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Abstract 

The research reported in this thesis concentrated 

on experimentally investigating and theoretically modelling 

self-excited valve vibrations. In particular the jet-flow 

inertia mechanism has been studied. Experimentally, this 

has been achieved by allowing water to discharge from a 

constant head tan~ into a pipeline through a simple plug 

valve. The plug valve was restrained so that axial vibra

tions of the plug valve could occur. Using this equipment 

the conditions for which the valve was stable and unstable 

was obtained. Further experimental investigation using a 

Laser Doppler Anemometer allowed for recording of instant

aneous fluid discharge during the valve limit cycles. In 

addition the records of the instantaneous pressure difference 

and valve opening allowed for instantaneous discharge 

coefficient calculations. Although no trends in these 

instantaneous discharge coefficients were apparent, these 

particular experiments all owed for improved modelling of the 

valve vibration. 

Dimensionless nonlinear differential equations were 

derived to describe general flow control devices. A stability 

analysis of these differential equations showed that at large 

fluid inertias that the instability that arises is one of 

divergence, he11ce a quasistatic stability analysis is valid. 

Numeri cal integration of the differential equations of motion 
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was used to predict limit cycles as well as valve stability. 

The divergence formula derived for large fluid 

inertia was found to coincide with the corresponding experi

mental results. Other predictions were found to generally 

agree with experimental results. Discrepancies which did 

arise were attributed to waterhammer. Hence the theory derived 

was concluded to be fundamentally correct. Recommendations 

for further research include inclusion of waterhammer in the 

model and investigation of local flow effects. 
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CHAPTER 1 


INTRODUCTION 

1.1 Introduction 

A valve is a device for controlling fluid flow through 

a pipe. There are many operating conditions to be considered 

when selecting a valve. Consideration has to be given to the 

type of fluid, whether it be air, water, a corrosive ch emical, 

a slurry or a radioactive material. Operating temperatures 

can vary from those of cryogenic applications to higher temp

eratures such as when liquid metal is the fluid controlled. 

Operating pressures can vary from near vacuum to high pressure 

applications. Leakage requirements must also be considered. 

These may be very strict or, if the loss of fluid is of minor 

importance or easily recovered, these may be vEry generous. 

Actuation methods are also important. Three typical 

actuation methods are: manual, pneumatic and electrical con

trol. The controlling signals .may be part of a process opera

tion, which may respond to pressure, temperature or other sig

nals received. Valve actuation may also occur as a result of 

a pressure difference acting directly on the valve as in the 

case of relief valves. 

1.2 Instability of Valves 

Most valves will vibrate under certain conditions. 

Generally, these vibrations occur when the valves are operating 
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at small openings. Possible consequences of such vibrations 

are undesirable pressure fluctuations and seat failure [l]. 

It is therefore important for designers to understand the 

vibration mechanisms and how to avoid these vibrations. 

1.3 Plug Valves 

Figure 1.1 shows a schematic of a simple plug valve 

which is used in the experimentation reported in this thesis. 

Such a configuration provides a relatively simple relation 

between flow area and valve lift. This fits well with the 

assumptions generally made for valves operating at small open

ings, that is to say for the region of interest, the flow area 

is approximately a linear function of valve displacement. 

Figure 1.2 shows two typical configurations to which 

the results for the plug valve modelled in this thesis might 

be applied. 

Predictions as to the values of initial openings, stiff

nesses and static heads required to make a particular valve 

vibrate can be made using the formulation derived by Ziada [3] 

in conjunction with a computer program or the stability thres

hold suggested by Kolkman [4]. Weaver [5] in his review paper 

shows that a simple formulation of Kolkman's stability threshold 

can be derived for a valve with a long connecting pipe. 

1.4 Purpose of Research 

The purpose of the research reported in this thesis is 

to i m.prove our understanding of the dynamic discharge character
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istics of a plug valve. In this way, the theoretical model 

developed by Weaver and Ziada [6] may be refined and better 

predictions for stability limits, as well as limit cycle 

amplitudes and fre~uencies may be obtained. 

In this thesis, the reader will find the research 

reported in several sections. The background material in 

Chapter 2 outlines work already done by other researchers which 

is relevant to valve vibrations. In the ensuing chapters, there 

is a description of the apparatus and procedure used in the 

experimentation performed for this thesis. The results of the 

experiments are then presented with recommendations for refine

ment of the model developed by Weaver and Ziada. These refinements 

are implemented in Chapter 6 and the predictions .~£-this 

model are compared to the experimental results as well as to 

the predictions of the original model. Further analysis of the 

refined model reveals that a simple expression can be derived 

for the upper stabi~ity boundary, provided there is large fluid 

inertia and a tank upstream of the valve. This analysis is 

presented in Chapter 6~ along with a quasistatic stability 

analysis. Finally, conclusions are drawn along with recommenda

tions for further research. 
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(a) 

(b) 

Figure 1.2 Examples of typical valves using 
plug valve configuration Ref. [2]. 



CHAPTER 2 


BASIC CONCEPTS OF FLOW INDUCED 
STRUCTURAL VIBRATIONS 

2.1 Introduction 

As technology improves, performance demands increase. 

These increased demands may come in the form of higher 

efficiency, lower factors of safety, higher flowrates and 

higher material strengths. The net result for a structure 

which is required to withstand loading from a fluid is a less 

stiff structure exposed to high flow velocities and pressure 

differences~ 

One example of a less stiff structure exposed to 

higher flowrates is the evolution of the monoplane from the 

biplane. Previously unknown instabilities occurred which 

resulted in the flexible monoplane wings breaking off. These 

problems led to the development of the field of aeroelasticity. 

Aeroelasticity is defined by Fung (7] as the study of the effect 

of aerodynamic forces on elastic bodies~ Flutter is character

ized as the interac tion of a e rodynamic, elastic and inertia 

forces. Such a problem is one of dynamic aeroelastic instab

ility. Divergence, or static buckling, occurs when a problem 

of this type has zero frequency, i.e. a non-oscillatory 

instability. In these cases, the inertia effects may be neg

lected in the analysis, and the phenomenon is termed static 

ae r oelastic instability [7]. 
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Buffeting is usually thought of as the elastic res

ponse of the structure to the fluid flow. The forces that 

cause the response are not greatly affected by the motion 

of the body. 

Hydroelasticity can be defined in terms similar to 

aeroe last ici ty, except, of course, no\v the working fluid is 

water and hydrodynamic forces are present instead of aero

dynamic ones. There are three important differences between 

the study of aeroelasticity and hydroelasticity. In aero

elasticity the added mass is usually negligible ~hereas in 

hydroelasticity this is not so. In fact, it is possible for 

the added mass to exceed the mass of the structure itself. 

Additionally, in hydroelastic problems the possibili~~e~ 

of cavitation and of a free surface exist. These two phenomena 

have no counterparts in aeroelasticity. 

Hydroelasticity, like aeroelasticity can be divided 

into two classes of problems. Dynamic hydroelasticity is the 

interaction of hydrodynamic, elastic and inertial forces. 

Static hydroelasticity can be analyzed considering hydrodynamic 

and elastic forces only. 

Classificat ion of flow-Induced Vibra tions 

Wherever fluids with high flow velocities impinge upon 

struct11res, there i s a possibi l ity of a flow-induced vib rat ion 

problem. These problems can be divided into three classes: 

forced vibrations, self-controlled vibrations and self-excited 

vibrations. 
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In forced vibrations, the fluid forces can be con

sidered to be unaffected by the response of the structure. 

An example of such a problem would be turbulent buffeting 

of a body. To ensure low amplitudes of vibration, it is nec

essary to determine the power spectrum of the flow affecting 

the structure. The structure may then be stiffened or damp

ing added until vibration levels are in a range considered 

acceptable. In modelling such a problem, a rigid model is 

sufficient to determine the fluid forces. 

Self-controlled vibrations may be characterized in the 

following manner. In the absence of structural motion, period

icity exists in the flow. When the flow velocity changes the 

periodicity bf the flow changes~ As the frequency of period

icity in the flow approaches that of the structure, reson~nce 

occurs. The amplitude of vibration may become large enough to 

domi nate the fluid mechanics and control flow periodicity. To 

minimize response one of two approaches can be used. Mismatch

ing the fluid and structural frequencie s is one way. Another 

method ·. is to change the flow path in such a way as to destroy 

flow periodicity. A rigid model can be used to describe fluid 

structure interaction befo re resonance occurs. However, a 

flexible model must be used when the deflections expected are 

large enough to control the fluid mechanics. 

In self-excited vibrations the fluid forces depend on 

s trl1ctural displacement. These problems are either one of 

static stability or dynamic stability and a flexible model is 
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required to study these phenomena. It should be noted that 

stiffening or adding damping to the structure may aggravate 

a self-excited vibration problem. 

Summarizing, there are three basic classes of flow

induced vibrations, each of which has its own characteristic 

requirements for modelling, either mathematically or using a 

physical scale model. 

2.3 Vibration of Valves 

Weaver [S] has classified excitation mechanisms for 

valves operating at small openings into three categories: 

turbulence, acoustic resonance and the jet-flow inertia mech

anism. 

Turbulent excitation results in random excitation loads 

acting on the valve. These loads may be increased by tortuous 

flow paths upstream of the valve gap. This phenomenon is a 

typical example of a forced vibration as outlined in Section 

2.2 of this thesis. 

Acoustic resona nce has been studied for several valve 

configurations: poppet valves [8], spool valves [9], [10], 

[11] and plug valves [12], connected to various piping systems. 

Instability in poppet valves has been found to be possible in 

both flow directions [8], that is either when the flow tends 

to open or to close the valve. In the case of spool valves 

flow in the wrong direction results in instability. Ainsworth 

[9] and Ezekiel (10] have shown that even if the flow is in 

the right direction that instability may still result. Further 
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analysis of spool valve instability is reported in [11) which 

is very cumbersome due to flow characteristics of the valve, 

conduit dynamics and application of stability theory. 

Thomann (12) analyied and performed experiments for a simple 

plug valve, his results indicated . frequencies of oscillations 

which were within ten percent of the natural frequency of the 

valve. These frequencies were either higher or lower than the 

natural frequency depending on whether the flow tended to open 

or close the plug valve respectively. 

The term jet-flow inertia mechanism needs some explana

tion. Weaver [ 5] explains this mechanism in terms of the nee

essary ex i stence of a high velocity coherent flo~ through the 

valve orifice. If the valve is perturbed the jet pulses, this.. ~ 
results in forces on the valve changing. Fluid inertia causes 

hysteresis in these forces. It is this hysteresis which is 

responsible for ieeding energy into the structure. (Hence this 

is a typical self-excited vibration). Abelev and Dolnikov [13] 

and Lyssenko and Chepajkin [14) have cited this mechanism as 

the cause of vibrations in leaf gates and seals. In both 

cases, the mathematical models proposed can be shown to reduce 

to negatively damped simple harmonic oscillators. In addition, 

both of the i r proposed mechanisms relied on variable dischar ge 

coefficients to explain the nature of the vibrations. There 

is at present no j ustificati on for usi n g a variable discharge 

coe f ficient. Furthermore, the fact that the limit cycle 

oscillations usually do not coincide with the structural 
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natural frequency suggests that the mechanism of excitation 

is not simply negative damping. 

Kolkman [4] has produced a stability predictor Khich 

does not depend upon a variable discharge coefficient. This 

model ha~ been applied to a wide variety of flow control 

devices. Using this model it can be shown that a plug valve 

cannot undergo axial vibrations of the jet-flow inertia mech

anism if the flow tends to open the plug valve. The stability 

criterion determined by Kolkman consists essentially of two 

parts. Firstly, there is a relationship between a rigidity 

coefficient and a mass coefficient. This defines the region 

where a plug valve with no mechanical damping would be stable. 

Secondly,· if the rigidity and ~ass coefficients do not conform 

to the required relationship, a minimum mechanical damping is 

required to stabilize the system. Further examination of 

this damping reveals for long pipes, that the minimum required 

damping becomes proportional to the pipe length. This casts 

doubts on the usefulness of tryi ng to eliminate valve vibrations 

by inc~easing damping. 

Weaver et al. [15] have performed experiments which 

indicated that adding damping to a vibration prone valve 

results in the problem becoming worse, rather than eliminating 

the vibration. Their expe~iments also showed that increased 

stiffness resulted in a lower frequency. This trend cannot 

be explained by the negatively damped simple harmonic oscillator 

theories [13], [14] of the jet-flow inertia mechanism. 
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Weaver and Zi~da [6] have derived a nonlinear mathe

matical model for the jet-flow inertia mechanism. This model 

has significant advantages over those proposed by Kolkman, 

Lyssenko and Chepajkin, and Dolhikov and Abelev. The non

linear model does not require a variable discharge coefficient 

to explain the instability. Direct comparison of model pre

dictions and actual vibrations are possible by integrating 

the equations of motion numerically. Hence it can be immediately 

established whether the physical phenomenon is correctly modelled. 

The physical effects of varying stiffness and initial opening 

as reported by Weaver et al. (15] are in agreement with the 

theoretical predictions of the model. Furthermore, the non-
I . 

linear model does not require the existence of an equilibrium 

position when simulating the vibrations. Such an equilibrium 

position is necessary to get a stability predictor from the 

linear models [4], [13], (14]. This is sign:ifj_cant because 

this equilibrium position does not always exist or, at least, 

is unknown. 

Weaver and Ziada [6] have indicated that their model 

has some minor discrepancies which they attributed ~o unsteady 

flow phenomena. Only Weaver and Adubi [l] have attempted to 

determine experimentally the flow changes through a cycle of 

valve vibration. The work recommended by Weaver and Ziada 

[6] is to measure the dynamic discharge characteristics so that 

the nonlinear model may be refined. 
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2.4 Ac!ded Mass Theory 

When a body is accelerated in a frictionless fluid, 

the surrounding fluid must also be accelerated. The addi

tional force requiied to accelerate fluid can be accounted 

for in terms of an 'added', 'virtual' or 'hydrodynamic' mass 

[16] such that, 

2 
F (M + M') d x ( 2. 1) 

dt 2 

where F is the accelerating force, M is the mass of the body, 

d2xM1 is the adde d mass and is the acceleration. Added mass 
dt 2 

is usually negligible in air, however it's effects must be 

considered i n water. 

For simple cases, theoretical calculation of the added 

mass of a body submerged in quiescent fluid is possible. 

Lamb [17] has demonstrated that this can be done by integration 

of th e potential flow field, followed by calculation of the 

kinetic energy associated with the movement of the fluid due 

to the body. Fritz [18] has used this method to calculate 

added mass, and includes in his paper a table summarizing 

adde d m~sses for some simple configurations. Some of the 

fo r mul a s in Fritz's paper [18] indicate that distance from a 

rigid boundary is important in determining added mass. Weaver 

[16] state s that the depth of submergence and proximity of a 

rigi d sur f ace c an resu lt in sign i fica n t vari a t ion o f added ma ss . 

The frequency and amplitude of a body oscillating also 

af f ect added mass. Logvinovich and Savchenko (19] through 
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experimentation have shown for vibrations greater than about 

five percent of the characteristic length of a body, that 

added mass becomes amplitude and frequency dependent. Their 

results show that increasing either the amplitude or fre

quency results in a greater added mass. Chandrasekaran et 

al. [20] have performed experiments. which indicate otherwise. 

Hence it is unclear as to how frequency and amplitude affect 

added mass. Other factors which will be important in deter

mining added mass are cavitation and wake effects. 

2.5 Effects of Unsteady Flow 

Frequently, prediction of the dynamic characteristic s of 

a flow are made using steady-state properties. For instance, 

static discharge coefficients have been used to predict the 

flowrate of a fluid under unsteady conditions. However, there 

are effects outlined by McCloy (21] which can give rise to a 

difference between the actual unsteady flow and that flow 

predicted assuming quasisteady flow. These effects can be 

classified as those due to fluid inertia, those due to changes 

in discharge coefficients and those due to changes in friction 

losses. 

When a flow is unsteady, a certain portion of the total 

pressure drop is required to accelerate or decelerate the flow. 

This inertial effect results in a delay in flowrate establish

ment. In the case of oscillating flow, this time lag can 

result in atteriuation of the flowrate amplitude. McCloy [21] 

has shown that, due to nonlinearity of this sys tem, the mean 
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flowrate will also change as a function of frequency. 

The dynamic discharge coefficient can also be differ

ent from the steady-state one. Daily et al. [22] have shown 

for water flowing through orifices that certain changes in 

discharge coefficient occur. When the flow is accelerating 

the discharge coefficient increases, while in decelerating 

flow, the discharge coefficient decreases. McCloy and 

McGuigan [23] have concluded that their results for poppet 

valves are in agreement with those obtained by Daily et al. 

[22]. The McCloy and McGuigan [23] experiments were for 

oscillat6ry flow superimposed upon a mean flow and they concluded 

that there was a reduction in the mean discharge coefficient 

measured over the cycle. A pa~t of this reduction was attributed 

to inertia effects. However, they also concluded that the 

mean dynamic discharge coefficient through the cycle was reduced. 

Experiments performed by Alpay (24] shows that a 

general reduction in dynamic discharge coefficient as either 

the frequency or amplitude of a spool valve motion increased. 

However, at very low frequencies, inertia effects resulted 

in a higher dynamic dischaige coefficient than the steady state 

one. 

Daily et al. [22] have shown that turbulent losses are 

affected by the rate of change of flowrate. They concluded 

that small changes in frictional resistance resulted from 

unsteadiness in the flow. Accelerating flow resulted in slightly 

higher losses while decelerating flow resulted in slightly 
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·1ower losses. 

It is clear that unsteady flow will influence the 

discharge characteristics of a vibrating valve. During the 

closing portion of the valve limit cycle the flow is decelerat

ing while it is accelerating during the opening part of the 

cycle. These effects are expected to be frequency dependent. 

Thus, especially at higher frequencies, the use of static 

discharge characteristics throughout the valve cycle is unlikely 

to be a good approximation. 
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EXPERIMENTAL APPARATUS 

3.1 Introduction 

The experimental apparatus described in this chapter 

is divided into two categories, namely, hydraulic equipment 

and instrumentation. The hydraulic equipment section des

cribes the path of the fluid through the system and defines 

which parameters are fixed, which parameters are varied only 

to predetermined values and which parameters can be varied 

continuously. Enough information is provided in the section 

on hydraulic equipment so that -all of the dimensionless para

meters described by Weaver and Ziada [6] may be determined 

except for the discharge coefficient, the contraction coeffic

ient, added mass and damping which are determined experimentally. 

The instrumentation section describes the devices 

used for measuring plug valve displacement, pressure differ

ence and instantaneous di~charge, the location of measuring 

points and the location of the measuring equipment. The per

formance specifications prescribed for the instrumentation 

by each manufacturer is also examined. 

3.2 Hydraulic Equipment 

Figure 3.1 illustrates the const a nt head tank up

stream of the plug valve. Water enters this t a nk through a 
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hose connected to the building water supply. Water may 

leave the tank in one of two ways, either through the over

flow which is used to maintain a constant head or alterna

tively through the plug valve (Figure 3.2). After passing 

through the valve the water enters the downstream pipeline. 

The configurations of the downstream pipeline used during 

experimentation are shown in Figure 3.3. Notice the inverted 

U-section at the downstream end of the pipeline. The purpose 

of this U-section is to ensure that the pipeline remains full 

of water during the experiments. This is necessary because 

the model of Weaver and Ziada [6] is derived for flow in a 

completely filled closed conduit. The vertical distance from 

- the surface of the water in th~ tank to the bottom of the 

pipe in the inverted U-section is 0.635 m. This quantity 

represents the static head available to drive flow through the 

valve-pipeline system. 

The equipment was designed to allow for variation of 

three important vibration parameters, fluid inertia, valve 

plug restraint stiffness and initial no load valve opening. 

The fluid inertia is changed by unscrewing the inverted 

U-section, removing or adding pipe lengths as desired and then 

reconnecting the invert2d U-section. 

The initial opening can be varied continuously by . 

loosening the bolted connection joining the traversing section 

to the angle iron support shown in Figure 3.4, sliding the 

traversing section up or down as desired and then retightening 
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the bolts. 

The plug valve is mounted on a 12.7 mm outside dia

meter stainless steel shaft, which runs through two Thompson 

ball bushings. The shaft extends upwards to the springs which 

are mounted in a pair and preluaded against each other. At 

the top end of the shaft there is a 1-72 threaded hole into 

which the position transducer core is screwed. Two spring 

cups sit on the shaft, the upper one is held in place on the 

threaded section by a back-up nut, the lower one is clamped 

to the shaft by a set screw. The set . of springs is shown 

in Figure 3.4. With each spring used there is a correspond

ing aluminum insert. Each insert clears the spring so that 

.chafing does not occu~ and so that the spring remains properly 

centred. Hence lateral forces and mechanical damping on the 

shaft are minimized. To change the stiffness of the valve 

restraint requires disassembly of the support system shown in 

Figure 3.4, changing the appropriate springs and inserts 

followed by reassembly of the support system. 

Table 3.1 gives the effective stiffness of spring 

combinations used in experimentation for this thesis. The 

method used to obtain the load-deflection lines for each 

spring is described in Appendix D. The effective spring 

stiffness in Table 3.1 is obtained by adding together the 

appropriate spring constants. The springs used were made from 

stock springs supplied by Hamilton Wire Products Ltd. The 

stock springs had twenty coils with open ends. These were 
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cut to various lengths, the ends were twisted so that closed 

ends were made and then ground flat. A photograph of the 

above hydraulic equipment is shown in Figure 3.6. 

Table 3.1 

! Spring Stiffn~I Combin__Aa_t_i_o_n~~~-+-~~~~-N_J_m ·-------1 
946 

I B 1386 

c 2125 

D 3017 

E 3440 

3.3 Instrumentation 

The position transducer is located at the top end 

of the valve sh~ft and can be seen in Figure 3.6. This trans

ducer is a Hewlett Packard Linear Induction Transducer Model 

?DCDT-1000, which has a displacement range of SO mm. The 

manufacture r specifies the frequency of response in terms of 

a 3 db amplitude attenuation which occurs at 135 Hz for this 

mode l. The calibration o f this transducer is reported in 

App end ix E. 

Figure 3.7 shows the Pace Model CP5IDR+20 pressure 

tr a 11 s duce r mount e cl t o i t s r1 1ea s u r in g po s .i. t ion . Th is pre s s u re 

transducer is a vari able reluctance t ype with interchangeable 

d iaphragms rated to a maximum pressure difference of 140 kPa 

(20 psi). 
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The low pressure port of the transducer was connected to the 

pressure tap downstream of the valve, the high pressure port 

was connected to a pressure tap in the bottom of the constant 

head tank far from the plug valve. The transducer was powered 

directly from the mains and gave an output DC voltage pro

portional to the pressure difference. The manufacturer of 

this pressure transducer indicates that the frequency res

ponse is flat to 1000 Hz and a linearity of 0.5% for this 

transducer. The calibration curve of this transducer is given 

in Appendix E. 

During the course of experimentation the Pace trans

ducer failed to give a signal and a replacement was sought. 

In Chapter 5, the results of Figures 5.11 and 5.12 wet"e··"recorded 

using the Pace transducer. 

A Schae~ittEngineering Model P2142-0025 pressure 

transducer was procured as a replacement. The manufacturer 

describes the pressure sensing element as a "twin cantilever 

sensor beam" and specifies a mechanical natural frequency of 

3. 5 kHz. The Schaevi tz transducer had a range of 345 kPa 

(SO psi) differential pressure and required a regulated d.c. 

power supply. The calibration curve of this transducer is 

given in Appendix E. 

Figures 3.5, 3.7 and 3.8 describe the essentj_als of 

the optical and electrical set-up of the Laser Doppler 

Anemometer. The Laser Doppler Anemometer was made by Thermo

Systerns Inc. and consisted of a 15 mW Spectra-Physics Model 
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Figure 3.6 Overall view of test equipment. 
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Figure 3.7 View of flow measurement test section. 
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124 Helium Neon Laser and Thermo-Systems Inc. Series 900 

Optics, Bragg Cell, photomultiplier, and a Model 1090 Tracker. 

The optical set-up used is known as the dual beam 

mode [25]. The la~er beam leaving the laser is vertically 

polarized. Referring to Figure 3.8 the beam next passes 

through a polarization rotator which is set such that the beam 

emerging from it is polarized in the plane perpendicular to 

the plane of the flow measurement direction. In this case 

this would be into or out of the page. The beam is then split 

and the upper beam is frequency shifted by the Bragg Cell. 

The two beams are then focussed by a lens, which in this case 

had a focal length of 248 mm, to the crossing point of the two 

beams. These beams crossing in the acrylic pipe contained in 

the flow measurement test section illustrated in Figures 3.5 

and 3.7. The purpose of the acrylic box filled with water 

which surrounds the pipe is to reduce optical effects due to 

curvature of the pipe wall [26]. When the beams emerge from 

the test section they are not permitted to continue to the 

photomultiplier. Using the two collecting lenses, scattered 

light from the crossing point of the two beams is focussed on 

the photomultiplier aperture. The photomultiplier signal is 

then electronically processed and the tracker puts out a 

signal proportional to the particle- velocity in the measuring 

vcd_ume created uy the beam intersection point. This signal 

contains noise and the tracker manual [25] recommends the use 

of a low pass filter on the output signal. When operating in 
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the lowest tracker range the output was found to be sufficiently 

noise free that such a filter was not necessary. In the 

middle tracker range the signal to noise ratio was much lower 

so that the use of a filter became necessary. The filter 

used was a Rockland Model 432 with a rolloff of 24 dB/octave/ 

channel. Only one channel was used with a cutof£ frequency 

of 100 Hz, at the cutoff frequency the output is specified 

by the manufacturer to be down 3 dB. 

The position, pressure and laser anemometer signals 

were recorded using a Honeywell 2106 Visicorder and a Honey

well Accudata 117 D.C. amplifier. The visicorder uses a light 

beam to record the data on ultraviolet light sensitive paper. 



CHAPTER 4 

PRELIMINARY EXPERIMENTS 

4.1 Introduction 

In order to model the self-excited vibrations of 

the valve properly, it is necessary to have some basic informa

tion, namely the free vibration characteristics of the valve 

and the static discharge characteristic. 

Two quantities are sought for evaluation from the 

free vibration behaviour of the valve. The theoretical pre

diction of the valve -frequency in water must be compared 

with the actual natural frequency. This gives an indication 

of the accuracy of the prediction of the added mass component 

of the total mass. It is also necessary to evaluate the 

damping of the ~alve since there seems to be no guide for 

estimating this. 

Static discharge characteristics are evaluated to 

provide a datum against which dynamic discharge behaviour 

can be compared. They must also be examined to see if any 

rapid changes i n discharge cocf ficient occur since this has 

been c ited [15] as a ma jor f actor affecting valve stability. 

4 . 2 Theo-re t ical Formulati on o f Free Vibrat ion 
--- --- -----------------------·--··- --- ----

Figure 4.l(a) shows a schematic of the plug valve system. 
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( b) 

(a) 

Fig. 4.1 Schematic of plug valve system and free 
vibration model 
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It's corresponding free vibration model is shown in Figure 

4.l(b). 

The mass of the system in air has been determined by 

weighing the shafi, cups and plug on a mass balance. The 

mass in air was found to be 946.5 gm. In the evaluation of the 

free vibration model in air, this is the mass that has been used. 

Fritz [18] has tabulated formulas for the added masses 

of various bodies. For a disk of diameter D in quiescent 

fluid of density p, far from any rigid boundaries, the added 

mass, m' is given by, 

m' = 0.637 (~ p D
3

) (4.1) 

Using the largest diameter of the plug (D = SZ~Z mm) 

and for water as the fluid (p = 1000 kg/m 3
) the added mass 

becomes, 

m' 62.4 gm (4.2) 

Theoretical calculation of the natural frequency, fn, 

of the mass-spring system is straightforward, 

1 --
f =~I k (4.3)

n .:_ 71· ff 

where k ls the spring stiffness and M is the virtual mass 

(mass in air+ added mass). When 2
f 

n 
is plotted against 

c t- -i _c F,...., e r· -
.J t. _....L _,_ l i ::, '.::i 

r ,_)
\ .,\. , the Tcsult is a straight line . Lines represent

ing equation (4.3) are drawn in Figures 4.2 and 4.3. In 

Figure 4.2 the mass is that of the system weighed in air. 

In Figure 4.3 the line drawn represents the total mass in water 
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determined experimentally. How this was determined is 

described in the next section, Section 4.3. 

4.3 Experimental Procedure and Results 

This section outlines the method used to measure 

the natural frequency and damping of the plug valve system 

in air and water. 

The procedures for determining the free vibration 

characteristics of the plug valve system are essentially 

the same in air and water. In water, it is necessary to 

m~asure the opening of the valve because the added mass and 

hence the vibration frequency is a function of relative prox

imity of the valve to : the seat~ For all measurements taken 

in water the opening was initially set to 7.62 mm as this 

was thought to be an opening at w11ich the valve would b~ 

self-excited under flowing conditions. 

The apparatus used in this set of experiments is the 

same as that described in Chapter 3. The Laser Doppler 

Anemometer and the pressure transducer are not necessary for 

this experiment and the downstream pipeline configuration is 

of no consequence because the downstream gate valve is kept 

shut during the experiment. For each spring combination used, 

the following procedure was adopted both in air and water with 

the position transducer connected to the visicorder. With the 

visicorder running, the valve was pushed to the seat, held 

there, and then released. Each expe r iment was repeated and 
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the average frequency is reported in Table 4.1. Uncertainties 

associated with these frequency measurements have been esti

mated to be: ~ 0.1 Hz for measurements in air and! 0.2 Hz 

for measurements in water. 

I I I Wateri Fluid Air 
l 
! IStiffness Natural FrequencyI 

k (N/m) 
f (Hz)f (Hz)n n a wI 

~ 

5.0946 4.0 
I 

I 5.41386 6.1 

6.6 --2125 7.8 

9.35 8.15 ·• 3017 
.~ 

9.13440 10.0I 
I 

Table 4.1 

These experimental results are plotted in Figures 

4.2 and 4.3. It is seen in Figure 4.2 that for results in air 

agreement is good for the first three experimental points and 

that at h i gher stiffnesses higher frequencies than expected arise. 

In Figure 4.3 this nonlinearity is more marked. It is thou ght 

tl1at end effects of the springs result in the nonlinearity by 

~a k i n g sprin gs stiffer . If thi s were th e cause then the end 

effects should be more marked for shorter (stiffer) springs. 

This certainly seems to be the case. Given these observations, 

the total mass in water has been calculated on the least squares 
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fit of a straight line through the origin of the first three 

points plotted in Figure 4.3. The line drawn in Figure 4.3 

corresponds to this experimental total mass, M e , which has been 

found to be 1254 g. The experimental added mass m' 
e 

is found to 

be, 

m' M m (4.4)e e a 

1254 - 946.5 

= 307. S g 

where rn is the mass of the plug valve system in air. This 
a 

c oDpares t o a theoretically calculated added mass of 62.4 g , 

which is about one fifth of the experimental added mass. This 

di s c r epancy ar is es from the proximity of boundaries, hence t he 

ef f ect o f confinement is a large contributor to the added ma ss 

in water. 

The damping of the valve system can be calculated from 

the decay traces of the free vibration tests. The logarithmic 

decrement of damping, o, is given by (27): 

x 
1 !ln 0 ( 4. 5)
n x 

n 

where x l . S some d a tum amplitude a n d x i s the a mp litude o f o n 

vibrat i on measured after n cycles have elapsed . This ' calcu la

tion was carried out for two traces . . In all cases the results 

c b ta i. n c cl ~i gr eccl ,,1 i th i :n f j ft e en per c e ;1 t of each o the r and av c r 2~ g e 

va lue s were used in r eporting the va lues in Table 4.2. The 

damping ratio, ~' is calculated using a linear approximation~ . 

va lid for small <lamping. 
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( 4. 6) 


Fluid AirI I r I DampingI Stiffness Ratio' k (N/rn)i I ~ 
! I 

Water 


Damping 

Ratio 


~ 

946 

1386 

2125 

3017 

3440 

.074 

.050 

.051 

.053 

.050 

.110 

.135 

.136 

.164 

.153 

Table 4.2 ... ._.,,. 
Contributions to the damping come from three main 

sources. There is damping due to friction when the the transducer 

core is moving with· respect to the fixed part of the position trans

ducer. Damping is increased by friction from the ball bushings 

resting on the valve shaft. Third, damping is present when the 

valve is submerged. In air this is negligible, in water, however, 

flu id damping is s i gnificant as can be seen from Table 4.2 . 

4.4 Static Discharge Characteristics 

To meas ure the dis charge co e fficient of a v a lve it i s 

necessary to know the gap opening, the pressure difference and 

t he vo lumetric flowrate of the fluid. The Schaevitz pressure 

transducer described in Chapter 3 was used to measure the static 
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pressure difference across the valve. The relation between 

the valve gap area g 2 and valve lift x has been derived in 

Appendix B. The effective gap width Wis 31.32 mm such 

that, 

(4. 7) 

where x is the valve lift as recorded by the position trans

ducer. 

The flowrate was measured by timing the flow of water 

ou t of t he down s tream pipeline into a container. The volume 

of water in the container was subsequently determined using 

a me asuring cy linder. For larger plug valve openings the gate 

valve was operated so that the flowrates varied from about 

o.s· to 0.8 9.,/s. At smaller openings this flowrate could not be 

achieved a nd so the gate valve was either fully open or nearly 

fully open for -these measurements. 

Figure 4. -4 is a schematic of the plug valve and immediate 

downstream piping. Two possible pressure distributions in the 

system are shown. Initial calculations of the discharge coeffic

ients were performed assuming pressure distribution A, i.e. 

ne gligible pressure recovery downstream of the plug valve. 

Calculations performed in this manner resulted in very high 

di scharge coef f i c ie n ts , in f act, s ome tu r ne d out to be gr ea t e r 

than one. Hence, it was concluded that pre~sure recovery was 

not negligible i_n thi s configuration . 

To calculate pressure recovery the control volume in 

Figure 4.4 was used. It has been assumed that the pressure at 

the base of t he plug is the same pressure P at the gap.2 
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Applying the steady-state momentum equation, 

2
p3 AP = pA V 2 pU g case (4.8)p 3 22 

The continuity equation gives, 

Q = V.., A = u CT (4.9).) p 2 5 2 

By combining equations (4.8) and (4.9) it can be shown that, 

(4.10) 

Now the gap area = Wx, hence,g 2 

cose-J (4.11)Wx 

The discharge coefficient is defined by, 

p 
2 

23 

~P 13 is the pressure difference measured by the pressure 

transduceT. Table 4.3 summarizes the results obtained for the 

plug valve discharge characteristics. These results are plotted 

in Figure 4-.5. 

4.5 Discussion 

The results of the free vibration tests reported in this 

chapter indicate the natural frequency of the plug valve system 

can be reasonably accurately predicted. The theoretical value 
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of added mass in unconfined water does not accurately reflect 

the actual added mass as expected. This is due to the proxim

ity of the valve to the seat and hence a greater added mass 

results. 

The discharge coefficient is plotted in Figure 4.5. 

It can be seen that it does not vary much between an opening 

of 2 mm and 20 mm. Hence if it were desired to model the 

plug valve using static discharge coefficients, CD' one could 

p r obably use a constant value of CD = 0.87 without incurring 

significant errors. 

Scatter is present in the discharge coefficient data. 

Two sources of error are experimental uncertainty and calculation 

approximations. The largest experimental uncertainty lies with 

the measurement of flowrate. The total volume of water collected 

varied, but was in general around 4 ~- Hence timing errors 

of five percent may be present for the higher flowrates used. 

The flowrate is also used in calculating the pressure recovery 

so that this also has an uncertainty associated with it. 

Pressure recovery may also be occurring along the valve plug 

· from the gap to · the plugs base. This pressure recovery will 

chan ge with opening. There is . no way of knowing how much 

pressure recovery actually occurs. Hence this adds further 

uncertainty to the discharge coeffi~ient calculation. 
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Table 4.3 

Static Discharge Character
istics of Plug Valve 

Q 6P236Pl3I x 


CDmm dm 3/s kPa kPa 

25.S .5124 
 .200 
 -.090 .84 


25.5 .5200 
 .324 
 -.092 .72 


25.5 .4749 
 .210 
 -.077 .79 


23.9 .4870 
 .222 
 - . 0 96 
 .82 


23.9 .7831 
 .530 
 -.247 .88 


20.2 .7554 .654 
 -.332 .84
I 

20.2 .5678 
 .358 
 -.188 .86 


17.4 .6099 
 .593 
 -.286 .85 

I 

I 17.4 .7949 
 .876 
 -.486 .88
I 


17.4 .7805 
 .924 
 -.469 .86 


14.9 .5947 
 .765 
 -.352 .85 


14.9 .7341 
 1.124 -.537 .86 


14.9 .5128 
 .600 
 -.262 .83 

I 
 12.5 .5801 
 .972 
 -.437 .88
I 


I 12.5 .6897 
 1. 407 
 -.618 . 8 7 
I 

10.4 .5277 
 1. 296 
 -.467 .87


I
10.4 .7658 
 2.406 -.984 .90
I
10.4 .4354 
 .779 
 -.318 .90 


7.3 .3761 
 1. 269 
 -.373 .91 


7.3 .4233 
 1.724 -.473 .89 


7.3 .5790 
 2.751 -.884 .94 


5 . 1 .253 7 
 1.358 -.259 .88


I 5.1 I .203 0 
 .938 
 -.166 .86 

I 


5.1 .2021 
 .924 
 -.164 .86 


4.1 .2089 
 1. 482 
 - . 2 2 5 
 .89 


: 4. 1 I . 24 11 
 2 . 034 - . 29 9 
 . 87 

I 


I 4.1 .2606 
 2.379 -.350 .87 

2.4 .1475 
 2.489 -.200 .85 


2.4 .2258 
 5.281 -.469 .88 


1. 3 
 .1052 
 5.599 -.194 .76 

I 


1. 3 
 .1103 
 6.040 J - . 213 
 . 7 7 
 J 
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CHAPTER 5 


SELF-EXCITED VIBRATIONS 
. OF A PLUG VALVE 

5.1 Introduction 

In this Chapier, experiments are reported, which 

were conducted to improve our understanding of self-excited 

valve vibrations. The experiments are broken into three main 

sections: stability experiments, vibratj_on characteristics 

within the region of instability and valve and fluid behaviour 

during vibration. 

5.2 Static System Characteristics 

Adubi [27] reports numerous ~tabiliiy charts similar 

to that presen-te_d in _Figure 5.1 ·. The region of instability in 

such a stability ·chart can be divided into two regions using the 

static valve characteristic [27]. This is defined by, 

kx = yllH S (5.1)
0 

where k is the stiffness, x the initial opening, y the 
0 

specific weight of the fluid and S is the effective area over 

which the hydrostatic head difference, bH, acts. kx
0 

represents the minimum force required to close the valve. 

yllHS represents the closing force available from hydrostatic 

he ad. The re gion of instability develops around this character

istic. If there is sufficient hydrostatic head to close the 

valve~ then a disturbance is required to initiate or continue 

47 
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limit cycle oscillations. Such a disturbance could be provided 

by a reflected waterhammer wave or the valve bouncing off the 

seat. If, however, there is not sufficient hydrostatic head 

to close the valve, then hydrodynamic head is required to 

close the valve and no disturbance is needed to allow the valve 

to reopen after closure. Hence the static system characteristic 

divides the region of instability of Figure 5.1 into two 

regions; one in which disturbances are required to sustain the 

limit cycle oscillations and another in which no such disturb

ances are necessary but hydrodynamic head is required to cause 

valve closure. 

5.3 	 Stability Tests 
-

Tests were performed to determine the limits of the 

region of instability by varying two parameters out of stiff

ness, initial opening and fluid inertia at a time. With a large 

fluid inertia, as produced by a long downstream pipe, spring 

stiffness and initial opening were varied to give data summarized 

by Figure 5.1. Then the effect of fluid inertia on this 

instability region was invdstigated at constant stiffness. 

5.3.1 	Stability of Plug Valve -Pipe System 
with Large Fluid Inertia 

Figure 5.1 shows an instability region similar to that 

rep?rted for check valve vibration [15] with the region of 

ins t abili t y extending from both sides of the static character~ 

istic defined by equation (5.1). Below the lower stability 

threshold the ~alve is dynamically stable in the closed position. 
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Disturbing the valve from the seat results in the valve 

bouncing and then coming to rest in the closed position. Bet

ween the lower stability limit and the static characteristic, 

disturbances are necessary to sustain limit cycle oscillations. 

If the valve is pushed to the seat and held there until all 

major disturbances such as waterhammer have died away and then 

released, the valve will in general remain seated. If a dis

turbance is introduced such as knocking the downstream pipe 

the valve will open and limit cycle oscillations will ensue. 

Between the static characteristic and the upper stability 

threshold the valve performs limit cycle oscillations regard

less of initial conditions. For points above the upper stability 

threshold the valve settles to some equilibrium position with 

the valve open. When disturbed from this position, the valve 

performs typical damped harmonic oscillations, and hence is 

asymptotically stable. 

The instability region for the plug valve appears to 

be larger than that reported for the check valve by Weaver et 

al. [15]. The check valve instability was attributed [15] to a 

region where a large drop in discharge occurred for a small 

change in valve opening. This resulted in a large hydrodynamic 

load on the valve. The region of instability is then limited 

on the upper side by where this drop in discharge decreases. 

The static dischar ge characteristic of the plug valve is similar 

to that of the check valve in the sense of having a sudden drop 

in discharge coefficient at small openings and a relative 

constant discharge coefficient at larger openings. The springs 
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chosen for the plug valve system, however, allow for instability 

to be developed in the region where . the discharge coefficient 

is constant. As seen in Chapter 4 the discharge coefficient 

remains fairly constant for openings from about 2 to 20 mm. 

Thus the region of instability t hat develops about the static 

characteristic (equation (5.1)) is not limited by a sudden 

change in the discharge characteristic of the plug valve. 

5.3.2 Effect of Changing Fluid Inertia on Stability 

Figure 5.2 shows how fluid inertia affects the region 

of instability. Below the lower stability threshold the valve 

is dynamically stable in the closed position. Between the 

upper and lower stability thresholds the valve is dynamically 

. unstable and will perform limit cycle oscillations. For. points 

above the threshold the valve is asymptotically stable in the 

open position. 

The lower stability threshold rises with decreasing 

fluid inertia. This rise can be expl a ined in terms of work 

done on the valve due to pressure forces on the valve lagging 

the displacement of the vaive. The hysteresis between these 

forces and displacement is a result of fluid inertia [l], [S], 

[6]. If fluid inertia is decreased, then the hysteresis 

between pressure forces and displacement decreases [6]. Reduced 

hysteresis means that less work is done on the valve, hence 

the lower stability threshold moves upwards as pipe length (and 

fluid inertia) reduces. 

The upper stability boundary also rises as pipe length 


reduces. Kolkman [4] predicts such a trend in his a11alysis of 
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a simple plug valve. The reason for such a rise in the 

stability limit is not clear at this point, comparison of 

Kolkman's predictions and those from the nonlinear theory of 

Chapter 6 are compared with these experimental results in 

Chapter 7. 

5.4 Parametric Tests 

Results reported in this section, show the effects of 

changing initial opening, spring stiffness and fluid inertia 

on the characteristics of the plug valve limit cycle oscilla

tions. These results are examined to see if any trends are 

obvious and, if so, to provide explanations where possible. 

Similar parametric tests have been reported previously [15], 

. [20], 	and co~parisons ~re made with these results. 

5.4.1 	 Effect of Stiffness and Initial Opening on 

Limit Cycle Oscillations 


Figur es 5.3 a n d 5.4 show the effect of changing initial 

opening and stiffness on the frequency ratio. the frequen c y 

ratio reported in these figures is based on the ratio of the 

limit cycle oscillation frequency w, to that of the natural 

frequency of the valve in water wn. In calculating the limit 

cycle frequency w, the portion of the cycle for which the valve 

remains closed is not included. This is so that results can 

easily be compared to the theoretical results since the theory 

doe s not account for the time for which the valve is closed. 

Clearly, the effect of increasing stiffness or initial 

opening can be seen from Figures 5.3 and 5.4, to be a decreasing 
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frequency ratio. At low stiffnesses and openings the fre

quency ratio changes more rapidly with a change in either 

parameter. 

In Figure 5.. 3, it appears that the points for an 

initial opening of 2 ~ 54 mm do not · fit the curve drawn as well 

as at the other three openings. This .discrepancy ·is explain~d 

below. 

In Chapter 4, confinement has been discussed with 

respect to its effect on added mass. Confinement of the flow 

around the valve also results in increased fluid damping. This 

daBping becomes larger as the initial opening of the valve is 

reduced. The initial opening was experimentally set using the 

position transducer. To determine whether the opening set 

was correct , the v a 1v e was di s p 1aced from its equi 1 i b r i~unr po s i 

tion (in the no load position) and allowed to come to rest. 

When damping is ~mall one can be reasonably certain that the 

valve will come to rest near its equilibrium position. How

ever, when damping is large, due to the effects of friction 

the valve's initial opening is more difficult to determine 

precisely. This is the case for openings of 2.54 mm, in this 

particular case the initial opening may be in error by as much 

as ten percent. Furthermore, Figure 5.3 shows that at small 

initial valve openings that the frequency ratio is very sensitive 

to a change in initial opening. Hence there is a larger 

experimental uncertaintly associated with the anomalous points 

of the curve at an initial opening of 2.54 mm. For this reason 

the curve corresponding to this has been drawn with a similar 
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-trend to those at larger openings, rather than a curve which 

might be suggested by taking these points in isolation. 

Figures 5.5 and 5.6 show the effect of changing stiff

ness and initial opening on the amplitude of the limit cycle 

oscillations. Figure 5.5 shows that the amplitude of vibrations 

· increase slowly as stiffness is increased. At low stiffness 

the amplitude drops off faster as stiffness reduces. There 

are two effects which cause such a trend. 

The first effect is caused by considering the time 

required for the valve to reach its maximum displacement. This 

time will reduce as the natural frequency of the system 

increases. Such a reduction can be brought about at constant 

-mass by increasing the ·Stiffness of the system. The downward 

force on the valve due to flow past the valve increases with 

time, hence if the natural frequency of the system is higher 

then the downward force acting on the valve when it reache s its 

maximum displacement from the seat is reduced. 

The second effect comes about by considering the direct 

effect of increasing stiffDess. The static displacement of a 

system of stiffness k acted upon by a force F is given by 

d = F/k 

Hence systems with higher stiffness are les s sensitive 

to a displacing force. Hence the force which is created by 

flu~d pr essure as the valve leaves the s e a t will reduce the 

amplitude of a less stiff system than that of a stiffer sys t em. 

Hence, the net result of the two 1;;c chani sm s of 
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amplitude reduction, due to the pressure forces acting on the 

valve is to reduce the amplitude for a less stiff system more 

than that of a stiffer system. 

Figure 5.6 shows that amplitude is proportional to 

initial opening. It is interesting to see that the slope of 

these lines is approximately equal to two. If flow re

establishment and damping were negligible when this system 

reaches a maximum, an amplitude of 2 x could be expected
0 

with the ma ss spring system just described. The lines in 

Figure 5.6 do not however go through the origin. Presumably 

this is because of flow re-establishment causing a drag force 

and damping causing a reduction in amplitude. 

These experimental results show that increasing either 

stiffness or initial opening has qualitatively the sanl'e ·effect. 

The amplitude is however, more sensitive to initial opening 

than stiffness .. Increasing either results in an increased 

amplitude and a decreased frequency ratio. These conclusions 

are the same as those drawn by Adubi [28] for check valve 

vibrations. 

5.4.2 	 Effect of Fluid Inertia on Limit 
Cycle Oscillations · 

Figure 5.7 shows that the amplitude of oscillations 

generally increase with fluid inertia. There seems to be 

thr ee reginns where the amplitude varies at differen t rat es . 

At low fluid inertias the fluid may accelerate very 

quickly in the pipe, hence one would expect that, here, 
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drag force on the plug valve affects the amplitude of the 

vibration. From the graph, this region seems to exist for 

pipe lengths less than about 4 m. Between 4 and 6 m pipe 

length the amplitude does not change significantly. Presum

ably this is becauie the drag force on the plug valve is now 

very small when the plug reaches its maximum height. At even 

higher fluid inertias (pipe length greater than 7 m) the 

amplitude of vibration rises again . . Fluid inertia causes 

hysteresis between the pressure forces and displacement of the 

p lug val v e. Consequentl~ a larger change in flowrate at the 

end of the cycle (closure) is probable for higher fluid 

inert i as. This results in a larger waterhammer. Hence we 

might expect la r ger waterhammer pressures to result and thus 

larger amplitudes. 
. ..•,.. 

Figure 5.8 shows a linear relation between the period 

of vibration and pipe length. This suggests the concept of 

a critical flowr~te at which sudden closure starts and hydro

dynamic pressures dominate. Figures 5.9 to 5.12 show that 

the flowrate increases more or less linearly with time, most 

of the pressure is being used to accelerate the fluid in the 

pipe. Thus if this critical flowrate were more or less 

independent of pipe length then one expects a linear variation 

o f period with fluid inertia. Neither of the two lines drawn 

in Figure 5.8 intersect the origin. · Two factors which may 

affect this are fl u id inertia of the gap and t h e fin i te time 

required for the opening part of the cycle. Both of these 

effects would result in intersecting points at zero pipe length 
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on the positive period of vibration axis. 

5.5 	 Closer Examination of the Self
Excited Oscillations 

In this section self-excited plug valve vibrations 


at four parametric sets of valves are examined and the limit 


cycle is described in detail. In Section 5.4 it has been 


shown that increasing stiffness and ·initial opening have a 


similar effect. Hence a restoring force parameter kx can 

0 

be used instead of separate stiffness and initial opening 

,parameters in choosing measurement points. The four para

metric sets of limit cycle oscillations are for large and 

small restoring forces and large and small fluid inertias . 

The limit cycles are described in the next section and figures 

· 5.9 to 5.12. 

5.5.1 Typical Vibrations 

Figures 5.9, 5.10, 5.11 and 5.12 show typical limit 

cycle oscillations performed by the plug valve examined in 

this thesis. The top trace in each of these diagrams represents 

the displacement of the plug valve from the seat. The middle 

trace shows £he variation in pres s ure and the lower trace 

follows the fluid velocity measured at the centre of the pipe 

downstream of the valve, using the laser doppler anemometer. 

The sequence of events which occurs in each cycle can 


be broken into three phases. There is an opening phase where . 


the valve acts like a system in free vibration. This follows 


the pressure difference across the valve dropping to a value 


below bP* (=kx /S), which is the pressure difference required

0 
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to hold the valve at its seat. In all the reported cases 

opening is accompanied by reverse flow in the pipeline. 

Subsequently a middle phase arises where the pressure drop 

across the valve is minimal and the fluid in the pipe has 

an almost constant acceleration. Here most of the head drop 

goes into accelerating the fluid. The flow in the pipe reaches 

a maximum and rapid closure ensues. During the closing phase, 

the fluid undergoes rapid deceleration at the very end and the 

pressure difference across the valve rises rapidly. The valve 

then remains closed until the pressure difference drops, wherice 

the valve reopens and repeats the cycle. The £ree oscillation 

portion is most obvious in Figure 5.12. In the other figures, 

the maximum flowrate is established more quickly. Hence the 

opportunity for many harmonic oscillation cycles does not 

exist. In Figure 5.9 the flow establishes so quickly that the 

frequency ratio is 0.95 and hence no free oscillations at the 

vklves' nattiral frequency are apparent. In Figure 5.12 the 

frequency ratio is 0.11 and the free oscillations are damped 

out before closure occurs. 

These limit cycle vibrations are clearly not simple 

harmonic in nature and hence nonlinear modelling of the vibra

tions a s done by Weaver and Ziada [6] appears to be the only 

way to get a model which is capable of predicting the form of 

these vibrations. The basic breakdown of the cycle into free 

vibration, a dwell while the flowrate increases followed by 

sudden closure is the same as predicted by th e ir nonlinear 

models. However, reverse flow in the pipeline at the beginning 
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of the cycle was not predicted. 

Noise exists on the pressure traces in all four 

diagrams. To establish whether this was caused by vibration 

of the rig, a triaxial accelerometer was mounted in several 

key locations and the records obtained were compared to that 

of the pressure transducer. No matching of frequencies was 

obvious. Adubi's (28] experiments had similar spikes on 

the pressure signal while the check valve was closed. He 

explained t 11at the noise was due to waterhammer causing move

ment of his rig and cavitation. Wood [29] has shown that if 

a pipeline is not perfectly rigid then spikes in the pressure 

variation can be expected. During the performance of experi

ments the pipeline did vibrate significantly, hence this 

·	 cannot be ruled out ii ~ a sourc~of noise. Furthermore, low 

pressures come about when the valve closes, hence cavitation 

and aeration are also possibilities. In fact bubbles were 

observed in the acrylic test section downstream of the valve. 

Air bubbles would also come out of solution on the acrylic 

pipe wall, hence air cavitation bubbles cannot be ruled out as 

a cause of noise. In fact; both of the sources mentioned are 

probably responsible for noise on the pressure signal. 

Random phase fluctuations between particles entering 

and leaving the measuring volume of the Laser Doppler anemo

meter result in broad band noise on the output signal [30]. 

In Figures 5.11 and 5.12 the low range of the trackerwas used 

and the signal-to-noise ratio of the output is good. In 

Figures 5.9 and 5.10 the middle range of the tracker was used. 
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This has two effects. Firstly the sensitivity of the system 

is decreased. Secondly, the dynamic response of tracking 

is greatly improved. In Figures 5.11 and 5.12 flat portions 

on the fluid velocity traces are present. This happens when 

the tracker does not follow the velocity of the particles 

in the fluid. This is termed "drop-out" and when this occurs 

the velocity output from the tracker is not a correct r~ading 

of the actual particle velocity. When this happens the output 

of the tracker is determined by the last validated velocity 

read and the output voltage of the tracker simply holds 

this value. In Figures 5.9 and 5.10 these periods of drop 

out are not present. This has been achieved by using the middle 

range of velocity on the tracker. In doing so the noise on 

the tracker butput has " incraa~ed substantially in comparison to 

the velocity variations through the valve cycle. The noise 

present on the output trace has been reduced by using a Rockland 

Filter at a cutoff frequency of 100 Hz on the ~luid velocity 

signal. This does, of course, result in a slight phase lag 

in the higher frequency components of the signal, but the filter

ing fr~quency is sufficiently high that the general fcirm of 

the output is not greatly distorted. 

5.5.2 Discharge and Pressure Variations 
th_!ough Vibration Cycles 

Figure 5.13 shows the pressure difference across the 

valve· as a function of displacement. Just before the valve 

opens there is a sudden drop in pressure difference. Due to 

the rapidity of this drop it is difficult to deter~ine 
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exactly at what pressure the valve opens. During the opening 

portion, the pressure difference drops slightly in Figure 

5.13(a) and is more or less constant in Figures S.13(b), (c) 

and (d). During the closing portion, the pressure diff~rence 

across the valve increases the rate of this increase grows 

faster as the valve closes. In all cases the pressure differ

ence is larger during the closing portion than the hydrostatic 

head difference . This indic~tes that hydro

dynamic pressure differences, created by the rate of change 

of discharge, influences the closure of the valve. 

The pressure AP* marked on the graphs indicate the 

pressure difference where opening of the valve should occur. 

However, due to such a rapid drop in the pressure difference 
'• - •• ~ f!;J" 

across _the valve, it is difficult to tell whether rt.he valve 

does open at that point. In no case, however, does it appear 

that the valve opens at a higher pressure difference. This 

behaviour is as expected. 

In Figure 5.13(b) a negative pressure difference is 

seen to occur on opening. This means that the valve is being 

pushed from the seat by the downstream water column, rather 

than the spring pulling the valve open. If the latter were the 

ca se there woul d b e a low pre ssure r eg ion j ust tlowns t ream o f 

the valve and a higher pressure difference would result. 

F i g u r e 5 . 1 ~i shO\lf s how t lL) ch s clw r g e _in thc p i p e 1 i n e 

varies through the valve cycle. In all cases upon opening 

there is a negative discharge in the pipeline, i.e., the flow 
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is going backwards in the pipe. As the cycle proceeds the 

discharge becomes positive, the flowrate becomes a maximum 

and then closure results. These discharge curves are similar 

in nature to those obtained by Weaver and Ziada [6] in their 

nonlinear valve modelling. The displacement and flowrate 

maxima do not coincide and there is a definite hysteresis 

between flowrate and displacement. Weaver and Ziada [6] d~ 

not report results which indicate negative pipe flow. This 

is probably due to their neglect of pumping in their modelling. 

Pumping would also allow for a finite flow in the pipe at 

closing, proportional to the valve's velocity. 

In Figure S.14(a) it appears that the discharge is 

s~ill increasing as the valve is closing. The pressure 

variation indicates howe ver that at this point that the 

pressure difference across the valve is greater than that due 

to static head. Hence the flow should be decelerating . . This 

abnormality in the curve is probably a result of phase delay 

due to the filter used on the output of the- velocity signal. 

5.5.3 .Velocity Profile in the Pipe 

The velocity profile in the pipe was obtained by 

repeating vibration measuiements using the parameters shown 

in Figure 5.15. The measuring volume of the laser anemometer 

was t r anslated with each rep~tition. The method used to 

locate the centre of the measuring volume is described in 

Appendix A. The Bragg cell was set so that an effective shift 

of 0.5 MHz was obtained and the middle tracker range was used 
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with the output being filtered, low pass, at 100 Hz cutoff 

frequency. 

The results of Figure 5.15 indicate that the vel

ocities measured are in phase. To establish whether a flat 

velocity profile approximation based on the velocity at the 

centre of the section is justified requires some elaboration. 

The drop of the velocity profile in the measurements 

is due to reflections of laser light off the acrylic pipe 

wall. Assuming a laser beam diameter of 0.5 mm and an inter 

section angle of the two beams of 7.72° total included angle, 

then the length of the measuring volume is 7.4 mm. Details 

of performing this calculation can be found in [25]. The 

measuring volume extends approximately r/2 each side of the 

centre of the measuring volume where r is the pipe rad±u~. 

Hence the outermost point in Figure 5.15 can be completely 

discounted and the measurements of the next point are also 

questionable. Observation of the percentage of time ·that the 

tracker signal was locked on support this view. For the outer

most and next point, the percentage of time the tracker was 

"in-lock" was eighty · and forty percent respectively. The four 

central points had only a twenty percent reading for in-lock 

time. Hence reflections off the acrylic wall caused errors 

in these readings. 

Two theoretical considerations suggest that a flat 

velocity profile should be a good approximation. The measuring 

volume for the laser anemometer is about three diameters 
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downstream of a sudden expansion. Miller [31] states that 

by this point downstream fully developed turbulent flow 

should be established. The flow is accelerating through 

most of the cycle, therefore the central stream of fluid 

should move bodily and the velocity profile should steepen 

at the edges [22], [32]. Thus a flat velocity profile should 

prove to be a good approximation. 

For the cycle shown in this Figure 5.15 water was 

collected in a container and measured. The results of this 

experiment are recorded in Table 5.1. Computations using 

the velocity of the fluid at the centreline of the pipe were 

performed using a flat velocity profile. Q = AP VcL where 

Q is the instantaneous flowrate, AP the pipe area and VcL the 
. . I • - · 

centreline fluid velocity. By integrating the area under 


the flowrate versus time curve the average flowrate ~n 


the ~ipe during the vibration was computed. This was found 


to be 406 mR-/s. 


Time 

(s) ! 

' 
Volume of 

Water Collected 
(mi) 

FlowQRate 

mi/s) 

9.5 3800 400 

7.8 3000 385 

8.0 3250 406 

. 10.0 4000 410 

fable 5.1 
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Comparison of the average value using the LDA and 

those measured by collection of water show that these two 

values agree well. Since the phase of the velocities measured 

show little variation it seems appropriate to assume a flat 

velocity profile in calculating the dynamic discharge coeffici

ent. 

5.5.4 Estimates of Dynamic Discharge Coefficients 

In estimating discharge coefficients, the relation 

between the total pressure upstream and the pressure and 

flowrate at the gap · is investigated. Earlier work in this 

chapter has indicated that pumping may be significant in 

determining the dynamic discharge characteristic of- the valve. 

The dynamic discharge coefficients were initially 

calculated using the same method as used for the static 

coefficients in Chapter 4. Assumptions made in such a cal

culation include assuming the pressure at the base of the valve 

is the same as that at the gap, that unsteady inertial pressures 

are negligible, that the velocity profile of fluid in the 

pipe is·- flat and that the pumping action of the valve is 

negl i gible. A typical variation in dynamic discharge coefficient 

is shown in Figure 5.16. It can be seen that the discharge 

.coefficients calculated neglecting pumping a ppear to be 

errdneously large in some cases. 

Approximation to allow fo! pumping were made using 

the calculation method outlined in Appendix G. Figure 5.17 

shows the volume swept as the valve moves upwards. This must 
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be filled either from the downstream pipe or from the up

stream tank. There is also a negatively swept area from 

where water had to be moved from to allow the valve to move. 

When the valve moves downwards, water must be pumped out of 

the regions 1, 2, and 3 in Figure 5.17 and water moves into 

region 4, which is the reverse of what happens when the valve 

moves upwards. 

Assumptions made in calculating the dynamic discharge 

coefficients including the pumping are the same as those made 

for the calculations neglecting pumping. The pumping area 

has been taken to be the same as the pressure-force area of 

2the valve, namely 165lmm . Typical variation of the dynamic 

discharge coefficient including pumping is shown in Figure 

5.16. 

There are several sources of error to be considered 

when evaluating the dynamic d~scharge coefficients in Figure 

5.16. Noise has been recorded on both the- pre?sure and 

velocity signals. Inertial pressures have been neglected and 

the pumping area chosen in the calculations is at best, just 

an approximation. Separation of flow has been assumed to 

fix the base pre s sure of the plug valve, and that p~essure is 

assumed to be the same as that at the gap. 

Flow is accelerating for most of the cycle, hence 

inertial pressures should have resulted in lower discharge 

coefficients being measured. Hence inertial pressures are 

not the cause of high discharge coefficients. Attempts to 

correlate dynam~c discharge coefficients with acceleration 
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Fig. 5.17 Pumping area of plug valve. 
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as Daily et al. [22] have done proved fruitless. Dynamic 

discharge coefficients greater than one indicate the 

possibility of greater pressure recovery than anticipated. 

Hence it is possible that the plug valve base pressure is 

not equal to the gap pressure. There are obviously other flow 

changes that are going on during the vibrations and these need 

to be investigated. It would seem therefore that further 

experimental research is required to learn more about.dynamic 

discharge characteristics of the plug valve. One possibility 

that deserves consideration is the idea of instrumenting the 

plug valve so that the actual pressure distribution in the valve 

could be found. 

The present experiments do not reveal any clear method 

for predicting dynamic discharge coefficients and hence 

simulations performed in Chapter 7 use the static discharge 

characteristics. 

5.6 Discussion of Results 

In this chapter, the experimental results have been 

report ed in three main sections: valve stability was 

studied and stability limits established, variation of fre

quency and amplitude as a function of stiffness, initial 

opening and inertia was examined, further work examining the 

dynamic discharge characteristics of the plug valve was then 

p e r formed. 

The study of stability showed that the region of 

instability was similar to tha t obtained by Weaver et al. (15]. 
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In addition the region of instability was found to move 

upwards as fluid inertia was decreased. 

Trends of frequency ratio and initial opening show 

the same trends as those reported for check valve vibrations 

[15], [28]. Closer examination of the vibrations showed 

similar pressure-displacement and flowrate-displacement 

curves. Reverse flow in the pipe was found to occur and 

pumping was found to affect the discharge coefficient 

significantly. No trends in the discharge coefficient measure

ments could be found and further possible experiments have 

been suggested. Meanwhile, the static discharge coefficients 

seem to be the only dependable values to use in simulating 

vibrations and predicting stability limits theoretically. 



CHAPTER 6 

THEORETICAL MODELLING 

6.1- Introduction 

In Chapter S, the pumping action of the valve was 

found to make a significant difference in calculating the 

dynamic discharge coefficient. It is therefore prudent to 

determine what effect pumping has on the self-excited valve 

oscillations and stability. In this chapter, a theoretical 

model, similar to that derived by Weaver and Ziada [6] is 

derived. In fact, the model derived here is a refinement of 

their model, /to include Efffects ~ of pumping and pres sure 

recovery. Integration of the differential equations of the 

model, the result of which are reported in Chapter shows7' 

the effects pumping has on the self-excited vibrations. 

Kolkman [4] has derived a stability threshold for a 

simple plug valve. His analysis reveals a fairly simple form

ulatio~ of the upper stability threshold. A relatively 

uncomplicated formulation should also be expected using the 

nonlinear model, although some simplifications may have to be 

made to obtain this. The second half of Chapter 6 is devoted 

to this and a quasistatic stability analysis. 

6.2 Derivation of General Model Including Pumping Term 

6.2.1 Introduction 

Ziada [3] has outlined the assumptions made for deriving 
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a general model in his thesis. The assumptons made here are 

similar. 

The assumptions made in deriving the general model are 

as follows: 

(a) 	 The fluid in the system is incompressible. 

(b) 	 Aeration or cavitation does not occur. 

(c) 	 The velocity and pressure of the fluid · are uniform 

over a transverse cross-section of the conduit, except 

immediately downstream of the valve which is analyzed 

separately. 

(d) 	 Water hammer pressure waves which occur in the system 

have no dominant effect on the stability [28]. 
. ( 

(e) 	 Pressure fluctuations due to vortex shedding are neg

ligible compared with hydrostatic and fluid inertia 

pressures [3]. 

(f) 	 Added mass is taken as a constant, even though con

finement, frequency and amplitude of oscillation affect 

its value. 

(g) 	 Losses are assumed to be turbulent in nature. 

6.2.2 Fluid Discharge Formulation 

In this section, the discharge through the valve is 

expressed initially in terms of the pressure difference acr o ss 

the valve and valve motion. This pressure difference is then 

related to the hydrostatic head and the behaviour of the fluid 

in the pipe. This equation is used to compute the rate of 
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change of discharge, which can be integrated to give the dis

charge for the next point to be computed. 

Referring to Figure 6.1, the Bernoulli equation under 

unsteady conditions can be written as, 

Vz v2Pz 	 2 p3 3 dQ23 
+ + + + 	 (6.1)

y Zg y zg h23 123 dt 

where 	P2 and are the pressures at points 2 and 3 respectively,P3 

v 2 and a re t he corr e s ponding velocities, a~d r 23 is the fluidv3 

inertance b ~ tween points 2 and 3. is the -flowrate betweenQ23 

p nints 2 and 3 a nd h i·s _the headloss between these points.23 

Referring to Figure 6.2 for the direction of valve 

moveme nt, the continuity equation becomes, 

where 	A. is the are a of cross-section at point i, A is the 
l v 

effective pumping area of the valve. 

Combining equations (6.1) and (6.2) to eliminate v2 , 

the velocity v can be isolated as,3 

/4Bi B~ ~ + 4(2 g (!Vh 23 ) + B~ ~ 2 ) (1-Bi) 
v = 3 2(1-Bi) 

(6.3) 
where 

~D -.. 
T 1 	 A.,,/A ( 6.4a )

_l 	 .Y 2 

-B2 	 Av/A2 (6.4b) 

Pz-P3 dQ23
ZgH 	 = --- - (6.4c) 

v y 
1 23 Clt 
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The velocity coefficient, Cv, can be used to account for the 

head loss h 23 , hence, 

• + 2 2·2 2·2 2 /
x - I 4B1B2x + 4(2gHv+B 2x )(l-B1)] 

(6.5) 
2(1-Bi) 

T11e discharge through the valve is: 

(6.6) 

Using equations (6.5) and (6.6) it can be shown that, 

2 . 2
2a H 	 B

2 
x (6.7)

D v 

The unste2dy I3ernoulli equation, 
..... _.,,.. 

P. 	 V~ P. V~ dQ .. 
l + l _]_ + __j_ + h + -I 1 J (6.8)

y 2g y 2g ij ij ---crt 

can be applied successively to (6.4c) to give, 

vz v2Pl-PS2g H 	 dQ 2 3 v --- - - l:I + 	 (6.9) 
y 6hL dt 2g Zi. 

where 

dQ dQ23dQEI 	 + dQ34 (6.10)crt CI12+ 14s) err + 123 ---crt 134 ---crt 

l:hL - + + (6.11)hl2 h34 h45 

where Qp is the discharge in the pipeline and h 
1) 
.. 1s the 

headloss between point i and point j. 

As mentioned previously, this formulation is used to 

evalua te the rate of change of discharge. Hence, using equations 
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(6.7) 	 and (6.9)' the head available to accelerate fluid is, 

2
Pl-PS Q2(B2-l) 2QvB1B2x 	 Q2 

- + __!_[ v 1 	 + B2~2- ~ + v]EI ~ = y E\ 2g C2A2 CvA3 2 
Az

2 AZv 3 	 3 

(6.12) 

Headlosses and are assumed to be turbulent pipe losses,h12 h45 

which according to Weaver and Ziada [ 6 ] can be written in the 

form: 

K K11512 • i- ] Q2::: [-z- + -z- (6.13) 
Al2 A45 p 

where and represent loss factors.K12 K45 

To evaluate h ,closer examination of the system is34

required. The headloss calculation is performed for a steady-

state condition, as shown in Fig. 6.3, the valve is assumed to 

move to the right with constant velocity - x. 
. 

The area of the 

orifice is treated as a constant for this calculation. 

Applying the Momentum Equation, 

(6.14) 

and the Bernoulli Equation for the jet, 

p vz 
~ 3 + 3 (6.15) 
y 2g 

Th s r e s u 1 t o f comb in ing e qua t i ons ( 6 . 1 4 ) and ( 6 . 1 5 ) :L s , 

v2 
+ 3 (1 (6.16)

2a0 
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Fig. 6.3 Control volume for momentum analysis downstream of valve 
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or in terms of valve and pipe discharges, 
. 2 Qz Qz x Av

__.:.£__ v 1 _2_)
h34 = 2gA4 

+ 2g (- - (6.17)
AZ A3A4 g A4 

3 

where x is the velocity of the valve. 

Using the headless expressions of equations (6.13) 

and (6.17), equation (6.12) can be written as, 

II dQ
CIT y 

(6.18) 


"A " in all of the foregoing equations represents the area of3 

the vena ,c-ontracta so that if a linear gap variation is 
... ....;... 

as s ume d [ 6 ] , then , · 

(6.19) 

where C is the contraction coefficient, W is the valve gap · 
c 

width and x is the valve displacement. 

Cumbining equations (6.4), (6.18) and (6.19), it 

can be shown that, 

• 2 
x 
2g (6. 20) 


The fluid inertance, I, can be expressed in the form [6], 
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I. . = L .. I gA .. (6.21)
1] lJ lJ 

and by defining an equivalent pipe length of area A4 , having 

the same inertia effect as the combined_system, 

L = A I: · L .. /A . . (6.22)eq 4 1J lJ 

The jet inertia ·is defined by a . length L based on a jei area of
0 

Cc Wx, ·then using equations (6.21), -(6.22), ·and (6.20) gives, 

L 
0 

C Wx c 

dQv 
at 

(6.23) 


It is desired to isolate the rate of change of flow thr.oµ.gh 
dQV

the valve, This can be done by first rewriting theCIT· 
continuity equation (6.2) in the form, 

(6.24) 

Differentiating, 

( 6 •. 2 5) 

Appl y ing this result to equation (6.23), 

Qz AZ Q2 ' L L dQV g(P l -PS)
0 eq, _ 4 v 1 

( ----· + - -) --- ---- 2_ ( tµ+ 1 + --) + (-1
'-C c 

1~Vx A4 -dt y 2A 2 A2 2 C 2A 2 

4 2 v 2 


. 
. 2 2A A QvxA L

2 x v 
+ )- (~ (~)2) - + ~A x2 vA4 AzCcWxA4 C A2 A4 v 2 

(6. 26) 

http:thr.o�.gh
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Equation (6.26) is now defined in a way that can be integrated 

to give the flowrate. 

6.2.3 Elastic Structure Modelling 

To model the motion of th~ valve · it is necessary to 

have .information on mass, damping, stiffness and other forces 

which act on the valve. Assuming the valve can be represented 

by the single degree of freedom system shown in Figure 6.2, 

the forces on the valve can be represented in the following 

mann_e_r, 

Mx + c x + K (x - x ) + F = 0 . (6.27)
0 

where x is the no load valve opening, M is the total .effective 
0 

mass including added mass and K is the structural stiffrie'ss. 

-Th_e external force, F, is given by the pressure differ

ence across the yalve in the following manner, 

(6.28) 

where K is an integration factor based on the valve geometry 

and Sis the area of the valve (6). 

By using equatiom (6.4c) and (6.7), it can be shown 

that, 

(6. 29) 

Using (6.4a), (6.4b) and (6.19) to subsitute for B1 , B2 and A3 

respectively, equation (6.29) becomes, 
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Qz 
v + 

CZA2 
v 2 

(6.30) 

Recalling that jet inertia is given by its length and area, 

then, 
.

Q2 2AvQvxPz ~P3 
v += 

y C2AZ 
v L (6.31) 

Hence -the valve motion is given using equations, (6.27), (6.28) 

(6.31), . 
2QQ; Q~ xA v vMx + cx + K ( x -x 0) + " . sy [ ( c c 11/x) 2 - c2A 2 + 
C AZ
v c v z 
 v 2 

· 1 dQ - 
0 

+ C Wx a~J = o (6.32) 
c 

.. ..~ 
This equation is used to integrate ac~eleration to 

give -velocity, thus, the form required is, 

2 Q2Qv zQvxAv 
Mx~ -ex - K (x-x ) - KSy [ - v + 

0 c2c2wzx2 CZA2 C AZ 
v c v 2 v 2 

(6.3Za) 

6.2.4 Non-Dimensional Analysis 

Equations (6.26) and (6.32a) can be non-dimensionalized 

using the method of Weaver and Ziada [6 ]. There are a few 

changes made for convenience and one additional parameter. 

Two reference quantities are necessary, d a characteristic 

valve dimension and K a reference stiffness Dimensionless 
r 

parameters are defined as follows: 
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2 K
Frequency w = Mr Stiffness k = Kr

K 

- xTime T wt Displacement x = er 

cZero Load Opening S Damping s = 
~ 

Pressure Difference 

- - QDischarge Q - A.Wd 
4 

pKSd A4 
Mass Ratio µ = -M- Gap Width n = WCI 

Upstream Pipe Area 
2 L eqPipe Fluid Inertia a a 

Jet Fluid Inertia 

2 L 
0 

ao = er-

The equations governing integration of dQv, and x after 

introducing the discharge £oefficient CD ~ Cv C~ are given 

by 

£) - + £a (6.33) 

and 

na 
+ 0 (6.34) 
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For long pipes, where the inertia of the fluid in the 

pipe dominates, the jet inertia can be neglected so that the 

following equations hold!:?, 

2 
n + 2~)

C.iix2 £X 

+ £ a. (6.35) 

and 

cf 2 
2- dx - - 1 v n 

d x -=· - 2 ~ CIT - k Cx - 8 ) - 2µ [ _ 2 (~--~) 2]
2 8 uT 

-:-"td CDx
T 

(6.36) 

Equations (6.35) and (6.36) are used as the starting point 

in the Routh Hurwitz analysis in Section 6.3. 
. .,;..

When there is a tank upstream, the e ·parameter ·becomes 

large and· the following equations result, 

na. dQv · 2 2 
(~+a.) CIT"= 6p - Q (llJ+l) - Q2 c-n
c x p v c2-2 

c DX 

d 2x 
+ 2e: + £ a. (6.37) 

~ 

and 

dQ
dx v 

-2~ ITT. (TT] (6.38) 

Equations (6.37) and (6.38) are used for simulation of plug 

valve vibrations examined in t his thes is . Fur t her detai l s on 

the application are in Appendix C. 
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6.3 Stability Analyses 

Two stability criteria are reported in this section. 

·The first ·is based on ~ Routh Hurwitz analysis of the nonlinear 
. 

differential equations of motion just derived. The s~cond is 

based on a quasistati~ stability analysis. These predictions 

are compared to experimental results in Chapter 7. 

6.3.1 Routh-Hurwitz Stability Analysis of Nonlinear Model 

To be able to perform the Routh-Hurwitz [3~ stability 

analysis it is first necessary to write the equations of motion 

in a slightly different form. 

dx
Defining = Qv, Yz = x, = dT' and then equationsy1 y 3 

(6.35) and (6.36) can be used to write: 

( n 2 · • 2"f)(y1-EY3)2(l]J+l+_lz) + Y12 (-l-
CDy 2) + CDy 2 ) e c2e 2 

v 

2 2yly3s sa.dy3
-y3

2 (£:._ - 2£) - + (6.39)2 dT82 c e 
v 

dy2 
= (6.40)err Y3 

2 2
dy3 1 Y1n Y1 

zcz 
c 2yly3s 

dT -2sy3 
- k(y 2 -B) 2µ [ 2 2 + + 2C282 c eCDy2 D D 

(6.41) 

The term y
1

-sy3 enters through the nondimens ional form of 

the continuity equation (6.24). 

Let w1 , w2 , and w3 be the equilibrium values of y
1 

, 

Yi and y 3 respectively, then, 
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2 (-1 (6.42)wl cZ e2 
v 

W3 = 0 (6.43) 

2 2 w2c2 
1 wl n 1f (s-w ) = µ (:z-z - -__c) (6. 44)

2 2 
CDwZ C~e 2 

d dyi
The coefficients aij = dyi C---cr:r)j are found using 

- wl,w2,w3 
equations (6.40) and (6.41). 

2w Zw11 1 
= - --- (iµ+l+ --) + ( 1 

a 
6

2 a (287 

-v 


Using equation (6.24) this becomes, 

+ ( 6 ~ 4 s)all = bl I £a31 

'• » . .. _.,,.,,.. 

where 

2X°P = (6.46)b11 w1a 

= + (6.47)al2 bl2 £a32 

where 
2w1 

2 

= ( ( n ) 2 (6.48)bl2 c ~ )w2a CDw2 c 2 

+ (6.49)al3 = bl3 sa33 

where 
2sw1 _l_)= --- (iµ+1+1- (6.50)bl3 a 2

8 c 8 v 

0 (6.51)a 21 

= 0 (6.52)a22 

http:i�+1+1-(6.50
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(6.53) 

(6.54) 

- (6.55) 

(6.56) 

Hayashi (33] defines the matrices necessary to determine 

the stability threshold for a third order system as 

- /..all al2 al3 


- A
a21 a22 a23 = 0 (6.57) 

- /..a31 a32 a33 

This is -expanded to, 

/..3 2a + al:\ + a2 /.. + a3 = 0 (6.58)
0 

The Routh-Hurwitz stability criterion requires that all 

coe£f-icients and principal determinants are greater than zero. 

a. > 0 (6.59a)
l 

D. > 0 - (6.59b)
1 

where 

i = 1,2,3 

(6.60a) 
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(6.60b) 

(6.60c) 

If all the inequalities in (6.59) are satisfied 

then the system is stable according to the Routh-Hurwitz 

stability criterion. If any of the above conditions are not 

satisfied then the system is unstable. These conditions can 

be simplified. 

If and Dz are greater than zero then n3 is alsoa 3 

greater -than zero. If a 
1

, a 3 , a and D are greater than zero 
0 2 

then az must also be greater than zero. Hence the stability 

criteria reduc-es to, 

a > 0 (6.6la)
0 .... ., ..,:.. 

= > 0 (6.6lb)Dl al 

> 0 (6.6lc)a3 

> 0 (6.6ld)Dz 

Using equations (6.57) and (6.58) the condition (6.6la) 

can be seen to be satisfied at all times, since a 
0 

= 1. 

Equations (6.45), (6.47), (6.49) (6.57) and (6.58) 

lead to 

(6.6Z) 

a 2 · (6.63) 

(6.64) 
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Using equations (6.46), (6.54) and 6.56), equation (6.62) 

becomes, 

µwl E 2°E"P
Zs + --- + + EµWl (6.65) . 

C e2 wl a 
v 

The first three terms in this equation ~re made up of positive 

coefficients only. The last term in brackets alone has the 

potential to be negative. This is positive provided, 

1 > 

This represents the ratio of the vena contracta area to 

the upstream pipe area, and hence is true in general. Thus, 

condition (6.6lb) is satisfied in general. 

Using equation (6.46), (6.50), (6.54) and (6.55) and 

subs ti tu ting into equation (6. 64)' the expression fo; a"'3 

becomes, 

cZ 
n ) (- n ) 2 _ c ) 

Ccw2 CDw2 ciiez 
(6.67) 

This results in condition (6.6lc) being only conditionally 

satisfied and needs to be examined with condition (6.6ld). 

Since in general, both the upstream and downstream pipe areas 

wi l l be g r ea ter tha n t h e v a l ve gap area , th e second t e r m in 

equation (6.67) will be positive ~o that can only be negativea 3 

(6.68) 

Comb ining equations (6.60b), (6.62), (6.63) and (6.64), an 
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expression for in the following form can be obtained:D2 

(6.69) 

Using expressions for b: ., a .. given by equations
lJ lJ 

(6.45) to (6.56), the expression for D becomes,2 

2 

µWl 1
2

+-zE -- (~J+l+-
a 2

8 

_l_)
2c e 

v 

2 
2-p µWlE µw 1n 

+ _ti_cz~+ ) C-k ) J w a "' --z + 1 - 3 2 
1 eve w2cD 

(6.70) 

It can be seen at this stage that the stability 

criterion is very complicated. To simplify matters the inertia 

a is allowed to grow, so that as a~ 00 then equation (6.70) 

becomes, 

(6.71) 

As pointed out earlier __n_ 1n general, and all the 
CDw2 

coefficients here are positive . . Hence, Dz is greater than zero 

if 
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(6.72) 

a which is given by equation (6.67) is only negative3 

if condition (6.68) is satisfied, which is contrary to condi

tion (6.72). Hence if condition (6.72) is satisfied a > 0.3 

This means that for large inertia a, conditions equation (6.6ld), 

the stability criterion is satisfied provided, 

2 2 
µw 1 n 

k > (6.72)3 2 
w2CD 

The stability 	threshold, is defined by the equality, 

2 2 
µw1 n 

(6.73)3 2 
w2CD 

By making a further si~plificatjon, the stability threshold 

can be expressed in terms of vibration parameters only, 

that is a condition where the equilibrium position (w1 , w2 , 

w3 ) need not be calculated. 

00Let e ~ , that is let the upstream pipe area become 

large, so we now have a tank upstream of the valve. 

The equilibrium equations (6.42) and (6.4-0 then become, 

(6.74) 

and 

(6.75) 

Substitution of the stability threshold equation (6.73) 
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into equation (6.75) yields, 

w = ~ (6. 76)2 3 

Now substituting for wi in equation (6.75) from equation 

(6. 74) results in .the stability threshold becoming 

- 2
µtiPnk(s-w ) = (6.77)2 

~)
C wc 2 

substituting for w from equation (6.76) into this expression
2 

yields, 

- 227p DPnk = (6.78) 

Equation (6.78) represents the minimum stiffness 
... ...,... 

required for stability, given a tank upstream of the valve 

and a long downstream pipe. The stability threshold defined 

by equations (6~75) and (6.78) contain only static terms. 

That is they are independent of the pumping term E and the 

damping ~. Hence when fluid inertia is large the instability 

phenomenon appears to be one of divergence. In order to 

confirm this a quasistatic stability analysis is described in 

the next section. 

6.3.2 Quasistatic Stability Analysis of a Plug Valve 
Ccrrn~_cte~_to_~_I:_o~g _Pipel~.n~_ _________ 

The assumptions made in deriving the quasistatic 

stability criterion are: 

(a) Fluid in the system is incompressible 
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(b) 	 Aeration or cavitation does not ' occur. 

(c) 	 The velocity and pres~ure of the fluid are uniform 

over a transverse cross section of the conduit, 

except immediately downstream of the valve. 

(d) 	 The instability mechanism is divergence and therefore 

only static forces need to be considered. 

(e) 	 The discharge coefficient, contraction coefficient 

and velocity coefficients are constant. 

(f) 	 The pipeline is long and hence fluid inertia is large. 

(g) 	 The area of· the gap varies linearly with the dis

placement of the valve from the - seat. 

Definition of no load position: at nP = O Q = o
' 	 ' 

Q = 0, 	 x = x , where nP is the pressure difference across 
0 

! 

the valve, Q is the flowrate of fluid through the valve and 

x is the valve's displacement from the seat. Consider the 

valve in equilibrium with a flowrate Q1 through the valve at 

an opening ~l' and a pressure drop nP1 . Then, . 

(6.79) 

Now consider a force F applied to the valve as shown 

in Figure 6.4. The force F necessary to hold the v~lve at any 

opening x under static conditions is given by: 

F APS 	 - k(x x) (6.80)
0 

Thus the restoring force in the system i.e., that force 

trying to bring the valve back to equilibrium is given by, 

FREST = 	k(xo - x) - nPS (6.81) 
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; ·~ 



115 


The restoring force PREST is equal to zero at 

equilibrium. For stability PREST should increase as x 

increases and decrease as x decreases around the equilibrium 

point if the system is statically stable. That is to say 

the condition for stability is: 

---ax (6.82) 


aFREST 
To evaluate ax the discharge characteristic of 

the valve needs to be examined. 

Q (6.83) 


where W is the gap width, CD is the discharge coefficient, 

AP the pressure difference across the valve and p the fluid 

density. 

Taking the partial derivatives with resp~ct to x, 

(6 .. 84) 

If a small change in x is considered and a large downstream 

inertia is assumed such that ~~ can be taken as zero, then, 

a(nP) 2AP -- (6.85)
CJX . x 

Using equation (6.85) and taking the partial derivative ' of 

equation (6.81) with respect to x, it can be shown that, 
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2/lPS= - k + (6.86)x 

Evaluating this at the equilibrium position, 

(6.87) 

so that at the stability threshold, 

(6.88) 

Usi ng the equilibrium equation (6.79), this can be rewritten 

as, 

(6.89) 

The nondimensional equivalent of this expression is ... .._.,... 

equation (6.76). Since further substitutions used in the 

nondimensional analysis were based solely on the static 

equilibrium ~f the valve, then the same substitutions can be 

made here by nondimensionalizing equation (6.89) 

Wz = 2$/3 (6.90) 

S = x /d and d is a characteristic . 0 

dimension of the valve. Thus the stability threshold obtained 

f rom the quasistatic stability analysis gives: 

k = (6.91) 

~ )c f3 c 

This stability criterion is the same as that obtained 

from the Routh Hurwitz analysis for large fluid inertia and 
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a large upstream pipe area. Hence the instability under 

these conditions is one of divergence. 

6.4 	 Discussion 

In this Ch~pter theory has been derived to 

in~lude the effect of pumping and pressure r~covery. 

The theory derived modifies slightly the form of equations 

obtained by Weaver and Ziada [6], the influence of these 

changes can be examined closely by integrating the nonlinear 

differential equations numerically. The results o f such 

integrations are presented in Chapter 7 along with comparisons 

to the experimental results. 

Derivation of the stability threshold for laTge fluid inertia 

has been made, quantities required to make these predictions 

are based solely on the static discharge characteristic~ of 

the valve and parameters which should be easy to determine, 

such as operating pressure difference, initial opening, valve 

stiffness etc. The instability phenomenon for a large fluid 

inertia has been found to be a divergence instability, and 

hence a static analysis is applicable. 

Thus the theory derived in this chapter allows for 

det e r mina tion of stability thresholds and vibration properties 

suc}L as frequ enc y and amplitude through numerical integration . 

A stability criteria which does not require use of a computer 

; 'yr) ? T ;-rn: ha s a 1 s o b e en cl e r ive d . Th e r e s u 1 t s o f the s e ar e 

presented in Chapter 7 along with the corresponding experi

mental results. 



CHAPTER 7 


COMPARISON OF EXPERIMENTAL RESULTS 
AND THEORETICAL PREDICTIONS 

7.1 Introduction 

In this Chapter theoretical predictions of stability 

boundaries, frequencies and amplitudes are compared with 

experimentally obtained self-excited valve vibrations. 

Stability predictions have been made by using the 

computer program in Appendix C to numerically integrate the 

nonlinear differential equations of valve motion. The stability 

threshold formula derived in Section 6.3.1 of this thesjs_as 

well as Kolkman's plug valve analysis [4] have been used to make 

stability predictions. The stability thresholds obtained in 

the above manner ~re compared in Section 7.2. 

The equations of motion have been used to simulate the 

valve vibrations. Hence from their integration it is possible to 

determine the amplitude, frequency and form of the limit cycle 

oscillations. The principal oscillation characteristics are 

compared in Section 7.3.1 In Section 7.3.2 the general trends 

of frequency and amplitude are investigated as a function of 

system parameters. 

Se c t i on 7 . 4 i s d e voted to analyzing the effect of pump

ing on the limit cycle oscillation predictions. Hence this will 

118 
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provide a quantitative assessment of how this term affects 

the results. 

In the last section of this Chapter, the performance 

of each of the theoretical predictions is discussed, dis

crepancies are analyzed and recommendations concerning further 

work are made. 

7.2 Stability Thresholds 

Figure 7.1 shows the regions where the valve is 

theoretically dynamically stable or unstable. The lower region 

labelled "stable closed" represents the region where the valve 

is predicted to come to rest in the closed position. In the 

region labell,ed "unstable", limit cycle oscillations of the 

valve are predicted by the theory. In the upper region, "stable 

open", the valve is stable in the open position. 

Only integration of the full nonlinear equations 

is capable of predicting the lower stability thteshold. 

Predictions of the upper stability threshold have been made in 

several ways: using the nonlinear theory numerically integrated, 

using the stability formula derived in Chapter 6 and using 

Kolkman's analysis [4]. The latter two formulations predict 

discrete points on the threshold through which a curve has been 

drawn. The nonlinear theory on the other hand arises from 

computations at specific intervals. Hence the exact location of 

the stability threshold could only be determined by successively 

reducing the increments of initial openjng, B, and integrating 
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the equations again. Bands have been drawn in Figure 7.1 to 

show the area in which the threshold lies. At one end of the 

band the valve is predicted to be stable whereas at the opposite 

side of the band the valve is predicted as being unstable. 

In Chapter 6 the theoretical derivation of the long 

pipe stability threshold showed that the threshold is independ

ent of the pumping parameter £. As can be seen from Figure 

7.1 this divergence formula agrees extremely well with the full 

nonlinear theoretical stability threshold. There is a minor 

discrepancy between the nonlinear theory with pumping and that 

without pumping. This is probably due to the fact that the 

computations were made for a pipe of finite length and hence 

the pumping parameter E still has some small effect. Hence it 

can be concluded that the instability at this fluid inertia 

(a = 354) approaches divergence and the long pipe formula is 

valid. 

The divergence formula derived from Kolkman's analysis 

(pipe length ~ oo) is represented by the dashed line in Figure 

7.1. Several important effects - are neglected by Kolkman. 

Firstly, he assumes the effective area over which the valve 

pressure differences acts is equal to that of the downstream 

pipe cross-sectional area. Secondly, he neglects pressure 

recovery downstream of the valve. Both of these effects would 

result in a lower stability prediction in the case of the plug 

valve examined. At larger openings flow losses in the pipe 

become more important, consequently there would be a reduced 

pressure difference across the valve. Kolkman a~so neglects 
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these losses. Hence at large openings his stability predictor 

should be high. Given these approximations made by Kolkman 

it is not surprising to find his stability predictor in 

Figure 7.1 deviate from the nonlinear predictor in the manner 

observed. 

Figure 7. 2 shows how the theoretical predictions compare 

with the experimental results. The upper stability threshold 

is predicted very well by the long pipe stability formula. 

Since these predictions are made for a constant discharge 

coefficient it appears that changes in discharge coefficient 

due to unsteadiness in the flow have a minor role in determining 

the upper stability threshold at large fluid inertias. 

The lower theoretical stability threshold appears to 

.agree better with experiments at higher stiffnesses. The 

reason for the discrepancy at lower stiffnesses is not clear. 

This may be due to rapid variations in the discharge coefficient, 

or more likely due to the high velocity at which the valve 

leaves the seat. A ~oefficient of restitution of 0.05 was 

used in all computations. In the vibrations shown in Chapter 5 

the coefficient of restitu~ion is obviously far greater than 

0.05, hence this accounts for the discrepancy in the lower 

stability threshold. 

Figure 7.3 shows how the stability thresholds change 

with fluid inertia. The theoretical line for the nonlinear 

model has been predicted by computing the behaviour of the valve 

at various openings. Error bounds due to computing the valve 

behaviour at discrete points are shown on this graph as they 
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were in Figure 7.1 It can be seen that the trend for both 

the upper and lower stability thresholds is to rise as fluid 

inertia 	decreases. 

The theoretical prediction for the lower stability 

threshold changes less rapidly than the experimental change. 

This suggests that the valve behaviour is not adequately 

modelled for small openings. 

Kolkman's prediction for the rise in the upper stability 

threshold is not as large as the experimental change. The 

prediction 0£ the nonlinear model appears to follow the experi

mental curve more closely. At the lowest inertia some computa

tions predicted limit cycles in which valve closure was not 

predicted. These points were classified as dynamically unstable 

even though no counterpart was found experimentally. This 

phenomena may not have occurred in the experiments for various 

reasons. Changes in discharge coefficients may be a dominant 

effect. Large acceleration and deceleration of the flow 

combined with large static discharge coefficient variations 

at small openings could result in large dynamic discharge 

coefficient variations. Such variations could result in more 

rapid reduction of flow. Thus, the larger fluid pressures 

generated would cause closure which is not predicted for a 

constant discharge coefficient. 

7.3 	 Comparison of Limit Cycle Oscillations 

The discussion in this section is centred on the 
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comparison between the experimental and theoretical limit 

cycle oscillations. To this end, the theoretical time 

histories of vibrations corresponding to the experimental 

results presented in Figures 5.9 to 5.12 are presented. Com

parisons are also made between limit cycle amplitudes and 

frequencies and how they are affected by changing initial open

ing, spring stiffness and fluid inertia. 

7.3.1 Typical Limit Cycle Oscillations 

Figure 7.4 shows limit cycle behaviour for four differ

ent sets of parameters as predicted by the computer integration 

of the nonlinear differential equations of motion. These 

diagrams correspond to the same set of openings, stiffnesses 
I . 

and fluid inertias recorded in Figures 5.9 to 5.12 except 

for Figure 7.4(c). The computer program predicted that at 

an opening of B = 0.085 (x ; 4.3 mm) that the plug valve would 
0 

not perform limit cycle oscillations but shut and remain shut. 

A value of B = 0.100 which is just inside the region of dynamic 

instability has been used for this computation. Thus Figure 

.5.11 and Figure 7.4(c) can only be compared qualitatively. 

The dimensionless displacement scale is related to the experi

mental displacement scale by equation (7.1). 

x = x/50.8 (7.1) 

where x is the dimensionless displacement and x is the experi

mental displacement measured in millimetres. The pressure 
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differences in Figures 7.4 are the pressure differences 

across the valve in contrast to the experimentally measured 

ones, where, the downstream pressure tap is located after the 

flow reattaches itself and some pressure recovery has occurred. 

The pressure difference ~P in kPa is related to the dimension

less pressure difference 6P by equation (7.2). 

~p (kPa) = .00129 ~p (7. 2) 

The pipe discharge ~ is the same discharge that would 
p 

be measured by the laser doppler anemometer, in that this is 

the flowrate in the pipe at any instant. The velocity of flow 

for a flat profile in m/s is related to the dimensionless 

pipe discharge Q
p 

by, 

v = 0.05080 Q ;p (7.3) 

A value of w = 1 has been chosen so that the dimension

less time scale and the time in seconds are exactly equivalent. 

In all the cases examined here one can show that the 

theoretically predicted amplitudes are lower than those 

obtained experimentally. In Figure 7.4(c) it is obvious that 

the opening part of the cycle is very different from the result 

shown for the experiment in Figure 5.11. Reversal of flow 

in the pipe for the experimental results is very much larger 

tha n that obtained theoretically for the opening portion of the 

cycle. Discrepancies in the opening part of the cycle are, 

however, not surprising since the valve is given a small 

initial velocity (Rc = 0.05). It is obvious from the experi

mental results that a much larger value of R would be more 
c 
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realistic. 

Similarities in the closures are hard to assess 

quantitatively because of the influence of the opening part 

of the cycle. However, comparison of the actual and theoretical 

maximum flowrates are possible. The reason for choosing to 

compare this value is that after this point hydrodynamic 

forces start to dominate the system and subsequent valve 

closure results. Table 7.1 gives this comparison, Qmax 

is the dimensionless maximum p i pe flowrate observed. 

For initial openings of 8.0 and 12.7 mm the theoretical 

and experimental maximum flowrates agree to within five percent. 

The experimental maximum flowrate for an initial opening of 7.lmm 

... · .·>-· 

Initial Opening Figurex (mm) Qmax-i
0 I 
8.0 .157 5.9 6.1 

12.7 .250 5.10 14.8 

4.3 .085 5.11 2.1 

7.1 .140 5.12 8.5 

8.0 .157 7.4(a) 5.8 

12.7 .250 7.4(b) 15.5 

5 .1 .100 7.4(c) 3.8 

7.1 .140 7.4(d) 6.5 I 
I 

I 
_J 

Table 7.1 

is higher than that theoretically predicted and the dwell portion 

of the displacement cycle is larger for the experiment. The 
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time histories of the displac~ment cycles are, however, 

similar. One possible cause could be a rise in the discharge 

coefficient during the phas~ when flow is accelerating, as 

suggested by Weaver and Ziada [6]. Another possible reason 

for the delay could lie in the nature of the damping. A 

significant portion of the effective damping can be attributed 

to friction (see Table 4.2). This retarding frictional force 

would also result in a higher flowrate required before the 

hydrodynamic force dominates the limit cycle. 

At closure the experimental traces show that the valve 

remains closed until the pressure difference across the valve 

drops. The time during which the valve remains closed will 

depend on the· water hammer wave reflections. The theoretical 

simulations do not have such an effect included but a coefficient 

of restitution of 0.05 is used to simulate initiation of valve 

opening. This has two important consequences. First, in 

calculating the frequency or period of oscillation, the portion 

during which the valve remains closed must not be included. 

Secondly, in the experiments the velocity at which the valve 

leaves the seat is very much higher than assumed . . Hence, amplitude 

predictions using the model can be expected .to be low. The 

diffe r ences in the mode shapes between Figures 5.10 and 5.11 

and Figures 7.4(b) and 7.4(c) might also have arisen due to 

this discrepancy. Better simulations of the vibration are there

fore possible by using a higher value of the coefficient of 

restitution. 

Figures 7.5 show how pipe discharge, pressure difference 
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and valve discharge vary with valve displacement. The pipe 

discharge and pressure differences plotted correspond to those 

in Figure 7.4. Valve discharge represents flow through the 

gap of the valve at any instant. 

Comparison of Figure 7.5 with Figure 5.13 reveals that 

the pressure changes during closure are essentially the same 

i.e., the pressure difference across the valve rises as the 

valve approaches its seat. The opening portions of the cycles . 

are also similar in that the pressure difference across the 

valve does not change appreciably. For all of the opening parts. 

of the cycle, with the exception of the very first part of 

Figures 5.13(a) and 7.5(a), the theoretical pressure differences 

are higher than the experimental ones. This is consistent 

with the obse~vation that the valve opens faster experimentally 

than theoretically predicted. 

The theoretical graphs of pipe discharge do not indicate 

large backward pipe flows, however some reverse _flow is evident 

at ·larger openings. The valve discharge curve shows that 

reversal of flow in the pip e does not mean flow reversal in 

the valve gap. In fact, reverse flow through the gap is only 

observed in Figure 7.5(d) among the theoret.ical curves being 

examined. This occurs due to the valve overshooting and on 

the way back towards the seat, flow is pushed back through the 

gap, because, this provides the path of least resist a nce to the 

fluid. 

The closing part of the cycle shows that the pipe flow 

changes slowly until the valve closes,· when, it is abruptly 
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halted. In contrast, the valve discharge goes smoothly to 

zero. When one considers that the mass of fluid in the pipe

line is very much larger than the mass of the valve plug, it 

is not surprising that the pipe flow undergoes such a sharp 

change, since a drop in pressure behind the valve affects 

the valve much more than the water in the pipeline. Hence the 

valve keeps closing until the discontinuity of the valve 

impacting on the seat occurs, when pipe flow suddenly is arrested. 

As previously mentioned, discharge coefficient calcula

tions in Chapter 5 were initially performed without accounting 

for the pumping action of the valve. It can however be seen 

from Figure 7.5 that the pipe and valve discharges are very 

different. Hence to make meaningful discharge coefficient 

calculations ' it is necessary to · know the velocity of the valve 

and the effective pumping area of the valve accurately. This 

certainly has caused scatter in the discharge coefficients 

calculated in Chapter 5. 

In conclusion, Figures 7.4 and 7.5 reveal that the closing 

portion of the valve cycle is predicted well by theory, how

ever, tbe opening part of the limit cy~le presents a limitation 

on how well the valve vibrations were predicted. 

7.3.2 Large Inertia Vibrations 

Figures 7.6 and 7.7 show the effect of changing initial · 

opening and stiffness on the self-excited plug valve vibrations. 

The left hand diagrams present the experimental data whilst on 

the right the theoretical predictions corresponding to the 
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experiments are presented. 

Both of these diagrams show that the effect of chang

ing stiffness or initial opening is the same for each set of 

curves. That is to say that the theoretical and experimental 

trends are the same: The theoretical frequency ratios -are 

higher than the corresponding experimental ones. Weaver and 

Ziada [6] reported that their modelling of a swing check valve 

resulted in the same sort of deviation in frequency ratio. 

This discrepancy was thought to be due to the dynamic discharge 

characteristics of the valve being different from the static 

ones. Since dynamic discharge effects have not been compensated 

£or in obtaining the theoretical results it is probable that 

this is a major contributor to the discrepancy in frequency 

ratio. .. -· 
Amplitudes predicted theoretically are lower than those 

obtained experimentally. While it may have been a good 

approximation to take a coefficient of restitution of 0.05 

for the check valve vibrations, it does not fit the opening 

characteristics of the plug valve. This is responsible for the 

substantial discrepancy in the magnitude of the amplitudes. 

These results indicate that for large inertias that the 

mechanism of instability is fundamentally modelled correctly and 

some minor adjustments in the behaviour of the theoretical 

model on the opening portion and pro~er discharge coefficient 

es t ima t i on s could result in imp rovements, particularly in tl1e 

prediction of vibration amplitude. 
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7.3.3 Changes of Characteristic~ with Inertia 

Figures 7.8 and 7.9 show the effect of fluid inertia 

on the period of vibration and the amplitude. The effect of 

increasing fluid inertia is to increase the period of vibration 

in such a fashion that the period is proportional to the inertia~ 

The period predicted by the theory is generally about ten 

percent lower than the experimental results. This sort of 

discrepancy is to be expected in light of the fact that substantial 

reverse pipe flow at the beginning of the cycle is not predicted 

by the theory. Such a reverse initial flow in the theory 

would undoubtedly lead to a longer period of vibration. 

The amplitude variation is separated into distinct 

regimes. At the lower fluid inertias the quick reestablishment 

of flow resutts in a large drag 'on the plug valve being rapidly 

established. The theoretical curve levels off after this and 

the fluid inertia has no effect on amplitude. The experimental 

curve on the other hand after levelling off starts to increase 

again. This has been attributed in Chapter 5 to be an 

effect of water hammer waves. The implicitly assumes that a 

longer Jipe means a stronger water hamfler wave bouncing the valve 

off its seat. 

The drop at the lower end of the curves is much sharper 

for the experimental curves than for the theoretical curves. 

This may be due to the very rapid flow reestablishment and 

hence the variation in dynamic dis cl1arge coefficient at small 

openings may be an important factor. The discharge coefficient 

drops rapidly near the closed po~ition. This lowering of the 
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discharge coefficient would result in a lower amplitude. 

Weaver and Ziada [6] show that reducing the discharge co

efficient at high fluid inertias results in a slight decrease 

in amplitude. At low fluid inertias this effect may become 

much more marked as the flow through the valve is much higher 

by the time the valve reaches its highest point. To test this 

hypothesis two further computer runs were done at a fluid 

inertia a = 33 with a discharge coefficient of 0.4. The result 

obtained was that amplitudes of 0.23 and 0 . 13 were obtained for 

initial openings of 8 = 0.20 and 8 = 0.15 respectively as indicated 

by crosses in Figure 7.9. These computations also had about a 

ten percent shorter period of vibration. The computations show 

that discharge coefficient reduction does result in a decrease 

in amplitude at small fluid inertias. .... ·..+ 

7.4 Effect of Neglecting Pumping 

The purpose of this section is to establish what effects 

neglecting the pumping term has on the theoretical predictions 

and to determine whether better results are obtained by its 

inclusion in the equations of motion. 

Th e effect of pumping on stability has already been 

theoretically established. In Chapter 6 the derivation for a 

long pipe stability threshold showed that the pumping parameter 

"; was not i mportant. Figure 7 .1 showed that the exclusion 

o f the pumping resulted in minor changes in the stability 

threshold. 
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Figure 7.10 shows how the frequency ratio and amplitude 

of vibration vary with stiffness. The frequency ratio pre

dictions including pumping are better than the theory without 

pumping, however for the vibration amplitudes the reverse appears 

to be true. The amplitudes are, however dependent on the 

value chosen for the coefficient of restitution, and consequently 

is not as important in indicating the performance of the theory 

as the frequency is. 

As stiffness is decreased, the inclusion of pumping 

results in a close match in frequency ratio, while omitting 

the pumping result in substantial deviation from the experimental 

curve. The experimental amplitude drops off as stiffness.is 

decreased in Figure 7.10. This drop in amplitude occurs only 

when pumping is included, hence local flow around the varve 

is an important factor in determining the amplitude at low 

stiffnesses. 

Figure 7.11 shows the effect of varying initial opening 

on the frequency ratio and amplitude. The effect of increasing 

initial opening and that of increasing stiffness on frequency 

ratio is identical, and the curves drawn in Figure 7.11 vary 

in the same manner as they do in Figure 7.10. At small open

ings the frequency ratio curve with s = 1.256 (pumpj_ng included) 

falls below the experimental curve. The reason for this is that 

a t sma ll openin gs , th e op ening portion of the cycle tends to b e 

elongated and dominate the period. This is exemplified by 

comparing Figure 7.4 (c) to Figure 5.11. Notice how slowly 

the displacement increases with time initially. Amplitude 

http:stiffness.is
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predictions without pumping are better than those with pumping, 

both however predict the linear proportionality between 

amplitude and initial opening correctly. 

Figure 7.12 shows that the period of vibration is 

directly proportion~l to inertia. The formulation of the valve 

model without pumping deviates from proportionality at small 

flu i d inertias. It is clear, however, that the inclusion of 

pumping gives better predictions of the period of vibration. 

Amplitude predictions, with and without pumping, follow 

the same trend, rising as low fluid inertias and flattening 

off at higher fluid inertias. The experimental amplitude rises 

more rapidly at low inertias. This difference between the 

expeT i mental and theoretical amplitude trends predicted, is 

undoubtedly due to not having accurate knowledge of the actual 
· • · ~ 

fluid inertia when the fluid inertia is small. That is, because 

the inertia of the jet through the valve orifice is unknown, 

a discrepancy between theoretical predictions and experimental 

results arises. At higher fluid inertias, the experimental 

amplitude rises again. This is probably due to more violent 

wate r hamrner waves at longer pipe lengths. Such an effect is 

not accounted for by the theory. 

The reasons why the pumping term was added to the theory 

initially are discussed at the end of Chapter 5. Such factors 

as dischar ge coefficient calculation~ and reverse flow in the 

pipe have made t his add i tion necessary . The additi on o f pumping 

to the theory has resulted in amplitudes that are in general 

further from the experimental amplitudes. Periods of vibration 
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(and frequency ratios) are, however, predicted more accurately 

by the inclusion of pumping. Experimental evidence indicates 

that the initial phase of the vibrations are not predicted 

correctly. This is however, a strong function of the coeffic

ient of restitution used in the theory, hence emphasis should 

be placed on the period predictions rather than amplitudes. 

Thus the inclusion of pumping improves the theory. 

7.5 Discussion and Conclusions 

Results in this Chapter indicate that the fundamental 

modelling of the valve vibration is essentially correct. 

Predictions of stability thresholds have been made. Predictions 

from the integration of the nonlinear equations of motion show 

excellent agreement with experimental results for the upper 

stability threshold. The inclusion of pumping does not appear 

to significantly affect this upper stability threshold. 

Upper stability threshold predictions have been made 

using theoretical stability analysis at a point. The divergence 

formula derived in Chapter 6 from the nonlinear model (which is 

identical to the static analysis formula of Chapter 6) shows 

excellent agreement with both the nonlinear integration and the 

experimental results. The general trends of Kolkman's stability 

predictor agree with experimental observations, however, the 

theory developed in this thesis is superior. 

Only the nonlinear theory is capable of predicting the 

lower stability threshold. These predictions have not been 

as accurate as the predictions for the upper threshold. Better 
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predictions of this threshold would be possible by changing 

the value of the coefficient of restitution. It should be 

noted however, that the valve's resting position below the 

static characteristic (see Figure 5.1) is the closed one. 

From a practical point of view, control of valve position has 

been lost in this case. Hence the prediction of the lower 

threshoid is not as important as predicting the upper stability 

threshold. 

Compari s on of time hi s tories, amplitudes and frequencies 

have shown that the nonlinear model performs well except in the 

opening portion of the valve vibration. This again is due to 

poor predictions of initial valve velocity as it moves off 

the seat. Thus, discrepancies arise due to a single point- in 

the vibration being underestimated, rather than fundamental 

errors in the modelling of the valve motion or fluid mechanics. 

Comparison of the nonlinear theories including and 

excluding the effect of pumping have shown that pumping does 

affect the amplitude and period of vibration. The general 

behaviour of the valve with and without pumping is similar. An 

opening portion occurs where the valve behaves more or less as 

a s ystem undergoing free oscillations. A dwell portion may 

th en occur if the fluid inertia is large, followed by sudden 

valve closure. 

The u pper s t abil i ty threshold does not seem to be 

affected by pumping at large fluid inertias. This is in fact 

predicted by the divergence formula of Chapter 6. Pumping is 

associated with a . time derivative and hence cannot enter the 
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static analysis which may be used to determine divergence 

phenomena. It is also interesting that the dynamic discharge 

coefficient variation does not affect the stability threshold, 

at large fluid inertias. This is probably due to the fact that 

when sufficient flow is reached for instability that the 

pressure rises across the valve so quickly that a change in 

discharge coefficient is only a second order effect. 

The largest uncertainty in the present investigation 

seems to be related to the exact estimation of pumping. Certainly 

with the configuration used, the area of the piston is not 

clearly defined and approximations have had to be made. This 

clearly has effects on the local flow around the valve. Hence 

further work should be concentrated on local flow effects in 
I 

the vicinity of the valve. The actual pressure distribution 

and flow around the valve would be of most interest. 

In conclusion, the theory derived in this thesis has 

provided for an excellent prediction of the upp~r stability 

threshold of the plug valve and reasonably good predictions 

of the lower stability threshold, time histories, amplitudes 

and fr~~uencies. The theory is fundamentally correct and further 

improvement could likely only be obtained by properly modelling 

water hammer and local flow effects. 
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CONCLUSIONS 

The first Chapter of this thesis stated that one 

of the objectives of this research was to further our knowledge 

of valve vibration mechanisms. Various works on the jet-

flow inertia mechanism have been examined and these models 

have been classified as linear and nonlinear models. Of the 

linear models, those of Abelev and Dolnikov [13], and Lyssenko 

and Chepajkin [14] breakdown to negatively damped simple 

harmonic oscillators dependent on discharge coefficient varia

tion as an excitation mechanism. The linear model of Kolkman 

[4] and the nonlinear model of Weaver and Ziada [6] do not 

require a variable discharge coefficient in their instability 

mechanisms. Hence . the latter two models are sup~rior and 

further examination of them was undertaken. In_the case of 

Kolkman's theory, this has simply been applied to the plug 

valve configuration, whereas the model of Weaver and Ziada has 

been extended to account for pressure recovery and pumping. A 

Routh-Hurwitz analysis has also been applied to the nonlinear 

model. These theoretical additions to Weaver and Ziada's model 

have been presented in Chapter 6. 

Experiments have been performed so that the theories 

could be evaluated. Quantitative measurements of limit cycle 

displacement, pressure variations and fluid discharge have 
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been made. These results are necessary for validation and 

evaluation of the theoretical model. 

Analysis of the plug valve system started in Chapter 

4, where the free vibrations and static discharge character

istics of the plug valve were considered. From these, two 

important characteristics were examined. Firstly, information 

on the free vibration of the plug valve was used to estimate 

added mass and damping in water. Secondly, the static discharge 

characteristic of the plug valve revealed that pressure recovery 

was important and that the static discharg~ coefficient was 

essentially constant over a wide range of openings. Hence 

at the outset, one of Weaver and Ziada's assumptions [6] was 

;found to be questionable in this particular application, i.e. 

pressure recovery was not negligible. 

Using the experimental results reported in Chapter 5, 

it has been possible to show how frequency, frequency ratio 

and amplitude are affected by changing spring stiffness, 

initial opening and fluid inertia. Further experiments showed 

how discharge varied throughout the valve cycle. The discharge 

variation obtained indicated the need for inclusion of pumping. 

Weaver and Ziada [6] recommended that measurement 

of the dynamic discharge coefficient be the next step in 

refining their general model. The experiments have indicated 

that: in the plug valve configuration considered, two of their 

assumptions were not accurate. Hence the model was refined 

by allowing for pressure recovery and pumping. The theory 
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derived to allow for these two modifications is rather 

cumbersome. However, this is not a major difficulty since 

numerical integration of the differential equations of motion 

must be performed anyway. That is, the majority of the 

program is not devoted so much to the differential equations 

themselves as to: integration, input, output and plotting the 

theoretical vibration cycle. 

Modifications to allow for variation in the dynamic 

discharge coefficient were not made in the computer program. 

This was found to be impossible because the dynamic discharge 

coefficient obtained in Chapter 5 had no obvious relation to 

acceleration and deceleration of the fluid or valve. 

Even though the dynamic discharge coefficient variation 
! 

through the cycle was not used in computation, the upper 

stability threshold prediction was very close to the experi

mental threshold. This is particularly true for large fluid 

inertia. The upper stability threshold was als6 predicted at 

large fluid inertias using a Routh Hurwitz stability analysis 

[33]. This prediction coincided with that of the nonlinear 

theory and agreed very well with the experimental results. 

These result~ gave better predictions than ~he theory of 

Kolkman [4], probably due to the theory presented here having 

accounted for local flow effects more thoroughly. The fact 

that, the stability threshold predictions agree so well with 

the experiments indicate that the dynamic discharge coefficient 

does not play a significant role in determining the stability 

of this configuration. 
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The lower stability threshold predictions are not 

as good as the upper stability threshold predictions. One 

of the problems associated with predicting this threshold 

has been the opening of the valve. Waterhammer theory 

incorporated into the computer program could be used to 

supply a prediction for: the time for which the valve remains 

shut, the maximum pressure experienced as well possibly the 

initial velocity of the valve and fluid in the pipe upon the 

opening of the valve. Moreover, with such programming included, 

predictions for maximum waterhammer pressure experienced in 

a transient case, such as in a pump shutdown, could be predicted. 

Experimental development is also possible. These 

-experiments should be aimed at understanding the forces acting 

on the plug valve. This might be possible by instrumenting 

the plug valve and measuring the pressure distribution around 

it. Integrating this distribution would give the force acting 

on the valve. Any further developments using this course of 

action are expected to be minor however, due to the proven 

workability of the theory in its present state. 
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APPENDIX A 

ADDITIONAL NOTES ON THE LASER 
DOPPLER ANEMOMETER 

The basic method of setting up the Laser Doppler 

Anemometer is given in the Thermo-Systems Inc. manuals [25]. 

In this Appendix, the method of locating the beam crossing 

points is described and the relationship between velocity and 

tracker output is calculated. 

Location of Measuring Velum~ (Beam Intersection Point) 

As mentioned already in Chapter 3, the lens used to 

focus the l aser beams was a Thermo-Systems Inc. Model 918 -

with a focal length of 248 mm. In such a lens the tota-l, ::i.~cluded 

angle between the beams is 11.52° for an initial beam 

separation of SO mm. The optics were set up in such a manner 

that the plane of the beams intersected the pipe radially. 

This configuration limits beam freedom to the vertical plane. 

The anemometer was mounted on a table, which had two transla

tional degrees of freedom in the horizontal plane, in such a 

~ay tha t th e t wo translational ax es were p arallel and orthogonal 

to t h e pl ane of the laser beams. The table was moved using 

screws similar to those on a milling machine bed. The table 

axes were graduat ed to the n ea r est thousandth of an inch. 

Using the table to move the anemometer the laser beam 

crossing point was located in the following way. A reference 

point was established where the laser beams intersected on the 

163 




164 


front acrylic wall. The distance required to move the measur

ing volume to anywhere in the pipe was calculated using 

elementary optical formulae. Figure Al shows a view of the 

optical path of a l~ser beam to the intersection point. Only 

the upper beam need be considered because of symmetry. Points 

X and Y represent the actual intersection point of the beams 

and the 	place where unrefracted beams would intersect respectively. 

Using Snell's Law angles 8 2 and can be calculated, given8 3 

the refractive indices ~l' µ 2 , and the incident light . beam µ 3 

angle e1 . 

For this lens, 8 = 11.52/2 = 5.76 0 and hence
1 

8 2 = 3 • 8 6 ° and 8 3 = 4 . 3 3 ° . us ing e 1 emen tary g e 0 rn et r i c ...c a1cu1 a-. 

tions, one can show, as long as the beams intersect within 

the pipe, that 

£ = 32.58 + 0.75063 a 

or, 	 a = -43.40 + 1.332 £ 

Both a and i are in millimetres, £ is the distance the table 

moved forward from the reference point, a is the distance from 

the centreline of the pipe to the measuring volume. 

The Thermo-Systems Inc. manual [25] gives the formula 

for the frequency of the signal, 
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PIPE TEST SECTION
WALL WALL 

WATER 
JACKETWATER INSIDE 

dPIPE t2 
r 

µ,fL3 	 }L3 /L2 

LASER 
BEAM 

a 

r = inside pipe diameter 

t = pipe wall thickness
1 

t = test section wall thickness2 

d = 	 distance between pipe and test 
section wall 

µ = 	refractive index of air1 

= refractive index of acrylicµ 2 

= refractive index of waterµ 3 

y = virtual beam intersection point 

x = actual beam intersection point 

Fig. Al Optical path of laser beam through test section. 
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2 U sin (~/2)f A 

where U is the fluid velocity, ~ is the total included angle 

between the intersecting laser beams, ~ is the wavelength 

of the beam in air and f is the frequency of the doppler 

signal. From the Thermo-Systems Inc. manual ~ = 632.8 nm and 

~ = 11.52/2 = 5.76°, then, 

f = 3.172 x io 5 u 

where f is measured in Hertz and U is measured in metres/second. 

In experiments performed two tracker ranges were used, the 

lowest range where O.Olv of tracker output corresponds to 

1 kHz and the middle range where 1 V of tracker output 

corresponds to 1 MHz. Hence the relationship between tracker 

output voltage and velocity becomes: 

Lowest Range v = 3.112 u +vb 

Middle Range v o.3172 +vb 

where V is in volts, U is in metres/second and Vb is the voltage 

measured when U = 0 due to the frequency shift of the 

Bragg Cell. 



APPENDIX B 

EVALUATION OF PLUG VALVE 

SYSTEM PARAMETERS 


1.) The total mass of the plug, stem and spring cups in 

water has been determine experimentally in Chapter 4 and was 

found to be M = 1.254 . kg. 

2.) The area of the gap in Figure B.l is given by 

g = ~cr 1 +r 2 )x sine (B.l) 

where g is the gap area. It can be shown that, 

r = r - x sine cose (B. 2)
2 1 

hence, combining equations (B.l) and (B.2), 

g = ~czr1 - x sine cose) x sine (B. 3) 

This gap variation gives the gap area as a secpnd order 

function of the value lift x, as shown in Figure 1.1. 

Given that the radius at the bottom of the plug, 

= f6.7 mm, the maximum valve lift for which equation (B.3)r 3 

holds can be found by substituting r = r in equation (B.2)
2 3 

0 < x < 15.0 mm (B. 4) 

When choosing springs for experimentation, it was 

desired to keep the amplitudes of vibration fairly low so that 

large nonlinearities in the gap function did not occur. (The 

gap function being the variation of gap area with valve lift). 
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12.7 mm (1/2") was thought to be a good upper bound on the 

openings through which the valve would perform excursions. 

The results in Appendix F show that amplitudes larger than 

this do occur. When this does occur, it is however, for 

very short periods of time at the beginning of the valve's 

limit cycle. It would not be wise therefore, to give the 

larger gap openings much weigl1ting _in evaluating the average 

gap width W. To this end, a least squares fit of the gap 

function to a linear gap function g = Wx has been made. The 

gap function is a best fit between x = 0 and x = 12.7 mm. 

The value of W obtained by performing such a fit is: 

W 31.32 mm 

~ ) The discharge coefficient used in modelling th~ valve~. 

is a constant value approximation worked out in Chapter 3,. 

CD = 0.87. The contraction coefficient for a long orifice, 

which is applicable to the plug valve is C 1. c 

4.) The static pressure difference bp is based on a head 

difference of 0.635 m of water, 

bp = 6.227 kPa 

S.) Two reference values are needed to fix the time and 

displacement scales. The characteristic dimension of the plug 

valve chosen was the seat diameter d = 50.8 mm. The time 

r e f e rence was chosen so that w = 1 rad/s e c. This means that 

the reference stiffness k is chosen so that,
r 

2kr - w M = 1.254 N/m 



l'i'O 

6.) The downstream pipe area is based on an insideA4 


pipe diameter of 40.9 mm, hence, 


= 1314 mm
A4 
2 


7.) The effective valve area is chosen such that~ 


2
S = A = 1651 mm v 

Non Dimensional Parameters 

Using the definitions of the dimensionless parameters 

in Section 6.24, the following are fixed for the .plug valve 

used: 

Frequency w = 1 Pressure Difference bp = 4826 

Mass ratio µ= 0.0669 Gap Width n = 0.826 

Upstre am Pumping Area £ = 1. 256 
. _ ..,....

Pipe Area } 0 


The values of dimensionless stiffness and damping can 

be found using data in Chapter 4 and are summarized in Table Bl. 

. DampingStiffness Stiffness I 
Ik '.K s 

N/m I 
~ 3.30 l946 754 

l 

1105 4.401386 
I 

5.56169521 25 I 
3017 2406 7.71 I 

I 
3/~4 () 2743 7 . 34 J 

TABLE Bl 
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The dimensionless fluid inertia factors which 

correspond to experimental pipe length are given in Table B2. 

Inertia Factor Loss FactorPipe Length 
L a. l]J 

(m) 

33 5.270.84 

142 7.473.61 

250 11. 446.34 

337 13.218.56 

354 13.548.98 

TABLE BZ 

data 

0.9, 

fr

a 

Each loss 

om Streeter 

loss factor 

factor 

[34]. 

of 1 

~ is computed using 

For each elbow a loss 

for the pipe discharge 

the follo

factor 

into the 

wing 

of 

atmos

phere and a loss factor 0.19 for the downstream gate valve 

fully open. The loss factor for friction has been assumed to 

be constant. A representative Reynolds number of 11100 was 

used with a pipe roughness of s/D = 0.00112. The Moody 

Friction Chart gives a loss factor of Kf = 0.7951 where L is 

the length of the pipe in metres. Results calculated in this 

fashion are presented in Table B2. 



APPENDIX C 

APPLICATION OF COMPUTER PROGRAM 
TO DIFFERENTIAL EQUATIONS 

Equations (6.37) and (6.38) are used as a 

point for numerical integration. These equations 

here: 

= -2s 

The equatio 11 (C.2) can be rewritten as two terms, 

G 

where 

Note that G contains no time derivatives 

velocity wl1ich i s trea ted as a separate variable 

2
Sub st itu ting for d x from equation (C.3)

dTZ 

starting 

are repeated 

(C .1) 

(C. 2) 

- » . ~,.. 

(C. 3) 

(C.4) 

except for 

for the 

into 
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a.a. 	 µET) dQV 

0 ) 

~ 2C x c 

(C. 5) 

A 	lower bound on a. can be found by integrating the
0 

equivalent inertia of an elemental section of the gap from the 

beginning to the end of the gap. The appropriate expressions 

can be obtained by examining the gap area calculation in 

Appendix B. Using this method the equivalent jet length in 

the gap using the minimum gap area at the reference area was 

1 = 16.23 mm. Hence a. = 0.654. This value of a. is used 
0 0 	 0 

in computing the derivatives of the system. 

dxLetting v = -Q - x y - the formulationY2-' 3-a:T'l v' 
for integration becomes: 

2
1 -	 2 2 n 2 

----- (~P- (y -y s) C ~JJ +l) -y C-zz ~)na. . a a 0 µ s n 1 3 	 1 CDy0 	 c 2Ccv +a+zc_y_) 2 
c 2 c 2 

+ 	 2sy 3 + sa.G) (C. 6) 

Y,.. ·-· v 	 (C. 7)
L " 3 

v_ G -· 	 (C. 8)
. ' ,) 
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PROGRAM TST <INPUT, OUTPUT, TAPE5:: INPUT, TAPE6=0UTPUT) 

A l'lECHANISU FOR SELF EXCITATION 
IN HYDRAULIC CONTROL DEVICES 

c (A) DESCRIPTION OF SUBROUTINE rums _; 
c 
c ====================:========= 

c THIS SUBROUTINE CAN BE USED TO SOLVE A SYSTEM OF FIRST ORDER I .· 

c ORDINARY ,DIFFERENTIAL EQUATIONS WITH GIVEN INITIAL: VALUES 

c 
c 
c DEFINITION OF PARAMETERS · 
c 
c 
c PRMT - AN INPUT AND OUTPUT VECTOR WITI·r DIMENSION GREATER THM« OR 
c EQUAL TO 5, WHICH SPECIFIES THE PARAMETERS OF THE < INTERVAL AND 
c THE ACCURACY THIS SERVES FOR C01'1MUNICATION BETWEEN THE OUTPUT 
c SUBROUTWE AND SUBROUTINE R..T<GS 
c ONLY PIDITC 5) IS DESTROYED BY R..KGS . 
c 
c THE COMPONENTS ARE 
c PRMf( 0 LOWER BOUND OF THE INTERVAL (INPUT>, 

c PfilITC 2) UPPER BOUND OF THE INTERVAL ( INPUT> , . 

c PIDIT< 3) INITIAL INCREMENT OF THE INDEPENDENT VARIABLE <INPUT> , 

c PRMT< 4-) UPPER ERROR BOUND ( INPUT> • IF THE ABSOLUTE ERROR IS '. 

c GREATER THAN PRl'ITC4)· INCRE:l\!ENTS GET HALVED. IF INCRErIBNT IS · 

c LESS :TIIAN PRUfC 3) AND ABSOLUTE EHR.OR IS , LESS THAN PR.MT< 4) /50 

c THE INCREMENT GETS DOUBLED. PRl'ITC 4) HAYBE . CHANGED BY MEANS OF · 

c SUBROUTINE OUTPUT. 


c y INPUT VECTOR OF THE INITIAL VALUES 1 <DESTROYED) 

c LATER ON Y IS THE RESULTING VECTOR OF DEPENDENT VARIABLE 

c COl'iPUTED AT INTERMEDIATE. POINTS X 


c DERY : INPUT VECTOR OF ERROR WEIGHTS '.. CDESTROYED> 

c THE SUM OF IT 11 S COMPONENTS MUST BE EQUAL . TO l LATER ON 

c DERY IS THE VECTOR OF DERIVATIVES lvHICH:: BELONG TO 

c FUNCTION VALUES Y AT A POINT X 

c VALUES Y AT A POINT ' X . 


c NDUL AN INPUT VALUE WHICH SPEC IF IES THE NUMBER OF EQUATIONS 

c IN THE SYSTEM 
 1 


c IHLF · AN OUTPUT VALUE WHICH SPECIFIES THE NUMBER OF INCREMENT 
c BISECTIONS IF I HLF GETS GREATER TI!Alf 10, . RKGS RETURNS 
c WITH THE ERROR MESSAGE IID..F =:· 11 INTO THE M.4. IN PROGRAM. 
c MESSAGE IHLF = 12 OR IHLF = 13 APIF PRl'IT(3) = 0 
c S I GN( PRJlff( 2) - PRMTC 1 ) ) RESPECTIVELY . 

c FCT THE NAl'fil OF AN E}rfERNAL SUBROUTINE: THIS '.'CONPTITES 
c THE RIGHT HAND SIDES DERY OF THE SYSTEM .'. TO GIVEN VALUES 
c 01<"' X AND Y. ITS PAR.Af!ETER LIST MUST BE X, Y, DERY 

c OUTP -: THE NAJl1E OF AN EXTERNAL OUTPUT SUBROUTINE. ITS PARAMETER 
c LIST MUST BE IHLF,NDIM,PIDIT. IF PIDIT(5) ; IS CHANGED TO 
c NON-ZERO THEN SUBROUTINE RKGS i.iIS TEIDIINATED 

c AUX . : AN AUXILIARY STOR4.GE .ARRAY WITH B ROWS AND NDIM COLUMNS 

c REMARKS 

c 

MAI 10 

MAI 20 

MAI 30 

MAI 40 

l'l.t\I 50 

I'1AI 60 

I'IAI 70 

l'JAI 80 

MAI 90 

MAI 100 

MAI 110 

MAI 120 

MAI - 130 

MAI 140 

MAI 150 

1'1AI 160 

MAI 170 

MAI mo 

1'1AI 190 

1'1AI 200 

:tV\I 210 

MAI 220 

l'IAI 230 

l'l.t\I 2 4 0 

Jll.t\ I 250 

MAI "260 :, 
MAI 270 

MA.I 280 

NAI 290 

NAI 300 

MAI 310 

:£114.I 320 

1'14.I 330 

:HAI 340 

MAI 350 

1'141 360 

1'1AI 3~{(} 


MAI !380 

MAI 390 

MAI 400 

MAI 4: 10 

MAI 420 

MAI 430 

MAI 440 ·.· 

MAI · 4.·50 

MAI 460 

MAI 470 

1'14.I 480 

MAI · 490 ' 
MAI 5 0 0 

MAI 510 

MAI 520 

MAI 5a0 

NAI 540 

MAI 550 

1'1.!\l 560 _: ' 

l'lAI 5'l0 

1'1AI 580 . 

l'll\I 590 

1'1AI 6 0 0 

MAI 610 

U.4.I 620 

MAI 630 . 

MAI 640 

N...<\I 650 

:nu "· 660 .. ' 

MAI 6'l0 

M..J\I 680 

1'14.I 6 9 0 

:MAI ~·09 : 


NAI 710 

MAI 720 

NA.I 7~:i0 
HAI "t40 

http:STOR4.GE
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MAI 750 
C THE PROCEDURE TERMINATES :AND RETURNS TO '. ·'CALLING PROGRAM , IF '.· . MAI 760 
C <0 MORE THAU 10 BISECTIONS OF THE INITIAL INCREMENT ARE NECESSARY MAI 770 
C TO GET SATISFACTORY ACCURACY C IHLF= 11) MAI 780 
C (2) INITIAL INCRE~IENT IS EQUAL TO 0 OR HAS THE WRONG SIGN MAI 790 
C CIHLF ::: 12 OR 13 ) ~ · MAI 800 
C (3) TIIE 'WHOLE INTEGRATION INTERVAL IS WORKED THROUGH, MAI 810 
C <4) SUBROUTINE OUTP . HAS CHANGED PruITC 5) ! TO NON-ZERO MA I 820 

MAI 830 
C CB> PHYSICAL DIMENSIONS OF THE SYSTEM MAI 840 

MAI 850 
C ::: =:::::: = = =:: = = ===========::: ======·==== f-1.4 I 8 6 0 

MAI 870 
C S IS THE CONTROL ELEMENT AREA WHICH IS SUBJECTED TO '· THE NAI 380 
C PRESSURE DIFFERENCE ~l4.I 890 
C A IS THE CROSS-SECTIONAL AREA OF THE ·CONDI UT JUST , : · ~14.I 900 
C DOWNSTREAM OF THE CONTP~OL DEVICE MAI 910 
C CJ IS THE REDUCED MASS OF THE MOVING PARTS ' : MAI 9201 

C G IS THE ACCELERATION · DUE TO GRAVITY MAI 930 
C GAMA · IS THE SPECIFIC WEIGHT OF THE .FLOWING FLUID . 1'14.I 940 
C ROW IS THE FLIUD DENSITY MAI 950 
C STL IS THE EQUIVALENT LENGTH OF THE SYSTEM :.: : MAI 960 

MAI 970 
MAI 9 8 0 

C ( C) REFERENCE QUANTITIES MAI 990 
1'1AI100 0 

==================== 1'1AI1010 
C D REFERENCE DI1'1ENSION 1'1AI1020 
C SKR . REFERENCE STIFFNESS MAI 1030 
C Wll REFERENCE FREQUENCY MA I 1040 
C DPR REFERENCE PR..~SSURE DIFFERENCE:; 1 MAI 1050 

HAI 1060 
MAI 1070 

C ( D) DESIGN PARAMETERS NAI 1080 
C ================= MAI1090 
C ZEATA DAMPING FACTOR I•M.I 1100 
C SKB DIMENSIONLESS STIFFNESS MAI 1110 
C BEATA IIHTIAL SETIING PARAMETER M.l\I 1120 
C Rl'I NASS RATIO MAI 1130 
C DPB DINENSIONLESS PRESSURE DIFFERENCE ; l t'IAI 1140 
C PSI LOSS FACTOR . MAI 1150 
C ALFA INERTIA .FACTOR MAll 160 
C CC DYNAMIC DISCHARGE COEFFICIENT:> . MAl1170 

f'IAI 1180 
C ESP RATIO OF PUMPING AREA TO DOWNSTREAM PIPE 1 AREA · MAI 1190 
C RC IS THE COEFFICIENT OF RESTITUTION 1'1AI120 0 
C AT AN INSTANT OF OPENING , IF THE HYROSTATIC PRESSURE FOR 1'1Al1210 : 
C IS GREATER THAN THE . SPRING FORCE TAKE RC : = 0.05 MAI1220 
C IF THE SPRING FORCE. IS GREATER THAN THE i. HYDROSTATIC PRES MAI 1230 ·: 
C FORCE PUT RC = 0.0 MAI1240 

COMMON/A/ ZEA.TA, DPB, SI03, BEATA, EATA, ALFA, RM, PSI, CD, CC, . MAI 1250 
1YY1, YY2, YY3, XX, HH, l71'1A...'{,XC, RC,KKK;DERY1, DDER, D, ESP~··ALFAZ,XREF . MAI 1260 

COMMON/B/T( 7 0 0), S( 700> ~ V( 700), UC 700), Z< 700) Jlll\I 1270 
COMMON/C/ FAC5, PRl, PR2 HAI 1280 
COMMON/GG/X,Y,DERY,AUX MAI1290 

MAI1 3 00 
MAI 1310 

DIMENSION Y(3) ,DERY(3) ,PH.l'ff<5) ,IIY(2) ,HZC2) ,AUXC8,3> ,HWC2) i MAI1320 
DIMENSION AJH2>,BCC2),CD1C2),DEC2) tl~I1330 
DIMENSION HPC3),FGC2) MAI1340 

MAJ.1350 
f'IAI 1360 
MAI 1370 
U.i\I 138 0 

C DESIGN PARA1'1ETERS MAI 139 0 
MAI 14·0 0 

C ========== = ==·= === :rtA. I 14 1-0 
D = 2. I1AI1 420 
HH = 0.088 NAI14 30 
PIUIT( 2) = 2. 0 MAI 1440 
XC == 0.0 MAI 1456 

YC 0 :: -0.01 MAI 146 0 
YC3) = 0.01 !'1AI147 0 
SKB = 2977. S DPB = .4828. $ RM ::: : ·0.0822 $ ALFA =-35a~5 MAI 148 0 
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AL:FAZ = 0.75 $ EATA ·= 0.8255 : $ ZEATA = 8.95. $PSI= 12.0 ::i 1'1.\!1490 
ESP = ·2.53/2.036 $ ·CC = 1.0 S CD = 0.83 I'iti.I 1500 
YC2> = 0.003 MAI1510 
XX= 0.0 	 MAI1520 
YYl = YC 1) MAI 153 0 
YY2 = YC2) 11A I1540 
YY3 = YC3) MAI 1550 
DERYl = 0.0 HAI!5 60 

C 	 DERY< 1) + DERYC2> + DERYC3) = 1 M.411570 
DERY< 1) = 0.4, !'i .\I 1580 
DERY< 2) = 0. 5 M.4.I 1590 
DERYC 3) = 0. l HA 'l 16 0 0 
NDIM = 3 Y~\11610 
PfilITC 1) :: 0.0 -: MAI 1620 
PIDITC 3) = HH/10.8 MA I 1630 
PRMTC 4) = 0 • 5 E-4 I'll\ I 16 4 0 
PRl = PIDITC 4) I'Li\I 165 0 
PR2 = 50. *PIDIT( 4) ' MAI 166 0 
ALFA = 33. $ PSI , = 5. 27 $ ALFAZ = 1. 5 I"i-•\I 1670 
BEATA= 0.25 $ SKB.= .1403. S ZEATA = 5.49 :MAI1 680 
RC = 0.05 MAI16 9 0 
KKK = 1 l'i.\ I 1700 

11.U 1710 
Ml d 1720 
1'1AI 17'30 

FAC5 = 0. 5*RM*DPB , :tLU 1740 
TCl) = PRMTCl) MAI175 0 
SCl) = YYl MAI1 760 
VC 1> = YY2 !'!Al 17 70 
UCl> = YY3 ~~\11 780 
ZC 0 = FAC5 MAI 1790 

!'lt\I 180 0 
1'1.4 11 3 10 

DATA HX/8HTINE C )/ : . 11A I 1820 
DATA HY/ 10HDISPLACEME, 6HNT CID/ · ,. l'i.A.I 1830 
DATA HZ/ 10HVELOC ITY.': < , 2ill{) / . MAI 1840 
'WRITEC6,20} MAI1850 

20 FORMAT< lIIl, 3X, 6BPT. NO., T12, 4HTI:ME, T32, 9HDISCHARGE~'T51, 12HDISPLACEM MAI 186 0 
lENT, T63, SHPRESSURE, T80,5HDQ/DT/, T2B, 2HQ.V, T41,2HQP~·T62, 10HDIFFERENC MAI 18'"?0 
2E// / /) . · 11.4. I 1880 

1i<\I l$90 
mu 1900 

SKB = 2165. $ ZEATA= 6.98 $ BEATA = •0.075 :W\11910 
ALFA= 354. HAI1920 
ALFAZ = •654 fii i\ I 193 0 
XREF = . 15 N:..4. I 194 0 
CALL rums (PR.MT' NDIM, IHLF) - MA.I 195 0 
KKK = KKK-1 Mld 1960 

300 WRITE< 6' 310) IHLF nu 1970 
310 FORMAT< lHl, 5X, 14) M.4.. I 1980 

!"1~11990 
MA I2000 
!'1AI2 0 10 

CALL CMAPC KKK> I1AI20 20 
CALL PLOT (0.0,0.0,999) • Wd20 30 
STOP NAI20 40 
END MAI 2 05 0 
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SUBROUTINE FCT (X, y I DERY) 

c ==:=~==================== 
COMMON/A/ ZEATA, DPB, SKB, BEATA, EATA~'.ALFA, RH, PS I, CD, CC, , 

l YYl , YY2, YY3, XX, RH, YMAX, XC, RC, KKK, DERYl , DDER, D, ESP~-, ALFAZ, XREF , 
COMMON/C/ FAC5 ' 
DIMENSION YC3>,DERYC3) 

c COMPUTE THE EASIEST DERIVATIVE FIRST 
c VELOCITY = THE DERIVZTIVE OF DISPLACEMENT l' 

DERY< 2) = YC 3) 
c NOW CONFUTE sm1E AUXILARY VARIABLES REQUIRED LATER ON : 

QP = YC1>-ESP*YC3) 
c DTERMINE 'WHETHER THIS : IS A SINGULARITY OR;..i . LARGE OPENING :COMPUTATION 

DC = 0.0005 
c YC2) AND YC 0 = ZERO ,'. AT THE SINGULAR POINT 

IFCYC2).EQ.0.0) · GOT010 
IFCYC2).LT.DC.AND.YC3).GT.0.0) GOT030 

c THIS PART FOR THE LARGER OPENINGS 
c COMPUTE THE ACCER...\TION OF THE PLUG VALVE l ,: 

FAC5 ~:: 0. 5*Rl'1*ABSC YC 1> >*YC 1) *C EATA/C CD*YC 2))) **2 Y c 
DERYC3) = SKB*CBEATA-YC2>>-2•*ZEATA*YC3)-FAC5 

c NOW CALCULATE HEAD LOSS AT VALVE.. .EXIT 
H341 = QP**2 
H342 = YC 1) >::YC 1) *< CEATJV< CC*YC 2>)) **2-2 ~ *EATJVC CC*YC2) J) 
H343 = 2.*ESP *YC3)*YC3) 
H34 = H341+H342+ll343 
CONl=ALFA*C 1.+EATA*ALFAZ*( l ./ALFA+0~5*RM*ESP)/(CC*YC2))) 
CON3 = <YCl>*EATA/YC2>>**2 
CON2 = DPB-PS I*ABSC QP) *OP+S IGNC CON3, YC 1)) *< 1. /CC**2-1. /CD**2) 

l+ALFA*ESP*DERY(3) 
IFCYCO.LT.0.0) H34 = -<YC1>*EATA/CC*YC2))**2 
CON2 = CON2-H34 
DERY(l) = CON2/CON1 

DERYC3) ::: DERYC3>-EATA*RM*ALFAZ*DERYC1)/(2.*CC*XREF> 


c CALCULATION :'.' FOR LARGE COMPLETE . , RETURN 

RETURN 


10 DERYC 1) = 0.0 

GOTO 20 


30 DERYC 1> = 0 • 0 1. . 
20 	 CONTINUE 


FACl = 0.0 

IF<YC2) .NE.0.0) FACl = DERY( D*CALFA+ALFAZ*EATA/CCC*YC2))) .. .. 

IFCFACl.GT.80000.) FAC1 = 80000. 

CON3 = 1.+0.5*RM*ALFA*ESP 
FAC2 = SKB*CBEATA-YC2>>-2.*ZEATA*Y(3) 
FAC3 = 0.5*RM*<DPB-CPSI+l.)*QP*ABSCQP)-2.*ESP*YC3)**2-:FAC1)J i 

DE~YC3) = CFAC2-FAC3)/CON3

RETURN 

END 


FCT 10 


FCT .20 

FCT 30 

FCT 40 

FCT 50 

FCT 60 

FCT 70 

FCT 80 

FCT 90 

FCT 	 100 

FCT 110 . 

FCT 120 

FCT 130 

FCT 140 

FCT 150 

FCT 160 

FCT 170 

FCT 18~ 


FCT 190 

FCT 200 

FCT 210 

FCT 220 

FCT 230 

FCT 240 

FCT 250 

FCT 260 

FCT 270 

FCT 260 

FCT 290 

FCT 300 

FCT 310 

FCT 320 

FCT 330 

FCT 340 

FCT 350 

FCT 360 

·FCT 370 

FCT 380 

FCT 390 

FCT 400 

FCT 410 

FCT 420 

FCT 4:30 

FCT 4~0 


FCT 450 

FCT 460 

FCT 470 
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SUBROUTINE OUTP (IHLF, NDIM, PRMr) 

OUT 10 
c 	 : ::-:::== =·==== : ·.::·===========·====== === 

COMMON/A/ ZEATA, DPB,SKB, BEATA, EATA,'ALFA, RM, PSI ,CD, CC, OUT 20 
1YY1, YY2, YY3, :XX, HH, YMAX, XC, RC, KKK, DERY1, DDER, D, ESP~·'ALFAZ., XREF ·. OUT 30 

COMMON/B/TC 700), SC 700), VC 700), UC 700), ZC 700) OUT 40 
COMMON/C/ FAC5,PR1,PR2 OUT 50 
COMMON/GG./X,Y,DERY,AUX OUT 60 
DI MENS IOU DERY( 3), YC 3), AUX< 8, 3), PRMTC 5) :-: ., OUT 70 

C REDUCE ACCURACY REQUIREMENT NEAR THE SINGULARITY . OUT 80 
PIDITC 4) ::: PRl OUT 90 
IFCYC2> .LT.8.E-:-3) Pillff(4) = PR2 OUT 100 
IFC IHLF. GT. 20> : GOT0300 OUT 110 
IFCYC2>.LT.0.0) GOT040 OUT 120 

C DEFINE IMMINENT CLOSURE OlJT 130 
TLEFT = 500. OUT 140 
IFCYC3).EQ.0.0) GOT0100 , OUT 150 
IFCYC3).LT.0.0) TLEFT = -YC2)/YC3) mrr 160 
IF<YC2>.LT.0.005.AND.TLEFT.LT.0.0008) GOT04 ' · OUT 170 
GOTO 100 OUT 180 

4 CONTINUE OUT 190 
C HERE IF CLOSURE IS IMMINENT OUT 260 
C RECORD POINT PRIOR TO CLOSURE : OUT 210 

TCKKK> = X OUT 220 
SC KKIO :.: YC 1) OUT 230 
V< KKK> = YC 2) OUT 240 
UC KKK> = ABS( YC 1)) *Y( 1) *( EATA/C CD*YC 2)) l**2 . ,' ) · OUT 250 
Z< KKIO = YC 1>-ESP*Yf3) Ol:JT 260 
WRITE< 6, 200) KKK, X, YC 1) , ZC KKK>, YC 2) , UC KKK> , DERY( 1 ) '. ·; IHLF . :: OUT 270 
KKK = KKK+1 OUT 280 

C 	 NOW SIMULATE THE CLOSURE OUT 290 
5 	 TCKKK) = X+TLEFT OUT 300 

DERYC 1> ::: 0.0 OUT 310 
ICLOS = 25 OUT 3 2 0 
SCKKI{) ·· 0.0 · 1 OUT 330 
VCKKK) = 0.0 OUT 340 
UC:KKIO = 0. 0 OUT 350 
Z<KKK> = -ESP*YC3) OUT 360 
X = TC KKK) OUT 370 
WRITE< 6, 200) IOOC, TC KiaO , SC KKIO , ZC KKK> , VC KKK> , UC KKK> , DERY< 1) ~· !CLOS OUT 380 ~ 
KKK = KKK+l OUT 390 

C 	 NOW SI MULA.TE OPEN ING OF THE CYCLE OUT 400 
C 	 REBOUND SPEED = Il'lPACT VELOCITY *COEFFICIENT OF RESTITUTION'!·'.: OUT 410 

Y< 3) = -RC*Y< 3) OUT 420 
TCKKK> = X+TLEFT OUT 430 
SCKKIO ::: 0.0 OUT 440 
V<KKK) = RC*YC2) OUT 450 
Y< 2> ::: VC KKl.O OUT 460 
UCKKIO :: 0.0 OUT 470 
ZCKKK) = -ESP*Y(3) OUT 480 
Y< 0 = 0 0 OUT 490 
x= T<Iaao OUT 500 
WRITE< 6, 200) KKK, X, Y( 1), Z( KKKl ~ YC 2) ., UCKKK>:,DERY( tr~: lHLF OUT 510 
KKK = KKK +1 OUT 520 
CALL FCT< X, Y, DERY) :·· OUT 530 

C 	 PREPARE AUXILARY ARRAYS FOR RI<GS OUT 540 
DO 3 I ::: 1 , ND IM OUT 550 
AUX <1 , I> = Y< D OUT 5 60 
AUXC2,I) = DERYCJ) OUT 570 
AUX( 3, I) ::: 0. 0 OUT 5 80 

3 AUX< 6 , 0 ::: 0. 0 OUT 590 
C NOW RKGS CAN CO:NPUTE THE NEXT' PO INT OUT 600 

GOTOl 10 ffUT 610 
C HERE THE PO INT COMPUTED HAS GONE PAST THE PO INT OF CLOSURE F OUT 6 2 0 
C COMPUTE THE ACTUAL CLOSURE TI 1'1E OUT 630 

40 X = XX + YY2*C X-}G{) /( 'YY2-Y< 2)) OUT 640 
YC3) = YY3+ YY2*CYC3)-YY3)/CYY2-YC2)) OUT 6 5 0 
TLEF'T = X-XX OUT 660 
YC2> :: YY2 OUT 670 
GOT05 OUT 6 80 

C COMPUTATION FAR FROJ.11 8 INGULAil PO INT OUT 6 90 
160 CONTINUE OUT 7 0 0 

T<KKK> = X 01'.)T 7 10 
SC KKIO = YC 1> OUT 7 2 0 
VCKKIO YC2) OUT ? 3 0 
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200 


110 


300 


UCKKEO :: 0.0 

IF< Y< 2) • NE. 0. 0) UC KKIO :: : ABSC YC 1)) *YC 1) *C EATA/C CD*YC 2))) **2··;:: 'r. 

Z< KKK> :: YC 1) -ESP*Y< 3) 

WRITE< 6, 2 0 0) KKK, X, YC 1) , Z( IOOO , Y< 2) , UC KK1.0 , DERY< 1 ) ' , IHLF ·, 


.i .: 

FOID!AT <3X, 14, 6( 3X, 1PE10. 3) , 110) 
IFCKKK.GE.700) 
KKK KKK+ 1 

YYl = YC 1) 

YY2 :: Y<2> 

YY3 = Y<3) 

xx= x 

RETUH.N 

PRMfC 5) = 5 • 0 

KKK= KKK-1 

RETURN 

END 

GOT0300 

OUT 740 

OUT 750 

OUT 760 

OUT 770 

OUT 780 

OUT 790 

OUT 800 

OUT 810 

OUT 820 

OUT 830 

OUT 840 

OUT 850 

OUT 860 

OUT 870 

OUT 880 

OUT 390 
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sUBrourrNE RKGS (PRMT, l\1DIM, IHLF) 

RKG 10 
c = ·====·===============:====:::::::::::::: = 

COMMON/GG/X,Y,DERY,AUX RKG 20 
·;- _ :DU1ENSION YC3) ,DERYC3) ,AUX(8,3) ,A(4) ,BC4) ,CC4) ,PRMTC5): '.: ~ RKG 30 

DO 1 I ::: 1,NDIM RKG 40 
1 AUXC8,I) = .06666667*DERYCI) RKG 50 

X = PRMfC 1) RKG 60 
XEND = PHMfC 2) RKG 70 
H = PRMr< 3) Rl(G 80 
PR.MT( 5) = 0. 0 rum 90 
CALL FCTCX,Y,DERY> RJ(G 100 

C · ERROR TEST RKG 110 
IFCH*CXEND-X>> 33,37,2 PJ(G 120 

RKG 130 
C PREPARATIONS FOR ,RUHGE-KUTI'A METHOD :· ' RKG 140 

2 AC 1) = • 5 RKG 150 
A< 2) ::: • 2928932 R...JCG 160 
AC 3) = 1. 707107 RKG 170 
A( 4) ::: • 1666667 RKG 180 
BC 0 ::: 2. RKG 190 
BC2) = 1. RKG 200 
BC3) 1. RKG 210 
BC4) 2. RKG 220 
CCO = 0.5 RKG 230 
CC2) :: .2928932 RKG 240 
cc 3) ::: 1. 707107 RKG .250 
CC4> ::: 0 (0 5 RKG 260 

c RKG 270 
C PREP.AHATIONS FOR THE FIRST STEP OF THE RUNGE-KUTT.A. HKG 280 

no 3 I :;: 1 ' ND Il'l RI<G 290 
AUX<l , I> YC I> PJ:(G 300 
AUX< 2, I) = DERYC I> rum 310 
AUXC3, D ::: 0.0· RKG 320 

3 AUX( 6 , I> -· 0. <_, - RKG 330 
IREC = 0 RKG 3~0 
H = H+H H.KG 350 
IIlLF ::: -1 RKG 360 
ISTEP ::: 0 RKG 3,70 
rnrm = 0 RKG 389 

RKG 39(} 
c RKG 400 
c RKG 410 
C START OF RlJNGE~KUTTA ' STEP RKG 420 

4 IF< CX+H-XENm ::~ID 7, 6, 5 RKG 430 
5 H = XEND·-X RICG · 440 
6 IEND ::: 1 RKG 450 

c RKG 460 
C RECORDING OF THE INITIAL .VALUES RKG 470 

7 CALL OUTP ( I REC , ND J1'1'; PPJlff) RKG 480 
IF<PRMTC5)) 40,8,40} RKG 490 

8 ITEST ::: 0 RKG 500 
9 ISTEP ::: ISTEP + l RKG 510 

c RKG 520 
C START OF THE INNERMOST RUNGE-k'1JTTA. .'LOOP 'C.- RKG 530 

J = 1 RKG 540 
10 AJ = A( J) RKG 550 

B.J ::: B<.J> HKG 560 
CJ = C(J) RKG 5 70 

no 11 I = 1,NDIM RKG 580 
Rl = H*DERYC I) HKG 590 
P~ = A~J~:~ CRl ~B,T*.ltUXC 6, I)> :i RKG 600 
Y< I> = Y< I> ' + H2 RKG 610 
H2 :: R2+R2+ R2 RKG 620 

11 AUX< 6 , I) ::: AUX( 6 , I) R2 -CJ*Ill :: RKG 630 
IF< J-4~) 12, 15, 15 RKG 6~0 

12 J = J+l HKG 6f)0 
IFC J-3) 13, 14, 13 RKG 660 

13 X = X+O. fi*II IU<:G 6'{0 
14 CA.LL-PCT CX,Y,DEUY) RKG 680 

GOT010 RKG 690 
C END OF THE INNER NOST LOOP OF : THE RUNGE IillTTA , ; RKG 700 
c mm 710 
c RKG ?20 
c RKG 730 
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c 
C TEST THE ACCURACY 


15 IF< ITEST> 16, 16, 20 

c 

C IN CASE ITEST= 0 THERE "IS NO POSSIBILITY FOR TESTING OF ' ACCURACY.i,. 


16 DO 17 I = 1,NDIM 

17 AUXC 4, I) = YC I> , 

lTEST = 1 

!STEP = I STEP+ :' I STEP -2 


18 IHLF = IHLF +1 

X = X-H 
II = H*0. 5 


DO 	 19 I = 1,NDIM 

Y< D 	 = AUX( 1 , I> 
DERYCI) = AUXC2,1) 

19 	 AUX< 6 , I> = AUX< 3, I) 

GOT09 


c 

c IN CASE ITEST = 1 TESTING OF ACCUHACY IS POSSIBLEC; 


20 IMOD = ISTEP /2 
IF( I STEP- IMOD- umm I 21., 23' 2.1 


21 CALL FCT< X, Y, DERY) 

DO 22 I = 1,NDIM ~ 


AUX< 5 , I) = YC I> 

22 AUXC7,l) = DERYCI) 


GOT09 

c 
c COMPUTATION OF :TEST' VALUE ·DELT 

23 DELT = 0.0 
DO 	 24 I = 1,NDIM 


24 DELT = DELT+AUXC 8, l) *ABS( AUXC 4,· I>-YC- I>) 
IFCDELT -PIU>ff(4)) 28,28,25 

c 
c ERROR IS TOO GREAT 

25 IFCI!Il~F-20) 26,36,36 

26 DO 27 I = 1,NDIM


• 	 27' AUXC4.•, l) = AUXC5, I) 

JSTEP = ISTEP+ISTEP~4 


X = X-H 

IEND = 0 
GOT018 

c 
C RESULT VALUES ARE GOOD 

28 CALL FCTCX,Y,DERY) 
DO 	 29 I = 1,NDIM 

AUX< 1 , I> ::: YC I> 

AUXC2,l) = DERYCI> 

AUX( 3, I) = AUXC 6, I> 

Y< I) = AUX< 5 , 0 


29 	DERY< I) = AUXC7, I> 

X = X-H 

CALL OUTPC IHLF, NDHI~ PB.MT> 

X = X+H 

IF<PIDITC5)) ·40 , 30,4•0 

30 DO 31 I = 1,NDJM : 

YC I) 	= AUX< 1 , I> 

31 DERY< D = AUX< 2~ I> . 

IREC = IHLF 

IF<IEND) 32,32,39 


c 
C INCHEMENT GETS DOUBLED 

32 	 IHLF = IHLF -1 
ISTEP = ISTEP/2 
H = H+H 
IF( Iffi,F) 4,33,33 


33 IJlfOD = ISTEP/2 

IF'( IS'fEP-: IMOD- nmD> ' 4' 34' 4 


34 IFC DELT-. 02*PIDfl'( 4>) 35, 35, 4 

35 	 IHLF = IIILF-1 


ISTEP = IST.l!~P/2 


H = H+H 

GOT04 

c 
c 

rum 740 

RKG 75·0 

RKG 760 

RKG 7'?0 

RKG 780 

RKG 790 

RKG 800 

RKG 810 

RKG , 820 

RKG -830 

RKG .340 

rum 850 

HKG 860 

HKG 870 

RKG 880 

RKG 890 

RKG 900 

rum 910 

RKG 920 

RKG 930 

RKG 940 

RKG 950 

IU<:G 960 

RKG 970 

RKG 980 

rum 990 

BKG1000 

RKG1010 

RKG1020 

RKG1030 

RKG1040 
RKG1050 
RKG1060 
HKG1070 
RKG1030 
RKG1090 

HKGl 100 

RKG1110 

RKGl 120 

RKG1130 

RKGl 140 

RKGl 150 

RKGI 160 

RKGl 170 

HKGl 180 

HKGl 190 

RKG1200 

RKG1210 

RKG1220 
HKG1230 
RKG1240 
RKG1250 
RKG1260 
RKG 1270 
RKGl230 
RKG1290 
RKG1300 
HKG1310 
fil{G.1320 
RIW1330 
RKG1340 
:RKG1350 
RKGl360 
RKG1370 
RKG1a80 
HKG139G 
RKG1400 
RKG1410 
RKG1420 
RKG1430 
!Ll{G144G 
RKG1 450 

RKG1460 

HKG1470 
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C RETURNS TO CA.LL ING PROGRAM 
36 IHLF = 21 

CALL FCTCX,Y,DERY> 
GOT039 

37 IHLF = 22 
GOT039 

38 IHLF = 23 
39 CALL OUTP ( IHLF, NDIM, PRMf) 
40 RETURN 

END 

RICG1480 
RKG14•90 
RKG1500 
RKG1510 
RKG1520 
RKG1530 
IU<G1540 
RKG1550 
RKG1560 
RKG1570 
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SUBROUI1INE G1AP (KKK) 

CMA 10 
c 	 =====-======·=·==·=:::::::::: 

COMHON /B/· TC700) , 8(700) , V< 700) , UC 700) , Z( 700) '/. CMA 20 
COMMON /LOC/ LX, LY . , Cl'1A . 30 
DIMENSION HSC3) ,HV(3) ,HZ(3) ,HUC3) 'YLHK2> ,XLIMC2l > CMA 40 
DIMENSION HTC3) CM..4. 50 

c ARRAY VARIABLES CI1A 60 
c T TIME CMA 70 
c S VALVE DISCHARGE CI'!A 80 
c V DISPLACEMENT CMA 90 
c U VALVE PRESSURE DIFFERRENCE : CMA 100 
c Z PIPE DISCHARGE cr1A. 110 
c Cl'lA 120 
c INITIALIZE :THE AXIES LABLES CMA 130 

L}{ = 30 Cr14. 140 
DATA Jrr/ 10H , 10H , 10H TH1E )/ CM4. 150 
DATA HS/10HVALVE ,10HDISCHARGE : ,10HCQ ) / CYlA 160 
DATA HV/ toll , 10HDISPLACEI·1E, 10HNT ( X> / ! CMA 170 
DATA HU/ 10HPRESSURE:.: , 10HD I FFEB.ENCE, 10HC P) / CMA 180 
DATA HZ/10HPIPE , 10HD ISCHARGE , 10HCQ. ) / Cl11A 190 

c QUANTITIES VS TH1E > Cl'fA 200 
XLIM(l) = 0.0 Cl'L'-\ 210 
XLIM(2) = 2.0 CI;14. 22.0 

c DISPLACEMENT VS .TINE? CMA 230 
IMAP :: 1 Cl'I.A 240 
YLIMC 1> = 0. O Cf'lA 250 
YLH1C2) = 0.50 CNA 260 
LY= 16 CUA 270 
CALL HAP< XLIJI!, ¥"LI1'1, 2, HT, HV, II1AP) Cl'1A 280 
CALL PLTI1PL( T, V, KICTO CI•f.A 290 

c PLOT PRESSURE DIPF VS TINE cm~... 300 
IMAP ::: 2 CMA 310 
YLHH 0 ::: 0.0 CI'lA. 320 

. ~ YLIMC 2) = 50000. CMA 330 
LY = 14 CJl14. 340 
CALL MAPCXLitl, YLIM,2,HT,HU, IM.4.P) CI•lA 350 
CALL PLTNPL< T, U, KKK>· Cl'l4. 360 

c 	 PLOT : PIPE DISCHAHGE VS TIME Cl'14. 370 
YLHH 0 = -4. Cl'1A 380 
YLH1(2) = ,16.0 C:t"..A 390 
IMAP = 3 CNA 400 
CALL MAP <XLU1, YLI1'1~2,HT,HZ, IMAP> CMA 410 
CALL PLTMPL< T, Z, 1000; mm. ~.20 
CALL LABELC2) C!'LA 4,30 

c NEXr PLOTS OVER T0'.1 THE m GHT CN.A 440 
CALL PLOTC9., 1. ,-3) i: CMA ~50 
L}{ = 26 CI11A 460 

c PL01~ VS DISPLACEMENT CI'IA 470 
XL IMC 0 ::: 0. 0 Cl'!A 480 
XLII1(2) :: 0.5 CI'1A 490 

c PLOT VALVE lHSCHARGE VS .}{ CMA 500 
H1AP = 1 CI'IA 510 
CALL MAPOU.... JM, YLIM,2,HV,HS, H"'iAP> CNA 520 
CALL PLTMPL< V, S, KiuO Cl'IA 530 

c PLOT QP VS i X IN BOTTOH LOCATION C!'-14. 540 
IMAP ::: 3 CMA 5G0 
CA.LL l'IAP<XLIM, YLIM,2,HV,HZ, IMAP) CMA 560 
CALL PLTMPLC V, Z, KKfO Cl"lA 570 

c PLOT PRESSURE DIFFERENCE VS DISPLACEMENT:: , CMA 530 
IMAP = 2 C1'1A 590 
YLIN< 1) ::: 0.0 CUA 600 
YLDH 2) :: 50600. CHA 610 
CALL MAPUrLIM, YLIM,2,HV,IIU, INAP> CK\ 620 
CALL PLTI1PU V, U, ICT<IO · CNA 630 
CALL LABEL( 2) Cl'1A 640 
CALL PLOT( 9., 1., -3) C!'iA 650 
HETURN Cl'1A 660 
END CHA 670 
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SUBROUTINE AXE (YP I YD I NA) 

c 	 ===== =·========== =====·==·=" 
AYP = ABSC YP> 
IFC AYP. GT. lE-6. AND. AYP. LT. 0. 95) GOT050 :1 


C 	 IF YP IS A WHOLE Nill1BER IT CAN BE CONVERTED TO ;AN INTEGER ,'; I 

C 	 NOTE THIS REQUIRES. INTELLIGENT USE OF SC.ALES 


YP :: YP+ 1 . E-6 

IFCYP.LE.0.0) YP = 'YP-2.E-6 

IYP :: INT( YP> 

ENCODEC10,42,YD> IYP 


42 FORMAT( lX, 16, 3X> 

IFCNA.E0..2> ENCODE( 10,45, YD) IYP 


45 FORMAT ( 3X, 16, IX> 

C CHECK TO ENSURE YP WAS '..'A WHOLE NUMBER . 

IIYP = INT<YP+0.95) 'i 
IF<YP.LT.0.0) IIYP = INTCYP-0.95) : 
IFCIIYP.NE.IYP) ENCODE (10,43,YD)YP 
IF<NA.EQ.1) ENCODE< 10,43, YD> ·: YP 

43 	 FORMAT< 2X, F7. 1, lX) 

RETURN 


50 CONTINUE 
C USE 1 PLACE::FORMAT AND A WRITIEN 0 BEFORE::·.: THE ·POINT 

ENCODEC10,44,YD) YP 
44 FOID1t\TC6X, 1H0,F2.1, lX) 

RETURN 
END 

AXE 10 


AXE 20 

AXE 30 

AXE 40 

AXE 50 

AXE 60 

AXE 70 

AXE 80 

AXE 90 


. AXE 100 

AXE 110 

AXE 120 

P...xE 	 130 

AXE 140 

AXE 150 

AXE 160 

AXE 17'0 

AXE 180 

AXE 190 

AXE 200 

AXE 210 

AXE 220 

AXE 230 

AXE 240 

P....XE 250 


http:INTCYP-0.95
http:INT<YP+0.95
http:IFCNA.E0
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SUBROurINE Iv1'AP (x, Y, M, 1-i:x, HY, IMAP) 

c 	 :::::::: =========·== =====-======== =:::.:;:.::: 
DII1ENS ION XC n ,,Y( 1) , ID{( 1) , IIYC 1) 

DIMENSION H2C 2):. 
COMMON /LOC/ LX, LY .-
Hl = HY< 1) 
H2C D = HY( 2) 
H2C2) 	 = HYC3) 
NH}{ = 30 

NHYl = 10 

NHY = 20 

CALL -NEWPEN ( 3) ~ 


XM = 2. 

YM = 
NX = 
NY 
XL = 
YL = 
XX = 
YY = 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
YS = ( YL-Yl'D /FLOAT( NY> 
XII= XM 

YII = Y.M 


20 CALL PLOT<XH, YH,3) ,

CALL PLOT< h'H+. 07, YH 1

; 2) 

- CALL PLOT< XL-. 07, YH~ 3) 


CALL PLOT< XL, YH, 2) '· 

CALL INCHTOC Xf'l, YH, :&P, ·yp)· .. 

CALL AXE <YP,YD,2> 

C-ALL LETTER ( 10,0.1;0.0, 1.0, YH-.05;YD> i! 
YH = "'l!I + YS 
IF<YH.LE.YL) GOT020 
XS = <XL-}ill) /FLOAT< NX) 

22 CALL PLOT om, YM,3) 
CALL PLOT CXH,YU+.07,2) 
CALL PLOT <fill, YL-. 07, 3) 
CALL PLOT <XH,YL,2) 
CALL I NCIITO ( }ill, YM, XW, YW): 
CALL AXEOm, XD, 1) 
CALL LETTER ( 10,0. l,0.0,XH-.75, YM-.15,X!)) 
Xf! = XfI + XS 
IFCXH.LE.XL> GOTO 22 
IF( H2( 2) • NE. '~rnc . p)) ' GOT010 
YDEL ::: YY+ 1 • 1 

CALL UATH ( XM-. 'l, YDEL, 0. 1, 90. ~ 18) 


10 CONTINUE 

IF< Rl. NE. 5TIVALVE} GOTOl 1' 

YUEL ::: YY + l • 2 

CALL LETTER ( l, 0. 06 ~ 90. , XM-. 65, YDEL, lHV). 


11 CONTINUE 

IFCIIl. NE.4HPIPE> GOT012 

YDEL ·· YY + l • 2 

CJU_.L LETI'ER C1, 0. G6 ·; 90. , Xl.11-. 65, YDEL, lHP>- , 


12 CONTINUE 
IFOIXJ 3). NE. mu TINE ( ) ) GOTO 13, 

CALL GREEK (}{I..- • 2, :lH- •4, • 1 , 0. O, 19) , 


13 CONTINUE 

CALL NE"WPEN ( 2) 
HETURN 
END 

10. -2. 6*FLOAT CIMAP> 
5 

5 

XM + 5. 

YM+ 2.0 

XL - FLOAT< LID *0. 1 • · 


YL -FLOAT< LY>*0· 1 

LETTER( NHX~ 0. 1 , 0. 0, XX:, Y1'fr • 4, IDO 

LETTERCNHY,0. 1~90. ,Xl'I-.7, Y.Y,H2) : 
J 

LETTER< NHYl, 0. l, 90. , XI1-. 9, YY, Hl) .-· . 

FACTORCM,X, Y,XL, YL,Xl'1, Y1'1) 

PLOT <XM, YM, 3) 

PLOT CXL,YM,2> 
PLOT <XL,YL,1> 
PLOT <XI11, YL, 1) 
PLOT <XI'1, Yl'1, 1) 

HAP 10 


MAP -20 

MAP 30 

riAP 40 

J_V"JAP 50 

MAP 60 

MAP · 70 

MAP 80 

MAP 90 

MAP mo 

MAP 110 

MAP 120 

MAP 130 

MAP 140 

I•li\P 150 

MAP 160 

MAP 170 

MAP 180 

MAP 190 

MAP 200 

HAP 210 

MAP .220 

11'1i.AP 230 

MAP 240 

ff.1AP 250 

l'IAP 260 

J.llAP .270 

I'1AP .280 

MAP 290 

MAP 300 

MAP 310 

MAP 320 

MAP 330 

MAP 340 

MAP 350 

MAP 360 

MAP 370 

MAP · 380 

MAP 3~0 


MAP 400 

MAP · 410 

MAP·420 

MAP 430 

MAP 440 

.MAP 450 

MAP 460 

MAP 470 

MAP ·4313 
M:AP 490 

MAP 5G0 

l\14P 510 

MAP 520 

MAP .530 

MAP 540 

NAP 550 

l'LA.P 560 

NAP 570 

MAP 580 

MAP 590 

MAP 600 

MAP 610 

J.111\P 620 

M..h...P 630 

MAP 640 

MAP 650 

MAP 660 

MAP 670 

NAP 680 


http:11'1i.AP
http:IFCXH.LE.XL
http:l,0.0,XH-.75
http:IF<YH.LE.YL
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~UBROli'TINE LABEL (NP) 

C :c:::-:::·-:::::::c.:-::: ===-=== 
COMMON/A/ ZEATA, DPB, SKB, BEATA, EATA,'ALFA., RM; PSI, CD., CC., 

lYYl, YY2, YY3, XX~ HH, YMA.:~, XC, RC, KKK, DERYl, DDER, D,ESP~i.ALFAZ, XREF ·. 
C IF NP = 0 : DO NOT PRINT PARAMETERS ' . 
C IF NP ·= 1 PRINT MAIN PARAMETERS ONLY , · 

C OTHERWISE ALL. THE PAR.M1ETERR. ARE PRINTED ON : THE 'VERSATEC '·, 

C THE FOLLOWING FORMATS ARE USED .' 


1 	 FORMAT<I10) 
2 FORMAT<5X,1H0,F4.3). 


3 FOIDIAT< F 10. 1) 

4 FORJIIAT< 6X, 1H0, F3. 2) , 


IF<NP.EQ.0) RETURN : · 

CALL NEWPEN C3) 


C PRINT MAIN PARAMETERS 
IDUM = INT< SKB+O. 5) ! 

ENCODEC10,1,HV>IDUM. 
CALL LETTER <3 , • 1 , 0 ~ 0 , 2 • 3 , 1 • 6 , 3HK =) 

CALL LETTER <1,.t,0.0,2.3,1.69 ,lH-> 

CALL LETTER C10 , . l , 0. 0 , 2 • 1 , 1 • 6 , HV> 

ENCODEC10,2,HV>BEATA 

CALL LETTER C5 , • 1_, 0. 0, 3. 1 , 1 • 6 , 5H, =) 

CALL LETTER< 10 , • f, 0 ~ 0 , 3 • 2, 1•6 , HV) 

CALL GREEK<3.3, 1.6,6.1,0.0,2) :. 

ENCODEC10,3,HV) ALFA 

CALL LETTER (5, ;_ 1,0~0,4.2, 1.6,5H, .. => 
CALL GREEK <4 • 4 , 1. 6 , 0 . 1 , 0 • 0 , 1> 

CALL LETTER (10,.1,0.0,4.3,1.6,HV) . 

ENCODEC10,4,HV> RC. 

CALL LETTER C6 , ·~ 1 , 0 ~ 0 , 5 • 3 , l • 6 , 6 H, RC =) , 

CALL LETTER ( 10 , . 1 , 0. 0 , 5 . 3 , 1. 6 , IP/) 


C 	 PRINT AUXILLARY PARAMETERS OR RETURN. 
CALL NEWPEN <2> 
IFCNP. EQ. 1) RETURN , . 

5 	 FORMAT< F 10. 1> 

CALL NEWPENC3) · 

ENCODE< 10, 5, HV>: PS I . • 

CALL GREEKC2.3,1.4,0.l,0.0,23)

CALL LETTERCl,.1,0.0,2.5,1.4,lH=) 

CALL LETTERC10,.t,0.0,2.l,1.4,HV) 

ENCODE< 10, 6, HV). ESP .. 


6 	 FORMATCF10.2)

CALL GREEKC3.3,l.4,.1,0.0,5)

CALL LETTERC5,.1,0.0,3.1,1.4,5H, => 

CALL LETfERC10,.1,0~0,3.1,1.4,HV) ' 

Imm = INTCDPB+0.5) ' 

F.NCODEC10,1,HV) IDUM 

CALL MATHC4.3, 1.4,0~ 1,0.0, 18). 

CALL LETTER ( 6 ' • 1 ' 0 ~ 0 ' 4 . 1 ' 1 . 4 ' 6 H' ' p =) 
L ,. 

CALL LETTER C10,.1,0.0,4.2,1.4,HV) , 

ENCODEC1'1,2,HV) EATA 

CALL LETTER( 5 , . 1 , 0 • 0, 5 • 2, 1 • 4 , 5 H, , ::: ) ", 

CALL GREEK (5.4,1.4,0.1,0.0,7) 

CALL LETTER Cl0,.1,0.0,5.3,1.4,HV> . , 


C 	 LIST NEXT GROUP Oli' PARAMETERS.·. ON THE NEXT LINE ;' ·1 

ENCODEC10,6,HV> ZEATA 

CALL GREEK ( 2 • 3 , 1. 2 , O • 1 , 0 • 0 , 14) 

CALL LETTER ( 1 , . 1 , 0 ;; 0 , 2 . 5 , 1 . 2 , 1H= ) 

CALL LETTER (10,.1,0.0,2.1,1.2,HV). 

ENCODE< 10,2,HV> mt . 

CALL GREEK ( 3. 3, 1. 2? 0. 1, 0. 0, 12) 

CALL LETTERC5,.1,0.0,3.1,1.2,5H, =) 


CALL LETTER< l 0 ' .• l ' 0 . 0 ' 3. 2 ' 1. 2 I HV> 

ENCODEC10,4,HV> CD 

CALL LETTERC6, .1, .094.3, 1.2,6H, CD · =) 

CAI.L LETTER( 10, . 1, 0 ~ 0, 4. 5 , 1. 2, UV> 

ENCODE< 10,3,HV) CC 
CALL LETTER<6,.1,0.0,5.6,1.2,6H, CC=> 

CALL LETTERC10,~l,0:.0,5.6,l.2,HV) 


CALL NEWPEN (3) 

RETURN 

END 
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APPENDIX D 

CALIBRATION OF SPRINGS 

Figure Dl shows a schematic of the apparatus used 

to measure the spring constants. At the top is the Hewlett 

Packard 7DCDT-1000 position transducer used throughout the 

course of experimentation reported in this thesis. Below 

that is a spring cup with an insert matching the spring dia

meter as described in Chapter 3. A threaded rod extends 

downward through the spring. There is a hole located at the 

bottom for changing weights. The spring is compressed between 

the sprinE cup and a plate with a hole to allow the threaded 

rod through. Each spring was loaded for 0 to 1500 gms and 

the results obtained are presented in Tables Dl and DZ and 

Figure DZ. The spring constants were calculated using a least 

squares fit of the load deflection data and these values are 

recorded in Table D3. The spring combinations used in experi

ments with the valve are identified in Table D4 with the 

correspondi~g combined stiffnesses. 
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Fig. Dl Apparatus for measuring spring constant. 
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GB C6 C7 G6.5 

~ Deflection 
0 (rrnn) 

Deflection 
0 (mm) 

Deflection 
0 (rrnn) 

Deflection 
0 (rmn) 

0 

200 

400 

600 . 

800 

1000 

1200 

1500 

0 

2.57 

5.05 

7.85 

10.39 

13.23 

16.00 

19.66 

0 

.89 

2.01 

3.15 

4.22 

5.41 

6.38 

7.90 

0 

1.30 

2.49 

3.73 

4.90 

6.12 

7.34 

9.14 

0 

2.06 

4.24 

6.50 

8.51 

10. 26 

12.65 

15.82 

Table Dl 

GS GlO Gl3(1) Gl3(2) 

~d 
s 

Deflection 
(rrnn) 

Deflection 
(mm) 

Deflection 
(rrnn) 

Deflection 
(mm) 

0 

200 

400 

'600 

0 

1. 70 

3.40 

4.95 

0 

3.23 

6.17 

8.94 

0 

4.29 

8.46 
. 12. 80 

0 

4.14 

8.13 

11. 91 

800 

1000 

6.55 

8.20 

12.01 

15.14 

17.35 

22.00 

16.03 

20.12 

1200 9.86 18.29 25.78 24.26 

1500 12.45 22.89 31.75 30.14 

Table D2 
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Fig. DZ Spring load-deflection lines. 
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Spring Stiffness Stiffness 
gm/mm N/m 

C6 186.1 1825 

C7 164.7 1615 

GS 121.5 1192 

G6.S 95.16 933 

GB 75.49 740 

GlO 65.87 646 

Gl3(1) 46.70 458 

Gl3(2) 49.76 488 

Table D3 

Spring Combined 
Combination Spring 1 Spring 2 Stiffness 

N/m 

A Gl3 (1) Gl3(2) 946 

B GlO G8 1386 

c G6.S GS 2125 

D GS C6 3017 

E C6 C7 3440 

Table D4 



APPENDIX E 

CALIBRATION OF 
INSTRUMENTATION . 

Figure El shows the calibration curve of the posi

tion transducer. The relation between the output voltage 

of the transducer and displacement is reasonably linear. 

The transducer was powered using a 6V dry cell battery. 

Variation in the constant of proportionality between dis

placement and output voltage due to battery rundown were 

sufficient to justify calibration with performance of each 

· set of experiments. This involved a two point measurement 

before and after each set of experiments. 

The calibration in Figure El was performed using a 

graduated scale, whilst the daily calibrations check were 

performed using blocks of known thickness. 

Calibration of each of the pressure transducers 

was performed using a dead.weight tester. Results of these 

calibrations is shown in Figures E2 and E3~ The Schaevitz 

pressure transducer was calibrated at an excitation voltage 

of 9.825 volts. During experimentat i on this excitation volt

age was repeatable to within 15 mV. The Pace transducer 

was powered directly from the mains. 
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Fig. El Output voltage vs displacement of position transducer. 
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Fig. EZ Calibration of Schaevitz pressure transducer. 
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APPENDIX F 


SUMMARY OF EXPERIMENTAL 

RESULTS 
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PIPE LENGTH L = 8.98 m 

TABLE Fl 

·· Spring Initial Period of AmplitudeStiffness Stability CycleOpening 
N/m (inches) (seconds) (inches) 

3440 
 .OS s 
U*.10 
 .25 .15 


u .34
.20 
 .60 


.30 
 u 1. 3 .56
I
s.35 


s.40 


-3017 
 .OS s -

U*.10 
 . 2 0 .11 


u .SS .31
.20 
 I 

.30 
 u 1.1 • 5 3 
I 

.35 
 u .61
1. 4
I 


s - -.40 


- -2125 
 s.OS 
U*.10 
 .20 
 .11 


.20 
 u .31
.45 


.30 
 .90
u . 5 2 


.40 
 u 1. 5 
 .73 


2.0 .80
.45 
 u 
.so s - I 

1386 
 .10 
 s I 

U*.15 
 .25 
 .18 


.20 
 U* .40 
 .30 


U* I
.30 
 . 7 0 
 .52 


.40 
 u 1. 05 .66 


.so u 1. 6 
 0.84 

.60 
 u ' 2. 2 
 1. 00 

.65 
 s - -
... 
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Table Fl (continued) 

r-·-..·--·----·- ·- ----·- --, 

Period ofInitialSpring AmplitudeCycleStabilityStiffness Opening 
(inches)(seconds)(inches)N/m 

- -s.10946 
.16. 2 5 U*.15 

.24.30U*.20 

.45.soU*.30 

.62.90u.40 

- I 

The ·results presented in Table Fl stiow data recorded 

from the self-excited oscillations of the plug valve. The 

interpretatioh of the stability symbols is as follows: 

S valve will not perform limit cycle oscilla

tions. The valve . is dynamically stable. 

U valve performs .limit cycle osci~lations 

independent of initial conditions. 

U* valve is capable of performing limit cycle 

oscillations. If the valve starts in the closed 

position and is not disturbed then t~e valve 

remains closed. A disturbance may initiate limit 

cycle oscillations. 

The amplitude of the cycle is measured as the largest 

lift experienced by the valve in its limit cycle oscillations. 

The period r ecord in this table does not include the time for 

which the valve is closed (See Chapter 5 for typical limit 
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TABLE FZ 

k = 2125 N/m 

Pipe Length Initial Period of Amplitude lStabilityOpening CycleL I 

x 
 I
(m) (seconds) (inches) 

I 
! 

0 
I 

I 

I
--s.10
6.34 ! 
i 

I
.13
U*.15 
 • 2 5 
 I 

I 


.40 
 .23
.20 
 u I 


.68 
 .44 


.40 


.30 
 u 
.61 


.45 


u 1.15 

.70
1. 38
u 
- - I 

J 
s.so 

-3.61 s"10 - I 
.15 
 U* .18 
 . 17 
 I 


I 


.20 
 u .28 
 • 25 I 

I
.30 
 u .42 
 .42 


.40 
 .60 


.45 


.70
u 

.80 
 .68
u 

.90
.so u . 7 8 


.55 
 -s -

-.84 
 .20 
 s -· 

.ZS u .15 
 .13 


.30 
 u .15 
 .27 


.40 
 u • 2 2 
 .40 


.so U*** .44/.22 
 .63/.63 


.60 
 U** .41 
 . 8 0 


.65 
 - -s 
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cycle oscillation time histories). 

The results in Table F2 indicate the self-excited 

behaviour of the plug valve at constant stiffness and varying 

inertia. The following definitions of stability apply in 

addition to those for Table Fl: 

U** valve was stable in open position. When dis

turbed significantly the valve performed limit 

cycle oscillations. 

U*** same as U** but two time histories were observed, 

hence two amplitudes and frequencies are recorded. 



APPENDIX G 

CALCULATION OF 1HE DYNAMIC DISG-IARGE COEFFI CIENf 

In Chapter 5, initial discharge coefficient calculations were 

made ignoring the pumping effect of the valve as suggested by Weaver and 

Ziada (6). Results from this yielded some discharge coefficients greater 

than one. This observation and examination of results in Chapter 5 

suggest that pumping is important in the dynamic discharge coefficient 

calculation. 

To calculate the instantaneous dynamic discharge coefficient 

certain assumptions about the character of the flow have been made. It has 

been-assumed that inertial pressures are negligible and that the effective 

plllllping area of the valve Py, is the same area of the valve as that used 

t o give the total force on the valve S. In addition, the assumptions 

regarding pressure and velocity distribution made in Section 4.5 apply. 

The steady state momentum equation applied to the control 

voltnne in Figure Gl is_ given by, 

2Pz~ - P3~ = pApV32 
- puz gzCOS8 + pVp2Av (G.l) 

and the continuity equation is given by: 

(G. 2) 

where VP is the plug velocity and other symbols apply as in equation 

(4.8). The unknowns in equation (G.1) and (G.2) are P2 and u2. 

The disch<l:rge coefficient c0 is given by, 
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-v.p 

PRESSURE 
TAP 

A area of pipe v unifonn flow velocityp 3 across pipe 
v velocity of valve plug 

p p3 pressure measured at tap 
A plilliping area of valve 

v fluid velocity at gapu2 

gap areag2 

Fig. Gl Control volume for calculating -dynamic discharge coefficient. 
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C ~ /2(6Pl3 - ~p23) (G. 3) 
D WxI I __P___ 

where ~ is t he flow through the valve, and 6Pij = Pi - Pj. tiP was
13 

measured using the pressure transducer and ti~23 comes from equations 

(G. l) and (G. 2) 

2 A 
cose + pV v (G.4)

P A 
p 

For the plug valve used in experimentation 
2 2 e = 15° A = 1313.2 nnn , A = 1651 nnn and W = 31.32 mm. 

~ p v 



APPENDIX H 

KOLKMAN'S ANALYSIS 

This appendix provides an analysis of Kolkman's (4] 

stability criterion for the plug valve. The stability limit 

for a damped plug valve according to Kolkman is given by: 

c 
1 

__c__,_A....._go__) 
(H.l)·Sc= (1 +Cm+ 

2pA l2g6H 1 + 
c 0 

where: (H. 2) 

(H. 3)Sn = pA 
m 

L 
c 

and k is the spring stiffness, in the total mass of the plug 

valve, C the damping coefficient, p the fluid density, A = go 

CD Wy ._ for a linear variation in gap area, 6H the static 
0 0 

head, Ac the pipe crosssectional area which Kolkman also assumes 

to be the effective force area of the plug valve, L the length 

of the downstream pipe and y is the equilibrium position of 
0 

t he plug valve under the hydrostatic head effective force 

area of the plug valve, L the length of downstream pipe and 

y is the equilibrium position of the plug valve under the 

action of the hydrostatic head 6H . 
0 
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Equation (H.l) can be rewritten as: 


__c__)(l+= (1 (H.4) 
CDWLIZ~p/p 


Kolkman also assumes that no pipe losses take place 

and that pressure recovery after the plug valve is negligible, 

hence, 

~PA 
x 

0 
= y

0 
+ 

k 
c (H. 5) 

where x is the no load opening of the valve. 
0 

In Appendix B the method for nondimensionalizing 

the no load 'opening and pipe length are already reported 

and the points on the stability threshold given in Table Hl 

can be determined using the following parametric values: 

3
k = 2125 N/m, p = 1000 kg/m llP = 6227 Pu,

' 
C = 14.04 N/(m/s), W = 31.32 mm, m = 1~254 kg, C~ = 0.87 

2
and Ac_ = 1314 mm . 

One can see that for pipe lengths longer than about 

7.5 m that the no load opening at which instability occurs is 

within five percent of the final value for a long pipe. 

Simplified calculations for L = 8.98 m are performed using the 

long pipe stability formula which can be obtained by setting 

1L ~ 0. Combining equations (H.4) and (H.5) the following 

formulation of the no load opening is arrived at. 
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kx 
0 

= 3~PA 
c (H. 6) 

Solving equation (H.6) at various points allows for 

plotting of the long pipe stability criterion in Chapter 7. 

Table Hl 

Pipe Length I Equilibrium Point No Load Fluid 
L InertiaOpeningYo

(m) asI (mm) 

0.8 4 3310 . 69 .286 

982.50 9.02 .253 

5.0 8.41 197.241 

7.5 8.19 295.237I 
8.0710.0 .235 394 - 

14.0 7.97 .233 552 .~""· 

00' 7.70 .227 oo_J 

Table HZ 

x k f3
0 

mmIN~m 
946 25.95 .571754 

i 1386 1105 .3491 7 .71 

I ! 11.551 16952125 I .227 

2406 .3017 8.136 .160 
l 

~ ...... ( ,... ' 7 L '7 1 1 Ll 1 I ' 7 

I 

_3_q. _4_o_ ,__,____· _·1_ _.)J. 

I 
i_, I d i 0L 2 I 
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