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ON MODULAR EQUATIONAL CLASSES

l. Introduction:

| Let us call an equational class K of algebras permutable if

and only if every two congruence rela?ions on any Knalgebra L are
permutable. Ve will call K modular (é&étfibutive)_if the congruence
lattice of every K-algebra is modular (distributive). Mal'cev [1]

has. given a set of equations vhich characterizé permutable equational
classes and Jénsson [2] has done the same for the case of distributivity.
In this paper, vwe give a set of equations which characterize a modular
equational class. We give a definition of n-modularity suggested

by our equations and show that 2-modularity is equivalent to permut-

ability.

2+ The Characterization of Modularity:
For any algebra o1, s £y coeey we will use the respective
upper case Latin letters A, B, Cy eoe to indicate the algebra's undepr-

lying set. For an algebra CL and x,y ¢ A, ve let O(x,y) be the

smallest congruence relation on O that contains (x,¥)e



THEOREM 1: TFor an equational class K of algebras, the following
are equivalent:

(a) K is modular

(b) There is a natural number n and a sequence of terms
m, i =0, 1, ¢ee5 n in four variables such that for every K-azlgebra
Gl and all a,b;cgd‘a A

(I\{l) 7] (agbgc’d) = a and;m (a§b909d) = d
-0 n

it

(}IZ) mi(a’bgbga) a i = 'Og 1’ ceae g n

(M3) mi(a,b,bsd) = bsbed) (i even)

mi+1(a,
(M4) m, (asa,d,d) = mi+1(a,a,d,d) (i oda)
Without loss of generality, we assufne K to be non-trivial.
(a)=>(b), Let § be an algebra which is K-freely generated

by the four element set {a,b,c,d} . We define congruence relations

on £ hy:
O = B(b,e) W= Ha,b) v c,d) 43:: E(a,d)v Ev,c)

By (a) we have (a,d) ¢ <%>A(\Pv(¢/\6)) = (@A&p)v(fb/\e),
It follows_ that for some natural number n there is a sequence
Uy ul, cesy U in F satisfying

&D) ug = a, ﬁn=d

(2) ui(¢A9)ui+l (i even)

(3) ui((f)/\kl))ui_'_l (i oad).

Since &u is generated by {a,b,c,d} R there exists a sequence of terms

Moy ml, 6cey mn in four varisbles such that

ui = mi(agb’c’d) (i = O, 1’ 2’ LY n)



Since every homomorphiem of the term algebra in four variables into
a K~algebra factors through (3;' in such é x«}ay that the variables are
mapped into a b,c;d respectively, it is enough to show that the
above identities hold in UCJ for the free generators a,b,c,d.

(ML) follows easily from (1).

(M2): From (1), (2) and (3) above, it follows that mi(a,b,c,d) dP a
holds for all i = 0y 1, «ss, n. This together with a & d and b & ¢
gives us mi(a,b,b,a) ¢ a. But the natural homomorphism of § onto

the factor algebra f/dP maps the subalgebra of &v generated by

fa,B isomorphically and identifies mi(a,b‘;b,a) and a. Therefore,
mi(a,b’b’a) = a (i = O’ 1’ evo g n)

(M3): For i even, we get from (2) that mi(a,b,c,d)'e mi+1(a,b,c,d)o
Since b © c, this gives m, (a,byb,d) e m; 5 (a:bsbyd)s  Again the
natural homomorphism of § onto A:/e maps the subalgebra of £
generated by {aﬁbﬁd} isomorphically and identifies mi(agb,b;d)

and mi+l(a,b sbyd). Therefore,

L m, (a,0,b,d) = m; ,(a,bybyd) (4 even)

The proof of (M4) is similar;

(b)zr;-é (a): Let O, Y, Cb be congruence rela;ticns on a K-glgebra
CU satisfying © < ¢ . Ve have to show (Ov k{))/\ePS Ov(Wa ).
For each k ¢ N, let /\k’-:. We@e - 2B\l (2141 factors)s Then
BvYind = \ﬁ.’_f{ (b n /\k)' Hence it suffices to show that

(bﬂ /\k = eV(\P/\(b) for evei‘y natural number k. We show this by

induction over k.



For k = 0, this is obvious. Tor every k, the relation /\},
is reflexive, symmetric and compatable with all operations. It
follows easily that it is also compatable with all polynomials on A,
‘For k > 1, then (a,d) ¢ Cbn /\k-kl = (bn(q)a @°Ak) implies

- that there exists elements by,c £ A such that

Since © < q‘D and LP < it e also have

- bde  of\ da

Define u, = mi(a,,bgc,d) (L =0, 1; esey n)e By (ML) a = u, and

u = d,.
n

For i even we have:
u, = m (ab,c,d) © n. ;(@ibybyd) = m (agb b,d) & u,

and hence

W) u, @_ui+1 (i §v§n)
~ For eagh i, we have uy ct> mi(a,b,b,a) =a and a = mi(a,a,a,a)cp
C;)nfl’:.v_'(a,a,d,d). Therefore,

(5) u, Cb mi(a,a,d,d) (L 20, 1y coeqy n)
For i odd u, /\k mi(a,a,d,d) = mi+1(a,a,d,d) /\k AR

By combining with (5) we have

14) /\h rﬂi(a,a,d d) = m, (a,a,d d) <b /\k U 0 (i oda)

By induction hypothesis, d)n /\ < Ov(Pa Cb) and this gives:


http:operation.Se

.(6) ui‘GBV(\P/‘qD) LAY (i odd)

This, together with (4) yields

(a,d) cOVOV(WAR)) = Ov(Pad)
which was to be proved. |
3. A Relation between Permutability and Modularity.

As mentioned in the introductign; Qe define an equational
class to be n-modular for some n ¢ N if there exists a sequence of
n + 1 terms in four variables satisfying statement (b) in Theorem 1.
Clearly if K is modular, X is n-modular for some n ¢ N. Conversely
if K is nemodular for any n ¢ Ny K is modular.

THEQREM 2: An equational class is permutable if and only if it is
2-nmodulare.

- If XK is permutable, then by [I] there exists a term p in.
three variables éatisfying plasa,b) = b and pla,byb) = a in every

K-algebra. Ye define

mo(a,bgcgd) a’
- ml(asbscsd) = pla,p(b,c,d),d)
ma(a’b’(:gd) 3‘d0

(M1) is satisfied by definition, and:

ml(a,b,bga) = pla,p(bybyalsa) = plasasa) = a
ml(a’b’bgd) = p(agp(bgbgd)’d) = p(agd’d) = &a = mo(a;b,bgd)
ml(a)agb’b) = p(a,p(a,b,b),b) = p(agagb) = b - ma(&,a'b,b)

Therefore, {mo,'ml, még satisfy (M1) to (ML) and K is 2-modular.
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If X is 2-modular, then by Theorem 1, there exists Mye Mys

and m, satisfying the properties (1) to (M), Define

plasbse) = ml(agbgoﬁc)

plasa,bh) = ml(agagb,b) = mz(aga,b,b) =b by (M4) and (M1)
p(a,bsb) = my(a,bybyb) = myla,byb,b) = a by (43) and (11).

Therefore; K is permutable. =
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