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ABSTRACT 

This thesis introduces a new effective method in statistical modeling 

and probabilistic decision making problems. The method is based on maximizing 

the Shannon Logarithmic Entropy Function \ for information, subject to the 

given prior information to serve as constraints, to generate a orobability 

distribution. The method is known as the Maximum Entropy Principle or "Jaynes 

Principle". Tribus · · used it earlier, but in a limited case, without general 

application to either statistical modeling or probablistic decision making. 

In this thesis, a new method which generalizes the above principle is introduced. 

This permits practical aoplications, some of which are illustrated. 

i1 i . 
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CHAPTER I 


INTRODUCTION 


In a decision process, once the problem is specified mathematically, 

part of the basis for a choice between different strategies or designs lies in 

the prior probabilities or probabilities of relevant events. To satisfy this 

logical foundation of decision theory, the problem of formulating prior proba­

bilities should be based on a ·rigorous principle. 

Shannon's Entropy Function(lO) was one of the first steps in this 

direction.· Later Jaynes(l 2) introduced a principle (known as the Maximum Entropy 

Principle), which is based on maximizing Shannon's Entropy Function, subject to 

the given information as constraints. Although the principle is one of the most 

important steps towards formulating prior probabilities, it was difficult to 

obtain a general solution for a general problem. Tribus (2) expressed this 

principle mathematically, but his applications were limited to certain states of 

knowledge, of prior information. He did not provide a general solution. Some 

of t~e resulting distributions were the gamma, the exponential, and the normal 

distributions. Obviously these curves cannot provide an adequate representation 

of many of the distributions encountered in statistical practice. 

In this thesis a new algorithm is introduced using the Maximum Entropy 

Principle to generate a general probability distribution from the first moments. 

The old problem of representing data by using the first four moments has been 

solved ~y the new algorithm. A comparison has been made between the empirical 

existing methods and the new algorithm in order to show the power of the 

principle. Also, in analytical decision theory, the problem of predicting the 

1 
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probability density functions of a random variable when this random variable is 

a function of many other known random variables has been solved using the new 

algorithm. 

In both applications (moment generation or in analog prediction under 

risk) a computer program has been written in FORTRAN IV language. 

This thesis is mainly concerned with the generalization of the principle 

based on the first moments, but other types of functions could be used rather 

than the moment function (a slight modification on the algorithm would be needed). 

In Chapter II, a very brief introduction to analytical decision theory 

is given to shed some light on the area where the new algorithm could be applied, 

and to show what methods in this area exist. 
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CHAPTER II 


A BRIEF INTRODUCTION TO ANALYTICAL DECISION THEORY 


2.1 DECISION AND DECISION THEORY 

A decision is a selection, which involves risk, between alternative 

actions. For a decision to be possible, there must be two or more alternatives 

available. These alternatives represent a set of possible acts which the 

decision maker may choose. The acts are connected in some way to result in a 

set of possible outcomes. If there is a known deterministic connection between 

the acts and outcomes, the problem is one of deterministic choice. If the 

decision maker knew which outcome would result from each act, he could choose 

the act which resulted in the outcome he most valued. The choice among out­

comes reflects a value judgment. In other words the decision maker must know 

t he values he associates with the various outcomes which may result from his 

choice of acts. There is thus no problem if there are no uncertainties. 

Decision theory is, then, concerned with the making of decisions, i.e. 

choice of acts, in the face of uncertainty. The uncertainty may be concerned 

with t he relation between acts and outcomes or it may be related to reliability 

of the available information. The maximization of the logarithmic entropy 

f unction represents part of an attempt to provide a rational basis for decision 

ma king under uncertainty. 

2.2 THE DECISION PROCESS 

Consider Figur~ 2.1, in which the several elements which enter a decision 

process are shown. Box 2 (Probability assignment~ or statistical modeling) 

serves to put together the prior general information and special evidence which 
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Fig. 2.7 The elements of a decision process. 

pertains to the special case being treated, box 6 (strategy or problem formula­

tion) serves to put together the probability assignments and the utility 

functions, the output of this box is a strategy for action, i.e. the basis for 

a decision. Once the problem is formulated, the action may be taken. The 

result of the action is to provide more data which may be used later on, assuming 

a second chance occurs. As it is ?hown the action or the decision depends 

entirely on the strategy formulation; a 11 bad 11 strategy would lead to a 11 bad 11 

decision, and a "good" strategy would lead us to a 11 good 11 decision. In other 

words the strategy formulation is a method (or strategy) to combine the given 

probability assignment with the utility function. So there are three elements 

i nvo1ved in the process, the utility function, the probability assignment, and 

the strategy. A 11 good 11 decision depends on all of them. 

http:P/1?08�.EM
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2.3 THE UTILITY FUNCTION 

The utility function is sometimes called the value function or the loss 

function, and sometimes given a negativ~ sign (the sign depends on whether you 

are normally pessimistic or ootimistic). The utility function will not be 

discussed in detail as it is outside the scooe of this thesis; the reader may 

refer to references (l) and (2). 

Briefly, the utility function exnresses or defines the value in a problem 

mathematically. A decision maker should know how to define the utility function 

and know how to discriminate among the outcomes. Decision theory will be of no 

help to a decision maker who does not know how to determine what he wants from 

what he does not want. 

2.4 STATISTICAL MODELING (PROBABILITY ASSIGNMENT) 

To proceed in a Decision Process (see Figure 2.1), some or all elements 

of the ·utility function should be defined in probability terms to the best of 

prior knowledge. 

A prior knowledge about a random variable varies from one fully defined 

to one that is undefined, but in all cases it is known that a distribution 

exists. 

2.4.l Degrees of Prior Knowledge 

.The degrees of orior knowledge could be classified as follows: 

a) The exact prior distribution is known. 

b) The first mmoments of the orior distribution are known (m = l, 2, ... ) , 

i.e. the actual numbers are available for calculation. 

c) Sample data is available. 

d) No prior knowledge other than the existence of a orior distribution is 

_available. 
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Usually, prior knowledge is limited to cases (b) and (c), where some independent 

observations (or raw data), or some of the moments, are available. 

With knowledge as given in case (c), and sometimes as in case (b), it 

is difficult to oroceed in the decision process. The available information 

should be in a mathematical form or other suitable form. A suitable mathematical 

model must therefore be found to describe the orior information. This suitable 

model could be one of the well known analytical distributions such as the 

normal or Weibull, or generated by one of the empirical aooroximation methods 

like the Johnson, the Pearson, the Cornish-Fisher expansion, the Gram-Charlier 

~~ries. the Edgeworth series( 3), or the most recent method, the maximum­

logarithmic entropy distribution method, which is introduced in this thesis. 

Since this new method will be aoplied to statistical modeling, a brief review of 

some -of the above methods will be given in the following pages for compariso~~·-

2.4.2 Analytical Distributions 

The normal or Gaussian distribution is the best known statistical model. 

However, many phenomena cannot be adequately described by a normal distribution. 

Other models like the gamma, the beta, the Chi-Square, the exponential, the 

uniform, the log-normal, the Rayleigh, the Cauchy, the Weibull( 4) distributions, 

etc., could be successful models in describing soecific phenomena but, generally, 

these analytical distributions do not describe accurately most phenomena. 

Although some of these models do lead to a wide diversity of distribu­

tion shaoes, they still do not provide the degree of generality that is 

frequently desirable. This is illustrated by Figure 2.2. This chart shows the 

regions in the (s1 and s2) plane where various analytical distributions can be 

fitted, where s1 and s2 are the square of the standardized measure of skewness 
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and the standardized measure of peakedness respectively. Distributions shown 

include the normal, beta (uniform special case), gamma (exponential special 

case), the log normal, and the student t . distribution (a symmetric distribution 

that approaches the normal as its degree of freedom becomes arbitrarily large). 

All normal distributions (s1 = 0 and s2 = 3) are reoresented in Figure 2.2 by a 

single point; as are also the exponential and uniform distributions. The gamma 

and the log-normal distributions can be fitted for all value of s1 and s2 that 

fall on the curve shown near the centre of the chart. The beta distribution 

occuoies a region in Figure 2.2, and thus provides greater generality than any 

of the other distributions. 

7 

2 

3 

5 

·A 
6 

t 
~ 

~ 
~ 

"1il. 
- ~ 7 
-~ "' 
~ 

""" 
8 

0 1 2 If 3 4 

d . 'b t . (4,)
Fig. 2.2 Region in <[3i, AJ plane for various 1s tr1 u 1ons 



8 

I 
I 

Note that there is a large region of values of s and s that is not covered by1 2 


any of the above distributions. 


2.4.3 	 Empirical Distributions 

The main advantage of the empirical distributions over the analytical 

------ ones is the flexibility in covering a larger re~ion. However for some regions, 

the empirical distributions deviate from the actual ones by a significant amount. 

Other regions are not covered by any distributions. Two main empirical distri­

butions, Johnson's an~ Pearson'~, will be discussed very briefly. For more 

details and for details on other methods (like Cornish-Fisher expansion, Gram-

Charlier series and Edgeworth series) the reader can consult reference (3). 

Johnson distribution 

Johnson orooosed empirical distributions based on the transformation of 

a standard normal variate. An advantage of such a transformation is that 

estimates of theoercentiles of the fitted distribution can be obtained using a 

table of areas under a standard normal distribution. A disadvantage is that at 

least three ooints must be known to determine the final distributions, a method 

which limits itself to statistical modeling only. For more details the reader 

can refer to reference (5). 

Pearson distribution 

Karl Pearson proposed a group of distribution families. Each family can 

be generated as a solution to the differential equation 

(x - ¢	 ) f (x)df (x) = 3

dx 2 


¢0 + ¢1x + ¢2x 
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where xis the random variable with probability density function f(x), and the 

¢'s are oarameters defining a soecific distribution. The solution of this 

equation leads to a large number of distribution families. The descriptions of 

the procedure for fitting Pearson distributions to data are lengthy, since each 

family requires solution of a different . set of equations. The underlying 

principles are reviewed in reference (3) and the formulae for each family are 

given in reference (7). Reference (6) includes tables for Pearson's functions, 

and a discussion of procedures for using the tabulations to obtain percentiles 

other than those tabulated. It indicates their oossible use for the inverse 

problem of estimating accumulative probabilities corresponding to specified 

values of the random variables. 

2.4.4 The Maximum-Logarithmic Entrooy Distribution 

The following section and chapters deal with this method. The theory, 

the algorithm, the application, and a comparison with other methods is discussed 

in detail. 

2.5 FORMULATION OF STRATEGY OR PROBLEM 

In general, the problem could be summarized as the determination of the 

distribution of a random variable y which is a known function of n random variables 

x1, x2, ... xn. We may express this relationship as 

where the random variables are defined by their density functions, or by some of 

their lower moments. To the author's knowledge, three methods are known; the 

transformation of Variables technique, the Monte-Carlo Simulation, and the 
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generation of system moments. 

2.5.1 The Transformation of Variable Technique 

This method is applicable to finding the distribution of simole func­

tions of independent random. variables. The method is practicable for relatively 

simple situations. A fairly complicated relationship ma~ possibly be built up 

by a series of steps using three simple relations (multiplication, division, and 

addition) between two random variables(l). The method is a very powerful 

technique,' but only for independent variables. 

2.5.2 Monte-Carlo Simulation 

The method is based on the Monte-Carlo approach, in which actual exoeri­

ments to statistically define the required distribution are simulated numerically. 

It is applicable to dependent and independent random variables. Although the 

method is very accurate when the samole size is very large, it is expensive in 

computation time in comoarison with other methods. More details of the method 

are available in reference (9). 

2.5.3 	 Generation of System Moments 

For the general relation 

Siddall(l) shows that it is possible to aoproximate the moments of yin terms of 

the moments of xi's by using a truncated Taylor's series expansion about the 

expected values of the x1's. The aoproximate moments are 
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n 

c.lY = g ( ul ,u2' ... ,un) + -!{ i~l 
(2. 1 ) 

+ 2 II CJ.~}+lJ; j 

; < j 
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l
-	 2 
ag ( ul 'u2, ... '~n) J CJ? 

c2y = ax.L 	 , 
; =1 	 l 

2CJ .. 
lJ 

+ 	 \ \ag(u1 ,u2, ... un) 3 
2
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L L 3x. '"\x~ 
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i 1 j 
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ax. 
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(2.2) 

where c3i ~s the third central moment of xi' E(z) is the expected value of z. 

If the xi 1
S are independent, all terms but the first and third drop out. 

3 g(u1 ,u2 , ... ,Un) 

ax. 
J 

2x E[(x.-u.) (x.-u.)] 
1 1 J J 

ag(u, ,u2' ... ,un) ag(ul ,u2,··. ,un)
+ 

3 X· 
6 I I I ax. 

I Ji j k 
1 

i < j < k 

ag(u1 ,u2 , ... ,un) 
' x axk E [ ( xi - ui} ( ( x j - uj ) ( xk - uk ) J (2.-3) 
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If the xi's are independent, all terms but the first drop out. 1
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ax. 
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1 l J J 
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ag(u1 ,u 2 , ... ,un) E[( )( )( )( )]
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3 XQ, 
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1If the xi's are independent, all terms but the first and third droo out. 

The fifth and sixth moment could be obtained by a similar approach, but for 

simplicity, the first four moments are considered accurate enough to describe 

any oractical distribution. If more accuracy is required, the fifth, the sixth 

or the seventh moments should be considered. Using the above expressions, the 

first four moments of y can be obtained, if we know the first four moments of 

the x's. The first four moments can be calculated from statistical data, if 

necessary. 

The next steo is to generate the probability distribution of y in terms 

of its first four moments. The Johnson method cannot generate this distribution 

as it requires at least three percentiles to match, which in this case are 

unknown. The Pearson method and the Maximum Logarithmic Entropy method can be 

applied to generate the distribution, but the accuracy of each method is 

different. This will be considered in Chapter VII and Chapter VIII. 
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CHAPTER II I 

MAXIMIZATION OF THE LOGARITHMIC ENTROPY FUNCTION 

3.1 DECISION, CHOICE AND CERTAINTY(lO) 

Suppose there is a set of n oossible events whose probabilities of occurr­

ence are Pi, p2, ... Pn· These orobabilities are all that is known concerning 

which event wi 11 occur. Is there any measure of how much 11 choice 11 is i nvo 1ved 

in the selection of the event to make the decision, or of how certain we are of 

the outcome? If such a measure, S, is established it should satisfy three condi­

tions. The three conditions (given by Shannon)(lO) are: 

1) S should be continuous in the pi's. 

2) If all pi are equal, pi 1=n' then S should be a monotonic increasing 

function of n. With equally likely events the amount of choice or un­

certainty about the outcome increases with the number of possible events. 

3) If a choice is to be broken down into two successive choices, the 

original S should be the weighted sum of the individual values of S. 

The meaning of this is illustrated in Figure 3.1~ At the left we have 

four possibilities, for which 
1 

o1 = S' P2 
3 

= S' P3 
1 

= 3' P4 
1 

= 5· 

Figure 3.1 Decomoosition of a choice from four oossibilities. 
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On the right, we first choose between two possibilities, each with probability 

1; and if the first occurs we make another choice with probabilities t' !; and 

if the second occurs we make another choice with probabilities~' t· The final 

results have the same probabilities as before. We require, in this case, that: 

The coeffi~ient-} is due to the second choice occurring only half the time. 

3.2 	 THE LOGARITHMIC-ENTROPY FUNCTION 

Shannon showed that the only S satisfying the three above assumptions(*) 

i s of 	the form . 

s = -k I o. ,Q,n p. 	 (3.1)
' 1 1 

i 

The measure S is ca11 ed the entropy. It has had a ,long and i nvo1ved hi story. 

The word was originally coined from the Greek by Clausius in 1850 to mean trans­

fonnati on ( **). 

The entropy, S, has a number of interesting properties which further 

substantiate it as a measure of choice or certainty. Some of these properties are: 

1) S = 0 if and only if all the pi but one are zero, this one having the 

value unity. Thus, only when we are certain of the outcome, does S 

vanish. Otherwise S is positive. 

(*) For 	 the derivation see Aopendix ~ 

(**) 	 We suggest reference (11), for the reader who is interested in knowing the 
relation between this entrooy and the one used in thermodynamics. 
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2) 	 For a given n, S is a maximum and equal to k log n when all the pi are 

equal (i.e. P; =*). This is also intuitively the most uncertain situa­

tion. 

3) 	 Any change toward equalization of the probabilities p
1

, p
2

, ... Pn 

increases S. Thus, if p1 and we increase Pi , decreasing an equa1< p2 o2 

amount so that o1 and o2 are more nearly equal, then S increases. More 

generally, if we perform any 11 averaging 11 operation on the P; of the form 

p 	 - a .. P.i ­ 1J 	 J 
- I 

j 

where \ a - \ aji = 1, and all aij . ~ 0,L ij - L 
i 	 j 

then S increases (exceot in the soecial case where this transformation 

amounts to no more than a permutation of the Pj' when S of course remains 

the same). 

The above properties are due to Shannon(lO). An additional important 

property was discovered by Jaynes(l 2). Its direct aoplication is known 

as the Maximum-Entropy Principle. 

4) 	 For a given n, when all or some of the event probabilities are subject 

to constraints, or relations between each other, and if all pi 's are given 

unbiased values, then S is MAXIMUM. This is the most uncertain situa­

tion for the specified constraints. The principle can be used to choose 

an unbiased set of P; 's consistent _with known information about them. 

In case there are no constraints .imposed pn the problem, all pi 's should 

be equal, then S is maximum when it is equal to k log n, (which is the 

property (2)). 
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3.3 THE MAXIMIZATION OF THE ENTROPY FUNCTION 

We are interested in the case when prior information is available, and 

an unbiased distribution is required. The use of orooerty (4) is known as the 

"Maximum Entropy Principle", first introduced by E.T. Jaynes( ·2, 13 ). The 

following statement was put forward by him. "The minimally prejudiced proba­

bility distribution is that which maximizes the entrooy(*) subject to constraints 

suoplied by the given information." 

3.4 MAXIMIZING THE SO-CALLED GENERAL ENTROPY FUNCTION 

Although the Shannon derivation of the logarithmic entropy function 

(Appendix B) · demonstrates a convincing validity for the expression p in p, considered 

the so-called "General Entropy Function" introduced by Behara and Nath(l 4) which 

they say "in special cases, reduces to the Shannon entropy function". The func­

tion has the form 

(3.2) 


where 

a:s(Q,co) 

Now let us aoply condition (3) which is-- 11 If a choice be broken down into two 

successive choices, the original S should be the weighted sum of the individual 

values of S. 11 Assume a choice Pc is broken into pd' Pe and the results are Pa' 

pb. This is illustrated in Figure 3.2. 

(*) Jaynes meant Shannon's entrooy function (p i n o). 
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P, 

Fig.32 Successiv2 cho/Ces.. 

It is clear that Pa= pc.Dd and ob= re.Pe· By condition (3), 

(3.3) 


Substituting (3.2) in (3.3) gives 

Pa · - Pa a: Pb - Pb a: 0c - Pc a: o [ Pd - Pd o: Pe - Pe o::J 
- 1 + ,_o: = 1 ex: + · c 1 +---1
1 - 2-a: 1 - 2 l - 2 - 1 - 2 -a: 1 - 2 _a: 

We multiply both sides by [l - 2(l -o:)] a.nd substitute Pa = Pc Pd and Pb = Pc oe 

0:: 
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er: er:
Diving both sides by od + Pe - 1 

0:: 

(3.4) 

To satisfy this relation cc should be equal to 1. However, for a: equal to l, 

the so-called general entropy function reduces to the logarithmic entropy 

function, -p £n p. So the general entropy function does not appear to be valid 

except in the special case where it reduces to the Shannon-Entropy Function case. 
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CHAPTER IV 


THE MATHEMATICAL FORMULATION OF THE MAXIMUM 


LOGORITHMIC ENTROPY DISTRIBUTION 


4.1 	 GENERAL FORMULATION OF THE EXPRESSION DEFINING THE BEST ESTIMATE OF 
PROBABILITIES 

Quite often the information available from estimating probabilities is 

in the form of averages of certain functions, which we shall designate f r(x). 

That is, the form of the functions is known but all that is given is the mean 

value < fr(x) >,for each of the functions f1(x), f2(x), 

orobability distribution must be generated which agrees with these averages but 

is maximally-non-committed with respect to anything else. The problem may be 

stated mathematically as follows. Maximize 

m 

S = - K \ o . Q,n p . (4.1)L , , 

i = 1 


where 

( 4. 2) 

x. = the ith value of x 
1 

< f1(x) > = the mean value of f (~)1 
= 

= 

= 
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< fn(x) > = the mean value of f n(x) 

m = number of events 

Subject to the constraints 

I P; = (4.3) 

I P/1 (xi) = <fl > 

i 

(4.4) 

\ o. f (x.) = < f >L i n i n 
; 

Expression (4.4) can be written in the comoact form 

\ o . f . ( x . ) = < fJ· > j = 1 , 2 , . . . , n (4.5)L , J , 

i 


where equation (4.3) is the normalization equation, and expression (4.5) is a 

set of n equat i ons. 
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4.2 SOLUTION OF THE EXPRESSION BY CALCULUS 

4.2.l 	 Solution for the Discrete Probability Distribution 

Differentiating equation (4.1) with resoect top. gives. 	 1 

m 


I (£n p. + 1) do. = 0 (4.6)

1 	 1 

i = 1 

Differentiating equations (4.3) and (4.5) with respect to pi, keeping xi and 

< fj(x) > constant gives 

m 

I dp. = 0 (4.7)
1 

i = 1 

m 

L f. (x. ) dp. = 0 j = 1, 2, ... , n (4.8)
.J 1 	 1 

i = 1 

We multiply equation (4.7) by (- ~O - 1) and expression (4.8) by 

- .A j (5 = 1 , 2 , . . . , n) , where ), i ( i = 0 , 1 , 2 , . . . , n) are arbitrary 

functions (the Langrangian Multipliers). 

m 

(-;\0-1) I do. = 0 	 (4.9), 1 

i = 1 
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m 

- A • \ f. (x.) do. = O j = 1, 2, ... , n (4.10)
J L., J l l 


; = 1 


All exoressions in (4.10) are added, giving 

L 
n m 

- >. • \ f .(x.) = 0 (4.11)
J L J 1 


j := 1 i = 


·Equations (4.6), (4.9), and (4.11) are added 

m m


L (in P; + 1) do; + ( ~ >. 0 - 1) \ dp.

L 1 

i = 1 ; = 1 


m m 


A .L J r f.(x.) = 0
J lj = l i = 1 

Collecting terms gives 

m n 

.[ [in P; - >. - L } . f.(x.)] dp. = 0 (4.12)
0 J J l l 


i = l j = 1 


Equation (4.12) must be satisfied regardless of the variation dp .. Therefore,
1 

the quantity in the parentheses is equated to zero. 
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n 

R.n 	 P; - . A 0 - I . Aj f j (x;) = 0 

j = 1 


or 

n 


in o . = AO + \ A • f . ( X • ) 
· , L J J , 

j = 1 


Inversion gives 

n 

A. f.(x.). I- 0 + J J 1P· = e 	 L (4.13)
1 j = 1 

Substituting equation (4.13) in (4.3), gives 

n 

m m I ) . f. (x.)
I- 0 + 	 J 1 .Jo. = e . 	 = 1

' l 	 = 1I L J 

i = 1 i = 1 


so . that 

n 

m 
 A . f. (x.)I .J J le e 	 = 

AO I j 	 = 1 
i . = 1 
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This can be given the form 

n 
m I A • f. (x.)-:- A 0 J J 1e · = L e j·= 1 (4.14) 

i = 1 

or 

n 
m L ) . f. (x.)

J J 1 
. I- 0 = - in I e j = 1 (4.15) 

i = 1 

The x's may be determined in two ways. In the first method equation 

(4.15) is differentiated with respect to >x k (k = l, 2, ..._,n) 

n 

m L A· f.(x.)
f() J .J 1I k X; e j = 1 

a AO i = 1 (4.16)-a-Tk = n 

m 
 \ A. f.(x.)L . J J 1 

j = 1 

But, from equation (4.14) 

n 
m L "· f.(x.) - A 0

J J 1 = eIe j = 1 
i = 1 
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I 
Substituting this into equation (4.16), gives 

m 
m \' J.. f.(x.)L J J ,I f k(xi) e j = 1 

i = 1 
-J. 

e 0 

or 

But, from equation (4.13) 

n 

\ J.. f.(x.)L J J , 
j = 1 

Substituting this into the right hand side of equation (4.17), gives 

But, from equation (4.5) 
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I 
I 

m 
I 

> ;: 	 P.< fk 	 I fk(xi) 1 

i 

ih~?' 

(4.18) 


~ybstituting this into ·equation (4.16), gives 

n 
m A • f. (x.)IL f k (xi ) e j ::: 1 J J , 

i ~ 1 
< f k > ::: -----·------- rt---···- --· k=l,2, ... n (4.19) . 

m r A. f.(x.)\ · e .... J J ,
L j = 1 

i -;; 1 

Expression (4.19), contains n equations in n unknown, ( > 1 , A 2 , ... An). 

The solution of these then may be used in equation (4.15) to obtain ;, 0. Thus, 

al 1 constants (A , Ii 1 , ... An) in equation (4.13) 

n 


)_ 0 + \A· f.(x.)
L J J 	 ,p. = e 	 (4.13)
1 	 j = 1 

are known, and equation (4.13) represents the required probability distribution. 

Proceeding with the second method of solving for the x's, we begin again 

with equation (4.15). 
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n 

AO - :­ in 

m 

I ~ j 
I 
- 1 

A . 
J 

f. (x.)
J 1 (4.15) 

i - l 

Substitutin~ .into equation (4.13), gives 

n 
nL ;. . f. (x. ))


J J 1 +
~ Jrtn (. f e j :;:: 1 L A . fk(xi) JJP. (4.20)
l - 1 ;:: 1 j = 1 

n 

m [ ) . f. (x. )) n ~ 
m ,,,. in( [ e j = l J J , + L )j f j (xi ) [ 
\ i-1 j=l
~ fk(xi) e ­

i = l (4.21) 

k = 1, 2, ... , n 

Expression (4.21) contains n equations inn unknown, ( >- 1, A 2, ... An). These 

may, in principle, be solved simultaneously, and, as before, equation (4.15) is 

used to obtain A 0. So, again equation (4.13) is defined, and represents the 

required probability distribution. 

4.2.2 Solution for the Continuous Probability Distribution 

If the probabilities vary continuously, similar expressions can be 

obtained. Assume the values of xi are uniformly spaced, giving 
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x. = i ti x 
1 

where 

= ;min' ;min+ l, ;min+ 2 , · · · · · ';max 

We add, and substruct in 0. x on the right side of equation (4.15) 

n 
m L A. f .(x.) 

A = Q.n ti x - Q.n e J J 1 .0. x
0 I j = 1 


i = 1 


We assume that 6. x, is an infinitesimal. 

n 
\ )c . f.(x)
L J J dx) = Q.n 6. x - £n . 0 j = 1 

Substituting this in equation (4.13), gives 

n 

xmr I A • f . ( x) ) n J 
in t; x - 2n j e j = 1 J J dx + I A j f j ( x ) [ ( 

P. = e x . j = 1 
i min 
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n 
xmax n 

>c • f. (x) 
p. - £n I J J dx + f j (x")1 s e j = 1 I A j 
-= e'._\ x xmin j = 1 

In the limit of small ~x, the continuous probability density function of xis 

n 

A 0 + I )j fj (x) 
P(x) = e j = 1 (4.22) 

where 

n 
max 

x . I ). f. (x) 
>c = - Q,n J J dx (4.22.a). 0 e j = 1 


xmin 

j 

and all >c j {j = l, 2, ... n) satisfy relation (4.18) or relation (4.21), 

depending on which method is used. 

Use of the first method leads to 

a ( - in 

< f k(x)> (4.23) 

k = l, 2, ... n 
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\
L 

:\ . 
J 

f . ( x)) dx 
J 

(4.24) 

x . j = 1 
mm 

k = 1, 2, ... n 

J 

and the second method results in, 

xmax 

Expression (4.23) or expression (4.24) consists of n equations in unknown :\ k 

(k = l, 2, n). Solving them simultaneously gives the values for A k 

(k = 1, 2, n), and then >0 is obtained from equation (4.22). 

Expression (4.23) or (4.24)(*) consists of n non-linear equations, and 

in general for such expressions more than one solution may exist. Each solution 

lies at a saddle point or a local extremum of the entropy function S. However, 

if it can be proven that the value of S obtained is a global maximum, then there 

will exist only one solution for exoression (4.23) or exoression (4.24). 

4.3 	 PROOF THAT S IS A GLOBAL MAXIMUM( 2) 

If we consider two functions, S and G, defined as follows 

S = - LP; 2n P; = max G = - I 9i in 9; = max 

.L Di 	 = l L 9; = 1 

\ f (x.) 	p. = < f (X) >L r 1 1 r 

oi = exo ( :\ 0 + L )\ . f.(x.)}
J J l 

j 

(*) also expressions (4.19) or (4.21), for discrete distributions. 
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I 

Where the pi 's are defined in the last equation. The gi represent any set of 

non-negative numbers which satisfy the equations of constraint. The problem 

now is to prove that Sis greater than or equal to G for all possible gi. 

Consider the function 

S - G = - [ Pi tn pi + I gi tn gi 

; 


We add and subs tract .I gi tn pi, 

\' g. 

S - G = [ ( gi - pi ) in Pi + L gi tn (f)


. 1 

We know that tn pi = ). 0 + 	 I ~· r f r(x;). Substituting this for the first 
rsum gives 

S - G = I (9i - pi) ). 0 + I I A (g. - o.) f (x.)r 1 · 1 r 1 
i i r 

I 
g. 

+ 9. tn (-1) 
1 P· 

i 1 

s - G = - A 0 L pi + A() L 9· + L Ar [ L g. f (x.)
1 1 r l 

i r i 

9· 
(-1)L P/r(xi)] + I 9; in p. 

i l 

In view of the constaints, several terms cancel and therefore: 
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I 
g. 

(_,)S - G = · g . .Q,n (4.25) 
; 

1 p.
1 

Q.· is defined as 

Q. = g. in g. - g. in p. - g. + o. (4.26)
1 1 1 1 . , 1 1 

. Using LP; = l, and L9; = 1, and (4.16) in equation (4.25), we get 

s - G = L Qi ( 4. 27) 

We next differentiate equation (4.26) with respect to gi twice, to give 

aQ. 

-

1 = in g . - in o . 
ag. , . , 
1 

Therefore, the first derivative vanishes at 9; =pi. Since fi is always positive, 

the second derivative is always positive and therefore the point gi = pi defines 

a minimum, not a maximum for Qi. At gi = pi, Qi is zero. Therefore the func­

tion Qi is always non-negative and its minimum possible value is zero. Therefore 

{S - G) is non-negative for every choice of gi and pi, and zero for gi =pi. We 

can conclude that the solution for Sis a global maximum, and there is ·only one 

solution for expression (4.23) or (4.24). 
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CHAPTER V 

THE ALGORITHM FOR GENERATING THE MAXIMUM LOGARITHMIC ENTROPY 

DISTRIBUTION CONSTRAINED BY MOMENTS 

5.1 INTRODUCTION 

It may be recalled from Chapter IV, that usually the information avail­

able from estimating probabilities is in the form of averages of certain func­

tions, more specifically not any type of functions, but rather the central 

moment - functions. In this thesis the central moment functions are used as 

contraints to generate the distribution for two main reasons. We wish to be 

able to use the studies and the work done in the area of statistics and decision 

making, for example see Chaoter II, and we wish to make a comparison between 

the new method, and the existing methods which use the moments as orior information. 

Before proceeding to the algorithm, some mathematical relations are 

established to be used later. 

5.1.1 	 The Relation Between the mth Moment about the Origin and about the 
Expected Value 

We define the following quantities 

x. is a 	random variable 

< x > is the expected value of x 

By the binomial theorem, 

2( x - < x >) m = xrn + ( - 1 ) m xm - 1 < x > + ( -1 ) 2 m ( m 2! 1 ) xm - 2 < x > 

+ . . . + . . . + (- l)m < x >m 
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The right hand side can be rewritten as, 

m 
(x - < x > )m = k m! xm - k < x > kI (-1) k! (m - k)! 

k = 0 

Taking the expected value of both sides, 

m 
k 	 m! m k k

< ( x -	 < x > ) 111 > = .I (5.1)(-1) k ! (m - k) ! < x - > < x > 

k = 0 

The term -;: (x - < x > )m > presents the mth moment about the exoected va1 ue, and 

the term < xm - k> oresents the (m - k) th moment about the origin. A Fortran 

program (Appendix C) is used to calculate the moments about the origin from 

the moments about the expected value using equation (5.1). 

5.1.2 	 The Relation Between the Moments of a Distribution and the Moments of its 
Transform 

X2 MIN X1"111v X.iHAX 	 x 

Figure 	5.1 Probability distribution and its transform. 
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Assume curve I in Figure 5.1 represents a probability distribution, 

whose lower and higher bounds are XlMIN, and XlMAX, respectively. This curve 

is transformed to another domain, curve II in Figure 5.1, whose lower and 

higher bounds are X2MIN, and ·X2MAX, respectively. The relationship between 

the moments of curve I and curve II in Figure 5.1 will yield the relationshio 

between the original and transformed moments. 

It is obvious from Figure 5.1 that the relation between the trans­

formed point 2, in curve II, and its original point 1, in curve I is 

XI - XlMIN 

= X2MIN + S 


where 

XlMAX XlMINs ­ X2MAX - X2MIN 

The first moment is a location factor, and therefore the first moments 

are related by 

c1 - XlMINIX2MIN + (5.2)s 

This can be generalized for the ith moments if we define the following 

ci is the ;th moment for the original curve 
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ci 1 is the ;th moment for the transformed curve 

By definition 
X2MAX 

s 
X2MIN 

Using (5.2) gives 

XlMAX 

J 
s i . x 1 - Xl MIN CI - XlMINi = (X2MIN + I X2MIN - ) s Fx1 dxCII s s 

XlMIN 
s 

XlMAX X cl; 

= J ( I ~ I) FXr dx 


XlMIN 


XlMAX 
= J 

XlMIN 

By the definition of central moments, 

(5.3) 

Appendix C contains a Fortran Program to calculate the transferred moments from 

the original moments. 
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I 
5.1 .3 '.The Relation Between the Maximum Logarithmic Entropy Distribution and 

Its Transform 

y 

x 

Figure 5.2 Probability distribution and its transform. 

In Figure 5.2, if the probability distribution I is represented by the 

equation 

m 

y = exo ( /._ 0 + I (5.4) 

i = 1 

and has lower and higher bounds XMIN and XMAX respectively. This distrjbution 

' ' is transformed to the position II with a lower and higher bounds XMIN and XMAX 

respectively, and is represented by the equation 
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n 

y = exo ( /...' 0 + L 
i = 1 

We wish to determine the re1ati onshi p between the i .J s and /... !s.
1 1 . 

_ We first define 

j =1,2, . ,n 


' ' 
S = 	XMAX - XMIN 

XMAX - XMIN 


' A =5.XMIN - XMIN 
· S 

The relation between the transferred point (2) in curve II, and its original 

point (1) in curve I is 

' ' ' X - XMIN X x = XMIN + S = A + S­

' 
y = s y 

Substituting in equation (5.4) gives 

n i 
' 

S y" = exp ( /... + L /... i (A + ~ ) ) 0 
i = 1 

or 
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I 

I 
I 

n 
x 
~ 

y' = exp [-1 og S +. A + ·--I [ ;,_ i (Ai + i Ai ­
0 s 

i = 1 

+ i( i - 1) A(i - 2)(L) ' 2 + + i(i - 1) (i - 2) •..• (i - k + 1) 
2! s k !· 

i 
' + ... + (~ ) ] 

Collecting terms, we get 

n n n
x' .j' . A. Aiy = exp (-log S + +L I L1 sj

i = 0 j = 1 i = j 

(5.5) 

i ( i - 1 ) ( i - 2 . j • • • ( i - j + 1 ) ~i - j l A. ) 
l. J 

We could write equation (5.4) in the form 

n 

y' = exp p,'0 + (5.6)I 
j = 1 

Comparing (5.5) and (5.6), it follows that 

n 


. .A 0 = - £n S + I 
 (5. 7) 

i = 0 
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n 
, i I i ( i - 1 ) ( i - 2) . . . ( i - j + 1 ) A(i - j) "' 
Al=~ j, A j.

i = j 
(5.8) 

j = l, 2, ... , n 

In Appendix C, the last two equations are expressed in FORTRAN language. 

5. 2 SOLUTION FOR THE A I s 

5.2.1 Expression Formulation 

Recall from the previous chapter that the maximum entrooy distribution 

is 

n 

p(x) = exp ( A O + r :X j xj) (5.9) 

j = 1 

where the A 's satisfy the equations 

n 

A O = - .Q..n exo ( I A j xj) (5.10) 

j = 1 

a) o 
= - c ck k = 1, 2, ... , n (5.11)a :X k 

Using the Simoson's rule multipliers for numerical integration to evaluate the 

integration in equation (5.10), we get 
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I 
m n 

A. O = - ,Q,n .[ [Si exo(A 0 + I. A. o x1 )] (5.12) 
; = 1 j = 1 

where 

S. = the Simpson's rule multipliers
l 

m= number of integration stations 

Equation (5.12) is differentiated with respect to A.. (j = 1, 2, ... , n),
J 

holding all other variables constant. 

n 
m j

A jL s. 
l 

x~ exp ( j 
I 
= 1 

Xi) 

a AO 
 i = 1 
~=- (5.13)n

J m A • x~ 
J lI s. exp ( j ~ 1 )l 


i = 1 


where j = 1 ' 2' . ' n 

Substituting in equation (5.11), gives 

n 

L ) j .L 
m 

s. 
l 

x~ 
l exp( j = 1 

x~) 

; = 1
c c. = R. (5.14)

J n J 
m LA. x~ )lL s. 

l exp ( j = 1 J 
; = 1 

nj = 2' . ,1 ' . 
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where Rj is a residual function equal to a very small number. Squaring and 

summary over all the j's, we get 

n 
2m L A. x~ 

( ' J l ) exp jLS; x~ = 1ln n 
; = 1 (5.15)

J 
c c.R = I R~ = L· nJ 

m Lj = 1 j = 1 

I 
x~ 

s. 
l exp ( j = 1 

l ) 
; = 1 

Asolution exists for R ~ E, where E is a very small number. 

The c ·c.•s vary in value* and to obtain a solution that has the same 
J 

relative allowed error we divide equation (5.14) by C Cj. Then equation (5.15) 

would be 

n 

2 
n [ __[_s_i_xJ-~_ex_n_C_·L_=_1_:x_j_x_1) ] 

R = (5.16) 
j t 1Rj = j ~ 1 - i = 1 n SJ.· 

c cj Si exp L :x j 1 
j = l 

By using equation (5.16) as an optimization function and solving it by some 

appropriate nonlinear programming technique, a solution can be obtained either 

at R ~ c: or Rj ~ s, where s is a very sma 11 number. 

*This ooint can be illustrated by a numerical example. Assume the C Ci's are 
.5, lE-2, 5E-5, 3.5E-10, and the solution is required when R ~ 1 .E-12, a 
solution could be obtained at C C.'s values equal to .5000004, .0100003, · 
.0000504, . 0000007. Although the 1errors in the f irst and second moment are 
negligible, they are significant in the third and fourth moment. 
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5.2.2 Gradient Evaluation 

The most successful optimization algorithm found for this problem 

requires the evaluation of the ootimization function and the gradient vector 

at any given noint. Each element of the gradient vector is the partial diff­

erential of· the optimization function with respect to a variable. 

g. _a R 
1 -~ (5.17) 

1 

Equation (5.16) is differentiated with respect to :A •• 
1 

n 

n I n~ 


i = 1
g. = }](1 
1 

() 
) x1 n 

j = r c. n."' J I 1 
i = 1 

(5.18) 

n 

m n 
 2 

0 L 2jn. -( I n~n.L 1 j1 = 1 

i = 1 j = 1 


2 
) J 

m 

c c. 
J (~,nn 

where 

n 


n~ = Si x~ exp ( [ A k x~) 

k = 1 
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I 

! 

5.3 DEFINITION OF DOMAINS 

We have seen in Section 5.1 how we may set up an optimization function 

to define the A's. We are interested in finding the maximum-logarithmic entropy 

distribution of a random variable x, given the numerical value~ of its n first 

moments, and the lower and the higher bounds of. x. It can be seen in equation 

(5.16), that it is required to evaluate x2n , where n is the number of given 

moment, and x varies from the lower bounds to the higher bounds. We thus must 
7evaluate x~~x· If we · assume, for illustration, that n = 6 and xmax = 10 , 

then x~~x = 1084 . If we examine equation (5.16), we find that this value will 

be multiplied by some other oossibly large values, so computer overflow is 

likely to occur. 

To overcome overflow, x should be bounded by two members less than 1, 

so that x2n will be less than 1 at all times. If the random variable x varies 

between xmax and xmin' we shall call the range between xmax and xmin the 

original domain. To overcome the overflow difficulty, we shall solve the oroblem 

' ' ' ' at other 1ower and higher bounds, xmax and xmi n, where xmax ~ 1. and xmi n < 1. 

We shall call the range between x and x . the modified domain.max m1 n 

5.4 STARTING POINT ASSUMPTION 

Most of the nonlinear programming techniques require a starting point 

to start the optimization algorithm. Theoretically, the final solution does 

not depend on the starting(*) point (in other words, with different starting 

points, there is only one final solution); but in practice, the selection of 

a bad starting point could lead to a solution with an excessive computer time 

or no solution at all, depending on the optimization-algorithm used. Usually 

(*) This is not true in the case of a local optimum solution, but in the case 
discussed in this thesis there is only one global optimum solution. 
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a good starting point is a point near to the final solution. Below, we shall 

introduce four methods used to select a starting point, in order to orovide an 

alternative if one method fails. 

5.4.1 The Normal Assumotion Starting Method 

This method is suitable for small n. It is based on the well known 


fact that a normal distribution approximately represents many distributions. 


Thus a normal distribution for a start should often work well. If c1, c2, 


· ... , C~ are the first n central moments for a distribution, the best normal 

distribution that satisfies these moments is 

y = exo ( A 0 + A 1x + A. 2x2 + . . . +. A nxn) 

where 

c, 1 
A 1 = C2 , . A 2 = - 2C2 ' A. 3 = A. 4 = . . . = A n = zero 

5.4.2 The Uniform Assumotion Starting Method 

This method is for small and large values of n. Some of the distribu­

tions like the J shape and the U shape cannot be approximated by a normal, and 

a uniform distribution would be preferable. All A's values are zero except 

5.4.3 The (n + 1) Points Starting Method 

This method is suitable for only -large n. If c1, c2, ... , en are 

the first n central moments for a distribution, and xmin' and xmax are the 

lower and higher bounds respectively for this distribution, it is required to 
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find an approximate probability distribution curve that has the form 

(5.19) 


and satisfies the above information. 

We assume (n + 1) ooints equally distributed between the lower and the 

higher bounds and select corresponding values for f(x) that satisfy the given 

moments. The moments are defined by 

~ ( x - C ) j f ( x) dx = Cj j = 2 , 3 , • • • , n1 

~ f (x) = 1 

The integrals may be approximated by Simpson's rule for (n + 1) points 

n + 1 

L $. X· f. = Cl (5.20)
1 1 1 

i = 1 

c. j = 2, 3, ... , n (5. 21)
J 

n + 1 

I 
i = 1 

n + 1 

s. f. = 1 (5.22)I 1 1 
i = 1 
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where 

Si's the Simpson's rule multipliers 

xi's the assumed (n + 1) points 

fi 's the corresponding density function values 

Equations (5.20), (5.21), and (5.22) are (n + 1) linear equations in (n + 1) 

unknown (fi 's). Using Cramer's rule these values can be obtained. Substituting 

these values in equation (5.19), another (n + 1) linear equation can be formu­

1 ated and solved to get the values of ~ 's. 

5.4.4 Steo By Step Starting Method 

This method is suitable for only. large n, and when all other methods 

fail to drive a solution. The method starts by obtaining the Maximum Logarith­

mic Entropy Distribution which satisfies the first two moments only. The 

resulting .A's, together with .A 3 = 0, are used as a starting point for a new 

Maximum Logarithmic Entropy Distribution which satisfies the first three central 

moments. This is repeated, increasing the number of moments and finding the 

corresponding Maximum Logarithmic Entropy Distribution, until the number of 

moments equal to n. 

5.5 THE OPTIMIZATION TECHNIQUE 

Recall from Section 5.2.1 that an appropriate nonlinear programming 

technique is required . to solve equation (5.16) for the final solution. An 

approximate technique is one which finds a solution in the least amount of 

computation time. Only two techniques have been found by the author which are 
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caoable of achieving the above--the Jacobson and Oksman method( 20), and the 

new Fletcher method( 2l). Since the computation time in Jacobson and Oksman 

method was found less than in the new Fletcher method, it was decided to use 

the Jacobson and Oksman technique in the maximization of the logarithmic entropy 

function algorithm. 

5.6 THE MAIN ALGORITHM 

Th~ main algorithm is des~ribed below step by step, and a flow chart 

for the algorithm is shown in Figure 5.3. 

1) Transfer to the modified domain. 

First define the modified domain, then calculate the transferred moment 

in this domain from the original domain, using equations (5.2) and 

(5.3). 

2) Calculate the moment about the origin. 

· Using equation (5.1), calculate the moment about the origin from the 

moment about the expected value. 

3) Formulate the problem. 

Using equation (5.15) formulate the optimization function, and equa­

tion (5.18) for the gradient. Set a tolerance values, and assume a 

starting point using one of the methods discussed. 

4) Solve the problem. 

By using any appropriate nonlinear programming technique, start 

optimizing, checking after each iteration the residual values. If 

R.
J 

< s (j = 1, 2, ... , n), the current values of ). 's are the 

solution. If for any reason, the nonliriear programming technique fails 

to get Rj < s (j = 1, 2, ... , n), select another starting point 

using an alternate method discussed in Section 5.4, and start optimizing 
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5) 

6) 

7) 

till Rj <e: (j = 1, 2, ... , n). 

Calculate .Ao· 

Using equation (5.12), calculate Ao· 
Transfer back to the original domain. 

Using equations (5.7) and (5.8), calculate all :A. (j = 0, 1, 2, ... ,
J 

at the original domain. 

The solution. 

With the val u~s of the ) . . 's obtained from the orevious step, formulate 
J 

the probability distribution expression, which is in the form 

n) 

y = exp ( :A 0 + ). 1x + >­ 2x2· + . . . + . • . + :A nxn) 

where 

x the independent variable 

y the probability density function of x 

:A. 
J 

constants, calculated from Step 7, j = 0, 1, 2, ... , n 
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CHAPTER VI 


THE MAXIMUM LOGARITHMIC ENTROPY IN STATISTICAL MODELING 


FOR THEORETICAL POPULATION 


6.1 GENERAL 

Two methods are used to illustrate that the Maximum Logarithmic Entropy 

Distribution in an effective statistical model. The first method is by 

approximating the well known analytical distributions. The second method is by 

aporoximating the actual oooulation and comparing these aooroximattons with other 

existing methods. The second method will be considered in Chapter VII. 

6.2 APPROXIMATING THE WELL KNOWN ANALYTICAL DISTRIBUTIONS 

Most of the well known analytical distributions represent a pooulation 

and are derived from actual oopulations of a specific type. An illustration 

of how the Maximum Logarithmic Entropy Distribution is an approximation to 

most of the analytical distributions, illustrates at the same time how the 

Maximum Logarithmic Entropy Distribution approximates the corresponding actual 

populations. Assuming that the analytical distributions are actual populations 

provides us with a variety of distributions amenable to the digital comouter. 

The first moments of an assumed actual distribution are calculated, 

and then the approximated Maximum-Logarithmic EntroP.f Distribution is generated 

from these moments. A comparison is then made between these two curves. For 

each analytical distribution, the first moments have been calculated from the 

following known relations 
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c, = )( f (x) dx 

(6.1) 

c. - . (x - Cl)i f(x) dx, i = 2, 3, ... 'n 
1 

where 

x independent variable 

f (x) probability density function 

the lower boundxmin 

x the upper bound max 

In the case where there is no definite value for the bounds, a reasonable 

value is taken so that the area beyond this value is negligible in comparison 

with the bounded area. The curve in the bounded area is then normalized. The 

approximated Maximum Logarithmic Entropy Distribution has been generated from 

these calculated moments with the same upper and lower bounds. Subroutine 

MEP in Appendix C has been used to generate the distribution, and the allowed 

relative error in the moment values for the solution has been taken equal to 

l o- 6 . 

Note that c1 in the equation is ·:he mean or expected value of a dis­

tribution, and is not a central moment whereas the Ci 's are the central moments. 
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However, for convenience, the term central moments has been used to define all 

moments, including the expected value. 

In some cases the first moment (the exoected value) is presented as the 

only available information to generate the distribution. The result is usually 

an exponential distribution, as -.Tribus (3) demonstrated; but in some cases, 

where the mean value is in the midway between the lower and upper bounds, the 

generated distribution is found to be a uniform distribution. However this is 

a special case of the exponential. 

Our knowledge of the distribution can logically be extended to the 

next higher moments in turn, and the distribution can be generated based on 

this kn owl edge. In each step a comparison is mad~ between the ass urned actua1 

analytical distribution and its approximated Maximum Logarithmic Entropy Dis­

tribution by computing the percentage area they have in common. The two distri­

butions are plotted together to show the deviation of the approximated curve 

from the actual one. The following analytical distributions have been surveyed, 

with various parameters-gamma, beta, Weibull, Rayleigh, exponential, Cauchy, 

and log-normal. The Weibull is oresented in detail in the following section to 

give a visual illustration of how the accuracy varies with the number of moments. 

6.3 	 EXAMPLE: THE WEIBULL DISTRIBUTION 

The Weibull Distribution is represented by the equation 

n - 1 x n
f (x) = !l (~) exp [-(-) J 

a a 	 a 

for n = 2, a= 1, and uooer and lower bounds = 4.00 and 0.0. The method discussed 

in Section 6. 1 has been apo1 i ed for n = 1 , 2, , 5, where n is the number 

of known moments. The results are summarized in the following oages. 
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WEIBULL DISTRIBUTION (W3) 


n - 1 
n (~) exp [-(

x 
) 
n 
], n = 2.0, cr = 1.0, x ~ 0 

(J (J 0 

f(x) = 

0, elsewhere 

Central moment values: 0.88623 0.21460 0.06274 

0.149436 0.12793 

Standardized moment measures( Is,, s2): 0. 63108 3.24484 

Upper and lower bounds: 4.00 0.00 

Type of curve: (bell shaped) 

Table 6.1 Common area between Weibull Distribution (W3), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known Percentage of area in 
first moments common between the two 

curves 

1 69.96 

2 94.66 

3 96.52 

4 97.76I 
5 98.22 

J 
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Figure 6.1 Aooroximating Weibull Distribution (W3), (n = 2.0, a= 1.0), bv a 

Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first moment 

Central Moment value: .88623 

~values (for M.L.E. Distribution): 0.071002 - 1 .05799 

Percentage area in commo~ between the two distributions = 69.96 
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i:lCTUJ'.=ll DIST. 

M.L.E. DIST • 

; 
i 
I 

!
• 
!•• 

; 
; 

0.00000~~~~~~~~-4-~-4-~-l=~a.+---~---+-----l 

o.o .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 
x 

• 84891 

.75458 

.66026 

.56594 

• 47161,..... 
x 
'-J 

LL 
.37729 

• 282 97· 

.18865 

.09432 

Fiqure 6.2 Aooroximatinq Weibull Distribution (W3), (n = 2.0, 0 = 1.0), by a 

Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first two moments 

Central Moment values: 0.88623 0.21460 

Avalues (for M.L.E. Distribution): - 1 .46238 + 3.05017 - 1 .85157 

Percentage area in common between the two distributions = 94.66 
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• 86439 

.67230 

.57626 

.48022 
x-l1.. 

.38 417 

• 29 813 

.19209 

.09604 

i 
; 
; 
; 
,· 

i:ICTUl=IL DIST. 

M.L.E. DIST • 

0.00000-f-~-+----+-~-+-~4-~-+-----J...::==~--+---.+---i 

o.o 

Figure 6.3 Aooroximatin9 Weibull Distribution (W3), (n = 2.0, a= 1.0), by a 

Maximum-Logarithmic Entrony Distribution (M.L.E.), based on the first three 

moments 

Central Moment values: .88623 .21460 ~06274 

} values (for M.L.E. Distribution): - 1 .81044 + 4.59126 - 3.51649 + .49278 

Percentage area in common between the two distributions = 96.52 
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~·'. M.L.E. DIST • 
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o.o .4 .a 1.2 1.s 2.0 2.4 2.s 3.2 3.s 4.o 
)< 

Figure 6.4 Aooroximating Weibull Distribution (W3), (n = 2.0, a= 1.0), by a 

Maximum-Logarithmic Entroov Distribution (M.L.E.), based on the first four 

moments 

Central Moment values: .88623 .21460 .06274 .14944 

) values (for M.L.E. Distribution): - 2.20213 + 7.01450 - 7.57698 + 2.94650 

- .47666 

Percentage area in common between the two distributions = 97.76 

• 88873 

• 78998 

.69123 

.59248 

x 
.49374 

.39499 

.29624 
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.09875 
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Figure 6.5 Aooroximating Weibull Distribution (W3), (n = 2.0, a= 1.0), by a 

Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first five 

moments. 

Central Moment values: · .88623 .21460 .06274 .14944 .12793 

~values (for M.L.E. Distribution): - 2.39810 + 8.65600 - 11 .51497 + 6.76357 

Percentage area in common between the two distributions = 98.22 



62 


6.4 DISCUSSION OF THE WEIBULL EXAMPLE 

The accuracy of the approximated curve, which is represented by the 

area in common between the Maximum Logarithmic Entropy Distribution and the 

assumed actual distribution, increases as the number of known moments increases. 

This would be anticipated since higher moments represent increasing knowledge 

about the independent variable (the Weibull distribution in this case). The 

above can be observed in Table 6.1. 

For only one known moment (the expected value), the result is as 

expected, an exponential distribution; and for two known moments the result is 

a normal distribution (see reference (2)). 

The accuracy of 98.22 per cent for five moments is a good aoproximation, 

and shows the Maximum Logarithmic Entropy as a reliable approximating method 

in statistical modeling. 

6.5 GENERAL SURVEY OF THE APPROXIMATED ANALYTICAL DISTRIBUTIONS 

The method discussed in Section 6.2 has been used for different types 

of analytical distributions, and different shape parameters (if there are any) 

for each distribution. For each curve the following procedure is used: 

1) A symbol is given, to designate each curve. They are listed in Table 

A.l (Aooendix A). 

2) The Maximum Logarithmic Entropy Distribution has been predicted for 

different number of known moments. The actual and its approximated 

Maximum Logarithmic Entropy Distribution are plotted together to show 

the deviation of the approximate curve from the original one. The 
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plots are shown in Appendix A (Figure A.l to Figure A.34). Note that 

for each curve only one comparison figure between the original and the 

approximated curves is plotted, unless a criteria would be demonstrated. 

If we wish to know how to choose the Maximum Logarithmic Entropy Dis­

tribution approximation is to any analytical distribution stated in Table A.l, 

the following steps should be followed. 

1) Find the symbol for the required distribution in Table A.l. 

2) Find this sym~ol in (s1, s2) plane (Figure 6.7) and note beside it the 

symbol suggesting the shape of the curve and the number for the per­

centage area in common between the analytical curve and its approxima­

ti-0n Maximum-Logarithmic Entropy Distribution. 

3) Table 6.2 also gives the figure number for the illustration of the two 

curves, and the table member for . the comparison between the two curves 

for different known first moments. 

The variation of the parameters involved in the exoression for most 

analytical distributions, leads to different shapes for the same general distri­

bution. However, most of them are similar. To illustrate most of the known 

distributions in the restricted space of Figure 6.7 (s1, s2 plane), different 

specific values of these parameters have been chosen to represent the different 

shapes for any distribution in a minimum number of curves. As an example, the 

Weibull distribution can take an infinitenumber of shapes, most of them are 

similar, and are included in the four following categories: 

1) the skewed bell-shaped type 

2) the symmetric bell-shaped type 

3) the exponential type 
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4) / the J-shaoed ~pe 
! 

So according to the above condition only four shape parameter (n) of the Weibull 

distribution have been chosen to present the distribution in Figure 6.7 

6.6 DISCUSSION OF THE GENERAL SURVEY 

The results illustrated in this chapte~ and in Appendix A, shows the 

flexibility of the Maximum Logarithmic Entropy Distribution to reoresent almost 

any kind of population. In cases of bell-shaped distributions, the area in 

common between the an~lytical distribution, and the Maximum Logarithmic Entropy 

Distribution having the same moments as the analytical one (or its approximate), 

varies between 96.81 per cent (in the case of the gamma distribution) and 100.00 

per cent (in the case of the normal distribution), indicating that the Maximum 

Entropy Distribution is close to the assumed actual distribution. However the 

-·eauchy Distribution is an exceotion to the above figures (see Figures A.27_, A.28) 

and TablesA28,49.It is a symmetric lonq-tailed distribution, and very rarely 

occurs in practice. Investigating the various distributions in Figure 6.7, 

we can see that all distributions concentrate in the area where 0.0 < s1 < 4.0, 

and 1 .0 < s2 < 9.0, which we can consider the practical region for the probab­

ility distributions, and all the results inside this area are acceptable and 

reasonable, but as we move outside this region, the accuracy starts to decline, 

and the further we go the less accura~y we obtain. This is quite observable 

in the Cauchy distributions, the accuracy is better in the distribution near to 

the above region (C2) than the far one (Cl). 

In cases of J-shaped distributions the situation is not as good as in 


the bell-shaped distributions. The Maximum Logarithmic Entropy Distributions 


have an area corresoondence with the actual ones from 100.00 per cent (in the 


case of the exponential distribution (E)) to 79.92 (in the case of the Weibull 


http:TablesA28,49.It
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distribution (Wl)). In the case of the U shaped curve the deviation is reason­

able, the percentage area in common between the two curves is 92.15 percentage. 

In most of the cases the accuracy increases as the number of known 

moments increases. This would be anticipated since higher moments represent 

increasing knowledge about the independent variable. But, the error involved 

in finding a solution (error in Lagrangian Multioliers _ A's) for higher 

moments is greater than the error in a solution for a lesser number of moments. 

In addition to the error obtained from calculating the distribution for higher 

moments is less than the error obtained from calculating the distribution for 

lower moments. In other words, if an error has occurred in the independent 

variable x, the expected error from calculating the dependent variable y for n 

moments is more than the exoected error from calculating the dependent variable 

y for (n + 1) moments. This can be illustrated for n = 1 

y = exp ( A. + A. x)1 0 1 

2y = exp ( A. 0 + )_ 1 x + A. 2 x ) 
2 

Obviously the error in y2 is more than the error in y1, for a given error in x. 

Thus, although increasing knowledge about an independent variable helps in 

predicting its distribution more accurately, on the other hand, the error in 

the prediction process increases as our knowledge increases. So in each step 

of increasing knowledge there is a gain in accuracy counteracted by a loss also 

due to numerical error. If at a certain stage of knowledge the accuracy 

achieved its maximum, we can exoect a decline in the accuracy in the next step 

of increasing knowledge. This is noticeable in the gamma distribution [G3, 
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Table (A.4)], where an accuracy of 100 per cent is achieved for the first two 

moment, but there is a decline as the number of moments increases. It can 

also be observed in the following distributions; Beta (B.7), exoonential (E), 

Weibull (Wl), uniform (U), normal (N), truncated normal (TN), half normal (HN). 

The amount of loss in accuracy is, however, not significant. 
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CHAPTER VII 

STATISTICAL MODELING ON ACTUAL DATA AND COMPARISON WITH OTHER METHODS 

7.1 GENERAL 

This chapter will make a comparison between the Maximum Logarithmic 

Entropy Method and the Johnson and Pearson methods using problems in the 

references. The existing solutions are comoared with solutions by the new method. 

7.2 THE COEFFICIENT OF FRICTION PROBLEM 

7.2.1 Comparison with Johnson Method 

This problem is given by Hahn and Shapiro (reference (1), page 219). 

Measurements of the coefficient of friction for a metal were obtained on 250 

samples. The actual and the predicted va~ues by Johnson method are summarized 

in the first three columns in Table 7.1. 

The following moments values were calculated from Table 7.1. 

cl = 3.448 x 10-2 

c2 = 9.238 x lo- 5 

c
3 

= 4.860 x 10-7 

c = 2.742 x 10-B4 

The upper and lower bounds are assumed from the given data 

XMIN = .010 

XMAX = .065 
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Table 7.1 Comparison of predicted per cent observations by frequency classes 

for Johnson's Distribution Fit to Coefficient of Friction for 250 samples versus 

predicted per cent observation by the Maximum Logarithmic Entrooy Method. 

Predicted per cent of 
Actual per Observations 

· Cent of 
Coefficient of Friction Observation Maximum LogarithmicJohnson 

Method Entropy Method 

Less that 0.0150 0.4 0.7 .57 

3.6 3.3 3.510.015 to 0.0199 

0.020 ·to 0.0249 1o.9612. 0 10.8 

0.025 to 0.0299 17. 6 19. 5120.0 

0.030 to 0.0349 23.2 22.5 22.22 

0.035 to 0.0399 18.0 17.9 18.06 

0.040 to 0.0449 11. 6 11. 5 11. 64 

0.045 to 0.0499 6.8 6.4 6.57 

0.050 to 0.0549 3.6 3.5 3.57 

0.055 to 0.0599 1. 6 2.051. 7 

0.060 or more 1.361.6 1. 7 
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The Maximum Logarithmi~ Entropy Method is aoolied to the above data, and the 

results are shown in the fourth column in Table 7.2. The mathematical model was 

found to be 

(7. 1 ) 


where 

. A O = - 8. 207 

. A l = 921 . 901 

A = - 22624. 22 

A 3 = 182945. 1 . 

. A 4 = - 308036. 5 

The comparison is made between the two methods ~Y calculating the 

absolute error at each point for the two methods, shown in the second and fourth 

columns in Table 7.2 and olotted on Figure 7.2. 

It is quite clear that the M.L.E. is a better aporoximation than the 

Johnson method except in the tail end. 

In general, to judge which method is better the goodness of fit test is 

conducted. The result is shown in the third and firfth columns of Table 6.2. 

x2The total x2 contribution in the M.L.E. (0.53) is less than the total con­

tribution in the Johnson method (.64). The result is also plotted in Figure 7.3. 

The Maximum Logarithmic Entropy Method is thus better than the Johnson 

method for this example. 
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Table 7.2 Comparison of absolute errors and x2 contribution in Johnson Method 

versus absolute errors and x2 contribution in M.L.E. Method. 

! 
Actual per cent 
of Observation 

0.4 

3.6 

12.0 

17. p 

23.2 

18. 0 

11. 6 

6.8 

3.6 

1.6 

1.6 

Johnson Method 

Absolute error x2 contribution 

0.3 

0.3 

1. 2 

2.4 

0.7 

0.1 

0.1 

0.4 

0. 1 

0.1 I 

0. 1 

l 

.1286 

.0273 

.1333 

.2880 

.0218 

.0006 

.0009 

.0250 

.0029 

.0059 

.0059 

M.L.E. Method 

Absolute error x2 contribution 

. 017 .0508 

.09 .0023 

1.04 .0998 

1. 90 .1867 

0.98 .0430 

.07 .0002 

.04 .0001 

.23 .0081 

.02 .0002 

.45 .1004 

.24 .0427 

2 

total ~ - total f- = .53 
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I 
7.2.2 Comparison with Pearson Method 

The above example is also solved by using Pearson's method. The cummu­

lative percentages prediced by Pearson and Johnson were calculated at five 

points and are shown in the second, third and fourth column of Table 7.3. The 

corresponding cummulative oercentages predicted ·by the Maximum Logarithmic 

Entropy Method are computed using equation (7.1), and are shown in the fifth 

column of Table 7.3. 

Table 7.3 Comparison of Cummulative oercentages from actual data, Pearson, 

Johnson, and Maximum Logarithmic Entropy Approximations for coefficient of fric­

tion data. 

Variable 
x 

. 021 

.023 

.033 

.052 

."064 

Cummulative 
Percentages
from actual 

data 

6.4 

l l. 2 

47.6 

94.8 

99.2 

,. 

Corresoonding Cummulative 
Percenta_g_e oredicted by 

Pearson 

Method 


5.0 

l 0.0 

50.0 

95.0 

99.0 

Johnson 

Method 


5.4 

9.3 

48.5 

94.8 

99.0 

Maximum Logarith 
mi c Entrooy Methe d 

5.88 

9. 91 

47.96 

94.61 

99.75 
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Table 7.4 Comparison of absolute errors for Johnson, Pearson and Maximum 

Logarithmic Entropy Methods for calculating the percentages of coefficient of 

friction data. 

Cummulative 
percentages from 

actual data Pearson 
Method 

Absolute error 

Johnson 
Method 

in 

Maximum Logarithmic
Entro_Qy Method 

6.4 1.4 1.0 
-

.52 

11. 2 1.2 1.8 1.29 

47.6 2.4 .9 .36 

94.8 .2 0.0 . 19 

99.2 i 

I 
.2 .2 .55 

7.3 THE RESISTORS PROBLEM 

This problem is given by Hahn and Shapiro (reference(ll), page 215). 

It is required to fit a distribution to data for the time to complete the manu­

facture of a part in an automated production process. This time varies from unit 
I 

to unit because of differences in material quality and hardness. Suppose the 

minimum cycle time is one half minute for ideal material. The upoer bound is two 

minutes, at which time the material is automatically rejected. The time required 

for successful completion of 1000 randomly selected units is summarized in the 

first two columns of Table 7.5. 

It was decided to fit a Johnson SB distribution, first assuming bounds 
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I 

of 0.5 and 2.0, and then assuming bounds of 0. and 3.0. The result is summar­

ized in the third and fourth columns in Table 7.5. The first four moments were 

calculated from the first two columns. 

c, =.1 . 1032000 

c = .046769752 


c = .00599097
3 


= .00693529
c4 

The lower and upper bounds(*) were assumed 0.6 and 1.9 resoectively. The 

Maximum Logarithmic Entropy distribution which satisfies this data is 

where 

. I- O = - 50. 98 

. I- l = +152.62 


I- 2 = -164. 91 


A = + 78. 00
3 


. I- 4 = - 14. 05 


(*) 	This is based on the lower limit of the first column, and the higher limit 
of the last column. 
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Table 7~5 Comparison between Actual, Predicted Per cent observations by Johnson 

Method and Maximum Entropy Method Distribution Fits to Production Time for 1000 

Randomly Selected Units. 

Predi cte·d Per cent of Observations 

Actual Per Johnson Method Maximum 
Production Time cent of Assuming bounds of Logarithmic

in Minutes Observations Entrooy Method 
0.5 and 2.0 0.0 and 3.0 

Less than 0.70 0.9 0.9 1. 7 .78 

0.70 to 0.79 3.7 4.7 4.3 4.39 

0.80 to 0.89 12. 6 10. 3 9.2 11 . 72 

0.90 to 0.99 18.4 15. 2 14. 4 18.22 

1.00 to 1 .09 18. 8 17. 4 17. 7 19.93 
I 

' 
i 
l

17. 6 16.201 . 1 O to 1 .19 15.8 16.9 i 
! 
I 

I
1.20 to 1 .29 12.2 13.9 14.5 I 11. 64 

I 
I 

l. 30 to l. 39 7.6 l 0. 2 l 0. 1 7.67 

; 

1.40 to 1.49 5.0 6. l 5 .·9 4.78 

1.50 to 1.59 
I 

2.8 3. 1 2.8 2.80 

1.60 to 1.69 1.1 1.0 1. 2 L49 

I 1.70 to 1.79 0.9 0.3 I 0.5 .67 
I 

l l. 80 or more 0.2 0.0 0. 1 .23 
I 

l 
I 

I 
i
·i 
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Table 7f6 Comparison of absolute errors in Johnson Method versus absolute errors 

in Maxi~um Entropy Method 

Absolute errors in Johnson Method I' Ab so1 ute errors in 
Actual Per Cent Maximum Logarithmic

of Observations Entrooy MethodAssuming Bounds 1 Assuming Bounds 
of 0.5 and 2.0 of 0 and 3.0 

0.9 .8 
 .12
0 

3.7 1.1. 0.69 

.88
2.312. 6 
 3.4 

. 18
18.4 3.2 4.0 

0.6318.8 1.4 1.1 

.4
15.8 1.81. 1 


.56
12.2 2.31. 7 


2.5 .077.6 2.6 

5.0 1.1 .9 
 0.22 

2.8 0.00•3 
 0 

.39
1.1 . 1 
 . 1 


.6 
 .4 
 .37
0.9 

0.2 . 2 
 .03. 1 

I 


I
l 1 
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The actual and the predicted percent of observations, using the two 

methods are shown in Table 7.5 and plotted in Figure 7.5 and Figure 7.6. The 

absolute errors at each ooint for the two methods are summarized in Table 7.6 

and plotted in Figure 7.7. 

From Figure 7.7, it is clear that the Maximum Logarithmic Entropy 

Method is closer to the raw data, and more accurate, than the Johnson Method. 
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CHAPTER VI II 


THE MAXIMUM LOGARITHMIC ENTROPY IN ANALOG PREDICTION UNDER RISK 


8.1 GENERAL 

We recall from Chanter II that the first moments of y for the general 

relation 

y = g (x x . . . , xn)1 , 2 , 

can be obtained in terms of the moments of xi's. We wish to generate the 

probability distribution of yin terms of its first moments, using the Maximum 

Logarithmic Entropy Method. The technique is illustrated in the following 

example. 

8.2 THE I-BEAM PROBLEM 

The problem as stated by Sidda1f1 ~s that of designing a structure which 

includes a member in bending. An extruded aluminum I-beam is used having a cross-

section shown in Figure 8.1. The density curves are shown in Figures 8.2, 8.3, 

8.4, and 8.5 for M the bending moment, y the maximum distance from the neutral 

axis, I the area moment of iherti~ and Sy the yield stress of the material. We 

define strength here as the margin of safety. 

MY 
m = Sy - -I 

The specification value for m is assumed to be zero. We wish to determine the 
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strength dependability. The density function for Mis assumed to be subjective 

and represented by the Weibull function 

f(M) = .705 x 10-2 (M - 920,000) 1· 33 exp(-.302 x lo-12 (M - 920,000) 2·33 ) 

The density functions for y and I are assumed normal, derived from frequency 

data. 

2 . 2f(y) = --- exp[-(y - 5.0) /2(0.03) ] 

.03 2IT 


1 	 2 2f(I) = --- exo[-(I - 163.48) /2(7.6) ] 

.76 2II 


The density function for . SY is assumed to be derived from samoling but has no 

convenient mathematical model. In the solution sample values must be obtained 

by table look-up. We wish to determine the density curve for m and the 

dependability. 

Ic; s- "!: .03<,. 

. ~75 r.o37 

.I. 
"l 

~ ~ 

s: 	 ~ 
~ 

~ 'I.I 

-1,) 

"'ro"' 
O") 
0 
0 

Figure 8.1 Beam Cross-Section 
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The first four moments for S 
y 

, M, Y, and I were calculated using equation (6.1). 

c1 = 4.140651 x io4 c~ = 1.128693 x 106 
Sy 


5 9
c~ = 5.785101 x 10 c~ = 8~897979 x 10
y 

9 14· c~ = -5.511605 x 10 c~ =· 3. 21 7538 x 10

y 


4 13 20c = 8.001181 x 10 c~ = 2.180112 x 10
Sy 


c1 2

Cl = 5 0 = 1 .634987 x 10y . I 

c2 = 8. 907379 x' 10-4 ci = 5.697391 x ioy 

c~ = +o.o ci = 8. 271875 


4 4 3
c = 2.312377 x io-6 c = 9.410815 x 10 y 1 

The upper and lower bounds were assumed from the figures as follows 

4 4
XM INS = 3 • 4 x 10 XMAXs = 4.7 x 10


y y 


5 6
XM IN = 9. 2 x 10 XMAX - 1.44 x 10M ­M 
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XMIN = 4. 9 	 XMAX = 5. l y 	 . y 

2 2
XMIN I = l . 4 	 x l o XMAX = l . 9 x l oI 

Using a · tru~cated Taylor's series expansion as in Section (2.. 53) , . the first four 

moments of m are 

1 	 3c = 6.816094 x 10m 

c2 	 7= 1 .668383 	x 10m 

3 	 1010c = -1 .463594 xm 

4 	 x io14c = 7.974988 m 

The upper and lower bounds for m are 

4XMI~ = -1. 845714 x 10


4

XMAX~ = 2. 327369 x 10 

The Maximum Logarithmic Entropy Distribution (the density curve) which satisfy 

the above conditions is: 

2 3 4f(m) = exp(;. 0 + >. 1m + ) 2m + ) 3m + _A4m) 
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where 

A. O = -1 . 0587 x 10 

>1 = 3. 5265 x 1o-4 

. "A 2 = -2.4887 x 10-8 

A 3 = +5. 7094 x 10-13 

. ' 
>.. = -4.7247 x 10-l?4 

The dependability, which is simply equal to the probability that m > 0 

is equal to .9449. The comouter time for this problem (CP time) = 14 sec. Cost 

in $ (based on $600/hr) = 2.33. The results shown above are obtained by using 

the comouter package 1 DECil 1 given in Appendix B. 

For the same above first four moments the deoendability by using Pearson's 

method is 95.88%. By using the transformation of variables technique the depend­

ability is 94.91%. We consider this result is the exact one as theoretically 

this technique does not depend on approximation, however, this method is 

aoolicable for indeoendent variables only (which is our case). 

By using the Monte -Carlo Simulation technique the result varies with 

the sampe size (N), the following solutions have been provided by Professor J. N. 

Si dda 11. 
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N Dependability Cost in $ 

1000 94.8 8.42 

5000 95.3 31 .47 

10000 94.9 60. 71 

12000 95. 1 72. 32 

14000 95.0 84. l 0 

16000 95.0 95.73 

The error in the case of the Maximum Logarithmic Entropy is 0.42. However, 

in Monte-Carlo the error varies from -.39 to .11 and is dependent on the sample 

size, which is nearly equal to the error in the new technique. But the new 

method is considerably better from the ooint of view of cost ($2.33 vs $95.73). 

Also the accuracy in the new technique could be improved by considering the fifth 

or the sixth moment. In Pearson's method the error goes up to .97 which is 

double the error in the new technique. 
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CHAPTER IX 


GENERAL DISCUSSION 


The algorithm of maximization of the logarithmic entrooy function 

subject to the first n moments as constraints, as introduced in this thesis, 

can be regarded as an imoortant contribution to analytical decision theory . . 

It is the first step towards the meaningful application of the Maximum Entropy 

Principle to decision theory. In addition this thesis contains the first 

valid experimental proof of the principle mentioned above. It lacks any 

theoretical proof , as do many princioles and theories (for example, Newton 1 s 

law), but most of these principles and theories have empirical proof, or, in 

other words, there are data or results which suooort these theories. However, 

when Jaynes introduced the principle, which is an apolication of the Shannon 1 s 

entrooy function, he did not support it by a theoretical proof or by applica­

tions. Later, Tribus illustrated that the principle worked for special cases 

(the uniform, the gamma, and the normal distributions). The thesis illustrates 

the validity of the principle in a much more .general sense. Although the 

application of the princiole in this thesis was limited to a special type of 

constraint function, the moment function, this limitation does not affect the 

validity of the principle. Other types of functions can be easily handled, 

which will be considered later. 

Besides illustrating the generality of Jayne's Princiole, this work 

has achieved the following advantages in comparison with other existing emo~rical 

methods: 

1) In comoarison with the Monte Carlo method, it is clear from Chapter VIII 

that the new algorithm is more accurate with less computation time. 
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2) 	 In comparison with Pearson's method the new algorithm is more accurate. 

This can be observed from Chaoter VII. No computation time comparison 

has been made since the Pearson's method is not available in computer 

language. Pearson's method limits itself to the first four moments 

which mean that if only the first three moments are available, Pearson's 

method cannot predict the distribution. The same apolies for the first 

five moments, if a more accurate result is required. The new algorithm 

does not have the disadvantage. 

As was demonstrated in Chapter VI, an error occurs and increases at 

higher moments, in addition to the error from calculating the higher moments. 

To eliminate this increasing error in the final solution, other types of func­

tions can be suggested to reolace the moment function. One such function has 

the following form 

c	 = <log (x) >1 

Ci 	 = < 1og (x) - c ) i > i = 2, 3, . . . , n1 

However, many different kinds of functions could be suggested, the best being 

the one which gives the least error in the final solution. This would appear 

to be a fruitful source of future work in this area, using the same approach 

as was used in this thesis. 
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APPENDIX A 

Systems of Analytical Probability Distributions Approximated 

by the Maximum Logarithmic Entropy Method 
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I 
I

Table A.l. List of Analytical Distributions with corresponding Figures and 

Tables numbers. 

Symbol Distributions name and 
parameter values 

Gl Gamma, n = 3.0, A.= 1. 

G2 Gamma, n = 3. 0, A.= 5.0 

G3 Gamma, n = 1. 0' .A= 1.0 

Bl Beta, n = 5.0, y = 1. 5 

82 Beta, n = 2.0, y = .8 

B3 Beta, n = 2.0, y = 1.0 

84 Beta, n = .5, y = .5 

85 Beta, n =5.0, y = 5.0 

B6 Beta, n = 3.0, y = 1.5 

87 Beta, n = 3.0, y = 3.0 

B8 Beta, n = 2.0, y = 2.0 
I 

Table 

Number 


A.2 

A.3 

A.4 

A.5 

A.6 

A.7 

A.8 

A.9 

A. l 0 

A.11 

A. 12 

Figure 

Number 


A. 1 

A.2 

A.3 

A.4 

A.5 

A.6 

A.7 

A.8 

A.9 

A.10 

A.11 

89 Beta, n = 1.5, y = 3.0 A.13 A.12 

BlO Beta, n = 1.5, y = 5.0 A.14 A. 13 

Bll Beta, n = 2.0, y = . 5 A. 15 A. 14 

Wl Wei bu 11 , n = 1 . O , a = 1. 0 A.16 A.15 

W2 Weibull, n = 4.0, a= 1.0 A. 17 A.16 

W3 Wei bu 11 , n =2 . O , a = 1. 0 6. 1 6. 1 to 6.5 

W4 Wei bull , n = .5, (J = 1.0 A.18 A.17 

E Exponential, A.= 1. 0 A .19 A.18 

u A.20Uni form, 1-lo = i.o, lJ 1 = 1. 0 A.19 &A.20 
I

N Norma1 , lJ = 4.0, (J = 1.0 A. 21 A.21I I ---· 
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A.24 

FigureDistributions name and TableSymbol 
NumberNumberparameter values 

A.22 &A.23Truncated Norma.J , l.J = 0, a = 2.0 A.22TN 

A.23HN Half Normal, a = 5.0 
2 
 A.25Rl Rayleigh, a = 2.0 A. 24 

2
R2 · A.26A.25Rayleigh, a = l ,0 
2 
 A. 27
A.26R3 Rayleigh, a = .5 


A.28A.27Cl Cauchy, i.: = 0, a = 1.0 

A.29A.28C2 Cauchy, lJ = 0, a = 1.0 

2 ­ A.30A.29LNl Log-Normal, lJ = 1.0, a - 1.0 

2 
 A. 31
Log-Normal, lJ = .3, a = 1 .0 A.30LN2 
2 
 A. 31 
 A.32LN3 Log- Normal , 1J = 0.0, a = 1.0 
2 
 A.33A.32Log-Normal, v= 0.0, a = ,3I LN4 
2 
 A.34A.33LN5 Log-Normal, lJ = 0.0, a = . 1 
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GAMMA DISTRIBUTION (Gl) 

), n xn - 1 e - A x n = 3.0, .A= 1.0, x ~ 0 

f (x) = n 
{ 

0, elsewhere 

Central moment values = 0.59989 0.11974 0.04731 

0.07006 0.07533 0.10915 

Standardized moment measures (f61, s2): 0.74748 3.12731 

Upper and lower bounds: 8.00 0.00 

Type of curve: n (be11 sh aped) 

Table A.2 Common area between Gamma Distribution (Gl) and its aoproximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

Percentage of area 
common between the 
curves 

in 
two 

I 

2 

3. 

4 

5 

90.27 

94.68 

96.88 

97.99 
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a315)2 

• 2.84-15 

• 25258 

.2:10 

.18943 

.15786 
""" x ... , 

lL 
.1c. ~2. 

.09472 . 

• J 6314 

• 03157 

I 

I . 
• 
' 
' I 

I. 
I 

• 
~ 
I 

I 

' 

.... ... ' • 

ACTUAL OISTa 

H.L.E. DIST • 

0.00000~~-+-~--.-~~~~~,~--",~~+-~~,~~,,--~..,...-~. 

o.o .s 1.; 2.~ 3.2 t.o 4.~ s.s s.4 1.2 a.o 
x 

Figure A. l Aooroximating Gamma Distribution (Gl), (n = 3.0, ;\ = 1.0) by a Maximum­

Loqarithmic Entronv Distribution (M.L.E.), based on the first five moments. 

Central moments values: 2.91292 2.46997 2.90160 19.07892 53.47114 

~ values (for M.L.E. Distribution): - 4.4888 + 4.68476 - 2.45213 + .58318 - .067767 

+ .003013 

Percentage area in common between the two distributions = 97.99 
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GAMMA DISTRIBUTION (G2) 


f (x) = 

AnXn-1 

n 
e-:-AX n = 3.0, A. = 5.0, x ~ 0 

0, elsewhere 

Central moment values: .59989 

.07006 

. 119736 

.07533 

. 04731 

Standardized moment measures (fS1, s2): 1 .14184 4.88698 

Upper and 1ower bounds: 3.00 0.00 

Type of curve: n (bell shaoed) 

Table A.j Common area between Gamma Distribution (G2), and its aoproximate 


Maximum-Logarithmic Entropy Distribution for different known first moments. 


Number of known 
first moments 

Percentage of area 
common between the 
curves 

in 
two 

2 88.95 

3 92.41 

4 95.62 

5 96. 81 
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1.$o6S'1---------------------~------.,------------------, 

RCTUR~ DIST.I 
! Mal.Ee DIST.1a t lOOZ 

1a2S335 

i.09068 : 
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I 

! 

; 
I 

!.l-t~Ol: . ' 
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i 

' '.78334 I

"' !x 
-' 
ti_ 

.G2G~8 

.4700~ ­

.15667 a 

+.oooooJ.L-~~.~~!-~--!.-~---f.~~L.~~1==::::::~,::sa.ca.+,----f----~. 

o.o .3 .s .9 1.2 1.s 1.a 2.1 2..4 2.1 3.0 
x 

Fiqure A.2 AnQroximating Gamma Distribution ('12), (11 = 3.~, :\= 5.0) by a Maximum­


Logarithmic Entropy Distribution (M.L.E.), based on the first five moments. 


Central Moment values: .59989 .119736 .04731 .07006 .07533 


Avalues (for M.L.E. Distribution): - 2.26178 + 15.32115 30.21764 + 23.94046 


- 8.96673 + 1 .24403 


Percentaqe area in common between the two distributions = 96.81 
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GAMMA DISTRIBUTION (G3) 


·­ n 

f(x) = 

0, elsewhere 

Central moment values: .96608 .82925 1 . 13471 

3.61955 10.00447 31 . 615521 

Standardized moment measures (/S1, s2): 1.5026 5.2635 

Upper and lower bounds: 5.00 1.00 

Tupe of curve: J shape 

Table A.4 Common area between Gamma Distribution (G3), and its aporoximate 

Maximum-Logarithmic Entropy Distribution for different known first moments 

Number of known 
first moments 

2 

3 

4 

5 

6 

Percentage of area in 
common between the two 
curves 

100. 00 

99.99 

99.97 

99.94 

99.90 



l 07 

~ 

u... 

ACTUAL DIST. 

M.L.E. CIST • 

• 88597 

.r; 522 

• .35373 

.44298 

.3322 

.22143 

.:..:1..'175 

o.;ooooJ~L_~~~l.~--1-~---!~~~~~~~-=~==~===~! 
0.1 .o 1.0 1.s ~.o 2.5 3.o 3.3 4.1 4.5 s.o 

x 
Figure A.3 Aooroximating Gamma Distribution (G3), (n = J\ = 1.0) by a Maximum­

Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments. 

Central Moment values: .·96608 .82925 1.13471 3.61955 10.00447 

:\ va 1ues (for M. L. E. Dis tri but ion) : . ')03646 - . 976842 - . 038436 + .023483 

- .005896 + .001516 

Percentage area in common between the two distributions = 99.94 
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I
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BETA DISTRIBUTION (Bl) 

r ( n + y) xY - 1( 1 - x)n - 1 , n = 5. o, y = 1 . 5, o ~ x ~ 1 
r (n) r (y} 

f (x) = 

0, elsewhere 

Central moment values: .23103 .02364 .00300 

.00183 .00058 

Standardized moment measures(fs.j, s2): .82502 3.2803 

Upper and lower bounds: 1 .00 0.00 

Tupe of curve: n shape (Bell Shaped) 

Table A.5 Common area between Beta Distribution (Bl), and its aporoximate Maximum-

Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

3 

4 

5 

Percentage of area 
common between the 
curves 

in 
two 

96.09 

97.55 

97.89 
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ACTURL DIST. 

M.L.E. DIST.2.87579 


2.55625 


2.23672 


1.91719 


1.59766
,..... 
x ....., 
LL. 

1.27813. 

• 95860 

.63906 

.31953 

! 
I 
; 

o.ooooo~~--l-~--1-~--+-~--+-~---+~--+~---+~-==i=-~~---t 

o.o .1 .2 .3 .4 .5 .s .7 .s .9 1.0 
x 

Figure A.4 Aooroximatinq Beta Distribution (Bl), (n = 5.0, y = 1 .5) by a Maximum­


Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments. 


Central Moment values: .23ln27 .023635 .002998 .0018324 .0005786 


- ~values (for M.L.E. Distribution): + .2255 + l5.99fi5 - 100.1084 + 240.0444 


- 274.1477 110.8254 


Percentage area in common between the two distributions = 99.89 
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BETA DISTRIBUTION (82) 


- 1r in + y / xY - 1( 1 - x) n , n = 2. O, y = o. 8, o ,,.: x ~ 1 
r n) r y) 

f (x) = 

0, elsewhere 

Central moment values: .287151 .()53566 .009524 

.007746 .003086 . 0018559 

Standardized moment measures (fS'l , 6 ) : . 7682 2.6996 
2 

Upper and lower bounds: 1.00 0.00 

Type of curve: J shape 

Table A.6 Common area between Beta Distribution (82), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments , 

Percentage of area 
common between the 
curves 

in 
two 

3 97.54 

4 97.55 

5 98.46 

6 98.48 



5.06522 

111 

6.33!52·--------------------------9-------------~--, 

ACTUAL DIST.I 
I 

M.L.E. DIST.5.69837 

4.43207 

3.79891 

3.16576 ' ,...... 
x 
"'-"" u.. 
2.53261 

1.89946 

1.2663 

.63315 

.o .1 .2 .3 .4 .s .s .7 .s .9 1.0 
x 

Fiqure A.5 Anoroximatino Beta Distri~ution (B2), (n = 2.n, y = .8), by a Maximum­


Logarithmic Entrooy Distribution (M.L.E.), based on the first six moments. 


Central Moment values: .28715 .05357 .'10952 .00775 .00309 .00186 


~values (for ~1.L.E. Distri~ution): + 1.3972 - 11.4708 + 60.486'1 - 178.7122 

+ 258.3163 - 173.3041 + 39.6237 

Percentage area in common between the two distributions = 98.48 
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BETA DISTRIBUTION (B3) 


y - l ( )n - l _ _r (n + y x l - x , n - 2.0, y - l .O, o ~ x ~ l 
r (n) r ly) 

f(x) = 

0, · elsewhere 

Central moment values: · .33400 .05545 .00739 

-.00738 .00234 . 00151 

Standardized mo.ment measures (fB,, s2): . 5657 2.4000 

Upper and lower bounds: 1 .00 0.00 

Type of curve: triangular 

Table A.7 Common area between Beta Distribution (B3), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

3 

4 

5 

6 

Percentage of area in 
common between the two 
curves 

98.44 

99.01 

99.38 

99.55 
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~CTUi:lL DIST. 

1.98198 . M.L.E. DIST. 

1.76176 

1.54154 

1.32132 

1.10110,..... 
x 
'-' 
LL 

.88088 

.66066 

.44044 

.22022 

.o .1 .2 .3 I .4 .5 .6 .7 .s .9 1.0 
x 

Figure A.6 Annroximatinq Beta Distribution (83), (n = 2.0, y = 1 .0) by a Maximum­

Logarit~mic Entrony ~istribution (~.L.E.), hased on the first six moments. 

Central Moments values: . . 33400 .05545 .00739 -.00738 .00234 .00151 

A values (for M.L.E. Distribution): + .67267 + .22341 - 16.18761 78.87925 - 185.39258 

+ 2n1 .1s32q - s2.gn117 

Percentaqe area in common between the two distributions = 99.55 
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BETA DISTRIBUTION (84) 

1r (n + Y / xY - 1(1 - x)n - , n = Y = . 5, o -<> x -<> 1 
r (n) r Y) 

f (x) = 

0, elsewhere 

Central moment values: .50000 . 12223 0.00000 

.02258 0.00000 

Standardized moment measures (fSl, s2): O. 00 1. 51 

Upper and lower bounds: 1 .00 0.00 

Type of curve: U shape 

Table A.8 Common area between Beta Distribution (B4), and its aporoximate 

Maximum-Logarithmic Entrooy Distribution for different known first moments. 

Number of known 
first moments 

3 

4 

j 5 


Percentage of area in 
common between the two 
curves 

88.78 

92.15 

92 .15 



9.13842 

115 

.o .1 .2 .3 ·.4 .5 .6 .7 .8 .9 1.0 
x 

Figure A.7 Anoroximating B~ta Distribution (84), (n = .5, y = .5) by a Maximum­

Loqarithmic Entrony Distri~ution (M.L.E.), based on the first five moments. 

Central Moment values: .~nonn .12223 n.ooono .02258 .ooono 
A values (for M.L.E. Distribution): + 1.4178 - 18 .6369 + 65.5595 - 93.74824 

46.70689 119.35532 

Percentage area in common ~etween the two distributions= 92.15. 

10.19956 


8.07729 

. 7.01615 

5.95502,..... 
x 
'-"' 
LL 

4.89388 

3.83275 

2.77161 

1.71048 


ACTUJ'.=ll DIST. 

M.L.E. DIST. 

\ 

I
I 

II 

! 
I 
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BETA DISTRIBUTION (B5) 


1 r fn + y) xY - 1 (1 - x)n - , n = y = 5, o ~ x ~ l 
r n) r {y) 

f (x) 

0, elsewhere 

Central moment values: .5000 .02273 0.0000 

.001311 .0000 

Standardized moment measures(W,, s2): 0.00 2.54 

Upper and lower bounds: 1.00 0.00 

Type of curve: n (bell . shaped) 

Table A.9 Common area between Beta Distribution (B5) and its approximate 

Maximum-Logarithmic Entropy Distributiort for different known first moments. 

Number of known i Percentage of area in 
first moments 

3 

4 

5 

common between the two 
curves 

96.65 

99.26 

99.26 



117 

2.43633 


2.16563 


1.89492 


1.62422 


1.35352 

"'"' x 
....., 
LL 

1.08281 

• 81211 

• 5 4141 

.27070 

Fiqure A.8 Aooroximating Beta Distribution (BS), ( n = 5.0, y = 5.0), by a Maximum-

Logarithmic Entrooy Qistribution (M.L.E.), based on the first five moments. 

Central Moment values: .500~ .02273 0.000 .00131 0.0000 

A values (for M.L.E. Distribution): - 7.08586 + 50.40342 - 125.22834 + 151 .87114 

- 80.08444 3.12476 

Percentage area in common hetween the two distri~utions = 99.?6 

ACTUi:lL DIST. 

M.L.E. DIST. 

-.00000--4-~~~~~-+-~-+-~-+-~-+-~+-~+-~~~ 

.5 
x 

.6 .7 .s .s 1.0o.o .1 .2 .3 .4 

/ 
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BETA DISTRIBUTION (86) 


y- l( )n- 1 . rn + y) x l - x , n = 3.0, y = 1.5, o ~ x ~ l 
r In) (y) 

f(x) = 

0, elsehwere 

Central moment values: . . 33351 .04037 .00414 

.00414 .00108 .00673 

Standardi ze.d moment measures (nf,, s2): . 511 2. 539 

Upper and lower bounds: 1 .00 0.00 

Type of curve: (bell shaped) 

Table A.10 Common area between Beta Distribution (86), and its approximate 

Maximum-Logarithmic Entrooy Distribution for different known first moments. 

Number of knowr.i 
first moments 

Percentage of area 
common between the 
curves 

in 
two 

3 96. 12 

4 98.11 

5 98.20 

6 98.86 



1.938'59 

1.72319 

1.50779 

1.29239 

1.07699,...... 
x 

.86 l59 

.64620 

.43080 

.215 40 
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RCTUr:lL DIST. 
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0.00000-+-~+-~1---+~-+-~--+-~-+-~1--~~-+-___;;:~ 
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.6 .7 .8 

x 

·Figure A.9 Approximating Beta Distribution (B6), (n = 3.0, y = 1 .5) bv a Maximum­

Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments. 

Central Moment values: .33351 .04037 .00414 .00414 .00108 

~values (for M.L.E. Distribution): - .36963 + 13.65424 - 61 .74094 116.8970 

- 102.58016 + 29.30392 

Percentag~ area in common between the two distributions = 98.20 
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BETA DISTRIBUTION (B7) 

1r ( n + y~ xY - 1 ( 1 - x) n - , n =y = 3. o, o .;: x ,; 1 
r (n) r y) 

f (x) = 

0, elsewhere 

Central moment values .5000 .03571 0.000 

.00298 0.000 

Standardized moment measures([S1, s2): 0.00 2.333 

Upper and lower bounds: 1 .00 0.00 

Tyoe of curve: n (bell . shaped) 

Table A.11 Common area between Beta Distribution (B7), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known Percentage of area in Ifirst moments common between the two 
curves 

3 95.54 

4 98.57 

5 98.56 
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FlCTUFIL DIST.I 

1.85625 H.L.E. DIST. 

1.t500 

1.4431 

1.2375 

1.0312,.... 

.8250 

.6187 

a4125 

a2062 

o.o .1 .2 .3 .4 .s .s .1 .s .s 1.0 
x 

Fiqure A.10 Aonroximatinq Beta Distri~ution (87), (n = 3.0, y = 3.0) by a Maximum­


Logarithmic Entrooy .Distribution (M.L.E.), based on the first five moments. 


Central Moment values: .5000 .035714 n.nnn .002976 n.onnn 


~values (for M.L.E. Distribution): 3~94075 31 .4819 - 85.0532 107.98137 - 55.5248 

1 . 1375') 


Percentaqe area in common between the two distributions = 98.56 
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BETA DISTRIBUTION (88) 

y - 1( )n - 1 _ _r (n + y ) x 1 - x , n - y - 2.0, o ~ x ~ 1 
r (n) r (y) 

f(x) = 

0, elsewhere 

Central moment values: .5000 .0500 0.0000 

.005357 0.0000 

Standarized moment measures(fB;, s2): 0.00 2.143 

Upper and lower bounds: 1.00 0.00 

Type of curve: n (bell . shaped) 

Table A.12 Common area between Beta Distribution (88), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments 

Number of known 
first moments 

Percentage of area 
common between the 
curves 

in 
two 

3 95.57 

4 98.17 

5 98.17 
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Figure A.11 Aooroximatinq Beta Distribution (B8), (n = y = 2.0) by a Maximum­

Loqarithmic Entroov Distribution (M.L.E.), based on the first five moments. 

Central moment values: .5000 .0500 0.0n00 .00536 0.0000 

A values (for M.L.E. Distribution): - 2.1754 + 19.3931 - 56.47123 74.81196 - 38.6007 

.87103 

Percentage area in common between the two distributions = 98.17 
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BETA DISTRIBUTION (B9) 


1 1r !n + y~ xY - ( l - x)n - , n = l . s, y = 3. o, o ~ x ,, 1 
r n) r y) 


f(x) = 


0, elsewhere 


Central mo~ent values: · .66649 .04037 -.00415 

.004137 -.00108 

Standardized moment measures (W, , s2): - . 511 +2.539 

Upper and lower bounds: 1.00 0.00 

Type of curve: n (bell shaped) 

Table A.13 Common area between Beta Distribution (B9), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

3 


4 


5 


Percentage of area in 
common between the two 
curves 

96 .12 

98.12 

98.20 
I 
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Figure A.12 Aooroximatinq Beta Distribution (89), (n = 1.5, y = 3.0) by a Maximum-

Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments. 

Central Moment values: + .66649 + .04037 - .00415 + .004137 - .00108 

~values (for M.L.E. Distribution): - 4.9173 + 24.1267 - 39.1723 12.29497 32.57655 

- 25.26896 

Percentage area in common between the two distributions = 98.20 
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BETA DISTRIBUTION (BlO) 


r ~ n + r/ xY -
1 ( 1 - x)n - 1 , n = 1 • 5, r = 5. o, o ~ x ~ 1 

rn) ry) 

f (x) = 

0, e 1 sewhere 

Central moment values: . +.768973 +.0236348 -.002997 

+.001832 

Standardize? moment measures(~, s2): -.825 +3.280 

Upper and lower bounds: 1.00 0.00 

Type of curve: n (bell shaped) 

Table A.14 Common area between Beta Distribution (810), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

I 

Number of known 
first moments 

Percentage of area 
common between the 
curves 

in 
two 

3 96.09 

4 97.56 
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I 
I 

2.81295 

2.18785 

1.87530 

1.56275 
r-. 

x 
..__, 
LL 
1.25020 

.93765 

• 62510 

.31255 

3.12550--~~~~~~~~~~----~~~~~~--, 
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' ' 
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x 

Figure A.13 Aooroximating Beta Distribution (810), (n = 1.5, y = 5.0) by a Maximum­

Loqarithmic Entroov Distribution (M.L.E.), based on the first four moments. 

Central Moment values: + .768973 + .0236348 - .002998 + .001832 

~values (for ~.L.E. Distribution): -12.4111 63.21888 - 138.01770 .149.03429 

- 61.478266 

Percentage area in common between the two distributions = 97.56 
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BETA DISTRIBUTION (Bll) 

1r !n + y) xY - 1 (1 - x)n - , n = 2.0, y = .5, o ~ x ::, 1 
r n) r (y) 

f{x) = 

0, elsewhere 

Central moment values: .20524 .04585 . 011998 

.007889 .004053 

Standardized moment measures(f61, s2): 1 .222 3.753 

Upper and lower bounds: 1 .00 0.00 

Type of curve: J shape 

Table A.15 Common area between Beta Distribution (811), and its aooroximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

3 

4 

5 

Percentage of area in 
common between the two 
curves 

90.42 

91 . 01 

92.50 
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Figure A.14 Aooroximating Beta Distribution (811), (n = 2.0, y = .5) by a Maximu r 

Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments. 

Central Moment values: .20524 .04585 .011998 .007889 .00405 

\values (for M.L.E. Distribution): 2.44524 - 28.88730 148.03821 - 370.85n69 

418.5973 - 174.77754 

Percentage area in common between the two distributions = 92.50 
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WEIBULL DISTRIBUTION (Wl) 

n 1 x)n!L(.!) - exp -(0 , n =a= 1.o, x ~ o 
a a 

f {x) ­

0, elsewhere 

Central moment values: . . 92631 .69574 .73785 

2.0312 4.3413 10. 9381 

Standardized moment measures(ff,, s2): 1.271 4.196 

Upper and lower bounds: 4.00 0.00 

Type of curve: J shape -(exponential case) 

Table A.16 Common area between Weibull Distribution (Wl), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

Percentage of area 
common between the 
curves 

in 
two 

3 99.99 

4 99.98 

5 99.96 

6 99.95 
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.78868 
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.34868 

.23868 

.12868 

ACTU~L DIST• 131 

M.L.E. DIST. 
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Figure A.15 Aooroximating Weibull Distribution (Wl), (n =a= 1.0) by a Maximum­

Logarithmic Entronv Distribution (M.L.E.), based on the first five moments. 

Central Moment values: .92631 .69574 .73785 2.0312 4.3413 

Avalues (for M.L.E. Distribution): + .017289 - .980712 - .038074 .027957 - .On85024 

.0009065 

Percentage area in common between the two distributions = 99.96 
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WEIBULL DISTRIBUTION (W2) 


n - l n 
!l (~) -(~)a a exp a ,n=4.,a=l.,x~o 

f(x) = 

0, elsewhere 

Central moment values: · .90640 .06466 -.00143 

.01149 -.00059 

Standardize? moment measures (f81 , s2): - . 0872 2.7478 

Upper and lower bounds: 3.00 0.00 

Type of curve: n (be 11 sh aped) 

Table A.17 Common area between Weibull Distribution (W2), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known f i rst moments. 

Number of known 
first moments 

Percentage of area 
common between the 
curves 

in 
two 

3 98.24 

4 99.38 

5 99.66 
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i:ICTU~L DIST. 


I M.L.E. DIST.1.5075 


1.3400 


1.1725 


1.0050 


,.... .83752 

x 
""" IJ.. 

.67002 


.50251: 


.33501= 


.16750 


0.00000-+-K.--f-~-+-~+-~t-----+___;;-...----+----'----'---~ 

o.o .3 .s .s 1.2 1.s 1.s 2.1 2.4 2.1 a.o 
)( 

Fiqure A.16 Annroximatin9 Weibull Distribution (W2), (n = 4.0, a= 1.0) by a Maximum­

Logarithmic Entrony Distribution (M.L.E.), based on the first five moments. 

Central Moment values: .90640 .06466 - .00143 .nll49 - .00059 

;\values (for ~.L.E. Distribution): - 7.36687 25.7626 - 38.16523 33.78615 - 16.4386 

Percentaqe area in common between the two distributions = 99.66 

2.80577 



134 

I 

WEIBULL DISTRIBUTION (W4) 

n - 1 
!l (~) -{-)

x n 
, n = 0.5, y = 1.o, x ~ oa a exp a 

f (x) 

0, elsewhere 

Central moment values: .68306 . 86862 1.35043 

3.77670 9.73903 27.05002 

Standardized moment measures(~, s2): 1 .668 5.006 

Upper and lower bounds: 4.00 0.00 

Type of curve: J shaoe 

Table A.18 Common area between Weibull Distribution (W4), and its aporoximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

Percentage of area 
common between the 
curves 

in 
two 

2 74.29 

3 75.56 

4 77.61 

5 79.92 

6 82.02 
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Figure A.17 Aooroximatinq Weibull Distribution (W4), (n = .5, y = 1 .0) by a Maximum­


Logarithmic Entronv Distribution (M.L.E.), based on the first six moments. 


Central Moment values: .68306 .86862 1.35043 3.77670 9.73903 27.0500 


~values (for M.L.E. Distribution): + 1 .81709 - 14.31629 + 25.21242 - 21 .85061 

+ 9.44108 - 1 .97430 + .15866 

Percentage area in common between the two distributions = 82.02 
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EXPONENTIAL DISTRIBUTION (E) 


- .Ax), e J.=l,x~O 


f (x) = 


O. elsewhere 

Central moment values: 1.000 .9954 1.9546 

8.5187 3.89138 

Standardized moment measures (f'Si, s2): 1 .968 8.596 

Upper and lower bounds: 10.0 0.00 

Type of curve: J shape 

Table A.19 Common area between Exponential Distribution (E), and its aporoximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

Percentage of area 
common between the 

in 
two 

curves 

1 

2 

3 

4 

5 

+I 
I 
I 
! 
I 
I 
! 
! 
I 
I 

I 

99.99 

99.97 

99.93 

99.86 

99.74 

L-: 



.88004 

x 
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.66003 


.55002 


.44002" 


.,33001 


.22001 


.11000 
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Figure A.18 Aooroximating Exnonential Distribution (E), () = 1) by a Maximum­

Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments. 

Central Moment values: 1 .000 .9954 1 .9546 8.5187 3.89138 

~values (for M.L.E. Distribution): - .01276 - .93661 - .06694 + .024997 - .003703 

+ .000185 

Percentaqe area in common between the two distributions = 99.74 
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UNIFORM DISTRIBUT ION (U) 


f (x) = 

O, elsewhere 

Central moment values: .500 .08333 0.000 

.0125 0.000 .002232 

Standardized moment measures ([8i, s2): 0.00 1 .80 

Upper and lower bounds: l .00 0.00 

Type of curve: rectangular 

Table A.20 Common area between Uniform Distribution (U), and its aooroximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known Percentage of area in 
first moments common between the two 

curves 

l 00. 00 

2 100.00 

3 l 00. 00 

4 100.00 

5 99.99 

6 99.82 
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Figure A.19 Aooroximatinq Uniform Distribution (U), (-µ 0 = 0, µ 1 = 1), by a 

Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first moments. 

Central Moment value: .500 

.\values (for ~.L.E. Distribution): 0.000 0.000 

Percentage area in common between the two distributions = 100.00 

ACTUAL DIST. 


M.. L £. DIST. 




1.83226 


1.62868 

1.42509 

1.2215 l 

x 
4: 

aS1434 

a6107 

.40717 

.20358 

o.ooooo~~-t-~-t---+----t----t~--+----+----+-----4---~ 

OaO al a2 .3 a4 a5 aS a? a9 9 loO 
x 

Figure A.20 Aooroximating Uniform Distribtuion (U), ( fJ 0 = 0, lJ 1 = 1) by a 

Maximum-Logarithmic Entrony Distribution (M.L.E.), based on the first six moments. 

Central Moment values: .500 .08333 0.000 .01250 0.000 .002232 

Avalues (for M.L.E. Distribution): + .01777 - .71100 + 6.84518 - 26.5716 

+ 48.6262 - 41 .9398 + 13.7454 

Percentage area in common between the two distribDtions = 99.82 

ACTUt=ll DIST. 


M.L.Ea DIST. 
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NORMAL DISTRIBUTION (N) 


exp [-(x - lJ ) 
2/ 2a

2], i.;= 4.0, a= 1.0 - < x <+ :x) 

a 2IT 
'.X) 

f (x) = 

0, e 1 sewhere 

Central moment values: 4.000 .99893 0.000 

2.97966 0.000 14.62418 

Standardized moment measures (fB; , s2): 0. 00 2. 99 

Upper and lower bounds: 8.00 0.00 

Tyoe of curve: n (bell shaped) 

Table A.21 Common area between Normal Distribution (N), and its aporoximate 

Maximum-Logarithmic Entrooy Distribution for different known first moments. 

Number of known 
first mo men ts 

2 

3 

4 

5 

6 

Percentage of area in 
common between the two 
curves 

100.00 

100.00 

99.99 

99.99 

100.00 
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~CTUriL DIST. 

DIST •• 39498 


.307'24 


.26336 


• 21.9 4 3 

x 

-....J 

LL 
.17 5 6 2 


.1317 5 


.08788 


.04401 


• 0 0 0 13-J---~-~-~--+---+--~--4---4--..+:::::----f 

M.L.E., 

o.o .8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 
x 


Figure A.21 Aooroximatinq Normal Distribution W), ( i = 4.'1, a = 1.0) by a Maximum-


Logarithmic Entro~y Distribution (M.L.E.), based on the first two moments. 


Central Moment values: 4.n0 .99893 


A values (for M.L.E. Distrihution): - 8.91870 3.99991 - 4.99989 

Percentage area in common between the two distributions = 100.00 
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TRUNCATED NORMAL DISTRIBUTION (TN) 


f (x) 

a 2TI 

= 

0, elsewhere 

exp [ - ( x - l-' ) 
2/ 2ci], r = 2. 0, a = 2. 0, - XJ < x < 00 

Central moment values: 2.0000 1.16450 

2.63201 0.00000 

0.00000 

7.27213 

Standardized moment measures(fS1 , s2): 0.00 1. 941 

Upper and lower bounds: 4.00 0.00 

Type of curve: n (bell shaped) 

Table A.22 Common area between Truncated Normal Distribution (TN), and its 

approximate Maximum-Logarithmic Entrooy Distribution for different known first 

moments. 

Number of known 
first moments 

i 
i Percentage of area 

common between the 
curves 

in 
two 

2 100. 00 

3 100.00 

4 100 ..00 

5 100. 00 

6 99.89 
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Figure A.22 Aooroximatinq Truncated Normal Distribution (TN)~ ( µ = 2.0 , a= 2.0) by a 

Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first two moments. 

Central Moment values: 2.0000 l .16450 

AValues (for M.L.E. Distribution): 1 .730363 + G.49999 - .124998 

Percentage area in common between the two distributions = llJ0.00 
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a26574­
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Fiqure A.23 Annroximatinq Truncated Normal Distri~ution (TN), ( µ= 2.0, o = 2.0) 


by a Maximum-Logarithmic Entrooy Distribution (~.L.E.), based on the first six 


moments. 


Central Moment values: 2.0n0 1 .1645 0.000 2.63201 o.n0n 7.27213 


~ v a 1ues ( f o. r M . L . E . Di str i but i on ) : - 1 . 71 7 7 5 + .. 381 62 + .1 5 27 4 - . 26 3 9 9 + .11 989 


- .02578 + .002112 


Percentage area in common between the two distributions = 99.89 
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HALF NORMAL DISTRIBUTION (HN) 

1/2 
(_g_2) 
IIa 

exp [-x2/2a2J, a= 5.0, x ~ 0 

f (x) = 

0, elsewhere 

Central moment values: 3.989411 

319. 1838 

9. 084231 

2458.863 

27.. 2459 

Standardized moment measures (~ , s2) : . 995 3. 868 

Upper and lower bounds: 25.00 0.00 

Type of curve: J shape 

Table A.23 Common area between Half Normal Distribution (HN), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments , 

Percentage of area 
common between the 
curves 

in 
two 

2 100.00 

3 100.00 

4 100. 00 

5 99.98 
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FiCTURL OlSTa 

•1sao 

a1404 

.1053 

a0877,.... 

e0526? 

a0351l! 

~0175 

H l~Eo DIST • -

Figure A~24 Aooroximating Half Normal Distribution (HN), (a = 5.0) by a Maximum­

Logartthmic Entrooy 6istribution (M.L.E.), based on the first two moments. 

Central ~oment values: 3.9894 9.0842 

).values (for M.L.E. Distribution): - 1.835137 - .00004 - .019996 

Percentage area in common between the two distributions = 100.00 
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RAYLEIGH DISTRIBUTION (Rl) 

2(~)exp (-x2/2o2), o = 2.0, x ~ 0 
(5 

f (x) = 

0, elsewhere 

Central moment values: 1 .77253 .85840 .501907 

2.39098 4.09360 

Standardized moment measures(f131, s2): .631 3.245 

Upper and lower bounds: 8.00 0.00 

Type of curve: \\ (bell shaped) 

Table A.24 Common area between Rayleigh Distribution (Rl) and its aoproximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

3 


4 


5 


Percentage of area in 
common between the two 
curves 

96.52 

97.-76 

98.22 
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~CTU~L DIST. 

M.L.E. DIST •• 44052 

.39157 

.09789 

.04895 

O.OOOOO--l-~-l--~.J--~~----1-~---1-~-+-~=at---+---+----1 

OaO .s 1.s 2.4 3.c 4.0 4.a 5.S 6.4 1.2 s.o 
x 

Fiqure A.25 Anoroximatinq Rayleigh Distribution (R~), (02 = 2.) by a Maximum­

Logarithmic Entropy Distribution (M.L.E.), based on the first five moments. 

Central Moment values: 1 .77253 .85840 .501907 2.3 · ~98 4.09360 

~values (for M.L.E. Distribution): - 3.0918 4.3300 - 2.8808 - .84631 - .12897 

.0073() 

Percentage area in common between the two 'dis tri but ions = 99. 22 
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RAYLEIGH DISTRIBUTION (R2) 


2(~)exp (-x2/2a2), a = 1, x ~ 0 
a 

f (x) = 

0, elsewhere 

Central moment values: 1 .25231 .42634 . 16973 

.571095 .64245 1. 46602 

Standardized moment measures (fS"i, s2): . 6097 3.1419 

Upper and 1ower bounds: 4.00 0.00 

Type of curve: \'\ (bell shaped) 

Table A.25 Common area between Rayleigh Distribution (R2), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

' 

Percentage of area 
common between the 
curves 

in 
two 

3 96.68 

4 97.82 

5 98.45 

6 98.86 
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x 

Figure A.26 Aooroximating Rayleiqh Distribution (R2), (o2 = 1) bv a Maximum­

Logarithmic Entrooy Distribution (M.L.E.), based on the first six moments. 

Centra 1 Moment va 1ues : 1. 25231 . 42634 . 571095 . 64245 ·l . 46602 

A values (for M.L.E. Distribution): - 3.1339 9.1667 ""'. 12.8105 9.4097 - 3.8796 

. 8051 - . 06577 

Percentage area in common between the two distributions = 98.86 
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RAYLEIGH DISTRIBUTION (R3) 


(~)exp (-x2;202), 02 = .5, x ~ 0 
0 

f (x) = 

0, elsewhere 

Central moment values: .88595 .21399 .06146 

.14615 . 12033 

Standardized moment measures ( {S1, s2): . 6209 3. l 917 

Upper and lower bounds: 3.00 0.00 

Type of curve: n (bell shaped) 

Table A.26 Common area between Rayleigh Distribution (R3), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

Percentage of area 
common between the 
curves 

in 
two 

3 96.63 

4 97.79 

5 98.41 



153 

RCTUAL DIST. 

M.L..E., DIST•.87276 
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.67881 
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.48486 
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.38789 

.29Q92 
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x 

FigureA.27 Aooroximating Raylei9h Distribution (R3), (a 2 = .5) by a Maximum­

Logarithmic Entrooy o{stribution (M.L.E.), based on the first five moments. 

Central Moment values: .88595 .21399 .06146 .14615 .12033 

~values (for M.L.E. Distribution): - 2.5017 + 9.6311 - 14.1161 9.5524 - 3.3372 

.4398 

Percentage area in common between the two distributions = 98.41 

http:FigureA.27
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CAUCHY 	 DISTRIBUTION (Cl) 

2 - 1 
[ l + (x 	- µ ) 

1J = 0' 	0 = 1 ' < x <::oo II 02 J 	 - 00 

f (x) = 

0, elsewhere 

Central moment values: 0.0000 44.8540 0.0000 

151,158.9 0.0000 

Standardized moment measures (~, s2): 0.000 75.13 

Upper and lower bounds: + 200.0 - 200.0 

Type of curve: n (bell shaped) 

Table A.27 Common area between Cauchy Distribution (Cl), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known Percentage of area in 
first moments. common between the two 

1 

I 
I 

I 

curves 

13. 01 

2 45. 78 

3 45.78 

4 46.69 
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x 
Figure A.28 Aooroximating Cauchy Distrihution (Cl), by a Maximum-Logarithmic 

Entrooy Distribution (M.L.E.) based on the first four moments. 

Central moment values: o.ooo 44.8540 o.onnoo 151158.044 

>.values (for M.L.E. Distribution): 2.69621 .000nrJ - .014968 .'10()()() o.noooo 

Percentaqe area in common between the two distributions = 46.69 
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CAUCHY DISTRIBUTION (C2) 


2 J 
l .' 

_1_· [l + ( x - lJ ) , lJ = 0. 0' 0 = 1 . 0' -oo < x<::c 
0 II 2 

0 

f (x) = 

0, elsewhere 

Central moment values: 0.0000 8.7345 0.0000 

1,226.89 0.0000 

Standardized moment measures(fBi, s2): 0.00 16.08 

Uooer and lower bounds: 20.0 - 20.0 

Type of curve: n (bell shaped) 

Table A.28 Common area between Cauchy Distribution (C2), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of knwon 
first moments 

1 

2 

3 

4 

5 

Percentage of area in 
common between the · two 
curves 

27.80 

61 . 61 

61 .61 

66.27 

66.27 

http:1,226.89
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Figure A.29 Aooroximatinq Cauchy Distribution (C2) by a Maximum-Loqarithmic Entrooy 

Distribution (M.L.E.), based on the first five moments. 

Central moment values: n.oo 8.7345 n.on 1226.90 n.no 

). values (for M.L.E. Distribution): - 1.79216 - .001225 - .092266 .00007 .00021 

r). 00()00 

Percentage area in common between the two distributions - 66.27 
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LOG-NORMAL DISTRIBUTION (LNl) 


2 exo [- ~ ( 1 og x - 1J ) 
2J, 1-' = 1 , a = 1 , x ~ 0 

a x {2rr 2a 

f(x) = 


0, e 1 sewhere 


\ 

Central moment values: 2.8239 2.39416 2.5889 

15. 5442 37. 1409 


Standardized moment measures (ff, , s2) : . 6989 2.7120 


Upper and lower bounds: 7.00 0.00 


Type of curve: rl (bell shaoed) 


Table A.29 Common area between Log-Normal Distribution (LNl), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

Percentage of area 
common between the 
curves 

in 
two 

3 92.4 

4 95.53 

5 97.22 
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l=lCTUAL DISTa 

• 31090 .-·"I • 
M.~.E. DIST • 

. ' I • 
\ 

.27635 

• 2 4181 

.20726 

.17272 

1113818 

.10363 

.06909 
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o.o .7 1.4 2.1 2.8 3u5 4.2 4.9 S.6 6.3 7.0 
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2Fi q u re A . 30 Ao oro xi mat i n g Lo q - No rm a 1 Di str i but i on ( L N 1) , ( r = a = 1 ) , by a 

Maximum-Logarithmic Entrony Distribution (M.L.E.), based on the first five moments. 

Central Moment values: 2.8239 2.3g416 2.58897 15.5442 37.1409 

~values (for M.L.E. Distrihution): - 5.3522 7.0834 - 4.3202 1 .18333 - .153852 

. 0076'198 

Percentage area in common between the two distributions - 97.22 
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LOG-NORMAL DISTRIBUTION (LN2) 


1 2 2 exp [ - - 2 ( 1 og x - v ) ] , v = . 3, a = 1 . 0, x ~ O 
a II 2II 2cr 

f (x) = 

0, elsewhere 

Central moment values: 1 .6587 1 . 3486 2.4380 

10.4366 38.5384 

Standardized moment measures({i31, s2): 1 .557 5.738 

Uooer and lower bounds: 7.00 0.00 

Type of curve: n (bell shaped) 

Table A.30 Common area between Log-Normal Distribution (LN2), and its aporoximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

3 


4 


5 


Percentage of area in 
common between the two 
curves 

87.95 

91 . 91 

94.33 
. \ 
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I 

i 
i 
i 

x 
2Figure A.31 Aonroximatinq Loq-Normal Distribution (LN2), (i = .3, a= 1.0), by a 

Maximum-Loqarithmic Entroov Distribution (M.L.E.), based on the first five moments. 

Central Moment values: 1 .65869 1 .348597 2.437959 10.436564 38.538422 

A values (for M.L.E. Distribution): - 3.23115 6.62032 - 5.54092 l .8183437 

- . 269721 . 01475896 

Percentage area in common between the two distributions = 94.33 
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LOG-NORMAL DISTRIBUTION (LN3) 

1 2 2exp [- - 2 ( 1 og x - lJ ) ] , v = 0, a = l , . x ? 0 
a IT 2IT 2IT 

f (x) = 

0, elsewhere 

Central moment values: 1.26162 .88814 1 .6333 

6.45511 24.81569 

Standardized moment measures(fs,, s2): 1.951 8.184 

Upper and lower bounds: 7.00 0.00 

Type of curve: n (bell shaped) 

Table A.31 Common area between Log-Normal Distribution (LN3), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

)Number of known Percentage of area in 
first moments common between the two 

curves 

3 86~08 

4 90.27 

92.845 

l 
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o.o .7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 6.3 7.0 
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Fiqure A.32 Aooroximatinq Log-Normal distribution (LN3) (_~· = O.n, a 2 = 1.0), by a 

Maximum-Logarithmic Entrony Distribution (M.L.E.), based on the first five 

moments. 

Central Moment values: 1 .261620 .888137 l .63326 6.455104 24.81569 

~values (for M.L.E. Distribution) ·: - 2.4648 6.4458 - 6.36595 + 2.284981 

- .36131106 .020727 

Percentaqe area in common between the two distributions = 92.84 
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LOG-NORMAL DISTRIBUTION (LN4) 


exp [- - l 
2 ( 1 og x - 2

1J ) ] , JJ = 0, 0 
2 = .3, x ;:: 0 

0 II 2II 2II 

f (x) = 

0, elsewhere 

Central moment values: 1.0773 . 18610 . 09725. 

.18845 . 27287 

Standardized moment meas ures -({B, , s2): 1 . 211 5. 441 

Uooer and lower bounds: 4.00 0.00 

Type of curve: n (bel 1 shaped) 

Table A.32 Common area between Log-Normal Distribution (LN4), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments , 

3 

4 

5 

Percentag~ of area 
common between the 
curves 

in 
two 

90. 91 

96.02 

97.70 

' 




1.0199 2 
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ACTUAL DIST . 

.. .,.' \ H. L E .• DI ST u1.141 41 
i ~ 

.8 9243 

.76 9 

.63 74 
x 
.._, 
LL 

.50996 

.38247 

.25498 

.1274 

' ' ' ' ' l 
' 

0.0000~..4-d-+--~t----1~-+~-i--~-1-~~~+---+---i 

0 .o .a la2 1.6 2.0 2.4 2.8 3.t 3.6 4.0• 
){ 

2Fiqure A:33 Aonroximatinq Loo-Normal Distribution (LN4). ( v = 0, 0 = .3), by a 

Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments. 

Central Moment values: 1 .07730 .18610 .097237 .18845 .272869 

~values (for M.L.E. Distribution): - 9.4254 29.9921 - 33.7175 16.9511 - 4.10425 

.37979 

Percentage area in common between the two distributions = 97.70 
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LOG-NORMAL DISTRIBUTION (LN5) 


exp [­ 1 - 2 ( 1 og x - 2
lJ ) ] , 11 = 0, 2 o = . 1 , x > 0 

o II 211 2II 

f (x) = 

l 0, e 1 sewhere 

Central moment values: 1 .02531 .05390 . 00864 

. 011207 

Standardized moment measures(fs,, s2): .631 3.245 

Upper and lower bounds: 3.00 0.00 

Type of curve: n (bell shaoed) 

Table A.33 Common area between Log-Normal Distribution (LN5), and its approximate 

Maximum-Logarithmic Entropy Distribution for different known first moments. 

Number of known 
first moments 

Percentage of area in 
common between the . two 
curves 

3 95.64 

4 98.87 
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1.85128 


1.64558 

1.43989 

1.23419 

1.02849 
r-.. 

x 

.82279 

.61709 

.41140 

.20570 

RCTUI=IL DIST. 

M.L.E. DIST. 

-

o.00000-+-~-+--~+---1~-4~-1-~-+--=====-+----+-~4--~ 

o.o .3 .G .9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 
x 

Fiqure A.34 Annroximatinq Loo-Normal Distribution (LN5) ( u = 0, 0 
2 = .1), by a 

Maximum-Logarithmic Entrooy Distribution (M.L.E. ), based on the first four moments. 

Central Moment values: 1.02531 .053998 .0()8642 .011207 
, . 

A values (for M.L.E. Distribution): - 24.8617 72.5883 - 72.5529 30.2225 - 4.79349 

Percentage area in common between the two distributions = 98.87 
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APPENDIX B 

DERIVATION OF S = -L: o. log p. (lO) . 
' l . l 
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1 1 1Let S(n, n, ... n) =A (n). From condition (3) we can decompose 

a choice from Sm equally likely oossibilities into a series of m choices each 

from S equally likely possibilities and obtain 

A (Sm) = m A ( S ) 

Similarly 

A (tn) = n A (t) 

We can choose n arbitrarily large and find an m to satisfy 

Taking logarithms and dividing by n log S, gives 

, m ~ 1og t 
~ !!l. + l or n " 1og S n n 

m 1og t I < E 
n log S 

where E is arbitrarily small. Now from the monotonic property of A (n) 

m A ( S) ~ n A ( t) ~ (m + 1 ) A ( S) 
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Dividing by n A (S) gives 

!!!. ~ A (t) ~ !!!. + l 
n "' A (S) " n n or 

m A (t) I 
n A (S) < t: 

A (t) - J_Q_g_t_ I ~ 2E:
A (S) log S 

A (t) = -K log t 

where K must be positive to satisfy condition (2). Now supoose we have a choice 

from n possibilities with commeasurable probabilities 

n. p. - 1 
1 En. 

1 

where the n; are integers. We can break down a choice from In; possibilities 

into a choice from n possibilities with probabilities pi, .... on and then, 

if the ith is chosen, a choice from ni with equal probabilities. Using 

condition (3) again, we equate the total choice from In. as computed by two 
1 

methods 

Hence 



171 

H = K [L: p. log l:n. - l: p. log n.]
1 1 1 1 

n. 
1= K p. log - = - K l: p. log o. 

1 l:n. 1 . 1 
1 

If the D; are incommeasurable, they may be approximate~ by rationals and the 

same expression holds in general. The choice of coefficient K is a matter of 

convenience and amounts to the choice of a unit of measure. 
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APPENDIX C 

COMPUTER PROGRAMS AND USER'S MANUAL 



HOW TO USE 

1. 	 Write calling program. In its simplest form it is as follows. 

(a) 	 DIMENSION statement. Check through the list of input, and output 
variables. Include all subscripted variables, dimensioning as 
indicated. 

(b) 	 Define input data. Include DATA cards, or READ statements, or 
individual cards such as 

!PRINT = 1 

so that each variable in the input list is defined. 

(c) 	 Call the subroutine. For example 

CALL DECil(CM,XMIN,XMAX,X,XP,NP,NXP,IPRINT,IRESULT,N) 

(d) 	 Add STOP and END 

2. 	 If DECil or MOMENT are called, the user must write subroutine DERV 
to evaluate g(x1 , x2 , .•. ,~), 

aQ a2 g 
..:.a_ and ~· 
dX. oX. 

1 1 

3. 	 Add to the deck all subroutines called as indicated in the documentation. 



I 

CONTENTS 


SUBROUTINE DECil 1 

This subroutine provides an estimate of the probability 
density function for y, where 

y = g(xl,x2, ••• ,xn) 

and the first four moments of the x's are known. 

SUBROUTINE DERV 4 

User written subroutine to evaluate g(x ,x2 , ••• ,xn),
1 

~ ~ " and " 2 •oX. oX. 
1 1 

SUBROUTINE MEP 8 

This subroutine provides an estimate of the maximum 

logarithmic entropy density function for any random 

variable for which the first n moments are known. 


SUBROUTINE MOMENT 38 

This subroutine provides an estimate of one or more 

of the first four moments of y, where 


and the first four moments of the x's are known~ 
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SUBROUTINE DECil (CM,XMIN ,XMAX,X,XP, "(P ,NXP, 
IPRINT,IRESULT,N) 

Purpose 

Analog prediction under risk. 

This subroutine provides an estimate of the probability density 

function for y, where 

and the first four moments of all the x's are known. 

The density function of y has the form 

The program gives the values of the A1 s. It also provides values of the 

cumulative distribution function for given values of the independent 

variable y. 

Method 

The first four moments of y are approximated in terms of the 

' b . d T 1 I • • (l)moments o f t h e x. s y using a truncate ay or s series expansion • 
)_ 

2Then the method of maximum entropy( ) is applied to generate the distri­

bution. The relationship between the subroutines -is illustrated in 

Figure 1. The user calls DECil, which calculates the first four moments, 

and the lower and the upper bounds of the £unction 
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µsing ~ubroutine DERV, which is supplied by the user. Then DECil calls 

internally subroutine MEP to generate the distribution. In Figure 1 the 

user supplied routines are shown in double lines. 

JMAIN I 


.~ 

' 
.,,. 

DECl1 - DERV--­

'~ 

, 


MEP 

package 

FIG. 1: The relationship between the subroutines. The user supplied 

routines are shown in double lines. 
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References 
, 

1. 	 Siddall, J.N.; Analytical Decision Making in Engineering .Design, Prentice-

Hall, 1972. 

2. 	 Diab, Y.; The Maximization of the Logarithmic Entropy Function 

as a New Effective Tool in Statistical Modeling and Analytical 

Decision Making, Masters Thesis 1972, McMaster University. 

Input 	Variables 

N 	 number of independent variables. 

CM(I,J) array containing the first four moments of the independent 

variables, dimensioned (N,4). 

XMIN (I) lower bounds of the independent variables, dimensioned 

with the value of N. 

XMAX(I) upper bounds of the independent variables, dimensioned 

with the value of N. 

NXP number of points for which it is required to calculate 

the cumulative distribution function. 

XP(I) array containing the values of y for which the values 

of the cumulative distribution function are to be 

calculated, dimensioned with the value of NXP. 

IPRINT prints results every !PRINT cycle, set = 0 for no 

intermediate output. (Note--tpe intermediate results 

are related to the entropy maximization method, and have 

no direct relevance to analog prediction under risk. 

See subroutine MEP). 
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I DATA = 1, all input data is printed out. 

o, input data is not printed out. 

IRESULT 1, output data is printed and plotted. 

= 0, no output. 

Output Variables 

X (I) 	 array containing the L.agrangian multipliers or /.. 's, 

dimension at 6. (Note--although there are five >..'s 

the sixth subscript is used internally). 

YP(I) 	 array containing the values of the cumulative distribution 

function of f(y) corresponding to XP(I), dimensioned with 

the value of NXP. 

Progranuning Information 

DECil has full variable dimensioning. The calling program must 

provide dimensioning as given above. 

The user must define the function g(x
1

,x
2

, .•.. ,xn), and the first 

.and second partial derivatives. See SUBROUTINE DERV below. 

SUBROUTINE DERV(FUN;DE1,DE2,N,X) 

Purpose 

and 
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Method 

These may be evaluated in any manner, including numerical approximations, 

as long as specific values are returned for any input point for the x's. 

Input Variables 


X(I) point at which functions are to be evaluated. 


N number of x' s. 


Output Variables 


FUN function value or value of g(x1 ,x2 , ••• ,xn). 


DEl(I) array giving va ue o irst erivatives, -~~ 
· · 1 f f · d · · ag 
ax. 

i 

a2g.
DE2(I) array giving value of second derivatives, ~~ ax 2 

i 

How to Set Up Subroutine DERV 

The following cards must be punched by the user: 

SUBROUTINE DERV(FUN,DE1,DE2,N,X) 

DIMENSION X(l),DE1(1),DE2(1) 

Coding to define FUN, DEl(I), and DE2(I). 

It may include any legal FORTRAN statements 

and call to auxiliary subroutines. 

RETURN 

END 

Listing 

The following listing is for subroutine DECil; for subroutine MEP 

(which is called by DECil, to generate PDF) and its auxiliary subroutines; 

see MEP user's manual below. 
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SUHkOUTINE DECil (C M,XMIN,XMAX,x,xP,yP,NXP,IPRINT•IOATA,1RESULl,N) 
DIMENSION CM<N,t+), X.MlN(l), XMAX.(l), DE1(4), DE2<4), CC(4), XP<l), 

1 YP(l)..JJ)((i» 

IF <IOATA.E Q.CJ) GO TO 2 

vJ R I T E <6 , 1 1 ) 

WRITE (6'12> lUATA 

WR ITE (6,13) lPkINT 

WRITE (6, 14) lkESUL T 

WRITE (6'15) f\1 

\NRITE (6d6) 

DO l 1=l "l\J 
WRITE (btt i 7} I' (C M(I ,,J) ,J=l ,4) 'XMIN (I) .X.MAX (I) 

1 CONT I i\JUE 
2 	 CONT Irl.JUl 

IO TA=l 
IF (JPRI NT.EQ.O > IDTA=O 
DO J 1= i, ~~ 
CC<I>=I. 

3 	 CONTJNUt. 
CALL OE HV <FLJl\J,OEitOE2,N,CC > 
DO 4 I=i,N 
CC < I > =Xi·i IN ( I > 

IF <DEl<I>.G!.0.0) CC<l>=XMAX<I> 
4 	 CON r Ii'.JUE 

CALL Dt: ~ V <XIMAX,lJE 1,1JEi,N,CC > 
DO 5 I=l ,r\J 
CCCI>=X HAX(l) 

IF CDEl<I>.GT.0.0J CC<I>=XMIN<I> 


5 	 CONT i 1-.JUE 
CALL DEkV CXTMINtDEJ,OE~,N,CC> 

DU ·b I= l "t·~ 

C C < l > =Cr1 < I , l ) 1 

6 	 CONTINUE 
CALL OERV <FuN,UEltOE2,N,CC> 
CC<l>=F Uf\J 
DO 7 l=c'.•4 
CC<I>=O.O 

7 	 CON I H~UI:. 
DO 1 0 I= l • l\J 
CC<l>=CC<i)+.5*CDEZ<I>*CM(l,2)) 
CC<2>=CCC2)+UEl<l>**Z*CM<I,~·)+0El<I>*DE2<I>*CM(I,3) 

CCC3>=CCC3)+0El<I>**3*CM(i•3> 

SUM=O.O 

KJ=l+l 

IF CKJ.GT.N) GO TO 9 

DO 8 J=KJ,N 

SUM=suM+b.*(DEl<I>*DEl(J)}**2*CM(l,2>*CM(J,~) 

8 CONlINUE 
9 CONT I f\JUE 

CC<4>=CC(4)+SUM+U[l<I>**4*CMCI"t+) 

http:CDEl<I>.GT.0.0J
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10 	 CONTINUE 
KSTART=l 
TOL ; l .E-6 
CALr ME~ (XTMAX,XTMIN,cc,4,x,xp,yp,NxP.1DTA,IPRINT.1RESULT•KSTART• 

1 TOL 1> 

RETURN 


c 
11 FORMAT (1Hl,//,20X•*INPUT DATA FOR SUBROUTINE 

l*) 9//) 

12 FORMAT C* INPUT DATA IS PRINTED OUT FOR !DATA =I ONLY • • .JUATA = 
l*• Il8,/) 

13 FORMAT (* INTERMEDIATE OUTPUT EVERY IPRINTCTH> CYCLE •• !PRINT = 
l*• !18•/) 

14 FORMAT pt- OUTPUT DAT A IS PR IN fEU OUT ·FOR I RESULT =l ONLY I RESULT = 
1*•118•/} 

15 FORMAT (* NUMBER OF INOEPENOANT VARIABLES • • • • • • • • • • .• N= 
1*•118,/) 

16 FORMAT (//•* VARIABLE FIRSf MOMENT SECOND MOMENT THIRO 
l MOMENT FOUl-HH MOMENT LOWER LIMIT HIGHER LIMIT 
2*•//) 

17 	 FORMAT (lX,I3•bX•4Eld.9,5X,2E18.9,/) 
END 
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SUBROUTINE MEP(XMAX,XMIN,CC,N,AL,XP,YP,NXP, 
IDATA,IPRINT,IRESULT,KSTART,TOL) 

Purpose 

This subroutine provides an estimate of the probability density 

function for the random variable x, where the first n moments of x are 

known. The density function, y, has the form 

••••• (1) 

The program gives the values of the A's. It also provides values of the 

cumulative distribution function for a given value of the independent 

variable x. 

Method 

Langrange's method of undetermined multipliers is used to maximize 

Shannon's Logarithmic Entropy Function (p.~np.), with the given n moments 
l. l. 

as constraints. This leads to n algebraic simultaneous equations in n 

unknowns, where the unknowns are the A. 's (i # 1) in equation (1), and only
l. 

one solution exists. The n equations are solved by optimizing (minimizing) 

the square of the relative error in the value of the moments; the optimi­

zation process stops when the error becomes less than the accuracy 

specified by the user (TOL). The Jacobson-Oksman algorithm is used. The 

program provides internally a starting point to start the algorithm. Four 

methods are used; if one fails to provide a solution, the next is called 

automatically without participation of the user. 



I MA IN I -

CDF -­ J~ 
MIN10 OUTP ,, 

-~ l 
f 

~ II 

... 

MEP--p­

TRN1 
~ _,,,, 

FUN CT
._ ,. THETA-­ - .., . 

~ 

-­ '~TRN2 
~ 

....---'­

d1 1~ f' ~ 

FACTO CONVERT MULTI SIMSON START 
,. 

• • ~ J 
common array HELP 

FIG. 1: 	 Relation between Subroutine MEP, MAIN and the auxiliary subroutines. The 

user supplied routine is shown in double lines. 

\,0 
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To eliminate overflow, the problem is converted from its original 

domain, (XMAX - XMIN), to a modified domain, (XMAX = 1, XMIN = 0). When a 

solution is found, the problem is transferred again to its original domain. 

SUBROUTINES TRNl, TRN2 and CONVERT look after this transfer problem. 

References 

1. 	 Diab, Y. ; "The Maximization of the Logarithmic Entropy Function 

as a New Effective Tool in Statistical Modeling and Analytical 

Decision Making", Masters Thesis 1972, McMaster University. 

2. 	 Jacobson, D.H. and Oksman, W.; "An Algorithm that Minimizes 

Homogeneous Functions of N variables in N+2 Iterations and 

Rapidly Minimizes General Functions", Technical Report No. 618, 

Oct. 1970, Div. of Engineering and Applied Physics, Harvard 

University, Cambridge, Mass. 

Input Variables 


N number of first moments, should be less than or equal to 6. 


CC(I) array containing the first N moments, dimensioned (N). 


XMIN lower bound of the variable. 


XMAX upper bound of the variable. 


TOL the allowed relative error in the moment value, a solution 


exists 	where 

t cc. 
· 1 	 cci 

R(I) 	= .$ TOL ••••• (2)
c. 

l. 

where .cc. is the given moment 
J_ 

cci
t 
. is the predicted moment. 



11. 


' 

I A reasonable value for TOL is 10-6 . 

!DATA = 1, all input data is printed out 

= O, input data is not printed out. 

IPRINT prints results every !PRINT cycle, set 0 for no intermediate· 

output. If IPRINT ~ O, all intermediate results before 

optimization, the starting method name, and the starting 

values of the A's, are printed out. In addition the 

following are printed, cycle number, number of function 

evaluations (subroutine FUNCT), the normgradient, total 

residuals 
n 
(~ R. 2 )
i i 

where R. 
i 

is defined in equation (1), the 

values of the A's, and the value of each individual R.• 
i 

!RESULT = 1, output data is printed and plotted. 

= O, no output. 

KSTART 1, normal assumption starting method. 

= 2, uniform assumption starting method 

3, N points assumption starting method. 

= 4, step by step assumption starting method. 

Set to 1, in case no particular starting method is 

preferred. In this event the subroutine will try other 

methods if one method fails. 

NXP number of points for which it is required to calculate 

the cumulative distribution function. 

XP array containing the values of the independent variable 

for which the values of the cumulative distribution 

functions are to be calculated, dimensioned with the value 

of NXP. 
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Output Variables 

AL(!) array containing the Lagrangian multipliers or A's, 

dimensioned at (N+2) (Note--although there are only 

(N+l) A's, the (N+2) (th) subscript is used internally). 

YP(I) array containing the values of the cumulative distribution 

function of XP, dimensioned with the value of NXP. 

Programming Information 

MEP has full variable dimensioning. The calling program must provide 

dimensioning as given above. 

Listing 

The following listing _ts for subroutine MEP and the auxiliary 

subroutines. 



SUBROUTINE MEP <XMAXtXMIN•CC•N•ALtXP,YP.NXP,IOATA•IPRINT,IRESULT•K 
lSTART,TOL) 

c 
COMMON 
COMMON 

/FAIL/ 
/HELP/ 

NFAIL 
S<31>,XX(8,3l)•C<8>•M 

DIMENSION AL(l), CC<l>• ETA<4>• XP<l>• YP<lJ 
c 
C WRITE THE INPUT UATA 
c 

If <IDATA.EQ.OJ GO TO l 
WRITE (6,22> 
WRITE (6,23> IOATA 
WRITE (6,24) !PRINT 
WRITE (6,25> IRESUL T 
WRITE (6,26) N 
WRITE (6,27> XMAX 
WRITE (b,28> XMlN 
WRITE (6t29) <cc<I> .1=1·4> 
IF <N.GT .4) WRITE 
WRITE . (6.30> TOL 

(h.19> <CC< I> ,J=5•N> 

WRITE (b,31) NXP 
l CONTINUE 

NFAIL=O 
AL(N+1J=2. 
AL(N+2>=o.o 
M=31 
X2MIN=O.O 
X2MAX=l. 

c 
C CALCULAfE THE MOMENTS AT TrlE MOUIFIEO LIMITS 
c 

CALL TRNl (XMAX,XMlN•CCtX2MAXtX2MIN•N> 
c 
C CALCULATE THE MOMENTS A8QUT THE ORIGIN FOR THE MODIFIED LIMITS • 
C STORE THEM IN HELP COMMON ARRAY 
c 

CALL CONVERT <CC,N> 
c 
C GENERATE THE SIMPSON MULllPLIERS AND STORE THEM IN HELP COMMON 
·c 

CALL SIMSON 
c 
c GENERATE THE x.s POwER FoR SUBROUTINE FUNCT, STORE THEM IN HELP 
C COMMON ARRAY 
c 

CALL MULTI <X2MAXtX2MlN•f\J> 
c 
C DEFINE THE INPUT UATA ·foR SUBROUTINE THETA 
c 

ETA(l)=l.£-12 
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ETAC2>=ToL 
ETAC3>=1.E-24 
ET AU+ > = l • E_ ­ 2 4 

MAXFN=lOOO 
MODE=l 
UMIN=O.U 

c 
C WRITE THE lNTERMEUIATE RESULTS YOU HAVE 08TAINED SO FAR 
c 

IF CIPRINT.EQ.0) GO TO 2 
WRITE (6,32> 
WRITE 
WRITE 

(b,33> 
(6,34) 

M 
X2MAX•X2MIN 

WRITE (6,35) <cc<I>.I=l•4) 
I F Cf\i • G T • 4 > WR I T E ( 6 , 2 0 > 

WRITE (6,Jb) CCCI>•I=l•'+> 
<CC ( I > • I =5 • N > 

IF <N.GT .4) ~JRITE (6,20) CC< I> d=S•N> 
WRITE (6,37> CETACI> .I=l,4> 

2 CONTINUE 
c 
C FIND A STARTING POINT FOR SUBROUTINE THETA TO START THE OPTIMIZAT­
C ION ALGORITHM 
c 

If <KS~ART.EU.4} WRITE <6•42)
CALL START <X2MAx.x2MIN.AL.KSfART•CC,N,IPRlNT•UMIN.MOUE,MAXFN,ETA) 
IF <NFAIL.EU.l> GO TO 9 

c 
C PRINT THE STAKTING VALUES 
c 

IF CIPRlf\iT.EU.0) GO 10 7 
GO TO (J,4,5,6), KSTART 

3 WRITE (6,38) 
WRITE (b,JY) CALCI>,I=l•4> 
IF CN.GT.4) wRITE (6,20> (AL<l> d=5•N> 
GO TO 7 

4 WRITE (6,40) 
WRITE (b,39> CAL< I>, I=l •4> 
IF <N.GT.4) wRITt. (6,~0) (AL(!) .I=5•N> 
GO TO 7 

5 ~JRITE (6,41> 
WRITE (b,39) CALCI>,I=l•4> 
I F ( N • G T • 4 > WR I T E ( 6 , 2 0 > '( AL ( l > ' I =5 ' N ) 
GO TO 7 

6 WRITE (o,42) 
WRITE (b,39) (AL<I>,I=1•4> 
IF (N.Gl.4} WRITE. (6,~0> CAL(l} •1=5,N> 

7 CONTINUE 
NFAIL=O 
IF <IPRINT.EQ.0) GO TO ~ 

~~RITE (6,'+3> 
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8 	 CONTINUE 
CALL THt:TA (AL•N•ETA•UMIN•MAXfN,MOOE,IPRINT> 
IF (NFAIL.EQ.0) GO TO 10 
IF <KSTART.EU.'+) GO TO 9 

c 
C THE PROGRAM HAS FAILED SO FAR , TRY ANOTHER STARTING 
C AGAIN 
c 

KSTART=KSTART+i 

IF (KSTART.EQ.4.AND.N.LE.2) GO TO 9 

GO TO 2 


9 	 CONTINUE 
WRITE (6,44) 
CALL EXIT 

10 	 CONTINUE 
c 
C 	 CALCULATE THE ZEROTH LAGRANGIAN MULTIPLIER 
c 

SUM=O.O 

DO 12 l=l,M 

sz=o.o 

DO 11 K=l,N 
SZ=SZ+AL(K)*XXlK•l> 

11 CONTINUE 
SUM=SUM +S<I>~EXP<SZ> 

12 	 CONTINUE 
NPL=N+l 
DO 13 I=l•N 
K=N+2-I 
AL(K)=AL(K-1) 

13 	 CONTINUE 
OELTA=<X2MAX-X2MlN)/fLUAT<M-l> 
AL<l>=-ALOGCSUM*UELTAIJ.) 
IF <IPRINT.ECJ.0) GO TU 14 
WRITE (6,'+5) <AL<I> .I=l•NPU 

14 	 CONTINUt: 
c 
C . CALCULATE TH~ LAGkANGIAN MULTIPLIERS FOR THE ORIGINAL 
c 

c 
C CALCULATE THE CUMULATIVE UlSTR18UTlON FUNCTlON VALUE 
C POINT 
c 

DO 15 	 I=l•NXP 
YP<I>=C~F(XMIN,XMAX,XP<l>•AL,N> 

15 	 CONTINUE 
IF <IRESULT.NE.l> RETURN 

c 
C 	 PRINT ANO PLUT THE RESULT 

POINT AND TRY 


LIMITS 

AT THE GIVEN 

http:KSTART.EU
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c 
WRITE (6,'+6) 
WRITE (6,47) 
WRITE (6,48) (AL (I), I=l ,NPL> 
WRITE (6,21 > 

DO 16 l=l ,NXP 
WRITE (bdB> I,xP<I> ,YP<I> 

16 	 CONTINUE 
c 
C 	 PLOT THE DISTRIBUTION 
c 

M=Sl 
DELTA=<XMAX-XMIN>IFLOAT<M-1> 
D 0 l 1 I = 1 , 1"1 

X=XMIN+FLOAT<I-l>*DELTA 
Y=ENTRPf (AL,N•X> 
CALL PLOTPT cx.Y.9) 

17 	 CONTINUE 
CALL OUTPLT 
RETURN 

c 
c 
c 

18 FORMAl c110.1~x.ElB.9·12XtEl8.9) 

19 	 FORMAT (57X,'+Ei8.9,//) 
20 	 FORMAT C57X,'+E18.9,//) 
21 FORMAT (///•* N VARIABLE 

1 CUMULATIV~ */S8X•*DISTRIBUTIUN*•//) 
22 FORMAT (lHI.11.2ox,*INPUT DATA FOR SUBROUTINE MEP*,/•20Xt3l(*-*) 

!,//) 
23 FORMAT <* INPUT UATA IS PRINTED OUT FOR IDATA =l ONLY •• ·!DATA = 

l*• !18,/) 
24 FORMAT <* INTERMEDIATE OUTPUT EVERY IPRINTCTH) CYCLE •• !PRINT = 

lir'118t/) 
25 FORMAT (i} OUTPUT DATA IS PRINTEU OUT FOR !RESULT =l ONLY !RESULT = 

l*•IU:3,/) 
26 FORMAT(* NUMt:H:.R OF KNOWN FIRST MOMENTS ••• • •••••••• N= 

l*•Ilt:h/) 
27 FORMAT <* HIGH~R LIMIT •••• • •••••• • • ••••• XMAX = 

l*,ElB.9,/) 
28 FORMAT <* LOWER LIMIT ••••••••••••••••••• XMIN = 

li},El8.9,/) 
29 FORMAT (* FI~ST MOMENTS ••••••• • ••• • • • • • • CCCI> = 

l*•4El8.9,/) 
30 FORMAT C* THE ALLOWED TOLEkANCE IN LAGRANGIAN EQUATIONS ••• TOL = 

1-f~•ElB.9•1> 
31 FORMAT (i} THE CUMULATIVE OISTRI~UTION REQUIRED AT NXP ~OINTS.NXP = 

1*•118./) 
32 FORMAT <lhl,//,20X•*INTERMEDJATE RESULTS FOR SURROUTINE MEP*•/•2 

lOX•4l 	(.!-'"-*) •//} . 
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33 FORMAT (* NUMBER Of INTEGRATION STATION • • ••• • • • • • • M = 
l*tll8,/) 

34 FORMAT <* MODIFIED MAXIMUM ANO MINIMUM LIMITS • • X2MAX ' X2MIN = 
l*•2El8.9,;) 

35 FORMAT (* MODIFIED MOMENTS ABOUT THE EXpECTED VALUE ••••cc<I> = 
l*,4El8.9,/) 

36 FORMAT <* MODIFIED MOMENTS ABOUT THE ORIGIN •••••• • • C(l) = 
l*,4El8.9,/) 

37 FORMAT <* SUbROUTINE THETA TOLERANCES ••••• • • ••• ETA<I> = 
l*•4El8.9,/) 

38 	 FORMAT (//•*NORMAL .ASSUMPTION STARTING METHOD*/34(*-*),/) 
39 FORMAT <* STARTING VALUES • • • • •• • • • • •••• • AL<I> = 

l*,4El8.9,/) 
40 FORMAT (//•*UNIFORM ASSUMPTION STARTING METHOD*/35c*-*)t/) 
41 FORMAT (//•* N POINTS STARTING METH00*/25<*-*>•I> 
42 FORMAT (//•*STEP BY STEP STAkTING METHOU*/29<*-*>•I> 
43 FORMAT (//•* CYC NUMF NORMGRAO TOfAL*,24X,*VARIABLES*t40 

lX•*RE?lOUALS*•I•* N0•*•22X,*RESIUUALS X(l) 	 X(2) 
2 XC3> 	 X(4) R<l> RC2> R(3) R 
3(4)*,//) 

44 	 FORMAT <* THE PROGRAM HAS FAILED*> 
45 FORMAT <* THE MOUIFIED LAGRANGIAN MULTIPLIERS ARE •• • ••• • • 

l*•4El8.9/57X•4El8.9> 
46 FORMAT <1Hl,2 0X•* RESULTS FOR SU~ROUTINE DECI1*,/•2 0X•29<*-*>•I/) 
47 FORMAT <* TH[ MATHE MATICAL MOUEL OF THE MAXIMUN ENTROPY PROB ABILIT 

lY DISTRIHUTIUN AS THE FORM*•///tl0Xt60H Y=EXP<Z<l>+ZC2)*X+ •••• +••• 
2.+ZCI+l)*X**I+ ••• +•• +Z<N+l)*X**N)////•* WHERE X I 
3S THE VARIA8LE*//,15X•*Y IS THE CORRESPONDING Pk08A81LITY 
4 DENSITY FUNCT10 N*//•l5X,*Z<I> ARE CONSTANTS EQUALS TO*,//) 

48 	 FORMAT (/,25X·~~1~.9.1,c s x.sEl8.9,/) 

END 
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SUBROUTINE FUNCT <N,AL,u,GRAD•RR> 
c 
C THIS SUBROUTINE IS USED TO CALCULATE THE OPTIMIZATION AND THE 
C GRAUIENT AT ANY GIVEN POINT FO SUHROUTINE fHETA 
c 

DIMENSION At_(l}, GRAD<l>, SUM(9), RR(l) 
COMMON 
COMMON 

/FAIL/ 
/HELP/ 

NFAIL 
SC31),XXCb,3l},C(d)•M 

N21=2*N+l 
ZERO=O.O 
DO 1 I=l,N21 
SUMCI>=O.O 

1 CONTINUE 
2 CONTINUE 

DO 4 I=l•M 
SZ=ZERO 
DO 3 K=.i,N 
SZ=SZ+AL(K)*XX<K•l) 

3 CONTINUE 
IF <SL.GT.740.> GO TO 9 
S S=E XP ( S Z > i«- S < I ) 
SUM<l>=SUM(i)+SS 
DO 4 J=~•N2J. 

SUM(J)=SUM(Jf+XX<J-l•I>*SS 
4 CONTINUE 

DO 5 I=i,~,;21 
SUM(J)=SUM(I)/SUM(l) 

5 CONTif\JUE 
u=o.o 
DO 6 I=l,N 
RR<I>=<SUM(I+l)-C(!))/C(l) 
U=U+RR<I>-r..RR<I> 
CONTINUE 
DO ts K=l•N 
GRAD(K)=O.O 
DO 7 J=l•N 
GRAD<K>=GRAD(KJ+(SUM(J+K+l)-SUM(J+l>*SUM(K+l>>*RR(J)/C(J) 

7 CONTINUE 
·GRAD<K>=GRAD<K>*~. 

8 CONTINUE 
RETURi'1.1 

9 CONTINUE 
AA=SZ-320. 
ZERO=ZErW-AA 
GO TO 2 

c 
END 
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lAXFN,ETA> 
c 
C THIS SUBROUTINE IS USED TO FIND A REASONABLE STARTING POINT FOR 
C SUBROUTINE THETA 
c 

COMMON /HELP/ 5(31),XX(8,3l>•C(ti)•M 
DIMENSION R<ll> 
DIMENSION 
DIMENSION 

cc<l>• ETA(l) 
ALAMUA(l), X(6)• Y(6), W<6,6) 

COMMON /FAIL/ Nf AIL 
GO TO (J,1,s.26>· KsTART 

1 CONTINUE 
NFAIL=O 
DO 2 I=l,NL 
ALAMDA<I>=O.O 

2 _ CONT INUt:: 
RETURN 

3 CONTINUE 
NFAIL=O 
ALAMDA<i>=CC<l>ICC<2> 
ALAM0A(2)=-.5/CC(2) 
DO 4 I=3•NL 
ALAMDA<I>=O.O 

"' 4 CONT I NUE 
RETURN 

5 CONTINUE 
NFAIL=O 
NNN=NL/t!. 
NNN=NNN-:~2 

NPl=NL+i 
DELTA=<XMAX-XMIN>IFLOAT<NL> 
DO 6 I=l• NPl 
X<I>=XMIN+FLOAT<I-l>*DELTA 

6 CONTINUt: 
IF <NNN.NE.NL) GO TO 19 
IN ( 1 • 1 ) =111 ( l , N P l ) = l • 
DO 7 !=2,NL,C: 
\.i C 1 , I >=4. 

7 CONTINUE 
IF <NL.EQ.2) GU TO 9 
NMl=NL-1 
DO 8 I=3,NM1,2 
wc1.1>=t.. 

8 CONTINUE 
9 CONTINUE 

00 10 J=l,NPl 
DO 10 1=2,NPl 

10 W(I,J>=w<I-l•J>*X<J> 
Y<l>=3.IDELTA 
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DO l l 	 I= l 'NL 
Y<I~l>=C<I>*Y{i) 

11 	 CON f INUE 
CAlt SOLVE (WtYtlD•NPl•6) 

12 	 CONTINUE 
DO 13 I=l,NPl 
DO 13 J=l,NPl 

13 	 W(J,J>=.O 
DO 14 I=l,NPl 
IF {YCI>.LE.0.0) Y(l)=.0002 

14 	 CONTINUE 
DO 15 I=l,NPl 
Y<I >=AL OG ( Y<I ) > 

15 	 CONTINUE 
00 16 I=l,NPl 
w<Id>=l. 

16 	 CONTINUE 
DO 17 1=2,NPl 
DO 17 J=l,NPl 

17 	 W(J,I>=W(J,f-l>*X(J) 
CALL SOLVE cw,y,10,NPlt6) 
DO 18 I=l•NL 
ALAMDA (I> =Y < I+l> 

18 	 CONTI NU£ 
RETURN 

19 	 CONTINUE 
R<l>=3./H. 
R<4>=3./8. 
R ( 2) =RU) =9. I 8. 
IF (NL.EU.3) GU ro 22 

RCNL+l>=l./J. 

R(4)=R('+) +l.13. 

DO 20 I=5tNL•2 

R<l>=4.13. 


20 	 CONTINUE 
IF (NL.tQ.5) GO TO 22 
NS=NL-1 
DO 21 1=6,NS•~ 


RCl>=~.13. 


21 	 CONTINUE 
22 	 CONTINUE 

DO 23 I=ltNPl 
W ( 1 ' I > =R < 1 > 

23 	 CONTINUt: 
DO ~4 J=ltNPJ. 
DO 24 1=2,NPl 

24 	 W{l,J>= W<l-l•J>*X(J) 
Y<l>=l./DELTA 
00 25 l=l,NL 
Y<I+ 1) =C <I> {i-y C 1 > 

http:RCl>=~.13
http:R<l>=4.13
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25 CONTINUE 
CALL SOLVE (W,Y,lDtNPl,6) 
GO TO 12 

26 CONTINUE 
N=2 
ALAMDA<~>=-.5/CC<2> 
ALAMDACl>=CC(l)/CC<2> 
NFAIL=O 

27 CONTINUE 
ALAMOA(N+l>=c:.O 
ALAMDA<N+2>=0.0 
CALL THETA <ALAMOA,N,ETA,UMINtMAXfNtMOOE,IPRINT> 
IF <NFAIL.EG).l) kET tJ RN 
IF <N.EQ.NL> RETURN 
ALAMOA(N+l>=O.O 
N=N+l 
GO TO 27 
END 
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SUBROUTINE CONVERT <CM•NL> 
c 
c 	 THI~ SUBROUTINE IS TO CALCULATE THE MOMENTS ABOUT THE ORIGIN 
c ! 

COMMON /HELP/ 5(31),XX(8,3l>•C(8)•M 
DIMENSION CM<l> 

C ( l) =CM < 1} 

DO 2 J=2•NL 

C<J>=CM<J>-C<l>**J*(-1.>**J 

N=J~l 
DO l K=l,N 
C<J>=CCJ>-<-1.>**K*FACTO(J)/(FACTO<K>*FACTO(J-K>>~C<l>**<K>*C(J-Kl 

I 	 CONTINUE 
2 	 CONTINUE 

RETURN 
END 
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SUBROUTINE SIMSON 
c 
C THIS SUdROUTINE IS TO CALCULATE THE SIMPSON MULTIPLIERS 
c 

COMMON /HELP/ 
s<l>=l. 
S(M)=l. 

N=M-1 

DO 1 I=2,N,2 

5(1)=4. 


1 	 CONTINUt. 
N=N-1 
DO 2 I=3•N•2 
S<I>=2. 

2 	 CONTINUE 
RETURN 
END 

S(31).XX(8,31),C(d)•M 
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~ ~UBROUTINE MULTI CXMAX,XMIN•Nl 
c 
c THI~ SUBROUTINE IS USED TO GENERATE THE x,s POWER FOR SU~ROUTINE 
c FUNFT 
c 

' coMMON /HELP/ SC3l>.XX(8,3!),C(8),M 

OELTA=CXMAX-XMIN>IFLOAT<M-1> 

DO l I =l • M 

XX(l,I>=XMIN+FLOAT<I-l>*OELTA 

NN=2*N 

DO 1 J=2,NN 

XX(J,I>=XX(J-1,I>*XX(ltl) 


l 	 CONTINUE 
RETURN 
END 
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c 
. C THIS SU8ROUTINE IS USED TO CALCULATE THE MOMENTS FOR THE MODIFIED 

C LIMITS 
c 

DIMENSION C<i> 
SCL=<XlMAX-XlMlN)/(X2MAX-X2MIN> 
CCl>=C(i)/SCL-XlMIN;SCL+X2MIN 
DO 1 1=2,NL 
CCI>=CCI)/SCL**I 

1 CONTINUE 
RETURN 
END 
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SUBROUTINE TRN2 <X1MAX,~1MIN.x.x2MAX.X2MIN,N> 

c 
c I

TH ~S SU 8 R 0 UT I NE I S USED T 0 CALCULATE THE' LAG RANG I AN 
c AT · THE ORIGINAL LI MITS 
c 

DIMENSION X(l) 
S=<XlMAX-XlMlN)/(X2MAX-X2MIN> 
A=X2MIN-XlMIN/S 
X<l>=X<l>-ALOG<S> 
DO l I=l,f\J 
X<l>=X<l>+X(l+t)*A**l 

1 CONTINUE 
DO 4 J_=t:.•N 
DO 3 I=·J • N 
FAC=l. 
KK=1-J+2 
D0 -2 K=KK•l 
FAC=F ACii- f LOA T <K> 

2 CONTINUE 
XCJ>=X(J)+FAC/FACTO(J-l>*A**<l-J+l)*X(l+l) 

3 CONTINUE 
X(J)=X(J}/S**(J-1) 

4 CONTINUE 
X(N+l>=X(N+l)/S**N 
RETURN 
END 

MU LT I PL l ER S 
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FUNCTION FACTO (M) 
FACTO=l. 
IF CM.E CJ.0) RETURN 
DO l I= 1, M 
FACTO=FACTO*FLOAT<I> 
CONTINUE 
RETURN 
END 
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FU~CTION FSIMP <FUNC•RANGE•M> 

DI1ENSION FUNC<l> 

IF <M.EQ.l) GO TO 4
I 

xx~RANGE/(3.*FLOAf(M-1)) 

AREA=FUNC<l>+FUNC<M> 

MM=M-1 

DO 1 1=2,MM,t:: 

AREA=AREA+4.*FUNC<I> 


· l 	 CONTINUE 
IF <M.EQ.3) GO TO 3 
MM:::M-~ 

DO 2 I=J,MM.2 
AREA=AREA+2.*FUNC<I> 


2 CONTINUE 

3 FSIMP=XX*AREA 


GO TO 5 

4 FSIMP=O.O 

5 RETURN 


END 
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FUNCTION ENTRPF <AL,NL•X> 
c 
C FUNCTION SUBROUTINE TO EVALUATE 
C AT A GIV[N POINT 
c 

DIMENSION AL<l> 

NPL=NL+l 

S=AL <1 > 


DO l 1=2,NPL 

S=S+ALCI>*X**<l-1) 


1 	 CONTINUE 
ENTRPF=EXP<S> 
RETURN 
END 

THE OlSTkIBUTION ENTROPY FUNCTION 
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FUNCTION CDF (XMIN•XMAX•XP•AL•N> 
c I 
C THIS FUNCTION SUHROUTINE IS TO CALCULATE THE CUMMULATIVE OISTRIBU­
C TION FUNCTION AT A GIVEN POINT 
c 

DIMENSION AL< l> 
IF 
IF 

(XP.LE.XMIN> 
(XP.GE.XMAX) 

GO 
GO 

TO 
TO 

3 
4 

RANGE=XMAX-XMIN 
RANGEN=XP-XMIN 
SS=RANGEN/RANGE*Sl. 
JSS=SS 
JSS= CJSS/2 > {~2+S 

.AREA=O. 0 
JSMl=JSS-1 
DELTA=RANGEN/fLOAT<JSMl) 
DO l I=~,JSiv11•2 
X=XMIN+FLOAT<I-l>*DELTA 
AREA=AREA+4.*ENTRPF<AL,N,X> 

1 CONTINUE 
JSM 1-=JSM 1-1 
DO 2 I=J,JSMi•2 
X=XMIN+FLOAT<I-l>*DELTA 
AREA=AREA+2.*ENTRPFCAL•N,X> 

2 CONTINUE 
AREA=AREA+ENTRPF (AL,N•XMIN>+ENTRPf lAL•N•XP} 
AREA=AREA*DELTA/J. 
CDF=AREA 
GO TO S 

3 COF=o.o 
GO TO 5 

4 CDF=l. 
5 CONTINUE 

RETURN 
END 
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SUBROUTINE THETA (X,NDIN,ETA,EST,MAX,MODE•IPRINT> 
COMMON /FAIL/ NFAIL 
DIMENSION X(lh Xl(6b X2<6h Gi (6) • G2(6) • ALFA(6), H<6h P(6t6h 

1 Y(bh PY(6)t PEC6), ETA(!), BIGV(6), RR(5) 

KTB=O 

IFLAG=O 
M=O 

N2=NDI"1+1 

Nl=NDIM+2 

NUMF=O 

IER=O 

DO l I=l,Nl 

Xl<I>=X<I> 


1 	 CONTINUE 
CALL FUNCT (NOIM,Xl.FltGltRR> 
NUMF=Nu 1-1F + l 
DO 2 I=l,NDIM 
X2(1>7Xl(l> 
G2 ( I ) =G i < I > 
H ( I > =-G 1 < I > 

2 	 CONTINUE 
f2=Fl 
X2CN2>=Xl(N2) 
X2(Nl>=XlCNi) 

3 	 CONTINUE 
KOUNT=O 
EPS=ETA<4> 
CALL MINlO (fUNCr.x 2 .H.ROtNUIMtf2tG2tNUMftlERtEPStEST•RR.IPRINT> 
IF <NFAIL.bJ.l> RET 11RN 
IF <IER. Nl.O) GO TO 30 
DO 4 I=.i., Nl 
BIGV<I>=X2.CI> 
ALFACI>=X2(1) 

4 	 CONTINUE 
RO=-RO 
GG=O. 
DO 5 I=l,NDIM 
GG=GG+G~<I>*G2Cl> 

5 	 . CONTINUE 
GG=SQRT<GG> 
IF <IPRINT.EU.0) GO TO 7 
IF <MOD <KHh IPR INT) .NE.0> GO TO 6 
CALL OU TP cx~.f~•M•NOlM•GGtNUMf tRR) 

6 	 KTt3=Klti+l 
7 	 DO 9 I=l• Nl 

00 8 J=ltNl 
P<l•J)=tJ. 

8 	 CONTINU[ 
P(Id>=l. 
CONTINUE 9 

http:BIGV<I>=X2.CI
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10 CONTINUE 
KOUNT=O 
KOUNT=KOUNT+l 

11 DO 12 I=l,NDIM 
Y<I>=G2<I> 

12 CONTINUE 
Y(N2>=F2 
Y<Nl>=ETACl> 
v=o. 
DO 13 I=l•NOIM 
V=V+Xt!.(l)irG2<I> 

13 CONTINUE 
YA=U. 
DO 14 I=l•Ni 
YA=YA+Y<I>*ALFA<I> 

14 CONTINUE 
VYA=V-YA 
BIGVCKOUNT>=V 
DO 15 I=l,Nl 
PYCI)=O. 
PE < I ) =P <I , K0 U i'fr > 
DO 15 J=l,Nl 

15 PY<I>=PY(l)+P(J,l)*Y(J) 
EPY=PYCKOUNT> 
IF <A8S<EPY>.LT.ETA(3)) GO TO 31 
PY<KOUNl>=PY<KOUNT)-1. 
00 16 I=l•Nl 
DO 16 J=l•Nl 

16 P<l•J>=P<I•J)-~ECI)*PY<J>/EPY 

DO 17 I=ltNl 
ALFA(l>=O. 
DO 17 J=l,Nl 

17 ALFA<I>=ALFA(l)+P(l,J>*8JGVCJ) 
DEL=O. 
DO 18 I=l,NUIM 
DEL=DEL+G2<I>*<X2<1>-ALFA<I>> 

18 CONf INUE 
IF <ABS<DEL>.GT.ETAC4)) GO TO 19 
If <IFLAG.E Q.l) RETURN 
IFLAG=l 
GO TO 31 

19 IFLAG=O 
DO 20 I=l,Nl 
H(l)=X2<IJ-ALFA<I> 
IF WEL.Gr.o> tHI>=-H<I> 

20 CONTINUE 
DO 21 I=l ,N DIM 
Xl CI>=X~<I> 
Gl<I>=Gt:::CU 

21 CONTINUE 
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22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

Fl=f2 
Xl<~2>=X2CN2> 
Xl CNl>=X2CNl> 
X2(N2>=ALFA(N2) 
X2<Nl)=ALFA<Nl) 
CALL MINlD (fUNCr,x2,H,Ro.NDIM.f2,G2,NUMf,IER,EPStESTtRRtlPRINT> 
If CNFAIL.EQ.l) RETURN 
If CIER.NE.o> GO TO 30 
If <DEL.GT.Ol RO=-RO 
GG=O. 
DO 22 I=l,NDIM 
GG=GG+G2<I>*G2CI> 
CONTINUE 
GG=5QRTCGG> 
KOuNT=KOuNT+l 
M=M+l 
If <IPRINT.EQ.0) ' GO TO 23 
If <MOO<KTH,IPRINT>.NE.O> GO TO 23 
CALL ou ·rp (Xi•f2tMtNOIMtGGtNUMFtRR) 
CONTINUE 
KTB=KTB+l 
IF <MODE.EQ.~) GO To 25 
IF CM.GT.MAX> GO TO 30 
NSOL=O 
DO 24 I=l,NDlM 
IF CAt:3S<RR(J)).GT.ETA{2)) NSOL=l 
CONTINUE 
IF (NSOL.EQ.0) GO TO 26 
GO TO 2~ 

IF C<GG.LT.ETAl1>>.oR.<M.GT.MAX)) GO TO 2b 
GO TO 29 
CONTINUE 
IF <IPRINT.EQ.0) GO TO 27 
WRITE (6,33> 
CALL OUfp (X~,f~tMtNDIM,GG,NUMf tRR) 
DO 28 I=l,NO!M 
X<I>=X.2(!) 
CONTINUE 
EST=F2 
NFAIL=O 
RETURN 
CONTINUE 
IF CKOUNT .LE.Nl> GO TO 11 
GO TO 10 
CONTINUE 
IF <IPRINT.NE.O> PRINT 34• !ER 
NFAIL=l 
RETURN 
CONTINUE 
IF CJPRINT.NE.0> PRINT JS 

http:DEL.GT.Ol
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IER=O 
DO 32 	 I=l•NDIM 
Xl<I>=X2<I> 

G l ( I> =G2 ( I ) 

H ( I > =-G l < I > 


32 	 CONTINUE 
Fl=F2 
Xl(N2)=X<N2) 
XlCNl>=X<Nl> 
X2(N2>=X<N2> 
X2<Nll=X<Nl) 
GO TO 	 3 

c 
c 
c 
33 	 FORMAT (* SOLUTION FOUND*> 
34 	 FORMAT {///,lX'* THE O~TIMIZATION PROGRAM HAS FAILED--IER = *tl2> 
35 	 FORMAT (///20X,*A RESTART HAS OCCURRED*///) 

END 
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SUBROUTINE MINiD <FUNCT,X,HtAMBDAtN•f,G,NUMf,IER•EP5,ESTtRR,IPRINT 
l> ; 
COM~ON /FAIL/ NFAIL 

OH"1f;NS10N H{l), X<l> • G(l), RR(l> 

IER=O 

DY=O. 


· HNRM=O. 

GNRM=O. 

DO l J=l•N 

HNRM=HNkM+A8S(H(J)) 

GNRM=GN~M+ABS(G(J)) 

DY=DY+H CJ) i}G ( J> 
1 CONTINUE 

If <DY) 2•31'31 
2 IF CHNRM/GNRM-EPS> 31,31,3 
3 FY=F 

ALFA=2.*<EST-FJ/DY 

IF (XCN+lJ.GT.O.J ALFA=X(N+l>*ALFA/2. 

AMBDA=l. 

IF <ALFA) 6,tH4 


4 IF CALFA-AMBDAJ 5,6.o 
5 AMBDA=ALFA 
6 ALFA=O. 
7 FX=FY 

DX=DY 

DO d I= l, N 

X(lJ=XCl)+A~tiDA*H<l> 

8 	 CONTINUE 
CALL FU NCT c~.x.f ,G,RR) 
IF <NFAIL.EO.l) kcTURN 
NUMF=NU1vlf + 1 
IF <F.LT.fX) RE.TURN 
FY=F 
DY=O. 
DO 9 I= i, N 
DY=DY+GCil*H<I> 

9 	 CONTINUE 
IF <DY> 10,30'13 

l 0 IF <F Y-F X > 11 • 13, 13 
11 AMHDA=AMBOA+AL~A 

ALFA=AMBDA 
IF (HNRM-r,AMBOA-1.ElO) 7,7,i2 

12 IER=2 
GO TO 31 

13 T=O. 
14 IF (AMBUA) 15•30•15 
15 Z=3.*CFX-FY)/AMBOA+nX+OY 

ALFA=AMAXl(AclS(l)•ARS(DX>•ABS<UY>> 

DALFA=Z/ALfA 

DALF A=DALF A~rOALF. A-DX/ ALF A*DY I ALFA 
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IF <DALFA> 31'16'16 
16 W=ALFA*SURTCOALFA> 

ALFA=DY-DX+W+W 
IF <ALFA) 17.18'17 

17 ALFA=<DY-Z+Wl/ALFA 
GO TO 19 

18 ALFA=<Z+OY-w)/(Z+OX+Z+DY> 
19 ALFA=ALFA*AMbDA 

DO 20 I=l,N 
X<I>=X(l)+(T-ALFA>*H(l) 

20 CONTINUE 
CALL FUNCT <N,x,f ,G,RR> 
IF CNFAIL.EQ.l> RETtJRN 
NUMF=NUMF+l 
IF (f.LT.FX> GO TO 30 
IF (f-FX) 21,~1,22 

21 IF <F-FY> 30,30,22 
22 OALFA=O. 

DO 23 ·I=l,l\l 
DALFA=DALFA+G(l)*HCI> 

23 CON1INUE 
IF CDALFA> 2~,21.21 

24 IF <F-fX) 26•25,27 
25 IF COX-OALFA> 26,J0,26 
26 FX=F 

DX=DALFA 
T=ALFA 
AMBOA=ALFA 
GO TO l'+ 

27 IF <FY-F> 29,2d,2(j 
28 IF <DY-UALFA> ~9.30,29 

29 FY=F.1 
DY=DALFA 
AMBDA=AM80A-ALf A 
GO TO 13 . 

30 AMBDA=AMBOA-ALFA 
RETURN 

31 CONTINUt. 
·1F <DY.GE.a.> IE~~ =-2 

IF <GNRM.LE.i.E-10> GO TO 32 
IF (HNRM/GNRM.LE.EPS> IER=-3 

32 CONTINUE 
IF <DALFA.Lf.0.} IEP=-1 
IF CIPRIN1.l"JE.O> PRINr 33, IER 

. NFAIL=l . 
RETURN 

c 
c 
c 
33 FORMAT (///lUX'* ERROR HAS OCCURRED, IER=*•l2•///) 

DND 
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SUBROUTINE OUTP CXNEW,FQ,KOUNT,Nl,GG,NUMf,R> 
DIMENSION XNEW(l), R(l) 
WRITE (6,6) KOUNT,NUMf,GG•fQ, (XNEW<l> '1=1•4>, <R<I> '1=1•4> 
IF <Nl.LT.4) RETURN 
NN=Nl-3 
GO TO (!,2,3,4,5), NN 

l RETURN 
2 WRITE (6,7) XNEW(S) ,RCS> 

RETURN 
3 WRITE (6,8) (XNEW<I> '1=5,6), CRCI> '1=5,6) 

RETURN 
4 WRITE (6,9) CXNEWC!) '1=5,7), OH!> d=5•7> 

RETURN 
5 WRITE (6.10> CXNEW(l) d=S,8> .CR<Ihl=5,8) 

RETURN 
c 
C . 
c 
6 FORMAT <lX•l3•I4,6El4.S,4Ell.J) 
1 FORMAT C36X,El4.5,42X•Ell.3) 
8 FORMAT (36X,2E14.5,28X,~Ell.3> 

9 FORMAT C36X,JE14.5,14X,3Ell.3> 
10 FORMAT <36X,4El4.5•4Ell.3> 

END 
• 
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I SUBROUTINE MOMENT(CM,N,CC,M) 

Purpose 

To provide an estimate of one or more (M) of the first four moments 

of y, where 

and the first M moments of the x's are known. 

Method 

The first M moments of the first four moments of y are estimated in 

terms of 'the moments of the x. 's by using a truncated Taylor's series 
1. 

expansion. The user must supply an evaluation of g(x1 ,x2 , ••. ,xn)' 

~ and 2 •"I ox. 
]. 

Input Variables 

N number of independent variables. 

M number of moments required. Note that M < 4. 

CM(I,J) array containing the first M moments of the independent 

variables, dimensioned (N,M) 

Output Variables 

CC(!) array containing the values of the first M moments dimensioned with 

the value of M. 

Programing Information 

The calling program must provide dimensioning as given above. The 

user must define the function g(x1 ,x2 , ..• ,xn)' and the first and second 
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partial derivatives. See subroutine DERV. 

Listing 

The following listing is for subroutine MOMENT. 



7 

40. 

s u RRn uT I "l F ~} n ~~ ~= N T ( ( ~-~ ' f\.! ' ( ( : ' ~- '1 ) 

OJMrNSinN C~(N , ~ ),(((4) , DF1(4) , DF?(4) 

DO 6 I=l, N 
CC( I )=( M ( I , 1) 
(ONT I "JU!=" 
CALL f)FRV (F LJN , ni:-1 , ni:-7 , (\j , (() 
CC ( 1) =FU"l 
IJO 7 !=2,4 
(((!)=0.0 

C() f\.1T I N U f: 

DO 10 I=l,N 

cc< 1)=CC(1 ) +. C)*(DF?( I )*C M ( 1,?)) 

!F(M.FQ.1) Gr! TO 10 
C C ( 2 ) = ( ( ( ? ) + n r- , { T ) ~- * '"> * r M ( T ' ? ) + r , F 1 ( T ) * 'J F ? ( I ) *( ~~ ( T , ".l ) 


IF<~.F0. 7) G0 TO 10 

CC(3)=CC(~)+ fJ F1 ( i )*~-~-*C M ( I ,')) 

IF(M.F0.1) Gn TO 10 

SUM= O. C 

KJ =I+l 

IF (l(J.GT. 1\;J GO TO q 


D() A J ='< J ' f\1 
.S t I~ ~ = ::. U't1 + t1 • -x- ( r; r- 1 ( T ) -~- n E 1 ( J } ) * ~~ 2 *0 l ( I ' ? l -~ ( M ( J ' 2.) 

n ((")f\ITT"'lllr:' . 

q r fJ 1\1 T I ~,q J !? 

( ( ( Li. ) =CC ( 4 ) + S tJ ~Ii + n r- 1 { I ) ** h i;-e,~ { T ' Ii ) 

1 0 Cn l\t T I "t lff 
~FTl 1Rl\t 

Er--'D 
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