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CHAPTER I 


INTRODUCTION 

The aim of the present work is the determination of 

the one-electron energy band picture of manganese fluoride 

(MnF 2 ) by means of the Augmented Plane Wave (l',PW) method. 

The potentials used in the calculations are considered to 

be representative of the "paramagnetic" and antiferro­

magnetic states of MnF • Since MnF may be considered a2 2 

classic antiferromagnet the study of its energy band struc­- , 
ture is of importance in investigating the properties of 

insulating antiferromagnets. 

The remainder of the introduction gives a brief 

historical background of the APW calculation and presents 

a general description of the assumptions necessary for its 

implementat.ion. Chapter II is a description of the theory 

involved in setting up the one-electron Schr5dinger equa­

tion, including the determination of the Muffin-Tin potential, 

the l\.PW functions, and the APW matrix elements. A simplified 

secular equation is given in terms of two and three dimen­

sional arrays which are energy independent. The modifica­

tions in the secular equation arising from the application 

of group theory are al3o considered. In Chapter III, the 

general APW method is applied to the specific case of MnF •2 

1 
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The crystal structure and the lattice parameters are given 

and th~ various quantities appearing in the secular equation 

are evaluated for the "paramagnetic" and antiferromagnetic 

cases. This includes the applicable group theory for MnF 2 

at the ~ point (centre of the Brillouin zone) and along the 

A line (the (O,o,c*) direction in the reciprocal lattice). 

Chapter rv·presents the results of the band structure calcu­

lation for the "paramagnetic" and antiferromagnetic states 

of MnF •
2 

The APW method for computing the energy band struc­

ture of a p~riodic solid was first proposed by Slater in 

1
1937 • Owing to the general unavailability of high speed, 

large memory computers, widespread use of this approach was 

not possible until the 1960's. Interest then began to shift 

from the study of the simple metals by the nearly-free elec­

tron model to that of the transition elements requiring a 

more sophisticated treatment, such as the APW. The adap­

tability of the APW method to different solids and crystal 

structures has led to a g-reat increase in the number of 

calculations performed over the last few years. An excellent 

survey of such calculations, reported in the literature, 

2
is given by Loucks Also reported there is a comparison of 

the available methods for the calculation of the band struc­

ture of a solid, with an explanation of the conditions 

necessary for their application. 
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Basically, the APW method involves solving the one-

electron Schrodinger equation. The potential used in this 

equation is that due to the presence of the nuclei, which 

are assumed to be stationary, and the other electrons in 

the material. This is a simplification of the problem in 

that the motion of the nuclei should be accounted for in 

an exact solution rather than assuming that they remain 

motionless in a perfect lattice. The electron contribution 

to the one-electron potential must also be approximated. 

Usually this is accomplished by an average-field calculation 

3 4 5<

such as the Hartree ' or the Hartree-Fock-Slater methods. 

A potential is set up which reflects the action on an elec­

tron due to the nuclei and some averaged field of the 

remaining electrons. This potential is substituted into 

the one-electron Schr8dinger equation. The energy eig~n­

values are computed by solving a secular equation which is 

developed from the one-electron Schr6dinger equation given 

in Chapter II. The wave functions which correspond to occu­

pied states are used to calculate the charge density which 

then yields a new potential, This potential should then be 

compared with the original, and through a process of itera­

tion, the potential is made self-consistent. The require­

rnent of self-consistency leads to a relatively accurate 

approximation of the true potential in the crystal. It must 

be noted that although the self-consistency criterion is 
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applied in atomic structure calculations, usually only the 

f ir~t iteration is used in band structure determinations 

because of computer time requirements. 



CHAP'l'ER II 

THE0RE'l'ICAL DEVELOPMEN'l' 

A. BACKGROUND 

The electronic potential energy in a single ideal 

crystal may be written as 

v (E) = v (r+T) (1) 

where r is some vector in the crystal as shown in Fig. 1, 

and T represents the lattice vectors or the positions of 

the unit cells in the crystal. The vector T may be written 

as 

T = T a + T b + T c (2)
~ l~ 2- 3~ 

where ~' b and ~ are the basic or primitive translation 

vectors for the lattice and T1 , and are integers.T2 T3 

The objective of the energy band problem is to solve the 

one-electron Schrodinger equation for an electron in a 

periodic solid under the influence of a potential of the 

type given by equation (1). The one-electron Schrodinger 

equation may be written as 

Atomic units have been introduced in equation (3). In 

the atomic unit system energy is given in Rydbergs (1 

Rydberg= 13.6 electron volts) a:nd distances are expressed 

5 
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0 

in Bohr radii (1 Bohr radius - 0.52 A). 

~he wave functions~(~,~) in.equation (3) are ack­

form61718nowledged to be of the Bloch , meaning that they 

satisfy the condition 

(4) 

Additionally, Bloch's Theorem states that the eigenfunctions 

of the wave equation for a periodic potential are of the 

form 

~(r,k) = exp(ik·r)u(r,k) (5)- - _,.....,..,. _...,. ­

where u(£,~) has the periodicity of the crystal lattice 6
, 

ie. of the ~otential V(r). Therefore 

(6) 

From equations (4), (5) and (6), it may be seen that 

l~C£,~) 1 
2 , the charge density, obeys an equation similar 

to equation (1), but the effect of a translation, T, on 

the wave function~(£,~) is multiplication by a phase factor, 

exp ( ik • T) • A reciprocal lattice vector, 9_, may now be 

defined as 

G == 2TI (ha* + kb* + Q,c*) (7} 

where a * · b * and c * are the primitive vectors of the reci­
~' 

procal lattice of the crystal, and h , k and l are integers. 

If, in equation (4) 1 the wave vector k is identical to 

a reciprocal lattice vector G, then the phase factor 
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exp(i~·T) is equal to unity. This means that the wave func­

tion ~(r, k') with wave vector k' = k+G satisfies equation 

(4) as if it had the wave vector k. The problem is now 

simplified in that to construct the complete picture of the 

electronic behaviour in a crystal only wave vectors inside 

the first Brillouin zone need be considered, 

As well as simplifications resulting from transla­

tional symmetry, the introduction of group theory eases some 

of the complexity cf the APW calculation. According to 

9Koster , the wave function ~(£ 1 ~) transforms according to 

an irreducible representation of the group of the wave 

vector, k. This group consists of all space group operations 

whose rotational (proper or improper) parts R satisfy 

10the relation

Rk = k + K (8) 
~i 

where K. is a reciprocal lattice vector. 
~l. 

B. THE MUFFIN-TIN POTENTIAL . 

One of the most important aspects of a.n APW calcula­

tion is the determination of the periodic potential V(£). 

The APW method presupposes a periodic potential aptly named 

1by Slater the nMuffin-Tin Potentialn. In this picture, 

the crystal is divided into two distinct regions, with a 

different form. of potential assumed for each region. 

2"Muffin-Tin Spheres" are chosen around each unit cell atomic 
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site, inside of which the potential is assumed to be 

spherically symmetric, ie. of the f·orm V (I E_-rn I) . The 

sphere radius is labelled R , where the subscript n re­
n 

presents one of the different atoms in the unit cell. An 

illustration of this convention is shown in Fig. 1. The 

region between the spheres is chosen to be of constant. po­

tential, V • The sphere radii, R . in the unit cell arec n· 

chosen so that the spheres from neighbouring atomic sites 

do not overlap. The spheres are usually made to touch 

along a line joining the nearest-neighbour atoms. The 

resulting potential is of the form given in Fig. 2 for a 

direction in a two-dimensional lattice in which the spheres 

do not touch. The actual calculations of the spherically 

symmetric potentials for this work on MnF were performed2 

by E. R. Cowley, and thus only the general procedure in-

valved will be discussed here. 

The Muffin-Tin Potential is usually considered to 

consist of two main contributions: the Coulomb potential 

V c (I :i>·rn I) , due to the nuclei and all the electrons, and 

an approximated averaged exchange potential V (jr-r I>. 
x -- -·n 

These.two contributions are evaluated separately and then 

added to give the total potential insid~ the spheres. 

The Coulomb potential inside a particular sphere 

is made up of two terms. The first term is due to the 

charges from the ion inside the sphere. Ionic wave func­



Figure 1 

The nth unit cell atomic site or APW sphere 

showing the convention of symbols used in the 

calculations 

Figure 2 

APW or Muff in-Tin potential for a direction in 

a two-dimensional lattice in which the spheres do 

not touch 
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R=r-r. 
- -~-
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. b . d b 1 .ll b f 1 . 1t-ions o taine y C ement1 y means o an ana ytica 

Hartree-Fock procedure are used to calculate the charge 

density. The resulting contribution to the Coulomb poten­

tial is then computed by integration ie. Gauss' Law of 

electrostatics. The second term of the Coulomb potential 

has two parts. The contribution from the distant charges 

is handled by a Madelung sum which is evaluated by a com­

12puter program based on the procedure given by Born and Huang . 

The nearby charges which overlap into the sphere are spheri­

13cally averaged by a L6wdin procedure . The charge density 

which extends into the sphere is computed from the ionic wave 

functions. These two terms are added to arrive at the total 

Coulomb potential, V (I r-r I) . c ~ ·-n 

The exchange potential is calculated by a method which 

is referred to as the Slater free electron exchange approxi­

mation. About an ion at r (Fig. 1), the electron charge 
~n 

density is computed from the ionic wave functions. In 

3what is called "Slater's pl/ termn, the exchange potential 

is proportional to the cube root of the charge density. This 

result is quite good for a free electron gas and is thought 

to be a reasonable approximation in band structure calcula­

tions. The exchange contribution to the potential may 

2then be written

V ( Ir-r '1 ) == ·-6 (~- p ( Ir - r I ) ) 1I3 (9)
x -- -n 8TI ~ ·--n 
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where p(jr-r I> represents the crystal electron density. 
~ ~n 

It has been suggested that alternative schemes be used 	for 

the calculation of th~ exchange term. One of these is 	the 

14exact Hartree-Fock method, which is discussed by Slater • 

The other is a modification of the free electron exchange 

15suggested by Kohn and Scham in which an exchange potential 

that is 2/3 as large as Slater's is proposed. It is thought 

that a multiplicative parameter which may vary from 2/3 to 

1 should be included in equation (9) to give accurate energy 

band results. 

A shift in the potential is usually made to make the 

contribution between the spheres equal to zero. The potential 

inside the APW spheres is then given by 

(10) 

vT<IE.~E.nl> is the total Muffin-Tin Potential which is the 

sum of the Coulomb and exchange contributions. The spheri­

cally symmetric potentials from nearest neighbour ions are 

plotted as in Figs. 4 and 5. The energy at which they inter­

sect is V , which is then subtracted from the potentials to c 

make the potential between the spheres equal to zero. 

Corrections to this potential are discussed by 

d d . dMatth e1ss,. 	 Woo an Switena·icklO , Schlosser an Marcus
16 

17and DeCicco . As these refinements were not used in the 

calculations, they will not be discussed here. 

http:vT<IE.~E.nl
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C. APW FUHC'I'IONS ]',.ND :MATRIX ELEMENTS 

The solution to the one electron Schr6dinger equation 

(3) may be written as a linear combina.tion of linearly in­

dependent basis functions, ¢(r;k.,E): 
- -l 

l/J(E, 1 ~) = ~ c(k.)¢(r;k.,E) (11)
i -l - -l 

where k. ~ k + K., and K. are reciprocal lattice vectors.
_,l. -l. ~l 

This means that the sum is carried out over the reciprocal 

lattice vectors. The number of terms whj_ch are included in 

the sum is dependent on the degree of convergence which is 

required. An upper limit to the number of terms js deter­

mined by time limitations on the comoute:r. The c(k.) are 
~ ·~1 

variational coefficients or expansion param~ters, and the 

¢(r;k.,E) a.re Augmented Plane Waves. 
- -l 

Outside the APW spheres, the ~uffin-Tin Potential has 

been set equal to zero. This means that solution of the 

Schrodinger equation yields plane waves with wave vectors 

k., and the APW function is given by
-l 

¢ (r; k . , E) = exp (i k . • r) • (12) 
~ -l ~ -l ­

This solution is acceptable as it satisfies the Bloch 

condition (4). 

Inside the APW spheres, the solution is more difficult. 

'l'he potential here is spherically symmetric, and the ~.PW 

function ¢(r;k. ,E) is expanded in spherical harmonics about 
- -·l 

the sphere centre r as -n 
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co 9., 

¢ (r;k. ,E) = L: L: A.Q, (~i)u9, Ci!3:.i ;E)Y£ (8,¢) (13) 
- -1 9.,=0 m=-9, m m 

where R =r-r , 	 according to the convention of Fig. 1. The 
- - -n 

functions u!l(\~l;E) are solutions of the radial Schrodinger 

equation 

1 d 2 du9, 
(14)- R2 dR (R dR 	 ) + 

where vnCl!3:_l)is the spherically synunetric potential v<l.:s-E.ni> 

which is centred about the atomic site at r . The solutions 
~n 

to the angular 	counterpart of equation (14) may be written as 

(case) (15) 

The coefficients An (k.) in equation (13) are evaluated by 
X, -l 

m 
requiring that 	the two solutions represented by equations 

(12) and (13) be continuous at the nth APW sphere boundary. 

The slope of these functions, however, is not continuous at 

this point. 

The 	plane wave solution, (12) is expanded in spherical 

th
harmonics about the n sphere centre at .L It may then• -n 

be written as 

¢(r;k.,E) - exp(ik.•r) = expiik.• (r +R)]
- --J, 	 -i_ - . ~i -n ~ 

(16) 

1	 18According to Slater , and Powell and Crasemann , the second 

term, exo(ik.•R), rnay be exnanded as 
.... -1. -	 ,:­

http:v<l.:s-E.ni
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"' "' where k. and R represent the angular parts of k. and R 
l. -l. ­

respectively and j (kiR) is a spherical Bessel function of
1 

order 9,. The plane wave expansion of the APW then becomes 

co JI, 

¢(r;k.,E)=41Texp(ik.•r) L: L: .JI,. ( *"') (r.. 
- ~1 - ~1 ~n l=O m=-l l. J 1 kiR) Y 1 (ki Y 9., R) • (18) 

n1 rn 

This function may then be evaluated at the surface of the 

th 
n sphere of radius R, and set equal to the ¢(r;k. ,E)

n - -1 

appearing in equation (13), as both functions are now cen­

tred about the atomic site at r • As a result, the An (k.) 
~n N -l m 

may be readily evaluated. 

An (k.) = 4nexp(ik.·E_n)iQ,j (k.R )Y *(k.)/u
0 

(R ;E) (19) 
N -1 -1 0 J. n 0 i JV nN JV m m 

Here Rn represents the radius of the nth APW sphere. The 

detailed form of the spherical harmonics is given by 

18Powell and Crasemann • 

,------­
= (-)m/Y:±l -~9.,- ~.l.!. exp(-im¢J... )P (cose.) (20)

9,+ m ) ! - 0 l.4 ·n x., 
m 

Substitution of (20), (19) and (15) into equation (13) then 

yields the detailed form of the APW function inside the nth 

sphere. The total solution is then given by 

¢ ( r; k. , E) = exp ( ik. • r) (outside sphere n) (21)
- ~J. . -l. ­

co J1, 
1
. j9.,(k.R) 

¢ (r;k. E) = exp ( i k . • r ) L }~ ( 2 Q, +1 ) i [ u rRl • ~) ] u 0 ( I~ I ; E)- -1' -i --n 1=0 m=-9, n'JI, N 
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xi°-'-1m+U P (cosEl)P (cose.)expiim(cp-¢.)]0 1 1(.Q,+ m) 1 ,Q,lml · "'Im! 

(inside sphere n) . ( 22) 

Equations (21) and (22) are the exact solutions for the 

APW functions outside and inside the Muffin-Tin sphere, n, 

respectively. However, their slopes are discontinuous at 

the sphere boundary, R. , which is an unacceptable condition n 

for a solution of the Schr5dinger equation. To correct this 

condition, a linear combination of.these APW's must be taken 

as indicated by equation (11) with the coefficients c(k.) to
-·J. 

. d . t. 11 1, 2'16b e d e t ermine varia iona, y. 

The expansion of equation (11) for ~(~1 k) is then 

substituted into equation (3) . 

I-v 2
+v(!r-r !)Jl: c(.k.)¢(r;k..: 1 E)==E(k)l: c(k.)q)(r;k.,E) (23)

- -n . --J - -,.J - . -J - -J
J J 

Multiplication through on the left by¢ * (r;k.,E) and inte­
- -l 

gration over a unit cell of the crystal yields the secular 

equation 

N 
l: (H·-E) .. C (k.) = 0 i == 1,2, ••• N (24)

J.J ~Jj=l 

where N is the total number of reciprocal lattice vectors 

taken for the calculation. Substitution for <P along with its 

1
orthogonality property yields the result given by Slater 

for the matrix element (H-E) ..• 
J.J 
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(H-E) . . -1 
--n-1.J. = (k. •k.-E)o(k. ,k.) +st 2: expli(k.-k.)•r )F .. (25)

~G ~1 -J -.i --J --J ·-1 -n n, 1 J n· 

where St is the volume of the unit cell for the crystal and 

F .. is given by the expression
n,1J 


2
F .. :: 4nR f-(k.·k.-E}j 1 (jk.-k. jR )/Jk.-k. I 
n, 1J n -1 -J -J -l n -J -1 

co 

+ ~ (2S/.,+l)P (k.•k.)j (k.R )j (k.R )u~ (R ;E)/u (R ;E)L (26)
0 0 0 0.Q.=O N 1 J N 1 n N J n N n N n, 

k. 
A -}

In equation (26), ki is the unit vector~ and the P.Q, re­
~1 

present Legendre polynomials. The quantities uS/.,' (Rn;E)/ 

uS/.,(Rn;E) arecalled logarithmic derivatives and are dependent 

on energy as well as angular momentum and the n~h sphere 

radius, They are calculated from the radial SchrBdinger 

2equation, (14), by numerical methods as given by Loucks , pg. 

56. The spherical Bessel functions, jz, and the Legendre 

polynomials appearing in equation (26) may also be numerically 

evaluated by using appropriate recursion relationships 216 

It should be noted from equation (26) that F .. = F ..
n,1J n,Jl 

and thus the matrix (H-E) .. is hermitian. When the origin
lJ 

of coordinates for the crystal is chosen to be at a centre 

of inversion, the vectors r occur in pairs ie. r = -r-n ~l -2 

etc., and the iwaginary parts of the structure factor, 

exp[~(k.-k.)·r] appearing in equation (25), cancel out,
--J -1 -n 

leaving terms of the form 2cosI(k.-k.) •r ]. Further simpli­
~J ·-1 -n 

fications employing group theory will be discussed below. 
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In general, non-trivial solutions of equation (24) 

exist when the determinant of the matrix (H-E) goes to zero. 

Thus det(H-E) is evaluated as a funct{on of energy, and the 

eigenvalues E., for which the determinant vanishes, are 
1 

recorded. The determinant is evaluated for several energies 

for each point in the first Brillouin zone at which the 

energy levels are required. The resulting points are plot­

ted for a given direction in the reciprocal lattice, yielding 

the energy bands. 

The sum over 9, in equation (26) is usually cut off 

at about 1=10 to yield an accuracy of a few thousandths of 

a Rydberg. In the case of MnF 2 , the cutoff point was taken 

to be 1=12. To further simplify the calculation, the terms 

in the matrix (H-E) which are not dependent on energy are 

written in two and three dJmensional arrays. Equation (25) 

may then be written as 
1 I 

max u9, (Rn; E) 
S'2 - l ( H-E) . . = - E A . . + B . . + I I C ~1:) (27)

lJ lJ lJ n 9,=0 l.J1 u (Rn I · E'I 
~ 

where 

1A .. = o(k.,k.) - z: 4nRn2n­lJ -1 -J n 

vn 
x [ L exp Ii (k . - k . ) • r J ] j ( Ik . - k . IR ) / Ik . - k . I ( 2 8 ) 

V=l ~J -1 \) 1 -J -1. n -J -1. 

B . . = (k . • k . ) A . . (29)
l.J -l. -J 1.J 
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2 -1 , , "­ Ac~1:~ = 4TIR r2 (2,Q,+l)J 
0 

(k.R )Jn (k.R )P 0 (k. •k.)
1Jx, n iv 1 n ;v J n ;v 1 J 

\) 
n 

x [ L: exp [ i ( k . - k . ) • r" ] ] (30) 
~J -1 _v

'V=l 

where the sum over all atoms in the unit cell is split into 

two; the first, over n, represents the inequivalent atoms 

of the unit cell, and the second, over v counts all v atoms n 
thof the n type. This is the method suggested by Mattheiss, 

Wood, and Switendic~10 . 

D. SIMPLIFICATIONS USING GROUP THEORY 

The previous equations for the APW matrix elements 

were arrived at by using only the translational symmetry of 

the crystal. This method must be used when one is considering 

general points in the first Brillouin zone. However, only a 

limited number of reciprocal lattice vectors, K., can be 
~1 

included in such a calculation owing to time and space limi­

tations on the computer. Simplifications arise when states 

are considered whose wave vectors are in symmetry planes or 

lines or at synunetry points of the Brillouin zone. The group 

of the wave vector, Gk' then includes rotations and reflec­

tions. 

According to the representation theory of groups, 

the matrix elements cf (H-E) which connect states that trans­

form according to different irreducible representations of the 
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19 
group Gk are zero The (H-E) matrix may then be block-

diagonalized, accqrding to the irreducible representations of 

Gk, into sub-matrices which are non-interacting. In the 

case of two or more dimensional representations, matrix 

elements which connect partners of the same representation 

are zero ie. these represent the degeneracy of the state. 

Under this scheme, the resulting energy solutions (bands) may 

be associated with the various irreducible representations 

of the group. 

Outlines of group-theoretical techniques 	for symmor­

19phic space groups can be found in standard texts • For the 

case of non-symmorphic space groups, which contain elements 

combining reflection or rotation with a non-primitive trans­

lation, the same basic techniques are applicable. However, 

care must be taken to keep track of which group operators 

include a non-primitive translation. The specific case of 

MnF is discussed later.2 

If one designates a space group operation by R, which 

is represented by a matrix, r~. (R), a being the representation
l.J 

under 	consideration, then the basic equations given by 

10Mattheiss, Wood, and Switendick are valid. The equation for 

the (H-E) matrix then becomes, for the ath representation: 

(H·-E) a .. 
l.J 

Upon substitution for c/i(r;k. ,E) and integration, the symmet.­
-- -1 
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rized equivalent to equation (25) becomes 

g a * (-=--) 2: [ f (R) J { (k . • Rk . - E) 6 ( Rk . , k . ) 
na R 11 -1 --J --J -1 

-1+ Q L: exp Ii (Rk .-k.) •r ]F .. (R)}, (32)
--J -1 -n n,iJn 

where the expression for F .. (R) is given byn,iJ 

2
F . . ( R) = 41r R { - ( k . • Rk. - E) j ( IRk . - k . IR ) I IRk . - k . I
n! lJ n ~1 -~J 1 ---J -1 n --J ~1 

I 
oo u9.,(R ;E) 

+ l: ( 29.,+1 ) P n ( k · • Rk · ) j n ( k · R ) j n ( k . R ) --(n ~) } ( 3 3)
9.,=0 1v -1 --~ l n 1v J n u9., Rn;E,1v 

. { ) . th d. . f l th . d . blI n equat ion 32 / na ls e imension o · tle a lrre uc1 .. e 

representation, g is the order of the group, Gk 1 and R indi­

cates that the space group operation R, when acting on a 

wave vector yields another vector. 

Equation (32) may also be written in terms of two and 

three dimensional arrays similar to equation (27) for the 

unsynunetrized matrix element. 

9.,max u' (R ·E)
1 a ,..., "' <;"' ca. ~ ni ) 0 

· n ' Q- ( H - E) .. =-EA':' . + B':' . + l: '-' I /v J (34)
l.J lJ lJ l.J u "(R ·E) ' n ~=0 9., n' 

where 

Aa ..
lJ n 


\l n 


x ( l: exp Ii (Rk, -k. ) • r ] ) j ( j Rk . -k. IR ) /I Rk . -k. I } ( 3 5) 
-·~J ~-1 ·-\l 1 --J -1 n ,,,-J -J..v==l 
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c~~~) = (~-)4nR2 ~-l(29.,+l)j (k.R )j (k.R )0l.J Iv na n "' . 1 n "'0 
l nJ 

vn 
x {l: [I'a (R)]* ( l: exp[i(Rk.. ·-k.)•r ])P 

0 
(k.•Rk.)} (37)

11 -·~.) ~l -\) ;<., l - JR V=l 

Although the use of Symrnetrized Augmented Plane Wave functions 

(SAPW's)complicates the form of the (H-E) matrix elements, 

the resulting block diagonalization decreases the number of 

such elements which must be calculated. The above equations 

have been programmed for MnF using the outline given by2 
2

Loucks in Appendix 5, 



. CHAPTER III 

IMPLE~N'J'A'I'ION FOR MnF 
2 

MnF 2 has a tetragonal crystal structure, with two 

+2~· . d f F~n ions an our · ions per unit cell. The cell dimen­

sions are given by the lattice parameters c and a, which 

have been found to be 6.25490 A.U. and 9.2095 A.U. respec­

. 1 20tive y The positions of the various ions in the unit 

cell are specified by 

+2 1 1 1Mn : ± ( 0 , 0 , 0 ) , ( 2 ,2 , 2.) 

F : ±(u,u,o),(u + ~' ~ - u, ~) 

where u ~ 0.31 20 • The projection of the structure on the 

a-b plane is shown in Fig. 3. 

A. DETERMIN.A.TION OF LOGARITHM.IC DERIVATIVES 

The first step in the calculation is to determine the 

muffin-tin sphere radii for the manganese and fluorine ions. 

Two distinct cases have been treated, that of "paramagnetic" 

MnF and antiferromagnetic MnF • In the latter case, the2 2 

two manganese ions in the unit cell are considered different, 

one having all five d electrons with spin up, and the other 

with all five spins down. This means that an up-spin electron 

experiences a different potential in the regions of these 

22 

http:LOGARITHM.IC


Figure 3 

The projection of the MnF 2 crystal struc­

ture on the a-b plane. 
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two ions. As we shall later see, this effectively reduces 

the sy~etry for the SAPW calculations. 

The ionic potentials, including Coulomb and exchange 

contributions, were supplied by E. R. Cowley, on a logari­

2thmic grid described by Loucks • The grid has been linearized 

and the results plotted as functions of distance from the 

particular ions involved, in steps of 0.05 A.U. The shortest 

+2 ­inter-ionic distance is between Mn at(0,0,0) and F at 

(-u+2,1 1 1 ) 1.e ' 1 (1 . , - 1 . 75 , 3 . A.U.-~u,2 . approximate y ·75 13} All 

potentials as well have been corrected for the Madelung 

2Constant as supplied by C. V. Stager. For the Mn+ potential, 

this correction is +l.528 Rydbergs and for the F potential 

it is -0.875 Rydbergs. Figs. 4 and 5 show the corrected po­

tentials for the "paramagnetic'' and antiferromagnetic cases 

respectively. 

The intersection of Mn+ 2 and F potentials from Fig. 

4 is seen to be at 2.125 A.U. from Mn+ 2 and 1.863 A.U. from F . 

The corresponding points on Loucks' logarithmic grid may be 

+2 ­calculated as 192 for Mn and 189 for F . These are the 

muffin-tin sphere radii for the manganese and fluorine ions. 

The constant correction to the muff in-tin potential to 

make it equal to zero between the spheres is seen from Fig. 

4 to be 1.1 Rydbergs for the case of "paramagnetic 11 .MnF 2 . 

Sirnilarly, for antiferron1agnetic .MnF 
2

, the corrected 

potentials have been plotted in Fig. 5. As discussed previously, 



Figure 4 

2The ionic potentials for the Mn+ and F ions 

used in 1'pararnagnetic" case. Corrections have 

been included for the Madelung Constant 



O·O 

-O·J 


g -2·0. 


-1 ·0 

-Cf) 
(,!) -I· 5 

IJ I ~0: 


>­
cc -2·5-
_J 

<1.. -3·0 
I-
z 
~ - 3 ·5 f 
0 . 
a.. -4 ·O 

•
I­
I 

-4·5 r 
-5 ·O I­

-5 ·5 l 

t 

Vc=l·IRy. 

~ 
I 
-,' . 

. I 
~ 

I 

1 
1 

\ 1 
i 

2· 12 5 A.U. 

' lI l ! lt I l ...:. 
O·O l·O 2·0 3·0 4·0 N ,...- VlMn+2 

SE PA RA Tl ON (ATOMIC UNITS) r 



2

26 


there are two types of manganese ions in the unit cell. 

+2 +2These have been labelled Mn A and Mn B, corresponding to 

spin up and spin down respectively. It is seen that the Mn+ A 

intersection with F occurs at 2,180 A.U. from Mn+ 2A and 

the Mn+ 2B intersection occurs at 2.035 A.U. from Mn+ 2B, or 

at grid points 192 and 191 of Loucks' grid respectively. 

The fluorine sphere radius is chosen to be the distance from 

the F site to the intersection of the F- potential curve with 

that of Mn+ 2A to eliminate the possibility of overlapping 

spheres. This distance is found to be 1.8081 A.U. or Loucks' 

grid point 188. It is evident in this case that there are 

two possible constant energies which could be added to the 

potentials in an attempt -to make the potential between the 

muffin-tin spheres equal to zero. These correspond to the 

+2in' t ersect'ions o-f Mn A and Mn +2
B w1 't'n 	 F.- The constant 

2chosen was that appropriate to the Mn+ B case and may be seen 

from Fig. 5 to be 1.01 Rydbergs. The smaller constant was 

used to ensure that at no time would the muff in-tin potential 

become 	positive. 

The parameters determined above may now be used to 
u I (R 	 • E)

· . · t n'generate the logarithmic de:civatives, (R -:;:;--, for each 
UR, ni.l:") 

ion. These are required in the calculation of the SAPW 

matrix 	elements given in equation (34). 

The computer program used to 	calculate the logarithmic 

2derivatives was that given by Loucks 	 in Appendix 3 1 with 



Figure 5 

. . +- t' 1 f th +2A M +2B dMThe ionic po-en ia-'-s or e 1·1n . ; .Ln an 

F ions used in antiferromagnetic case. Correc­

tions have been included for the Madelung Constant, 
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Figure 6 

Logarithmic derivatives for i=0,1,2 for the 

Mn+ 2 ion in tne "paramagnetic" case 
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Figure 7 

Logarithmic derivatives for ~=0,1,2 for the F 

ion in the "paramagnetic" case 
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which occurred in this range. There are two zero crossings: 

for 9,=0 1 at an ene'rgy of 0.28 Rydbergs, and for 9,=l, at an 

energy of 1.22 Rydbergs approximately. For the remaining 

functions corresponding to 9,=3 to i~12, there are no zero 

crossings or singularities. 

Considering Fig. 7 for the fluorine ion, the singula­

rities appearing are the one for 9.=0 at -1.275 Rydbergs and 

the one for 9,=l at 0.103 Rydbergs. The only zero crossing 

occurs for 9,=l at approximately-0.72 Rydbergs. The behaviour 

of the fluorine logarithmic derivative function for the higher 

9, values is quite similar to that of the manganese ion. 

Similar results for the antiferromagnetic case have 

+2 +2been plotted in Figs. B, 9 and 10, for the Mn A, Mn B, and 

F ions respectively, over the energy range -0.4 to 1.2 Ryd­

+2bergs. Singularities occur for: Mn A, 9.=2 at -0.16 Rydbergs, 

Mn+ 2 B, £=2, at 0.589 Rydbergs, and F-, £=1, at 0.365 Rydbergs. 

+2The zero crossings may be found to 	be:Mn A, ~=O at -0.048 

+2Rydbergs, £=1, at 0.849 Rydbergs, Mn B, 9.=0 at 0.575 Rydbergs, 

9.=2 at -0. 131 Rydbergs. 'I'here are no such crossings for the 

fluorine ion in the energy range being considered. 

To illustrate the general behaviour of the logarithmic 

derivative functions for higher 9, values, the reader is re­

ferred to Fig. 11. Shown here are the results for the anti­

+ . f th +2 . hf·erromagne~ic case o e Mn A ion over t e energy range -0. 4 

to 1.2 Rydbergs. The energy dependence of the functions for 

http:approximately-0.72


Figure 8 

Logarithmic derivatives for ,Q,=0,1,2 for the .Mn+2A 

ion in the antiferromagnetic case 
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Figure 9 

Logarithmic derivatives for ,Q,=0,1,2 for 

the Mn+ 2B ion in the antiferromagnetic case 
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Figure 10 

Logarithmic derivatives for l=0,1,2 for the 

F ion in the antiferromagnetic case 
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Figure 11 

General behaviour of logarithmic derivatives 

+2for higher t values for Mn A, ~ = 3 to 12 1 

antiferromagnetic case 
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1=3 through £=12 is very similar for both the "paramagnetic" 
. 

and antiferromagnetic cases, and all ions concerned. At no 

energy is the function u~(Rn;E)/u1 (Rn;E) negative, and the 

curves approach straight lines with very small negative slope 

as the 1 value increases. Singularities occur for none of 

these functions. 

The various parameters and functions which serve as 

the input data for the main SAPW program have now been deter­

mined, with the notable exception of the results of the group 

theoretical calculations for "paramagnetic" and antiferro­

magnetic manganese fluoride. 

B. 	 GROUP THEORY FOR IvT.ANGANESE FLUORIDE 

14
The space group D4h (P4 /1Tul1Il1) 1 with the point group

2

n4h and a tetraaonal Bravais lattice were used in the calcu­

lations for "paramagnetic" .MnF • In the point group D h /2	 4 

used at the r point, there are sixteen group operations which 

are represented by the symbols x0 , X±l' x2 , Y0 , Y±l' Y2 , 
I I 	 I I I I 

xo, x±l' 	x2, Y0 , Y±l and Y2 • The notation is that given 

21
by Slater • In addition, certain of these operators involve 

. . . ·( 1 1 1 ) t 1 t. t h .a non-primitive 	 rans a .ion .o preserve t e symmetry2 ,2 , 2 
of the structure. The resulting operators are those given 

21by Slater with modifications as proposed by E. R. Cowley 

22and c. V. Stager , and are named in this work, the Slater-

Cowley operators. As can be seen from equations (35), (36) 
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and (37), these operators act on the wave vectors k. = k+K .. 
-l - --J_ 

For the specific c·ase of the r point, k=O and thus k. = K .• 
~i -J_ 

The operator matrices which were employed are given in Table 

. 1 1 1
1. An operation which involves a non-primitive, (~'~'~) 

translation is indicated by a (±) sign after the matrix. 

The behaviour of the various wave vectors under action 

by the group elements in Table 1 must be investigated to 

find the irreducible representations according to which the 

wave vectors transform.For this calculdtion, the character 

table for the group must be used. There are ten irreducible 

representations for the group n4h and they may be labelled 

+ + + + +ri, r2, r3, r4, and r5 . The character table then is as 

21given by Slater and is reproduced in Table 2. It is evident 

are one-dimensional representations 

+
and that r~ are two-dimensional representations. In the 

case of the two-dimensional representations, only the charac­

ters have been included in Table 2. To generate the charac­

ters for the primed group operators, the characters are the 

same as in Table 2 for the representations with the super­

scripts +, and the negatives of these characters for the 

representations with the superscripts ­

Wave vectors may be divided into sets such that all 

members of a given set transform among each other under the 

group operations. It is sufficient to consider only one 

member of each set. Such wave vectors are called prototype 
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'rABLE l 


SLATER-COWLEY OPERATORS FOR f POINT GROUP 

THEORY FOR nPARAMAGNETIC" MnF...,

L. 

XO ;:::: 

xl ;:::: 

x = -1 

x = 
2 

YO = 

y+l= 

y = 
-1 

1 0 0 
I 

0 1 0 XO = 

0 0 1 

0 l 

J 
01 

I 

-1 0 (±) xl = 

0 0 

lo -·l 0 
I 

(±) 	 x =1 0 0 -1 

Lo 0 l 

-1 0 01 
0 -1 	 =x2 

0 0 J 	
I 

1 0 01 

j 	
I 

0 -1 (±) 	 YO = 

0 0 

0 1 01 
I 

1 0 0 y ::: 
+l 

0 0 1 

01~o -1 
I 

-1 0 	 y = 
-1 

0Lo j 

1[: 
0 

0 

0 1 

-]_ 0 

0 0 

r·
I o -1 

I i 0 

lo 0 

:..1 0 

0 -1 

0 0 

r 	 1 0 

0 -1 

0l_ 	0 

0 1 

1 0 

0 0 

-1,- 0 

[_··: 
0 

0 

0 

0 

-1 

0 

0 

-1 

0 

0 

-1 

0 

0 

-1 

0 

0 

-1 

~ 

-·ll 

51 

0 

-·11 
....J 

(±) 

(i) 

(±) 

-1 0 	 r~-1 0 0
01 I 

() 1 0 (±)Q, ( + \ 	 y0 l -1 	 ­y2 ­ 2 

0 	 -10 l l_ 00 
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TABLE 2 

CHARACTER TABLE FOR THE GROUP D4h 

XO x
1 x_l x2 Yo yl y

-1 y2 

+r­
1 

+r­
2 

+
r3 

+r­
4 

+ * xcr5> 

1 

1 

1 

1 

2 

1 

1 

-1 

-1 

0 

1 

1 

-1 

-1 

0 

1 

1 

l 

1 

-2 

1 

-1 

l 

-1 

0 

1 

-1 

-1 

1 

0 

1 

-1 

-1 

1 

0 

, 
J.. 

-1 

1 

-1 

0 

* +For the two-dimensional representations, r5, only the charac­

ters have been included. 
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wave vectors. By the standard techniques of group theo~y, 

reducible representations generated by using the 	prototype 

19 
wave vectors as basis functions may be calculatea . It is 

important to distinguish between even and odd prototypes for 

these calculations. The effect of a group operator which 

contains a non-primitive translation is different for even 

and odd prototypes. The decomposition of the prototypes 

is accomplished by using the group character table and the 

equation 

a = 1 L: n x ( c)_ x. (c) 	 (39)
j 	 c Jg classes 

where g is the number of elements in the group, n is the c 

number of elements in the class, c, x(c) represents the 

characters of the group and X· (c) represents the 	characters 
J 

of the representation under consideration. a. then is the 
J 

number of times the jth irreducible representation occurs 

in the decomposition of the prototype wave vector under con­

sideration. The results for the prototype wave vector decom~ 

position at the r point for the "paramagnetic case" are 

given in Table 3. It must be noted that in Table 3 for the 

+ 
case of the two-dimensional representations, r5, only 


specific prototype wave vectors may be used in the calculation. 


The details have been worked out in collaboration with C.V. 


23Stager using projection operators and are shown in Table 4. 
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TABLE 3 

PROTOTYPE WAVE VECTOR DECOMPOSITION AT THE r POINT FOR 
THE "Pl\RAMAGNETIC 11 STA.TE OF MnF

2 

~-----

(o,o,o) ----~ r+ 
1 

.,+ .,,+r+(a' o 'o) odd---·-+ + l 4 + l 52 
{a o o) --·-----+ r+ + r+ 

3 + T'+ 
' ' even 1 - 5 


r+ r+ 
4 + T'+
(a, a' o) odd·--·--4- + .. 51 

r+ r+ r+(a I a I 0) even--·-+ + +1 4 5 
r+(o, o, c) odd-----+ + r44 
+ ­(o o c) -----+ rl + r1' ' even 
+ ,.,+(a ' b, o) odd---------+ r1 + ~ 2 + r+ + r+ + 2r+ 

3 4 5 

(a b o) -------->- r+ + r+ + r+ + r+ +
' ' even 1 2 3 4 2r+ 

5 

r+ ..L
+(a 1 a , c) odd·-·---t- + 1'4 + r·

5 + r1 + f 4 + rs1 
r+ r+(a I a IC) even·-------+ r1 

+ + 4 + 5 
+ rl + f 4 + rs 

11 -r' (a o c) ------+ r+ + r+ + l 5 + r ') + f 4 + r c: 
~ ' ' odd 2 4 :> 

+ ,.,+ ,.,+(a o c) ----------->­ rl + l 3 + l 5 + rl + r 
J
') + r

' ' even 5 

,.,+
r+ r+ r+ 2r+(a' b 'c) odc"f-----+ + + 3 + + + rl + r2 + r3 +r4 +2r:l1 2 4 5 :> 

(a b c ) _______,,_ + r+ r+ "+ ­
r1 + 2 + 3 + l 4 + 2r; + r1 + r2 + r3' ' even 

-+ f 4 + 2r~ 
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TABLE 4 


PROTOTYPES USED FOR TWO-DIMENSIONAL REPRESENTATIONS 
. AT THE I' POINT FOR "PARAMAGNETIC" MnF 

2 

--------~--~-~----~----------~--~-·----~----

(a o o) --·-------)- (±a,o,o), (o,±a,o)

' ' even 


-----+(a,o,o)odd (0,±a,o) 

(a a 	 o) -·---r
' ' 	 even (±a,±a,o} 


odd 


(a b 	 o) *-----+ (±a,±b,o), (±b,±a,o)
' ' 	 even 


odd 


(a,a,c) ------r (±a,±a,±c)even 

odd 


(a,o,c) ----~ (a,o,±c), (-a,o,±c)even 

(a' o 'c) odd -------+ (o,a.,±c), (o,-a,±c) 

{a,b,c) ** -----+ all prototypes may be used even 

odd 


*When two-2 dimensional representations are included 

in the decomposition pairs of the type (a,b,o) and 

(b,a,o) must be used. 

**When two-2 dimensional representations are included 

in the decomposition the pairs (±a,±b,±c) and 

(±b,±a,±c) must be used with any permutation of the 

signs allowed. 
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The symmetry is reduced for band structure calculations 

along the A line (O,O,c*). The group becomes c4v and con­

tains only eight operations. These are operations which do 

not include a horizontal reflection, The operator matrices 

for c 4v are then x0 , x1 (±), x_1 (±), x 2 , Y (±), Y1 , Y_ and
0 1 

Y2 (±) where the notation and the matrices used are the same 

as in the case of the r point group theory. The operations 

are now performed on the vector k. = k + K. of equation (11).
~1 -l 

Here, k represents the point on the A line, (O,O,p) at 

which the allowed energy values are being calculated and K. 
~1 

represents a reciprocal lattice vector. The irreducible 

representations of the group c4v may be written as A1 , A2 , 

A3 , and AS' where As is a two-dimensional representation.A4 

Since the horizontal mirror plane has been removed, the 

wave vector (a,b, -c) is not included in the same set as 

~,b,c). Using the character table for C4 
21 , the wave vector .v 

decomposition is as given in Table 5. 

Since for the antiferromagnetic case of MnF 2 , no 

known tetragonal space group could be found, it was necessary 

to use the orthorhombic group D~~(Cnunm) with eight operator 

matrices and eight one-dimensional irreducible representa­

2tions for the r point. The Mn+ A ion was considered dif­

ferent from the Mn+ 2B ion and thus the eight (±) operations 

from n4h connecting the two manganese ions in the unit cell 

were excluded. The remaining eight group operations are 
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TABLE 5 

PROTOTYPE WAVE VECTOR. DECOMPOSITION ALONG THE /I. 
LINE FOR THE "PARAMAGNETIC" STATE OF MnF 2 

(0 t 0 Ip) --·--·-+ Al 

(a o p) ----r 
' ' even /1.1 + A3 * + As 

(a,o,p) odd-·..--+ A2 + A4 ** + /\5 

(a a p) ----+
' ' even 

odd 
J\l + J\4 + As 

(a ,b ,p) eve'n--"--)­
odd 

Al + /1.2 + A3 + A4 *** + 211.5 

*Wave vector for A must be of the form (a,o,p) or5 

(-·a,o,p). 

** Wave vector for fls must be of the form (o,a,p} or 

(o,-a,p). 

***For two-2 dimensional representations the wave 

vectors must be of the form {a,b,p) and (b,a,p) 
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I I I I 

x
0

, x2 , Y
1

, Y_
1

, x
0

, x2 , Y and Y_ where the notation is1 1 

the same as for the "paramagnetic" case. The character 

table for this group was calculated by standard techniques 

using the basis functio~s x+y, x-y, -x+y and -x-y, with the 

prescription that the rows of the table be orthogonal to one 

another. The irreducible representations may be labelled 

+ + + + r l, r 2, r 3 and r 4, all of which are one-dimensional. The 

character table for D h is given in Table 6.2

Since all operations involving a non-primitive trans­

+2 +2lation from Mn A to Mn B ha.ve now been removed, it will 

not now be necessary to differentiate between even and odd 

prototype wave vectors. By procedures identical to that for 

the "paramagnetic'' case, the decomposition of the prototypes 

at the r point may be carried out yielding the results shown 

in Table 7. 

It must be ncted, from Table 7,· that the number of 

prototype wave vectors has increased due to the reduced 

symmetry. This means, for instance, that the wave vectors 

(a,-a,o) and (-a,a,o) are not generated by the action of 

any group element on the prototype (a,a,o). In this case, 

only the vector (-a,~a,o) is generated, and (a,-a,o) must 

be included in a different set. Similar results hold for 

the cases (a,a,c), (a,b,o) and (a,b,c). 

As in the 11 paramagnetic" example, the horizontal re­

flection plane is lost for wave vectors on the A line. The 
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TABLE 6 

CHARACTER TABLE F'OR THE GROUP D2h 

r+ 
1 

XO 

1 

x2 

1 

yl 

1 

y
-1 

1 

--.I,.__ , 

I I 

XO x2 

~ 

1 1 

~~ 

I I 

yl y 
-1 

-~ 

1 1 

r+
2 1 -1 1 -1 1 -1 1 -1 

r+ 
3 1 -1 -1 1 1 -1 -1 1­

r+
4 

ri 

1 

1 

1 

1 

-1 

1 

-1 

1 

1 

-1 

1 

-1 

-1 

-1 

,
-..L 

-1 

r; 1 -1 1 -1 -1 1 -1 1 

r; 1 -1 -1 1 -1 1 1 -1 

r4 1 1 -1 -1 -1 -1 1 1 
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TABLE 7 

PROTOTYPE WAVE VECTOR DECOMPOSITION AT THE f POINT 
FOR THE ANTIFER~ZOMAGNE'rIC STATE OF MnF 2 

(o,o,o) 

(a,o,o) 

--~-

------+ 

r+ 
1 

+ 
r1 + + 

r2 

-----..,·---·---....-­

+ rj + r~ 

(a,a,o) ---·-+ r+ 
1 + 

+ 
r2 

(a,-a,o) 

(o,o,c) -----)­

+ 
r1 

n+ 
1 1 

+ r+ 
3 

-+ r1 

(a,o,c) -----+ r+ 
1 + r+ 

2 + r+ 
3 

+ r + + 
4 I' 1 + r2 + r 

3 + r~ 

(a, a, c) -----+ r+ 
1 + r+ 

2 + r 1 + r2 

(a, -a, c) -------+ r+ 
1 

+ r+ 
3 

-+ rl + -
f 3 

(a,b,o) ---·---* r+ 
1 

++ r2 + r+ 
3 + r+

4 

(a,-b,o) --~ r+ 
1 + r+ 

2 + r+ 
3 + r+

4 

(a,b,c) ---·-----+ r+ 
1 + r+ 

2 + r+ 
3 

+ r+ 
4 + r1 + r2 + r3 + r4 

(a, -b, c) -------* r~ + 
..... 

r+ 
2 + r+ 

3 
+

+ f4 + rl + f2 + f3 + f 4 
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group c , appropriate to this case, consists of only four
' 2v 

operator matrices, namely x0 , x2 , Y1 , and Y_ • Analogously,1 

for every gene:ral (a,b,c) type reciprocal lattice vector 

included, the~e must also be an (a,b,-c) vector. Again, no 

group operators involve a (~'~'~) translation, and thus the 

distinction between even and odd prototype wave vectors need 

not be made. The character table for the group c2v is given in 

Table 8. The four irreducible representations of the group 

have been labelled A1 , A2 , A and A4 , and are all one­3 

dirnensional. 

The wave vector decomposition for the appropriate proto­

types for the A line is shown in Table 9. The notation used 

is the same as that employed for the "pararnagnetic 11 state. 

The number of energy bands expected in the SAPW calcu­

lation and their f>ymmetry is predicted by using a tight 

binding or linear combination of atomic orbitals approach. 

For example, cons i.der the f 1 uor ine p electrons. There are 

three p orbitals (x, y and z) for each fluorine ion ie. 12 

in a unit cell of MnF 2 . These 12 orbitals are used as basis 

functions for a representation of the group appropriate to 

the wave vector being considered. This representation, which 

is in general reducible, is decomposed into irreducible 

representations by standard techniques. In the case of the 

fluorine p orbitals, this gives rise to the irreducible 

+ + + + ­. r+ rrepresentations + + r + r + r + r
4 

+ 2r 5 +• 1 1 2 3 4 
r 5 
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TABLE 8 

CHARACTER TABLE FOR THE GROUP c2v 

XO x2 yl Y_l 

Al 1 1 1 1 

A2 1 -1 1 -1 

A3 1 -1 -1 1 

A4 1 1 -1 -1 



so 

•rABLE 9 

PROTOTYPE 
FOR 

WAVE VECTOR DECOMPOSITION ALONG THE 
THE ANTIFERROMAGNETIC S'l'ATE OF MnF 

2 

A LINE 

(o,o,p) -----+ Al 

--~-+(o,o,-p) Al 

(a,o,p) ----------+ Al + A2 + A3 + !"4 

(a,a,p) ---~ J\ 1 + 11.2 

(a,-a,p) ------·---+ Al + A3 

(a,o,p) .----+ Al + A2 + A3 + A4 

(a,o,-p) -+ Al + A2 + A3 + J\ 4 

(a,a,-p) ----~ Al + A2 

(a,-a,-p) ---·---+ f,l + A3 

(a,b,p) ---~ Al + ''2 + A3 + A4 

(a,-b,p) -----r A1 + "-2 + A3 + A4 

(a,b,-p) --·--->­ Al + A2 + A3 + A4 

MrMASTER UNiVERSITY LIBRARY 
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at the r point for the "paramagnetic" case. From the plot 

of the fluorine logarithmic derivatives in Fig. 7, there 

is a singularity for R..=l at 0.103 Rydbergs. One would 

expect energy bands of the above symn1etry classifications 

near 0.103 Rydbergs. The calculations for the other approp­

riate atomic orbitals for the manganese and fluorine ions 

in the "paramagnetic" state are given in Table 10. Similar 

calculations have been carried out for the antiferromagnetic 

state of MnF 2 . These results are given in Table 11. Another 

check on the results is obtained by the use of the compata­

bility relations, ie. energy bands al6ng the A line labelled 

A. may only be joined to those labelled r:+ at the r point.
1 1 
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TABLE 10 


PREDICTED ENERGY BANDS FROM THE USE OF TIGHT BINDING 
BASIS FUNC'I'IONS AT THE r POIN'r FOR "PARAMAGNE'I'IC" MnF 2 

~--·-~......._,-

+2 r+ r+Mn (ns) +1 4 

F- (ns) ---~ r+ + r+ + r+ 
1 4 5 

Mn
+2 

(np) ---··--+ rl + T'. 4 + 2r! 
:;) 

F 
- (np) --->- r+ + r+ + r+ + r+ + + 2r+ + rsrl + - 2 r41 3 4 5 

+Mn+2 (d) --···-~ 2r+ r+ 
1 + r2 + 3 + 2I'~ + 2r~ 

~--~-------.-----­
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'l'ABLE 11 

PREDICTED ENERGY BANDS FROM THE USE OF TIGH'r BINDING 
BASIS FUNCTIONS AT THE r POINT FOR ANTIFERRO.MAGNETIC 

MnF 2 

+2Mn A (ns) ---+ r+ 
1 

+2
Mn B(ns) r+ 

1 

- (ns)F ----+ + 
rl + r+ 

4 
+ r+ 

5 

+2
Mn A (np) -----)­ r+ 

2 
++ f 3 + r1 

+2Mn B(np) r+ 
2 + r+ 

3 + rl 

- (np)F --------)­ 2r+ 
1 + 2TI+ 

l 2 + 2r+ 
3 + 2T'+• 4 + 2r~ + r2 + T' 

" 3 

Mn+ 2A(d) 21'+ 
1 + r+ 

4 
+ I' 2 + f 3 

Mn+ 2B(d) ----->­ 2I'+ 
l + r+ 

4 + r; + r; 
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RESULTS AND DISCUSSION 

The main program (SAPW) for the band structure cal­

2culation was based on that outlined by Loucks , Appendix 

5, using the expression for the (H-E) matrix elements that 

was given in equation (34). The program was adapted to 

handle the cases of two and three different ions in a unit 

cell for the "paramagnetic" anc1 antiferromagnetic cases 

respectively. The determinant of (H-E) has been evaluated 

as a function of energy in increments of 0.01 Rydbergs for 

each irreducible representation of the groups appropriate 

to the r point and the A line for both the "paramagnetic" and 

the antiferromagnetic states. The energy at which det(H-E) 

goes to zero was found by means of a quadratic interpolation 

~ethod. Eigenvalues were recorded for the r point and for 

five points along the A line to the zone boundary. In units 

of c* these five points are 0.1, 0.2 1 0.3, 0.4 and 0.5. 

The results were plotted in the appropriate energy ranges 

for the two states of MnF 2 that were considered. 

The calculated bands for the "paramagnetic" state 

are shown in Figs. 12 to 17. For this case, the bands have 

been calculated using basis sets of 39 and 121 reciprocal 

lattice vectors, K.. Fig. 12 presents the general picture
-]. 
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ot the bands for the case of 39 reciprocal lattice vectors. 

The one-electron bands have been grouped together according 

to the atomic orbital with which they correspond. In the 

energy range of -1.7 Rydbergs to 0.3 Rydbergs, only the highest 

and lowest energy bands belonging to each orbital group have 

been plotted. From 0.3 Rydbergs to 1.1 Rydbergs, all the 

individual bands are shown. In Fig. 13, the scale from -1.61 

Rydbergs to -1.55 Rydbergs and from 0.08 Rydbergs to 0.22 

Rydbergs has been expanded to show the detailed structure 

of the one-electron bands arising from the F- (2~) and the 

2Mn+ (3d) orbitals. The irreducible representation labels 

at the r point and along the A line are indicated. The energy 

range from -0.26 Rydbergs to -0.05 Rydbergs has similarly 

been expanded in Fig. 14 to indicate the details of the one­

electron bands that arise from the F- (2p) orbitals. From 

Figs. 13 and 14 it may be seen that the irreducible repres­

entations appearing there are in exact agreement with those 

predicted by the tight binding approach and tabulated in 

Table 10. Figs. 15 to 17 present the results obtained for 

the "paramagnetic" case using 121 reciprocal lattice vectors. 

The bands have all been shifted downward in energy. This is 

expected, as the APW method is a variational method, and 

increasing the basis set always lowers the energy. General 

.rules for the number of basis vectors needed to insure 



Figure 12 

General band picture for the "paramagnetic" case 

of MnF for 39 reciprocal lattice vectors. In2 

the energy range -1.7 to 0.3 Rydbergs only the 

highest and lowest energy single electron bands for 

each orbital group have been drawn. The cross­

hatching represents the bands falling in between 

the highest and lowest energy bands. 
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Figure 13 

Structure of the one-electron bands arising from 

- +2the F (2s) and Mn (3d) orbitals, for "paramagnetic" 


case, 39 reciprocal lattice vectors. 


Note that the scale has been broken. The F-(2s) 


bands are in the range -1.61 to -1.55 Rydbergs. The 


Mn+ 2 (3d) bands are in the range 0.08 to 0.22 Rydbergs. 




57 
--.--­. I -- --· 

0·19 

As0·15 

-(/)
(!) 0·13 
0::: 
w 
co 
0>- 0·11 
c.r:-
>­
~ 0·09 ­.___---­
IJ.J ,.., + 
2 !1 
w 

-1·55 

A5 



Figure 14 

Structure of the one-electron bands arising 

from the F-(2p) orbitals, for the "para­

magnetic" case with 39 reciprocal lattice 

vectors. 
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Figure 15 

General band picture for the "paramagnetic" case 

of MnF 2 , for 121 reciprocal lattice vectors. In 

the energy range -0.4 to 0.2 Rydbergs, only the 

highest and lowest energy single electron bands 

for each orbital group have been drawn. The cross­

hatching represents the bands falling in between 

the highest and lowest bands. 
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Figure 16 

The structure of the one-electron bands arising 

from the Mn+ 2 (3d) orbital for .the "paramagnet~c'' 

case of MnF for 121 reciprocal lattice vectors.2 
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Figure 17 

The structure of the one-electron bands arising 

from the F-(2p) orbital for the "paramagnetic" 

case of MnF 2 , for 121 reciprocal lattice vectors. 
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convergence are given by Mattheiss et ~.!.lO Again, the 

number and symmetry of the bands are in agreement with those 

predicted in Table 10. 

After determining the one-electron energy bands, the 

next step is to establish the position of the Fermi level. 

For MnF 2 there are 8 fluorine 2s electrons, 24 fluorine 2p 

electrons, and 10 mangane.se 3d electrons in the unit cell. 

Two electrons are assigned to each one-dimensional represen­

tation and four to each two-dimensional representation. The 

Fermi level is then somewhere in the bands labelled r: and 

r; at the r point, for 121 reciprocal lattice vectors. This 

would correspond to an energy of approximately 0.05 Rydbergs. 

It is apparent at this point that there are overlapping and 

hence partially filled energy bands. Thus "paramagnetic" 

MnF is predicted to be a "metal". This is in agreement with2 

similar calculations on "paramagnetic" NiO. 

The calculated bands for the antiferromagnetic state 

are shown in Figs. 18 to 21 for 39 reciprocal lattice vectors. 

Fig. 18 shows the general band picture. There are now two 

sets of Mn+ 2 (3d) bands, each containing five one-electron 

bands. They are separated by 0.635 Rydbergs at the r point 

and by 0.699 Rydbergs at the Z point, ie the intersection of 

the A line with the zone boundary. The F (2p) energy 

bands fall in between the two groups of Mn+ 2 (3d) bands. 

Figs. 19, 20 and 21 show the detailed bt=;haviour of the bands. 

http:mangane.se


Figure 18 

The general band picture for the antiferromagnetic 

case of MnF 2 , for 39 reciprocal lattice vectors. 

In the energy rang2 -·O. 4 to 0. 6 Rydbergs, only the 

highest and lowest energy single electron bands for 

each orb~tal group have been drawn. The cross-hatching 

represents the bands falling in between the highest 

+and lowest bands. The band labelled r at 0.5 Rydbergs
1 

does not belong to the upper Mn+ 2 (3d) orbital group. 
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Figure 19 

The structure of the one-electron bands arising 

+2from the upper Mn (3d) orbital for the antiferro­

magnetic case of MnF 2 , for 39 reciprocal lattice 

vectors. 
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Figure 20 

The structure of the one-electron bands 

. +2
arising from the lower Mn (3d) orbital for 

the antiferromagnetic case of MnF 2 , for 39 

reciprocal lattice vectors. 
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Figure 21 

The structure of the one-electron bands arising 

from the F-(2p) orbital for the antiferromagnetic 

case of MnF 
2 

, for 39 reciprocal lattice vectors. 
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The results for the antiferromagnetic state are in agreement 

with those predicted from the tight binding approach for 

Mn+ 2 (d) and F (np) as shown in Table 11. 

The position of the Fermi level for antiferromagnetic 

MnF may be determined by a method analogous to that used 

for the "paramagnetic" state. At the r point for 39 reci­

procal lattice vectors, the Fermi level occurs between the 

- +2
F (2p) and upper Mn (3d} bands. From Fig. 18, this is 

in the range 0.0 to 0.38 Rydbergs. Here, there are no over­

lapping bands, and thus antiferromagnetic MnF is predicted2 

to be an insulator. It would appear, from Fig. 18 that the 

first transition in MnF is from an F (2p) band to an Mn+ 2 
2 

(3d) band. However, experimental evidence indicates that 

2 24this transition should be from Mn+ (3d) to Mn+ 2 (3d) • 

Since. t"ne re1a t'ive pos1't'.ion o f · the Mn+ 2 (3d) and F (2p) 

bands is dependent on the exchange contribution to the po­

tential given in Chapter II, equation (9), these results sug­

15gest that an exchange of the form given by Kohn and Scham

should be employed to bring the Mn+ 2 (3d) bands closer together. 

25Such an exchange has been used by Cho for the Eu chalcogenides 

with a reduced exchange parameter of 3/4. 

Further APW calculatio.ns for MnF in the antiferro­2 

magnetic state should be performed using a reduced exchange 

parameter varying between 2/3 and 1. It is then expected 

that the results will indicate that the first transition is 

2 2between Mn+ (3d) and Mn+ (3d) and of the magnitude pre­

dieted by experiment. 

http:calculatio.ns
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