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SCOPE AND CONTENTS: 

A study of domain walls in some uniaxial magnetic materials is 

reported. Methods for measuring some important material parameters in 

the rare-earth orthoferrites and the uniaxial garnets are described. 

The temperature sensitivities of bubble domains in orthoferrites and 

garnets are derived in terms of the material parameters and conditions 

for minimum and zero temperature sensitivities are obtained. An 

investigation of the current requirement to cut a bubble domain from a 

strip or another bubble domain is also reported. 
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ABSTRACT 

An investigation of domain walls in some uniaxial magnetic 

materials is reported in this thesis. Firstly, a method for measuring the 

wall energy anisotropy in orthoferrites, which causes cylindrical 

magnetic (bubble) domains to be elliptical is described. In 

Sm0 •55Tb 0 •45Fe03 a measured anisotropy energy of 1.7% of the wall-energy 

density at room temperature is responsible for eccentricities as large as 

0.4 at average bubble radii equal to 85% of the bubble strip-domain 

transition radius. The relationship between material parameters and 

wall-energy anisotropy is discussed. The hypothesis that in orthoferrites 

E axis are N~el walls is investigated by measuring the wall anisotropy 

as a function of the quality factor of the material by varying the 

temperature of the sample. The measurements seem to verify the predicted 

dependence of wall anisotropy on the quality factor and thus the hypothesis. 

A method for measuring the temperature dependence of the wall

energy density in orthoferrites and the saturation magnetization in 

garnets is described. The advantage of the method is that it uses a 

single isolated bubble domain without the need to destroy the bubble in 

order to obtain the measurements. This method led to the derivation of 

the temperature sensitivities of bubble domains in orthoferrites and 

garnets in terms of the material parameters. Optimum plate thicknesses 

to minimize the variation of bubble diameter with temperature are 
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considered. Also, the condition for zero temperature sensitivity of 

bubbles in some uniaxial materials is derived in terms of the material 

parameters. 

Finally, a study of the current requirement to cut a bubble 

domain from a strip domain or another bubble in uniaxial plates is 

reported in this thesis. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Since ihe advent of the electronic computer and other data-

processing devices, a continuous effort has been made to improve the 

speed, capacity and reliability of these devices' memory systems. The 

fastest and most flexible memory systems at present are those using 

either ferrite cores or solid state integrated circuit chips. At the 

moment, cores are cheaper, costing approximately one cent per bit of 

storage capacity. However, it is obvious that for mass memories 

10 exceeding 10 bits the cost would be prohibitive. Magnetic-disk 

memory systems, currently being used for high-capacity storage, are 

somewhat unreliable since these systems depend on the mech&"lical move-

ment of a thin magnetic film on which the information is stored. 

Moreover, one cannot manipulate the stored information without reading 

it out and writing it in again, a process that can take appreciable time. 

Th'1s, the search for faster, cheaper and more reliable memories has led 

to a new technology in which data bits are stored in the form of 

magnetic "bubbles" moving in thin films or wafers of magnetic material. 

The bubbles are stable over a considerable range of conditions and can 

be moved in two dimensions at very high velocity. 

The evidence available at the present time indicates that bubble 

memories should be substantially cheaper than core memories (costing an 

estimated few millicents per bit of information stored) and several times 
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faster than magnetic-disk memory systems.· Also, in bubble devices one 

can perform many logical operations on the stored data without reading 

them out and writing them back in. Finally, since bubble devices have 

no moving parts they are expected to work reliably for many years. 

1.2 Outline of the Thesis 

2. 

A study of domain walls in uniaxial magnetic materials has been 

carried out and is reported in this thesis. The purpose of the study is 

to gain a better understanding of the structure and properties of 

uniaxial materials that support cylindrical magnetic domains, and to 

develop methods for measuring important material parameters. 

Cylindrical magnetic domains often referred to as bubbles. have 

device applications as discussed in Chapter II. Thus, the properties 

of magnetic materials that support bubble domains are reviewed with 

special emphasis given to the single and mixed rare-earth orthoferrites 

and the uniaxial garnets. Methods for growing and processing these 

materials are briefly discussed. A discussion of the various techniques 

employed to generate, propagate and detect bubbles in devices is given. 

The theory of static stability of bubble domains in uniaxial platelets 

or films, which is very important in the design of bubble devices, is 

summarized. Some ·Of the results of the theory are used iri Chapters 

III and IV. Methods for measuring some relevant material parameters 

that make use of the optical Faraday effect are also described in this 

Chapter. 

The original contributions inade by the author are reported in 

Chapters III, IV and V. In order to gain a better understanding of 
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domain walls in uniaxial materials, the influence of three effects on the 

domain walls have been investigated. These are: Wall-energy anisotropy, 

temperature and electric currents. 

In Chapter III, the anisotropy of wall energy in orthoferrites, 

which tends to distort otherwise circular domains into elliptical domains, 

is discussed. A method for measuring this wall anisotropy which depends 

on simply measuring the eccentricity of the elliptical domain as a function 

of mean bubble radius is developed and is used to measure the wall 

anisotropy in samarium-terbium orthoferrite (Sm0 •55 Tb0 •45 Fe03). 

In attempting to explain wall-energy anisotropy, it is suggested that 

there are two effects giving rise to this anisotropy: a difference in 

exchange interaction along the two hard magnetocrystalline axes, and a 

diiierence in tne types ot walls along different axes. Thus, when the· 

wall lies along the ~axis, a Bloch wall results, however, when the wall 

lies along the £.axis, the magnetization cannot rotate through a very 

hard b axis and a Neel wall results. This hypothesis is verified by 

subjecting a sample of Sm0•55rb0 •45Fe03 to a temperature test and 

measuring the wall-anisotropy as described in Chapter III. 

A method suitable for measuring the temperature dependence of 

the wall energy density in the mixed rare-earth orthoferrites and the 

saturation magnetization in some uniaxial garnets is presented in Chapter 

IV. Most of the methods for measuring the wall-energy and the magnetization 

reviewed in Chapter II require the collapse of a bubble domain. The 

main ·advantage of the method described in this Chapter is that it only 

requires a single isolated bubble domain without the need to destroy the 

bubble in order to obtain the measurement. The temperature sensitivities 
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of bubble diameter in orthoferrite and garnet wafers are also derived 

in terms of the material parameters. Optimum plate thicknesses to. 

minimize the variation of bubble diameter with temperature in ortho-

ferrites and garnets are obtained. It is shown that it is possible to 

obtain zero temperature sensitivity of bubbles in some uniaxial materials. 

Curves are provided that can be used in designing bubble devices having 

fixed bubble sizes. 

In order to gain some insight in the generation of bubble 

domains in devices, a study of the current requirement to cut a bubble 

from a strip domain was carried out both experimentally and theoretically 

and presented in Chapter v. The strip domains in Sm
0

•55Tb0 •45Fe03 and 

TbFe03 plates were cut by use of a pulsed current flowing through a 

,,.-t.<rl o<> f"n - .. o--- --

the domain walls. Various functions were used to simulate the shape of 

the walls at the instant of cutting. It is found that good agreement 

with the measured values of cutting field is obtained when the wall 

shape is considered to consist of sections of ellipses. A theoretical 

study of the fields required to replicate bubbles has also been carried 

out and the results are also given in Chapter V. 



CHAPTER II 

A REVIEW OF BUBBLE DOMAIN MATERIALS, DEVICES AND STABILITY 

2.0 Introduction 

Cylindrical magnetic domains, or bubbles, were first observed 

by Kooy and Enz31 
in 1960 in thin barium ferrite wafers. They have 

recently received considerable attention becaus'e of possible device 

4 applications. Bobeck demonstrated in 1967 that isolated bubble 

domains in uniaxial magnetic platelets or films can be manipulated to 

perform memory, logic and transmission functions. This work stimulated 

research in bubble materials and devicesS,lO as well as in the stability 

44 45 46 
of these domains as a function of material parameters and geometry ' ' • 

At present, the prospect of utilizing magnetic bubble devices to provide 

large-capacity information storage of high reliability at very low cost 

appears promising. Thus, bubble shift registers with storage densities 

exceeding 2.5 x 106 bits/in2 and with data-processing rates up to 106 

bits/sec have been built7. Also, a design of a highly reliable 108-bit 

bubble domain mass memory has been proposed3• 

In this Chapter, a brief review of bubble materials and devices 

is presented. The theory of static stability of bubble domains and the 

methods for measuring important material parameters are briefly 

discussed. 

(5) 



6. 

2.1 Bubble Materials 

Bubble domains can exist in single crystal, low magnetic moment, 

essentially uniaxial magnetic materials when the crystal is cut into 

thin platelets, with the easy axis of magnetization perpendicular to 

the platelet surface. When the anisotropy field of the material is 

larger than the moment of the material the magnetization will lie along 

the easy axis. Materials in which bubbles have been observed include 

f . 31 h f . 4 d 6 errites , ort o errites an garnets • The first uniaxial materials 

found to have the desired properties for bubble device~ were the rare

earth orthoferrites39 ' 48 • They are of the form RFe0
3

, where R is a 

rare-earth ion or Yttrium and are antiferromagnetic with a weak ferro-

magnetism caused by a slight canting (approximately 0.50) of the anti-

parallel spins. The molecular and magnetic unit celi is orthorhombic 

of sides a < b < c as shown in Fig. 2.1. The antiparallel Fe3+ spins 

align al.orig the a axis with the .£ axis exhibiting the weak ferromagnetism. 

The sole exception is SmFe03 , which has its net moment along the 2.. axis 

at room temperature. Thus, the reorientation temperature range of 

SmFe03 is 468-487°K, while that of the other rare-earth orthoferrites 

is centered around l00°K. The N~el temperature of all orthoferrites is 

approximately 680°K. 

Orthoferrites are usually grown as single crystals by the flux 

method, and then sliced, polished and annealed to provide thin plates 

of very low coercivity (<O.l Oe). These plates are sufficiently trans-

parent in the red to enable direct visual observation of domain behaviour 

by means of the longitudinal Faraday effect. Thus, domains are readily 
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Fig. 2.1: A t»o-sublattice model of the spin arrangement 

in an orthoferrite orthorhombic cell. 

7. 
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visible as wavy strips when a thin plate is viewed through a polarizing 

microscope. The domains rotate the plane of polarization of the 

polarized light in oppposite directions depending on their magnetic 

polarity. By adjusting the polarizer and analyzer on the microscope one 

can make half of the domains dark and the other half bright. The 

bubble measurements reported in this thesis were made using the Faraday 

effect. 
,, 

If a thin orthoferrite platelet above its Neel temperature is 

cooled down to room temperature, spontaneously nucleated serpentine-like 

strip domains will be present. Such a domain pattern will usually 

include several single wall domains i.e., domains whose walls close 

upon themselves. If a prescribed bias magnetic field is then applied 

normal to the surface of the platelet, the single wall domains become 

cylindrical. As will be seen in Section 2.3, the size of the bubble 

domains will be governed by the bias field H, the wall energy density 

per unit area a , the saturation magnetization of the material M , and 
w s 

the plate thickness h. Raising the bias field will cause the bubbles 

to shrink until they finally disappear at the collapse field. They 

are stable over roughly a 3:1 range in diameter and a 1.6:1 range in 

bias field. 

Since a bubble domain is a localized highly stable magnetic 

state and can be moved about in much the same way as a charged particle, 

it can therefore be used to store binary information. In a practical 

device bubbles are normally separated by 3 or 4 domain diameters in 

order to minimize interaction between domains. Thus, in order to 
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achieve very high storage densities in devices, bubble diameters should 

be of the order of a few microns. UnfortWlately, the single rare-earth 

orthoferrites provide bubble domains whose average diameters are in the 

range 40µm - 180µm, resulting in small storage densities. 

It is shown in Section 2.3 that the diameter of a stable domain 

is directly related to the material characteristic length ~ which was 

defined by Thiele44 •45 to be 

Thus, the bubble diameter can be reduced by either reducing o or 
w 

(2.1) 

increasing M • Since the wall energy is proportional to the square s 

root of the uniaxial anisotropy constant K--
12 then one can decrease 

u ' 

the bubble diameter by reducing K. • It was mentioned above that 
u 

SmFe03 is the only rare-earth orthoferrite having an easy axis of 

magnetization parallel to the a axis at room temperature. It was thus 

40 . reasoned by Sherwood, et al. that a partial substitution of Sm in 

other rare-earth orthoferrites should result in a reduced K • Thus, u 

by selecting the proper composition, the reorientation temperature 

range of the resulting crystal can be made to be very close to room 

temperature, and hence the crystal can be magnetized along both the a 

and c axes with comparatively weak applied (anisotropy) fields, giving 

a small Ku. The composition Sm0•55Tb0•45Fe03 for example (reorientation 

range: 230-280°K), has a wall energy density of 0.3 ergs/cm2 (reduced 

from 1.7 ergs/cm2 for TbFe03 and 1.3 ergs/cm2 for SmFe03) and a 

material characteristic length of 4µm at room temperature, giving bubble 
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diameters of the order of 20µm. However, as will be seen in Chapter IV, 

a in-the mixed rare-earth orthoferrites is sensitive to temperature w 
36 fluctuations , resulting in a large temperature sensitivity of bubble 

diameter. 

The mixed rare-earth orthoferrites still cannot provide bubble 

diameters small enough to achieve packing densities of the order of 

106 bits/in2• The search for new uniaxial materials has led to the 

6 discovery of the uniaxial garnets which in general support bubbles a 

few microns in diameter. Furthermore, garnets are easier to grow than 

orthoferrites. The most promising method for making garnet bubble 

materials is to grow them as thin epitaxial films on nonmagnetic single

crystal substrates. Both liquid-phase38 and chemical-vapor epitaxy34 

have been successfully used to produce garnet films. However, the 

i i i i d b . i 8 saturat on magnet zat on n garnets ten s to e temperature sensit ve • 

Optimum plate thicknesses to minimize the temperature sensitivity of 

bubble diameter in garnet films are derived in Chapter IV. The condition 

for zero temperature sensitivity is also given. 

2.2 Bubble Devices 

The ability to combine data storage with logic at low cost in 

a single miniature device is the most appealing aspect of the magnetic-

bubble technology. Methods of generating, shHting and detecting bubbles 

in devices are discussed in this section. 

The simplest method of generating bubble domains in bubble 

devices is by cutting a bubble from a strip domain or from another 



bubble4• This can be accomplished by either using a current flowing 

through a conductor touching the surface of the plate5 (studied in 

11. 

Chapter V), or by utilizing the poles induced in a thin permalloy overlay 

33 circuit known as a bubble generator , by means of an in-plane rotating 

field. A recent method of generation employs both a conductor and a 

9 permalloy circuit 

Bubbles can be propagated in the magnetic medium by applying 

a translational force on the domains created by a gradient in H, h, 

47 a or M • At present, the best way of moving bubbles in devices 
W S· 

appears to be by applying a field gradienb on the domain walls, and two 

general methods to do this are available. The first method employs 

conductors in which flowing currents generate the desired field 

. 5 14 
gradients ' • This method is called conductor access. The second 

method, called field access, involves interacting the bubbles with 

permalloy overlay patterns by using either pulsating magnetic fields 

such as in Angelfish circuits5 , or in-plane rotating fields such as in 

5 15 9 T-bar , Y-bar and chevron circuits. The field access method seems 

more promising than the conductor access method since it is difficult 

to fabricate conductor patterns that have sufficient resolution to handle 

garnet bubbles and can carry sufficient current to move the bubbles 

quickly and still not vaporize. Another drawback of the conductor 

access method is that a great many accurately placed conductors whose 

dimensions are comparable to the size of the bubbles must be inter-

connected with external-access circuits, and any open or short-circuits 

in the conductor pattern would ruin the device. At present, T-bar, 

Y-bar and chevron patterns are almost exclusively used in bubble device 
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applications, since they are compatible with the bubble generator 

mentioned previously and have larger operating margins than Angelfish 

circuits. Also, bubbles can be moved in either direction in these 

circuits, depending on the direction of rotation of the magnetic field. 

The rotating fields in this case generate travelling positive and 

negative magnetic poles on the permalloy overlay circuits to selectively 

attract and repel and hence control the motion of bubbles. 

Detection of bubble domains can be accomplished by one of 

several methods such as electromagnetic induction5 , Hall effect
42

, 

d . . 1 i 42 . 1,43 h irect optica sens ng , or magnetoresistance • At present, t e 

best method of detecting bubbles is using magnetoresistance, where the 

resistance of a permalloy film is slightly lowered in the µresence of a 

bubble. 

As mentioned earlier, bubble domains are particularly useful 

in applications that require logic. Several logic functions using the 

interaction of bubble domains in devices such as AND, OR, EXCLUSIVE OR, 

NAND and NOR functions have been demonstrated9 •37 • They are also useful 

in optical display applications2 •13 , especially where memory is desirable. 

2.3 The Theory of Stability of Bubble Domains 

In this section a brief summary of the theory of static stability 

of bubble domains in uniaxial platelets developed by Thiele44 , 45 ,46 is 

presented. The results of the theory are very important in the design 

of bubble domain devices, since they provide conditions governing the 

shape, size and stability of bubbles. Some of the results will be used 

in subsequent chapters. 
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The magnetic domain structure model Thiele considered in his 

analysis is shown in Fig. 2.2. An isolated magnetic domain is magnetized 

in a platelet of effectively uniaxial low coercivity material of uniform 

thickness which is magnetized upward. An external magnetic field H is 

, applied anti-parallel to the bubble magnetization. The following 

assumptions are made in the analysis: 

1. The uniaxial platelet is of infinite extent. 

2. The domain wall width is negligible in comparison to the domain 

radius. 

3. The wall energy density per unit area is independent of either 

the orientation or curvature of the wall •. 

4. The saturation magnetization has a constant magnitude everywhere 

within the platelet, lying in the positive z-direction within 

the domain and in the negative z-direction elsewhere. 

5. The domain wall is independent of z, i.e., no wall bulging 

occurs. 

6. Domains do not spontaneously nucleate. 

Thus, the bubble shape in the plane of the platelet can be 

described by the expansion 

... 
Ar cos[n(e-e - Ae )] 

n n n 
(2.2) 
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where 6r and 60 describe small variations in domain size and shape 
n n 

from the circular shape of radius r 0 , and 

nl6r I n 
{2.3) 

Domain size and stability can be obtained by evaluating the first and 

second order coefficients in the expansion of the total energy variation 

with respect to br and b0 about the circular domain shape given by n n 

... 
+ i l 

n=O 
~r llr + n m 

M. t::.e ] + o
3 n m 

!::.r 60 n m 

(2.4) 

where the zero subscript indicates evaluation of the derivatives when 

the bubble is circular, and o3 refers to terms of order 3 and higher 

in the combination of !::.r and t.9 • The total energy of the domain is 
n n 

(2.5) 

where ~ is the total wall energy, EH is the interaction energy with the 

externally applied field, and ~ is the internal magnetostatic energy. 

With the aid of equation (2.5) one can then evaluate equation 

(2.4) to obtain a normalized expression for the total energy variation, 
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(2.6) 

2r
0 

where~ is given by equation (2.1), a(=~) is the aspect ratio of 

the domain, and F(a) and S (a) are the magnetostatic force and stability 
n 

functions respectively and are functions of complete elliptic integrals 

of the first and second kind. F(a), the radial stability function 

s0(a), and the elliptical stability function s2 (a) are plotted in 

Fig. 2. 3. 

An isolated bubble domain in an infinite uniaxial platelet will 

be in equilibrium when 

(2. 7) 

and stable when 

and (2 .8) 

As can be seen from equation (2.6), the equilibrium condition can be 
tu 

obtained by setting the coefficient of ho equal to zero, yielding 

~ + a _H_ - F(a) = 0 
h 41TM 

(2.9) 
s 

Equation (2.9) 1 called the force equation by Thiele44 , 45 , 46 , indicates 

that solutions of the problem of determining the domain diameter as a 

function of the applied field for given values of .eM' Ms and h may be 

obtaine.d by graphical construction on the F(a) curve of Fig. 2.3. 
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The procedure consists of drawing a straight line of slope H/4nM 
s 

18. 

from the point ~/h on the vertical axis until it intersects F(a) at 

some point or points. The diameters at which these intersections occur 

are then solutions to the force equation. However, these solutions may 

be either stable or unstable. For zero or negative values of H, there 

is only one solution which is radially unstable. For small positive 

values of H, there are two solutions; the large diameter one is 

radially stable while the small diameter one is radially unstable. As 

it is increased, the diameter of the unstable solution grows, while 

the diameter of the stable solution decreases, until they coalesce at 

which the bubble domain collapses. For greater values of applied fields 

there are no solutions. 

Since F(a) is tangential to a straight line through the origin 

having unit slope, the solutions will always vanish for a value of 

the applied field greater than 4nM • Thus stable domains can exist s 

only in the presence of a bias field having a value between zero and 

4nM , and a polarity tending to collapse the bubble. s 

The domain stability can be determined graphically by constructing 

a horizontal line at a height ~/h in Fig. 2.3. The condition for 

complete stability obtained from equations (2.6)and (2.8) is 

~I s0 (a) > ~ > s2 (a) (2.10) 

Thus, s0 (a) and s2(a) form the boundaries of the region of stability, 

the former function giving the collapse condition d0/h and the latter 

function the strip runout condition d2/h. 
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Fig. 2.4 shows a plot of d0 /.tM and d2/~ as a function of 

h/'-H originally plotted by Thiele. The region between the lines is 

the region of total stability. Above the lines bubble domains are 

susceptible to elliptical perturbations and thus run out into strip 

domains, while below the line bubbles are radially unstable. By 

~onsidering such factors as minimum bubble size and maximum stability, 

Thiele has obtained an optimized plate thickness given by 

(2.11) 

For this thickness, the center of the stable bias field range occurs 

at a domain diameter given by 

(2.12) 

In a practical device, it is also important to minimize the 

temperature sensiti vi.ty of bubble diameter especially since some 

orthoferrites and garnets have material parameters that vary strongly 

with temperature. Plate thicknesses that minimize temperature 

sensitivity of bubbles in orthoferrites and garnets are obtained in 

Chapter IV. A plate thickness that gives zero temperature sensitivity 

of bubbles in some uniaxial materials is derived in terms of the 

material parameters. 

2.4 Measurement Techniques 

Characterization of bubble materials is of vital importance in 

the selection of the proper medi1Jtn for bubble devices. Thus, several 

techniques for measuring relevant material parameters such as ~ (or 
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ow) and Ms that depend on the.optical observation of domains have been 

developed in the last few years. Bobeck4 measured both ~ and Ms in a 

material of known tHickness_by observing the bias field and bubble 

diameter at collapse. Since the collapse aspect ratio is known, then 

~/h can be determined from the s0(a) curve in Fig. 2.3, and 4nMs can 

be calculated from equation (2.9). 35 36 
Ro~sol ' measured lM by measuring 

the stripe spacing in a demagnetized platelet and using the strip domain 

theory of Kooy and Enz. A method for measuring the wall energy density 

32 developed by Kurtzig and Shockley uses a current flowing in a conductor 

grid of regular geometry placed under the platelet and a second array 

on top of the platelet and at right angles to the first. Thus, planar 

w~lls ~r~ ~on~ro1lAbly stretched into ~in~soi<l~l c0r~1gati0ns. The 

wall energy can then be obtained by calculating the-external work done 

in increasing the wall area and subtracting from it the change in the 

ma.gnetostatic energy. Although accuracies and resolutions of 5% may be 

obtained, this method is quite tedious. Finally, a recent method for 

measuring ~ and Ms especially useful for garnets was developed by 

27 Fowlis and Copeland • It uses both the bubble collapse method as well 

as the strip domain theory. 

If the temperature dependence of .£11 or Ms is required then the 

bubble collapse and similar methods are not practical since a new bubble 

has to be nucleated after each measurement. An incremental method to 

get around this difficulty has been developed and will be described 

in Chapter IV. 
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2.5 Measuring Equipment 

As mentioned in Section 2.1, bubble domains in thin uniaxial 

plates or films can b.e viewed using the optical Faraday effect. The 
' . 

bubble measurements reported in this thesis were made using this effect. 

Thus, an Olympic POM polarizing microscope equipped with a built-in 

'-
Bert rand lens and diaphragm was used to.observe the domain behaviour. 

The maximum total magnification obtained from the polarizing microscope 

with a good resolution is 800, enabling highly pre~ise measurements to 

be carried out on the single and the mixed rare-earth orthoferrites. 

The reticules were calibrated by means of a filar micrometer eyepiece. 

Since orthoferrite platelets are birefringent, a berek compensator 

was used to obtain maximum contrast, especially at high magnifications. 

The temperature measurements reported in Chapter III were made 

by making use of a Leitz heating and cooling stage which fits on the 

microscope round stage and is capable of supplying constant sample 

temperatures in the range -350 to 35ooc. This made possible observing domain 

behaviour in Sm0 _55rb0 •45Fe03 in. the reorientation temperature region. 

In order to obtain a constant bias magnetic field perpendicular 

to the platelet surface, a Helmholz coil capable of producing a bias 

field. of 80 Oe was designed to fit on the mi~roscope stage. It was 

accurately calibrated·by means of.a Bell 640 incremental gaussmeter 

and an ammeter. 

The cutting of strip domains described in Chapter V ,was carried 

out by means of a Chrone.tics ·PG-13A pulse generator. The current pulses 

were measured using a Tektronix P 6021 current probe and a Philips 

PM 3250 oscilloscope. 
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Finally, a photograph of the equipment used to observe and 

cut strip and bubble domains is shown in Fig. 2.5. Also shown are 

the strip and bubble domains as viewed in a plate of Sm0 •55Tb0•45Fe03• 



Fig. 2.5: The observation of domains in uniaxial magnetic materials. 

Inset: Strip and bubble domains in a plate of Sm0•55Th0•45Fe03 , 

as viewed using the Faraday effect (magnification x 40) • 
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CHAPTER III 

ANISOTROPY OF WALL ENERGY IN ORTHOFERRITES 

3.0 Introduction 

The theory of static stability of bubble domains in t.miaxial 

sheets was briefly discussed in Chapter II. One of the assumptions made 

in .developing the theory is that the wall energy density is i.ndependent 

of wall orientation. It is shown in this chapter however, that the 

wall energy in orthoferrites is anisotropic, causing the otherwise 

circular domains to be elliptical. An experimental technique for 

measuring the wall-energy anisotropy based on measuring the bubble 

eccentricity is described and is used to measure the wall anisotropy 

in Sm0 •55Tb0•45Fe03• A study of domain walls is made by making use of 

a derived relationship bewteen material parameters and wall-energy 

anisotropy. The study appears to verify the hypothesis that walls 

oriented parallel to the a axis are Bloch walls while walls oriented 

parallel to the b axis are Neel walls. The work described in this 

chapte~ has been reported by the author in Refs. 16, 17, 19 and 20. 

3.1 Wall Anisotropy 

Two evidences of wall energy anisotropy in orthoferrites are 

elliptical domains and an apparent preferred direction for an isolated 

strip domain. 
16 17 . It was shown ' that these two effects are indeed the 

same, since the major axis of the elliptical domain is parallel to the 

prefer:red direction of the strip domain. This direction will be. 

(25) 
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referred to as the easy direction for the wall, not to be confused with 

the easy axis-of magnetization which is normal to the platelet surface. 

The direction at right angles to the easy direction will be referred to 

as the hard direction. Rossol states that for TmFe03 , the easy 

direction is the b crystallographic axis. As mentioned in Chapter II, 
' -

the easy axis in orthoferrites at temperatures above the spin-flop 

temperature is the .£ axis, and the E. axis is much harder than the .!!! axis. 

30 It was suggested by Gyorgy and Hagedorn that the domain walls have 

a .continuous turning of the magnetization from the £ axis through the 

A-axis to the negative ..c.. axis independent of the wall orientation. This 

would imply that the walls parallel to the b axis would be Neel walls 

and walls parallel to the .! axis would be Bloch walls. The energy of 

12 r:--::-a Bloch wall is proportional to rAbKu by either the equal angle model, 

where the rotation of spins is assumed to be uniform throughout the 

transition layers, or by the variational model which is more exact, and 

where the exact nature of the rotation of spins is obtained by minimizing 

the sum of the total exchange energy and anisotropy energy stored in 

the wall. ~ ' 30 The Neel wall energy can be 

increasing the anisotropy constant Ku by 

obtained by artif ically 

211M2 to account for the demagnets 

izing fields that exist in the wall, i.e., aN « IAa(Ku+2nM;). Thus, 

it is seen that 

where 

aB = ;~/A8 
0 N 1 + .!. 

q 

K 
u 

q = 211M2 
s 

(3.1) 

(3.2) 
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44 is the quality factor defined by Thiele , and Aa and ~ are the exchange 

constants between moments separated by displacement along the a and b 

axis, re~pectively. The exchange constants are different since the 

48 atomic separation is different along the two axes • For example, in 

, TbFe03 , the b side of the unit cell is 5% larger than the a side. 

3.2 Bubble Ellipticity as a Function of Radius 

The wall energy density per unit area when the wall lies along 

the easy axis will be denoted by am• Rotating the wall so that it lies 

along the hard direction will increase the energy density by a due x 

to wall anisotropy. Thus, it is seen from the postulate of domain walls 

presented in Section 3.1 that ox• (aB-oN). Since the magnitude of the 

field caused by the spins within the domain wall varies sinusoidally 
,/ ;I 

with the direction of the spins when the wall is between a Neel and a 

Bloch wall, and since ax has the form of energy per unit area, then it 

is seen that for an arbitrary angle a between the wall direction and the 

hard direction, the wall energy density will be given by 

a •a +a w m x 
2 cos a (3. 3) 

Fig. 3.1 shows the geometry chosen to describe the elliptical domain. 

Since the domains are still cylindrical, the problem can be completely 

described in two dimensions, and increasing the bias field causes both 

the bubble size and eccentricity to increase. For this configuration 

the total wall energy will be given by 

(3.4) 
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where the plate thickness h is assumed to be uniform. The integration 

will be carried out in terms· of the polar coordinator e. It is seen 

from Fig. 3.1 that a is related to e by 

e • a+ B (3.5) 

' where B is the angle between the tangent line and the normal to the 

radius vector at a point on the curve; and since angles are taken to 

be positive in the counter-clockwise sense, B is negative as shown 

in Fig. 3.1. For small deviations from a circle, B is given by 

dr/de 
B ~ sin B ~ ----r 

cos a ~ 1 . (3.6) 

In order to use the results of Thiele, the perturbation from a circular 

domain shall be assumed to take the form 

r ~ r 0 + r 2 cos 20 (3.7) 

where r 2 is a second-order variation from a circle. Then from equation 

(3. 5)' 

cos a = cos e cos a + sin e sin a 

and from equation (3.6) 

2 2 1 dr 2 1 dr 2 
cos a = cos e + r d0 sin e + <r- de> . 29 sin 

(3.8) 

(3.9) 

Substituting equation (3.7) into equation (3.9), eliminating terms of 

2 order r 2 and higher order, assuming small perturbation, and using 

equation (3.3) yi~lds, 

2 2r2 2 
a = a + a (cos a - --- sin 29) 
w m x ro (3.10) 
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To the first order in r 2 , dl is given by 

dl - (r0 + r 2 cos 2e)de (3.11) 

Therefore, from equation (3.4), 

(3.12) 

or 

This shows that the wall energy will be decreased by increasing r 2• 

18 This is the same result obtained by Della Torre using more general 

methods. It can be seen from equation (2.6) that for the case ax=O, 

the change in energy from the circular case r 2=0 using the perturbation 

described by equation (3.1) is given by 

(3.14) 

where in this case the material characteristic length is defined as 

a is the average wall energy density given by a 

(3.15) 

(3.16) 

The equilibrium value of r 2 may be obtained by minimizing the total energy, 

i.e., the sum of equations (3.13) and (3.14) with respect to r 2• 
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Differentiating this sum and setting it equal to zero yields 

311'h0 
x (3.17) 

Since this result can be used as an experimental technique for measuring 

, ax' it is more convenient to solve equation (3.17) for ax 

(3.18) 

or 

(3.19) 

ll where e(% 21r2/r0) is the eccentricity of the ellipse for small values 

of r 2/r0• 

3.3 Experimental Methods and Results 

Measurements of the eccentricity as a function of the average 

radius of an isolated bubble domain were carried out on several samples 

of Sm0•55Tb0•45Fe03• Results of a typical run are shown in Fig. 3.2. 

These measurements were carried out on a 61-µm thick plate of 

Sm0•55Tb0•45Fe03 at 2soc. For this material, ~ = 3.6µm and 4~Ms = 

106 EMU. The solid line is the best fit using equation (3.17). 

Microscope resolution limited reliable results to bubble radii greater 

than twice the collapse radius re• It is noted that e approaches 

infinity for r 0 ~ 2.8 re, corresponding to bubble strip transition. It 

is also noted that the curves do not extrapolate to e=O as r+O, but 
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rathe~ to e•0.18. 

In order to obtain a determination of a , equation (3.19) was 
x 

used to replot these results, as is shown in Fig. 3.3. It is noted 

that all the measurements yielded essentially the same value for 

a /a of 0.017, or a • 0.0055 ergs/cm2
• x a x 

The above measurements indicate that the Bloch wall has a 1.7% 

greater wall energy than the Neel wall in Sm0•55Tb0•45 Fe03• However, 

from known data the term ~l + 1 would imply that the N~el wall has a 
q 

1.8% greater wall energy since q ~ 28. Therefore, in the absence of 

other effects, one would expect that ~ ~ 1.07 Aa. 

In order to verify the hypothesis that domain walls parallel to 
,,. 

the a-axis are Bloch walls while walls parallel to the b axis are Neel 

walls, a sample of Sm0 •55Tb0 •45Fe03 was subjected to a temperature test. 

At room temperature, the q of the material is approximately 25 due to 

the proximity of the spin-flop temperature~S As the temperature of the 

sample is raised the value of q increases approaching, for high 

temperatures, that of a single rare-earth orthoferrite. Neglecting any 

change in ~/Aa with temperature due to the low thermal expansion 

coefficient of .orthoferrites~9 one can then test equation (3.1) and hence 

the hypothesis by varying q indirectly by changing the temperature of the 

sample. 

The q of the sample was measured on a vibrating sample magneto-

meter as a function of temperature using the method described by 

40 
Sherwood et al. A typical i::ieasurement at 23oc of the magnetization as 

a function of field applied parallel to the a and b CL""'-eS is shown in 

Fig. 3.4 (curves (a) and (b), respectively). CurYe (c) is obtained by 
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subtracting (b) from (a). The anisotropy field Ha can be determined 

from the intersection of the low- and high-field asymptotes of (c). 

It should be pointed out that an approximately 20% fourth-order 

anisotropy results in a 6% increase in both the Bloch and Neel wall 

energies, but does not affect the values of H appreciably. Thus, it a 

35. 

is possible to test equation (3.1) for q varying between approximately 

25 and 85 {obtained at 70°C) using this technique as shown in Fig. 3.5. 

For higher temperatures where the anisotropy field is greater than 7 kOe, 
s 

it becomes increasingly difficult to obtain accurate values of q from 

the magnetization curves. Since the maximum magnetic field supplied by 

the electromagnet is limited to 14 kOe, it is not possible to define the 

high-field asymptote properly at higher temperatures. It might also 

be added that as the temperature of the sample approaches the spin flop 
44 

temperature,·q decreases towards zero. Thiele claimed that for device 

operation q should probably be greater than two. It was observed, 

however, that in order to obtain reasonably well-defined bubbles in 

orthoferrites, q should be at least of the order of 10. 

Thus, equation (3.1) can be tested by using equation (3.19), 

C1 
x --a a 

(3.19) 

Of these para~eters, ~ is the only one that cannot be observed directly. 

Two methods can be used to determine the temperature dependence of £.M. 

The domain collapse method described in Chapter II and used by Rosso136 

in his temperature measurements requires the nucleation of a new bubble 

after each measurement. The second method, used here and described in 
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detail in Chapter IV, requires observing the. change in radius Ar
0 

of 

an isolated magnet~c domain when the temperature of the sample is varied 

and the bias magnetic field remains fixed without destroying the bubble. 

This method can also predict the t~mperature variation of q. 

Measurements of a /a as a function of temperature were carried 
x a 

out on a 60-µm thick plate of Sm0 •55Tb0 •45Fe03 and the results are 

shown in Fig. 3.6. The solid line represents the average values of 

ox/oa obtained by measuring the bubble eccentricity as a function of mean 

domain radius at a particular temperature and then using equation (3.19). 

It might have been noted from equation (3.1) that at high temperatures 

.where q is large, oB/oN approaches ./~/ Aa. High temperature extrapolation 

of ox/oa shows that ~/Aa ~ 1.076, which agrees well with measu~ements 

made at room temperature and given above. Using this value of ~/A8 
and the values of q as a function of temperature obtained from vibrating 

sample magnetometer measurements, o /a was calculated and represented 
x a 

on Fig. 3.6 by circles. On the other hand, using values of q obtained 

from the method described in Chapter IV, the o /o values are represented 
x a 

in Fig. 3.6 by triangles. 

·Thus, measurements of the wall-energy anisotropy in orthoferrites 

seem to verify its predicted dependence on q. This appears to be an 

indication of the validity of the hypothesis that walls oriented 

parallel to the axis are Bloch walls, while walls oriented parallel to 

the b <.1.Xis are Neel walls. 
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3.4 Conclusions 

A method for measuring the wall energy aniso~ropy in ortho

ferri tes, which causes bubble domai~s to be elliptical, has been 

described and used to measure the wall anisotropy in sm0•55Tb0•45 Fe03• 

Measurements of the wall-energy anisotropy as a function of quality 

factor of the material seem to verify the hypothesis that, in ortho

ferrites, walls parallel to the a axis are Bloch walls while walls 

parallel to the b axis are N~el walls. 



CHAPTER IV 

TEMPERATURE SENSITIVITY OF BUBBLE DOMAINS 

4.0 Introduction 

Several techniques for measuring the wall energy density and 

the saturation magnetization in uniaxial materials have been discussed 

in Chapter II. In this chapter, a method suitable for measuring the 

19 20 temperature dependence of a in the mixed rare-earth orthoferrites ' , 
w 

2 and Ms in some uniaxial garnets are described. The advantage of the 

·method is that it uses an isolated bub~le domain without the need to 

destroy the bubble in order to obtain the measurements. 

As discussed in Chapter II, Thiele obtained an optimum material 

thickness for bubble device applications by considering such factors 

as smallest bubble size and optimum bubble stability. In a practical 

device, it is desirable to minimize its temperature dependence. Thus, 

optimwn plate thicknesses to minimize the variation of bubble diameter 

with temperature in both orthoferrites and garnets are considered22 • 

Also, the condition for zero temperature sensitivity of bubble domains in 

25 some uniaxial materials is obtained in terms of the material parameters • 

This work has been reported by the author in Refs. 19, 20, 21, 22 and 25. 

4.1 A Method for Measuring the Temperature Dependence of ow and q 

in the Mixed Rare-Earth Orthoferrites 

In the mixed rare-earth orthoferrites the wall energy densities 

vary strongly with temperature at temperatures in the vicinity of the 

(41} 
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36 reorientation region which yield smallest bubble sizes, while the 

magnetizations are almost constant. 

From equation (2.9), the fo~ce equation for an isolated bubble 

domain in an infinite uniaxial plate is given by 

~ + a _H_ - F(a) • 0 
h 41TMs 

(2.9) 

Substituti~g for ~ and_ a yields 

(4.1) 

If the temperature of the sample is raised by say, At, one would expect 

a to increase by an amount Aa , while the bubble diameter will decrease w w 

by Ad for a fixed bias field. Neglecting any change in M , the force s 

equation thus becomes 

Subtracting equation (4.2) from equation (4.1) gives 

Aa 
__ w_ + M _H_ + F( (d-.M)) 

41TM2h h 4nMs h 
s 

(d-Ad) Expanding F( h ) in a Taylor series and neglecting second and 

higher order terms in Ad, one obtains 

F((d-Ad)) 
h 

(4.2) 

(4.3) 

(4.4) 



44 Also, from Thiele , 
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ClF(d/h) = dl :[l'(dfh) _ 
ad (4.5) 

Therefore, substituting equations (4.4) and (4.5) in equation (4.3) · 

yields 

!J.a ~ !J.d /J.d w [F(a) --
411M

2h 
+ [F(a) - -] d- s 0(a)] d ~ o h (4.6) 

s 

or· 

!J.<J hs0 (a) Ad 
__..!. "' (~ - 1) 
<J "' d w 

(4. 7) 

Also, since44 a = 4M /2~Aq, and neglecting the change in A and M for 
w s s 

temperatures well below the Neel temperature, it follows that a is 
w 

proportional to /cl. Therefore, it is seen that 

(4.8) 

Thus, by starting with the .known values of aw (obtained from the domain 

collapse method described in Chapter II)- and q (obtained from vibrating 

sample magnetometer measurements as shown in Chapter III), one can then 

proceed to obtain the incremental changes !J.a and /J.q by using equation 
w 

(4.8). If this is done at fixed temperature intervals, it would then be 

possible to determine the temperature dependence of a and q without 
w 

collapsing the original domain. This method was used in measuring the 

temperature dependence of the wall-energy anisotropy in Sm0 •55Th0 •45Fe03 

as described, in Chapter III. 



4.2 A Method for Measuring the Temperature Dependence of Mg in 

Uniaxial Garnets 

In general, the uniaxial garnets at room temperature have 

magnetizations which are strong functions of temperature due to the 

8 proximity o·f the compensation point • On the other hand, the wall 

energy densities vary little with temperature in most garnets. Thus 

a similar method to the one described in Section 4.1 can be used to 

measure the temperature dependence of the magnetization for such 

materials. 

If the temperature of the.sample is say lowered by a small 

44. 

amount, then the magnetization of the mean bubble diameter will decrease 
.,/ . 

by 6Ms and 6d, respectively, for a fixed bias field. In this case, the 

force equation given by equation (4.1) becomes 

0 w (d-M) 
2 + h 

4n(M -tiM ) h s s 
41T(M -tiM ) 

s s 

Neglecting second and higher order terms in tiM /M gives s s 

(4.9) 

(4.10) 

Subtracting equation (4.10) from equation (4.1) and again neglecting 

second and higfler order terms, 

(4.11) 

Using equations (2.1), (4.4) and (4.5) equation (4.11) becomes 



2t.M
8 

I I t.M . 
- ""M'" ~ + (F(a) -1f!> (~d - M 

8
) - !d [F(a) - s0 (a)] ~ 0 

or 

s s 

tiM s 
-~ M s 

cs0 (a) - ~/h) tJ.d 

d 
F(a) + ~/h 

45. 

(4.12) 

(4.13) 

Therefore, in a similar manner to the method described in section 4.1, 

one can start with the known value of the magnetization of the garnet 

(obtained from domain collapse or magnetometer measurements) and then 

proceed to measure the incremental changes ~s by using equation (4.13) • 

. Doing this at fixed temperature intervals would give the temperature 

dependence of M without collapsing the original bubble. s . 

4.3 Temperature Sensitivity of Bubble Domains 

The temperature sensitivity of bubble diameter, S, is defined 

by 

s fJ. !. !J.d (4.14) 
""d !J.T 

where !J.T is the change in temperature. For materials whose temperature 

dependence is predominantly due to wall energy variation such as 

orthoferrites and especially the mixed rare-earth orthoferrites, this 

may be written as 

(4.15) 

where 

(4.16) 



Using equation (4.7), equation (4.16) becomes 

~/h 

For materials whose temperature dependence is predominantly due to 

. magnetization variation such as some of the uniaxial garnets, the 

sensitivity may be written as 

where 

• ~ 6Ms 5g M llT s 

Ms lld 
p ----g d 6M s 

Substituting equation (4.13) in equation (4.19) yields 

F(a) + ~/h 
p -g s0(a) - ~/h 

It may be noted that 
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(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

~ where the two functions satisfy F(a) > 0 and s0(a) > ~· Consequently, 

(4.22) 

Values of Po and pg are plotted in Fig. 4.1 as a function of plate 

thickness. Two bias conditions for bubble diameters were used: the 

geometric mean diameter ld0d2 and the arithmetic mean diameter ~(d0+d2), 
where d0 is the bubble collapse diameter and d2 is the run-out diameter. 

It is seen from Fig. 4.1 that a smaller temperature sensitivity is 

obtained if one uses the arithmetic mean diameter as the bias condition. 
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Furthermore, for garnets there exists an optimum plate thickness of 

approximately 6~ for minimum Pg• _This minimum is fairly flat permitting 

operation at the optimum described.by Thiele of 4~. For the mixed rare

earth orthoferrites, the curves decrease monotonically with thickness, 

indicating-it is desirable to have as thick a plate as possible subject 

to other constraints. As an illustrative example, if one uses a plate 

whose thickness is say 6.5~, then the bubble diameter will be 4% larger 

than Thiele's optimum bubble given by equation (2.10), while Po will be 

30% smaller. 

It is also suggested that the optimum bias condition for a bubble 

is the aritlunetic mean since not only does one obtain greater field 

margins than with the geometric mean, but also less temperature 

sensitivity. 

4.4 Zero Temperature Sensitivity of Bubble Domains 

In some of the uniaxial garnets recently developed, both the 

41 magnetization and the wall-energy density vary with temperature • Thus, 

it can be seen from equations (4.17) and (4.20) that for materials whose 

wall-energy densities as well as magnetizations vary positively with 

temperature, the total change in bubble diameter will be 

Ad -= 
d 

(4.23a) 

(4.23b) 

http:described.by
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41. . 
Smith and Anderson suggested that in order to obtain a fixed bubble size 

with temperature, ~ should be temperature independent. In this case, 

for incremental increases of Ila and 6M in the wall-energy and w s 

magnetization respectively, the material characteristic length defined 

,by equation (2.1) will be given by 

a + Ila 
w. w 

4ir(M +6M )
2 

s ·s 

Neglecting second and higher order terms, equation (4.24) becomes 

~+ 

Subtracting equation (2.1) from equation (4.25) yields, 

Ai Ila 26M -'"M w s 
--~-----1 a M 
rf w s 

Thus, the condition for zero temperature change in ~ is 

Ila 26M w s -=--a M 
w s 

(4.24) 

(4.25) 

(4.26) 

(4. 27) 

However, it can be seen from equation (4.23b) that the condition for 

zero temperature sensitivity of bubble diameter is given by 

Ila /a 
w w l + hF(a) 

Mi /M = i 
s s '"M 

(4.28) 

Noting that F(a) is given by e
1
quation (2. 9), 

F(a) = ~/h + aH/4~Ms (2. 9) 
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Therefore, 

Ila I a 
w w (ah) H 

llM /M • 2 + i 41rM (4.29) 

Consequently, 

s s .iM s 

llM 
Ila /a > 2 _s 

w w M s 
(4.30) 

Ila I a 
Equation ·(4.28) was used to calculate w w 

Mis/Ms 
as a function of plate 

Ao /a w w thickness and bubble diameter. Fig. 4.2 shows a plot of llM /M as a 
s s . 

function of plate thickness for the two bias conditions 

and 

Aow/Ow 
In Fig. 4.3, llM /M is plotted as a function of bubble diameter for 

s s 
several plate thicknesses. Thus, Figs. 4.2 and 4.3 can be used to 

select the appropriate uniaxial material which will give zero temperature 

sensitivity of bubble domains in a bubble device if the operating 

conditions are known. In ord~r to make both d and ~ temperature 

independent, it is preferable to operate as close as possible to the 

conditions given by equation (4.27). As can be seen from Figs. 4.2 

and 4.3, it is therefore preferable to use as thin a plate as possible 

subject to other constraints. 

4.5 Conclusion 

A method for measuring the temperature dependence of ow in 

orthoferrites and Ms in some garnets that use a single bubble domain 

without the need to collapse the bubble in order to obtain the measure-

ment has been described. The temperature sensitivities of bubble 
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domains in the mixed rare-earth orthoferrites and the uniaxial garnets 

have been derived in terms of the material parameters. For the garnets, 

there exists an optimum plate thickness of 6~ to minimize the 

sensitivity, although this minimum is fairly flat from ~ to l~. 

For the orthoferrites, it is preferable to use as thick a plate as 

possible subject to other constraints. The condition for zero temperature 

sensitivity of bubble domains in some uniaxial materials has also been 

obtained, and can be used in designing bubble devices having fixed 

bubble size with temperature fluctuations. 



CHAPTER V 

CUTTING STRIP AND BUBBLE DOMAINS 

5.0 Introduction 

Bubble domains can be generated in bubble devices by cutting 

a bubble -from a strip domain or from another bubble. Two methods can 

be used to do this. The first method utilizes the poles induced in a 

33 thin permalloy overlay circuit known as a bubble generator by means 

of an in plane rotating magnetic field, while the second method uses 

a current flowing through a conductor touching the surface of the 

4 5 platelet ' • In a practical bubble device, it is important to be able 

to predict the cutting field when the material parameters are known. 

Thus, a study of the current requirement to cut a bubble from a strip 

domain in \llliaxial platelets was carried out both experimentally and 

theoretically and is reported in this chapter. A theoretical study was 

also made of the field required to cut a bubble domain from another 

bubble. This work has been reported by the author in Refs. 23, 24 

and 26. 

5.1 Cutting Strip Domains by Use of Electric Currents 

The strip domains were cut by means of a pulsed current flowing 

through a 25µm gold wire touching the platelet surface and placed at 

right angles to the strip domain walls. The electric current was supplied 

by a Chronetics PG-13A pulse generator-and measured using a Tektronix 

P6021 current probe. The widths of the strip domains were varied by 

(54) 
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changing the bias field and measured accurately, using the Faraday 

effect, by means of a calibrated reticule. 

The average magnetic field on the domain wall due to a current I 

flowing through a wire of radius r touching the platelet and at right 

~les to the wall is 

H • ! Jh H dz 
z. h 0 z 

(5.1) 

where H is the vertical component of the magnetic field at a point on z 

the domain wall at a horizontal distance a from the center of the wire. 

Therefore, equation (5.1) becomes 

H • ! Jh Ia dz 
z h 0 2n[a2+(r+z) 2] 

.. __!._ [tan -l(h+r) - tan -l(r)] 
2nh a ·a 

The cutting field Hr will then be given by 

I 
r [t -l(h+r) Hr• -- an --2nh a 

where I is the cutting current, and H is the bias field. 
r 

(5.2) 

(5.3) 

(5.4) 

Measurements of the cutting field obtained from equation (5.4) as 

a function of strip width 2b were carried out on an 8~ thick plate of 

Sm0•55Tb0 . 45Fe03 (41TM
8 

= 108 EHU), and a 6~ thick plate of TbFe03 

(4'!TM = 138 EMU). The results of these measurements are represented by s 

circles and crosses res?ectively on Fig. 5.1. 
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Fig. 5.1: Experimental and theoretical cutting field as a function 

of half strip width for a 6'41 thick plate of TbFe03 and 

an SlM thick plate of Sm0 • 55Tb0 _45Fe0 3• 
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18 According to Della Torre , the average value of the magnetic 

field at a point on the domain wall due to the magnetization ~ is given 

by 

(5.5) 

where 

g(u) = ~ f(h(l-u)) 
h u cs .6) 

The function f(x), where x = h(l-u) 
u 

represents the equation of the 

domain wall in cartesian coordinates. 

It may be noted that the int.egrand in equation (5 .5) has a 

singularity at u=l and is indeterminate, but approaches zero at u=O. 

Thus care must be taken in carrying out the integration numerically. 

' The Runge-Kutta method was used in all the numerical computations. 

The minimum.field required to produce the cutting will be equal 

to the sum of 1\r given by equation (5.5) and an equivalent field to 

overcome the pressure due to-wall energy H given by eq 

~=~ 
4'11'M 2Rs 

(5. 7) 

where R is the radius of curvature of the point of cutting, and can be 

obtained from the formula 

R = [l + (dy/dx) 2J312 

d2y/dx2 (5.8) 

Several functions were used to simulate the shape of the upper domain 

wall just before cutting occurs. It was found that the "Cauchy" type 
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function used by Della Torre18 [f(a) • bx2/[(x-a) 2 + a2)]] has a large 

radius of curvature at the point of cutting, but the notch area (defined 

in Fig. 5.2) is also large, giving much larger values for the cutting 

field than observed expel'limentally. The "Gauss" type function 

b 2 2 1 [f(x) • b + -a<x-a)exp-{(x-a) /2a - zll on the other hand has a small 

notch area, but the radius of curvature at the poine of cutting is 

small, giving values for the cutting field close to those obtained by 

the "Cauchy·" function. Various other functions, including sinusoidal· 

and higher order "Cauchy" and "Gauss" type functions were tried and 

all exhibited similar problems. The normalized cutting fields for 

h=8lM and b=h calculated from the vatious functions that were used to 

simulate the domain wall shape at the instant of cutting are given in 

Table 5.1 for comparison. A domain wall shape that has both a large 

radius of curvature and at the same time a small notch area consists 

of sections of ellipses ~d straight lines given by 

f (x) = b 

/,"' 2 2 
f{x) = b[l - Jl-x /a] 

f(x) = b [l + clb} l-(x-2a) 2 Ja2l 

f(x) = b 

x <-a 

-a < x < a 

-a < x < 3a 

x > 3a 

(5.9) 

The corners of.the curves have been rounded off to obtain a continuous 

curve. The resulting curve and its image corresponding to the lower 

domain wall are shown in Fig. 5.2. It may be noted that the sections 

of ellipses need not be symmetrical about the line x=a, where the current 



Function 

Cauchy 

Gaussian 

Higher order 
Cauchy 

Higher order 
Gaussian 

Sinusoidal 

Symmetrical 
ellipses 

Asymmetrical 
ellipses · 

. 
Table 5.1: Normalized Cutting Field for b•h and h•B.41 Calculated from Several Functions 

Equation of Domain Wall 

f (x) 

bx2 I [ (x-a) 2+a2 

b+b/a(x-a)exp-[(x-a)2/2a2-1/2] 

b[l + ~6 a(K-a)3 .] 
[ (x-a) 2+a2 /3] 2 

b+b/a(x-a)exp-[(x-a)4/4a4:...1/4] 

x < .:a 

'11'(x-a)] p[l+sin 2a -a < x < a 

b x > a 

b x < -a 

b [l - Ji-x2 /a2
] -a < x < a 

b[l +)l-(x-2a) 2/a2] a < x < 3a 

b x > 3a 

b x < -a 

b [l - ./i-x2 I a2
] -a < x ~ a 

a < x < 3a 

x ~ 3a 

Radius of 
Curvature R 

. 2 
a /b 

a2/2b 

2a2/3b 

~2 /4b 

2 2 
4a /'11' b · 

or 

Notch Area 
(See Fig. 5.2) 

co 

abe~ 

co 

'2ab/'11' 

1f 
- ab 2 

'If 
- ab ·2 

or 

'If 2 ac 

.. 

Normalized Cutting 
field Hr/41rM8 
at h=8.lM, b•h 

0.635 

0.615 

0.475 

0.45 

0.595 

0.27 

0.29 
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carrying wire is located. The field due to the current drives the walls 

apart for x > a and pushes them together for x < a. Thus, cutting takes 

place at the origin when the total field on the wall at the origin is 

equal to or exceeds the cutting field. 

To ensure.that the point Pin Fig. 5.2 is in equilibrium at the 

instant of cutting the ratio c/b was detennined at each value of plate 

_thickness all.d strip width which makes the cutting field calculated at 

point 0 equal to the field calculated at P. As an illustrative example, 

when b=h and h=_8.£M, it was found that a value of c = 0.3b makes both 

fields equal. Thus, H.., H and H..+H calculated at points 0 and P -'M eq -'M eq 

are plotted as a function of a/h in Figs. 5.3(a) and 5.3(b), respectively. 

It, is seen that cutting occurs when a/h == 0.6, and the cutting field 

Hr is equal to 0.29 x 4nMs. 

The cut~ing field was computed as a function of b/h for plates of 

thickness 6~ and ~ and represented in Fig. 5.1 by the solid lines. 

It can be seen th~t the agreement with the experimental values is good. 

Fig. 5.4 shows c/b as a function of b/h for h=6~ and h=~· It is 

interesting to not~ that for both thicknesses c/b was found to vary 

linearly with b/h. 

5.2 Replication of Bubble Domains 

A !-:heoretical study of magnetic field required to replicate 

bubble domains has been made. The domain wall at the instant of cutting 

was considered to consist of sections of ellipses and circles given by: 
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Fig. 5.4: c/b as a function of b/h for h=6~ and 8~. 
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f (x) • ./b2 
- (x+a)

2 
-(a+b) < x < -a 

-a< x < a 
. -

f(x) • b [l + c/b }1 - (x-2a) 
2 
/a

2
] 

f (x) • ~b2 - (x-3a)
2 

(5.10) 

a < x < Ja 

la < x < (3a+b) 

The resulting curve and its image corresponding to the lower domain 

wall are shown in Fig. 5.5. This domain wall shape is somewhat 

similar to the one considered in Section 5.1 (represented by equation 

(5.9)) to study the current required to cut a strip domain. The 

difference is that both ends of the shape represented by equation (5.9) 

have been t·erminated by circles in order to depict the shape of the 

bubble walls just before cutting takes place. 

The method for obtaining the cutting field described in 

Section (5.1) was employed to calculate the bubble replication field as 

a function of plate thickness and bubble diameter. The results of these 

calculations are plotted in Figs. 5.6 and 6.7. 

It can be seen from Figs. 5.1, 5.6 and 5.7 that a larger cutting 

field is required to cut a bubble from another bubble. As an 

illustrative example, for h=8~ and b=h, a field approximately equal to 

0.6 x (4irM ) is required to rep.licate a bubble domain, while the field . s 

required to cut a strip domain is only 0.29 x (41rM ). s 
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5.3 Conclusions 

An experimental and theoretical investigation of the current 

required to cut a strip domain has been reported in this chapter. It 

was shown that a good agreement between the theoretical and experimental 

results is obtained when the wall is considered to consist of sections 

of ellipses and straight lines just before cutting occurs. Also, a 

theoretical study of the field required to replicate a bubble domain 

has been presented. 

The work reported in this chapter completes the first phase of 

a study of current requirements to cut strip and bubble domains. More 

work is required to study the various other structures that can be used 

to generate bubbles in bubble devices. An example is the optimization 

of the hairpin-type conductor bubble generator, which is normally used 

in current-access bubble devices. 



CHAPTER VI 

CONCLUSIONS 

Possible device applications for bubble domains in uniaxial 

magiietic materials have spurred interest in investigating these 

materials both theoretically and experimentally in order to obtain a 

better understanding of these materials and their complex domain 

structure. Thus, a study of domain walls in some uniaxial materials 

has been undertaken and presented in this thesis. 

It has been shown that the anisotropy of wall energy in ortho-

ferrites causes bubble domains to be elliptical. A formula relating 

the eccentricity of an elliptical bubble to the anisotropic wall 

energy has been derived, and an experimental technique for measuring 

the wall anisotropy has been described. In Sm0 •55rb0 •45Fe03 a 

measured anisotropy energy of 1.7% of the average wall-energy density 

at room temperature is responsible for eccentricities as large as 0.4 

of aver~ge bubble radii equal to 85% of the bubble strip-domain 

transition radius. In attempting to explain wall anisotropy physically, 

it was suggested that in orthoferrites walls parallel to the .2. axis 

. , 
are Bloch walls, while walls parallel to the .Q. axis are Neel walls. 

To investigate this hypothesis,- the wall-energy anisotropy was measured 

as a function of the quality factor q by varying the temperature of the 

sample. The measurements seem to verify the predicted dependence of 

wall anisotropy on q and the hypothesis. 

(70) 
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Methods for obtaining the temperature dependence of the material 

characteristic length for the mixed rare-earth orthoferrites and the 

garnets using an isolated bubble domain without collapsing it have been 

developed. These methods led to the derivation of the temperature 

sensitivities of bubble domains in·the rare-earth orthoferrites and 

the garnets in terms of t~e material parameters. It was found that 

for garnets there exists an· optimum plate thickness of 6~ to minimize 

the sensitivity, although this minimum is fairly flat from 4~ to 10~. 

For the orthoferrites on the other hand, it is preferable to use as 

thick a plate as possible subject to other constraints. For both 

materials, it was found that a·smaller temperature sensitivity is 

obtained when the arithmetic mean diameter is used as the bias condition. 

The condition for zero temperature sensitivity of bubble domains in 

some uniaxial garnets has been obtained in terms of the material 

parameters. The ratio of the fractional changes in wall energy density 

and saturation magnetization which.gives zero temperature sensitivity 

has been plotted as a function of plate thickness and bubble diameter. 

The resulting curves can be used in designing bubble devices having 

fixed bubble sizes. 

Finally, a study of the current requirement to cut a bubble 

from a strip domain in uniaxial plates has been carried out both 

experimentally and theoretically. Various functions have been used to 

simulate the shape of the walls at the instant of cutting. It was found 

that good agreement with the measured values of cutting field is 

obtained when the wall shape was considered to consist of sections of 



ellipses and straight lines. Also, a theoretical study of the field 

required to replicate a bubble domain has been made and the results 

given. 

72. 
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