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We then examine what equational subclasses of Lattices, 
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INTRODUCTION 

The concept of injectivity may be traced back to 

1940 with Baer's iltitial results for Abelian groups and 

modules over a given ring, [~. The first results in non­

module types of algebras did not appear until Halmes, [2q , 
described the injective Boolean algebras using Sikorski's 

lemma on the extension of homomorphisms. In recent years, 

there has been a plethora of results describing the 

injective algebras in particular equational classes 

(e.g. [21 , [3) , [4] , [6] , D.:O ~ D.3J ) • 
In (iEi) , Eckmann and Schopf introduced the funda­

mental notion of essential extension and showed the basic 

relations that this concept had with injectivity in the 

equational class of all modules over a given ring. They 

developed the notion of injective hull (or envelope) which 

provided every module with a minimal injective extension 

or equivalently a maximal essenti.al extension. It was not 

until 1967 that Banaschewski and Bruns, [9], showed that 

the same results held for Boolean Algebras.and Berthiaume 

proved the analogous theorems for S-sets, [:uJ • 

With the advent or Category. Theory, Baer's results 

were a~stracted into what is called in Mitchell [26], a c3 
(Abelian) Category with a'g~ne~ator and the notions of 

injectivity and essential extension were put in their proper 

categorical setting. The questions or having enough injectives 

v 
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and of having injective hulls were formulated and some 

answers were provided in [7] and [15] when the first 

property implied the second. 

It was remarked in ~~ that an equational class, 

qua category, has in general the property that enough 

injectives is equivalent to having injective· hulls. This 

allowed Banaschewski in [8] to transcribe his categorical 

conditions to equational classes and supply necessary and 

sufficient conditions for an equational class to have 

enough injectives (or equivalently injective hulls). It 

also showed that the categorical relationships between 

essential extensions.and injectives, given in [1ETI for 

modules and in [9] for Boolean algebras, were true in any 

equational class with enough injectives. 

In this dissertation we study the question of 

enough injectives for an equational class in more Universal 

Algebraic terms. Since an equational class is always deter­

mined uniquely by its subdirectly irreducible members, we 

try to determine conditions for the subdirectly irreducible 

algebras that will ensure enough injectives in the equational 

class. The powerful results of J6nsson in [22] allow us 

to develop some existence theorems for equational classes 

with-distributive congruence relations. In particular, we 

can provide a completely Universal algebraic generalization 

of the results for distributive lattices D.QI and Boolean 

Algebras [9]. We also provide some results that describe 

those equational subclasses of particular equational classes 
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that have enough injectives. 

In Chapter l, we prove the results remarked in [14] , 

analyze Banaschewski's conditions for their Universal 

Algebraic Content, and examine the relationships between 

subdirectly irreducible algebras and Banaschewski's 

conditions. This allows us to,reduce his conditions 

considerably in the case of "nice" equationally complete 

equational classes. 

In Chapter 2, we use J6nsson's results to obtain 

existence theorems for enough injectives in an algebraic 

setting that give us practical criteria for ch•cking 

particular equational classes. We find that every congruence 

distributive, equationally complete equational class with 

non~rivial finite algebras has enough injectives (barring 

a certain pathological case). We then describe these 

injectives and to some degree the injective hulls. 

In Chapter 3, we determine precisely what equational 

subclasses of lattices and Heyting algebras have enough 

injectives and supply partial results for the equational 

class of bounded pseudo-complemented lattices. 



PRELIMINARIES 

For the basic definitions and results in Universal 

Algebra, we refer the reader to [18} save for the following 

exception: an algebra may have an empty underlying set 

if (and only if) there are no nullary operations. A 

trivial algebra is one whose underlying set is either 

empty or a singleton. 

For typographical convenience we will identify an 

algebra "1.= (A, (fi)i
6 
I) with its underlying set, A. This 

should cause no problems as we will always be working in 

an equational clas~ of a given type. Classes of algebras 

(usually equational) will be written I and the class 

operators of homomorphic images, subalgebras, isomorphic 

images, products, subdirect products, filtered or reduced 

products and ultraproducts will be respectively denoted by 

the following symbols: H, s, I, 1:, 1:s, 1:F and Pu· 
We will indicate injective(= one to one) homo­

' morphisms by a double-barred arrow fi-1--a,, and surjective 

(= onto) ones by a double-headed arrow a la 

Halmos [2iJ • 

The basic definitions and results of Category 

Theory are found in Mitchell [26.] save for the µsual 

exception that our ~eflections are his coreflections. 

All of the notions from lattice th~ory may be found 

in Birkhoff [12] , Rasiowa and Sikorski [29] , and Szasz [3Q] • 

l 



CHAPTER 1 

INJECTIVITY AND EQUATIONAL CLASSES 
I 

1. Injectives and Essential Extensions 

Throughout this section, J will be an arbitrary 

but fixed equational class of a given type. The algebras 

and diagrams in the definitions and diagrams of this 

section will be assumed to be in K. 
N 

1.1 DEFINITION: An algebra Q (in !P is called injective 

(in 1P if for every extension f: A11---+B and every homo­

morphism g: A-Q, there exists a homomorphism h: B----.. Q 

such that hf= g. 

This is usually expressed diagramatically by: 
f 

A11 .>.,B 

g J __ ,.--"3h 
QI,&. 

1.2. DEFINITION: An algebra is called an absolute 

subretract if it is a retract of every extension. 

Since the categorical monomorphismsof an equational 

class are exactly the injective homomorphisms or extensions, 

we may apply the basic categorical results directly. 

1.3. THEOREM: The product of a family of injective algebras 

and a retract of an injective algebra is again injective. 

Also, every injective algebra is an absolute subretract. 

2 
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Proof: ({29], p.70) 

The first statement implies that the singleton 

algebra(= empty product) is always injective in any 

equational class. 

1.4. DEFINITION: An extension f: A1~B is called 

essential if for every homomorphism g: B .,-~> C, g is a 

monomorphism whenever gf is. f is a proper essential 

extension if it is not an isomorphism. 

Since K 
IV 

is an equational class (more precisely: 

H(t)s !), we have an equivalent formulation in terms of 

<B>(B), the lattice of congruences on B, viz: the only 

congruence on B which separates (the points of) 

Imf ( = f (AJ ) is ~B' the diagonal or identity congruence 

on B. If A is a subalgebra of B, and f is the natural 

embedding of A into B (written f: A~ B, or just A~ B), 

we write A ~EB, and say that A is large in B. Therefore 

f: At~B is essential iff Imf ~EB. If we call a 

(homo)morphism essential, it will be implicitly assumed 

that it is also a monomorphism. The following remarks 

are clear. 

1.5. Lemma: For monomorphisms f: A•~B and g: BH-~C, 

we have: 
(1) If f and g are essential, so is gf 

(2) If gf is essential, then so is g 

1.6. Lemma: Let f: Au---+B be an arbitrary monomorphism 

and define l"I( f) = [ e E. ®( B) : e IImf • ~B} where ( eIIm.f) 

is the congruence on Im.f, e f1 Imf2 • Then if 1e0 : B---+> B/9 
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is the canonical homomorphism associated withe, 7Cef>f is 

essential if and only if e is maximal in M(f). 

Proof: x9of is essential iff it is a monomorphism and 

Im 1C.(:/ f ~ E B/e. By the 2nd Isomorphism Theorem, this is 

equivalent to e E M(f) and for all 'f) E <a)(B), e~ ~ implies 

\./-'-fM(f). 

1.7. THEOREM: In an equational class, every extension 

can be continued to an essential extension in the sense that 

given f: Alli--....,.B, there exists g: B--:>-c such that gf is 

essential. 

Proof: Using the notation of the previous lemma, M(f) is 

inductive since for any universal algebra B, Ei)(B) is an 

algebraic lattice. 

1.8. THEOREM: An algebra is an absolute subretract (in i) 
if and only if it has no proper essential extensions (i.e. 

every essential extension is an isomorphism). 

Proof: If A is an absolute subretract and f: Aff11--..;,, B is 

essential, then there exists a g: B~A such that gf = lA. 

But then gf is a monomorphism hence so is gas f was 

assumed to be essential. Therefore f, being an inverse of 

an isomorphism,is also an isomorphism. 

Conversely, assume that A has no proper essential 

extension,s,and take f: A1...---+B. By 1,7, there exists a 

g: B---.»-C such that gf is essential. Since A has no 

proper essential extensions, gf is an isomorphism and A is 

a retract of B. 
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Now suppose f: Ao~--~ Q is an injective extension 

(i.e. Q is injective). By elementary diagram chasing, we 

see that for every essential extension g: Al~E of A, 

E€I§(Q). In fact S(f) = { X, Q: I:qi.f~EXf is a repre­

sentative~ of essential extensions of A. 

1.9 Lemma: Let f: Al~Q be an injective extension of A 

and define S(f) = { X~Q: Imf ~t' J . Then for each M ~ S(f), 

Mis injective if and only if Mis maximal in S(f). 

Proof: If Mis injective, then M has no proper essential 

extensions by 1.8 and 1.3. Take X'=S(f), M~X. Then the 

composition A~M~X is essential and so by 1.5, M~EX. 

Therefore the natural embedding M~X is ap isomorphism and 

M = X. 

If Mis maximal in S(f), we show that M has no 

proper essential extensions and hence is a retract of the 

injective algebra Q. For if g: M1~1~~~Bis essential, there 

exists a (mono)morphism h: B1i--+Q such that hg = j: M~Q. 

But then l'1 ~Eimh ~ Q and since A<i1 we have A~Imh by 

1.3 and Imh E S(f). By the maximality of Min S(f), l'1 = Imh 

and therefore g is an isomorphism. 

1.10. THEOREM:· If an algebra has an injective extension, 

then it also has an essential injective extension. 

Proof: If .f: All-~Q is an injective extension, then S(f) 

as defined above in 1.9 is easily seen to be inductive since 

the subalgebra lattice of any (universal) algebra is an 

algebraic closure system. 
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1.11. DEFINITION: An injective hull of an algebra A (in !P 
is an essential injective extension. 

1.12. Corollary: An algebra has an injective hull iff it 

has an injective extension. 

We close this section with the following categorical 

result. 

1.13. THEOREM: Any two injective hulls of an algebra A 

are isomorphic over A. 

Proof: 	 ( ~~ , p.88). 

2. 	 Eguational Classes with Enough Injectives 

By 1.3, every equational class has at least one (up 

to isomorphism) injective algebra, the singleton. Indeed 

for some equational classes, these are the only injectives 

(e.g. ~roups and Lattices, [i.Q) ). Other equational classes, 

Abelian groups [1] ap.d Boolean Algebras [26J ,, have the 

following more interesting property. 

1.14. DEFINITION: An equational class is said to have 

enough injectives if every algebra in the class has an 

injective extension (in the class). 

This definition is purely categorical and by [lit] 

and 1.12 we see that it is equivalent to the stronger 

categorical statement that every algebra has an injective 

hull. Let us note however that the two cases mentiqne.d: so 
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far are not exhaustive in that there exists equational 

classes (e.g. Heyting algebras [6]) that have some (non­

trivial) injectives but not enough. The following results 

are in Banaschewski [8] • 

1.15. THEOREM: If an equational class~ has enough 

injectives then for AE ~' T.F .A.E.: 

(1) A is injective in K,.., 

(2) A is an absolute subretract in i 
(3) A has no pr~per essential extensions 

in~ 

1.16. THEOREM: If an equational class~ has enough 

injectives, then for any extension f: Au ·>Bin~' T.F.A.E.: 

(IH) Bis injective and f is essential (i.e. 

injective hull) 

(ME) f is essential and for any g: BU~ C, if gf 

is essential, g is an isomorphism (i.e. Bis a maximal 

essential extension) 

(mQ) B is injective and for g: AU;--~>Q, h: Qlli--->B, 

if hg = f and Q is injective, his an isomorphism (i.e. B 

is a minimal injective extension). 

In [8] , Banaschewski interpreted his categorical 

results from [?] to provide the following result. 

1.17. THEOREM: An equational class~ has enough injectives 

if and only if every algebra in I has a representative set 

of essential extensions and in~' qua category, pushouts 

preserve monomorphisms. 
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Because every morphism in an equational class can 

be factored through its image, the pushout criterium in 

this theorem is equivalent to the following two conditions: 

1.18. DEFINITION: An equational class K satisfies the 

(weak) amalgamation property iff (AP): given monomorphisms 

in !} fi: AD »Bi (i = 1,2), there exists an algebra C in !.) 

and monomorphisms gi: Bf > C (i = 1,2) such that 

glfl = g2f2· 

1.19. DEF.INITION: An equational class K satisfies the 
N 

congruence restriction property if (CRP): for all A~ BE:.!}, 

the restriction mapping e ~ e IA of <B>(B) into (8)(A) is 

surjective. 

If J satisfies ( CRP) and A~ BEK, then every 

congruence e E. ®(A) equals 'PIA for some congruence 'fJ E 9(B). 

In particular then 9 =¢,IA where <f;> is the smallest congruence 

on B containing e. If a, b E: A, and eA(a, b) is the smallest 

congruence ~n A containing the pair (a,b), we must have 

that SA(a,b) = SB(a,b)fA. While we know of no counterexample 

at present it seems that for a given pair of algebras A~B, 

the fact that eA(a,b) = eB(a, b) IA for all a, b '= A should not 

necessarily imply that every congruence on A is the restriction 

of some congruence on B. Quantifying over an equational 

class however does give us the followizw: 
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1.20. THEOREM: If!} is an equational class, then T.F.A.E.: 

(1) 	K satisfies (CRP)
N 

(2) J satisfies the principal congruence restriction 

property (PCRP): For all A~ BE. K and all a, b E: A,,., 

eA(a,b) = eB(a,b)jA. 

Proof: Assume ~ satisfies (PCRP) and consider A~ BE: JS 

and f: A » C with Ker f = { (x,y): f•(:x:) = f(y)} e 8>(A). 

Define: 

E = { (X,g): A~X:s;;B and g: x--)i-~c such that glA= f} 

We give Ethe usual partial order by: 

(X,g)~ (Y,h) iff X ~ Y and hj Y. = g 

( E, ~ ) is clearly inductive so we may take (M, g) maximal 

in (E,~ ). Note that Ker gjA = Ker f. 

We define P = { e E S(B): ejM ~ Ker g} 

We ne~d the·following properties of P and (M,g) 

(a) 	et P implies M = [M] e where [MJ e = { b E B: there exists 

mf: M such that Cm, b) c eJ 

Clearly [M] e ~s a subalgebra of B and M~ fu] e. 
Also by Gratzer [19) , we may define h: [Ii] e__... C extending 

g. Therefore ( [r{] e, h) E and by the maximality of (M,g), 

we must have [M] e = M and h = g • 

./' 	 ... 
(b) Pis directed: 

Take e, f ._ P and ( a, b) ~ ( e v '+') M. Therefore there 

exists a sequence a= x ,x1 , ••• ,xn =bin B such that:
0 
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(i even) 

(i odd) 

Since a e M, x1 e [a]es;M by (a) and it follows by easy 

finite induction that xi e M for all i = 0,1,2,. ,n. 
Therefore 

(a,b) E (9IM)v ('VIM)~ Ker g 

and 9 v 'fl E P. 

(c) VP E P: 

For (VP) IM = U { e IM: e e P} ~ Ker g. 

Therefore <p= \IP is the largest congruence on B 

whose restriction to Mis contained in Ker g. 

But if (a,b) e·Ker g, then 6M(a,b) = eB(a,b)jM ~- Ker g 

by (PCRP). Therefore eB(a,b) E: P and hence eB(a,b)~ ¢. 
Therefore cpjM = Ker g and cpJA = Ker gj A = Ker f. The 

converse is trivial. 

1.21. Corollary: !} satisfies ( CRP) iff for al.l BE.!$ for 

all a,b,c,d E B,eA(a,b) = eB(a,b)jA where A • (a,b,c,d) , 

the subalgeb~a generated by {a,b,c,d}. 

Proof: The condition is clearly necessary by our theorem. 


Conversely take A~BE~, a,bE:A and (c,d)E8B(a,b)IA. 


Then for C = <a,b,c,d) ~A~B, we have 


(c,d)E= eB(a,b)jc~eA(a,b). 
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While there exists a formulation of this last 

-corollary in terms of the free algebras of an equational 

clasf:3, the formulation does not seem to lead to a "Mal'cev 

Type Condition", that is an equivalent condition concerning 

identities satisfied by the equational class. 

We c·onclude this section with the following lemma. 

1.22. Lemma: Let ~ satisfy ( CRP) and let f: Au--> B 

and g: Bli---,i. 0 be monomorphisms in !): the-n gf is essential 

iff both f and g are essential. 

Proof: By 1.5, we need only show that if gf is essential, 

then f is essential. Therefore let h: B~ D be such that 

hf is a monomorphism. Without loss of generality we may 

assume his surjective. By (CRP), there exists a congruence 

q:> on C such that <t:>le = Ker h. If ~: r~t./¢ is the 

canonical homomorphism and j: D 1.~1~~> ~/¢> is the natural 

map such that jh = 'X:g we have jhf = xgf a monomorphism. 

By assumption, gf is essential and so i<is a monomorphism 

and hence also h. 

3. 	 Injectivity and Subdirectly Irreducible Algebras 

Since every equational class tis determined 

uniquely by !):SI' its class of subdirectly irreducible algebras, 

it would be of interest if one could relate injectivity 

to the subdirectly irreducibles. To obtain such a relation, 

we need the following lemma from [14] • 
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1.23. Lemm.a: Every essential extension of a subdirectly 

irreducible algebra is again subdirectly irreducible. 

Proof: Without loss of generality assume S~ET and t~at 

S is subdirectly irreducible. Let ( 6i: i c I) be a family 

of congruences on T whose meet(= intersection) is AT. Then 

Since s is subdirectly irreducible' ei Is = As for some 

i ~ I and since S ~ET, 6i = AT for this i. 

Therefore if an equational class~ has enough 

injectives, the injective hull of every subdirectly irreducible 

is again subdirectly irreducible and in this sense there 

will be "enough injective subdirectly irreducibles". Con­

versely, since every algebra in JS is a subdirect product 

of algebras in tsr, if every S '= ~SI has an extension 

TE ~SI which is injective in !}, !S will have enough injectives. 

This gives us the following and perhaps more applicable 

characterization theorem. 

1.24. THEOREM: An equational class has enough injectives 

if and only if it has enough injective subdirectly 

irreducible algebras. 

In particular cases when we know already the sub­

directly irreducible algebras of an equational ~lass, we 

have a viable procedure to demonstrate enough injectives. 

This method is essentially used in [Lf] and [10] and can 
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even be applied to Abelian groups by using the character­

ization of the subdirectly irreducible Abelian groups 

found in Pierce [27.] • 

Before proceeding with an immediate application of 

this approach, we must describe an interesting pathology 

that will occur if our equational class under consideration 

does not have any nullary operations defined in its type 

(i.e. if ,: = (Ai) i E: I, Ai;, o for all i £ I). If ~ is such 

a class and has enough injectives, we note immediately that 

the empty map f: ,Jlf11-1--> {.x~ is essential and that the 

singleton is the injective hull of fJ. If Q is a non­

trivial injective in! then there exists a morphism 

g: {x! > Q, extending the empty map fl/ ~ Q,. Therefore 

every injective algebra in K has a one element subalgebra. 

This pathology becomes rather lucid when we consider 

K to be the equational class of "Boolean algebras" considered 
-..., 

as algebras of type (2,2,1) with operations join, meet and 

complementation (To the usual distributive lattice equations, 

add the De Morgan laws for complementation and the equation 

xv x' = yv y'). Now !.} differs from ~' the equational 

class of "real" Boolean algebras (where we consider O,l or 

both as defined nullary operations) only in that it 

contains pf as an algebra. However 1C has only trivial 
IV 

injectives (!1!) since every injective must contain a one-

element subalgebra. 

To avoid this pathology we consider the following 

condition. 
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1.25. 	 DEFINITION: An algebra A, will be called 

¢-regular if ¢ ~ A implies A has a one element subalgebra. 

1.26. THEOREM: Let 
tv 
K be an (equationally complete) 

equational class which contains up to isomorphism only 

one subdirectly irreducible algebras. Moreover assume 

that Sis finite. Then~ has enough injectives if and 

only if it satisfies (CRP) and S is ¢-regular. 

Proof: Since Sis the only subdirectly irreducible in i, 
S has no proper essential extensions in~ and must be at 

least an absolute subretract in i. Since J =.§f(S), it 

will be enough to show Sis injective. Since any non­

trivial subalgebra of S must have a non-trivial subdirect 

representation by Sand since Sis finite, Scan have at 

most only trivial proper subalgebras. Therefore to show 

Sis injective, we need only consider the case where 

¢ f. A ~ B and f: A--·)i-~ S as S is pJ -regular. Since K,., 

satisfies (CRP) there exists a congruence eon B with 

&lA = Ker f and a canonical g: su----,,.B/6 such that gf = ~ 6 [A. 
But then there exists h: B/9 ~ S such that hg = 18 and 

hence h 0
~ IA = hgf = f and Sis injective.6 

Using this approach Mrs. E. Nelson has shown: 

1.2i Corollary: Every equationally complete equational 

subclass of semi-groups has enough injectives. 
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Since every equational class with enough injectives 

must necessarily satisfy (CRP), we close this section with 

some necessary conditions for an equational class to satisfy 

(CRP). These will be used in Chapter 3. 

1.28. THEOREM: Let K be an equational class satisfying
"' 

(CRP). Then 

(1) 	Every large subalgebra of a subdirectly irreducible 

is again subdirectly irreducible. 

(2) 	I-f s E: !Ssr and a,~ E. s such that e8(a,b) = <p 8 , 

the least non-trivial congruence on S, then for 

all subalgebras (a, b) 6 X ~ s, X ~ES and hence by 

(l),x is subdirectly irreducible. 

Proof: Take S ~T E. ~SI and let (e1 : i '= I) be a family of 

congruences on S whose meet is 6-s· Since K satisfies (CRP), 

there exists lf). E E>(T) such that 4'11 s = e1 for each
J. 

i E: I and we have : 

C0 \fJ · ) I8 = 0 91 = As.1itI i~I 

Since S ~ET, (:) '\Ji =AT and therefore "Vi = .6.T for some 

i tF: I. But then ei = .6.s for this i. 

The second statement·rollows from 1.22 and the 

above since clearly (a,b) ~E3· 



CHAPTER 2 

CONGRUENCE DISTRIBUTIVE EQUATIONAL CLASSES 

1. Existence Theorems 

While completely algebraic conditions may not be 

possible to ensure enough injectives in an arbitrary equa­

tional class, the fundamental results of J6nsson, f.22 , 
gives us some hope if we impose a further condition. 

2.L DEFINITION: An equational class is called congruence 

distributive if the congruence lattice of every algebra in 

the class is distributive. 

2.2. DEFINITION: An algebra Sis called self-injective if 

it is¢ -regular and any homomorphism from a subalgebra of 

S into S extends to an endomorphism of s. 

Clearly if Sis injective in some equational class, 

Swill be self-injective but in general, self-injectivity 

is independent of equational class considerations. J6nsson's 

Lemma ( fgaj or [le) , p.244) allows us to formulate our 

main existence theorem. 

2.3. THEOREM: Let~ be a congruence distributive equational 

subclass of an equational class L. Assume further that 
rJ 

l • §.!: (S) where S is a finite· subdirectly irreducible 

16 
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algebra whose non-empty subalgebras are either injective 

in~ or subdirectly irreducible. Then K has enough
Ill 

injectives if and only if Sis self-injective. 

Proof: By the previous remarks, the condition is clearly 

necessary as Scan have no essential extensions in!· 

Assume then that S is self-injective. Since J == § P (S), 

it will be sufficient to show Sis injective. Again since 

!} = §f (S) and also since S is .¢-regular, we may show 

this by finding extensions of homomorphisms in diagrams 

of the form 

where A,'¢. 

Let B • Im f ~ s. If B is injective in "fj, B is 

also injective in J and we are done. If Bis subdirectly 

irreducible, by J6nssods Lemma, there exists an ultra 

filter U on I such that 6u IA ~ Ker f where (x,y) E. eu iff 

E(x,y) = {. i c I: xi = yi} E U. Since S is finite, 

s1/eu is isomorphic to Sand herice there exists a homo­
1morphism k:: s "" s with Ker k = eu. By letting 

A' = k [)] ~ S and k' : A -w A' be k IA we obtain the 

following communative diagram: 
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A Ii--~~~~-+ S

.fl'>:' 
j I 

j. "'\ 
~·A'1 S 

s 

where f' is the canonical map determined by the fact that 

Kerk' = 6ulA ~ Ker f. 

Since Sis self injective, there exists an endo­

morphism g of S such that glA' = f' and therefore 

(gk)IA = gkj = gj'k' = f'k' =·f 

and Sis injective. 

2.4. DEFINITION: Let ,.,R(pk) be the equational class of 

(communative) rings with unit generated by the Galois field 

of order pk, GF(pk) (p prime and k ~ 1). 

2.5. Corollary: For every prime p, and natural number 

k ~ 1, R(pk) has enough injectives.
tv 

Proof: By [25] , ~(pk) is congruence distributive and 

;g(pk) = §..!: (GF(pk)). By ( [3i] , p.117), the subrings of 

GF(pk) are exactly the Galois fields GF(pn) for nlk. 

Moreover for each nlk, there is a unique embedding 

j: GF(pn) ~ GF(pk) which extends to the identity on 

GF(pk). Therefore GF(pk) is self-injective. 
f 

This corollary has also been obtained by Banaschewski 

(unpublished) by ring theoretical methods. Further 

applications will appear in Chapter 3. Our next result is 
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really a corollary also but its importance warrants the 

more prestigous title of theorem. 

2.6. THEOREM: Every equationally complete, congruence 

distributive equational class that contains a non-trivial 

¢-regular finite algebra has enough injectives. 

Proof: If~ is such an equational class, then K contains 

a finite ¢-regular subdirectly irreducible algebra, s, as 

a homomorphic image of the given finite algebra. Since~ 

is equationally complete, Sis generic for~ and in fact 

by [2iJ , S is up to isomorphism the only subdirectly 

irreducible algebra in~· It follows easily as in the 

proof of 1.29 that S has at most trivial subalgebras. S 

is clearly self.;..injective and since K,., == ,.,SP (S), K has 

enough injectives by 2.3. 

2.7. Corollary: The following equational classes have 

enough injectives: 

( 1) Distributive lattic~s ( [2] and [1Q} ) 

( 2) Boolean Algebras ( [26J ) 

(3) ~(p) (Banaschewski) 

The connection between this theorem and 1.26 is 

given by the following lemma. 

2.8. Lemma: Let~ be a congruence distributive equational 

class which contains (up to isomorphism) only finitely many 

subdirectly irreducible algebras {s1 ,s2 , ••• ,sn} all of 
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i 

which are finite. Then K satisfies (CRP) iff for all 
~ 

= l, ••• ,n, .the classes HS (Si) satisfy (CRP). 

The proof is analogous to that of 2.3 in that we 

need only show that for A~ B c !,, every completely - meet ­

irreducible congruence on A is the restriction of a con­

gruence on B. We obtain this by applying J6nsson's Lemm.a 

to the diagram 

l 
l,n 

A ~ B 11--1--,> CT 
i 

which reduces the problem to the stated condition as any 

ultra product of a finite family of finite algebras is 

isomorphic to one of the algebras. 

If two equational classes of the same type have 

enough injectives, can we say the same for their join? In 

general the answer is no for in the equational class 

~(p2 ) v~(p3), GF(p) has two distinct maximal essential 

extensions GF(p2 ) and GF(p3) hence there are not enough 

(in fact none) injective subdirectly irreducibles. We now 

derive a condition that assures us of a positive answer. 

2.9. DEFINITION: Let Abe an equational subclass of an 

equational class~· The natural reflection of~ into A 
is the functor R: ~ >~defined by: 
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(i) 	R(B) = B/p(B) where y(B) = 


/\{e c 6)(B): B/6 6 ft1 

(ii) For u: B~C, R(u): R(B)-'----7R(C) is the 

canonical morphism that makes the following diagram commute 

u 
B----- C 

.fB l R(u) lJ'C 

R(B) R(C) 


where yB is the canonical morphism B----),> B/ .P (B). 

R is actually the left adjoint to the natural inclusion 

functor J: ,A~ :Ja. The natural transformation 

y = (fB)B E. B: IB JR is the front adj unction and also ,.., ,.. 

is sometimes called the reflection. 

2 .10. Lemma: Let A~ B be equational classes. If the"' ,.., 

natural reflection R: B----+- A pres-cmve.s monomorphisms, then"' ,., 

every essential extension of an algebra A "- ! in ~ is also 

in h· Moreover every injective algebra in~ is injective 

in B. 
N 

Proof: Without loss of generality let Ac A and A ~EB t:: ~· 

By applying R we see that the following diagram commutes 

yA = 	l 
!• 

j 
B

lfBA 1 	R(j) 
R(A)1 R(B) 

Since R(j) is a monomorphism, fB 0 j = R(j) is a monomorphism. 

But j is essential hence yB is an isomorphism and B E ~· 
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The second claim is a consequence of ( [26] , p.136) 

( see also [8] ) since R preserves monomorphisms. 

2 .11. Lemma: If As.. B are equational classes that satisfy.., ,., 
( CRP), and if for all A<.!, every essential extension of 

A in~ is in h, then the natural reflection R: ~ A 
preserves monomorphisms. 

Proof: Consider the diagram 

with j the natural embedding. Since~ satisfies (CRP), 

the set M = { e E 8(B): el A = Ker y A~ is non-empty and is 

therefore inductive. If 't-1 is maximal in M, the canonical 

map f: R(A)11---~B/~ is essential and then by assumption 

B/'+' E: /i· Therefore Ker .f B "' .J (B) ~ ~ and if g is the 

canonical map g: R(B)---~ B/'\,) we have g 0 R(j) = f 

whence R(j) is a monomorphism. 

2.12. THEOREM: Let ~land J2 be equational classes of the 

same type, each containing only finitely many subdirectly 

irreducible algebras, all of which are finite. Assume 

further that!= !iv 12 is congruence distributive and 

that the natural reflections R1 : J 1 # = ! 1 " ~2 (i = 1,2) 

prese;r:-ve monomorphisms. Then if lh and j}:2 have enough 

injectives, so does!• 
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Proof: Since! is congruence distributive, the sub­

directly irreducible algebras in Kare,.., exactly those in 

~l or ! 2 • By 2.8, it follows that~ satisfies (CRP) 

since both !i and ~2 do. If the natural reflections 

S. : K > K. preserve monomorphisms, then the subdirectly
1 N 1 

irreducibles that are injective in !i (i = 1,2) are also 

injective in K by 2.10 and K will have enough injectives.
N r,I 

Therefore take A e 151 and A ~B E K. For every completely ­

meet - irreducible congruence e on A, we can select a 

maximal member e ~ M(e) = [ -q.> € (6XB): \.t'lA = eJ. 
Therefore the canonical map f 9 : A/911-f---> B/~ is essential. 

But by 1.23, B/B is then subdirectly irreducible hence 6 

is completely - meet - irreducible. Moreover 

n{e: e comp - meet - irreducible on Aj \ A= !::,.A 

Therefore B ~ Kmand since A~EB; this meet must be ,., ..... , 
iff B/0 ~ !i for all of these 0's. But if SE J$1 is 

subdirectly irreducible and S ~T ~ J.S2 , we have SE i 1ri ! 2 = ~ 

and since R2 : is:2 > ~ preserves monomorphisms, T ~ ;s ~ ~l 

by 2.10. Therefore by 2.11, s1 : ~ ) ~l preserves mono-

morphisms. By symmetry, s2 : ~ ~ JS2 also preserves 

monomorphisms and therefore K has enough injectives by 1.24. 
"" 

2.13. Corollary: If p1 , ••• ,pn are distinct prime numbers, 

then l,n k
V R(p.i)
i N 1 

has enough injectives for every choice of k1 , ••• ,kn EN. 
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class of trivial rings. Therefore the natural reflections 
k· 

Ri: 2(Pii) >~trivially perserve monomorphisms. The 

result then follows easily by induction. 

This corollary was proved by Banaschewski (unpublished) 

by ring-theoretical methods. Other appli~ations appear 

in Chapter 3. 

2. 	 The Injectives in. Eguationally Complete Eguational 

Classes. 

Throughout this section, i will be an equationally 

complete, congruence distributive equational class that 

contains a non-trivial ~-regular finite algebra. By 2.6, 

we know that lS = §.f (S) where S is the only (up to isomor­

phism) subdirectly irreducible algebra in!· Moreover S 

is finite·and has at most trivial subalgebras. It is also 

clear that Sis simple. We wish to describe the injectives 

in K that exist by 2.6 •.,.., 

Let T be the subset of alls ES that are not images 

of nullary operations of "&, the type of ~· If 2 ~ IS '-Tl, 

the .cardinality of S,T, then S has no subalgebras and in 

fa~t Swill be the $-free algebra on¢ generators. Moreover, 

the only endomorphism of Swill be ls, the identity 

homomorphism. If IS,TI~ 1, we define an algebra S 0 of type 

i:,o • 't u ( A~).8 c T (without loss of generality T and the 
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domain of -c are disjoint) where A. = 0 for all s e. T by
8 

adding to the original operations on S the nullary operations 

If K0 is the equational class of 
N 

type "t:o generated by S0 
, then it is clear that ~ 0 is 

equationally complete, congruence distributive, and that 

! 0 = §.P (S 0 
). By 2.6, ,!} 0 has enough injectives. In order 

to find the. connection between the injectives in "JS and E0 

we require the following unpublished result of s. Comer 

and B. J6nsson. 

2.14. Lemma: Let S be a simple algebra and suppose that 

~ = HS!: (S) is a congruence distributive. Then for every 

set I, every congruence relation on SI is induced by a 

filter on I. (i.e. every e E <8>(SI) is of the form e = eF 

for some filter Fon I). 

2.15. THEOREM: The injective algebras in ! 0 are exactly 

the injectives in ,..,K with the extra nullary operations 

suitably defined. 

Proof: Every non-trivial injective in t 0 is a "C 0 -retract 

of some power of S0 since ~ 0 = §. ~ (S 0 
). By forgetting the 

added constants, this algebra will become a ,:: -retract of 

the same power of Sand so will be injective in K.
N 

Conversely if Q is a non-trivial injective in!, 

then Q is a retract of a power of Sand so there exists a 

"t-homomorphism f: sI »Q. If 6. : Su > sI is the 

embedding of S into the constant maps I-->S, we have 

f·~ is a monomorphism since Ker f is induced by a filter 
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Fon I and E( A(s), A(t)) =¢for s ~ t. Therefore f 

·r
defines a ~o-homomorphism f 0 : (S 0 )_._·~~~"»-~Q0 where 

Q0 is the algebra Q with the added constants ( foA(s))s ~ T• 

0That Q is injective in K0 may be found in [?'2], p.109.
"' 

Without loss of generality we will assume for the 

.remainder of this section that S has no proper subalgebras. 

As remarked before, this implies that Sis the K-free 

algebra on¢ generators and has only one endomorphism 18 • 

2.16. DEFINITION: S: B ~K, where B is the equational
/\I ~ N 

class of Boolean algebras (defined with nullary operations) 

is the functor given by: 

(i) For Be B, S(B) is the Boolean extension of 
f'J 

S( e 	K) by B (see ll'll or IJ.al ). 

(ii) For f: B---> C, S(f): S(B)---> S(C) is 

defined by the mapping ot t-1----+) f O o<. • 

Since f is a Boolean homomorphism, fo~ 

is a disjoint S-cover of C whenever « is a 

disjoint S-cover of Band S(f) is a homo­

morphism in K. 
('ti 

That S is a functor is implicit in [}.~ • 

2.17. DEFINITION: T: K---> B is the functor defined by:
N N 

(i) 	For Ac~' T(A) is the field of subsets of t(A,S), 

the set of all (surjective) homomorphisms of A 

into s, generated by the subsets 

XA(a,F) = { f: A > S: f(a) E F} (a<:: A, F ~S). 
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(ii) 	For g: A--> B, T(g): T(A)--___,. T(B) is deter­

mined by the restriction to T(A) of the map 

g*: P(~(A,S))~~-- P(i(B,S)), the power sets 

of j(A,S) (resp !(B,S)), that takes 

X 1 > [t: fog E: X}. It follows easily that 

T(g)(XA(a,F)) = XB(g(a),F). 

Note that J(A,S), XA(a,F) = XA (a,S 'F) and so 

the set of generators for TA is closed under complementation. 

We will write XA(a,s) instead of XA(a, {sJ). Also since 

Sis injective in K, T preserves monomorphisms.
N 

2 .18. DEFINITION: For each A e JS, ">'\.A: A--~> STA is the 

homomorphism 	defined by 1\.A(a): S -- T(A), 

">'lA(a)(s) = XA(a,s). 

Clearly "Y\_A(a) e S(TA) for each a E: A and "Y\.A is 

a homomorphism. Moreover, since l(A,S) separates the points 

of A, "V'\_A is a monomorphism for each Ac~· 

2.19. Lemma: For each B <; B, the function tB: TSE--+> B 
N 	 , 

defined on the generators by x8B(O( ,F) 
1

li---> V o<.(s) 
AEF 

( ~ E: SB, F S. S) is a surjective Boolean homomorphism of 

TSB 	 ~nto B. 

Proofi ,n Take o<. i E: SB and Fis; s, i = l, ••• ,n such that 

c = /\ v o<.i (s) > 0 and take f: B ~2 such that 
J. SEF 

f(c) = 1. Then for Sf: SB ~ 8(2) we have 

S(f)(o<.i) =foo(,: s ~B >2 (i = 1,2, ••• ,n)
1 
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Now for each i = 1,2, ••• ,n, c ~ V C){. (s) and therefore 
1 . ,SEF.

1 
there exists ans. E F. such that f(o<..(s.)) = 1.

1 1 	 1 1 

Therefore S(f)( o<i) is the element of S(2) associated 

under the natural isomorphism, er, of S(2) and S with 

s. E F .• But then
1 1 	 l,n 

cr-oS(f) € n XsBC °'i'Fi)
i 

Therefore 
l,n 

/\
i 

eB is a well defined 

Boolean homomorphism. 

Since S contains at least two distinct elements 

s J t, we may define for each b ~ B; o<.b E: S(B) by: 

x = $ 

x = t~(x) = { :· 

otherwise 

Then c.B(XSB( °'b, s)) = ~ (s) = b and e: B is surjective. 

T 
2.20. THEOREM: The functors ~< 8 >~ are adjoint 

covariant 	functors with front adjunction 

·~ = ( ""'lA)Ac: J{ I~---sT and back adjunction 

E= ( ~ B)B t:: B: TS 
,... 

Proof: We need only show that the following four diagrams 

are always communative in their respective categories. 
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f TSg

A B TSB · TSC 


'Y\..A EC

EBI r~ i l
STf g

STA STB c 

(a) (b) 

f g
A SB TA B 

"'\A I S( EB) Tc,A)J i E.B1 ST.f' TSg
STA STSB TSTA TSB 

(c) (d) 

ORe (a): (STf ~.A.)(a) = STf(-rtA(a)) = Tf o -rt.A(a) (a E: A). 

Therefore for alls Es 

(STf o "Y\_A)(a)(s) = (Tf o~A(A))(s) = Tf(XA(a,s)) 

= XB(f(a),s) = ("Y\._B o f)(a)(s) 

Re (c): For all a€ A and alls c S: 

( S i. B o STf "Y\.,A) ( a ) ( s ) = ( S ( ~B .. T-f ) ( 'i'\_A ( a ) ) ) ( s ) O 

= ( t B O Tf c:. 7tA( a)) ( s) 

= tB(XB(f(a),s)) 

= f(a)(s) 

The remaining two are done similarly. 

2.21. Lemma: E : TS --~ IB is a natural equivalence. 
IY 
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Proo.f: Since every Boolean algebra is a ·subalgebra of a 


power set algebra P(I) for some set I, it is sufficient to 


· show e. P( I) is an isomorphism for each set I and then 

apply diagram (b). Now by U.~ , p .147, there is a canonical 

isomorphism f: S~1 »S(P(I)) given by 

f(o<): s 1 ) E(c,4 ,A(s)) = { iE:I: «(i) = s}. There-
Tf EP(I)

fore we need only show that T(S1 ) 1.1-1--....;,» TS(P(I)) ---,~iii' P(I) 

is a monomorphism. 

Since S has only one endomorphism, 18 , every homo­

s1~orphism u: Sis determined uniquely by an 


ultrafilter U~ on I by 2.14. This is given by: 


u(o<.)=s iff E( ~, b.(s)) E:. Uu... 

Therefore 

( E P( I) 0 Tf) ( X I , ( oe , F ) ) = \__) f ( o< ) ( s ) 

S SE. F 


= \..._) E(oc, b(s)) 
S EF 

and 

l,n 

/""'\ X 1 (o<..,F.) ~Jd 
fjl s J J 

iff there exists an ultra.filter U on I such that 

l,n
n u E( ~' A(s)) EU 


j s E.F,. J 
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iff 

nl,n u E( o(j' b.(s)) ,' ~ 
j .SE:F. 

J 

Therefore by [29] , e P( I) o Tf is an isomorphism. 

2.22. Corollary: Sis a full and faithful functor (i.e. 

the correspondence ~( B, C) ----+ K(SB,SC) is a bijection).
N 

2.23. Corollary: "Y\.s1 is an isomorphism for each set I. 

Consider f: s~-,~~-~ S(P(I)) in diagram (c). 

2.24. Corollary: For every A e; HP (S), 'v-0 is an 

isomorphism. 

Proof: For g: s1---3»A, by diagram (a), 'YlA og = STg ~Io 

wb:ichis surjective as STg and "Y'\§1 are. Therefore '7'\...,A 

is also surjective. · 

2.25. THEOREM: The injective algebras in K = SP (S) are
""' -­

exactly (up to isomorphism) the Boolean extensions of S 

by complete Boolean algebras. 

Proof: Since T preserves monomorphisms, S preserves 

injectives ( see [8] ) • Conversely if Q is a non-trivial 

injective in K, Q is a retract of some power of S say 
f 

~ 

g
QI ~ SI »Q with gf' = lQ. By applying T, 

Tf Tg 
we have TQII )> T(SI) >> TQ as a retract. But 

T(SI) ~ TS(P(I)) ~ P(I) is a complete Boolean algebra. 

Therefore TQ is a complete Boolean algebra and since 
1\Q

Q '= HP (S), we have by 2. 24, Qu . >) S( TQ). 
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2.26. Corollary: The finite injective algebras in~ are 

exactly the finite powers of S.· 

For S(B) is finite iff Bis finite. 

2.27. Corollary: 'YLA is essential for each A~~· 

Proof: If f: A•~•~+> SB is a injective hull of A, we have 

by diagram (c), S( e.B) STf 1tA = f is essential. There­0 O 

fore "'Y'lA is essential by 1.22. 

f 
2.28. Lemma: For each A ~Kand each B E: B, AU ) SB 

~ 

Tf "' €B
is an injective hull of A in 

tJ 
K iff TA \I > TSB" )i> B 

is an injective hull of TA in 
N 
B. 

Proof: If Bis injective in~' then SB is injective in 

K by 2.25. Conversely, if SB is injective in K then again 
~ 

by 2.25, SB~ SC for some injective Boolean algebra c. 
But by 2.21, we have B ~ TSB ~ TSC ~ C and so Bis also 

injective. Therefore since £Bis an isomorphism we need 

only show that f is essential iff Tf is essential. 

Take u: B~>C such that u o e.B o Tf is a mono­

0morphism. By applying S, we have that S(u o eB Tf) 0 '"Y\..A = 

Su o f is a monomorphism. If f is essential, then Su is a 

monomorphism hence so is u as a full and faithful functor 

reflects monomorphisms. 

Take g: SB ------~!1111.i/>o C such that g o f is a monomorphism. 

Since T preserves monomorphisms, Tg o Tf = T( g o f) is a 

monomorphism. If Tf is essential, Tg is a monomorphism and 

0therefore g = S( EB o Tg) 'l'\_SB is also a monomorphism. 
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2.29. Corollary: The injective hull of each A e-. K is 
N 

given by AU ~ > STA ll 
Sf 

> SB where f: TA\1 ~ B 

is the MacNeille completion of TA. 

For by @] , the injective hull of a Boolean algebra 

is its MacNeille completion. 

2.30. Corollary: The injective hulls of an algebra A EK,.,, 

are unique up to unique isomorphism over A. 

For Sis full and faithful and therefore any 

isomorphism of injective hulls SB and SC of A over A are 

images under S of an isomorphism of the injective hulls 

B and C of TA and there is only one such here by [9J • 



CHAPTER 3 

EQUATIONAL SUBCLASSES WITH ENOUGH INJECTIVES 

1. Lattices 

As has been noted already, the equational classes 

of groups, lattices, and Heyting algebras do not have 

enough injectives. However each does have an equational 

subclass that does, viz: Abelian groups, distributive 

lattices and Boolean Algebras respectively. The natural 

question then arises whether one can describe all equational 

subclasses of a given equational class that have enough 

injectives. In this section we answer this question for 

lattices, using Banaschewski's theorem 1.17, to simplify 

the original answer in [i4] • 

3.1. Lemma: A lattice is subdirectly irreducible iff it 

is an essential extension of a two element chain. 

Proof: By 1.23, the condition is sufficient as any two 

element chain is a subdirectly irreducible lattice. 

Conversely, let S be a subdirectly irreducible lattice with 

least non-trivial congruence 'Ps· Then there exists a 

u < v in S such that e8(u,v) = q,8 and clearly 

<u, v) ~ Es. 

34 
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3.2. THEOREM: Let K be 
~ 

an equational class of lattices. 

Then T.F.A.E.: 

(1) K has a non-trivial injective
N 

(2) ,.,K has enough injectives 

( 3) JS the equational class of distri ­= 'JJ' 
butive lattices. 

Proof: (1) ~ (2): If Q is a non-trivial injective in !$, 

then Q contains a two element chain and therefore the two 

element chain 2( = 0 < 1) has an injective extension. But 

then the injective hull of 2 exists and must contain up 

to isomorphism all subdirectly irreducibles in! by 3.1. 

Therefore !S has enough (namely one) injective s.ubdirectly 

irreducibles and (2) follows from 1.24. 

(2) ===:> (3): If J ~~'then~ contains either M
5 

, 

the modular five element lattice, or N5, the non-modular 

five-element lattice. But both these subdirectly irreducibles 

contain non subdirectly irreducible large sublattices and 

therefore~ does not satisfy (CRP) by 1.28. Therefore~ 

does not have enough injectives. 

(3) ) (1): 2 is a non-trivial injective in 2· 

2. Heyting Algebras 

A Heyting algebra is a bounded relatively pseudo­

complemented lattice considered as a universal algebra of 

type (2,2,2,0,0) with operations ( v, A, ~ ,0,1) where 
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a --+bis the relative pseudo-complement of a in b 


(x ~ a~ b if:f a A. x ~ b). H, the class of all Heyting

N 

algebras, is equational and the basic results may be found 


in [28) under the alias of pseudo-Boolean algebras. Of 


prime importance in our considerations is the following 


result. ( ~61 , p.63-65). 


· 3.3. THEOREM: For every A€~' the correspondence 

e 1 >(]Je is a lattice isomorphism between the congruence 

lattice (8)(A) and !(A), the lattice of all filters on A. 

3.4. Corollary 1: A EH,,., is subdirectly irreducible iff 


1 is completely-join-irreducible. 


For A E: ~SI iff FO = (\(F(A) ' t{l!} ) is a 

proper filter. But then Fo == {. .LA,11 where .A.A = VCA '{11 ). 

3.5. Corollary 2: H satisfies (CRP).,.., 

For if A ~ B and J:I, .F(A), then 


G = { b e B: 3 a E: F • 3 .. a ~ b ~ E: !(B) and A n G == F. 


Corollary 3; For A~ Bin H, T.F.A.E.: 
N 

(1) 	A ~EB 

(2) 	For all F t: !(B) (F f"\ A = tl\ implies 

F • {lJ) 

(3) 	For all b EB, b < l implies there exists 

an a~ A with b ~a" 1. 
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~or (2) is just the restatement of (1) in terms 

of filters and (3) is just the contrapositive of (2). 

3.7. Lemma: A 6 ! SI iff A= 2, the two element Boolean 

algebra, or A is an essential extension ·of 3, the three 

element chain O <. L < 1. 

Proof: If A is a non-Boolean subdirectly irreducible, then 

.t.A • V<A ' li~) :> 0 and the monomorphism f: 311 > A 

by O~ O, .Jl1a---=> .JL.A and 1 i--,,, 1 is an essential Heyting 

homomorphism by 3.6. The converse follows from 1.23, as 

3 is clearly subdirectly irreducible. 

Th.is lemma is analogous to 3.1 and so we obtain 

the following theorem for Heyting algebras. 

3.8. THEOREM: Let K be an equational subclass of H 
N 	 N 

distinct from ~' the Boolean algebras ( a ~ b = a' v b). 

Then T.F .A. E.: 

(1) 	K contains a 
N 

non-Boolean injective algebra 

(.~) K has enough injectives
~ 

(3) 	l} = .§.1: (H) for some non-Boolean H ~ lJsr 

and His injective in~· 

The proof is entirely analogous to that of 3.2 

where H will be the injective hull of 3. 

We now wish to determine which H ~ lisr satisfy 

condition (3) of this theorem. Therefore throughout the 

remainder of this section we let K = SP (H) be an 
rJ 	 - ­
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equational class of Heyting algebras distinct from~ that 

has enough injectives. 

3.9. Lemma: 4, the four element chain O < f < e ~ 1 is 

not in K.,.., 

Proof: Assume 4 EK and let j: 3, 4 be the essential 

embedding (i.e. j(e) = e). Let .f'o= 3 --H be the 

essential embedding of 3 into H (i.e. f\/e) = eH 

= VCH , U~) -< 1). · Therefore there exists a monomorphism 

(j is essential!) cro: 4 u ., H with o-oj = We~· 
define inductively for n ~ o: 

.fh+1: 
3,, >H P-n+l (e) = ~(f) 

4\1 ,.. H°n.+1= with O-n+l 0 d = Y..n+l 

Let e = Then since all o-n are monomorphismsn 

Moreover 

Therefore H contains all finite chains as sub-

algebras and since K is equational, K contains all chains. 
N N 

In particular K contains all successor ordinals considered 
,N 

as Heyting algebras in their natural partial order and 

therefore l has a proper class of non-isomorphic essential 

extensions of 3, a contradiction on 1.17. 
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For every Boolean algebra B(= (B, ( v, A,' ,o,e))), 

we let B1 be the set Bu fl} (1 ~ B) with the partial order 

x ~ y iff y · = 1 or x ~ y in B. It is clear that B1 is a 

lattice and in fact a Heyting algebra where: 

x ~ y
' 

x ~y = x = 1[ : 
x' v y, otherwise 

In ~~, Lee noted that this lattice is a distributive 

pseudo-complement lattice but both these observations are 

just special cases of the notion of star sums defined 

in [6] • 

3.10. DEFINITION: For each n ~ o, An= P(n)1 , where 

P(n) is a power set Boolean algebra on an n-element set 

(Note: A ~ 2 and A1 ~ 3).
0 

3.11. Lemma: H = A for some natural number n ~ o. n 

Proof: By 3.9, 4 4 JS and since ~ = .§.!: (H), this is 

equivalent to 4 f H. Therefore H has only two dense 

elements { eH, 1) • Since x ~ eg for all x e H , \.l~ , we 

have for all x I= o, eH, 1: 

x v x* == eH = x* * v x* 

where x* = x~ o. Since every Heyting algebra is a 

distributive lattice, we have x = x** for all x I= e and 
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therefore [o,eH~ is a Boolean algebra under the restricted 

partial order and H = [o,eHJ 1 • 

Now if [o,eHJ is infinite, ! contains all An, n~o 

and therefore all B1 , for B ~ !· But this would give a 

proper class of non-isomorphic essential extensions of 3, 

contradicting 1.17. 

If A is the equational subclass of H generated by,.,n 

we see that A • SP (A ) · as every proper homomorphicAn' "'n -- n 
image of an Ak is a Bpolean algebra. Moreover all subalgebras 

of An are of the form Ak' k 6 n and so ~n satisfies the 

conditions of 2.3. 

3.12. Lemma: An is self-injective iff n ~ 2. 

Proof: It is clear that A1 and A2 are self injective. If 

n ~ 3, let a1 ,a2 ,a3, ••• ,an be the atoms of An. Consider 
l,n

A as the subalgebra { o,a1 ,ai ,e ,1} of A (e ai and2 n = I 
a**

1 
.. al) and define f: A2• > An by: 

If An were self injective, there exists an endomorphism 

g: An--_.~ An extending f. 

Since g(e) = f(e) j f(l) = g(l), g is a monomorphism 

Since o ~ a2 < ai (a2 v a3 ~ ai), we must have 

which is a contraction on the fact that a1 is an atom. 
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Combining these lemmas, we obtain a complete 

characterization of the equational classes of Heyting 

algebras with enough injectives. 

3.13. THEOREM: The only equational classes of Heyting 

algebras with enough injectives are~' ! 1 , and A2 • More­

over every other equational subclass of!! has exactly the 

injective Boolean algebras as its injective algebras. 

3. Pseudo-Complemented Lattices 

We call a pseudo-complemented lattice a *-algebra 

when it is considered as a universal algebra of type 

(2,2,l,O,O) with operations ( v," ,*,O,l) (x '- a* iff a /\X = o). 

From [5], we can infer that~' the class of all *-algebras 

is indeed an equational class with the Boolean algebras, 

~ as its only equationally complete subclass, Lee, ~l], 

has characterized the lattice of equational classes of 

distributive *-algebras where he considers the Heyting 

algebras. (An: n ~ o) defined in 3.10 only as •-algebras. 

When so considered, we will write Bn; n ~ o to avoid 

ambiguity with section 2. Since lemma 3.12 and the remarks 

before make no explicit use of.the "arrow" operation, we 

may conclude immediately: 

3.15. THEOREM: The only equational classes of distributive 

"'-algebras with enough injectives are~' ~land ~2 , where 

B. = SP (B.), the equational subclass of P generated by
Nl. - - l. IV 

Bi' (i = 1,2). 
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In order to extend these results, we require some 

more information about the lattice of equational subclasses 

of P. 

3.16. Lemma: FP(l), the free *-algebra on one generator 

is given by the following diagram: 

1 

. x* * A 

x* 

x** x v x* 

(xv x*) 

x 

0 

Proof: The diagram determines a *-algebra with one 

generator x and in any *-algebra we have: 

x v x* :$ ( x* *A ( x v x* ) ) v x* ~ x v x* 

( x* * A ( x " x* ) ) * = x* since 

x ~ x* *" (xv x*) ~ x* * 

Therefore the only identities satisfied in the above 

*-algebra are consequences of the defining equations of I· 
By the congruences e(o,x*), e(x,x**) on FP(l), 

we see that B1 and B2 are retracts of FP(l) and hence are 

projective int· The other non-Boolean subdirectly 

irreducible image of FP(l) is N co~sidered as a *-algebra5 
by the congruence e(x v x*, 1). It is clear that there exists 
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largest equational subclasses of~ that do not contain 

B1 , B2 and N respectively. These are given by the equations
5 

xv x* = 1, x**v x* = 1 and x = x**,...(xvx*) respectively 

and are denoted by !IB1 , EIB2 respectively ;t'IN5• 

3.17. Lemma: A *-algebra A is Boolean iff neither B1 ~ A 

nor N5 °' A. 

Proof: If B1 ~ A, then A satisfies the equation xv x* = 1. 

If A is non-Boolean, there exists an a~ A with a< a**. 

Therefore a** ,i 1 and N 'it £0,a,a*,a**,lj ~ A.
5 

It is clear that ! 5 and ~l are covers of~ and by 

this last lemma, every non-Boolean equational subclass of 

;E must contain either or ~ 1 •~5 

3.18. THEOREM: The injectives in Pare exactly the 
N 

injective Boolean algebras. 

Proof: The Glivenko-Stone theorem implies that the natural 

reflection R: _;e~ ]a preserves Ilionomorphisms. By 2 .10 

then, the injective Boolean algebras are injective in I· 
By 3.17, we may prove the theorem by showing that B1 and N5 
have arbitrarily large essential extensions. Since B1 ~EB1 

for every Boolean algebra B, B1 has arbitrarily large 

essential extensions. For each cardinal o<., let 

N5( oc. ) = P( ~ ) 0 la} where p "' a <. t rJ for some ~ E; o< • 

Then N5 '::: {.o,a, f ~1 , o(. '{p}, o<.. J which is a large sub-

algebra of N ( ot. ) • 
5 



Ifs E- lsI' then the least congruence on S must 

be smaller than the Glivenko-Stone congruence 

V{ecx, x* *): x ES} and so must be generated by a pair 

(a, b) with a <. b and a* = b*. If Se Kand K has enough"' ,..; 

injectives, then K satisfies (CRP) and (a, b) ~ES and 
N 

is subdirectly irreducible. Therefore the following 

*-algebra is of some interest. 

3.19. THEOREM: FP(2: XAY = x, x* = y*), the free 

*-algebra on two generators {x,y} satisfying the relations 

x ~ y and x* = y* is given by the following diagram: 

b 

0 

Proof: Since FP(2: x AY = x,x* = y*) ~ FP(2)/9 where 

9 = e{xAy,x) V 9(x*,y*) We define a = Cx:)9, b = \:.y]6, 

c = Ge*] 9 = Cy*Je, etc. Then if M =l p E-FP(2): m E u 

for some u E f.o,a,b,c,d,e,f,g,h,i,j,k,lS.} we have by 

easy algebraic induction that M = FP(2) and the diagram 

defines the partial order of FP(2: x "y = x, x* = y*). 
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3.20. Corollary: If~ is an equational class of *-algebras 

that satisfies (CRP), then for every S ~ lsr and every 

pair s,t E- S, s < t and <Ps = e(s,t), (s,t) is a sub­

directly irreducible homomorphic image of FP(2: xAy = x, 

x* = y* ) by the map a ~ s and b ~ t. Moreover the 

least non-trivial congruence on (s,t) is generated by 

(s,t). 

Now the completely-meet-irreducible congruences 

on P = FP(2: x ~y = x, x* = y*) are given by the following 

partitions: 

e1 : 	 {{o,cJ, la,e,f,i1, {b,d,g,h,j,k,1}} 

e2 : 	 {{b,d,e,f,g,h}, {i,j;k,lj, lol, {a}, {c}} 

e3: 	 {{o}, {.a,e,fl, {b,g1, {c}, {d,h}, li1, Ll,k>3-}~ 

{ { o , c 3 , \.a , b , e , f , g , h, i ; fi , ld , k , 1Jj 

{lol, {a,b,d,e,f,g,h}, \cl, (i,j,k1, £.1}} 

[{o}, ta,b,e}, lc1, (d,f,g,h), li,j,k,1} } 
e7 : {{o, c} , ta, b, d, e, f, g, h, i, j, k, l} } 

ea: [ (o' a' b' d' e' f' g' h3 ' [c 'i' j 'k' 1J 3 
and if we let Pi= P/6i' i = 1,2, ••• ,8 we have 

and P isomorphic to the following *-algebra3 
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We are interested in those i = 1, ••• ,8 for which 

the following two properties hold: 

(1) separates (a,b)e1 

(2) 	The least non-trivial congruence on Pi is 

generated by ( Ca;] e1 , [tiJ 0 ).1 

By direct inspection we see that i = 1 and i = 2 are the 

only possibilities whence: 

3.21. THEOREM: If K is an equational class of *-algebras
N 

that satisfies (CRP), then every non-Boolean S ~ Jsr is 

an essential extension of B1 or N5• Moreover if 'Ps = e(a,b) 

with a< b we have a** =band a-< a** (a is covered by a**). 

Proof: 	 We need only show the second part. 

If a< band a(a, b) = <Ps, then (a,b) ~ orP1 
p2 and in both cases a** = b. If a< c <.. a** then s contains 

as a large subalgebra either the four element chain o, a <: c, l 

or the •-algebra 

c 

a 

0 
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neither of which is subdirectly irreducible, contradicting 

1.28. 

3.22. Corollary: If K is an equational class of *-algebras
N 

with enough injectives, then~ has at most three injective 

subdirectly irreducibles namely 2, and the injective hulls 

If we restrict our attention now to equational 

subclasses of ~jN5, we obtain the following theorem in 

the same way as 3.2 and 3.8. 

3.23. THEOREM: For equational class!~ EIN5 that 

satisfies (CRP),T.F.A.E.: 

(1) K has a non-Boolean injective algebra
fJ 

(2) K has enough injectives
"' 

(3) K = SP (H) where H is a non-Boolean injective
l'I - ­

subdirectly irreducible in~· 

Our characterization theorem now follows. 

3.24. THEOREM: The only equational subclasses of EIN5 
that have enough injectives are~' ~land ~2 • 

Proof: K == Sf (H) for some Hf; C! IN5)81 • If JS,'. B, then 
~ fV 

His non-Boolean and B1 ~EH by some dense element e-< 1. 

If u EH, u* = 0 and e ~ u, then (o,e" u,e,l! forms 

a non-subdirectly irreducible large subalgebra of H. By 

1.28 then, H has only two dense elements le,11. 
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Suppose there exists an a c H,{o,e,1} with 

a v a* = 1. Then without loss of generality· we may assume 

that a = a** and a* f e. Now: 

(a* A e)* = (a***A e**)* = a** = a 

so av (a*" e) is dense. 

If av(a*" e) = 1, then the subalgebra {o,a,a*,a*" e,1} 

is isomorphic to N5, a contradiction on the fact that 

! C: l;IN5· 

If av (a*.,..e) = e, then the subalgebra 

lo,a,a*,a*A e,e,1} is isomorphic to 2xB1 , and is a .large 

subalgebra of H that is not subdirectly irreducible, a 

contradiction on 1.28. 

Therefore for all a~ H' {o,e,1}, av a*= e and 

a= a**A.(ava*) • a**" e = a**. 

But then His of the form B1 and hence K is an 

equational class of distributive *-algebras. The result 

then follows from 3.15. 

If we restrict ourselves to f\B1 , .we have only 

the partial result: 

3.25. THEOREM: The equational subclasses of E\B1 generated 

by N5, N9 , N9, N have enough injectives where N9 is the17 
dual of N9 and the others are given by the diagrams: 
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Proof: Since every subalgebra of N and N17 is either5 
subdirectly irreducible or Boolean (hence injective in P !) 

we may apply 2.3 as both N and N17 are self-injective.5 

The conjecture is that these are the only equa­

tional subclasses of f\B1 with enough injectives but so 

far we have no proof. 

3.26. THEOREM: The jqin of y5, ! 9, !9 , or ~l? with~' 

or ~2 has enough injectives. 

Proof: Since the respective intersection is always~' 

the natural reflections into~ preserve monomorphisms 

and the result follows from 2.12. 
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