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"A study of domain walls in some uniaxial magnetic materials is
reported. Methods for measuring some important material parameters in
the rare-earth orthoferrites and the uniaxial garnets are described.
The temperature sensitivities of bubble domains in orthoferrites and
garnets are derived in terms of the material parameters and conditions
for minimum and zero temperature sensitivities are obtained. An
investigation of the current requirement to cut a bubble domain from a

strip or another bubble domain is also reported.
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ABSTRACT

An investigation of domain walls in some uniaxial magnetic
materials is reported in this thesis. Firstly, a method for measuring the
wall energy anisotropy in orthoferrites, which causes cylindrical
magnetic (bubble) domains to be elliptical is described. 1In
Smo;gsTb0.45Fe03 a measured anisotropy energy of 1.7%Z of the wall-energy
density at room temperature is responsible for ecceﬂtricities as large as
0.4 at average bubble radii equal to 85% of the bubble strip-domain
transition radius. The relationship between material parameters and
wall-energy anisotropy is discussed. The hypothesis that in orthoferrites

~marmn TV AT e
PR

~1 T ~ P R
LS T Y ] yu;u.ﬁ..;\— was

- - mwe S o~ 1 -
~ - A GALeD ALT [§3

alls whilc walls parallel to the
b axis are Néel walls is investigated by measuring the wall anisotropy
-as a function of the quality factor of the material by varying the
temperature of the sample. The measurements seem to verify the predicted
dependence'of wall anisotropy on the quality factor and thus the hypothesis.
A method for measuring the temperature dependence of the wall-
energy density in orthoferrites and the saturation magnetization in
garnets is described. The advantage of the method is that it uses a
. single isolatéd bubble dcmain without the need to destroy the bubble in
order to obtain the measurements. This method led to the derivation of
the temperature sensitivities of bubble domains in orthoferrites and
garﬁets in terms of the material parameters. Optimum plate thicknesses

to minimize the variation of bubble diameter with temperature are
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considered. Also, the condition for zero temperature sensitivity of
bubbles in some uniaxial materials is derived in terms of the material
parameters.

Finally, a study of the current requirement to cut a bubble
domain from a strip domain or another bubble in uniaxial plates is

reported in this thesis.
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CHAPTER 1

INTRODUCTION

1.1 General

Since’;he advent of thé electronic computer and other data-
processing deﬁices, a continuous effort has been made to improve the
speed,’capacity and reliability of these devices' memory systems. The
fastest and most flexible memory systems at present are those using
either ferrite cores or solid state integrated cdrcult chips. At the
moment, cores are cheaper, costing approximately one cent per bit of
storage capacity. However, it is obvious that for mass memories
exceeding 1010 bits the cost would be prohibitive. Magnetic-disk
memory systems, currently being used for high-capacity storage, are
somewhat unreliable since these systems depend on the mechanical move-
ment of a thin magnetic film on which the information is stored.
Moreover, one cannot manipulate the stored information without reading
.it out and writing it in again, a process that can take appreciable time.
Thus, the search for faster, cheaper and more reliable memories has led
to a new technology in which data bits are stored in the form of
magnetic ''bubbles' moving in thin films or wafers of magnetic material.
The bubbles are stable over a considerable rangé of conditions and can
be moved in two dimensicns at very high velocity.

The evidencé available at the present time indicates that bubble

memories should be substantially cheaper than core memories (costing an

estimated few millicents per bit of information stored) and several times

(1)



faster than magnetic-disk memory systems.; Also, in bubble devices one
can perform many logical operations on the stored data without reading
them out and writing them back in. Finally, since bubble devices have

no moving parts they are expected to work reliably for many years.

1.2 Qutline of the Thesis

A study of domain walls in uniaxial magnetic materials has been
carried out and is reported in this thesis. The purpose of ﬁhe study is
to gain a better understanding of the structure and properties of
uniaxial materials that support cylindrical magnetic domains, and to
develop methods for measuring important material parameters.

Cylindrical magﬁétic domains often referred té as bubbles. have
device applicatiqns as discussed in Chapter II. Thus, the propérties
of magnetic materials tﬁat support’bubble.domains are reviewed with
special emphasis given to the single and mixed rare-earth orthoferrites
and the uniaxial garnets. Methods’for growing and proéessing these
materials are briefly discussed.va discussion of‘the varioué techniques
empldyed to genefate, propagaté and detecﬁ bubbles in devices is'given.
Ihe theory of static staﬁilityvof bubble démains in ﬁniaxiél platelets
or fiims, which is very important iﬁ thé design of bubble devices, is
summarized. Some -of the results of the theqr§ are.used in>Chaptérs >
I1I and IV. Methods for meésuring'somevrelevéﬁt material paramétérs
that make use of the optical Féraday effect are also described inythis
Chapter.

The origiﬁal contributions made by the author are reported in

Chapters III, IV and V. In order to gain a better understanding of



domain walls in uniaxial materials, the influence of three effects on the
domain walls have been investigated. These are: Wall-energy anisotropy,
temperatufe and electric currents.

In Chapter III, the anisotropy of wall energy im orthoferrites,
which tends to distort otherwise circular domains into elliptical domains,
i§ discussed. A method for measuring this wall anisotropy which depends
on simply measuring the eccentricity of the elliptical domain as a function
of mean bubble radius is developed and is used to measure the wall
anisotropy in samarium~terbium orthoferrite (Smo.55 Tbo.as Fe03).

In attempting to explain wall-energy anisotropy, it is suggested that
there are two effects giving rise to this anisotropy: a difference in
exchange interaction along the two hard magnetocrystalline axes, and a
difference in the types ot walls along different axes. Thus, when the -
‘wall lies along the a axis, a Bloch Qall results, however, when the wall
‘ lies along the b axis, the magnetization cannot rotate through a very
hard b axis and a Néel wall resuits. This hypothesis is verified by
sgbjecting a sample of SmO.SSTbO.ASFe03 to a temperature test and
measuring the wall-anisotropy as described in Chapter III. |

A method suitable for measuring the temperature dependence of
the wall energy density in the mixed rare~earth orthoferrites and the
- saturation magnetization in some uniaxial garnets is presented in Chapter
IV. Most of the methods for measuring the wall-energy and the magnetization
reviewed in Chapter II require the collapse of a bubble domain. The
main'advéntage of the method described in this Chapter is that ip only
requires a single isolated bubble domain without tﬁe need to destroy the

bubble in order to obtain the measurement. The temperature sensitivities



of bubble diameter in orthoferrite and garnet wafers are also derived

in terms of the material parameters. Optimum plate thicknesses to.
minimize the variation of bubble diameter with témperature in ortho-
ferrites and garnets are obtained. It is shown that it is possible to
obtain zero temperature sensitivity of bubbles in some uniaxial materials.
Curves are provided that can be used in designing bubble devices having
fixed bubble sizes.

In order to gain some insight in the generation of bubble
domains in devices, a study of the current requiremént to cut a bubble
from a strip domain was carried out both experimentally and theoretically
Fe0, and

0.55°0.457%%3
TbFe03 plates were cut by use of a pulsed current flowing through a

and presented in Chapter V. The strip domains in Sm

fine wire tonching the plate aenrfaces and nlaced at ri
the domain walls. Various functions were used to simulate the shape of
the walls at the instant of cutting. It is foﬁnd that good agreemené
with the measured values of cutting field is obtained when the wall
shape is considered to consist of sections of ellipses. A theoretical
study of the fields required to replicate bubbles has also been carried

out and the results are also given in Chapter V.



CHAPTER II

A REVIEW OF BUBBLE DOMAIN MATERIALS, DEVICES AND STABILITY

2.0 Introduction

Cylindrical magnetic domains, or bubbles, were first observed
by Kooy and En231 in 1960 in thin barium ferrite wafers. They have
recently received considerable attention because of possible device
applications. Bobeck4 demonstrated in 1967 that isolated bubble
domains in uniaxial magnetic platelets or films can be manipulated to
rerform memory, logic and transmission functions. This work stimulated

*

research in bubble materials and devices as well as in the stability

of these domains as a function of material parameters and geometry44’45’46.
At present, the prospect of utilizing magnetic bubble devices to provide
large-capacity information storage of high reliability at very low cost
appears promising. Thus, bubble shift registers with storage densities
exceeding 2.5 x 106 bits/in? and with data-processing rates up to 106
bits/sec have been built’. Also, a design of a highly reliable 108-bit
bubble domain maés memory has been proposedB.

In this Chapter, a brief review of bubble materials and devices
}is presented. The theory of static stability of bubble domains and the

methods for measuring important material parameters are briefly

discussed.
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2.1 Bubble Materials

Bubble aomains can exist in single crystal, low magnétic moment,
essentiailyluniaxial magnetic materials when the crystal is cut into
thin platelets, with the easy axis of magnetization perpendicular to
the platelet surface. When the anisotropy field of the material is
‘iarger than the moment of the material the magnetization will lie along
the easy axis. Materials in‘which bubbles have been observed include
ferrites3l, orthoferrites4 and garnetse. The first uniaxial materials

=

found to have the desired properties for bubble devices were the rare-

39’48. They are of the form RFeO3, where R is a

earth orthoferrites
rare-earth ion or Yttrium and are antiferromagnetic with a weak ferro-
magnetism caused by a slight canting (approximately 0.59) of the anti-
parallel spins. The molecular and magnetic unit cell is orthorhombic
of sides a < b < c as shown in Fig. 2.1. The antiparallel Fe3* spins
align along the a axis with the ¢ axis exhibiting the weak ferromagnetism.
The sole exeception is SmFe03, which has its net moment along the a axis
at room temperature. Thus, the reorientation temperature range of
SmFeO3 is 468-487°K, while that of the other rare-earth orthoferrites
is centered around 1009K. The Néel temperature of all orthoferrites is
approximately 680°K.

Orthoferrites are usually grown as single crystals by the flux
method, and then sliced, polished and annealed to provide thin plates
of very low coercivity (<0.1 Oe). These plates are sufficiently trans-

parent in the red to enable direct visual observation of domain behaviour

by means of the longitudinal Faraday effect. Thus, domains are readily
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visible as wavy strips when a thin plate is viewed through a polarizing
microscope. The domains rotate the plane of polarization of the
polatiied light in oppposite directions depending on their magnetic
polarity. By adjusting the polarizer and analyzer on the microscope one
_can make half of the domains dark and the other half bright. The

bubble measurements reported in this thesis were made using the Faraday
effect.

" If a thin orthoferrite platelet. above its Néel temperature is
cooled down to room temperature, spontaneously nucleated serpentine-like
strip domains will be present. Such a domain pattern will usually
include several single wall domains i.e., domains whose walls close
upon themselves. If a prescribed bias magnetic field is then applied
normal to the surface of the platelet, the single wall domains become
cylindrical., As will be seen in Section 2.3, the size of the bubble
domains will be governed by the bias field H, the wall energy density
per unit area LA the saturation magnetization of the material Ms, and
. the plate thickness h. Raising the bias field will cause the bubbles
to shrink until they finally disappear at the collapse field. They
are stable over roughly a 3:1 range in diameter and a 1.6:1 range in
bias field.

Since a bubble domain is a localized highly stable magnetic
state and can be moved about in much the same way as a charged particle,
it can therefore be used to store binary information. In a practical
device bubbles are normally separated by 3 or 4 domain diameters in

order to minimize interaction between domains. Thus, in order to



achieve very high storage densities in devices, bubble diameters should
be of the order of a few microns. Unfortunately, the single rare-earth
orthoferrites provide bubble domains whose average diameters are in the
range 40ym - 180um, resulting in small storage densities.

It is shown in Section 2.3 that the diameter of a stable domain
is directly relaéed to the material characteristic length £M which was

44,45

defined by Thiele be

: o, o
; 4WMS .

Thus, the bubble diameter can be reduced by either reducing o, °F
increasing Ms. Since the wall energy is proportional to the square
r&ot of the uniaxial anisotropy constant Kﬁlz, then one can decrease
the bubble diameter by reducing Ku. It was mentioned above that
SmFeO3 is the only rare-earth orthoferrite haviﬁg an easy axis of
magnetization parallel to the a axis at room temperature. It was thus
. reasoned by Sherwood, et al.40 that a partial substitution of Sm in
other rare-eartb orthoferrites should fesult in a reduced Ku' Thus,
by selecting the proper compositiﬁn, the reorientation temperature
range of the resulting crystal can be made to be very close to room
temperature, and hence the crystal can be magnetized along both the a
and c axes with comparatively weak applied (anisotropy) fields, giving

a small Ku’ The composition Sm FeO3 for example (reorientation

0.55:°0. 45
range: 230-280°K), has a wall energy density of 0.3 ergs/cm? (reduced
from 1.7 ergs/cm? for TbFeOy and 1.3 ergs/cm? for SmFeQ;) and a

material characteristic length of 4um at room temperature, giving bubble
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diameters of-the order of 20um. ’However, as will be seen in Chapter 1V,
o, in the mixed rare-earth orthoferrites‘is sénsitive to temperature
fluctuations36, resulting in a large temperature sensitivity of bubble
dia;etér.

The mixed rare-earth orthoferrites still cannot provide bubble
diameters small enough to achieve packing densities of the order of
106 bits/inz. The search for new uniaxial materials has léd to the
discovefy of the uniaxial garnet56 which in general support bubbles a
bfew microns in diameter. Furthermore, garnets are easier to grow than
orthoferrites. The most promising method for making garnet bubble
materials is to grow them as thin epitaxial films on nonmagnetic single-
ciystal subsﬁtates. Both liquid-phase38 and chemical-vapor epitaxy34
have been successfully used to produce garnet films. However, the
saturation magnetization in garmets tends to be temperature sensitives.
Optimum plate thicknesses to minimize the temperature sensitivity of

bubble diameter in garnet films are derived in Chapter IV. The condition

for zero temperature sensitivity is also given.

2.2 Bubble Devices

The ability to combine data storage with logic at low cost in
a single miniature device is the most appealing aspect of the magnetic-
bubble technology. Methods of generating, shifting and detecting bubbles
in devices are discussed in this sectiomn.

The simplest method of generating bubble domains in bubble

devices is by cutting a bubble from a strip domain or from another
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bubblea. This can be accomplished by either using a current flowing

through a conductor touching the surface of the plate5 (studied in
Chaptef V), or by utilizing the poles induced in a thin petmélloy overlay
circuit known as a bubble generator33, by means of an in-plane rotating
Afield. A recent method of generation employs both a conductor and a
permalloy circuitg.

Bubbles can be propagated in the magnetic medium by applying
a translational force on the domains created by a gradient in H, h,
g, or Mg€7. At present, the best way of moving bubbles in devices
appears to be by applying a field gradient on the domain walls, and two
general methods to do this are available. The first method employs
conductors in which flowing currents generate the desired field
gr;dientss’14. This method is called conductor access. The second
method, called field access, involves interacting the bubbles with
permalloy overlay patterns by using either pulsating magnetic fields
such as in Angelfish circuitss, or in-plane rotating fields such as in
T-bars, Y-bar15 and chevron9 circuits. The field access method seems
more promising ghan the conductor access method since it is difficult
to fabricate‘conductor patterns thaﬁ have sufficient resolution to handl
garnet bubbles and cén carry sufficient current to move the bubbles
quickly and still not vaporize. Another drawback of the conductor
access method is that a great many accurately placed conductors whose
dimensions are comparable to the size of the bubbles must be inter-
connected with external-access circuits, and any open or short-circuits

in the conductor pattern would ruin the device. At present, T-bar,

T-bar and chevron patterns are almost exclusively used in bubble device
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applications, since they'are compatible with the bubble generator
mentioned previdusly and have larger operating margins than Angelfish
circuits. Also, bubbles can be moved in either direction in these

circuits, depending on the direction of rotation of the magnetic field.

The rotating fields in this case generate travelling positive and
negative magnetic poles on the permalloy overlay circuits to selectively
attract and repel and hence Control the motion of bubbles.

Detection of bubble domains can be accomplished by one of

several methods such as electromagnetic inductions, Hall effectaz,

. . 4 . 43
direct optical sensing 2, or magnetore31stance1’ . At present, the

best method of detecting bubbles is using magnetoresistance, where the

resistance of a permalloy film is slightly lowered in the presence of a

bubble. |
As mentionéd earlier, bubble domains are particularly useful

in applications that require logic. Several logic functions using the

interaction of bubble domains in devices such as AND, OR, EXCLUSIVE OR,

NAND and NOR functions have been demonstrated9’37. They are also useful

2,13

in optical display applications , especially where memory is desirable.

2.3 The Theory of Stability of Bubble Domains

In this section a brief summary of the theory of static stability
. . . . 44 45,46
of bubble domains in uniaxial platelets developed by Thiele is
presented. The results of the theory are very important in the design
of bubble domain devices, since they provide conditions governing the

shape, size and stability of bubbles. Some of the results will be used

in subsequent chapters.
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The magnetic domain structure model Thiele considered in his

analysis is shown in Fig. 2.2. An isolated magnetic domain is magnetized

in a platelet of effectively uniaxial low coercivity material of uniform

thickness which is magnetized upward. An external magnetic field H is

. applied anti-parallel to the bubble magnetization. The following

assumptions are made in the analysis:

1.

2.

The uniaxial platelet is of infinite extent.

The domain wall width is negligible in comparison to the domain

radius.

The wall energy density per unit area is independent of either

the orientation or curvature of the wall..

The saturation magnetization has a constant magnitude everywhere
within the platelet, lying in the positive z-direction within

the domain and in the negative z-direction elsewhere.

The domain wall is independent of z, i.e., no wall bulging

occurs.
Domains do not spontaneously nucleate.

Thus, the bubble shape in the plane of the platelet can be

described by the expansion

r, (8) = ry + Arg + nzl Ar_ cos[n(8-6_ - 46 )] (2.2)
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UNPERTURBED REVERSE

DOMAIN MAGNETIZED
BOUNDARY DOMAIN
DOMAIN |
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Fig. 2.2: Magnetic domain configuration

and coordinate system.
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where Arn and Aen describe small varia;ions.in domain size and shape

from the circular shape of radius Tys and

Ir | >> IAr | + z nlAr | - (2.3)
n=1
Domain size and stability can Be obtained by evaluating the first and
second order coefficients in the expansion of the total energy variation

with respect to Arn and Aen about the circular domain shape given by

3,
Z [( ) Ar_ + G- ) 86_]
n=0
1 v v aZE'J: ' aZET
*3 L1 UGrgyg brpbry + 265r550), Arp0e
n=0 m=0 n m n m :
BZET _ .
+ (~———aenaem) AenAem] + o3 ‘ (2.4)

where the zero subscript indicates evaluation of the derivatives when
the bubble is circular, and 03 refers to terms of order 3 and higher

in the combination of Arn and Aen. The total energy of the domain is

= Ew + By + EM (2.5)

where Ew is the total wall energy, EH is the interaction energy with the
externally applied field, and EM is the internal magnetostatic energy.
With the aid of equaticn (2.5) one can then esvaluate equation

(2.4) to obtain a normalized expression for the total energy variation,
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AE, Ly H | brg 1 2y Ary 2
- [ 2 +a -F@)] —+ 2 {- = [ = -5 (]
2(4nM§)(nh3) h 4st _ h 2 a .h 4] h
© 2 Ar '
+ I (%a—'?) [-ﬁ—“— - s (@16D% + o, (2.6)

- n=2

2r
where £M is given by equation (2.1), a (= —39) is the aspect ratio of

the domain, and F(a) and Sn(a) are the magnetostatic force and stability
functionsArespectively and'are functions of complete elliptic integrals
of the first and second kind. F(a), the radial stability function
So(a), and the elliptical stability function Sz(a) are plotted in
Fig. 2.3.

An isolated bubble domain in an infinite uniaxial platelet will

be in equilibrium when

(aETlaro)0 =0 2.7)
and stable when

2 2 2 2
{3 ET/arO)O >0 and (9 ET/arn)0 >0 (2.8)

As can be seen from equation (2.6), the equilibrium condition can be
Ar
obtained by setting the coefficient of — equal to zero, yielding

h

£y B
i;-.+ a 41M
s

- F(a) =0 (2.9)

Equation (2.9),called the force egquation by Thiele44’45’46

, indicates
that solutions of the problem of determining the domain diameter as a
function of the applied field for given values of £M’ M, and h may be

obtained by graphical construction on the F{a) curve of Fig. 2.3.
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Fig. 2.3: The magnetostatic force, radial and elliptical stability functions.
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The procédure consists of drawing a straight line of slope Hlénus
from the po;nt KM/h on the vertical axis until it intersects F(a) at
some point or points. The diameters at which these intersections occur
are then solutions to the force equation. However, these solutions may
be either stable or unstable. For zero or negative values of H, there
is only one solution which is radially unstable. For small positive
values of H, there are two solutions; the large diameter one is
radially stable while the small diameter one is radially unstable. As
1t’i§ increased, the diameter of the unstable solution grows, while
the diameter of the stable solution decreases, until they coalesce at
which the bubble domain collapses. For greater values of applied fields
there are no solutions.

Since F(a) is tangential to a straight line through the origin»
'having unit slope, the solutions will always vanish for a value of
the applied field greater than 4nMs. Thus stable domains can exist
only in the presence of a bias field having a value between zero and
4nMs, and a polarity tending to collapse the bubble.

The domaiﬁ stability can be determined graphically by constructing
a horizontal line at a height‘ﬁM/h in Fig. 2.3. The condition for

complete stability obtained from equations (2.6)and (2.8) is
Ly
So(a) >85> Sz(a) (2.10)

Thus, So(a) and Sz(a) form the boundaries of the region of stability,
the former function giving the collapse condition do/h and the latter

function the strip runcut condition dZ/h'
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| Fig. 2.4 shows a plot of dd/ZM and dZ/ZM as a function of
h/lH originally plotted by Thiele.. The region between the lines is
the region of total stability. Above the lines bubble domains are
susceptible to elliptical perturbations and thus run out into strip
adomains, while below the line bubbles are radially unstable. By
considering such factors as minimum bubble size and maximum stability,

Thiele has obtained an optimized plate thickness given by
h = 48, | (2.11)

For this thickness, the center of the stable bias field range occurs

at a domain diameter given by

a=-8y, o (2.12)

In a practical device, it is also important to minimize the
temperature sensi;ivity of bubble diameter especially since some
orthoferrites and garnets have material parameters that vary strongly
‘with temperature. Plate thicknesses that minimize temperature
sensitivity of bubbles in orthoferrites and garnets are obtained in
Chapter IV. A plate thickness that gives zero temperature sensitivity
of bubbles in some uniaxial materials is derived in terms of the

material parameters.

2.4 Measurement Techniques

Characterization of bubble materials is of vital importance in
the selection of the proper medium for bubble devices. Thus, several

technigues for measuring relevant material parameters such as KM (or
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°w$ and Mg that depend on the .optical observation of domains have been
developed in the last few years. Bobeck4 measured both 2& and Mg in a
material of known tHickness by observing the bias field and bubble
diameter at collapse. Since the collapse aspect ratio is known, then
{M/h can be determined from the So(a) curve in Fig. 2.3, and 47Mg can

be calculated from equation (2.9). Ro§30135’36 measured KM by measuring
the stripe spacing in a demagnetized platelet and using the strip domain
theory of Kooy and Enz. A method for measuring the wall energy density
developed by Kurtzig and Shockley32 ;ses a current flowing in a conductor
grid of regular geometry placed under the platelet and a second array

on top of the platelet and at right angles to the first. Thus, planar

walls are controllably stretched in

to sinuspidal corvugations. The
wall energy can then be obtained by calculating the.external work done
in increasing the Qall area and subtracting from it the change in the
magnetostatic energy. Although accuracies and resolutions of SZ may be
obtained, this method is quite tedious. Finally, a recent method for
measuring EM and Mg especially useful for garnets was developed by
Fowlis and Copeland27. It uses both the bubble collapse method as well
as the strip domain theory. |
If the temperature dependence of ZM or M, is required then the
bubble collapse ;nd siﬁilar methods are not practical since a new bubble
has to be nucleated after each measurement. An incremental method to

get around this difficulty has been developed and will be described

in Chapter 1V.
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2.5 Measuring Equipment

As méntioned in Section 2.1, bubble doméins ié thin uniaxial
'plaﬁes or films can be viewed using the optical Faradé?.effect. The>
bubble measurements repérted in this thesis were made ﬁsing thig effect.
Thus, an Olympi; ?OM polarizing microscope equipped with a built~in
.Bertrand leuns aﬁd diaphragmrwas used to.obsérve the domain behaviour.
]

The maximum total magnification obtained from the polarizing microscope
with a good resolution is 800, enabling highly precise measﬁrements to
be carried out on the singfe and the mixed rare-earth orthoferrites.
" The reticules were calibrated by means of a filar micrometer eyepiece.
Since orthoferrite platelets are birefringent, a berek compensator
was used to obtain maximﬁm contrast, especially at high maghifications.

The temperature measurements reported in Chaptér III were madé
Sy making use of‘a'Leiﬁz heating and cooling stage which fits on the‘
' microscope round stage and ié capable of Supplying constant sample
temperatures in the range -350 to 3500C. This made poséible‘oﬁserving domain
behaviour in Sm0 55 0 ASFeOB in the reorlentatlon temperature reglon.

In order to obtaln a constant bias magnetic field perpendicular
to the platelet surface, a Helmholz cOil capable of ﬁroducing a bias
field.of 80 Oe was designed7t§ fitlon the miéroscopé stage. It was
accurately calibrated~5y means. of .a Bell 640 incrementalfgaussméfer‘
andvan ammeter.

The cutting of strip dbﬁains described in Chapter V,waé carried
out by means gf a Chronetics PG-13A pulse generator. Tge cutrentfpulses

were measured using a Tektronix P 6021 current probe and a Philips

PM 3250 oscilloscope.
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Finally, a photograph of the equipment used to observe and
cut strip and bubble domains is shown in Fig. 2.5. Also shown are

FeO,.

the strip and bubble domains as viewed in a plate of SmO.SSTb0.45 3



Feg. 2.5:

Inset:

The observation of domains in uniaxial magnetic materials.

Strip and bubble domains in a plate of Smo 55Tbo ASFeOB’
as viewed using the Faraday effect (magnification x 40).

“%C



CHAPTER III

ANISOTROPY OF WALL ENERGY IN ORTHOFERRITES

3.0 Introduction

The theory of static étability of bubble domains in uniaxial
sheets was briefly discussed in Chapter II. One of the assumptions made
in,developing the theory is that the wall energy density is independent
of wall orientation. It is shown in this chapter however, thét the
wall energy in orthoferrites is anisotrcpic, causing the otherwise
circular domains to be elliptical. An experimental technique for
measuring the wall-energy anisotropy based on measuring the bubble
eccentricity is described and is used to measure the wall anisotropy
in SmO.SSTbO.ASFeO3' A study of domain walls is made by making use of
a derived relationship bewteen material parameters and wall-energy
anisotropy. The study appears to verify the hypothesis that walls
oriented parallel to the a axis are Bloch walls while walls oriented

parallei to the b axis are Néel walls. The work described in this

chapter has been reported by the author in Rafs. 16, 17, 19 and 20.

3.1 Wall Anisotropy

Two evidences of wall energy anisotropy in orthoferrites are
elliptical domains and an apparent preferred direction for an isclated

16,17 that these two effects are indeed the

strip domain. It was shown
same, since the major axis of the elliptical domain is parallel to the

preferred direction of the strip dowain. This direction will be

(25)
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referred'to as the easy.direction for the wall, not to be confused with
the easy a#is'of magnetization which is normal to the platelet surface.
The direction at right angles to the easy direction will be referred to
as the hard direction. Rossol states that for TmFeO3, the easy

. direction is the b crystallographic axis. As mentioned in Chapter II,
the easy axis in orthoferrites at temperatures above the spin-flop
fmﬁmwmiswggum,md&ekahism&hu@r&mthgaﬁ&
It was suggested by Gyorgy and Hagedorn30 that the domain walls have

a continuous turning of tﬁe magnetization from the ¢ axis through the
a-axis to the negative ¢ axis independent of the wall orientation. This
would imply that the walls parallel to the b axis would be Néel walls

and walls parallel to the a axis would be Bloch walls. The energy of

a Bloch wall12 is proportional to ﬂ&;ﬁ;'by either the equal angle model,
where the rotation of spins is assumed to be uniform throughout the
transition layers, or by the variational model which is more exact, and
where the exact nature of the rotation of spins is obtained by minimizing
the sum of the total exchange energy and anisotropy energy stored in

the wall. Thé Néel wall en;rgy30 can be obtained by artifically
increasing the anisotropy constant K, by 2wM§ to account for the demagnet-
izing fields that exist in the wall, i.e., oy « Jﬁ;?i;:i?ﬁgi. Thus,

it is seen that

oB Ab/Aa
= 1 (3.1)
N 1+ =
q
where
Ku
q= 3 A (3.2)
2™

[/}
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is the quality factor defined by Thie1e44, and Aa and Ab are the exchange
constants between moments separated by displacement along the a and b
axis, respectively. The exchange constants are different since the
atomic separation is different along the two axes"s. For example, in

TbFe03, the b side of the unit cell is 5% larger than the a side.

3.2 Bubble Ellipticity as a Function of Radius

The wall energy density per unit area when the wall lies along
the easy‘axis will be denoted by op. Rotating the wall so that it lies
along the hard direction will increase the energy density by L due
to wall anisotropy. Thus, it is seen from the postulate of domain walls
presented in Section 3.1 that Oy = (UB—ON). Since the magnitude of the
field caused by the spins within the doma;n wall varies sinusoidally
with the.direction.of the spins when the wall is betweeﬁ/a Néel and a
Bloch wall, and since O has the form ofienergy per unit area, then it
is seen that for an arbitrary angle o between the wall direction and the
hard direction, thé wall energy density will be given by

0. =0 +o0 'cosza (3.3)
w m X
Fig. 3.1 shows the geometry chosen to describe the elliptical domain.
Since the domains are still cylindrical, the problem can be completely
described in two dimensions, and increasing the bias field causes both

the bubble size and eccentricity to increase. For this configuration

the total wall energy will be given by

B, =hg¢o, dt | ENCD)



hard
axis

, QXIS

easy

domain “wall

‘Fig. 3.1: Illustration of geometry chosen to describe an elliptical domain.

. °8¢ "
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where the plate thickness h is assumed to be uniform. The integration
will be carried out in terms of the polar coordinator 8. It is seen

from Fig. 3.1 that a is related to 0 by

. where B is the angle between the tangent line and the normal to the
radius vector at a point on the curve; and since angles are taken to
be positive in the counter-clockwise sense, B is negative as shown

in Fig. 3.1. For small deviations from a circle, B is given by

dr/de
y delde

B ¥ sin B r

, cos B A1l " (3.6)

In order to use the results of Thiele, the perturbation from a circular

domain shall be assumed to take the form

r=r, + r, cos 26 (3.7)

where r, is a second-order variation from a circle. Then from equation
(3.5),

cos a = cos 6 cos B + sin 8 sin B (3.8)
and from equation (3.6)

2 _ 2 1ldr 2 1ldr.2 . 2
cos"a = cos 0 + - 4o sin”6 + (r de) sin“@ (3.9)

Substituting equation (3.7) into equation (3.9), eliminating terms of
order rg and higher order, assuming small perturbatidn, and using

equation (3.3) yields,

2r
¢ =0 + 0 (cos™® - — gin
W m X ¥,

276) | (3.10)



To the first order in T, df is given by

o Cos 20)de (3.11)

d = (ro +r
Therefore, from equation (3.4),

2n 2 2
E, = h JO [room + ryo  cos 6 - 20xr2 sin™26

2
+ 0. cos28 + r,o  cos 6 cos268]d6 (3.12)

or

3oxr2

E, = ﬂh[ro(ZUm + ox) -3 ]

This shows that the wall energy will bé decreased by increasing ).
This is the same result obtained by Della Torrel8 using more general
methods; It can be seen from equation (2.6) that for the case cx=0,
the change in energy from the circular case r2=0 using the perturbation
described by equation (3.1) is given by

3(mnd)4ml £, )
AE = kr2 = —_3553;-——_ h;- - SZ(a)]r2 (3.14)

where in this case the material characteristic length is defined as

%a
£y = 5 (3.15)
47M
]
S, is the average wall energy density given by
9% 1
0O =0 4+ 5= —(OB + ON) (3.16)

a m 2 2

The equilibrium value of r, may be obtained by minimizing the total energy,

i.e., the sum of equations (3.13) and (3.14) with respect to T,.
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Differentiating this sum and setting it equal to zero yields

3rho
T, = X
2 4k

(3.17)

Since this result can be used as an experimental technique for measuring

. ox,‘it is mare convenient to solve equation (3.17) for oL

r
o= Zh(lmMz)['éE - SZ(a)] ;ﬁ' (3.18)
or
hSz(a) e2
Ox/Oa = [1 - -—-ZM—-] 7 (3.19)

where e(% 2Vr2/ro) is the eccentricity of the ellipse11 for small values

of_rzlro.

3.3 Experimental Methods and Results

Measurements of the eccentricity as a function of the average
radius of an isolated bubble domain were carried out on several samples
of SmO.SSTbO.45FeO3' Results of a2 typical run are shown in Fig. 3.2.
These measurements were carried out on a 6l-pm thick plate of

(o] = =
SmO.SSTbO.ASFeOB at 250C. For this material, £M 3.6um and 4vMS
106 EMU. The solid line is the best fit using equation (3.17).
Microscope resolution limited reliable results to bubble radii greater
than twice the collapse radius r,. It is noted that e approaches

infinity for rb v 2.8 L corresponding to bubble strip transition. It

is also noted that the curves do not extrapolate to e=0 as r>0, but
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rather to e=0.18.

In order to obtain a determination of O.» equation (3.19) was
used to replot these results, as is shown in Fig. 3.3. It is noted
that all the measurements yielded essentially the same value for
o /o, of 0.017, or o_ = 0.0055 ergs/cn?.

The above measurements indicate that the Bloch wall has a 1.7%

b Fe0,. However,

.55 °0.455¢03
from known data the term /1 + %- would imply that the Néeel wall has a

greater wall energy than the Neel wall in S

1.8% greater wall energy since q ¥ 28. Therefore, in the absence of
other effects, one would expect that Ab ~ 1.07 Aa'

- In order to verify the hypothesis that domain walls parallel to
the a-axis are Bloch walls while walls parallel to the b axis are Neel
walls, a sample of Sm .SSTb0.45FeO3 was subjected to a temperature test.
At room tempéfature, the q of the material is approximately 25 due to
the proximity of the spin-flop temperatureg8 As the temperature of the
sample is raised the value of q increases approaching, for high
temperatures, that of a single rare-earth orthoferrite. Neglecting any
change in Ab/Aa with temperature due to the low thermal expansion
coefficient of.orthoferfites%gone can then test equation (3.1) and hence
the hypothesis by varying q indirectly by changing the temperature of the
sample. |

The q of the sample was measured on a vibrating sample magneto-
meter as a functimn of temperature using the method described by
Sherwood et al?o A typical measurement at 23°9C of the magnetization as

a function of field applied parallel to the a and b axes is shown in

Fig. 3.4 (curves (a) and {(b), reépectively). Curve {(c) is obtained by
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suhtracting (b) from (a). bThe anisotropy field H  can be determined
from the intersection of the low- and high-field asymptotes of (c).
It‘shouldAbe pointed out that an approkimately 20% fourth-order
anisotropy results in a 6% increase in both the Bloch and Néel wall

energies, but does not affect the values of Ha appreciably. Thus, it

is possible to test equation (3.1) for q varying between approximately

25 and 85 (obtained at 70°C) using this technique as shown in Fig. 3.5.
For higher temperatures where the anisotropy field is greater than 7 kO%,
it‘becomes increasingly difficult to obtain accurate values of q from
the magnetization curves. Since the maximum magnetic field supplied by
the electromagnet is limited to 14 kOe, it is not possible to define the
high~field asymptote properly at higher temperatures. It might also
be added that as the temperature of the sample approaches the spin flop
temperature, ‘q decreases towards zero. Thielgaclaimed that for device
operation q should probably be greater than two. It was cbserved,
however, that in order to obtain reasonably well-defined bubbles in
orthoferrites, q should be at least of the order of 10.

Thus, equation (3.1) can be tested by using equation (3.19),
o | cB/oN -1 hSZ(a) o2

[1 - -] & (3.19)
Z, ‘2

o oB/cN + 1
Of these parameters, ZM is the oﬁly one thét cannot be observed directly.
Two methods can be used to determine the temperature dependence of KM’
The domain collapse method described in Chapter II and used by Rnssoli36

in his temperature measurements requires the nucleation of a new bubble

after each measurement. The second method, used here and described in
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detail in Chapter IV, requires observing-the‘éhénge in radius Ar, of

0
an isolated magnetic domain when the tempefature'of the sample is varied
and the bias magnetic field remains fixed without destroying the bubble.
This method can also predict the tgmperéturé variation of q. A

Measuremeﬂts of ox/oa as a function of témperature were carried

lout on a 60-pm thick plate of smd.SSTb0;45Feo3 and the results are
shown in Fig. 3.6. The so}id line represents the average values of
ox/cta obtained by measuring the bubble eccentricity as a function of mean
domain radius at a particuiar temperature and then using equation (3.19).
It might have been noted from equatiqn (3.1) that at h;gh temperatures
iwhere q is large, oB/cN approaches /K;7K:. High temperature extrapolation
of leca shows that_Ab/Aa ~ 1.076, which‘agrees well with measurements
made at room temperature and given above. Using this value of Ab/Aa
and the values of q as a function of temperature obtained from vibrating
sample magnetometer measurements, ox/oa was calculated and represented
on Fig. 3.6 by circies. On the other hand, using values of q obtained
from the method described in Chapter IV, the ox/ca values are represented
in Fig. 3.6 by triangles.

" Thus, méasurements of the wall-energy anisotropy in orthoferrites
seem to vérify its predicted dependence &n q. This appears to be an
indication of the validity of the hypothesis that walls oriented

parallel to the axis are Bloch walls, while walls oriented parallel to

the b axis are Néel walls.
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3.4 éonclusions

A method fpr measuring the wall energy anisotropy in orﬁhq—
ferrites, which causes bubble domaigs'to be elliptical, has been
déscriﬁed'énd used to measure the wall énisbt;opy in SmO.SSTb0.45Fe03'
Measurements of the wall-energy anisotropy as a function of quality
l_faétor of the material seem to verify the hypothesis that, in ortho-
feffites, walls parallel to the a axis are Bloch walls while walls

parallel to the b axis.are'Néel walls.



CHAPTER IV

TEMPERATURE SENSITIVITY OF BUBBLE DOMAINS

4,0 Introduction

Several techniques for-measuring the wall energy density and
the saturation magnetization in uniaxial materials have been discussed
in Cﬂapter II. In this chapter, é method suitable for measuring the
temperaturé dependence of o in the mixed rare-earth orthoferriteslg’zo,

and Ms in some uniaxial garnets2 are described. The advantage of the
‘method is that it uses an isolatea bubble domain without the need to
destroy the bubble in order to obtain the measurements.

As discussed in Chapter II, Thiele obtained an optimum material
thickness for bubble device applications by considering such factors
as smallest bubble size and optimum bubble stability. In a practical
device, it is desirable to minimize its temperature dependence. Thus,
optimum ﬁlaté thicknesses to minimize the variation of bubble diameter
with temperature in both orthoferrites and garnets are consideredzz.
Also, the ;ondition for zéro temperature sensitivity of bubble domains in

some uniaxial materials is obtained in terms of the material parameterszs.

This work has been reported by the author in Refs. 19, 20, 21, 22 and 25.

4,1 A Method for Measuring the Temperature Dependence of o, and q

in the Mixed Rare-Earth Orthoferrites

In the mixed rare-earth orthoferrites the wall energy densities

vary strongly with temperature at temperatures in the vicinity of the

(41)
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reorientétion region36 which yield smallest bubble sizes, while the
magnetizations are almost cohstant.'
- From equation (2.9), the‘fOtce equation for an isolated bubble

domain in an infinite uniaxial plate is given by

R

h G, F(a) =0 (2.9

Substituting for EM and a yields

g

. W H

L d
4wM§h h 4“Ms

- .F(%) =0 (4.1)

If the temperature of the saﬁple is raised by say, At, one would expect
o, to increase by an amount Aow, while the bubble diameter will decrease
by Ad for a fixed bias field. Neglecting any change in Ms, the force

equation thus becomes

g +Ac
W

4ﬂM2 h
s

d

+ ( - F(-g—d—;;—Ag—)—) =0 4.2)

—Ad) H
h 4nMS

Subtracting equation (4.2) from equation (4.1) gives

Ao '
W A H L (doAd), pdy g (4.3)

o | b G h h

nMsh s :

Expanding F(ngﬁgl) in a Taylor series and neglecting second and

higher order terms in Ad, one obtains

F((d;Ad)) v F(%) - Ad i%(_g_/..}ll. . (4.4)
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Also, from Thieleaa,

Therefore, substituting equations (4.4) and (4.5) in equation (4.3) -

Tyieids
Ao
- —5—+ [F(a) - -é“—] 2o [Fa) - sy@] 2 xo (4.6)
4sth | ,
or - |
Ad - hS,(a)
w 0 Ad
h x<,&M - 3 | (4.7)

Also, since44 g, = 4MSV2nAq; and neglecting the change in A and Ms for
temperatures well below the Néel temperature, it follows that o, is

proportional to v’c-;- Therefore, it is seen that

ESE = éﬂ.x [hso(a)
a, 2q ZM

- 1] ﬁi (4.8)

Thus, by starting with thé.known values of o, (obtained from the domain
collapse méthod described in Chapter II) and q (obtained from vibrating
sample magnetometer measurements as shown in Chapter I111), one can then
proceed to obtain the incremental changes Aow and Aq by using equation
(4.8). If thi; is done at fixed temperaturé intervals, it would then be
possible to determine the temperature dependence of o, and q without
collapsing the original domain. This method was used in measuring tﬁe _
temperature dependence of the wall-energy anisotropy in SmO.SSTbO.ASFeQB

as described, in Chapter III.
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4.2 A Method for Measuring the Temperature Dependencé of Mg in

' Uniéxial Garnets

- In general, the uniaxial'garnets at room temperature have
magnéti;étions which are strong functions of temperature due to the
proximity of the compensation points. On the other hand, the wall
energy densities vary little with'temperature in most garnets. Thus
a similar method to the one described in Section 4.1 can be used to
measure the temperature dependence of the magnetiz#tion for such
ma;erials. |

1f the temperature of the sample is say lowered by a small

amount, then the magnetization of the mean bubble diameter will decrease
by AMS and Ad, respectively, for a fixed bias field. 1In this case, thé

force equation given by equation (4.1) becomes

g
w L d-bd) B - rdd8d)y L g (4.9)

4W(MS~AMS)2h h Aﬂ(Ms-AMs)

Neglecting second and higher order terms in AMS/Ms gives

AM

8y _ pcld=ad)y
i ) - FEEED =0 (4.10)

a 2MM

w2 a+
41M7h-
s

(d-Ad) H

s:
) + h 4nM
s

M
s

(; +

Subtracting equation (4.10) from equation (4.l1) and again neglecting

second and higher order terms,

o 28M

- —) T
4wM§h Ms h h 4nMs AHMS

+rEAy rdy o (4.11)

Using equations (2.1), (4.4) and (4.5) equation (4.11) becomes
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28M g, 2, AM
s Ad s Ad
ot @ - @D - e - s@l o 4.12)

. or

e (spl@) - 4/

Ms K F(a) + lM/h d

(4.13)

Therefore, in a similar manner to.the method described in section 4.1,
one can Start with the known value of the magnetization of the garnet
(obtained from domain collapse or magnetometer measurements) and then
proceed to measure the incremental changes AM, by using equation (4.13).
Doing this at fixed temperature intervals would give the temperature

dependence of MS without collapsing the original bubble.

4.3 Temperature Sensitivity of Bubble Domains

The temperature sensitivity of bubble diameter, S, is defined

s 4

(A

Ad
AT : (4.14)

where AT is the change in temperature. For materials whose temperature
dependence is predominantly due to wall energy variation such as
orthoferrites and especially the mixed rare~earth orthoferrites, this

may be written as

p, AC
. 0

SO =5 A_Tw_ (4.15)

w .
where
o
d
P = Z%”'ﬁ" (4.16)
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Using equation (4.7), equation (4.16) becomes

/o

Po = 5,(a) - L /h (4.17)

For materials whose temperature dependence is predominantly due to
- magnetization variation such as some of the uniaxial garnets, the

sensitivity may be written as

P AMS '
5, = ﬁEZT— (4.18)
-1
where
M
Ad
Py = aé M , (4.19)
S . .

Substituting equation‘(4.l3) in equation (4.19) yields

F(a) + ZM/h

p = = (4.20)
g~ 5,0 - 4,/h
It may be noted that
F(a)
p_ = - +p (4.21)
g So(a) ZM/h 0
where the two functions satisfy F(a) > 0 and So(a) > T Consequently,
pg > 0 : - (4.22)

Values of‘po and pg are plotted in Fig. 4.1 as a function cf plate
thickness. wa bias conditions for bubble diameters were used: the
georetric mean diameter /ZSE; and the arithmetic mean diameter %{d0+d2),
where d0 is the bubble coliapse diameter and d2 is the run-out diameter.

It is seen from Fig. 4.1 that a smaller temperature sensitivity is

obtained if one uses the arithmetic mean diameter as the bias condition.
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Fig, 4.1: The temperature sensitivities of bubble diameters for the mixed rare-

earth orthoferrites and the uniaxial garnets as a function of plate

Ly
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Furthermore, for garnets there exists an optimum plate thickness of
appfoximately GZM fpr minimum pg. ‘This minimum is fairly flat permitting
operation at the optimum described by Thiele of 4£M. For the mixed rare-
eartﬁ érthoferrites, the curves decrease monotonically with thickness,
indicating -it is desirable to have as thick a plate as possible subject
' to other constraints. As an illustrative example, if one uses a plate
whoge thickness is say 6.5£M, then the bubble diameter will be 4% larger
than Thiele's optimum bubble given by equation (2.10), while o will be
30Z smaller.

it is also suggested that the optimum bias condition for a bubble
18 the arithmetic mean since not only does one ob;ain greater field

margins than with the geometric mean, but also less temperature

sensitivity.

4.4 Zero Temperature Sensitivity of Bubble Domains

In some of the uniaxial garnets recently developed, both the
magnetization and the wall-energy density vary with temperatureal. Thus,
it can be seen from equations (4.17) and (4.20).that for materials whose
wall-energy densities as well as magnetizations vary positively with

temperature, the total change in bubble diameter will be

Ad Aow AMS
- —d— = po -———O - pg -——-—M (4.233)
w S
ZM/h Acw F(a)+ZM/h AMS

N (So(a)'-lm/h) o, (so(a)-KM/h) H_ (4.23b)


http:described.by
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Smith and Andersoélsﬁggesteg that in order to obtain a fixed bubble size
with temperature, ZM should be temperature independent. In this case,
for incremental increases of Aow and AMs in the wall-energy and
magnetization respectively, the material characteristic length defined

by equation (2.1) will be given by

g + Ao

V. i . (4.24)
et My 4n (MS+AMS)2

Neglecting second and higher order terms, equation (4.24) becomes

o .
nNn_W w o s
EM + AKM N 4an 1+ 5. i ) (4.25)

Subtracting equation (2.1) from equation (4.25) yields,

¥ . (4.26)

Aow ZAMS
— = (4.27)
w s

However, it can be seen from equation (4.23b) that the condition for

zero temperature sensitivity of bubble diameter is given by

Agwlcw hF(a)

—r =1+
Bt M S

Noting that F(a) is given by equation (2.9),

(4.28)

F(a) = ZM/h + aH/4ﬁMS 2.9)
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Therefore,
Ao Jo :
w ah, H
Consequently,
AMS .
Acxw/ow > 2 T (4.30)
s
_ Ao /o
Equation (4.28) was used to calculate ——— as a function of plate
' . o Mg /Mg I L
thickness and bubble diameter. Fig. 4.2 shows a plot of 2 ¥ a5 a
AMS/Ms

function of plate thickness for the two bias conditions

— | 1
d = dod2 and d = i(d0+d2) .
Aoy /oy,
is plotted as a function of bubble diameter for

» WM /Mg

several plate thicknesses. Thus, Figs. 4.2 and 4.3 can be used to

In Fig. 4.3

select the appropriate uniaxial material which will give zero temperature
sensitivity of bubble domains in a bubble device if the.operating
conditions are known. In order to make both d and £M temperature
independent, it is preferable to operate as close as possible to the
conditions given by equation (4.27). As can be seen from Figs. 4.2

and 4.3, it is therefore preferable to use as thin a plate as possible

subject to other constraints.

4.5  Conclusion

A method for measuring the temperature dependence of o, in
orthoferrites and MS in some garnets that use a single bubble domain
without the need to collapse the bubble in order to obtain the meésure—

ment has been described. The temperature sensitivities of bubble



lo- ~ o
8-
6_.
=2
< 4|~
N
2l =
b
<]b
2....
() 1 : i 1 1 1 1 |
i 2 3 4 6 8 10 20

h /8, .

Fig. 4.2: The ratio of the fractional changes in wall energy density and magnetization

*1¢8

for zero temperature sensitivity as a function of plate thickness for two

bias conditicns.



Mg

Aoy

/n

Oy

plate thicknesses.

8T B . 10 2y,
6 6Ly

/ //‘ 4 ‘eM
) /—

. - 24y

_—
2
0 ] ' 1 |

do (doda)2  3(dy+d,) d,

Bubble diameter
Ao /o

Fig. 4.3: Zﬁg7ﬁ2 as a function of bubble diameter for several

49



33.

ddmaiﬁs in the mixed rare-earth orthoferrites and the uniaxial garnets
havé been derived in terms of the material parameters. For the garnets,
there exists an optimum plate thickness of 6ZM to minimize the
sensitivity, although this minimum is fairly flat from 4£, to IOKM.

For the orthoférrites, it is preferable to use as thick a plate as
possible subject to other constraints. The condition for zero temperature
sensitivity of bubble domains in some uniaxial materials has also been

obtained, and can be used in designing bubble devices having fixed

bubble size with temperature fluctuations.



CHAPTER V

CUTTING STRIP AND BUBBLE DOMAINS

5.0 Introduction

Bubble domains can be generated in bubble devices by cutting
a bubble from a strip domain or from another bubble. Two methods can
be used tg,do this. The first method utilizes the poles induced in a
thin permalloy overlay circuit known as a bubble generator33 by means
of an in plane rotating magnetic field, while the second method uses
a current flowing through a conductor touching the surface of the
plateleta’s. In a practical bubble device, it is important to be able
to predict the cutting field when the material parameters are known.
Thus, a study of the current requirement to cut a bubble from a strip
domain in uniaxial platelets was carried out both experimentally and
theoretically and is reported in this chapter. A theoretical study was
also made of the field required to cut a bubble domain from another
bubble. This work has been reported b& the author in Refs. 23, 24

and 26.

5.1 Cutting Strip Domains by Use of Electric Currents

The strip domains were cut by means of a pulsed current flowing
through a 25um gold wire touching the platelet surface and placed at
right angles to thé strip domain walls. The electric current was supplied
by a Chronetics PG-13A pulse generator and measured using a Tektronix
P6021 current probe. The widths of the strip domains were varied by

(54)
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changing the bias field and measured accurately, using the Faraday
effect, by means of a calibrated reticule.

The average magnetic field on the domain wall due to a current I
flowing through a wire of radius r touching the plateiet and at right

qngles to thé wall is
Hz == [ Hz dz (5.1)
where Hz is the vertical component of the magnetic field at a point'on

the domain wall at a horizontal distance a from the center of the wire.

Therefore, equation (5.1) becomes

i =1 Ih Ia dz (5.2)
z kil 2n[a2+(r+z)2] v
= i%ﬁ [tan—légzz) - tan-lii)] (5.3)

The cutting field H, will then be given by

1
r ~1 ht+r -1 .
H = Toh [tan ~( - ) - tan (a)] + H (5.4)

where Ir is the cutting current, and H is the bias field.

Measurements of the cutting field obtained from equation (5.4) as
a function of strip width 2b were carried out on an SKM thick plate of
Smy 55Tbg 45Fe0y (4mM_ = 108 EMU), and a 64y thick plate of TbFel,

(AﬂMs = 138 EMU). The results of these measurements are represented by

circles and crosses respectively on Fig. 5.1,
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Fig. 5.1: Experimental and theoretical cutting field as a function
of half strip width for a 6{ thick piate of TbFe03 and

an 8¢y thick plate of Smy (.Tb, , Fe0,.

b/h
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According to Della Torrela, the average value of the magnetic

field at a point on the domain wall due to the magnetization ﬁh is given

by
B ;_+_1_I 1‘ (B W a-w’es (5.5)
Ay AT g2 gy \/(l--u)z*-gz"u2
. vhere
g(u) = __ (h(l u)y ‘ (5.6)

The function f(x),.where X ='E£%:21 represents the equation of the
domain wall in cartesian coordinates. |

It may be noted that the integrand in equation (5.5) has a
singularity at u=l and is ihdeterminate, but approaches zero at u=0.
Thus care must~be taken in carr§ing out the integration numerically.
The'Rnnge-Kutta method w;s used in all the numerical computations,

The minimuﬁ.field required to produce the cutting will be equal
to the sum of ﬁh given by equation (5.5) and an equivalent field to

overcome the pressure due to -wall energy Heq given by

H ZM '
&9 _ " '
4nMs 2R : ,(5'7)

where K is the radius of curvéture of the point of cutting, and can be

obtained from the formula

RO 2)3/2 5.8)
d’ y/dx

Several functions were used to simulate the shape of the upper domain

wall just before cutting occurs. It was found that the "Cauchy" type
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function used by Della Torrela'[f(a) = bxz/[(x-a)2.+ az)]] has a large
ra&ius of curvature é; the point of cutting, but the notch area (defined
in_Fig. 5.2) is also large, giving much larger values for the cutting
field than observed experimentally. The "Gauss" type function

[f(x) = b + %(x—a)exp-[(x-a)zﬂa2 --%]] oﬁ the other hand has a small
gotCh area, but the radius of curvaﬁure at the point of cutting is
#mall, giying values for the cutting field close to those obtained by
the'“Cauchy" function. Various‘othér functions, including sinusoidal
and higher order "Cauchy" and "Gauss“ type functions were tried and
all exhibited similar problems. The normalized cutting fields for
h=8£y and b=h calculated from the various functions that were used to
simulate the domain wall shape at the instant of cutting are given in
Tabie 5.1 for com%arison. A domain wall shape that has both a large
radius of curvature and at the same time a small notch area consists

of‘éections of ellipses and straight lines given by

b . _ X

f(x) = < -a
£(x) = b[1 - /l;x /a”] ' -a<x<a
i - (5.9)
f(x) =b[1 + c/b/ll-(x—Za)zlaz] -a <x < 3a
f(x) =b . ' x > 3a

The corners of the curves have been rounded off to obtain a continuous
" curve. The resulting curve and its image corresponding to the lower
domain wall are shown in Fig. 5.2. It may be noted that the sections

of ellipses need not be symmetrical about the line x=a, where the current



Table 5.1: Normalized Cutting Field for b=h and h-SZM Calculated ffom Several Functions

Function

Cauchy

Gaussian

Higher order

Cauchy

Higher order
Gaussian

Sinusoidal

Symmetrical
ellipses

Asymmetrical
ellipses -

<

"

Equétion of Domain Wall

£f(x)

bx2/[(x-a)2+a2

b+b/a(x-a)exp-[(x—a)2/2a2—l/2]

bl + 8 a(x-a)’
[(x-a)2+a2/3]2

b+b/a(x-a)exp-[(x~a)4/4a%-1/4]

b ' x

b[1l+sin Eéﬁ:ﬂl] -a <x
b 4 X
b

b[1 - /1-x2/a%] -a

b[1-+\/1—(x—23)2/a2] a

b

b

b1 - /1-x%/a%] -a

bl + c/%/;kx~2a)2/az] a

b

<
<

>

1A

1A

1A

1A

-a

a

b
v

]
A

-a

3a

‘3a

-a

3a

3aJ

Normalized Cutting
Radius of _Notch Area field H./4mMg
Curvature R (See Fig. 5.2) at h=8{y, b=h

‘a2 o 0.635
a%/2 . abe? - 0.615
2a%/3 e 0.475
¢2 ' I
a /4b 0.45
4a2/n2b' | 2ab/m . < 0.595
3
a/b Tab 027
azlb . % ab
or ‘or 0.29
a2/c -121 ac w
O
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c;rrying wire is located. The field due to the current drives the walls
apart for x > a and pushes them together for x < a. Thus, cutting takes
place at tﬁe origin when the total field on the wall at the origin is
fegual to or exceeds the cutting field.

To ensure that the point P in Fig. 5.2 is in equilibrium at the
inétant of cuﬁting the ratio c/B was determined at eééh value of plate
~ﬁhi¢kness and strip width which makes the cutting field calculated at
point 0 equal to the field calbulaged at P; As an illustrative example,
when b=h and h;SZM, it was found thaﬁ a value of ¢ = 0.3b makes both
fieldg équal.A Thus, ﬁﬁ, Heq aEd ﬁh+Heq calculated at points'O and P
are'plotted as a function of a/h in Figs. 5.3(a) and 5.3(b), respectively.
It. is seen that gutting occurs when a/h = 0.6, and the cutting field
Hr ié équal t;!0.29 X 4nMs.

The cutting field was computed as a function of b/h for plates of
thicknes; 6£M and 8£M and represented in Fig. 5.1 by the soli& lines.

It can be seen that the agreement with the experimental values is good.
Fig..5.4 shows ¢/b as a function of b/h for h=62M and h=8£M. It is
interesting t6 note that for both thicknesses ¢/b was found to vary

linearly with b/h.

a

5.2 Replication of Bubble Domains
A theoretical study of magnetic field required to replicate
bubble domains has been made. The domain wall at the instant of cutting

was considered to consist of sections of ellipses and circles given by:
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Fig. 5.4: c¢/b as a function of b/h for h=6£M and SKM.
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f(x) = J@i

- (x+a)2 -(atb) < x < -a
f(x) = b[1 - J1 - x2/a2] -a< x<a
| (5.10)
£(x) = b[1 + c/b /1 - (x-22)%/a?] <x<3a
£x) = B - (x-30)  3a < x < (3ath)

The resulting curve and its image corresponding to the lower domain
wall are shown in Fig. 5.5. This domain ﬁall shape 1is somewhat
similar to the one considered in Section 5.1 (represented by equation
(5.9)) to study the current required to cut a strip dopain. The
difference is that both ends of the shape represented by equation (5.9)
have been terminated by circles in order to depict the shape of the
bubble walls just before cutting takes place.

. The method for obtaining ;he cutting field described in
Section (5.1) was employed to calculate the bubble replication field as
a function of plate thickness and bubble diameter. The results of these
calculations are plotted in Figs. 5.6 and 6.7.

It can be seen from Figs. 5.1, 5.6 and 5.7 that a larger cutting
field is required to cut a bubble from another bubble. As an
illustrative example, for h=8£M and béh, a field approximately equal to
0.6 x (éﬂMS) is required to replicate a bubble domain, while thé field

required to cut a strip domain is only 0.29 x (4HMS).
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5.3 Conclusions

An experimental and theoretical investigation of the current
required to cut a strip domain has been reported in this chapter. It
was shown that a good agreement between the theoretical and experimental
results is obtained when the wall is considered to consist of sections
éf eliipses and straight lines just before cutting occurs. Also, a
theoretical study of the field required tc replicate a bubble domain
has been presented.

The work reported in this chapter completes the first phase of
a study of current requirements to cut strip and bubble domains. More
work is required to study the various other structures that can be used
to generate bubbles in bubble devices. An example is the optimization
of the hairpin-type conductor bubble generator, which is normally used

in current~access bubble devices.



CHAPTER VI

CONCLUSIONS

Possible device applications for bubble domains in uniaxial
magnetic materials have spurred interest in investigating these
materials both theoreticaiiy and experimentally in order to obtain a
better understanding of these materials aod their complex domain
structure. Thus, a study of domain walls in some uniaxial materials
has been undertaken and presented in this thesis.

It has been shown that the anisotropy of wall energy in ortho-
ferrites causes bubble domains to be elliptical. A formula relating
' the eccentricity of an elliptical bubble to the anlsotropic wall
energy has been derived and an experimental technique for measuring
~ the wall anisotropy has been described. 1In Smo.55 bo.asFe°3 a
measured anisotropy energy of 1.77 of the average wall-energy density
at room temperature is responsible'for eccentricities as large as 0.4
of averege bubble radii equal to 85% of the bubble strip-domain
transition radius. In attempting to explain wall aoisotropy physically,
it wes suggested that in orthoferrites walls parallel to the a axis
‘are Bloch walls, while walls parallel to the b axis are Neel walls.

To investigate this hypothesis,‘the wall-energy anisotropy was measured
as a function of the quality factor q by varying the temperature of the
sample. The measurements seem to verify the predicted dependence of

wall anisotropy on q and the hypothesis.

(70)
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Methods for obtaining the temperature dependence of the material
characteristic length for the mixed rare-earth orthoferrites and the
garnets using an isolated bubble domain without collapsing it have been
developed. Theée methods led to the derivation of the temperature
sensitivities of bubble domains in the rare-earth orthoferrites and
'thg garnets in terms of the material parameters. It was found that
for garnets there exists an optimum plate thickness of GKM to minimize
the sensitivity, although this minimum is fairly flat from 4£M to lOZM.
For the orthoferrites on the other hand, it is preferable to use as
thick a piate as possible subject to other constraints. For both
materials, it was found that a smaller temperature sensitivity is
ob;ained when the arithmetic mean diameter is used as the bias condition.
Thé éondition for zero temperature sensitivity of bubble domains in
some uniaxial garnets has been obtained in terms of the material
- parameters. The ratio of the fractiénal changes in wall energy density
aﬁd saturation magnetization which gives zero temperature sensitivity
_has been plotted as a function of plate thickness and bubble diameter.
The resulting curves can be used in designing bubble devices having
fixed bubble siies.

Finally, a study of the current requirement to éut a bubble
from a strip domain in.uniaxial plates has been carried out both
ekperimentally and theoréticall§. Various functions have been used to
simulate the‘shape of the walls at the instant of cutting. It was found
that good agreement with the measured values of cutting field is

cbtained when the wall shape was considered to consist of sections of



ellipses and straight lines. Also, a theoretical study of the field
required to replicate a bubble domain has been made and the results

given.

72.



REFERENCES

Almasi, G.S., Keefe, G.E., Lin, Y.S., and Thompson, D.A.,

"A magnetoresistive detector for bubble domains" J. Appl. Phys.,

vol. 42, March 1971, pp. 1268-1269.

Almasi, G.S., '"Magnetooptic bubble~domain devices", IEEE Trams.

Magn., vol. MAG~7, Sept. 1971, pp. 370-373.

Almasi, G.S., Bouricius, W.G., and Carter, W.C., "Reliability
and organization of a 108-bit bubble domain memory", AIP Conf.

Proc., No. 5, 1972, pp. 225-229.

Bobeck, A.H., "Properties and device applications of magnetic

domains in orthoferrites'", Bell Syst. Tech. J., vol. 46, Oct.

1967, pp. 1901-1925.

Bobeck, A.H., Fischer, R.F., Perneski, A;J., Remeika, J.P., and
Van Uitert, L.G., "Application of orthoferrites to domain wall

devices", IEEE Trans. Magn., vol. MAG-5, Sept. 1969, pp. 544-553,

Bobeck, A.H., Spencer, E.G., Van Uitert, L.G., Abrahams, S.C.,
Barns, R.L., Grodkiewicz, W.H., Sherwood, R.C., Schmidt, P.H.,

Smith, D.H., and Walters, E.M., "Uniaxial magnetic garnets for

- domain wall bubble devices", Appl. Phys. Lett., vol., 17, 1970,

p. 131,

(73)



7.

10.

12.

13.

14.

74.

Bobeck, A.H., and Scovil, H.E.D., "Magnetic Bubbles", Sci. Am.,

vol. 224, June 1971, pp. 78-90.

Bobeck, -A.H., Smith, D.H., Spencer, E.G., Van Uitert, L.G., and

Walters, E.M., "Magnetic properties of flux grown uniaxial

garnets", IEEE Trans. Magn., vol. MAG-7, Sept. 1971, pp. 461-463.

Bobeck, A.H., Fischer, R.F., and Smith, J.L., "An overview of
magnetic bubble domains - material-device interface", AIP Conf.

Proc., No. 5, 197§, pp. 45-55.

Bonyhard, P.I., Danylchuk, I., Kish, D.E., and Smith, J.L.,

"Applications of bubble devices", IEEE Trans. Magn., vol MAG-6,

Sept. 1970, pp. 447-451.

Burrington, R.S5., lNandbook of Mathematical Tables and Formulas,

3rd ed., New York: McGraw-Hill, 1962, p. 29.

Chikazumi, S., Physics of Magnetism, New York, John Wiley & Sonmns,

Inc., 1966.

Clover, Jr., R.B., Wentworth, C., and Mroczkowski, S.S., 'Low

birefringent ortuoferrites for optical devices', IEEE Trans. Magn.,

" vol. MAG-7, Sept. 1971, pp. 480-483.

Copeland, J.A., Elward, J.P., Johnson, W.A., and Ruch, J.G.,
"Single~conductor magnetic-bubble propagation circuits', J. Appl.

Phys., vol. 42, March 1971, pp. 1266-1267.



15.

16.

17.

18.

19.

20.

21.

22.

75.

Danylchuk, I., "Operational characteristics of 1024 bit garnet

bubble Y-bar shift register", J. Appl. Phys., vol. 42, March

1971, pp. 1358-1359.

Della Torre, E., and Dimyan, M.Y., "Anisotropy of wall energy in

orthoferrites', Int. Magnetics Conf., Washington, D.C., April 1970.

Della Torre, E., and Dimyan, M.Y., "Anisotropy of wall energy

in orthoferrites", IEEE Trans. Magﬁ., vol. MAG-6, Sept. 1970,

pp. 489-492.

Della Torre, E., 'Pressures on cylindrical magnetic domain walls",

IEEE Trans. Magn., vol. MAG-6, Dec. 1970, pp. 822-827.

Dimyan, M.Y., and Della Torre, E., '"Temperature dependence of

wall-energy anisotropy in orthoferrites'", Int. Magnetics Conf.,

Denver, Colo., April 1971.

Dimyan, M.Y., and Della Torre, E., "Temperature dependence of

wall-energy anisotropy in orthoferrites'', IEEE Trans. Magn.,

vol. MAG-7, Sept. 1971, pp. 476-479.

Dimyan, M.Y., and Della Torre, E., "A method for measuring the
temperature dependence of the magnetization in uniaxial garnets",

Proc. TEEE, vol. 59, Nov. 1971, pp. 1623-1624.

Dimyan, M.Y., and Della Torre, E., ''Temperature sensitivity of

bubble domains", J. Appl. Phys., vol. 43, Mar. 1972, pp. 1285~

1287.



23.

24,

25.

26.

27.

28,

29.

.30.

76.

Dimyan, M.Y., and Della Torre, E., "Cutting strip domains by

use of electric currents'", Int. Magnetics Conf., Kyoto, Japan,

April 1972.

Dimyan, M.Y., and Della Torre, E., "Cutting strip domains by

use of electric currents", Submitted to IEEE Trans. Magn.

Dimyan, M.Y., and Della Torre, E., "Zero temperature sensitivity

of bubble domains', Submitted to J. Appl. Phys.

Dimyan, M.Y., and Della Torre, E., "A study of bubble replication',

Submitted to IEEE Trans. Magn.

Fowlis, D.C., and Copeland, J.A., "Rapid method for determining
the magnetization and intrinsic length of magnetic bubble domain

ﬁaterials", AIP Conf. Proc., No. 5, 1972, pp. 240-243.

Gianola, U.F., Smith, D.H., Thiele, A.A., and Van Uitert, L.G.,
"Material requirements for circular magnetic domain devices',

IEEE Trans, Magn., vol. MAG-5, Sept. 1969, pp. 558-561.

Gorodetsky, G., "Exchange constants in orthoferrites YFe03",

J. Phys. Chem. Solids, vol. 30, July 1969, pp. 1745-1750.

Gyorgy, E.M., and Hagedorn, F.B., "Analysis of domain-wall

motion in canted antiferromagnets', J. Appl. Phys., vol. 39,

Jan. 1968, pp. 88-90.



31.

32.

33.

34,

" 35.

36.

37.

77.

Kooy, C., and Enz, U., "Experimental and theoretical study of the

domain configuraticn in thin layers of BaFelzolg", Phillips Res.

Rep., vol. 151, Feb. 1960, pp. 7-29.

Kurtzig, A.J., and Shockley, W., "A new direct measurement of the

domain wall energy of the orthoferrites', IEEE Trans. Magn.,

vol. MAG-4, Sept. 1968, pp. 426-429.

Perneski, A.J., "Propagation of cylindrical magnetic domains in .

orthoferrites", IEEE Trans. Magn., vol. MAG-5, Sept. 1969,

pp. 554-557.

Robinson, M€.D., Bobeck, A.H., and Nielsen, J.W., "Chemical

vapor deposition of magnetic garnets for bubble-domain devices',

‘IEEE Trans. Magn., vol. MAG-7, Sept. 1971, pp. 464-466.

Rossol, F.C., "Temperature dependence of magnetic domain
structure and wall energy in single-crystal Thulium orthoferrite",

J. Appl. Phys., vol. 39, Oct. 1968, pp. 5263-5267.

Rossol, F.C., "Temperature dependence of rare-earth orthoferrite
properties relevant to propagating domain device applications”,

IEEE Trans. Magn., vol. MAG-5, Sept. 1969, pp. 562-565.

v Sandfort, R.M., and Burke, E.R., "Logic functions for magnetic

bubble devices', IEEE Trans. Magn., vol. MAG-7, Sept. 1971,

pp. 358-360.

-



38.

39.

40.

41.

42.

43.

44,

78.

Schick, L.K., Nielsen, J.W., Bobeck, A.H., Kurtzig, A.J.,
Michaelis, D.C., and Reakstin, J.F., "Liquid phase epitaxial
growth of uniaxial garnet films; circuit deposition and bubble

propagation', Appl. Phys. Lett., vol. 18, Feb. 1971, pp. 89-91.

Sherwood, R.C., Remeika, J.P., and Williams, H.J., "Domain

behaviour in some transparent magnetic oxides", J. Appl. Phys.,

vol. 30, Feb. 1959, pp. 217-225.

Sherwood, R.C., Van Uitert, L.G., Wolfe, R., and LeCraw, R.C.,
"Variation of the reorientation temperature and magnetic crystal
anisotropy of the rare-earth orthoferrites", Phys. Lett., vol.

25A, Aug. 1967, pp. 297-298.

Smith, D.H., and Anderson, A.W., "The temperature dependence of
bubble parameters in some rare-earth garnet films', AIP Conf.

Proc., No. 5, 1972, pp. 120-123.

Strauss, W., '"Detection of cylindrical domains', J. Appl. Phys.,

vol. 42, Mar. 1971, pp. 1251-1257.

Strauss, W., Shumate, Jr., P.W., and Ciak, F.J., 'Magneto-

resistance sensors for garnet bubble-domains'", AIP Conf. Proc.,

No. 5, 1972, pp. 235-239.

Thiele, A.A., "The theory of cylindrical magnetic domains",

Bell Syst. Tech. J., vol. 48, Dec. 1969, pp. 3287-3335.




45.

46,

47.

48.

79.

Thiele, A.A., "Theory of the static stability of cylindrical

domains in uniaxial platelets", J. Appl. Phys., vol. 41, No. 3,

March 1970, pp. 1139-1145.

Thiele, A.A., "Device implications of the theory of cylindrical

magneci¢ domains", Bell. Syst. Tech. J., vol. 50, Mar. 1971,

pp. 725-773.

Thiele, A.A., Bobeck, A.H., Della Torre, E., and Gianola, U.G.,

"The energy and general translation force of cylindrical

magnetic domains', Bell Syst. Tech. J., vol. 50, Mar. 1971,

Treves, D., '"Studies on orthoferrites at the Weizmann Institute

of Science", J. Appl. Phys., vol. 36, Mar. 1965, pp. 1033-1039.




	Structure Bookmarks



