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ABSTRACT

This thesis introduces a new effective method in statistical modeling
and probabilistic decision making problems. The method is based on maximizing
the Shannon Logarithmic Entropy Function: for information, subject to the
given prior information to serve as constraints, to generate a probability
distribution. The method is known as the Maximum Entropy Principle or "Jaynes
Principle". Tribus = used it earlier, but in a 1imited case, without general
application to either statistical modeling or probablistic decision making.

In this thesis, a new method which generalizes the above principle is introduced.

This permits practical anplications, some of which are illustrated.
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CHAPTER I
INTRODUCTION

In a decision process, once the problem is specified mathematically,
part of the basis for a choice between different strategies or designs Ties in
the prior probabilities or probabilities of relevant events. To satisfy this
logical foundation of decision theory, the problem of formulating prior proba-
bilities should be based on a rigorous principle.

(10)

Shannon's Entropy Function

(12)

was one of the first steps in this
direction. ~Later Jaynes introduced a principle (known as the Maximum Entropy
Principle), which is based on maximizing Shannon's Entropy Function, subject to
the given information as constraints. Although the principle is cne of the most
important steps towards formulating prior probabilities, it was difficult to
obtain a general solution for a general problem. Tribus (2) expressed this
principle mathematically, but his applications were limited to certain states of
knowledge, of prior information. He did not provide a general solution. Some

of the resulting distributions were the gamma, the exponential, and the normal
distributions. Obviously these curves cannot provide an adequate representation
of many of the distributions encouhtered in statistical practice.

In this thesis a new algorithm is introduced using the Maximum Entropy
Principle to generate a general probability distribution from the first moments.
The old problem of representing data by using the first four moments has been
solved by the new a]gofithm. A comparison has been made between the empirical

existing methods and the new algorithm in order to show the power of the

principle. Also, in analytical decision theory, the problem of predicting the



probab%1ity density functions of a random variable when this random variable is
a function of many other known random variables has been solved using the new
algorithm.

In both applications (moment generation or in analog prediction under
risk) a computer program has been written in FORTRAN IVv1anguage.

This thesis is mainly concerned with the generalization of the principle
based on the first moments, but other types of functions could be used rather
than the moment function (a slight modification on the a]gbrithm would be needed).

In Chapter II, a very brief introduction to analytical decision theory
is given to shed some light on the area where the new algorithm could be applied,

and to show what methods in this area exist.



CHAPTER I1I
A BRIEF INTRODUCTION TO ANALYTICAL DECISION THEORY

2.1 DECISION AND DECISION THEORY

A decision is a selection, which involves risk, between alternative
actions. For a decision to be possible, there must be two or more alternatives
available. These alternatives represent a set of possible acts which the
decision maker may choose. The acts are connected in some way to result in a
set of possible outcomes. If there is a known deterministic connection between
the acts and outcomes, the problem is one of deterministic choice. If the
decision maker knew which outcome would result from each act, he could choose
the act which resulted in the outcome he most va]ued. The choice among out-
comes reflects a value judgment. In other words the decision maker must know
the values he associates with the various outcomes which may result from his
choice of acts. There 1§ thus no problem if there are no uncertainties.

Decision theory is, then, concerned with the making of decisions, i.e.
choice of acts, in the face of uncertainty. The uncertainty may be concerned
with the relation between acts and outcomes or it may be related to reliability
of the available information. The maximization of the logarithmic entropy
function represents part of an attempt to provide a rational basis for decision

making under uncertainty.

2.2 THE DECISION PROCESS
Consider Figure 2.1, in which the several elements which enter a decision
process are shown. Box 2 (Probability assignments or statistical modeling)

serves to put together the prior general information and special evidence which
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Fig 2l The elements of a decision process.

pertains to the special case being treated, box 6 (strategy or problem formula-
tion) serves to put together the probability assignments and the utility
functions, the output of this box is a strategy for action, i.e. the basis for
a decision. Once the problem is formulated, the action may be taken. The
result of the action is to provide more data which may be used later on, assuming
a second chance occurs. As it is shown the action or the decision depends
entirely on the strategy formulation; a "bad" strategy would lead to a "bad"
decision, and a "good" strategy would Tead us to a "good" decision. In other
words the strategy formulation is a method (or strategy) to combine the given
probability assignment with the utility function. So there are three elements
involved in the process, the utility function, the probability assignment, and

the strategy. A "good" decision depends on all of them.
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2.3 THE UTILITY FUNCTICN

The utility function is sometimes called thefva1ue function or the loss
function, and sometimes given a negative sign (the sign depends on whether you
are normally pessimistic or optimistic). The utility function will not be
discussed in detail as it is outside the scope of this thesis; the reader may
refer to references (1) and (2).

Briefly, the utility function exnresses or defines the value in a problem
mathematically. A decision maker should know how to define the utility function

and know how to discriminate among the outcomes. Decision theory will be of no

help to a decision maker who does not know how to determine what he wants from

what he does not want.

2.4 STATISTICAL MODELING (PROBABILITY ASSIGNMENT)

To proceed in a Decision Process (see Figure 2.1), some or all elements
of the ‘utility function should be defined in probability terms to the best of
prior knowledge.

A prior knowledge about a random variable varies from one fully defined
to one that is undefined, but in all cases it is known that a distribution |

exists.

2.4.1 Degrees of Prior Knowledge

.Thé degrees of prior knowledge could be classified as fo]iows:

a) The exact prior distribution is known.

b) The first m moments of the prior distribution are known (m =1, 2, ...),
i.e. the actual numbers are available for calculation.

c) Sample data is available.

d) No prior knowledge other than the existence of a prior distribution is

available.



Usually, prior knowledge is limited to cases (b) and (c), where some independent
observations (or raw data), or some of the moments, are available.

With knowledge as given in case (c), and sometimes as in case (b), it
is difficult to proceed in the decision process. The available information
should be in a mathematical form or other suitable form. A suitable mathematical
model must therefore be found to describe the prior information. This suitable
model could be one of the well known analytical distributions such as the
normal or Weibull, or generated by one of the empirical approximation methods
Tike the Johnson, the Pearson, the Cornish-Fisher expansion, the Gram-Charlier

(3)

series, the Edgeworth series , or the most recent method, the maximum-
logarithmic entropy distribution method, which is introduced in this thesis.
Since this new method will be applied to statistical modeling, a brief review of

some -of the above methods will be given in the following pages for comparison.

2.4.2 Analytical Distributions

The normal or Gaussian distribution is the best known statistical model.
However, many phenomena cannot be adequately described by a normal distribution.
Other models 1like the gamma, the beta, the Chi-Square, the exponential, the
uniform, the log-normal, the Rayleigh, the Cauchy, the Weibu11(4) distributions,
etc., could be successful models in describing specific phenomena but, generally,
these analytical distributions do not describe accurately most phenomena.

Although some of these models do lead to a wide diversity of distribu-
tion shapes, they still do not provide the degree of generality that is
frequently desirable. This is illustrated by Figure 2.2. This chart shows the
regions in the (B1 and 62) plane where various analytical distributions can be

fitted, where 81 and B, are the square of the standardized measure of skewness



and the standardized measure of peakedness respectively. Distributions shown
include the normal, beta (uniform special case), gamma (exponential special
case), the log normal, and the student t distribution (a symmetric distribution
that approaches the normal as its degree of freedom becomes arbitrarily large).
A11 normal distributions (B] = 0 and By = 3) are represented in Figure 2.2 by a
single point; as are also the exponential and uniform distributions. The gamma
and the log-normal distributions can be fitted'for all value of B] and 82 that
fall on the curve shown near the centre of the chart. The beta distribution

occupies a region in Figure 2.2, and thus provides greater generality than any

=
____
/

R \ , \
8 N\

N £xponentirl
9 distribubion~N

of the other distributions.

\

\

/

N

0 1 2 53 3
' : e (4)
Fig.2.2 Region in(f3, f3) plane for various distributions
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Note that there is a large region of values of B] and 82 that is not covered by

any of the above distributions.

2.4.3 Empirical Distributions

The main advantage of the empirical distributions over the analytical
--ones is the flexibility in covering a larger region. However for some regions,
the empirical distributions deviate from the actual ones by a significant amount.
Other regions are not covered by any distributions. Two main empirical distri-
butions, Johnson's and Pearson's, will be discussed very briefly. For more
details and for details on other methods (1ike Cornish-Fisher expansion, Gram-
Charlier series and Edgeworth series) the reader can consult reference (3).

Johnson distribution

Johnson oropoosed empirical distributions based on the transformation of
a standard normal variate. An advantage of such a transformation is that
estimates of thepercentiles of the fitted distribution can be obtained using a
table of areas under a standard normal distribution. A disadvantage is that at
least three points must he known to determine the final distributions, a method
which 1imits itself to statistical modeling only. For more details the reader
can refer to reference (5).

Pearson distribution

Karl Pearson proposed a group of distribution families. Each family can

be generated as a solution to the differential equation

df(X) _ (X - ¢3) f(X)

dx 2
b T Bx + 0pX




where x is the random variable with probability density function f(x), and the
¢'s are parameters defining a specific distribution. The solution of this
equation leads to a large number of distribution families. The descriptions of
the procedure for fitting Pearson distributions to data are lengthy, since each
family requires solution of a different set of equations. The underlying
principles are reviewed in reference (3) and the formulae for each family are
given in reference (7). Reference (6) includes tables for Pearson's functions,
and a discussion of procedures for using the tabulations to obtain percentiles
other than those tabu]éted. It indicates their possible use for the inverse
problem of estimating accumulative probabilities corresponding to specified

values of phe random variables.

2.4.4 The Maximum-Logarithmic Entropy Distribution

The following section and chapters deal with this method. The theory,
the algorithm, the application, and a comparison with other methods is discussed

in detail.

2.5 FORMULATION OF STRATEGY OR PROBLEM

In general, the problem could be summarized as the determination of the
distribution of a random variable y which is a known function of n random variables
Xps Xos o0 X We may express this relationship as

n

Y = 9(Xys Xos o 0w x )
where the random variables are defined by their density functions, or by some of
their lower moments. To the author's knowledge, three methods are known; the

transformation of variables technique, the Monte-Carlo Simulation, and the



10

generation of system moments.

2.5.1 The Transformation of Variable Technique

This method is applicable to finding the distribution of simple func-
tions of independent random variables. The method is practicable for relatively
simple situations. A fairly complicated relationship may possibly be built up
By a series of steps using three simple relations (multiplication, division, and
addition) between two random variab]es(]). The method is a very powerful

technique, but only for independent variables.

2.5.2 Monte-Carlo Simulation

The method is based on the Monte-Carlo approach, in which actual experi-
ments to statiética]]y define the required distribution are simulated numerically.
It is anplicable to devendent and independent random variables. Although the
method is very accurate when the sample size is very large, it is expensive in
computation time in comoarison with other methods. More details of the method

are available in reference (9).

2.5.3 Generation of System Moments

For the general relation

y = 9(xps X oo, )
Sidda11(]) shows that it is possible to approximate the moments of y in terms of
the moments of xi's by using a truncated Taylor's series expansion about the

expected values of the xi's. The approximate moments are
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X E[(xi-ui)z(xj-uj)]

ag(u1,u2,...,un) azg(u],uz,...,u )

+22'§Z 3xj8xk -
J |

1 k
i#jJ#k
(P E[(x1--u1.)(xj - uj) (xk - er)j (2.2)

where C3; is the third central moment of X; s E(z) is the expected value of z.

If the x1.'s are independent, all terms but the first and third drop out.

&
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|

ZIf the xi's are independent, all terms but the first and third dropo out.
The fifth and sixth moment could be obtained by a similar approach, but for
simplicity, the first four moments are considered accurate enough to describe
any oractical distribution. If more accuracy is required, the fifth, the sixth
or the seventh moments should be considered. Using the above eXoressions, the
first four moments of y can be obtained, if we know the first four moments of
the x's. The first four moments can be calculated from statistical data, if
necessary.

The next step is to generate the probability distribution of y in terms
of its first four moments. The Johnson method cannot generate this distribution
as it requires at least three percentiles to match, which in this case are
unknown. The Pearson method and the Maximum Logarithmic Entropy method can be
applied to generate the distribution, but the accuracy of each method is

different. This will be considered in Chanter VII and Chapter VIII.
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CHAPTER III
MAXIMIZATION OF THE LOGARITHMIC ENTROPY FUNCTION

3.1 DECISION, CHOICE AND CERTAINTY(]O)

Suppose there is a set of n possible events whose probabilities of occurr-
ence are Py, Py, + .+ - Do These probabilities are all that is known concerning |
which event will occur. Is there any measure of how much "choice" is involved
in the selection of thé event to make the decision, or of how certain we are of
the outcome? If such a measure, S, is estahlished it should satisfy three condi-
tions. The three conditions (given by Shannon)(]o) are:

1) S shoqu be continuous in the pi's.

2) If all p; are equal, Dy =-%, then S should be a monotonic increasing
function of n. With equally likely events the amount of choice or un-
certainty about the outcome increases with the number of'possib1e events.

3) If a choice is to be broken down into two successive choices, the
original S should be the weighted sum of the individual values of S.

The meaning of this is illustrated in Figure 3.1. At the left we have

Be b a . _1 - 3 _1 _ 1
four possibilities, for which 0y =g Pr =g P3= 3P = 5

'8

Figure 3.1 Decomnosition of a choice from four possibilities.
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On the right, we first choose between two possibilities, each with probability

%@ and if the first occurs we make another choice with probabilities %3 %1 and

if the second occurs we make another choice with probabilities %3 %n The final

results have the same probabilities as before. We require, in this case, that:

gl 1y e 3y 1201
) - S(?s 2) + 2 5(4, 4) + 2 5(39 3)

o —

-}

w|—

S(g» o

The coefficient-% is due to the second choice occurring only half the time.

3.2 THE LOGARITHMIC-ENTROPY FUNCTION
(*)

Shannon showed that the only S satisfying the three above assumptions

is of the form.

S = -k zi D; &n Dy (3.1)

The measure S is called the entropy. It has had a long and involved history.
The word was originally coined from the Greek by Clausius in 1850 to mean trans-
. (**)
formation g
The entropy, S, has a number of interesting properties which further
substantiate it as a measure of choice or certainty. Some of these properties are:
1) S=0if and only if all the P; but one are zero, this one having the

value unity. Thus, only when we are certain of the outcome, does S

vanish. Otherwise S is positive.

(*) For the derivation see Appendix B.

(**)  We suggest reference (11), for the reader who is interested in knowing the
relation between this entrony and the one used in thermodynamics.
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For a given n, S is a maximum and equal to k log n when all the b, are
equal (i.e. Pj = %J. This is also intuitively the most uncertain situa-
tion.

Any change toward equalization of the probabilities Pys Pos « « « Py
increases S. Thus, if Dy <Py and we increase Dy> decreasing Py an equal
amount so that Py and b, are more nearly equal, then S increases. More

generally, if we perform any "averaging” operation on the p; of the form

where zz aij = E: aji =1, and all aij > 0,

then S increases (excepnt in the special case where this transformation
amounts to no more than a permutation of the pj, when S of course remains

the same).

The above properties are due to Shannon(]o).

(12).

An additional important
property was discovered by Jaynes Its direct application is known

as the Maximum-EntroDy'Princip]e.

For a given n, when all or some of the event probabilities are subject

to constraints, or relations between each other, and if all pi's are given
unbiased values, then S is MAXIMUM. This is the most uncertain situa-
tion for the specified constraints. The principle can be used to choose
an unbiased set of Di's consistent.with known information about them.

In case there are no constraints imposed on the problem, all pi's should

be equal, then S is maximum when it is equal to k log n, (which is the

property (2)).
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3.3 THE MAXIMIZATION OF THE ENTROPY FUNCTION
We are interested in the case when prior information is available, and
an unbiased distribution is required. The use of pronerty (4) is known as the
"Maximum Entropy Principle", first introduced by E. T. Jaynes(lz’ ]3). The
following statement was put forward by him. "The minimally prejudiced proba-
(*)

biTity distribution is that which maximizes the entropy subject to constraints

supplied by the given information."

3.4 MAXIMIZING THE SO-CALLED GENERAL ENTROPY FUNCTION
Although the Shannon derivation of the logarithmic entropy function
(Appendix B) demonstrates a convincing validity for the expression p &n p, considered

(TR} wndon

the so-called "General Entropy Function" introduced by Behara and Nath
they say "in special cases, reduces to the Shannon entropy function". The func-

tion has the form

S_= E_L_ET ; (3.2)
1 =82 :
where
«g(0, )

Now let us aoply condition (3) which is--"If a choice be broken down into two
successive choices, the original S should be the weighted sum of the individual
values of S." Assume a choice Pe is broken into Dys Pe and the results are Pys

Py This is illustrated in Figure 3.2.

(*) Jaynes meant Shannon's entropy function (p 4n o).




Fig.32 Successive choites.
It is clear that Py = PPy and Dy = PeePy- By condition (3),

S(D1, Dys « + « Dps Dy pb) = 5(01, Dos « v - D5 D

5(01, Pos -« « b) + (o, p) = S(Dys Dys o p,) + S(n.)

0. S(pys pg)
S(pys py) = S(p) +p.S(py> D)

Substituting (3.2) in (3.3) gives

p_-p D =D D =D D,-p, p.-n "
a ]aoc,+ b ]bu= ¢ 1cm+pC d ]d«+ e ]ea
) 1-2" 1-2" ) )

We multiply both sides by [1 - é]'a)] and substitute Py = Pe Py and Pp =
PcPd ™ Pc P4 T PP "0 P

19

(3.3)

D
’DCG
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D (3.4)

To satisfy this relation « should be equal to 1. However, for « equal to 1,
the so-called general entropy function reduces to the logarithmic entropy
function, -p 2n p. So the general entropy function does not appear to be valid

except in the special case where it reduces to the Shannon-Entropy Function case.
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CHAPTER IV
THE MATHEMATICAL FORMULATION OF THE MAXIMUM
LOGORITHMIC ENTROPY DISTRIBUTION
4.1 GENERAL FORMULATION OF THE EXPRESSION DEFINING THE BEST ESTIMATE OF
PROBABILITIES

Quite often the information available from estimating probabilities is
in the form of averages of certain functions, which we shall designate fr(x).
That is, the form of the functions is known but all that is given is the mean
value < fr(x) >, for each of the functions f](x), fz(x), y o B fr(x). A
probability distribution must be generated which agrees with these averages but

is maximally-non-committed with respect to anything else. The problem may be

stated mathematically as follows. Maximize

m
S = <K E: D; &n p, (4.1)
i=1
where
Py = P (x| < F(¥) > <fp(x) > . .. <f (x)> (4.2)
X = the ith value of x

< f1(x) > = the mean value of f](x)

------------
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A
—h
—
x
~
\4
1}

the mean value of fn(x)

number of events

=
1

Subject to the constraints

) by =1 | (4.3)

o
wils
—h
agaldl
—
>
&3
~
1]

<f

(4.4)
}: Difn(xi) - fn g
i
Expression (4.4) can be written in the compact form
jz Difj(xi) =<f; >§=1,2,...,n (4.5)

where equation (4.3) is the normalization equation, and expression (4.5) is a

set of n equations.



4.2 SOLUTION OF THE EXPRESSION BY CALCULUS

4.2.1 Solution for the Discrete Probability Distribution

Differentiating equation (4.1) with respect to P; gives
m
d-x) = ) (enp,+ 1) do, =0 (4.6)
i=1

Differentiating equations (4.3) and (4.5) with respect to p.» keeping x. and

< fj(x) > constant gives

m
1) do; = 0 (4.7)
§ =1

m
). f5(x) dog = 0 §=1,2, ..., (4.8)

We multiply equation (4.7) by (- 2q- 1) and expression (4.8) by
- 25 (3=1,2,...,n), where A (i =0,1,2, . .. ,n) are arbitrary

functions (the Langrangian Multipliers).

. |
(<2g-1) ) do =0 (4.9)
i=1
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m
- Z fi(x;) dog = 0 i=1,2,...,n (4.10)
i=1
A11 exoressions in (4.10) are added, giving

n m
Z -3 ) filx) = 0 (4.11)

Equations (4.6), (4.9), and (4.11) are added

m m
Z (2nn1.+1)dn1.+(-ko-1) Z dp_i

i=1 i=1
m m

- Z A5 Z f(x;) =0

i=1 t=1"+

Collecting terms gives
m n
Y [y - Ay - R A R T (4.12)
P 0 L rg Tyixg)d dpy .

i=1 i=1

Equation (4.12) must be satisfied regardless of the variation dpi. Therefore,

the quantity in the parentheses is equated to zero.
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or

Inversion gives

. n
Aa t Ao fa(x:)
p=e ° J.; 33 (4.13)

Substituting equation (4.13) in (4.3), gives

so, that
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This can be given the form

om 1 (4.14)
i=1
or
n
- }: ) fa(xs)
J J 1
Ao = - o Zej=1 (4.15)
i=1

The x's may be determined in two ways. In the first method equation

(4.15) is differentiated with respect to Xk (k=1,2, .. .,n)

1 (4.16)

But, from equation (4.14)

g: =ZA -2
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Substituting this into equation (4.16), gives

or

@] @
b
{am ]
" Ma
>
O
+
1] M:
>0
[N
—h
[
—~
>
— o
-4

But, from equation (4.13)

P. =e

n
ot L g fylxg)
i j=1

Substituting this into the right hand side of equation (4.17), gives

m
0 _
o=y k) Py
k iz

But, from equation (4.5)

27
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m
|
<Ho>E ) Rl P
i
Thus,
3 A
-'zr“*‘x‘% <f > k=1,2, . B (4.18)
Substituting this into-equation (4.16), gives
n
i > 3 (%)
) flx) e j=
_i=1 _
<f >l — — k=1,2,...n (4.19)
m
= Z X5 fJ(x1)
. d=1
i=1
Expression (4.19), contains n equations in n unknown, ( Mahos o An).
The solution of these then may be used in equation (4.15) to obtain » 0" Thus,
all constants ( A sAqs oo An) in equation (4.13)
n
At X e Falats)
P.i = e 0 J-Z] J o (4.]3)

are known, and equation (4.13) represents the required probability distribution.
Proceeding with the second method of solving for the x's, we begin again

with equation (4.15).
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n
L § 2. fL(x)
N 5 St I A
. A.O = - 4n e ;. (4.15)

n
o
Z b1 Ty (4.20)

Expression (4.21) contains n equations in n unknown, (X 12hps o v 22 n). These
may, in principle, be solved simultaneously, and, as before, equation (4.15) is
used to obtain » 0 So, again equation (4.13) is defined, and represents the
required probability distribution.

4.2.2 Solution for the Continuous Probability Distribution

If the probabilities vary continuously, similar expressions can be

obtained. Assume the values of X; are uniformly spaced, giving
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where

f=d 1, +1,1

+ v w B & 6 i
min min 2, ’

min max

We add, and substruct 2n A x on the right side of equation (4.15)

n
L)
AL fa(xs)
_ d J4° 1 ‘
A’O = 4nA X - 2n Ej e j=1 A X
i=1
We assume that A x, is an infinitesimal.
n
*max
z PRACY
o= AnA X - an S- e 5 dx
Xmin
Substituting this in equation (4.13), gives
n =
Xmax n
}: Ay fj(x)
gnNA X - &n ( S. ey dx>+ . }: Aj fj(x)-}
Py =e Xnin A j=1
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P.
T
ix- ¢ Xmin j

In the Timit of small Ax, the continuous probability density function of x is

n
Dot E; )j fj(x)
j=1

P(x) = e (4.22)
where
_ n
max z )j fJ(X)
Ag = - &n \5 e - dx (4.22.a)
Xmin
and all Aj (j =1, 2, .. .n) satisfy relation (4.18) or relation (4.21),
depending on which method is used.
Use of the first method leads to
Xmax n
3 (- 2n exo () Aj fj(x) dx)
3 A j=1
Sy e , = - <f(x)> (4.23)
k
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and the second method results in,

max
<f (0> = t(- fk(xi) exp ( Ao * }jv Aj fj(x))dx (4.24)
J =1
Xmin
k=1, 2, n

Expression (4.23) or expression (4.24) consists of n eqguations in unknown Xk
(k =1, 2, . . .n). Solving them simultaneously gives the values for ) K

(k=1,2, .. .n), and then > , is obtained from equation (4.22).

0
* :
Expression (4.23) or (4.24)( ) consists of n non-linear equations, and
in general for such expressions more than one solution may exist. Each solution
1ies at a saddle point or a local extremum of the entropy function S. However,

if it can be proven that the value of S obtained is a global maximum, then there

will exist only one solution for expression (4.23) or expression (4.24).

4.3 PROOF THAT S IS A GLOBAL MAXIMUM(Z)

If we consider two functions, S and G, defined as follows

S = - }: P; n p; = max | G = - }: g; 2n 95 = max
- L p, =1 Z g; =1
) k) py = < FX)> Y Felxg) g5 = < (x>

D. =eM)(XO+ 2: Aj %(M))
J

(*) also expressions (4.19) or (4.21), for discrete distributions.
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Where the Di'S are defined in the last equation. The 9; represent any set of
non-negative numbers which satisfy the equations of constraint. The problem
now is to prove that S is greater than or equal to G for all possible 9; -

Consider the function

S-6=- ) pnp;t) g;ing,
i

We add and substract E:gi an Pys

g.
S_G=Z(gi-pi)2npif291 2"(5‘1_‘)

1

We know that &n p, = X+ E: A f.(x;). Substituting this for the first
r

sum gives

+
g
(=]
Y
5
—
2|
~

(V2]
]
o
I
]
>
o)
=]
o
-t
-+
N
P
)

9+ ) Ayl ). 9 Frlx)
r

i

g.
) pfx)1 + ) gy an (3-1;)

i

In view of the constaints, several terms cancel and therefore:
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g.
S-6= . n (— 4.25
), 9 ) (4.25)
j
Qi'is defined as
Q'i - 91' &n 91' - 91‘ &n p'i = g'i ¥ Di (4.26)

Using E:pi =1, and j{:gi =1, and (4.16) in equation (4.25), we get
S-6= ) Q (4.27)

We next differentiate equation (4.26) with respect to 9; twice, to give

30,
59_1-- n 91 - n D_l

2
Y 1
39.2 95

3
Therefore, the first derivative vanishes at 9; = ;- Since fi is always positive,
the sécond derivative is always poéitive and therefore the point 9; = P; defines

a minimum, not a maximum for Qi‘ At 9; = Py Qi is zero. Therefore the func-
tion 01 is always non-negative and its minimum possible value is zero. Therefore
(S - G) is non-negative for every choice of 9; and D> and zero for 9; = P;- We
can conclude that the solution for S is a global maximum, and there is only one

solution for expression (4.23) or (4.24).
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CHAPTER V
THE ALGORITHM FOR GENERATING THE MAXIMUM LOGARITHMIC ENTROPY
DISTRIBUTION CONSTRAINED BY MOMENTS

5.1 INTRODUCTION
It may be recalled from Chaoter IV, that usually the information avail-
able from estimating probabilities is in the form of averages of certain func-
tions, more specifically not any type of functions, but rather the central
moment- functions. In this thesis the central moment functions are used as
contraints to generate the distribution for two main reasons. We wish to be
able to use the studies and the work done in the area of statistics and decision
making, for example see Chanter II, and we wish to make a comparison between
the new method, and the existing methods which use the moments as orior information.
Before proceeding to the algorithm, some mathematical relations are

established to be used later.

5.1.1 The Relation Between the mth

Expected Value

Moment about the Origin and about the

We define the following quantities

X is a random variable

<X > is the expected value of x

By the binomial theorem,

(x - <x>)"=x+ (A" axs 4 (-1)2 mimﬁ%;Ll XM 2y P

T O DL
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The right hand side can be rewritten as,
m
m k m! m-k k
(- <x> )= ) (DX griar X B 5
k=20
Taking the expected value of both sides,

The term < (x - <X >)m > presents the mth

- k

moment about the expected value, and
the term < x" > presents the (m - k) th moment about the origin. A Fortran
program (Appendix C) is used to calculate the moments about the origin from
the moments about the expected value using equation (5.1).

5.1.2 The Relation Between the Moments of a Distribution and the Moments of its
Transform

FX

X2MIn  XAMiN X2MAX X1 MAX X

Figure 5.1 Probability distribution and its transform.
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Assume curve I in Figure 5.1 represents a probability distribution,
whose lower and higher bounds are XIMIN, and X]MAX,'respective1y. This curve
is transformed to another domain, curve II in Figure 5.1, whose Tower and
higher bounds are X2MIN, and X2MAX, respectively. The relationship between
the moments of curve I and curve II in Figure 5.1 will yield the relationship
between the ofigina1 and transformed moments.

It is obvious from Figure 5.1 that the relation between the trans-

formed point 2, in curve II, and its original point 1, in curve I is

XI - XIMIN
XII = X2MIN + S
FXII =S + FXI
where
S = XIMAX - XIMIN

T OX2MAX - X2MIN

The first moment is a location factor, and therefore the first moments

are related by

1
1 CI - XIMIN

Cp = XeMIN + ———— | (5.2)

This can be generalized for the ith moments if we define the following

C} is the ith moment for the original curve
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C}I is the ith moment for the transformed curve

By definition

X2MAX i
i _ 1
11 ® 5 (Xpp - Cpp) FXpp &
X2MIN
Using (5.2) gives
XIMAX .
S 1 i
; ' X; - XIMIN C; - XIMIN
Cip = (X2MIN + ——g— = 2N - —————g————o S FX; dx
XIMIN
S
X]MA XI _ C}:'
i f (5 ) Fily %
XTMIN
XTMAX ;
-1 1
= = (XI - Cp) FXp dx
S
XTMIN
By the definition of central moments,
1 :_ wligel
CII = CI/S (5.3)

Appendix C contains a Fortran Program to calculate the transferred moments from

the original moments.
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i
5:1.3 iThe Relation Between the Maximum Logarithmic Entropy Distribution and
Its Transform

Figure 5.2 Probability distribution and its transform.
In Figure 5.2, if the probability distribution I is represented by the
equation

m
_y=exn(A0+ Z A.xi) (5.4)

and has lower and higher bounds XMIN and XMAX respectively. This distribution
is transformed to the position II with a Tower and higher bounds XMIN and XMAX

respectively, and is represented by the equation
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n .
-— ) ) 1
y=exo (Xg+ 13 Xy x)
i=1

We wish to determine the relationship between the X,i’s and A.;s.

We first define

J= 1524 2 5 =« s N

_ XMAX - XMIN
XMAX - XMIN

A =S XMIN - XMIN
- S

The relation between the transferred point (2) in curve II, and its original

point (1) in curve I is

x
il
>
=
| o}
=
+

Substituting in equation (5.4) gives

1‘

A

n
N £
Sy =exp (Ag+ }: Ay (A+g))
i=1

or



~

n
y =exo [-Tog S + 2 ot }; [ ;

Collecting terms, we get

.

i (-1DG-2....(G-3+1)

41

y:exp(-]Ogs+ Z ‘A.A1+

il

We could write equation (5.4) in the form

(5.7)
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A] =

n
i(i-1)@G-2)...0-3+1) -3
L ) o
i=13]

1_
§J
(5.8)

J= 13256 « v 50

In Appendix C, the last two equations are expressed in FORTRAN language.

5.2 SOLUTION FOR THE 2" S

5.2.1 Expression Formulation

Recall from the previous chapter that the maximum entropy distribution

is

n
p(x) = exp ()‘O + .§j1 Aj xj) (5.9)
j = .

where the X 's satisfy the equations

X

max n
= . b
AO 2n j‘ exp ( .E: Aj ) (5.10)
Xmin j=1
3)0
33 ) =-C Ck k=1,2, ... ,n (5.11)

Using the Simpson's rule multipliers for numerical integration to evaluate the

integration in equation (5.10), we get



where

(2]
]

the Simpson's rule multipliers

number of integration stations

3
1]

Equation (5.12) is differentiated with respect to X . (j

J
holding all other variables constant.

where j =1, 2, . . .

43

(5.12)
]’29° ’n)Q
(5.13)
» N
(5.14)
. 5 N
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where Rj is a residual function equal to a very small number. Squaring and

summary over all the j's, we get

R = i RS = i.cc.-"” (5.15)

A solution exists for R <&, where € is a very small number.

The C'Cj‘s vary in value* and to obtain a solution that has the same

relative allowed error we divide equation (5.14) by C Cj' Then equation (5.15)

would be
n
m J
i n E: S; xJexijzj]Aj X1) :
R=.ZR§= 1w deBd . (5.16)
s j=1 CC S1 exp }: AJ si
j=1

By using equation (5.16) as an optimization function and solving it by some
appropriate nonlinear programming technique, a solution can be obtained either

at R ¢ g or Rj < €, where € is a very small number.

* This point can be illustrated by a numerical example. Assume the C C.'s are
.5, 1E-2, 5E-5, 3.5E-10, and the solution is required when R < 1.E-12,
solution could be obtained at C C.'s values equal to .5000004, .N100003,
.0000504, .0000007. Although the'errors in the first and second moment are
negligible, they are significant in the third and fourth moment.
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5.2.2 Gradient Evaluation

The most successful optimization algorithm found for this problem
requires the evaluation of the ontimization function and the gradient vector
at any given point. Eachelement of the gradient vector is the partial diff-

erential of the optimization function with respectto a variable.

g, =2 R (5.17)

(5.18)

where
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5.3 DEFINITION OF DOMAINS

We have seen in Section 5.1 how we may set up an optimization function
to define the X 's. We are interested in finding the maximum-logarithmic entropy
distribution of a random variable x, given the numerical values of its n first
moments, and the Tower and the higher bounds of x. It can be seen in equation
(5.16), that it is required to evaluate x2n, where n is the number of given

moment, and x varies from the lower bounds to the higher bounds. We thus must

2n _ g : _ o 1l
evaluate X s If we assume, for illustration, that n = 6 and I 107,
then ngx = 1084. If we examine equation (5.16), we find that this value will

be multiplied by some other possibhly large values, so computer overflow is
likely to occur.

To overcome overflow, X should be bounded by two members less than 1,

g

so that x“" will be less than 1 at all times. If the random variable x varies

between x and Xoins We shall call the range between x and X the

ma x in max min
original domain. To overcome the overflow difficulty, we shall solve the problem

g \ N N N
s L1, 7 <1,
at other Tower and higher bounds, R and Xnin® where 1. and Xoin 1

We shall call the range between x

. ified domain.
a—_ and xm1n the modified do

5.4 STARTING POINT ASSUMPTION

Most of the nonlinear programming techniques require a starting point
to start the optimization algorithm. Theoretically, the final solution does
not depend on the starting(*) point (in other words, with different starting
points, there is'only one final solution); but in practice, the selection of
a bad starting point could lead to a solution with an excessive computer time

or no solution at all, depending on the optimization-algorithm used. Usually

(*) This is not true in the case of a local optimum solution, but in the case
discussed in this thesis there is only one global optimum solution.
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a good starting point is a point near to the final solution. Below, we shall
introduce four methods used to select a starting point, in order to provide an

alternative if one method fails.

5.4.1 The Normal Assumption Starting Method

This method is suitable for small n. It is based on the well known
fact that a normal distribution approximately represents many distributions.
Thus a normal distribution for a start shou]d.often work well. If C], C2’

5 Ch are the first n central moments for a distribution, the best normal
distribution that satisfies these moments is

_ 2 n
y-—em)(A0+ AqX R AT H Lt Anx)

where

o

= -1 5° % . w =
A1———, Az—- 5Co A3- A4-. .. An-zmw

2

n

5.4.2 The Uniform Assumption Starting Method

| This method is for small and Targe values of n. Some of the distribu-
tions like the J shape and the U shape cannot be approximated by a normal, and
a uniform distribution would be preferable. All X 's values are zero except

A 0

5.4.3 The (n + 1) Points Starting Method

This method is suitable for only large n. If C], C2, R Cn are

the first n central moments for a distribution, and x , and Xnax are the

min
lower and higher bounds respectively for this distribution, it is required to
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find an approximate probability distribution curve that has the form

+ A X+ A X2+ .. RREY (5.19)

f(x) = exp (2 2

0

and satisfies the above information.
We assume (n + 1) points equally distributed between the lower and the
higher bounds and select corresponding values for f(x) that satisfy the given

moments. The moments are defined by

S x f(x) dx = C]

The integrals may be approximated by Simpson's rule for (n + 1) points

n+1
2. S x fy= G (5.20)
i=1
n+1
Jg = -
L Si g - fiec 32,3, .., (5.21)
i=1
n+ 1

&%
Y S fo=1 | (5.22)



49
where

S.'s the Simpson's rule multipliers
X:'s the assumed (n + 1) points
fi's the corresponding density function values
Equations (5.20), (5.21), and (5.22) are (n + 1) linear equations in (n + 1)
unknown (fi's). Using Cramer's rule these values can be obtained. Substituting

these values in equation (5.19), another (n + 1) Tinear equation can be formu-

lated and solved to get the values of s,

5.4.4 Step By Step Starting Method

This method is suitable for only- Targe n, and when all other methods
fail to drive a solution. The method starts by obtaining the Maximum Logarith-
mic Entropy Distribution which satisfies the first two moments only. The
resulting X 's, together with 2 3" 0, are used as a starting point for a new
Maximum Logarithmic Entropy Distribution which satisfies the first three central
moments. This is repeated, increasing the number of moments and finding the
corresponding Maximum Logarithmic Entropy Distribution, until the number of

moments equal to n.

5.5 THE OPTIMIZATION TECHNIQUE

Recall from Section 5.2.1 that an abpropriate nonlinear programming
technique is required to solve equation (5.16) for the final solution. An
approximate technique is one which finds a solution in the least amount of

computation time. Only two techniques have been found by the author which are
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capable of achieving the above--the Jacobson and Oksman method(zo), and the
new Fletcher method(21). Since the computation time in Jacobson and Oksman
method was found less than in the new Fletcher method, it was decided to use
the Jacobson and Oksman technique in the maximization of the logarithmic entropy

function algorithm.

5.6 THE MAIN ALGORITHM
The main algorithm is described below step by step, and a flow chart
for the algorithm is sHown in Figure 5.3.
1) Transfer to the modified domain.
First define the modified domain, then calculate the transferred moment
in thi§ domain from the original domain, using equations (5.2) and
(5.3).
2) Calculate the moment about the origin.
Using equation (5.1), calculate the moment about the origin from the
moment about the expected value.
3) Formulate the problem.
Using equation (5.15) formulate the optimization function, and equa-
tion (5.18) for the gradient. Set a tolerance value €, and assume a
starting point using one of the methods discussed.
4) Solve the problem.
By using any appropriate nonlinear programming technique, start

optimizing, checking after each iteration the residual values. If

Rj <e (j=1,2, ... ,n), the current values of ) 's are the
solution. If for any reason, the nonlinear programming technique fails
to get Rj <e (j=1,2, ... ,n), select another starting point

using an alternate method discussed in Section 5.4, and start optimizing
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till Rj <g {j=1s52s . « &« 5 0),
5) Calculate Ao
Using equation (5.12), calculate 2 0"
6) Transfer back to the original domain.
Using equations (5.7) and (5.8), calculate all Aj (j =0, 1, 2, .
at the original domain.
7) The solution.
With the values of the )j's obtained from the previous step, formulate
the probability distribution expression, which is in the form

-t Vi : n
y = exp (AO Xt AT Lo A X )

where

X  the independent variable
y the probability density function of x

A . constants, calculated from Step 7, j =0, 1,2, . . . ,n
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CHAPTER VI
THE MAXIMUM LOGARITHMIC ENTROPY IN STATISTICAL MODELING
FOR THEORETICAL POPULATION

6.1 GENERAL

Two methods are uséd to illustrate that the Maximum Logarithmic Entropy
Distribution in an effective statistical model. The first method is by
approximating the well known analytical distributions. The second methbd is by
approximating the actual pbopulation and comparing these approximations with other

existing methods. The second method will be considered in Chapter VII.

6.2 APPROXIMATING THE WELL KNOWN ANALYTICAL DISTRIBUTIONS

Most of the well known analytical distributions represent a population
and are derived from actual populations of é specific type. An illustration
of how the Maximum Logarithmic Entropy Distribution is an approximation to
most of the analytical distributions, illustrates at the same time how the
Maximum Logarithmic Entropy Distribution approximates the corresponding actual
populations. Assuming that the analytical distributions are actual populations
provides us with a variety of distributions amenable to the digital computer.

The first moments of an éssumed actual distribution are calculated,
and then the approximated Maximum-Logarithmic EntropyDistribution is generated
from these moments. A comparison is then made between these two curves. For
each analytical distribution, the first moments have been calculated from the

following known relations
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X
max

C, = 5 X f(x) dx
X

min (6.1)
Xmax .
C; = j (x = €)' F(x) dx, i=2,3,...,n
Xmin
where
X independent variable

f(x) probability density function
X, & the Tower bound

Kigaisc the upper bound
In the case where there is no definite value for the bounds, a reasonable
value is taken so that the area beyond this va]ue is negligible in comparison
with the bounded area. The curve in the bounded area is then normalized. The
approximated Maximum Logarithmic Entropy Distribution has been generated from
these calculated moments with the same upper and Tower bounds. Subroutine
MEP in Appendix C has been used to generate the distribution, and the allowed
relative error in the moment values for the solution has been taken equal to
108,
Note that C1 in the equation is the mean or expected value of a dis-

tribution, and is not a central moment whereas the Ci's are the central moments.
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However, for convenience, the term central moments has been used to define all
moments, including the expected value. ‘

In some cases the first moment (the expected value) is presented as the
only available information to generate the distribution. The result is usually
an exponential distribution, as -Tribus(3) demonstrated; but in some cases,
where the mean value is in the midway between the Tower and upper bounds, the
generated distribution is found to be a uniform distribution. However this is
a special case of the exponential.

Our knowledge of the distribution can Togically be extended tb the
next higher moments in turn, and the distribution can be generated based on
this knowledge. In each step a comparison is made between the assumed actual
analytical distribution and its approximated Maximum Logarithmic Entropy Dis-
tribution by computing the percentage area they have in common. The two distri-
butions are plotted together to show the deviation of the aporoximated curve
from the actual one. The following analytical distributiéns have been surveyed,
with various parameters-gamma, beta, Weibull, Rayleigh, exponential, Cauchy,
and Tog-normal. The Weibull is presented in detail in the following section to

give a visual illustration of how the accuracy varies with the number of moments.

6.3 EXAMPLE: THE WEIBULL DISTRIBUTION
The Weibull Distribution is represented by the equation

n -1

XA
f(x) = ) exp [-(5) ]

als

(

Q |x

forn =2, 0 =1, and upper and lower bounds = 4.00 and 0.0. The method discussed
in Section 6.1 has been applied forn=1,2, . . . , 5, where n is the number

of known moments. The results are summarized in the following pages.
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WEIBULL DISTRIBUTION (W3)

n-1
)

A}
Qs
a|x

n
exp [-(%9 J,n=2.0,0=1.0, x>0

f(x) =4
- 0, elsewhere
Central moment values: 0.88623 0.21460 0.06274
©0.149436 0.12793
Standardized moment measures(JE_, 82): 0.63108 3.24484
Upper and 1owef bounds: 4.00 0.00
Type of curve: (be11 shaped)

Table 6.1 Common area between Weibull Distribution (W3), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves

1 69.96

2 94.66

3 96.52

4 97.76

5 98.22 ‘

i |



' 57
1.18084

ACTUARL DISTs
1.06285+ MeLsEw DIST. ...

n344751
282666
»70856

259047+

FOX)

»47238+

235428+

23619

» 11803+

-,
-~
LT
.,
.
~~~~~
O

.....
-
et

000000 ! bty

020 w4 28 1a2 16 240 244 228 342 346 440
' X

Figure 6.1 Approximating Weibull Distribution (W3), (n = 2.0, o = 1.0), bv a

Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first moment
Central Moment value: .88623
A values (for M.L.E. Distribution): 0.N71112 - 1.05799

Percentage area in common between the two distributions = 69.96
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Fiqure 6.2 A

X

poroximating Weibull Distribution (W3), (n

2.0, o =1.0), by a

Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first two moments

Central Momen

Avalues (for

t values: 0.88623 0.21460

M.L.E. Distribution): - 1.46238 + 3.05017 - 1.85157

Percentage area in common between the two distributions = 94.66
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Figure 6.3 Approximating Weibull Distribution (W3), (n = 2.0, o = 1.0), by a

Maximum-Logarithmic Entrony Distribution (M.L.E.), based on the first three
moments

Central Moment va]ues:. .88623 .21460 .N6274

> values (for M.L.E. Distribution): - 1.81044 + 4.59126 - 3.51649 + .49278

Percentage area in common between the two distributions = 96.52
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Figure 6.4 Aooroximating Weibull Distribution (W3), (n = 2.0, o = 1.0), by a
Maximum-Logarithmic Entrony Distribution (M.L.E.), based on the first four
moments

Central Moment values: .88623 .21460 .06274 .14944

> values (for M.L.E. Distribution): - 2.20213 + 7.01450 - 7.57698 + 2.94650
- .47666

Percentage area in common between the two distributions = 97.76
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Figure 6.5 Anproximating Weibull Distribution (W3), (n = 2.0, o = 1.0), by a
Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first five
moments.

Central Moment values: .88623 .21460 .N6274 .14944 .12793

Xvalues (for M.L.E. Distribution): - 2.39810 + 8.656N0 - 11.51497 + 6.76357

Percentage area in common between the two distributions = 98.22



62

6.4 DISCUSSION OF THE WEIBULL EXAMPLE

The accuracy of the approximated curve, which is represented by the
area in common between the Maximum Logarithmic Entropy Distribution and the
assumed actual distribution, increases as the number of known moments increases.
This would be anticipated since higher moments represent increasing knowledge
about the independent variable (the Weibull distribution in this case). The
above can be observed in Table 6.1.

Fbr only one known moment (the expected value), the result is as
expected, an exponential distribution; and for two known moments the result is
a normal distribution (see reference (2)).

The accuracy of 98.22 per cent for five moments is a good approximation,
and shows the Maximum Logarithmic Entropy as a reliable approximating method

in statistical modeling.

6.5 GENERAL SURVEY OF THE APPROXIMATED ANALYTICAL DISTRIBUTIONS
The method discussed in Section 6.2 has been used for different types
of analytical distributions, and different shape parameters (if there are any)
for each distribution. For each curve the following procedure is used:
1) A symbol is given, to designate each curve. They are listed in Table
A.1 (Appendix A).
2) The Maximum Logarithmic Entropy Distribution has been predicted for
different number of known moments. The actual and its approximated
Maximum Logarithmic Entropy Distribution are plotted together to show

the deviation of the approximate curve from the original one. The
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plots are shown in Appendix A (Figure A.1 to Figure A.34). Note that
for each curve only one comparison figure between the original and the

approximated curves is plotted, unless a criteria would be demonstrated.

If we wish to know how to choose the Maximum Logarithmic Entropy Dis-
tribution approximation is to any analytical distribution stated in Table A.1,
the following steps should be followed.

1) Find the symbol for the required distribution in Table A.1.
2) Find this symbol in (B], 62) plane (Figure 6.7) and note beside it the
symbol suggesting the shape of the curve and the number for the per-
- centage area in common between the analytical curve and its approxima-
tion Maximum-Logarithmic Entropy Distribution.
3) 4Tab1e 6.2 also gives the figure number for the illustration of the two
curves, and the table member for the comparison between the two curves

for different known first moments.

The variation of the parameters involved in the expression for most
analytical distributions, leads to different shapes for the same general distri-
bution. However, most of them are similar. To illustrate most of the known
distributions in the restricted space of Figure 6.7 (B], 82 plane), different
specific values of these parameters have been chosen to represent the different
shapes for any distribution in a minimum number of curves. As an example, the
Weibull distribution can take an infinitenumber of shapes, most of them are
similar, and are included in the four following categories:

1) the skewed bell-shaped type
2) the symmetric bell-shaped type

3) the exponential type
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4)1 the J-shaped type
So according to the above condition only four shape parameter (n) of the Weibull

distribution have been chosen to present the distribution in Figure 6.7

6.6 DISCUSSION OF THE GENERAL SURVEY

The results illustrated in this chapter and in Appendix A, shows the
flexibility of the Maximum Logarithmic Entropy Distribution to represent almost
any kind of population. In cases of bell-shaped distributions, the area in
common between the analytical distribution, and the Maximum Logarithmic Entropy
Distribution having the same moments as the analytical one (or its approximate),
varies between 96.81 per cent (in the case of the gamma distribution) and 100.00
per cent (in the case of the normal distribution), indicating that the Maximum
Entropy Distribution is close to the assumed actual distribution. However the
Cauchy Distribution is an exception to the above figures (see Figures A.27, A.28,
and Tab]e&Aé%i/ﬁQIt is é symmetric long-tailed distribution, and very rarely
occurs in practice. Investigating the various distributions in Figure 6.7,
we can see that all distributions concentrate in the area where 0.0 < B] <4.0,
and 1.0 < By < 9.0, which we can consider the practical region for the probab-
ility distributions, and all the results inside this area are acceptable and
reasonable, but as we move outside this region, the accuracy starts to decline,
and the further we go the less accuracy we obtain. This is quite observable
in the Cauchy distributions, the accuracy is better in the distribution near to
the above region (C2) than the far one (C1).

In cases of J-shaped distributions the situation is not as good as in
the bell-shaped distributions. The Maximum Logarithmic Entropy Distributions
have an area corresnondence with the actual ones from 100.00 pner cent ({n the

case of the exponential distribution (E)) to 79.92 (in the case of the Weibull
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distribution (W1)). In the case of the U shaped curve the deviation is reason-
able, the percentage area in common between the two curves is 92.15 percentage.
In most of the cases the accuracy increases as the number of known
moments increases. This would be anticipated since higher moments represent
increasing knowledge about the independent variable. But, the error involved
in finding a solution (error in Lagrangian Multipliers 2 's) for higher
moments is greater than the error in a solution for a lesser number of moments.
In addition to the error obtained from calculating the distribution for higher
moments is less than the error obtained from calculating the distribution for
lower moments. In other words, if an error has occurred in the independent
variable x, the expected error from calculating the dependent variable y for n
moments is more than the expected error from calculating the dependent variable

y for (n + 1) moments. This can be illustrated for n = 1

Y1 = exp (A,O * X)

2)

Yp = €xp (AO A Xt A,
Obviously the error in Yo is more than the error in y],for a given error in Xx.
Thus, although increasing knowledge about an independent variable helps in
predicting its distribution more accurately, on the other hand, the error in
the prediction process increases as our knowledge increases. So in each step
of increasing knowledge there is a gain in accuracy counteracted by a loss also
due to numerical error. If at a certain stage of knowledge the accuracy
achieved its maximum, we can expect a decline in the accuracy in the next step

of increasing knowledge. This is noticeable in the gamma distribution [G3,



68

Table (A.4)], where an accuracy of 100 per cent is achieved for the first two
moment, but there is a decline as the number of moments increases. It can

also be observed in the following distributions; Beta (B.7), exponential (E),
Weibull (W1), uniform (U), normal (N), truncated normal (TN), half normal (HN).

The amount of loss in accuracy is, however, not significant.



69

CHAPTER VII
STATISTICAL MODELING ON ACTUAL DATA AND COMPARISON WITH OTHER METHODS

7.1 GENERAL
This chapter will make a comparison between the Maximum Logarithmic
Entropy Method and the Johnson and Pearson methods using problems in the

references. The existing solutions are compared with solutions by the new method.

7.2 THE COEFFICIENT OF FRICTION PROBLEM

7.2.1 Comparison with Johnson Method

This problem is given by Hahn and Shapiro (reference (1), page 219).
Measurements of the coefficient of friction for a metal were obtained on 250
samples. The actual and the predicted values by Johnson method are summarized
in the first three columns in Table 7.1.

The following moments values were calculated from Table 7.1.

C, = 3.448 x 1072
) -5
C, = 9.238 x 10
) -7
C, = 4.860 x 10
Cy = 2.742 x 1078

The upper and lower bounds are assumed from the given data

XMIN

.010
XMAX

.065
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Table 7.1 Comparison of predicted per cent observations by frequency classes
for Johnson's Distribution Fit to Coefficient of Friction for 250 samples versus

predicted per cent observation by the Maximum Logarithmic Entropy Method.

Predicted per cent of
Actual per Observations
cent of
Coefficient of Friction Observation Johnson | Maximum Logarithmic
Method Entropy Method
Less that 0.0150 0.4 0.7 .57
0.015 to 0.0199 3.6 3.3 3.51
0.020 -to 0.0249 12.0 10.8 10.96
0.025 to 0.0299 17.6 20.0 19.51
0.030 to n.0n349 23.2 22.5 22.22
0.035 to 0.0399 18.0 17.9 18.06
0.040 to 0.0449 11.6 11.5 11.64
0.045 to 0.0499 6.8 6.4 6.57
0.050 to 0.0549 3.6 3.5 3.57
0.055 to 0.0599 1.6 1.7 2.05
0.060 or more 1.6 1.7 1.36
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The Maximum Logarithmic Entropy Method is apnlied to the above data, and the

results are shown in the fourth column in Table 7.2. The mathematical model was

found to be
- 2 3 4

y = exp (2 o AqxF 2oxT 4 AT+ X ) (7.1)
where

A 5=~ 8.207

A1 = 021.901

>\2 = - 22624.2 .

AB = 182945.1

A4 = - 308036.5

The comparison is made between the two methods by calculating the
absolute error at each point for the twe methods, shown in the second and fourth
columns in Table 7.2 and plotted on Figure 7.2.

It is quite clear that the M.L.E. is a better aporoximation than the
Johnson method except in the tail end.

In general, to judge which method is better the goodness of fit test is
conducted. The result is shown in the third and firfth columns of Table 6.2.

The total xz contribution in the M.L.E.  (0.53) is less than the total 2 con-
tribution in the Johnson method (.64). The result is aiso plotted in Figure 7.3.

The Maximum Logarithmic Entropy Method is thus better than the Johnson

methed for this example.
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Table 7.2 Comparison of absolute errors and X?

2
versus absolute errors and X
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contribution in Johnson Method

contribution in M.L.E. Method.

Actual per cent Johnson Method M.L.E. Method
of Observation 5 5
Absolute error!x” contribution|Absolute error|y” contribution
0.4 0.3 .1286 .017 .0508
3.6 0.3 .0273 .09 .0023
12.0 1.2 «1333 1.04 .0998
17.6 2.4 .2880 1.90 .1867
23.2 0.7 .0218 0.98 .0430
18.0 0.1 .0006 <« D7 .0002
11.6 0.1 .0009 .04 .0001
6.8 0.4 .0250 .23 .0081
3.6 0.1 .0029 02 .0002
1.6 0.1 .0059 .45 .1004
1.6 0.1 .0059 .24 .0427
2 2
total X = .04 total ¥= .53
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7.2.2 Comparison with Pearson Method

The above examnle is also solved by using Pearson's method.

75

The cummu-

lative percentages prediced by Pearson and Johnson were calculated at five

points and are shown in the second, third and fourth column of Table 7.3. The

corresponding cummulative percentages predicted by the Maximum Logarithmic

Entropy Method are computed using equation (7.1), and are shown in the fifth

column bf Table 7.3.

Table 7.3 Comparison of Cummulative percentages from actual data, Pearson,

Johnson, and Maximum Logarithmic Entropy Approximations for coefficient of fric-

tion data.
Cummulative Corresnonding Cummulative
Percentages Percentage oredicted by
Variable from actual
X data Pearson Johnson Maximum Logarith-
Method Method mic Entropy Methad
.021 6.4 5.0 5.4 5.88
.023 11.2 10.0 9.3 9.91
.033 47.6 50.0 48.5 47.96
052 94.8 95.0 94.8 94.61
.064 99.2 99.0 99.0 99.75
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Figure 7.4 Cumulative percentages absolute errors in Pearson, Johnson, and
Maximum Entropy Methods.

It is clear from Table 7.4 and Figure 7.4 that the Maximum-Logarithmic Entropy
apbproximation is closer to the actual population than the Johnson approximation

or the Pearson abbroximation.
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Table 7.4 Comparison of absolute errors for Johnson, Pearson and Maximum
Logarithmic Entropy Methods for calculating the percentages of coefficient of

friction data.

Cummulative Absolute error in
percentages from
actual data Pearson Johnson Maximum Logarithmic
Method Method Entropy Method

6.4 1.4 1.0 .52
11.2 1.2 1.8 1.29
47.6 2.4 ' .9 .36
94.8 .2 0.0 .19
99.2 L2 | .2 .55

7.3 THE RESISTORS PROBLEM

This problem is given by Hahn and Shapiro (reference(11), page 215).
It is required to fit a distribution to data for the time to complete the manu-
facture of a part in an automated production process. This time varies from unit
to unit because of differences in ﬁateria] quality and hardness. Suppose the
minimum cycle time is one half minute for ideal material. The uppoer bound is two
minutes, at which time the material is automatically rejected. The time required
for successful completion of 1000 randomly selected units is summarized in the
first two columns of Table 7.5.

It was decided to fit a Johnson SB distribution, first assuming bounds
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|
[

|
of 0.5 and 2.0, and then assuming bounds of 0. and 3.0. The result is summar-

ized in the third and fourth columns in Table 7.5. The first four moments were

calculated from the first two columns.

C1 = 1.1032000
.C2 = .04676975
C3 = .00599097
C4 = .00693529

The lower and upper bounds(*) were assumed 0.6 and 1.9 respectively. The

Maximum Logarithmic Entropy distribution which satisfies this data is
Y

2 3
y=exp()0+ Aqx t AoXT + A gxT 4 .A.4x

where

A= - 50.98
Aq = +152.62
A, = -164.91
Xy =+ 78.00
Ag = - 14.05

(*) This is based on the Tower 1imit of the first column, and the higher Timit
of the last column.
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Table 7.5 Comparison between Actual, Predicted Per cent observations by Johnson
Method and Maximum Entropy Method Distribution Fits to Production Time for 1000

Randomly Selected Units.

Predicted Per cent of Observations

Actual Per Johnson Method Maximum

Production Time cent of Assuming bounds of Logarithmic
in Minutes Observations Entropy Method
0.5 and 2.0 0.0 and 3.0
Less than 0.70 0.9 0.9 1.7 7B
0.70 to 0.79 3.7 4.7 4.3 4.39
0.80 to 0.89 12.6 10.3 9.2 11.72
0.90 to 0.99 18.4 15.2 14.4 18.22
1.00 to 1.09 18.8 17.4 17.7 19.93
1.10 to 1.19 15.8 16.9 17.6 1620
1.20 to 1.29 12.2 13.9 14.5 | 11.64
1.30 to 1.39 1.6 10.2 10.1 7.67
1.40 to 1.49 5.0 6.1 5.9 4.78
1.50 to 1.59 2.8 3.1 2.8 2.80
1.60 to 1.69 151 1.0 1.2 1.49
1.70 to 1.79 0.9 0.3 g.5 67
1.80 or more 0.2 0.0 i 23
] i
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Table 7j6 Comparison of absolute errors in Johnson Method versus absolute errors

in Maximum Entropy Method

Absolute errors in Johnson Method 'Abso1ute errors in
Actual Per Cent Maximum Logarithmic
of Observations Assuming Bounds Assuming Bounds Entropy Method
» of 0.5 and 2.0 of 0 and 3.0
0.9 0 8 e
3.7 | Ts 0.69
12.6 2.3 3.4 .88
18.4 3.2 4.0 .18
18.8 1.4 1.1 0.63
15.8 - 1.1 1.8 4
12.2 1.7 2.3 <56
7.6 2.6 2.5 07
5.0 1.1 .9 0.22
2.8 3 0 0.00
1.1 1 . 39
0.9 .6 4 37
0.2 e 1 03
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The actual and the predicted percent of observations, using the two
methods are shown in Table 7.5 and plotted in Figure 7.5 and Figure 7.6. The
absolute errors at each point for the two methods are summarized in Table 7.6
and plotted in Figure 7.7.

From Figure 7.7, it.is clear that the Maximum Logarithmic Entropy

Method is closer to the raw data, and more accurate, than the Johnson Method.
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CHAPTER VIII
THE MAXIMUM LOGARITHMIC ENTROPY IN ANALOG PREDICTION UNDER RISK

8.1 GENERAL

We recall from Chaoter II that the first moments of y for the general

relation

Y =9 (%95 Xpn o v v s )
can be obtained in terms of the moments of xi's. We wish to generate the
probabi]ity distribution of y in terms of its first moments, using the Maximum
Logarithmic Entropy Method. The technique is illustrated in the following

example.

8.2 THE I-BEAM PROBLEM

The problem as stated by Sidda1$]%s that of designing a structure which
includes a member in bending. An extruded aluminum I-beam is used having a cross-
section shown in Figure 8.1. The density curves are shown in Figures 8.2, 8.3,
8.4, and 8.5 for M the bending moment, y the maximum distance from the neutral
axis, I the area moment of inertia and S‘y the yield stress of the material. We

define strength here as the margin of safety.

The specification value for m is assumed to be zero. We wish to determine the
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strength dependability. The density function for M is assumed to be subjective

and represented by the Weibull function

£(M) = .705 x 1072 (M - 920,000)" 33 exp(-.302 x 10712 (M - 920,000)2"33)

The density functions for y and I are assumed normal, derived from frequency

data.

fly) = ——— exp[-(y - 5.0)%/2(0.03)%]
.03 211

£(I) = —— exo[-(I - 163.48)%/2(7.6)%]
.76 21

The density function for‘Sy is assumed to be derived from sampling but has no
convenient mathematical model. In the solution sample values must be obtained

by table Took-up. We wish to determine the density curve for m and the

dependability.
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Figure 8.1 Beam Cross-Section
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The first four moments for Sy, M, Y, and I were calculated using equation (6.1).

c; = 4.140651 x 10° c& - 1.128693 x 10°
y

cg = 5.785701 x 10° cﬁ - 8.897979 X 10°
y

¢3 - -5.511605 x 10° ¢3 = 3.217538 x 10"
S, M

cg - g.001181 x 10'° cﬁ - 2.180712 x 1020
y

c; = 5.0 c} - 1.634987 x 10°

ci - 8.907379 x 107% ¢t = 5.697391 x 10
3. 3 _

3 = +0.0 ¢3 = 8.271875

i 1
¢t = 2.312377 x 107° ¢ = 9.410815 x 10°

y I

The upper and Tower bounds were assumed from the figures as follows

XMING = 3.4 x 10 | OXMAXg = 4.7 x 10

¥ ¥

B

XMIN, = 9.2 x 10° XMAX,, = 1.44 x 108
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XMINy = 4.9 XMAX ., = 5.1

2 2

XMINI =1.4 x 10 XMAXI = 1.9 x 10

Using a truncated Taylor's series expansion as in Section (2.53), the first four

moments of m are

¢l = 6.816094 x 10°
¢ = 1.668383 x 10’ |
¢ = -1.463594 x 10'°
¢t = 7.974088 x 10"

The upper and lower bounds for m are

- 4
XMIN*n 1.845714 x 10

) 4
XMAX, = 2.327369 x 10

The Maximum Logarithmic Entropy Distribution (the density curve) which satisfy

the above conditions is:

= 2 3 4
f(m) = exp(A0 SRR LU PIPL S DS I AP )
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where
A= -1.0587 x 10
», = 3.5265 x 10°%
2, = -2.4887 x 1078
Ay = +5.7098 x 10713
X, = -4.7247 x 10"V

The dependability, which is simply equal to the probability that m > 0

is equal to .9449. The comouter time for this problem (CP time) = 14 sec. Cost
in $ (based on $600/hr) = 2.33. The results shown above are obtainedvby using
the comouter package 'DECIT1' given in Appendix B.

For the same above first four moments the deoendability by using Pearson's
method is 95.88%. By using the transformation of variables technique the depend-
ability is 94.91%. We consider this result is the exact one as theoretically
this technique does not depend on approximation, however, this method is
applicable for indenendent variables only (which is our case).

By using the Monte-Carlo Simulation technique the result varies with

the sampe size (N), the following solutions have been provided by Professor J. N.

Siddall.
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N Dependability ' Cost in $
1000 94.8 8.42
5000 95.3 31.47

10000 94.9 60.71
12000 95.1 72.32
14000 95.0 84.10
16000 95.0 95,73

The error in the case of the Maximum Logarithmic Entropny is 0.42. However,

in Monte-Carlo the error varies from -.39 to .11 and is dependent on the sample
size, which is nearly equal to the error in the new technique. But the new
method is considerably better from the point of view of cost ($2.33 vs $95.73).
Also the accuracy in the new technique could be improved by considering the fifth
or theAsixth moment. In Pearson's methpd the error goes up to .97 which is

double the error in the new technique.
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CHAPTER 1X
GENERAL DISCUSSION

The algorithm of maximization of the Togarithmic entropy function
subject to the first n moments as constraints, as introduced in this thesis,
can be regarded as an important contribution to analytical decision theory.

It is the first step towards the meaningful apolication of the Maximum Entropy
Principle to decision theory. In addition this thesis contains the first
valid experimental proof of the principle mentioned above. It lacks any
theoretical proof , as do many princinles and theories (for example, Newton's
law), but most of these principles and theories have empirical proof, or, in
other words, there are data or results which suonért these theories. However,
when Jaynes introduced the principle, which is an application of the Shannon's
entropy function, he did not support it by a theoretical proof or by applica-
tions. Later, Tribus .11]ustrated that the principle worked for special cases
(the uniform, the gamma, and the normal distributions). The thesis illustrates
the validity of the principle in a much more general sense. Although the
application of the principle in thisthesis was limited to a special type of
constraint function, the moment function, this limitation does not affect the
validity of the principle. Other types of functions can be easily handled,
which will be considered later.

Besides illustrating the generality of Jayne's Principnle, this work
has achieved the following advantages in comparisbn with other existing empirical
methods :

1) In comnarison with the Monte Carlo method, it is clear from Chapter VIII

that the new algorithm is more accurate with less computation time.
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2) In comparison with Pearson's method the new algorithm is more accurate.
This can be observed from Chapter VII. No computation time comparison
has been made since the Pearson's method is not available in computer
language. Pearson's method 1imits itself to the first four moments
which mean that if only the first three moments are available, Pearson's
method cannot predict the distribution. The same abpplies for the first
five moments, if a more accurate result is required. The new algorithm
does not have the disadvantage.

As was demonsfrated in Chapter VI, an error occurs and increases at
higher moments, in addition to the error from calculating the higher moments.
To eliminate this increasing error in thé final solution, other types of func-
tions can be suggested to renlace the moment function. One such function has

the following form

(]
1]

1 <Tlog (x) >

(9p]
1]

<log (x) - C1)i >1=22,3,...40n

However, many different kinds of functions could be suggested, the best being
the one which gives the least error in the final solution. This would appear
to be a fruitful source of future work in this area, using the same approach

as was used in this thesis.
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Table A.1. List

Tables numbers.
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of Analytical Distributions with corresponding Figures and

Symbol Distributions name and Table Figure
parameter values Number Number

G1 Gamma, n.= 3.0, A= 1. A.2 A.l

G2 Gamma, n = 3.0, A= 5.0 A.3 A.2

63 Gamma, n = 1.0, 3= 1.0 A4 A.3

B1 Beta, n = 5.0, Yy =1.5 A.S A.4

B2 Beta, n = 2.0, vy = .8 A.6 A.5

B3 Beta, n = 2.0, y=1.0 A.7 A.6

B4 Beta, n = .5, Y= .5 A.8 A.7

B5 Beta, n = 5.0, Yy = 5.0 A.9 A.8

B6 Beta, n = 3.0, Y = 1.5 A.10 A.9

B7 Beta, n = 3.0, Y = 3.0 A.11 A.10
B8 Beta, n = 2.0, v = 2.0 A.12 A.11
B9 Beta, n = 1.5, vy = 3.0 A.13 A.12
B10 Beta, n = 1.5, vy = 5.0 A.14 A.13
B11 Beta, n = 2.0, vy = .5 A.15 A.14
W1 Weibull, n = 1.0, 0 = 1.0 A.16 A.15
W2 Weibull, n = 4.0, c = 1.0 A7 A.16
W3 Weibull, n =2.0, o = 1.0 6.1 6.1 to 6.5
W4 Weibull, n = .5, 0 = 1.0 A.18 A.17

E Exponential, 2= 1.0 A.19 A.18

U Uniform, Mg = 1.0, vy = 1.0 A.20 A.19 & A.20
N Normal, v = 4.0, 0 = 1.0 A.21 A.21
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Distributions name and

Symbol Table Figure
parameter values Number Number
TN Truncated Normad, ¢ =0, 0 = 2.0 A.22 A.22 & A.23
HN Half Normal, o = 5.0 A.23 A2
R1 Rayleigh, o2 = 2.0 A.24 A.25
R2 Rayleigh, o2 = 1,0 A.25 A.26
R3 Rayleigh, o° = .5 A.26 A.27
C1 Cauchy, 1= 0, o = 1.0 A.27 A.28
C2 Cauchy, p¢=0, o =1.0 A.28 A.29
LNT Log-Normal, v= 1.0, 0% = 1.0 A.29 A.30
LN2 Log-Normal, v= .3, o2 = 1.0 A.30 A.31
LN3 Log-Normal, p= 0.0, o = 1.0 A.31 A.32
LN4 Log-Normal, 1= 0.0, o° = ,3 A.32 A.33
LN5 Log-Normal, p= 0.0, 0% = .1 A.33 A.34




GAMMA DISTRIBUTION (G1)

NN b g 4K n=3.0, 2=1.0, x>0
‘n 3
f(x) =
0, elsewhere
Central moment values = 0.59989 0.11974 0.04731
© 0.07006 0.07533 0.10915
'Standardized moment measures(FE], 82): 0.74748 3. 12731
Upper and lower bounds: 8.00 0.00

Type of curve: (ﬁﬁ (bell shaped)

Table A.2 Common area between Gamma Distribution (G1) and its apbproximate

102

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
2 90.27
3 94.68
4 96.88
5 97.99
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3315?2
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X
= 3.0, A= 1.0) by a Maximum-

Figure A.1 Aobroximating Gamma Distribution (G1), (n
Logarithmic Entrony Distribution (M.L.E.), based on the first five moments.

Central moments values: 2.91292 2.46997 2.9016N 19.07892 53.47114
A values (for M.L.E. Distribution): - 4.4888 + 4.68476 - 2.45213 + .58318 - .N67767

= 97.99

+ .003113
Percentage area in common between the two distributions



GAMMA DISTRIBUTION (G2)

A x = 3.0, % =
n
f(x) =
0, elsewhere
Central moment values: .59989 .119736
.07006 .07533

Standardized moment measures(f@i, 62): 1.14184

Upper and lower bounds: 3.00 0.00

Type of curve: (] (bell shaped)

Table A.3 Common area between Gamma Distribution (G2)

Maximum-Logarithmic Entropy Distribution for different

104

.04731

4.88698

, and its approximate

known first moments.

Number of known Percentage of area in
first moments common between the two
' curves
2 88.95
3 92.41
4 95.62
5 96.81
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Figure A.2 Annroximating Gamma Distribution (42), (n = 3.7, A= 5.0) by a Maximum-
Logarithmic Entropy Distribution (M.L.E.), based on the first five moments.

Central Moment values: .59989 .119736 .04731 .N7006 JH533

Avalues (for M.L.E. Distribution): - 2.26178 + 15.32115 30.21764 + 23.94046

- 8.96673 + 1.24403 |

Percentage area in common hetween the two distributions = 96.8]
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GAMMA DISTRIBUTION (G3)

2!1%"1e'}x n=x=1.0, x>0
n
f(x) =
0, elsewhere
Central moment values: .96608 .82925 1.13471
3.61955 10.00447 31.615521
Standardized moment measures ({8;, B,): 1.5026 5.2635
Uoper and Tower bounds: 5.00 1.00

Tupe of curve: J shape

Table A.4 Common area between Gamma Distribution (G3), and its aporoximate

Maximum-Logarithmic Entropy Distribution for different known first moments

Number of known Percentage of area in
first moments common between the two
curves

2 100.00

3 99.99

4 99.97

5 ' 99.94

6 99.90




107

1.107 45
ACTUAL DISTa. —

233672 Mel«Es [CISTs ...

»88537—

s77 522

206448+

235373+

FLX)

244238
23328 41~
2c2 143

» 2075+

0,33000 : : } —— —T7

i i [} :

Bu) - 55 150 145 240 245 3ad 35 4w1 443 540
X

Figure A.3 Anproximating Gamma Distribution (G3), (n = A= 1.0) by a Maximum-
Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments.
Central Moment values: .9660N8 .82925 1.13471 3.61955 10.N0447

Avalues (for M.L.E. Distribution): .703646 - .976842 - .038436 + .N23483
- .N05895 + .007516

Percentage area in common between the two distributions = 99.94
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| BETA DISTRIBUTION (B1)

Fin+y) = " '1-x""1, n=5.0,v=1.50<x <1
r (n) T (v)
f(x) =

0, elsewhere

Central moment values: .23103 .02364 .00300

©.00183 .00058
Standardized moment measures({E}, 82): .82502 3.2803
Upper and Tower bounds: 1.00 0.00

Tupe of curve: [l shape.(Bell Shaped)

Table A.5 Common area between Beta Distribution (B1), and its approximate Maximum-

Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
3 96.09
4 97.55
5 97.89
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2255625+
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Figure A.4 Aoproximating Beta Distribution (B1), (n = 5.0, Y = 1.5) by a Maximum-
Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments.
Central Moment values: .231027 .N23635 .NN2998 .0N18324 .NNN5786

‘Avalues (for M.L.E. Disfribution): + .2255 + 15.9965 - 1N0.1084 + 240.0444

- 274.1477 110.8254

Percentage area in common between the two distributions = 99.89
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BETA DISTRIBUTION (B2)

I (n + T =20,y =080 <x g1
' (n) T' (y
f(x) =

0, elsewhere

Central moment values: .287151 .N53566 .009524

.007746 .003086 .0018559
Standardized moment measures(fé}, 62): .7682 2.6996
Upner and lower bounds: 1.00 0.00

Type of curve: J shape

Table A.6 Common area between Beta Distribution (B2), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments |, common hetween the two
curves
3 97.54
4 97.55
5 98.46
6 98.48
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Fiqure A.5 Aonroximatina Beta Distrihution (B2), (n = 2.n, vy = .8), hy a Maximum-
Logarithmic Entropny Distribution (M.L.E.), based on the first six moments.

Central Moment values: .28715 .N5357 .NN952 .00N775 .0NN3N9 .NN186

Avalues (for M.L.E. Distribution): + 1.3972 - 11.4708 + 60.486N - 178.7122

+ 258.3163 - 173.3041 + 39.6237

Percentage area in common between the two distributions = 98.48



BETA DISTRIBUTION (B3)

112

I (n +y x' - 1(1 -x)" - 1, n=2.0,Yy=1.0,0 £x <1

I'(n) T (y

0, elsewhere

Central mohent values:  .33400

-.00738
Standardized moment measures dﬁ},
Upper and Tower bounds: 1.00

Type of curve: triangular

.05545
.00234

82): . 5657

0.00

.00739
.00151

2.4000

Table A.7 Common area between Beta Distribution (B3), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
3 98.44
4 99.01
5 99.38
6 99.55
L
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Figure A.6 Annroximating Beta Distribution (B3), (n = 2.0, y = 1.0) by a Maximum-
Logarithmic Entrony Distribution (M.L.E.), hased on the first six moments.

Central Moments values: .33400 .N5545 .00739 -.00738 .N0N234 .NN151

Avalues (for M.L.E. Distribution): + .67267 + .22341 - 16.18761 78.87925 - 185.39258
+ 2N1.18329 -~ 82.9A117

Percentage area in common between the two distributions = 99.55



BETA DISTRIBUTION (B4)

I (n +vy xY'1U —ﬂn'],n=Y=.5,0<xs1
I'(n) T (Y :
f(x) =

0, elsewhere

Central moment values: .50000 .12223 0.00000

.02258 0.00000
Standardized moment measures({E}, 62): 0.00 1.51
Upper and Tower bounds: 1.00 0.00

Type of curve: {J shape

Table A.8 Common area between Beta Distribution (B4), and its approximate

Maximum-Logarithmic Entrooy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
3 88.78
4 92.15
5 ‘ 92.15
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Figure A.7 Anproximatinag Beta Distribution (B4), (n = .5, y = .5) by a Maximum-
Logarithmic Entrony Distribution (M.L.E.), based on the first five moments.
Central Moment values: .50000 .12223 N.0N00N0 .02258 .NNNNN

Avalues (for M.L.E. Distribution): + 1.4178 - 18.6369 + 65.5595 - 93.74824
46.7n0689 119.35532

Percentage area in common hetween the two distributions = 92.15.
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BETA DISTRIBUTION (B5)

T (n + Tl -x" T =y =5,0¢ x €1
' (n) T (y
f(x) =

0, elsewhere

Central moment values: .5000 .02273 0.0000

.001311 .0000
Standardized moment measures({é}, 82): 0.00 2.54
Upper and lower bounds: 1.00 0.00

Type of curve: N (bell shaped)

Table A.9 Common area between Beta Distribution (B5) and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
3 96.65
4 99.26
5 99.26
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Figure A.8 Appnroximating Beta Distribution (B5), ( n = 5.0, y = 5.0), by a Maximum-

Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments.
Central Moment values: .57%0 .12273 0.00N .00131 N.0NON

A values (for M.L.E. Distribution): - 7.08586 + 50.40342 - 125.22834 + 151.87114
- 80.08444 3.12476 |

Percentage area in common hetween the two distributions = 99.76



BETA DISTRIBUTION (B6)

Py} 0 W1 =)™ Vrpn=23.0,v=1.5,0 £x 1
' (n

”
f(x) =
0, elsehwere

Central moment values:. .3335] .04037 .00414

.00414 .00108 .00673
Standardized moment measures ({8, 82): 511 2.539
Upper and lower bounds: 1.00 0.00
Type of curve: (bell shaped)

Table A.10 Common area between Beta Distribution (B6), and its approximate

Maximum-Logarithmic Entrooy Distribution for different known first moments.

Number of known ' Percentage of area in
first moments common between the two
curves
3 96.12
|

4 98.11

5 98.20

6 98.86
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Figure A.9 Approximating Beta Distribution (B6), (n = 3.7, y = 1.5) by a Maximum-

Logarithmic Entrony Distribution (M.L.E.), based on the first five moments.
.04037 .NN414 .N0414 .00108

. 333561

Central Moment values:
Avalues (for M.L.E. Distribution): - .36963 + 13.65424 - 61.74N94 116.8970

= 98.20

- 102.58016 + 29.30392
Percentage area in common between the two distributions
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BETA DISTRIBUTION (B7)

+y) X -0 " n=y=3.0,0 <x <1

I' (n
' (n) T (y
f(x) =
0, elsewhere
Central moment values : .5000 .03571 0.000
.00298 0.000
Standardized moment measures ({8 , B,): 0.00 2.333
Upper and lower bounds: 1.09 0.00

Tyoe of curve: N (bell shaped)

Table A.11 Common area between Beta Distribution (B7), and its approximate

Maximum-Logarithmic Entrooy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
3 95.54
4 98.57
5 98.56
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Figure A.10 Aonroximating Beta Distribution (B7), (n = 3.7, y = 3.0) by a Maximum-
Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments.

Central Moment values: .5000 .N35714 N.NNN .NN2976 N.NNNN _

Avalues (for M.L.E. Distribution): 3.941075 31.4819 - 85.n532 107.98137 - 55.5248
1.13750

Percentage area in common bhetween the two distributions = 98.56
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BETA DISTRIBUTION (B8)

I (n+ ol o) n=y=2.0,0 ¢x <1
I''(n) T (y
f(x) =

0, elsewhere

Central moment va]ues:_ .5000 .0500 0.0000

.005357 0.0000
Standarized moment measures({E}, 82): 0.00 2.143
Upper and Tower bounds: 1.00 0.00

Type of curve: N (bell shaped)

Table A.12 Common area between Beta Distribution (B8), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments

Number of known Percentage of area in
first moments common between the two
curves
3 95.57
4 98.17
5 98.17




1.65000

ACTUAL DIST.
1248500 MaLsEs DISTa
1.32000+ 2 i
1.15500+ ) i
293000 j 3
282500
x o
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«66000+ /! )
249500+  /f \
.330004 f/ "\
216500 3
0.00000 11
0s0 a1 42 23 a4 a5 a6
Figure A.11

27 a8
X

.9 1.0
Aboroximating Beta Distribution (B8), (n

=y = 2.0) by a Maximum-
Logarithmic Entrony Distribution (M.L.E.), based on the first five moments.
Central moment values:

.50N00 .0500 N.NNNN .NN536 0.0000
Avalues (for M.L.E. Distribution): - 2.1754 + 19.3931 - 56.47123 74.81196 - 38.6007
.87193

Percentage area in common between the two distributions = 98.17
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BETA DISTRIBUTION (B9)

I (n+ x' - ](1 -x)N - 1
' (n) T (y
f(x) =
0, elsewhere
Central moment values: .66649 .04037
.004137 -.00108

Standardized moment measures ({8, By): -.511

Upper and lower bounds: 1.00 0.00

Type of curve: N (bell shaped)

-.00415

+2.539

Table A.13 Common area between Beta Distribution (B9), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
3 96.12
4 98.12
5 98.20
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Figure A.12 Aporoximating Beta Distribution (B9), (n = 1.5, y = 3.0) by a Maximum-
Logarithmic Entronoy Distribution (M.L.E.), based on the first five moments.
Central Moment values: + .66649 + .04037 - .00415 + .004137 - .00108
A values (for M.L.E. Distribution): - 4.9173 + 24.1267 - 39.1723 12.29497 32.57655

- 25.26896

Percentage area in common between the two distributions = 98.20
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BETA DISTRIBUTION (B10)

-~ 0, elsewhere

Central moment values: +.768973 +.0236348 -.002997
+.001832

Standardized moment measures((ﬁ}, 82): -.825 +3.280

Upper and lower bounds: 1.00 0.00

Type of curve: /N (bell shaped)

Table A.14 Common area between Beta Distribution (B10), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
3 96.09

4 97.56
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3.12550
f ACTUAL DIST.

2481295 MaL oE . DI%}H\ .....

2450040+

22187851

1.87530+

1aB6275+

F(X)

1.25020—

233765+

262510+

312551

0400000 } |
0a0 w1 22 a3 24 45 26 a7 a8 29 1.0

Figure A.13 Approximating Beta Distribution (B10), (n = 1.5, vy = 5.0) by a Maximum-
Logarithmic Entrooy Distribution (M.L.E.), based on the first four moments.

Central Moment values: + .768973 + .N236348 - .NN2998 + .0N1832

) values (for M.L.E. Distribution): -12.4111 63.21888 - 138.01770 .149.03429

- 61.478266

Percentage area in common between the two distributions = 97.56
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BETA DISTRIBUTION (B11)

I (n + -l -1, n=20,vy=.50<x <1
In) T (y
f(x) =

0, elsewhere

Central moment values: .20524 .04585 .011998

.007889 .004053
Standardized moment measures({é—, 82): 1.222 3.753
Upper and lower bounds: 1.00 0.00

Type of curve: J shape

Table A.15 Common area between Beta Distribution (B11), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
3 90.42
4 ) 91.01
5 _ 92.50
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10,69983-
84024874
54349911

2267436+
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Figure A.14 Aooroximating Beta Distribution (B11), (n = 2.0, vy = .5) by a Maximur
Logarithmic Entropy Distribution (M.L.E.), based on the first five moments.
Central Moment values: .20524 .04585 .N11998 .NN7889 .NN4N5

Avalues (for M.L.E. Distribution): 2.44524 - 28.8873N 148.03821 - 370.85069
418.5973 - 174.77754

Percentage area in common between the two distributions = 92.50
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WEIBULL DISTRIBUTION (W1)

n
D_(z_)” ~ Texp -(-2‘;) ,n=0=1.0,x30
o ‘o
f(x) =

0, elsewhere

Central moment values: .92631 .69574 .73785
2.0312 4.3413 10.9381

Standardized moment measures (( gy, B8,): 1.271 4.196
Upper and lower bounds: 4.00 0.00

Type of curve: J shape {exponential case)

Table A.16 Common area between Weibull Distribution (W1), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
3 99.99
4 99.98
5 99.96
6 99.95
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Figure A.15 Aooroximating Weibull Distribution (W1), (n = o = 1.0) by a Maximum-

Logarithmic Entrony Distribution (M.L.E.), based on the first five moments.

Central Moment values: .92631 .69574 .73785 2.0312 4.3413

Avalues (for M.L.E. Distribution): + .N17289 - .980712 - .N38074 .N27957 - .0N85024
.0009065

Percentage area in common between the two distributions = 99.96



132

WEIBULL DISTRIBUTION (W2)

g(g)n-]exo '(%)n,n=4,o=1,xao
f(x) =
0, elsewhere
Central moment values: .90640 .06466 -.00143
.01149 -.00059
Standardized moment measures (8., 82): -.0872 2.7478
Upper and Tower bounds: 3.00 0.00

Type of curve: N (bell shaped)

Table A.17 Common area between Weibull Distribution (W2), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
3 98.24
4 99.38
2 99.66
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Figure A.16 Annroximatina Weibull Distribution (W2), (n = 4.7, o = 1.0) by a Maximum-
Logarithmic Entrony Distribution (M.L.E.), based on the first five moments.

Central Moment values: .9064N .N6466 - .NN143 .N1149 - .00N59

Avalues (for M.L.E. Distribution): - 7.36687 25.7626 - 38.16523 33.78615 - 16.4386
2.80577

Percentage area in common between the two distributions = 99.66



WEIBULL DISTRIBUTION (W4)

g(i)n-]exp -(g)n ,n=05,y=1.0,x%0
f(x) =
0, elsewhere
Central moment values: .68306 .86862 1.35043
3.77670 9.73903 27.05002
Standardized moment measures (Y8, 82): 1.668 5.006

Upper and Tower bounds: 4.00 0.00

Type of curve: J shape -
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Table A.18 Common area between Weibull Distribution (W4), and its aporoximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves

2 74.29

3 75.56

4 77.61

5 79.92

6 82.02
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14,24136-
12,46118+

10.68102—

3256034+
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. X

Figqure A.17 Aoproximating Weibull Distribution (W4), (n = .5, y = 1.0) by a Maximum-
Loqérithmic Entrony Distribution (M.L.E.), based on the first six moments.
Central Moment values: .68306 .86862 1.35043 3.77670 9.73903 27.0500

Avalues (for M.L.E. Distribution): + 1.81709 - 14.31629 + 25.21242 - 21.85061
+ 9.44108 - 1.97430 + .15866

Percentage area in common between the two distributions = 82.02
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EXPONENTIAL DISTRIBUTION (E)

re M X A=1,x>0
f(x) =
0. elsewhere
Central moment values: 1.000 .9954 1.9546
~ 8.5187 3.89138
Standardized moment measures ({EH, By): 1.968 8.596
Upper and lower bounds: 10.0 0.00

Type of curve: J shape

Table A.19 Common area between Exponential Distribution (E), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
}

1 99.99

2 99.97

3 g 99.93

4 j 99. 86

5 i 99.74
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Figure A.18 Aobnroximating Exnonential Distribution (E), (>= 1) by a Maximum-
Logarithmic Entrony Distribution (M.L.E.), based on the first five moments.

Central Moment values: 1.000 .9954 1.9546 8.5187 3.89138

Avalues (for M.L.E. Distribution): - .N1276 - .93661 - .N6694 + .N24997 - .003703
+ .000185

Percentage area in common between the two distributions = 99.74
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UNIFORM DISTRIBUTION (U)

_ ]
F1 7 ¥Hp

f(x) = <

~ 0, elsewhere

Central moment values: .500 .08333

.0125 0.000
Standardized moment measures ({E}, 82): 0.00
Upper and lower bounds: 1.00 0.00

Type of curve: rectangular

> Mg =0.0, ¥y =1.0, vgsx < ¥,

0.000
.002232

1.80

Table A.20 Common area between Uniform Distribution (U), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves

1 100.00

2 100.00

3 100.00

4 100.00

5 99.99

6 99.82
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Figure A.19 Aopproximatina Uniform Distribution (U), (110 =0, uy = 1), by a

Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first moments.
Central Moment value: .50N
Avalues (for M.L.E. Distribution): 0.000 0.000

Percentage area in common between the two distributions = 100.00
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Figure A.20 Aporoximating Uniform Distribtuion (U), (wg = 0, vy = 1) by a

Maximum-Logarithmic Entrony Distribution (M.L.E.), based on the first six moments.

Central Moment values: .500 .N8333 0.000 .01250 0.000 .002232

Avalues (for M.L.E. Distribution): + .01777 - .71100 + 6.84518 - 26.5716

+ 48.6262 - 41.9398 + 13.7454

Percentage area in common between the two distributions = 99.82
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NORMAL DISTRIBUTION (N)

1

r - - |2 2 (— b— - 0 g 0
5 o ©XP [-(x - v)/ 26°], v= 4.0, 0 = 1.0 <x <+

- 0, elsewhere

Central moment values: 4.000 .99893 0.000

2.97966 0.000 14.62418
Standardized moment measures ({ By, B,): 0.00 2.99
Upper and lower bounds: 8.00 0.00

Type of curve: [ (bell shaned)

Table A.21 Common area between Normal Distribution (N), and its aporoximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
: curves

2 100.00

3 100.00

4 99.99

B 99.99

6 100.00
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243885
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394981 MaLsEs DIST4 ..

#35111+1

230724+

2206336

221343+

FOX)

217562

« 13175+

2087881

04401+

00013 F—— e
040 48 1.6 244 342 440 448 546 644 742 840
X

Figure A.21 Aoproximating Normal Distribution (N), (1= 4.0, o = 1.0) by a Maximum-
Logarithmic Entrony Distribution (M.L.E.), hased on»the first two moments.

Central Moment values: 4.N0 .99893

A values (for M.L.E. Distribution): - 8.91870 3.99991 - 4.99989

Percentage area in common between the two distributions = 100.00
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TRUNCATED NORMAL DISTRIBUTION (TN)

o 21

f(x) = 4

- 0, elsewhere

Central moment values: 2.0000 1.16450

2.63201 0.00000
Standardized moment measures((@f s 82): 0.00
Upper and Tower bounds: 4.00 0.00

Type of curve: () (bell shaped)

exp [-(x - p)2/202], = 2.0, 0 =2.0, -» < X <

0.00000
1.27213

1.941

Table A.22 Common area between Truncated Normal Distribution (TN), and its

approximate Maximum-Logarithmic Entropy Distribution for different known first

moments.

Number of known | Percentage of area in
first moments common between the two
curves

2 100.00

3 100.00

4 100.00

5 100.00

6 99.89




,30368 144

ACTUAL DIST» —
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225310+
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222780
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220251
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Figure A.22 Anproximating Truncated Normal Distribution (TN), (u = 2.0, o = 2.0) by a
Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first two moments.
Central Moment values: 2.0000 1.16450

Avalues (for M.L.E. Distribution): - 1.730363 + 0.49999 - .124998

Percentage area in common between the two distributions = 100.00
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2291034 M.L'.E. DISTs ...

227833+

22657 4
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Figure A.23 ‘Annroximatinq Truncated Normal Distribution (TN), (u= 2.0, o = 2.0)
by a Maximum-Logarithmic Entrpoy Distribution (M.L.E.), based on the first six
moments.

Central Moment values: 2.N0N 1.1645 N.NNM 2.63201 0.0NN 7.27213

A values (for M.L.E. Distribution): - 1.71775 + .38162 + .15274 - .26399 + .11989
- .02578 + .002112

Percentage area in common hetween the two distributions = 99.89
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HALF NORMAL DISTRIBUTION (HN)

1/2
2

(—=%) exp [—x2/202], c=5.0,x20
[ H02

L 0, elsewhere

Central moment values: 3.989411 9.084231 27.2459
319.1838 2458.863

Standardized moment measures ({8, , Bp): 995 3.868

Upper and Tower bounds: 25.00 0.00

Type of curve: J shape

Table A.23 Common area between Half Normal Distribution (HN), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments , common between the two
curves
2 100.00
3 100.00
4 100.00
5 99.98
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Figure A.24 Aporoximating Half Normal Distribution (HN), (o = 5.0) by a Maximum-
Logarithmic Entrony Distribution (M.L.E.), based on the first two moments.
Central Moment values: 3.9894 9.0842

Avalues (for M.L.E. Distribution): - 1.835137 - .N0NN4 - .019996

Percentage area in common between the two distributions = 100.00



RAYLEIGH DISTRIBUTION (R1)

- ( XZ) exp (-x2/202), g = 2.0, 22D
o
f(x) = J
. 0, elsewhere
Central moment values: 1.77253 .85840 .501907
2.39098 4.09360
Standardized moment measures({é}, 82): . 631 3.245

Upper and lower bounds: 8.00

Type of curve: () (bell shaped)

148

Table A.24 Common area between Rayleigh Distribution (R1) and its apbproximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known
first moments

Percentage of area in
common between the two
curves

96.52
97.76
98.22
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Fiqure A.25 Aooroximating Rayleigh Distribution (R1), (02 = 2.) by a Maximum-

Logarithmic Entropy Distribution (M.L.E.), based on the first five moments.

Central Moment values: 1.77253 .85840 .501997 2.3998 4.09360

Avalues (for M.L.E. Distribution): - 3.0918 4.3300 - 2.880N8 - .84631 - .12897

.00730

Percentage area in common between the two ‘distributions = 99.22
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RAYLEIGH DISTRIBUTION (R2)

(—550 exp (-x2/202), o = 1, x>0
o
f(x) =

0, elsewhere

Central moment values: 1.25231 42634 .16973
.571095 .64245 1.46662

Standardized moment measures({@}, 82): .6097 3.1419
Upper and lower bounds: 4.00 0.00

Type of curve: O\ (bell shaped)

Table A.25 Common area between Rayleigh Distribution (R2), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
' curves
3 196.68 ‘ \
4 97.82
5 98.45
6 98.86
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Figure A.26 Anpbroximating Rayleigh Distribution (R2), (o

2 _ 1) by a Maximum-

Logarithmic Entropy Distribution (M.L.E.), based on the first six moments.
Central Moment values : 1.25231 .42634 .571095 .64245 1.46602

Avalues (for M.L.E. Distribution): - 3.1339 9.1667 - 12.8105 9.4097 - 3.8796
.8051 - .06577

Percentage area in common hetween the two distributions = 98.86
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RAYLEIGH DISTRIBUTION (R3)

—ZEO exp (—x2/202), 02 = .5, x>0
o
flx) =

0, elsewhere

Central moment values: .88595 .21399 .06146
.14615 .12033

Standardized moment measures({é}, 82): .6209 3.1917
Upper and lTower bounds: 3.00 0.00

Type of curve: N (bell shaped)

Table A.26 Common area between Rayleigh Distribution (R3), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
‘ curves
3 96.63
4 97.79
5 . 98.41
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FigureA.27 Aooroximating Rayleigh Distribution (R3), (02 = .5) by a Maximum-
Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments.

Central Moment values: .88595 .21399 .06146 .14615 .12033
- 2.5N017 + 9.6311 - 14.1161 9.5524 - 3.3372

Avalues (for M.L.E. Distribution):
= 08.41

.4398
Percentage area in common between the two distributions
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CAUCHY DISTRIBUTION (C1)

-1
2

1 [1 + KZ*:_Ji)_J "
oIl Z

o}

f(x) =
0, elsewhere
Central moment values: 0.0000 44,8540
151,158.9 0.0000

Standardized moment measures ({E}, 82): 0.000

Upper and lower bounds: + 200.0

- 200.0

Type of curve: N (bell shaped)
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0.0000

75.13

Table A.27 Common area between Cauchy Distribution (C1), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known
first moments.

Percentage of area in
common between the two

curves
1 13.01
2 45.78
3 45.78

4 46.69
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Figure A728' Aonroximating Cauchy Distribution (C1), by a Maximum-Logarithmic
Entrooy Distribution (M.L.E.) based on the first four moments.

Central moment values: 0.000 44.8540 0.00000 151158.044

Avalues (for M.L.E. Distribution): 2.69621 .N000N - .014968 .Nonnn n0.n0onn

Percentage area in common between the two distributions = 46.69
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CAUCHY DISTRIBUTION (C2)

1

g T [1+ (x - p)z] , v=0.0,0=1.0, ~= < x<»
ol 2 ‘
o

f(x) = J

0, elsewhere

Central moment values: 0.0000 8.7345 0.0000
1,226.89 0.0000

Standardized moment measures({é}, 82): 0.00 16.08

Upper and Tower bounds: 20.0 - 20.0

Type of curve: N (bell shaped)

Table A.28 Common area between Cauchy Distribution (C2), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of knwon | Percentage of area in
first moments common between the two
curves

1 27.80

z 61.61

3 61.61

4 66.27

5 66.27
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Figure A.29 Aoproximating Cauchy Distribution (C2) by a Maximum-Loaarithmic Entrony

000000~ } ;
-20.0 -160 120

Distribution (M.L.E.), based on the first five moments.

Central moment values: 0.00 8.7345 0.0N 1226.90 0.NN

A values (for M.L.E. Distribution): - 1.79216 - .001225 - .092266 .00007 .00N0N21
n.N0N00

Percentage area in common between the two distributions = 66.27
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LOG-NORMAL DISTRIBUTION (LNT)

1 1 2
(————= e [- —5 (logx -¥)7], v=1,0"=1,x 20
o xy 21 26°

L 0, elsewhere

Central moment values: 2.8239 2.39416 2.5889
15.5442 37.1409

Standardized moment measures({é}, 62): .6989 2.7120

Upper and lower bounds: 7.00 0.00

Type of curve: N (bell shaped)

Table A.29 Common area between Log-Normal Distribution (LN1),and its approximate

Maximum—Logérithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments common between the two
curves
3 92.4
4 95.53
5 97.22
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Figure A.30 Aopnroximating Log-MNormal Distribution (LNT1), (1
Maximum-Logarithmic Entrony Distribution (M.L.E.), based on the first five moments

2.8239 2.39416 2.58897 15.5442 37.14N09
. 153852

Central Moment values:
- 5.3522 7.0834 - 4.3202 1.18333 -

Avalues (for M.L.E. Distribution):

.NN76n98
Percentage area in common hetween the two distributions = 97.22
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LOG-NORMAL DISTRIBUTION (LN2)

P exp [- _JZ? (Tog x -1:)2], v o= .3, 02 =1.0, X2 0

oll 20 20

f(x) = <

L 0, elsewhere

Central moment values: 1.6587 1.3486 2.4380
10.4366 38.5384

Standardized moment measures({?ﬂ, 82): 1.557 5.738

Uoper and lower bounds: 7.00 0.00

Type of curve: (\ (bell shaped)

Table A.30 Common area between Log-Normal Distribution (LN2), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known | Percentage of area in
first moments common between the two
curves
3 87.95
4 91.91
5 94,33
N
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Figure A.31 Annroximating Loa-Normal Distribution (LN2), (1
Maximum-Logarithmic Entroov Distribution (M.L.E.), based on the first five moments.

1.65869 1.348597 2.437959 10.436564 38.538422

Central Moment values:
- 3.23115 6.62032 - 5.54nN92 1.8183437

Avalues (for M.L.E. Distribution):

- .269721 .01475896
Percentage area in common between the two distributions = 94.33
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LOG-NORMAL DISTRIBUTION (LN3)

1
[ ol 2I

exp [- -2%2— (Tog x - L')ZJ, =0, o? = 1P

WV
(=]

f(x) = J

~ 0, elsewhere

Central moment values: 1.26162 .88814 1.6333

6.45511 24.81569
Standardized moment measures({%}, 82): 1.951 8.184
Upbper and lower bounds: 7.00 0.00

Type of curve: 0 (bell shaped)

Table A.31 Common area between Log-Normal Distribution (LN3), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known . Percentage of area.in
first moments common between the two
curves
3 86.08
4 90.27
5 o 92.84
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Figure A.32 Aooroximating Log-Normal distribution (LN3) (1= 0.0, ¢© = 1.0), by a

Maximum-Logarithmic Entrony Distribution (M.L.E.), based on the first five
moments.
Central Moment values: 1.261620 .888137 1.63326 6.455104 24.81569
X values (for M.L.E. Distribution): - 2.4648 €.4458 - 6.36595 + 2.284981
\

- .36131106 .N20727

Percentage area in common between the two distributions = 92.84
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LOG-NORMAL DISTRIBUTION (LN4)

] exp [-—]—2—(109 x - ¥)%1, ¥=0,0%= .3, x

oIl 2I 21

A\
O

L 0, elsewhere

Central moment values: 1.0773 .18610 .09725.
. 18845 .27287

Standardized moment measures( 8-, B,): 1.210 5.441

Uoper and lower bounds: 4.00 0.00

Type of curve: N (bell shaped)

Table A.32 Common area between Log-Normal Distribution (LN4), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments. common between the two
curves
3 90.91
4 96.02
5 97.70
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Fiqure A;33. Abnroximatina Loag-Normal Distribution (LN4) (yp= 0, oé = .3), by a

Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first five moments.
Central Moment values: 1.07730 .18610 .N97237 .18845 .272869

Avalues (for M.L.E. Distribution): - 9.4254 29.9921 - 33.7175 16.9511 - 4.10425
.37979

Percentage area in common between the two distributions = 97.70
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LOG-NORMAL DISTRIBUTION (LN5)

M - exp [- —Jjg (Tog x - v )2], p=0, o = Jds x>0

oIl 2I 21

f(x) = J

. 0, elsewhere

Central moment values: 1.02531 05390 00864
.011207

Standardized moment measures({%ﬁ, 62): .631 3.245

Upper and lower bounds: 3.00 0.00

Type of curve: (1 (bell shaped)

Table A.33 Common area between Log-Normal Distribution (LN5), and its approximate

Maximum-Logarithmic Entropy Distribution for different known first moments.

Number of known Percentage of area in
first moments A common between the two
curves
3 95.64

4 98.87
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Fiqure A.34 Annroximatina Log-Normal Distribution (LN5) (uw =0, ¢” = .1), by a
Maximum-Logarithmic Entrooy Distribution (M.L.E.), based on the first four moments.
Central Moment values: 1.02531 .053898 .008642 .011207

A values (for M.L.E. Distribution): - 24.8617 72.5883 - 72.5529 30.2225 - 4.79349

Percentage area in common between the two distributions = 98.87
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APPENDIX B

DERIVATION OF S = - p, Tog pi(]o) -
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Let S(%3 %—, Co %J = A (n). From condition (3) we can decompose
a choice from S" equally likely possibilities into a'series of m choices each

from S equally likely possibilities and obtain
A(S™) =mA (S)

Similarly

A (") =n A (t)

We can choose n arbitrarily large and find an m to satisfy
Mo " < S(m +1)

Taking logarithms and dividing by n Tog S, gives

or

S|z
A
— | —
o|o
«Q
|+
/A
3|5
+
S|—

s1<e

;

|E1_
n

—

0g

where € is arbitrarily small. Now from the monotonic property of A (n)
AG™ < A" ¢ A"t

mA(S) s nA(t) £ (m+1)A(S)
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Dividing by n A (S) gives

m A (t) m, 1
h—émS‘n—"‘n or
m A (t
R GG
A(t) log t
| A5y - Togs | € 28

A (t) = -Klog t

where K must be positive to satisfy condition (2). Now suppose we have a choice

from n possibilities with commeasurable probabilities

where the n, are integers. We can break down a choice from Zni possibilities
into a choice from n possibilities with probabi]ifies I and then,
if the ith is chosen, a choice from n, with equal probabilities. Using
condition (3) again, we equate the total choice from Zni as computed by two

methods
K Tog In, = H (p], .« & w pn) + K Ip, Tog n

Hence
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H=KI[Z P log In, - I p; Tog ni]
"
= K P; log i KZ P log Py

1

If the D, are incommeasurable, they may be approximated by rationals and the
same expression holds in general. The choice of coefficient K is a matter of

convenience and amounts to the choice of a unit of measure.
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APPENDIX C

COMPUTER PROGRAMS AND USER'S MANUAL



(a)

(b)

(e)

(d)

HOW TO USE

Write calling program. In its simplest form it is as follows.

DIMENSION statement. Check through the list of input, and output
variables. Include all subscripted variables, dimensioning as
indicated. '

Define input data. Include DATA cards, or READ statements, or
individual cards such as

IPRINT = 1
so that each variable in the input list is defined.

Call the subroutine. For example

CALL DECI1(CM,XMIN,XMAX,X,XP,NP,NXP,IPRINT,IRESULT,N)

Add STOP and END

If DECI1 or MOMENT are called, the user must write subroutine DERV
to evaluate g(xq, XoseeesXp),

2B and 82g S

Add to the deck all subroutines called as indicated in the documentation.



CONTENTS

SUBROUTINE DECI1

This subroutine provides an estimate of the probability
density function for y, where

Y = 8(x5%y50005% )

and the first four moments of the x's are known.

SUBROUTINE DERV

User written subroutine to evaluate g(xl,xz,...,xn),

9g and 235_ .
8xi axi2

SUBROUTINE MEP

This subroutine provides an estimate of the maximum
logarithmic entropy density function for any random
variable for which the first n moments are known.

SUBROUTINE MOMENT

This subroutine provides an estimate of one or more
of the first four moments of y, where

y = g(xl,xz,...,xn)

and the first four moments of the x's are known.

38



SUBROUTINE DECI1 (CM,XMIN,XMAX,X,XP,YP,NXP,
IPRINT, IRESULT,N) ;

PurEose

Analog prediction under risk.
This subroutine provides an estimate of the probability density

function for y, where
y = g(xl,xz,.....,xn)

and the first four moments of all the x's are known.

The density function of y has the form
= + + 2 3 4 4
£(y) = exp(A) + Ay + Ay° + A,y Agy')

The program gives the values of the A's. It also provides values of the
cumulative distribution function for given values of the independent

variable y.

Method
The first four moments of y are approximated in terms of the

(1

moments of the xi's by using a truncated Taylor's series expansion .

(2)

Then the method of maximum entropy is applied to generate the distri-
bution. The relationship between the subroutines-is illustrated in

Figure 1. The user calls DECI1l, which calculates the first four moments,

and the lower and the upper bounds of the function

£(y) = g(x 1%, 0000nx ),



!

using subroutine DERV, which is supplied by the user. Then DECI1 calls
internally subroutine MEP to generate the distribution. In Figure 1 the

user supplied routines are shown in double lines.

DECI1 —i DERV

Q0
CD-U

packa

FIG. 1: The relationship between the subroutines. The user supplied

routines are shown in double lines.
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Hall, 1972.

2. Diab, Y.; The Maximization of the Logarithmic Entropy Function
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Input Variables

N number of independent variables.

CM(I1,J) array containing the first four moments of the independent
variables, dimensioned (N,4).

XMIN(I) . lower bounds of the independent variables, dimensioned
with the value of N.

XMAX (1) upper bounds of the independent variables, dimensioned
with the value of N.

NXP number of points for which it is required to calculate
the cumulative distribution function.

XP (1) array containing the values of y for which the values
of the cumulative distribution function are to be
calculated, dimengioned with the value of NXP.

IPRINT prints results every IPRINT cycle, set = 0 for no
intermediate output. (Note--the intermediate results
are related to the entropy maximization method, and have
no direct relevance to analog prediction under risk.

See subroutine MEP).



IDATA = 1, all input data is printed out.
= 0, input data is not printed out.
IRESULT = 1, output data is printed and plotted.

= 0, no output.

Output Variables

X (D) array containing the Lagrangian multipliers or A's,
dimension at 6. (Note--—although there are five A's
the sixth subscript is used internally).

YP(I) array containing the values of the cumulative distribution
function of f(y) corresponding to-XP(I), dimensioned with

the value of NXP.

Programming Information

DECI1 has full variable dimensioning. The calling program must
provide dimensioning as given above.
The user must define the function g(xl,xz,....,xn), and the first

and second partial derivatives. See SUBROUTINE DERV below.

SUBROUTINE DERV (FUN,DE1,DE2,N,X)

PurEose

2
), og il g
0x%. 2.

To evaluate g(xl,xz,....,x o
i

n



Method
These may be evaluated in any manner, including numerical approximations,

as long as specific values are returned for any input point for the x's.

Input Variables

X(I) point at which functions are to be evaluated.

N number of x's.

Output Variables

FUN function value or value of g(xl,xz,...,xn).
: . ; P og
DE1(I) array giving value of first derivatives, il
i
2
DE2(I) * array giving value of second derivatives, %;57

i

How to Set Up Subroutine DERV

The following cards must be punched by the user:

SUBROUTINE DERV (FUN,DE1,DE2,N,X)

DIMENSION X(1),DE1(1),DE2(1)

Coding to define FUN, DE1(I), and DE2(I).
It may include any legal FORTRAN statements
and call to auxiliary subroutines.

RETURN

END

Listing

The following listing is for subroutine DECI1l; for subroutine MEP
(which is called by DECIl, to generate PDF) and its auxiliary subroutines;

see MEP user's manual below.



SUBRQUTINE DECI1 (CMeXMINSXMAXIXsXFeYPsNXPs IPRINTsIDATAs IRESULTON)
DIMENSION CM({Nsa4)e XMINC(I)e XMAX(1l)s DEL(4)s DE2(4)s CC(4)s XP(1)s
1 YP(1),X(D)

IF (IDATA.EQeG) GO TO 2

WRITE (6¢11)

WRITE (oeic) LLATA

WRITE (6+13) 1PRINT

WRITE (bsi4) IRESULT

WRITE (6+15) N

WRITE (64+16)

DO 1 1=liseN

WRITE (6e17) Ts(CM(TeJ)eJ=le&) s AMIN(T) ¢« XMAX(T)
CONT INUE

CONT INUE

IDTA=1

IF (IPRINTSEQeU) IDTA=0

DO 3 I=iseN

CC(I)=1le

CONTTNUL

CALL DERV (FUNsDEL1sDEZ2sN4CC)

DO 4 I=1isN

CC(I)=XMINC(CI)

IF (DE1(1)eGielel) CC(1)=XMAX(I)

CONT INUE

CALL DERV (XIMAXsDE|sDE24NsCC)

DO 5 I=ieN

CC(I)=xXMAX (1)

IF (DEL(1)eGTe0e0) CC(I)=XMINC(I)

CONT INUE

CALL DErRV (XTMINsDEjeDEZsNsCC)

DU -6 I=1elN

CC(1)=Cri(Is1l)

CONTINUE

CALL DERV (FUNsDE1sDEZIN4CC)

CC(1l)=FuN

DO 7 I=C2+4

CC(I)=0.0

CONT INUE

DO 10 I=1sN

CC(1)=CC(i)+eD%(DE2(I)*CM(Is2))
CC(2)=CC(2)+LEL(]1)#u2%CM (L) +DEL (L) *DE2(L)#*CM(]+3)
CC(3)=CCA(3)+DEL (L) ¥*%3%CM([+3)

SUM=0.0

KJ=1+1

IF (KJeGTWaN) GO TO 9

DO 8 J=KJsN

SUM=SUM+b ¥ (DEL(T)*DEL (J) ) ##2%CM(1e2)¥CM(Js2)
CONTINUE

CONT INUE

CC(4)=CC(4)+SUM+DEL (T) #¥#4%CM(Je4)
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13
14
15

16

17

CONTINUE

KSTART=1

TOLFl.E=6

CALL MEr (XTMAX9XTMINSICCoe49XoeXPoYPINXPoIDTAs IPRINT 9 IRESULT9KSTART s
1TOL)

RETURN

FORMAT (1lH1e//920Xs#INPUT DATA FOR SUBROUTINE DECT1%9/920X931 (%=~
1%#)9//)

FORMAT (% INPUT DATA IS pPRINTED OUT FOR IDATA =1 ONLY « o «IDATA
1#91184/)

FORMAT (* INTERMEDIATE OUTPUT EVERY IPRINT(TH) CYCLE « o IPRINT
1#91189/)

FORMAT (% OUTPUT DATA IS PRINTED OUT -FOR IRESULT =1 ONLY IRESULT
1%91184/)

FORMAT (% NUMBER OF INDEPENDANT VARIABLES o o o o ¢ o o o o o @ N=
1%411897/)

FORMAT (//9¢% VARIABLE FIRST MOMENT SECOND MOMENT THIRD
1 MOMENT FOURTH MOMENT LOWER LIMIT HIGHER LIMIT
2%9//) :

FORMAT (1X91390X94FE184995X92F18,99/)
END :



SUBROUTINE MEP (XMAX,XMIN,CC,N,AL,XP,YP,NXP,
IDATA,IPRINT ,IRESULT ,KSTART,TOL)

Purgose

This subroutine provides an estimate of the probability density
function for the random variable x, where the first n moments of x are
known. The density function, y, has the form

. 2 By
y exp()\1 + Ax + A3x LR S & ) o wia vl L)
The program gives the values of the A's. It also provides values of the
cumulative distribution function for a given value of the independent

variable x.

Method

Langrange's method of undetermined multipliers is used to maximize
Shannon's Logarithmic Entropy Function (pilnpi), with the given n moments
as constraints. This leads to n algebraic simultaneous equations in n
unknowns, where the unknowns are the Ai's (i # 1) in equation (1), and only
one solution exists. The n equations are solved by optimizing (minimizing)
the square of the relative error in the value of the moments; the optimi-
zation process stops when the error becomes less than the accuracy
specified by the user (TOL). The Jacobson-Oksman algorithm is used. The
program provides internally a starting point to start the algorithm. Four
methods are used; if one fails to provide a solution, the next is called

automatically without participation of the user.
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MEP
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TRNY - I THETAT——JFUNCT
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TRN2 [ |
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FACTO CONVERT MULT | SIMSON START
)
] i r—
common array HELP
FIG. 1: Relation between Subroutine MEP, MAIN and the auxiliary subroutines. The

user supplied routine is shown in double lines.
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To eliminate overflow, the problem is converted from its original

domain, (XMAX - XMIN), to a modified domain,(XMAX = 1, XMIN = 0). When a

solution is found, the problem is transferred again to its original domain.

SUBROUTINES TRN1, TRN2 and CONVERT look after this transfer problem.

References

1'

Diab, Y.; "The Maximization of the Logarithmic Entropy Function

as a New Effective Tool in Statistical Modeling and Analytical

Decision Making'", Masters Thesis 1972, McMaster University.

Jacobson, D.H. and Oksman, W.; "An Algorithm that Minimizes

Homogeneous Functions of N variables in N+2 Iterations and

Rapidly Minimizes General Functions', Technical Report No. 618,

Oct. 1970, Div. of Engineering and Applied Physics, Harvard

University, Cambridge, Mass.

Input Variables

N
CC(I)

XMIN

TOL

number of first moments, should be less than or equal to 6.

array containing the first N moments, dimensioned (N).

lower bound of the variable.

upper bound of the variable.

the allowed relative error in the moment value, a solution

exists where

where

]
Ccc, - oe
RYT) = e —— < 0L e ()
: y i

cci is the given moment

éci is the predicted moment.



IDATA

IPRINT

IRESULT

KSTART

NXP

A reasonable value for TOL is 10-6.

1, all input data is printed out

= 0, input data is not printed out.

prints results every IPRINT cycle, set = 0 for no intermediate

output. If IPRINT # 0, all intermediate results before
optimization, the starting methad name, and the sfarting
values of the A's, are printed out. In addition the
following are printed, cycle number; number of function
evaluations (subroutine FUNCT), the normgradient, total
residuals (? Riz) where Ri is defined in equation (1), the
values of the A's, and the value of each individual Ri'
= 1, output data is printed and plotted.

= 0, no output.

=1, norpal assumption starting method.

= 2, uniform assumption starting method

= 3, N points assumption starting method.

= 4, step by step assumption starting method.

Set to 1, in case no particular starting method is
preferred. In this event the subroutine will try other
methods if one method fails.

number of points for which it is required to calculate
the cumulative distribution function.

array containing the values of the independent variable
for which the values of the cumulative distribution
functions are to be calculated, dimensioned with the value

of NXP.

11
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Output Variables

AL(I) array containing the Lagrangian multipliers or \'s,
dimensioned at (N+2) (Note--although there are only
(N+1) A's, the (N+2) (th) subscript is used internally).
YP(I) array containing the values of ;he cumulative distribution

function of XP, dimensioned with the value of NXP,

Programming Information

MEP has full variable dimensioning. The calling program must provide

dimensioning as given above.

Listing

The following listing is for subroutine MEP and the auxiliary

subroutines.

12,
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OO0 OO0

O OD

13,

SUBROUTINE MEP (XMAX9XMINsCCoNsAL s XPsYPsNXPs IDATAs IPRINTs IRESULTsK
ISTARTsTOL)

COMMON /FAIL/ NFAIL
COMMON /HELP/ S(31) ¢4XX(8431)+C(8) M
DIMENSION AL(l)s CC(1l)e ETA(4) s XP(Ll)s YPI(1)

WRITE THE INPUT DATA

IF (IDATA.EQ.0) GO TO 1
WRITE (6422)

WRITE (6423) IDATA

WRITE (o0ec24) IPKRINT

WRITE (6+25) IRESULT

WRITE (6426) N

WRITE (6427) XMAX

WRITE (6+28) XMIN

WRITE (6429) (CC(I1)eI=194)
IF (NeGTo4) WRITE (6919) (CC(I)9I=59N)
WRITE (6¢30) TOL

WRITE (60e31) NXP

CONTINUE

NFAIL=0

AL (N+]) =2,

AL(N+2)=0.0

M=31 :

X2MIN=0.0

X2MAX=1.

CALCULAIE THE MOMENTS AT THE MODIFI1ED LIMITS
CALL TRNL (XMAXsXMIN9CCoXZMAX9X2MININ)

CALCULATE THE MOMENTS AB0QUT THE ORIGIN FOR THE MODIFIED LIMITS »
STORE THEM IN HELP COMMON ARRAY

CALL CONVERT (CCsN)
GENERATE THE SIMPSON MULTIPLIERS AND STORE THEM IN HELP COMMON
CALL SIMSON

GENERATE THE XsS POWER FOR SUBROUTINE FUNCTs STORE THEM IN HELP
COMMON ARRAY

CALL MULTI (XZ2MAXsXZMINoN)
DEFINE THE INPUT DATA FOR SUBROUTINE THETA

ETA(l)=l.E-12



OO0

OO0

OO

ETA(2)=ToL
ETA(3)=1.E-24
ETA(4)=1.E-24
MAXFN=1000
MODE=1
UMIN=0.U

WRITE THE INTERMEDIATE RESULTS YOU HAVE OBTAINED SO FAR

IF (IPRINT.EQe0) GO TO 2

WRITE (0432)

WRITE (6433) M

WRITE (6934) XcZMAXsX2Z2MIN

WRITE (6435) (CC(I)eI=1s4)

IF (MNeGiTae4) WRITE (6920) (CC(I)9I=5sN)
WRITE (6436) (C(1)eI=194)

IF (NeGToe4) WRITE (6+920) (C(I)sI=5sN)
WRITE (6437) (ETA(I)sI=144)

CONTINUE

14'

FIND A STARTING POINT FOR SUBROUTINE THETA TQ START THE OPTIMIZAT=-

ION ALGORITHM

IF (KSTARTeEWQe4) WRITE (6942)

CALL START (XZMAX9XZMINsALIKSTART9CCyNe IPRINT9UMINSMODEsMAXFNETA)

IF (NFAIL.EQel) GO 7O 9
PRINT THE STARTING VALUES

IF (IPRINTeEQsU) GO TO 7

GO TO (3949596) 9 KSTART

WRITE (6438)

WRITE (6439) (AL(I)eI=194)

IF (NeGTe4) WRITE (6920) (ALC(I)9sI=59N)
GO TO 7

WRITE (64+40)

WRITE (6439) (AL(L)eI=1e4)

IF (NeGTe4) WRITE (6920) (AL(IL)eI=59iN)
GO T0O 7

WRITE (6441)

WRITE (6439) (AL(I)4I=1e4)

IF (NeGTe4) WRITE (6920) (AL(L)sI=5sN)
GO TO 7

WRITE (byar2)

WRITE (6939) (AL(I)eI=194)

IF (NeGie4) WRITE (6920) (AL(L)oI=5en)
CONTINUE

NFAIL=0

IF (IPRINT.EGeO) GO TO 8

WRITE (bs43) :



15,

8 CONTINUE
CALL THETA (ALINSETASUMINIMAXFNsMODE s IPRINT)
IF (NFAIL.EQ.O) GO TO 10
IF (KSTART<EQe«4) GO TO 9

THE PROGRAM HAS FAILED SO FAR s TRY ANOTHER STARTING POINT AND TRY
AGAIN

OO0

KSTART=KSTART+1
IF (KSTART.EQe4eAND.NeLE.2) GO TO 9
GO TO 2 '
9 CONTINUE
WRITE (6+44)
CALL EXIT
0 CONTINUE

OO0

CALCULATE THE ZEROTH LAGRANGIAN MULTIPLIER

SUM=0.0
DO 12 I=1+M
5Z2=0.0
DO 11 K=1sN
SZ=SZ+AL(K)#XX(KseI)

11 CONT INUE
SUM=SUM+S (1) #*EXP (SZ)

12 CONTINUE
NPL=N+1
DO 13 I=1sN
K=N+2-1
AL (K)=AL (K=1)

13 CONT INUE
DELTA=(X2MAX=X2MIN) /FLOAT (M=1)
AL (1)==ALOG(SUM*DELTA/3.)
IF (IPRINT.EQe.0) GO TO la
WRITE (6445) (AL(I)eI=1eNPL)

14 CONTINUE
C
C  CALCULATE THE LAGRANGIAN MULTIPLIERS FOR THE ORIGINAL LIMITS
C
CALL TRNZ (XMAX9XMINIALIXZMAX9XZ2MININ)
C
C CALCULATE THE CUMULATIVE DISTRIBUTION FUNCTION VALUE AT THE GIVEN
C POINT
C

DO 15 I=19eNXP

YP(I)=CDF (XMINsXMAX 9 XP (I)9ALsN)
15 CONTINUE

IF (IRESULTeNE«1) RETURN

c PRINT AND PLUT THE RESULT
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17

18
19
20
21
e2
23
24
25
26
27
28
29
30
31

32

WRITE (6+46)

WRITE (6447)

WRITE (6448) (AL(I)sI=1sNPL)
WRITE (64¢1)

DO 16 I=]1¢NxP

WRITE (6+e18) ILexXxP(I)eYP(I)
CONTINUE

PLOT THE DISTRIBUTION

M=51
DELTA=(XMAX=-XMIN) /FLOAT (M=1)
DO 17 I=1+#
X=XMIN+FLOAT(I-1)%DELTA
Y=ENTRPF (ALs+Ns x)

CALL PLOTPT (XeYs9)

CONTINUE

CALL OUTPLT

RETURN

FORMAT, (110012X9E18,9912X9EL18B.9)

FORMAT (57Xe4E18.99//)
FORMAT (57Xes4E18499//)
FORMAT (/// % N

1 CUMULATIVE #/58Xe*DISTRIBUTION%4¢//)
FORMAT (1H1e//920X9e%INPUT DATA tOR SUBROUTINE

le/7)

VARIABLE

16.

MEP3# ¢/ 920X931 (#=%)

FORMAT (% INPUT UDATA IS pRINTED OUT FOR IDATA =1 ONLY o

1#%e1189/)

FORMAT (% INTERMEDIATE OUTPUT EVERY [PRINT(TH) CYCLE =

1¥%9118s/)

FORMAT (% QUTPUT DATA IS PRINTED OUT FOR IRESULT =1

1#91184/)

FORMAT (* NUMBER OF KNOWN FIRST MOMENTS

1%e118s/)

FORMAT (% HIGHER LIMIT « o
1%4E1lR8a99/)

FORMAT (% LOWER LIMIT o o o
1%#9E1849s/) .
FORMAT (% FIKST MOMENTS o o
1%94E18.94/)

FORMAT (% THE ALLOWED TOLERANCE IN LAGRANGIAN

1#9E18.99/)

EQUATTIONS

°

« IDATA

IPRINT

ONLY IRESULT

¢« XMAX

e XMIN

CC(I)

« o10L

FORMAT (% THe CUMULATIVE OISTRIBUTION REQUIRED AT NXP POINTS.NXP

1%e1184/)

FORMAT (lH1s//920Xe#INTERMEDIATE RESULTS FOR SUBROUTINE

10Xe4l (%=3t)9//)

MEP#*9/e2



33
34
35
36
37

38
39

40
41
42
43

44
45

46
47

48

17,

]

FORMAT (3% NUMBER OF INTEGRATION STATION o e e e o o o o o o o M
1%¢1189/)

FORMAT (% MODIFIED MAXIMUM AND MINIMUM LIMITS o . X2MAX ¢ XZ2MIN
1*’2E18.99/)

FORMAT (3% MODIFIED MOMENTS ABOUT THE EXPECTED VALUE + o o «CC(I) =
1#e4E18.947/)

FORMAT (% MODIFIED MOMENTS ABOUT THE ORIGIN ¢ o o o o« o o o C(I)
1%94E18,94/)

FORMAT (3% SUBROUTINE THETA TOLERANCES o o o o o o o o o o ETA(I) =
1#94E18.99/)

FORMAT (//9+% NORMAL ASSUMPTION STARTING METHODS# /34 (3=3) 4/)

FORMAT (* STARTING VALUES e © o © o o © © o o o © o e @ AL(I) =
1#94E184.947/)

FORMAT (//9+% UNIFORM ASSUMPTION STARTING METHOD#/35 (#=%) /)

FORMAT (//9¢% N POINTS STARTING METHOD#/25(%=3%),4/)

FORMAT (//9¢% STEP BY STEP STARTING METHOD¥*/29 (¥#=%)4/)

FORMAT (//9¢% CYC NUMF NORMGRAD TOTAL# 424X ¢ #VARIABLES*940
1Xe#¥RESIDUALS* 9/ 9% NOe¥922Xe#%RESIDUALS X(1) X(2)

2 X(3) X(4) R(1) R(2) R(3) R
3(4)¥%*49/7/)

FORMAT (% THE PROGRAM HAS FAILED%¥)

FORMAT (3% THE MUODIFIED LAGRANGIAN MULTIPLIERS ARE o o o o o o o o
1#%94E18.9/57X94E18.9)

FORMAT (1H1scOX9e#*RESULTS FOR SUBROUTINE DECI1%4/920X929(¥*=%)a//)
FORMAT (3% THE MATHEMATICAL MODEL OF THE MAXIMUN ENTROPY PROBABILIT
1Y DISTRIBUTIUON AS THE FORM¥9///910Xe60H Y=SEXP(Z(1)+7Z(2)%X+eeeetens

CotZ(J+]1)#X¥%t[+eaate ot (N+1)#X*%¥N)//// 9% WHERE X I
3S THE VARIABLE®//+15Xxe%Y IS THE CORRESPONDING PROBABILITY
4 DENSITY FUNCT1ON®*//915A¢%Z2 (1) ARE CONSTANTS FQUALS TO*s//)

FORMAT (/925X 95E 18699/ 925X e5E18699/)
END



OO0

SUBROUTINE FUNCT (NyALsUsGRADIRR)

THIS SUBROUTINE IS USED TO CALCULATE THE OPTIMIZATION AND THE
GRADIENT AT ANY GIVEN POINT FO SUBROUTINE THETA

DIMENSION Al_(1)s GRAD(1I)s SUM(9)s RR(1)
COMMON /FAIL/ NFAIL

COMMON /HELP/Z S(31) ¢XX(8e3L)sC(8)9M
N21=2%N+1]

ZERO=0.0

DO 1 I=isN21

SUM(T)=0.0

CONTINUE

CONTINUE

DO 4 I=1eM

SZ2=ZERO

DO 3 K=1eN
SZ=SZ+AL(K)#XX(KsI)
CONTINUE

IF (SZ.GT.740e) GO TO 9
SS=EXP(SZ)%5(1)
SUM(1)=5UM(])+SS

DO 4 J=cgeiNZi
SUM(J)=SUM(J) + XX (J=191) %S5
CONTINUE .

DO S I=csN2l
SUMI(T)=SUr () /5UmM (1)
CONTINUE

U=0.0

DO 6 I=isn
RR(I)=(SuUM(I+1)=-C(I))/7C(1)
UsU+RR () #¥RR (1)

CONTINUE

DO B8 K=1eN

GRAD(K)=0,0

DO 7 J=1isN

GRAD (K) =GRAD (K) +(SUM(J+K+1)=SUM(J+1)#SUM(K+1))*rR(J)/C(Y)
CONT INUE

“GRAD (K) =GRAD (K) ¥2 .,

CONTINUE
RETURN
CONTINUE
AA=57-320.
ZERU=ZERKU=-AA
GO TC 2

END

18.
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19,

SUBROUTINE START (XMAX9sXMINsALAMDASKSTARTsCCoNL 9 IPRINTsUMINsMODE M

1AXFNSETA)

THIS SUBKOUTINE IS USED TO FIND A REASONABLE STARTING POINT FOR

SUBROUTINE THETA

COMMON /HELP/ S(31) «XX(Be31)sC(B) M
DIMENSION R(11)

DIMENSION cc(1)s ETA(L)

DIMENSION ALAMUDA(L)s X(6)9 Y(6)s W(64906)
COMMON /FAIL/ NFAIL

GO TO (39195926) s KSTART

CONTINUE
NFAIL=0

DO 2 I=1sNL
ALAMDA(I)=0.0

CONTINUE

RETURN

CONTINUE

NFAIL=0
ALAMDA(1)=CC(l)/CC(2)
ALAMDA (2)==.5/CC(2)

DO 4 I=34NL

ALAMDA(I) =040

CONT INUE

RETURN

CONTINUE

NFAIL=0

NNN=NL/Z2

NNN=NNN*2

NPL=NL+1
DELTA=(XMAX=-XMIN) /FL.OAT (NL)
DO 6 I=1eNPI
X(I)=XMIN+FLOAT(I=-1)%DELTA
CONTINUE

IF (NNN.NEo.NL) GO To 19
W(lel)=w(loNPL)=1,

DO 7 I=Z2e«NLsc

WleI)=4,

CONTINUE

IF (NL.EQe2) GU TO 9
NMLI=NL=-1 1
DO 8 I=34NM]lsl2

W(lel)=2&®

CONTINUE

CONTINUE

DO 10 J=14NPi

DO 10 I=2.NPi
W(IeJ)=w(I=1eJ)¥X(J)
Y(1)=3./DELTA



DO 11 I=1sNL
Y(I41)=C(I)*Y (1)

11 CONTINUE
CALL SOLVE (WeYselDsNP1s6)
12 CONTINUE

DO 13 I=14sNP1L
DO 13 J=1sNP1
13 W(IsJ)=e0
: DO 14 I=1sNP1
IF (Y(I).LE«O0s0Q) Y(I)=40002
14 CONTINUE
DO 15 I=1,NP1
Y(I)=ALOG(Y (L))

15 CONT INUE
DO 16 I=1,NP1
W(Isl)=1o

16 CONTINUE

DO 17 I=2+NP.
DO 17 J=14NPi

17 W(JdesI)=w(Je[=1)%¥X(J)
CALL SOLVE (WeYeID9sNPleb)
DO 18 I=1sNL
ALAMDA(I)=Y(I+1)

18 CONTINUE
RETURN

19 CONTINUE
R(1)=3e/8.
R(4)=3./8.

R(2)=R(3)=9./8. .
IF (NLeEWQs3) GO TO 22
R(NL+1)=14/30
R(4)=R(4)+1./3.
DO 20 I=5e¢NL 92
R(I)=4./3.

20 CONT INUE
IF (NLetQeS5) GO TO 22
NS=NL-1
DO 21 I=6sNSsel
R(I)=Ce/3e

2l CONTINUE

22 CONTINUE
DO 23 I=19NPi
W(leI)=R(1)

23 CONTINUE
DO 24 J=1sNP1L
DO 24 I=2sNP1L

24 W(IsJ)=w(l=19eJ)#X(J)
Y(1)=1./DELTA
DO 25 I=1sNL
Y(I+1)=C(I)*Y (1)
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25

26

27

CONTINUE

CALL SOLVE (WeYesIDeNPi96)
GO TO 12

CONTINUE

N=2
ALAMDA(2)==,5/CC(2)
ALAMDA(1)=CC(1)/CC(2)
NFAIL=0

CONTINUE
ALAMDA(N+1)=¢c.0
ALAMDA(N+2)=0.0

CALL THETA (ALAMDASNSETASUMINIMAXFNsMODEs IPRINT)

IF (NFAIL.EQei) RET{jRN
IF (NeEQeNL) RETURN
ALAMDA(N+1)=0.0

N=N+1

GO TOo 27

END

21,
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225

SUBROUTINE CONVERT (CMsNL)

THI% SUBROUTINE 1S TO CALCULATE THE MOMENTS ABOUT THE ORIGIN
COMMON /HELP/ S(31) +XX(8931)sC(8) M

DIMENSION CM(1)

c(l)y=CcM(l)

DO 2 J=Z2sNL

C(J)=CM(J)=C (1) st git(=1,)4%y

N=J=-1

DO 1 K=1sN ‘
C(J)=C(J)=(=1a)#%KHFACTO(J)/(FACTO(K)#*FACTO(J=K))#C(1)3##(K)#C(J=K)
CONTINUE .

CONT INUE

RETURN

END



OO0

SUBROUTINE SIMSON

THIS SUBROUTINE IS TO CALCULATE THE SIMPSON MULTIPLIERS

COMMON /HELP/ S(31) XX (8431)+sC(38) M
s(l)=1.

S(M)=1.

N=M-1

DO 1 I=CeNs2 .
S(I)=4.

CONT INUE

N=N=-1

DO 2 I=39Ns2

S(I)=2C.

CONTINUE

RETURN

END

23.
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24,
SUBROUTINE MULTI (XMAXsXMINsN)

THI% SUBROUTINE IS USED 7O GENERATE THE XsS POWER FOR SUBROUTINE
FUNCT

COMMON /HELP/ S(31)+4XX(8431)4C(8)9M
DELTA=(XMAX=-XMIN) /FILOAT (M=1)

DO 1 I=i¢M
XX(leI)=XMIN+FLOAT(I-1)*DELTA
NN=2%*N

DO 1 J=24NN
XX(JeI)=XX(J=1oI)#XX(1s1])
CONT INUE

RETURN

END



OO0

25,
SUBROUTINE TRN1I (XIMAXeXIMINsCeX2MAX s X2MIN9NL)

THIS SUBROUTINE IS USED TO CALCULATE THE MOMENTS FOR THE MODIFIED
LIMITS

DIMENSION C(1)
SCL=(XIMAX=XIMIN)/ (XZ2MAX=XZMIN)
C(1)=C(1)/SCL=XIMIN/SCL+Xx2MIN
DO 1 I=csNL

C(I)=C(I)/SCL*%*]

CONTINUE

RETURN

END



oNeNoNe!l

26.
SUBROUTINE TRN2 (X1IMAXsXIMINsX9sX2MAXsX2MINsN)

TH@S SUBROUTINE IS USED TO CALCULATE THE LAGRANGIAN MULTIPLTERS
AT ' THE ORIGINAL LIMITS

DIMENSION X(1) -
S=(XIMAX=XIMIN) / (X2MAX=X2MIN)
A=XZ2MIN-X1IMIN/S

X(1)=X(1)=ALOG(S)

DO 1 1I=14N

X(1)=X(1)+X(I+1)#*A%:]

CONTINUE

DO 4 J=Z2sN

DO 3 I=JsN

FAC=1.

KK=I=J+2

DO ¢ K=KKsl

FAC=FAC#FLQAT (K)

CONT INUE
X(J)=X(J)+FAC/FACTO (J=1) A (I=U+1)*X(I+1)
CONT INUE

X(J)=X(J) /S#%(J=y)

CONTINUE

X(N+1)=X(N+1)/S#%¥N

RETURN

END



FUNCTION FACTO (M)
FACTO=1.

IF (MsEQ.0) RETURN
DO 1 I=1sM
FACTO=FACTO*FLOAT (D)
CONTINUE

RETURN

END

27,



FUNCTION FSIMP (FUNCsRANGE9M)
DIP"ENSION FUNC(1)

IF "(MeEQel) GO TO 4
XX=RANGE/ (3 4#FLOAT (M=1))
AREA=FUNC (1) +FUNC (M)
MM=M-]

DO 1 I=2+sMM,2
AREA=AREA+4 #FUNC(I)
CONTINUE

IF (M.EW.3) GO TO 3
MM=M~-¢2

DO 2 I=34MMs2
AREA=AREA+2.%FUNC(I)
CONTINUE

FSIMP=XX#¥AREA

GO .To 5

FSIMP=0.0

RETURN

END

28.
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29

FUNCTION ENTRPF (ALeNLsX)

FUNCTION SUBROUTINE TO EVALUATE THE DISTRIBUTION ENTROPY FUNCTION
AT A GIVEN POINT

DIMENSION AL (1)
NPL=NL+1

S=AL (1)

DO 1 I=2,NPL
S=S+AL (1) #X## (I=1)
CONTINUE -
ENTRPF=EXP (S)
RETURN

END
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30.

FUNCTION CDF (XMINsXMAXsXPsAL9N)

|
THIS FUNCTION SUBROUTINE IS TO CALCULATE THE CUMMULATIVE DISTRIBU-
TION FUNCTION AT A GIVEN POINT

DIMENSION AL (1)

IF (XPeLE«XMIN) GO 7O 3
IF (XP.GE.XMAX) GO TO 4
RANGE=XMAX=-XMIN
RANGEN=XAP=XMIN
SS=RANGEN/RANGE#*5] 4
JSS=SS

JSS=(JSS/g) #2+5

AREA=0.0

JSM1=JSS~1
DELTA=RANGEN/FLOAT (JSM1)

DO 1 I=2+JSMis2
X=XMIN+FLOAT(I=-1)%DELTA
AREA=AREA+4 4 *ENTKPF (AL 9Ny X)
CONTINUE

JSMi=JSM]=-1

DO 2 I=39JSMis2
X=XMIN+FLOAT(I=-1)%DELTA
AREA=AREA+2*ENTKPF (AL9NsX)
CONTINUE
AREA=AREA+ENTRPF (AL sN9oXMIN) +ENTRPF (AL oN 9 XP)
AREA=AREA*DELTA/3.

CDF=AREA

GO TO 5

COF=0.0

GO T0 5

CDF=1.

CONTINUE

RETURN

END



SUBROUTINE

3l

THETA (XoNDIMyETA9EST9MAX9yMODEs IPRINT)

COMMON /FAIL/ NFAIL
DIMENSION X (1) X1(6)9s X2(6)s GL(6)9 G2(6)9 ALFA(6)s H(6)s P(696) 9
1 Y(6)s PY(6)y PE(6)y ETA(L)s BIGV(6)s RR(5)

KTB=0
IFLAG=0
M=0
NZ2=NDIM+1
N1=NDIM+2
NUMF =0
IER=0

DO 1 I=1l,yNl

X1(I)=x(I)
CONTINUE
CALL FUNCT

(NDIMeXieF19G19RR)

NUMF=NyUMF + 1
DO 2 I=isNDIM
x2 (D) =xi(1)
G2 (I)=6Gi1(1)
H(I)==Gi(I)

CONT [NUE
F2=F1

X2 (NZ2)=X1(N2)
X2 (N1)=X1(N1)

CONTINUE
KOUNT=0
EPS=ETA(4)
CALL MINI1D

(FUNCToX2oHIROINDIMeF2902 ¢ NUMF 9 IERIEPSIESTIRRe IPRINT)

IF (NFAIL.EQel) RETHIRN

IF (IER.NE

«0) GO TO 30

DO 4 I=1eN1
BIGV(I)=Xe (1)
ALFA(T)=Xxe (1)

CONTINUE
RO=-R0O
6G=0.

DO 5 I=1sNDIM
GG=06G+06e (1) #62(1)

CONTINUE

GG=SQRT (GG)

IF (IPRINT

«EWQe0) GO TO 7

IF (MOD(KTBsIPRINT) NE«U) GO 10 6

CALL OUIP
KTB=KTB+1

(X2oF29MeMNDIMesGGINUMF s RR)

DO 9 I=i1eN1
DO 8 J=19¢Nl

P(IeJ)=U.
CONT INUE
P(IsI)=1i.
CONT INUE
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11

12

13

14

1S

16

17

18

19

20

21

CONTINUE
KOUNT=0
KOUNT=KOUNT +1
DO 12 I=1+NDIM
Y(I)=62(1)
CONTINUE

Y (N2)=F¢
Y(NL)=ETA(Ll)
V=0.

DO 13 I=1.NOIM
VEV+X2 (1) #62(1
CONTINUE

YA=U,

DO i4 I=1aNi

)

YA=YA+Y (I)#ALFA(T)

CONTINUE
VYA=V=YA

BIGV (KOUNT) =V
DO 15 I=1sNi
PY(I)=0.
PE(I)=P(I4KOUN
DO 15 J=1sNl
PY(I)=PY(1)+P(
EPY=PY (KOUNT)
IF (ABS(EPY) oL
PY (KOUNT)=PY (K
DO 16 I=1lsNi
DO 16 J=1lsNi

i)
Je 1) #Y (J)

TETA(3))
OUNT)=-1.

GO T0o 31

P(Ie)=P(TeJ)=-rE(I)*PY(J)/EPY

DO 17 I=1sN1
ALFA(I)=0.
DO 17 J=1sN1l

ALFA(I)=ALFA(I)+P(1.J)#BIGV (J)

DEL=0.
DO 18 I=14NDIM

DEL=DEL+G2(I)#*(X2(1)=ALFA(I))

CONT INUE

IF (ABS(DEL) G
IF (IFLAG.EQ.1
IFLAG=1

GO To 3i
IFLAG=0

DO 20 I=1sN1l
H(I)=x2(1)=-ALF
IF (DEL«GTe0)
CONT INUE

DO 21 I=1eNDIM
X1(I)=x2(I)
Gi(I)=Ge(])
CONTINUE

TETA(4))
) RETURN

ACI)
H(L)==H(I)

GO TO 19



22

245

26

a7

28

29

30

o

33.

Fl=F2

XI(N2)=K2(N8)

X1(N1)=X2(N1)

X2 (N2)=ALFA(NZ)

X2 (NL)=ALFA(NL)

CALL MIN1D (FUNCT9X2eHIROINDIMeF29G2 ¢ NUMF s IERIEPSIESTIRRy IPRINT)
IF (NFAIL+EQel) RETURN

IF (IER«NE«0O) GO TO 30

GG=0.,

DO 22 I=1eNDIM

GG=0GG+Ge (1) %62 (1)

CONTINUE

GG=SQRT (GG)

KOUNT=KOyUNT+1

M=M+]

IF (IPRINT.EQe0) GO TO 23

IF (MOD(KTB4IPRINT) .NE«0O) GO TO 23
CALL OUIP (XgcoF29MeNDIMoGGINUMF 9RR)
CONTINUE

KTB=KTB+1

IF (MODE.EQ.2) GO To 25

IF (MeGTeMAX) GO TO 30

NSOL=0

DO 24 I=1¢NDIM

IF (ABS(RR(I))eGT.ETA(Z2)) NSOL=1
CONTINUE

IF (NSOL.EQ.0Q) GO To 26

GO TO 29 ,

IF ((GGeLTSETA(L)) «0ORe(M,GTMAX)) GO TO 26
GO T0 29

CONTINUE

IF (IPRINT«EQe0) GO TO 27

WRITE (6433)

CALL OUTP (XZ2eFZ2eMeNDIMeGGyNUMF sRR)
DO 28 I=1sNDIM

X(I)=x2(1I)

CONT INUE

EST=F2

NFAIL=0

RETURN

CONTINUE

IF (KOUNT.LE«N1) GO TO |1

GO T0 10

CONTINUE

IF (IPRINTeNE«O) PRINT 349¢ IER
NFAIL=1

RETURN

CONTINUE

IF (IPRINTeNE«O) PRINT 35
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32

eNeoNe!

34
35

IER=0

DO 32 I=1sNDIM
X1(I)=x2(I1)
Gl (I)=Ge (1)
H(I)==6G1(I)
CONTINUE
Fl=F2
X1(N2)=X(N2)
X1 (N1)=X(N1)
X2 (N2)=X(N2)
X2 (NL)=X(N1)
GO 70 3

FORMAT (% SOLUTION FOUND#*)
FORMAT (///siXs¥ THE OpTIMIZATION PROGRAM HAS FAILED==IER = #412)
FORMAT (///20Xs¥A RESTART HAS OCCURRED#*///)

END
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35,

SUBROUTINE MINiID (FUNCTeX9sHeAMBDAINOIF 9sGesNUMF ¢ IERIEPSIESTeRRe IPRINT

1) i
COMMON /FAIL/ NFAIL

DIMENSION H(1)s X(1)s G(1)s RR(1)
IER=0

DY=0.

"HNRM=0.,

GNRM=0,

DO 1 J=leN

HNRM=HNKM+ABS (H(J))
GNRM=GNRM+ABS (G (J))
DY=DY+H(J)#G(J)

CONTINUE

IF (DY) 2931931

IF (HNRM/GNRM=EPS) 31+931,3

FY=F

ALFA=Z2.% (EST=F) /DY

IF (X(N+1)eGTel0e) ALFA=X(N+1)%*ALFA/2.
AMBDA=1.

IF (ALFA) 64094

IF (ALFA=AMBDA) S4646

AMBDA=ALF A

ALFA=0.

FX=FY

DX=DY

DO 8 I=1leN

X(I)=x (1) +AMBDA#H(I)

CONTINUE

CALL FUNCT (NeXor eGoeRR)

IF (NFAJL.EQel) RETURN

NUMF =NUMF + 1

IF (FeLTeFX) RETURN

FY=F

DY=0,

DO 9 I=1eN

DY=DY+G(I)#H(I)

CONTINUE

IF (DY) 10930913

IF (FY=FXx) 11+13+13
AMBDA=AMBDA+ALFA

ALFA=AMBDA

IF (HNRM#*AMBDA=1.E10) T7e791l2
IER=2

GO TO 31

T=0.

IF (AMBDA) 15930915
Z=3.#(FX=FY)/AMBDA+NX+DY
ALFA=AMAX1(ABS(Z) sARS(DX)sABS(DY))
DALFA=Z/ALFA
DALFA=DALFA%DALFA=-DX/ALFA*DY/ALFA
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IF (DALFA) 31416916
W=ALFA*SQRT (DALFA)
ALFA=DY-DX+W+Ww

IF (ALFA) 179418417
ALFA=(DY=Z+w) /ALFA

GO TO 19
ALFA=(Z+DY=w)/ (Z+DX+Z2+DY)
ALFA=ALFA#*AMBDA

DO 20 I=1sN
X(I)=X(I)+(T-ALFA)#*H(I)
CONTINUE ‘
CALL FUNCT (NesX9sF 9GyRR)
IF (NFAIL.EQel) RET|JRN
NUMF =NUMF + ]

IF (FeLT.FX) GO 70 30
IF (F=FX) 21s2i+22

IF (F=FY) 30+¢309¢22
DALFA=0.

DO 23 I=1eN
DALFA=DALFA+G(I)*H(TI)
CONTINUE

IF (DALFA) Z24+27s27

IF (F=FX) 26925927

IF (DX=DALFA) 26930426
FX=F ‘

DX=DALFA

T=ALFA

AMBDA=ALFA

GO TO 14

IF (FY=F) 29+¢28+29

IF (DY=-UALFA) 29930429
FY=F,

DY=DALFA
AMBDA=AMBDA-ALFA

GO TO 13
AMBDA=AMBDA-ALFA
RETURN

CONTINUE

‘IF (DYeGEsQe) IER==2

IF (ONRMesLE«.letE=10) GO TO 32
IF (HNRM/GNRMeLE«EPS) ITER==3
CONT INUE

IF (DALFA.LT«0.) IER=-1

IF (IPRINTenNE«0O) PRINI 33s I[ER

“NFAIL=1

RETURN

FORMAT (///10Xe¥% ERROR HAS OCCURREDs I1ER=%9124///)

END

36.
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SUBROUTINE OUTP (XNFWeFQOsKOUNT N1 9sGGsNUMFR)

DIMENSION XNEW(1)s R(1)

WRITE (646) KOUNToNUMF sGGeFQe (XNEW(I)oI=194) 9 (R(I)sI=194)
IF (NleLTe4) RETURN

NN=N1=-3

GO TO (192939495) s NN

RETURN

WRITE (647) XNEW(S) 4R (5)

RETURN

WRITE (098) (XNEW(I)sI=546)9(R(I)91=596)
RETURN

WRITE (649) (XNEW(I)esI=5e7)9e(R(L)sI=5+7)
RETURN

WRITE (6410) (XNEW(I)eI=548)49(R(I)sI=548)
RETURN

FORMAT (iX9I39I1496E14e5904E1143)
FORMAT (36XsEi4eD94P2X9EL1e3)
FORMAT (36Xec2E14e5928X92FE113)
FORMAT (36Xe3E14.5914X93E11.3)
FORMAT (36Xs4E14e594FE113)

END
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| SUBROUTINE MOMENT (CM,N,CC,M)

PurEose

To provide an estimate of one or more (M) of the first four moments

of y, where
¥y = g(xl’XZ’ .. -:xn)

and the. first M moments of the x's are known.

Method
The first M moments of the first four moments of y are estimated in
terms of the moments of the xi's by using a truncated Taylor's series
expansion. The user must supply an evaluation of g(xl,xz,...,xn),
28 and EE&—
ox,2°

Bxi

Input Variables

N number of independent variables.
M number of moments required. Note that M < 4.
CM(I,J) array containing the first M moments of the independent

variables, dimensioned (N,M)

Output Variables

CC(I) array containing the values of the first M moments dimensioned with

the value of M.

Programing Information

The calling program must provide dimensioning as given above. The

user must define the function g(xl,xz,...,xn), and the first and second



partial derivatives. See subroutine DERV,

Listing

The following listing is for subroutine MOMENT.

39.
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SURRNAUT INF MOAMENT (CMaNoC( 9M)

DIMENSTION CMINeM)oCC(4) sDF1(4)sDF2(4)
DO & I=1sN

CC(TYy=CM(T1s1)

CONTINUF

CALL DFRV (FUNsDF1esNF2 9N CCH

CC(1)=FUN

DO 7 1=2+4

CC(11=0,0

CONTTNUF

DO 10 I=1sN
CCl1)=CC1)445%(DF2(1)*¥CM(T92))
IF(MsFRe1) GO TO 10
CC(2)=CC(2)+4NF1I(T)#%2%M(T¢2)+0F 1 (T)I%DF2(TY%CM(T92)
IF(MeFRe?) &GN TO 10
CC(3)=CC(2)+DFI(T)*¥%2%CM(]92)
IF{M.FN3) GO TO 10

SUM=0,0

K. J=1+1]

IF (KJeGTeN) GO TO ©

DO R J=KJeM

SUM=SUMEA ¢ % (NFT(TI*NEYT (JY) ##2%XCM( T 421%*CM(Js2)
COAMTTIAMLIE ’
CONTINUE
CCla)=CClu)+SUMFNFI (T ) *#4XCMTos)

COANT T MUE )

RETURN

EMD

40.
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