found to 

depend on terms like: 

A µv 

2 
Be = ---r 
3h 

27T 

f (II-10) 

0 

where n = w in our notation,
c 

K = the Gaussian curvature of the Fermi surface, 

and the relationship between the velocity of the electrons on the Fermi 

surface and the angle ~ is shown in Figure 2. 
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"-Equatorial 
Contour 

FIGURE 2 

Relationship Between 
~ 

v and 
~ 

H in Equation (II-10) 

_.
-:i. -I' v = v 1 + vyjx 


= v cos qi 
~ 

i + v sin 4> -j 

_. 

= n v i + n v -j
x y 

Integration is around the equatorial contour on the Fermi surface, since 

these are the electrons whose velocity is parallel to the sample surface. 

Note that if the Fermi surface is open in all planes perpendicular _to 
~ 

H, 

then w = 0 and the resonance vanishes. The dependence on K can be seen 
c 

using Pippard' s "ineffectiveness concept". If K is small, then there are 

a large number of electrons whose direction of motion lies within an angle 

B c/i of the sample surface, resulting in a large resonance effect. 

Chambers (1956) has pointed out that a second term should be added to 

Equation (II-10) to take into account the contribution of internal, non-

resonant electrons on the equatorial contour of the Fermi surface. If the 
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Fermi surface is not a simple closed, convex surface, there may be several 

points on the equatorial contour with a common value of ¢. These points 

can be divided into bounding points, points where the electron is either 

farthest from or nearest to the surface, and internal points, where the 

orbit has an intermediate extremal value. An internal point cannot 

contribute to resonance, because if this point were inside the skin depth, 

the electron would be reflected from the surface. Internal points do, 

however, contribute a non~resonant term to the surface impedance. 

Using Azbel' and Kaner's result, Kip, Langenberg, and Moore (1961) 

calculated the absorption curve shown in Figure 3, for an infinite relaxation 

time. 

0.25 0.33 0.5 1.0 

FIGURE 3 

Calculated Absorption Curve for Infinite Relaxation Time 
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Note the sharp minima of the resonance signals. For a non-infinite 

relaxation time, the size of the resonance signals increases from zero 

to a maximum at the fundamental resonance, and the sharp corner is rounded 

off. The usual experimental arrangement is to measure dR/dH, not R(H), 

and the derivative maxima are used to compute the cyclotron mass instead 

of the cross-over point, because of the shape of the resonance signals. 

Because the derivative enhances higher frequencies, the fundamental is 

no longer the largest resonance, and the signals grow from zero to a 

maximum, then decrease towards the fundamental, as shown in Figure 16. 

This effect has been used to estimate wT (Kip, Langenberg, and Moore, 1961). 

C. Transverse Magnetoresistance 

A closed Fermi surface can support only closed electron or hole 

orbits. An electron orbit surrounds a region of filled states, and its 

representative point moves in a clockwise direction about the magnetic 

field direction, while a hole orbit surrounds a region of empty states, 

and its representative point moves in a counterclockwise direction (the 

definitions are reversed if the surface is a hole surface). If, however, 

a Fermi surface is open (is connected to the Fermi surface in adjacent 

zones in the extended zone scheme), it may support open and extended orbits 

as well. In order for these orbits to have any effect on the galvanomagnetic 

properties, the electron must be able to travel several times around a 

closed orbit, or traverse a reasonable distance along an open orbit before 

it is scattered. In order to make sure that this is the case, experiments 

are performed in the high field region, i.e., where w T>>l. 
c 
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The representative point of an electron moves along the open 
.. 

orbit in k-space from zone to zone, and since its real space velocity is 

perpendicular to the Fermi surface, its average velocity in real space 

will be perpendicular to the open orbit direction ink-space. Thus, an 

open orbit in the x direction corresponds to electrons moving in the 

y-z plane . Because of the magnetic field, the representative point in 

k-space is confined to a plane perpendicular to the magnetic field direction, 

and it is also constrained to move on the Fermi surface, so that an open 

orbit will not exist, even though the surface is connected to adjacent 

surfaces in 
.ii. 

k-space, unless both conditions are fulfilled simultaneously. 

An open surface that supports no open orbits for any direction of 
~ 

H is 

shown by Fawcett (1964). 

Periodic open orbits are further classified as primary, secondary, 

tertiary, etc., depending on whether the orbit uses repeatedly one, two, or 

three basic arms of the Fermi surface. An example of a primary open orbit 

is the (100) orbit in mercury, which uses the same arm repeatedly. 

Two-dimensional aperiodic open orbits are sometimes generated 

for a range of angles of magnetic field direction centered on a symmetry 

axis. They are called aperiodic because there is no regularly repeated 

set of arms making up the orbit, and two-dimensional because they are 

represented by an area on a stereogram. 

Since mercury is divalent, with one atom per unit cell, the Fermi 

surface contains as many electrons as there are states in the first Brillouin 

zone, and so mercury must be a compensated metal. In other words, the number 
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of filled electron states in the second zone must equal the number of 

empty states, or holes, in the first zone. 

The conductivity tensor a.. is defined by:
1J 

J. =a .. E., 
1 l.J J 

where a . . can be expressed as a series expansion of the dimensionless
1.J 

parameter y (see Lifshitz, Azbel', and Kaganov, 1957): 

where w is the free electron cyclotron frequency and ~ is an average
0 

relaxation time around the cyclotron orbit. 

Then the expansion is given by: 

0 1 2 2 

a .. = a .. + a .. y + a .. y + --- •

lJ l.J l.J lJ 

For a compensated metal, and in the absence of open orbits, the resistivity 

tensor has been calculated by Fawcett (1964), and is given by: 

'.'"2 -2 -1 
Lt. p .. ,...,, y ""'-I y l"VYl.J 

-2 -2 -1 

y + 0 
 = "'y "'y rvY 

-1 -1 0 

H + 
 po rvY rvY rvY 

2 2 

rvH rvH rvH 


2 2 
(II-11)= "'H "'H "'H 

0 
"'H rvH rvH 

2 
wherer.JH means that the highest order term in the expansion of Pxx in 

2 
terms of H is a term in H . 

http:wherer.JH
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The magnetoresistance is given by: 

p .. (H) - p .. ( o)
\7p (H) = 11 11 

(II-12)
P (o) P .. (o)

11 

Thus the transverse magnetoresistance, Vp /p or Vp /p , is quadraticxx 0 yy 0 

in H in the high field limit, while the longitudinal magnetoresistance, 

Vp /p saturates. zz o' 

The resistivity tensor with the magnetic field along the z 

direction and an open orbit along the x direction is: 

-2 -1 
Lt. p ..

lJ = "'y "'y "'y 
-1 0 0 

y -+ 0 "'y "'y "'y 
-1 0 0 

H -+ 00 "'Y "'Y "'Y 

2 
"'H "'H "'H 

0 0 

= "'H "'l·I "'H (II-13) 

0 0 
"'H "'H "'H 

Here p is quadratic in H, while p and p saturate. xx yy zz 

Suppose a current is set up in a sample, and a large constant magnetic 

field is set, point-wise, at different orientations around the current 

axis. The interpretation of such a rotation diagram follows from Equations 
2 

(II-11) and (II-13). The resistivity will have a large value («H) except 

where the magnetic field direction is perpendicular to an open orbit 

direction, when the resistivity drops to a sharp minimun («H0 
). An example 

of this type of data is shown in Figure 22. Since an open orbit conducts 
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only in the plane perpendicular to the orbit direction, it will have most 

effect when J is perpendicular to the open orbit. If j is in the x-y plane, 

with an open orbit along the x axis and H along the z axis (see the diagram 

below), then the magnetoresistance is given by: 

0 2 2 2 0 2 
PN = (C + C H) cos a + · C sin a • (II-14)N 

~~ xx . xx yy 

z 

X direction 

FIGURE 4 
... 

Relationship Between The Open Orbit Direction and J In Equation (II-14.) 

Thus open orbits that cause the largest dip on a rotation diagram are 

those in which the current direction is perpendicular to the open orbit 

direction, and saturation only occurs for a = n/2. 
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D. Quant um Oscillations of the Microwave Surface Impedance 

Quantum oscillations of the microwave surface impedance with a 

l arge constant magnetic field parallel to the sample surface have been 

predicted theoretically by Mattis and Dresselhaus (1958) and by Azbel' (1958). 

The ori gi n of such oscillations is the same as the de Haas - van Alphen 

osci ll at ions of the magnetic susceptibility and the de Hass - Shubnikov 

oscil l at ions of the D.C. impedance. It was pointed out in part A that a 

constant magnetic field causes quantization of the electrons into energy 

l evels i n a plane perpendicular to the magnetic field direction. As the 

magnetic field is increased, these levels pass through the Fermi surface, 

and the electrons on the levels go to levels inside the Fermi surface, 

causing. a periodic change in the density of states at the Fermi level. It 

is t his periodic change in the density of states that causes an oscillation 

of t he microwave surface impedance. The energy levels were found to occur 

at energies 

dA
and orbits differing by fl wc in energy will be separated by dE fl wc in 

area. Using equation (II-7), we can write: 

2nm * 
aA c 2n eH 

--2....-- =aE = 2 
fl fl w c c 

2TI eH so the orbits are separated by in area, and are given by:
t\c 

A = ( .!_) 2n eH 
n + 2 11.c • 
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Then the periodicity of the surface impedance oscillations is related to 

the cross-sectional area of the Fermi surface, 

1) 2ne
( (II-15)b H = 'ficA ' 

where A is the cross-sectional area of extremal sections of the Fermi 

surface. 

If the magnetic field direction is tilted with respect to the 

sample surface, electrons which have vH~O will spiral quickly out of the 

skin depth, and do not contribute effectively to the conductivity. In 

this case, only stationary orbits (vH = 0) will contribute to the oscillations. 
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CHAPTER III 

SOME PROPERTIES OF MERCURY 

A. Physical Properties 

Mercury is a heavy, shiny, sil vcr metal, which is liquid at 

room temperature. It has a specific gravity of 13.546, and a melting 

point of -38.87°C. Its atomic weight is 200.61, and its atomic number 

is 80. It can be readily purified by distillation, and high purity mercury 

(99.99999% pure) is commercially available. Mercury oxidizes very slowly 

in air, and forms amalgams with many other metals. The single crystals 

look much like molten mercury, and have a smooth, shiny surface. The 

solid is very soft, even at liquid nitrogen temperatures, and requires 

great care in handling so as not to damage the surface. Mercury is a 

good conductor of heat and electricity. 

B. The Fermi Surface of Mercury -- Nearly Free Electron Approximation 

Mercury is a divalent atom, which crystallizes in a trigonal 

lattice, with one atom per unit cell. Thus the first Brillouin zone, 

which can hold a maximum of two electrons, has the same volume as the free 

electron Fermi sphere. At 5°K, the lattice constant of mercury has been 

measured to be 2.9963A 0 
, with a rhombohedral angle of 70° 44.6' (Barrett, 

1957). An angle of 60° corresponds to a face-centered cubic lattice. The 

Brillouin zone was constructed following Jones (1960), and is shown in 

Figure 5, with the free electron Fermi sphere intersecting the L-faces. 

Because mercury is a non-cubic crystal, care must be taken in 

converting directions in real space to directions in reciprocal space. 
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The fol l owing convention will be used. A direction in the crystal lattice 

is specified by [l, m, n]. A reciprocal lattice point is designated 

(1, m, n), and is perpendicular to the set of planes (1, m, n) in the 

direct l attice. The orientation of a direction in real space with respect 

to the Brillouin zone is determined by finding the normal to the plane in 

reciprocal space containing all the reciprocal lattice vectors whose dot 

product with [l, m, n] vanishes. The three orthogonal directions, trigonal, 

binary, and bisectrix, are specified by [111], [llo], and [112] in real 

space, and by the same indices, (111), (llO), and (112) in reciprocal space. 

A set of equivalent directions in real space will be designated (1, m, ~, 

and {l, m, n} represents a set of equivalent planes in real space, or a 

set of equivalent reciprocal lattice vectors. 

A model of the Fermi surface has been constructed, using the 

nearly free electron or single-ort~ogonalized-plane-wave approximation, 

and following the construction described by Harrison (196.0). This 

approximation is the same as the free electron approximation except that 

there are connectivity modifications at the zone faces. The edges are not 

rounded off to cut the zone boundaries at right angles, as required by 

Bragg reflection. The cyclotron effective mass of an orbit in this 

approximation is simply the total angle through which the orbit moves 

divided by 360°, the angle through which an electron travelling in a 

circular orbit would move, since the effective mass of an electron going 

around a sphere without reflections is unity. 
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The free electron Fermi sphere cuts through the six L-faces 

of the Brillouin zone, but does not quite touch the T- or X-faces (single-OPW 

approximation). This results in electron lenses in the second zone, and 

a first-zone hole surface composed of multiply connected tubes that will 

support open orbits in both the {100} and binary directions. A model of 

the first-zone hole surface is shown in Figure 6. The model is shown in 

the same orientation as the Brillouin zone in Figure 5. Black areas on 

the model are areas where the surface is joined to other parts of the 

extended-zone surface. The model was built on a framework the size of 

the first Brillouin zone, and fills a volume of reciprocal space approximately 

twice that of one Brillouin zone. The single-OPW Fermi surface supports 

only three closed orbits -- around th~ second-zone electron lenses, a 

bow-tie shaped hole orbit across the narrow dimension of the X-faces, 

and a hole orbit across the T-faces starting at W and going across to the 

opposite corner. 

The model is extremely thin at the center of the T- and X-faces, 

as shown in Figure 7. The T-face is just slightly farther from the center 

of the zone than is the X-face. The dotted lines show a possible Fermi 

surface after the lattice potential is taken into accollllt. Note that it 

predicts that the Fermi surface will touch both the T- and X-faces. 

A band-structure calculation for mercury has been done by 

Keeton and Loucks (1966), using a Relativistic Augmented Plane Wave method 

(Loucks, 1965). This calculation predicts that the Fermi surface touches 

the zone boundary at the center of both the T- and X-faces (see Figure 33). 
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FIGURE 6 


THE FIRST-ZONE HOLE SURFACE OF MERCURY 


(NEARLY-FREE-ELECTRON APPROXIMATION) 
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FIGURE 7 


POSSI BLE MODIFICATIONS OF THE FERMI SPHERE 


CAUSED BY THE LATTICE POTENTIAL 
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C. Possible Cyclotron Orbits in Mercury 

If we assume a Fermi surface that touches both the T- and 

X-faces, as predicted by Keeton and Loucks (1966), then several closed 

orbits are possible. Some of these orbits are shown in Figure 8, where 

the areas of contact with the zone boundary are shown as a small circle 

on the T-face, and as rounded rectangles on the X-faces (Keeton and Loucks 

predict that the rectangles will have the width shown, but will be nearly 

square). Note that the actual orbits will be considerably more rounded at 

the intersection of adjacent Fermi spheres than is shown pn this model. 

A description of the possible cyclotron orbits in mercury is given in 

Table 1. The orbits are named to correspond with the convention used by 

Brandt and Rayne (1966) and by Keeton and Loucks (1966). 

D. Results of Other Experiments on Mercury 

Until recently, very little was known about the Fermi surface 

of mercury . Pippard (1947) reported anomalous skin effect rosults. 

De Haas - van Alphen effect measurements were made by Verkin, Lazerev, and 

Rudenko (1951) on unoriented crystals, and by Shoenberg (1952) on crystals 

oriented using their magnetic anisotropy. Oscillations, of minimum frequency 
5 

f ck) = 7.2 x 10 gauss, showed that mercury had a small, anisotropic 

section on its Fermi surface. From a study of the resistivity of mercury, 

Ziman (1960) concluded that the area of the Fermi surface of mercury was 

a little less than half the area of the free-electron Fermi sphere. 

Gustafson, Mackintosh, and Zaffarano (1963), in a positron annihilation 

experiment, compared the angular distribution of photon coincidences from 
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FIGURE 8 

MODEL SHOWING POSSIBLE CLOSED ORBITS (TOP) AND OPEN ORBITS (BOTTOM) 

FOR MAGNETIC-FIELD DIRECTIONS IN THE TRIGONAL PLANE 
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Table 1 

Possible Cyclotron Orbits in Mercury 

Description 

Electron orbit, around the second-zone lenses. It should 

be possible to see this orbit for any orientation. 

Electron orbit, around the neck where the F. S. touches 

the T-faces. Should be seen when the magnetic field is 

along the trigonal direction; orientation is probably very 

critical. 

Electron orbit, around the neck where the F. S. touches 

the X-faces. Should be seen when the magnetic field is 

along a {110} direction; orientation is probably very 

critical. 

Hole orbit, around the cylinders that lie along the long 

sides of the X-faces. These cylinders should give closed 

orbits even at a fairly large angle from the cylindrical 

axis. 

Hole orbit, coming out through a T-face neck, and down 

(or up) and in through an X-face neck. The minimum area 

of this orbit corresponds to a magnetic field in the 

binary direction and the orbit is closed for a small angular 

range about this direction. 

Hole orbit, half of the orbit across the T-face in the 

nearly-free-electron approximation. The minimum area 

corresponds to a magnetic field along the bisectrix direction 

(for a magnetic field rotating in the binary-bisectrix plane) 

and the orbit remains closed for a small angular range about 

this direction. 
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Orbi t 


Designat ion 


µ 

Table 1 (continued) 

Description 

Hole orbit, stretching from one X-face neck, across the 

T-face, to another X-face neck. The orbit is closed 

when the magnetic field is along the bisectrix direction 

and for a small angular range about this direction. 

When the magnetic field is rotated in the binary-bisectrix 

plane, the orbit has a minimum area at the bisectrix 

direction, and remains closed for a small angular range 

about this direction, the angular range depending on 

the size of the X-face necks. 
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liquid and solid mercury. The plot for the solid could be fitted very 

well by a parabola corresponding to two free electrons per atom, indicating 

that the Fermi surface in extended k-space did not depart significantly 

from a sphere. Brandt and Rayne (1965), using a de Baas - van Alphen 

effect t orque magnetometer, measured the cross-sectional area of the S 
0 -2 

orbit, an d found it to have a minimum area of 0.0070 A , at a frequency 

corresponding closely to the frequency measured earlier by Shoenbcrg (1952). 

Their cr ystals were oriented using back-reflection Laue techniques. More 

recently, Brandt and Rayne (1966) have discovered two other sets of 

oscillations, corresponding to the electron lenses (the a orbits), and to 

the T OLbits. Measurements were made from 10 to 60 kilogauss, using both 

a torque magnetometer and an RF technique. Transverse magnetoresistance 

measurements in mercury have been reported by Dishman and Rayne (1966) 

and by Di xon and Datars (1965), and Datars and Dixon (1966). Results have 

shown open orbits along { 100} directions and along the binary directions. 

The measurements have confirmed that mercury is a compensated metal. 
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CHAPTER IV 

EXPERIMENTAL PROCEDURE AND APPARATUS 

A. Crystal Growth, Handling, and Storage 

Mercury crystals were grown from 99.99999% pure mercury supplied 

by the United Mineral and Chemical Corp. of New York. The growing rig is 

shown in Figure 9 (see also Figure 12). The sample holder was machined 

from Ke l - F, and care was taken to make the window at the bottom of the 

narrow starter tube as thin as possible, usually about as thick as a 

piece of paper (Kel-F was chosen instead of teflon because its thermal 

expansion coefficient was closer to that of mercury). The sample holder 

sat on a copper cooling fin that was attached at the top to the cold side 

of a thermoelectric device (Frigistor model lFB.08.15.El),. The hot side 

of the device was attached via a short copper sheet to the microwave 

cavity sitting above the pool of mercury in the holder. Si li cone oil 

was smeared on each of the joints to improve thermal contact. The temperature 

was monitored during crystal growth with two thermocouples, one attached 

to the copper cooling fin just under the sample holder, and one attached 

to the copper sheet at the hottest point in the circuit. This last 

thermocouple gave warning when the hot junction of the Frigistor approached 

100°C., its maximum operating temperature. Power for the Frigistor was 

supplied by a car battery with a large rheostat in series. 

The sample holder was cleaned by soaking in nitric acid for 

several days, and washing with methyl hydrate. Mercury was transferred 

to the sample holder inside a dry box that had been filled with helium gas, 

http:lFB.08.15.El
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FIGURE 9 


CRYSTAL-GROWING APPARATUS 
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and the sample holder was then mounted below the cavity, sitting on the 

coppe r cooling fin. A drop of silicone oil provided good thermal contact 

between the sample holder and the cooling fin. The rig was transferred 

from the dry box to the inner dewar of a double dewar system, and the air 

was quickly pumped out. During this pumping, any air bubbles in the 

starter tube were removed. The inner dewar was filled with helium gas at 

atmospheric pressure, the outer dewar was filled with liquid nitrogen, and 

the vacuum in the dewar's vacuum jacket was softened to about 0.1 mm. of 

Hg. by admitting air. The sample then started to cool down, and the 

Frigistor was switched on at about 5 amperes. Initially, the hot junction 

of the Frigistor was kept just below room temperature by varying the 

current. At about 8 amperes of current through the Frigistor (more for 

short s ample holders, less for long ones), the whole rig was allowed to 

cool slowly through the freezing point of mercury (-38°C.). The rate of 

cooling was adjusted by changing the Frigistor current slightly until 

both the hot and cold thermocouples were cooling at about 1°C. per minute. 

There was a temperature difference between the two thermocouples of between 

20 and 30 Centigrade degrees during the time of crystal growth. The 

Frigistor was switched off and the sample was allowed to cool to liquid 

nitrogen temperature as soon as the hot thermocouple reached the freezing 

temperature of mercury . During crystal growth great care was taken to 

minimize vibrations in the room. The dewar was wedged against one pole 

face of the magnet, and the crystals were grown at night after everyone 

had left the building. 
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The samples were stored between experiments in test tubes 

inside a storage dewar containing liquid nitrogen . They were not removed 

f r om the Kel-F sample holders. The shiny surface did not deteriorate 

noticeably when the crystals were stored with that surface toward the 

bottom of the test tube . Some samples were kept for more than a year. 

Whenever the crystals were removed from the dewar, care was taken to 

keep the shiny surface covered with liquid nitrogen, because out in the 

air the samples quickly became covered with frost. 

B. X- Ray Orientation 

The crystals were oriented using back reflection Laue techniques. 

The crystals were mounted on a goniometer using a barrel holder, as shown 

in Figure 10 . A small orientation pin inside the barrel slid into a slot 

in the side of the sample holder, and a set-screw then held the sample 

holder firmly in the barrel. The goniometer was mounted inside a polystyrene 

ice bucket, which was in turn mounted on a platform that slid on the track 

of the x-ray machine . Long nylon screws held the goniometer mount, ice 

bucket, and platform firmly together. The bucket was filled with liquid 

nitrogen, and the liquid level was kept above the sample at all times. A 

plug of polystyrene (shown cross-hatched in the diagram) was carefully cut 

to fill the space between the mercury surface and the side of the ice 

bucket, so that the x-ray beam would not have to pass through the liquid 

nitrogen. Exposure time for the pictures was about three hours, and 

during this time a blower was kept on the outside of the bucket towards 

t he fi l m to keep a layer of frost from forming in that area. A dehumidifier 
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in the x-ray room was used to reduce humidity and frost. 

C. Cyc l otron Resonance Spectrometers 

The 4 mm. data and the early 8 mm. data were taken using the 

spectrometer shown in Figure 11. The microwave power generated by the 

klystron was propagated through 4 mm. or 8 mm. waveguide, through an 

isolator, a~ attenuator, and a frequency meter to a Magic Tee, where the 

power split, half going toward the sample cavity and half to a slide-screw 

tuner and matched load. The power reflected back from the cavity also 

split at the Magic Tee, half going toward the klystron, where it was 

lost in the isolator, and the other half going to the crystal detector. 

Similarly, half the power reflected back from the slide-screw tuner was 

lost in the isolator, and half went to the crystal detector. The bias 

of the detector crystal was set by adjusting the amplitude and phase of 

the signal reflected from the slide-screw tuner. The derivative of the 

resonance signal was detected by modulating the magnetic field with 

modulation coils on the pole faces of the magnet, and detecting the 

modulated absorption signal. The detection equipment consisted of a 

narrow-band amplifier and phase-sensitive detector. A D.C. output signal 

was recorded by a chart recorder. The klystron frequency was locked to 

the resonant frequency of the sample cavity by modulating the reflector 

voltage of the klystron at 10 Kc./sec. and detecting the 10 Kc./sec. 

signal reflected back to the crystal detector from the sample cavity. 

This was amplified and compared with the original 10 Kc./sec. signal in 

a phase-sensitive detector, which added a D.C. error signal to the reflector 
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voltage of the klystron to lock the klystron to the cavity frequency . 

The 4 mm. klystron was a Varian model VA-250, with an average power output 

of 35 mW. at 70 Gc./sec., and the 8 mm. klystron was an E.M.I. model 

R5146, with an average power output of 75 mW. 

The data for samples number 21 and 22 were taken with a Varian 

model V-4503 E.P.R. Spectrometer, using the same sample cavities as 

before . . This unit used a VA284B klystron oscillating at 35 Gc./sec. The 

typical power output from this klystron was 200 mW. 

The 4 mm. microwave cavity was a cylindrical cavity that oscillated 

in the TE111 mode, and used a mode-splitting pin to separate the two TE111 

modes. The 8 mm. cavity also oscillated in the TE111 mode. It was split 

into two parts halfway down the cylindrical wall, so that the bottom half 

could be rotated, using a small set of gears in such a way that the microwave 

electric field and the D.C. magnetic field remained at· right angles to each 

other and in the sample plane. This cavity is shown in Figure 12. The 

thermoe l ectric device is visible above the cavity. The pin on the right 

of the cavity was used to align the sample holders with respect to the 

cavity. The sample formed the bottom wall of the cavity, and was held in 

place by a ring around the base of the sample holder, which was connected 

with nylon thread to a moveable rod at the top of the dewar. 

D. The Magnetoresistance Rig 

The magnetoresistance sample holder is shown in Figure 13. The 

sample was grown in a Kel-F holder, which was the long starter-tube 

section of a cyclotron resonance sample holder. The starter-tube section 
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FIGURE 12 


8-mm. CAVITY SHOWING CRYSTAL-GROWING APPARATUS 
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\vas cut from the cyclotron resonance sample using a jeweller's saw. 

The sample holder shown in the diagram was 1 1/8 inches long and 35/64 

inches in diameter. Electrical contact was made with the sample by 

drilling the final hole necessary for sharp contact probes after the 

crystal was grown, and then the probes were screwed into the previously 

threade d holes in the Kel-F holder. The contact probes were machined 

from small brass screws. The ring that holds the sample holder in place 

was made of Kel-F, and a nylon set - screw held the sample tight enough so 

that the spring in the leads would not cause motion during the experiment. 

1ne sample was rotated by moving it to a vertical position, lowering the 

rotation control into two holes drilled in the top of the Kel - F holder, 

and turning a calibrated dial at the top of the rig. Tilting was done 

accurately by pushing the tilt control rod downwards with a micrometer 

drive. D.C . current was supplied with a Harrison Lab Model 6248A power 

supply, and the voltage was measured with a Keithley Model 149 Milli­

Microvo l tmcter. 

E. Magnet, Dewar, and Pumping System 

The magnet was a twelve inch Pacific Electric Motor Electromagnet, 

with a 20 kilowatt power supply having a constant field - sweep control. 

The magnet produced a magnetic field of 20 kilogauss using 12" tips and a 

2" gap, and 23 kilogauss with tapered tips and a 2" gap . The magnetic 

field was measured with a Rawson rotating-coil gaussmeter (Series 820, 

1/10% accuracy) calibrated with a proton resonance probe . A marker was 

automat i cally put on the graph every thousand gauss. 



47 

The dewar was a stainless steel double dewar system, in which 

the taii section was not surrounded by liquid nitrogen . It was made by 

Hoffman Laboratories Inc., Newark, New Jersey. 

A Balzers Duo 25 vacuum pump was connected to the inner dewar 

with a two - inch pumping line, with a short section of one - inch line at 

the top of each rig . In order to reach lower temperatures, a Speedivac 

model 1SC450B was put in parallel with the Balzers pump . Thi s gave a 

temperature of about l . 22°K . 
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CHAPTER V 

EXPERI MENTAL RESULTS 

A. Cyc l otron Resonance Results and Orbit Assignment 

Cyclotron resonance signals with as many as twenty subhannoni cs 

have be~n observed. Examples of these signals are shown in Figures 14, 

15, and 16 . Figure 14 shows one Azbel' - Kaner resonance . The fundamental 

resonance, at 8.4 kG . , is not shown; the subharmonic res onances are 

indicatad with arrows . Figure 15 shows two resonances , with the different 

subharmonic sets indicated by two rows of arrows . Figure 16 shows an 

experirr.ental trace taken with the Varian spectrometer , where the signal ­

to-noise ratio was greatly improved over earlier measurements, and small 

oscillations of the surface impedance are evident at high fields . These 

oscillations will be discussed in the last s ection of t his chapter . 

Three Azbel - Kaner resonances are shown in Figure 16; their subharmonic 

sets are indicated by three rows of arrows. The large peak at 300 gauss 

was c~us ed by the superconducting transition of the mercury sample , whi ch 

resulted in a signal that saturated the spectrometer . Some of the 

subharmonics showed subsidiary maxima on the low- field side of the peaks , 

which are attributed to a slightly curved sample surface . The small 

peaks at 3950 gauss and 2610 gauss are examples of these subsidiary 

maxima, which are also evident in Figure 14. If these peaks are plotted 

on a graph of l/H versus the subharmoni c number, n, they yield a straight 

line which crosses the n-axis at about n = -0 . 5, whereas a plot of the 

large peaks yields a straight line that crosses the n - axis between 



dR 
dH 

T T l T i i T r 

0.5 1. 5_ 2 3 4 5 

APPLI ED FIELD (KILOGAUSS) 

FIGURE 14 

CYCLOTRON RESONANCE SUBHARMONICS FROM ONE AZBEL' - KANER RESONANCE 
~ 
\,0 



~ 
dR 
dH 

iTTTi 	 T T T i i i 


1 T T T f 


2 3 4 5 6 7 8 9 10 II 12 
J: 

!C i=i 
n r-i APPLIED FIELD (KILOGAUSS)
3: (IJ 

:l'> 3: 
en '"" ;ri 3: FIGURE lS 
::tJ 0 
c:~ 
2> CYCLOTRON-RESONANCE SIGNALS FROM TWO GIWUPS OF CARRIERS -~ <:: ,.,., r­
;:o -en co 

{/1 

0 

- ;:o
-i )> 
-< ~ 

-< 



d R 
dH ~Wiii 

f ·1 

' tt 1 t t t 

lrtllff l t 


0 2 3 4 5 6 7 8 9 10 II 

APPLIED FIELD (l<ILOGAUSS) 

FIGURE 16 

A CYCLOTRON RESONANCE TRACE USING TJIE VARIAN SPECTROMETER 

Vl 
...... 

12 



52 

n = -0.05 and n = +0.05 for most of the resonances observed. This value 

at the intercept is called the phase shift of the resonance. The small 

peak at 5390 gauss was observed in many traces, falling between 4500 gauss 

and 6000 gauss depending on the direction of the magnetic field. Its 

origin cannot be explained at this time. The small increase in ~~ at 

6600 gauss was caused by changing the time constant of the spectrometer 

from 1/10 second to 1 second. This trace corresponds to the effective 

masses shown at 32 1/2° in Figure 17. 

Since the mercury crystals were grown in situ, and the top 

surface of the crystal was then used to form the bottom wall of the 

microwave cavity, the sample surface was slightly curved. It was also 

extremely smooth and shiny, a necessary condition for a good cyclotron 

resonance sample. The curvature of one of the sample surfaces was measured 

using a probe mounted on a travelling microscope stand that had vernier 

scales for both horizontal and vertical motion. An electrical connection 

to one side of the sample was connected in series to a resistor, a milli ­

ammeter, and a battery. The other terminal of the battery was connected 

to the probe mounted on the microscope stand. The probe was lowered until 

a current just started to flow through the circuit, and the height of the 

probe was read from the vernier scale. Similar readings were taken at one 

millimeter intervals across the face of the sample. The central part of 

the saEp le, a circle 8 mm. in diameter, was found to be raised 0.29 mm. 

in the center. The curvature was approximately spherical, with a radius 

of curvature of 27 1/2 mm . -+ 10%. 
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Measurements were made at both 35 Gc./sec. and 70 Gc./sec., 

and the anisotropy of the cyclotron effective mass was plotted for a 

r ange of magnetic field directions of 180° in the sample plane. The 

35 Gc./scc. sample cavity was constructed so that the bottom half, 

including the sample, could be rotated about an axis perpendicular to the 

sample s urface. In this way the constant magnetic field was kept perpendicular 

to the microwave electric field, and in the plane of the sample surface. 

The 70 Gc./sec. cavity could not be rotated, so that three orientation 

s l ots were cut in the sample holder about 45° apart, and the magnet was 

then t urned through -+ 45 0 about the perpendicular polarization direction. 

Separat e experiments were performed with the orientation pin in each of 

the th r ee slots. 

The cyclotron effective mass was calculated from the data using 

a least-squares computer program to fit the best straight line to a plot 

*of l/H versus n and to calculate m = e/wcs, where s is the slope of 
h c 

th is l:ne. The program also calculated the phase shift of each set of 

s ubharmonics. The values of II used in the program were the values of H 
n 

at the derivative-s ignal maxima, as explained in Chapter II. 

Figure 17 shows the cyclotron effective mass results of an 

expe riw.ent at 34.9 Gc./sec. on a mercury crystal which had a sample 

s ur f ace tilted 4° from the trigonal plane. The orientation of the sample 

surface r el ative to the trigonal plane is shown in the stcreogram of 

Figure 17 where the .dot labe l led P gives the posit ion of the po le of the 

s amp l e surface. The straight lines, ending in the symbol O, are binary, 
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or two-fold axes. The position of the pole of the sample surface on the 

stereogram, in latitude and longitude, is 4° .:_ 1°N, 1/2° .!.. 1°E. The 

magnetic - field direction labelled 0° on the graph is shown on the stercogram 

by a short straight line cutting the sample plane, and the direction of 

rotation of the magnetic fiel<l in the sample plane is indicated with an 

arrow . The possible cyclotron orbits for a magnetic field in the trigonal 

plane we re shown in Figure 8, with the exception of the a-orbit around 

the second-zone electron lens. The approximate angular range through 

which each of these orbits should be observed was calculated using a 

model based on the band-structure calculations of Keeton and Loucks (1966) 

(see Figure 33), and is shown in Figure 18. Note that mass curves for the 

S-, y-, and µ-orbits are centered on bisectrix directions, while those 

of the 6-orbit are centered on binary directions . Cyclotron resonance 

signals from the electron lenses are possible for any magnetic- field 

direction, and the signal from a particular lens will indicate a maximum 

cyclotron effective mass for a magnetic field along the bisectrix direction, 

and a ~inimum effective mass for a magnetic field along the binary direction 

perpendicular to that bisectrix direction. Mass curves A, B, and C of 

Figure 7 are attributed to electron lenses tilted 70°, 66°, and 63° 

respectively from the normal to the sample surface. The curves labelled 

D, E, and F are visible for an angular range of 35°, and are centered on 

bisectrix directions . Curve D, which has the largest minimum mass, lies 

unde r curve A, which has the largest maximum mass of the three lenses. 

The rermi - surface models (nearly- free-electron and relativistic-augmented ­
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plane-wave) both predict that, for the 8- and µ-orbits, the curve with 

the smallest minimum mass should lie under A. For this reason, and because 

it is visible over almost the same angular range as that predicted for the 

y-orbit in Figure 18, D, E, and F are attributed to y-orbits. 

Figure 19 shows the results of an experiment at 69 . 6 Gc . /sec. 

The sample orientation is shown in the stereogram, where the pole of the 

~ f · Jo+ o o+ osample sur ace is at 62 1 2 - 2 N, 36 - 2 W. A Laue picture of the 

s~~ple surface showed a (110) axis and a binary axis each 25° from the 

normal to the sample surface, and in the same plane as the normal. The 

long curve of mass values on the right of the diagram corresponds to an 

electro~ lens tilted 70° from the normal to the sample surface. The 

signals on the left of Figure 19 correspond to the other two electron 

lenses. 

Figure 20 shows the cyclotron masses observed in experiments on 

two samples oriented with two {100} directions in the plane of the sample 

. o+ o o+ osurface. The pole o f t h e sample. sur f ace is at 42 - 2 S, 0 - 2 W. The 

two mass curves shown are attributed to second- zone electron lenses (the 

a-orbits) by comparison of the results with those shown in Figure 17. 

These masses were originally attributed to the s - orbits (Dixon and Datars, 

1965), when the data of Figure 17 were not available. In this particular 

sample plane, the minimum mass of the s - orbit is at the same magnetic -

field cirection as the minimum mass of the lens. The two signals at 0° 

and 20°, which do not lie on one of the mass curves, are from the third 

lens, which is almost flat in this sample plane, with a minimum mass in 
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the binary direction. 

The results of an experiment at 34.8 Gc./sec. are shown in 

Figure 21. The data shown in this Figure, and in Figure 17, were taken 

with a Varian spectrometer, which has higher sensitivity than the spectro­

n cter v.sed for the data shown in Figures 19 and 20. The sample orientation 

is shown in the stcrcogram, with the pole of the sample surface located at 

50° ~ 2°S, 30° .:':. 2°E. A Laue photograph of the sample surfaces shows a 

(1!0) 2.Xis tilted 25° from the normal to the sample surface, and a (100) 

axis tilted 24° from the normal. A plane drawn through the (llO) and (100) 

axes p~sses 3° away from the normal to the sample surface. The mass curve 

labelled A is attributed to an electron lens tilted 83° from the normal 

to the sample surface. The curve labelled Bis assigned to a second lens, 

tilted 70° from the normal to the sample surface. The scattered points 

labelled C are in the position for resonance signals from the third 

e ectron lens. The curve D is attributed to a y-orbit, since it occurs 

for a :ange of magnetic-field directions for which a y-orbit is possible, 

and has a minimum-mass value close to that of the y-orbit in Figure 17. 

The mass curve labelled E lies directly under the minimum of curve B, 

an d has approximately the same shape as curve B. Because de Haas - van 

Alphen measurements (Brandt and Rayne, 1966) have indicated an effective 

mass of 0.18 for the S-oTbits, it is tempting to attribute these masses 

to a S- orbit . They do not have the anisotropy of the B-orbit, however, 

since ~he piece of Fermi surface giving rise to that orbit is approximately 

cylindrical, and should give rise to a mass curve that is curved upwards 
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more t h an that of the masses labelled E. The curve does not match the 

anisot ~opy of any part of the first-zone hole surface. Because it lies 

di rect l y under the minimum of B, and has approximately the same shape, 

curve E is possibly due to the same group of electrons as curve B, the 

electrc~s of the second-zone lens. 

Several traces were taken with the constant magnetic field 

para ll el to the microwave electric field, the parallel-polarization : 

positio:-i. In each case only one large set of resonances was observed, 

which w s due to the electron lens. The magnetic-field directions at 

which parallel-polarization experiments were carried out included directions 

in which masses of curve E were observed in the perpendicular-polarization 

posi tic:1 . 

B. Magnetoresistance Rcsul ts 

Magnetoresistance measurements were made on a single crystal 

that wc..s originally the long starter tube of one of the cyclotron - resonance 

samples. Measurements of the voltage across the sample were made for many 

directions of the D.C. magnetic field, covering an angular range of 180°. 

A trans verse-magnetoresistance rotation curve is sho~TI in Figure 22. The 

two shzrp minima correspond to primary open orbits along {100} directions, 

and the small minimum on the right side corresponds to a secondary orbit 

along the binary direction. 

Measurements were also made with the sample tilted away from 

t he tr&nsverse-magnetoresistance position. In this case the magnetoresistance 

can be expressed as a sum of two mutually -perpendicular components, one along 
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the magnetic-field direction, and one perpendicular to it. The component 

along the magnetic- field direction, the longitudinal magnetoresistance, 

saturat es, while the component perpendicular to the magnetic-field direction, 
2 

the trc-nsverse rnagnetoresistance, is proportional to I-I unless there is an 

open o ;.~bi t perpendicular to the magnetic field di re ct ion, when it saturates. 

Magnctoresistance rotation plots taken with the sample ti 1ted are shown 

in Figt:. re 23. 

Figure 24 shows a stereographic projection on which the planes 

corresponding to the faces of the first Brillouin zone are shown, along 

with t'.-:e poles of these planes. The diagram is a projection on the trigonal 

plane, so that plane is represented by the outer circle, and its pole is 

at the center of the diagram. Planes representing the X- faces are shown 

by dotted lines, the solid curves represent the L- faces. If there are 

open orbits in reciprocal space along directions perpendicular to these 

faces, then corresponding magnetoresistan ce minima will lie on the curves 

representing these faces in Figure 24. 

The results of many measurements of the type shown in Figure 23 

are plotted in Figure 25, where each dot represents a magnetic- field 

direction at which a resistance minimum was observed. The data are projected 

on the trigonal plane; the area inside the small circle is a region in 

which no measurements were made because the sample could not be tilted 

far enough to include that area. The current direction, which is the axis 

of the cylindrical sample, is labelled J. 

Two curves of minima fall on curves which correspond to the 

http:Figt:.re
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curves representing the L-faces in Figure 24. These correspond to primary 

open orbits along the (010) and (001) di re ct ions. The third open orbit, 

along the (100) direction, did not give magnetoresistance minima hecause 

the (100) direction was only 36° from the current direction. A sudden 

disappearance of magnctoresistance minima is shown by a bracket on the 

diagram. The magnetorcsistance minima corresponding to a particular open 

orbit disappear when it is no longer possible for an electron, which 

travel s a distance greater than the length of a reciprocal-lattice vector 

in the open-orbit direction, to stay on the Fermi surface, and also on a 

plane perpendi cular to the magnetic-field direction. The disappearance of 

the (001) orbit is shown in Figure 23, where the magnetoresistance minimum 

corres;Jonding to this orbit disappeared as the sample was tilted in t he 

magneti c field. The sample was tilted 7° between each of the measurements 

shown, but because of the many measurements taken, the cutoff region is 

known to within two degrees. 

Other regions of magnetoresistance minima are shown near the 

biscctrix directions, and correspond to a secondary open orbit along the 

binary direction. A sudden disappearance of magnetoresistance minima 

was ob~erved 5° 
+ 

2° from the (010) direction . This particular set of 

minima was more pronounced than the others from secondary orbits because 

it corresponded to an open-orbit direction 73° from the current direction. 

Figure 26 shows the dependence of the magnetoresistance on 

magnetic-field strength. The bottom curve corresponds to a magnetic-field 

dircct~on aligned accurately at the magnctorcsistance minimum of a primary 
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orbit. The other curves correspond to magnetic-fie ld dircc·z.ions set at 

2° inte :... vals away from the minimum val ue. The quadratic dependence of the 

magnetoresistance is evident even in the lower curve, and better alignment 

of the ::Jagnetic field perpendicular to the open orbit direction did not 

cause ne quadratic dependence to disappear . \\~en the current direction 

was se t perpendicular to the magneti c-fie ld direction, measurements showed 

that 'Vp /p a: 1-l where A varied from 1. 95 to 2. 04, confining that mercury
xx 0 ' 

is a compensated metal . No oscillatory behaviour of the DC magnetoresistance 

corresponding to the Shubnikov - de Haas effect has been observed up to 

twenty- three kilogauss. 

C. Quantum Oscillations of the Microwave Surface Impedance 

Oscillations of the microwave surface impedance for magnetic 

field s~rengths above ten kilogauss have been observed during cyclotron 

resonance experiments at l.22°K. Examples of these oscillations are shown 

in FiguTc 27. The top curve is the best one obtained, and shows beating 

of two frequencies near a cross-over point of the data in Figure 28. The 

bottom curve is typical of the results obtained from this sample (cyclotron 

!'esona:1ce rcsul ts for this sample are shown in Figure 17) . The oscillations 

are pe~iodic in 1/H, and if analyzed as cyclotron resonance subharmonics 

yield a~ effective mass much larger than would be expected in mercury. If 

t} e oscillations are analyzed in the same way as de Haas - van Alphen 

osc~llations, they yield results identical in both frequency and anisotropy 

to de r:aas - van Alphen results from the S-orbi ts (Brandt and Rayne, 1966). 

For th~s reason, the oscillations are identified as quantum oscillations of 
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the microwave surface impedance. A plot of the frequencies observed is 

shown :n Figure 28, where the sample orientation is the same as that for 

the cyclotron resonance results in Figure 17. Note that the angular 

range ever which each branch is observed is just a little smaller than 

that predicted for the B- orbit in Figure 18, and larger than the angular 

range of either the y- or µ-orbits, which are also centered on b isectrix 

axes. In Figure 28, the two data points at the top left of the diagram 

arc pa~t of the data curve on the right, and two of the data points at 

top right are part of the data curve on the left . No frequen cies corresponding 

to any other orbit have been observed. 
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CIIAPTER VI 


DI SCUSSIO!'J OF EXPERIMENTAL l<ESULTS 


A. An El lipsoidal Fit to the Cyclotron Resonance Data 

A least-squares fit has been made to the data from one of the 

second-zone electron lenses, to compare the lens to an ellipsoid of 

revolution. If a set of experimc~tal variables F. are measured, in 
1 

terms of two variables f 1 . and f 2 ., then we can write : 
1 1 

F . = Af 1 . + Bf 2 . • (VI - 1)
1 ~1 l 

The difference between the experimental ly - rncasured quantity and the 

equivalent point on the fitted curve is given by 

cl. 
]. 

= Af 1 . + Bf2 . - F. 
1 1 1 

2 2 
and 2: d. = l: (Af1 . + Bf2. - F.)

1 1 1 1i i 

Tl e met:iod of least squares requires that 

2 2 

a rl: d. 
l ) a (~ d. 

1 )'i 1 = = 0aA aB 

Using (VI - 1), this means that 

2 
A L: fl· + B L: f2. f1. - E F. f1. = 0 (VI - 2)

1 1 1 l 1i i i 

2 
cand B !:: f2. + A 2: f 1i l. 2 i - L: F. f2. = 0 cvr.:.3) 

.; 1 1 1 ... i i 
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By defining 
2 

x - I fl· , 

i l 


2 

y 2:: f2.
::: 

i 1 

z = E fl· f2. ' 
i 1 1 

w = E F. f 1. ' 
i l 1 

g 2:: F. f2.'1 l
i 

(VI-2) and (VI-3) can be wri ttcn: 

A:( + Bz - w = 0 
(VI - 4))Az + By - g = 0 

Equatio: (VI-4) can be solved for the unknown quantities A and B. 

Equation (II - 9) for the cyclotron effective mass of an ellipsoid 
2 2 

can be written in terms of the variables sin G. and cos e. 
1 1 

2 2
sin K) cos 0. (VI - 5)
m1m2 i 

\·!here K is the angle between the major axis of the ellipsoid and the 

1ormal t o the sample surface, and 8 is the rotation angle in the plane 

of the sample surface. For an ellipsoid of revolution, = m2 , andm1 

(VI-5) 'uecomes: 

(VI - 6) 
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The definitions of A and Bare obtained by comparing (VI - 6) and (VI-1). 


A card l isting of the computer program, written for the Mc~1&ster rnn 7040 


compute~ , is shown in Table 2. 


An ellipsoidal fit was made to the data curve lab e lled B in 

F::.gure 20 , and t he results of this calculation were compared with the 

data fr0m other second-zone electron lenses. The lens of curve B was 

+ 
tilted 06 ° - 1° from the no rmal to the sample surface. The parameters 

of the el lipsoid of revolution that best fit the data were m1 = m2 = 0.219 m0 , 

m3 = 1. 34 mo. This ellipsoid was then used to fit lens A (tilt angle 

70 ° -+ 1~c) an d 1ens C (ti"l t ang 1e 63° -+ 1°) . The results of these comparisons 

are shown in Figure 29. The best fit for lens C was for a tilt angle of 

62°; tt~s is the comparison shown in Figure 29. Figure 30 shows the results 

of a cc~·11p arison of the computed ellipsoid with a lens tilted 70° from the 

normal ~o the sample surface . Note that in each case the calculation 

predicts a maximum mass that is too large, and a minimum mass that is 

too sma~l . An attempt to compare an ellipsoid with the parameters 

calculc:::ted above with the data from the lens ti 1ted 20° from the normal 

to the sample s urface (data curve B) in Figure 21 was not successful . 

The cor::parison fell below the measured masses for all magnetic - field 

directions . A measurement of the effective mass for all magnetic- field 

directions around a lens with a tilt angle of 0° would be useful to show 

how fay the lens differed from an ellipsoid of revolution . The latter 

would give a constant effective mass for a lens having this orientation. 

B. A Cylindri cal Fit to the Quantum Osci llation Data 

T e cross - sectional area of a cylinder at an angle 8 from the 
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Table 2 

C L [ ,1\ :=, T SQ0 r\ I' [ :~ >- : T T 0 E L L ~ - G J 0 F :-n~ 'J ~) L U T I Cii ~ 

DI,'-~;: i !~I 0 I< C , ..~ ( 3 6 ) , Ci~:> ( ': ~ l ' THE TI\ ( 3 6 ) , ST 2 ( 3 6 ) , --- T 2 { 3 f, ) 

1 F Ci ) . -'. ,.:, T ( 9 F 6 • ? ) 
? ;::- 0 l ~ '· i f1 T ( J FF 6 ., 3 I l fl F 6 • ') I I l 
6 r=- c, 1-\ 1.- , ' ~ ( i F-6 • i ) 
5 R L /.\ u { 5 ' 6 ) T I L T 

vi !·, T -- ( 6 , 6 ) T I L T 

I~ [ /\ 0 ( '..) ' 1 I ( ciii ( I ) ' = l ' j 6 ) 
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T I L T i~ ::; T I L T -~- 3 • 1 Lr l 5 9 2 7 I 1o0 GI 0 

X= U. U 

y ={j 0 (J 


z= j . u 

Vf = U .G 


(.J= ') u 

1)0 3 I=l,36 
THETA( = FLOATl5*I-5)*3·1415 9 27/18 0 . 0 

ST2 (I) = (.S _ ' { TC-JET.td I)) )-::--::-2 

C T 2 ( I l = ( C 0 S { TH t: T /-':.. ( I ) l ) ~- -;(- 2 

X=X+ST2 (I )-lH\-2 


Y=Y+ CT 2 (I ) -3H:-z 


Z=Z+CT2(Il*ST2{1) 

c t/i :> ( ) == Cf /1 { I ) ~H:- ( - 2 ) 

"J = '<'! + Ci,..1 5 ( I l -3\- S T 2 ( I l 


3 	 G=Cj+Cf.':5 ( I l "'~-c T 2 ( I ) 

G =( G - ~* Z/XJ/(Y -( Z**2 l/ Xl 


/.'l, = ( 1:. - J -3(- Z ) I X 

C1\ l = ~QI~ T ( ( S I i { T I L T l.:Z ) ) -;¢ ·li- 2 I ( b - A -3¢ ( C 0 S ( T I L T f<l l -;¢ -;(- 2 ) } 

C ~3 =(A*C M ll**( - l) 

4 	 FO F<:~;\ T(2F6 o 3) 
1 
:: :' ~ T t. ( 6 ' L+ ) OH ' cl ·-13 

-.<2:.::C..il 

C:-~ 4 = C.'·,L:. -*C< 2 ~:- C i 13 

'.)0 7 =l,Sl 


ILT" = J - 1 
TILTlR = TI LT1*3 . 14 1592 7/1 30 .0 
X2. = (S I > ( T I L T 1 r~ ) } -l:- -~ 2 
Y 2 = ( CCJ S ( T I L T 1 R ) ) -3:- -l\- 2 
D 1 j.ti f:Y s r c. 1 TH t: T /\ u 19) , c1-;r\ss ( 19 ) , lU ' 19 l , Bi ( 19 l 
DO 8 I = i,19 

Tr, E T/, 1 ( I ) == F L0 /4. T { I - l ) -l(- 3 • 1 4 1 5 9 2 7 I 3 6 • 0 

/, l ( I l = ( S I N ( T H E T /\ l ( ) ) ) -3:- x- 2 
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minimur: c::-oss-scctional a~ea in the plane of rotation of the magnetic 

field c~rection, is given by 

Ao 
A(0) = (VI- 7) 

cos 0 

wn2re '"·o is the minimum area of the cylinder in that pla:--:e. Since the 

£requcncy of the oscillations is proportional to A (sec equat ion (II-15)), 

(VI- 7) can be w:::i tten 

f o 
f (0) = (VI-8)cos 0 

A cy~in~rical fit to the quantum oscillation data is shown i n Figure 31, 

where fo was taken to be the minimum frequen cy in each branch. The 

fitted curve in each case lies outside the experimental curve as 0 i s 

inc_eascd, showing that the cross-sectional area of this orbit is larger 

than that for a cylinder. The experimental result represents a cylinder 

that is flared out at the ends where it joins the rest of the Ferni 

s~Tface. A closed section of the Fermi surface would give a different 

result. In this case the cross-sectional area of the orbit would not 

increas e as fast as that of a cylinder as the magneti c field was rotated 

2.way fr0111 the minimum- area position, and the experiment al points would 

lie out3ide the calculated curve. 

C. Comnarison of the Data with the Nearly - Free - Electron Approximation 

1. Cyclotron Resonance Data 

Of the two cyclotron orbits observed in this experiment (a and y), 

o~ly the a - orbit is present in a similar form in the nearly - free - electron 
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approxiJ1ation. This approximation predicts a minimum effective mass 

for the a-orbit (electron lens) of 0 . 36 mo and a maximum mass of 1.0 mo . 

':'his ex:_Jerir.ient has measured a minimum effective mass for the a - orbit 

of f~on 0.60 mo to 0.65 m0 , depending on the orientation of the lens 

~clativ~ to the sample plane. The maximum mass has not been measured, 

but it can be estimated from Figure 21 to be ahout 1. 7 mo . The discrepancy 

()c;twecr. the :r.easurecl and predicted values is of the same order of 

mc.::gr:itvic as that found by Harrison (1960) in aluminum and may be partially 

due to the fact th~t electron- electron and electron -phonon interactions 

arc not includ~d in the band- structure mass. The effect of these interactions 

on the cyclotron effective mass was discussed by Ashcroft (1965) , who 

found that the effect could be quite iarge. 

They- orbit, which stretches across the top fa ce of the Brillouin 

zone in the nearly - free - electron approxi~ation, would be c~t in two by 

the ex~stence of a neck through the T- face. The nearly - free - electron 

approxination predicts an effective mass of 0.79 mo for this orbit; this 

e.·pcri~~~nt measures an effective mass of 0. 7 m0 (see Figure 17) , with 

the nag~ctic field along a bisectrix direction. Because the nearly - free ­

electrc1 approximation normally predicts a mas s that is lower than that 

ooscrvcd, and because the orbit is observed over a larger angular range 

thar. woJld be expected for the nearly-free- electron orbit, these data 

are take~ as evidence of a neck through the T- face . 

2. 	 ~1agnetorcsistance Data 

The magnctorcsistancc d· ta fits the near:y - frcc - clcctron r:crrni 
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s:.ir..cace with only small changes. The ne:.-.:- ly-free - electron approximation 

predicts open orbits a:ong the {100} directions, and along the binary 

directions. Both orhits are evident in the data. This approximation 

predicts that the {100}-directed orbits will be visible for all magnetic -

field c..::rections in a pl&ne perpendicular to the open - orbit direction·' 

while t.1c data (see Figure 25) indicates that the orbit disappeared for 

an angi,.lar range of =- 26° c.::=.. 2°), measured from the projection of the 

trigond direction on the plane perpendicular to the orbit direction. 

For this range of angles it was no longer possible for the electron to 

stay or~ the Fermi surface, and at the same time on a plane perpendicular 

to the ~agnetic-field direction, for a distance greater than the length 

of one reciprocal-lattice vector in the open - orbit direction. This 

indicat~s that the arms along the X- faces and the cap on the T-faces 

are thi:mer than those predicted by the nearly - free - electron approximation. 

The bir.ary- di rected orbit is cut off at a magnetic - field direction 5° 
-;- 0

(- 2 ) from the (100) direction. The nearly - free - electron model supports 

this open orbit for a larger range of magnetic - field directions than is 

i;-dicated in the data, and the absence of this open orbit for a magnetic -

field Girection along the (100) direction is conclusive proof of a neck 

througr:. the T-faces. This orbit would be supported by the model for any 

size neck through the X-faces, as long as no neck existed through the 

T-fa.ce~. 

3. 	 Quantum Oscil1ation Data 

The data shown in Figure 28 indicates a cross-sectional area for 
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the B-c:tbi t that is oniy 1/ 10 of the area of the same orbit in the 

ncarly-f~cc - clcctron approximation . 1bis suggests that contact of the 

Fermi s~rfacc at the center of the X- faces has broken the ncarly- free ­

clectrc~:. arm into two narrow tubes directed along the long discnsion of 

the x- =2ccs. Ot~erdise, the data has the anisotropy predicted by the 

ncarly-~rcc - electron approximation. 

D. C'r1·:1ariscn of the Data with the Relativistic - Augmented-Plane - Wave 

Apr: ~.:-oxirnation 

The results of a relativistic- augmented- plane - wave calculation 

(Lo cks., 1965) for mercury by Keeton and Loucks (1966) are shown in 

Figure 32 . The intersect.on of the Fermi surface with the Brillouin - zone 

fc:ces i . .:. shown in Figure 33, where all the symmetry points are shown 

except i", the center point of the Brillouin zone. This approximation 

predicts that the Fermi surface will touch both the X- and T- faces, and 

h12s used to estimate the angular range through which the various cyc lot ron 

o~bits ~cmained c losed (see Figure 18). The cyclotron-reso~ance results 

for the y- orbi t, and the quantu.'11- os ci llation results for the S- orbit, 

fitted ·-::hcse predictions very well. The mass curve labelled E in Figure 21 

does no·-: have the anisotropy of any part of the Fermi surface predicted by 

t. is approximation, however, and the origin of these masses cannot be 

explained at this time. The model requires only one small change to 

azrcc w~th the magnctorcsistance data. The calculated results of Pigurc 33 

support an open o:.bit along the Jinary direction, with the magnetic field 

aligned along the (100) direction, and the data of Figure 25 indicated that 

http:intersect.on
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FIGURE 33 

INTERSECTION OF THE FERMI SURFACE WITH THE 

BRILLOUIN ZONE FACES, RAPW APPROXIMATION 
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t1: :.s o:i:..oi t did :10t exist. The 2.rea of contact of the Fermi surface 

~ith t~c T- face of Figure 33 must be enlarged slightly to agree with 

the ma::;~:. eto:-esistance data. In general, t he calculation agrees reasonably 

\·:ell w:':.·c.1 the <lat a of t11cse experi:-nents, and is a good approximation of 

the ac~ual Fermi surface. 

L	 . A Ciscus sion of the Possible Effects of the Curved Sample Surface on 

the: Cyclotron Resonance Sigilals 

The subsidiary r.iaxima on the low-fiel d side of the cyclotron 

rcsonaL~c derivative signals (see Figures 14 and 16) was at t ributed to 

the cf~c cts of a slightly-curve d sample surface. The effects of small-

2.r.glc tipping of the sampl e s urface with respect to the DC magnetic field 

have be2n cii scusse<l by several investigators (e.g., Koch, Stradling, and 

Kip, 1064 , Langcnberg and t,1arcus, 1964 , Grimes and Kip, 1963, Spong and 

Xip , 1%5) . One explanation for the effects of field-tippi ng , which 

in c luded signal - splitting much like that observed from t he curved samp le 

surfaces in mercury, invoked the Dopp ler-shifted electromagnetic field 

see~ by an electron slowly spiralling down out of the skin depth. 

Because of the curved sample surface of the mercury crystal s, electrons 

f:.~on th~ same orbit on the Fermi surface would spiral up toward the 

samp:e surface, or down from it, depending upon their position in the 

sa~~le. Because the electromagnetic field changes in phase as well as 

i~ ~~n: itude as the electron spi rals away f rom or toward the surface, 

0"'1 P of ·chesc groups of e :ect :-ons wi 11 resonate at H<II , the other at 
c 

:'he effect of this mech8.nis .. on the deri vati vc of a cyclotron 
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resonance signal is not clear because of the complicated shape of the 

signal itself (see Figure 3). One of the effects of a tilted sample 

surface reported by other investigators was the large phase shift of 

the resonance signals observed. The phase shifts ob$erved in this 

. +experiment were small for most signals (of the order of n ~ - 0.05 for 

the data of Figure 17). Another mechanism that has been suggested to 

explain the tipping effects involves the creation of sheets of current 

deep in the metal by the electrons spiralling down from the skin depth. 

Electrons spiralling up toward the skin depth then react with these 

current sheets, and upon arriving at the skin depth, modify the surface 

impedance in such a way as to cause peak-splitting, inversion, and possibly 

mass-doubling (Grimes and Kip, 1963). None of the explanations is 

completely satisfactory in explaining the results observed in mercury, 

but because the phase shift observed was small, especially for the data 

of Figures 17 and 21, the mass shift caused by the curved surface is 

expected to be small. 

F. Conclusions 

Cyclotron resonance signals with as many as twenty subharmonics 

have been observed in single-crystal mercury. Cyclotron mass results 

are reported from four samples having different crystal orientation. 

The minimum cyclotron effective mass of the electron lenses (a-orbits) 

was found to be 0.63 mo, for a magnetic-field direction along the binary 

direction. An ellipsoidal fit to the cyclotron effective mass data from 

the electron lenses showed that they can be roughly approximated by an 
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ellipsoid of revolution, with the parameters rn1 = m2 = 0.219 mo, m3 = 1.84 mo. 

The minimum cyclotron effective mass of the y-orbit (see Figure 8) was 

found to be 0.69 m0 , with the magnetic field directed along a bisectrix 

direction. A third set of masses, labelled E in Figure 21, do not have 

the proper anisotropy to match any part of the Fermi surface, and the 

origin of these masses cannot be explained. The minimum mass of this 

curve was 0.16 mo. Only one set of resonances was observed in the 

parallel-polarization position, corresponding to the a-orbits. 

The magnetoresistance experiment shows the usefulness of studying 

magnetoresistance in a compensated metal over a large angular range 

centered about the transverse magnetoresistance position. The magnetic-

field dependence of the transverse magnetoresistance has confirmed that 

mercury is a compensated metal. The quadratic dependence of the magneto-

resistance did not completely disappear even when the magnetic field was 

accurately aligned perpendicular to an open orbit direction. Two sets 

of open orbits were observed -- a band of primary periodic open orbits 

along the {100} reciprocal lattice directions, and a band of secondary 

periodic open orbits along the binary directions. The absence of the 

binary-directed orbit for a magnetic-field direction along the (100) 

direction is proof that the Fenni surface touches the T-faces of the 

Brillouin zone. 

Quantum oscillations of the microwave surface impedance were 

observed at high magnetic-field strengths during the cyclotron resonance 
-6

experiments. These oscillations had a frequency equal to 1.12 x 10 
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-1 
Gauss with the magnetic field along a bisectrix direction, and are 

attributed to the 8-orbits. 

A comparison of the results of these experiments has been 

made with Keeton and Loucks' model of the Fenni surface. In general 

it was found to be in good agreement with the experimental results; 

however, it does not explain the origin of the cyclotron masses labelled 

E in Figure 21. 
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