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INTRODUCTION 

The theory of extensions of partially ordered sets started 

with MacNeille's celebrated paper [13], in which certain special 

extensions of partially ordered sets were introduced and which 

contains in particular the well known MacNeille completion, 

generalizing Dedekind's famous construction of the reals from 

the rationals. While the MacNeille completion preserves desirable 

properties of lattices in certain cases (for example the property 

of being Boolean) it fails to do so in other cases (for example 

in the case of distributive lattices). This led to the attempt 

to extend and systematize MacNeille' s ideas (1, 3, 15] • In 

order to get adequate results these authors restricted themselves 

to the case of join (meet) dense extensions. The theory thus 

obtained lacks (contrary to the theory of partially ordered sets 

as a whole) the property of being self dual. One starting point 

of this thesis was the attempt to develop a self dual extension 

theory including the join and meet dense extensions as special 

cases. The class of "dense" extensions introduced here has these 

properties. 

Another starting point of this thesis was the observation 

that equations in a partially ordered set (also including those 

involving infinitely many variables) are in general not preserved 

v 
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in arbitrary extensions of it. Thus .F\mayama (a] gave an example 

of a distributive lattice whose MacNeille completion is not modular 

answering a question posed by MacNeille. A\l.so Dilworth and 

McLaughlin [7] gave an example of an infinitely meet distributive 

lattice whose MacNeille completion is not modular. In addition 

P. Crawley [5] gave an example of a distributive lattice which has 

no complete completely faithful extensions (E, w) where E is a 

modular lattice. We have tried here to .find necessary and suff­

icient conditions for the existence of extensions which preserve 

equations holding in the underlying set. The classes of partially 

ordered sets for which we have obtained results in this direction 

include distributive, Boolean and meet continuous lattices. A 

brief synopsis of the material in this thesis follows. 

In Chapter 0 we collect together the basic definitions and 

results which we utilize in the ensuing chapters~ 

In Chapter I we introduce the concept of a dense extension 

of a partially ordered set and observe that this class of extensions 

include the classes of join dense and meet dense extensions. We 

obtain a complete survey of dense extensions by proving that each 

dense extension is equivalent to an unique canonical dense extension. 

Further we prove the equivalence theorem for dense extensions, 

namely, any two dense extensions which are injectively smaller than 

each other are equivalent. In addition we give conditions under 

which a given canonical dense extension is complete,, respectivel.Jr 
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yr'(- I{ faithful. ·.Finally we introduce the concepts of dense 

(join dense, meet dense) kernels ot an arbitrary extension and 

study the properties these inherit from the given extension. 

In Chapter I~ we study dense extensions of certain special 

lattices. We establish that for each infinite cardinal m the join 

dense extension provided by the m complete lower ends of a meet 

continuous lattice is meet continuous. In particular we deduce 

Crawley's result [5] that the injectively largest completely 

faithful join dense extension of a meet continuous lattice is a 

meet continuous extension and in addition we establish that up to 

equivalence this is the only such join dense complete completely 

faithful meet continuous extension. "Further we obtain necessary 

and sufficient conditions for a complete completely faithful 

canonical join dense extension of a distributive lattice to be a 

distributive extension. We also show in this chapter that a 

Dedekind-MacNeille extension of a Boolean lattice is up to equiv­

alence the only finitely faithful Boolean extension which is a 

join and meet completion. We further give an example of an 

infinitely meet distributive lattice L whose Dedekind-MacNeille 

· extension is not meet continuous · and observe that L 

has no complete finitely meet faithful meet dense meet 

continuous extensions. 

The various dense kernels of an ext;ension introduced in 

Chapter I cannot be suitably described in the categoey whose 
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objects are all extensions of a partially ordered set and whose 

maps are order preserving homomorphisms. In order to overcome 

this difficulty we consider in Chapter III several more restricted 

categories whose objects are extensions of a given partially 

ordered set. We obtain for example that the injective join dense 

kernel of an extension is up to equivalence the injectively largest 

join dense extension which is injectively smaller than the given 

extension in the category whose objects are extensions and whose 

maps are join preserving order homomorphisms or join dense. We 

also study the relation between the injective and projective 

orderings in suitable categories of complete dense extensions. 

Finally in this chapter we obtairi a categorical characterization 

of the injectively largest completely faithful join dense extension 

ot a meet continuous lattice. 



CHAPTER 	 0 

PRELIMINARIES. 


This chapter is a collection of all the basic definitions and 


results which will be needed in the ensuing chapters. 


l. 	Lattices and Homomorphisms. 


A general reference for the definitions and the results in 


this section is Birkhoff [2]. 

A partially ordered set is a pair (P, ~) where P is a set and 


:!!!G:-	 is a binary relation in P which satisfies 

(Pl) For all x, x~x (Reflexive) 

(P2) If x~y and y:.&:.. x then x = y (Antisymmetric) 

(PJ) If 	x,f;y and y~ z then x~z (Transitive) 

If (P, 6) and (Q, 6) are any two partiall.y ordered sets a mapping f 

from P into Q is called an order homomorphism if x~y implies f(x)~ .f'(y}. 

If further· for an order homomorphism f we have f(x)6f(y) implies x:!!:.y 

then f 	 is called an order isomorphism. .. 
Given a 	relation6 on X one obtains a relation~ on X called 

/fr
its converse by requiring x -6 y if and only if' y :!fE:. x. It follows by 

inspection of (Pl) - (P3) that the following Duality Principle holds, 

namely, 	the converse of any partial ordering is a partial ordering. 

One can manu.f'acture from given partially ordered sets new ones. 
~ .. 

For example given (P1 6) we obtain its~ (P, ~) where 6. is the 

l. 
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converse of the given relation on P. Further if (P,~) and (Q, b) 

are given we obtain two new partially ordered sets called respectively 

their ordinal sum and ordinal product as follows: 

(l) Put P&?; Q =PU Q where we assume without loss of generality that 

P, Q are disjoint. We partially order P$ Q by requiring that a~ b 

retains its original meaning if a, b are both in P or in Q and that 

a 6. b holds for all a in P, b in Q. 

(2) Po Q = { (p, q)/ Pf:. P, q€: Q }· We partially order P.Q by placing 

(pl' ql) ~(p2, q2) if and only if pl£ p2 or P1 = p2 and q1~q2 • 

A partially ordered set in which for every pair of elements 

x, y we have either x~y or y ~ x is called total.ly ordered or a chain. 

It is clear that the ordinal sum and ordinal product of chains are 

again chains. A chain C is called dense-in-itself if given a4b in C 

there exists a c in C satisfying a' c "'-b. 

Let R be the chain of all rational numbers~ 

Theorem 1: in:y countable chain is isomorphic with a subchain of R. 

in:y countable chain which is dense-in-itself is isomorphic with either 

R, R$11 l<BR, or l~R€el. In particular the chains R$R, Bo R are 

both isomorphic to R. 

1 lattice is a partially ordered set (P, 6) any two of whose 

elements have a greatest lower bound or "meet" xAy1 and least upper 

bound or "join" xvy. 1 sublattice of a lattice L is a subset which 

contains with any two elements their join and their meet. We remark 

that a subset of a lattice may be a lattice with respect to the ordering 

on L without being a subl.a.ttice of L. 1n element o of a lattice L is 

http:total.ly


called a zero element it o=.x for each x in L. Similarly an element 

e of L is called an unit element it x~e for each x in L. 

Let L. be a lattice with zero element 0 a.nd unit element e. 

An element y in L is called the complement of an element x in L if 

a.nd only if x 11 y = o a.nd xv y = e. L is called complemented if all 

of its elements have complements. 

A lattice L is called distributive if and only it it satisfies 

one of the following equivalent conditions 

(Ll) x" (yvz) = (xi\ y) v (xAz) 

(L2) xv(yAz) = (xvy)/\ (xv z) 

(L3) x A(yvz) L. (xAy)v (xl\z) 

Criteria for establishing a lattice to be distributive is given 

in the following theorem a proof of which may- be found in Curry [6] . 

Theorem 2: Let L be a lattice. 

The following conditions are equivalents 

(1) L is distributive 

G2) aA(bvc)f: (a/\b)vc 

(3) aAb~c, a~bvc implies a~c. 

(4) a 11. b ~ b" c, av b :S bv c implies a6.c. 

A complemented distributive lattice is called a Boolean 

lattice. In general, if an element of a lattice has a complement 

this need not be unique. However, in a distributive lattice an 

element has at most one complement. In particular every element of 

a Boolean lattice has an unique complement. 
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Theorem 3: Every Boolean lattice L is infinitely distributive, that is, 

for each a in L and each subset X of L if 'b' X exists then Va"' X exists 

and a "'-&x = '¢7'a "X and if' ~ X exists then t{\ a vX exists and 

av ~X =~ avX. 

A partially ordered set in which every subset has a meet and a 

join is cal.led a complete lattice. 

Theorem 4: Let P be a partially ordered set. The following conditions 

are equivalent: 

(1) Every subset of P has a join. 

(2) Every subset of P has a meet. 


Hence a partially ordered set is a complete lattice if and only if one 


of (1), (2) hold. 


Let L be a complete lattice and R a sublattice of L. R will be 

called a{meet -} complete sublattice of L if and only if /R\ Hlexists 

~- WHl 

tor evecy subset H of R and coincides with ~: } . 

R is called a complete sublattice of L if and on].y if it is both a 

meet and join complete sublattice of L. We remark that a subset of a 

complete lattice may be a complete lattice with respect to the given 

ordering without being a complete sublattice. Examples of complete 

lattices are furnished by closure systems. A closure system is a pair 

(E, (}( ) where E is a set and (]{ is a collection of subsets of E such 

that ~cf{)( implies n~ G: ()( • We remark that EE {]( since E is the 

intersection of the empty collection. 



Theorem 5: If (E, O'C) is a closure system then (J( partially ordered 

by inclusion is a complete lattice in which an arbitrary meet is set 

intersection but in general arbitrary joins is not set union. 

A mapping f from a lattice R into a lattice S is called a 

meet homomorphism if for any x, y in R we have f(x" y) = t(x) A f(y); 

it is called a join homomorphism if f(xv y) = f(x) v f(y) for every 

x, y in R. A meet and a join homomorphism is called a lattice homo­

morphism. Further a mapping f from R into S is call.ed a join complete 

lattice homomorphism if and only if (1) f is a meet homomorphism 

(2) for every subset Hof R such that '{/ H exists we have~ f(H) 

exists and f( ~H) =~ f(H) and it is called a meet complete lattice 

homomorphism if (3) it is a join homomorphism and (4) for every subset 

H of R such that £ H exists ~ t(H) exists and f( ,~ H) = /s\ t(H). 

2. Categories and Functors. 

In this section we give the definition ot a category and some 

related concepts. A general reference for the definitions given here 

is Ma.cLane [12] 
A category f; consists of a class of objects and with each pair 

X, Y of objects a set H(X, Y) call.ed the set of maps f: X~Y such that 

for any three objects X, Y, Z in ~ there is given a mapping H(X, Y) 

H(Y, Z)~H(X, z:) denoted by (f.g~.r which satisfies (1) t : X~Y, 

g : y_,. z, h : z_,,T then h.(g.f) • (h.g).f. (2) For each object X in~ 

there exists a map e.x in H(X, X) .such that 8,x•f • t tor all fE:H(Y,X) 

and r.6x • t tor all t in H(X, Y). 

x 
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An element in H(1, 1) for any A;. int is called an identity ma12. 

'rhe objects of ~ are in one to one correspondence 1~H(1, .l) with the 

set of identities. 

Let ~ and !Jbe categories. .A. function T which maps the objects 

of ~ into the objects of /} and, in addition, assigns to each map f in 

~ a map T(f) in ft is called a covariant functor f'rom ~ intoi) if' 

the following conditions are satisfied: 

(1) If t is in H(1, B) then T(f) is in H(T(1), f(B)) for any A, B in ~. 

(2) If ~ is in H(1, 1) then T(-e.~ • e':l'(J.) for any 1 in ~ 

(3) If f' is in H(J., B) g in H(B, C.) for any A., B, C in ~ then 

T(g.f') =T{g) T{f). 

Further T is called a contravariant functor from (to JJ if' the above 

conditions are replaced by 

(11 ) If f is in H{A, B) then T"(:r) is in H{T{B), T (A)) for any 1, B in '· 

(21) If€ A is in H(.l, 1) then T(e1 ) = e!(A) for any 1 in C. 
(31 ) If f is in H{1, B), gin H{BJI C) for any 1, B, C in ~ then 

T(g • .t') = 'l'{f) 'f{g). 

If '1' is a functor from eto j} and S is a functor from /l) into 

~ then they may be composed in the obvious manner to form a functor 

S'!' from " into [. If ! , S: have same {opposite) variance then ST is 

covariant {contra.variant). In view of property (2) above we see that 

a functor T is. completely determined by the function T defined for 

maps only. Thus a covariant functor is essential.17 a homoJOOrphism 

of the ma.pa ot t; to the maps ot lJ subject to the condition that the 

identities be mapped to the identities. One functor that al.w~s exists 
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is the identity functor I' defined from ~ into ~ 'Which keeps each 

object and map of C fixed • 

.l category Cwill be ca.lled equivalent to a category jj it and 

only if there axists a covariant (contravariant) functor s: from ~ into 

iJ and a covariant (contravariant) functor T from iJ into ~ such that 

TS =Ir; and S't • 1o8. .l map f in ~ from P to Q is ca.lled a mono-

morphism if and only if u, v are any two maps from B into P with t • u = 

f o v then u = v; it is called an epimorphism if and only it tor any 

maps u,, v from Q into :a with u. t • V• f then u. = v. 



CHAPI'ER I 


DENSE EXTENSIONS OF A PARTIALLY ORDERED SET. 

In this 	chapter we introduce the concept of a dense extension 

of a partially ordered set. The class of these extensions will be 

found to include the classes of join dense and meet dense extensions 

studied in [1, 3, ii}. Whereas the notions of meet dense respectively 

join dense extensions are not self-dual the notion of dense extension 

will be seen to be self-dual in the sense that if (R, w) is a dense 

extension of P then {R*, w) will be a dense extension of P* where 

P*, R* are the duals of P, R respectively. We will introduce on the 

class of all extensions an injective and a projective ordering and 

study the basic relations between them. We will establish as well 

in this chapter a canonical form for dense extensions in terms of a 

system of lower and upper end pairs. In addition we will study complete 

dense extensions and various classes of faithful dense extensions and 

state pertinent results about their canonical forms. 

l. 	Some Preliminary Definitionso 

In this section we introduce the definitions of the various 

dense extensions, injective and projective orderings and state the 

Duality Principle for extensions and some other basic results. 

Let P be a parti&lly ordered set. 


Definition l: An extension of P is a pair (E, w) consisting of a 


8. 
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partially ordered set E and an order isomorphism w from P into E. 

Let (R, w) and (s-, Jf) be any two extensions of P. 

Definition 2: (R, w) is injectively smaller than (s, Jf) (or (S, 7l') 

is injectively larger than (R,, w)), written (R, w) 6. 
(. 

(S, Tl ) if and 

only if there exists an order isomorphism t from R into S such that 

t •W =Ir. Fw-ther (R, w) is said to be eguivalent to (S, X), written 

(R, w) ~ (S, Jr), it and only if there exists an order isomorphism f f'rom 

R ~ S such that f•w = )[. 

Dually we give 

Definition 3: (R, w) will be called projective].y larger than (S, Tr) 

(or (S, JT) is projectively smaller than (R,w)), in symbols, (R, w) ~p 

(S,7f) if and only if there exists an order epimorphism t from R .2!.1.!:.2. S 

with f.w =7(. 

The relationship between the above two orderings will be studied 

in suitable categories later. We now, however, state some basic proper­

ties of these orderings which are immediate consequences of the defin­

itions. 

Proposition 1: The relations of injective, respectively, projective 

orderings are quasi-orderings whereas the relation ~is an equivalence 

relation. Further both orderings are compatible with the relation ~, 

that is, if' (R, w) ~i. (s, 7[) ( (R,, w) ~p(S, :r))and if (R, w) ~ (R1 , wl), 

(S, jf) c:! (s1 , Jfl) then (R1, w1) Li (s1, j{'l) ((Rl., w1) ~p (st wl)) • In 

addition if (R, w) ~ (s, Jf) then (R, w) ~i (s, Jr) and (s, Jr) ~i (R, w) 

( (R, w) ~p (S,JC) and (S,7f) ~p(R, w) ). 

In general it (R, w) -!::i (s, 7f) ( (R, w) ~p (s, Jr) ) then the 
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order isomorphism f (order epinx>rphism f) from R into S (R onto S) with 

f .w = 1f need not be unique. Fllrther (R, w) need not be projectively 

smaller (injectivel.y larger) than (S, JO. In addition any two ex­

tensions which are injectively or projectively smaller than each other 

need not be equivalent. We give examples ot these facts. 

Examf!le 1. I.et P =[o, J~, R =[o. 3J, 3 = [o, ;J be intervals oft.he 

real numbers a.nd let i be the identity mapping from P into R, S 

rf:l;rpecllively. Then clearly (R1 1) {:i. (s·, i) by the identity mapping 

tzio;n R but (R, .i.) is not J2:r'Cl foctiv<~lz sm.allei: than (s·, i) since S baa 

an Ut4it element and R does not. 

ffisarr!111.!.l• Let P ""' {aJbe a one element set a.nd let R = fa,p,q,r,s,t} , 

S = {a.,v ,w,x,y,~} be sets containing P whose order relations are given 

by tho f'ollowing dia.gr8Jl13. 

oP 

/I~

t\~/s YJ 


..... _.. 
,<~,..., z;~ 

( v 
i 

6 ' (I•• 
! 

:"..;;,:~ i ho t.he ideat.it;r I>m.pping fro,,; . .'l·F;;1 (R.P i) ;;:.? (S, 1) f(lr cle<ir}y 

tr.e ma.;1pin;; Z d1·C.ri.ec:. by f(a) = a 9 ~(11: = x, f\11) = J~ 1'(r) = v, 
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the mapping g given by g{a) =a, g{p) = x, g{q) = z, g (r) =v, 


g{s) = w, g{t) =y also makes (R, i) ~p (S' i) but f=/:= g. Further 


(S, i) is not injective1y smaller than (R, i). ·Otherwise there would 


exist an order isomorphism h from S into R with h(a) = a. But then 


since R and S have the same number of elements h would be also onto. 


But then the lattices R - P, S - P would be isomorphic. However, R - P 


is modular and S - P is not and this contradiction establishes our claim. 


Example 3. [Bruns, 3] 

Let P, (R, i), (S, i) be as in example 1. Then (R, i) 6i (s, i). 


Further (S, i) ~i. (R, i) since one has that ( [o, 2], i) ""(S, i) (by 


defining f(r) = r if r in P and t(r) =2r-l it r in [l, 2] ) and 


C[o, 2], i) =l (R, i). However, (R, i) is not equivalent to (S, i) 


since S has an unit element and R does not. 


Example 4. Let R be the chain of rational numbers, S any partially 


ordered set and N the chain of integers. Consider the ordinal 


products R.R and R.N. :Form the ordinal sums P = R.Rc±)s and Q = R.N<i) s. 


Then the identity mapping i from S makes (R.R<i)S, i) and (R.H@S, i) 


into extensions of s. The mapping f from P into Q given by r = i on S 


and r(r, s) = (r, [s] ) where [s] is the greatest integer less equal s 


is clearly an order epimorphism from Ponto Q with r.i = i, that is, 


(P, i) ~p(Q, i). By Theorem l of Chapter 0 there exists an order 


isomorphism g from R onto R·R• Define h from Q to P by h = i on S 


and for any (r, n) in R.H, p1.1t h(r, n) == g{r). Then since g is an 


order isomorphism onto R.R we have immediateq that h is an order 
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epimorphism .from Q onto P with h.i = i, that is, (Q, i) ~p(P, i). 

However, (P, i) is not equivalent with(Q, i). Otherwise we would 

have R.R order isomorphic with R.N. This, however, is a contradiction 

since R.R is dense-in-itself but clearly R.N is not. Hence (P, i), 

(Q, i) are projectively larger than each other but are not equivalent. 

Definition 4: A subset S of a partia.lly ordered set P will be called 

dense in P if and only if for any x, y in P with x.+y there exists a 

s in S with s :!f. x and s 4- y or s ?J:. y and s -p Xo S is said to be join 

dense in P if and only if every x in P is a join in P of elements of 

S. S is said to be meet dense in P if and only if every x in P is a 


meet in P of elements of s. 


Remark 1: It follows immediately from the above definition that if' 


S is join dense (meet dense) in P then S is dense in P. Further if' 


S is join dense (meet dense) in P then for any xf y in P there exists 


a s in S with s ~ x, s4 y (s~y, stx) but the converse is not tr1.1e,. 


For example take P = {a, b, c) a three element chain with largest 


element a and smallest element c and take S ={b} .. Then clearly S 


is neither join dense nor meet dense in P bu.t S is dense in P~ 


Definition 5: An extension (E, w) of a partially ordered set P will 

be called a dense extension of P if and only if w(P) is dense in E. 

It is called a, join dense (meet dense) extension ot P if and only if 

w(P} is join dense (meet dense) in P. 
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In view of the above remark it follows immediately that every 

join dense (meet dense) extension is also a dense extension. The 

relation between extensions of P and the extensions of its dual P* 

is given by the following 

Proposition 2: (Duality Principle for Extensions). rhe mapping f 

which attaches to each extension (R, w) of a partially ordered set P 

the extension (R~ w) of the dual P*, where R* is the dual of R, is 

a one to one mapping of the class of all extensions of P onto the 

class of all extensions of P*. )foreover we have the following 

properties: 

(1) (R, w) ~ (s, Jf) if and only if (R*, w) ~ (S*, rr). 

(2) (R, w) ~,(s,Jt) ((R, w) ~p(S,Jr)) if and only if (R*, w)~i 

(S*, 7() ((R*, w) ~f (S*,Jf)). 

(3) ·(R, w) is a join dense (meet dense) extension of P if and only 

if (R*, w) is a meet dense (join dense) extension of P*~ 

(4) (R, w) is a dense extension of P if and only if (R*» w) is a dense 

extension of P*.. 

Proposition 3: Let (R, w) be any extension injectively smaller than 

a dense extension (S, 10 of P. Then (R, w) is a dense extension. 

In particular all extensions of P equivalent to a dense extension 

are dense ext.ensions. 

Proof: (R, w) injectiv~ smaller than (S,Jr) implies the existence 

ot an order isomorphism t trom R into S with t .w a j( • fake any a, b 



in R with a f b. But then t (a)~ f(b) and since Jf (P) is dense 

in S there exists a x in P with Jf (x) ~ f(a) and TC (x)~ f(b) or 

J[ (x) ~ f (b) and "JT(x) ';/:; f (a). ·Finally since r.w = 1(' and r is an 

order isomorphism we have from the previous line that w(x) ~ a and 

w(x) ~ b or w(x) ~ b but w(x) *' a, that is, w(P) is dense in R. 

Thus (R, w) is a dense extension and this completes the proof. 

Remark 2: (Bru.ns, 3J . 
In a similar manner one can establish that any extension injectively 

smaller than a join dense (meet dense) extension is join dense (meet 

dense). 

The dual situation to that mentioned in Proposition 3 is not 

true in general; namely if (R, w) is projectively smaller than a 

dense extension then (R, w) need not be densee The following 

examples illustrate this factG 

Example 5: Let P ={a, ·b, cJ be a three element chain with smallest 

element a and greatest element c. Let R. ={a, b, c, p, qJ and 

S = {a, b, o, r, sJ be two sets containing P whose order relations 

are described by the following diagrams: 

c c 

b b 

p s 
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Then {R, i), {S, i), i being the identity map from P are extensions 

of P. Also (R, i) is clearly a dense extension of P, but (S, i) is 

not a dense extension since s~r but each element of P comparable 

with s is comparable with r. Consider the mapping f from {R, i) 

onto (S, i) which maps P identically and f(p) = r, t{q) = s. !hen 

of course f is an order epimorphism with f • i = 1, but (S, i) is 

not dense. 

Example 6: Let P == {a, b, c} be a totally unordered set and let 

R = {a, b, c, x, y J, S = {a, b, c, u, vJbe sets containing P whose 

orderings are given by the diagrams below: 

M
a. b 

Then (R, i) is a join dense extension of P, but (S, i) is not a join 

dense extension, i being the identity map. But clearly (R, i) ~P (S, i~ 

In at least one case the situation mentioned in the above 

exaznple does not occur as the following proposition shows. 

Proposition 4: Let (R, w) be a dense extension projectively smaller 

than a join dense extension (S, 7( ). Then (R, w) is a join dense 

extension. 


Proof: (R, w) projectively smaller than (S; 1[) implies there exists 


an order epimorphism t trom S onto R with t .)t • w. Take any r in R 
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and suppose f(s) =r. Now we claim r ='5f{w(x)/w(x)~r}. 'rake 

any c in R, c ~w(x) tor each w(x) ~ r. Suppose c F r. Then since 

(R, w) is a dense extension we have a y with w(y)~ c but w(y)* r. 

But then Jr(y) ~ s and since (S, 1() is join dense there exists a z 

with 7[(z) =s but z ~ y, that is, y ~ z with w(z)~ r. But from 

the previous lines y ~ x for each x with w(x) L r. This contradiction 

establishes our claim and also the proposition. 

2. A Canonical Form for Dense Extensions. 

In this section we obtain a canonical form for dense exten­

sions and establish the basic equivalence theorem for dense extensions 

which states that any two dense extensions which are injectively 

smaller than each other are equivalent. 

Definition 6: A subset A of a partially ordered set P will be cal.led 

a lower end if and only if x in .A and y6. x imply y in A. Dually a 

subset E of P will be called an upRer end if and only if x in E and 

y ;:;. x imply y in E. 

Examples of lower and upper ends of particular impo:rlance are 

the principal lower ends, respectively the principal upper ends 

generated by a single element of P. Thus for any x in P the principal 

lower end generated by x is (-c- x J=[y/yf:: P, y~ x} and the principal 

upper end generated by x is [x~} ={y/ y GP, y ~ x} . 
Let (}!

0 
[ respectively be the collection ot all lower and upper

I 0 

ends, O'((P), t(P) respectivel.¥ the collection ot all principal lower 
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and upper ends of a partially ordered set P. Let .f2. be the Cartesian 

product of (}/ , [ , that is, 
,, 0 

(i) _(L =[(A, E)/.a.EO!, EE- Co} 
(ii) ~ = { (( fC;-x] , [x_,.)) / xc- P } 

For any subset S of P write 

(iii) )iaS = { y / y f; P, y ~ s for each s in S } 

(iv) )iiS ={y/y c:- P, y ~ s for each s in S } 

For our purpos~s we are main]¥ interested in the sets contained in 

the following subset of.fl . 

(v) J:
0 

={CA, E) / (1, &)<: _Q with E ~)iaA } 

We remark that 1
0 

contains 6 and also that 

(vi) ~o ={(.A., E)/ (A, E)E-fl. with A c;;)iiE J; for A is a subset of 

)ii& if and only if.Eis a subset of )id.. 

Further for any subset;( of 11 define 

(vii) pr1():) ={A/A.E OJ , there exists E El with (A, E) E ~ J0 

(viii) pr2(~) = [ E /EE C0 , there exists 1 €OJ with (A, E) E ~ J 
(ix) For any pair of elements (A1, E1 ), (.A.2 , ~) in i put (A1 , &1 ) ~ 

(A2, ~) if and only if .A.1~A2 and Ei2~· 


Also for any subsets~ of fl containing A, ()rof ();}containing 0C(P), 


[ of { containing t (P) define the following mappings from Pinto these 

0 

subsets: 

(x) o( f'rom Pinto~ given by o((x) = ((~xJ, (x~))~ 

(xi.) a(1 from P into 01' given by o(1(x) = (t- x]. 

(xii) ~ f'rom P into l given by- <)_(x) .,.. [ x ~). 

http:E)/.a.EO


l.8. 

We now 	have clearzy 

Proposition 2: !he relation 6 is a partial ordering on .fl... and the 

pair ( ~, «) where x is any subset containing ~ is an extension of 

P. 

For any (I, Csatisfying, 0t{P) C (JC c.o;, C(P) ~Cf; Co 

define 

(xiii) 	er ( (}'() ={(1, MaA)/ A. t:- (jt f 
(xiv) 	 J (C) ={(MiE, E)/i E lJ 

The following definition will be usetu.1 in formulating 

results. 

Definition 7: Any subset ~of ~o containing L:::.. will be called an 

admissible subset of~ • The subsets er( Of ) , c5 {C:) will be called 

respectively the join admissible, meet admissible subsets induced 

respectivezy by (J(, {. • 

\'he importance of admissible subsets is realized in the 

following proposition. 

Proposition 6: A.ny extension (~, 0() where Jt is a admissible sub­

set is a dense extension. In particular ( ~o , o<.) is a dense 

extension. 


Proof: Take (A., E), (B, F) in jf and suppose (A, E) :$. (B, !F). 'i'his 


gives either A$ B or E ~ F. How if A$ B then there exists x in A 

but x not in B. !'hen since ~is admissible we have E ,S:MaA S: Ma (~ x] 

=~{x). Hence o( {x) ~ (A, E) but since x is not in B, 0( (x) 4 (B, F). 

Du&J..zy if F. ;j2. F there exists x with 0( (x) ~ (B, F) but o( (x);;: (A, E). 
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Thus ol.. (P) is dense in * and (x , o<) is a dense extension. This 

completes the proof. 

Proposition 7: The extensions (o-(Ot), 0(), ( d ( r ) ) ,0() are respec­

tively join dense, meet dense. In particular the extension (cr(OJ),o<) 

is join dense and ( J ( C ) , o() is meet dense.0 

Proof: Take any element (A, MaA) in cr(OC). 'Dhen of course (A, Ma.A)~ 

o< (x) for each x in A. Thrther for any (B, MaB) in er (Of) which is 

greater than or equal to «.(x) for each x in A we have B2 A and thus 

MaBS:MaA., that is (B, MaB)~(A, MaA.). Thus (A, Ma.A)= V{o< (x) / xt:A:} 

By the duality principle we have the rest of the proposition and this 

completes the proof. 

'JJhe above propositions al.low us to make the following 

definitions. 

Definition 8: We shall call any extension of the form (.X, o<.) where 

~ is an admissible subset a canonical dense extension. The extensions 

of the form (er ( Ol), o<) will be called canonical .1oin dense extensions. 

Dually extensions of the form ( d ( l ) , c< ) will be called canonical 

meet dense extensions. 

Let P be any partially ordered set and (E, w) any extension 

of Po For any s in E define 

(1) L.(s, w) ={x / XE: P~ w(x) ~ s} • 

(2) U(s, w) = { x / x ~P, w(x) ~ s J. 
The following observation will be useful. 


Lemma 1: (E, w) is a dense extension of P if and only if for all 
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s, t in E : L(s, w)~L(t, w) and U(s, w).:;;2 U(t, w) imply s ~ t. 

Proof': Suppose (E, w) is dense. Then if s-f:.t for some s, t in E 

since w(P) is dense in E we have immediately L(s, w) $ L(t, w) or 

U(s, w);/2 U(t, w). Conversely if the condition holds and s.q;t 

then we have by assumption L(s, w) $-L(t, w) or U(s, w) ;j? U(t, w) 

which gives that (E, w) is dense completing the proof. 

Lemma l implies that if (E, w) is a dense extension of P 

then for alls, tin E if L(s, w) =L(t, w), U(s, w) =U(t, w) 

then s = t. fhe converse, however, is not true. 


Example 7_: Let P ={a, b, c) be a three element set contained in 


E = [a, b, c, x, y l. Let the ordering in E be given by the following 


diagram: 


Then certainly (E:, i) is an extension of' P, i being the identity 

ma.p. Further we have in X the condition if L(s, i) = L(t, i) and 

U(s, i) = U(t, i) then s = t for any s, t in :&. However, (E, i) 

is not dense for y*x but L(y, i) ~ L(x, i) and U(x, i) c U(y, i). 

Lemma 2: If (R, w) is any extension injectively smaller than a 

dense extension (S, 7[) of P' then there exists exactly one order 

isomorphism f' f'rom R into S with t.w ="Jf. 
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Proof: Since (R, w) is injectively smaller than (S, )i) there exists 

an order isomorphism t from R into S with f .w =J(. Let g be another 


order isomorphism from R into S with g.w =l[. Then for any r in R 


we claim L(f(r), )£) = L(g(r), ]() and U(.:f(r), jf) = U(g(r), JT). To 


see this take any x in P with Jl {x)~ f{r), then w(x)~ r since f.w =A, 

and f is an order isomorphism. But then g(w(x))=JT(x)~g(r) and thus 

L(f{r),J( )s;L(g(r),7[). The reverse inclusion follows similarly 

and by duality we have U{f(r), Jr) - U(g(r), ;r). Then by Lenuna l 

since (S,7[) is dense we have f(r) • g(r). Hence r = g and this 


completes the proof. 


Corollary 1: If (~ , 0() is any canonical. dense extension of a. 

partially ordered set then there exists precisely one order isomor­


phism from (;(, o<) to (}(d, Ol) which keeps A fixed, namely the identity 


mapping. 


Remark 3: [Bruns, 3] If (R, w) is any extension injectively 


smaller than a join dense extension (S, 7[) then the unique order 


isomorphism of Lenuna 2 from R. into Sis given by f(r) =~[lf(x)/ x~P, 


w(x) ~ r J and in case (S, 7l) is meet dense it is given by f{r) = 


Is\ {x (x) / r J . x ~ P, w{x) ~ 
\'he following theorem translates the injective ordering on 

canonical dense extensions to that of set inclusion. 

Theorem 1: ·Let ( X, « ) , ('JI, ex.) be canonical dense extensions. Then 

( .¥, o<) is injectively smaller than {~, ol.) if and only it 3( ~ -ig. • 
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Proof: If (~, o<) is injectively smaller than <'lj, 0() then 

there exists an order isomorphism f from 3i into "!JS I with f .o< = o<.
0 

Then from Corollary l we infer that f must be the identity mapping 

from x into 1J , that is,~= f( * ) 'i ~ •. Ci:<>nversely if ~ f;. }j- then 

the identity mapping f from Xinto 'lJ- is an order isomorphism with 

f.o< ==o<. Thus (X ,o() is injectively smaller than (~,o<.). This 

completes the proof of the theoremo 

Corollary 2: Any two canonical dense extensions are equivalent if 

and only if their canonical subsets are equalo 

The next theorem obtains a complete survey of dense extensions 

in terms of canonical dense extensions. 

Theorem 2: Let (R, w) be a dense extension of a partially ordered 

set Po 'llhen (:a, w) is equivalent to exactJ.y one canoriical dense 

extension (~, o(). The admissible subset of this extension is given 

by X ={CL(r, w), U(r, w)) / r E-RJ • 

Proof: Note first that ~ is an admissible subset for L(w(x), w) 

= (<:-x], U(w(x), w) = [x~) and henceAis a subset of~. A·lso 

since w is an order isomorphism L(r, w) is a lower end and U(r, w) 

is an upper end. Further U(r, w)~MaL(r, w) since if w(y)~r then 

w(y)~w(x) for each x in t(r, w), that is, y~x for each x in L(r, w). 

Now consider the mapping f from R into * given by f(r) = (L(r, w), 

U(r, w)). Then clearly f is onto ~ • Also since (R, w) is a dense 

extension Lemma 1 immediately gives that f is an order isomorphism 



and from the first line we get f • ol. = o(. Hence (R, w) is equivalent 

to (~ , «). If (~, «) is another canonical dense extension equiv­

alent to (R, w) then it follows that (3t, ~), C'tj, o<) are equivalent. 

This means that 3t =~by Corollary 2. This completes the proof. 

As a consequence of Theorem 3 we have the following theorem 

which does not hold for extensions in general. 

Theorem 3: (Equivalence Theorem for Dense Extensions). Let (R, w), 

(S, Jf) be any two dense extensions of a partially ordered set P. If 

(R, w) ~i. (S, Jt) and (S, ir) ~i (R, w) then (R, w) is equivalent to 

(S, Jr). 

Proof: By Theorem 2 there exist unique canonical dense extensions 

(,:t ,o£), (y, ol) which are respectively equivalent to (R, w), (S,Jf) .. 

Our hypotheses then give (.1(,o<) ~i. ('lj,oi) and (ry1 ot)1 6( (~1 ol)o 

By Theorem l we then have X,<;'}Jand ~i;;f, that is,'*.=J• Thus<.*,~), 

(~, £X) are equivalent and hence so are (R, w) and (S, J[). This 

completes the proof. 

Remark 4: An alternative proof of Theorem .3 without reference to 

canonical dense extensions may be given as follows. Since (R, w) ~ i. 

(s, IO and (S, 11 )~i:.(R, w) there exist by Lemma 2 unique order 

isomorphisms f from R into S and g from S into R with f.w =][ and 

g.TI=w. Then f.g is an order isomorphism from S into Sand (f.g).J[ 

• t.w =JC. The identity mapping i on S is al.so an order isomorphism 

with i. Jr • 1f. But by Lemma 2 since (S, 7f) is a dense extension 
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there is only one order isomorphism from S to S which keeps J[(P) 

fixed. Thus f .g = i and this means that r is onto. Hence (R, w) 

and (s,7[) are equivalent. 

Corollary 3: Every join dense extension (R, w) is equivalent to 

exactly one canonical join dense extension (a-(Ot),O<')o Dually 

every meet dense extension is equivalent to exactly one canonical 

meet dense extension ( 5([ ),0(). 

Proof: If (R, w) is join dense then in particular (R, w) is dense. 

Hence by Theorem 2 there exists an unique canonical dense extension 

(,X , o() equivalent to (R, w). Then by Remark 2 ( x, 0() is also join 

dense. Hence for each (A, E) in~ we have (A, E) =V{o< (x)/o<(x) ~ 
(A, E)J . Take 1j in MaA, then ~(y) ~ o< (x) for each x in A, that is, 

o{(y) ~ o( (x) for each x witho( (x)~ (A, E). Hence o( (y) ~ (A, E) and 

thus y is in E. But since if is admissible ES Mal, in all, E = MaA. 

Thus (A, E) = (A, MaA), that is,* is t~e unique join admissible 

subset induced by pr1 ( )f). The second half of the corollary follows 

by duality. This completes the proof. 

Remark 5: The canonical representations given in c·orollary 5 may be 

effectively reduced to representations just in terms of systems of 

lower ends, respectively upper ends as derived in Bruns [3J, 
Banaschewski [l] • Partially order all subsystems (j{ of (l. contain­

. 0 

ing ()f(p) by inclusion. Then a pair cor, <><,) is a join dense extension 



clearly equivalent with (<J( 01), 0() under the obvious map. Dually 

if we partially order all subsystems '[ of C
0 

containing l (P) by 

exclusion then all pairs ( {, O<'.:,) are meet dense extensions. Any 

such pair is then clearly equivalent to ( a(l. ), <X) under the 

obvious map. For this reason from now on when we refer to canonical 

join dense (canonical meet dense) extensions we will mean either the 

extensions ( 01, ot1) ( ( [, O<'.,i)) or the extensions (<J( Ot) ,o< ) , ( cf(E), a() 

induced by these and which are equivalent to them. 

The equivalence Theorem. .3 tells us that the collection Y' of 

all canonical dense extensions forms a partially ordered set under 

the injective ordering. The main features of this partially ordered 

set is listed in the next theorem. 

Theorem. 4: The collection Y of all canonical dense extensions of 

a partially ordered set is partially ordered by the injective ordering. 

In this ordering, it is a complete, atomic, Boolean lattice. The 

operations of meet, join, complement in this lattice a.re respectively, 

set intersection, set union and ( ~ = (~0-)t) VA• The unit element 

of this lattice is ( Jt , o<.) and the zero element is the trivial
0 

extension (A , 0(). Further ( ~o, o<) is the largest canonical dense 

extension of a partially ordered set. 

Proof: Let~ denote the collection of admissible subsets of -'f.0 • 

The mapping h from-;{ into 'C given by h( (x, o()) == i is clearly an 

order isomorphism .from "'f" onto ~ , ~ being ordered by inclusion. 



Further the mapping g from 'C into the power set or '*o - 6 given by 

g( 1") =:l - A is an order iso~rphism of~ onto the power set 

ry2.( f..0 - Ll), the power set being ordered by inclusion. Hence the 

composite map g.h from '({°onto 1-C-;(
0 
•Ll) is an order isomorphism. 

Since 'f<Cxo - .11) is a complete, a.tomic, Boolean lattice so is er. 
This completes the proof. 

We bring this section to a close by giving the following 

examples which show that in general no pleasant relationships exist 

between the injective and projective orderings even for dense or join 

dense extensions. 

Example 8: Let P ={a, b, c} be a. totally unordered set and let 

Q. ={a, b, c, x ~ , R =[a, b, c, x, y) and S ={a, b, c, z} be 

three sets containing P whose order relations are given by the 

following diagrams: 

/\. oc M. 
Then (Q.:, i), (R, i), (S~ i), i the identity map from P are clearly 

join dense extensions of P. Further, clearly (Q, i) ~i(R, i) but 

(Q, i) is not projectively smaller than (R, i) since y is comparable 

to b, c in R but no element of Q'.is comparable to both b, c in Q. 

Again (R, i)~p(S, i) by the mapping which keeps P fixed and maps 



x, y to z. However, (S, i) is not injectively smaller than (R, i) 

since z ~ a, b, c in S but no element of R is greater than, or equal 

to a, b, c. 

Example 9: Let P ={a, b}, R =={a, b, x, y, z}, S ={a, b, p, q, rJ 

be sets. whose ordering are given as follows: 

0.. b 
0 0 
~ .b 

ilhen (R, i), (s~, i) are clearly dense extensions of P. Also the 

mapping t which keeps P fixed a.nd maps x to r, z to q, y to p is 

an order epimo:rphism onto S with t .i = i. However, (R, i) is not 

injectively smaller than (S, i) for if so then R, S being finite 

sets the lattices R, S would be isomorphic. However, R is modular 

a.nd S is not. Note that in this case R and S are even complete 

lattices. 

3. frY-rf Faithful Dense Extensionso 

. In this section we study T"( join faithful, I( meet faithful 

extensions of a partially ordered set. We give necessary and 

sufficient conditions tor a given canonical dense extension to be 

'YY"'( join faithful, respectively"Y( meet faithful. 
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In general if (R, w) is an extension of a partially ordered 

set P and ){ is a subset of P which has a join in P then the set w(M) 

need not have a join in R and even it did it could be that w(~ li)=#= 

~w(M). The following example illustrates this :fact. 

Example 10: Let P = {a., b, c, d J and E = (p, q, r, s, t} be two 

sets whose order relations are given by the following diagrams: 

p 

Define w from P into E by w(a) = p, w(b) =q, w(c) = r, w(d) = s. 

Then w is clearly a.n order isomorphism of P into E and thus (E, w) 

is an extension of P. Now M ={a, bJ has join c in P whereas 

~w(li) = t-:j:w(c) = r. 

The situation mentioned in the above example motivates the 

following definition. Let frL be any system of subsets of a partially 

ordered set P. 

Definition 2: An extension (R, w) of P is ca.lied Njoin faithful 

if and only if for each M in ff'{ which has a join in P the set w(M) has 

a join in R and w{~K) ='-!Yw(M). Correspondingly (R, w) is called 

TI meet faithful if and only if for each K in TfY which has a meet 

in P the set w(l4) has a meet in R and w(~M) =~w(M). In case YY'f 

is the collection of all finite subsets of P we will say (R, w) is 
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finitely join faithful, respectively finitely meet faithful; if -yt'( 

is the collection of all subsets of P we will say (R, w) is completely 

join faithful, respectively completely meet faithful. Further we will 

say (R, w) is finitely faithful (completely faithful) if and only if 

it is finitely meet and join faithful (completely meet and join 

faithful). 

In order to obtain descriptions of the canonical dense 

extensions which are rrr join faithful, rrt meet faithful we make the 

following definition. 

Definition 10: A. lower end A of P will be called a Try lower end 

if and only if for each 1:1 in tr( such that M~ A and M has a join 

in P then ~M E A. Similarly an upper end E of P will be called a 

W upper end if and only if .f'or each M in rrf if MS E and the meet 

in P of M exists then /P\M f E. In particular if yY{ is the collection 

of all finite subsets of P then a /'I'( lower end is cal.led an ideal 

and a T1( upper end is called a filter. Similarly i.f' 'fry is the 

collection of all subsets of P then a /r"{ lower end will be called 

a complete lower end and afrtupper end will be cal.led a complete. 

upper end. 

Let /Y{ andI{ be arbitrary systems of subsets of P. Let 

0Cr>L(P), icJP) be the collection of all rr'{lower ends, 'Y'tupper 

ends respectively o.f' P. We define 

(l) X(;t'(,T() •{(A., E)/(A, E)E:~o, A€~P), Eflrt(P)} 

Then in particular whenIi is the empty collection we have 



30. 

(2) '7f (rr'(, ¢> = [(A, E)/(A, E) E- X0 , A~ ~(P), EE t 0 ] and when rf'( 

is the empty collection we have 

(3) ~c¢:ro ={(A, E)/(A, E)E-Xo, A€:0J', EE:~(P)J 

Theorem 5: A canonical dense extension (x, o<) of P is f'Y join and 

/'( meet faithful if and only it' ~ is a subset of X(fr(, r{) . In 

particular (~ (/Y'(, ro, 0(,) is the largest canonical de~se rrr join 

and 7'{ me~t faithful extension of P. 

Proof: Suppose (f, ex) is fry join and /( meet faithful and take 

(A, E) in ~. Take M in /ff, M~A such that VM exists. Then 

<X(x) ~ (A, E) for each x in M. This implies that (A, E)~V«(x) = 
xE-M 

o< (YM) since (x, o<) is /7'( join faithful. This means that VM E: A. 

Hence A is a 71'( lower end and by duality we get E is a rt upper end. 

Thus ~<;. ~ (7'(,1{). Next suppose ~ <; f (Tf'{, 7'(). Take any M in 'rf. 

such that the join in P of H exists. Certainly o< (VM) ~ 0( (M). 

Now suppose (A, E) E. ~ such that (A, E) ~ 0( (M). This implies x E- A 

for each x .in M, that is, Mf; A. Then since A is a rr-( lower end 

we have V ME A. This means (A, E) ~ o£ (\/ M). Hence o( (VM) =Vo( (M), 

that is, (.*, o<) is fr'{ join faithful and by duality we get (x ,o<) 

isrf meet faithful.· This completes the proof. 

Corollary 4: A canonical dense extension ( l', o<.) of P is 'YY{ join 

faithful if and only if :Xf: X(P'/,¢) and is Y'f meet .faithful if 

and only if ~~ :l(¢ , r() • In particular ( ~ (f'f, ¢), o<. ) is the 
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largest canonical dense extension which is rrY join faithful and 

(X <¢,rt), ot..) is the largest canonical dense extension which is rl 
meet faithful. 

4. Complete Dense Extensions. 

In this section we study complete canonical dense extensions 

of a partially ordered set. We will give necessary and sufficient 

conditions on the admissible subset ~ of a canonical dense extension 

(~ ,o<.) in order that it be complete. Further. we give here necessary 

and sufficient conditions for an arbitrary family in 3f to have a 

join or a meet in ~ • 

Definition ll: An extension (E, w) of a partially ordered set P is 

called complete if and only if E is a complete partially ordered set. 

An important complete extension is the following Dedekind-

Macneille extension of a partially ordered set. 

Definition 12: An extension (E, w) of P is called a Dedekind-Macneille 

extension if and only if (E, w) is a complete meet and join dense 

extension of P.. 

Definition 13: A lower end A of P is cal.led normal if and only if 

A =MiMa A. Dually an upper end E of P is called norm.al if and only 

if E =Ha Mi E. 

Let (J( (P), t (P) respectively be the collection of all normal 
N N 

lower ends and normal upper ends of P. Of course every principal 

lower end, respectively principal upper end is normal. Among the 

properties of a Dedekind-Macneille extension [see Bruns, 3]· we note 



.32. 

that it is upto equivalence the injectively smallest complete extension, it has 

for its canonical forms the equivalent extensions ( o/t ,«,), ( [N , ~) 

and further that it is completely faithful. 

The largest canonical dense extension ( ~, Cl() is seen to be 

complete for if (Ai, Ei). is an arbitrary family in X0 then 
iE: I

( u Ai, nEi) is an element of Xo and thus also the least upper bound 
i~I i~I 

of this family. Thus in view of the remarks just made we have that 

if (x, o( ) is a complete canonical dense extension then CJ ( ~ ) C ;fC *o • 

Proposition 8: Let (,1, o() be any canonical dense extension and 

(Ai, E1) an arbitrary family in~. The following statements are 

equivalent: 

(1) V (Ai, ~) exists in .f 
(2) <(I pr1 Ma( { ("1_, Ei) / i ~IJ),, /1 ~)belongs to ~ 

1 . i 

In this case '\/(Ai, E1) =en prl Ma. ( {(Ai, Ei) I iE I J), nEi) 
iEI i i 

Proof: (1) implies (2): Suppose Y (A1 , Ej_) = (A, E). Put B = 


Qprl Ma ( t(Ai, E1) I iE r}>. Then A~prl Ma <{<Ai, Ei) I i~I~) 


and thus A 2 B. Further if we take CE pr1 Ma C{(Ai, E1 ) / iE: I J) 

then there exists U :;n pr2(~) with (C, U) in X an~ (C:, U) ~(Ai, Ei\l!:'I • 


and thus (C, U) 2: (.A., E). Thus C 2 A·. and this gives A =B. Also 


E SEi for each i EI and thus E~ {lEi• Next if we take x in n:Bi. 

1iEI 

then o<(x) ~ (A1, E1 ) for ea.ch i E I and then o< (x) ~(A, E). Hence 



x E: E 	and we have E =(\E1• Thus (B, nE1) =(A, E) belongs to*. 

'l'hen (A, E) belongs to ')/; by assumption and clear:cy is an upper bound 

of the given fami:cy. Take (B, U) in Jf, (B, U) ~ (Ai, E1) for each 

i in Io Then U~nEi' that is, U~E and B~ prl Ha ( f (Ai, Ei) /if:I)} 

This means that B contains A. Hence (B, U) ~(A, E). Thus'01(A1 ,E1) 

exists. This completes the proof. i~I 

Dual:cy we obtain 

Proposition 9: Let (if, o() be any canonical dense extension of P and 

let (Ai, Ei) i E: I be an arbitrary !'ami:cy in* • The following state­

ments are equivalent• 

(1) (\ (Ai' Ei) exists in ")(. 

tf I 

(2) 	 ( nAi' npr2 Mi ( {(Ai, E1) I i E:-I}) belongs to ~. In this 

ieI i 

case 	 /\(Ai, Ei) == ( n~~, npr2 }Ii cf(Ai, Ei) I i ~IJ~· 
iE-I iE-I 

Corollary 5: Let (~, o<.) be any canonical dense extension of P and 

let S be any subset Qf P. The following statements are equivalent: 

(l)~o<(S) exists 

(2) (A,, HaA) beiongs to ~ where A is the smallest lower end in 

pr (x) containing s. In this case (A, l1aA) =~ o< (s). 1 



Corollary 6: Let ( ]f, o<) be any canonical dense extension and S any 


subset of P. 


The following statements are equivalent: 


(1) Jl\ o<(S) exists 

(2) (MiE, E) E l where E is the smallest upper end in pr2( 3€) 
containing S. 

Remark 6: It follows immediately from Propositions 8 and 9 that if 

(~ 1 o() is a complete canonical dense extension then pr1(~), pr200 

are closure systemso 

We now obtain the following characterization for a canonical 

dense extension to be complete. 

Theorem 6: A canonical dense extension {"X, o<) is complete if and 

only if (1) pr2 .(~) is a closure system and (2) for each U in pr2{~), 

the subset ~ {U) = {(A, E) (:- ~ / E2U} is a complete lattice, the 

ordering in X-(U) being the restriction of the ordering of~ ~ 

Proof: Suppose (1, o<:) .is a complete extension. Then by Remark 6 

pr2(J-) is a closure system. Next take any family {A1, E1) in 
~ i~I 

~ (U). Let (A, E) =~(Ai, Ei). 

Then by Proposition 8, E =nEi and since each Ei contains U so does E. 

But then {A, E)€: ~ (U) and :f. (U)S:. '*· Hence (A, E) is the join in *(U) 

as well. Hence l (U) is a complete lattice. Conversely suppose the 

given conditions hold. Let (Ai, E1) be an arbitrary family in 'if . 



Let U = ()Ei; Then since pr2(~) is a closure system U E pr2(;(). 

Consider the complete lattice ~ (U). Then (Av ~) belongs to l (U) 
~(V~

for each i.. Let (A, E) = V (A1 , Ei). Then E;2U and if x in E 
it:I 

then we have o( (x) ~ (Ai, Ei) for ea.ch i and thus x E:- nEi = U. 


Hence E = U. Let (B, V) in ~ be an upper bound of the family. Then 


V <;; U and this implies l'(V) 2. .l(u). Let (C, W) be the join of 


(Ai;> Ei) in ,X (V). Then we have that (A, E) = (A, U) =~(Ai, Ei) 


>~Ai' Ei) = (C, W) which implies U S,W. But if x E W then 

o< (x) ~ (Ai' Ei) for each i, and thus x € u. Hence U = W and this 

gives (C, W) = (C, U) E- !( (U) and thus (C, W) ~(A, E) for (A, E) is 

the least upper bound in ~(U) of the given family. Hence (C, W) = 
(A, E)o Finally (B, V) ~~Ai, Ei) =~(Ai, Ei) = (A, E). 

Hence (A, E) is the join in ~ as well and hence ~ is a complete 

lattice. This completes the proof. 

Dually we obtain 

Theorem 7,: A canonical dense extension (..f ,tX..) is complete if and 

only if (1) pr1( l°) is a closure system and (2) for each B e- pr1(.f), 

the subset X(B) = {(A, E) / A '2.B, (..\ E) E:- X} is a complete lattice
1

under the restriction of the ordering of~ • 

5o Dense Kernels 

In this section we associate with each extension (E, w) certain 

dense, respectively join dense, meet dense extensions, study the 

relationships among them and note various properties of (E, w) which 
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are inherited by these extensions. 

Let P be a partially ordered set and (E, w) an extension of P. 

Definition 14: An element a in E will be called join dense (meet 


dense) if and only if it is the join (meet) in E of images of elements of 


P less than or equal to (greater than or equal to) a. a is called 


dense in E if and only if a~ b for any b in E implies L(a, w) $ 

L(b, w) or U(a, w) -;j;2 (b, w) and b~a for any b in E implies. 


L(b, w)$. L(a, w) or U(b, w)-;/2 U(a, w). 


We introduce the following systems of lower and upper ends 

of P: 

(1) KP (E, w) = {(L(a, w), U{a, w)) / a cE}. 

(2) JP {E, w>' = {L(a, w) / a ~ E ) • 

(3) ~ (E, w) ={U{a, w) / a c E f. 

We further introduce the following subsets of Ei 

(4) Ki (E, w) ={a / a E:-E, a dense} • 

(5) Ji (E, w) = {a / a t-E, a join dense} • 

(6) Mi {E, w) ={a / a C-E, a meet dense~ • 

When no ambiguity can occur as to which extension is being 

referred to we will use the symbols ~' JP' ~' Ji, ~ and ~ without 

mentioning the extension. 

Definition 15: The extensions (KP' o<), (JP' O(l), (11>, o< 2) will be 

called respectively the Erojective dense, the Erojective join dense, 



the projective meet dense kernels of the extension (E, w). 


Definition 16: The extensions (Ki, w) (Ji, w), (Hj_, w) will be called 


respectively .the injective dense, injective join dense, injective 


meet dense kernels of (E, w). 


The following properties are easily verified: 


(i)K 2 ~K -p p' 

(ii) ~ (E, w) '.:: (E, w) if and only if (E, w) is dense. 

JP (E, w)~ (E, w) if and only ii' (E, w) is join dense 

~ (E, w) ~ (E, w) if and only if (E, w) is meet dense. 

Similarly the injective dense, join dense, meet dense kernels of an 

extension (E, w) are equivalent to (E, w) if and only if (E, w) is 

respectively dense, join dense, meet dense. 

Proposition 10: The projective dense, join dense, meet dense kernels 

of (E, w) are projectively smaller than (E, w). .Further if (B, <p)=.i. 

(C;, '/J) then 

(1) Kp(B,<p) ~i KP (C,'f'), (2) JP (:S,tp) =i JP (C,'¥) and 

(3) *p(B, 'f) ~ iMp (C.>'f•). In particular equivalent extensions have 


equivalent projective dense, projective join dense, projective meet 


dense kernels. 


Proof: Clearly the mapping f' from (E, w) into· K (E, w) given by f(a.) = 

p . 

(L(a.,w), U(a,w)) is an order epimorphism with f'lS.W =«X. Thus (E, w) 
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~ K 	 (E, w) and the rest of the first part of the proposition follows p p 

similarly. If (B, <p)~ i (CJ~) then there exists an order isomorphism 

g from B into C with g.lf=+. Define h from Kp(B,,Cf) into Kp(C,'/') by 

h ((L(b,4'), U(b,Cf )) = (L(g{b),'f'), U(g(b),'f')). Since g is an order 

isomorphism with g.cp=+so is h with h.a<=IX. Hence Kp(B,<p)~i ~(C,'/1. 

The appropriate modification of the mapping h establishes (2) and by 

duality we have (3). This completes the proof. 

It is clear from the definitions of the injective kernels that 

the injective (dense, join dense, meet dense) kernels of a given ex­

tension 	are injectively smaller than the extension. This fact 

combined with property (ii) at once gives 

Corollary 7: For any extension (E, w) of P, (1) Ji(E, w):S i Jp(E, w) 

and (2) 	Mi(E, w)~ i ~ (E, w), (3) Ki (E, w).6 i ~ (E, w)a 

In general the injective (meet dense, join dense) kernels 

are not equivalent with the projective (meet dense, join dense) 

kernels. Further an analagous statement to the second part of 

Proposition 10 does not hold for injective kernels in general as 

the following example shows. 

Example 11: I.et P = {a, b} be a totally unordered set and Q = 

{a, b, x J, R .... {a, b, y, z} be two sets whose order relations 

are given by the following diagrams: 
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~~z 

~b 


Clearly (Q, w), (R, w) are extensions of P, w being the identity 

map from P. Further of course (Q, w) ~ i (R, w). But Ji(Q, w) is 

not injectively small.er than Ji(R, w) since J1(R, w) =P, a two 

element set and Ji(Q, w) is equal to (Q, w) and Q is a. three element 

set. Further Ji(R, w) is not equivalent with Jp(R, w) since clearly 

JP(R, w) is equivalent with (Q, w). 

In at least one important special case injective (join, meet) 

kernels are equivalent respectively with projective (join, meet) 

kernels. 

Proposition 11: Let (E, w) be a complete extension of P. Then 

(1) Ji (E, w) is equivalent with JP (E, w) and (2) ~ (E, w) is 

equivalent with Mp (E, w). 

Proof: It is enough to prove (1), the rest follows by dualityG 

Consider the mapping h from JP into Ji given h (L(a., w)) = 

~{w(x) / w(x) ~ a}. Since (E, w) is complete, h is well defined 

and further the image under h of elements of JP clearly lie in Ji. 

Also if c is a join dense element then h(L(c, w)) = c. But, 

as is easily seen if h(L(a,w)) = c then L(a,w) = L(c,w). ­

http:small.er


40. 

Thus h is an order isomorphism with }u)o( = w. Hence Jp6 i Ji. Since 

the reverse holds by Corollary 7 we have the proposition. 

In view of Proposition 11 for a complete extension (E, w) we 

wlll speak of the join (meet) kernel of (E, w) and refer to the 

injective (join, meet) kernel of(E, w) which we now denote by J(E, w), 

M(E, w). 

We now obtain the following characterization of the join 

(meet) kernel of a complete extension. 

Theorem 8: The join dense (meet dense) kernel of any complete 

extension is a complete extension and is the injectively largest 

join dense (meet dense) extension which is injectively smaller than 

(E, w). 

Proof: Since an arbitraiy join of join dense elements of E is again 

a join dense element it follows that J(E, w) is a complete extension. 

Further if (S, Jf) is join dense and (S, Jf) =::i (E, w) then by froposi­

tions 10 and 11 we have J1 (S, if) ~i JP (S, 1f )~ i J (E, w). By the 

duality principle we have the theorem for the meet dense kernel of 

(E, w) as well. This completes the proof. 

Example ll shows that no corresponding characterization exists 

for join (meet) dense kernels of arbitrary extensions. We will study 

the case of join (meet) dense kernels of arbitrary extensions in a 

suitable category in Chapter 3. .Further projective (injective) dense 
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kernels of a complete extension need not be complete and the pro­

jective dense kernel need not be injectively smaller than the 

complete extension. 

Example 12: Let P ={a, b, c, dJ , Q = {a, b, c, d, p, q, r, sf 

R =[a, b, c, d, x, y J be sets whose orderings are as follows: 

11 
c p 
d. 

Then (Q, w), w the identity map from P is a complete ex.tension of P 

and (R, w) is the projective dense ke~nel of (Q, w). We observe that 

(R, w) is not complete for the two element set { x, c} has no join 

in R. Further (R, w) is not injectively sm.a.ller than (Q, w). Other­

wise, if they existed an order isomorphism f from R into Q which kept 

P fixed then f nru.st necessarily map x to one of p:, q and y to one 

of r, s. However, x, y are related in R but p, q are related to 

neither of r, s. Hence no such f exists. 

Proposition 12: If (E, w) is a fr'( join, /(meet faithful extension 

of P then the injective, respectively, projective (dense, join dense, 

meet dense) kernels of (E, w) are rr( join, i( meet faithful. 
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Proof: We prove the proposition for the projective join dense kernel. 

The rest follows in a similar fashion. By Corollary 4 to Theorem 5 

we must show L(a, w) is a /Y( complete lower endo Take any M in /Y'( 

such that V M exists and MS.L(a, w). Since (E, w) is P'( join 

faithful we have w(YM) = ~{w(x) / xE-M J. Now clearly a~ w(M) 

and thus a ~ ~ w(M) =w(VM). Hence VM E- L(a, w). By duality 

one obtains that U(a, w) is all complete upper end. Hence Jp(E, w) 

is "fr( join, N meet faithful. .This completes the proof. 



CHAPI'ER IT 

DENSE EXTENSIONS OF SPECIAL I.ATTICES. 

This chapter is devoted to the study of dense extensions of 

meet continuous, Boolean and distributive lattices respectively. We 

establish that for each infinite cardinal m the collection of all 

m complete lower ends of a meet continuous lattice provides a join 

dense meet continuous extension. In particular we prove that there 

is up to equivalence precisely one complete completely faithful join 

dense meet continuous extension of a meet continuous lattice. We 

establish further that a Dedekind-Macneille extension of a Boolean 

lattice is up to equivalence the only finitely faithful Boolean 

extension which is a meet and join completion and obtain criteria 

for certain completely faithful dense extensions of a Boolean lattice 

to be infinitely meet distributive extensions. In addition we obtain 

a criterion other than that obtained by Funaya.ma. [s] for the Dedekind­

Macneille extension of a distributive lattice to be a distributive 

extension. We use this criterion to obtain a proof of the well known 

result which states that the Dedekind-Macneille extension of a Boolean 

lattice is a Boolean extension. 

l. 	Completions and Full Ex.tensions. 

In this section we introduce full extensions and join (meet) 

43. 
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completions oi' a partially or(.k.rred seto We note the existence of an 

injectiYely smallest up to e'i-u 1valence, full extension and give 

different characterizations 0f it. 

L~~ P be a pa:rt-iallr ordered seto 

Definitiona1~ An exteAs1on (E, w) of P will be called a join (meet) 

comd_eH.on .i..f' ....nu only if the image: of every subset of' P ha> a join (meet) in E. 

P:roposit.ion 1: Let ( *, 0() be a canonical dense extension of P. Then 

the following statements are equivalent: 

(1) ( l, 0(.) is a join completion. 

(2) '£ contains the join admissible subset induced by pr1( f) and 

pr1(~) is a closure system. 

In particular if (x, o( ) is join dense then ( 'X, o.t) is a complete 

extension if and only if ( ~ , o< ) is a join completion. 

Proof: (1) implies (2): If (x, ~) is a join completion then by 

Corollary 5 of the previous chapter it follows that :f- contains the 

join admissible subset induced by pr1 ( :l). Next let (Ai) i E- I be an 

arbitrary family in pr1( '*) and put A = n ~9 Take E • t pr2(.:f) such
1iE-I 

that (Ai, Ei) E- x for each i E- I. Then (Ai, E1) ~ V c<. (A) = (B, MaB), 

where by Corollary 5iB is the smallest lower end in pr1(~) containing 

A. But on the other hand from the previous line B c Ai for each i (:- I. 

Hence A = B and A E pr1 ( *)as required. 

(2) implies (1): Take any subset S of P. Since pr1(if) is a closure 

system we know that the join oro<1 (s) exists in pr1(l'). Let this 

join be A. Then by our assumption (A, MaA.)E- ~ and then by Corollary 

5, (A, MaA) = ~o((s). Hence Cl, o<) is a join completion and this 

http:comd_eH.on
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completes the proof. 

. Dually we have the following 

Proposition 2: Let Ct,~) be a canonical dense extension of P. Then 

the following statements are equivalent: 

(1) ( ~, .X) is a. meet completion. 

(2) ;c contains the meet admissible subset induced by pr2 ( *) and 

pr2 (SC ) is a closure system. In particular if ( 1, t><.) is meet dense 

then (.~, 0( ) is a complete extension if and only if cf, o<) is a. meet 

completion. 

Remark 1: If (E, w) is a. join (meet) completion then the injective 

and projective join (meet) dense kernels of (E, w) are equivalent. 

Observe that the mapping h from JP into E given by h(L(a, w)) = 

~~w(x) / w(x) :: a } is actually onto Ji and is an order isomorphism 

with h.o<'1=<>)• Thus JP ~ i Ji and since Ji~ i JP by Corollary 7 we 

have Ji 'V JP. Hence we will speak of the join (meet) dense kernel 

of a join (meet) completion (E, w) and denote it by (J(E, w1w) 

((M(E, w)), w) and if no confusion prevails by (J, w) ((M, w)) where 

J (respectively M) are the collection of join dense (meet dense) 

elements of E. 

For a:n:y partially ordered set P and any sets (Jf, { of lower, 

upper ends satisfying Of(P) £or~ 01 and C(P)~ C<;. { 0 let us define: 

(1) P ® P = { (x, y) / x, y € P, x~ y J • We partially order this set 

by the componentwise ordering. 

(2) x (P) ={<A, E) I A~ ()l, EEC:, A ~MiE}.
(~t) 



(4) 	 A mapping j from P into P ® P given by j(x) = (x, x)o 

It is clear that (P ® P', j) is a dense extension of P. We 

now introduce the following definitions. 


Definition 2: The admissible subset X(OJt:fP) will. be called the~ 


admissible subset induced by (Jt and {. o 


Definition 3: An extension (E, w) of P will be called ~ if and 

only if 	(l) (E, w) is dense, (2) (P ® P:, j) ~ i (E, w) (3) if (S, JL) 

is any extension with Jp(S,Jf)6 i Jp(E, ~), 11>{$,7()6 1 ~(E, w) 

satisfying (l) and (2) then (s,;r)~i (E, w)o 

A description for a canonical dense extension to be full is 

given by 

Proposition 3: A canonical dense extension (if, o( ) is .full if and only 

if i is the full admissible subset induced by pr+( f) and pr2(~ ). 

Proof: Suppose (f , ot.) is full and let 'lJ be the full admissible 

subset induced by pr1(f) and pr2(x). Then "I C.~and since ( 1;J, ot) 

is dense, clearly injectively larger than (P©P, j) and satisfies 

JP(~) =JP(~), Mp(1j) = l),C:~) we must have, ( 1' ,o<·) being full, 

that ( ~, tX. ) =i ( x, D( ) • This means by Theorem l of the first chapter 

that ~ f. *.. Hence ,1 = ~. Conversely, let ;t be the full admissible 

set induced by pr1 ( l) and pr (f ). Then certainly (P €) P, j)S i (.X ,«)
2

and if ( ~ , o(. ) is any canonical dense extension with pr .( ;J) <;; pr ( ~ ):,
1 1 

pr2 C'lJ )<;: pr2 ( x), then immediately ~ is contained in *' . This is 

seen to 	be true since ~ is contained in the f'ull admissible subset 
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induced by pr1(~) and pr2(~) which because of our assumption about 

~ is contained in X . Hence (1, o<. ) is full. This completes 

the proof. 

Definition 4: A canonical dense extension (l, «) of P will be 

called a full canonical extension if and only if X is the full 

admissible subset induced by pr1(~) and pr (f')o
2

Proposition 4: A full canonical extension ( X, o() is complete if 

and only if pr1(x) and pr2(.f) are closure systems. 

Proof: If ( l, o<.) is complete then by Propositions l and 2 it follows 

that pr1(;~') and pr2(~) are closure systems•. Conversely, assume pr1 (X:) 

and pr2 ( ~) are closure systems and let (Ai, E1 ) i E:- I be an arbitrary 

family in f . Let A be the join of (A1 )iE I in pr1(.l) and E be 

the join of (Ei\c:- I in pr2(.i ). Then since pr2(30 is a closure 

system we must have E =nEi £. nMa.Ai. Hence if x belongs to E, we 

have c:X1(x) ~ Ai for each i, that is, <X (x) ~ A. Hence x belongs to 

Ma.Ao Thus E .S MaA and ( f, cc: ) being full we have by Proposition 3 

that (A, E) belongs to-;€ and is clearly the least upper bound of the 

family. Hence (~,o<) is a complete extension and this completes the 

proof. 

Let (E, w) be a meet and join completion of P. 

Definition 5: By ·the join component of an element a in Ewe mean~ 

largest join dense element inE less than or equal to ao By the~ 

component of an element a in E we mean the smallest meet dense element 

in E greater than or equal to a. 
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Definition 6: An extension (E, w) of P will be called a generalized 

Dedekind-Macneille extension if and only if (1) it is full (2) it is 

complete (3) the join component of each a in E is meet dense and 

dually the meet component of each a in E is join dense. 

A description of a generalized Dedekind-Macneille extension 

in terms of a full canonical extension is obtained in the following 

Proposition 5: An extension (E, w) of P is a generalized Dedekind­

Macneille extension if and only if (E, w) is equivalent with ( XN(P),~ ). 

Proof: Suppose (E, w) is a generalized Dedekind-Macneille extension 

of P. Then by Proposition 3 (E, w) is equivalent to a full canonical 

extension(~,~). Since (E, w) is complete by Proposition 4, pr1(~) 
and pr2C~) are closure systems and thus respectively contain OfN(P), 

CN(P). Since the join component of a.ny (A, E) in ~ , which by 

Corollary 5 of the previous chapter is (A, MaA), is meet dense, we 

have by Corollary 6 of the previous chapter that A =MiE for a 

suitable E in pr2(i). But then A f ()tN(P)o Since (A, E) was 

arbitrary in~ this means that pr1(~) = lJ1(P). By duality we 

have pr2(J:) = Cr/P), in all, J = XN"(P)o Conversely since XN(P) 

is by Propositions 3 and 4 full and complete and since for any 

(A, E) E:- ~N(P), the join component (A, MaA), the meet component 

(Mi.E, E) are respectively meet dense, join dense we have that (1N(P).J o<) 
is a generalized Dedekind-Macneille extension. Finally since (E, w) 

is equivalent with ( XN(P), o<.) we have that (E, w) is a generalized 

Dedekind-Macneille extension. This completes the proof. 
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Proposition 6: A generalized Dedekind-Macneille extension is up 

to equivalence the injectively smallest full complete extension of P. 

Proof: It is enough to work with canonical dense extensions. Suppose 

( :f, <X) is any complete full canonical extension. Then by Proposition 

4;pr1( ~), pr2 (.* ) are closure systems containing (J( (P), t_ (P) 

respectivelyo Hence pr (*)2 OCN(P), pr2(;()2 CN(P). Thus1

( ~, ol.) being full by Proposition 3 we get ~? ;;fN(P). Hence by 

Proposition 5 ( r, ol.) is injectively larger than a generalized Dede­

kind-Macneille extensiono This completes the proof. 

A further characterization is given in the following 

Proposition 7: A generalized Dedekind-Macneille extension is up to 

equivalence the injectively largest dense extension in the class of all 

dense extensions whose projective join and meet dense kernels are 

equivalent. 

Proof: Suppose ( ;t, 0( ) is a canonical dense extension. Then its 

projective join dense kernel is given by (pr1(X),<>< ) and its pro­1

jective meet dense kernel by (pr2(l), o<2). If these are equivalent 

it follows that each is a meet and a join dense extension. Hence 

pr1( 1: ) ~ OtN(P), pr2 ( l" ) S. CN(P). Hence ~ being contained in 

the full admissible subset induced by pr1 <i) and pr2( ,f) is con­

tained in lN(P). Hence (J, ~)~ i( ..fN(P), ol.) and this completes 

the proof. 

An immediate corollary of the last two Propositions is the 

following. 

Corollary 1: A generalized Dedekind-Macneille extension is up to 
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equivalence the only full complete extension whose projective join 

and meet dense kernels are equivalent. 

2. Meet Continuous Dense Extensions. 

In this section we will prove that for every non-empty cardinal 

number m the join dense extension provided by the system of all m 

complete lower ends of a meet continuous lattice is meet continuous. 

In particular we shall deduce P. Cra.wley1·s result [5J that the largest 

complete completely faithful join dense extension of a meet continuous 

lattice is meet continuous and further we shall show that up to equiv­

alence this is the only one. In addition we will obtain criteria for 

a Dedekind-Macneille extension of a meet continuous lattice to be a 

meet continuous lattice. 

We begin with·the following proposition which will be useful 

later. 

Proposition 8: Let (E, w) be any join completion of a partially 

ordered set P and (R, 7[) any join dense extension injectively larger 

than the join kernel of (E, w)o Then 'there exists exactly one join 

complete order homomorphism f from R into E with f.Tl= w. This f is 

given by f(r) = ~ { w(x) / if(x)s r I. 
Proof: Suppose f and g are any two join complete order homomorphisms 

from R into E with f. T[ = g.Tl= w. Then for any r in R we have 

f (r) = f( ~ [ Tl (x) / 1f (x) ! r } ) = '& { w(x) / Jltx)~ r} = 

g( ~ {"Jt(x) /Jf(x): r ~) = g(r). Hence f is unique if it exists. 
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Now define a mapping f from R into E by f(r) = ~{w(x) /TI (x) ~ r} • 

Since the join kernel (J, w) of (E, w) is injectively smaller than (R,JT) 

there exists an order isomorphism g from J into R with g.w =]f. Now 

for any join dense element s in J we have by the definition of f, 

f(g(s)) = ~{w(x) / J[(x) -=. g(s)J= a, since g is an order isomorphism 

with g.w =JC. If T' is any subset of P such that ~ Jt(T) exists then 

clearly f( ~ "J( ('I''))~~ w('l'). If c ~ w(T) for any c in E, then 

the join component b of c is also an upper bound of w(T)o Then 


g(b):;.: ;c(T) and thus g(b) ~ ~Ji:(T). Thus f(g(b)) = b >,; f( ~ Tt (T)). 


In all f( ~Tl (T'))= ~ w(T)o Finally if S is any subset of R such 


that ~-5 exists then we have f(~ S) = f( '!;;{ Tc(x) /Ji. (x)~ s, s <:S}) 


= ~ [ w(x) / /l (x)~ s, s E- S j = ~ f(S), using the fact that (R,JT) 


is a join dense extensiono This completes the proof. 


Dually one gets 

Proposition 9: Let (E, w) be any meet completion of a partially 

ordered set Po If (R, TI) is any meet dense extension of P which is 

injectively larger than the meet kernel of (E, w) then there exists 

precisely ?ne meet complete homomorphism f from R into E with f.7{= w. 

In general the mapping f of Proposition 8 need not carry meets 

into meets. The following example illustrates this facto 

Examnle 1: Let P ={a, b} be a totally unordered set, and 

Q~ = {a, b, x, y, z} , R = {a, b, x, z) be sets whose order relations 

are given by the following diagrams: 
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0.. b 

Then (Q, i), (R, i) are extensions of P, i being the identity mapo 

Further (Q, i) is a join completion of P and (R, i) is the join 

kernel of (Q, i). Then the unique map f by Proposition 8 maps 

a /ff- b = z into Z'., and f(a) IE' f(b) =a 1£' b = y and y=f:z. 

Definition 7: A lattice L is called meet continuous if and only if 

for every up-directed family (Xj_).-=- I· such that 'bf x. exists 
l..:; iE-I -i 

we have y A~~ = '0/ y A ~ for each y in L. Dually L is called 
if I i~ I 

join continuous if and only if for every down directed family (~) , 
i~I 

Y v ;£\ xi = Ii\ Yv Jtj_ for every y in L. 

i~I i€-I 

Definition 8: A lattice L is called infinitely meet distributive 

if and only if for every y in L and every subset X of L such that 

~X exists we have y /\ '!::Jx = ~Y" :r. Dually L is called 

infinitely join distributive if and only if for every y in L and 

every subset X of L. such that /'i}X exists we have y v ~X == 

/.;)y v x. 



53. 


Definition 9: An extension (E, w) of L will be called a meet 

continuous eA'tension if and only if E and L are meet continuous 

lattices. (E, w) will be called a join continuous extension of L 

if and only if E and L a.re join continuous lattices. Similarly 

(E, w) will be called an infinitely meet (join) distributive extension 

if E and L a.re infinitely meet (join) distributive. 

Proposition 10: Let (E~ w) be any finitely faithful meet continuous 

join completion of a meet continuous lattice. Then the join dense 

kernel of (E, w) is a complete finitely faithful meet continuous 

extension. 

Proof: Let (J, w) be the join dense kernel of (E, w). Since the 

join in E of arbitrary sets of join dense elements is again join dense 

it follows from Proposition 1 that (J, w) is complete. Further by 

Proposition 12 of the previous chapter we know that (J, w) is finitely 

faithful. Hence for any a, b in J the sets L(a, w), L(b, w) are up-

directed and we have since E is meet continuous 

a~b =~/{w(x) / w(x)s a} Ii' \&{w(y) / w(y) ~ b} =~~(Xl\Y) / 

w(x).:: a, w(~) ~ b } • 

Hence a I];' b belongs to J since it is join dense. But then a 'E' b 

= a ~\ b, that is, J is a join complete sublattice of E and hence 

J is meet continuous. 

Dually we have 

Proposition 11: Let (E, w) be any finitely faithful join continuous 

meet completion of a join continuous lattice. Then the meet dense 
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kernel of (E, w) is a complete finitely faithful join continuous 

extension .. 

Let P be a:rry partially ordered set and m any infinite 

cardinalo 

Definition 10: We call a lower end A of P m-complete if and only 

if for every subset S of A such that Is\~ m and Vs exists the join 

Vs belongs to A,. Dually we cal1 an upper end E of P m complete 

if and only if for every subset S of E such that Isl ~ m and /\ S 

exists the meet l\S belongs to E. 

We note that a lower (upper) end .is complete as defined in 

the previous chapter if and only if it is m-complete for every non­

empty cardinal m. 

(1) Let ~ (P) be the set of all m complete lower ends of P. 
m 

(2) Let Cm(P) be·the set of all m complete upper ends of P. 

(.3) Let (J(K(P) be the set of all complete lower ends of P. 

(4) Let CK(P) be the set of all complete upper ends of Po 

In view of Corollary 4 of the previous chapter we know that 

the extensi:on ( 01m(P), o< 1) is the in.jectively largest /Y't join faithful 

canonical join dense extension of P and further that ( Cm(P), o< ) is2

the injective1y largest }r( meet faithful canonical meet dense ex­

tension of P where /1'( = {S/ S SP', ISI ~ m} • Further we know that 

( OCK(P), 0(1) is the in.jectively largest canonical join dense completely 

faithful extension of P and dually (C (P), o<. ) is the in.iectively
K 2 

largest canonical meet dense completely faithful extension of P. 

Each of these extensions is of course complete. 
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The following lemma. .gives a useful description of the join 

and meet operations in the complete lattice of m-complete lower ends. 

Lemma. l: Let (A1). J be an arbitrary family 	of m-complete lower 
J. (: 

ends of a meet continuous lattice L. Then 

(i) V Ai = {x / x ='fJ S, lsl ~ m, S up-directed and Sf:"-&' Ai}
UJ . i~J 

where ~ refers to the join in the lattice of ideals of L. Further 

for any two m complete lower ends of L, 

(ii) A " B ={a /\ b / at A., b ~ B~ , 

Proof: The le~ side of (i) certainly contains the right side. 

We thus need only show that the right side of (i) is a m-complete 

lower end. Take any set 'l.1'which is contained in the right side of 

(i) with j T\ ~ m and such that ~ T exists. Then for each t in 

T there exists an up-directed set s ~ '-¥ NJ. with Ist\~ m and 
t i ~J l. 

Let C be the set of all finite joins from S = 	LJ St. Then clearly 
tE-T 

~T ='(le, C~ '3JAi, C is up-directed and IC\~~ \st\~ m. 
i~J 	 t~ 

Hence ~T belongs to the right side of (i). Further take any x in L 

and suppose x 6 ~S where ~S belongs to the right side of (i). 

Then since L is meet continuous we have x = x "~S = ~XA s. Since 

S is up-directed so is the set x /\ S and \x " S \ ~ \s\ ~ m. Thus 

x belongs to the right side of (i) and therefore it is a m-complete 
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lower endo (ii) follows immediately since A AB =A (l Bo This 

completes the proof. 

Proposition 12: Let L be a meet continuous lattice. Then the 

extension ( (Jfm(L), o< 1) is a meet continuous extension of L. 


Further if ( (}f, o< 1) is a complete canonical join dense extension 


injectively smaller than ( Otm(L), of. 
1

) then ( (ff , o<
1

) is a meet 


continuous extension if and only if there exists a join complete 


lattice homomorphism f from Otm(L) onto (fl which maps ()1 identi­


cally. 


Proof: Let (Ai) be any arbitrary up-directed family and let A 

iEJ 

be any element of Olm(L). Take any a in A and any x in V A1 • 
, · iE J 

Then by the Lemma there exists an up-directed set S, such that Isl-: m, 

S C ~Ai with x = ~S. Since L is meet continuous we then have 
ic-J 

a Ax = ~a" s. Now since each s in S belongs to ~ Ai there 
i t-J 

exists a finite subset F CU Ai with s ~ 'VF • But then since 
. s i~J s 

the family is up-directed we must have that F is contained in some s 

suitable member As of the family. Hence a ASS \31x. AA. and since 
. iE-J l. 

\a" S l ~ m we have, by the Lemma., that a i\ x belongs to·V A" A1; 
iE: J 

Thus again by the Lemma. it follows that A/\ VA
1 

C V kAA 
i~ J iEJ i' 

that is, ( OZ'm(L), o< 1 ) is meet continuous. Further if ( (J(, 0( 
1

) is a 
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join complete lattice homomorphic image of ( Q1m(L), o<. ) then since
1

the latter is meet continuous so is the former. Conversely consider 

the mapping f from Qlm(L) onto or given by f(A) =~{oll(x) I xt;:A~. 
Then by Proposition S~f is a join complete order homomorphism and 

since (fl. S: Otm(L) we have that f restricted to (}l is the identity. 

Also since ( 0£ , o<. l) is meet continuous we have for any A, B E:. OC .• i·,_ 

f(A) /\ f(B) = ~{o< 1(x) / x~A~" '\fY{o<'1 (y) / yE:B~ = 

~{o.! 1(xAy) / xE:A, yfB~ = f(AAB). Thus f has the desired 

properties and this completes the proof. 

Corollary 2: Crawley (5] • The extension ( OtK(L), o< 
1

) of a meet 

continuous lattice L is meet continuous. 


Proof: Take a cardinal m with m > lLt- Then clearly 01K(L) = O'm(L) 


a.nd thf:'. corollary follows from Proposition J2. 


Dually one obtains 

Proposition 13: Let L be any join continuous lattice. Then the 

extension ( Cm(L), ot.. ) is join continuous. If ( t, °' 2 ) is a complete2 

canonical meet dense extension injectively smaller tha.n ( CmCL), o( 2 ) 

then ( C, o< 2 ) is join continuous if a.nd only if there exists a meet 

complete lattice homomorphism f from Cm(L) onto C which maps [ 

identicallyo 

CoroD.ary 3: If L is infinitely meet distributive then the extensions 

( 01m(L), o1. ), ( OCK(L), o< ) are infinitely meet distributive. Dually1 1

if L is infinitely join distributive then the extensions ( Cm(L), ol.. ), 

( C (L), 0( ) are infinitely join distributive. 
K 2 

Proof: Take any A, B, C: in Ofm(L). By Proposition 12 Olm.(L) is meet 

2



continuous. Hence we must show that it is distributive. Take a:ny 

a in A, x in BvC.. Then by the Lemma. x = \JS where SS B --&c and 

\s\ ~mo Since L is distributive we have tha.t for each s in S there 

exists b5 , cs in B, C with s = b5v cs. Thus a"x = 'J a AS = 

\j(a"bs)v(a"cs) Go (AAB)v (AAC) .. This shows that (01m(L),0( )1

is distributive. We get the rest by duality. This completes the 

proofo 

Proposition 14: Let L be any meet continuous lattice and (E, w) any 

complete completely join faithful~, finitely meet faithfu~meet con­

· / ' f Ltinuous extension o • Then the join kernel of (E, w) is equivalent 

Proof: Let J be the collection of all join dense elements of E. 

Consider the mapping f from Dic(L) into J given by f(A) = 

~ {w(x) / x EA i . f is clearly a.n order homomorphism with f. o( 
1 

= Wo Suppose f(A) ~ f(B). Then for any x in A we have w(x) ~ 

~{w(y) / yE B1 and this implies, since E is finitely meet faith­

ful and meet continuous, that w(x) =~{w(x" y) / Y€- B.} 

Thus x =~{x AY / ye B ~ and since B is a complete lower end we 

have x belongs to B. Thus f is an order isomorphism and hence 

( OtK (L), o(
1

) ~ i (J, w). However, by .Proposition l2 of the previous 

chapter we have that (J, w) is completely faithful. Thus (J, w) 

:i( 01K(L), o(1) for ( OlK(L), o{ 1 ) is the injectively largest completely 

faithful.extension. Hence by the equivalence theorem for dense 

extensions we have the proposition. This completes the proofo 
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Combining Proposition 14 and Corollary 2 we get 

Theorem 1: The extension ( 01K(L), o( } is the only canonical join1

dense complete completely faithful meet continuous extension of a 

meet continuous lattice L. 

Proof: By Corollary 2 ( CJ (L), o< ) is a meet continuous join dense 
. K 1 

extension and it is certainly complete completely faithful. Now if 

( or ,O{) is any complete completely faithful canonical join dense 

extension which is meet continuous then by Proposition 14 we have at 

once that (J = 01K(L). This completes the proof. 

Theorem 2: The extension( CK(L), 0<'2) is the only canonical meet 

dense complete completely faithful join continuous extension of a 

join continuous lattice L. 

We have immediately 

Corollary 4: The extension ( 01K(L), o( 1) is the only canonical 

join dense complete completely faithful infinitely meet distributive 

extension of an infinitely meet distributive lattice L and dually 

the extension ( CK(L), <X 2) is the only canonical meet dense complete 

completely. faithful infinitely join distributive extension of an 

infinitely join distributive lattice L. 

Theorems 1 and 2 imply respectively that in general a 

Dedekind-Macneille extension of a meet (join) continuous lattice 

will fail to be meet (join) continuous since in general not evecy 

complete lower (upper) end is normal. Dilworth and McLaughlin [7] 

have given an example of an infinitely meet distributive lattice 
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whose Dedekind-Macneille completion is not even modular. The following 

is an example of an infinitely meet dist'ributive lattice whose Dede­

kind-Macneille completion is not meet continuous. 

Examole 2: Let P = [o, 1) be the half open unit interval of the reals 

in the usual ordering and let Q = P x P, the Cartesian product of P 

with itself, partially ordered under the component wise ordering. 

Then Q;,is clearly a lattice in which finite meets and arbitr8.r1J 

existing joins are computed component wise. Hence Q is infinitely 

meet distributive. Consider the following subset of Q: 

A.= [<x, y) Ix, yf P, o.:: x£ 1, o~ y~ 1}.
2 

Clearly A is a complete lower end. However, A is not normal since 

MaA =J5 and thus Mi MaA = Q);j; Ao Hence by Theorem 1 it follows 

that the Dedekind-Macneille completion of Q is not meet 

continuous. 

Remark 2: For any subset S of a partially ordered set L we have 

(1) MiMaS = n { C/ S~C, CE0tN (L) ~ and 

(2)MaMiS.= n[E/ SSE,EECN (L)}. 

Call the right side of (1) Q. Then certainly Q is a subset of 

Mi MaS. On the other hand if x ~ Mi MaS then take any normal 

lower end c: wi.th C 2 S • • ~h_en MiMaC =C~MiMaS ~nd thu~ Q 

contains MiMaS. Thus (l) holds and we g;et (2) dua1ly. 

We now establis~ the following criterion using this observ­
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vation. 

Theorem 3: Let L be a meet continuous lattice. Then the following 

statements are equivalent: 

(1) ADedekind-Macneille extension of L is meet continuous. 

(2) For every directed subset S of L if xE:Mi MaS then x =VxAS. 

(3) ()tN(L) =Ok(L), that is eve~J complet~ lower end is normal. 

Proof: (1) implies (2): Take any directed subset S of L and suppose 

xE:-Mi MaS. Suppose y ~ Se Theno{1 (y)2! ~ {ot (s) / s (:SJ= C, say.
1 

Then o< (y) ;;: C :!. o< (S) and thus by Remark 2 we get ol1 (x) ~ C. Then
1 1

using (1) we have o<1 (x) = ~ [c-<. 1 (xA s) / s ES l and this implies 

x = VxAS. 

(2) implies (3): Let A be any complete lower end and take x in 

M:iMaA •. Then by (2) x =V x A A and since XI\ A~ A and A is complete 

we get that x belongs to A. Thus A = MiMaA., that is, A is normal. 

(3) implies (1): This is clear by Theorem 1. This completes the 

proof. 

Dually we obtain 

Theorem 4: Let L be any join continuous lattiGe. Then the following 

statements are equivale~t: 

(1) · A Dedekind-Macneille completion of L is join continuous. 

(2) For every directed subset S of L if x (:- MaMiS then x =!\xv S. 

(3) CN(L) = CK(L), that is, every complete upper end is normal. 

Corollary 5: Let L be an infinitely meet distributive lattice. 

Then the following statements are equivalent: 
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(1) A Dedekind-Macneille completion of L is infinitely meet 

distributive. 

(2) For every subset S of L if x E- M:i.MaS then x =V x" So 

(3) D1N(L) =~(L), that is, every complete lower end is normal. 

Corollary 6: A necessary and sufficient condition that there exist 

a finitely meet faithful complete meet dense meet continuous ex­

tension of a meet continuous lattice L is that for every directed 

subset S of L if x E- Mi.MaS then x =VXI\ S. 

Proof: If the condition holds then by Theorem 3 the Dedekind-

Macneille completion of L is meet continuous. On the other hand, 

if (E, w) is a finitely meet faithful meet continuous extension of 

L, then. by Proposition 10 the join dense kernel of (E, w) is meet 

continuous. However, since (E, w) is meet dense its join dense 

kernel· is equivalent to a Dedekind-Macneille completion. Then using 

Theorem 3 we have the corollary. 

Similarly one has 

c·orollary £: A necessary and sufficient condition that there exist 

a finitel,.v meet faithful complete meet dense infinitely meet distri­

butive extension of an infinitely meet distributive lattice L is 

that for every subset S of L if xE-MiMaS then x =Vx" S. 

Remark 3: It follows from Corollary 6 that the lattice Q of Example 

2 is an example of a lattice which is infinitely meet distributive 

but has no complete finitely meet faithful meet dense 

meet continuous extensions. 
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3. Boolean Lattices and Dense Extensions. 

In this section we prove that every complete lower end of a 

Boolean lattice L is normal and use this fact and its dual to obtain 

a characterization of dense complete completely faithful infinitely 

meet (join) distributive extensions of L. Further we establish that 

up to equivalence the Dedekind-Macneille completion of L is the only 

finitely faithful meet and join complete Boolean extension. In 

addition we obtain a proof of the Stone--0-livenko theorem which states 

that the Dedekind-Macneille completion of a Boolean lattice is a 

Boolean extension. 

Let B be any Boolean lattice with zero element 0 and unit 

element e. For any x in B let x 1 be the complement of x. ·Further 

for any subset X of B we put 

(1) x' =[x' I x<:X ~ 

(2) Mi x' ={y I y & B, y~x' J 
(3) Ma x'=fy I yc-B, y:::,.X' J 

Remark 4: For any lower end A of B, the normal end MiMaA has a 

1
complement in O"N which is given by MiA • Dually for every upper. 

end E of B the normal upper end MaMi.E has a complement in C. N 

and this is given by MaE 1• 

Let L be any lattice with zero element 0 and unit element e. 

Consider the following conditions on L: 

(CI) 'For every x, z and evecy subset S of L such that z ~ x "S there 
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exists at in L with z vt-2! S and t /\ x = o. 

(CII) For every· x, z and every subset T' of L such that z :G: xv T 

there exists as in L with Zl\sbT and svx = e. 

Proposition 15: Let L be an infinitely meet distributive lattice 

with zero element 0 satisfying (CI).. Then the Dedekind-Macneille 

completion of L is infinitely meet distributive. 

Proof: By Corollary 5 of the previous .section it is enough to show 

that every complete lower end is normal. Let A be a complete lower 

end and take any_ x in MiMaA. Put B = {a / a<£ A, a~ x J. Let y in 

L be any upper bound of B. Then for each b in A we have b Ax belongs 

to B and thus b AX !:y. But then by (CI) there exists at in L with 

t" y:;: b for each b in A and such that t l\X = O. This gives that 

x~tvy, that is, x = (xAt) v (xAy) = xr.y~ y. Thus xis the 

least upper bound of BP Since A. is a complete lower end we then 

have that x belongs to A. This completes the proof. 

Dually we obtain, 

Propesition 16: Let L be an infinitely join distributive lattice 

with unit element e satisfying (CII). Then the Dedekind-Macneille 

extension of L is infinitely join distributive. 

Corollary S: Let L be any Boolean lattice. Then 01N(L) = O~(L), 

CN(L) = lK(L), that is, every complete lower (upper) end of L 

is a normal lower (upper) end. 

Proof: Take any x, z in L and let S be any subset of L with z;? x AS~. 



1Then z vx' ~ S since L is distributive and x l\X - O. Thus L 

satisfies (CI) and by duality (CII) as well. Then applying first 

Propositions 15, 16 and then Corollary 5 we have our result. This 

completes the proof. 

Corollary 9: · (Stone-Glivenko) [2] . The Dedekind-Ma.cneille 

extension ( O!N(L), D( ) of a Boolean lattice L is a Boolean extension,1

that is, OtN(L) is a Boolean latticeo 

Proof: Since L satisfies (CI) and (CII) we have by Propositions 15 

and 16 that OiN(L) is infinitely distributiveo We observed in Remark 

4 that OlN(L) is complemented. Hence, in all, it is a Boolean lattice. 

This completes the proof. 

Corollary 10: The canonical full extension ( XN(L), °'-) of a Boolean 

lattice is the only canonical full complete completely faithful 

extension of Lo It is further an infinitely distributive extensiono 

Proof: First of all ( X-N(L), o<.) by Proposition 6 and Theorem 5 of 

the previous chapter has the properties mentioned. Further if 

( ~, ~) is any full complete completely faithful canonical extension 

then by Proposition 6 we get that ~N<; ~ and by Theorem 5 of the 

previous chapter 1 ~ fK(L), the full admissible subset induced by 

OtK(L), CK(L)o But then by Corollary 8 we have that ~K(L) ;::;; XN(L). 

Hence i = f N(L). ':Dhe rest follows from Corollary 9o This completes 

the prooi"o 

Let P be a partially ordered set with zero element 0 and unit 
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element eo Let (E, w) be an extension of P. 


Definition 11: An element a of E will be called join null if and only 


if L(a, w) ={o} and it will be called meet null if and only if U(a, w) 


The following lemma will be usefulo 

Le1m:na 2: Let L be a Boolean lattice and (;t' ,a<.) a complete canonical 

dense eA"tension such that ~ is a distributive lattice. Then each 

element of .* is a join of its join component and a join null element. 

Dually each element of ;( is a meet of its meet component with a meet 

null element" 

Proof: Take any (A, E) in X • Then its join component by Corollary 

5 of the previous chapter is (A, Ma.A.). Also since JE is complete, 

"J:. contains the join admissible subset induced by Ot'N(L) o Thus 

(MiA
1 

, Ma MiA
1 

) E: .f . Now clearly Ma.An Ma MiA1 = {e} , e the 

unit of L. Thus (A, E) ~ (A, Ma.A) v (MiA1 
, Ma MiA1 

) • Then since 

~ is distributive we have (A,E) = (A, MaA) V ((A,E) A (MiA~ MaMiA
1 

) ) o 

But since An MiA1 ={Of, we have that ((A, E)A(MiA.', Ma MiA1 
)) is a 

join null element.. The remainder of the lemma follows by duality. 

This completes the proof. 

We now obtain the following description for certain complete 

completely faithful canonical dense extensions of a Boolean lattice 

to be infinitely meet distributive extensionso 

Theorem 5: Let (,.¥, o<) be a complete completely faithful canonical 

dense extension of a Boolean lattice L. Suppose that the join null 



ele..."llents of S( form a complete lattice and the meet null elements 

of ~ form a latticeo Then the following conditions are equivalent: 

(1) (,X, 0() is an infinitely meet distributive extensiono 

(2) x is a. distributive lattice. 

(J) 1 is a join complete sublattice of 'XiL). 

Proof: (1) implies (2) clearly, moreover by Corollary 10 we have that 

(3) implies (l)o Thus we must show that (2) implies (3). Take an 

arbitrary family (Ai, Ei). r_ I in X and let (A, E) =~(Ai' Ei). 
i~ i~I 

By Lemma 2 there exist join null elements ( ( 0), Ui), ( (0), U) 

in ;{ such that for each i E: I, (Ai, Ei) =(Ai MaAi)v ((O), Ui), 

where (o) =~1(o) and (A, E) = (A, MaA) v ((o), U). Let 

~(Ai, MaAi) = (B, MaB), where B3 = ~Ai and since by assump­
if I 

tion the join of join null elements is join null let ~((o), Ui) = 

((o), V). It is clear that A contains B. Suppose (C, MaC) is any 

join dense element of ~ less than or equal to (A, E) with (C, MaC) 

/\ (B, MaB) =<X(o), the zero element of 3( • Then since Xis 

distributive we get (C, MaC) = (C;, MaC) /\ ((B, MaB) v ((o), V)) 

::;: ( ( o), V) and this gives that C = °'l(o) o Thus D((o) is the only 

join dense element of i with iX(o) ~ (A, E) and such that o{ (o) A (B, MaB) 

=D<.(o)o Since (.l, o() is completely faithful and since OtK(L) = ~(L), 

C (L) = C (L) we indeed have that it ~ i (L). Then A, B both
K N N 

belong to D1iL). Let D in OtiL) be the relative complement of B 

in A. Then A = B ~ D and B A D = °'i(o). But then since 



(D, MaD) :::'.:: (A, E) we have from the above that D == °'l(o) and thus 

A. =Bo Thus the joins in -* and f N(L) coincide. By duality we 

establish that finite meets in )f, ~N(L) co~ncide. This completes 

the proof. 

Dually we obtain 

Theorem 6: Let (~, o<.) be a complete completely faithful canonical 

dense extension of a Boolean lattice L. Suppose that the meet null 

elements of ':f form a complete lattice and the joi~ null elements 

form a lattice. Then the following conditions are equivalent: 

(1) ( 1, O<..) is an infinitely join distributive extension. 

(2) 'Jf- is a. distributive lattice. 

(3) X is a meet complete subla.ttice o.f~(L). 

Definition 12: An extension (E, w) of a Boolean lattice L will be 

called a Boolean extension if and only if E is a Boolean la.tticeo 

'l'he following lemma is useful in determining the dense 

Boolean extensions of a Boolean lattice. 

Lemma 3: Let (l ,o<) be any finitely faithful canonical dense 

Boolean extension of L which is a join and meet completion. Let 

(A, E) be any element of Jt and let (B, F) be its complement in ;i o 

Then (1) Mi Ma.B =Mi MaE1 and (2) Ma MiF =Ma MiA1 
• 

Proof: Since (X, o() is finitely faithful we have, for any x in L, 

/
that o<.(x) " o<. (x 1

) = o<.( e), .X(x) A tX. (x1 
) = o<.(o) and thus o( (x) =o<(x1 ) • 

Now the join component (A, Ma.A) of (A, E) being a join dense element 



has for its complement the meet dense e:)..ement /\{ o( (x J) / x C: A3 == 

(Mi A1 , U) for some suitable U in pr2(;f) with Mi U =Mi A1• Since 

(A, MaA) is the join component of (A, E) we have that its complement 

(MiA1 , U) is the meet component of (B, F) o But the meet component 

1
of (B, F) is (MiF, F)o Thus MiF =MiA1 

, that is, MaMiF =Ma:MiA • 

The rest of the le~.ma follows by duality. This completes the proof. 

We conclude this section by establishing 

Theorem 7: A Dedekind-Macneille extension of a Boolean lattice L 

is up to equivalence the only finitely faithful dense Boolean 

extension which is a meet and join completion. 

Proof: Firstly a Dedekind-Macneille extension of L has the men­

tioned properties. Next suppose (*°, o<) is any finitely faithful 

dense Boolean meet and join completion of L. Take a:ny 

(A, E) E [ • Then since "£ is distributive we have by Lemm.a 2 a 

join null element ((o), U) in :f such that (A, E) =(A, MaA.)v 

((o), U) where o is the zero element of L and (o) =o(1 (o), the 

lower end consisting of the zero element only. Let (B, F) be the 

complement of ( ( o), U). Then by Lemma 3 we have that 

F~MaMiFSMaMi{o~1 
= fe), e the unit of Lo Hence F == {e~. 

But.then clearly ((o), U):::, (B, F) and thus ((o), U) =o<(o), the 

zero element of ~ o Hence (A, E) = (A, MaA), that is, ea.ch element 

of ~ is join dense. By duality we then have that each element is 

meet dense as well. -Finally since ( ;f, o<) is a join (meet) completion 

we get that (~, o<.) is equivalent with a Dedekind-Ma.cneille completion. 

This completes the proof. 



4,. Distributive Lattices and Dense Ext,ensions. 

In this section we determine the complete completely faithful 

join (meet) dense distributive extensions of an infinitely meet (join) 

distributive lattice,. We obtain also a criterion, different from 

Fu.nayama.ts [8] , for the Dedekind-Macneille extension of a distri­

butive lattice to be a distributive extension. We further give 

necessary and sufficient conditions for a given join dense 

completely faithful extension of a distributive lattice to be a 

distributive extension. 

Definition 13: An extension (E, w) of a distributive lattice L will 

be called a distributive extension if and only if E is a distributive 

lattice. 

Proposition 17: Let (Q',~1) be any completely faithful 

canonical join dense distributive extension of a distributive lattice 

L. Then (J is a sublattice of ()tK(L), the lattice of complete lower 

ends of L. 

Proof: Since ( rf, °'l) is a join dense completely faithful extension 

we have that O't <; OtK(L). Hence for _any A, B in ()1. we have A ~ B 

2 A ~ B3. Take any y in A~ B. Then o<.1(y) ~ A~ B and since 

Qt is a distributive lattice we have oc:1(y) = (°'1(y) '\LA)~ (o(l(y)"cJ3) • 

Hence ot.1 (y) =~(«1(yA a) " °' 1 (y" b)), the join being taken over all 

a in A, b Go B,. Thus°'1 (y) =~{ot1((yAa)v(y/\b))/ a<:A, btB l · 
This i.."Dlllediately gives y = '!::} {(y A a) v (y "b) / a '=A, b E- BJ . 

http:Fu.nayama.ts


l\
Hence y belongs to A '....:./' B. Of course the meet in both lattices 

is set intersection. This completes the proof. 

Dually we get 

Pl."opo~;ition 18: Let ( C, d.
2

) be any completely faithful 

canonical meet dense distributive extension of a distributive lattice 

L. T'nen l is a sublattice of CK(L), the lattice of complete upper 

erids of L. 

Corollary 11: Let ( ()!, .x
1

) be any canonical join dense completely 

faithiul.fQ-is:tl'~'buti.ve.Jextension of an infinitely meet distributive 

lattice L. Then ( CJ1. , o< ) is a distributive extension if and only
1

if fJC is a sublattice of Q!K(L). Dually let ( C ,« 2 ) be any 

canonical meet dense completely faithful #:iis-tpi-butive\ extension of an infinitely 

join distributive lattice L. Then ( C , o<. 2 ) is a distributive 

extension if and only if .f.. is a sublattice of CK(L). 

Theorem 8: Let L be a distributive lattice. A Dedekind-Macneille 

extension (E, w) of L is a distributive extension if and only if 

for all x, y in L, a in E we have w(x) " (w(y) v a)~ w(x Ay) v 

(w(x)" a). 

Proof: If (E, w) is a distributive extension then the condition 

clearly holds. Conversely suppose that the condition holds. Take 

any a, b, c in E with a /\b~a Ac, avb !.ave. To show that E is a 

distributive lattice we must show that b ~ c. Take a:ny x, y in L with 

w(x)6 b and w(y) ~c. Then w(x) I\ a ~ w(y)" a, w(x) " a ~ w(y) v a. 

Then w(x) .::: w(x) " (w(y) V a) = w(x "'y) v (w(x) I\ a) using our assumption. 



72. 


'.l.1hen w(x) :: w(x I\ y) " (w(y) " a.) :; w(y). Thus w(x) ~ /\ { w(y) / 

w(y) ~ c J = c since c is a meet dense element. Hence 

c ~ V {w(x) / w(x) .!: b) =b since b is a join dense element. 

Thus b ~ c md (E, w) is a distributive extension. T'nis completes 

the proof. 

Corollary 12: Let L be a distributive lattice. A necessary and 

sufficient condition for there to exist a complete completely 

faithful dense distributive extension whose join and meet dense 

kernels are 

lower end A 

Proof: If the stated condition holds then it follows by Theorem 8 

that the Dedekind-Macneille extension is distributive and this is 

an extension of the desired type. Conversely let (JC, o<.) be a 

canonical dense extension of the desired type. T'aen by Proposition ?, 

1 S. fN(L). Since a-( lJiN) is a complete sublattice of XN(L) we get 

that the set J of join dense elements of Xequals the set M of meet 

dense elements of 3( • But then the equal subsets J, M form a sub­

lattice of k • Since JC is distributive then so is J and the 

extension (J, «) is a distributive Dedekind-Macneille extension of L. 

Hence by Theorem 8 the condition holds and this completes the proof. 

Corollary 13: (Stone-Glivenko) [2] • A Dedekind-Macneille extension 

of a Boolean lattice L is a Boolean extension. 
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Proof: (1) For any y in L and any normal lower end A we have: 

<X1(y 1 ) I\ Ji. =« 1(y 1 ) /\ (o< 1(y) v A) where the unadorned join, meet 

symbols refer to the lattice LJtN(L), a.~d y 1 is the complement of y. 

1To see this take any z in L with z ~ y 1'1. A. Then z "y ~ y v (y / A a) 

~ a for each a in Ao Thus o< 1(zv y) ~ o< 1 (y) v Ao But then 

~ 1(z) ~ o< (y 1)" o( (yvz) ~ o( (y1 ) I\ (<X (y) v A) 0 Hence 
1 1 1 1

al. 1 (y1 ) I\ A 2 o< 1(y') A ( °' 1(y) v A) and since the reverse inclusion 

is clear we have (l)o 

(2) For any x in L we have: o< 1 (x) v A = o<1 (x) ~A, where 

':J (L) is the lattice of all ideals of L,, Take any z with o( 1(z) ~ 

cX (x) v k,, Then using (1) we have o<1(z "x1
) ~ o<. (x

1
) A A ~ A.

1 

Thus o(1(z)~ °'1(x) v0('1(z"x') ~ o(1(x) ~ Ao Hence (2) is 

establishedo 

(3) For any x, y in L, using (2) and the fact that the lattice of 

ideals of L is distributive we have that <X 1(x) " ( at1(y) v' A) = 

oL l(x) A ( °"1(y) ~9 A) = °'1(X/\ y) ~ ( al.1(x) A A) = 
«1(xAy) V ( «1(x) A k.). Hence the lattice OtN(L) is distributive. 

We saw in the last section (Remark 4) that it was complemented. Hence 

(}!N(L) is a Boolean latticeo This completes the proofo 

Let L be a lattice, Of any system of ideals of L 

containing Qt (P) and l any system of filters of L containing 

C(P). In what follows~ will refer to the join in the lattice of 

ideals of L, ~ will refer to the join in the lattice of complete 

lower ends of L and unadorned join, meet symbols will refer to the 

join, meet respectively in OC , C . Further ~ will refer to the 
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meet in the lattice of filters of L a..'1d /~ will refer to the meet 

in the lattice of complete upper ends of Lo 

Definition 14: We call L Ot -continuous if and only if for every 

x in L, A, B in (Jt if S £ A ~ B such that ~ S exists then 

there exists a set T such that ~ T exists, T is contained 

both in A ~ B andOC 1(x) and x I\ ~ S = ~To Dually we call 

L l -continuous if and only if for every x in L, E, G in C. if 

S £ E If. G such that ~ S exists then there exists a set T such 

that /:0 T exists, T is contained both in E '9- G and iX (x) and2

xv~ S = /?;T. 

The following lemma will be useful. 

r.eruma l~: Let L be a distributive lattice and ( 01, o< 1) any 

completely faithful canonical join dense distributive extension of Lo 

Then for any A, Bin 01 we have AvB ={xi xE:L, x=Vs, S£A ~BJ. 

Proof: Let us call the set on the right side of the above equality Q. 

Since ( (J( , o<.. 1) is completely faithful we have that ()t. consists of 

complete lower ends and hence Av B contains Q. Now take y in L 

with o<..1(y) ~ Av B. Then si.i-ice (JC is a distributive lattice we get 

°' 1(y) = ( o< 1(y) /\ A) V ( <X 1(y) I\ B). But then ~ (y) = 
1 

V{cX.1(yA a) v ol 1(yAb) / af-A, b~Bf. 

Thus o<.l(y) = vrx1«yl\a)" (yl\b)) I ae-A, bE-B ~ and this gives 

y = ~{(yAa) 'I (yAb) / ar:A, bcB}. The set S = {(yt.a)'/(yl\b) 

/ a €-A, b E :S ~ clearly is contained in A 0 Be Hence y belongs 
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to Q and this completes the proof. 

Theorem 9: Let ( J1, °'l) be any completely faithful canonical 

join dense extension of a distributive lattice L. Then ( (;t , 0( 1) is 

a distributive extension if and only if (1) (ff. is a sublattice of 

D1K(L) .and (2) L is Of-continuous. 

Proof: Suppose ( (;t, ol. 1) is a distributive extension. By Proposition 

17 we then have that OC is a sublattice of 0\(L). Further take any 

x in L, A, B in 01 and let S be a subset of A ~ B such that ~ S 

existso Then clearly x "~ S belongs to o{ 1(:x:)" (AvB) = 

( °'i(x) /\ A) " ( «1(x) /\ B). Then by Lemma. 4 there exists a set T 

contained in (°' 1(x)-'A) ~ (0(1(x)AB) = ~ 1(x) A (.A ~ B) such 

that ~ T exists and x " ~ S = ~ To But this means that L is 

CJ! -continuous. Conversely suppose that (1) and (2) both hold. Take 

any A, B in (Jf and put Q ={ x Ix ~L, x =vs, s c A 0 B} • Then 

Q is certainly contained in A ~ B, but since L is (JC -continuous 

we have immediately that Q is a complete lower end. Hence A ~ B = Q 

and by (1) Av B = Q. ·Now take any x, y in L such that y belongs 

to oL1 (x) A (Av B) • Then by the above .y ~ x " ~ S for some 

suitable S <;;: A ~ Bo But since L is (fl -continuous there exists 

a T S:- A ~ B, and o< 1 (x) such that ~ T exists and equals y. Now 

since T <;: o{l(x) " (A ~ B) we have that it is contained in 

(O\(x)AA) ~ ( ~ 1(x)A B). This means that y belongs to 

( oll(x) AA) ~ ( 0( l (x) A B). Then using (1) we have that CJf is 
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distributive. This completes the proof. 

Dually we get 

Theorem 10: Let ( C , ol. ) be any completely faithful
2

canonical meet dense extension of a distributive lattice Lo Then 

( C , o< 2) is a distributive extension if and only if (1) C. is a 

sublattice of t K(L) and (2) L is C-continuous. 



CHAPl'ER III 

EXT:J!llTSIONS IN CATEGORIES . 

In this chapter we study various categories whose objects 

are extensions of a given partially ordered set. We will obtain 

here a categorical characterization for the injective and pro­

jective join (meet) dense kernels of an extension in a suitable 

category. .F\lrther we study the relations between the injective 

and the projective orderings and obtain·also a categorical 

characterization of the injectively largest completely faithful 

join dense extension of a meet continuous lattice. 

1. Injective and Projective Kernels. 

Let P be a partially ordered set and let (R, w), (S, 1t) be 

extensions of Po 

Definition 1: By a join preserving map from (R, w) into (S,J[) 

over P we mean a mapping f from R into S such that for every 

subset Mof P if the join ~ w(M) exists then f ( "°' w(M) = 

~j((M). Dually by a meet preserving map from (R, w) into (S, 1[) 

over P we mean a mapping f from R into S such that for every subset 

M of R such that /~ w(M) exists we have that r(/~w(M) =~J[(M}. 

77. 
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Definition 2: By a left isotone map over P from (R, w) into (S,J[) 

we mean a mapping f from R into S such that (1) f .w = JL, and (2) 

f is an order homomorphism such that f(w(x)) =. f(a) implies w(x)::. a 

for any x in P, a in R. Similarly by a right isotone map over P 

from (R, w) into (S,Jl) we mean a mapping f from R into S such that 

(3) f.w =7f and (4) f is an order homomorphism with f(w(x)) ?:!:- f(a) 

implies w(x) ~ a for any x in P, a in R. 

Definition 3: A mapping f from (R, w) into (S,Jr) will be called 

join dense if and only if (i) f is an order homomorphism from R 

into S with f .w = J( and (ii) for every join dense element s in S 

and every subset M of P' if s ~ J[ (M) then there exists a in R such 

that s ~ f(a) ~ Jt (M). Similarly a mapping f from (R, w) into (S, ][ ) 

will be called meet dense if and only if (iii) f is an order homo­

morphism from R into S with f.w =Jl and (iv) for every meet dense 

element s in S and every subset M of L. such that s .: Jl (M) there 

exists an element a in R with s : f(a) ~ Jr (M). 

Remark 1: If f is a join dense mapping from (R, w) into (S, ;L) 

then f maps R onto the join dense elements of S. To see this take 

any join dense element c in S. Then clearly c ~ 1[ (x) for each 

x in L(c, Tl ) and since f is join dense there exists an element a 

in R such that c ~ f (a) ~ TL (x) for each x in L( c, J[). But then 

c ~ f(a) = ~ { TL (x) / it (x) ~ c ~ = c since c is join dense. 

Hence f(a) = c and f maps onto the join dense elements of s. 
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Similarly if f is a meet dense mapping then ! maps onto the meet 

dense elements of f. 

Let ii/, d3, "(, /j be categories whose objects are extensions 

of Po The maps of A are ,join preserving over P or .ioin dense. The 

maps of 63 are meet preserving over P or meet dense. The maps of ~ 

are left-isotone over P and those of~ are right-isotone over P. 

Let J1 be any category whose objects are extensions of Po 

Definition 4: We sew (R, w) is injectively smaller than (S,Jf) 

in J1. , written (R, w) =i (S, 10 in If, if and only if there exists 

an order iso~orphism f in J1 from R into S with f .w = TC. Similarly 

we sew (R, w) is Erojectivelv smaller than (S,Jt') in /'1, written 

(R, w) =. (S, T{ ) in Jvt , if and only if' there exists an order 
p 

epimorphism f in Jf. from S onto R with t. J( = w. Finally we say 

(R, w) is equivalent to (S,J[) in J1, written (R, w) ~ (S, j[) in J11 
if and only if there exists an order isomorphism f in Jl1. from R onto 

s with f.w = J[ • 

Theorem 1: The injective join dense kernel of an extension (E, w) 

is up to equivalence in .JI the injectively largest join dense 

extension in A injectively smaller inJ/ than the extension (E, w). 

Proof: Let Ji(E, w) be the injective join dense kernel of (E, w). 

Then the set Ji consists of join dense elements of E. Thus the 

identity mapping from Ji into E is clearly a join dense mapping which 

makes Ji (E, w) injectively smaller than (E, w) in "4· . Now suppose 

that (R, 1[) is a join dense extension which is injectively smaller 



in Jl than (E, w). Then there exists an order isomorphism f in fi 
from R into E with f. /( = w. If f. is join preserving over P then 

for any r in R we have that 

f (r) = f( ~ { Jf (x) / J[ (x) ~ r j } = ~ [ w(x) / "Jf (x) ~ r ) 

which means that f(r) belongs to Ji. Then (R, w) .6 i Ji(E, w) in J.'J • 
If f is a join dense map then by Remark 1 f maps onto Ji and again 

certainly (R, w) :E i Ji(E, w) in v4 • This completes the proof. 

Theorem 2: ~he injective meet dense kernel of an extension (E, w) 

is up to equivalence in 03 the injectively largest meet dense 

extension in 63 injectively smaller in Q3 than the extension (E, w). 

Further we have 

Theorem 3: The projective join dense kernel of an extension (E, w) 

is up to equivalence in ~ the projectively largest join dense 

extension in ~ projectively smaller in ~ than (E, w). 

Proof: Recall that Jp(E) = { L(a, w) / a G:- E J • The mapping f 

from E to JP-(E) given by f(a) =L(a, w) is certainly an order 

epimorphism. Further f(w(x)) = o< 1(x) and <X 1(x) ~ f(a) certainly 

implies.that w(x) 6 a. Hence f is left isotone and 

(J (E), 0( )f. (E, w) in '0. llext suppose that (R, Ti)~ p(E, w)p 1 p . 

in ~ where (R,, Tf ) is any join dense extension of P. Then there 

exists a left isotone map g from E onto R. Define h from JP(E) 

into R by h(f(a)) = g(a) .. Since g is left isotone and (R,jf) is 

a join dense extension we get that f(a) = f(b) implies g(a) = g(b). 

Thus h is well defined and since g, f are onto maps so is h .. 
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Next suppose that f(a) ~ f(b). Take any x in P with 1f(x) ~ g(a). 


Then since g is left isotone we get that w(x) ~ a. But then 


w(x) ~ b and thus Tl (x) = g(b). Since (R, Tl ) is a joi11 dense 


extension this means that g(a) f: g(b). Further it is clear that 


h{f(w(x))) = Tl (x) and h is left isotone since g is left isotone. 


In all (J
p

(E, w), o< 1) ~ 
p

(R, j'[) in t . This completes the proof. 


Dually we obtain 

Theorem 4: The projective meet dense kernel of an extension (E, w) 

is up to equivalence in oBthe projectively largest meet dense 

extension in rfJ which is projectively smaller ·in fJtha:n (E, w). 

2. Injective and Projective Orderings. 

In this section we study the relations between the injective 

and projective orderings in suitable categories of complete dense 

extensions. 

Let~ be the category whose objects are full complete 

extensions of a partially ordered set P and whose maps are join and 

meet preserving over P, let t' , be the category whose objects are
1 

complete join dense extensions of P and whose maps are join 

preserving over P, let~, be the category whose objects are 

complete join dense extensions of P and whose maps are order 

isomorphisms and finally letbbe the category whose objects are 
\ 

full complete extensions of p and whose maps are order isomorphisms. 
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Proposition 1: Let (R, w), (s, Tc.) be any objects in~ 
1 

• Then 

(R, w) f P (s, fl) in C if and only if (R, w) ~ i (S, Ji) in1~.1 

Proof: Suppose (R, w) is projectively smaller than (S,J[) in 

~1• Then there exists a join preserving order epimorphism f over 

P from S on to R. Consider the mapping h from R in to S defined 

by h(r) = '-.!!/{rr (y) / YG-P, w(y) t: r}. h is clearly an 

order homomorphism from R into S with h.w = 1[. Take any a, b 

in R and suppose a ~ b. Then since (R, w) is a join dense extension 

there exists a x in P with w(x)~ a but w(x) '4= b. Since f is join 

preserving over P we indeed have that f(~ { n(y) / w(y) ~ b ~ ) =b 

using also the fact that b is a join dense element. Hence 

w(x) f f(~{TI:(y) / w(y) ~ b) ). But this implies that j[(x) ~ 

~{1f (y) / w(y) ~ bJ = h(b). Thus we have that h(a)~h(b). 

Hence h is an order isomorphism trom R into S with h.w =7[. 

This means that (R, w) is injectively smaller than (S ,]() i?J9j_. 
Conversely, suppose that (R, w) is injectively smaller than 

(S, Jr. ) in J{•~ Then there exists an orde:r: isomorphism g from 

R into S with g.w =1( • Consider the mapping k from S into R 

defined by k(s) = '{;!{ r / r~R, g(r) ~ S j. Then for any 

r in R we have k(g(r)) = ~ { t / t ER, g(-t) ~ g(r)} =~ [t / 
t ~ R, t ~ r} = ; using the fact that g is an order isomorphism. 

Now take any subset Mof P. Then by. the definition of k we 

S R { S lhave that k( 'V TI (M)) = \I w(x) / 1i. (xH '\/ 1[ (M) J which is 

certainly an upper bound of w(M). Suppose that r ~ w (M). Then 

g(r)~ Jl (M) and thus g(r)~~ J( (M). In all, (k.g)(r) =r~k ( ~j{(M)) • 



Hence k is join preserving over P and since ktg is the identity 

on R we have that k is onto R. Thus (R, w) is projectively 

smaller than (S, j() in ~ 1• This completes the proof. 

Corollary 1: Let (R, w), (s, 1() be any objects in ~ 
1

• Then 

(R, w) is equivalent to (S., j[) in C1 if and only if (R, w) ~ 
p 

(s, 1C) in ~ 1 and (s, jf) ~ P (R, w) in ~1~ 

Remark 2: Let C be the category whose objects are complete
2 

meet dense extensions of a partially ordered set P and whose 

maps are meet preserving over P. Let~ be the category whose 

objects are complete meet dense extensions of P and whose maps 

are order isomorphisms. Then by duality we obtain that (R, w) 

1, (S, JO in ~ if and only if (R, w) ~ i (S, j() in J?J • In2 2


particular (R, w) is equivalent to (S, 1[) in ~ if and only

2 


if (R, w)~ p (S, 7[) in e and (S, Tl)~ p (R, w) in ~2•
2 
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Pro;position 2: Let (R, w), (S, JC) be any two full complete 

extensions. Then (R, w) ~ - (S, TI) in 'C if and only if (R, w)
p 

=.(s, Jl) in iJ. 
J. 

Proof: Suppose (R, w) ~ i (S, Tc) in j). Then there exists an 

order isomorphism f from R into S with f.w =Jl. Define g from 

S into R by g(s) = ~{ r / r ~ R, f(r) : s ~ ~ Then for a:ny r in 

R, g(f'(r)) = ~ { s I st--R, f(s) =f(r)) = ~{ s /sf R, 

s := r} =r. Hence g.f is the identity on R and thus g is an order 

epimorphism onto R with g.7(= w. Take any subset T of P and puts= 

Is\ {R (x) / x E- T f ~ Then g(s) ~ w(T). Further if r ~ w(T) then 

f'(r) 6 T( (T) and thus f(r) ~ s. Then (gf) (r) = r =g(s). Hence g 

is meet preserving over P and by duality one has that g is join 

preserving over P. Hence g is a map of 'P and (R, w) ~ (S, 1[) inV> p . 

~ • Conversely, suppose (R, w) ~ p (S, K) in ~ • 

Let J(R), J(S) be respectively the join dense elements of 

R and S and M(R), M(S) be respectively the meet dense elements of 

R and s. Let w1 , w be the mappings from P into J(R)® M(R),2 

J{S){©M(S) respectively given by w (x) = (w(x), w(x)), w (x) = 
1 2

( 1( (x), il{x)). Then since the extensions (R, w), (S, Tl) are full 

and since the extensions (J{R)~M(R)~ w ), (J(S)<2S)M(S), w ) are
1 2

dense we have at once by the definition of a full extension that 

(R, w) is equivalent to (J(R) ®M(R), w ) and (S, 'jf) is equivalent1



to (J(S) © M(S), w2 ) in ~ • Since (R, w) 6 p(S, Jr) in t/i there 

exists a join and meet preserving map f from S onto R. But then 

clearly f carries J(S) onto J(R) and M(S) onto M(R). Thus by Pro­

position l we have that the join kernels and meet kernels satisfy, 

(J(R), w) ~ i (J(S), w) in ~ 1 and (M(R), w) 6 i (M(S), w) in ~2• 

This implies in the obvious manner that 

(R., w) ~ (J(R) ® M(R), w1) ~ i (J(S) ® M(S), w2) ~ (s, 7r) iniJ. In 

all, (R, w) ~ i (S, n) in iJ and this completes the proof. 

Corollary 2: Let (R, w) and (S,7{) be any two full complete extensions • 

Then (R, w) is equivalent to (s:,Jf) in ~ if and only if (R, w)~ P(S, if) 

in ~ and (s, JO =P(R:, w) in ~ • 

3. · Categorical Characterization of ( O:C(L), 0( ).
1

In this section we obtain a categorical description of the 

extension ( 01K(L), 0( ) where L is a meet continuous lattice analagous
1

to the description of a Dedekind-Macneille extensi•n of a partially 

ordered set obtained in [4]. 
Let L be a meet continuous lattice and let (R, w), (S, J() 

be extensions of L. 

Definition 5: By a join continuous order homomorphism f from (R, w) 

into (S, j[) over L we mean a mapping r from R into S such that for 

every up-directed set M of L if ~ w(M) exists then f( ~ w(M)) = 

'-YJt(M). 
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Let J1.. be the category whose objects are complet!3_~il......1~J!L 

faithful, finite1y meet faithful meet continuous extensions of L and 

whose maps are left isotone, join continuous order homomorphisms 

over L. 

Let (R, w) and (S,j() be arbitrary objects in .;lf. 
Definition 6: (R, w).· is called an essential extension of L if and 

only if for any map f in J1 from (R, w) into (S, 7[) we have that 

f(a) ~ f(b) implies a~ b for any a, b in R. 

Remark 3: Let ~ be a category whose objects are extensions of Lo 

Let (E, w), (R, J[) be arbitrary objects in ~ • Then (E, w) is 

called an essential extension [4] if and only if for any map f 

in ~ from E into R such that if f.w is an order isomorphism from L 

into R then f is an order isomorphism. In the category JV{, any map 

f in J1. from (E, w) into (R, J[) satisfies f .w = i[. Hence the require­

ment that r.w be an order isomorphism from L is automatically satisfied 

and is thus omitted from the above definition. 

Note that the extension ( Oic(L), o\) determined by the complete 

lower ends of L is by Theorem 1 of the previous chapter a meet con­

tinuous extension. It is also completely faithful and thus belongs 

to JV/.. In addition note that for each object (E, w) of j( the mapping 

w is in J1.. 
A:.. description ot essential extensions in /1 is obtained in the 

following proposition. 



Proposition 3.: An object (E, w) in J1 is an essential extension of 

L if and only if (E, w) is injectively smaller in .J1 than the extension 

( 0\(L), cX )
1

Proof: Suppose (E~ w) is injectively smaller than ( ()tK(L), Oc' ) in )f.
1

Then (E, w) is a join dense extension. Take any map f from (E, w) 

into (R, l[) in ft • Suppose f(a) ~ f(b). Take x in L such that 

w(x) ~ ao Then f(w(x))=]f(x) ~ f(b). Since f is left-isotone we get 

.that w(x) .S b. Then since (E, w) is a join dense extension we have 

that a ~ bo Hence (E, w) is an essential extension of L. Conversely, 

suppose that (E, w) is an essential extension of L. Consider the 

mapping f from E into Ot'K(L) given by 
(J. [ ~ . 

f(a) = ~ <X (x) / w(x) tis clearly an order homomorphism
1 

~ a J. 
with f .w =\X1 • Take any up-directed set M contained in L such that 

~ w(M) exists. Take any y in L such that w(y) ~ ~ w(M). Then 

since E is meet continuous and finitely meet faithful we have that 

w(y) =~ { w(xA y) / y (;. Mj • Thus y = \(!{XI'. y / y f: Mf· 

Then since ( ~(L),o( 1) is completely faithful we have that 

01 1 01°' 1 (y) = "31 { ot 1(xA y) / y f: M j :!: ~ f(w(M)). Hence f is 

a join continuous order homorphism over L. Further suppose that 

o<.1(x) ~ f(a). Then o< 1(x)~ ~{ 0 '\(y) / w(y) ~a~. Then 

since ( OlK(L), <X ) is a meet continuous, completely faithful1

extension we get that «1 (x) • ~ { oc' (xA7) / w(y) ~ a f • 1

But then x = '!j{x A y / w(y) S al • Since (E, w) is a completely 

join faithful extension we then have that 

w(x) = ~ { w(xA y) / w(y) ~ a~ ~ a. Hence t is left-isotone, 
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that is, f is a map in J11 • Since (E, w) is an essential extension 

this means that f is an order isomorphism. Hence (E, w) ~ i ( "ic<L), o( ) 

in J1. and this completes the proof. 

Definition 7: An extension (E~ w) of L, in /YI will be called an 

injective extension of L if and only if for every pair of objects 

(A,((J), (B,'f') in if{ such that (A,l()~ 1(B,'f') in i/11. and any map 

h in J1. from (A, tf) to (E, w) extends to a map f bi iJf from (B, 'f) 

into (E, w), that is, r.g = h where g is an order isomorphism in il'1. 

.from k into B. 

Theorem 5: The following are equivalent for an extension (E, w) of 

Lin}'[ • 

(1) (E, w) is the injectively largest join dense completely faithful 

extension of L. 

(2) (E, w) is an essential, injective extension of L in v4{ • 
(3) (Ej w) is a minimal injective extension of L in/11 • 

(4) (E, w) is a. maximal essential extension of L in ft{ • 

Proof: (1) implies (2): (E, w) is an essential extension by Proposition 

3. Take (A, lf), (B, 'f') in J1 and let g be an order isomorphism from 

A into B in.}( • Let h be any map in J11 from (A, lf) into (E, w). 

Define a mapping f from (B, 'J-') into (E, w) by f(b) = 

~ { w(x) I+ (x) ~ b} • Since (E, w) is the injectively largest 

join dense completely faithful extension we have that (E, w) ~ 

(O!K(L), a< ) in J1. and hence (E, w) is a complete extension. Hence
1

t is well-defined. Further if w(y) ~ f(b) then since (E, w) is meet 



continuous we get that y = ~ { x" y / + (x) ~ b } • Then 

'f'(y) = ~ { "-" (xAy) /~(x) S b} since (B,'f') is completely join 

faithful. Thus 'P (y) ~ b and f is left-isotone. Take any up­

directed subset M of L and suppose ~'-f' (M) exists. Then since t 

is left-isotone we get immediately that t is a join continuous 

order homomorphism over L for w(y) ~ f( ~"}/ (M)) gives as before 

that w(y) f. ~ w(M). Further for any a in A, clearly f(g(a)) ~ h(a). 

Next take any y with w(y) =h(a)o Then since h is left-isotone 

we get that <.p (y): a .. Then g((f(y)) ='f'(y)~ g(a). But then 

w(y) ~ f(g(a)). Since h(a) is a join dense element we have that 

h(a) ~ f(g(a)), that is, f.g =- h and (E, w) is an injective extension 

of Lin J1. 
(2) implies (.3): Let (R', JL) be another injective extension of L 

with (R, Jl) ~ i (E, w) in /'{. L~t i be the identity mapping on R. 

r - IThen since: (f!, w) is essential/, there exists a map f in v11 from 

(E, w) into (R, jf) with f .g = i where g is an order isomorphism 

in J1. from (R, j() into (E, w). But then f is onto R, and since 

(E:, w) is essential we have further that f is an order isomorphism. 

Thus (R, T{) ~ (E, w) in jf. 

(3) implies (4): Let (R, J() in Jf. be an essential extension of L 

and suppose (E, w) ~ i (It, 1() in .JV!.. Then there exists an order 

isomorphism g in .)1 .from (E, w) into (R, 1() with g.w = j{ • Let 

i be the identity mapping on E. Then in view of (3) there exists a 

map t in J1. from R into E with f .g • i. But then r is onto E and 



1

since (R, JO is essential we must have that t is an order isomor­

phism. Thus (E, w) is equivalent to (R, J[) in .J1 • To see that 

(E, w) is an essential extension consider the extension ( Ot'K(L), DI. ) 

of L. We know from the implication (l) implies (2) that it is 

injective. Now consider the mapping w from L into E which is a 

map of J1 • Then this mapping in view of (3) extends to a mapping f 

f"rom 01K(L) into E with f. °'l = w. Since by Proposition 3 

( Cfl (L), o( 1) is an essential extension we get that f is an order 
K . 

isomorphism. Then by (3) since ( OfK(L), o( ) is injective we have
1

that £ maps onto E. Thus (E, w) is an essential extension. 

(4) implies (1): This follows immediately from Proposition 3 and 

the fact that ( OfK(L), 0( 1) is the injectively largest join dense 

completely faithful. extension of L. 
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