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ON HODULAH EQUA'l'IONAL CLASSES 

l. Introduction: 

Let us call an equational class K of algebras permutable if 

and only if eve1vy :two congruence relations on any K-algebra 0-1.- are 

' 
permutable. We \·ti.11 call K modular (distributive) if the congruence 

lattice of ever~ K-algebra is modular (distributive). Mnl'cev DJ 

has. given a set of equntiop.s _which characterize permutable equational 

classes nnd Jonsson [2] has done the same for the case of distributivity. 

In this paper~ we give a set of equations which characterize a modular 

equational classc We give a definition of n-modularity suggested 

by our equations and show that 2~modularity is equivalent to permut­

ability. 

2. The Characterization of Modularity: 

For any algebra Ctl , £, f:, .•.. , we will use the respective 

upper case Latin letters A, Bt C9 ••• to indicate the algebra's under­

lying set. For an algebra Cl.and x,y c A, we let G<x,y) be the 

smallest congruence relation on 6L that contains (x,y). 

1 
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THEOREM 1: For an equational class K of algebras, the following 

are equivalent: 

(a) K is module,r 

(b) There is a natural number n and a sequence of terms 

mi'· i = O, 1, ••• j n in four variables such that for every K-algebra 

(M2) m.(a,b,b,a) =a i = ,o, 1, ••• , ·n 
J.. 

(i odd) 

Without loss of generality, we assume K to be non=trivial .. 

(a)==? (b), Let f" be an algebra which is K-freely generated 

by the four element set [a,b,c,d} • We define congruence relations 

on t by: 

e = 8(b,c) l.j.J:: eca~b)v8(c,d) c:p :: ec a 'd)v 8(b t c ) 

It follows that for some natural number n there is a sequence 

u in (: satisfyinge e -•' n 

(1) uo = a, u = d n 

(2) u.(¢A9)u. (i even)
J. J.+1 

(3) U, (cpA ~)U. l (i odd).
1 1+ 

Since f is generated by {a,b,c,d) , there exists a sequence of terms 

(i =O, 1, 2, ••• , n) 



3 
Since every homomo:ephism of the term algebra in four variables into 

a K-a1gebra factors through f in such a way that the variables are 

mapped into a,b,ctd respectively, it is enough to show that the 

above identities hold in r for the free generators a,b,c,d. 

(Ml) follows easily from (1). 

(M2): From (1), (2) e.nd (3) above, it follows that mi(a,b,c 9d) cP a 

holds for all i =0 11 1, o •• , n. This together with a cp d and b ~ c 

gives us mi(a,b,b,a) cp a. But the natural homomorphism of C: onto 

the factor algebra S/q> maps the subalgebra of &:' generated by 

la,b3 isomorphically and identifies m. (a,b,b,a) and a. Therefore,
J.. . 

m.(a,b,b,a) ::: a (i = O, 1, ••• , n)
1 

(M3): For i even, we get from (2) that m. (a~b,c,d) 6 m. (a,b,c,d) .. 
J. J.+1 

Since b 6 c, this gives m. (a,b,b,d) 8 m. (a,b,b 9d). Again the 
l. J.+1 

natural homomorphism of f' onto f/e maps the subalgebra of t 
isomorphically and identifies ra.(a,b,b,d)

l. 

and m. Ca,b,b,d)o Therefore,
1+1

m.(a,b~b,d) = m. 1Ca,b 9b,d) (i even)
l. l.+ 

The proof of (M4) is similar. 

(b) ~ (a): Let 8, '{), ¢ be congruence relations on a K-?.lgebra. 

Ol. satisfying es cp • We have to show (8v 4J)A~~ 8v('-\JA c?) .. 
For each k c N, let /\k ""' 'f' 0 8° · · · 0 9 °\Y (2k+l factors). Then 

(8v\{.J)A<\:> = kd C<? n /\k). Hence it suffices to show that 

¢n I\ S 8v(t..j.JAq>) for every natural number k. We show this by 

induction over ko 
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For k =o, this is obviouso For every k, the relation /\k 

is reflexive, syr1metric and compatable with all operation.Se It 

follows easily that it is also compatable with all polynomials on dL .. 

For k > 1, then (a,d) c <Pn f\k+l = <t:>f'I (4J 0 e <>/\k) implies 

that there exists elements b,c c A such that 

Since 8 s; <P and lfJ ~ j\k, we also have 

c !\ d. 


Define u. = m. (a.,b,c,d) (i - O, 1, ••• , n). By (Ml) a = u and 

J. J. 0 

u = d. n 

For i even we have: 

and hence 

(4) u. e u. i (i even)
1 J.+ 

For each i, we have u. ,..!--. m. (a,b,b,a) = a and a = mi(a,a,a,a) cp
. J. '-+" J. 


<P miCa,a,d,d). Therefore, 


(5) u. <P rn . (a,a,d,d) (i = o, 1, ••• , n)
J. 1 

For i odd u. Ak m. (a,a,d,d) = m. Ca,a,d,d) /\k u. • 
1 J. J.+1 l.+1 

By combining with (5) we have 

By induction hypothesis, ~ n /\ k <;; 8v('V" ~ ) and this gives: 

http:operation.Se
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(6) U. 8v('fA ~) U. 1 (i odd)

1 J.+ 

This, together with (4) yields 

which was to be prmred. 

3. A Relation between Permutability and Modularity. 

As mentioned in the introduction, He define an equational 

class to be n-module.r for some n c N if there exists a sequence of 

n +.l terms in four variabl~s.satisfying statement (b) in Theorem 1. 


Clearly if K is modular, K is n-modular for some n c N. Conversely 


if K is n"."'modular for any n c N, K is modular. 


TH'i.:OREH 2: An equational class is permutable if and only if it is 


2-rnodular. 


If K is permutable, then by [:iJ there eid.sts a term p in 

three variables satisfying p(a,a,b) = b and p(a,b,b) =a in every 

K-algebra., We define 

mo(a,b,c,d) = a, 


m (a,b,c,d) =p(a,p(b,c,d),d)

1
 

m (a,b,c,d) =d.
2

(Ml) is satisfied by definition, and: 

m (a,b 9bta) -- p(a,p(b,b,a),a) p(a,a,a) = a
1 = 

m (a,b,btd) :: p(atp(b,b 9d),d) :::: p(a,d,d) =a ::: mo(a,b,b~d)1

m (a,a,b,b) = p(a,p(a,b,b),b) =p(a,atb) =b =m (a,a,b,b)
1 2

Therefore, {m0 , m
1 

, m1 satisfy 011) to (M4) and K is 2-modular.
2



6 
If K is 2-modular, then by Theorem 1, there exists m0 , m1 ~ 

and m satisfying the properties (Ml) to (W+)o Define
2 

p(a~b,c) - m1(a~b,c$c) 

p(a,a§b) ::: m1(a~a~b,b) ::: m (a,a,b,b) ::: b by (M4) and (Ml)
2

p(n,b~b) ::: m
1

(aib,p?b) ::: 1';1
0 

( a , b , b i b ) ::: a by (H3) and (Hl). 

Therefore, K is p::n:mutable. 
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