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The wavelength dependence of the integrated and 

peak reflectivities of distorted copper single crystals 

has been measured and the results compared with cal­

culated values obtained from Bacon and Lowde's model of 

an ideally imperfect mosaic crystal. The effects of 

simultaneous reflections on the reflected neutron inten­

sities were studied and accounted for in terms of an 

effective absorption coefficien~. A non-Gaussian mosaic 

block distribution function was successfully introduced 

to bring about better agreement between experimental 

and calculated curve shapes. Using this technique, the 

desired agreement in curve shape was attained but, in 

order to bring measured and calculated absolute reflect­

ivities into better agreement, it was necessary to in-

elude primary extinction effects. 
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CHAPTER I 

INTRODUCTION 

The usefulness of neutron spectrometry in the study 

of the properties of solids and liquids has demanded an ever 

increasing source of neutrons as the complexity of experiments 

becomes more and more involved. The neutron source is, of 

course, a nuclear reactor. The flux of neutrons from such 

a reactor follows, approximately, a Maxwellian spectrum (Fig. 

I-1} described by 

n(E}dE I-1 

where n(E}dE = the flux of neutrons with energy between E 

and E + dE. 

The purpose of the neutron monochromator is to select 

out neutrons of desired energy from the spectrum described 

above, thus providing access to a beam of monochromatic neutrons 

which can be used in various experiments. This selection proc­

ess must be as efficient as possible since the fluxes availahle 

15 2from nuclear reactors are very low (~10 neutrons/cm -sec} 

compared, for example, with fluxes available for X-ray or 

optical studies. Thus, the efficiency of the monochromator 

system is of paramount importance, especially when working at 

the extreme ends of the reactor spectrum where the neutron flux 

is very low. 

There are two fundamental types of monochromators in use 

1 
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Fig. I-1 	 A typical Maxwellian spectrum from a nuclear 
reactor. 
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at present; the single crystal monochromator, used in con­

junction with triple-axis spectrometers; and the neutron 

chopper monochromator, used in time of flight techniques. 

The latter type is basically a neutron velocity discriminator 

which allows only those neutrons with velocities within a 

specified range to pass through the monochromator. There 

are many interesting and ingenious variations of the basic 

chopper mechanism as outlined by Brugger (1965). 

Of greater interest to the author is the single crystal 

monochromator. Such devices are, in general, far more econ­

omical in construction than the chopper and virtually free 

from any type of mechanical failure since the mechanism of 

energy selection is Bragg scattering. 

Since efficiency is a critical factor in the selection 

of a crystal monochromator, one tries to choose a material 

with high coherent scattering cross-section and low absorption 

cross-section. Materials such as Be, Cu, Pb and pyrolitic 

graphite fall into this category. 

In practice, it is desirable to have some knowledge 

of a calculated upper limit to the efficiency which one may 

then hope to approach in reality. It has been found by 

Brockhouse et. al. (1968), Dorner ('1970), Dymond & Brockhouse (1970) 

and others, that efficiencies measured by experiments are con­

sistantly lower than those predicted. It was the purpose of 

the experiments described in this thesis to gain some insight 

into this discrepancy and hence to lessen the gap between the 

upper limit and the efficiencies obtained by experiment. 



CHAPTER II 

THEORY 

II-1. Simultaneous Reflections 

As mentioned in the introduction, the mechanism for se­

lecting a desired energy range from the total reactor spectrum 

is Bragg reflection and can be described by the familiar Bragg 

Law 

n:>.. = 2d sine II-1 

where n = the order of the reflection, \ = the wavelength 

associated with the scattered neutrons, d = the interplanar 

spacing, e =the angle of incidence measured between the dir...,. 

ection of the incident neutrons and the plane of reflection. 

For a particular crystal geometry, there may be more than one 

set of planes which satisfy the Bragg condition simultaneously. 

In terms of reciprocal space, the Bragg condition becomes 

Q = ~ - k' II-2 

where k and k' are the incident and scattered wave vectors 
-0 

respectively, and ~is a reciprocal lattice vector. From 

Eq. II-2, it is clear that the Bragg condition is satisfied 

for all k' which terminate on any reciprocal lattice vec.tor Q, 

assuming a predetermined ~· This statement is interpreted 

geometrically for one simultaneous reflectio~ designated by 

~~ in Fig. II-1 which represents scattering in an hypothetical 

reciprocal lattice. The Bragg condition is satisfied at all 

4 
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Fig. II-1 	 Scattering of neutrons in an hypothetical 
reciprocal lattice with one simul~aneous 
reflection present. 
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reciprocal lattice points located on the surface of the sphere 

(Ewald sphere) swept out by k'. In the example here, the 

desired and simultaneous reflections are designated (abO) and 

(a'b'c') respectively. However, since each reciprocal lattice 

point may be considered as an equivalent origin, each scattered 

wavevector, k' and~", may be considered as the primary wave-

vector and hence may be scattered back into the original inci­

dent wavevector k , and the complementary scattered wavevector 
--0 

k" or k'. Thus, although neutrons, which are ordinarilv 

available for reflection into the primary reflected beam, are 

in fact lost to the secondary reflected beam, there is a 

contribution returned to both the incident and primary reflected 

beams from the secondary reflected beam. Needless to say, 

the effects arising from more than one simultaneous reflection 

become very complicated and the calculation of the resultant 

loss of intensity by the primary reflected beam is very tedious. 

Qualitatively, one expects the freqeuncy of occurrence 

of simultaneous reflections to be largest at low wavelengths, 

or large plane spacings, since in this limit, the radius of 

the Ewald sphere approaches its largest value and hence the 

number of reciprocal lattice points coincident with the sphere 

increases. 

Simultaneous reflections have been investigated ex­

tensively for X-ray studies beginning with Renninger (1937). 

Although the fundamental principles governing simultaneous 

reflections are the same for X-rays as neutrons, their effect 

is much more noticeable in the case of neutrons since absorp­
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tion is less significant than for X-rays and hence the neutrons 

can penetrate farther into the crystal, thus increasing the 

chance of being reflected by various families of lattice 

planes. Another important feature found in neutron studies 

is the "mosaic" width of the monochromators. This quantity 

is generally of the order of 3 0 to 4 0 minutes of arc which 

is far wider than most crystals studied by X-rays. This large 

width can cause overlapping in the wings of two different 

Bragg peaks which, for a perfect crystal, would not have 

occured and thus presented no problem. 

The effects of simultaneous reflections occuring in 

neutron studies, have been investigated by several authors 

(Borgonovi and Caglioti, 1962; Willis, 1963; Moon and Shull, 

1964). However, the general result seems to indicate that 

adequate calculations of the general situation are too 

difficult to carry out and hence one is restricted to making 

approximations which are not always applicable, or to select­

ing a crystal geometry such that the effects of simultaneous 

reflections are minimized. 

II-2 Reflectivity of Neutrons off an Infinitesimal Perfect 

Single Crystal 

Before studying the scattering of neutrons off a real 

crystal, it is informative and perhaps beneficial to first 

gain some insight into the fundamental processes involved in 

scattering. It can be readily shown that the ratio of the 

amplitude of a diffracted neutron beam to the amplitude of 

the incident beam for the (hkl) reflection from a unit cell 
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of a bravais crystal, is given by the structure factor, F, 

defined below 

F2 = IL: b. exp (2rriQ· p. )j 2e- 2W II-3J - -Jb. 
J 

where bj is the nuclear coherent scattering amplitude of the 

jth atom, p. is its position vector in the unit cell, Q is the
-J 

reciprocal lattice vector associated with the (hkl) reflection 

and W is the Debye Wal 1 er factor. 

Using the structure factor F, one can follow the tech­

nique of James (1948, p.36) to calculate the amplitude of 

the reflected neutron beam at some point which is distant from 

the extended scattering surface under question. One finds 

that this quantity is given by 

q =2Nd2 F 

where N is the reciprocal of the unit cell vol'lime, d is the 

plane spacing, and F is the structure factor defined above. 

The scattering of neutrons from a small, perfect crystal 

block is a coherent phenomenon since the intensity of such 

a reflection is determined by the addition of amplitudes of 

the neutron waves. The penetration of these waves into the 

crystal block is very limited due to the high attenuation of 

incident neutrons in the body of the crystal. As a result, 

the inner planes of the crystal contribute less to the reflected 

intensity than do the outer planes. Thus, when the crystal 

reaches a certain size, little or no gain in reflected intensity 

can be expected. This effect is known as primary extinction. 

In the absence of primary extinction and absorption (ie., 
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when considering a perfect crystal small enough such that it 

is essentially uniformly bathed in radiation) one can show, 

in the fashion of James, that the total reflected intensity 

per unit incident intensity per unit volume when the crystal 

is rotated through the Bragg position, is given by 

A3N2F2 
Q = II-4sin28 

where N is the reciprocal of the unit cell volume and F is 

the structure factor of the reflection defined above. 

The no absorption approximation in such a small crystal 

block is quite adequate (Darwin, 1914) since the linear 

absorption coefficients for the copper crystals studied are 

of the order of 0.45 cm-l and hence any reduction in intensity 

in a distance corresponding to the no primary extinction 

approximation c~ 10-4 cm.) is quite small. 

In considering the case where the crystal thickness is 

large enough for primary extinction to occur, an approximate 

correction can be applied to the integrated intensity, Q, 

assuming the incident beam is reflected from the face of a 

large crystal slab (see Zachariasen, 1944 and DeMarco and 

Weiss, 1962). The corrected integrated intensity, Q', is given 

by Eq. II-5. 

Q' _ 
-

QtanhA 
A II-5 

where A=ANFt /y 1 ,
0 

t 
0 

being the thickness of the crystal block, 

and y being the direction cosine of the angle between the1 

incident beam and the surface of the crystal. The ratio Q'/Q, 

is defined as E and the functional dependence of E for copper 

is plotted against the crystal thickness, t , for (200) and (220)
0 
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reflections at room temperature in Fig. II-2. The figure 

shows the result that primary extinction is an increasing 

function of the plane index. Note also the rapid decrease 

in£ as the crystal thickness increases, ie., primary 

extinction increases. 

II-3 Reflectivity of Neutrons -·off an 'Ideally -rrn·perfect' 

Mosaic Crystal 

Having briefly reviewed the reflecting properties of a 

small perfect crystal, one now constructs a model of a real 

crystal consisting of an assembly of these small crystal blocks, 

called mosaic blocks, randomly oriented about some preferred 

direction in the crystal. This highly idealized situation 

is believed to give an adequate macroscopic description of the 

effects caused by microscopic dislocations which occur through­

out the crystal. 

The model proposed by Bacon and Lowde (1948) for the 

calculation 6f reflected intensities of neutrons from mosaic 

crystals is essentially that of Zachariasen but modified from 

the .X-ray to the neutron case. This model, hereafter called 

the B & L model, proposes a crystal with infinite lateral ex­

tent and finite thickness. The crystal itself is assumed to 

be mosaic with the constituant blocks so small that primary 

extinction is negligeable as well as absorption in the indiv­

idual block, but there is an overall finite absorption when 

the total extent of the crystal is considered. Such an hypo­

thetical crystal is termed 'ideally imperfect'. 
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The angular distribution of mosaic blocks is defined by 

the function W(~) such tha~one interprets W(~)d~ as the 

relative number of mosaic blocks, the normals to which lie 

between the angle ~ and ~+d~ , measured from the normal to 

the crystal surface. ~ is the angular distance from the Bragg 

position (ie., ~=8-8B). Thus, as the neutron beam passes through 

( the crystal, it will encounter mosaic blocks with the same 

orientation and hence the incident beam will be attenuated 

according to the density of mosaic blocks with identical 

orientation. This effect is called secondary extinction and 

is distinguishable from primary extinction by the fact that 

reflected contributions from different mosaic blocks add 

intensities (secondary extinction) while the contribution from 

individual mosaic blocks add amplitudes (primary extinction). 

For mathematical convenience, one assumes, after Zachariasen 

(1944), that the mosaic blocks can be manipulated into mosaic 

planes or layers, the reflecting power of which is R = QW(~)/y1 . 

In considering the effect of an infinite crystal slab 

of thickness T on a pencil beam of neutrons, it is convenient 

to consider the power of the various neutron beams found at 

a depth t in the crystal. The set of differential equations 

below describes the processes in the crystal which attenuate 

the neutron beam. These equations are a more general version 

of the Bacon and Lowde (1948,1962) power equations which have 

been expanded by Moon and Shull (1964) to include the effects 

of simultaneous reflections. 
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p. (t)dP1(t) 
l. =dt y.

l. 

~R ) C ~ p. (t) R( +R + 	 1µ 21 	 ~ 2i + 1 ~ i2 
1 i Yi . 

dP 2 (t) 

dt 

dP i (t) 

dt (µ+R 
1 
. 
1

+R 
1 
. 

2 
+ L: R , . ) 
j~l 1J 

p. (t)+ c L: J R .. 	 II-6
2 	 Jl.j~l y.

J 

where c1 and c2 = i for reflection and transmission geometry 

respectively (ie., Bragg and Laue scattering), P (t) is the1 

power of the incident neutron beam at a depth t in the crystal: 

P (t) the power of the primary reflected beam; and Pi(t), the2 

power of the ith secondary reflected beam (ie., the i-2 simul­

taneous reflection); R.. , the reflecting power of the reflection 
1] 

involving the incident and scatterd beams i and j respectively 

(see Fig. II-3): andµ is the linear absorption coefficient 

characteristic of the crystal. The bo.undary conditions imposed 

on this set of equations are as follows 

pl (0) = pl (0) 

P. (0) = 0 transmission geometry
1 

P. (T) = 0 reflection geometry 	 II-7 
l. 

The exact solution to the above equations is very tedious for 

an arbitrary number of simultaneous reflections. Moon and 

Shull (1964) have made an approximate solution which is valid 

in the thin crystal limit (low absorption and low secondary 

extinction) but no attempt has been made to solve the power 
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equations in general terms. As pointed out by Moon and Shull, 

the usefulness of such a general solution is questionable when 

weighed against the labour involved. However, the exact sol­

ution of the power equations has been obtained in the presence 

of one simultaneous reflection. The solution thus obtained 

is frequently useful for two simultaneous reflections due to 

the high symmetry present out of the scattering plane in the 

reciprocal lattice. A more detailed description of this 

doubling of parasitic reflections is forthcoming in Chapter IV. 

The solution in the absence of any simultaneous reflection 

is that obtained by Bacon and Lowde and given in Eq. II-8 below. 

a ref1ection 
(l+a) + /1+2a coth[A/l+2a] 

and 

1 -µT/cose -2QW(~)T
= 2 e (1-e case ) transmission 

II-8 

where a = ~W(~) and A= µT/sin8. The solutions above were 
µ 

obtained under the assumption that y = y 2 , ie., the family of1 

reflecting planes are parallel to the surface of the crystal 

slab. The general situation where the family of reflecting 

planes are at some oblique angle to the surface of the crystal 

is shown in Fig. II-3. 

Because of the mosaic nature of the crystal, neutrons are 

reflected over an angular range, greater than the so called 

'natural width' (Bacon and Lowde, 1948), when the crystal is 

rotated about an axis in the plane of reflection. The integrated 
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Fig. II-3 	 Geometry of Bragg reflection from an infinite 
crystal slab when the reflecting plartes are at 
some oblique angle to the crystal surface. 
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reflectivity, R6 , is then defined as the area under the 

resulting rocking curve per unit time, divided by the incident 

intensity per unit time. Thus; 
+oo 

Re = 
P

2 
(0) 

di1 in reflectionpl (0)J 
-oo 

00 

P (T)and 2 di1 in transmission II-9Re = f Pl {O) 
-oo 

II-4 Mosaic Block Distribution Functions 

In the proposed model of a mosaic crystal, Bacon and 

Lowde, in the fashion of Zachariasen, assumed that the mosaic 

block distribution function was a Gaussian distribution 

characterized by a standard deviation n. such a distribution 

was used since a knowledge cf the form of the true distribution 

was not then, and is not now, available from experiment and 

thus, for lack of a better approximation,. the Gaussian has 

remained. 

In the thin crystal limit, it is expected from Eq. II-8 

that the peak shapes obtained in a rocking curve would be 

proportional to W(L1). Thus, 

-L12/2n2
eex: 
n 

and hence 

ln[nP2/P1 ] 
z - L12 + c II-10 

~ 
Thus, if the mosaic distribution, and hence the peak shape, 

is Gaussian, the semi-log plot of Eq. II-10 should be linear. 
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However, as shown in Fig. II~4, the calculated curve shapes 

are not entirely Gaussian for thick crystals, the central 

portion deviating most strongly from this approximation. The 

points marked FWHM represent the positions of the FWHM on 

the abscissa to give an indication where peak shapes become 

Gaussian. This result as predicted by Bacon is due to 

extinction effects in the crystal, ie., the peaks are showing 

indications of saturation and thus flattening of the central 

portion occurs. However, the peak shapes that are actually 

observed in practice much more closely approximate a Gaussian 

shape (in reflection geometry} as indicated by the dotted 

line in Fig. II-4· As mentioned elsewhere (Dymond and Brock-

house, 1970) the ability to adequately match experimental and 

calculated curve shapes is important if one desires to make 

meaningful predictions of absolute integrated reflectivities 

which will establish realistic values of the achievable upper 

limit to R8 . 

The standard technique used to calculate the predicted 

integrated reflectivity is to adjust the mosaic distribution 

parameter, n, until one obtains agreement in one of the 

physical properties of the measured Bragg peak, usually FWHM. 

Such a technique is used since indirect measurements of n 

cannot be made with desired accurac~ 

Table II-1 is a sample result obtained using the method de­
0 

scribed above for crystal #BA at a wavelength of 1.3 A in 

reflection geometry. The parameters found in the third line 

of the table are, from left to right, the absorption coefficient 
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in cm-l the reflectivity Q in cm-l as defined in Eq. II-4, the 
0 0 

interplaner spacing in A, the wavelength in A, the crystal 

thickness in cm, and the exponential form of the Debye Waller 

-2Wfactor e . Columns R(J) and R(K) are the calculated integrated 

reflectivities. The duplication is merely a check for conver­

gance in the program. Columns J and K are indices used in the 

program and for present purposes should be ignored. Column 

ETA gives the value of mosaic spread parameter, n, in minutes 

of arc, used to calculate the integrated reflectivity which 

can be found to the left of column n. The FWHM of the calcu­

lated peak for the desired n is read, in minutes of arc, 

immediately to the right o~ column ETA. Columns S(J) and 

ROOTS(J) are the variance and standard deviation associated with 

the Bragg peak curve shape. These quantities are calculated 

from the second moment and the square root of the second moment 

respectively of the P2/P function defined in Eq. II-8.1 

Using the ROOTS(J) column, one can immediately determine 

how well the crystal under study, approaches the approximation 

leading to Equation _II-10. In other words, if the quantity 

ROOTS(J) agrees with the quantity ETA, then the standard 

deviation of peak shape and the standard deviation of the mosaic 

distribution function are approximately the same and hence one 

has a good approximation for the thin crystal limit (or low 

secondary extinction). As expected, for large n(ETA), agree­

ment between ROOTS(J) and ETA improves since one is approaching 

the low secondary extinction approximation described earlier 

in this chapter. 
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In an attempt to gain better agreement, a more suitable 

form for W(~) was sought. The Gaussian approximation implies 

that a single value of n must describe the interior state of 

the crystal. For an untreated crystal this approximation 

may be adequate but after the crystal is subjected to treat­

ment as described in Chapter III, there is no reason to 

expect the effects of the deformations to be uniform. In 

other words, n may vary throughout the crystal. 

Not wanting to stray too far from the Gaussian approxi­

mation, it was assumed that there exists a value of n, called 

n , which characterizes the crystal, but is only the most 
0 

probable value of n in the crystal. In other words, n is 

distributed about n by some weight factor g(n) which is 
0 

2assumed to be Gaussian and charactericed by the variance 0 • 

ie; II-11 

By introducing this new distribution,we have intro­

duced a new degree of freedom, a. However, the justification 

of a particular choice of a lies in the accuracy inherent in 

the model when one tries to predict results over a given 

wavelength range for a given cr. 

Using the above weight factor, one finds that the 

probability that a given value of n, say n., occurs, is just
l 

-(n.-n ) 2
/20

2 
e 1 ow. = 1 

1 

12Tin. 
l 
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Thus, the unnormalized distribution function of the mosaic 

blocks is just 

w = L: w. 
i 1 

where the summation is over all possible values of n. If the 

spectrum of n is continuous, the distribution becomes 

I 2 2w(6) 1 -11 212n 2 -Cn-n ) /20 
= e e o dn 

0 

which upon normali&ation, 	reduces to 

2 2 2 2 
[ ~ e-6 /2n e-Cn-n0 > /2o a" 

W(~) = 
o 2 2 

2.5066 e-~ 120 d~ + 3.14150 II-12
f 

-no 

(See appendix I) 

Before proceeding further, one must note that the 

expression justdeveloped becomes physically unacceptable 

if the ratio o/n gets too large. To more clearly understand 
0 

the situation, refer to Fig. II-5 which shows the functional 

dependance of g(n) for several values of o and n • The model 
0 

proposed implies a symmetricdistribution about n as depicted
0 

in diagram (a) . However, 	 as n decreases, and/or o increases 
0 

one finds it necessary to truncate a significant portion of 

the distribution, as depicted in (b), in order to preserve 

the criterion that n be postive (the physical significance 

of a negative n escapes the author). It is a simple problem 

to show that the latter case can be avoided if one restricts 

oneself to the condition that a<0.4n • This restriction 
0 
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ensures that truncation will not occur for more than 5% of 

the peak height crossing the n=O boundary. 
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CHAPTER III 


EXPERIMENTAL AND APPARATUS 

The experiments were carried out on the McMaster 

University triple-axis spectrometers at the McMaster reactor 

and the NRU reactor at Chalk River (Brockhouse et al, 1968). 

Fig. III-1 is a schematic diagram showing the geometrical 

configuration used in the experiments. The double monochromator 

shown in the figure is a property of the E-2 installation at 

Chalk River only, and not of the spectrometer used at 

McMaster. Although triple-axis spectrometers offer their 

main contribution in the field of inelastic neutron scattering, 

they lend themselves quite naturally to reflectivity studies, 

especially the Chalk River instrument since one has very 

rapid access to a continuum of neutron wavelengths because 

of the double monochromator system used. A Ge single crystal 

obtained .from Alfa Crystals (Ventron) in Bradford, Pennsylvania, 

was situated as shown in the figure. The Ge crystal used was 

a circular disc approximately 6.4 cm in diameter and 0.037 

cm thick with a (110) axis perpendicular to the face. The 

crystal slice was aligned with the (110) axis parallel 

to the face, up, such that a (311) and a (331) reflecting 

plane was readily accessible for the purpose described below. 

The function of this crystal was that of a secondary mono­

chromator which would select from the incident beam, which was 

already a selected portion of the reactor spectrum, the desired 

25 




26 

wavelength. Ge was selected for this purpose because of 

its lack of significant mosaic structure (<l" FWHM) such that 

the widths of any measured peaks were due only to the true 

widths of the sample and geometrical factors such as parallel­

ism and collimation, and not to the width of the Ge mono­

chromator. In order to minimize geometrical contributions to 

the measured widths, the plane of reflection in the Ge was 

chosen such that its plane spacing was as close as possible 

to the plane spacing of the sample copper crystal being studied. 
0 

Thus, a Ge(311) reflection (d=l.706 A) was used in conjunction 
0 0 

with a Cu(200) reflection (d=l.807 A) and a Ge(331) (d=l.298 A) 
0 

with a Cu(220) (d=l.278 A). By using these planes, the 

condition of parallelism was satisfied, as shown in Appendix III, 

and the measured peak widths were due only to the true width 

of the sample· and the collimation. All collimators used were 

Soller slits with an angular divergence of 0.0125 radians. 

The beam from the Ge monochromator was then passed 

through an aperture 0.8 cm square into the analyzer housing 

of the spectrometer where the copper crystal to be studied 

was placed. 

The sample crystals studied were slabs of approximate 

dimensions 15. 0 x 5.1 cm with thicknesses of 0.442 cm and 

1.27 cm. They were grown by Research Crystals in Richmond, 

Virginia, in one of two orientations such that either a 

[200] or [220] major axis was perpendicular to the face of 

the crystal slab. Those crystals with a (220) face were 

aligned with a [220] axis up and those with a (200) face, 
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with a [200] axis up. The t~o sets of ·planes . studied were 

those parallel and perpendicular to the face of the crystal. 

The forme~ were studied in reflection geometry and the latter 

in transmission geometry, also known as Bragg and Laue geometry 

respectively. As received, the crystals had rocking curve. 

widths of 6 to 10 minutes of ~re (FWHM) and integrated re­

flectivi ties ranging from 1 to 3 minutes. The crystals were 

deformed in various ways, described in Table III-1, in a manner 

intended to improve their reflectivities without making their 

rocking curves too wide. Turberfield (1968) was able to in­

crease the mosaic width,and. hence the reflectivity, of his 

copper crystals by doping them with Be. 

The Bragg peaks for each reflection were obtained by 

rocking the sample crystal against the stationary Ge mono­

chromator while holding the detector in a stationary position. 

The angle designated e is hereafter used to mean only the 

angle between the incident neutron beam and the desired plane 

of reflection (ie., either (200) or (220)). 

The integrated reflectivity, defined as the area under 

the Bragg peak divided by the intensity per counting interval 

(N ) of the beam incident on the specimen crystal, was measured 
0 

as a function of wavelength for the crystals described in 

Table III-1 and the results compared with calculations based 

on the results of Chapter II. The absorption coefficient, µ, 

which is required to make the aforementioned calculations, 

was obtained by .rocking the copper crystal through th~ Bragg 

3peak with the He detector in the "straight through" position 
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TABLE III-1 

Description of treatment used t<;> de~orm various copper 
crystals in order to improve their reflectivities 

Crystal Major Pla_ne 	 Treatment 

Type of Press No. of Times Stress(lbs/in2) 

* 	SA (200) 48" radius bend 6 500 
Straight press 1 2000 
36" radius bend 2 600 
36" radius bend 2 4000 
Straight press 1 10,000 

-Crystal was sliced down the centre 
on a band saw to make 2 thinner 
crystal slabs. 

-Various other treatments which 
proved ineffective were tried 
(eg. temperature shock treatment). 

* 9 (200) 	 Straight press 1 5000 

15 (220) 	 Untreated 

16 (220) 	 36" radius bend 2 3000 
Straight press 1 4000 

* As treated by E. D. 	 Hallman (Brockhouse et al, 1968) 

After each bending, the crystal was subjected to a straight 
press at the same stress as was used for the bending 
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and hence µ was calculated, assuming that the attenuation 

of neutrons through the crystal obeys an exponential decay 

. ~µx
law (1e., N=N e ) • 

0 

Informative discussions concerning various techniques 

for measuring ref lectivities as well as precautions and approx­

imations which are useful in many circumstances have been dis­

cussed by many authors (Bacon,1955; Burbank, 1964; Caqlioti, 

1964; Egelstaff, 1965; Arndt & Willis, 1966; Popovici et al., 

1969). 
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Fig. III-1 	 Schematic diagram of apparatus used in the 
experiments. 



CHAPTER IV 


RESULTS AND DISCUSSION 

The integrated reflectivity of each crystal, defined 

in the previous chapter, was measured in transmission as well 

as reflection geometry for each wavelength studied, the results 

of which are plotted in Figures IV-1 to IV-10. Before dis­

cussing these curves in detail, it is informative to briefly 

discuss the effects of the various processes described in 

Chapter II, on the integrated and peak reflectivities. The 

solid and dashed lines of the above mentioned figures represent 

theoretical curves for the approximations tending towards: 

(1) 	 no secondary extinction or simultaneous reflections 


(11 = 49'). 


(2) 	 no absorption or simultaneous reflections 


(~ = lo-4 cm-1, n = 8' or 4.7'). 


(3) 	 no simultaneous reflections 


(P = 0.45 cm-1, n = 8' or 4.7'). 


(4) 	 no simultaneous reflections and the Debye Waller 


factor unity (2W = 0). 


It becomes clear from Fig. IV-1, that the qreatest 

reduction in calculated intensity arises from absorption at 

low wavelengths ( < 0.7 A ) and from secondary extinction at 

longer wavelengths. For copper, the Debye Waller factor 

contribution appears to be the least significant for the 

lower order (200) reflection but more important for the higher 
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order (220) reflection, as expected. 

The results verify experimentally that R
0 

, peak height, 

and the FWHM associated with the Bragg peaks, all increase in 

value with increasing wavelength, at least over the wavelength 

range studied. Also, the peak reflectivities, and to a lesser 

extent the integrated reflectivities, were higher for crystal 

#9 than for #SA in the reflection geometry and vice versa in 

the transmission geometry. This result arises directly from 

the fact that crystal #9 is more than twice as thick as #SA 

and hence, in reflection geometry, a larger volume of crystal 

can be irradiated for #9 but in transmission, the neutron path 

length is much longer and hence absorption plays a larger role 

in reducing the reflected intensity from the thicker crystal. 

In transmission geometry, saturation of the peak 

height to a specified value is quite apparent. The particular 

value involved for a given crystal thickness is determined 

entirely by the degree of absorption. For example, in the 

absence of any absorption, the peak height saturates to 0.5 

for any crystal thickness. However, when absorption is 

included, one expects the peak height to approach some value 

determined by µ and T and then decrease with increasing wave­

length. Figures IV-4 and IV-8 clearly show that the B & L 

model does predict the above phenomonon, however, it has not 

been conclusively observed in experiment since the main effect 
0 

occurs for wavelengths greater than about 1.8 A. and not enough 

experimental data has been obtained for this region. 
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The solid irregular line labelled "paraffin moderator 

experiment" in Fig. IV-1 shows the integrated reflectivity 

obtained from the sensitivity function by A. t>. Roy (1970). 

In this e~periment (Brockhouse, 1958), monochromatic neutrons 

were thermalized in a paraffin block placed on the specimen 

table. The analyser Bragg angle was then varied and the number 

of counts per unit time was recorded as a function of this 

angle. The integrated reflectivity was then extracted assuming 

a Maxwellian distribution for the neutrons scattered from the 

block, with appropriate corrections for second order effects. 

The results thusly obtained were then normalized·. The agree­

ment between this method and the method described throughout 

this thesis is quite good and serves to substantiate the 

validity of the method used. 

The open triangles and squares represent calculated 

reflectivities obtained from the B & L model using measured 

values ofµ. The appropriate n's were obtained by matching 

experimental and calculated FWHM. Introduction of the effective 

absorption coefficient has ~reatly improved agreement with 

experiment over the ordinary B & L model. How~ver, it is quite 

clearly shown that matching FWHM yields calculated values of Re 

and peak height which are too high. But, if instead, Re is 

matched at one particular wavelength, then~ is determined and 

can be accurately used to calculate Re over the rest of the 

wavelength spectrum (see Fig. IV-5, n = 6'). The latter 

procedure, although adequate for predicting R0 , is in fact very 

· poor in predicting the curve shape since the FWHM's no longer 
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match, and the peak height is greater than for the calculation 

with n = 8' {see Fig. IV-6). This result appears to be quite 

general for all crystals studied and will be treated in detail 

later in the text. 

The results shown in Fig. IV-9 and IV-10 are of special 

interest. Here, one is able to directly observe the effects 

of mechanical treatment of a crystal as out1ined in Chapter III. 

The closed circles represent experimentally determined reflect­

ivities of cry~tal #15 in reflection. This crystal may be 

taken as quite representative of crystal #16 before treatment 

since it has been found that all untreated crystals studied 

had approximately the same properties. A comparison of Fig. IV-9 

and IV-10 indicate that upon treatment, the gain in peak height 

is substantially lower than the gain in R , indicating a e 
marked increase in mosaic spread {from about 6' to 18' FWHM). 

In transmission geometry, one finds an indication in 

Fig. IV-10 that the peak reflectivity of crystal #16 does 

decrease in value with increasing wavelength beyond the point 

of maximum peak height. 

Another interesting feature of Fig. IV-9 is the general · 

relationship between the values of R obtained in reflection
0 

and those obtained in transmission. It appears that for a 

crystal thickness of 1.27 cm, R in transmission is, generally
0 

speaking, only about SO% of the value in reflection. Since 

it is generally very useful to be able to use either geometry, 

one must choose a monochromator of optimum thickness such 
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that the reflectivities obtained in either geometry are brought 

to a maximum. Such a situation arises with the McMaster 

spectrometer at McMaster. Here, the monochromator used is 

similar to crystal #16 and is aligned such that for a given 

scattering angle, two wavelengths can be obtained, one by 

scattering from the (220) plane in reflection and the other 

from the (200) plane in transmission. 

The monochromator used in the system at present is 

1.27 cm thick. It is believed that a more efficient system 

could be employed by using a crystal with a thickness of about 

0.6 cm. By analogy with the results obtained for crystals 

#SA and #9, one would not expect a substantial loss in intensity 

in the reflection geometry by using a thinner crystal but 

one would definitely expect an increase in reflectivity in 

transmission geometry. For example, in considering the (200) 

plane in reflection from crystal #9, T = 1.27 cm, it has 
0 

been found that for A = 2.0 A, 98% of the incident neutrons 

were removed from the incident beam at peak intensity whereas 

only 86% were removed when crystal #BA was used. However, 

because of internal attenuating processes in the crystal (ie., 

absorption, multiple scattering, etc.), only about 55% of the 

incident neutrons were recovered from each crystal. Thus, for 
0

A = 2.0 A there is no substantial difference in the efficiencies 

of the crystals. However, at the other end of the wavelength 

0 

spectrum . (A ~l.O A), the efficiencies have dropped to 23% and 

32% for the thin and thick crystals respectively. Although the 
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difference involved at this low wavelength is rather ~arge, 

one would expect somewhat better correlation by using a crystal 

with thickness of about 0.6 cm. In transmission, one finds 

· that approximately 38% (peak height) of the incident neutrons 

0 
are recovered after reflection at A = 1.8 A from crystal #8A, 

but only about 28% are recovered from #9 whereas the efficienc~ 
0 

ies at A = 1.0 A are approximately the same at about 20%. 

Using the B & L model, one can perform calculations which 

indicate the similar sort of change in efficiencies with a 

crystal having a [220) major axis. Thus, one would expect the 

optimum crystal thickne.ss to be between 0. 442 and 1. 27 cm, 

perhaps about 0.6 cm. In choosing the appropriate thickness, 

one should bear in mind that the thicker the crystal used, the 

higher the background encountered. 

Another interesting feature is found in Fig. IV-9 and 

IV-10. In transmission geometry, excellent agreement is obtained 

between experiment and the B & L model for both peak and in­

tegrated reflectivities whereas in reflection geometry, agree­

ment occurs only with Re and not with peak height. For those 

cases where agreement is good; in terms of R9, peak height, 

and FWHM, it .should be noted that peak shapes are quite 

different, the calculated shapes more closely approximating 

rectangles while the measured shapes resemble triangles. 

It was found that measured absorption coefficients 

varied considerably with wavelength for some crystal geometries 

and less so for others. However, at the higher wavelength 

http:thickne.ss
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0 

end of the spectrum (A~ 2 A), the measured values ofµ were 

approximately the same for all geometries studied, ie., 

µ ~ 0.45 cm-1. The vs A curves all show the presence ofR0 

dips corresponding to wavelengths where the measured values of 

µ do not vary smoothly with wavelength but vary quite erratic­

ally. This wavelength variation is attributed to the presence 

of simultaneous reflections, the effects of which can substan­

tially lower neutron diffraction intensities. Reductions in 

intensity arising from simultaneous reflections of as much as 

15% have been encountered (Caglioti, 1964). The presence of 

such simultaneous reflections is readily detectable by ob·serving 

the transmission of neutrons through the sample crystal as it 

is rocked through the Bragg position. At this point, it is 

necessary to explain an upcoming inconsistency in the text. 

Calculations dealing with the reciprocal lattices of crystals 

with a [200] major axis were carried out as though the major 

axis was a [020] axis and hence the following discussion 

assumes that the planes parallel to the surface of the crystal 

are (020) planes. Of course the physics remains unchanged 

and it is hoped that no confusion will arise as a result of 

this change in notation. 

Fig. IV-11 depicts the transmission curve and the 

Bragg peak obtained using crystal #SA in reflection for 
0 

A = 1.3 A. As shown in the figure, three distinct, overlapping 

dips were found in the transmission curve in the angular 

range about the centre position of the Bragg peak. The centre 
0 

dip in the transmission curve, occuring ate = 21.2 is caused 
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by the dep.letion of neutrons from the incident beam as a 

result of the desired (020) reflection. The dip on the low 

angle side of the (020) reflection arises from two (131) 

reflections and the dip on the high angle side from two (111) 

reflections (Dymond and Brockhouse, 1970). Similar peaks 

were obtained for crystal #9 but with significant changes in 

transmission intensity because of its greater thickness. That 

these tertiary reflections are those identified above becomes 

clear when one observes the processes occuring in the recip­

rocal lattice while rocking through the Bragg peak. Fig. IV-12 

(a) is a view of the (001) plane in the reciprocal lattice 

of copper. The solid arrows labelled ki and ~f are the incident 

and scattered wave vectors involved in the (020) reflection. 

The broken arrows labelled ~i and ~f are the incident wave 

vector and the component in the (001) plane of the scattered 

wave vector to the (131) and (13T) reciprocal lattice points. 
0 

At the particular wavelength in question, A = 1.3 A, the incident 

wave vectors ~i and ~i are less than one degree apart (measured 

in the (001) plane) such that both reflections occur in the 

Bragg scan, the occurance of the (131) and (13l) reflections 

being expected at e = 20.2
0 

• Fig. IV-12 (b) represents the 

(001) plane in three dimensions. The purpose of this three 

dimensional fiqure is to point out the pairing of simultaneous 

reflections arising from the symmetry which exists to either 

side of the (001) plane. Thus, any simultaneous reflections 

out of the plane occur in pairs, an effect which reduces the 
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intensity of the (020) reflection even further. 

The effects of simultaneous reflections are not local­

ized with respect to wavelength. In fact, in the example 

quoted above, the (131) and (111) simultaneous reflections 

affect the (020) reflection over the wavelength range from 
0 0

about 1.3 A to 1.4 A. The most noticeable decrease in intensity 
0 

is expected for A = 1.34 A since this is the wavelength at 

which the (020),(131),(13I) ,(111), and (llI)reflections over­

lap completely. At higher wavelengths, the (111) peaks shift 

to lower values of e while the (131) planes shift to higher 

values. Table IV-1 lists the significant simultaneous ref­
0 0

lections encountered for A = 1.0 A to 2.0 A for all crystal 

geometries studied. The table shows the presence of two very 

important simultaneous reflections, a (200) and a (020), for 

crystals with a (220) major axis in the reflection geometry. 

These reflections are important since their presence is felt 

over the entire wavelength region studied. They are not 

peripheral reflections, that is, the centre portion of each 

peak is coincident with the central portion of the desired 

(220) peak rather than with some portion of its wings. Thus, 

one would expect the reflected intensity of the (220) face to 

be substantially reduced by the other two reflections. This 

effect is of immediate importance since the E-2 installation 

at Chalk River employs a system of two parallel (220) copper 

crystals. As m~ntioned by Hallman (1969), the effect of 

these reflections can be reduced by tiltinq the monochromators 



40 

TABLE IV-1 

Bragg reflections present for various crystal geometries studied in 
the wavelength range from 1.0 to 2.0 A 

<Jn> 
(3!3) 
(020} 
(422} 
(422) 

(240) 
(020) 

(313) 
(313) 

(13!) 
(131) 
(020) 

ClII> 
(l!l) 
(020) 

(33!) 
(331) 
(020) 

(020) 
(202) 
(202) (020) 

[001] UP 

(020) (020) 
(3ll) 
(311) 

z zo 
OH 
H CJ)
8 CJ) 
UH 
µ::i ~ 
~ CJ) 
~z 

(33~) 
(333) 
(442) 
(442) 

(220) (020) c1II> 
(lll) 

(13!) 
(131) 

(3ll) 
(3ll) 

(222) 
(222) 
(400) 

(020) ~~ 
8 

o~ 
N 
0 

(002) 
(040) 
(042) 

[110] UP 
z 
0 

IH 

(002) 
(l31) 
(3ll) 

(222) 
(224) (002) 

(002) 
(240) (002) (002) (002) 

(113) 
(002) (002) (002) 

CJ) CJ) z CJ) 

~~ (002) (400) (420) (11!) 8 
(402} 
(440) 
(442) 

N 
0 
0 

(202) 
(204) 

[110] UP 

(~22) 
(224) <Ill) 
(022) (131) (lll) 

(331) 
(020) 
(200) 
(220) 

(024) 
(020) 
(042) 
(222) 
(224) 

(020) 
(200) 
(220) 

(020) 
(200) 
(220) 

(020) 
(200) 
(220) 

(020) 
(200) 
(220) 

(020) 
(200) 
(220) 

(311) 
(020) 
(200) 
(220) 

(131) 
(020) 
(311) 
(200) 
(220) 

(020) 
(200) 
(220) 

(020) 
(200) 
(220) 

z 
0 
H 
8 
u 
i:i::i 
~ 

(200) 
(220) 

~ 
i:i::i 
P:'.: 

(242) 
(402) 
(422) 

0 
N 
N 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

WAVELENGTH 
0 

(A) 
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out of the (110) plane. This tilting procedure has been 

shown by O'Connor and Sosnowski, (1961) and Blinowski and 

Sosnowski, (1961), to be effective in eliminating, or at least 

reducing, the effects of many simultaneous reflections. 

Crystal #16 represented a problem in trying to evaluate 

an appropriate absorption coefficient. The transmission curves 

obtained in reflection geometry were not solely due to the 

desired (220) reflection as mentioned above, but rather to 

the combination of a (220), (200), and (020) reflection. 
0 

Fig. IV-13 shows such a transmission curve for A = 1.6 A. 

Clearly, one can only estimate the position which would give 

the number of neutrons passing through the crystal in the 

absence of the (220) reflection since one is visually unable 

to separate the effects of the three reflections present. 

This problem did not occur for crystals #8A and #9 since at 

the wavelengths studied, one could adequately separate the 

effects of simultaneous reflections from the desired reflection 

nnd an appropriate value of}"" could be obtained (see Fig. IV-11). 

It should be mentioned, just as a point of consistency, that 

although the values of JL used for crystal #16 in reflection 

were all greater than .0.45 cm-1, it was found that the base 

lines of the transmission curves do, themselves, occur for 

1~·s of about 0.45 cm- in the central and hi9her wavelength 

regions. 

In passing, it should be pointed out that the reflect­

ions listed in Table IV-1 affect the intensities of the desired 
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reflections in vastly varying degrees. Some reflections are 

strongest in the wings of the desired reflection while some 

are strongest in the cehtral portion of the peak itself. 

Once the simultaneous reflections had been identified, 

the power equations (Eq. II-6) were solved in the presence 

of one simultaneous reflection where possible. Restricting 

oneself to only one simultaneous reflection is not as restrict­

ive a procedure as it may seem since it has been found that for 

a given specimen orientation, the reflected intensity of neutrons 

is generally affected by no more than one type of non peripheral 

simultaneous reflection. Thus, using the example of Fig. IV-11, 

one can solve the power equations for the two separate types 

of simultaneous reflections; ie., the (111) and the (131), and 

combine the results to obtain the curves of Fig. IV-14 (a) 

since the (111) and (131) reflections have no appreciable over­

lap. Also, the fact that there are two (131) and (111) ref­

lections presents no great obstacle in the one simultaneous 

reflection approximation. The pairing of simultaneous ref­

lections can be accounted for by replacing the reflection 

coefficients, R and R by 2R and 2R res~ectively,
23 

,
13 13 23 

except in the third equation which remains unchanged (see 

Appendix II) • . 

Fig. IV-14 draws a comparison between experimental 

curve shapes and those obtained by the solution of Eq. II-6 
0 

for crystal #SA (l = 1.3 A), as previously mentioned, and 
0 

crystal #16 (A= 1.6 A). The most noticeable features of 
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both figures (a) and (b) is the lack of agreement between 

experimental and calculated relative intensities. The trans­

mission curves predict a much larger attenuation of the incident 

neutron beam by Bragg reflection than appears in the actual 

experiments. Even when one neglects the effect of pairing 

simultaneous reflections, the predicted intensities are much 

greater than thbse obtained by experiment. The difference 

encountered is much greater for #SA than for #16. This does 

not necessarily mean that crystal #16 is closer to being 

"ideally imperfect" than #SA but rather that #16, due to its 

greater thickness, is closer to saturation in the peak than 

is #SA. It is interesting to note that the calculated effects 

of the (111) reflections appear to have no effect on the (020) 

reflection, and that the (131) reflections have only slightly 

more. Obviously, the effect would increase if the wings of 

the calculated curve shapes were broader. On the other hand, 

the effects of the (200) and (020) reflections on the (220) 

reflection, shown in (b), are much greater. Several interest­

ing features can be found in the second figure. Firstly, it 

appears that although only a small change occurs in the trans­

mission curve when one goes from the non-pairing to the pairing 

of simultaneous reflections, there is a much more substantial 

change in the peak intensity of the Bragg peak ( ~35% increase). 

Secondly, the calculated transmission curve for crystal #16 

has a much different line shape than that found in experiment, 

the experimental line shape being sharply peaked at the centre 



44 

with extremely broad wings. This shape was typical of those 

found at all wavelengths for the particular (220) reflection 

studied. It i~ b~li~ved that the tinusual peak shape encount­

ered is due to a slight misorientation out of the reflecting 

plane. Although the crystal was aligned as well as possible, 

a slight shift out of the (001) plane would cause the (020) and 

(200) reflections to shift in opposite directions on the e-e8 

axis. A third feature made evident in (b) is the change of 

Bragg peak shape as the effects of the simultaneous reflections 

are introduced. The effect of introducing the non-paired 

simultaneous reflection approximation is to increase the FWHM 

from 17' to 22' and by introducing the paired simultaneous 

reflections, the FWHM is further increased to 29'. 

One fortunate feature inherent in the Bragg peaks 

and transmission curves when measured in the transmission 

geometry is that one can obtain a good measure of reflecting 

efficiency on a relative scale. Such a measure of the effic­

iency of crystal #16 is obtained from Fiq. IV-15. These fig­

ures are presented to show the similarity between the trans­

mission curve and the Bragg peak in the transmission geometry. 

In this geometry, one finds that the effects of absorption can 

be accounted for by a multiplicative factor antecedent to 

the Bragg intensity (see Eq. II-8). Thus, one may plot the 

transmission and Bragg curves on a scale reduced by the quantity 

exp(-µT/cos0)/2 as the figures show and if no scattered neutrons 

are lost en route to the detector, then the two curves should 
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be mirror images of each other, ie., the number of neutrons 

scattered equals the number of neutrons detected. Dorner (1970) 

was first to use this type of plot. The results obtained here 

indicate that the peak intensities encountered saturate to 

their maximum value over a large portion of the wavelength 

spectrum studied. The mirror-like symmetry between the curves 

is very important in terms of experimental technique since 

the existence of this symmetry ensures that one is detectinq 

all the scattered neutrons. In this type of experiment, good 

geometry is essential since the loss of a portion of the 

scattered beam can affect the experimentally determined ab­

solute reflectivity. 

To present, the calculated reflectivities have been 

obtained assuming that the mosaic blocks were distributed 

according to a Gaussian distribution about some average direction 

in the crystal. Using this approximation, one finds, in theory, 

that the predicted curve shapes of the Bragg peaks tend to 

flatten across the top since the crystal ideally is reflecting, 

in total, all the neutrons which are available for reflection 

after all internal attenuating processes have acted. As one 

would expect, the flattened peaks become most evident for the 

thicker c r ystals and/or at longer wavelengths since these are 

the conditions for which secondary extinction prevails. In 

the experiments carri~d out to date, no curves with such 

shapes have been observed. Fig. IV-16 shows a typical exper­

imental Bragg peak compared with the calculated curve shapes 

for various values of mosaic distribution parameter, n, using 
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the proposed Bacon and Lowde model. 

In the reflection geometry, the experimental peak 

values are consistantly lower than those predicted from theory 

for all values of n which might be conceivably characteristic 

of the crystal. However, in the transmission case, the 

calculated and measured peak values agree well as both approach 

the saturation point for the wavelenqths depicted. The absorp­

tion coefficient was not measured in the transmission geometry 

for crystals #8A and #9. Instead, the values of µ obtained in 

the reflection geometry were used, under the assumption that 

both crystal Wf-'re aligned such that two mutually perpendicular 

(200) planes were themselves perpendicular to the direction 

of the incident beam of neutrons. This restriction was ensured 

for crystal #BA but not for crystal #9 since the latter crystal 

is the analyser crystal most frequently used in the McMaster 

University spectrometer at Chalk River and it was decided not 

to realign the crystal so that only the reflection plane was 

well aligned with the transmission plane being approximately 3 

degrees from the normal. As a result, the effective absorption 

coefficient is lower in the transmission geometry since the 

removal of symmetry in the crystal decreases the effect of 

simultaneous reflections. Thus, the measured peak height 

often exceeds the calculated peak height in transmission 

geometry for crystal #9 but not for crystal #BA. 

Another general property of the measured Bragg peaks 

is the tendency for the slope of the wings of the experimental 

peaks to be less than those obtained from calculation. It has 
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been found that such observations are consistent for all exp­

erimental peaks measured. 

Thus, the B & L model fails to adequately predict curve 

shapes which resemble those curves obtained by experiment. 

As a result of this discrepency, the B & L model was altered 

in an attempt to decrease the slope of the wings and at the 

same time decrease the peak height. The former change was 

realized but the opposite effect to that desired resulted in 

the latter alteration. The results were obtained by using the 

mosaic block distribution function developed in Chapter II. 

Fig. IV-17 is a display of calculated Bragg peaks obtained 

using the non-Gaussian distribution of mosaic blocks for 
0 

neutrons with A = 1.8 A. In comparison with Fig. IV-16, it 

becomes clear that the non-Gaussian approach alters the B & L 

model in the correct manner, ie., sharpening the peaks and 

broadening the wings. In reflection however, the peak heights 

are greater in the non-Gaussian case than the B & L case. As 

a result, one must resort to scaling procedures on the calculated 

curve shapes to provide an adequate match between predicted 

and measured curves. It has been found that the calculated 

curves in the transmission geometry can be made to coincide 

quite adequately with experiment without having to resort to 

scaling procedures as shown in Fig. IV-17. The discrepancy 

between the transmission and reflection case is believed to 

be associated in some way with the interpretation of µ, the 

effective absorption coefficient, and with the degree of sat­
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uration of the Bragg peak. Two methods have been successfully 

used to scale the curves in reflection: one method is the direct 

multiplicative scaling of the inte~sities, and the other method 

is the scaiing of Q in an attempt to introduce primary extinc­

tion. The former method is considered first. 

The closed circles of Fig. IV-18 are the calculated 

> 
points using the appropriate scale factor for the reflection 

geometry and a scale factor of 1 for the transmission geometry. 

The curves represent calculated and experimental Bragg peaks at 

a se~uence of wavelengths in both reflection and transmission 

geometry. The solid lines represent the experimental curve shapes. 

The calculated points are presented as points rather than dotted 

lines as is done with the upcoming figures IV-19 and IV-20, 

merely to emphasize the agreement between theory and experiment. 

In this figure, several interesting features concerning the 

wavelength variation of Bragg peak shapes become evident. It 

is noticed that in reflection geometry, the curve shapes of 

crystal #8A are accurately predicted usinq n = 9' and a = 3' 
0 

for 1 greater than about 1.4 A, but for wavelengths less than 

this, agreement in curve shape begins to suffer. Also, the 

curve shapes obtained from experiments at these lower wave­

lengths exhibit a different overall profile, the peaks being 

somewhat flatter and the wings less steep than the wings at 

higher wavelengths. However, upon examining the peak shapes 

for the transmission case, it is found that agreement is best 
0 

at low wavelengths (1.0 to 1.5 A) and agreement lessens for 
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wavelengths longer than this. Thus, the tendency away from 

agreement is opposite in the two cases of reflection and trans­

mission. The scaling factor used, in reflection, appears to 

increase in value for increasing wavelength, the greatest change 

occurring for small A where peak shapes are the poorest match. 

Scaling Bragg peaks in this fashion yields very good agreement 

between calculations and experiment and may be useful in prac­

tical terms when certain properties of a crystal are desired. 

However, from a physical point of view, this method is rather 

unsatisfactory since no physical basis is used which justifies 

direct scaling procedures. 

The second type of scaling procedure does have a 

physical basis. Generally speaking, one neglects the effects 

of primary extinction by assuming that the mosaic block sizes 

are small enough to exclude the effect. Larson and Corey (1969) 

have found in their experiments, which were designed to study 

the effects of extinction upon annealing a cold worked copper 

crystal, that primary extinction was indeed negligeable for 

their crystals. Unfortunately, the concept of a mosaic block 

is highly idealized and hence, it is very difficult to obtain 

a meaningful value for the block size. Gay et al. (1953) and 

Brogren (1969) were able to get approximate block sizes 

(~ lo- 4 cm) by relating dislocation density to the number of 

mosaic blocks per unit volume. In the forthcoming discussion, 

it was necessary to introduce mosaic blocks whose sizes were 

about six times greater than those obtained by the above authors. 
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Fig. IV-19 depicts the fit obtained using n=9' and 

a=3' for crystal #9. The dotted lines represent the calcu­

lated curve shapes and the solid lines, the experimental peaks. 

The appropriate value of £ is indicated at each wavelength and 

for a particular value of A, the same c was used in both reflect­

ion and transmission geometries. The results of scaling Q by 

this procedure are similar in every respect to those obtained 

by direct scaling including the tendency away from agreement 

for low A in reflection and large A in transmission. As men­

tioned earlier, the lack of agreement between calculated and 

measured peak heights in the transmission case is the result 

of using inappropriate values of µ obtained in the reflection 

geometry. One possible explanation for the cause of the 

discrepencies described above is related to a possible variation 

of the degree of deformation throughout the crystal since 

the volume of the crystal observed in the experiment is wave­

length dependent (see Fig. IV-22). In other words, for an 

incident neutron beam of given diameter the volume of crystal ir­

radiated decreases with increasing wavelength in the transmission 

geometry. Thus if the crystal is not uniformly distorted through­

out its volume, one would expect variation of n and/or a with 

wavelength, the net effect being the change of curve shape in 

the manner described above. Preliminary experiments seem to 

substantiate such a variation, however, the observed chanqe is 

rather small. Whether or not the observed variation is enough 

to affect the .desired result is yet to be determined in the light 

of future experiments. Dorner (1970) was able to adequately 

McMASTER UNIVERSITY t.IBRAR,. 
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describe a similar variation of the degree of deformation in 

large single crystals by describing the crystal with a set of 

three layers, each with a different mosaic width. Although 

his treatment was used to study the effects of the surfaces of 

an unetched crystal, it should be feasible to expand his method 

to describe variations of mosaic spread deep within the crystal. 

As was done with crystal #BA, a direct scaling fit was 

also applied for crystal #9. The results are not included 

here since the results obtained differ only marginally from the 

fit obtained by scaling Q. Fig. IV-20 is the same sort of 

plot as IV-19, for crystal #16. The results encountered for 

this crystal differ from those of the previously mentioned 

crystals in that excellent agreement between calculations and 

experiments occurs for the whole wavelength region in re­

flection geometry, and poor agreement occurs in transmission 

geometry. It was found that the best fit was obtained using 

n=6' and o=2'. Once, again, the value of£ used at a given 

wavelength was the same for reflection as for transmission. 

In comparison with crystal #9, the scaled value of Q 

required to attain agreement in reflection for #16 was less. 

This result is not unexpected since if primary extinction is 

indeed involved, then the higher order (220) reflection should 

be less affected than the (200) reflection as shown in Fig. 

II-2. But it was just mentioned that the £ used in reflection 

was also used in transmission. Since the (220) and (200) 

reflections are affected by primary extinction to a different 

extent ( Fig. II-2)_, then using one £ for reflection and trans­

mission is not justified. Using Fig. II~2, an appropriate E was 
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established for the (200) reflection in transmission geometry' , 

·knowing the e: required for the (220) in reflection. 

Using the e: obtained in this fashion, new peak shapes 

were calculated in transmission but it was found that these 

peak shapes were very insensitive to a variation in e: because 

of the high degree of saturation. The curve shapes obtained 

using the new e: are represented by the dotted lines at A=l.O, 
0 

1.5, and 2.0 A. Thus, the effect of introducing a more realistic 

value of e: for the (200) reflection in transmission geometry is 

quite small and does not appreciably alter the curve shapes 

obtained using the e: established from the curves in reflection 

geometry. 

Fig. IV-21 is a plot of the wavelength dependence of e: 

for crystal #9 and #16. For #9, e: varies approximately 

linearly with A as shown by the dark squares and extrapolation 
0 

to A=OA yields e:~l.O. On the other hand, the wavelength 

dependence of e: for crystal #16 although varying approximately 
.,... 

0 

linearly up to about 1.6 A shows a definite departure from a 

linear dependence at higher wavelengths. One can only speculate 
0 

whether extrapolation to OA will yield an e:~l.O or not but 

it does appear quite probable. It was mentioned earlier that 

there was difficulty in accurately determining }J.. in reflection 

geometry for crystal #16. If the values of µ chosen were not 

truly representative of the absorption present, then the resultant 

value of e: would also be non representative of the true situa­

tion. 
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This fact must be kept in mind when trying to interpret just 

how s depends on A. In order to clearly understand this last 

statement, we recall that in the B & L model, the quantity 

Q' always appears with µ and W(~) in the following way 

~'W(~) = s~W(~). Thus by using an inappropriateµ, one is able 
µ µ 
to obtain the same curve shape by adjusting s, as one would 

obtain if the correct s and µ had been used in the first place. 

Such would not be the case if it were not for the fact that the 

Bragg peak shape is relatively insensitive to a variation of 

µ in the quantity µT/sin8. 

For example, the open triangles of Fig. IV-21 were 

determined under the assumption that no simultaneous reflections 

were acting such that µ was determined by interpolating the 

base line of the transmission curve smoothly over the dip corr­

esponding to the (220) reflection. As a result, µ was found 

1to have a representative value of about 0.45 cm- . Using these 

newly determined values of µ, the calculatedourve shapes were 

matched to the experimental shapes by adjusting s to the values 

shown in the Figure. The curve shapes using the two different 

setsof s and µ were identical except for very minor details 

arising from the slow response of the quantity µT/sine. The 

most interesting feature of the newly determined s values is 

the fact that they take on an approximately linear dependence 

with A which is almost coincident with the line produced by 

crystal #9. 
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If primary extinction is indeed occuring in the individual 

mosaic blocks and if the values of µ shown in Fig. IV-19 and 20 

are truly representative, then sine~ crystals #9 and #16 under­

went similar mechanical treatment, one would expect the size 

of the mosaic blocks to be approximately the same for both 

crystals. In conjunction with Fig. II-2, one finds that pre­

dieted block sizes do agree quite well. For example, consider 
0 

A=l.5 A. For the (220) reflection of crystal #16, E~.74. 

This value correspond.s to a mosaic block size of about 6.7 x 

104 0 

A. Similarly for the (200) reflection of crystal #9, 
0 

e:=.55 which corresponds to a block size of about 7.0 x 104. A. 

According to the model proposed in Chapter II, the fact that 

E is wavelength dependant implies that primary extinction is 

also wavelength dependant contrary to predictions by Zachariasen 

(1948). The physical significance of wavelength dependent 

primary extinction is not readily comprehensible since such a 

dependence implies that the size of the constituent mosaic 

blocks is a function of the neutron wavelength used to study 

them. 

There are several possible explanations for a wave­

length dependant!. Firstly, it is possible th~t the model 

used to account for primary extinction is too highly ideal­

ized to adequately represent the true situation. In other 

words, the approximation of mosaic planes does not describe, 

in a realistic way, the dislocations whose boundaries form 

what are interpreted as mosaic blocks. 

Secondly, the wavelength depend•nce off may be 
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related to the choice of ~ and ~ for a given wavelength. 

Recalling that there is evidence that the deformation of 

treated crystals might vary appreciably through the volume 

of the crystal, then a variation of~ and ~would imply a 

variation in £ since the curve shapes would be changed. Such 

a change in ' and "' was tried in order to match the low wave­

length Bragg peak shapes but in doing so, it was found that 

the e required to fit the new peaks varied only slightly 

from the original value. Perhaps, a mosaic block distribution 

function which is dependent on position in the crystal might 

affect the desired change in e, however, it is believed that 

the former explanation (ie., the inadequacy of the model) is 

the more probable of the two. 
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APPENDIX I 

Normalization of the Non-Gaussian Mosaic 

... Block Distribution 

The unnormalized mosaic distribution function is given 
00 

by 

W(~) = .!..___ f 
127T 

0 

Thus, to normalize W(A), we require that 
00 

N = IW(ll)dll = 1 

). -oo 

where N is the appropriate normalization factor. Substituting 

the first equation into the second, one obtains 
0000 

-ooo. ' 

1 A2/2 2 ( )2/202e- 0 n e- n-no dndA = 1 
1"21Tn 

Integrating over ~ ~ields 

N = f e-(n-no)2/2cr2 dn = 1 

0 

Letting n-n = t , the last equation becomes 
0 

00 

-~2/2a2 -~2/2a2
N l/[ e e d~] 

' 

= [° d~ + I
-Ylo 0 

0 

l27r" 
1/( I -~2/2a2 

d~ + -2-a]= e 

-"o 
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and thus the normal~zed mosaic distribution function becomes 
2~ 2 2 

· ! e-2n2 e-(n-no> l 2 a dnI 
o nW(~) = 

0 

~f -~2/202
e d~ + TIO 

QED .. 



80 
APPENDIX II 

Power Equations with Paired Simultaneous Reflections 

The set of equations II-6, are written out in full for 

two simultaneous reflections, below. 

dP pl p2 p3 p4 

-+ -dt ·-
2 

= Y Rl2 -(µ + R21 + R23 + R24) + - R32 + - R42Y2 Y3 Y41 

dP 3 pl p2 p P4 

+ --= -R + - R . - 2c11 + R31 + R32 + R34) + -R 

- dt y 13 y 23 y 43Y31 2 4 

dP 4 pl p2 P3 P4 
+ --= -·R +-· -R4 + - R34 - -(µ + R41 + R42 + R43)yl 14 2dt Y2 Y3 Y4 

If the simultaneous reflections designated by powers P 3 and P 4 

are paired, then by symmetry R13=R14 , R23=R24 , P 3 (t)=P 4 (t), and 

y 3=y 4 • Therefore, the above equations can be reduced by sub­

stitution to the following set of differential equations. 

dt 

+ -
dP2 

-dt . ­
pl 
y

1 
R12 

p2 
- -(µ + y

2 
R21 + 2R )23 

P 
+ 2 3 -

Y3 
R32 

+ 
dP 3 -­dt = 

p . 
___!. R 
y1 13 + 

p
2 

-
Y2 

.· 

R23 -

p . 
3-(µ 

Y3 
+ R31 + R32) 

± 
dP4 
dt -

pl
-R y 131 

p2 
+ y

2 
R23 -

P3 
-(µ
Y3 

+ R31 + R32) 
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Since the latter two equations are the same, one need only 

solve the set of three differential equations and hence the 

pairing of simultaneous reflections is accounted for by 

replacing R and R by 2R and respectively, in the
13 23 13 2R23 

first two equations only. 

QED 
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APPENDIX III 

Effect of Parallelism on Measured 

Peak Widths 

Let us consider the case of a reflecting system com­

posed of two crystals with lattice spacings d 1 and d 2 as 

shown in the accompanying figure. In tracing the path of 

the neutrons which pass through the centre of collimator 

c 1 ~ one finds that the Bragg condition must be satisfied 

twice such that 

A = 2d1sine 1 = 2d2sine 2 

where e1 and 02are the angles of incidence of the neutron 

beam of wavelength l on crystals 1 and 2 respectively. 

If the angular divergence of c 1 is Ae 1 , then the 

extreme value of wavelength which will be reflected from 

crystal 1 is defined by l' = 2a1sinC0 1 + A8 1) and hence 

reflection of the same beam from crystal 2 must obey 

A'= 2d2sinC0 2 + A8 1 + A8 2). 

Hence, l' = 2d1 (sine 1cosA8 1 + cos0 1sinA0 1 > 

= 2d2 [sine 2cos(A8 1 + A8 2) + cos0 2sin(Ae 1 + Ae 2>J 

Thus, in the approximation that Ae1 and A8 2 are each small, 

compared to e1 and e2 , one finds 

l' = 2d1 (sine 1 + A8 1cose 1 > 

= 2d2 Csine 2 + (Ae1 + Ae 2 )cose 2 > 

Substituting and solving for .682, one finds, 
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Thus, the broadening of the measured peaks arising 

from geometrical factors is given by Ae 2 and the measured 

width is obtained from the quantity 

Cny + n~ + Ae~J 112 

where n and are the mosaic distribution parameters of1 n2 

the first and second crystals respectively. 

Thus, it becomes clear that the contribution to the 

measured width due to parallelism becomes negligeable as 

e ~ e • If also the monochromator width, n1 , is very small,
1 2 

then the measured width thus becomes n2 , the true width of 

the sample crystal. 

By applying the above information to the experiments 

discussed in Chapter III, one finds = O for Ge,n 1 

Ae 1 = 0.0125 and Ae 2 can be calculated for each value of A· 

Table A.3.1 indicates values of Ae 2 at three different values 

of A· From this table, it is clear that a degree of parallel­

ism has been attained such that the widths obtained from 

experiment are due, to all intensive purposes, to the width 

of the sample crystal itself. 
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TABLE A.3.1 Contributions to the measured FWHM due to non­
parallelism for crystal #16. 

C\.1(220) #16 

(A) (Ge) (Cu) FWHMA 
0 

91 92 A 9 2 ){ 2
(measured) 

1.0 i2.7° 23.1° 0.86' 16' 16' 

1.6 38.1° 38.8° 1.1' 18' 18' 

2.0 so.2° 51.5° 2 • 2 I 18' 17.9' 

•,-4 .. 


Fig. A.3.1 The effect of parallelism on reflection from 
two crystals. 
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