EXTENSIONS OF A PARTIALLY ORDERED SET



EXTENSIONS OF A PARTIALLY ORDERED

SET

By
HOSHANG PESOTAN DOCTOR, M.Sc.

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Doctor of Philosophy

McMaster University
October, 1967



DOCTOR OF PHILOSOPHY (1967) McMASTER UNIVERSITY
(Mathematics) Hamilton, Ontario.
TITLE: Extensions of a Partially Ordered Set

AUTHOR:  Hoshang Pesotan Doctor, M.Sc, (McMaster University)
SUPERVISOR: Professor G. Bruns

NUMBER OF PAGES: wviii, 92.

SCOPE AND CONTENTS: 1In this thesis we introduce the concept

of a dense extension of a partially ordered set ;nd study some
of the properties of the resulting class of extensions., In
narticular we study the dense distributive extensions, dense

Boolean extensions and dense meet continuous extensions of

distributive, Boolean and meet continuous lattices respectively.

ii



ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor G. Bruns
for his valuable help, guidance and constructive criticism in
the writing of this thesis.

I am also grateful to Mrs. E. Aldridge for the prompt
typing of my thesis,

For financial assistance I would like to express my
thanks to McMaster University and to the National Research

Council of Canada.

iii



TABLE OF CONTENTS

CHAPTER PAGE

0 Preliminaries l -7

I Dense Extensions of a Partially Ordered Set

1, Some Preliminary Definitions 8
2. A Canonical Form for Dense Extensions 16
3. T-7{ Faithful Dense Extensions 27
L. Completb Dense Extensions 31
5. Dense Kernels : 35

II Dense Extensions of Special Lattices

1., Completions and Full Extensions 43
2. Meet Continuous Dense Extensions 50
3. Boolean Lattices and Dense Extensions 63

Lo Distributive Lattices and Dense Extensions 70

III Extensions in Categories

le Injective and Pro jective Kernels ' 7
2, Injective and Projective Orderings 81
3. Categorical Characterization of { 0%(1.),“1) 86

BIBLIOGRAPHY ' 9

iv


http:Partial.ly

INTRODUCTION

The theory of extensions of partially ordered sets started
with MacNeillefs celebrated paper [13], in which certain special
extensions of partially ordered sets were introduced and which
contaihs in particular the well known MacNeille completion,
generalizing Dedekind!s famous construction of the reals from
the rationals. While the MacNeille completion preserves desirable
properties of lattices in certain cases (for example the property
of being Boolean) it fails to do so in other cases (for example
in the case of distributive lattices). This led to the attempt
to extend and systematize MacNeille's ideas l}, 3, 15] « In

order to get adequate results these authors restricted themselves
to the case of join (meet) dense extensions. The theory thus
obtained lacks (contrary to the theory of partially ordered sets

as a whole) the property of being self dual. One starting point
of this thesis was the attempt to develop a self dual extension

theory including the Join and meet dense extensions as special
cases, The class of "dense" extensions introduced here has these
properties,

Another starting point of this thesis was the obsgervation
that equations in a partially ordered set (also including those

involving infinitely many variables) are in general not preserved



in arbitrary extensions of it. Thus Funayama ﬁﬂ gave an example
of a distributive lattice whose MacNeille completion is not modular
answering a question posed by MacNeille. Also Dilworth and
McLaughlin [?J gave an example of an infinitely meet distributive
lattice whose MacNeille completion is not modular. In addition
P. Crawley [5] gave an example of a distributive lattice which has
no complete.completely faithful extensions (E, w) where E is a
modular lattice, We have tried here to find necessary and suff-
icient conditions for the existence of extensions which preserve
equations holding in the underlying set. The classes of partially
ordered sets for which we have obtained results in this direction
include distributive, Boolean and meet continuous lattices. A
brief synopsis of the material in this thesis follows.

In Chapter O we collect together the basic definitions and
results which we utilize in the ensuiﬂg chapters,

In Chapter I we introduce the concept of a dense extension
of a partially ordered set and observe that this c¢lass of extensions
include the classes of join dense and meet dense extensions. We
obtain a complete survey of dense extensions by proving that each
dense extension is equivalent to an unique canonical dense extension.
Further we prove the equivalence theorem for dense extensions,
namely, any two dense extensions which are injectively smaller than
each other are equivalent. In addition we give conditions under

which a given canonical dense extension is éomplete, respectively
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771-»7mr faithful. TFinally we introduce the concepts of dense
(Join dense, meet dense) kernels of an arbitrary extension and
study the properties these inherit from the given extension,

In Chapter II we study dense extensions of certain special
lattices, We establish that for each infinite cardinal m the join
dense extension provided by the m complete lower ends of a meet
continuous lattice is meet continuous. In particular we deduce
Crawleyts result [5] that the injectively largest completely
faithful join dense extension of a meet continuous lattice is a
meet continuous extension and in addition we establish that up to
equivalencevthis is the only such join dense complete completely
faithful meet continuous extension. Turther we obtain necessary
and sufficient conditions for a complete completely faithful
canonical join dense extension of a distributive lattice to be a
distributive extension, We also show in this chapter that a

Dedekind-MacNeille extension of a Boolean lattice is up tc equiv-
alence the only finitely faithful Boolean extension which is a
Join and meet completion. We further give an example of an
infinitely meet distributive lattice L whose Dedekind-MacNeille
. extension is not  meet continuous and observe that L
has no complete finitely meet faithful meet dense meet
continuous extensions.

The various dense kernels of an extension introduced in

Chapter I cannot be suitably described in the category whose }
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objects are all extensions of a partially ordered set and whose
maps are order preserving homomorphisms. In order to overcomé

this difficulty we consider in Chapter III several more restricted
categories whose objects are extensions of a given partially
ordered set, We obtain for example that the injJective join dense
kernel of an extension is up to equivalence the injectively largest
Jjoin dense extension which is injectively smaller than the given
extension in the category whose objects are extensions and whose
maps are Jjoin preserving order homomorphisms or join dense. We
also study the relation between the injective and projective
orderings in suitable caﬁegories of complete dense extensions.
Finally in this chapter we obtain a categorical characterization
of the injectively largest completely faithful join dense extension

of a meet continuous lattice,



CHAPTER O

PRELIMINARIES.

This chapter is a collection of all the basic definitions and
results which will be needed in the ensuing chapters.
l. Lattices and Homomorphisms,
A general reference for the definitions and the results in
this section is Birkhoff [2]
A partially ordered set is a pair (P, <) where P is a set and
= is a binary relation in P which satisfies
(P1) For all x, x<x (Reflexive)
(P2) If x<y and y=x then x = y (Antisymmetric)
(P3) If x<y and y<z then x<2 (Transitive)
If (P,4£) and (Q,4) are any two partially ordered sets a mapping f

from P into Q is called an order homomorphism if x<y implies f£(x)< f(y).

If further for an order homomorphism f we have f(x)<f(y) implies x<y

then £ is called an order isomorphism.

*
Given a relation< on X one obtains a relation < on X called
*
its converse by requiring x< y if and only if y< x. It follows by

inspection of (Pl) = (P3) that the following Duality Principle holds,

namely, the converse of any partial ordering is a partial ordering.

One can manufacture from given partially ordered sets new ones.

¥* *
For example given (P,<4) we obtain its dual (P, < ) where & is the

1.



converse of the given relation on P, Further if (P,<2) and (Q, <
are given we obtain two new partially ordered sets called respectively

their ordinal sum and ordinal product as follows:

(1) Put PP Q = PU Q where we assume without loss of generality that
P, Q are disjoint. We partially order PP Q by requiring that a<b
retains its original meaning if a, b are both in P or in Q and that
a£b holds for all a in P, b in Q,
(2) PoQ = { (p, 2)/PeP, aeQ |- We partially order P.Q by placing
(pys 9;)£(p,, qy) if and only if py< p, or p; =p, and Q) £4q,.

A partially ordered set in which for every pair of elements
X, ¥ We have either x<y or y<x is called totally ordered or a chain.
It is clear that the ordinal sum and ordinal product of chains are

again chainse A chain C is called dense-in-itself if given a<b in C

there exists a ¢ in C satisfying a<c <b,

Let R be the chain of all rational numbers,
Theorem l: Any countable chain is isomorphic with a subchain of R.
Any countable chain which is dense-in-itself is isomorphic with either
R, R®1, 18R, or 1®RP1, In particular the chains R®R, R¢ R are
both isomorphic to R.

A lattice is a partially ordered set (P,<) any two of whose

elements have a greatest lower bound or "meet" xAy, and least upper

bound or "join"™ xvye A sublattice of a lattice L is a subset which

contains with any two elements their join and their meet. We remark

2.

that a subset of a lattice may be a lattice with respect to the ordering

on L without being a sublattice of L, An element o of a lattice L is
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3.

called a zero element if o&x for each x in L. Similarly an element

e of L is called an unit element if x<£e for each x in L.

Let L be a lattice with zero element 0 and unit element e.
An element y in L is called the complement of an element x in L if

and only if xAy =0 and xvy = e. L is called complemented if all

of its elements have complements.

A lattice L is called distributive if and only if it satisfies

one of the following equivalent conditions
(11) xa(yvz) = (xay)v(xnz)
(I12) xv(yaz) = (xvy)r (xv 2)
(13) xa(yvz) £ (xay)vxnz)
Criteria for establishing a lattice to be distributive is given
in the following theorem a proof of which may be found in Curry [6] .
Theorem 2: Let L be a lattice,
The following conditions are equivalent:
(1) L is distributive
(2) an(bwve)< (anb)ve
(3) aaAbgce, a<bve implies a<c,
(4) aabs<bac, avbs<bvc implies a<c.

A complemented distributive lattice is called a Boolean

lattice, In general, if an element of a lattice has a complement

this need not be unique, However, in a distributive lattice an

element has at most one complements In particular every element of

a Boolean lattice has an unique complement,
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Theorem 3: Every Boolean lattice L is infinitely distributive, that is,
for each a in L and each subset X of L if \I/ X exists then\/aAX exists
and aA\L/X =\I‘/a ~X and if /L\ X exists then/L\ avX exists and

av/I\X =/L\avx.

A partially ordered set in which every subset has a meet and a

join is called a complete lattice,

Theorem 4: Let P be a partially ordered set. The following conditions
are equivalent:

(1) Every subset of P has a join.

(2) Every subset of P has a meet,

Hence a partially ordered set is a complete lattice if and only if one
of (1), (2) hold.

Let L be a complete lattice and R a sublattice of L. R will be

called a [meet = | complete sublattice of L if and only if /ﬁ H{exists
{Join -} \‘VHI}
for every subset H of R and coincides with A\H } .
\/ w
R is called a complete sublattice of L if and only if it is both a
meet _and join complete sublattice of L. We remark that a subset of a

complete lattice may be a complete lattice with respect to the given

ordering without being a complete sublattice. Examples of complete

lattices are furnished by closure systems. A closure system is a pair

(Ey O ) vhere E is a set and ({ is a collection of subsets of E such

that o< O implies [)Fe O « We remark that E€ OU since E is the

intersection of the empty collection,
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Theorem 5: If (E, O1) is a closure system then OT partially ordered
"~ by inclusion is a complete lattice in which an arbitrary meet is set
intersection but in general arbitrary joins is not set union.

A mapping f from a lattice R into a lattice S is called a

meet homomorphism if for any X, y in R we have f(xay) = £(x) A £(y);

it is called a join homomorphism if f(xvy) = f(x) v £(y) for every

X, ¥ in Rs A meet and a join homomorphism is called a lattice homo-

morphism. Purther a mapping f from R into S is called a Jjoin complete

lattice homomorphism if and only if (1) £ is a meet homomorphism

(2) for every subset H of R such that \R/ H exists we have \&/ f£(H)

exists and f( \R/H) =\8/ f(H) and it is called a meet complete lattice

homomorphism if (3) it is a join homomorphism and (4) for every subset

Hof R such that )\ H exists A\ £(H) exists and £( 4\ H) = 4\ £().

2. Catepories and Functors.

In this section we give the definition of a category and some
related concepts, A general reference for the definitions given here
is MacLane [12]

A category 2: consists of a class of objects and with each pair
X, Y of objects a set H(X, Y) called the set of maps f: X>Y such that
for any three objects X, Y, Z in ﬁ there is given a mapping H(X, Y) x
H(Y, Z)->H(X, Z) denoted by (f.g)¥g.f which satisfies (1) £ : XY,

g : ¥+2Z, h 1 Z>T then h.(g.f) = (h.g)ef. (2) For each object X in [o
there exists a map ey in H(X, X) such that ep.f = f for all feH(Y,X)

and foey = f for all f in H(X, Y).
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An element in H(A, A) for any A inﬁ is called an identity map.
The objects of {3 are in one to one correspondence A—>H(A, A) with the
set of identities.

Let b and D'be categories. A function T which maps the objects
of into the objects of & and, in addition, assigns to each map f in
(2 a map T(f) in & is called a covariant functor from 5 into ,9 if

the following conditions are satisfied:

(1) If £ is in H(A, B) then T(£) is in H(T(A), T(B)) for any A, B in 5
(2) If €, isin H(k, A) then P(¥R) =% () for any 4 in [

(3) If £ is in H(A, B) g in M(B, C) for any A, B, C in 6 then

T(g.£) =1T(g) 7(£).

Further T is called a contravariant functor from K to ,8 if the above

conditions are replaced by
(1) If £ is in H(A, B) then T(f) is in H(T(B), T () for any A, B in [,
() 1f€, isin H(A, &) then T(¢, ) =Cy(4) for any A in G.
(3%) If £ is in H(A, B), g in H(B, €) for any A, B, C in b then
?(g- 1) =7(f) 2(e).
If ? is a functor from f to ,9 and S is a functor from —9 into

Z then they may be composed in the obvious manner to form a functor
ST from C into &. If T, S have same (opposite) variance then ST is
covariant (contravariant). In view of property (2) above we see that
a functor T is completely determined by the function T defined for
maps only. Thus a covariant functor is essentially a homomorphism
of the maps of c to the maps ofﬁ subject to the condition that the

identities be mapped to the identities, One functor that always exists
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is the identity functor I‘: defined from é into zZ which keeps each
object and map of C fixed.

A category C will be called equivalent to a category $ if and

only if there exists a covariant (contravariant) functor § from {ao into
°9 and a covariant (contravariant) functor T from 09 into ?; such that
5 = Ip and s7 “Iﬂ' Amap f in {Z from P to Q is called a mono-
morphism if and only if u, v are any two maps from R into P with fou =
fovthenu =v; it is called an egmorgﬁism if and only ’:Lf for any

maps u, Vv from Q into R with wuef =ve £ then u = v,



CHAPTER I
DENSE EXTENSIONS OF A PARTIALLY ORDERED SET.

In this chapter we introduce the concept of a dense extension
of a partially ordered set. The class of these extensions will be
found to include the classes of join dense and meet dense extensions
studied inEl, 3, lé} Whereas the notions of meet dense respectively
join dense extensions are not self-dual the notion of dense extension
will be seen to be self-dual in the sense that if (R, w) is a dense
extension of P then (R¥, w) will be a dense extension of P where
P¥, R#* are the duals of P, R respectively. We will introduce on the
class of all extensions an injective and a projective ordering and
study the bagic relations between them. We will establish as well
in this chapter a canonical form for dense extensions in terms of a
system of lower and upper end pairs., In addition we will study complete
dense extensions and various classes of faithful dense extensions and

state pertinent results about thelr canonical forms.

l. Some Preliminary Definitions,

In this section we introduce the definitions of the various

dense extensions, injective and projective orderings and state the

Duality Principle for extensions and some other basic results.

Let P be a partially ordered set.

Definition 1: An extension of P is a pair (E, w) consisting of a

8.



partially ordered set E and an order isomorphism w from P into E.

Let (R, w) and (S, J{) be any two extensions of P,

Definition 2: (R, W) is injectively smaller than (S, /1) (or (S, 7)

is injectively larger than (R, w)), written (R, w) < L.(s, R ) if and
only if there exists an order isomorphism f from R into 8 such that
£ -w=J. Further (R, w) is said to be equivalent to (S, T), written
(R, w) 2 (S,1T), if and only if there exists an order isomorphism f from
R onto 8 such that few =T,

Dually we give

Definition 3: (R, w) will be called projectively larger than (S, 7T)

(or (8,7T) is projectively smaller than (R,w)), in symbols, (R, w) =,

(S, 77) if and only if there exists an order epimorphism f from R onto S

with f.w =T,
The relationship between the above two orderings will be studied
in suitable categories later. We now, however, state some basic proper-

ties of these orderings which are immediate consequences of the defin-

itions.

Proposition l: The relations of injective, respectively, projective

orderings are quasi-orderings whereasthe relation 22 is an equivalence
relation. Further both orderings are compatible with the relation 2z,
that is, if (R, w) £, (5, ) ( (R, w) >,(S,7))and if (R, w) = (R}, W1),
(s, ) 2 (8%, 7t1) then (&Y, W) £, (8%, ¥ (®Y, w!) 2, (s} wl)). In
addition if (R, w) 22 (S, ) then (B, w) £, (S, %) and (S, ) < (R, w)
( (R, w) >p(8,7) and (S, 7) =p(R, w) ).

In general if (R, w) £, (S,7) ( (R, w) 2/ (8,77) ) then the
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order isomorphism f (order epimorphism f) from R into S (R onto S) with
f+w =7 need not be unique. Further (R, W) need not be projectively
smaller (injectively larger) than (S, {)e In addition any two ex-

tensions which are injectively or projectively smaller than each other

need not be equivalent. We give examples of these facts.

- . N . . ‘
Example 1. et P =[_b, 1, R =[O, 3,,8= [0, )__] be intervals of the
real numbers and let i be the identity mapping from ¥ into R, 8

respeciively. Then clearly (B, 1) <, (8, i)‘byy the identity mapping

froa R but (R, i) is not prejectively smaller than (S, i) since § has

an unit element and R does not.

Fxample 2 Let P = {a} be a one element set and let R = {a,p,q,r,s,t} 9
S = {a,v,w,x,y,z} be sets containing P whose order relations are given

by the following diagrams.

Leh 1 bs the identity wmapping frow . e (R, i) 2. {8, 1) for cleariy
& e U S - P [ Y - 2N e e >f N >
bae mappang £ aelined by &Xa) = a, (p, =X, S\ =7, (r) =v,

Bl Y e s o~ - e A B . S L S S, 2 - . 2 )
£(s) = w, {{¥} = 2 is &n ordev cpimorphisi with f.i =i, dotice ihat
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the mapping g given by g(a) = a, g(p) =x, g(q) =3, g (r) =v,
g(s) =w, g(t) =y also makes (R, i) =p (S, i) but f3= g. Further

(8, i) is not injectively smaller than (R, i)e ‘Otherwise there would

exist an order isomorphism h from S into R with h(a) = a. But then
since R and S have the same number of elements h would be also onto.
But then the lattices R -« P, S = P would be isomorphic. However, R ~ P

is modular and S -~ P is not and this contradiction establishes our c¢laim.

Example 3. [Bruns s 3]
Let P, (R, i), (S, i) be as in example 1. Then (R, i) £; (8, 1)e

Further (S, i) <, (R, i) since one has that ([0, 2], i) 2 (8, i) (vy
defining £f(r) =r if r in P and £(r) =2r-1 if r in [1, 2] ) and
([0, 2], 1) £; (R, 1)s However, (R, i) is not equivalent to (S, i)

since S has an unit element and R does not,

Example L, Let R be the chain of rational numbers, S any partially
ordered set and N the chain of integers. Consider the ordinal
products R.R and R.N. Form the ordinal sums P = R,R@S and Q =R, N@® S,
Then the identity mapping i from S makes (R.R@S, i) and (R.N®S, 1)
into extensions of S, The mapping f from P into Q given by f =i on S
and f(r, s8) = (r, [s] ) where [s] is the greatest integer less equal s
is clearly an order epimorphism from P onto Q with f.i =1, that is,
(P, 1) =p(Q, i)s By Theorem l of Chapter O there exists an order‘
isomorphism g from R onto ReR, Define h from Q to Pby h =i on S

and for any (r, n) in R.N, put h(r, n) = g(r). Then since g is an
order isomorphism onto R.R we have immediately that h is an 'order'



epimorphism from Q onto P with h.i =i, that is, (Q, i) ;P(P, i),
However, (P, i) is not equivalent with(Q, i). Otherwise we would
have R.R order isomorphic with R.N. This, however, is a contradiction
since R.R is dense-in-itself but clearly R.N is not., Hence (P, i),

(Q, i) are projectively larger than each other but are not equivalent.

Definition 4: A subset S of a partially ordered set P will be called

dense in P if and only if for any x, y in P with x4y there exists a
sin S with s< xand sd y or s >y and s} X. S is said to be join
dense in P if and only if every x in P is a join in P of elements of
S. S is said to be meet dense in P if and only if every x in P is a
meet in P of elements of S,

Remark 1: It follows immediately from the above definition that if

S is join dense (meet dense) in P then S is dense in P, Further if

S is ‘Join dense (meet dense) in P then for any x$y in P there exists
a s in S with s < x, 54: y (s>y, s?x) but the converse is not true,
For example ta.k’e P =4{a, b, c} a three element chain with largest
element a and smallest element ¢ and take S =={ b} o Then clearly S

is neither join dense nor meet dense in P but S is dense in P,

Definition 5: An extension (E, w) of a partially ordered set P will
be called a dense extension of P if and only if w(P) is dense in E.

It is called a join dense (meet dense) extension of P if and only if

w(P) is join dense (meet dense) in P.
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In view of the above remark it follows immediately that every
join densé (meet dense) extension is also a dense extension. The
relation between extensions of P and the extensions of its dual P¥
is given by the following

Proposition 2: (Duality Principle for Extensions). The mapping f

which attaches to each extension (R, w) of a partially ordered set P
the extension (R¥ w) of the dual P¥, where R¥* is the dual of R, is

a one to one mapping of the class of all extensions of P onto the
class of all extensions of P¥, Moreover we have the following
properties:

(1) (R, w) =2 (5,J0) if and only if (R¥, w) = (S*, 7).

(2) (B, w) £.(s, 1) ((R, w) =p(S,7)) if and only if (R¥, w)<;
(s*, ) ((BR¥, w) =p (s%,70)).

(3) (R, w) is a join dense (meet dense) extension of P if and only

if (R¥*, w) is a meet dense (join dense) extension of P,

(4) (R, w) is a dense extension of P if and only if (R¥, w) is a dense

extension of P¥,

Proposition 3: Let (R, w) be any extension injectively smaller than

a dense extension (S,J{) of P Then (R, w) is a dense extension. |
In particular all extensions of P equivalent to a dense extension
are dense extensions,

Proof: (R, w) injectively smaller than (S,7) implies the existence

of an order isomorphism f from R into S with f.w =] . Take any a, b



in R with a£ b, But then f (a)<t £(b) and since JT(P) is dense
in S there exists a x in P with J((x) £ f(a) and T0(x)<= £(b) or
JT(x) > £(b) and T(x) £ £(a)s TFinally since f.w =J and f is an
order isomorphism we have from the previous line that w(x) < a and
w(x)4 b or w(x) > b but w(x);: a, that is, w(P) is dense in R.
Thus (R, W) is a dense extension and this completes the proof,
Remark 2: [;Bruns, 3] .
In a similar manner one can establish that any extension injectively
smaller than a join dense (mee£ dense) extension is join dense (meet
' dense).

The dual situation to that mentioned in Proposition 3 is not
true in general; namely if (R, w) is projectively smaller than a
dense extension then (R, w) need not be dense. The following
examples illustrate .this fact.
Exé.mple 5: Let P = {a, .b, c} be a three element chain with smallest
element a and greatest element ¢, Let R,=a{a, b, ¢, P, q} and
S = {;, b, ¢, r, s} be two sets containing P whose order relations

are described by the following diagrams:

d C

b b
[+]

a n
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Then (R, i), (S, i), i being the identity map from P are extensions
of P. Also (R, i) is clearly a dense extension of P, but (S, i) is
not a dense extenéion since s!Fr but each element of P comparable
with s is comparable with r. Consider the mapping £ from (R, i)
onto (S, i) which maps P identically and f(p) =r, £(q) = s. Then
of course f is an order epimorphism with fei =41, but (S, i) is

not dense.

Example 6: Let P = {a, b, cj be a totally unordered set and let
R = {a, b, ¢, x, y} » S =1a, b, ¢, u, v} be sets containing P whose

orderings are given by the diagrams below:

Then (R, i) is a join dense extension of P, but (S, i) is not a join
dense extension, i being the identity map. But clearly (R, i) 2p (S, i)
In at least one case the situation mentioned in the above

example does not occur as the following proposi.tion shows.

Proposition 4: Let (R, w) be a dense extension projectively smaller
than a join dense extension (S,7{). Then (R, w) is a join dense
extension.

Proof: (R, w) projectively smaller than (S, J{) implies there exists
an order epimorphism f from S onto R with f.)l = w, Take any r in R
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and sﬁppose f(s) =r., Now we claim r ==\R/{w(x)/w(x)$ r} . Take

any c¢ in R; ¢ 2w(x) for each w(x)< r. Suppose ¢ r. Then since
(R, w) is a dense extension we have a ‘y with w(y)= ¢ but w(y)E r.

But then?('(y)# s and since (S, 7T) is join dense there exists a =
with7((z) < s but z¢ y, that is, y# z with w(z)< r. But from

the previous lines y > x for each x with w(x)<£ r. This contradiction

establishes our claim and also the proposition.

2o A Canonical ¥orm for Dense Extensions.

In this section we obtain a canonical form for dense exten-
sions and establish the basic equivalence theorem for dense extensions
which states that any two dense extensions which are injectively
smaller than each other are equivalent, '

Definition 6: A subset A of a partially ordered set P will be called

a lower end if and only if x in A and y£ x imply y in A, Dually a
subset E of P will be called an upper end if and only if x in E and
y = x imply y in E.

Examples of lower and upper ends of particular imporance are

the principal lower ends, respectively the principal upper ends

generated by a single element of P, Thus for any x in P the principal
lower end generated by x is ((—-xjfﬂ{ y/ye P, y< x} and the principal
upper end generated by x is fx—b)== {y/yeP, Yy x} .

Let 0}' a respectively be the collection of all lower and upper

ends, OU(P), f(P) respectively the collection of all principal lower
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and upper ends of}a partially ordered set P, Let {1 be the Cartesian
product of Q( R }: , that is,

W Q=fwn/rel, 5l ]

(1) & ={((ex], ) /xeP |

For any subset S of P write

(iii) MaS ={y/yeP, ¥y = s for each s in S}

(iv) Mis ={y/y(:P, ¥ £ 8 for each s in S }

For our purposes we are mainly interested in the sets contained in
the following subset of {) .

@ X, ={0, B/, Be L vith s xah §

We remark that X, contains A and also that

(vi) %, = {(L, E)/(A, E)€ L with A s‘.—m}; for A is a subset of
MiE if and only if E is a subset of Mak.

Further for any subset ¥ of L define

(vi1) pry(X%) ={a/ae (I , there exists E €, with (4, E) € ¥ }
(viii) pry(¥) ={E/E € &, , there exists A € 0 with (A, E) ¢ X §
(ix) For any pair of elements (A, Ey), (Ay; ) in ¥ put (A, Ey) &
(Ay, E,) if and only if AySA, and E,2E,.

Also for any subsets ¥ of (2 containing A , 0Tof 0} containing (U(P),

Z of Eo containing & (P) define the following mappings from P into these

subsets:
(x) « from P into ¥ given by X(x) = ((ex], x-)).
(xi) «, from P into Mgiven by &, (x) = (¢« x].

(xii) <, from P into & given by °&(x) = [x=).
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We now have clearly

Proposition 5: The relation £ is a partial ordering on () and the

pair (X, ) where X is any subset containing & is an extension of
P. |

For any (¥, fsatisfying, Of(p)QO(EOJ, Erpyc e,
define
(xiii) o= (OU) ={(A, uea)/ A € Off
(xdv) J (&) ='[(M:1E, E)/E € E}

The following definition will be useful in formulating
results.

Definition 7: Any subset % of Xo containing & will be called an

admissible subset of X,. The subsetss—( 07), d(E) will be called

respectively the join admissible, meet admissible subsets induced

respectively by 07 ’ f .
The importance of admissible subsets is realized in the
following proposition.

Proposition 6: Any extension (3, ) where X is a admissible sub-

set is a dense extension. In particular (X, , ) is a dense

extension.

Proof: Take (A, E), (B, F) in )¢ and suppose (A, E)$(B, F). This

gives either A B or ER P, Now if A B then there exists x in A

but x not in B. Then since X is admissible we have E S Mak < Ma (¢ x]

= °gz(x). Hence & (x) < (A, E) but since x is not in B, d(x)é:,_ (B, F)o

Dually if E;igr there exists x witha(x)> (B, F) but «(x) % (A, E).
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‘Thus ol(P) is dense in X and (X ,x) is a dense extension. This

completes the proof.

Proposition 7: The extensions (0~(),¥), ( J-( £)),o) are respec-

tively join dense, meet dense. In particular the extension (0~ (), )
is join dense and (S (&, ),X) is meet dense.
Proof: Take any element (A, MaA) in ¢~ (0U). Then of course (A, MaA)>
& (x) for each x in A, Further for any (B, MaB) in o~ (0t) which is
greater than or equal to ®(x) for each x in A we have B= A and thus
MaB S MaA, that is (B, MaB)> (A, MaA)., Thus (A, Mak) =\/{°‘ (x) / xep;}
By the duality principle we have the rest of the proposition and this
completes the proof.

The above propositions allow us to make the following
definitions,

Definition 8: We shall call any extension of the form _(i , %) where

¥ is an admissible subset a canonical dense extension. The extensions

of the form (o~ (01),&) will be called canonical join dense extensions,

Dually extensions of the form ( d (€ ),«) will be called canonical
meet dense extensions,

Let P be any partially ordered set and (E, w) any extension
of P.» For any s in E define
(1) L(s, w) ={x / xeP) wlx) < 8} .
(2) U(s, w) ={x / xeP, w(x) > sj .

The following observation will be useful,

Lemma 1: (E, w) is a dense extension of P if and only if for all



s, t in E : L(s, w)<L(t, w) and U(s, w)2> U(t, w) imply s < t.
Proof: Suppose (E, w) is dense. Then if s4t for some s, t in E
since w(P) is dense in E we have immediately L(s, w)$ L(t, w) or
U(s, w)$ U(t, w)e Conversely if the condition holds and s<t
then we have by assumption L(s, w) $—I.,(t, w) or U(s, w) ? U(t, w)
which gives that (E, w) is dense completing the proof,

Lemma 1 implies that if (B, w) is a dense extension of P
then for all s, t in B if L(s, w) = L(t, w), U(s, w) =U(t, w)
then s = t. The converse, however, is not true.

Example 7: Let P = ta, b, c} be a three element set contained in

20,

E =1{a, b, ¢, x, y} . Let the ordering in E be given by the following

diagram:

Then certainly (B, i) is an extension of P, i being the identity
map, PFurther we have in E the condition if L(s, i) = L(t, i) and
U(s, 1) = U(t, i) then s =+t for any s, + in E. However, (E, i)

is not dense for y4x but L(y, i) € L(x, i) and U(x, i) < U(y, i).

Lemma 2: If (R, w) is any extension injectively smaller than a
dense extension (S, ) of P then there exists exactly one order

iso'morphism £ from R into S with f.w =7].
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Proof: Since (R, w) is injectively smaller than (S, JT) there exists
an order isomorphism f from R into S with f.w =/. Let g be another
order isomorphism from R inteo S with g.w =J[. Then for any r in R

we claim L(£(r),T) = L(g(r), ) and U(£(r), 7T) =U(g(r),T). To

see this take any x in P with JU (x)< £(r), then w(x)< r since f.w =T,
and f is an order isomorphism. But then g(w(x))=/(x)< g(r) and thus
L(f(r), 7)< L(g(r),T). The reverse inclusion follows similarly

and by duality we have U(f(r), ) =U(g(r), T)e Then by Lemma 1

since (S,77) is dense we have f(r) = g(r). Hence f = g and this

completes the proof,

Corollary 1: If (¥ ,X) is any canonical dense extension of a
partially ordered set then there exists precisely one order isomor-
phism from (¥, «) to (X,, &) which keeps A fixed, namely the identity
mapping.

Remark 3: fBruns, 3] If (R, w) is any extension injectively

smaller than a join dense extension (S, 7{) then the unique order

isomorphism of Lemma 2 from R into S is given by f£(r) =\S/{T{(x)/ X€EP,

w(x) € r} and in case (S, 7{) is meet dense it is given by f(r) =

/S\{JT (x)/xeP, w(x)> r} .
The following theorem translates the injective ordering on
car;onical dense extensions to that of set inclusion,
Theorem 1: Let (X,«), (y,ﬂ) be canonical dense extensions. Then

(X, ®) is injectively smaller than (y,x) if and only if X S "a(
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Proof: If (¥,a) is injectively smaller than (‘y,o() then
there exists an order isomorphism f from ¥ into (#E Zo with f.o = o,
Then from Corollary 1 we infer that f must be the identity mapping
from ¥ into "2{. , that is,X= f(¥X)< y . Conversely if ;\‘Qy then
the identity mapping f from X into‘zjr is an order isomorphism with
f.* =&, Thus (X,«) is injectively smaller than <‘5‘»°<>' This
completes the proof of the theorem,
Corollary 2: Any two canonical dense extensions are equivalent if
and only if their canoni.cal subsets are equal,

The next theorem obtains a complete survey of dense extensions
in terms of canonical dense extensions.
Theorem 2: Let (R, w) be a dense extension of a partially ordered
set P, Then (R, w) is equivalent to exactly one canonical dense

extension (X , o). The admissible subset of this extension is given

vy X = {(L-(r, w), U(r, w)) / r(—R.} .

Proof: Note first that ¥ is an admissible éubset for L(w(x), w)

= (& x], U(w(x), w) = [x-) and hence A is a subset of ¥ . Also
since w is an order isomorphism L(r, w) is a lower end and U(r, w)

is an upper end. Further U(r, w)SMal(r, w) since if w(y)> r then
w(y)>w(x) for each x in L(r, w), that is, y>x for each x in L(r, w).
Now consider the mapping f from R into X given by £(r) = (L(r, W),
U(r, w))e Then clearly f is onto X . Also since (R,.w) is a dense

extension Lemma 1 immediately gives that f is an order isomorphism
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and from the first line we get fexX =o«. Hence (R, w) is equivalent
to (X¥,x). If (‘lo»/,e:() is another canonical dense extension equiv-
alent to (R, w) then it follows that (¥ ,«), (y , %) are equivalent.
This means that X = lzd‘lby Corollary 2. This completes the proof.

As a consequence of Theorem 3 we have the foHo@g theorem
which does not hold for extensions in general.
Theorem 3: (Equivalence Theorem for Dense Extensions). Let (R, w),
(8,77) be any two dense extensions of a partially ordered set P, If
(R, w) <, (8, ) and (5, W) <, (R, w) then (R, w) is equivalent to
(S, 7)o
Proof: By Theorem 2 there exist unique canonical dense extensions
(¥,a0), (y, o) which are respectively equivalent to (R, w), (S,17).
Our hypotheses then give (¥ ,«) <, (y,o() and (y,o()} < (¥,a).
By Theorem 1 we then have ngand "ég}, that is, X=y. Thus (¥ ,« ),
(?é, &) are equivalent and hence so are (R, w) ‘and (s,70)e This

completes the proof.

Remark 4: An alternative proof of Theorem 3 without reference to -
canonical dense extensions may be givén as follows. Since (R, w) < ¢
(8,77) and (S5,X )5£(R’ w) there exist by Lemma 2 unique order
isomorphisms f from R into S and g from S into R with f.w =J{ and

g. i=w., Then f.g is an order isomorphism from 8 into S and (f.g).J{

= fow =/l. The identity mapping 1 on S is also an order isomorphism
with i, 7T =7(. But by Lemma 2 since (S8,7() is a dense extension



there is only one order isomorphism from S to S which keeps J{(P)
fixed. Thus f.g =i and this means that f is onto. Hence (R, w)

and (S, T) are equivalent.

Corollary 3: Every join dense extension (R, w) is equivalent to
exactly one canonical join dense extension (0~(01),&)., Dually
every meet dense extension is equivalent to exactly one canonical
meet dense extension (5(5),00.

Proof: If (R, w) is join dense then in particular (R, w) is dense.
Hence by Theorem 2 there exists an unique canonical dense extension
(¥, ®) equivalent to (R, w), Then by Remark 2 (¥,x) is also join
dense., Hence for each (A, E) in X we have (A, E) =\/{0( (x)/f"(x)é
(a, E)} . Take Y in MaA, then «(y) 2« (x) for each x in A, that is,
(y) 2 °<(;c) for each x with« (x)< (A, E)e Hence o (y) > (A, E) and
tﬁus y is in E. But since f is admissible E & MaA, in all, E = MahA.
Thus (A, E) = (A, MaA), that is, X is the unique join admissible
subset induced by pr, (%). The second half of the corollary follows

by duality. This completes the proof.

Remark 5: The canonical representations given in Corollary 5 may be
effectively reduced to representations just in terﬁs of systems of
lower ends, respectively upper ends as derived in Bruns [3] ’
Banaschewski [1] . Partially order all subsystems 07 of 00( contain-~

ing OUP) by inclusion. Then a pair O »%;) is a join dense extension
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clearly equivalent with (0—((0¥), ) under the obvious map. Dually
if we partially order all subsystéms Eor é o containing &) by
exclusion then all pairs (¢, ™) are meet dense exﬁensions. Any
such pair is then clearly equivalent to ( S (&), o) under the
obvious map. For this reason from now on when we refer to canonical
join dense (canonical meet dense) extensions we will mean either the .
extensions ( 01,01,) (( g, ®{;)) or the extensions (a(0),«x), ( 5-(5),°<)
induced by these and which are equivalent to them,

The equivalence Theorem 3 tells us that the collection Y of
all canonical dense extensions forms a pgrtially ordered set under
the injective ordering. The main features of this partially ordered

set is listed in the next theorem.

Theorem 4: The co]lectionYof all canonical dense extensions of

a partially ordered set is partially ordered by the injective ordering.
In this 6rdering, it is a complete, atomic, Boolean lattice. The
operations of meet, join, complement in this lattice are respectively,
set intersection, set union and CX = (%o-)f)ua. The unit element
of this lattice is (X, X) and the zero element is the trivial
extension (A ,). Further (Xo,o() is the largest canonical dense

extension of a partially ordered set.

Proof: Let {2 denote the collection of admissible subsets of 360.
The mapping h from -X—into g given by h((¥,x)) = ¥ is clearly an
order isomorphism from b’_onto é » é being ordered by inclusion.
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Further the mapping g from c into the power set of %o - O given by
g(¥) =X« A is an order isomorphism of C onto the power set
A)Q( X, - A), the power set being ordered by inclusion. Hence the
composite map g.h from fonto NP(XO «/A) is an order isomorphism.
Since "f?(i‘o - A) is a complete, atomic, Boolean lattice so is J .
This completes the proof. |

We bring this section to a close by giving the following

examples which show that in general no pleasant relationships exist

between the injective and projective orderings even for dense or join

dense extensions,

Example 8: Let P = {a, b, c} be a totally unordered set and let
Q=7a, b, c,x}, R =1a, b, c,x,y} andS'—'{a.,b, c, z}be
three sets containing P whose order relations are given by the

following diagrams:

Then (Q, i), (R, i), (8, i), i the identity map from P are clearly
join dense extensions of P, Further, clearly (Q, i) <, (R, i) but
(Q, 1) is not projectively smaller than (R, i) since y is comparable
to b, ¢ in R but no elemeqt of Q is comparable to both b, ¢ in Q.

Again (R, i)Qp(S, i) by the mapping which keeps P fixed and maps



X, ¥ to zo However, (S, i) is not injectively smaller than (R, i)
since z > a, b, ¢ in S but no element of R is greater than, or equal

to a, b, c.

Example 9: LetP={a., b}, R =1a, b, X, ¥y, z},S={a., b, p, q, r}

be sets whose ordering are given as follows:

fo
o ©°

Then (R, i), (S, i) are clearly dense extensions of P. Also the
mapping £ which keeps P fixed and maps x to r, z to q, y to p is
an order epimorphism onto S with f.i =i, However, (R, i) is not
injecti{rely smaller than (S, i) for if so then R, 5 being finite
sets the lattices R, S'would be isombrphic. However, R is modular
and S is not. Note that in this case R and S are 'even complete

lattices,

3. 77‘(-77 Faithful Dense Extensions.

‘In this section we study 7'{ join faithful, 7 meet faithful
extensions of a partially ordered set. We give necessary and
sufficient conditions for a given canonical dense extension to be

"™ join faithful, respectivelyﬁ meet faithful.
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In general if (R, w) is an extension of a partially ordered
set P and ¥ is a subset of P which has a join in P then the set w(M)
need not have a join in R and even it did it could be that w(\ ¥)=

& w(k). The following example illustrates this fact.

Example 10: Let P ={a, b, ¢, d} and E ={p, q T, S, t} be two

sets whose order relations are given by the following diagrams:

. el
. pc : t
L O
d $

Define w‘ from P into E by w(a)l =p, w(b) = q, w(c) =r, w(d) =s,
Then w is clearly an order isomorphism of P into E and thus (E, w)
is an extension of P, Now M = {a, bj has join ¢ in P whereas
\E/W(M) =tFw(c) =r.

The situation mentioned in the above example motivates the
following definition. Let?"‘{ be any system of subsets of é partially

ordered set P,

Definition 9: An extension (R, w) of P is called |/ join faithful

if and only if for each M in /"] which has a join in P the set w(M) has
a join in R and w(\I/X) =\R/w(ld). Correspondingly (R, w) is called
T"[ meet faithful if and only if for each M in 77V which has a meet

in P the set w(X¥) has a mest in R and w(/r\l() '=/1}w(u). In case MY

is the collection of all finite subsets of P we will say (R, w) is
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finitely join faithful, respectively finitely meet faithful; if )7

is the collection of all subsets of P we will say (R, w) is completely

join faithful, respectively completely meet faithful. Further we will

say (R, w) is finitely faithful (completely faithful) if and only if

it is finitely meet and join faithful (completely meet and join
faithful).

In order to obtain descriptions‘ of the canonical dense
extensions which are 77 join faithful, 77 meet faithful we make the
following definition.

Definition 10: A lower end A of P will be called a //[ lower end

if and only if for each M in /77 such that M C A and ¥ has a join

in P then \J/¥ € A, Similarly an upper end E of P will be called a
m upper end if and only if for each M in m if MC E and the meet

in P of ¥ exists then /IM € E. In particular if mis the collection
of all finite subsets of P then a T lower end is called an ideal
and a 7" upper end is called a filter. Similarly if7"( is the
collection of all subsets of P then a 77‘{ lower end will be called

a complste lower end and a.m upper end will be called a complete.

upper end.
Let Wandw be arbitrary systems of subsets of P. Let

017"((P) s E 7\{?) be the collection of all [T{lower ends, Wupper

ends raspectively of P, We define

@ X 70 ={a, 5/6, neXo , aedlp), 5l @]

Then in partioular when T is the empty collection we have
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@ X (,$) = {4, B/, DX, , 4Gl (@), 5€E, | ana vhen 17T

is the empty collection we have

@) X(BT0 = {0, B/, DX, e, xel @]

Theorem 5: A canonical dense extension (¥X,) of P is /77 join and
VT meet faithful if and only if X is a subset of ¥ (M,77). In
particular (X (7Y,7Y), &) is the largest canonical dense 7'{join

and 7'( meet faithful extension of P.

Proof: Suppose (¥ ,X) is 777 join and /{ meet faithful and take
(A, E) in ¥ . Take M in 77f, MCA such that VX exists. Then

A (x) < (A, E) for each x in M. This implies that (A, E)>\/%(x) =
xeM

X (VM) since (¥ ,) is T7{ join faithful. This means that VX € A,
Hence A is a 7"‘(lower end and by duality we get E is a T\Tupper end,
Thus X< X (7Y, 7(). Next suppose XSX,TY). Take any M in T
such that the join in P of M exists. Certainly X (\VM)> X (M),

Now suppose (A, E)€ ¥ such that (A, E)> X(M). This implies x € A
for each x in M, that is, M € A, Then since A is a IT( 1ower end

we have \/M €A, This means (A, E)> % (VM), Hence X (VY) =V «(}),
that is, (¥, ) is 7 join faithful and by duality we get (¥,X)

is Y meet faithful. This completes the proof,

Corollary 4: A canonical dense extension (¥ ,%) of P is 777 join
faithful if and only if ¥ X (I, ) and is VY meet faithful if

and only if XS X(®,)s In particular (X7, #), X ) is the
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largest canonical dense extension which is777join faithful and

(¥ (¢ J1),%) is the largest canonical dense extension which is T

meet faithful.

L. Complete Dense Extensions.

In this section we study complete canonical dense extensions
of a partially ordered set. We will give necessary and sufficient
conditions on the admissible subset X of a canonical dense extension
(¥ ,X) in order that it be complete. Further we give here necessary
and sufficient conditions for an arbitrary family in X to have a
join or a meet in XX .

Definition 11: An extension (E, w) of a partially ordered set P is

called complete if and only if E is a complete partially ordered set.
An important complete extension is the following Dedekind-

Macneille extension of a partially ordered set.

Definition 12: An extension (E, w) of P is called a Dedekind-Macneille
extension if and only if (B, w) is a complete meet and join dense
extension of P, |

Definition 13: A lower end A of P is called normal if and only if

A =MiMa A, Dually an upper end E of P is called normal if and only

if E = Ma Mi K.

Letog (P) ,% (P) respectively be the collection of all normal

lower ends and normal upper ends of P, Of course every principal

lower end, respectively principal upper end is normal. Among the

properties of a Dedekind-Macneille extension [see Bruns, 3-] we note
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that it is upto equivalence the injectively smallest complete extension, it has

for its canonical forms the equivalent extensions (OAZ/ »% ), (ZN ,o{L)

and further that it is completely faithful.

The largest canonical dense extension (ﬁ, &) is seen to be
complete for if (A, Ey). 1 is an arbitrary family in X, then
l (e

(UAi, ﬂEi) is an element of Xo and thus also the least upper bound
iel iel

of this family. Thus in view of the remarks just made we have that

if (¥,«) is a complete canonical dense extension theno—(o,:l, ) XS X, -

Proposition 8: Let (¥, ) be any canonical dense extension and
(A;, E;) an arbitrary family in X . The following statements are
equivalent:

(1) \/(Ai, E;) exists in ¥

(2) (O pry Ma( {(Ai, Ey) / ieI} ), {] Ei)belongs to X

In this case N/ (Ay, B;) = ((pr, ¥a ({(hy, E)) / 1€1}),NE)
1€1 i o i

Proof: (1) implies (2): Suppoée \1/ (A5, E3) = (4, E). Put B =
Qprl Ma ( {(Ai, E;) / i€ I} ). Then Aeprl Ma ({(Ai, Ei) / i&IS)
and thus A 2 B, Further if we take C&pr, Ma ({(A;, B;) / 1€1})
then there exists U in pr,(X) with (C, U) in X and (C, U)>(Ay, Bg)y p -
and thus (C, U) = (A, E)e¢ Thus C 2 A and this gives A =B, Also

E SE; for each i €I and thus ES (|E;, Next if we take x in iﬂaﬁi

then &X(x) > (Ay, By) for each i € I and then X(x) > (A, E). Hence
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X € E and we have E =(\Ei. Thus (B, ﬂEi) = (A, E) belongs to ¥ .

(2) tmplies (1): Put (, B) =([pr) ua ({y, B) / 1ex], OBy,

Then (A, E) belongs to X by assumption and clearly is an upper bound
of the given family. Take (B, U) in ¥, (B, U) > (A;, E;) for each

iin I, Then UC()E;, that is, USE and Beépry Ma ({ (A;, E;) /ieI§)

This means that B contains A. Hence (B, U) > (A, E). Thus \*/(Ai,Ei)

exists. This completes the proof. i€l

Dually we obtain

/

Proposition 9: Let (#,« ) be any canonical dense extension of P and

let (A;, E;), .y be an arbitrary family in ¥ . The following state-

ments are equivalents

(1) /N (&3, B;) exists in X,
gcI

2 (/] Ay ﬂpr2 Mi (-{(Ai, E;) / 1e1'}) belongs to X . 1In this
ier i

case /\ (Ag, Bg) = (g, (Vorput ({(ag, B5) / 1€1))

iel ieI
Corollary 5: Let (,K) be any canonical dense extension of P and
let S be any subset of P. The following statements are equivalent:
(l)\*/o((S) exists
(2) (A, Mar) be;longs to X where A is the smallest lower end in

prl(;‘é) containing S. In this case (A, MaA) =\&°<(S).
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Corollary 6: Let (3, ) be any canonical dense extension and S any
subset of P.

The following statements are equivalent:

(1) /A X(S) exists

(2) (MiE, E)E ¥ where E is the smallest upper end in pro( %)

containing S.

Remark 6: It follows immediately from Propositions 8 and 9 that if

(X,&) is a complete canonical dense extension then prl(X )s pro(X)
are closure systems.
We now obtain the following characterization for a canonical

dense extension to be complete.

Theorem 6: A canonical dense extension (¥, ) is complete if and

only if (1) prp (¥) is a closure system and (2) for each U in pro(¥),
the subset X (U) = {(:’A, E)e X/ E;U} is a complete lattice, the
ordering in X(U) being the restriction of the ordering of X .

Proof: Suppose (X¥,xX) is a complete extension. Then by Remark 6
prz(%) is a closure system. Next take any family (Ai, Ei)ieI in

¥ (). Let (a, B) =\/(ay, E;).

Then by Proposition 8, E = ﬂEi and since each E; contains U so does E.
But then (A, E)& X (U) and X (U)= ¥. Hence (A, E) is the join in }(U)
as well. Hence %(U) is a complete lattice. Conversely suppose the

given conditions hold. Let (A, E;) be an arbitrary family in X .
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Let U = ﬂEi; Then since prz(X) is a closure system U € pry( .
Consider the complete lattice X (U). Then (Aj, E;) belongs to X

(U} )
for each i, Let (A, E) = (a4, Ei)' Then EDU and if x in E

ier
then we have X(x)z (A3, E;) for each i and thus x¢ []E; = U.
Hence E =U. Let (B, V) in X be an upper bound of the family, Then
V< U and this implies X(V) =2 X(U). Let (C, W) be the join of
(A4, Ei) in ¥ (V). Then we have that (A, E) = (4, U) =W(Ai, Ei) |
> Wa,, 5;) = (¢, W) vhich implies USW. But if x € W then
X(x) = (A4, Ei) for each i, and thus x € U. Hence U =W and this
gives (C, W) = (C, V)€ X (U) and thus (C, W) = (A, E) for (4, E) is
the least upper bound in X (U) of the given family., Hence (C, W) =
(A, E)e Finally (B, V) 3\{‘7@1, Ey) = W (A4, By) = (&, E).
Hence (A, E) is the join in X as well and hence ¥ is a complete
lattice, This completes the proof.
Duallyiwe obtain

Theorem 7: A canonical dense extension (X ,«) is complete if and
only if (1) prl(%) is a closure system and (2) for each B € prl(}),
_the subset X (B) = {(A, E) / A2B, (A’E)QX} is a complete lattice

under the restriction of the ordering of X .

5¢ Dense Kernels

In this section we associate with each extension (E, w) certain
dense, respectively Jjoin dense, meet dense extensions, study the

relationships among them and note various properties of (E, W) which
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are inherited by these extensions, »
Let P be a partially ordered set and (E, w) an extension of P.

Definition 1lh: An element a in E will be called join dense (meet

dense) if and only if it is the join (meet) in E of images of elements of
P less than or equal to (greater than or equal to) a. a is called
dense in E if and only if a4 b for any b in E implies L(a, w)¢
L(b, w) or U(a, w) ’:P (b, w) and b&a for any b in E implies‘
L(b, w)$ L(a, w) or U(b, w)F U(a, w).
We introduce the following systems of lower and upper ends
of P
(1) ¥, 5, w = {(L(a, ), Ua, w)) / acE].
(2) 3, & w ={L@, W /ac¢E],
(3) ¥, (8, w) ={U(a, w) / a €Ef.

We further introduce the following subsets of E:
%) K; (E, W) ={a / a€E, a dense} .

(5) J3 (B, w) = {a / a€E, a join dense} .

(6) My (B, w) ={a / a€E, a meet dense%ro

When no ambiguity can occur as to which extension is being

referred to we will use the symbols Kp Jp, Mp Ji’ Ky a.nd M; without

mentioning the extension.

Definition 15: The exr.ensions(xp,o(), (Jp, °<1), ()%, X o) will be

called respectively the projective dense, the projective join‘ dense,
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the projective meet dense kernels of the extension (E, w).

Definition 16: The extensions (K3, w) (J;5, w), (M3, w) will be called

respectively the injective dense, injective Jjoin dense, injective

meet dense kernels of (E, w).

The following properties are easily verified:
@17 Ty 32T, w2y
S A
(i1) Kp (B, w) =~ (B, w) if and only if (E, w) is dense.
Jp (B, w) = (B, w) if and only if ('E, w) is join dense

Mp (E, w) (E, w) if and only if (E, w) is meet dense.

Similarly the injective dense, join dense, meet dense kernels of an
extension (E, w) are equivalent to (E, w) if and only if (E, w) is

respectively dense, join dense, meet dense,

Proposition 10: The projective dense, join dense, meet dense kernels

of (E, w) are projectively smaller than (E, w). Further if (B, P)=,
(C,¥) then

1) K B,¢) =; K, ©¥), (2) 7, (B,¢) < 3, (C,¥) and

(3) %(B $)s 5 M (C,¥). 1In particular equivalerit extensions have
equlvalent projective dense, projective join dense, projective meet
dense kernels. |

Proof: Clearly the mapping f from (E, w) into Kp(E, yt) given by f(a) =

(L(a,w), U(a,w)) is an order epimorphism with faw =&, Thus (E, w)
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;ap Kp (E, w) and the rest of the first part of the proposition follows
similarly. If (B, P)<; (C,¥) then there exists an order isomorphism

g from B into C with g.{=". Define h from K (B,¢) into K,(C,¥) by

h ((L(b, %), U(b,¢ )) = (L(g(b),+), U(g(b),¥)). Since g is an order
isomorphism with g.@ =+ so is h with h.x =X, Hence Kp(B, (P)-‘f-i Kp(C,\//).

The appropriate modification of the mapping h establishes (2) and by
duality we have (3). This completes the proof,

It is clear from the definitions of the injective kernels that

the injective (dense, join dense, meet dense) kernels of a given ex-

tension are injectively smaller than the extension. This fact

combined with property (ii) at once gives

Corollary 7: For any extension (E, w) of P, (1) J;(E, w)= 4 Jp(E, W)

and (2) ¥3(E, W)€ ¥ (B, w), (3) K; (B, )£, K, (B, w).

In general the injective (meet dense, join dense) kernels
are not equivalent with the projective (meet dense, join dense)
kernels. Purther an analagous statement to the second part of

Proposition 10 does not hold for injective kernels in general as

the following example shows.

Example 11: Let P = {a, b} be a totally unordered set and Q =

{a, b, x} s R=1a, b, vy, z} be two sets whose order relations

are given by the following diagrams:
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Clearly (Q, w), (R, w) are extensions of P, w being the identity
map from P, Further of course (Q, w) £; (R, w). But Ji(Q, w) is
not injectively smaller than J;(R, w) since Ji(R, w) =P, a two
element set and J;(Q, w) is equal to (Q, w) and Q is a three element
set. Further J;(R, w) is not equijalent with Jp(R, W) since clearly
Jp(R, w) is equivalent with (Q, w).

In at least one important special case injective (join, meet)

kernels are equivalent respectively with projective (Jjoin, meet)

kernels.

Proposition 11l: Let (B, w) be a complete extension of P, Then

(1) J5 (B, w) is equivalent with Jp (E, w) and (2) M; (B, w) is

equivalent with M, (E, w)e

Proof: It is enough to prove (1), the rest follows by duality.
Consider the mapping h from Jp into J; given h (L(a, w)) =
\E/{w(x) / wix) £ a} . Since (E, w) is complete, h is well defined
and further the image under h of elements of Jp clearly lie in Ji’
Also if ¢ is a join dense element then h(L(c, w)) = c. But,

as is easily seen if h(L(a,w)) = ¢ then L(a,w) = L(c,w).
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Thus h is an order isomorphism with hoet! = w., Hence Jpéi Jij. Since
the reverse holds by Corollary 7 we have the proposition.

In view of Proposition 11 for a complete extension (E, w) we

will speak of the join (meet) kernel of (E, w) and refer to the

injective (join, meet) kernel of(E, w) which we now denote by J(E, w),

M(E, w).

We now obtain the following characterization of the join

(meet) kernel of a complete extension.

Theorem 8: The join dense (meet dense) kernel of any complete
extension is a complete extension and is the injectively largest
join dense (meet dense) extension which is injectively smaller than

(E, w).

Proof: Since an arbitrary join of join dense elements of E is again
a join dense element it follows that J(E, w) is a complete extension.
Further if (S, J{) is join dense and (S,X) =, (E, w) then by Proposi-
tions 10 and 11 we have J; (S,W) £; J, (5,7)£; J (8, w). By the
duality principle we have the theorem for the meet dense kernel of
(E, w) as well. This completes the proof.

Example 11l shows that no corresponding characterization exists
for join (meet) dense kernels of arbitrary extensions. We will study
the case of join (meet) dense kernels of arbitrary extensions in a

suitable category in Chapter 3. Further projective (injective) dense



kernels of a complete extension need not be complete and the pro-
jective dense kernel need not be injectively smaller than the

complete extension,

Example 12: Let P =4a, b, ¢, d} s Q ={a., b, ¢, d, p, q, T, sf
R= {a, b, ¢, d, x, yj be sets whose orderings are as follows:

a o

b b . ]

¢

d * ¢
d

Then (Q, W), w the identity map from P is a complete extension of P

and (R, w) is the projective dense kernel of (Q, w). We observe that

(R, w) is not complete for the two element set { X, C } has no join

in R. Further (R, w) is not injectively smaller than (Q, w). Other-
wise, if they existed an order isomorphism f from R into Q which kept
P fixed then f must necessarily map x to one of p, q and y to one

of r, s, However, x, y are related in R but p, q are related to

neither of r, s, Hence no such f exists.

Proposition 12: If (B, w) is a 7¥{join, T meet faithful extension

of P then the injective, respectively, projective (dense, join dense,

meet dense) kernels of (E, w) are /'{ join, J{ mest faithful.
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Proof: We prove the proposition for the projective join dense kernei.
The rest follows in a similar fashion. By Corollary 4 to Theorem 5
we must show L(a, w) is a7"{ complete lower end. Take any M in 777
such that \/M exists and MSL(a, w). Since (E, w) is 777 join
faithful we have w(VY) = \E/fu(x) / xeM §. Now clearly a3 w(¥)
and thus a = \E/ w(¥) = w(VM). Hence VM & L(a, w).l By duality
one obtains that U(a, w) is a V{ complete upper end. Hence Jp(E, W)

is mjoin, V{ meet faithful. This completes the proof.
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DENSE EXTENSIONS OF SPECIAL IATTICES.

This chapter is devoted to the study of dense extensions of
meet continuous, Boolean and distributive lattices respectively. We
establish that for each infinite cardinal m the collection of all
m complete lower ends of a meet continuous lattice provides a join
dense meet continuous extension. In particular we prove that there
is up to equivalence precisely one complete completely faithful join
dense meet continuous extension of a meet continuous lattice. We
establish further that a Dedekind-Macneille extension of a Boolean
lattice is up to equivalence the only finitely faithful Boolean
extension which is a meet and join completion and obtain criteria
for certain completely faithful dense extensions of a Boolean lattice
to be infinitely meet distributive extensions. In addition we obtain
a criterion other than that obtained by Fuﬁayama [B] for the Dedekind-
Macneille extension of a distributive lattice to be a distributive
extension. We use this criterion to obtain a proof of the well known
result which states that the Dedekind-Macneille extension of a Boolean

lattice 1s a Boolean extension.

l. Completions and Full Extensions.

In this section we introduce full extensions and join (meet)

43¢
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completions oi a partially ordered set., We note the existence of an
injectively smallest up to equ‘valence, full extension and give
different characterizations c¢f it.
Let P be a pardially ordered set.
Definitional: An extension (E, w) of P will be called a join (meet)
completion if anu only if the image: of every subset of P has a join (meet) in E.

Proposition 1t Let (¥,% ) be a canonical dense extension of P. Then

the following statements are equivalent:

(1) (¥,a) is a join completion.

(2) ¥ contains the join admissible subset induced by prl(f) and
pri(X) is a closure systems

In particular if (X ,«) is join dense then (¥, ) is a complete
extension if and only if (X, ) is a join completion.

Proof: (1) implies (2): If (¥,x) is a join completion then by
Corollary 5 of the previous chapter it followsb that ¥ contains the
join admissible subset induced by prl(f )e Next let (A;) jer e
arbitrary family in prl(i‘ ) and put A =iQ Aj; Take E; € pro(X) such
that (A5, Ey) € X for each 1 € I. Then (A3, E;) >\ «(A) = (B, MaB),
where by Corollary 5,B is the smallest lower end in pri(X) containing
A. But on the other hand from the previous line BC A; for each 1€ I.
Hence A =B and A € prl(i:) as required,

(2) implies (1): Take any subset S of P. Since prl(%) is a closure
system we know that the join of °<1(S) exists in prl(f )e Let this

join be A. Then by our assumption (A, MaA)€& ¥ and then by Corollary
5, (A, MaA) = \%/c( (s)e Hence (¥, x) is a join completion and this


http:comd_eH.on

L5.

completes the proof,
. Dually we have the following

Proposition 2: Let (¥, &) be a canonical dense extension of P. Then

the following statements are equivalent:

(1) (¥, «) is a meet completion.

(2) X contains the meet admissible subset induced by prz(f ) and
pry(X ) is a closure system. In particular if (X,«) is meet dense
then (X, ) is a complete extension if and only if (X, X) is a meet
completion.

Remark 1: If (E, w) is a join (meet) completion then the inje;:tive’
and projective join (meet) dense kernels of (E, w) are equivalent.
Observe that the mapping h from Jy, into E given by h(L(a, w)) =
\E/{w(x) / w(x) < a} is actually onto J; and is an order isomorphism
with ho#, =, Thus J; <4 J; and since J3£; J,, by Corollary 7 we

have J; ¥ Jp. Hence we will speak of the join (meet) dense kernel

of a join (meet) completion (E, w) and denote it by (J(E, w), w)

((M(E, w)), w) and if no confusion prevails by (J, w) ((M, w)) where
J (respectively M) are the collection of join dense (meet dense)
elements of E.

For any partially ordered set P and any sets 0—( s E of lower,
upper ends satisfying OT(P) c 019_ 0;( and E(P)VQ EQ C\; let us define:
(1) PP ={(x, v)/x, v € P, xsy}. We partially order this set
by the componentwise ordering. |

(2) %OSE()P) = {(A, E) /ac(l, E€&, Agm}.
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(3) %N (P) =‘{(A, E) /A607N (), Ecly (P), A gm}.

(4) A mapping j from P into P@ P given by j(x) = (x, x)a

It is clear that (P® P, j) is a dense extension of P. We

now introduce the following definitions.

Definition 2: The admissible subset %(O{C)(P) will be called the full
2

admissible subset induced by 0-( and E °

Definition 3: An extension (E, w) of P will be called full if and

only if (1) (B, w) is dense, (2) (P®P, J) <, (B, w) (3) if (s,7)
is any extension with Jp(s,ir)é % Jp(E, ‘_"): np('s,ﬂ)éi MP(E,’ w)
satisfying (1) and (2) then (S, %)<, (B, w).

A description for a canonical dense extension to be full is
given by

Proposition 3: A canonical dense extension (¥, ) is full if and only

if X is the full admissible subset induced by pr;(%) and prz(if).

Proof: Suppose (¥ ,&) is full and let ‘lj be the full admissible

subset induced by prl('i‘) and prz(%). Then % annd since (y, «)

is dense, clearly injectively larger than (P® P, j) and satisfies

Jp(y) = Jp(%), Mp(qj) = Mp(%) we must have, (¥,X') being full,

that (‘g{,oz)si (¥,X)e This means by Theorem 1 of the first chapter

that ‘y(__ X . Hence %= ?j. Conversely, let % be the full admissible
set induced by prl(X) and prz(f). Then certainly (P ® P, j)éi (¥ ,x)

and if (y, ®) is any canonical dense extension with prll(qj) c prl(fE)r,

prz("\j)g_. prz(%) , then immediately f(} is contained in ¥ . This is

seen to be true since B,is contained in the full admissible subset
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induced by prl(y) and prz(y,) which because of our assumption about
qj is contained in ¥ . Hence (¥, & ) is full. This completes
the proof.

Definition 4: A canonical dense extension (¥, ) of P will be

called a full canonical extension if and only if )'F is the full

admissible subset induced by prl(%) and prz(%)b.

Proposition 4: A full canonical extension ()E,O() is complete if

and only if prl(i‘) and prz(f) are closure systems.
Proof: If (X,o) is complete then by Propositions 1 and 2 it follows
that prl()() and pro( X) are closure systems. Conversely, assume prl( %)

and pr2( X) are closure systems and let (45, E;) be an arbitrary

iex
family in ¥ . Let A be the join of (Ai)ie I in prl( *) and E be
the join of (Ei)iG-I in prz(f). Then since pr2(9() is a closure
system we must have E =ﬂ Ei < ﬂMaAi. Hence if x belongs to E, we
have & (x) > A; for each i, that is, &« (x) > A, Hence x belongs to
MaA, Thus E € MaA and (£,«) being full we have by Proposition 3
that (A, E) belongs to X and is clearly the least upper bound of the
family. Hence (¥,X) is a complete extension and this completes the
proof.

Let (E, w) be a meet and join completion of P,

Definition 5: By the Jjoin component of an element a in E we mean the

largest join dense element in E less than or equal to a, By the meet

component of an element a in E we mean the smallest meet dense element

in E greater than or equal to a.
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Definition 6: An extension (E, w) of P will be called a generalized

Dedekind-Macneille extension if and only if (1) it is full (2) it is

complete (3) the join component of each a in E is meet dense and
dually the meet component of each a in E is join dense,
A description of a generalized Dedekind-Macneille extension

in terms of a full canonical extension is obtained in the following

Proposition 5: An extension (E, w) of P is a generalized Dedekind=-
Macneille extension if and only if (E, w) is equivalent with (%N(P),o( )e
Proof: Suppose (E, w) is a generalized Dedekind-Macneille extension
of P« Then by Proposition 3 (E, w) is equivalent to a full canonical
extension (X,«). Since (E, w) is complete by Proposition A4, prl(Ef)
and prz(}) are closure systems and thus respectively contain OfN(p) R
d y(P)e Since the join component of any (A, E) in X , which by
Corollary 5 of the previous chapter is (A, MaA),‘ is meet dense, we

have by Corollary 6 of the previous chapter that A = MiE for a

suitable E in prz(R‘). But then A € O(N(P)o Since (A, E) was
arbitrary in ¥ this means that prl(%) = %(P), By duality we

have prz(j() =EN(P), in all, X = %N(P)o Conversely since %N(P) '
is by Propositions 3 and 4 full and complete and since for any

(&, E)E %M(P) , the join component (A, MaA), the meet component

(MiE, ﬁ) are respectively meet dense, join dense we have that (%N(P) ) °<)
is a generalized Dedekind-Macneille extension. Fina.'l.l& since (E, w)

is equivalent with ( X N(P) , X) we have that (E, w) is a generalized

Dedekind-Macneille extension. This completes the proof.
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Proposition 6: A generalized Dedekind-Macneille extension is up

to equivalence the injectively smallest full complete extension of P.
Proof: It is enough to work with canonical dense extensions. Suppose
(¥,a) is any complete full canonical extension. Then by Proposition
b)prl(%), prz(;’F) are closure systems containing OU(P), & (P)
respectively, Hence prl(f%) 2 O1N(P), prz(;f)?. zN(P). Thus
(¥,«) being full by Proposition 3 we get ¥2 J{N(P). Hence by
Proposition 5 (X ,%) is injectively larger than a generalized Dede-
kind-Macneille extension., This completes the proof,

A further characterizaticn is given in the following

Proposition 7: A generalized Dedekind-Macneille extension is up to

equivalence the injectively largest dense extension in the class of all
dense extensions whose projective join and meet dense kernels are
equivalent. |
Broof: Suppose (X, ) is a canonical dense extension. Then its
projective join dense kernel is given by (prl(% ),°<1) and its pro=
jective meet dense kernel by (prz(% ) »>%5). If these are equivalent
it follows that each is a meet and a join dense extension., Hence
pri(X) & O(N(P), ro(X) < ~C"N(P). Hence X being contained in
the full admissible subset induced by pry( ¥) and pro(X) is con-
tained in %N(P). Hence (X, )% 3( /’FN(P), «) and this completes
the proof;

An immediate corollary of the last two Propositions is the
following.

Corollary l: A generalized Dedekind-Macneille extension is up to
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equivalence the only full complete extension whose projective join

and meet dense kernels are equivalent,

2 Meet Continuous Dense Extensions.

In this section we will prove that for every non-empty cardinal
number m the join dense extension provided by the system of allm
complete lower ends of a meet continuous lattice is meet continuous.
In particulaf we shall deduce P. Crawley's result [5] that the largest
complete completely faithful join dense extension of a meet continuous
lattice is meet continuous and further we shall show that up to equiv-
alence this is the only one. In addition we will obtain criteria for
a Dedekind-Macneille extension of a meet continuous lattice to be a
meet continuous lattice.

We begin with the following proposition which will be useful
later,

Proposition 8: Let (B, w) be any join completion of a partially

ordered set P and (R,7{) any join dense extension injectively larger
than the join kernel of (E, w), Then there exists exactly one join
complete order homomorphism f from R into E with f,{=w. This f is
given by f(r) = \E/ {w(x) /T(x)sr } .

Proof: Suppose f and g are any two join éomplete order homomorphisms
from R into E with f. 7{ = g.{ = we Then for any r in R we have

2(r) = t(\Y{ 2 (x) /A r}) =\ {w(x) / W)er] =

g(\& {‘Jt(x) /T(x)2r}) = g(r). Hence f is unique if it exists.

MILLS MEMORIAL LIBRARY
McMASTER UNIVERSITY
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Now define a mapping £ from R into E by f(r) = \E/{w(x) /jT(x)s.r}-.
Since the join kernel (J, w) of (E, w) is injectively smaller than (R,7)
there exists an order isomorphism g from J into R with g.w =J[. Now
for any join dense element s in J we have by the definition of f,
£(g(s)) ==\€V{w(x) /(%) <« g(s)} = g, since g is an order isomorphism
with g.w =X. If T is any subset of P such that Y J(T) exists then
clearly f£( \R/ j’(‘(‘I‘.‘))g\E/ w(T). If ¢ > w(T) for any ¢ in E, then
the join component b of ¢ is also an upper bound of w(T). Then
g(b)> T(T) and thus g(b) = W(T). Thus £(g(b)) =bx1( ¥ 71 (1)),
In all £( \Y 71 (1))="\E/ w(T). Finally if S is any subset of R such
that \R/j‘s exists then we have f(\R/ 5) = £( \R/{J_((x) /i (x)e s, s es})
=\E/{w(x) /T (x)< s, sesj = \E/ £(S), using the fact that (R,JT)
is a join dense extension, This completes the proof.

Duélly one gets

Proposition 9: Let (E, w) be any meet completion of a partially

ordered set P, If (R,7() is any meet dense extension of P which is

injectively larger than the meet kernel of (E, w) then there exists

precisely one meet complete homomorphism f from R into E with f.;] = w.
In general the mapping f of Proposition 8 need not carry meets

into meets., The following example illustré.tes this fact.

Example 1: Let P = {a, b} be a totally unordered set, and

Q=4a, b, x, ¥y, z} s R =={a., b, x, z} be sets whose order relations

are given by the following diagrams:
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X X

Then (Q, i), (R, i) are extensions of P, i being the identity map,
Further (Q, i) is a join completion of P and (R, i) is the join
kernel of (Q, i). Then the unique map f by Proposition 8 maps

a /> b =1z into mand £f(a) 4 £(b) =a 4 b=y and y#z.

Definition 7: A lattice L is called meet continuous if and only if

for every up~directed family (xi)i e Such that \I‘/as_ exists
ieI

we havey/\\I/xi =\I/y/\xi for each y in L. Dually L is called
ieI iel

join continuous if and only if for every down directed family (xi) R

iel

yV/L\xi = /L\yvxi for every y in L,
i€l ieI

Definition 8: A lattice L is called infinitely meet, distributive

if and only if for every y in L and every subset X of L such that
/X exists we have y A \YX = \I/yaX. Dually L is called

infinitely Join distributive if and only if for every y in L and

every subset X of L such that /bx exists we have y. /I}x =

/L\yv X
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Definition 9: An extension (E, w) of L will be called a meet

continuous extension if and only if E and L are meet continuous

lattices. (B, w) will be called a join continuous extension of L

if and only if E and L are join continuous lattices. Similarly
(E, w) will be called an infinitely meet (join) distributive extension

if E and L are infinitely meet (join) distributive.

Proposition 10: Let (B, w) be any finitely faithful meet continuous

Join completion of a meet continuous lattice. Then the join dense
kernel of (E, w) is a complete finitely faithful meet continuous
extension.

Proof: Let (J, w) be the join dense kernel of (E, w). Since the

join in E of arbitrary sets of join dense elements is again join dense
it follows from Proposition 1l that (J, w) is complete. Further by
Proposition 12 of the previous chapter we know that (J, w) is finitely
faithful, Hence for any a, b in J the sets L(a, w), L(b, w) are up-
directed and we have since E is meet continuous

af\b =\&/ {W(X) / w(x)s a} AN \E/[w(y) / w(y) ¢ b} =\E/{ﬂ(x AYy) /o
w(x)< a, w(:é)é b } .

Hence a/E\ b belongs to J since it is join dense. But then a%\b
=3 /J\b, that is, J is a join comp;Lete sublattice of E and hence

J is meet continuous.

Dually we have

Proposition 11: Let (E, w) be a.hy finitely faithful join continuous

meet completion of a join continuous lattice. Then the meet dense
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kernel of (E, w) is a complete finitely faithful join continuous
ext ension. |

Let P be any partially ordered set and m any infinite
- cardinal.

Definition 10: We call a lower end A of P in—com;glet.e if and only

if for every subset S of A such that |s| ¢m and \/S exists the join
/S belongs to A, Dually we call an upper end E of P m complete
if and only if for every subset S of E such that |S| € m and /\S
exists the meet /\S belongs to E.

We note that a lower (upper) end dis complete as defined in

the previous chapter if and only if it is m-complete for every non-
empty cardinal m, |
(1) Let O(m(P) be the set of all m complete lower ends of P.
(2) Let fm(P) be the set of all m complete upper ends of P.
(3) Let O(K(P) be the set of all complete lower ends of P.
(4) Let €, (P) be the set of all complete upper ends of P,
In view of Corollary 4 of the previous chapter we know that

the extension (01m(1>) , X l) is the injectively largest Wjoin faithful

canonical join dense extension of P and further that ( fm(P), 0(2) is

the injectively largest )7 meet faithful canonical meet dense ex-

tension of P where MY ={s/ scP, [s| < my. Further we know that

( O1K(P) s °<l) is the injectively largest canonical join dense completely

faithful extension of P and dually ({K(P), o(2) is the injectively

largest canonical meet dense completely faithful extension of P.

Each of these extensions is of course complete.
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The following lemma gives a useful description of the Jjoin
and meet operations in the complete lattice of m-complete lower ends,

Lemma 1: Let (&) be an arbitrary family of m-complete lower

ied
ends of a meet continuous lattice L. Then

(i).\/ A = {x / x ==\I‘/ s, |s| £ m, s up-directed and S 9.\1/ Ai}
ied ied
where \I/ refers to the jéin in the lattice of ideals of L. Further

for any two m complete lower ends of L,

(ii) AA B ={a/\b,/ ack, beB} .
Proof: The left side of (i) certainly contains the right side.
We thus need only show that the right side of (i) is a m~complete
lower end. Take any set T' which is contained in the right side of
(1) with |T| £ m and such that I/ T exists. Then for each t in

T there exists an up-directed set S,/ A& with |S,{<m and
ied

L

t = \s,.

Let C be the set of all finite joins from S = {JS,. Then clearly
tET

\IVT = \I‘/C, cE& \I/Ai, C is up-directed and |C|¢ =) \st\ < m,
1€d teT

Hence \x/T belongs to the right side of (i). TFurther take any x in L
and suppose X < \I‘/S where \I‘/S beiongs to the right side of (i).
Then since L is meet continuous we have x = xA\I'/S = \I/x/\ S. Since
S is up-directed so is the set x A S and |x A s| < 1s| ¢ m. Thus

x belongs to the right side of (i) and therefore it is a m-complete
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lower end. (ii) follows immediately since A AB =A(]B, This

completes the proof.

Proposition 12: Let L be a meet continuous lattice. Then the

extension ( (7 m(L) , X l) is a meet continuous extension of L.
Further if ( (7 »%1) is a complete canonical join dense extension
injectively smaller than ( O_(m(L), 041) then ( 07, o(l) is a meet
continuous extension if and only if there exists a join complete
lattice homomorphism f fronm O1m(L) onto 01 which maps (1 identi-

callye.

Proof: Let (Ai) be any arbitrary up-directed family and let A
iegd

be any element of O'(m(L). Take any a in A and any x in \V/ A o
. ied

Then by the Lemma there exists an up-directed set S, such that | S|< m,

R \/ﬁ. with x = \I/S. Since L is meet continuous we then have
ied

anx= \I/aA S. Now since each s in S belongs to \I/ A; there
_ ied

exists a flnl‘be subset P S UA. with s € \YF . But then since
Syey T 9

the family is up-directed we must have that F is contained in some

suitable member A  of the family. Hence ansSc \/A. AA; and since
ied

\aASl < m we have, by the Lemma, that a A x belongs to \/JAAAi.
ie

Thus again by the Lemma it follows that A A Vi < \V AA A
iedt ey

that is, ( 0L (L),)) is meet contimuous. RFurther if ( (¥ , %)) is a
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join complete lattice homomorphic image of ( 01m<L)’ o(l) then since
the latter is meet continuous so is the former. Conversely consider
the mapping f from O;(L) onto (U given by £(A) =\m/{°(l(x) / x€A ?( .
Then by Proposition 8,f is a join complete order homomorphism and
since Ot &€ mm(L) we have that f restricted to (1 is the identity.
Also since ((U , ®,) is meet continuous we have for any A, B < ...
ta) A 218) = Y« (x) / xeal ~ T () /ye] =
\G(/{ozl(x/\y) / x€A, yéBg = f(AAB). Thus f has the desired
properties and this completes the proof,
Corollary 2: Crawley [5] « The extension ( 07K(L),o<l) of a meet
continuous lattice L is meet. continuous.
Proof: Take a cardinal m with m > |I, Then clearly O5(1L) = 0T (L)
and the corollary follows from Proposition 12,

Dually one obtains

Proposition 13: Let L be any join continuous lattice. Then the

extension ( C‘.om(L),O(z) is join continuous. If (f, °<2) is a complete
canonical meet dense extension injectively smaller than ( gm(L) »%5)
then (&, 5) is join continuous if and only if there exists a meet
complete lattice homomorphism f from f m(L) onto E which maps E
identically. | |

Corollary 3: If L is infinitely meet distributive then the extensions
( mm(L),dl), ( mK(L),dl) are infinitely meet distributive. Dually
if L is infinitely join distributive then the extensions ( C_(L),%,),
( € (L), ) are infinitely join distributive.,

Proof: Take any A, B, C in mm(L)° By Proposition 12 mm(L) is meet
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continuous. Hence we must show that it is distributive., Take any
a in A, x in BvC. Then by the Lemma x = \/S where SCB “&/C and
\S! € m, Since L is distributive we have that for each s in S there
exists by, cg in B, C with s =bgvecg. Thus anx = \/aAS =
\/(arbg)v(anc) € (AaB)v (AAC). This shows that (07(1),,)
is distributive. We get the rest by duality. This completes the

proof,

Proposition lk: Let L be any meet continuous lattice and (E, W) any

complete completely join faithful), finitely meet faithful meet con-
/
tinuous extension of L. Then the join kernel of (E, w) is equivalent

to ( 0%(n), o).

Proof: Let J be the collection of all join dense elements of E.
Consider the mapping f from o;({(L) into J given by f(A) =

\E/ {w(x) / x ¢ A} . f is clearly an order homomorphism with f .0(1
= W, Suppose f(A) £ £(B). Then for any x in A we have w(x) £
\E/{w(y) / ye B} and this implies, since E is finitely meet faith-
ful and meet continuous, that w(x) =\E/{w(xzxy) / YGB-}

Thus x = \L/{x Ay / yeB } and since B is a complete lower end we
have x belongs to B. Thus f is an order isomorphism and hence

( 01K(L), X )€, (J, w). However, by Proposition 12 of the previous
chapter we have that (J, w) is completely faithful. Thus (J, w)

:’:’:i( UIK(L), 0(1) for (U(K(L), 041) is the injectively largest completely
faithful extension. Hence by the equivalence theorem for dense

extensions we have the proposition. This completes the proof,
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Combining Proposition 14 and Corollary 2 we get
Theorem 1l: The extension ( O1K(L)’ o(l)) is the only canonical join -
dense complete completely faithful meet continuocus extension of a
meet continuous lattice L.
Proof: By Corollary 2 ( .O1K(L)’ o(l) is a meet continuous join dense
extension and it is certainly complete completely faithful. Now if
( OT , &) is any complete completely faithful canonical join dense
extension which is meet continuous then by Proposition 14 we have at

once that (= O1K(L). This completes the proof.

Theorem 2: The extension( gK(L),Nz) is the only canonical meet
dense complete completely faithful join continuous extension of a
Jjoin continuous lattice L. |

We have immediately
Corollary 4: The extension ( O1K(L), & 1) is the only canonical
join dense complete completely faithful infinitely meet distributive
extension of an infinitely meet distributive lattice L and dually
the extension ( €K(L)’°<2) is the only canonical meet dense complete
completely faithful infinitely Jjoin distributive extension of an
infinitely join distributive lattice L.

Theorems 1 and 2 imply respectively that in general a
Dedekind-Macneille extension of a meet (3oin) continuous lattice
will fail to be meet (Jjoin) cohtinuous since in general not every -
complete lower (upper) end is normal. Dilworth and McLaughlin [7]

have given an example of an infinitely meet distributive lattice
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whose Dedekind-Macneille completion is not even modular. The following
is an example of an infinitely meet distributive lattice whose Dede-
kind-Macneille completion is not meet continuous.

Exsmple 2: Let P = [0, 1) be the half open unit interval of the reals
in the usual ordering and let Q =P x P, the Cartesian product of P
with itself, partially ordered under the component wise ordering.

Then Q is clearly a lattice in which finite meets and arbitrary
existing joins are computed component wise. Hence Q is infinitely

meet distributive. Consider the following subset of Q:

A&::{(x, v) / x, yeP, 0Osxg 1, Osy<1}.
2

Clearly A is a complete lower end. However, A is not normal since
Mah =ﬁ5 and thus Mi MaA = Q# A, Hence by Theorem 1 it follows

that the Dedekind-Macneille completion of Q is not meet

continuous.

Remark 2: Tor any subset S of a partially ordered set I, we have
ﬂ{c/ s=a, c-eO(N (L)ﬁ and
N{& scE, 26 (L)}.

Call the right side of (1) Q. Then certainly Q is a subset of

(1) MiMaS

(2) MaMis.

i

Mi MaS, On the other hand if x € Mi MaS then take any normal
lower end G with C 25+ Then MiMaC = C2MiMa$ and thus Q
contains MiMaS. Thus (1) holds and we get (2) dually.

We now establish the following criterion using this observ-
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vation.
Theorem 3: Let L be a meet continuous lattice., Then the following
statements are equivalent:
(1) A Dedekind-Macneille extension of L is meet continuous.
(2) For every directed subset S of L if xeMi MaS then x =\/xAS.
(3) O1N(L) =O¥((L) , that is every complete lower end is normal,
Proof: (1) implies (2): Take any directed subset S c;f L and suppose
x&Mi MaS. Suppose y = S. Thendl(y)e \mN/ {"‘l(s) / se:Sf = C, say.
Then °<l(y) > € 2%,(5) and thus by Remark 2 we get dl(x) < C. Then
using (1) we have 0<l(x) = {N/{o(l(:u\ s) / se€s } and this implies
X = \/x/\ Se
(2) implies (3): Let A be any complete lower end and take x in
MiMaA. Then by (2) x =\/x/\ A and since xAA € A and A is complete
we get that x beloﬁgs to A. Thus A = MiMaA, that is, A is normal.
(3) implies (1): This is clear by Theorem 1. This completes the
proof.

Dually we obtain
Theorem 4: Let L be any join continuous lattice. Then the following
statements are equivalent:
(1) " A Dedekind-Macneille completion of L is join continuous.
(2) For every directed subset S of L if x ¢ MaliS then x =/\ xvs.

(3) f (L) =& (L), that is, every complete upper end is normal.
N K

Corcllary 5: Let L be an infinitely meet distributive lattice.

Then the following statements are equivalent:
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(1) A Dedekind-Macneille completion of L is infinitely meet
distributive,

(2) For every subset S of L if x € MiMaS then x=\/xAS,

(3) O1N(L) =0¥((L), that is, every complete lower end is normal.

Corollary 6: A necessary and sufficient condition that there exist
a finitely meet faithful complete meet dense meet continuous ex-~
tension of a meet continuous lattice L is that for every directed
subset S of L if x € MiMaS then x = \/xA S.

Proof: If the condition holds then by Theorem 3 the Dedekind-
Macneille completion of L is meet continuous. On the other hand,
if (B, w) is a finitely meet faithful meet continuous extension of

L, then by Proposition 10 the join dense kernel of (E, w) is meet

continuous. However, since (E, w) is meet dense its join dense
kernel is equivalent to a Dedekind-Macneille completion, Then using
Theorem 3 we have the corollary.

Similarly one has |
Corollary 7: A necessary and sufficient condition that there exist
a finitely meet faithful complete meet dense infinitely meet distri~
butive extension of an infinitely meet distributive lattice L is
that for every subset S of L if x&MiMaS then x ==\/x N S.

Remark 3: It follows from Corollary 6 that the lattice Q of Example

2 1s an example of a lattice which is infinitely meet distributive

but has no complete finitely meet faithful meet dense

meet continuous extensions.
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3s Boolean Lattices and Dense Extensions.

In this section we prove that every complete lower end of a
Boolean lattice L is normal and use this fact and its dual to obtain
a characterization of dense complete completely faithful infinitely
meet (join) distributive extensions of L. TFurther we establish that
up to equifalence the Dedekind-Macneille completion of L is the only
finitely faithful meet and join complete Boolean extension. In
addition we obtain a proof of the Stone-Glivenko thecrem which states
that the Dedekind-Macneille completion of a Boolean lattice is a
Boolean extension.

Let B be any Boolean lattice with zero element O and unit
element e. For any x in B let x’ be the complement of x. TFurther
for any subset X of B we put
v x ={x'/ xeX}

(2) wix'=fy /yes, yex'}

(3) Max'=fy /yeB, yax'{

VRemark L: Tor any lower end A obe, the normal end MiMaA has a
complement in CﬂN which is given by MiAI. Dually for every upper,
end E of B the normal upper end MaMiE has a complement in ér@
and this is given by MaE’.

Let L be any lﬁttice with zero element O and unit element e.
Consider the following conditions on L:

(CI) Tor every x, z and every subset S of L such that z »xAS there



exists at in L with zvt2>S and tAx =0,
(CII) For every x, z and every subset T of L such that z< xvT
there exists a s in L with zAs8<T and svx = e,

Proposition 15: Let L be an infinitely meet distributive lattice

with zero element O satisfying (CI). Then the Dedekind-Macneille

completion of L is infinitely meet distributive.
Proof: By Corollary 5 of the previous section it is ;anough to show
that every complete lower end is normal. Let A be a complete lower
end and take any x in MiMaA, Put B = {a / a<h, agx}. Lety in
L be any upper bound of B. Then for éa.ch b in A we have bA x belongs
to B and thus bAx<y. But then by (CI) there exists a t 1n L with
tvy=2b for each b in A and such that t Ax = 0. This gives that
x<tvy, that is, x = (xAat) v (xAy) =xnAy< yo Thus x is the
least upper bound of B, 'Since A is a complete lower end we then
have that x belongs to A. This completes the proof.

Dually we obtain,

Propésition 16: Let L be an infinitely join distributive lattice

with unit element e satisfying (CII)e Then the Dedekind-Macneille

extension of L is infinitely Jjoin distributive,

Corollary 8: Let L be any Boolea.n. lattice. Then OIN(L) = Oé(L) s
fN(L) = EK(L) , that is, every éomplet.e lower (upper) end of L
is a normal lower (upper) end,

Proof: Take any x, z in L and let S be any subset of L with z>xAS.
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Then z vx’> S since L is distributive and xax’ =0. Thus L
satisfies (CI) and by duality (CII) as well. Then applying first
Propositions 15, 16 and then Corollary 5 we have our result. This

completes the proof.

Corollary 9: (Stone-Glivenko) [2] . The Dedekind-Macneille
extension ( mN(L) R 041) of a Boolean lattice L is a Boolean extension,

that is, OF

N(L) is a Boolean lattice.

Proof: Since L satisfies (CI) and (CII) we have by Propositions 15

and 16 that O1N(L) is infinitely distributive, We observed in Remark
L, that O_(N(L) is complemented. Hence, in all, it is a Boolean lattice.

This cormpletes the proof,

Corollary 10: The canonical full extension ( RCN(L) , &) of a Boolean
lattice is the onlj canonical full complete completely faithful

extension of L, It is further an infinitely distributive extension.

Proof: TFirst of all ( %N(L),?*() by Proposition 6 and Theorem 5 of
the previous chapter has the properties mentioned. TFurther if

(¥,0) is any full complete completely faithful cancnical extension
then by Propositicn 6 we get that BENG X and by Theorem 5 of the
previous chapter ¥ S i‘K(L), the full admissible subset induced by
0@, &(L). But then by Corollary 8 we have that X (L) = X (L).
Hence X = X N(L). The rest follows from Corollary 9. This completes

the proof.

Let P be a partially ordered set with zero element O and unit
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element e, Let (E, w) be an extension of P,

Definition 1l: An element a of E will be called join null if and only

if L(a, w) ={o} and it will be called meet null if and only if U(a, w)
={e}

The following lemma will be useful,
Lemma 2: Let I be a Boolean latj:ice and (%,o() a complete canonical -
dense extension such that X is a distributive lattice. Then each
element of % is a Join of its Jjoin component and a join null element.
Dually each element of % is a meet of its meet component with a meet
null element,
Proof: Take any (A, E) in X . Then its join ‘component. by Corollary
5 of the previous chapter is (A, MaA). Also since X is complete,
¥ contains the join adnissible subset induced by OTN(L)O Thus
(ia’ , Ma Mia e ¥ . Now clearly Mah N Ma MiA'= {e}, e the
unit of L, Thus (A, E)< (A, Mah) v (MiA', Ma Mit' ), Then since
¥ is distributive we have (A,E) = (A, Mah) v ((A,E) A (Mia), Main')),
But since A A MiA' ={0], we have that ((a, E)A(M:’LAI , MaMit' ))is a
join null element, The remainder of the lemma follows by duality.
This completes the proof.

We now obtain the following description for certain complete
completely faithful canonical dense éxtensions of a Boolean lattice

to be infinitely meet distributive extensions.

Theorem 5: Let (X ,X) be a complete completely faithful canonical

dense extension of a Boolean lattice L. Suppose that the join null
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elements of % form a complete lattice and the meet null elements
of X form a lattice. Then the following conditions are equivalent:
(1) (X,«) is an infinitely meet distributive extension.

(2) ¥ is a distributive lattice.

(3) £ is a join complete sublattice of %N(L).

Proof: (1) implies (2) clearly, moreover by Corollary 10 we have that
(3) implies (1), Thus we must show that (2) implies (3)s Take an

arbitrary family (A;, E;), in ¥ and let (4, E) =\5/(A., E.).
1 lGI ié'.-I 1 1

By Lemma 2 there exist join mull elements ((0), Uj), ((0), U)
in X such that for each i € I, (A, E;) = (83 Maks)V ((0), U3),
where (0) =%7(o0) and (A, E) = (A, Mah) v ((0), U). Let

\%’/(Ai, MaAi) = (B, MaB), where B = ie\m]}:y A; and since by assump-
tion the join of join null elements is join null let \<¥/((o), U;) =
((e), V). It is clear that A contains B. Suppose (C, MaC) is any
join dense element of ¥ less than or equal to (A, E) with (C, MaC)

A (B, MaB) =o{(0), the zero element of X . Then since ¥ is
distributive we get (C, MaC) = (C, MaC) » ((B, MaB) v ((o), V))

<((0), V) and this gives that C =°<1(o), Thus (o) is the only

join dense elément of X with ®(0)< (A, E) and such that o (o) ~ (B, MaB)
=X(0). Since (F,o) is completely faithful and since 011{(1') = %(L) s
gK(L) = EH(L) we indeed have that ¥ C XN(L). Then A, B both
belong to mN(L). Let D in UIN(L) be the relative complement of B

in A, Then A =B Qﬁ/ Dand BAD =°<l(o). But then since



(D, MaD) £ (A, E) we have from the above that D =%;(o) and thus
A =B, Thus the joins in X and %N(L) coincide, By duality we
establish that finite meets in ¥ , X N(L) coincide, This completes

the proof.

Dually we obtain
Theorem 6: Let (X, X) be a complete completely faithful canonical
dense extension of a Boolean lattice L. Suppose that the meet null
elements of X form a complete lattice and the joih null elements
form a lattice. Then the following conditions are equivalent:
(1) (X,X) is an infinitely join distributive extension.
(2) Xis a distributive lattice.

(3) X is a meet complete sublattice offN(L).

Definition 12: An extension (E, w) of a Boolean lattice L will be

called a Boolean extension if and only if B is a Boolean lattice.

The following lemma is useful in determining the dense

Boolean extensions of a Boolean lattice.

Lemma 3: Let (¥ ,%X) be any finitely faithful canonical dense
Boolean extension of L which is a join and meet completion, Let
(A, E) be any element of ¥ and let (B, ¥) be its complement in X .

Then (1) Mi MaB = Mi MeE! and (2) Ma MiF = Ma Mid' .

Proof: Since (X, ) is finitely faithful we have, for any x in L,
that A(x) v (x') =KX(e), &(x) A& (x') = (o) and thus o x) =(x').

Now the join component (4, MaA) of (A, E) being a join dense element
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has for its complement the meet dense elemert /\{x(x') / x ¢ A} =
(Mi % , U) for some suitable U in prz(ic) with Mi U =Mi A' . Since
(A, Mad) is the join component of (A, E) we have that its complement
(Mii’ , U) is the meet component of (B, F). But the meet component
of (B, F) is (MiF, F). Thus MiF = MiA', that is, MaliF = MaMip',

The rest of the lemma follows by duality. This completes the proof.

We conclude this section by establishing
Theorem 7: A Dedekind-Macneille extension of a Boolean lattice L
is up to equivalence the only finitely faithful dense Boolean
extension which is a meet and join completion.
Procf: TFirstly a Dedekind-Macneille extension of L has the men-
tioned properties, Next suppose (¥ ,o) is any finitely faithful
dense Boolean meet and join completion of L. Take any
(A, B)€ ¥ . Then since ¥ is distributive we have by Lerma 2 a
join mull element ((o), U) in ¥ such that (4, E) = (4, M)WV
((0), U) where o is the zero element of L and (o) =2%4(0), the
lower end consisting of the zero element only. Let (B, F) be the
complement of ((o0), U). Then by Lemma 3 we have that
FCMaiF o Mai fof = fe} , o the wnit of L. Hence F = {e} .
But then clearly ({o), U) £ (B, F) and thus ((o), U) =«(0), the
zero element of ¥ ., Hence (A, E) = (A, MaA), that is, each element
of X is Jjoin dense, By duality we then have that each element is
meet dense as well. Finally since (¥,%) is a join (meet) completion
we get that (¥ ,X) is equivalent with a Dedekind-Macneille completion.

This completes the proof.
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Le Distributive Lattices and Dense Extensions.

In this section we determine the complete completely faithful
join (meet) dense distributive extensions of an infinitely meet (join)
digtributive lattice, We obtain also a criterion, different from
Funayamals [8] s, for the Dedekind-Macneille extension of a distri-
butive‘lat.tice to be a distributive extension. We further give
necessary and sufficient conditions for a given join dense
completely faithful extension of a distributive lattice to be a

distributive extension.

Definition 13: An extension (E, w) of a distributive lattice L will

be called a distributive extension if and only if E is a distributive

lattice.

Proposition 17: Let ({f ,°‘1) be any completely faithful

canonical join dense distributive extension of a distributive lattice

L. Then (! is a sublattice of 01K(L) , the lattice of complete lower

ends of L,

Proof: Since (0 , °‘l) is a join dense completely faithful extension
we have that 0' < O(K(L). Hence for any A, B in Ol we have A <.1/ B
DA g{/ B. Take any y in % B. 'rhenoil(y)é_ A @B and since
Ol is a distributive lattice we have °<1(y) = (%.(y) A L) gt/(dl(y)'\,,vB).
Hence Oil(y) =\m/(°‘l(y,\ ayv “l(yA b)), the join being taken over all
ain A, be 5. Thus dl(y) =\m/{°11((y,\ a)v(yab))/ acA, be B} .

This immediately gives y = \L/ {(y/\ a)v(yab) / ach, beB j
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Hence y belongs to A \\ B. Of course the meet in both lattices
is set intersection. This completes the proof.
Dually we get

Propseition 18: Let (T, da) be any completely faithful

canonical meet dense distributive extension of a distributive lattice
L. Then ¢ is a sublattice of & K(L),: the lattice of complete upper

ends of L;

Corollary 1l: ILet (01 . dl) be any canonical join dense completely

faithful ldistributivel extension of an infinitely meet distributive

lattice Lo Then (U, D(l) is a distributive extension if and only

if Ol is a sublattice of OiK(L). Dually let ( & s %) be any

canonical meet dense completely faithful Aéa':stra’:buti#e’s extension of an
join distributive lattice L. Then (& g X 2) is a distributive

extension if and only if £ is a sublattice of £ K(L).

’P:wérem 8: Let L be a distributive 1attice; A Dedekind-Macneille
extension (E, w) of L is a distributive extension if and onmly if

for all x, ¥ in L, a in E we have w(x) A (w(y) v a) s w(xay)V
(w(x)/\a);

Proof: If (E, w) is a distributive extension then the condition
clea:;'ly holds; Conversely suppose that the condition holds. Take
any é, b, ¢ iﬁ E with a Abgcaanc, avbgsave. To show that E is a
distributive lattice we must show ﬁhat bg ¢» Take any x, y in L with

w(x)<b and w(y)zc. Thenw(x) Aaszwly)na, wix)Vvas w(y) v a.

infinitely

Then w(x) 2 w(x) A (w(y) v a) = w(xay) v(w(x) A a) using our assumption.
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Then w(x) fw(xay) v (wydaa) £ w(y)e Thus wix)< /\{w(y) /
wiy) = cﬁ = ¢ since ¢ is a meet dense element. Hence
AV {w(x) / w(x) < ’oj = b since b iz a join dense element.

Thus b4c ad (B, w) is a distributive extension. This completes

the proof.

Corocllary 12: Let L be a distributive lattice. A necessary and

sufficient condition for there to exist a complete completely
faithful dense distributive extension whose join and meet dense

kernels are equivalent is that for any %, y in L and any normal

: ot : ot
lower end A we have “l(x) A (“l(y) \N/ A)E"‘l(x/\ ¥) \N/ (“1(X)AA).

Proof: If the stated condition holds then it follows by Theorem 8
that the‘ Dedekind-Macneille extension is distributive and this is

an extenéion of the desired type. Conversely let ( ¥ s%) be a
canonical dense extension of the desired type. Then by Proposition 7,
X< ’%N(L)‘ SinceO‘(U(N) is a complete sublattice of %N(L) we get
that the set J of join dénse elements of %equals the set M of meet
dense elements of )f . But then the equal subsets J, M form a sub-
lattice of % « Since % is distributive then so is J and the
extension (J,X) is‘ a distributive Dedekind-Macneille extension of L;\

Hencé by Theoren 8 the condition holds and this completes the proof,

Corcllary 13:  (Stone-Glivenko) [2] . A Dedekind-Macneille extension

of a Boolean lattice L is a Boolean extensione



73.

Proof: (1) For any y in L and any normal lower end A we have:
o(l(yl A& =°ll(yl) A (Nl(y) v L) where the unadorned join, meet
symbols refer to the lattice mN(L), and y’/ is the complement of y.
To see this take any z in L with z 2 y'A &. Then zvy:z yv(y'a a)
> a for each a in A, Thus o ;(zvy) > «1(y) Vv Ao But then

X (@) 2 L) Ax (yva) 2 & (') A (% (y) v A)e Hence

i 1(y’) AA2(y") A(%y(y) Vv A) and since the reverse inclusion

is clear we have (1).

(2) PFor any x in L we have: O(l(x) v A =°‘1(x) @A, where
F(1) is the lattice of all ideals of L. Take any z with o (z)¢
O(l(x) V &, Then using (1) we have O‘l(zz\x/) cot(x')An 2a,

Thus °<l(z)5 Ky(x)v¥i(zax’) s *1(x) @ A. Hence (2) is
established,

(3) For any x, y in L, using (2) and the fact that the lattice of
ideals of L is distributive we have that X (x)A(¥{(y) V1) =
o£1(x)a (%1(y) L) &) = 4y(xay) LY () A ) =

= 1(XAy) v (%(x) A &). Hence the lattice OtN(L) is distributive.
We saw in the last section (Remark 4) that it was complemented. Hence

o)

N(L) is a Boolean lattice, This completes the proof,

Let L be a lattice, 01 . any system of ideals of L
containing OT (P) and E any system of filters of L containing
g(P). In what follows \I/ will refer to the join in the lattice of
ideals of L, \Y will refer to the join in the lattice of complete
lower ends of L and unadorned join, meet symbols will refer to the

join, meet respectively in 01, & . Further /p\ will refer to the
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meet in the lattice of filters of L and /K\ will refer to the meet

in the lattice of complete upper ends of L.

Definition 14: We call L 07 —continuous if and only if for every

xinL, &, Bin 00ir sC &I/ B such that I/ S exists then
there exists a set T such that \I/ T exists, T is contained
both in & N/ B and¥(x) and x A »\L/ s = \I/ 1. Dually we call

L f ~continuous if and only if for every x in L, E, G in 5 if

SCE /F\ G such that /L\ S exists then there exists a set T such
that /p\ T exists, T is contained both in E /)G and (x) and

¥
xv/AS = /I\.T'

The following lemma will be useful.
Lenma Lt Let L be a distributive lattice and (01 »&7) any
completely faithful canonical join dense distributive extension of L,

Then for any A, B in Ul we have AV B ={x / xeL, x =\/S, ScA \I/B}

Proof: Let us call the set on the right side of ﬁhe above equality Q.
since (7 ,0(1) is completely faithful we have that Olconsists of
complete lower ends and hence AvB contains Q. Now take y in L

with ®,(y) £ A v B. Then since OU is a distributive lattice we get
%) (7) = (X3(x) A A) V (%1(7) A B). But then o (y) =

N/ iaa) v rav) / aea, besf.

Thus 4(y) = \/{dl((y,\a) Vv (yAb)) / a€4, bC—Bg and this gives
y = \L/{_(y/\a) v (y Ab) / a €A, beB}. The set S - {(y,\a)\/(y/\b)

/ a€Al, bGBs clearly is contained in A \I/ B, Hence y belongs
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to Q and this completes the proof.

Theorem 9: Let (0'( »%7) be any completely faithful canonical
join dense extension of a distributive lattice L. Then (" ,0(1) is
a distributive extension if and only if (1) Ol is a sublattice of

O1K(L) and (2) L is U(-contMuous.

Proof:  Suppose (Of »%7) is a distributive extension. By Proposition
17 we then have that OU is a sublattice of 01K(L).. Further take any
xin L, A, B in 07 and let S be a subset of A \I/ B such that \I‘/S
exists, Then clearly x A\L/ S belongs to %4(x) ~ (AvB) =
(otl(x) A R) ~v (%(x) A B)s Then by Lenma 4 there exists a set T
contained in (“l(x)AA) &/ (Ml(x)A B) = dl(x) A (A \I/ B) such
that \L/ T exists and x A \I/ s =\l/ T, But this means that L is
01 ~continuous, Convérsely suppose that (1) and (2) both hold. Take
any A, B in 07 and put Q.={x/x(—L, x =\/S, s€ A & Bj . Then
Q is certainly contained in A \K/ B, but since L is 00 —continuous

we have immediately that Q is a complete lower end. Hence A \K/B =Q
and by (1) AvB =Q. Now take any X, y in L such that y belongs

to dl(x) A (AVB). Then by the above y ¢ x A \L/ S for some

suit;able S< A \I/ B, But since L is 01 -continuous there exists

aT<A ¥/ B, and % (x) such that I/ T exists and equals y. Now
since T < °‘1(x) A (A ~¥/ B) we have that it is contained in
(“l(x)AA) Ny ( “l(x) A B), This means that y belongs to

(dl(x) ah) ¥/ (°‘1(x) A B)e Then using (1) we have that 01 is



distributive, This completes the proof.

Dually we get

Theorem 10: Let (& ,0(2) be any completely faithful
canonical meet dense extension of a distributive lattice L. Then
(& ,X,) is a distributive extension if and only if (1) & is a

sublattice of & K(I.) and (2) L is 2’ -continuous,

76.



CHAPTER TIII

EXTENSIONS IN CATEGORIES.

In this chapter we study various categories whose objects
are extensions of a given partially ordered set, We will obtain
here a categorical characterization for the injective and pro-
jective join (meet) dense kernels of an extension in a suitable
category, Further we study the relations between the injective
and the projective orderings and obtain -also a categorical

characterization of the injectively largest completely faithful

Jjoin dense extension of a meet continuous lattice.

1, Injective and Projective Kernels.

Let P be a partially ordered set and let (R, w), (S,7) be

extensions of P,

Definition 1l: By a join preserving map from (R, w) into (S, J)

over P we mean a mapping f from R into S such that for every
. . R . R =
subset M of P if the join \/ w(M) exists then f£(\Y w(M) =

\?/JZ(M). Dually by a meet preserving map from (R, w) into (S, )

over P we mean a mapping f from R into S such that for every subset

M of R such that /R\ w(M) exists we have that :E'(/R\w(M) = /S\]Z(M).

77.
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Definition 2: By a left isotone map over P from (R, w) into (S, JT)

we mean a mapping f from R into S such that (1) f.w =J, and (2)
f is an order homomorphism such that f(w(x))< f(a) implies w(x) =< a

for any x in P, a in R. Similarly by a right isotone map over P

from (R, w) into (S, ) we mean a mapping f from R into S such that
(3) fow =X and (4) f is an order homomorphism with f(w(x)) = f(a)

implies w(x) > a for any x in P, a in R.

Definition 3: A mapping f from (R, w) into (S,7{) will be called

join dense if and only if (i) f is an order homomorphism from R

into S with f,w =J{ and (ii) for every join dense element s in S

and every subset M of P if s 2 J{(M) then there exists a in R such
that s 2 £(a) = 7T(M). Similarly a mapping £ from (R, w) into (S, 7T )
will be called meet dense if and only if (iii) f is an order homo-
morphism from R into S with fow =1J{ and (iv) for every meet dense

element s in S and every subset M of L such that s £ J{(M) there

exists an element a in R with s £ £(a)< JU (M).

Remark 1: If f is a join dense mapping from (R, w) into (S, 7()
then f maps R onto the join dense elements of S. To see this take
any join dense element ¢ in S. Then clearly ¢ = J{(x) for each

x in L(c,71) and since f is join dense there exists an element a
in R such that ¢ = f£(a) Z'TZ(x) for each x in L(c, J{)e But then

¢ >1(a) =\S/ {Tf(x) J 1T (x) = c.& = ¢ since ¢ is join dense.

Hence f(a) = ¢ and f maps onto the join dense elements of S.
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Similarly if f is a meet dense mapping then f maps onto the meet

dense elements of f,
Letﬂ,(ﬁ, f,a@ be categories whose objects are extensions

of P, The maps of\f? are join preserving over P or join dense., The

maps of @ are meet preserving over P or meet dense. The maps of é

are left-isotone over P and those ofoQ are right-isotone over P.

LetM be any category whose objects are extensions of P,

Definition 4: We say (R, w) is injectively smaller than (S,JT)

in\/‘{ , written (R, w) £ i(S, 7T) in \/{, if and only if there exists
an order isomorphism f in /Y from R into § with fuw = 7. Similarly

we say (R, w) is projectively smaller than (S,7() in /'{ , written

(R, w) & p(S, ) in \/17 , if and only if there e;d.sts an order
epimorphism f in \/l{ from S onto R with f.J{ =w. TFinally we say

(R, w) is equivalent to (S,7() in M, written (R, w) 2 (S,77) in M
if and only if there exists an order isomorphism f in./’{ from R onto

S with fow =J{ .

Theorem 1: The injective join dense kernel of an extension (E, w)
is up to equivalence in ﬁ the injectively largest join dense

extension inv‘g injectively smaller inﬂ than the extension (E, w).

Proof: Let J,(E, w) be the injective join dense kernel of (E, w).
Then the sebt Ji consists of join dense elements of E. Thus the
-identity mapping from Jj into E is clearly a join dense mapping which
makes Ji(E, w) injectively smaller than (E, w) in v‘f . Now suppose

that (R,J[) is a join dense extension which is injectively smaller
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in 4 than (E, w)o Then there exists an order isomorphism f in A
from R into E with foJ{ =w. If f is join preserving over P ﬁhen

for any r in R we have that _

2r) = t(\F{ T /7 s r§) = \I{w() /T ()= 7}

which means that f(r) belongs to Ji. Then (R, w)éi Ji(E, w) in Jy .
If f is a join dense map then by Remark 1 f maps onto Ji and again

certainly (R, w) < i Ji(E’ w) in ﬂ « This completes the proof,

Theorem 2: The injective meet dense kernel of an extension (E, w)

is up to equivalence in (B the injectively largest meet dense

extension in @ ‘injectively emaller in & than the extension (E, w.
Further we have

Theorem 3: The projective join dense kernel of an extension (E, w)

is up to equivalence in é the projectively largest join dense

extension in C projectively smaller in (Z than (E, w).

Proof: Recall that Jp(E) = {L(a, w)/ae E} . The mapping f
from E to Jp(E) given by f£(a) =L(a, w) is certainly an order
epimorphism, Further f(w(x)) = °<1(x) and % 1(x) £ f(a) certainly
implies that w(x) £ a. Hence f is left isotone and
(Jp(E),“l)_é_p(E, w) in g o Next suppose that (R, 7)) £ p(E, W)
in 6 where (R, 7T ) is any join dense extension of P, Then there
exists a left isétone map g from E onto R. Define h from Jp(E)
into R by h(f(a)) = g(a). Since g is left isotone and (R,7() is

a join dense extension we get that f(a) = £(b) implies g(a) = g(b).

Thus h is well defined and since g, f are onto maps so is h..
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Next suppose that f(a) £ f(b). Take any x in P with T{(x) < g(a).

Then since g is left isotone we get that w(x) < a, But then

w(x) € b and thus j{({x) ¢ g(b). Since (R, J{ ) is a join dense

extension this means that g(a) < g(b). Further it is clear that

Cn(f(w(x))) = T (x) and h is left isotone since g is left isotone.

" In all (JP(E’ w), & 1) 2P(R, ) in ﬁ . This completes the proof.
Dually we obtain

Theorem 4: The projective meet dense kernel of an extension (E, w)

is up to equivalence in oﬁthe projectively largesf meet dense

extension ino@which is projectively smaller in ocha.n (B, w)e

2¢ Iniective and Projective Orderings.

In this section we study the relations between the injective
and projective orderings in suitable categories of complete dense
extensions.

Let é be the category whose objects are full complete

extensions of a partially ordered get P and whose maps are join and

meet preserving over P, let fl s be the category whose objects are

complete join dense extensions of P and whose maps are join

preserving over P, 1eto©,, be the category whose objects are

complete join dense extensions of P and whose maps are order

isomorphisms and finally let 08 be the category whose objects are

Y .
full complete extensions of P and whose maps are order isomorphisms.
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roposition 1: Let (R, w), (S,7{) be any objects in 6 1+ Then

1
Proof: Suppose (R, w) is projectively smaller than ($S,7() in

(®, w) ¢ _ (5,7 in () if aud only if (R, w) £ (5,70 ind.

ﬁl’ Then there exists a join preserving ordexr epimorphism f over
P from S on to R, Consider the mapping h from R in to S defined
by h(r) = \s/{i_t (y) / yeP, w(y) = r}. h is clearly an

order homomorphism from R into S with hew = J{. Take any a, b

in R and suppose a £ b. Then since (R, w) is a join dense extension
there exists a x in P with w(x)< a but w(x) ¢ b. Since f is join
preserving over P we indeed have i".h&t f(\s/ {i('(y) / wly)z b} ) =b
using also the fact that b is a join dense element. Hence

wix) ¢ f(\g/{ﬂ(y) /w(y) £ b} ). But this implies that JT(x)%
\S/{T( (y) / wiy) = bj = h(b)., Thus we have that h(a)4 h(b).

Hence h is an order isomorphism from R into S with hew =7( »

This means that (R, w) is injectively smaller than (S ,J7) in,,a'.
Conversely, suppose that (R, w) is injectively smaller than

(8, 7) in ,81'. Then there exists an order isomorphism g from

R into s with gew = 7{ « Consider the mapping k from S into R
defined by k(s) = \13/{1' / reR, glr)s 53' Then for any

r in R we have k(g(r)) =\R/{t / teR, g« g(x'-)} =\R/{t /
t&eR, t Sr} = r using the faet that g is an order isomorphism.

Now take any subset M of P« Then by the definition of k we

have that k( \S/ Tm) = \R/ {w(x) /R (x)¢ \S/ T (M)} which is

certainly an upper bound of w(M). Suppose that r>w (M). Then
g(r)2 J{(M) and thus g(r):‘:\S/Jz (M). In all, (k.g)(r) =rz2k ( \S/jz(M)) .
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Hence k dis join preserving over P and since k;g is the identity
on R we have that k is onto R. Thus (R, w) is projectively

smaller than (S, 7{) in ﬁl‘ This completes the proof.

Corollary 1: Let (R, w), (5,77) be any objects in 61._ Then

(R, w) is equivalent to (S,J() in C if and only if (R, w) £ »

1
(s,%) in by and (3,702 (R, W) in {0

Remark 2: Let C > be the category whose objects are complete

meet dense extensions of a partially ordered set P and whose

maps are meet preserving over P. Leta@; be the category whose

objects are complete meet dense extensions of P and whose maps

‘are order isomorphisms. Then by duality we obtain that (R, w)

ép (8, ) in 62 if and only if (R, w)f‘i (S47() in 092. In
particular (R, w) is eQuivalent to (S,7() in 62 if and only

if (R, w).<.p (8,7() in 62 and (S, 'JT).‘.p (R, w) in fzz.



Proposition 2: Let (R, w), (S, 7() be any two full complete

extensions. Then (R, w) & p(S, ) in f:if and only if (R, w)

¢.(s, 70 in .

Proof: Suppose (R, w)éi(S,T() in L. Then there exists an
order isoﬁorphism f from R into S with f.w =){. Define g from
S into R by g(s) = \R/{r/reR, £(r) < SS; Then for any r in
R, g(£(x)) = 4 { s / s€R, £(s) < f(r)} = \Ry{s / s€ER,
s< r} = Te Hencé gef is the identity on R and thus g is an order
epimorphism onto R with g.j{= we Take any subset T of P and put 8 =
/\ {ﬁ (x) /x € T{. Then g(s) ¢ w(T). Further if r< w(T) then
| £(r) 2 T (T) and thus £(r) £ s. Then (gf) (r) =r < g(s). Hence g
is meet preserving over P and by duality one has that g is Join
preserving over P, Hence g is a map of Z:and (R, w) & p(S,T() in
l?_. Conversely, suppose (R, w) < P(S, 1) in{g .

Let J(R), J(S) be respectiveiy the join dense elements of
R and S and M(R), M(S) be respectively the meet dense elements of
R and S, Let wy, w, be the mappings from P into J(R)®M(R),
J(S)®M(S) respectively given by w, (x) = (w(x), w(x)), wy(x) =
‘( T(x), (%)) Then since the extenmsions (R, w), (S, I{) are full
and since the extensions (J(R)@M(R)? wl), (J(s)®M(s), w2) are
dense we have at once by the definition of a full extension that

(R, w) is equivalent to (J(R) ®M(R), wl) and (S, 7{) is equivalent
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to (J(S)DM(S), w,) in G . since (R, w) £ (5, T) in { there
exists a join and meet preserving map f from S onto R. But then

clearly f carries J(S) onto J(R) and M(S) onto M(R). Thus by Pro=
position 1 we have that the join kernels and meet kernels satisfy,

(3(R), W) € 4 (3(5), w) in ¥y and (M(R), w) £ 4(M(S), w) in P
This implies in the obvious manner that
®, W2 (JR)® M(R), wy) £ ;(I(S) @ (), w)) 2 (s, ) ind. In

all, (R, w) £ i(S,Tl) in 09 and this completes the proof,

Corollary 2: Let (R, w) and (S,7[ ) be any two full complete extensions .
Then (R, w) is equivalent to (S,J[) in 6 if and only if (R, w)&p(s,n‘)
in é’ and (S,7() £ p(R"., w) in g .

3. Categorical Characterization of ( 0;((L) R o<1)°

>In this section we obtain a categorical description of the
extension ( O-IK(L), 6(1) vwhere L is a meet continuous lattice analagous
to the description of a Dedekind-Macneille extensien of a partially
ordered set obtained in [h]

Let L be a meet continuous lattice and let (R, w), (S, J{)
be extensions of Le

Definition 5: By a join continuous order homomorphism f from (R, w)

into (8,J{) over L we mean a mapping f from R into S such that for

every up-directed set M of L if \Ry w(M) exists then f( \R/ w(M)) =

\7/ R



' Let\/l/( be the category whose objects are completely join

faithful, finitely meet faithful meet continuous extensions of L and

whose maps are left isotone, join continuous order homomorphisms
over L,
Let (R, w) and (S, J[) be arbitrary objects in M.

Definition 6: (R, w)-is called an essential extension of L if and

only if for any map f in %from (R, w) into (S,7[) we have that

f(a) £ £(b) implies a < b for any a, b in R.

Remark 3: Let @ be a ca.tégory whose objects are extensions of L.
Let (E, w), (R, ) be arbitrary objects in 5 . Then (E, w) is

called an essential extension [b,] if and only if for any map f

in (Z from E into R such that if f.w is an order isomorphism from L
into R then f 1is an order isomorphism, In the category /17 any map
£ in \/‘1 from (E, w) into (R, J[) satisfies f.w =], Hence the require-
ment that f.w be an order isomorphism from L is automatically satisfied

and is thus omitted from the above definition. :

Note that the extension ( (J;(L), «,) deternined by the complete
lower ends of L is by Theorem 1 of the previous chapt.er a meet con-
tinuous extension. It is also completely faithful and thus belongs
to M . In addition note that for each object (E, w) of \/{ the mapping
w is in \/l{ . |

A description of essential extensions in ./i{ is obtained in the

following proposition,
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i
Proposition J: An object (E, w) in./vz is an essential extension of

L if and only if (E, w) is injectively smaller in / than the extension
( 0wy, o))

Proof: Suppose (E, w) is injectively smaller than ( O1K(L), Ni) in M .
Then (E, w) is a join dense extension. Take any map f from (E, w)
into (R,7() in /Y. Suppose f(a) < f(b). Take x in L such that

w(x) £ a. Then f(w(x))=j{(x) £ f(b). Since f is left-isotone we get
that w(x) £ b. Then since (E, w) is a join dense extension we have
that a 2« b, Hence (E, w) is an essential extension of L. Conversely,
suppose that (E, w) is an essential extension of L. Consider the
mapping £ from E into 01K(L) given by

f(a) = {V{o{l(x) / w(xj) £ a} .« f is clearly an order homomorphism-
with f.w =%,. Take any up-directed set M contained in L such that
\E/ w(M) exists. Take any y in L such that w(y) £ \E/ w(M). Then
since E is meet continuous and finitely meet faithful we have that
W(y)=\E/{(W(xAy)/yc Mj Thus y =\L/{xay / ye M}-

Then s:mce ( Ot (L) 44 ) is completely falthful we have that

°(l(y) = {'01 (xay) /ye M} \/f(w(M)) Hence f 1is

a Join continuous order homorphism over L. Further suppose that

b°< (x) < f(a). Then %,(x)< %{/{dl(y) / w(y) € ai . Then

since ( (t (L) ,<>< ) is a meet continuous, completely faithful

extension we get that °<1(x) = {d (xAy) / wiy) < a}

But then x = \I {x,sy / w(y) ¢ a} o Since (E, w) is a completely
join faithful extension we then have that

w(x) = \/{ wixay) / w(y) £ } < a. Hencé f is left-isotone,
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that is, f is a map in M . Since (E, w) is an essential extension
this means that f is an order isomorphism. Hence (E, w)-‘-i( %(L), o(l)

inM and this completes the proof,

Definition 7: An extension (E, w) of L in /l{ will be called an

injective extension of L if and only if for every pair of objects

(A,9), (B,y) in /Y such that (A,¢),(B,y) in V¥ and any map
h inA\/% from (A, ¢ ) to (E, w) extends to a map f in /{from (B, w)

into (E, w), that is, f.g = h where g is an order isomorphism in M

from A into B,

Theorem S: The following are equivalent for an extension (E, w) of
L in //[ .

(1) (B, w) is the injectively largest join dense completely faithful
extension of L.

(2) (E, w) is an essential, injective extension of L in M .

(3) (B, w) is a minimal injective extension of L in/Y .

(4) (E, w) is a maximal essential extension of L J.n/"( o

Proof: (1) implies (2): (E, w) is an essential extension by Proposition
3. Take (A,¥), (B,\) in \/1’( and let g be an order isomorphism from

A into B in M . Let h be any map in \/l{from (A, ) into (E, w).
Define a mapping f from (B,\) into (E, w) by £(b) =

\E/{w(x) /P (x) < b} . Since (E, w) is the injectively largest

join dense completely faithful extension we have that (E, w) £

( mK(L) 5 & ‘1) in \/‘/( and hence (E, w) isk a complete extension, Hence

f is well-defined. Further if w(y) £ f(b) then since (E, w) is meet
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continuous we get that y = \L/ {xAy /¥ x)< b } . Then

Y(y) = \B/{\P(XAy) /W (x) < b} since (B,\V) is completely join
faithful. Thus Y (y)< b and f is left-isotone. Take any up-
directed subset M of L a.ndAsuppose \B/\V (M) exists. Then since f

is left-isotone we get immediately that f 1is a join continuous

order homomorphism over L for w(y)< f£( \B/\}J (M)) gives as before
that w(y) ¢ Y/ w(M). Further for any a in A, clearly f(g(a))< h(a).
Next take any y with w(y)< h(a). Then since h is left-isotone
we get that (P (y) < a. Then g(@(y)) =Y(y)< g(a). But then

w(y) £ f(g(a)). Since h(a) is a join dense element we have that
h(a) £ f(g(a)), that is, f.g = h and (E, w) is an injective extension
of L in \/('( .

(2) implies (3): Let (R,7{) be another injective extension of L
with (R, T) < ((E, w) in /. Let 1 be the identity mapping on R.
Then since{(E', w) is essential), there exists a map f in M trom -
(E, w) into (R, ) with f.g =i where g is an order isomorphism

in f{from (R, ) into (E, w). But then f is ontc R, and since

(E, w) is essential we have further that f is an order isomorphism.
Thus (R,T() 22 (E, w) in JY .

(3) implies (4): Let (R,7() in Mbe an essential extension of L
and suppose (E, w) € i(R‘:,‘)T) in M . Then there exists an order
isomorphism g in M from (E, w) into (R,T) with gew = . Let

i be the identity mapping on E. Then in view of (3) there exists a
map f in M from R into E with f.g =i. But then f is onto E and
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since (R, J{) is essential we must have that f is an order isomor-
phism. Thus (E, w) is equivalent to (R, J{) in M . To see that
(E, w) is an essential extension consider the extension (mK(L) , & l)

of Lo We know from the implication (1) implies (2) that it is

injective. Now consider the mapping w from L into E which is a

map of »/11 o Then this mapping in view of (3) extends to a mapping £
from mK(L) into E with f.X, =w. Since by Proposition 3

( 01K(L) s X l) is an essenfc.ial extension we get that f is an order
isomorphism. Then by (3) since ( O1K(L) , X l) is injective we have
that f maps onto E. Thus (E, w) is an essential extension.

(4) implies (1): This follows immediately from Proposition 3 and
the fact that ( O(K(L) R « 1) is the injectively largest join dense

completely faithful extension of L.
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