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INTRODUCTION

Tibred Categories and the Theory of Structures, of

which this THESIS forms most of Chapter I and a short excerpt of
Chapter II, has asits purpose the fulfilment of the preferatory
promise made in DUSKIN (1963) to "rewrite BOURBAKI'S ((structures ))
(1957) either in terms of {( categories and functors )) or
vice=versa' by rewriting them both in terms of each other - at the
peme time, This curious feature is made possible by the ''technical
device" of (GROTHENDIECK-SONNER-TARSKI) (c¢,f, GABRIEL (1962),
SONNER(1962), TARSKI(1960), ETC.) {{ universes )) axiomatically
adjoined in a compatible fashion to, in this case, BOURBAKI'S

THéORIE =3 ENSEMBLES, The remainder of the mathematical theory

has then a "model" which is "closed" under all "set-theoretic
operations'" with, as the only restriction, that these operations

be indexed by a member of the universe UL ,

For a given universe Ul , the meta-mathematical

theory of structures can be given a formal functorial mathematical

treatment at least within the totality of sets of 1&,. To carry
this process out is the purpose of CHAPTER III,

In that context the BOURBAKI notion of {{ initial
structure )), for instance, becomes a quite special case of the

elegant and useful generalization {{ inverse image of a f~ .

morphisms by a functor defined by GROTHENDIECK (1962) ana whoee




terminology I have largely adopted, but which I can happily assert

I discoVeréd for myself independently in 196% (abstracting BOURBAKI
(1957)). The attendant notions of ({ fibred-category ») and

{({ co-fibred category )) of GROTHENDIECK (1962)there are, naturally
occuryring motions.in a remarkably wide varietyof situations (none of
wiich happen to be given as examples by GROTHENDIECK)curioualy
enough),

Implicit in the functorial version of this "theory of
structures" is the lack of any necessity to postulate that the
objects of thelbase category be only '"unstructured" . members
of -QL ; the definition being possible quite often without any such
supposition (the representability of the structure is quite another
thing!), The, by now, well known notion of group in the category
of topologicay spaces, for example)forms an excellent example of the

this mnotion, f§r which @ combination of the methods of LINTON
(1965) and LAWVERE (1965) with those of GROTHENDIECK lead to quite
satisfactory results at least in the case of "algebraic structures",

In reverse order, Chapter II, of which only a very

small excerpt has been included here, studies the "formal calculus
of binary relations" by itseif, It is interesting to note that a
considerable portion of this calculus can be carried out in categories
which do not even have finite products with;kpre-correspondencee*
which are not even (the representations of) graphs, The section
included here is only the {{ naive ) and {{ unprojected )») theory,

which, in spite of its simplicity, is remarkably useful,
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With the ald of "projection'" defined by means of
additional assumptions one can obtain as much as one desires of the
RIGUET (1948)— BOURBAXKI "calculus", It thus offers a non-abelinn
generalization of the useful (partly abelian) theory of PUPPE (1962)4

McLANE (1964),

REMARK Vhile one is giving these credits, it should

be mentioned that RIGUET (1948) observed that the "multipllcat;on in

a BRANT-Groupoid was a "difunctional relation'", Now a difunctional
relation (RIGUET'S term) is nothing other than a flbre-proauct (with
slightly less stringent requirements{ i,e, of the form«g oY) , with

h, g, guasi—functlono, rather than functlons) Consequently he may-be
5a¢d to be a god father at least of the structural definition of a
category used here,and invented (in a different context) by GROTHENDIECK),

Chapter I, which follows this introduction, starts from
the "structural definition" of category and develops most of the
"general theory'" of categories and functors through this definition,

It seems to be implicit with this sort of definition that
a {{ natural transformation of functors )) should have something to do
with the arrows of the arrow category which are traditionally

represented as commutative squares, and this is indeed the case, The

construction of the arrow category given here does not require the
notion of natural transformation of functor in its definition, and
indeed seems to be the very definipg object for this notion, The
resulting functorization of this sine qua non of category theory
seems to have useful consequences and seems to lead to other

considerations, which will be explored in Chapter I1I, In any case,



we have included in Chapter I, and thus in this thesis, all of
the relevant (as well as some of the irrelevant, we fear)
functorial notions and have tied them together, hopefully, once-
and-for-ail,

Chapter O, which has been omitted here, simply
reviews the set-theoretic formalism used in the work which
has been in nearly all cases that of BOURBAKI or GROTHENDIECK,
Tae set theoretic propositions which are proved in(O)are easily found
in BOURBAKI or established by the reader himself without difficulty,
Tie next paragraph of comments in this brief introduction may be
of help to the reader unfamiliar with the notion of ({ fibre
product )) - which appears to be the one genuinely unifying notiom

of Chapter I, For this concept we use the term carteslian square

(of GROTEENDIECK) rather than "pull-back-disgram' often preferred
by American authors, This last usage has been dictated purely by
considerations of ease of translation, at least from French to
English and back, where '"cartesian" is obviouély more satisfactory

(even if possibly less evocative in some contexts),

NOTE ON FIBRE-PROLUCTS OF SETS : Let A and B be

sets and f ¢+ A—> X, g : B—— X be a pair of applications,

The graph g'lo f = SK (a,b)) £(a) = g(b)} C A x B is called the
fibre product (or fibred-product, if one prefers) of A with B
over X and is usually denoted by ({( A xxB » or (K A+$§B ?) or

simply < Eﬁf >>. It inherits from the product A x B nearly



all of its properties such as associativity, commutativity, ete,
For the purposes of category theory its usefulness seems to be
unlimited as will be apparent in the (:ourse' of Chapter I, It is
usually convenient to call a squareDof sets and applications

cartesian provided the (so called) lifted application,

afb i R——>4 x B defined by {({ rrws(alr)p(r)) )) defines a

bijection of R onto A XXB‘

Keep in mind that if g admits a section, then so does a; we will
often denote such forced applications by the use of ({ * )).
Thus in DEFINITION (1,0,1) I*(g) is such a defined application

induced by the section I(C),



CHAPTER I

81 CATEGORICAL ALGEBRA

1.0 'EL- CATEGORIES

DEFINITION (1,0.1) A category C is a couple consisting

of a set QM{(C), called the set of objects of C, and a set }(C),

called the set of arrows (or morphisms) of C supplied with the
following structure: )
(5C); a couple (T (G), G,(C)) : F(CI==>0((C)

of applications, called, respectively the source and target applications

of g,

A A

(5C);; an application I(C) : Q4{C)—>FU(C) called the identity

assignment of C, and

(C)7q an application WG) = FL(Q) * _ FL(0) —~F(Q)
1" o '

| called composition (or multiplication) of arrows in g, which is required

to satisfy the following axioms:

(aC)y G (Q) - t&(g) = (G- pxy and a3 (Q- /1(9_) =0 (@) pryy

(AC)pp M)+ (4d gy oy X M(D) = MG « (fH(gIx 1d geoy)s

A

071(8)* 1(C);amd

(AC)III 0_0(9') ° ;(gf) = :;gqil(g_)

—

ROy (@)« L™ =gy = MO - QT

Srmenatiin



In order td faciiitate the interpretation of these axioms
we shall investigate them in detail,

(SC)I says that any arrow f in C has a (uniquely determined)
source and target defined by (Tb(g) (£) and 0'1(9) (f) respectively,
We will use {{f: A—>B)) as an abbreviation for {{f € 2¥<3) and

G’o(f) = Aand O,(f) = B)) and will denote by G(A,B) (or Hom,(A,B)
or B(A)) the set of all arrows of G with source A and target B,

(SC)II says that each object A in C has associated with it

an arrow I(C)(A) called the identity arrow of the object A (which will

denote by IA)' whose source and target is simply the object A

(by (Ac)In).

Since every arrow has a source and target we may consider the

set zg(g) x zf(g) of those couples (f, g) of arrows such that the
T1r 7o

target of f coincides with the source of g, (SC)III says that for
such couples one has a law of composition defined which assigns to each

such couple (f, g) an arrow fL(E) (f, g) called the composition of the

arrow f with the arrow g and ordinarily denoted by gf, (AC)I then says

that the fbllowing diagrams of sets and applications commute:

ACAUO S (o) e~ o)
(1,0,1,1) r*l o (1,0,1,2) 1"“1 l%
H(G) ——=01) HUC) ——— giC)

i,e, that the target of the composed arrow gf is the same as that g and
the source of the composed arrow is the same as that of £f, In short

that if £ ¢ A—B and g ¢ B—»C be given then gf is defined and gf : A—>C,



(AC)II says that the following diagram commutes:

HO x e pO — 5B 5 o)
——— #©

i,e, that given a triple (f,g,h) such that gf and hg be defined then

(1,0.,1.2) Q&uf/LJ
| )

h(gh) = (hg)f, In more familiar terms: composition of arrows is
associative (whenever defined),

(AC)III allows us to define the applications

(HQ™, UP™ ¢ FUOX2H(E) x BUG) by £ (I D)
11 9g (f)'
and frn~y (f,I ) respectively. (AC)., says that -
T1(£) w
fI =f and I f = f whatever be fe 2£(C), i,e, that the
To(£) 0a(e) e

identity arrows behave as identity elements under the‘composition
whenever that composition be defined,

(1;0,2) The observations of the preceding paragraph show
that we could have defined a category g as a non void set Q@(g)
of objects such that for each couple (A,B) of objects one is given a

set C(A,B) called the set of arrows of A into B, provided that these

sets of arrows are composable through the donation for each triple

(4,B,C) of objects of ¢ of a law of composition p: G(A,B) x C(B,C)—>-C(A,C)

which is required to be associative, i,e, f ¢+ A~»B, g ¢: B—~C, h : C—>D
implies that h(gh) = (hg)f, where ({f:A—B)) is here defined by
(<t € ¢(A,B))), and have for each A € J(C) an arrow I, € C(A,A) such

that IA f=fand gIA = g in each case that these compositions be defined,
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One may then define the set of arrows of C by H(g)=1lc(4,B)
(A3) &€ Ol (€)% Ok (LY
or under the additional assumption that (A,B) # (A',B') implies

G(A,B)n G(A',B') = ¢, as LUG(A,B), In either case, the effect is simply
(AB)eohlOx el
to fulfil the '"condition essentially of prudence' that each arrow have a

uniquely determined source and target, i,e, that the source and target

functions be definable, (In this definition for f€ G(A,B), A is defined
to be source of f and B the target of f),

To pass from one definition to the other, one simply notes that, -

in the first case the functions G‘o and 0‘1 define an application

T8 Gy ° Cﬁg(g)»&.(g) x %’(Q) by fad ( O'O(f), 0'1(1‘)) such that
Q(A,B> = O:;ll;éc'l<{(A,B)}> , while in the second case feF¢(Z) implies that
fe C(A,B) for some unique couple (A,B)éf(C) x GA(GC) so that fe~¥ (A,B)
is functional with 0‘0( £f) = A, o ( f) = B then defining the source and
target functions,

(1,0,5) In either of the preceding definitions, the set of
objects of QV and the set of identity arrows are in a one-to-one corres-
pondence with each other, If one is really algebraically inclined one
may identify the objects with the identity arrows and rephrase the definition
of category in the following fashion: A category is a set (whose elements
are called arrows) in which a partial composition is defined which satis-
fies the following axioms:

(i) h(gh) is defined iff (hg)f is defined and then h(gh) =(hg)f = hgf;
(4i) if hg and gf are defined then hgf is defined;
(iii) 4if f is an arrow then there exist arrows u and u' such that
u'f and fu are defined and u'f = fu = f,
We leave it for the interested reader to recover this definition of an

abstract or '"non-objective'" category from either of the preceding
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definitions and to convince himself of their equivalence,

REMARK (1,0,4) The three definitions of category given in
the preceding paragraph have been (implicitly) formalized within the
{({theory of sets)) where they are entirely equivalent, If one looks
at them more closely, however, one can find essential differences which
are perhaps worth pointing out,

The third definition is formalizable completely outside of
the theory of sets in a satisfactory manner by taking an equality theory
(first order functional calculus with equality) with couples, adjoining
two substantive signs ({@ andV)) each of weight one (called source and
target), one substantive sign {({* )} of weight two (called multiplication)
and adding as axioms the formal counter-parts of (i), (ii), and (iii)
of (1,0,3), ( 0 and T allow one to say when one de51res the multiplication
to be defined), The resulting "first order' theory may properly be called
the theory of the multiplication of a category, It is quite tedious and
when properly done can expand a three line set theoretic proof into a
three page ({algebraic proof)) with no increase in content., Its
proofs comprise the familiar {{finite arrow-diagram chases)) which occur
in many expositions of elementary category theory,

The second definition occupies an intermediate formal position
and is (in intended content) the original definition used by Eilenberg
and Mclane in their paper (Eilenberg—McLane 1942) which marks the
official nascence of the subject, It is appropriate when one has the
desire to formalize the notion of {{category)) within a "GOdel-Bernays
type" theory which makes a '"set-class'" distinction, In such a theory
the predicate {({is a group)), for instance, is class~-collective and one
can speak of the ({class of all groups)), The predicate {{is a homomorphism
of groups)? is set-collective for couples of groups so that one can
speak of the set of all group homomorphisms between two groups, The
operation of composition of group homomorphisms then defines a category
"structure" on the class of all groups,

The same observations are of course valid for any species of
structure with morphisms and also within this system one can even speak
of the class of all sets and indeed of the category of all sets with
set applications as morphisms (i,e, arrows), One can even speak of the
. graph of a composition and identity preserving function between such
classes as a perfectly legitimate notion, but thereafter one encounters
difficulties; for example a naive generalization would be to consider
the category of all such categories with such class functions as its
arrows, but such an obvious general situation has been specifically
prohlblted by the class-set distinction of the theory {({sets are
members of classes, proper classes are not members of anythlng)), s0
that such an obvious ({next step?) is formally prohibited for precisely
those cases in which it would promise to be interesting, (The situation
is actually even worse than it appears here, In Godel-Bernays the usual
method of distinguishing functions from different sets which have the same

graph by censidering the §§¥gég consisting of graph together with a
"set of arrival' is prohibited in these sases, fer couples in G-B

cannot have proper classes as their,projections).
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The first definition (which is implicit in Grothendieck (1961)
and Gabriel (196%)) marks a determination to consider the notion of
({category)) as a "full-fledged" species of structure in its own right
within the general cadre of ''partial algebraic structures", and at the
same time allow it to function in the context for which it was originally
designed, This is accomplished by means of {{universes)) and

« 1é¥—categories)>.
— DEFINITION (1,0,5) Let Wbe a universe,
A category G is called a Y| -category provided Q(;r(g) < 1\,& and for
each (X,Y) € (¢ x O4(C) the set G(X,Y) of arrows of C with source

o

X and target Y is a member ofm(i.e, for all (X,¥)e0¢) x ot (c),

| S, e,

If Ul is a universe, then it is "closed" under all of the

usual set-theoretic operations applied to families of its members
provided they are indexed by some member of -g.,t . Consequently\& behaves

with respect to its members as if it were the ''set of all sets", The

definition of a U‘L-category with its sets of arrows as members of g’l
is entirely analogous to the Eilenberg-Mclane requirement that g(A,B)
be a ({set)) for each couple of objects in C, It will soon become
clear that one may reason withU‘&-categories using very little reference
to Ui. . |

EXAMPLIES (1.0.6) -1° A category with exactly one object

is a semigroup with unit (i,e, a monoid); a category for which the

squares (1,0,1,1) and (1,0,1.2) are cartesian (i,e. every arrow is an
«isomorphism*) is a (Brandt) groupoid; a groupoid with exactly one
object is a group; an ,additive category* is a ringoid; a ringoid
with one object is a ring,

2° Let R be the graph of a pre-order (i,e, reflexive and

transitive) relation on a set E, Define as source and target the
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canonical projections of R onto E, Let I be the diagonal application
I : E=>R and Mt R x R—™R the application defined by the assignment
{((a,b), (b,c))~™(a,c))), then E supplied with this structure is a

category with E as its set of objects and R as its set of arrows, In

particular an equivalence relation on a set defines a category structure

on E; any (partially) ordered set and any lattice is a category. Any
set E is supplied with a category structure by the diagonal AE and its

projections; such a category is called a discretecategory,

30 Let'Q& be a universe; the setw is the set of objects of a
category Eﬁ-m whose arrows are simply applications of sets in yl.
and whose composition is composition of functions, The resulting
Q}-category is called the category of Vl=-sets, If no specific reference

is made to 'QL , this category will be called the category of sets

(and set-applications) and will be denoted by (ENS),

4° A species of structure; with morphisms

defines for any universeu the category of ('Q} -) sets supplied with a

structure of species 2’ . The resulting category is called the (U(~)
W

category of Q -structured sets, In particular one has the categories
of (-) groups and homomorphisms (Gr); abelian (!L(") groups and homo=
morphisms  (Ab); topological (U[) spaces and continuous maps (TopSp);

of pointed sets and pointed applications (wo). A pointed set is a couple

consisting of a set E and an element §, such that EgE ( § is called

the base point of the pointed set E); a pointed application of two

pointed sets in simply an application which preserves the base points,
50 If C is aTi(‘ -category of topological spaces and continuous

" maps, we may define a new category whose objects are again topological

spaces, but whose arrows are homotopy classes of such ¢ontinuous maps
¥
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and whose composition is defined by means of the homotopy class of the
composite of representatives from a given couple of homotopy classes,
(This, incidentally, gives an example of a "large category'" whose arrows
need not be applications),
| 6° Let G be a category; Xe®(C), We form the category
£/X% of objects (of ) above X as follows: the objects of £/X are the

—_—X

arrows of ¢ whose target is X; if ’él : Tl——PX and 32 : T,
are two objects of G/X we define G/X (El, '22) to be the set of all
arrows f of E(Tl,Ta) such that Eaf = il‘ Composition of such
X-morphisms is that induced by C, By abuse of notation one often refers
to objects of /X by their source alone and writes Q/X(Tl,'l‘a) for

&/X (fl, -52 ). The arrow gl is then referred to as the structural
map of the object '1‘l in ¢/X, Note that if C is a @E-category, then so
is G/X whatever be X € di(Q), _ \

7° Let G be a category, 1lst (DEF):defines the arrow category of C

(denoted by abuse of language by F¢(G)) as that category whose objects

are the fibre systems of C, i,e, triples (p,X,,Y) consisting of a couple

(X,Y) of objects of g together with an arrow p : X—1Y, An arrow f in
%¢(C) with source p, = (py, X, ¥y) target p, = (p,,%,¥,) is a couple
(fl f2) of arrows of G such that pil = 2pl. In other words such that

the diagram

A %
(1.0.6.1) P l i b,

Y > X

25 -~ 1

commutes, Composition in %¢(C) is the obvious one, Note here that

we e¢ould Jjust as well have defined Q/X as having as its objects the fibre
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systems of G with base X and having as arrows those couples of morphisms
of %f(g) whose second projection was I..

REMARK (1,0,6,2) It is amusing to observe the three definitions
of ((categoryss parallel the axiomatization of most algebraic structures,
for example, that of groups: As the notion of group gradually became
known as a distinct entity one first axiomatized the notion of the multi-
plication of a group, When this was understood it sufficed as long as
one was only interested in groups, "one at a time", Gradually one became
more interested in the interrelation of groups with one another and the
concept of ''group homomorphism'took shape, As long as one was only inter-
ested in how "groups behaved among themselves' the Bernays-Gbdel
definable "class of all groups" was sufficient for all purposes, Cnce
this '"theory of groups'became familiar, however, it was natural to
inquire about the interaction of groups with other types of structures
and the notion of category and functor then assumed a natural role in
the study of such interrelations, So long as one was only interested
in "one such interrelation at a time', the Eilenberg-McLane formulation
within "Bernays-Gddel" was more or less adequate, It is only when one
begins to study whole '"classes'" of such interactions in their own right
that these formulations become inadequate, The notion of universe then

offers the least modification of any existing system to allow such a
study,

DEFINITION (1,0,7) If C is a category, the dual (or opposite
category) g?” of C is that category wﬂose objects arethoseof ¢ and
whose arrows are also those of C, but whose target and source applications
have been interchanged relative to G, Composition in g‘“” is of course
that of %’after this interchange,

In more precise terms: given a category { with source and
target applications G}#g) and U&ﬁg}, respectively, and composition
e+ BUQ, x Be(@—=F(G), define ¢ by gt = A,
ke (€)= FQ; a(g?) = T (Q) and 6 (C7) = 0 (Q),

ME™Y = pgrre s T x AN x ROSHG = FCT,

R AR ALY ), *
where 3 is the canonical bijection defined by the assignment

({(£,g) > (g, £ D),
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As this is nothing more than a precise description of the
construction of an opposite algebraic structure from a given one, we

can simply say that ,g,“" is S supplied with its opposite structure,

The fact that the axioms of a category are self-<dual for interchange

(oP)

of (To and 0, shows that C' is a category (anti-isomorphic to g)

1
and the relation {{f : A—B in C)) is equivalent to {({f : B—>A in

ACJ'")), This latter relation is referred to as {{reversing the arrows)),

and one can speak of g‘m as having been obtained from by reversing

the arrows, The importance of c°” rests on the following meta-theorem

~

called the

rm—

PRINCIPAL OF DUALITY (1,0.,8), Any term or relation of the

theory of categories is a term or relation of the theory of categories

after interchange of the terms o; and U'l. Any theorem of the theory

of categories is a theorem of the theory of categorieé after the inter-

change of G’o with 0"1.

This fact allows us to state any notion or assertion for an

arbitrary category C and know that duality gives a corresponding dual

P

=Cand8isa

tob
) w

N . . P
notion or assertion in C**”,  One always has (g

YNI\g-category if and only if gtoﬂ is a w-category.

In general we will follow the convention of referring to the
dual of a term which has been defined by means of gf’" by prefixing the
term by ({Co0- )), e.g., yproduct and coproduct , kernel and cokernel*,
ete,

(1.1) SPECIAL MORPHISMS

DEFINITION (1,1,1) For any couple (A,T) of objects in G, recall

\

that A(T) designates the set of arrows in C with source T and garget A.
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Let f : A—B be an arrow in §, For each TGQ\_J(Q)‘ define
£(T) : A(T9—B(T) by £(T) (¥ ) = £% and T(f) : T(B)—>T(A) by

T(£(W) = wf, £ : A—>B is called a

monomorphism if for all TE%(E), f(T) : A(T)—B(T) is an injection;

epimorphism  if for all TeQ(C), T(f) : T(B)—>T(A) is an injection;

bi-morphism if £ is both a monomorphism and an epimorphism; a

retraction if for all TeQ(g), £(T) : A(T)—>B(T) is a surjection;
section if for all TeQ{C), T(f) : T(B)—>T(A) is a surjection;

isomorphism if f is both a retraction and a section,
|

PROPOSITION (1,1.2) Let f:A—>B and g : B—>C be arrows in

Gy 50 that gf : A—-C and I, : A—>A be defined, Let £(T) : A(T)—B(T)
and g(T) : B(T)—>C(T) be defined as in (1,1,1) for any Te@(vxg),
Similarly for any TeQ{C), let T(f) : ™B)—>T(A) and T(g) : T(C)—T(B)

be defined as in (1,1,1)., Then for any TeQ{{G), one has that

g(T) s £(T) = gf(T) : A(T)—>B(T), I,(T) =1 : A(T)—>A(T), and that

' A(T)
T(f)e T(g)

s

: T(A)—T(A),

T(gf) : T(C)—>T(A), T(IA)=IT(A)
Let x¢ A(T), then by definition x : T—>A is an arrow in S

f(T)(x) = £fx ¢+ T—>»B and g(T) (fx) = g(fx) : T—C, But

g(fx) = (gf)x = gf(T)(x) by the associativity of composition, The

proofs of the remaining assertions are equally trivial,

COROLLARY (1,1,%) (a) f : A—B is a '‘monomorphism iff
given any T and any couple (x,y) : T=FA such that fx = fy, one has
x=Yy, (b)Iff: A—B and g : B—C sre monomorphisms then

gf ¢+ A—C is monomorphism, (c) If gf : A—C is a mbnomorphism then

an
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f is a monomorphism, (d) If f : A —>B is a section, then f is a

monomorphism¢ in particular every isomorphism is a monomorphism,

(e) If f : A—»B is a section and also an epimorphism, then f is an

isomorphism, (f) f is a monomorphism iff f is an epimorphism in Agtm .
Condition (a) is nothing more than the statement that for

all TG%'(Q)‘f(T) is an injection, i,e, f(T)(x) = £(T)(y)=>x = ¥,

X, ¥ € A(T), Similarly condition (f) is immediate from the definitipn

of 9‘*’ . Since the composition of two injections is an injection, PROPOSITION

(1,1,2) says that for all Te€QiC), gf(T) : A(T)—-C(T) is an injection,

i,e, that gf : A—C is a monomorphism, which thus gives (), Since

the composition of two functions is injective only if the first one is

an injection, we have (c), If f is a section then by definition,

T(f) : T(B)—T(A) is surjective for all T€Q(C), in particular

A(f) : A(B)—A(A) is surjective, Consequently there exists an arrow

r : B—>A such that rf = A(f)(r):IA. (1.1.2) thus implies that for all

TEX(C), r(T) o £(T) : A(T)—>A(T) is equal to I which is an

A(T)
injection for all T, (c) then requires that f be a monomorphism,
To obtain (e) note that if £ : A—DB is a section and also an epimorphism,
then for all Teg(g), T(f) : T(B)—>T(A) is a bijection and.in particular
the arrow r : B—>A such that rf = I, is unique, Now (fr)f = If
and f is an epimorphism, hence fr = Iy and for all Tef(c) 1 £(T) :
A(T)—>B(T) is a surjection (in fact, a bijection),

- COROLLARY (1,1,3 dual) (a) f : A—B is an epimorphism iff

given any couple (x,y) :.B=%T such that xf = yf, one has x = y;

(b) if £ ¢+ A—B and g : B—C are epimorphisms, then gf is an

epimorphism; (c) If gf : A—C is an epimarphism, then so is g : B—C
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an epimorphism; (d) If f is a retraction then f is an epimorphism;
every isomorphism is an epimorphism; (e) f : A—B is a retraction
and also a monomorphism, then f is an isomorphism; (f) £ is an

epimorphism iff f is & monomorphism in,g“” .

B COROLLARY (1,1.4) f : A—B is a retraction iff there exists

an arrow g ¢ B— A such that gf = IB' If such a g exists, then it is
necessarily a section, (i,e, £ : A—B is a retraction iff f admits
a___section g), Dually, f : A—B is a section iff f admits a retraction
(i.e, there exists a g : B—>A such that gf = IA)' f is an isomor-

phism iff there exists g : A—=B such that gf = IA and gf = IB‘ it f

is an isomorphism then for all Te@{(¢), £(T) : A(T)—-B(T) and

T(£f) ¢ T(B)—>T(A) are bijections, If f(T) or T(f) is a bijection for
all Teg&ﬂg), then f is an isomorphism, If f and g are sections

(resp, retractions), then gf is a section (resp, retraction), If gf

is a section then f is a section; if gf is a retraction, then g is a

Lzstraction,

This COROLLARY is nothing more than‘a summary of a portion of the
proof of (1.1.3) and its dual together with a similar observation on
surjective applications,

EXAMPLES (1,1.5) - 1° In the category (ENS) monomorphisms
coincide withinjective applications and epimorphisms with surjective
applications, In fact, in (ENS) an application is injective iff it
is a section\and (on the axiom of choice) a surjection iff it is a
retraction (i,e, admits a section). Here every bimorphism is an
isomorphism,

-2° In the category (Gr) monomorphisms are group homomorphisms

whose underlying set application is injective, Similarly epimorphisms
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are homomorphisms whose underlying set application is surjective,
Every bimorphism here is an isomorphism, In (Ag) a morphism is a
section iff it is a direct summand,

-2° In the category (gagépGTz)) of separated topological
spaces, monomorphisms are those continuous maps whose underlying set
application is injective, The epimorphisms are those continuous mapé
whose images are a dense subspace of the target, The canonical
injection ‘of a Qense subspace into its target gives an example of a
bimorphism which is not an isomorphism,

-4° In the category (TopSp) let £ :Co=Im(£)—>Im(f) be the
continuous map deduced from some map f : A—>B, Then f is a bimorphism
which has a bijection as its underlying set application, f is not, in

general, an isomorphism,

(1.2) SPECIAL OBJECTS

DEFINITION (1,2.1) Let & be a}& -category; Ie}& , and
(P4£¥>A)w1 a family of arrows in { all with source P, The object P

supplied with the family (pQ&t is said to define a representation

of the product of the family of objects (A) with the family (p)

&L

as its canonical projections provided that for each TG‘QQ(E), the set
application th(T) 3 P(T)—AJE%L(T))defined by the assignment
\¢&

€4 x~«ﬁ4p\xl‘1 >> is a bijection,

PROPOSITION (1,2,2) If (P, (p.),,y ) defines a representation

(54

of the product of the family (A ) _. then the object P supplied with its

‘el

projections is unique (up to a unique isomorphism).
e

Let (P', (p\ )1’ also define a representation of the product



of the family (A.)

ez * Then by definition the applications

B (P1)empt ()i (P)—Th (PU4E(P!) amd
NS e Lex

Ei‘p" (P)s mp, (P) : P(P)=TA(P) —> P'(P)
tex LeL ({39

A
are bijective, in particular r = ®p' (P)oﬂPt(P) (I.) : P—P' and
L \E P
X
' o o I ' ] . 2 T — N —
r' = ﬁx;)L(P‘) & (p )(Ip') ¢ P'P exist and re.r' = Ip" rler = Ip'
The last two equalities result from the injectivity of the lifted

applicati_.ons.
(1.2,3) Since a representation of the pr(;duct of the family

(A

\ex is unique up to a unique isomorphism, among the isomorphism

classes of "objects above (A, ), there is exactly one to which such

a representation belongs, if it exists, If it exists,then a

canonical representative of this isomorphism class is defined to be

"the'" product of the family (A.)

Lr8nd is denoted by (-E[xl}" (pr dug) o

The morphisms pr, are called the canonical projections of the (by

abuse of language) product 'Il'é.. Note that the family (pr, )WI.

need have none of its members as an actual epimorphism,

DEFINITION(1,2,4) A Yl-category G is said to admit

(arbitrary) products of families of objects (indexed by members of Y|)

if given any family (A )“Iof objects of G, Ie&llthere exists an
object Il'&\ supplied with a family (pr_ :"{Eé;-—bA‘ ez Of arrows in C
such that for TGQ&(E), the application

(1,2.4,1) \nprt(T) : (m%o (T)»];Té\t('l‘),
T 182 &
Eefined by {{xmw>(pr, x) g 77 is a bijection,

(1.2,5) Let (f\)“_.fT[:‘%L(T) be given, and suppose that the
L

product of the family (A,)

~1
g €xists, then the unique morphism?prL (TX( i)
L

teY

with source T and target EII\\ will be denoted by &f .
LeL
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For each (eI, pr‘n‘;uft = f .

(1.2,6) Let (Al and (B()yy be two families of objects of
& indexed by IeYl for which the product exists, Furthermore, let
(f, : A—B, )L&I be a family of morphisms of { so that for each
Te %(Q), (£,(T) :vA‘(T)—ABt(T))\ﬂ_ is the associated family of
set applications, and Etf‘ (™ :HIA\(T)—;{-J;BI_\_(T) the application which
they define through the assignment ({{x,)qw¥ (fix )??. We have
assumed that the products TT'At and TTB. exist (together with their
progectlons) so that the application p TTA”({Y};)“EAT_ OT{\E:)—»WB (TA )——;\TB(TT&I)
is defined by composition with the representatlon bijections,

The element‘ P (I-;&\) : H{‘f‘"@‘ will be designated by T_ £, |

and will be called the product of the family of morphisms (f, ¢ A—»B, )gq_‘

For eaChL‘I'p'!‘JInﬂ_‘ = f pr, so that for each Te%(gv), the followingv

diagram of set applications is commutative:

\

E‘(T):n&g (1) «'[\;go(m)

(1.2,6,1) ® bR, (T)l"’- l"i'&r‘ (T)

T (T) e )
vt E_?L(T) -‘I?\(T'
[ PROPOSITION (1,2,7) Under the conditions of (7,2,6),

if the family of arrows (f, AQBl)k&T_ is such that each f_ is a monomorphism,

then Tjf, : TA»B. is a monomorphism, If the family (f.‘ ) mis such that each f is a

Lx_'.etractlon then TTf is a retraction, ‘

This is a result of the definition (1,1,1) and the
commutativity of (1,2.6.1),

PROPOSITION (1,2.8) Let (A ) be a family for which the

product exists and JgT be a subset of I for which (A, ).q also
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admits a product, For each T€EHX(C) such that TVQL(T) £ @ the
application pramz‘EgA‘m;\&p'\defined by {{ (x g (x) 2 is

surjective and by composition with the representation bijections,

gives rise to an arrow, ‘ Py :Hér’ﬁﬁﬁt\called the projection of index 3

on the partial product -U;%. . Pry is a retraction provided Eé" (\;\;g\) Z 2.

For each Tegjg), the following diagram is commutative:

pry (T) (115)(1') —— (MA(T)
(1.2.8,1) ll lz

pr, (T) :']Iél(’l‘) >‘\'\|;%\ (1)

-
- COROLLARY (1,2,9) In order that any canonical projection

pry :E@r’A,\ of aproduct TA, be a retraction it is necessary and
€L

sufficient that for eachieI, A((4,) £ &,
T .

This is obtained from (1,2,8) applied to the case that J={a},

since if for allweI, A(A,) £ &, then'[[ét(A,‘) £d.

pry (T) :t‘[[ée(tn) Ar(T)
(1.2,9.1)
2 [
pr, (T) ‘H{-\‘(T)- =A,(T)

* PROPOSITION (1,2,10) [ASSOCIATIVITY OF PRODUCTS] Let

I # @ be a member of Y and (U,‘%‘ be a partition of' I, Fur'cher, let
(A)

'\TA\ exists, Under these conditions the product TI'A\ exists if and
€,

only if the product 'IT(TI’ AJ exists and then 'ITAL is isomorphic to TT(TTA. ),
| At LN

\«x P€ a family of objects of S such that for eachAel, the product
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For each TGQ&J(Q), the application of -\IQST) onto
H\S‘Eﬁi‘ (7)) defined by composition of the canonical bijection
( x"""""(P"::A' X)keh >> ) with the representation bijections is
bijective, Consequently the product of the family (A, )\ﬂis
representable if and only if the product of the family (Hﬁi‘ )ke\..

is representable, in which case they are canonically isomorphic,

(1.2,11) If a category admits products in each case that

the index set is finite, will say that C admits finite products,
In this case if I £ @, it suffices to postulate the existence of
the product of a couple of objects in G, since induction will then

give the existence for anywvy. In this case associativity may

be established directly via the canonical associativity bijection

arising from {{ (a,(b,c))ms((a,t),c) D) and commutativity via

the canonical bijection defined by & (x,y)w(y,x) » .
(1,2.12) If the index set I is finite and in fact empty,
then the set TT;\ (T) is one element set {$}whatever be T, The
(e
product of such an empty family, if it exist, is called a ("the”,

up to isomorphism) final (or terminal) gbject in the category G and

will be denoted by 1, Thus if C admits a final object, then for
each T€ A(C) the trivial constant application 2¢: L(T)-s{$} is
a bijection, (i.e, for each object T in  there exists one and only
one arrow with source T and target 1, This arrow will be denoted by
]]T : T—-1),

PROPOSITION (1,2,13) Let G admit a final object 1. For

any object Y in C let 1y : Y—> 1 be the canonical arrow, The

following are then equivalent:
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(a) 1Y : Y~1lis a retraction;
(b) for all TeP(C), Y(T) £ ¢ ;
(¢) YA) £ ¢ .

-
If 1, is a retraction, then for all T€H(C), 1,(T) : Y(T)—XKT)

is surjective, KT) £p , hence Y(T) £ ¢ for all Te%(g).
Y(T) £ @ for all T implies that Y(L) /g, IfY(1) £¢, then
1Ys =L for some seY(1), (Any arrow s :1—>-Y is necessarily

a section associated with 1Y)‘

DEFINITION (1,2,14) Let (a : A—>Q, b : B—=Q) be a couple

of arrows in & with the same target Q and (d_ : R—A, d, : R->B) a

1
couple of arrows in g with source R such that ado = bdl. i,e, such

that the following diagram is commutative:

4

R
(1,2,14,1) l
d
(]
A

O e———t
o’

Y

Under these conditions the object R supplied with the couple (do,dl)

is said to define a representation of the fibre product of A with B

t X
over Q provided that for each T€(C), the application do(T)E dl('l‘)

of R(T) into A(T) x B(T) defined by the assignment
€«  xmvs(d x,dix) »

defines a bijection of R(T) onto the fibre product

A(T)u&wl;(l‘) ='{;(u,v) | (u,v)e ACT) xB(T) and au = bv} ,
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Such a representation, if it exist, is unique (up to a
unique isomorphism) and a canonically selected representative will
be (A XoBs (po,pl)) or (A,_;'c_bB, (po,pl)). With the usual abuse of

language the object A xQB is often called the fibre product and the

couple (po,pl) referred to as the first and second projections or

structural arrows.of the fibre product,

Recall that in Chapter O, a commutative square such as
(1.2.14,7) of sets and applications was called cartesian provided
that don dl : R—-A x B defined a bijection of R onto Ao.}f B,

Consequently (1,2,14) may be reformulated as

DEFINITION (1,2,15) Let G be a category and'D(1,2,15,1)

d, d,(T)
R———>B , R(T)—=——>B(T)
(1,2,15.1) dol (D) lb (1,2.15.2) do(T)l(D(T)) b(T)
A——>Q A(T)—”(T Q(T)

a square,Diin G is then called cartesian (in G) (or a pull-back

diagram) provided that for each TE(‘L(;(AQV), -the square of sets and

applications¢D(T) (1,2,15,2) is cartesian,
e

(1,2,16) If ¢ is a }l-category, then for any object Q in

G, the category Q/Q of objects above Q (or fibre systems with base Q)

is also a I -category, in which all theorems concerning products are

applicable, In {/Q, however, the product ((A,a)x(B,b),p) of a couple

of objects (A,a) and (B,b) exists if and only if in ¢, the fibre product

w?

(Aabe;'(po,pl)) exists, (This is, of course, the origin of the term
?

"fibre product'"), In other words for all objects (T,u) in {/Q, T

Q,
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(1.,2.16.1)

faUT,w), (4 xB,ap ))>§/Q ((T,u), (A,8)) x §/Q ((T,u),(B,b)),

Consequently, associativity and (for couples) commutativity of fibre

products holds (or may be just as easily established directly from the
definition (1,2,14)),

(1.2,17) In the square (1,2,15,1), the couple (d,a) may be
regarded as a morphism of the arrow do into the arrow b in the category
24(C).  If the square (1,2,14,1) is cartesian in  we will say that

the couple (d,a) is a cartesian morphism of d into d; (in F200)),

The fact that a fibre product in { is just a product in G/Q leads to
the terminology of calling an arrow f : A—-Q squarable if given any
arrow h ¢ T—Q, the fibre product T xQA exists,

rl\?OTE: In the immediately succeeding propositions, the square, (G)

(G ® a refer to ose o e2el7e in some category C,
'C), (G} (Cy* Cy) all refer to th £ (1,2,17,1) t Jo

[

a ok b ba
A——»B A—> A" B——C A——>C
«|(c,) |e a l((?) a' 6] (c.) l” il(c' )l’f
(1,2,17.1) l 1 l 1 2 : "G
At'——-B! B ——> B! Bt——>C! At——C!
a' P b' b|a|
[ PROPOSITION (1,2,18) The following statements are theorems:

(a) (Cl) is cartesian if and only if (61) is cartesian;

(v) if (Cl) is cartesian and (02) is cartesian, then
(Cp Cl) is cartesian; .

(c) if (CC,) is cartesian and (C,) is cartesian,

then (Cl) is cartesian,
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These propositions are immediate consequences of the
definition of cartesian square and their counterparts in the theory
of sets (0, PROPOSITION

- PROPOSITION (1,2,19) If (Cl) is a cartesian square in
one has the following implications:
(a) if a' is a monomorphism, then a is a monomorphism;

(b) if a' is a retraction, then a is a retraction;

(c) if a' is an isomorphism, then a is an isomorphism,

These implications are immediate cohsequences of the
definitions and their counterparts in the theory of sets (O, PROPOSITION
— COROLLARY (1,2,20) If (C;) is a cartesian square in G,
one has the following implications:

(a) if @ is a monomorphism, theno is a monomorphism;

(b) if pisa retraction, then % is a retraction;

(¢) if ¢ is an isomorphism, then % is an isomorphism,

b

If (C,) is cartesian then (Ei) is cartesian (PROP, 1,2,18(a)), and
(1,2,19) is applicable,

- DEFINITION (1,2.21) Let (aj,a,) : A=%B be a couple of arrows
in ¢ with the same source A and same target B, Let v ¢ K—A be an

arrow with target A such that &Ll =a50., Under these conditions,

the object K supplied with the morphism L is’ said to define a representation

of the kernel (or 9gualiser) of the couple of morphisms (al,az) provided

that for each Tegg(g) the application W(T) ¢ K(T)~—=A(T) (defined by

« UT)(x) = x y )
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defines a bijection of K(T) onto the subset Ker(a,(T), aZ(T)) of A(T)
consisting of those f : T—=A such that alf = aaf,
Such a representation, if it exist, is unique (up to a

unique isomorphism) and a canonically selected representative will

be called "the" kernel of the couple (al,az) and will be denoted by
(Ker(a,,a,),L) (or (Eq(a;,a;);v)). The arrow b : Ker(a;,a,)—sA
is then necessarily a monomorphism (by definition of monomorphism)

s0 that the usual abuse of language leads to calling the object

Ker(al,aa) the kernel of (al,aa) and U the canonical injection of
the kernel into the object A,

Recall that in Chapter O ( ) a diagram such
as
. a
(1.2,21,1) K-> a2
1
of sets and set-applications was called exact provided aZL = a;L

and L defined (by means of x> L(x)) a bijection of K onto the subset
Ker(az,al) consisting of all a € A such that az(a) = al(a). Con-

sequently DEFINITION (1,2,21) may be reformulated as

DEFINITION (1,2.22). In a category § a diagram of the form
a2
> A—2XB
%1
is called exact (in C), provided that for all TeJ{C), the diagram

(1.2.22.1) of sets and applications
. aa(T)
(1,2.22,1) K(T)—>a(T) ——<B(T)

al(T)

is exact,




[ PROPOSITION (1,2.23) Consider the following diagram

(1,2.23.1) of objects and arrows in a category G.

a a2
€) A —- At/ A"
1
ell (D) pl "1
(1,2.23,1) b by

&) B———B'=—%B"
1

We suppose that this diagram is sequentially commutative, i.e,
(1) ba = pa; (2) 'faz =b,6; (3) dhl = b6 s (1) aja = aja;
(5) bab = bl . Under these conditions, the following implications

are true:
(a) If the square (D) is cartesian, (}) exact implies (§) exact;

(b) (&) exact, and ($) exact, and 7 a monomorphism

implies that (D) is cartesian,

The proposition is an immediate consequence of the definitions

and it's set-theoretic counterpart (O, PROPOSITION

REMARK (1,2,24) The concepts of {({kernel of a couple of arrows)),
{{product of a couple of objects)) and {({fibre product of a couple

of arrows)) and their {{infinite)) counterparts are not unrelated.
Indeed, the canonical bijections of Chapter O, as yet unused, suggest
precisely this interdependence and could be used in much the same

way as in the proof of the associativity of products to produce a
precise formulation, We prefer, however, to delay this study until
we have a more general notion of ({representability)) at our disposal
and will content ourselves here with a statement of some of the dual
definitions and propositions of (1,2).

7 DEFINITION (1.2,25) (1,2,1 dual). Let g be a Ul -category;

IeYl, and (A®-S) = a family of arrows in § all with target S,

The object S supplied with the family (ﬁ.hﬁt is said to define a co-representation

of the product .of the family .(A_ L ;lith the fam:i.flme.("Itf%'r I'as...its”cano:lical
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co-projections (or canonical injections) provided that for each

TeX(C), the application B T6): T(S)—-K’;‘n(AL) defined by the

assignment {({  xmH(xi,)
L

e’ is a bijection,

(1,2,26) Such a co-representation of the product is unique
up toa unique isomorphism and a canonically selected representative,
if it exist, is called "the'" co-product (or sum) of the family

)).

(AL),_eIand is denoted by (_é_l&__:h ) 1 ) (or (%Z_f\ ,(\‘M@)‘ﬂ._

A category is said to admit (arbitrary) co-products of families of
objects provided such a co-representation always exists, The
defining "commutation formula' for coproducts is of course

(1.2.26,1) RT() ¢ T (LA)-2>T1(A), Ted(g),
(54 (T wI w

For any family (f)y of arrows in [ T(A,), the unique arrow
teL )

-3
BT (w)((£f)) will be denoted by Bf : lLA=sT; the coproduct
LWL we e Lex i N .
of a family (f,: A>B )laby L £ .\llé;—rl&g-. ‘In this case if each
of the f_ is an epimorphism then so is JMf, and if each of the f

LeXT
is a section then so is Mf_,

LeL
(1.2.27) In cases when the index set I is finite the product
is sometimes denoted b.yl(Al x .o xA%; the dual notation for coproduct
then is usually(A1+...+A“»). If one uses the perhaps preferable
notation of ({ A~ A )) then the dual is {{ Ajw..u A, D),
(1,2,28) (1.2,12 qual) . 1In the case of a void index set,

the coproduct is called "the" initial (or co-terminal) object in G

and a canonical representative is denoted by {({ @ ;)). The unique
canonical arrow with source {J and target T will be then denoted by
QT : §—>T, We will defer until later the discussion of the

properties of @ in relation to those of 1 .
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B DEFINITION (1.2,29) (1.2,1% and 1.2,15 dual) The Couple

(, (a,b)) of (1,2,14,1) is said to define a co-representation of the

fibre product of (4,,d;) provided that for each T€Q({C), the diagram

(b)
™Q) > T(B)

- Ta) l 7(a,)
' (4 )

(1,2,29,1)

T(A) » T(R)

of sets and applicationsis cartesian,
-

Any two such co-representations are, as usual,
canonically isomorphic (in C“® /(A,B)), If such a representation
exist in G, a canonically selected representative will be denoted
by (A+B, (i.o,tl) or (A‘.H.“B, (lo,i )) or (A +.B, (Lo’&'l)) ete.

and will be called '"the" fibre coproduct (or fibre sum) of A and B

(under 9. The square (1,2,14,1) is said to be co-cartesian (or a

push-out diagram) under these circumstances, and the duals of the

propositions (1,2,18) - (1,2,20) are all applicable, For example
one has
— PROPOSITION (1,2,%0) @.2.19 du@ . If the square (C;)

ﬁ..2.l7.D is co-cartesian in G, the following implications hold:

(a) if & is an epimorphism, theng is an epimorphism;
(b) if & is a section, theng is a section;

(c) if ol is an isomorphism, theng is an ismmorphism,

) '

[ DEFINITION (1,2.31) @.2.21 and 1,2,22 duag R The couple
(Q, V) in the diagram

&

(1.2.31.1) A=—%B—"—>q
1 |
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is said to define a co-representation of the kernel of (al,az) in‘g

provided that for each Te®(C), the diagram

T(y) T(az)
(1,2,31,2) T(Q) —>T(B) == T(A)
T(al)

of sets an application is exact,
Any two such representations are canonically isomorphic
. (W) . . . . .
(in G /B) and if such a representation exists in C, a canonically
selected representative will be denoted by (CoKer(al,aa),v ) or

(Co-Eq(a,,a,), V) and will be called "the" cokernel (or C0-egualizer)

of the couple (al,az). The diagram (1,2,31,1) is then referred to as

co-exact (or simply exact) under these circumstances,
EXAMPLES (1,2,32) = 1° In the category (ENS), the product

always exists and is simply the cartesian product supplied with its

canonical projections; the coproduct is the ''set-sum" or disjoint
union supplied with its canonical injections; the initial object is

simply the empty set @ and the final object the one element set {¢} H

the fibre product is again the fibre product; the fibre sum the

disjoint union modulo the equivalence relation generated by the

lifted application (into the product); the kernel of a couvle simply

the kernel; the co~kernel,the target of the couple modulo the

equivalence relation generated by the 1lifted map (into the product).

- 2° In the category (Gr), the product is the cartesian
roduct with its usual group structure; the co-vroduct is the
prodguct
(Kurds) free-join; the kernel is the set-kernel with the unique
iree-join 1

Subgroup structure which it inherits from thesourée; the cokernel is

" the target modulo the congruence generated by the lifted map; the
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fibre product, the kernel of the projections of the product sequentially

composed with the given homomorphisms; the fibre sum, the free join with

the images amalgamated (i.e, amalgamated sum), Initial and final objects

are isomorphic (as the one element group),

- 30 In the category (Ab), the product is the cartesian product;

the sum the subgroup of the product usually called the (external direct

sum, ggf*)3 finite products and coproducts coincide (as direct sum A® B);

kernels are difference kernels (Ker (a - b) (= Ker (a - b, 0))); cokernels

are difference cokernels (Coker (a - b) (=Coker (a - b, 0))), Fibre sum,

and product are ker and coker of homs into or out of direct sums, The

zero group is both initial and final.
- 4° In the category of commutative (formerly “anti-commutative")

R-algebras, finite sums correspond to temsor products (A®B), In

graded algebras, the product is a graded subring of the product of the

underlying rings, In the category of rings with unit (O £ 1) and

unitary ring homs, the initial and final object is the two element ring

{0,1) .

- 5° In the category (TogSg), the "special and cospecial
objects" (i.e,,limits") are the same as those for (ENS) supplied with

the appropriate initial or final topology. If one restricts the maps

to closed mappings only, one loses the general existence of products
(the projections are not, in general closed), For normal spaces general

existence of products is lost altogether, For connected spaces, one

loses sums, but regains them if one only considers pointed spaces (the

sum is then the disjoint union with base points identified), For

Tg-gggggg, the simple construction of cokernels and fibre sums is lost,
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using proper maps only, one loses products but retains fibre products.

For compact Ta-spaces, the sum is the Stone-Cech compactification

of the disjoint union,

- 6° In any category C, if XeQ«(C), then the category §/X
has products iff { has fibre products, sums iff ¢ has sums, and,
in any case has a final object, i.e, (x,Ix). ,

- 7° In any category C, the squares (D) and (D) are both
cartesian and cocartesian: -

£ : I

A————3B

A A
I, i (D) jIB fl; (D) lf
£
B B

A——=B

For each TeQl{(C), the application I, (T)® £(T) : A(T)—=A(T) x B(T)

definesa bijection of A(T) onto the graph of the application £(T) : A(T)—=B(T),
The application £(T) ®& IA(T) : A(T)—B(T) X A(T) defines a bijection

onto the graph £ (T) € B(T) X A(T),

-8 In (ENS) the square (I) is both cartesian and-cocartesian.

ANnB—» B
l (1) l
A——>AUB

The arrows are, of course, the canonical injections,

o
= 9 In any*abelian%category (for example, the category

(Ab)) a sequence
(3): o—=atepBec—ro

is exact if and only if the square (3)
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A———-—————-B

) l g
O0—C

is both cartesian and co-cartesian,

REMARKS (1,2,32,1) The examples 1°-5° should convince the
reader familiar with any one of the categories cited that the "special
objects" of (1,2) are the fundamental objects used in the classical
theory of these structures to produce "new objects" from '"old ones',
and as such are fundamental to the study of the corresponding theory,
That such familiar objects should have the same "categorical''description
is one of the justifications of the study of category theory,

The examples should also convince the reader that objects which
play the ''same categorical role" differ from category to category and
may, in fact, have this as their only similarity. By the same token,
it should also be clear that the "'same" object may play a quite disimilar
role with only "slight'" change of category, and finally, be aware that
although a familiar construction of one of these special objects may
fail to give the desired special object, this alone is no indication
that the category in question does not posses such an object (e,g., the
categorical product in 'most' elementary cases is constructed from the
cartesian product, The cartesian product of graded algebras is not a
graded algebra, the product still exists, however (Ex, 4°), Dually,
the disjoint union of compact T2 spaces is not compact, the sum still
exists, however (Ex,5°)), :

For a mathematically sophisticated reader, these "cautionary"
remarks are unnecessary, <Such a reader is aware of the '"algebraic flavor"
of the definitions of the special objects and would no more expect an
object which plays the rdle,say, of a product in some category to
continue to do so in some 'extension category", than he would that a unit
in some submonoid of semigroups would necessarily also be a unit for the
whole semigroup, ‘
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(1,3) Ui - Functors and the Category CAT-1j
Ao ~

g

DEFINITION (1,%,1) Let ¢ and D be categories. A couple
F = (g(F), &(F)) consisting of an application #(F) : OKC)—4lD),

called the object function, and an application 4(F) : H(C)—>- 3\2(3)

called the arrow function, is called a functor (or morphism of categories)

with source {, and target D provided the following conditions are

satisfied:
(4NC); HMF)e a (G) = 0;(2)-‘%@) and  gf(F)+ 9 (g) = 00 (D) $4(F);
(aMC) . MR)° (ﬂ(F)o‘)l(,G’:%(F)) = UF - Qs

Wed)pr WD T = LDy,

(AMC), states that the application
I

(P xUF)  2(G) x F() ——H(D) x #(D)

(defined by the assignment ({ (f,g)a~(4UF)(£), 'Q._(F)(g)) )) defines by

restriction an application
ﬂ(F)Wl"‘roﬂ(F) :%(g)wtfé;(g)—a,ggg)ﬁxr@(g)

so that the cubic diagram (1,3,1,1) of sets and applications is
commutative, (AMC)II says that this application is compatible with

the éompositions

(1.3.1,1) L A l,
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of G and D, i.e., that the diagram (1,3%.1.2) is commutative,

(AMC)III says that the arrow and

A
o
”~~
I
s
=
7
~
x
!
N
P
o
o
]
W@
N
o
N

g

po L0
(1.3.1.2) '
- #(g) —2O - F(D)
) 40 L o)
(1.3.1.3) T Lo

object functions are also compatible with the identity assignments,
i,e, that the diagram (1,3,1,3) is commutative,

With the customary abuse of notation of denoting the object
function and the arrow function with the same letter F, our usual
notation compresses these conditions into the following convenient
form:

— given £ : A—=B an arrow in G, then F(f) : F(A)—F(B)

e

is an arrow in D by (AMC)I; F(gh) = F(g)F(f) for any composable

couple (f,g) in G by (AMC) and‘F(IA) = I for any object A

o A F(A)
in g by (AMC)rry. In’ short, & functor is a source and target,

composition and identity preserving mapping of categories and will




be denoted by ({F : C—~D)),
(1,3,2) Using the ‘Eilenberg-McLane definition of category
(1,0,2), the definition of functor would lead to {{ a functor
F : G—D consists of a function F : &(C)—-H(D), called the
object function, and a family (F(A,B)) (A,B) € g{C)xge(g) of
functions F(A'B) : G(A,B)—=D(F(A),F(B)), (A,B)e¢{C) xg«C)
which preserve composition and identities whenever definedy )).
(1,3.3) The definition of functor is conformal with the

general definition of morphism of a species of structure, In

particular, a functor F : G—D defines an isomorphism of C with
D provided the object and arrow functions are bijections,

'NOTE: The notion of {{ isomorphism of categories J)

should not be confused with the more important notion of

({ equivalence of categories )) to be defined later (1.3.11),

B PROPOSITION (1,3,4) If F : C—>D and G : D—E are
functors, then G°F : C—>E, defined by ¢G°F) = ¢{G) » &(F) and
#G-F) = #4(6)- §4(F), is a functor with source { and target E, said

to be obtained by composition of F and G, For any category G one

has the identity functor I, : G~ defined by IC(X) = X for all

Xegf(g) and I (f) = £ for all fefQ).
L ~

(1.3,5) Let & be a universe, then in some universe W such that

Y(whose existence is guaranteed by the {{ axiom of universes )) )

Well
one has the set CAT-Y of all ‘%-cat‘egories. Proposition (1,%.3)
then states that (’J'é‘_l‘-% has a category structure provided we take as
morphisms functors befween.m- categories, We will designate by

Hom (G,R) or(§ICAT(C,D) the set (merrfber of ]&*) of all such { -functors
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with source the T -category C and target the ‘\E-category D. Iif
no explicit reference need by made to || we will designate this
category simply by (CAT),
—

DEFINITION (1,3,6) A functor F : GZ+D is called a

contra~variant functor from § to'Q. Its defining characteristic

with respect to § is simply {{ F(gf) = F(f) F(g) for any composable

o

couple (g,f) in ¢ D). A functor ¥ : G—>D sometimes is called a

~

co-variant functor, Recall that { is a 1Y} -category iff C“® is a

T Y -category (qf 1,0,7).

DEFINITION (1,3,7) Let (G, ) be a family of u-categories

with T€ll ., We define the product of family (G. ). of ¥l -categories
to be that Yl -category ngb whose objects are the members of the

8
set H;Q{ﬂf(C.) and whose arrows are the members of set 11 #(c) (with

ex
composition defined by f,g) = ( p(C) (£ ,g.)) ) supplied with the

family (I‘JWI'L : -LEQ,;-*Q,)*I of canonical projection functors (defined

in the obvious fashion),
L.

It should be observed that T G _ supplied with the family of
(U3

functors (pr )¢ is the product of the family (G.)

Gaz-

in the category

(S5

DEFINITION (1,%,8) A multifunctor is a functor F whose

source is the productT g, of some family of categories, If the e
e

factor is of the form g:p; for some category C, , then F may be

said to be contravariant on C. , and by a pleonasm, covariant on

co® . The most important case is where I is finite and

all of the members of the family (G )y are of the form G or G°?

for some fixed category G, a functor F : Il;gr»g is then called a



multifunctor on g and the variance becomes of interest, If

I = {1,2} ‘then Fis called a bifunctor on C.
I bifunctor
[ DEFINITION (1,3,9) If C and D are categories each supplied

with a functor to a category L, we define the fibre product of
with D over E to be that category xEQwhose objects are
~
M xq&d&:-‘SQ), whose arrows are H(C) x #(D),and whose composition

FAUE
is that inherited from § x D, supplied with the two projection functors

pry: CxED—s- ¢ and 2 Y XEQ'—*B,
-

if G, D, and E are 7l-categories, then ¢ xR is a

%wategory and the definition of fibre product is conformal with

that of fibre product in %2-1&.

(1,%,10) The one point category !, &) = {@},

e

2{(@) ={(¢,¢)} (or its isomorphic equivalent) is the final object

(or final category) in CAT-UL, in all cases,
— DEFINITION (1,3,11) Let F : G—D be a functor and for

each couple (A,B) € §{(g) xg;(’r(g), let

Fa,B) ° ¢(a,B)——=D(F(A), F(B))

be the restriction of {U(F) to g(A,B), F : C—D is said to be
faithful provided for each (A,B)€&k(g) x P (Q),
) is injective;

Fla,B ‘
full provided for each (A,B) € f(C) x g(C),

F(A,B) is surjective;

fully faithful provided for each (A,B)€Q{(C)x Q{;(g),

F(A,B) is bijective;
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by

separating (or definitive) provided F is faithful

and weakly quasi-injective (i.,e, f : A—B

and F(£) : F(A) = F(B) implies f : A = B
or equivalently, F(f) = Ipo;(f)) and
f an isomorphism implies f = I a( f));
embedding provided {L(F) (and hence also &(F))
is injective; and an |
equivalence provided F is fully faithful and guasi-
surjective (i,e, for all Xed{D), there exists
an Ae@(C) such that F(A)—“LFX); and an

isomorphism provided ¢(F) and {i(F) are bijective .

If F is faithful, then it does not necessarily follow that
U(F) is injective, If TF) is injective, then F is of course

faithful and, moreover, 9&(1“) is then also injective, so that F is
even an embedding under this hypothesis, Actual isomorphism of
"large' categories are rare; equivalences are much more common and
are an entirely satisfactory substitute for igomorphism in nearly all
interesting cases,
[ DEFINITION (1,3.12) A category G is said to be a subcategory
of a category D provided that &{(C)< ¢D), F(C)<= #(D), and the

couple 1, = (%(1;!), (1)) consisting of the canonical inclusion

applications is a functor. ‘i.cz C<—=D is then called the canonical
inclusion functor,

L

r— DEFINITION (1,3,13) Let C be a subcategory of D with

Nt

1¢8 C<—>D the inclusion functor., The subcategory C is said to be
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full provided V¢is full (and hence fully faithful);

]
dense (or representative) provided 'Lg an equivalence; a

seive provided X€QW(C) and f : T—X, implies

£ € FC); and a

seive with respect to (= (D)) (or C-seive) provided

Xe &(C) and (£ : T—>X) & € implies fe H(C).

(1.3.14) Some authors require that a {{ full subcategory )

be a seive with respect to isomorphisms in R. A seive is always a

full subcategory and, as all full subcategories, is completely
determined by its set of objects, It should be kept in mind that
the image ( &«(F) <<:3£r(g)>, £(F) <ﬂ(,§)>) of some functor F : —> D

is not necessarily a subcategory of D, (It is if 9&(1?) is injective,

for instance), or more generally provided the relation
« (£,8) € HC)eyx-JUC) )) is equivalent to the relation
3
K (F(£), Fg)) eﬂ(g)g—l xcg@(}g) » .

EXAMPLES (1,3,15) - 1° Let G be a (|l)-category,

PROPOSITION (1.1.2) shows that for each Xe %(c), the assignment
(( Ty XD, £ans X(8), Ted(Q), £eA(Q) )

defines a functor hy : C—(ENS), called the canonical (contra-

variant) hom-functor defined by X € ¢){C)), and the assignment

« T M T(X), £A~- £(X), Teg{i(g) f‘G 5}1“(9) »
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a functor hy : C—> (ENS), called the canonical (co-variant) hom-
m A

functor defined by X € &(C)).
The assignment

K (XD C (X1 D

then defines (in obvious fashion) a functor hom : gvm) x C—> (EIME§)

which is then called the canonical (hom) bi-functor from C into (ENS),
"contra-variant in the first variable, co-varient in the second,

- 2° Let X and Y be objects in C and £ : X—~—>Y an arrow in
C. f then defines a functor f, : Q/X——*Q/Y from the category of
objects above X into those above Y, (1,0.6 Ex, 6° and 70), by

£ (U3) = (U,f%) and £y (W) =4, called the direct image by £, If

f is squareable (1,2,17) then f defines a functor 7% ; Q/Y—'— ,Q/X by

€ (v, p )'ww,\(Xfo, p_rl) >) called the inverse image (or change of
)

base), by £,

The category Q/X is always supplied with its "inclusion"
functor 1, 3 /X C oy (¢ (T, R)weT, xmasx D),

- 3% 1f C admits products and/or sums, then

QOG> T (E0>TEC D) and XA WK, (20goee D)
' I I

define functors W _: C ~—=C and ) C —C,
e %4 [

e Wy W

- 40 A monoid or unitary ring homomorphism defines a functor

for the corresponding categories (1,0,6 Ex,1°). Any monotone
(increasing) function defines a functor for any pre-ordered set (¢uw
category (1,0.6. Ex,2°); a monotone (decreasing) function, a contra-
variant functor, In particular, the functions £ P(E) —=B(F)

A , ‘
and £ 1 "B(F)-—> @(E) define covariant functors of the categories

v
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4(E). Any open or cont,map is a functor from the categories
9E¥ (S) of open sets of some tépologiéal spaces, A functor
F: ng?s)“—"A"glis called a pre-sheaf (with values in g).
- 5° The assignments ({ E~~> A(E), famr> F )) and

(Envs P(B), £ o 7 ) define functors (§§§)——31—*-(§E§)

»

(]
and (ENS) (ENS).

- 6° Any category C defines by a species of structure with
morphisms has a functor X~ X which deletes part or all of the

structure and is called the canonical projection (or "forgetful")

functor defined through 2, . « Xaw XY is in general faithful (and in

fact separating)., For example the category (Gr) has its underlying base

set functor w= i (Gr)—>(ENS),
AN [
~ 7° The assignment Xw~>F(X) of any set to the free-group
on X defines a functor F : (§§§)—-—*— (ﬁs). Similarly for polynomial-

algebrgs' free monoid algebras, ringsof quotients, symmetrizations,

etc, all define functors, Stone-Cech compactification, completion of a
uniform space, etc, in topology give examples of numerous examples

functor defining object mappings.

- 8° The classical homology or co-homology theories are

defined of certain functors from some category of topological spaces

into some appropriate "algebraic' category; the relativised homology

or co-homology theories as functors on some appropriate subcategory of

the arrow category of (gggﬁp); similarly for the classical homotopy

theories,
- 9o As examples of subcategories ome has the full subcategories

of (Ab) in (Gr) and (T£2§P-T2) in (TopSp); restriction to isomorphisms
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or other "composition closed" type of function g:%.ve numerous examples
of non full subcategories, As an example of a seive, take G/X and
some (Y, ) in G/X. The set of all (T, ]») such that there exists
an X-morphism f : T—Y forms the set of objects of a seive in g/X

(said to be associated with (Y, § )),



L6

(1.4) TRANSFORMATIONS OF (VL) FUNCTORS - THE CATEGORY

Hom (D) (= CAT(G, D).
Z (1.4,1) If G and D are (VYL") categories (objects of

CAT (-W )), set CAT (C,D) of all ‘functors F : C—>D is a member of
some universe 'lj}‘ which has Ul as an element and not in general itself
a subset or evern of the same cardinality as some subset of % . Con-

sequently for any "Q(.v-category C, the functor defined by the assignment

( I~>car(r,c) »

is a functor from GAT-W into Eﬁﬁ*m* . !
| We now proceed to supply CAT (T,C) with an important
(canonical) Uf-category structure,

(1.4,2) Recall that the arrow category 92 of a (UL-)

category is defined (1,0,6, Ex 7°) as having as i{s objects
g(*r(g‘z) the set FL(G) and having as its own arrows (92)
the set %f(g): (%(g)vﬁ% ﬂ(g))wﬁ,;fmgg (g>q§,@(g)) consisting of the

"ecommutative squares" of S' The source and target applications are

simply the iterations of the first and secord projections corresponding

to the assignments

« ((Po.ql). (py59,)) > p, ?) and g ((po,ql),(pl,qo))w;»qov»

for a square ((po,ql), (pl,qo))égg). An arrow ¢ : p epq  in
9_2 then may be considered as the couple of'top and bottom arrows"

in the commutative sguare diagram

(1.4,2,1) P

4

o

» —-——3
< <

Py
i i
?,
[ ]
v e~
9
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The source of (Y is the arrow P, and the target 9.
Multiplication ( ‘&(@) is defined for '"properly coincident

squares'" through the multiplication in G by the assignment
€ (pgeay)y (pyea )y ((q,ry), (sl,ro))ww} ((p,,r19;), (8yp1,7,))

which is just the description of "lateral adjunction" of the diagrams

pand ¥ , i,e,

P 8 ) 8, p
i ¥ 0
(1.4.2,1) ( p, | => | 9,=>| T, oy P, =>| T, ).
A U W A—W
k! o 19

Taking as the identity assignment the obvious one,
(K (p, 2+ A—=B) ~>((p_,1p), (I,,p)) ),

it is a matter of trivial verification that under this multiplication,
%
JU(g) supplies the set #(G) with a "natural" category structure,

(1,4,3) The category 22 is a Yl-category if and only if G

is, To see this (and for other purposes as well) it is helpful to note

that for a fixed couple (p o* qc) of objects in 92, the set of arrows in

92 which have source P, * T—A and target q, ¢ B—>~U may be identified

with the fibre product

U(A) x B(T) ——— B(T)

u(p ), q (T)
(1,4,3,1) Po”r %o qo(T)

U(p. )
U(A) Po > u(T) .

M,



which is certainly a member of Y, if U(A) and B(T) are

— DEFINITION (1.4,3)[ GROTHENDIECK (1961 - TDTE IIT))

Let C be a category, A system C = (p F:',i::t 0,I) consisting of objects
' I

Fond Odin G and arrows (¢ _, T,) + F—20, 0—>F, p: Fox F— F

is said to be a category in C (or a C-category) (with F as its C~arrows,

O as its G-objects, etc .) provided the corresponding arrows and objects

which occur in the equations of the DEFINITION OF CATEGORY (1.0;1) all

exist in C and give rise to valid equations in (with composition in g
replacing composition of applications), e.q providing the following

diagrams exist and are commutative in G :

o ‘ » wlle
o a5 | w Tiloy M n
(1.4,3,1) 1 °
) | 0o M
F&=——=*x 0 F——>0 Fxf —>F .
I -
L
F' In analogous fashion one may define a C-functor of C-categories

as a couple (f, f') of morphisms of G, f : O;—=0,, f' : F,—F,

which satisfy the C-analogues of (AMC)I = (AMC);y (1.,3.1) di.e, s0 that

the diagrams '
£ ' £ . ‘ f_._ﬁf' B
5 B = Fa P — P2
(1,4.3.2) a:“«. v.‘“r.‘ r,'t T l lw.
0= % 0 7% 7 F2
B :

are all sequentially commutative, The compoéition of C~functors

(being again a G-functor) gives rise to the Category of C-categories

with G-functors as morphisms,
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LEMMA (1,4.,4) If C = (ps F%Z 0,I) is a C-category, then
for each TE€ Q&(g), ¢lr) = ( p(T); F(T)—f__g’;O(T), I(T)) is a category

0
(with O(T) as itc set of objects, F(T) as its set of arrows, etc,),
Moreover, for each f€ T(U), C(f) = (0(f) : O(T)—0(U), F(f) : F(T)—>F(U))

is a functor C (£) : C(T)—>C(U),

o

By the definition of C-category, the definition of the

applications (Tl(T), U;(T) etc,, and of fibre-product in C, one has that

for each TG(&(Q) all of the diagrams of sets and applications correspond-
ing to (1,4,3,1), e.g,
MDY+ F(D) () S Er(r) —E T e p(1)
IR S o

(Lk.b,1) | | lm’
o (D t KD = K1) ————m o(1)

-1 .
—x1 .
are commutative, (Here 'T.(T) is prl(T) 8 pr, (T)e rL(T)). Hence,

with the multiplication \I(T), (o(T),F(T)) is supplied with a category
structure in the sense of DEFINITION (1,0,1), so that C(T) is a category
for each T€WYLC).

To verify that C(f) is a functor for fe T(U), observe that
the diagrams such as

F(f)
F(T) > F(U)

(1.4,4,2) T (T) o (u)
° 0 (f) °

o(T) - 0(U)

are commutative merely because of the associativity of composition in G :

for xe F(T), 0(£)* € (T) = ( ¢ X)f = T (k) = ¢ (U)F(£)(X), The
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verification of the other axioms (AMC)I —_ (AMC)IV is equally trivial,
LEMMA (1.4,4) can beparaphrased with the substitution
¢ ... for each T€R(C),C(T) =( WT); F(T)——=0(T), I(T))
"is" a category (up to a unique isomorphism) , ., ., ») and thus
replace F(T) with the given ‘k(T).
NOTE : The converse of (1.,4,4) is also true and will be proved
later in a more general context,
B COROLLARY (1,4,5) If F = (£,f') is a G-functor of C-categories
with source C, = ( % Fl"‘—:-»" Ol,Il) and target C, = ( Pos Fé‘-—_--";OZ,Iz),
then for each T€ Q4(C), the couple F(T) = (£(T), £'(T))is a functor from

the category 'Cl(T) into the category Ca(T).
L

The associativity of composition again gives commutativity of
the evaluated diagrams corresponding to (1,4,%2) in (ENS), so that, by
definition of functor (1,3,1), the corollary holds, Coherence is again

a consequence of (1,2,6).

1

BN grfr(T) PalT)
F,xF, (T) —>  FxF,(T)
[3 ll.
(1,4,5.1) “ ‘ £1(T)xf* (T) |
Py (3 (1) ————> (D ()
5 (D) l X (T)
111 £1(T) £
F () : > F,(T)

r
DEFINITION (1,4,6)A%-category C is called Yl-small if its

set of objects (and hence also its set of ‘Arrows, since it is a Ul -category)

is a member of UL, i.,e,, G&(g)eﬂ .
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If C is a.'Hl-category and C is a C-category, then the

category C(T) of (1,4.4) is U -small,
B (1.4,7) For any category G, let g? be its arrow category,

9? is supplied with the following canonical functors:

KO
g ==
(1,4,7.1) & =
l By ml Tol8)
e (c)y ~

)

1° a couple of ( 7,(C), £e)) :g?::g called the source
and target functors defined by

« Py s T(C) (p), ((p 4977, (P1,9,))wnsspp D) and

« Py v 71(8) (), ((po,ql)‘, (ppray)wssay D)5

2° 1(0) g-——"g? called the identity assignment, defined

by ({ X Iy, faw((I4,0), (£,10)  )), and

3° C) : % x ¢®—= 2 called the multiplication,

defined by

« (p;,so)amg‘s;po, ((po,ql), (pysa,), ((so,x"l), (ql,ro))w((sobo,rl),(pl,roq))))d

-

It is easily verified that these are indeed functors for they

correspond in the square (1,4,2,1) to the assignments of!top and bottom
arrows for source and target (which are functors because of the "lateral

multiplication' which is defined in g?) and in §°, to the '"vertical

composition" of squares:
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P
T —>B P,
pol l q, T—> B
A ———>T s~y 8, P, r.d,
8 l l r C—»=V
(] o rl
C———> YV
b |

which is the same as that of 02 using the conversion bijection,

(L47.3) (C (Upgeap)y (13 )) s ((By,a,), (Bgea;)) M.

LEMMA (1.4,8) Let C be a W ~-category and 92 its arrow category,

so that both G and G° are objects of UWL-GAT, then

o]

= (MO (@), Ge): ¢d=—=c¢, 1))

isa ( U -w)- category,

e

The functoriality of the structure functions having been
verified together with the knowledge of unrestricted existence of
fibre products in TYASCAT in (1,4.6) and (1,3.9), the verification
of (AC)I - (AC)IV is straightforward and left to the reader,

THEOREM (1,4.9) For each Ul-category I, the set CAT (s,&)
is the set of objects of a category structure (in some 1&,'31&) whoge
arrows are the members of the set CAT (T, gf ) with the applications
(GAT(T, &(C)), CAT (T, G:(C)) : GAT (T,C)—FGAT(T,C) as its source
and target functions, and CAT (T, MW(C)) : CAT (2,9\'2) x CAT (g’,gf)—*c\gg(g,gz)
- (LA AT,
as its multiplication, Supplied with this structure wl'(z,g) is not
in general a %-category, but is always a small '\ll.‘-category, For any

functor F + U—>T, CAT (F,Q) + GAT (T,) —>GAT (U,) ie the object

mapping of a functor; whose arrow mapping is %I‘(F,gz) : w(g,ga)——bcv.ﬁg(y‘,&a).
-
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The theorem is a corollary of LEMMA (1.4.4) applied to the
category Ul -CAT using the ( UL-CAT) - category g = ( w8

(500, TeN: CP==C, I(C))of LEMMA (1,4.8),

M

F(E),x, G(F)
g2 x ¢Xm - g3 x ()
i N lf'* w \L‘
(1.4.9,1) ¢ e - g?‘(;)
. i
o(I) g(F) -~ (D)

DEFINITION (1.4,10)The category produced in THEOREM (1,4,9)
with objects GAT (C,D) and arrows CAT (,9,32) will be denoted by

«CAT (G,D) (or Hom (G,D))pand will be called the category of functors

with source S and target D (as opposed to the set of functors CAT (C,D)).
S L

The arrows in this category will be called morphigms (or natural

transformations) of functors, Unless otherwise noted, it will always

L_Pe this category structure to which we refer in reference to CAT (Q,R).
If we denote composition of natural transformation as

({ 8% >, ({ CAT (F,Q) is a functor )) is simply

({ (8eY ) F =60F. YF ),

PROPOSITION (1,4.J1)The following statements are equivalent:

o 2 ;
@ 2"'*0 and g;&g)q’ = F ¢ :.E‘_""gv and zi&g_)sﬂ =G ¢ E_‘—‘" g.

N

1

({( ¢ is an arrow of the category CAT (I,C) with source

P and target G ) ).
)
2° F s T—>C and G : T—> C are functors and,

( @() : F(T)—=6(T)) Tef{C) is a family of morphisms in



G such that for f : T—U in T, the diagram

F(f)
F(T) > F(U)
| (1) | l )
(1.4, 22.0) l 6(#) ¥
a(T) - G(U)

of objects and arrows in G is commutative,

( {({ ¥ is a natural transformation of F into G )) ).

For the proof of this equiiralence, observe that the definition
of {{ functor )) of {{ arrow category of ¢ »> (1,4,2) determines
the form of any functor @: 2-—»92. If £f ¢ T—~U is an arrow in

T, then ¢(f) : @(T)==>¢(U) must be an arrow in &2 and hence we may

write

0 (@ () ~ 7 (p(0))

() . P(T) > (V) | 9(0)

t
@, (p(T)) G, (p(U))

as the commutative square (( ¢ (T), t), (u, (U)) which the image
of f under the arrow function ofso o The source and taréet functors

then yield the assignments

€ (f 3 T—>Two> (@(T)—> T ( P(U)) andf : T—»U;&»oi(qo(l'))—wi(go(m)'

which we may rewrite as

»,
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: G(£)
F
€ £ 177 waF(T) —% F(U) and £ : T—>Ums G(T)—>G(U) )
if we let F(T) = o‘o(<p (T)) and F(f) = u and G(T) = a-1(<p('r)),
G(f) =t, F and G are functors as the composition of the functors
g (C) and T (C) with P .
Conversely given functors ¥ and G which satisfy 2° for some

family ( @(T )TﬁgKg) of arrows in g, the assignment

({  Two@(T), famy ((@(D), G(£)), F(£),(U)) M

defines a functor ¢ : 2——>§2 which clearly satisfies 1°,

(1,4.12) 1t is convenient to note the form of the composition of
natural transformations in its evaluated description, 1Let F, G and H
be functors from Cp+G, and @ ¢ F—> G, W : G—>H natural trans-
formations, then ¥-p ¢ F— H is the natural transformation obtained

by the "vertical composition'" of squares

| F(£)

F(T) ————>=F(1) ) F(£)
#(T) ou)y - FOD—KU)
(4220 « o(m—3Dss(n)  anmas lw(w):p('r) l HOWPW) )
H(f)
W(T)l H(f) l Ko H(T) —— H(U)
H(T) ——> H(U)

for any objects T, U in g, and any f : T—>7U (which is, of course, just

02 x 02——> 02
" S .m L'ed

~

the definition of the "functorial composition" M(C) :
(1.4.6.3%),
DEFINITION (1,4.13) A natural transformation @: F—>G of

functors is called an isomorphism of F with G provided it has an inverse
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in CAT (¢,D). (di.e, there exists ¥ : G—F such that ¢-¥= I
and P9 = I.),

In order that ¢ be an isomorphism it is necessary and
sufficient that for all Te8xC), @(T) : F(T)——G(T) be an
isomorphism in B.

EXAMPLES (1,4,13) - 1° Let C be a category, X, Y objects in
€ and £ : X—> Y an arrow in C, For each TQQQ’(Q), let
£(T) : X(T)—>Y(T) be the application defined by
(€ £(T)(x) = £x, xe X(T) )). The assigoment {{ T £(T), T €Or(C)
then defines a natural transformation h £ of the functor hxinto the
functor hY‘ The functoral morfphism hf
associated with (or induced by) f€ Y(X), Similarly for each

: l}x—>hY is said to be

T€ Q&r(g), let T(f) : T(Y)—>T(X) be the application defined by
({ xwmsxf )Y, The assignment ({( T~ T(f) )) then defines a
natural transformation h' £ of the functor h'Y into the functor h'

\ X
said to be associated with (or induced by) f & Y(X), In other words

for each (T,U0) € Q«(C) x O (C) and each €U(T), the diagrams

| @)
- X(@) - X(T) T(X) —>U(Y)
(1.4.13,1) 1 £(p) if(U) (1,4.12,2) lT(f) l u(f)
' Y(%) ' ¥(X)
Y(y) ” ¥ (1) ™(X) —>U(X)

of)sets and applications are commutative,
2° Let C be a category and (X x ¥, po,pl) a representation
of the product of X and Y (1,2,1), For each T€ ¥ (C), let

po(T)n pl(T) : X3Y (T) — X(T) x Y(T) be the application defined
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by (¢ xw»(p x,p;%) ). The assignment {( Tavs>p ()@ py (T) D)

then defines a functorial isomorphism of the functor hX*Y.with the

product functor h,,x x hy (defined by tgxbe(T) = h(T) x h!(T)(=x(T)xY(T))
by definition,

30 Two classical examples of natural versus "un-natural "
isomorphism are those of the isomorphism of a finite abelian group G with

its double character group D(D(G))  \: I, x—=D-D : A AD™

M

which is natural in contrast to the always present isomorphism of
G—=*>D(G) which depends on choice of generators and is not functoral,
Parallel is the natural isomorphism of a finite dimensional vector
space with its double dual V'—=» Hom (Hom(VR),R) versus the un-natural
but always present isomorphism of V-=»V* which exists from the equality
of their dimension,

4° A1l of the "canonical maps" of Chapter O are natural when
the functors are restricted to (ENS-U[),

REMARK (1,4,13) It may be argued that the sequence of LEMMATA
leading to THEOREM (1,4.8) is a ridiculously cumbersome method of
showing that the set of functors between two categories has a category
structure with natural transformations as morphisms, (The conventional
procedure is to define {{ natural transformation of F into G )) via
(1,4,9,2°) and take (1.4,10 as the definition of {({ composition of
natural transformation )) ), The justification of this technique
is in its "internalization" of {{ functorial morphiesms )) within
(GAT) and the fact that the procedure is applicable elsewhere, For certain
other purposes it seems also to "naturalise" {{ operations on natural
transformations )) and, as it is basically a {(( simplicial technique )),
suggests reasons for their apparent importance,

The notion of ({ natural transformation )), however arrived
at, is the fundamental idea of the theory, and, in point of fact, it was
to explain (or rather describe) their occurence in mathematics that led
EILENBERG and MacLANE in their initial paper to, as FREYD put it, "define
({ category )) so that one could define {{ functor’ ) and define
functor )) so that one could define {{ natural transformation))",

Whether or not ({ categories and functors )) actually suceeds
in explaining "natural transformations intheir natural habitat" is an
entirely different matter, It can be argued quite strongly that even

with "all of this machinery", E, WITT'S quip, "Oh, "matural map"

everybody knows what that is - but nobody cah deflne iti" ig still
substantially correct, 4 s



(1,5) (%) - COMPOSITION OF TRANSFORMATIONS OF FUNCTORS

(1.5.1) Let C be a Yl-category and s? its arrow category
%()
with g = ( k(C); Eé;EEi‘Q#E(C) the system of categories and functors
which define its canonical ( UL-CAT) category structure (1,4,6) (which

we will abbreviate as the diagram

Ll
2 el m Tl %

If F 3 {—D is a functor, we define the canonical extension

of F to the arrow category to be that functor FZ H g%———*-&? defined by

the assigunment

F(a)

A F(A) A—2nv  FA)-EB4pAY)
(1.5.1.2) £ A l F1), f lgw} I{(f) l F(g) V
B F(B) B2 g 7(8)—~8p(51)

F is trivially a functor because of the "igteral composition" of squares
in G2 and, moreover, I 2.1 7, (GF)2 = G2F2.

More interestingly the functor F2 equally well preserves

"vertical compositiom of squares"; the couple (F,Fa) defines a (Q}-gﬁg)‘ :

functor F of the (Ul -CAT) category C into the (1 -CAT) category D

(1.3.1) i,e,, the following diagram is sequentially commutative:

| 2 x 72
2 2 x F . 2 2
gmqﬁhg > Eﬁﬁx

(1.5.1,3) w‘l

J——
=

2 v

(e
{

.4
-~
)
-
icss.g~?c&¢eEL—-

1 {e
=
‘f
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Consequently, COROLLARY (1,4,5) gives rise to a corresponding corollary
of THEOREM (1,4,9) which we state as
[ COROLLARY (1,5,2).For any functor F : §—D, and any
category T in (CAT), CAT(T,F) : CAT (Z,C) —>CAT(T,D) defines (with
w‘(gﬁ‘z) : w(g,g‘a)——»g&g(g,f) as its arrow function) a functor
CAT(T,F) : CAT(T,C) —> CAT(T,D) of the corresponding categories of

functors with natural transformations as morphisms,

Y

ice. | FR(oep) = FPoe F¥ )

(1.5.3) The existence of the canonical extension F QZ—bDZ

L]

for any functor F : G—> D allows a convenient "equational restatement"
of the definition of natural transformation,
Let F and G be functors, F, G : C—>D, ¥: F—>Ga

functorial morphism, i,e,
Yy 2 &
« (F,G) : C—>D q,:t D »

e 2o a8 - ¢
Since glFZ..F 9 -(ﬂPY’)Q:l— ,9'2(5”9:1).

Y’gig s CZ—-—->-~132 and F2 : Ca—¥22, are the projections of a composable

~ ~»

couple ( ‘chi, F2) of arrows from the category CAT (ga,p). Similarly,

G2 H 22——>-RZ and \(‘E'g : CZ——*BZ are those of the couple (Ga,‘/’gjf' ).

Moreover, the coincidence of the functorial multiplication %2) with
that of R after conversion and the fact that the arrows of - g, are the

objects of QZ, gives that

(1.5.3.1) yaber = 6®o gt
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W
o R £ gt —— s ‘gt - Ra?
(1.5.%.2) J F J G l l
UDF2 = F(Tl ’L g' = _ DG2

On evaluation, the equation (1,5,3) is nothing more than

the assertion that, for all %(gz), f + A—>B, the diagram

F(a) —=E)_, w(B)

1%“ le
a(a) —HE6(B)
is commutative,
(1,5.4) Implicit in (1,5,1) is the observation that for any
U -category T, the construction of the arrow category 'Jf (1.4,2) is

functorial, i.e, the assignments

2

€ ITams T°, Famas T2 ))  define a functor

2 ¢ () CAT——=(U-) CAT “Ghich is in fact
an embedding, since the functor I(C) is a section),
If THEOREM (1.4.9) is applied to the canonical objects and

arrows of a diagram in (CAT) such as

2

, f::&:: D2
1.5.4.1 r

(1.5 ) _-llﬁc ﬁ/ ‘1]'_.0
zF__

g ==5%-=32

one obtains the structure applications of the small (Ul-*—)functors

2, D(g) + NY===FD(D), viz:
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p%() x p2(c) —————% p?(c® x p%cD
ne Xt -
(1.5.4,2) LS ) 2,2
Iete B 7 X p%(c®)
G ~
9‘3@1 wbigy T o l 2D
(1)
D(C) 2 1{1 = 0(c?)
LA 2( q-l ) Lol

vhere the application 2. : 2‘9)"‘“"2?(&?) is the restriction

of the arrow application of 2 : (CAT)—-(CAT),

[ PROPOSITION (1.5,5) For any couple (D,C) of Ul-categories,
the applications defined by the assignments

« FMA&FZ, Parn> (FZ,V(Z]_:Q, ‘P%'g’ Ga)v F: C""“"’R, ¥F—=G )

o ad

define a natural transformation 2 of the (canonical) functor

Ecp
oaT ( ¢5,D) : GAT (G,D)—> GAT(G?,D) into the (canomical)
functor CAT ( g7,D) : CAT(C,D)——= CAT(C D).

2cp * caT ( G‘—- yD)— CAT( ¢ ,p).

The equation (1.5,3,1) gives the ve-: “ication that
(F2 ‘Vq:lc, 'V@;g, G2) is indeed a commutative square, i,e, a
morphism with source F2 and target G2 in the arrow category of

CAT (Q?,B), for any natural transformation

(V1 F—=a) & Flearte,p)) = cAT(G, D).
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On evaluation, one obtains

aar( o.%,0) ()

C o
CAT( I ~,D)(F) CAT( G~ €,D)(@)
2nn(F 25p(®)
(1.5.5.1) €D l
car ( G¥,D)(F) s——=car( ¢, )@

CAT( o ,D)(Y)

(1,56) In the ‘appendix to GODEMENT (1958) there are listed
"cinq reégles de calcul fonctoriel', which have proved quite useful
in the manipulation of functors and natural transformations, Ve
will interpret them here in the sense of DEFINITION (1,4.9) so that
given functors (F,G) : g—=XD, the relation {{'&: F—~G) e ZL(CAT(C,D))
is equivalent to {{ 8 : g->92 and %Q)B = F, 9“1@)9 =G ).
Composition of functors will be denoted by simple juxtaposition
(¢ Uw(Vv:g—D U:D—E) ))iand composition of the natural
transformations by {({¥*¢ ( ¢: F—>G, Y:G—=H) )), The
GODEMENT operations ({ * )) are then defined by
 v* o = V2 e ("fore-substitution'") and

9* V = 8 U ("aft-substitution') )) where sources and targete of -

both functors and transformations are those specified in the diagram

R P

E““—‘—"

<]

H

ol

(1.,5.6.1) U F l

(R ERSEEURINE.
e SRR Y
B——>C oD

sm:


http:diagra.au
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We now state and prove the "five rules'" noting that if the original

proofs were trivial, the "functorielity of the definition of natural

transformation" renders their correspondents somewhat '"more than trivial",
We leave it to the reader to specify the appropriate sources and

targets (easily done with aid of diagrams such as (1,5,3.2) and (1,5,3,3),

(1) (V) * 8 = (V2 0 = (WD) 0 = U2 (V20) = U2(V2*0) = U*(V*d)
(II) 0*(uUV) = 6(UV) = (8U)V = (0*U)*V, and
(III) (U*0)*V = (U20)*V = (U20)V = U> (8V) = U*(a*V) + U*@sV,
since 0, U, V, V2, U2 are functors and (U V) = U3V2,

COROLLARY (1,5,2) and THEOREM (1.4.9) gives

(IV) Uu*(0'. 9")‘V.—.U2( 0 -9")V=(lU20"-¢U20"v)V=(U29 'W)e (UZQ"V)a(U‘G 12V)o(U*0*V),

(1.5.3.1) and (IV) give

(v) (Ha)+(u9) =(‘4’G)'(U2P)=(‘P¢1§0)'(Uacp)s(%°U2)p=(V2-Y'0;)¢p = VAP IP o (Vag)e (P4F),

2-——-—-&- 2—U——>2

» D -
A(l.5.6.2) 0‘.‘] /Wl ,—/:‘—Jlﬂ
Cc =D U————E

(1.6) REPRESENTATION OF SET-VALUED FUNCTORS

(1.6.1) Let G be a (Ul)-category and F : g‘“—':-'_-(%) be a
functor, We will denote by {( M(hx,F) )) the set (member of ‘lj&* )
of all functorial morphisms ¢ : hx—-—"'F with source the
("contravariant hom") functor h, associated with the object X in G

(1.3.15 Ex 1°) and target the functor F,  Rew(n,F) = CAT (¢, (ENS))(h,,F),



64

If hx—%*F is such a natural transformation, then
by definition, for each Te¢®d(C), ¢(T) : X(T)—=F(T) is an application
of hx(T) (=X(T)) into F(T), In particular, the set X(X) is not empty,
and the application ¢@(X) : X(X)——>F(X) defines a unique element
¥X)(I,) of F(X), The same is true for any ¢ e®on(hy,F) and hence

the assignment {{ Pr~s> @(X) (Ix) )) defines an application
P s Zem(ng,F)—=F(X)

If %eF(X) and f €X(T) in G, then since F(f) : F(X)—>F(T)
is an application of sets, F(f) (%) is a well defined element of F(T),
and the consequent assignment {({( £~ F(£f)(§ ) )) will define a
function ¥{(T) : X(T)—F(T), Moreover, the subsequent assignment
{({  T~~s-F(T) )) defines & natural transformation §: hy—=F,

To see this last assertion, it is sufficient to note that

given any g € T(U),
F(g)S(T) (£)=F(g) (F(£)(%))=F(g)*F(£)(§)=F(£g) (¥)=F(X(£))(¥)= (V) X(g)(f)

for any £€ X(T), i.,e. the square

(16.11) x(r) —X8L o)
(M l l‘g(u)
1) —E&) e

commutes for any choice of g € T(U),
Since % is a natural transformation for any choice of §eF(X),

the assignment <<§~w~>§ >) defines an application

P : F(x)——-—-*g&%(hx,}*),
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THEOREM (1,6,2) [ YONEDA-GROTHENDIECK EVALUATION
LEMMA ("Yoneda") ]. For any category C,
any ovject X in C, and any functor F : Q'!)‘—*(Bﬁ), the application P
of (1,6.1), with®as its reciprocal , is a bijection of the set
Hom(hy,F) of all natural transformations of the contravariant hom-

functor hX into.the functor F, 6nto the set F(X) defined by evaluation

of the functor F at X, 'P: Heu(n,, F)——F(x),
- All that remains is to verify that £* 2 and 2-¥
are the identities on their respective sources, Calculation for
¢ €¥on(ny, ) BT (9) (D) = B(PO(IIND) + XT—> KD,
But ¥( P (NI P(TI(x) = FGx)(PXI(TH)) = PITI(X(x)(T,)) = @(TI(x),
for any X € X(T), since ¢ is natural, hence f'?(q?\('l‘) = ¢(T) and
0 (o) =¢ .
Calculation for §€ F(X) ¢+ P2 (¥) - B (1)) = KI)(E) = Ion®) =% .
COROLLARY (1,6,3) The application of the set Y(X) into the set
Y(X) into the set Xom(h ,h, ) defined by the assignment {( fayhe )
(1.4.12 Ex 1°) is bijective,
On replacing the functor F by .hY in (1.6.2), one obtains
Romlhy,by) 2 hy(X) = XX,

COROLLARY (1,6,4) Every functorial isomorphiem f : hx-—~—>-hY

is induced by a unique isomorphism f : X—>Y,
By definition of isomorphism (1,1,1), ¢{ £ : X—~~¥Y

is an isomorphism )) is equivalent to {{ hy hx—-"'—>-hY is an

isomorphism ») and (1,6,3) asserts that £ is of the form h, for

£
some f § X—>Y,


http:contravaria.nt

66

[~ DEFINITION (1,6,5) [GROTHENDIECK (1959) TDTE II]
Let F 3 Q"L—“"'(%) be a functor, A couple (X,¥ ) consisting

of an object X in C and an element ¥ €F(X) is said to define a

representation of the functor F in C provided that for each T€Q\(C)
[ ~m e

the application of sets $(T) : X(T)—>F(T) defined by the assign-
ment {({ Xans F(X)(§) )) is a bijection, The thus defined natural
isomorphism ’5 : hx——'b-F is then called the representation of F
defined by (X, § ) and a functor which admits such a representatibn

is said to be representable with (X, § ) (or, by abuse of language, X)

as its representative,

bt

A representable fuxictor, then, is nothing but a functor which

is functorially isomorphic to a '"contravariant hom" functor hx, for some
object X in C. In the light of (1,6.,4), the objects which occur in any
couple of representations of a given functor are necessarily isomorphic,
and a canonically selected representative (by means of the T -operator,

for instance, if such exist) may then be called "the" representation of

F, One speaks of the representation as being '"unique, up to a unique
isomorphism',
Because of this "quasi-unicity" it is useful to consider the

full subcategoryof CAT (9.(”), (ENS) consisting of the representable

functors (and all natural transformations between them), Every functor
of the form hx is a number of this subcategory (by means of the identity

isomorphism) and moreover the assigmment ({ X m~y h, and f av> h, »

X
defines a functor h (covariant!) with the category ,.C,. as its source and

CAT (C°® , (ENS)) as its target, (1,6.3) now says that the functor h

is fully faithful and the definition of representable functor allows us

to conclude
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THEOREM (1.6.,6) [ GROTHENDIECK]. The canonical functor
h 1 G ——>CAT (C*"  (ENS))
———— ~ m

is fully faithful and defines an equivalence of the category  with

the full subcategory of its target consisting of the (contravariant)

L-x:qpresentable functors,

(1,6.7) As this now stands, this is a simple consequence of
the definition of equivalence given in (1.3.11). The full import
of {{ equivalence )) will become apparent later, It will suffice
here to remark that it is because of this equivalence, that we are
justified in using the "transfers" ({ f : X—>Y 4»~"for all

TEQ&(Q), £(T) 3+ X(T)—Y(T) )) and reasoning almost exclusively

set-theoretically, However, we can say now that

If E : g—>C, defines an equivalence of G, with G, (1,3,11),

then there exists a functor F : ga———>- 9'1

inverse of E, i,e, there exist functorial isomorphisms § : EF —> IC
~2

such that F is a quasi~

and ¢ :FE L»IC
- <1

If E is an equivalence, then, by definition, the application

of gl(A,B)——" §2(E(A),E(B)) defined by {({ f£ars E(f) )) is a bijection
and, moreover, every object X in C, is isomorphic to an object of the

form E(C) for some object C in ¢, If one such object F(X) is

selected for each X in C,, along with one isomorphism €yt E (F(X)—>X,
then the assignment {({ X am~>F(X) )) defines a function
&(F) + Qg )—>0(g,), and then G (F(X), F(X'))—" G (E(F(X)),B(F(X')))
and in turn ¢, (E(F(X)), E(F(X')))** ¢ (X,X') by means of

the selected isomorphisms ¥, tE(F(X)-S=X and  Ja: E(F(X'))==x1,
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We now can define an application %(F)ﬂg(gz)—*%(gl) by means of

(€18 X=X s B2 3 BFOO)—E(FX ) moE (§85) + FOO—F(X) ),

The resulting assignments ({ X~ F(X) ) f ma F( f,) >) then define

a unique functor F : ga-—-* £, such that

§: EF—>I, and @: FE—*I,

G2 1

If QZ is the image of some fully faithful functor as it is
here in (1,6.6), then ¥ may be taken as simply the identity isomorphism,
(1,6.8) One also has, by duality, the notion of a co-represen~
tation of a (covariant) functor F : G—>(ENS) and thus also of a
co-representable functor (i,e., a (covariant) functor which is isomorphic
to a (covariant) "hom-functor" h'y for some XeQy(C)., We shall leave
the explicit formalization of this notion to the interested reader,
NOTE We defer all examples of these notions until the end of
(1,8,26 ).
2 The "co~"terminology of (1.6.8) is in conflict with that
of MacLANE (1965),
(1.6.9) For F gw——*(@j\lﬁ), define the category of
"objects of‘g above F'" to be that full subcategory &/F of
CAT (gv”m , (gg&) )/F (c.f. (1,0.,6 Ex 6°) whose objects are the functors
of the form hy above F for some xe (), i.e. an object of C/F
is & couple (h,,Q) where § 3 hy=>F is a functorial morphiem, and
an arrow of C/F is a functorial morphism h gt hx—* hY such that

§-hy = 0, where 8§ and § are the structural maps in

— -
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(1.6.9.1) 5

h > F

Define the category of F-pointed objects of ,.C.,

‘EHRESMANN (1957), KAN (1958)] as that category 'g*/F whose objects
are couples (X,0) where X€ Qg(‘g) and 8 € F(X) and whose arrows are
morphisms of C such that F(£) (3) =0, i,e, (( £' : (X,3)—=(Y,0) )
is equivalent to {({ £ : X—>Y and F(£f) () =0 )), Composition in
g‘/F is just that of C used in the obvious fashion, A final object in- )

C*/F will be called a universal point | MacLANE1965)] .

[ PROPOSITION (1,6,10) On the basis of the definitions of
(1,6,9), the following statements are equivalent for a functor
(o
F 3 C—>(ENS) :
1° F is representable;

2° The category C/F has a final object;

30 The category C*/F has a universal point,

If F be representable, let 8 @ hx—"—>F be the representation

isomorphism, Consequently for any functor T.: g:.:-*(glﬁ),
wT,hx)ﬁ‘*%T,F), in particular for any hy,
Kty by ) <> Hon(hy F) 0 that hy is final, (In fact F is final in
CAT (C*" , (ENS))/F so that hy <> final object => hy final in
GAT (¢ , (®NS)/F = b, final in G/F), If h, is final in G/F then
(X,0) is final in C*/F —*> C/F and conversely, If hy LN is
final in G/X then m{hp,hy) —>%m(h,,F) for any hy, which gives

by the "Yoneda" that X(T) > F(T) for all T € %:(C),

(1,7) UNIVERSAL MAPPING PROBLEMS

(1,7.0) The notion of {{ representability )) lies at the
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base of the notion of ({ solution of a universal mapping problem ))
and is indeed (but for trivial modifications) equivalent to it,
Partly for historical reasong, and partly because its terminology

is evocative when used with the usual abuses of language, we shall
redevelop these notions formalized first by SAMUEL (1948)and

BOURBAKI (1957) conformally with the definition (1,0,1) of category,

 ——d

DEFINITION (1,7.1) Let ¢, and G, be (}g;) categories,
An association & of G, with G, is a set H () called the set of .

arrows of the association (or ¢S, arrows), supplied with the

-
o

following structure:
(8A); applications 0°(p) :g}(@)———*g{(gf and
T ;ﬁ;) : 53,1(.5.)—-»%9,2) called the source and target applications
of s

(sa) 77 @Pplications N - Qg (Cl)a. X )Zfé: (&) —> ﬁ(&)

and MW : KW x &‘(92)—9-%(559‘, called C,-4 and -C,

multiplication (or composition); which

- is required to satisfy the following axdioms:

(AA)I TJ(‘E)V) 771('&) = Ta(é)o pra and

T,(Cy) - pry = T(H)* 77(&);
(A M (@) T*(G.) = WH()

(AR rp 7y @)+ (pigy) %B) =My @+ 27 @)

(Ah)py T M W) = Ol e pry and

TC) s pry = TN L)
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(M), m, e I* (G) = Widak
MA)yp 7, @)+ (W& Py = 7, - (7, @) %)

(AA) g N @l & 7 S(A)) = (@) (7 (4) %),

Axioms(AA}-(AA)IH assert the commutativity of the squaresin

the diagram

g, Yxid Pr,
gy )w,’fo—, %(91)‘5 :cr@g (&) g(glgg’c e () Fa)
I
i x7 () g W -
(1.7.1.1), M) / ) |
o) = HW - H W o (c,)
'y II \
pry 1 l "
014G
Zé (91) < = > 0'_{3’(91)
I(¢;) N

and that Wl(uﬁ\g) is a retraction with {{(Aam~> I‘(Ql)(d.) = (In;“ % ) N

as a section, In other words,that an external composition

€ (f,d) o (A(EE) = o D)

is defined for couples (f,d ) consisting of an arow from & and an arrow
from ¢y such that the target of f coincides with source ofd and that the
source and target of the composite_':ls that of f and & respectively,

For this composition, the identities of 91 act as identities with the

€ - ga arrows and; furtherjthis composition is associative in the sense



that one has

«

72

& (fg) = (% £).g )) whenever defined,

The axioms (AA)IV - (AA)VI assert that the squares in

diagram

(1.7.1.2)

U kKG,) Pr
33(&2‘; ?c%%(gz)ﬂzfﬂ%&(gz) f»@(@chﬁ%%(ga) —J(C))
1
ik VI I‘(QQ) v, V % (g,)
i‘r]‘(@ |
Wr .
W) x FE,) _._’71_(_@_* H() __Efﬁ_,@&(gz)
Iv
pry T()
* 4
My e

all commute with "72(@) a retraction,

1(g,)

The statements are readily translated into {{ another external

composition {{ (&, x) MmNk ,x) = x%d ) is defined for couples

(&, x) consisting of a oY

~2

target of a coincides with the source of x;

arrow and an arrow in G, such that the

2
that the target of the

composite arrow is that of x while the source, that of a; that the

identities of 9,2 act as identities in this composition;

composition is associative in the sense that {{ (xyla = x*(y*«%)

when defined

The last axiom (AA)

(1.,7.1.3)

2

F1Cg)) r)‘(‘q-%('é’)x ),{o’.%( c,)

g

)

ri

X
K2

W

VII that the diagram

"]1(«1,&) X
- %(ﬁ.),tx, og(gz)
Vi l Y o)
(W)
5 > gtvé(é:)

and that this

»
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is commutative, i,e, that the two external composition compatibly
associate with each other ( {({ x * (&' f)) = (x*%): £ )) whenever
defined), |

‘ (1.,7.2) The diagrams occuring in the definition of an
association will all be folded into the following single sequentially
commutative diagram (in which the structural maps for 91 and 92 also

occur):

%(A.)xﬂtl,(c )xﬂ(C )—-—-—->’-’4L(C )xﬂlﬁgz)

Gy )%

(1.7.2,1)

Wty 4 ik o B

(
1 . pr
Gy 2 B ) e ) —E—> JCe,)

\ " 9 (4] G&) %)

s TR
%‘Ellff%»ql}’fﬁ‘i(@ﬁ:fcﬂﬁ3‘“‘“ — A - ok(g,)
l
TR
Pro , R "
7 (g) l

YY

H(Ql)x %(C ) —ps— fﬂ(
a~ (X7
N 01(9.1)

0{,(0
,wm

|

oA A e A m we mm @ am e e e o e ey A o e e &

The horizontally (resp, vertically) enclosed portion of

(1.7.2.1) expresses the notion of a category of operators (operating

on the left (resp.right) in the sense of EHRESMANN (1957)and that of

linked categories of SONNER (1963) .

(1.7.3) If  is an association of G, with C,, we shall let

ALA,X) or X[ A]be the fibre above the couple (4,X)€ Gr(C ) x M (C,).
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W (a,X) = {4 A—>X fdel(A), o(%) = A, T() = X} and say
that the association & is a T -association provided for all
(4,X) € OM(;(QI) X 0&(912), ACA, X)€Yl ("Property UL "),
Let & be a Ul -association of ¢, with G, and let
43 A—>X be a member of J4(4), £ : A'—>A an arrow of G yand
x ¢ X—>X' an ‘arrow in 92‘ We define the following applications

by the indicated assignments:

1% (A1) 2 g (A, A=A, by (dworde D),

2° aXX') 1 Gy (XX >4, X") by {({xnaxxd D),
3% AL E,X) ¢ A —>ALAT,X) by ({dmryaf D), and

4 ACAX) 3 A, X) —>ALA,X') by (Cd wws x 8 D),

(1.7.4) In passing we note that the entire system for a
'l)&-association may be given an immediate'"EILENBERG~-MacLANE translation"
as follows:
"For each couple (A,X)EQQ(QA) x 0,5.."(92)' one is given a set
#AKA,X) such that for each triple (A,X,Y)e€ QY(C,) x q~(r(92) x ot (g)

there is defined a composition
(¢ (0 s, x)mm xil ) 2 A4, X) x G(X,T)—>&(A,T) D)
which satisfies the following axioms, .

(1) - Being given x; € G(X,Y), x, e G,(Y,¥"), and
«€ &(A X), one has (xa'I x = x(x*d )
(II) ~ Being given I, € ga(x,x) and o € A(A,X), one has

IX"'dv = o ;3 further
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2
for each triple (A, B, X)€ ,Q(‘_r(gl) x O (C,) there is defined a

composition .....
there followeth the’ seﬁuence of the analogues of (AA)I"'

i

(AN)gpy and (AR ..

Note also that SWAN (1964) has given an "effectively'" first

order formulation of the axioms expressing this notion, They read

m° if £ : A'—>A is in G Xt X—>X' in Gy, and L i A—veX is

a £,-C, map, then h-f : A'—+X and x#h : A—>X' are'v

defined and are gl-ga maps;

o
2" 1, A'—>A', £, 3 A'—>A in Gy X ¢ X—-X', x5 3 X'—=X"

‘in G, and o : A—>X a G,-C, map, thend(f,f,) = (a- fa)'fl,

(xy%) )% = x,*(x* % ), and x* (ole£,) =( x,* %) f,; and

o
3 if f and g are identities, them «f = | Bxa = o ",

It will soon become clear that the existence of thése translations
is almost the only remaining significant aspect of the entire hotion
(Its use in practice being supplanted by the more elegant - if less

intuitive - notions of representability and adjunction),

B DEFINITION (1,7,5) Let C be a category and
a a
Al 1 A2 2 ;AB
(1,7.5.0) h I 1 e fal
B > B > B
1 bl 2 b2 3
a diagram in G composed of two commutative squares I and II and their
composite II« I = III,
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If both I and the composite III are cartesian, I will be

called a cartesian complement of II, and a cartesian factor or

component of (thecartesian square) III,

If II is given, then the cartesian square I is determined

up to a unique isomorphism by the specification of b1 alone,

Consequently, we may refer to the arrow bl as defining a cartesian
complement of II,

~ DEFINITION (1,7.6) Let Jy be an association of G, with C..

o 5%(@) will be called o -universal (resp, 0= contra-universal)

provided the inclusion {1} & JFU(A), defines a cartesian complement
of the square IV (resp, the converse square IV) of (1.7.1.2); and

T -universal (resp, ‘T -contra-universal) provided it defines a

~1

cartesian complement of the square I  (resp. 1) of (1.7.1.1),
—

A

PROPOSITION (1,7,7) For o € FL(A), one has the following

immediate equivalences:

1° o&: A—X isTuniversal (resp,tcontra-universal) iff given
any A' € Q,{;,r(gJ, and any @ : A'—> X, there exists a
unique £ : A'—> A (resp. £ : A—>A') such that
def = 0 (resp, 0°f =ob ),
2° o : A—>Xis O -universal (resp.contra-universal) iff

given any X'&_Qﬁ'(ga) any O : A—>X' there exists a unique
x ¢ X—>X' (resp, x ¢ X'—>X) such that x%¥% = 0

(resp., x*0 =o. ),

b

NOTE: The justification for the assertions of (1,7,0) lie in the

following sequence of observations,
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In these propositions, (SA)I and (SA)II refer to the
structure applications and (AA)I - (AA)VII to the axioms occuring
in the definition (1.,7.1) of an association of categories g, and
5. It will be assumed the association in reference is always a

UL -association, Other applications needed will be those of
(1,7.2) =1 -4°,  In most cases the proofs are trivial and are

omitted,

o,

PROPOSITION (1,7.8) If & = ( FH(a), o(A), T(4)) and
"Vll(xg.) be given as in (1,7,1) and satisfy (AA)I -(AA)III together
with property "U" of (1,7,2), ( ({ & is a T -association of &

with G, ?> ), then the applications defined by the assignments

K Ay &4, 5), £~9dLE,X) D), define, for any X € ¢4(C)), a

. fop)
functor & ( » ,X) : Sy =~ (ENS)

application defined by {{ A'Aax~> &'(A') )) is a natural trans-

» For any o : A—> X the

formation & : hy—>4 ( . %),
17> (ENS) be

representable, it is necessary and sufficient that there exist an

In order that the functor & ( » ,X) : C

o: A—>X in JL(4) which is U -universal,

The first assertion is nothing more than an immediate
application of the associativityand identity behaviour, guaranteed
the multiplication 7]1(@) by (AA)II and (AA)III, to the applications
A~ (A, X), favs A(F,X), and A' ~~~> o(A'), whose definitions
themselves are allowed by (AA)I and 771(@).

For the second part note that in (1,7,7), € ot: A—>X is
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just the translation of {({ for all A' eg&(gl), o (AY) : gl(A',x)——a-A(A',x)
is a bijection )), The converse is a trivial application of the
Woneda'" Lemma (1,6,2).

—

COROLLARY (1.7.9) If A is a Ul -association, then the
source of any T -universal arrow in G’A‘!'L(«.f};) is unique up to a
unique isomorphism in 'Ql.

PROPOSITION (1,7,10) If b= ( TG, o), T@)
and 172(953) be given as in (1,7,1) and satisfy (AA)IV - (AA)VI
together with property "1 " of (1,7.2) ( {({ & is a @ -association

~
of G, with & >> ), then the applications defined by the assign-
ments ({ X~ ALA,X), X mo (A, x) )} define, for any Aé@/\&r(gl),
a functor &f{A, . ) : Gs——>ENS Ul , For any o A—>=X, the

N 2 MM
application defined by {{ X'm~s> &X(X') )) defines a natural
transformation o* : h'x——>- (A, . ),

In order that &(4,.) : G;—>(ENS) be co-representable,

MW
for some A 66&(01), it is necessary and sufficient that there exist
an o : A—X which is (¢ -universal,

COROLLARY (1,7,11) If A is a ¢ -association, then the
target of any ¢ -universal arrow in %(&) is unique up to a unique
isomorphism in 92.

PROPOSITION (1,7,12) Ifdsis both a 9 and a T -association,
then‘(AA)VII gives that for each x : X—>X' in §,, the application

defined by {{  A~~> &(A;x)  )) defines a natural transformation

d (0 ,x) s, Al , ,X); and that for each f: A'—»A,
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the application defined by (( X'vw)‘&( £,X)  )) defines a natural
| transformation ML, o) AA, L )—ALA L),

COROLLARY (1,7,13) If dy is an association of Gy with C,,
then the applications defined by <{{ X M%I‘y( c LX), x MA)QA.( c, X)) N
define a functor ¢y 3 G —CAT (Qk.m , (ENS), and the applications

2
defined by { AnwnLA, . ), T™wA(f, . ) )) define a functor

o)
A 1 G—cAT (¢, (ENS)),
— LEMMA (1,7.14) (FUNDAMENTAL ADJUNCTION OF g&g)

‘Let &, D, and L be W ~categories, There exists a canonical bijection

BQRE) ¢ GAT (QRE)-OAT (G, AT (3, B).

=]

Let B : ¢ x D—>E be a bifunctor, For each C E-Qﬁ{‘(g),
B(C,D) € S (E) whatever be D €¢h(D) and similarly B(C,d) : B(C,D)—=B(C,D')
in %(E ) whatever be d : D—>D' in D; moreover if ¢ : C—>C',

then B(c,D) : B(C,D)—>B(C',D) is an arrow in E, whatever be

D¢ Q}{(B). Consequently, the "bifunctoriality" of B gives that the
assignments {{ Da» B (C,D), d m~e B(C,d) >) define a functor

B(C,. ) : D—>E for each choice of C €0r(C) and that

&4 Dm~y B (c¢,D) D) defines a natural transformation

B(c,.) : B(C,. )—=B(C',. ), This, in turn, leads to the observation
that the assignment ({ C "% B (C , ), camyB (c,. ) )) defines a

functor G (G,D E) (B) : G—CAT (D,E) for each choice of

]
B € CAT (CxD,E),
M W T
Reciprocally let A : C——= CAT (B.E) be a functor; then

for any C &0,&:(9“), A(C) : D—=E is a functor and for any ¢ : C—>C!

in é‘:{;(g), A(e) ¢ Ale)—A(c') is a natural transformation,



Consequently for any d : D—>D' in z.!.(g), the square

A(C)(D) a(e)(a) > A(C)(D')
(1,7,14,1) 1 A(c)(D) A(c)(D')
A(CY)(D) A(C')(d) > A(C')(D')

is commutative, We now define a bifunctor g‘(C,D,E) (A) : ¢ x D—=E
by the assignment ({ (C,D)~~sA(C)(D), (c,d)an A(C')(d)-A(C)(D) D),

~4
We leave it for the reader to check that & (C,D,E)(A)

is a bifunctor and is indeed the rec ‘iprocal of & (ElD!E) (and

conversely),

COROLLARY (1,7.15) There exists a canonical bijection

I o
E(E,D,E) + CAT (D x G, E)~2>CAT (C, GAT (D,E)),
&'(CIDIE) is obtained by composing %(C,D,E) with the canonical
bijection of CAT (D x C,E) onto CAT (C x D,E) deduced from the

isomorphism of C x D with B x C.

COROLLARY (1,7,16) If & is an association of G) with g,

then the assignments ({ (A,X)msdfA,X), (£f,x)mol(f,x) )) define

. op?
a bifunctor & : C;" x Cs;— (ENS),

S i

(1,7.16) is a direct application of (1,7.15) to the

functor 4 ¢ C;—>CAT (G" , (ENS)) of (1,7.13).

 —

COROLLARY (1,7,17) Let ASS (C,,C,) be the (not

necessarily WL -) set of all Ul -associations of G, with €

1 Coe  There

exist canonical bijections

i vy SN i we)
Mt ASS (91'92)—”1‘:.'5 (S, x 8,0 (ENS)) —>CAT(C,, CAT(Cy™, (ENS)),

| where the (< )) indicates consideration of "pairwise disjoint functors" omly,
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COROLLARY (1,7,16) establishes the first application

which satisfies {{* )) since the source and target relations are
functional (¢,f{1,0,2) for an entirely analogous restriction),
For the reciprocal: given a bifunctor &* : g;:')x gz———v—(%), such
that (C,X) # (C\X') implies & (C,X )N £(C',X*) = # define & by

W) = AT (C,X); then L ¢H(A) implies the existence of a unigue

et () €)X Wty aalid
couple (C,X) such that %€ .g*(c,x); define () (%) = C, TW) (W) =X,
Finally define 7,(4) (f,d) = &' (£,x)(&), £ 3 C'—=C, %edl(C,X),
and 72(@) (a,x) =<”A,“* (A,x) (o), € y(A,X), x : X—=X',
The axioms are immediately satisfied,
B COROLLARY (1,7,18) If & is an association of G, with G,
such that for each X €Q4(C,), the functor f (. ,X) € CAT (¢, (ENS))
be representable (or what amounts to the sameythat there exists a
T -universal arrow & E-Z{(ﬂ;) with target X for each XE&(ga)), then
there exists a functor G : gé——> 91 (and up to a unique functorial
isomorphism, only one such functor), such that for each A E.GM([ ('9'1)’
C; (A,6(X)) —*>d(A,X) (naturally),

Dually, if for each A€QY(C,), the functor A(A, ): C,—(ENS)

1 is (co-) representable (or what amounts to the same, if there
exists a 0 -universal arrow in z;l(«ﬂ:) with source A, for each

A €0:(C;)), then there exists one (and up to a functorial

isomorphism, only ome), functor F : G,—> G, such that for each

L_)..-( € 0’&;(9,2) y AR, X) - G (F(A),X) (naturally),
If for each X €r(C,), &(, ,X) is representable, then the

image of the functor ¢y : Cs—> CAT (g{w , (ENS)) is contained within
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the full subcategory 1352 (Ql) of the (contra-variant) representable
functors of (. By THEOREM (1,6.6), this category is equivalent to

Gy and by (1.6.7) has a functor U : Rep (gl)——*—g defined by

1
any selected system of representatives, Consequently,

G=0Jd: gz-—>-gll and has the desired properties,

An entirely analogous argument suffices for the other

case,
COROLIARY (1,7.19) Let ¢, and ¢, be (Y1) categories and

A 2 CPP x ¢.—>(ENS) a bifunctor such that for each X & &(C.)
~ w1 ~2 A AR A |

1

as a selected representative, Then there exists a unique functor

the functor & (. ,X) : G,—>(ENS) is representable with (G(X), § )

G : G;—>C, which has (G(X))x e%(ﬁa) as its object function for
which the assignment <{{ (4,6X) AM>§X(A) : Qvl(A,G(X))A"-é(A,X) by

defines a functorial isomorphism ¥ : H, (I.,

Dually, if the bifunctor 44 be such that for each A e@(gl),

the functor A A, . ) : C;,—>(ENS) be a co-representable, with
~ ~2 AAAANS
(F(4), @,) as a selected representative, then there exists a unique
P s . . . .
functor ¥ Ql——‘-" gz with (F(A)Aeg\(;(cl) as its object function for
waich the assignment (< (A,X)mweq, (X) 3 ga(F(A),x)—%—@(A,x) »

defines a functorial isomorphism ¢ : H, (F' x Is )= Ay

If 4 is the given bifunctor, then it defines (on separation)
an association of G, with G, by (1.7.16)\and (,7.18) is applicable,
The functor U is uniquely determined by a specified system of

representatives so that one can assert uhiqueness on this basis,
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(1,7.20) This completes our formal discussion of

universal mapping problems (the search for T -universal or

0 -universal arrows for some given association of categories)
by showing that the entire notion itself can be given a functorial
description (1.7.8), (1.,7.10), (1,7.12) and then reduced to a

representability problem (the search for a representation of some

set-valued functor),

COROLLARY (1,7.17) shows, on the other hand, that any
such representability problem can be used to define a couple of
universal mapping problems which will be soluble if and only if the
given representation problem admits a solution, so.that what one
really has is a "dictionary'" for translation of one type of problem
into another, We have used our representability theorems to
specifically make observations about the form of solutions of
"universal mapping problems" but in all cases these could have been
made directly, reasoning only on the basis of the axioms for an
association of categories, The reader is invited to do this, should
he be so inclined,

COROLLARY (1,7.18) suggests consideration of the following
notion (due to KAN [1958] ), which, it will turn out, is also
"translationally equivalent' to the other two:

(1.8) ADJUNCTION OF CATHGORIES - ADJOINT FUNCTORS

(1.8.1) If & is an association of 92

in which both conditions of (1,7.18) are verified, then there exist

with ¢ (1,7.1)

functors F : Qé-"gl and G : G~ C, such that the bijections
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Qa,X) : G, (A,GEX &4, X) and Y(4,X) : A, X)-=C, (F(A),X)
define,by compositionabijection B(A,X) : Ql(F(A),X)‘“>QQ(A,G(X)),
which is functorial and, in fact, an isomorphism of the functor
Ho (F° xIy ) with the functor Hy (Ipwx G),where Hy is the canonical

3 ~1 2 o2 =t
¥ % o en . . .
hom' - bifunctor, i,e,, up to an isomorphism, the square

I x G
o) _ cx ol
%2 X & & ~ % *%
(1.8,1.1)
Fhr B
& ! 2
©n e >  (ENS)
G x5 1 R

of categories andfunctors is comutative,

This is a frequently occuring situation and leads us to
— DEFINITION (1,8.2). [KAN (1958)] Let ¢, and ¢, be

(Ul~) categories, A triple R = (F,G, ¢ ) consisting of functors

supplied with a functorial isomorphism

!

: gé——*>-91 and G 3 Sif——>-92
P Hy (PO x IQ )—42»-HC (IC@” x G) is called an adjunction
~] 1 ~2 ~2

of ¢, with ;. If N = (F,G,¢ ) is an adjunction,then F is said

to be a co-adjoint of G, and G an adjoint of F,

— This amounts to asserting the existence of a family

CP D g R0 g2<A,G<A>>)(A,x>e~o~g<gl>x ok (g,

of bijections such that for couples (£f,g)€ gz(§2> x Qﬁ! (91),

the square
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g, (F(£),x)
Gy (F(4),X) > gl(F(A'),X')
kA
(1.8.2,1) T&X) v AN, xn)
GA£,G(x))
Go(4,6(X)) > C(A,6(X'))

is commutgtive,

We will use the notation
Cy:F=6: (C,C) N

to indicate that the triple (F,G, P ) defines an adjunction of

%2 with C1

REMARK ON NOTATION AND TERMINOLOGY (1,8.3) As is quite
often the case, what is natural in one context is unnatural in another,
The terminology used here for adjunction is consistent with that used
in EILENBERG-MOORE (1965) and, we feel, with that used in this thesis
(in spite of any apparent confllct) It is inconsistent with that
of KAN (1958) where F was called the (left-) adjoint of G and G the
right-adjoint of F, As "left-right'" terminology is of little mnemonic
value, the "left-right" distinction was gradually abandoned and F was
called tke adjoint of G and, sadly, G the co-adjoint of F in, for
oxample, MacLANE (1965), This latter use was consistent with
FacLANE'S previous definition of a contra-variant functor as being
"co-representable", but unfortunately, this usage was already in
conflict with the now standard term {{ '"co"-product ), defined by
means of a "representation' of a co-variant product functor, With
this as a norm, objects which are defined by means of '"representations"
of covariant functors "get 'co-"'applied to them ~ ergo "co-representation',
In an adjunction, G, is usually given and then F is defined by means
of a representatxon of the co-variant functor ({( Xmw C (A G(x)) N,
hence {{ F is co-adjoint to G

Historically, "universal mapping problems" arcse before the
notions ¢f "category and functor' were well kunown, There the common
&uh;cg of lbabua ;@ lead to the Iunctorlally properly defined elements

r 0,(A,6(X)) veing considered as guasi-morphisis of A into X, This
piﬁs & "natural soientation' into the situation and A becomes, quite
deadly, a romboerr of the "ilret" category" and X o member of the "second"
vy o= thus an "association of C~ with C2"' At the same time one

< _:,,‘
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begins to realize that quite often G is actually an inclusion

functor ¢;— (¢, which makes the source of G the '"natural' choice for
the "firo " category and the target of G, the natural choice for the
"second" category, This leads to simpler notation in adjunctions and
has been'adopted" here,

In summary, our "apologia for our use of {{ co= )" runs
a3 follows:

It is "natural" to speak of aun object P which satisfies the
relation

{{ for all T €P(g), C(T,P) ~2>TC(T,R, ) )
e

as defining a rewrcxentation of a product since it will then have all
ol the properties attributed to what are commonly called "products" in
the majority of well known categories,as well as having the set theoretic
product " T " appear in its defining relation, (Unfortunately the
Zunctor (X T~wéﬂ C(T,R ) )) is contravariant), It is then "natural"
to call @n object in C““ which defines a representation of a product in
G", to be, gue object in C, as defining a co-representation of a product
(1a ¢) and hence be a "co-product" in C. Tt will then have the

defln«ng property

({ for all T € &®{(g), C(R,T) > Exg’(P” T »

and can then be considered as a '"representation of a co-variant functor"

(or a co-representation of a contra-variant functor), Whatever the
terminology ¢ an»TT%l .» T) ) is co-variant, The extension of
this reasoning leads to - {{ co-representation )Y as we have defined it,

and co-adjoint etc, and is consistent with '"co-kernel and co-image' in
the theory of modules,

(1,8.4) Let C, and G, be categories F : C;—> C,

c )——%>H (IC" x G)

"2 & Co %

a natural transformation, so that

G : g,— > C, functors, and ¢ : H, (F? x1I
~1

P (A, F(A)) & G (F(a), F(A))—>= C,(A,GF(4))

" be defincd with 2 (A4) = <p(A,F(A))(IF(A>) : A—>G(F(A)) an arrow

in G, for each A€ B&(QZ). Similarly let
Vo H, (I, x G)“"""HC (™ x I, )
~2 2 Wl wl

also ve & natural transformation so that
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Y (G0, %) & £,(G(X),G(X)——> ¢ (F(6(x)), %)

is Gefined and D (X) = W(G(X,X) (Iyyy) & FEX)—>X

is an arrow in G, for each X & O (Ql).

L
— . .
PROPOSITION (1.8,5) | SHIE (1958)] With the notation

FeS

and applicationsdefined in (1.8.4), one has the assertions:

1° The application defined by the assignment

 A~msBA) ¢ A —>G(FA))

The application defined by {({ P~ F ))

% IC GF,
~2
is a bijection of 'J{mw(H (F" x I, ), H (IQ.,,, P G)) onto
&1 RN

Rew(I, , GF),
%2

2° The application defined by the assignment

({ KXo P(X)

P:r — I, . The application defined by L Pms P M
o §
is a bijection of Rom (H (IC\"*’X G), H, (F" x Io )) onto
2 =2 ~1 -1
?'QmM(FG,I ).
e %ad C
)
240 = W, (FPx I, ) <> @e("8) =W (@) : F
~1 ~1

5

$ I, GR and P o FG —>I, such that
&

morphisms
~2

(PP o (F°2) = W(F) and (G°P)e (= @) = W (G),

F(G(X))—>X )) defines a natursl transformation

)) defines a natural transformation

IF

-F,

Spne-

FGF

(]

® F- G (F is co-adjoint to G') 43> there exist functorial

NAAE w (H, (Ig.,xG)<=>(G e (Ba) = (&) : G—*GFG—-"-G
2
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The first part of 1° and 2° is trivial; for the second
part, let G(F(A),X) : ¢, (F(a),X)— G (GF(4),G(X)) be the restriction

of the arrow function of G and let
Gz € 2, 6(x)) = g, (GF(A), 6(X)) —> ¢ (a,6(X)

be the function deduced from £ (A), Then

£2(F) gz(é(a),e(x))
@(4,X) : gl(F(A),x)—-»gZ(G(F<A),G(x)) —— ca(A,G(x)), '

A

defined by composition, gives rise to the inverse for ¥ . The
construction is similar for 20. The proof of 50 and 4° is straight-
forward, given the information in 1° and 20, and 5° is Jjust the

definition (1.8.2) applied with 3° and 4°,

T DEFINITION (1,8.5.1) The transformations ¥ :m———»—xgl
and 2 : Ig-z—————* GF of (1.8,5) are referred to as uni\}ersal
GF and FG junctions (MacLANE 1965) or,respectively, the back and

front adjunctions of F to G associated with the adjunction

isomorphismep.  One sometimeswrites @n (2,2 ) in this context to
indicate this situation and the essential equivalence (EILENBERG-

MOORE 1965 )

b

— PROPOSITION (1,8,6) In order that a functor F : ¢ &

admit an adjoint it is necessary and sufficient that the functor

defined by ({ Am~G (F(4),X) D) be representable for each X € Q(g)).
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If F admits an adjoint, then there exists a functorial
isomorphism ¢ such that (4,X) gl(F(A>,X)—41—»-QQ(A,G(X)),

which is simply the assertion that
RN,
(6(x), ¢ (6(x),X) (IG<X>))
defines a representation of the functor defined by

(& G (FAN,X) D),

for each X € 0&(%13.'

Conversely, given a functor F : 92—-—>- C., one has a
bifunctor A = H. (F'% I, ) : C°” x ¢.—(ENS) which is
representable (on restriction) for each X € Oir(gl). COROLLARY

(1.7.19) is then applicable and assures the existence of a functor

- e o - ' . ~, P
G+ gy G, and an isomorphism ¢ 3 Hga (Igvze x G)-——-Hgl(F % ICZ),

i.e, the existence of an adjuihction with G adjoint to F,
Dually one has the
— PROPOSITION (1,8,7)., In order that a functor
G : gl—-—>' 9~2 admit a co-adjoint it is necessary and sufficient
that the (covariant) functor defined by ({ X s C,(A,G(X)) )

be "representable" (i.e, co-representable) for each A € Olr (92)'

e

COROLLARY (1.8,8) For any functor F, if F admit an
adjoint (resp.co-adjoint) G, then G is unique up to functorial
isomorphism and may be spoken of as "the" adjoint (resp, co~adjoint)

of F,

S—




S0

(1.8,9) The previous two propositions show how any

adjoint problem (the search for an adjoint or co-adjoint for

some functor F) can be referred to a representability or universal
mapping problem, In a sense,the translation can be made to go in

the other direction also, Specifically, we make

— DEFINITION (1,8,10). Let G : C;—= G, be a functor,

We shall say that "the" co-adjoint of G is defined at A € Js(g))

provided that there exists an object F(&) GEQQ(gl) and a

family ( pﬁcx)>X€§§gJ of bijections

P (X ¢ (F(A), X)—3—= C(4,G(X))

i .
which are natural in X,
—

Now let G : C'P— (z;:gg) be a functor; in order that G
be representable, it is necessary and sufficient that theesadjoint of
G be defined at {PJ€ D&(%). Then one will have a natural

bijection

) 1 X, FEHD ) = fohdd (FUUND,X) == EN8) ({8 ,6(0)%G(0 (X eot( )

which defines a representation of G, (Definition (1,1.10) simply
asserts the representability of (K X’M€>CZ(A,G(K)) EDN

(1.8.11) Systematic use of the .arrow category (1,4,2) and
its canonical functors (1.4,7) can be used to give an '"element free"
description of adjunction which may prove useful in some contexts,

The following proposition represents one such formulation, In its
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proof we use the SHIH characterization (1,.8.5) to establish its
eguivalence, although this could be done directly. Its principal
difference from (1.8.5) is the elimination of the necessity of

postulating ab ivitothe existence any natural transformations,

o

PROPOSITICON (1.8,12) Let A and '}2 be WNI& ~categories
supplied with functors S : '1?‘——-%- ﬁ and T : :4;’—————*—:{3_, In order
that S be a co-adjoint of T, it is necessary and sufficient that

the square I of

A
Jo A
pr ~ Ay
M
s III
2 T AT o 0
(1.8.12.1) V2
Twe = S A .
B S c;oﬁm g’l»
% Bry
IIT
B S > 4

be a cartesian complement (1,7.5) each of the squares II and III,
TFor the sufficiency note that, by definition, I is a
cartesian complement of II and III if and only if for any category

9 éQﬁ(l%’), the diagram

2, N2 2 7759
BE(E) XA (C) ———> A°(Q) > A(G)
A(C0)x3(g)
| T© THoBra &g
v 4 ITI(C)
5 ¥
(1.8.12.2) gigig) : z;%g)——————»&(g):,(g)—————-———»—:z(c)
o - -
ST e oLR(e)
v II(C)
B(C) = 4(C)
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*
of Ul - sets and applications has II(C)eI(C) and III(C)eI(C) as

cartesian squares, In particular, evaluation at A gives

2 2 2 W
B™(4) x A™(A) —— 4"(A) > A(R)
A(A) x B(A) T
YRS A
T g, -(A) B Ta=(4) T(a)
(1.8.12,3) Y Y TIT(A)
2 .
B3(A) —5—— A(A)xB(A) — B(A)
S T 7(A) uv-lg(A) "
B(A)
) I1(A)
] Y
BA) T ~A4)

with(A) * I(A) and II(A) * I(A) both cartesian. Now the identity
transformation 1!'1' of T i8 an element of 52(5) and the identity

functor I, of the category A is a member of ﬂ(i&) with the property

ot >

that g~ 1BT = TI, so that the couple (ig'l‘, Ié) is an element of

Qz(,é) x A(A),  Since II(’&,)’ I(A) is cartesian, there exists a

B(a) 2 2 A
unique couple (1T, ¥ ) in B(A) x A“(A) such that @ "P=1,,
2 T T aBn)” 1 A
The source of 'I{ is equal to S ¢ ¥ 1BT ,which is simply ST; we have

eV ~
o

thus produced the existence of a natural transformation : sp—1,.

A
Evaluation of (1.8,12,2) for the category B gives, mutatis

mutandis the existence of a unique transformation % : IB—-*- TS using

the couple (Iy,1 S) and the fact that II-I is cartesian,
So far we have only used the surjective property of cartesian
squares without using the essential unicity of the produced couples

(i.e, only the III°I and II°I were ¥ gre-cartesian*). We now bring
this additional property into play with the observation that the couples
(£ 7T, P) and (523 ,¥S) are composable in (CAT) and



moreover, since one has the chain of equalities

oy A B. - 2
crY,m o'lf‘ O)=(st,T)=(5T, T T~ )=(s g-oﬁc_.:nw, 720 (s 9:0-}-3(112‘7&@), o-f(T Todm))yd
voth the couple (.112&3)_,25_11'0}) and the couple ('iB ?, ¥ ) are members of
Ba(A) x ,3,2(.,.1};). Now the application defined by
~r [ -
<») x B(4&)

( (2o 2 oz 3, pr, B) M

is an injection of E (u) x A (1—} into R(A) x A ( 1) since II° I is
A(«u) p s g(::)
cartesien, and since

B, .20 . ).
(gel-2m),2)=(¢

3
)

20,2) - (%) = (gl By,

one has that T ”"\Tj" 2 T= i‘ T, A corresponding argument for
(1.8.12,%) evaluated at- B, along with the injectivity the defining
bijection for the cartesian sguare III+ I gives that ?S' 82§ = 1AS‘

We have thus produced the existence of nabtural transformations
€: I—>TSand <L: ST—1I, such that % B ¢ 1o

~

and WS 82 = iAS; consequently, (1.8.5.5°) allows us to
conclude that S is a c:—adjoint of T,

For necessity, let us suppose that S is a co-adjoint of
T and thus that the functors 2 and ¥ exist and satisfy the require-
ments of (1.8.5.5°). The transform of the functorial diagram (1.8,12.7)

evaluated at some category G then has the additional structure of functors

2 (a) : B(CY—> BZ(C) and  2(2) : A(C)— Az(g) as well as the
Laad N M A o A~ A ~



always present functors Sa(C) : ,@,2(3)—9- &2(’9}, Ta(g) : ga(g)-——»—aa(g),

:‘s'.A(Q) and ’iB(g) which we show in the diagram

(1.8.12.4)

where the unlsbelled arrows are those of (1.8.12.2). We must show
that I(C) is a cartesian complement of II(C) and II(Z).
To this end, iet F: C—> % be a functor and
§:¢ ~*»*&2 a natural transformatiop such that gaé 'g = SF » ;
(i.e. §: SF——-*g‘l"éE in CAT (C,A)) so that the couple

(F, §) € B(C) x .5,2(9,). It follows immediately that

A g_)
Ta(g) (3) (= Té§ : TSF—>T g-lé ) and

£(¢) (F) (= 8F : P—>TS5F) are defined, so that

ar
m2 iy Enl o 0 A 4 2 3 )
7% o€ F: F TSF TC:;l'* is an element of B7(C) with the

property that GBE(T 7@ ° Q2 TF) = O'QB £ F=7F, Since



95

Bt o221 - s Bsr - 57 = o A%
8§ oY °2F) =8 T EF=5F= T~% and
)
&, (P2 = gf r®% = 7 o A%, the cowple (I°%F FE)
2,

is an clement of B ( ) x A7(C) with the sought after property,
»(c)xr(u’)

In other words, we have thus proved that

O—}? oro B ur : 3%(C) g;z( 2¢)
R "l 2 e ) -~

N

gy —— B(C) x &

(&) -

[ 1ev Y

f\

&
-~

Gefines a surjection of §2(C) % “2(0) onto B(C) x ;ga(g). The
4(S)=B(C) alc

A(C)
injectivity follows using the relation (X TZ e T = iBT .

an entirely similar argument using the application defined by

(i y G ma> (X2 G 2% ) ) gives the remainder of the proof.
gf_ COROLTARY {1.8.1%) In order that S be a co-adjoint of T

:it is nccessary and sufficient that for any Y~category ,9,9 the

functor 8(C) : CAT (,B)——>CiT (C,A) be a co-adjoint of the functor
(G) 3 CAT (C,4) —CAT (G,B) in CAT -V , i.e. that one have a
family of natural 1&%—- bijections sach that the diasgram

«m(:;(c)(@) 6)
(ca? (g,3) Lear (g,8) (7),aR) FanlS(C)(F),G) > Rom(S(C)(F'),a")

I

(1.8.13.1 la

2
wm(@,n(C)(0) 1
ca (g,T)(G)] =) Rl F, () (G)) R F, T($)(G'))

| always commutesfor any T, G, @ , © (having -the appropriate source




We give the proof in one direction and leave the
converse to the reader,
Suppose that S is a co-adjoint of T, then there exist

natural transformations ¢ @ IB—'—'—* 7S and P : SP——1T

i~y

A
>
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is a bijection of & w(3(C)(F),G) onto e (7, 2(CI(G)), Ve
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given-6 ¢ G'—=G and P i F—F', one has the equality
( 20?5 2F ) =T°(0-%5% )o@ F )

obtained by the chase around the obverse square of (1,8,13.1) for
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it follows by composition from the equality

(P50 -5 =FF e IZB‘P' )2

which is a simple application of (1.5,6.F) to the transformations

- ™ - o 2.2 .

i ad ~o



that S be a co-adjoint

er

i

[
oo'

LARY (1

|
ad

CORQ

category

that

ficient

p-
'y

3

necessary and sk

that

.

sucn

g
w
o«
A3
joh
(9
o]
=
Q
0
i

i

0

(V]
mi -

R

28

bt

mnmi




98

2 = .
The category 5° x 4° of (1,8,12) is nothing wore than a
»n v

~

reproseatation in (CAT) of the graph of precisely such a functorial

Iisomorphicsa, N.B, This general noticn will be investigated in detail
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Tze dicgram (1,8,14,7) asserts that the ,{cartesian) composite* of
the *pre-correspondence* B with the, converse of '.7.“‘r is isomorphic to
S,K( cartesicn) compose&* with A, which will be abbreviated as in the
"Loxcl" Jormula of (1.8.14.7)

COROLLARY (1,8,15) If § : B—>4 is a co-adjoint of

| 28 &—Z and R : C— 3B is a co-adjoint of Q ¢+ B—> C, then

~

| 3R 3 C——> é is a co~adjoint of QT s+ L—>C,

By (1,8,12) we have that the diagrams
2
o A
?.3,2 x ,5.2 _ é2 ~1 -
AxB h
(1.8.15.1) \!, 1 111 t T
R — &R o
.-
~o II
S
2
wp B
c? x 52 - 5 L 3
o~ ‘&'N L4 ~
cad , I* IIT* Q
(1.8.35.2) 2 ‘
1.86.15.2 c > BxC > A
('.'“g II*
~Q0

1Q
Y
S0 s
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By the "Yoneda" Mh", Hy (FxX)—H, (Fx X) (A) =D (F(4),X)
and compoeition with O gives the desired bijection,
In "dual" fashion, for the category A / of objects of C
c

below A ( € O (C)), defined by means of the cartesian square

.|
A, — ‘W —— c
(1,8,19,1), C

A~

d%a

(1Al =) A

?n

we obtain
B ga_gposxng (1,8,20): If we designate by
(( car, / X, ) )) the set of all functors {: by —X,
c D C D
such that F 0" = (I'l " x @ o then one has a (canonical)

bijection

(1.8,20,1) P(A,X) & CAT, (A/c, x/D) — D(X,F(4))

w

of the set of such F-functors onto the set of arrows of B with source

X and target F(A).
L

e

| A ~
(1,8.20.2) LI A L
| mAl | x

¢® 2

vgl @

¢ — ~D

F L.d

The proof is entirely similar to that of (1,8,18) and is left to the

reader,
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COROLLARY (1,8,21) There exists a canonical bijection of CAT, (A

onto the set ¥w(n' arHp{Ige xF)) of all natural transformations of the
functor ({ T h' (T)sC(A T) )) into the functor (T~ D(X,F(T)) )),

REMARK (1,8,22) The corollaries (1,8.19) and (1,8,21) .
can be obtained directly as well as the Yoneda Lemma in the following
fashion:¢ . .

[

LEMMA (1,8,22,1) Let C be a category, X € dr(g) and
F : C—(ENS) be a functor, There exists a (canonical) bijection
of CAT (X/C, 103/(ENS)) onto the set H#ow(h',,F) of natural
transformations of the e (co-variant) hom—mnctor fetrined by Xe o\ (C)
Jdnto the functor F,

Let ¢: C—> (i"..‘I‘IS)‘2 be a transformation such that
o9 = h' and - Y = F, " There exists a unique functor
Ly + X6 X—= (pylens) such that T iy by = ', G0,
defined by the assignment {{ fr>1g, I )S : Xé X{X) ».
Define & : X/C——>%#/(ENS) as the lifted arrow defined by the
composition in CAT which yields F2 b o cpq-g xo L Ly s
Then v = FH{}% TRTE o Ligyix  awo rtw,u. % F = Frtd),
as desired

: ‘ For the reciprocal, let 0 : X/C "‘"’W'} /(ENS) be such that

Tykp @ = F@liy, .  Then since the square ( S
is"cartesian,the standard argument of the Yoneda i‘.emma de¥ines the
functor 1 § —IENS)2 as desired, (Simply use the functors
F29(I,) and h' s 2.L), As the lemma is no more than a "twisting" of
the Ioneda-Lema, tge remainder is left to the reader,

COROLLARY (1.8.22.2) Then exists a canonical bijection of
R F) onto F(X) Simply use the above lemma with
PROPOSITION (1,8,20), One then has the system of bijections

« Wh o F) > CATL(X, , i¢&/(mw§)—¥“’—*?(i¢}, F(X) =-F(x),
c

o~

PROPOSITION (1,8,23) Let F : C—> D be a functor of
Ul ~categoriesand X € /(D). In order that adjoint of F be defined
at X &Q‘vr(a), it is necessary and sufficient that there exist an

A€ Clr(g) and a functor &3 C, —> D  such that the square
w “/a “/x

ol

Q
B
!
d
e

(1.8.17,3)

_g_f categories and functors be cartesian.,

By

Rl o Tyig)

/
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Suppose that (1, 8 .17.3) is cartesian and for any
TE W(G) define a function

*(T) ¢ C(T,A) —=D(F(T),A) by ({ A(THw) = w(u) >

+

Although that application defined by ({( TwA% (T) )) defines a
natural-tranafofmatién is a consequence of (1.8.19)’ we shall
reprove this fact directly in tﬁe jnterest of clarity, -
We must show that the disgram

c(£,4)
¢(T,A) > C(7,4)

(1,8,23.1,) a.(T) (1)

D(F(T), X) —————= D(F(D), X)

is commutative for any choice of £ : U—>T in C, = To this end,
let u ¢ T—A be an element of C(T,A) and, a forteori, an
object in 'g/A. For any £ : U—>T in C, uf € C(U,A) and thus
(uf, I,, £, u)

P F(z)
U ——>T F(U) —>F(T)
(1.8.2%.1) af l l A l&(uf) lot(u) »
' ¢ h—s—> A X —7 X
A X

is an arrow in g,/ with source uf and target u, Now (1,8.17,3)
A
1e commutative and & s a functor, so that ( d(uf), I, F(1), ob(u))

is a commutative square in E/x and the arrow sssignment is as in
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(1.8.20,2), But this asserts that both &(u) and d(uf) are as
desired in D(F(T),X) and P(F(U),X), respectively and, moreover,
D(F(£),X0(dk(w)) = F()(u) = L(uf), Thus ({ Tampd(T) )
is natural, '
But (1,8,17,3) is cartesian and given any
x & D(P(T),X), one has X eﬁ&r(g/x) with (T, x) € Q¥ (g :f?g/x)
Congequently,there exists a unique z € st(g /A) such that Z‘&} 2)=T and
& (z) = x, i,e, there exists a unique 3 € Q(T,A) such that \
d(T) (z) = x, Thus if the square (1,8,17,3) is cartesian, & (T)
is bijective for any T and the necessity is established,
Reciprocally (and we have again made a direct proof),
given the existence of a family ( % (T)) Tag‘f(g) of bijections
(1) s C(T,A) —> D(F(T),X) which is "natural in T" define
an application &) 3 M \'——*0\; (D /x) by means of the

assignment
{(@T — AAWSU(T) (u) s (T)—=X ),

Since o is a natural transformation, the application of fﬁl( /

into  JL(D /x) defined by the assignment

 (ux, I,, x, u) s (U(D) (ux), Iy, F(x), (1) (u) (&(T)(u)F(x),Ix.)t(T)iu)]

does carry commutative squares into commutative squares and hence

we have defined a functor o @ ¢/ — P/ which makes (1.8,17,3)
- A X

commtative, If the natural transformation & is bijective then

the functor & clearly is cartesian above F,



be cartesian,

be functors,

it

X
/
o

(1.8.251) J

Q

3

=
0
.

b 2]

107

PROPOSITION (1,8,24) In order that the co-adjoint
of F be defined at XcMD) it is necessary and sufficient that there

exist an object A and a functor ¢ such that the square (1,8,20.2)

COROLLARY (1,8,25) Let F : C——>(ENS) (resp, F : C™——(ENS))

In order that F be co-representable (resp, representable)’-

is necessary and sufficient that the square (1,8.25,1) (resp.

L-(--1.8.25.2)) be cartesian for some X € CiﬁQg) and some functor ol .

- 1
- e

)2

oy
(EN5

1

(1.8.25.2) ov
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DEFINITION (1,8,26) Let F : C—D be a functor

and X an object of D, The (canonical) G'i.‘g.- (resp“‘%) representation

category for F relative to X is the fibre product category

CxX y (resp, C g / ) (Any category equivalent to such a fibre
Fv'&x D X
produc%' category will be called a pepresentat;on category)

EXAMPLE (1,8,26.1) The category g/ of (1,6,9) is simply
S F ,
the image of the U-representation category of the canonical hom-

functor h relative the given functor F, i.e, the square

S/FL > ‘3:“—_3'(9,: (Ems)),
(1.8.26,2)
can(c®, (ms))?
l
Y V"o
C L - cm(c° (ENS))

is cartesian, The reader is invited to reprove (1,6.,10) on this
nevw basis,

EXAMPLES (1,8,27) - 1° Let G be the category (ENS) and
| gbo the category (gg) of groups, Every group G has associated

with it its underlying base set, G, If F(S,G) is the set of

all functions from some set S into G, then the assignment
(( @ wv$(5,6) )) defines a functor from (Gr) into (ENS) which

is (co-) representable with the free group F(S) on S as the



representing object and the epplication b ¢ S—> F(S) which
essigns to each generator 4¢ S ifs image in the free group as the
dofining transfora,so that one has a matural bijection of the set
Gr (7(£),6) onto  F(s,8), But this is just the assertion that
given say function « fﬁom S into the underlying base of BOme
group & therce oxists a uaique group homomcrphism £ : F(S) —= G

such that fb = .

i,e, that b ¢ 8 — M(8) is a Teuriversol cuosi-morphizn

- tm o 3 2 & (T % Yen oy ) = : {
for thae .ssociation ¢y of (K&S) with (%;.V ) defined by iﬂ(fg) U Ks,@)

S e, e
in the obvious fashion, Vaence coumeth the familiar diagram

F(S)
N
(D) N2
AN

S—T>-G

waich asseris,with the usual abuse of language, that every function
fron the set of generators into some group G admits a unioue

ertension to a homomorrhism of the free group F(S) on S into the

group G, and thus preserses the set of generators,

This is clearly possible for any set S so what we

really have is a natural isomorphism of bifunctors,

de@) ¢ Gr (F(S), G)—%(5,8,) (=ENS(S,@)

vhick ssserts that the functor F :.(§§§)'-——*‘(%g) is co-adjoing
to the Zumctor ("underlying base set" or "forgetful' functor)dey

- :<%3-> —»(*&:’E\E)o
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2° The description of the free group is typical of
all such free-objects, For example,the functors which assign to
each set '"the'" free polynomial algebra in the given set of
indeterminates is co-adjoint to the underlying base set functor,
Similarly for free-semigroups free monoids, etc, they are all
>charaeterised,upto a unique isomorphism,as co-adjoints of the
respective underlying base set functors,

3° In most of the examples in 2°, it is clear that one
need not "fogget all of the structure available'", but rather have

projection (or,if one prefers,"inclusion") functors of, say, monoids

within groups and algebras, These projections are also functorial

and one has that,for example, the functor tensor algebra of a given
R-module is co-adjoint to the projection functor of R-algebras into
R-algebras, Similarly the functor semigroup algebra of a semigroup
is co-adjoint to the projection functor of R algebras into semigroups,
Such examples as these are legion, LAWVERE (1963) has demonstrated
the existence of this type of co-adjoint in the wide class of structures
including the above cases which he characterises by means of "algebraic
theories', Fields of fractions #nd their generalizations provide many
examples of representations,

4° Let f?: (ENSfTi—‘e'(ENS) be the (contra-variant)

ro WS

power set functor defined by {{ E P(E), £y ry . "f
i8 representable and one has for each set E that é&(E,Z)‘—AL*'ﬂ3(E)

by means of the characteristic functions of subaets of E,
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5° Let Corr (. ,X) 3 (EMtig»):———*(EA}:’MJS)wbe the functor which
assigns to each set T the set 923" (T,X) of all graphs of correspondences
of T with X (i,e, subsets of T x X), Corr ( ,X) is representable and
one has F(T, P (X)) > Cor(T,X) for each T, and, in fact, for each

X,which is characteristic of the covariant power set functor,

6° The examples from general topology are just as mumerous,

Nearly all of those derived from the projection functors derived from

the various separation axioms admit co-adjoints and their constructions

are readily accessible in the exercises of N, BOURBAKI (1965). One

should mention also that the Stone-fech Compactification of a completely

regular space is co-adjoint to the projection functor which carries

completely regular spaces into compact spaces, Completions of

uniform spaces give another such example, The reader will find many

other examples in any text on general topology, For a general
discussion one should also see KENNISON (1964),

7° In category theory itself we mention but two of many,
If C is some Ul -category and £ : X—>Y in F(C), then one alwaye
has the direct image fuz‘xctorr (1.3.;5. Ex 2°) | f* : g/x__-_v,. g/Y.
In order that f* admit an adjoint it is necessary and sufficient that
f be squareable (1,2,17), The functor £* 3 g /Y———» g//x defined by
taking the fibre prodnct with £ and supplying it with its projection
then defines the adjoint, Clearly the adjoint is defined at each
g¢ QL;(Q/I) for which the fibre product with f exists in C,

Another example is provided in (%‘) by the assignment of
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each category to its opposite, The definition of contravariant

functor on g as a functor on g“') is already an indentification
(by definition) arising from the (trivial) solution to-a co-

representation problem,

(1,9) LIMITS OF DIAGRAMS

(1,9.1) If C is a non-void category, then one always

has the constant functors from the "one point" category L into C,

Such a constant functor ¢ X is completely determined by the value X
of its object function and defines an isomorphism of 1, the final
object in (CAT), onto the "one point" gubcategory X of G,
%)« {xland W « {1,1.
Any category A in (Eﬂ'}‘/) has a unique functor

defined by

?A : é——»i. Let F : é-——*-gbe a functor; we shall say
thatMF is a constant functor with value X ( € Oﬂﬁ'(g)) provided F
has the form {{ cr A —&Q—QLE »> for }{60,&(”(})0 The constant
functors with source ; and target 'g are simply the functorial
sections associated with ‘?C 30— ;l,

(1.9.2) If C is : %-category and ZZ is a small
UL-category (1,4,6), then the category CAT (Z, C) is itself
also a Ul -category, In particular the category 1 is a small
U, -category, whatever be 'l,& (£ @), and one has an isomorphism

of categories
(1.9.2,1) o1 ¢——=car (1,0)
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defined by ({ XmnyCyy frrmas Cy )). Hence

{{ any category can be represented as a category of functors with

patural transformation as morphisms . ))

Moreover, if D is any non-void Ul -category, then
CAT(1,D) £ @ and 9 : B-———> 1 is a retraction, with the functor
CAT ( ‘PD,Q) : CAT (4 ,C)—>CAT (D,C) consequently defining,by
composition with ¢ ¢ C—> CAT (1,C) an embedding (1,3,11) of O

into the category CAT(D,C), which we will denote by

(1,9.2,2) (¢ ¢ C—>CAT (D,C) 2

and call the (canonical) constant functor embedding. (If D is

W -small, then ¢ is an arrow in CAT-W ), IfF :C—>Eisa
A~ VT A o~
functor, then CAT (D,F) s CAT ( D,C)———CAT (D,E) carries the

constant functor cx into the constant functor ch = cF(x).

(1.,9.3) Operating for the moment in some universe %*to which

W belongs, we can form the arrow category CAT (2. g)z of the small

f-category CAT (Z' ,C) and obtain the construction

2t B N D 9 (= e@D)
(1090301) |l
¢t § > CAT ,\Z,".\'...) (= c(2))

in the usual fashion,
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' 2
DEFINITION (1,9.4) The category ¢ c>’<g_oq_____ﬁ_.' (z,0
supplied with its projection functors will be called the category

Proj (Q ,g) of projective systemsof C with scheme Z}w . For a

given functor g £ 2> —C, the representation category for ¢
~ A~

2
y

category Proj (2 C) A of projective systems of C with target o ,

s Will be called the

relative to F (1,8,26), G Xr c(Z)
'

By abuse of langusge,a functorial morphism g s cx-—-*-.)’
(pr, (X,%) from Proj (2 '9)/:0‘ ) will be called a projective

system of source X and target &,

I 2 is a Ul -emall category,so that CAT (2 ,C) is a

Ul.-category, then E is called a diagram scheme with vertices

~

0&(?) and arrows JL(Z2), and a functor v :22—=C is called

a diagram in C of schemg 73 . The constant functors s s 2> —C

~w m?

for some XEQ&Y(Q), are then called the constant diagram functors ( on § ).

The squares

Proj (2,0)¢ —oar (,0)°
(10901’01) l
« c | :
c —= CAT (Z,0)
and
Froj (?2-9)/&; > GAT (Z}vg)/‘;. |
bk
car (2,02

Q0
]
Y
Q
>
~
{Y
10
-~
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are cartesian, by definition; moreover, since ¢ is embedding, Pr,
is also an embedding so that Proj (3',C), for example, may be

considered as the subcategory "\ inverse image of c(g) by T,

~

We will make this identification whenever convenient.

[ DEFINITION (1,9,5) Let ¥ :3—>C be a functor,

An object L. in C supplied with a projective system % of source L

and target AV will be called a_projective limit of+} provided the
S‘

functor C Y mmand cAT( Z ,C) /s canonically defined by ¥ (1,8.18)

is cartesian above c,
S

Any couple of projective limits of Y are uniquely isomorphicy
a canonically selected representative,if such exist,will be called
the projective limit and be denoted by {{ Q__m«?’(- (b (,g;_may ), rep (dims N N
By abuse of language ,the object pry ( .@g\?’ ) of C will also be called
the projective limit of ¥ and be denoted by (( gim# ),

If the projective limit of & exist in C, one has by definition
that the square I of

¥ o
g/ G ,9) jy———= UNT, AKCES) ,
_ l T [ XeAy L
(1.9.5.1) ¢°- CANZ ,0)° — =~ can(Z,car (g°, (mNs))?
‘ )
g —— an(g ,9) — > can( unigr , (B5))
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of categories and functors be cartesian (i.e, %' is cartesian
chove ¢),

In view of ( 1,8,25) this simply signifies (KAN 1958) that
the sdjolat of ¢ be defined at V¥ : Z —>C, or, in other words,

b % z o i
that one kas a functorial isomorphism ( ¥ (T>)Te o (c) Such that

X(T) 2 G (T, L) —=Hamle,, & ) = Broj (T,¥)

waatever be Te il (C),
(1.9.6) For a fixed T, it is possible to explicitly
determine the form of the set %(CT,'\S’ } in a very useful fashion, .
any @ € RaNeq, V) s by definition a functor 4 1T —> ¢?
such that 9‘0% = ¢, and g-l'gcp =y o It is sufficient to
consider the object function of ¢ whose graph is then (o w ’1‘—V\9’u)ue Q,(f (,.Z.?)'
i.e. Qe Tl"g\(r, NG u)' (where the set-theoretic product is knownto
exdst at 1@3:;““;: ux, and indeed in W, provided Z is U -small),
Moreover, for any couple (u,v) &€ & (T) x O (Z) ana
aay € Z(u,v), we must have that the square ( Py , o Ipy 99)

is commutative., ¢ F Q) = @) I, = Plv) ).

Ip

(1.9.6.1.)
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This reduces to nothing more than the assertion that the
couple ( ¢ (u), ¢ (v) be an element of the graph of the function
’l \)*(T) : »\’“(T)—-*- O’V(T) for any choice of o € Z(u,v),
The set of all such couples is then the set Qg%{&«)‘&‘(m) = «);(T) x '\?V(T)

which itself is easily seen to be the fibre product (in (%))

A(T) x A (T > A_(T)
“( )\)‘xﬁ B“(ﬂ'ﬂ) v
= 8 WA
J P =B
(1090602) mv}d‘ﬂ ‘ E(u V)
Au(T) CE L) e (A (T))
4 Z(u,v)
where (AV(T)) is the product of Z(u,v) copies of Av(T)

(the "cartesian power"); [ is the application "diagonal" defined
by fM(f*)agez(u v)* fa =f for each )), and

B 4, (T) is that defined by {{ g avo( A g)

) ».
oleZ‘(u v)

e (u,v

The "phenomenon'" of (1,9.6.1) must occur for any couple
(u,v) € 0,\,5,'(@) x Q&r (?). This can be assured by observing that

%
for each such couple (u,v) we have the applications (at least ing& )

4,0 v
« Tagm A,(T) (AV(T))ZWJ »
we L)
and
)
¢« Ta(m A (T)-——A——a—(A,,(T)) ) »

wenlsy
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defined by composition and, consequently, 'the‘ abplications
2 (u,v)

(€ €(T) = ® (B &M pr) ¢ Tam—Ta @™ "
twe CM‘E): ﬁ:’;‘)’ u eo\;('z\ w¥e W(z)*“"(i)

and

€ € m e BAD pr) s Tam—T o @y
W e mmqym wE m,n;) [UR"s} ecﬂi)x oeig)

have the property that any @ e€llA (T) such that €, (T)(¢) = €, (T)(®)

wen(s)
satisfies the condition expressed by (1,9,6,1) for any (u,v)€ 9!«(2}‘) x Q& ()
and any o&Z(u,»),

The subset Ker ( ¢,(T), € ,(T)) of T A (T) thus generalises
MetMi.

the well known notion of ({ the projective limit of a family of sets and
applications )) (take for 2’ the opposite category associated with a

pre-ordered set (1,0.6 Ex,2°)), and will be called the (set-theoretic)

projective limit of the (U) diagram h o , : Z—>(ENS) and be denoted
by « gmhd (M D) or (C gm (A, g0 ¢ MDegp) M

or some variant of same, In any cases/we will have that

e(T\ E( v
(1.9.6.3 gmnd(m <l (T)———-—»T\—(A (T~
meti¥ vy “ ”emﬂm(z)

is exact in (ENS), and that "by definition" -
(1.9.6.8) < projleny¥ )% gim nd (D) ))

is an explicit description of the set of all natural transformations of a
constant diagram functor into a diagram'\}’ as originally desired,
(1,9.7) Returning to our original problem we see that we

have agewn that A negassary and sufficient sonditica for the exiatence
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of the projective limit of a functor ¥ :g g is that the

. .
Ul,-functor defined by <({ Ty ,e‘éinw (T) )) be representable,
in which case we will have a functorial isomorphism which has the

property that for each T € 'QS](S:V),

R(T) + G(T, gimd )% Proj (cp, ¥ )% gin b (T) = gim (g(1,0),5(T,4 ))

is a bijection,
Conditions for this to hold are easily found provided we

reastrict overselves to lLL -diagrams, i,e, to the requirement that ?2 be

a small 'Ql.-category. | In fact (1,9,6,3) gives just what we want,

namely, _
— PROPOSITION(1.9,8), [ MARANDA (1963) FREYD (1960), FOLKLORE ( 22 )]
In order that the projective limit of any diagram 2 :'@—* C on any
diagram scheme ? (i.e, small Tl «category) exist in a given

N ~category £, it 1s necessary and sufficient that the category G

(a) admit the product of any family (A )y of its
objects whose index set I is a member of UL (1, 2,4) and

(b) admit kernels of couplesof arrows (1,2,21),

Ir ,§ is a small w ~category the two set-theoretic
products which occur in (1,9,6,3) are both indexed by a member ofl{l
and hence {{ TwdT Ay (T) )) is a functor into ENS -1 .
MWL) M
Consequently if C admit such ( UI-) producte then the two product

functors are representable and the arrows €,(T) and € 5(T) then
define via

{ Tawny el(r), Tmy €,(T) D) )

natural transformations of representable functors which are then
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represented by a couple of arrows with source and target the
representations of the given products, If C then admits kernels of
couples, we have that the functor ({ T an 'QL’"-J"‘} () ) is
representable and that the projective limit of o exists,as desired,
Conversly, let Z' be a small discrete (no arrows other than
the identity arrows) ‘QL =category, A diagram on Z;,‘ is completely
determined by, and maybe identified with, nothing more than a family
of objects of C indexed by %(E). A projective limit of such a
"discrete diagram" is just the product of the family of objects
defined by the diagram, Now any family of objects of  whose index
set is an element of Ul defines a small discrete category together
with a diagram which may be identified with the given family, By
hypothesis the projective limit of such a diagram always exists, hence
the category admits ( Ul -indexed) products, The reasoning for
kefnels of couple proceedé in the same fashion using the finite category
whose objects are simply the members of the set {0,1’\ and whose
arrows are the members of the set { (0,0), (1,1) (0,1,1), (0,1,0)}
with no non~trivial multiplications)(or any category isomorphic to same),
(0,0) (0,1,0) (1,1)

( o—o—= 1——1 )
(0,1,1)

A diagram on this scheme has as its graph in C a "diagram"

of the form

« A

©

= A »
1
£ (0,1,1)
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(where the identity arrows have been omitted ) and a matural
transformation of a constant diagram functor on this same scheme has

the consequent form

3
H
Y

P
« 4 : lg i= (0,1,0), (0,1,1) )>)

which requires that f(O, 1,0) f=ga= f(O,l,l)f‘ or,in other words,
that for each T€ %r(C), £ € Ker (£(T), £,(T)), A projective limit
of this '"kernel diagram'" is then simply a representation of the |
functor defined by ({ T A~ Ker (£(T), £,(T)) ). If such
limits always exiat‘, then the category S mast admit kernels of couples
of arrows,
[ PROPOSITION (1,9,9) The following statements are equivalent
for any w-cfategory 3:
1° the category C admits finite projective limits (i.e, the

projective limit exists in C for any diagram on any diagram scheme whose
objects and arrows constitute finite sets);

2° ,9 admits fibre products and possesses a final object

(i,e, in the last case, the void projective limit is representable);

30 S admitse finite products and kernels of couples of arrows;

4° C admits finite products and fibre products,

The proof is trivial in the light of (1,9.8), Suffice it
to obaerve that given the existence of fibre products and a final

object, there exists a canonical isdmorphism of the fibie product
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of any couple of objects over the (unique) arrows into the final
ob ject and the categorical product of the couple of objects (since

~for each T, A(T) x B(T) —“—=>A(T) x B(T) ("the fibre product over a
%m?.m B

one element set is simply the product'),

Given finite products and kernels then one has fibre products,

[N

since one always has that

wop(T)
{¢ A(T) x B(T) = Ker (f('r)pr (T), g(Tpr,(T))s A(T)xB(T) ™ __» C(T)
HEN) Y

And, finally, that since for all T, the square
Ker(£(T),g(T)) ——— B(T)

Bs(m
£(T)R g(T)
ACT) > B(T)xB(T)

(109.9.1)

is cartesian, the existence of finite products and fibre products
gives that of kernels of couples,

(1.9.10) The laet theorem (1,9, 9) makes it immediately
possible to substitute "fibre-products" for "kernels" in (1,9,8)
' and obtain the same result, (This, of course, could have been proved
directly, if we had desired), The dual assertion, leading to the

existence of inductive, (direct, or co-projective (?)) limits is

clear,

(1,9.11) A category which satisfies any of the
equivalent conditions of (1.§.8) will be called ({im)-complete,
The importance of the ;otion of 1limit will become readily apparent

as well as the prﬁme importance of the study of the preservation of

»,
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limits under various functors, We remark at present on only two

important aspects of the problem,

—
PROPOSITION (1,9,12) If F : —>D is a functor, then

1° if F is the adjoint of some functor G : D—>C,

F preserves (projective) limits (whenever they
exist); and

2° if F is the co-adjoint of some functor G : D—>

~ 9

then F preserves co-limits (whenever they exist),

We prove 1°, Consider F(gim+) € & (D); for any
T € O(D), D(T,F(gim$ )) —%> C(G(T), gimd ) -2~ gim (C(G(T),dk ))*>£im(D(T, (v )
which is the assertion that F(g£imd-) is the limit of the diagram
F& t,—>D, This is abbreviated as ({ F(gimd) = gim F+ ))

and we sometimes say that F commutes with projective limits,

(1,9.13) We leave it to the reader to assure himself of the
proper behaviour of the notion of {{ equivalence of categories )) and
preservation of the limits and co-limits by means of the following

assertion and the SHIH characterization of adjoints (1.8.5)

K C is equivalent to D iff there exist functors F : 2-—-*2,

G : D—> C and isomorphisms ¥ ,¥ such that ¥ : GF—">Id,¢:FG-—>Ia, ))

[

L

LEMMA (1.9.,14) Let F : C'-——‘-'g be a functor and Te%(}?).

There exists a (canonical) bijection of the set ?&m(cT,F) of arrows

in GAT(C,D) with source the constant functor ¢, and target F, onto the

set CAT @ 7 ) = cygID (c, T/D).
L_ Q - ~

By definition, the set #wn(c,,F) is the set of functors
A T

0 (J—--*D2 such that gp‘ @ =c¢ and Q'EQ = F,
o T ~

of the functor cT(1.9.1)',cT = »c; f,» 50 that given sny 0 € E’fm(cT,F)

By definition
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_ , )
the couple (9 dep® (c) x { -=>T, (C); hence there
P 9 (’0 ~ ane) yer (Pc} /D & tH e
exists a unique 0' : G—> T, such that {'(0' = 8, The remainder is

left to the reader, 3
NB.It is customary to restrict the terminology of "diagram"
and" limit of a diagram" to W -diagrams as we have, although in this
type of treatment there is no theoretical distinction between a '"functor"
and a "diagram", It does have practical merit, though, if our aim
is to describe actually occuring situations in the "large categories"
which one encounters in practice, We have left the notion of
{ projective limit )) outside of this restriction in order to drawattention
to the following connection between {{ projective limits )) |
and {{ (co-) representable functors )) :
B PROPOSITION (1,9,15) [BENABOU (1965)1 Let F i G—(ENS)
be a functor, R(F) = Cx if

)
ENS /(ENS)
(1,8,26) of F relative to { &} , and K B(F)—>g the "first-projection"

the U~representation category

functor, In order that F be (co=)representable, it is necessary and

sufficient that the functc;r K posses a projective limit and that F be

compatable with this limit (WF (fim K)*> £im FX),

We establish this result by our methods: If F is (co-)
representable, then (1,8,5,1) is cartesian for some Xe A%' (E) and ,
functor . above F, But this‘gives the existence of a unique isomor-

~d ‘
X
phiem | of X/ with R(F) such that MK = Iig"‘vx = x/q,_ .

Since (1,9.14) is applicable, for any T € ok(c), (1.3.;20) gives the system

(€ Hae  K)=*> CAT(R(F), T/G) —> CAT(X/C, Te) =~ (T, ) 3)

which asserts that X is a projective limit of K, In addition, since
one has for any set E the chain of isomorphisms
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(Yo © o, FK)—> CAT(R(F) ) —L— cary (
s 1 A

E, A,, E
' any /s’ /()

by application of (1,8,20) again, F is compataible with this limit,

Conversely, if X is an "F-compatibl,e" projective limit for
K, then(1.9.14)and (1,8,20) give that the identity of X must define an

F-functor and also aC-functor of the cartesian product category R(F)

with the category X, , The compatibility of F with this limit then
forces the so-defined functor‘ to be an isomorphism, which establishes
that (1,8.25,1) is cartesian and completes the proof,

It should be clear that if a category admifélimita on
some diagram scheme then such limits may be transferred to any functor
category which has the given category as target’ in a"point-wise"
fashion by means of{fim (Fe )(T) = fin (Fo(T)), for each T in the

FYs s «EL

source category, It is a consequence of (1,9,6) that ENS-UL
admits 1&-111:\11:3 for arbitrary diagrams and thus that any functor
category over (g!,S) will have limite as well, We shall leave it for
the reader to re-establish the claims of (1.9.7))for example, by two

simple observations using the cartesian squares of the diagram

c(D) °
:, T/ 'T:/‘} ENS(C )(D)/M
£ - SN
v 2_ /. ENS(G )/@m l
(1,9.16.1) J | om? | - ms(c®) @2
c2 - ENS(C")Z
~o o ’ '8
I l ) c(z) h(7) > ENS(c®) (Z)
g / . /

ENS(C'Z)

> F(E,F(A)
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REMARK (1,9,16) PROPOSITION (1,9.16) and its dual
completes a sequence of "translational equivalences' of the various
notions of {{representability)) which have been established in &1,
For example, we might tie them together with the statement that in

the course of § 1,we have proved that the following statements are
equivalent:

1° F 1 ¢"—(ENS) is representable (1.6.8).

GR OTHENDIECK (1959) ;

2 ,?,/F( = REP(h) rel F) has a final object (1.6,9)

g,} (% REP (F) rel { #}) has a universal point (1,6.,9)
F
(EHRESMANN{1957) = KAN(1958) = FLEISHER(1962);

4° the T- association of C° with (ENS) defined by F
has a T -universal arrow (1,7.8)

(BOURKAKI 1957, SAMUEL 1948); SONNER (1963), SWANN (1958))

5° the co-adjoint of F is defined at {¢fﬁ
(KAN 1958);

6° the square (1,8.25.2) is cartesian;

7° the square (1,8,26.2) is cartesian (with "F"

replaced by "X");

8° the projection functor from the representafiorft.
| category of F has a projective limit in g"’
( = indictive limit in §) and F is compatable with
this limit (1,9,15) (BENABOU(1965)
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As one can readily see, most of the above are trivial
variations on a theme which seems to have sprung,in part,from the
notion of ({ universal mapping problem »), The latter seems to
have first been expressed as such by SAMUEL (1948) and, with a more
abstract language at his disposal, by BOURBAKI (1957),. This
work was 'ready-made" for the language of categories and functors
and 80 was(used by EHRESMANN (1957) and SWANN (1958 ), for instance,
GROTHENDIECK (1957) seems the first to have given the notion of
"universal mapping problem" a definitively elegant formulation as
well as noted the remarkable attendant simplicity of the formal treatment
of the notion in his terms, N

KAN (1958))with the language of functors at his disposal,
first seems to have abstracted the natural occurence of most universal
problems into his beautiful theory of adjoin? functors, KAN seems
to have made most of his observations from actusl practice rather than
as any actual categorical abstraction of "universal mapping problems",

The essential equivalence of all of these notions seems to
have been in mind almost from the beginning and notes to this effect
for pairs of the notions which occur on the above list have been
embedded in papers (e,g, SWANN (958 ), FREYD (1961), or published separately
(e.g., FLEISHER (1962), SONNER (1964)); others will probably continue
to come to light for some time yet, )

The first person, to the authors personal knowledge,
to call attention to the equivalence of all of the major notions
which occur here was TAKAHASHI (1962), who pointed out to the author
the early paper of SWANN (19 58) as well as introduced him to the
concept of '"representability', Such is the superficial dissimilarity
of the variations on this theme, that the author (1963) was unaware
of the notion of representation even after having excitedly discovered
that "Bourbaki's universal mapping problem, could be formulated in
terms of categories and functors and dualized ; and then every adjoint-
situation just expressed the successful solution of a couple of dual
universal mapping problems"; the result was nothing more nor less than
that arrived at in (1,8,1) through the representation bijections themselves
It is most probable that the author is not alone on this well-travelied
road, .

The references and citations of this section are not meant
to be in any way definitive; they simply acknowledge the author's
personal awareness of priorities, To all who have been inadvertently
slighted as well as those who have been cited, but can easily protest,
"but that's not at all what I did - and, anyway, you have the date
wrong", 1 send a "mathematician's~all-saints'~day prayer' to you
and ask pardon, . ~
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(1.10) DECOMPOSITION OF ARROWS AND FUNCTORS

(1,10,1) Let £ :+ A—> B be an arrow in C, For each

T € Uy (C), the fibre product in (ENS)
v w . M

A(T) x A(T) —252 > ACT)
£(T),£(T)
. £(T)
(1.10.1) J, 1
A(T) > B(T)
£(T)

is simply the set of all couples (x,y) € A(T) x A(T) such that
£(T)(x) = £(T)(g), or in other words, just the graph of the

equivalence relation associated with £(T),

If the functor defined by {({ TawA(T) x A(T) )) is
- £(T)2(T)

representable, then the equivalence relation associated with £(T)
has a representation (A £ ¢hy P Pry) in G which will have the
universal mapping property {({ given any couple of arrows
(x,y) ¢+ T=—3 A such that fx = fy, there exists a unique arrow
93 T———’-Afa'(_fA for which pr,0 = x and pr,8 = y ».

If £ is a monomorphism, for example, then for all
7€ Oy (c), £(T) + A(T)—B(T) is an injection and the equivalence
relation associated with £(T) has as its graph simply the diagonal
A of A(T) x A(T), Now the functor defined by the diagonal is

A(T)

always representable, a representation being defined by the assigne

ment {({ x> (x,x) ». Consequently, since the condition
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({ the equivalence relation associated with f£(T) has as its graph
the diagonal )) is,in fact,equivalent to ({ f£(T) is an injection )),
we have as an inimediate result |

PROPOSITION (1,10,2). A necessary and sufficient condition

that a morphism £ ¢ A—B in C be a monomorphism is that the equare

_ A IA - A
(1,10,2.1) I
A b 4
A £ > B

be cartesian,
-

One has an analogous result for epimorphisms and co=-
" cartesian squares, |
(1,20.3) If we carry an arrow £ 3 A—> B into (ENS)
and decompose it in the usual fashion we obtain for each T € 0l (C),

the quotient set A(T) /R(z(T) SuPPlied with its canonical surjection
y(T) )

A(T) —>A(T) fReq(£(T)* The application VY (T) defines

the set-theoretic cokernel of the couple of projections from the

fibre product A(T) x A(T)' /8o that the diagram

£(T), £(t)
A(T) x A(T)::fziiﬂ: AT — AT /i (m)xa(T)
£(T), £(T) foyfee

is (co-) exact in(ENS) Moreover, the equivalence relation associated

wvith VY (T) has the same graph as that associated with £(T), namely

A>T) x A(T),
£(T), £(T)
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Unfortunately, in order that the functor deﬁne& by -
(( Tawy A(T)/A(T)xA(T) ) be representable,it is necessary and
sufficient that one have a retraction M8 A———»Q whose associated
functorial equivalence relation has the same graph as that of f£(T)
(and hence aleo of VY (T)),.

This is simply a consequence of the fact that for all T,

Y(T) is surjective, hence, if representable, only with the aid of

an arrow [ 3 A——>Q for which there exiéts an arrow 8 § Q—» A.
such that us = Iq, i.e, a retraction,

This is clearly much too strong for most practical
sltuations, in which one quite often always has some ability to
pass to the gquotient", but seldom has that the resulting quotient

map admite a section,

 —

DEFINITION (1,10,4) [ GROTHENDIECK TDTE II (1959)]

An arrow £ : A—> B is called an effective epimorphism provided that

the fibre product (A X, A 1, 2 ) exists in C and f is a co-kernel

of the couple (lf,Zf).
e

(1,10,5) In the next chapter the notion of a correspondence

2.1_1 ,9 will be investigated in detail, For the moment let us &gree to

call a correspondence (in g) of an object A with itself a representation

of a functorial correspondence in CAT (go,@is’). In other words an
object R supplied with a couple of arrows (a,b) : R=—= A such that
for each T&O'ir(g), the application of sets a(T)ab(T) : R(T) ——> A(T)xA(T)

defined, as usual, by ({ xa~~> (ax,bx) )) is injective, (Without
this condition (R,(a,b)) will be called a pre-correspondence), The

set R(T) then has a bijection onto the graph of a correspondence of

A(T) with itself in (ENS) for each T € My(g).
PNt
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In order that the graph a{T)3 v(T) <R(T) > be the graph of a

reflexive relation for each T, it is necessary and sufficlent that the

cagonsl A, .y be contained in a(D)R B(TI(R(T), which, in the

light of comments made in (1,10,1), &mply amounts to the existence

in 3 of an axrow g $ A—>R such that asg = IA and ks = IA‘
Under these conditions, the correspondence R=——3 A will

be sald to be (the graph of) a reflexive relation in g,.

. PROPOSITION (1,10,5) If R—==A is a reflexive relation
i

i in G then the cokernel Cok (a,b) of the couple (a,b) exists iff
Ehe fibre=co=-product A_{i’-ﬁ. exists, in which case they are isowmorphic,
For any T&Q‘,ﬁ'(ﬁg), consider the set Ker (2{(a),T(b)) & T(A)——xXT(R)
consisting of those arrows Z: A—>T such that 2za = 2zb, as well
os the set T(A)T“f)?.n(b%) = T(A) x T(A) consisting of those couples
(x,y) of arrows for which{xa = ybY). By hypothesis
(R,a,b) is reflexive hence there exists an arrow s : A—> R such
and bs = 1

that as = I The relation ({ xa =yb ) always

A A°
implies the relation {{ xas = ybs ), which iz them in this case
equivalent to {{ x =y )). The fibre product T(A)_I_“:,:T(T“(A) then

)
must be coatained in the diagoral and the application defined by

({ 2z m~a> (2,2) )) will conscquently define a bijection o2

i NSNS — —

Ker (T(a), T(b)) onto the set T(A)Tm}):,ﬂ%)(A) and thus force the mutual
representability off the functors under consideration,

(1,10,6) The graph of an equivalence relation is certainly
reflexive and since we have no reascn to prefer one representation

over znother we are led to corresponding the effective epimorphisns
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of g with those squares in C of the form

. 2,
(1.10.6.1) At > A
« 1:1 l ? »
‘ Al z > A -

which are both cartesian and co-cartesian (i,e, which are bi-

cartesian), We will usual}& "f£01ld" such squares into the
form
o, £
(10100602) (( A —-2—-—->A —_— A >)
f

and occasionally refer to the resulting diagram as a {{ short exact

sequence terminat on A )Y,
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(1,10,7) The squafes of C,as arrows in the arrow

category 9'2) themaelves become the objects of the arrow category

of ’32 which will denote by (X g} M.
The cbjects of 33 axre then'fhe arrows of 32, i,e, the

commutative squares of ,C,, such as

c

A—2 o a ¢c—S g
(1.10.7.1) f' = l g or (1.10.7.3) hl = l 4
LA ‘S, b e Y,

while the arrows of 9_,5 are those '"cubes" of C which give rise to the

. . 2 .
same factorization of a morphism in lg , i.e, members of

(HGD x Fh(6®) x (HED) x %L (¢?)), and any of

~ae Gy He, peéy’ a¢y e

which would have as: typical form a commutative cubic diagram such

a8 ¢c—E—>c

ol i
/ . /
a ' i
' ) . ”N 5
(1.10,7.%) £ / i / D
b *l (3'

"
J;
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end be an arrow in 93 with source the square (1,10,7.1) and
target the square (1,10,7.3)., The multiplication in 33 is
Cefined, as for the arrow category of any category,through the
composition in'éjlwhich amounts here again to "lateral agjunction"

of cubes as in

(1.10,7.3) Clm——

«

REARK (1,10.7.6) It is of course obvious that the actnal
opletion 0% such cubes need never be formally made, The propositioms which
occur in (1,4,2) et, seq.are entirely abstract in character and owe their
validity only to the set-thcoretlc properties of fibre products and
applicaticns, The arrows $4(C2) of the arrow category § c2 of any
category g have been here defined as the members of the set

¢ S oX ’f'i(C)) x ( #(C)_x FL(C))
/A(c‘ 'f‘“) (ALY ag
and,as such,are simply "couples of couples", That one can, by
definition, call the members of thisset "commutative squares' and
raw a little square picture which depicts a member of this set is
certainly convenient, but ig, of course, entirely irrelevant to the
formal proof of the propositions,

Equallty of arrows in 2 is then simple equality of counles,
Thus it is welil to remember in 05 that the arrows are quadruples of
quadruples, relative to §, and “FThus that in the cubic representation
of such & gadjet,say (1. 10 .7, 4) all of the side faces are commutative as
arrows oi 02 and, furthermore, iust hevethe property that they define
the same arrow under the compoeltion in 02 Thus, in (1,10.7.4)

the "four sides™ define the same square

$=(f, ¢b, & a,1) = (g,dp, cd, 1 );

)
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it follows that
, !
€4 eb = d(l and o'a = cd )

or, in other words, that the top and bottom facesmre commutative
s well, ‘

(1,10,8) '95,&5 usual jhas two functors (source, and target)
into 92 which correspond respectively in the diagram (1.10.?.5),
to the dircct projectiom of the "left hand face" (ABC D) and

fipight hand face" (A" B' D' C*) into 'gz. 93 thus, by composition

i
¥

with {he source and target functors of into C, has four functors

iato ,S” as well its functorial rmltislication, which correspozds in

(1,10,7.5) %o the “horizontal adjunction of cubes" to the primed (')
face, This makes 33 into a (‘L& ~CAT) - category and gives rise to

the formal notion ofe'matural transformation of natural transformations"

defined simply as a functor into the category 33 . By composition
with source and target functors in 32 and the bi-.furcation which
occurs in &2' a typical such transformation of {ransforuations would
bave as form,functorsk,F, G, H, in CAT (g,g_) and transformations

$: E—>F, ¥: G —>H,such that for any £ : A—>B in

T, the cube with the "arrow functions §(4) = ( §,(4), %.(a))"

(B
E(B) XE) > G(B)
B S ,
B(a) —SA o a(a) W
(1.10.8.1) } BB

F(B) | ————>

S
H(f)

F(A) BN 1(A)

is comuutative, or in other words, & morphism of the arrow category of

can(T, ).
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(1.10,9) We now wish to consider the subcategory

2 5
%x(g) of C’ whose gbjects are the bi-cartesian squares associated

with the effective epimorphisms of C and which arise as fibre products

in ga.‘ A typical arrow in this subcategory  thus has the form of

T

(1.10.9.1) AV

" which we will fold into the sequentially commutative diagram

f—-—; A' — £

2,

pe

S, &1 A"

|!

A A
(1,10,10.1) f
l )
' s 3 B'°-jg—-*s° - B

p 8 V=%
or
(hym,0)3 S > Sy
w_ .0 . g
(1,10,10,2) - zfrJ 1, 24| g
, : ‘L,' n e B
4 e
A > B
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and refer to as a morphism of the exact sequence (1.e, square)

S, into the exact sequence Sy The composition of such
"morphisms of sequences' is simply that of 35 in the usual fashion,
(1,10,10) For the present now consider the subcategory

DEX(C ) / of DEX (c ) (consisting) of those arrows for which the

v

target functor 9';

g/ of arrows above an object X in C. The sequence representation

s 03 “"“*‘CZ is contained in some category

is then as in

§' g AN T A ——— = X

(1.10.11).‘ lx 1 l | lxx

G B T————¥ B!\ ———-—>X

B DEFINITION (1,10,12) [ GROTHENDIECK TDTE IT (1959) ]

An effective epimorphism A——A'—> A is said to be universal
provided that given any object g s T—> A in C, , the fibre

A
product (T' = qufl\', Pry, prz) exists and pr, is an effective

-epimorphiam, The morphiem pr; will be said to have been obtained

by change of base by g.
L

TN AN

(1,10.12,1) ! u ™ U

T e A?

prll : lf
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! Iman (1 10,13) If f is a universal effective
cpimorphiem and £* is a morphism oblained by change of base by

5 then £* is a universal effective epimorphism,

— Let h ¢ U—>T be an object in Q/T3then gh is an
object in C/ for which the fibre product (U?, Y prﬁ) of U

A
sith A' must exdist, But fpaz = gh Pry

(1,10.13.1)
2 =y &

and the square I of (1,10,1%3,1) is carteciaz, hence there exists

a uzique arrow ¥ 3 U'——T' which makes the resulting square II

corzutative, As the'composition of the two squares is cartesian II

must be cartesian, which compleies the lemms when one realizes that

if a sguare such as I is cartesian thea cach of the separate squares

which occur inm II" ag'in (1,10,12.1) wmust also be cartesian as obtained

from the fibre product in g?.
r DEFINITION (1,10,14) Let £ : B——> A be an arrow in

L and S——%;%PA.& couple of arrows in C with target & and scurce S
1

(i.e. a*nre-corresnondcncé*of & with itself ). We will call the

inversy image (£%S, 4.8 ) of (S)(do,dl) by f,a represeatation in C,

e
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if it exist, of the functor defined by the assigoment

(( T~~> S(T) x (B(T) x B(T)) ),
dmudm | FHIMST) .

8(T) x B(T) (T) » B(T) x B(T)
(1,10,1%4,1) £(T) x £(T)
s(T) > A(T) x A(T)
do('l‘) dl('r)

N,B, The obvious generalization of this concept will be discusased

in (fhapter II,

PROPOSITION (1,10,15) In order that the inverse image
dy
of a couple 8——< A exist, it is sufficient that any combination

of the fibre products which occur in the diagram

‘

£*s =Bxs§9——>- s . N B
(1.10,15.1) ., l
A

5

B,ﬂs_.g___,_.s__g>_

la a
° °
f

B o

and lead to its corner, exist in g.
-

The lifted edge maps define the representation in an
obviocus fashion (together with the "middle projection" into 8),
(In the language of Chapter II the inverse image here is simply the

precorrespondence £ o 8 o £ ( ).



>

S P
eguLviLonce

—
)

elation in (:j§)) 2o

< A
we &
vl 09

reprezentation of the graph of an

N
)

which the inverse image by £

Lf?isﬁ, then (£98 € s c«) is an equivalence relation in 2-
For eacha T& Ot (C) the square
a.{7)
s{m) = — A(T)
Sul W)
Y
/ VT v
A(T e
(T) )/g(m)
of sets and applications iz cartesicn (with V(T) the quotient map).
The evaluation at T of (1.10,15,.1) is thus also caricsian aud thus

-8 defines a representation

( (Vg (T))

.
graph is

—
PROPOSITION (1.10
Let

L A .ﬁ,

£
7T <<

image

and 2°

caze they are isomorphic wi

-
-l

defining the

b vrmsnne

somorphism,

The existence of

where we see from the universal

as ¢

w08

¢ () 2{T))
R S

8= (S-_-;4> A) be areflexive pre-correspondence’ in G

B3—> 4 a universal effective epimorphism,

(2%s,

the co=kernel (Cok(do

if and only if the co-kernel of the couple (do’dl) exists

ition of epimorphi

in C of

~

the equivalence relation whose

<

——

B(T) x B(T),
.17) {after GABRIEL (196k))
G (tee.

wCl h:i ﬂ=I.= 5
S such % tds 4 als)

Then:lo the

dge6;) of S = (B, (d,4,) by £ exists;

-

g

'd1)° V )} of the couple (4, ) exista

2 e

iz which

’y

th yf: B—Z> A Y>Cox (4 4,)
[}

%8 follows immediately from (1.,10,15)

L
=

=

£ 1

ityof £ that (= ¢, 1

gus is cgain an epimorphism,

&
) obtained by
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We thus have the sequentially commutative diagram

prgn]
D ™
/14. ll&
(1.10.17.1)) :

&}

where & is the unique arrow arising from the couple ( sflf,(lf,af))

which is such that

(a, s71, & sfly) = (f1f f?.f) »

since dosflf = :i"lf and c‘lle;ff‘..f = d sfzfn fe

1 £

Consequently, for each T¢((C), we have the sequentially

comzutative diagram

Ker(1(a )Ta, ))=7(&) —/—F Ks)

i

(1,10,17.2) |Th 1) (#)
¥ v

xer(T(£), (£, )~ 1(B) /=3 1(£*s)

TN
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v

in (ENS) with both T(f) and T(¥) injective,and T(f) e the injection
defined by T(f) yy restriction of the graph of T(f),
Now let x : B—>T be such that xf_ = xf, and hence be such that

« xfoh = xf_lA Y and consequently {( X, = x2, ). The
effectivity of f then ensures the existence of an arrow 6 : A—— T
such that 0f = x, The injectivity of T(f) then emsures that the square (D)
is cartesian by (1,2,23(b)) which then completes the proof by

demonstrating that T(f) is a bijection for each TGO&'(E).

COROLLARY (1,10,18) The composition of a couple of

composable universal effective epimorphisms is a universal effective epimorphism,

Consider the diagram

| BxB
e
d’ﬂ
(1,10,18, ') g (A:aA) 12* > B
fi J ¢ N\
Mp === A9

with arrows constructed as in (1,10,17), which exists in C since f is
a universal f£fective epimorphism, (1,10,17) then asserts that
» *
(B,gf) defines a representation of the cokernel of (do y 4y ). Ve
dﬂb
* —— ~
claim that f£* (A xQA) _r,”r‘ B is the fibre product of gf : B——> Q

with steelf and immedistely establish the ¢leim by referring to the



143

cartesian diagram used in the comstruction (1,10,15) offtajg(s))

£*(A x A)-——-—’»A{Aﬂ——-——*‘ B

A
l | l f
(1,10,18,2)
BxAxA > AxA > A
B a Q
l l ‘
L - - \
B 7 > A s Q

with the square in the bottom corner also cartesian by definition
of g,
REMARK (1,10,1%,3) This last shows that an effective

epimorphism preceded by a universal effective epimorphism is at
least an effective epimorphism,

If, in addition g is also universal, then let
h ¢ T—>Q be an arbitrary arrow in Q/Q" We then have the diagram

e g*
Tee 3 T >
(1.20,18,4) 1 l .
B f 5 a N

consisting of the two cartesian squares whose existence is insured
" by the univereality existence requirements improved on g and f, but
g* is then effective and f* is universal effective by (1.10.135.
The preceding part of the proof shows that g*f*® is effective which
was to have been shown,
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II THEORY OF CORRESPONDENCES

2,0 PRE-CORRESPONDENCES IN A 1’,,1 ~CATEGORY

DEFINITION 2,0,1) Let Cbea }Ll ~category, A quadruplet

R= (Gr @, (stry B, atr, @), T Faw)

consisting of objects Gr(R), T(R) and T(R) of C and arrows
str,(R) s Gr(R)—>J(R) and gtr,(R) 3 Gr(®R)—>"T(R) of G s

called a pre-correspondence of A = J(R) with B = T(R) with

(pre-) graph G=§5'(«R.) and first and second structural arrows(or

projections) 4 o - gj:__rl(-R:) and 4, = %L‘rz("R’)- g:(ZR,) is then called

the object of departure (or source) of R and T (R) the object

of arrival (or target) of ®,
; e

We will write (( R = (G!s A—~B) )) or, if no confusion
is possible ({ ® : A—*-B )) as an abbreviation for (( R is a
pre-correspond ence with source A, target B, and graph G )) and will

use as standard,a diagram of the form

a—% — 3 - | @

<a°l/ »  or %/Y\x »
A R V

Rt A—m—>B

~~

R
(usually with {({ — N )) ommitted) to indicate a pre-correspondence

of A with B with graph G and structural arrows (do.dl).
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Any couple (do'dl) € 3}(9“)“;; %é)(g) then determines
a unique pre-correspondence (in an evident {ashion), We will
shortly identify the precorrespondences of 3 with the members of
this mset in a satisfactory fashion,

(2,0.2) For each T Q%&(S)o a precorrespondence

® e« (B, (d,d,),A,B) defines an application

BAT) = do(T) K dl('l‘) : R(T)——>A(T) x B(T)
4
with image R (T) S A(T) x B(T), in (ENS) by the standard assigne-

ment ({ £amw (4 f,d,2) D), If, for all T€QU(C), the application

®(T) is injective, we will call R a correspondence (of A with B)

in 9,- Thus 1f A x B exists in C the precorrespondences of A with

B become identifiable with objects above A x B ,snd the correspondences

of A with B with those monomorphisms in C whose target is A x B,

In any case, for a correspondence ®, ®R(T) defines a bijection of R(T)

onto the graph of a correspondence of A(T) with B(D for each T € Olr(¢),
DEFINITION (2,0,3) If R = (R,(d_,d,), A,B) ie a pre-

correspondence in C, we define the converse (or inverse or reciprocal)
/V"' ——— .

of ® to be that precorrespondence R = (R,(d),d ),B,A),

For any precorrespondence Ry one has that (@1 51 = ® and
that for each T€ (k(c), ®' (1) 1 R(T) —>B(T) x A(T), ie equal to
R0+ R(T), where #(T) : A(T) x B(T) ——> B(T) x A(T) is the
"commutativity bijection" defined by ({ (a,b) m»$ (b,a) ),

Thue, 1f R is a correspondenss, then &4 (T) defines a bijectich of
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R(T) onto the graph

—A
B ={(a,b) | (b2) ¢ D RINES BD x MAD},

converse of R, (T) = A(T) x B(T), v
. DEFINTION (2,0,4) If ® = (R, (d_,4,),A,B) and
§ = (s, (s ,8,),A,B) are pre-correspondences in G, each with the
same source and same target, we shall say that R is equivalent to
S, and write ((R % S )), provided there exists an isomorphisam ¥

o/ the graph of ® with the graph of § such that a°'§ = d  and

EA AT

R 1 > B
%
(2,0.4.1) . \ d \I\B
2.0.k.1 o 5 AN

d,
A\IA l

A

This implies, in particular, the relation (2,0,4,2)
(¢ for each T€WH(C), 4 (Td,(T) (RIT)s (TS, (DS ATIxB(T))
By 1tael£)this last condition is only equivalent to

- (2,0.4,3) ({there exists arrows {:R—>S and J* :+ S—> R such that

a3 =8, 43 = s, sl = 4, and sy =d; )

However, if R and S are correspondences, there can exist at most one
such arrow,% y ¥hich then must also be a monomorphism; thus for correes-
pondences, (2,0,4,2) or its equivalent (2,0,4,3), is a necessary and

sufficient condition for equivalence of correspondences,

».
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DEFINITION (2,0,5) If ® = (R, (4 ,4;), A,B) and

&= (S,(u . 1) A,B) are pre-correspondences of A with B,

We will say that R is conteined in §) and write (( R S S8 ))
provided there exists a monomorphism / : R §'in G which

commutes with the structural arrows of R,

]

ITRS S (or in fact with the mere existence of a

commuting morphiem g ),ono has the containment

(2,0.5.1) (( for each Tef(S), d (Duwd, (DM < s (Das, (N{KTHEAMB(T)) ),

If® s A—>B is a correspondence, the condition (2,0,5.1,) is equivalent
to (( &S 8§ ),
The relationtR S Siclearly induces a pre-order relation on

the set of isomorphism classes of pre-correspondences and an order

)
relation on the set of isomorphism classes of correspondences of A with

B, We will refer to the relation ({ R S § )) as the natural

(pre-) ordering of the (pre-~) correspondences of A with B,

B DEFINITION (2,0.6) If ® = (R, (d_,d ),A,B) and

§=(8 (s ,981)yB,C) are pre-correspondences in G for which the
fibre product (R.x § » PT, PF, ) of R with 8 (over B) exists in G,

d
1’
we will say that R is (fibre-or cartesian-) composable with &, with

the (unprojected) fibre-composition of R with 5 defined by

- € SRa@®xS, (dpr),s pr)), A ©) ))
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T, |
Rx38 2 > S ! - C
B
P"ll. Jso'
(2,0,6,1) R ————»B
d
[~
A

The resulting "“composition" depends on the choice of
representation of the fibre product and here is only presumed defined
up to isomorphism (i,e, equivalence) of pré-correspondonces. '

B PROPOSITION (2,0,7) (ASSOCIATIVITY OF FIBRE-COMPOSITION)

Let Rt A—/>B, § t B—>C, and J 1 C——> D be pre-correspondences
in C such that SRt A—C and T?9 : B—-D be defined in C,
Then J°% (S*R) 1+ A——>D is defined if and only if (J28) % ®

is defined, and in which case T (S R) = (T+8) o R,

ey

Canonical associativity of fibre producta gives the desired
result, since for each TQ(}&T(Q), the applications

ol\T)

(C(RxS(T))xT(T) == (R(T)xS(T)) x T(T) “>R(T) x (S(T), x T(T)-—»-R(T)x(SxT(m))
'De du 5,07 5,eTiph (T N 4 (1 it T

are bijective with 4 (T) eimply the bijection defined by

{{x,y),2)w (x,(y,2)) )},  Then the functor defined by

(€ T A (R x S(T)) x HT) )

\l S ‘?ﬂ“‘kgl‘r)

is representable iff that defined by

<4 'J:m>n(r) x (S X T('.l') »

.‘nslﬂ wte

is representable, in which case the representatives are 1somorphic)

»
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in fact, isomorphic to (Rx S) x (S x T)—>Rx S x T),

V9 AN PN Bt 41,%:,3, &,
Rt § x T————> 5 xT > 7 —F1—p
S
\!, Vtc J)
{2,0,7.2) R ,,63 Pra -3 —L2] —(
5 (S) (T+$)
\ o \/ '
R 51 >~ B
|
&, | (R) (&+K) (TeorRY.
oy
A’b

-

dentit

DEFINITION (2,0,8) For any object A in C ome has tho
niity correspondence

() = (&, (I,,1,),4,4) ¢ A——>4,

2*'_4.’;(.5;) has the property that given any pre-correspondences

& 4a——=Band &3 B—= 4, R°JM4) s A—=B and
W) & B

A are both defined and J(A). & = &
Rl = R

-
~s

(2,0.9) The precoding observations show that the pre=
correspondences of C form a “"partial category" or define a bifuncior

in the naive sense toward which the preceding sequence of lemmas

head in a natural fashion, Ye

will make this precise shortly and
investizate the actual structure involved here in detail; but first
let us continue in a naive fashion and see where it leads,
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(2.1) NATURAL CORRESPONDENCES OF SET VALUED FUNCTORS (I)

r—

DEFINITION (2.1,1) Let C be a Ul ~category and
CAT (C*" , (ENS)) the set of all contravariant functors from C
et AAre ~
(4]
into the category ENS-Ul , For F,GECAT (C y (E¥3)), a

natural correspondence of F with G is a triple ' = (X ,F,3) where

Xe(X (T)T € b(c) is a family of sets satisfying the following

conditions:

1% for emch T €Us(c), ¥(P)S F(T) x 6(T);

2° for each £ ¢ FUC), £ eX(V), F(£) x &(£) {X(T)< K(W),

buasmmmars.

If "= (X,F,G) is such a natural correspondence, we will call X |,

the graph, F the source, and G the target of [' | and abbreviate the
relation {{ I" is a natural correspondence of F with G, with graph X )
by (¢ M= (X3 F—> @) )), Moreover, for a fixed couple

(F,G) of functors, we will identify the correspondence with its graph,

REMARK (2,1,2) The effect of conditions 1° and 2° is to
make the assignment

(€ Trms X(D), £ F(E) x () | X(D) )
define a functor from C°" into (ENS); so that we could just as well

define a natural correspondence of F with G as the product functor
supplied with a distinguished subfunctor,

EXAMPLE (2,1.3) A natural transformation of F into G-
is simply a natural corfespondcnce of F with G whose graph is that
of an application of F(T) into G(T), 'for each T ¢ ,Qﬂ; ('g).
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(2,1,4) The set CAT (G'¥ | (%)) is supplied with
a natural category structure if we take as its set of arrows natural

correspondences of functors and define composition of natural corres-

pondences by

.

KooKy 8 F—H, XX (1) = X, (M), (1), Te(C), for

X, t F—gq, K, 16— &,

This category will be denoted by CAT"(C'” , (ENS)).

We will denote by ({ Hen(F,G)> )) the set of all
natural correspondences of F with G, and by ({ Uew(F,G) )) the
subset of Hm(F,G) consisting of the natural transformations of F
into G, Thus the category of functors and natural transformations
becomes a subcategory of the category of functors and natural corres-
pondences of functors,

We order the set HoF,G) by means of the relation
(( for each Tedr(C), ¥ (IS X (1) D),

which we will denote by ({ 5(1 5.5(2 )). The properties of functions
then give most of the Boolean operations on the set ¥{u(F,G), with
the notable exception of relative complementation, whose stability

is not ensured by 1° and 2°,
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(2,1,5) Before this line is further developed, we extend
the Yoneda~Grothendieck evaluation in this context, To this end
let X be an object in G, hx the contravariant "hom"-functor defined

by
K« by (T) = X(T), n (1) = X(1), T g (C), £6T(U) )) 5

and X hx-———»F a natural correspondence of h, with some functor

FECAT (¢ , (ms)), '
By definition, for each T«((C), one has %X (T)= X(T)xF(T),
and in particular X (X) S X(X) x F(X), The cut of the graph X (X)
at {I}S X(X) is the subset (possibly empty) X (T) { { I, } Y R,
consisting of those {€F(X) such that (I, §) €X(X), and hence the
sssignment ({ X mws X(X) (1I}) ) defines a canonical .

application

(2,1.5.1) ® s %(hx,r) —- P (F(X)),

such that 1f %, €X ,, then (X )S (X)),

Inversely, let S & WS(F(X)), i.,e, S< F(X), For each
Teds (C) and each £ € X(T), F(f) 3 F(X)— F(T), Consequently,

one may define a subset XS(T) of X(T) x F('r)'by

XM = { (4, |  (Fse )y = F(EXEN)
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DROPCSITION (2,1.6) X o= (X (.L))T&%_(C) is the graph
{ii‘ a natural correspondence of h,, with F,

If S = §, the proposition is trivial, otherwise if

Wz) = M) (g0 = GpX2), M) y)) = (28,F(g)(F{2)(s)))

waich i en cle.cnt of X S('ﬁ).

s a canounical

o
Hy
lJv
5
I

e assignment  (( Sm)%s ») thus 4

(2,1,6.2 P 3 BP0 > Ko (n,, P,

such that if Sl = SZ’ then ‘P(Sl) % 90(52),
PROPOSITION (2,1,7) T lication R is & retraction

s > . £y . ~ - s o o,
with ¢ &s a distinguished section,so that T (F(X)) is identifiable

with the set of equivalence classes of %\u(hy, F) under the relation
v 2

L<_< }( and X have the same cut a.*%}{ .

The calculation of Rey (S) for ‘A<_=. F(X) gives

#9 (3) = K0 { {Iy3 ) = {seF®| (I, MIQGNeX 0Y =,

e ey =1 g (mex)y,
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[ THEOREM (2,1 8) The couple of applications
(%,¢) M(hx,r*) B (F(X))

defines an (interior) Galois correspondence, i,e,

1° Xls Xz imples (X )< #(X ,) and 8, S, implies p(8;) < ¢ (8S,)s

2° Re@p(s) =S and ew(¥X)SYK

All that remains is the calculation of @ *#(¥ ) for -
Xt hy——F s @ent(X )= 9 (X (0 ({1} ) ). For
T el (C), let '

V(D) = poa(R) (D) = { (£,1)] (38 (se X0 ({13 )

and y = F(f)(s)k .

The relation ({ se¥ (X) <{Ix\ ) )) is equivalent tof (Ix,s)E X))
and X ie natural, so that for each f € T(X), X(£) x F(£) { X(X)eX(D),
Tous if (£,y) € Y(T), then (£,y) = (X(£)(I,), F(£)(8)) =X(£)xF(£)(I,,8)EX(T),

In other words,

W(T) = ¢ent(X) (T) S X (T) for each Te QLf;
which is, by definition the relation ({ <& X)<X ),

COROLLARY (2.1.9)[Yoneda Grothendieck Evaluation)
The restriction of the application ¥ :Jan(h,,F) —3P (F(X)) to
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the set How(h,,F) defines a bijection of ¥o(h,,F) onto the set
of one-element subsets of f (F(X)) and hence onto the set F(X),
The reciprocal of this bijectibn is the application ¢ composed

with the canonical injection {{ ¥awy{}} )) with its target

fatricted to Hewm(hy,F),

Houch, B 2B () T o (1, B

(2.1.9.1) - t

HonlbyF) =—=—> F(X) —>Zom(h,,F)

It suffices to remark that if ¥ is a functional
correspondence then it is non-empty and its cut at X is a one
element set, Conversely, if we start with a onecdement set, then
the correspondence defined by ¥ 1is single valued and everywhere
defined,

COROLLARY (2,1,10) The assignment
 Xmn hX’ b LV VPSS (f(T))T ¢ O{r ) »

defines an embedding of the category C into the category QA‘;‘,A(Q“'"’ , (ENS))

and an equivalence of C with a full subcategory of CAT(C °*  (ENS))(s CAT(C'(ENS))),
L ~ ~ ANV = O Ane—
If X t+ F —>G is a natural correspondence, then X -1

defined by

)
X M= { (xy | GoeXMe o x KD, Ted(g)

is a natural correspondence of G with F and the application defined
by (XXt M




. P . ~ L v ~ 4 .
is o bijection of Wew(F,G) czto Hem(CG,FY, Moreover, if
X3 Gt G, then % dcfines oy composition, an gpplication

Reud %, B of Haw(HC) into LendE', T by (( 6 mm> 0§ ),

laasd
-l : S -1,
and K77 3 G———>G° lofines an application, Hew (F, X ), of
A

» y -1 .
WolF, @) into Yem(F,G'), by (VY ~»X ™3¢ D), Since
(X202 o bt i o VY ana (XTRe e S

CR R X-l)-l = 0% , we have that the following diagram

{2,2,10.1) ' A : \

COROLLARY (2,1,11) The assignuent
X . 5 .;"'l m
KD VAN By £y (27 (i))T E}zﬁr(@ »

Gefivos cn cabeddine of the cates c®® spto - cAR (¢ VP (=)
SLLLSS &k ¢moe oy Ol © Cuueéozy 2 s O s 4 o s woiia

. op . Py
ara o eguivalence of ,9 P with a subcategory whose arrows are those

-1, .
ratural correspondences X such that X7~ is a function,

This corollary,clementary though it may be, does show that
o . op) . . .
concepts defined in § we mey be given an interpretation im

CAT (C¥® | (EXS))), For example, the requirement that an arrow

o 3 X ¥ be an epimorphism in S’v is trivially translated into
K Zoz any couple (¥ a9 Xj) of natural correspondences rpo. &

ode on
; . -2 =1 R -1
Junctor hz into hg such that o& + X ; = AT K 9 if X 1 and
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X 2-1 are both functional, then X 1 " X 5. This follows

since ({ d-}x 1 * 0\-1°X2 ) is equivalent to

€4 X‘;’ od = X-; 4 )) and the requirement that X-i and X -2

be functional makes tl‘,lé'm both arise from the unique arrows

g = X3 € {I;} ) 8y X3 (I} ), so that all that we

have really said is that 31* = gzo{ impiies that g, = g,.

The intereat of this would be considerably diminished were it not

for the fact that the various varieties of ({ wuniversal ))

epimorphisms defined by Grothendieck apparently have similar interpretations
in terms of {{ cancellation requirements )) less restrictive

than those of the above example,

(2,2) REPRESENTABILITY OF CORRESPONDENCES - RELATIVE REPRESENTABILITY

LEBMMA (2,2,1) R = (R,(dy,d,),A,B) is a correspondence iff
for each .

Tedr (), 4 (Tma(T) ¢ R(T)—>A(T) x B(T)

defines a bijection of R(T) onto the natural correspondence

B a(Mea "t (D) 1 AD—B(D,

The lemma is immediate since, in (Qﬁ), one has the chain of

equivalences
« (x,7)¢ 4 do"l@ (ak ¢ R)((x,k)&do"l and

(k,y) €4.)6> (3keB) (a2 4 (k) = (x,7)) ),
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Hence, for each T&Q{(g)‘, d (T)m 4, (T) (R(T) = dido"l('l‘);
and if R is a correspondence, then R(T)—Ls> 4 do-l(T);

R
(2,2.1.2) l a (D) J“
A

LEMMA (2.2,2) In order that the square (D) of (2,2,1,2)
be cartesian in G it is necessary and sufficient that the couple
(do,dl) define a representation of the natural correspondence

"'9.1 vhuy 1y,

T

This again is immediate, for in (ENS), we have that for

each T¢W(C) A(T) x B(T) = u 1. w, (T),
uy (1) yu (1) ©

(x,y) e A(T) x B(T)(=‘7.(( WX=uys=c )< (there exists ¢) such
W7, wtv) o

that

(x,0)€ u, (T) and (c,y)euo'l('r)é—-!;(x,y)e uo'lu w, (T), so that the
functor {{ T MT?M%‘R-S)T) >) is representable if and only if

O, .
the functor ({ TAvwu 0-1('!) . ul(T) )) is repreaentable,

Conjoining these results, we have the

)

PROPOSITION (2,2.3) (D) is cartesian in C if and only if

-1’

(R,(do,dl)) is a correspondence and d.»d uo-]b u, (= (R,(do,dl) ),

-

DEFINITION (2,2,3) [GROTHENDIECK] Letu : F— G

be a natural transformation im CAT (¢”" (ENS)), Call w

(4
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relatively mepresentable (or F representable above G) provided

that given any X €W (C) and any natural transformation 7yt By>G,

the correspondence u’l; i x: hy,—> I has a representable graph

(inﬁg).

REMARE (2,2,3.1) The above definitiom is not identical
to that given in GROTHENDIECK (1960), The two are essentially the
same, however, and rather than proving their ecquivalence, we prefer
to simply develop one of the Grothendieck representability criteria
in keeping with the local terminology; if anything, the proofs are
simpler, Suffice it for us to remark that given any couple of objects
(p,u), (T,v) in g g

Homg ((T,u), (U,v)) =u™" w(D) ({15 )

and e, ) = U s
v s T ed(C) .

~

In view of the remarks concerning cartesian squares, u : F—>G
is relatively representable provided that the functoxr’

T Ay hX(T) ?(T) T »

is representable for any choice of X € 00 (C) and transformation
| 7x?i BTG

F— DEFINITION (2.2.,4) Let z, + A—>B, z, 1 A'—> B

be a couple of arrows in C.

Define the inverse imaze of

the precorrespondence X = (X, (do,d ),B,B') by the couple

(z ,2,) as a representation,if it exist, of the functor

T mvs X(T) x A(T) x A* () )) in C, i.e, so that for each
dv&(h m%:l’f} . w

T ¢\ (C), the square
[l
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(z ,zlf (1) > A(T) x A'(T)
(2.2.4,1) zo(T) x zl.v(T)
d (1) (T)
1) ——2 ! >-B(T) x B(T)

| is cartesian,
L

(2,2.5) It is not difficult to see that in order that
the inverse ima.ge‘ by (zo,zl) . exist for any pre-correspondence,

and hence equivalently that h, x hzl be relatively representable,
o

. .
it sufficies that 'gv admit fibre products, - The representation then

*e

L] " [ ] L L
being given by (A x Xxx Ay zzo, Qs 4 3 ),

AxA'— o A > AY

L

z . Z

1 l 3 l 1
(2.2.5,1) R zl; > B¢

4|

N.B, This in no way requires that hB x hB' orh, xh

A X be representable,

—
LEMMA (2,2,6) Suppose that F and G be representable

by (Y', §y,) and (!,ir),respectiveJ:y, and let 7 o ¢ by—>@

be a natural transformation, If £ : ¥¥—> Y is the arrow
‘g-ly. (x*) - n(Y')(‘gy,) Y(X') and g ¢ X—>Y is the arrow
3y(X) Y (0 (Ix} € Y(X), then wl. 7 is representable iff

t™L g 1s representable, 'i,e, iff the fibre product X x Y' exist
1% 4

inc.
_N
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For each T€Uk (C), the square

iy.(w) s F(T) > Y'(T)
(2.2.6.1) ]
u(T) £(T)
.
y(T) s a(T > Y(T)

is cartesian, for Ey-u e f 'E!' implies that

E.% ogrou'og;} = i.%ofa EY"'X;];

and hence that m-*,"]lr a ¥ ;1 - £, or equivalently,

Ty’ ol . f’l‘ir. Moreover, ¥y y = 8, and thus if

u-l.»\7 y is representable, then §Y. “'1.,7! (a 1 'EY’)’Y . L g)

is representable,

—

COROLLARY (2,2.,7) In order that a natural transformation
of representable functors be relatively representable it is necegsary

that for any X in C and any g ¢ X—>Y the fibre product

=1, g ¢t X—1Y' exdat in ¢ (i,e, £ ¢+ Y*—> Y be squarable in,g/ )e
4

f
B LEMMA (2,2,8) If @ is representable and u relatively

representable, then F is representable and the arrow defined by u

is squareable in (C 7, ).

Let (Y, §r)' define the representation of G, so that
EY(T) t Y(T) —>G(T) is a bijection for each T egjr(g). Now u
relatively representable implies that wt () '.§I(T) ¢ Y(T)—F(T)

is representable and one has the square D(T)
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(D)
Y'(T) ~ F(T)

i T . T
(2.2.8.1) (1) 27 u(?)

T¢(T) & X(T) > G(T)

cartesian with its left hand corner a representable functor and

. (T) a bijection for each T€ 0¥(C), But D(T) cartesian, and
Y gy

‘g! an isomorphism,implies that P, be an isomorphism, i,e, G

)
is representable through the bijection Y'(T)—> F(T),

ﬁe have at this point reproved the first elementary
Grothendieck representability criterion, which can be stated here
as
B THEOREM (2.2,9). Let u 3 F—>G be a functorial
morphism in CAT (c°® | (ENS)), and suppose that G be representable,
Then in order that u be relatively representable, it is necessary

and sufficient that F be representable and that the arrow in C

Liefined by u be equareable,
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