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INTRODUCTION

The_concept'of injectivity méy be traced back to
1940 with Baer's iﬁtial results for Abelian groups and
modules over a given ring, [ . The first results in non-
module types of algebras did not appear until Halmes, [2Q ,
described the injective Boolean algebrés using Sikorski's
lemma on the extension of homomorphisms. In receht years,
there has been a plethora of results describing the
injective algebras in particular equational classes
Geg. @, B, W, @, 01, 0d).

In [16] , Eckmann and Schopf introduced the funda-
mental notion of essential extepsion and showed the basic
relations that this’concept,had with injectivity in the
equational class of¢all modules over a givén ring. They
deveioped-the nbtion of injective hull (or_enveloPe) which
provided every module with a minimal injective extension
or equivélently a maximal essential exteﬁsion. - It was not
until 1967 that Banaschewski and Bruns, [9), showed that
the same results held for Boolean Algebras and Berthiaume

proved the analogous theorems for S-sets, oy .

With the advent of Oategory.Theory,'Baer's results
were abstracted into what is called in Mitchell [ed]l , a Cs
(Abelian) Category with a{génefator and the notions of
injectivity and eésential extension were put in their proper
categorical setting. The questions of having enough injectives -
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and of having injective hulls were‘formulated and some
answers were provided in [7] and [15] when the first
property implied the second.

It was remarked in [14] that an equational class,
qua category, has in general the property that enough
injectives is equivalent to having injedfivev hulls. This
allowed Banaschewski in [8] to transcribe his categorical
conditions to equational classes and supply necessary and
sufficient conditions for an equational class to have
enough injectives (or equivalently injective hulls). It
also showed that the categorical relationships between
essehtial extensions and injectives, given in [16] for
modules and in [9] for Boolean algebras, were true in any
equational class with enough iﬁjectives.»

In this dissertation we study the question of
-enough injectives for an equational class in more Universal
Algebraic terms. Since an equational class is always deter-
mined uniquely by its subdirectly irreducible members, we
try to determine conditions for the subdirectly irreducible
algebras that will ensure enough injectives‘in the equational
class. The powefful results of Jénsson in [22] allow us
to develop some existence theorems for e@uational classes
with -distributive congruence relations. In particular, we
can provide a completely Universal algebraic generélization
of the results for distributive lattices [1Q] and Boolean
Algebras [9] ., We élso provide some results that describe

those equétional subclasses of particular equational classes
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that have enough injectives.

In Chapter 1, we pro#e the results remarked in EUB,
analyze Banaschewski's conditions‘for their Universal
AlgebraicAContent, and examine the relationships between
subdirectly irreducible algebras and Banaschewski's
conditions. This allows us toﬂpeduce his conditions
considerably in the case of "nice" equationally complete
equational.classes.

In Chapter 2, we use Jénsson's results to obtain
existence theorems for enough injectives in an algebraic
setting that give us practical criteria for checking
particular equational classes. We find that every congruence
distributive, equationally complete equational class with
nontrivial finite algebras has enough injectives (barring
a certain pathological case). ‘We then describe these
injectives and to some degree the injective hulls.

In Chapter 3, we determine precisely what equational
subclasses of lattices and Heyting algebras have encugh
injectives and supply partial results for the equational

class of bounded pseudo-~complemented lattices.



PRELIMINARIES

For the basic definitions and results in Universal
Algebra, we refer the reader to [18] save for the following
exception: an algebra may have an empty underlying set
if (and oﬁly if) there are no nullary operations. A
trivial algebra is one whose underlying set is either
empty or a singleton.

For typographical convenience we will identify an
algebra Ol= (A, (fi)icI) with its underljing set, A. This
shouldvdausé no problems as we will always be working in
an equational class of a given type. Classes of algebras
(usually equational) will be written X and the class
operators of homomorphic images, subalgebras, isomorphic
images, pfoducts, subdirect products, filtered or reduced
products and ultraproducts will be respectively‘denoted by
the following symbols: H, 8, I, B, By, Py and PByj.

We will indicate injective (= one to one) homo-
mofphisms by a double-barred arrow I—— and surjective
(= onto) ones by a double-headed arrow ——> & la
Halmos [2]] .

The basic definitions and results of Category
Theory are found in Mitchell [éé] save for the usual

exception that our feflectiqns are his coreflections.

All of the notions from lattice theory may be found
in Birkhoff [12] , Rasiowa and Sikorski [29] , and Szasz [3Q).
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CHAPTER 1

INJECTIVITY AND EQUATIONAL CLASSES

1. Injectives and Essential Extensions

Throughout this section, K will be an arbitrary
but fixed equational class of a given type. The algebras
and diagrams in the definitions and diagrams of this

section will be assumed to be in K.

1.1 DEFINITION: An algebra Q (in K) is called injective
(in k) if for every extension f: A+——>B and every homo-
morphism g: A—>Q, there exists a homomorphism h: B—>Q
such that hf = g.

This is usually expressed diagramatically by:

hig
An~——~pr

gl .-"3n
Q<
1.2, DEFINITION: An algebra is called an absolute

subretract if it is a retract of every extension.

Since the categorical monomorphisms of an equational
class are exactly the injective homomorphisms or extensions,

we may apply the basic categorical results directly.

l1.3. THEOREM: The product of a family'of injective algebras
and a retract of an injective algebra is again ihjective.

Also, every injective algebra is an abSolute subretract.



Proof: ([28), p.70)
The first statement implies that the singleton
algebra (= empty produc¢t) is always injective in any

equational class.

1.4, DEFINITION: An extension f: A—>B is called

essential if for every homomorphism g: B—>C, g is a
monomorphism whenever gf is, f is a proper essential

extension if it is not an isomorphism.

Since X is an equational class (more precisely:
H(K)< K), we have an equivalent formulation in terms of
®(B), the lattice of congruences on B, viz: the only
congruence on B which separates (the points of)
Imf (= £[A]) is Ay, the diagonal or identity congruence
on B, If A is a subalgebra of B, and £ is the natural
embedding of A into B (written f: A £ B, or just A £ B),
we write A SEB, and say.that A is large in B. Therefore
f: Avr—>B is essential iff Imf:sEB. If we call a
(homo)morphism essential, it will be implicitly assumed
that it is also a monomorphism. The following remarks

are clear.,

1.5, Lemma: For monomorphisms f: Aw—>B and g: B#+——>C,

we have: :
(1) If £ and g are essential, so is gf

(2) If gf is essential, then so is g

l.6. Lemma: Let f: Avr—>B be an arbitrary monomorphism
and define M(f) = {© € ®(B): ©|Inf = Az} where (8|Inf)
is the coﬁgruence on Imf, © N Infe, Then if'xe: B—»B/©



is the canonical homomorphism associated with O, xépf is

essential if and only if © is maximal in M(f).

Proof: xgef is essential iff it is a monomorphism and

Im xeofsE B/6. By the 2nd Isomorphism Theorem, this is

equivalenﬁ to ©6€M(f) and for all \Pé@(B); ey implies
W ¢ M(£).

1.7. THEOREM: In an equational class, every extension
can be continued to an essential extension in the sense that
given f: AF——>B, there exists g: B——>»C such that gf is

essential.

Proof: Using the notation bf the previous lemma, M(f) is
inductive since for any universal algebra B; ©(B) is an

algebraic lattice.

1.8. THEOREM: An algebra is an absolute subretract (in ¥)
if and only if it has no proper essential extensions (i.e.

every essential extension is an isomorphism).

Proof: 1If A is an absolute subretract and f: Ar——>B is
essential, then there exists a g: B—>»>A such’that gf = lA'
But then gf is a monomorphism hence so is g as £ was
assumed to bé essential. Therefore f, being an inverse of
an isomorphism,is also an isomorphism.,

Conversely, assume that A has no proper essential
extensiong,and take f: Awr—>B, By 1.7, there exists a
g: B—>C such that gf is essential. ©Since A has no
proper essential extensions, gf is an isomorphism and A is

a retract of B.
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Now suppose f: Ar——>Q is an injective extension
(i.é. Q is injective). By elementary diagram chasing, we
see that for every essential extension g: Ar—>E of A,
E<IS(Q). In fact S(f) = { X< Q: Inf < X} is a repre-

sentative set of essential extensions of A.

1.9 Lemma: Let f: Al—>Q be an injective extension of A
and define S(f) ={X<Q: Imf <gX} . Then for each M € S(f),

M is injective if and only if M is maximal in S(f).

Proof: If M is injective, then M has no proper essential
extensions by 1.8 and 1.3. Take X€S(f), M<X. Then the
composition AKMLX is essential and so by 1.5, ML gX.
Therefore the natural embedding M<X is an isomorphism and
M= X,

If M is maximal in S(f), we show that M has no
proper essential extensions and hence is a retract of the
injective algebra Q. For if g: Mi——>B is essential, there
exists a}(mono)morphism h: Br—>Q such that bg = j: M<£Q.
But then MgEImh < Q and since A <M we have A<EImh by
1.3 and Imh € S(f). By thé maximality of M in S(f), M = Imh

and therefore g is an isomorphism.

1.10. THEOREM: If an algebra has an injective extension,

then it also has an essential injective extension.

Proof: If f: AF—>Q is an injective extension, then S(f)
as defined above in 1.9 is easily seen to be inductive since
the subalgebra lattice of any (universal) algebra is an

algebraic closure system.
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1.11, DEFINITION: An injective hull of an algebra A (in K)

is an essential injective extension.
1.12. Corollary: An algebra has an injective hull iff it
has an injective extension.

We close this section with the following categorical
result.
1.13. THEOREM: Any two injective hulls of an algebra A
are isomorphic over A.

Proof: (24, p.ss8).

2. Equational Classes with Enough Injectives

By 1.3, every equational class has at least one (up
to isomorphism) injective algebra, the singleton. Indeed
for some eQuational classes, these are the only injectives
(e.g. Groups and Lattices;]id]). Other equational classes,
Abelian grOups [1] apd Boolean Algebras [2§] ,, have the

following more interesting property.

l.14., DEFINITION: An équational class is said to have
enough injectives if every algébra in the class has an

injective extension (in the class).

This definition is purely categorical and by [Lal
and l.12 we see that it is equivalent to the stronger
categorical statement that every algebra has an injective.

hull. Let us note however that the two cases mentioned so



far are not exhaustive in that there exists equational
classes (e.g. Heyting algebras [6]) that have some (non-
trivial) injectives but not enoﬁgh. The following results

are in Banaschewski [8].

1.15. TIHEOREM: If an equational class K has enough

injectives then for A€ X, T.F.A.E.:

(1) A is injective in K
(2) A is an absolute subretract in X
(3) A has no proper essential extensions

in K

~

l.16. IHEQREM: If an equational class X has enough

injectives, then for any extension f: A+—>B in X, T.F.A.E.:

(IH) B is injective and f is essential (i.e.
injective‘hull)

(ME) £ is essential and for any g: Bi——>C, if gf
is essentiél, g is an isomorphism (i.e. B is a maximal
essential extension)

(rQ) B is injective and for g: AWQ——f>Q, h: QF—>B,
if hg = £ and Q is injective, h is an isomorphism (i.e. B

is a minimal injective extension).

In [8], Banaschewski interpreted his categorical

results from [7] to provide the following result.

1.,17. THEOREM: An equational class K has enough injectives
if and only if every algebra in K has a representative set
of essential extensions and in 5,‘qﬁé éa%égory, pushouts

preserve monomorphisms.



8

Because every morphism in an eqﬁational class can
be factored through its image, the pushout criterium in

this theorem is equivalent to the following two conditions:

1.18. DEFINITION: An equational class K satisfies the
(weak) amalgamation property iff (AP): given monomorphisms
in K £;: A—>B, (i = 1,2), there exists an algebra C in K

~ .

and monomorphisms g;: Bj———>C (i = 1,2) such that

1.19. DEFINITION: An equational class K satisfies the
congruence restriction property if (CRP): for all A<Be<K,
the restriction mapping © ——> 6|A of @(B) into @(4) is

surjective.

If 'K satisfies (CRP) and A<B<€K, then every
congruence 0 € @A) equals Y]|A for some congruence Y€ ©(B).
In particular then © =<blA where ¢>is the smallest congruence .
on B containing ©. 1If a,be4, and 6,(a,b) is the smallest
congruence on A containing the pair (a,b), we must have
that ©,(a,b) = GB(a,b)]A. While we know of no counterexample
at present it seems that for a given pair of algebras AL B,
the fact that ©,(a,b) = GB(a,b),A for all a,b< A should not
necessarily imply that every congruence on A is the restriction
of some congrueﬁce on B. Quantifying over an equational

class however does give us the following:
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1,20, THEOREM: If K is an equational class, then T.F.A.E.:

(1) K satisfies (CRP)

(2) K satisfies the principal congruence restriction
property (PCRP): For all A<B<K and all a,b<4,
0,(a,b) = eB(a,b)lA.

Proof: Aséume'llg satisfies (PCRP) and consider A<Be 5
and £: A—» C with Ker £ = { (x,3): £'(x) = £(y)} e ©(4).

Define:

E ={(X,g): A<X<B and g: X—>C such that gll= f}
We give E the usual partial order by:

(X,g)< (Y,h) iff X <Y and h|¥ = g

(E,< ) is clearly inductive so we may take (M,g) maximal

in (E,< ). ‘Note that Ker gIA = Ker f.
We define P ={ 0 € @(B): 6|M € Ker g}
We need the following properties of P and (M,8 )

(a) ©6¢P implies M = [M]e where [J]© =={ be B: there exists
meM such that (m,b)e 6}

Clearly [M]e is a subalgebra of B and M< [Me.
Also by Gratzer [19] , we may define h: Mle—>cC extending
g. Therefore ([M]6, h) E and by the maximality of (M,g),
we nmust have [M:le =Mand h = g.

Ay et e ol . . -

(b) P is directed:

Take ©, Y« P and (a,b) € (6 vy) M, Therefore there

exists a sequence a = X_,Xj,e04,X

n = b in B such that:
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X; © X,q (i even)
X; Y X9 (1 »dd)

Since a e M, X, € [a]9<M by (a) and it follows by easy
finite induction that x; €M for all i = 0,1,2,.,n.

Therefore

(a,p) e (8|M)v (Y| M) < Ker &
and 6vy € P,

(¢) VPeP:
For (VP)|M = U{e|M: eeP} <Ker g.

Therefore CP = \/P is the largest congruéﬁce on B
whose restriction to M is contained in Ker g.

But if (a,b) € Ker g, then SM(a,b) = GB(a,b),M < Ker g
by (PCRP): Therefore 6p(a,b) € P and hence 85(a,b)< P.
Therefore CfD[M = Ker g and Cb]A = Ker glA = Ker f. The

converse is trivial.

1.21. Corollary: X satisfies (CRP) iff for all BeX for
all a,b,c,d.eB,eA(a,b) = GB(a,b)lA where 4 = <a,b,c,d> ,
the subalgebra generated by {a,b,c,d}.

Proof: The condition is clearly necessary by our theorem.
Conversely take ASB€K, a,beA and (c,d) «05(a,b)|A.

Then for C = <a,b,c,d> A B, we have

(c,d)e€ op(a,b)|C<0,(a,b).
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While there exists a formulation of this last
>corollafy in terms of the free algebras of an équational~
class, the formulation does not seem to lead to a>"Mal'cev
Type Condition", that is an equivalent condition concerning
identities'Satisfied by the equational class.

We conclude this section with the'following lemma.

‘1.22. Lemma: Let K satisfy (CRP) and let f: AF—>B
and g: Bi—>C be monomorphisms in K then gf is essential

iff both f and g are essential.

Proof: By 1.5, we need only show that if gf is essential,
then f is»eséential. Therefore let h: B—> D be such that
hf is a monomorphism. Without loss of generality we may
assume h is surjective. By (CRP), there exists a congruence
®on C such that ¢le = Ker h. If x: E—»t/p is the
canonical homomorphism and j: le———erﬁﬁp is the natural
map such thaf jh = Xg we have Jjhf = xgf a mohomorphism.
By assumption, gf is essential and so K is a monomorphism

and hence also h,.

3, Injectivity and Subdirectly Irreducible Algebras

Since every equational class K is determined
uniquely by KSI’ its class of subdirectly irreducible algebras,
it would be of interest if‘one could relate injectivity
to the subdirectly irreducibles. To obtain such a relation,

we need the following lemma from [14] .



12

1.23. Lemma: Every essential extension of a subdirectly

‘irreducible-algebra is agaih subdirectly irreducible.

Proof: Without loss of generality assume S:sET and that
'S is subdiréctly irreducible. Let (€3i=_i€ I) be a family
of congruences on T whose meet (= intersection) iSAAT. Then

Qx(eils> - (QIei>|s = Agls = Ag

Since S is subdirectly irreducible, @ilS = AS for some

ieI and since ST, O, = Ap for this i,

Therefore if an equational class K has enough
injectives, the ihjective hull of every subdirectly irreducible
is again subdirectly irreducible and in this sense there
will be "enough injective subdirectly irreducibles". Con-
versely, since every algebra in K is a subdirect product
of algebras in Kgy, if every Se Kqg; has an extension
T<E§SI which is injective in X, X will have enough injectives.
This gives us the following and perhaps more applicable

characterization theoren.

l.24, THEOREM: An equational class has enough injectives
if and only if it has enough injective subdirectly

irreducible algebras.

In particular cases when we know already the sub-
directly irreducible algebras of an equational class, we
have a viable procedure to demonstrate enough injectives.

This method is essentially used in [4] and [1Q] and can
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even'be applied to Abelian groups by using the character-
ization of the Subdirectly irreducible Abélian groups
found in Piérce [27] .

. Before proceeding with an immediate application of
this approach, we must describe an interesting pathbiog&
that’will occur if our equationél ¢lass under consideration
does not have any nullary operations defined in its type

(i.e. if T= ( N D X\;j> o for all i e I). If K is such

iel?
a class and has enough injectives, we note immediately that
the empty map f: gv——>{x} 1is essential ahd that the
singleton is the injective hull of & . If Q is a non-
trivial injective in K then there exists a morphism

{x} —> Q extending the empty map & < Q. Therefore
every injective algebra in K has a one element subalgebra.

This pathology becomes rather lucid when we consider

K to be the equational class of "Boolean algebras" considered
as algebras of type (2,2,1) with operations join, meet and
complementation (To the usual distributive lattice equations,
add the De Morgan laws for complementation and the equation

xvx' = yvy'). Now K differs from B, the equational

B
class of "real" Boolean algebras (where we consider 0,1 or
both as defined nullafy operations) only in that it
contains ﬁfas an algebra. However K has only trivial
injectives (1!!) since every inaective must contain a one-
element subalgebra.  ' - |

To avoid this pathology we consider’the following

condition.
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1.25, DEFINITION: An algebra A, will be called

g-regular if & <A implies A has a one element subalgebra.

1.26. THEOREM: Leﬁ K be an (equationally complete)

equational class which contains up to isomorphism only
one subdirectly irreducible algebra S. Moreover assume
that S is finite. Then X has enough injectives if and

only if K satisfies (CRP) and S is ¢ -regular.

Proof: BSince 8§ is the only subdirectly irreducible in %,
S has no proper essential extensions in K and must be at
least an‘absolute subretract in K. Since X = SP(S), it
will be enough to show s is injective. ©Since any non-
trivial subalgebra of 5 must have a non-trivial subdirect
representation by S and since S is finite, S can have at
most only trivial proper subalgebras. Therefore to show
S is injective, we need only consider thé‘case where

## A £Band f: A—>S as S is #Z-regular. Since K
satisfies (CRP) there exists a congruence © on B with
eiA = Ker f and a canonical g: S+——>B/O such that gf = Xe A,
But then there exists h: B/6—5 such that hg = lg and

hence h°Xe A = hgf = £ and S is injective.

Using this approach Mrs. E. Nelson has shown:

1.27 Corollary: Every equationally complete equational

subclass of semi-groups has enough injectives.
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Since every equational class with enough injectives
must necessarily satisfy (CRP), we close this section with
some necessary conditions for an equational class to satisfy

(CRP). These will be used in Chapter 3.

1.28, THEOREM: Let K be an equational class satisfying
(CRP). Then | |

(1) Evéry large subalgebra of a subdirectly irreducible
is again subdirectly irreducible.

(2) ij S‘egsj: and a,b € S such that es(a,b) = CPS,
the least non-trivial congruence on S, then for
all subalgebras <a,b) ‘}é <8, X éES and hence by

(1),X is subdirectly irreducible.

Proof: Take S €T €Kg; and let (©;: i «I) be a family of
congruences on S whose meet is ‘AS° Since X satisfies (CRP),
there exists W, € ©(T) such that .|S = @; for each

i €I and we have:

(MY ypls = e, - bg

iel jer t |
Since SéET, Q\\Jl - A‘I‘ and therefore \\Ji = AT for some

ieI. But then O = AS for this i. -

The second statement follows from 1.22 and the

above since clearly <a,bd> KgS.



CHAPTER 2

CONGRUENCE DISTRIBUTIVE EQUATIONAL CLASSES

l. Existence Theorems

While completely algebraic conditions may not be
possible to ensure enough injectives in an arbitrary equa-
tional class, the fundamental results of Jénsson, [22],

gives us some hope if we impose a further condition.

2.1l DEFINITION: An equational class is called congruence

distributive if the congruence lattice of every algebra in

the class is distributive.

2.2. DEFINITION: An algebra S is called self-injective if
it is @ ;regular and any homomorphism from a subalgebra of

S into S extends to an endomorphism of S.

Clearly if S is inJective in some equational class,
S will be self-injective but in general, self-injectivity
is independent of equational class considerations. J®nsson's
Lemma ([22] or D.é] , D.244) allows us to 'f’ormulate our

main existence theorem.

2.3. THEOREM: Let K be a congruence distributive equational
subclass of an equational class g. Assumé further that

K = SP(S) where S is a finite subdirectly irreducible

16
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algebra whose non-empty subalgebras are either injective
in L or subdirectly irreducible. Then X has enough

injectives if and only if S is self-injective.

Proof: By the previous remarks, the condition is clearly
necessary as S can have no essehtial extensions in K.
Assume then that S is self-injective. Since X = SP(8),
it will be sufficient to show S is injective. Again since
K = SP(S) and also since S is @-regular, we may show

this by finding extensions of homomorphismsvin diagrams

of the form

where A £ @.

Let B = Imf g S. If Bis injective in L, B is
alsé’injective in X and we are done. If B is subdirectly
irreducible; by Jénssons Lemma, there exists an ultra
filter U on I such that SUIA < Ker f where (x,y) ¢ eU iff
E(x,y) ={ieI: x; = y;3 € U. Since § is finite,

SI/GU is isomorphic to S and hence there exists a homo-
ﬁorphism K: 8=——=» S with Ker k = 6,,. By letting
A' = k[A] € 5 and k': A—>> A" be k|A we obtain the

following communative diagram:
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AR J > gt
, \\\:;' \\kg
-fl o L 3 ' ;S
s«

where f' is the canonical map determined by the fact that
Ker k' = GUIA < Ker f.
Since S is self injective, there exists an endo-

morphism g of S such that gIA"a f' and therefore
(gk)|A = gkj = gj'k' = £'k' =f
and S is injective.

2.4. DEFINITION: Let R(p™) be the equational class of
(communative) rings with unit generated by the Galois field

of order pk, GF(pk) (p prime and k3 1).

2.5. Corollary: For every prime p, and natural number

k21, B(pk) has enough injectives.

Proof: By [29], g(pk) is congruence distributive and
B(pk) = _S__IE(GF(pk))'. By (31, p.117), the-subrings of
GF(pk) are exactly the Galois fields GF(p?) for n|k.
Moreover for each n‘k, there is a unique embedding

g GF(P™) < GF(pk) which extends to the identity on

GF(p¥). Therefore GF(p¥) is self-injective.
f

This corollary has also been obtained by Banaschewski
(unpublishéd) by ring theoretical methods. Further

applications will appear in Chapter 3. Our next result is
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really a corollary also but its importance warrants the

more prestigous title of theorem.

2.6. THEOREM: Every equationally complete, congruence
distributive equational class that contains a non-trivial

@-regular finite algebra has enough injectives.

Proof: If K is such an equational class, theﬁ K contains
a finite @-regular subdirectly irreducible algebra, S, as
a homomorphic image of the given finite algébra. .Since 5
is equationally complete, S is generic for X and in fact
by [22), S is up to isomorphism the only subdirectly
irreducible algebra in K. It follows easily as in the
proof of 1.26 that S has at most trivial subalgebras. S
is clearly self-injective and since K = §_I2(S); K has

enough injectives by 2.3.

2.7. Corollary: The following equational classes have

enough injectives:

(1) Distributive lattices ([2] anda [1Q])
(2) Boolean Algebras ([20] )
(3) R(p) (Banaschewski)

The connection between this theorem and 1.26 is

given by the following lemma.

2.8. Lemma: Let 5 be a congruence distributive eQuational

class which contains (up to isomorphism) only finitely many

subdirectly irreducible algebras {81’82""’Sn} all of
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which are finite. Then X satisfies (CRP) iff for all
i =1,...,n, the classes HS (S;) satisfy (CRP).

The proof is analogous to that of 2.3 in that we
need only show that for AsBeg, every completely - me‘et -
irreducible congruence on A is the restriction of a con-
gruence on B. We obtain this by applying Jonsson's Lemma
to the diagram

1,n 13

€ Bi——> T ] 8,

I v i l
8

J
which reduces the problem to the stated condition as any
ultra product 6f a finite family of finite algebras is
isomorphic to one of the algebras.

If two equational classes of the same type have
enough injectives, can we say the same for their join? In
general the answer is no for in the équatibnal class
g(p2)~vg(p3}, GF(p) has two distinct maximal essential
extensions GF(pa) and GF(pB) hence there are not enough
(in fact none) injective subdirectly irreducibles. We now

derive a condition that assures us of a positive answer.

2.9, DEFINITION: Let A be an equational subclass of an

equational class B. The natural reflection of B into 4

is the functor R: B——> 4 defined by:
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(i) R(B) = B/p(B) where .f(B) =
/e ¢ @(B): B/6¢ A} |
(ii) For u: B—>C, R(u): R(B)~—— R(C) is the

canonical morphism that makes the following diagram commute

where pB is the canonical morphism B—— B/ p (B).

R is actually the left adjoint to the natural inclusion
functor J: A —> B. The natural transformation

pP= (fB)Be=B: Ig——>JR is the front adjunction and also

is sometimes called the reflection.

2.10. Lemma: Let A<¢B be equational classes. If the
natural reflection R: B—— A presenwmsmonomorphisms, then
every essential extension of an algebra Ae¢ A in B is also
in A. Moreover every injective algebra in 4 is injective

in

[dv <

Proof: Without loss of generality let Ae¢ 4 and A éEB<=§.

By applying R we see that the following‘diagram commutes

__é. [ ——
ph =1, L P
R(J)
(A)n———-—-——+ R(B)

Since R(j) is a monomorphism, pBed = R(J) is a monomorphism.

But j is essential hence ‘9B is an isomorphism and Bfig.
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The second claim is a consequence of ([26], p.1%6)

(see also [E]) since R preserves monomorphisms.

2.11. Lemma: If'%s~§ are equational classes that satisfy
(CRP), and if for all A< 4, every essential extension of
A in B is in A, then the natural reflection R: B—— 4

preserves monomorphisms.

Proof: Consider the diagram

J
A vooo—s B

N

R(4)

with j the natural embedding. Sincekg satisfies (CRP),

the set M = { 6 e ©(B): olA = KerfAE is non-empty and is
therefore inductive. If ¢ is maximal in M, the canonical
map f: R(A)+———>B/y 1is essential and then by assumption
B/y € A. Therefore Ker pB = p(B)< Y and if g is the
canonical map g: R(B)—» BAp we havé geR(J) = £

whence R(j) is a monomorphism.

2.12, THEOREM: Let K, and 52 be equational classes of the

1
same type,'each containing only finitely many subdirectly
irreducible algebras, all of which are finite. Assume

further that K = K,v K, is congruence distributive and

that the natural reflections R;: K,—— L = K, N K, (1 = 1,2)
preserve monomorphisms. Then if 51 and 52 have enough

injectives, so does K.
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Proof: Since K is congruence distributive, the sub-
directly irreducible algebras in K are exactly those in
K, or K5« By 2.8, it follows that K satisfies (CR?)
since both 51 and gé do. If the natural reflections

Si: g———e—Ki preserve monomorphisms, then the subdirectly

irreducibles that are injective in 5i (i = 1,2) are also
injective in X by 2.10 and K will have enough injectives.
Therefore take A e 51 and A’QEB € K. For every completely -
 meet-irreducib1e congruence © on A, we can}select a
maximal member © e M(8) = {fwe@B): wih =03,
Therefore the canonical map fg: A/O0——>B/® is essential.
But by 1.23, B/P is then subdirectly irreducible hence ©

is completely - meet - irreducible. Moreover
{\{8: 6 comp - meet - irreducible on A} | A= AW

and since AQ«EB,« this meet must be Ag. Therefore B ¢ 1,51,

iff B/ € K, for all of these §'s. But if S ¢ K, is

1
subdirectly irreducible and S 3T € K5, we have Sek, N K, = L

~

and since R5: Ks—> 1 preserves monomorphisms, TelLck

by 2.10. Therefore by 2.11, S g——~—%>5i preserves mono-

l:
morphisms. By symmetry, 82: g-—~——9§é also preserves

monomorphisms and therefore % has enough injectives by 1.24.

2.13. Corollary: If Pyse+esyP, aTE distinct‘prime numbers,

then . 1 ,

n
kg
i B( Py )

has enough injectives for every choice of kl,...,kn € N,
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Proof: If Py # Pss %(pl )N a) §(p22) =‘$,vthe equational
class of trivial rings. Therefore the natural reflections
k. .
Ri: B(pil)~———9-2 trivially perserve monomorphisms. The

result then follows easily by induction.

This corollary was proved by Banaschewski (unpublished)
by ring-theoretical methods. - Other applications appear

in Chapter 3.

2. The Injectives in Eguationally Complete Equational

Classes.

Throughout this section,’g will be an equétionally
complete, congruence distributive equational class that
contains a non—trivial & ~-regular finite algebra. By 2.6,
we know that} K = §_13(S) where S is the only (up to i somor-
phism) subdirectly irreducible algebra in ;. Moreover S
is finite and has at most trivial subalgebras. It is also
clear that S is simple. We wish to describe the injectives
in X that exist by 2.6.

Let T be the subset of all s € S that are not images
of nullary operations of <T, the type of &; If 2 ¢ |S~T},
the cardinality of S~T, then S has no subalgebras and in
fact S will be the g—free algebra on @ generators. Moreover,
the only endomorphism of S will be lg, the identity
homomorphism. If leT‘é l, we define an algebra S® of type

To =T U( Aﬂ)’sé'l‘ (without loss of generality T and the
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domain of T are disjoint) where A, = O for all seT by
adding to the original operations on.S the nullary operations
£,(8) = & for all seT. If E° is the equational class of
type To generated by S°, then it is cleér.that §° is
equationally complete, congruence distributive, and that

K° = _S___}E’_(S°). By 2.6, K° has enough inje»ctyive‘s. In order
to find the connéction between the injectives in K and K°

we require the following unpublished result of S. Comer

and B. Jénsson.

2414. Lemma: Let S be a simple algebra and suppose that
K = HSP(S)is a congruence distributive. Then for every
set I, évery congruence relation on SI is'induced by a |
filter on I. (i.e. every © € @(SI) is of fhé form © = Op

for some filter F on I).

2.15. THEOREM: The injective algebras in K° are exactly
the injectives in 5 with the extra nullary operations

suitably defined.

Proof: Every non-trivial injective in K° is a To-retract
of some power of S° since §° = SP(S°). By forgetting the
added constants, this algebra will become a T -retract of
the samé power of 8 and so will be injective in K.
Conversely if Q is a non-trivial injective in K,
then Q is a retract of a power of S and so there exists a

T ~-homomorphism f: SL—-——abQ. If &a: SH;“~€>SI

is the
embedding of S into the constant maps I——>8, we have

f«a is a monomorphism since Ker f is induced;by a filter



26

F on I and E( A(s), a(t)) = @ for s # t. Therefore f
defines a To,-homomorphism f,: (S°)l~————%»-Q° where
Q° is the algebra Q with the added constants <'F°A(s>)sefr'
That Q° is injective in K° may be found in 27, p.109.

Without loss of generality we will assume for the

_remainder of this section that S has no pfoper subalgebras.
As remarked before, this implies that S is the K-free

algebra on P generators and has only one endomorphism_ls.

2.16. DEFINITION: S: B-—>K, where B is the equational

class of Boolean algebras (defined with nullary operations)

is the functor given by:

(i) For B € B, S(B) is the Boolean extension of

S(eX) by B (see [I7 or [18).

(1i) For f: B—> C, 5(f): S(B)—> 5(C) is
- defined by the mapping' & by foo
* Since f is a Boolean homomorphism, fea
is a disjoint S-cover of C whenever « is a
disjoint Secover of B and S(f) is a homo-

morphism in g.

That S is a functor is implicit in [1§].

2.17. DEFINITION: T: K———> B is the functor defined by:

(1) For A € K, T(A) is the field of subsets of K(4,8),
the set of all (surjective) homomorphisms of A
into S, generated by the subsets

X,(a,F) = { £f: A——>5: £(a) € P} (ac4, Fes).
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(ii) For g: A——>B, T(g): T(A) —> T(B) is deter-
minéd by the restriction to T(A) of the map '
g*: P(K(4,8)) ——> P(X(B,S)), the power sets
of X(A,8) (resp K(B,5)), that takes
X +—> {f: fog e X3. It follows easily that
T(g)(X,(a,F)) = Xz(g(a),F).

Note that g(A,S)\XA(a‘,F) = XA(a,S\F) and so
the set of generators for TA is closed under complementation.
We will write XA(a,s) instead of XA(a, {S}). Also since

S is injective in X, T preserves monomorphisms.

2.18. DEFINITION: For each A € X, mA: A—>3STA is the

homomorphism defined by mnA(a): §———> T(A),
fy{A(a)(s) = XA(a,s).

Clearly fr\A(a) € S(TA) for each a & A and nh is
a homomorphism. Moreover, since K(A,S) separates the points

of A, ‘VLA is a monomorphism for each A € K.

2.19. Lemma: For each B € B, the function €B: TSB—>B

defined on the generators by XSB(“ JF) —— g\/I“"Q(S»)
_ _ i
(=€ 3B, F €8) is a surjective Boolean homomorphism of

TSB onto B.

Proof; nTake «; € SBand F; € §, i = 1,...,n such that

b

c = /\ \/F o(i(s)> 0O and take f: B——>>2 such that
1 Se

f(e) = 1. Then for Sf: SB—— S(2) we have

S(£)(Xy) = fo Xt E—>B—>2 (i =1,2,00.,10)



28

Now for each i = 1,2,...,n, ¢ < \v/ :xi(s) and therefore
.BeF,
i

there exists an s; € Fi such that f(cKi(si)) = 1.

Therefore S(f)(c&i) is the element of S(2) associated

under the natural isomorphism, 0, of S(2) and S with

S5 € Fi. But then

l,n
G—°S(f) € O XSB(O“i’Fi)
- 1l,n
Therefore (%\ XSB(o<i,Fi) = @ implies
l,n ' * _
eB (XSB(o<i,Fi)) = 0 and €B is a well defined
i

Boolean homomorphism.
Since S contains at least two distinct elements

s # t, we may define for each b & B; Xy € S(B) by:

b X = 8
O<b(x) = b! X =t
0 otherwise

Then EB(XSB( »8)) = o (8) =band €B is surjective.

T

2.20. THEOREM: The functors K5 B are adjoint

covariant functors with front adjunction

n= (M&), ¢ K IK————->ST and back adjunction

B.

~

€= (€B)g op: T8—I

Proof: We need only show that the following four diagrams

are always communative in their respective categories.



£ TSg
‘ TSB > TSC

| B 7
nA I o l e B l - l €C
STf g

STA ——————> STB > C
(a) ; (v)
| g
A > SB TA : > B
I T S( €B) *I‘(»%A)I T £B
TSg :
STA ——————~—¢-STSB TSTA - ~> TSB

(e) (a)

Re (a): (ST « mA)(a) = STE(mA(a)) = Tf e ma(a) (a e A).

Therefore for all s € S

(STf e mAd(a)(s) = (Tf °'Y\,A(a))(s) = (X, (a,s))

Xg(f(a),s) = (MB =£)(a)(s)

Re (¢): For all a € A and all s € S:

[}

(8( £B = Tf)(mA(a)))(s)
( €EBeTf omA(a))(s)

eB(xB(f(a),s))
£(a)(s)

(S €£BeSTf sma)(a)(s)

[}

The remaining two are done similarly.

2.21. Lemma: €: 8 —> I is a natural equivalence.
— B
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Proof: Siﬁce every Boolean algebra is a‘subalgebré of a
power set algebra P(I) for some set I, it is’suffieient to
- show €P(I) is‘an isomorphism for each set I and then
apply diagram (b). Now by [18], p.l47, there is a canonical
isomorphism f:.SLk————»'S(P(I)) given by
f(x): 8 —— E(ex 4a(s)) =L 1€I: ox(i) = s¥. There-
| 1. If eP(I)

fore we need only show that T(S") +————s TS(P(I)) — > P(I)
is a monomorphism.

Since S has only one endomorphism, lS’ every homo-

I

ﬁorphism u: ST————» S is determined uniquely by an

ultrafilter U, on I by 2.14. This is given by:
a(e ) = s iff E(«, 8(s)) € Uy
Therefore

(&P(I) o PEX(X 1,( e, F)) = \_J £(x)(s)
S SefF A '

= U E(o(, A(S))

S eF

and
1l,n

' X X, ,F.
Q si( 3F3) A A
iff there exists an ultrafilter U on I such that

l,n
m \_J K iy A(s)) €U
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iff

I

P el

) X3 A(sD £ 2

8Bel .
J

D

Therefore by [29], &eP(I)e Tf is an isomorphism.

2.22, Corollary: S is a full and faithful functor (i.e.

the correspondence QKB,C) ——> K(SB,SC) is a bijection).

2.23%., Corollary: 4\51 is an isomorphism for each set I.

Consider f: Shh— S(P(I)) in diagram (c).

2.24, Corollary: For every A € HP(S), mA is an

isomorphism.

Proof: For g: Sl—————e>A, by diagram (a), mA -g = STg orn§I
which is surjective as STg and 4\§I are. Therefore ™A

is also surjective.

2.25. THEOREM: The injective algebras in K = SP(S) are
exactly (up to isomorphism) the Boolean extensions of S

by complete Boolean algebras.

Proof: Since T preserves monomorphisms, S preserves
injectives (see Eﬂ). Conversely if Q is a non-trivial

injective in K, Q is a retract of some power of S say

Q H—rm——> SI-———~“——69Q with gf = lQ, By eapplying T,
Tf T Tg ‘
~we have TQ#———3 T(8") ————> TQ as a retract. But

T(SI) 2 TS(P(I)) & P(I) is a complete Boolean algebra.

Therefore TQ is a complete Boolean algebra and since

Q € HP (S), we have by 2.24, Q,u—-&) S(1Q).
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2.26. Corollary: The finite injective algebras in K are
exactly the finite powers of S.-

For S(B) is finite iff B is finite.

2.27. Corollary: mMmA is essential for each A € K.
Proof: If f: Av¥——> SB is a injective hull of A, we have

by diagram (c), S(€B) e STf emA = £ is essential. There-
fore mA is essential by 1.22.

£
2.28. Lemma: For each A € X and each B €B, Av——— 5B
_ _ Tf €B
is an injective hull of A in K iff TAW—> TSB vw—» B

is an injective hull of TA in B.

Proof: If B is injective in B, then SB is injective in

K by 2.25. Conversely, if SB is injective inlg then again
by 2.25, SB ¥ SC for some injective Boolean algebra C.

But by 2.21, we have B & TSB Z TSC 2 C and so B is also
injective. Therefqre since EB'is an isomorphism we need
only show that f is essential iff‘Tf is essential.

Take u: B—»C such that u ¢ €B o Tf is a mono-
morphism. By applying S, we have that S(u o gBeTf)e mA =
Sue f is a monomorphism. If f is essential, then Su is a
monomorphism hence so is u as a full and faithful functor
reflects monomorphisms.

Take g: SB———» C such that g f is a monomorphism.,
Since T preserves monomorphisms, Tg e Tf = T(geo f) is a
monomorphism. If Tf is essential, Tg is a monomorphism and

therefore g = S( €Be¢ Tg) eMSB is also a monomorphism.
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2.29. Corollary: The injective hull of each A € K is
nA Sf -
given by AW————> STA ———> SB where f: TAv+—>B

is the MacNeille completion of TA.

For by [9], the injective hull of a Boolean algebra

is its MacNéille completion.

2.30. Corollary: The injective hulls of an alggbra A e g

are unique up to unique isomorphism over 4.

For S is full and faithful and therefore any
isomorphism of injective hulls SB and SC bf A over A are
images under S of an isomorphism of the injective hulls

B and C of TA and there is only one such here by M.



CHAPTER 3

EQUATIONAL SUBCLASSES WITH ENOUGH INJECTIVES

1. Lattices

As has been noted already, the equational classes
of groups,vlattices, and Heyting algebras dé not have
enough injectives. However each does have an equational
subclass that does, viz: Abelian groups, distributive
lattices and Boolean Algebras respectively. The natural
question then arises whether one can deséribe all equational
subclasses of a given equational class that have enough
injectives. In this section we answer this question for
lattices, using Banaschewski's theorem 1.17, to simplify

the original answervin 04 .

3.1, Lemma: A lattice is subdirectly irreducible iff it

is an essential extension of a two element chain.

Proof: By 1.23, the condition is sufficient as any two
element chain is a subdirectly irreducible lattice.
Conversely, let S be a subdirectly irreducible lattice with
least non-trivial congruence cps. Then thefe exists a

u < v in S such that‘es(u,v) = CPS and clearly

u, W <5, |

34
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3.2. THEOREM: Let K be an equational class of lattices.
Then T.F.A.E.:

(1) X has a non-trivial injective

(2) K has enough injectives

(3) K = D, the equational class of distri-

butive lattices.

Proof: (1) =»(2): 1If Q is a non-trivial injective in X,
then Q contains a two element chain and therefore the two
element chain 2(= 0<1l) has an’injective extension. But
then the injective hull of 2 exists and must contain up
to isomorphism all subdirectly irreducibles in K by 3.1.
Therefore K has enough (namely one) injeqtive subdirectly
irreducibles and (2) follows from 1.24, |

(2) = (3): If X # D, then K contains either MB’
the modular five element lattice, or N5, the}non-modular
five-element lattice. But both these subdirectly irreducibles
contain non subdirectly irreducible large sublattices and
therefore K does not satisfy (CRP) by 1.28. Therefore X
does not have enough injectives.

(3)=> (1): 2 is a non-trivial injective in D.

2. Heyting Algebras

A Heyting aigebra is a bounded relatively pseudo-
complemented lattice considered as a universal algebra of

type (2,2,2,0,0) with operations ( V, A, = ,0,1) where
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a — b is the relative pseudo-complement of a in b

(x ¢ a—>b iff a Ax < b). H, the class of all Heyting
algebras, is equational and the basic results may be found
in [28) under the alias of pseudo-Boolean algebras. Of

prime importance in our considerations is the following

result. ([28 , p.63-65).

3.3, THEOREM: For every A € H, the correspondence
e P———é[Ile is a iattice isomorphism between the congruence

lattice ®(A) and F(A), the lattice of all filters on A.

‘3.4, Corollary 1: A €H is subdirectly irreducible iff

1l is completely-join-irreducible.

For A €Hg iff Fo = ( WEMA) ~ {{13} ) isa
proper filter. But then F, = { 43,1} where =&, = \v/(A ~$13).

3.5.  Corollary 2: H satisfies (CRP).

For if A € B and F «F(A), then
G={beB: JaeF +3- asby € F(B) and AN G = F.

3.6. Corollary 3: For A £ B in %, T.F.A.E.:

(1) A <,B
(2) For all F e F(B) (F N4 = {1} implies
F = {13)
(3) For all b € B, b < 1 implies there exists

an a € A with b a < 1.
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For (2) is just the restatement of (1) in terms

of filters and (3) is just the contrapositive of (2).

3.7. Lemma: A eéH ¢p iff A = 2, the two element Boolean
algebra, or A is an essential extension of 3, the three

element chain O0< £ <],

Proof: If A is a non-Boolean subdirectly irreducible, then
JA = \/ZA-\ §13) > O and the monomorphism f: 3%+——> A

by 0+-=>0, L2 and 1 —> 1 is an essential Heyting

homomorphism by 3.6. The converse follows from 1.23, as

% is clearly subdirectly irreducible.

This lemma is analogous to 3.1 and so we obtain

the follbwing theorem for Heyting algebras.

5.8, THEOREM: Let K be an equational subclass of H
distinct from B, the Boolean algebras (a —> b = a'wv b).

Then T.F.A,E.:

(1) K contains a non-Boolean injective algebra
(2)
(3)

has enough injectives

¥R R

= SP(H) for some non-Boolean H ¢ Hep

and H is injective in K.

The'proof is entirely analogous to that of 3.2
where H will be the injective hull of 3.

We now wish to determine which H € ESI satisfy
condition (3) of.this theorem. Therefore throughout the

remainder of this section we let X = SP(H) be an
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equational class of Heyting algebras distinct from E that
has enough injectives. |
3.9. Lemma: &4, the four element chain O < f < e <1 1is
not in K.

S

Proof: Assume 4 € K and let j: 3 < 4 be the essential

~ embedding (i.e. j(e) = e). Let ju: 3 H be the
essential embedding of 3 into H (i.e. .ﬂb(e) = eq

= \(E~{1})=< 1). Therefore there exists a monomorphism
(j is essentiall) o : 4—>H with dbj = M. We

define inductively for n > o:
My >0 Moy led = oy (£)

Ohe1’ 4y——H with 6h+1‘ J = Mol

Let e, = ,Mn(e), n >o. Then since all o, are monomorphisns

ens1 = Mpipfe) = () < ou(e) = fgle)
= Hyle) = ey
Moreover
e, e, = Gh(e-+ £) = ci(f)>= CIRE

Therefore H contains all finite chains as sub-
algebras and since K is equational, X contains all chains.
In particular 5 contains all successor ordinals considered
as Heyting algebras in their natural partiél order and
therefore g has a proper class of non-isomorphic essential

extensions of 3, a contradiction on 1.17.
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For every Boolean algebra B(= (B,(v,A,',0,e))),
we let B be the set B u £1} (1 & B) with the partial order
Xx €yiff y=1o0or x £y in B, It is clear that B1 is a

lattice and in fact a Heyting algebra where:

1 s, X<y
X —>Y = y y x =1

x'v y, otherwise

In [24 , Lee noted that this lattice is a distributive
pseudo-complement lattice but both these observations are

Just speciél cases of the notion of star sums defined

in [6] .

3.10. DEFINITION: For each n > o, A_ = P(n)', where
P(n) is a power set Boolean algebra on an n-element set
(Note: A_€ 2 and A, & 3),

0 1
3.,11. Lemma: H = An for some natural number n = o.

Proof: By 3.9, 4 ¢ K and since k = SP(H), this is
equivalent to 4 ¢ H. Therefore H has only two dense
elements {eH,l} . Since x Leyfor all x € H~ 1%, we

have for all x # o, &gy 1:
* = * % *
X VvX ey = x** v x*

where x* = x —> 0. ©Since every Heyting algebra is a.

distributive lattice, we have x = x** for all x # e and
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therefore [p,eﬁg is a Boolean algebra under the restricted
partial order and H = [o,eg] 1, |

Now if [o,ey] is infinite, K contains all A, nzo
and therefore all Bl,'for B € B. But this would give a
proper ¢class of non-isomorphic essential extensions of 3,
contradicting 1.17. ‘

If_gn is the equational subclass of H generated by
An, we see that én = §§3(An)‘as every préper homomorphic
image of an Ak is a Boolean algebra. Moreover all subalgebras

of A are of the form A, , k < n and so 4 satisfies the

conditions of 2.3.

3.12. Lemma: An is self-injective iff n <€ 2.

Proof: It is clear that Al and A2 are self injective. If

n >3, let 81,85,83,+..,8, be the atoms of A . Consider

. l,n
A, as the subalgebra <{o,al,al,e,l} of 4 (e = ;/ a; and

a;* = al) and define f: Ay—— A Dy:
O t—> 0, 8y > ai, ai*——» 8y, € > e and 1l+—>1

If An were self injective, there exists an endomorphism
g: An-—-—-> An extending f.
Since g(e) = f(e) # £(1) = g(1), g is a monomorphism

Since o < a, < a} (32 voag < ai), we must have
o = g(0) < glay) < gla;*) = £(ay*) = a;

which is a contraction on the fact that 8 is an atom.
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Combining these lemmas, we obbtain a cbmplete
characterization of the equational classes of Heyting

algebras with enough injectives.

3,13, THEOREM: The only equational classes of Heyting

algebras with enough injectives are B,

4,, and A,. More-
over every other equational subclass of H has exactly the

injéctive Boolean algebras as its injective algebras.

3. Pseudo-Complemented Lattices

We call a pseudo-complemented latﬁice a *-algebra
when it is considered as a universal algebra of type
(2,2,1,0,0) with operations ( vV, A,*,0,1) (x ¢ a* iff aAx = o).

From Eﬂ, we can infer that P, the class of all *-algebras

)
is indeéd‘an equational class with the Boolean algebras,

B as its only equationally complete subélasé, Lee, [2@ ’
has characterized the lattice of equational classes of
distributive *-algebras where he considers the Heyting
algebras.(An:'n > o) defined in 3.10 only as *~algebras.
When so considered, we will write Bn; n » o to avoid
ambiguity with section 2. Since lemma 3.12 and the remarks

before make no explicit use of the "arrow" operation, we

may conclude immediately:

3.,15. THEOREM: The only equational classes of distributive
*-algebras with enough injectives are B, B, and B,, where

§i a §§f(Bi), the equational subclass of P generated by

Bi’ (i = l’2>.
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In order to extend these results, we require some
more information about the lattice of equational subclasses

of P.

3.16. Lemma: FP(l), the free *-algebra on one generator

is given by the following diagram:

1

X* *\/ x*

xX** X v x*

Cx** A (xvx*)

Proof: The diagram determines a *-algebra with one

generator x and in any *-algebra we have:

x vx* £ (x**A(xvx*)) v x* ¢ xvx*
(x** A (xvx*))* = x* since

X & X**A (xvx*) ¢ x**

Therefore the only identities satisfied in the above

*-algebra are consequences of the defining equations of P.

By the congruences 6(o,x*), ©(x,x**) on FP(1),
we see that Bl and B2~are retracts of FP(1l) and hence are
projective in P. The other non-Boolean subdirectly

irreducible image of FP(1l) is N5 considered as a *-algebra

by the congruence €(xwvx*,1). It is clear that there exists
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largest equational subclasses of F that do not contain
Bl’ B2 and N5 respectively. These are given by the equations
XVvx* =1, x**v x* =1 and x = x**A(xvx*) respectively

and are denoted by EIBl, ng2 respectively EINB.

3,17. Lemma: A *-algebra A is Boolean iff neither Bl‘é,A

nor N5 < A.

Proof: If By 4 A, then A satisfies the equation x v x* = 1.
If A is non-Boolean, there exists an a € A with a < a**,

Therefore a** £ 1 and N. 2 {o,a,a*,a**,1} <€ A.

5
It is clear that y5 and El are covers of B and by
this last lemma, every non-Boolean equational subclass of

P must contain either E5 or By.

5.18. THEOREM: The injectives in P are exactly the

injective Boolean algebras.

Proof: Thé Glivenko-Stone theorem implies that the natural
reflection R: P—>B preserves monomorphisms. By 2.10

then, the injective Boolean algebras are injective in P.

By 3.17, we may prove the theorem by shqwing that Bl and N5
have arbitrarily large essential extensions. Since B1 SEBl
for every Boolean algebra B, Bl has arbitrarily large
essential extensions. For each cardinal «, let
N5(°'~)=P(°()U{a} where 8 < a < {p} for some g €= .
Then Ny < {48, {8 ,«\{Pg,«} which is a large sub-
algebra of N5( A )
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If S e BSI’ then the least congruen¢e on S must
be smaller than the Glivenko-Stone congruence
\/{e(x,x**): X é,S} and so must be generated by a pair
(a,b) with a < b and a* = b*. If 8 € K and K has enough
injectives, then K satisfies (ORP) and \<a,b> &S and
is subdirectly irreducible. Therefore the following

*-algebra is of some interest.

3,19. THEOREM: FP(2: xAy = x, X* = y*), the free
*-~algebra on two generators {x;y} satisfying the relations

x £ y and x* = y* is given by the following diagram:

Proof: Since FP(2: x Ay = X,x* = y*) 2 FP(2)/6 where
© = {xAy,x) v 8(x*,y*) we define a = [x16, b = [yle,
¢ = [x*]6 = [y*Je, etc. Then if M =§ p €PP(2): m € u
for some u € {o,‘a,b,c,d,e,f,g,h,i,j,k,l}} we have by
easy algebfaic induction that M = FP(2) and the diagram
defines the partial order of FP(2: xAy = x, x* = y*).
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3,20, Corollary: If 5 is an equational class of *-algebras
that satisfies (CRP), then for’every S € Ko and every

pair s,t eAS, s <t and Cbs = 8(s,t), <s,t> is a sub-
directly irreducible homomorphic image of FP(2: xAy = Xx,

Xx* = y*) by the map a ——> 8 and b —>t. Moreover the
least non-trivial congruence on (s,t) is genérated by

(s,t).

Now the completely-meet-irreducible congruences
on P = FP(2: X Ay = %X, X* = y*) are given by the following
partitions:

1 {{o,c}, $a,e,fr,i} {b,d,gahajak’i}}

0,: »{{b,d,e,f,g,h}, $i,3:k,1%, fo3, {ai, 3%}
650 {poy, @ie.ty, B.e3, Lo}, fa,nd, U3, KB}
L {{o,c}, fa,b,e,f,g,h,i,33%, {d’kal}g |
oo {{b, {a,bd,e,f,e,0Y, e}, {,3.k), (03}
g {{d}, fa,b,e}, {3}, {4,f,s,h}, {i,j,ksl}‘}
0, {{o,c}, {a,b,d,e,f,g,h,i,j,k,l}}

og: Lb,2,b,d,e,f,,0), fo,1,4,k,1}3

and if we let Pi o= P/ei, i = 1,2’000.’8 we have

1° 'P515B2s 5

and P5 isomorphic to the following *-algebra
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We are interested in those i = l,..;,8 for which

the following two properties hold:

(1) o, separates (a,b)

(2) The least non-trivial congruence on P, is

generated by ( Ca) 8y, ChJ Gi).

By direct inspection we see that i = 1 and i = 2 are the

only possibilities whence:

3.21. [THEOREM: If K is an equational class of *-algebras
that satisfies (CRP), then every non-Boolean S € gSI is
an essential extension of Bl or N5' Moreover if <PS = o(a,b)

with a < b we have a** = b and a—< a** (a is covered by a**).

Proof: We need only show the second part.

If a < b and 8(a,db) = Pg, then <(a,bd & P, or
P2 and in both cases a** = b, If a<c < a** then S contains
as a large subalgebra either the four element chain o<a<c<l

or the *-algebra

a**
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neither of which is subdirectly irreducible, contradicting

1.28.

3.22. Corollary: If K is an equational class of *~algebras
with enough injectives, then XK has at most three injective
subdirectly irreducibles namely 2, and the injective hulls

of B, and N_.

1 5
If we restrict our attention now to equational
subclasses of EINB, we obtain the following theorem in

the same way as %.2 and 3.8.

5.23. TIHEOREM: For equational class K¢ P N5 that
satisfies-(CRP),T.F.A.E.:

(1) K has a non-Boolean injective algebra
(2) K has enough injectives
(3) I,g = _S__Ij(H) where H is a non-Boolean injective

subdirectly irreducible in K.

Our characterization theorem now follows.

32.24, THEOREM: The only equational subclasses of g,NE

that have enough injectives are B, El and 92.

Proof: K = SE(H) for some Hé(E|N5)gr. If K # B, then
H is non-Boolean and Bl:SEH by some dense element e < 1.
If uw € H, u* = 0 and e £ u, then {o,e A'u,e;l} forms

a non-subdirectly irreducible large subalgebfa of H., By
1.28 then, H has only two dense elements {e,13% .
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Suppose there exists an a ¢ H«~{o0,e,1} with
ava* = 1. Then without loss of generality we may assume

that a = a** and a* # e. Now:
(a*/\e)* = (a***/\ e**')* = 8** = a

so av(a*a e) is dense.

If av(a*Aa e) = 1, then the subalgebra {o,a,a*,a*/\e,l}
is isomorphic to N5’ a contradiction on the fact that
K E.ElNS.

If a v (a*~Ae) = e, then the subalgebra
{o,a,a*,a*A e,e,1l} 1is isomorphic to 2xB;, and is a large
subalgebra of H that is not subdirectly irreducible, a
contradiction on 1.28.

Therefore for all a ¢ H-{p,e,1}, awv a* = e and
a = a**A(ava*) = a**A e = a**,

But then H is of the form Bt and hence K is an
equational class 6f distributive *-algebrés;' The result
then follows from 3.15.>

If we restrict ourselves to g\Bl,.we have only

the partial result:

3.25. THEOREM: The equational subclasses of E\Bl generated
by N5, Ng’ N9, Nl? have enough injectives where N9 is the

dual of N9 and the others are given by the diagrams:
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Proof: Since every subalgebra of N5 and N17 is either
subdirectly irreducible or Boolean (hence injective in P !)

we may apply 2.3 as both N5 and N, are self-injective.

The conjecture is that these are the only equa-
tional subclasses of g\Bl with enough injectives but so

far we have no proof.

3.26. THEOREM: The join of N, Ng, N7, or Ny, with B

or 92 has enough injectives.

Proof: Since the respective intersection is always B,

the natural reflections into B preserve monomorphisms

and the result follows from 2.12.
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