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ABSTRACT: 

The light even-even nuclei have been studied using the 

den ~i ty dependent effective interaction of Sprung and Banerjeee 

The nuclei were studie d initia lly, using a harmonic variational 

procedure, to deter mine the most appropriate parameters of t he 

force for the Hartree Fock study. 

This chosen force was then used in a comparative study 

of spherical nuclei to d e termine the inadequacies of our Hartn~e 

Fock approach, as opposed to the spherical basis calculations of 

Campi. Some deformed nuclei were then examined and o ur results 

were compared with those of K. Lassey and A. B. Volkov , and of 

J. Zofka and G. Ripka. 

ii 



ACKNOWLEDGEMENTS 


I would like to express my most sincere gratitude to mv 

supervisor, Professor D.W.L. Sprung with wh om it has been my 

privilege to study. He has consistently been a willing and 

available consellor, whether explaining the subtleties of 

nuclear physics or the "vagueries" of an income tax f orm. His 

dry wit, candor and numerous contests and picnics have made 

what could be a dry association, grea t fun. Were it not for 

his sympathy, gently prodding and bi e nn i al apologetics to the 

Graduate Studies Office , this work would not yet be comp lete d. 

I would also like t o thank Professor A .• B . Volkov, 

Keith Lassey, Paul Dunmore and Dr . X. Campi for many useful 

and enlightening discussions. Appreciation should also be 

expressed t o both Professor A. B . Volkov and Professor R.. F . h7. Ba d e r 

who initially interested me in different aspects of this problem. 

I am also indebted to the director, Dr. Keech, the staff 

of the McMaste r Computer Centre, and the CDC 6400 comp uter, for 

the contribution they made to this research. 

I would like to thank Jan Coleman for her patient help 

t yping this long and at times difficult thesis. 

It would be improper of me to omit mention of the d e bt 

owe to my mother, the late Mrs . Velma 1ar garet Curry who for 

t wenty years was to me both mothe :- and father. r7i thout her 

dedication, sac:rifice and encouragement mv education would 

never have been possibleo 

iii 

I 



Finally, I would like to thank my wife, Mary Jane, 

who has patiently endured the disruptions which accompany 

the writing of a thesis. Without her loving help and en­

couragement this thesis would never have been completed at 

this time. 

iv 



TABLE OF CONTENTS 


Paae 

INTRODUCTION 1 

CHAPTER 1 Hartree Fock Theory 5 

CHAPTER 2 Nuclear Matter 13 

CHAPTER 3 The Potential 20 

3~1 The Hamiltonian 20 

3.2 Types of Potentials 21 

3.3 Density Dependence 26 

3.4 Rearrangement Term 27 

3.5 The Coulomb Potential 35 

3.6 The Spin Orbit Interaction 37 

Variational Calculations 39 

4.1 Choice of Force 3 9 

4.2 Comp arison of Forces, G-0, G-1, G-3 47 

4.3 Symmetry Energy of Nuclear Matter 66 

CHAPTER 5 Hartree Fock Results 74 

5.1 Introduction 74 

5.2 The Program 75 

5.3 Spherical Nuclei 86 

5.3.1 Oxvoen 16 89 -·. ~ ) 

5.3.2 Calcium 40 102 

5.3.3 Helium 4 117 

5.3.4 Conclusions 1 2 !; 

5.4 De f ormed Nuclei 12 6 

5.4.1 Neon 20 1 2 9 

5.4 e2 Magnesium 24 

v 



5.4.3 Silicon 28 150 

5.4.4 Sulphur 32 162 

5.4.5 Argon 36 177 

5.5 Conclusions 192 

5.5.1 Systematics 192 

5.5.2 Clustering 202 

5.5.3 Discussion of Zofka and 216 
Ripka's Paper 

5.5.4 Suggestions 218 

5.5.5 Epilogue 218 

APPENDIX 1 219 

BIBLIOGRAP HY 222 

vi 



LIST OF TABLES 

·paqe 

Table 3.1 Parameters of Coulomb Approximation 36 

Table 4.1 . d. .BJ_n ing Energies daw d . . fRa ii o 16 . hO wit 
and without the Coulomb Force 41 

Table 4 .. 2 Binding Energy and Radius of 40 ca 43 

Table 4.3 Calculated and Experimental Observables 
for all the 4A nuclei to 40ca 44 

Table 4.4 Binding Energies and Radii of 160 for 
forces G-1 and G-3 48 

Table 4.,5 Binding Energies and Radii of 40 Ca for 
forces G-1 and G-3 49 

Table 4.6 Binding Energies and Radii for force 
G-3 ks=l.30 fm-1 for 160 and 40ca 51 

Table 4.7 Properties of 160 calculated for 
different values of the Synunetrv Energy 
in Nuclear Matter 70 

rrable 4 e 8 Binding Enerqy and Padii of Deformed 
nuclei for various Symmetry Energy values 

Table 5.1 Calculated Properties of 160 95 

Table 5.2 Calculated Properties of 40 ca 106 

Table 5.3 Calculated Properties of 
4

He 121 

Table 5 .. 4 Properties of 20 Ne vs A 134 

Table 5~5 Calculated Properties of 20 Ne 135 ­

Table 5.6 Calculated Properties of 
24

Mg 146 

Table. 5. 7 Calculated Properties of Prolate 
28

si 152 

rrable 5. 8 Calculated Properties of Oblate 
28

si 158 

Table 5.9 C 1 l t da cu .a e .Properties fo­ . . 1Triaxia 32 S 169 

Table 5.10 Properties of various configurations of 
32s 17 4 

vii 



36
Table 5.11 Calculated Properties of Ar 187 


Table 5.12 Properties of the 4A nuclei 199 


Table 5.13 Binding energy differences for 4A, 

4A-l and 4A+l nuclei 203 


Table 5.14 Bond energies of the 4A nuclei 210 


viii 



LIST OF FIGURES 


Figure 4.1 	 The BE/A in MeV for the 4A nuclei 
for force G-0 46 

B . d. 	 f 16 .Figure 4.2 in ing energy o _ O vs Es in MeV 
for G-0, G-1, G-3 52 

16Figure 4.3 	 Radius in frn of 0 vs Es for G-0, 
G-1, G-3 54 

40 . d. f 	 fFigure 4.4 	 Bin ing energy o Ca vs Es _or 
G-0 , G-1, and G-3 56 

40Figure 4.5 	 Radius in fm of ca vs Es for 
G-0, G-1 and G- 3 58 

16Figure 4. 6 	 Binding energy of 0 vs Es for ks=l.35 
and 1. 30 frn-1 60 

16F igure 4.7 	 Radius of O vs Es for ks=l.35 and 
1.30 	fm-1 62 

40
Figure 4.8 	 Binding energv of Ca vs Es ks=l.35 

and 1.30 fm-1 64 

40Figure 4. 9 	 Radius o f ca vs ks=l.35 and 1.30 fm-1 67E5 

Figure 5 . 1 	 Rearrangement Factor. A vs Atomic Number A 76 

Figure 5.2 	 Single particle energy level~ of 160 
vs A. 79 

16F igure S s J 	 Gaussian fit to 0 density profile 82 

Figure 5.4 	 Proton Single Particle levels for 40 ca 
vs A. 84 

16Figure 5.5 	 Radii and binding energy vs A. of 0 
and 40ca 87 

16Figure 5.6 Density distribution of 0 90 

16Figure 5.7 Density profile o f 0 92 

16Figure 5.8 Proton Single Particle level s of 	 O 97 

16Figure 5.9 	 Neutron single particle levels for o 99 

ix 



Page 

40CaFigure 5.10 	 Density distribution of 103 

40CaFigure 5.11 	 Density profile of 104 

40CaFigure 5.12 	 Proton single particle levels of 110 

40CaFigure 5.13 	 Neutron single particle levels of 112 

4
Figure 5.14 	 Density distribution of He 118 

4
Figure 5.15 	 Density profile of He 119 

Fi9ure 5.16 	 Proton and Neutron single particle 
levels o f 4He 122 

20NeFigure 5.17 	 Density distribution of 130 

420NeFigure 5.18 	 Density distribution of with He 
superimposed 132 

Figure 5.19 	 Proton single particle energy levels 
of 20Ne 138 

F ' __igure 5.20 	 Neutron sing le particle energy levels 
of 20Ne 140 

24MFigure 5.21 	 Density di stribution of ig 
(a ) in the x-z plane 	 143 
(b) in the y-z plane 	 144 

Figure 5.22 	 Proton single particle energy levels 
of 24Mg 148 

28c.Figure 5.23 	 Density distribution of Prolate ....>l 151 

Figure 5.24 	 Proton single particle energv levels 
of Prolate 28~i 154 

288iFigure 5.25 	 Density distribution of Oblate 157 

Figure 5.26 	 Proton sinqle particle energy levels 
of Oblate 283i 160 

328Figure 5 .. 27 	 Density distribution of Prolate 163 

328Figure 5.28 	 Density distr ibut ion of Oblate 164 

32
Figure 5~29 	 Density distribution of Triaxial 8 

(a) in the x-z p lane 	 165 
(b) in the y-z plane 	 166 

x 



Figure 5.30 


Figure 5. 31 


Figure 5.32 

Figure 5.33 

Figure 5.34 

Figure 5.35 

Figure 5.36 

Figure 5.37 

Figure 5.38 

Figure 5.39 

Figure 5.40 

Figure 5.41 

Figure 5.42 

F'igure 5.43 


Figure 5 .. 44 


. f . . 1 32
Composite o_ Triaxia S 

Proton single particle energy 
of Triaxial 32s 

Proton single particle energy 

of the configurations of 32s 


36
Density distribution of Ar 


36
Density profile of Ar and (


Proton single particle energy 

36Ar and 40ca 


36

Density profile of Ar 

Proton single particle energy 
of 36Ar 

Binding Energy vs A. 

Mass Radius vs A 

levels 

levels 

40 4

ca- He) 

levels of 

levels 

HFC single particle energy levels vs A 

Neutron 
neutron 

Neutron 
barns vs 

absorption cross section vs 
number 

scattering cross section in 
neutron number 

Bond energy vs Atomic number 

Alpha cluster energy difference vs 
Atomic number 

Page 


167 


172 


175 


178 


179 


181 


183 


190 


193 


195 


197 


204 


206 


211 


213 


xi 




-,. r . 

;, 

. · 

- , """", 
---~-. ------

I 

.. c . 

'• 



INTRODUCTION 

This thesis is a study of light nuclei using a 

Hartree Fock approach which employs effective potentials 

deduced from a realistic nucleon-nucleon force. 

The structure of the nucleus is generally accepted 

to be consistent with the Nuclear Shell Model . The A 

particles of a given nucleus are confined to single particle 

orbitals and move in a central field. This immediately 

suggests a form of Hartree Fock calculation in which it is 

assumed that a given particle moves in a potential created 

by the other A-1 nucleons. 

Realistic nucleon-nucleon forces , such as thos e of 

Reid, Lassila et al. of Yale, and Hamada-Johnson, have bee n 

deduced from scattering data. However t~ese tend to have very 

strong repulsive cores and relatively weak attractive parts. 

These are unsuitable for Hartree Fock calculations since the 

short range parts are so strong that the matrix elements 

produced are unworkably large. In addition, strong second 

order contributions from the potential can be produced that 

are not handled by Hartree Fock which is a first order 

approximation. These difficulties have lead to the adoption 

of Brueckner theory in which the effect of the two body 

force acting to all orders of perturbation theory is taken 

into accountG The two body force V is replaced by a reaction 
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matrix or G-matrix, which is in general a n6n local, density 

dependent operator. The net result of this theory is that 

Hartree Fock calculations must be done using "effective forces" 

deduced from a realistic nucleon-nucleon force. The effective 

force must reproduce the G-matrix elements. Even if the 

original force had a hard core, the effective force has a 

relatively weak repulsive core and is thus suitable for use 

in Hartree Fock. 

At this point we can distinguish three main types of 

nuclear structure theories. At one extreme are those who 

seek to apply the Brueckner theory without approximation 

using the G-matrix. This approach is possible for spherical 

nuclei but not for ones we would like to study. At the othe r 

extreme are those who accep t the general basis of the Brue c kne r 

Hartree Fock approach but make little or no attempt to 

calculate the G-matrix. They replace it by a purely pheno­

menological effective interaction. The phenomenological force 

is a mathematical function which may or may not resemble the 

realistic nucleon-nucleon force. It is created in a rather ad 

hoc fashion and adjusted to reproduce certain gross feature s 

of the nucleus such as binding energy, radius, and s-wave pha3e 

shifts. The s e forces may be static or density dependent 

such as the forces of Hughes and Volkov (1970). 

Finally there is the group of theories exe mplified 

by this study which use an effective force deduced by some 

more or less we ll founded argument from a nuclear matter 
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calculation based on a realistic potential. Such forces 

have been developed from the Reid potential recently by 

both Negele and Sprung, independently. An effective nucleon­

nucleon force was constructed which reproduced the G-matrix 

in Nuclear Matter at each constant density. However in 

our applications we retreat somewhat from this ideal 

situation by allowing two adjustable parameters in the force. 

These are the binding energy per nucleon and the saturation 

density of nuclear matter. 

In this thesis there will be an examination of only 

40light nuclei up to ca. This is basically due to the 

limitations of the computer programs which are restricted to 

a four shell basis. A larger b as is would lead to unmanaqeably 

large matrices and dragonalizations, unless our methods of 

calculation were considerably reorganized. 

The general structure of the thesis is as follows: 

In Chapter I, Hartree Pock theory will be discussed 

briefly without derivation, with emphasis on the Volkov approach. 

In Chapter II, th e highlights of Nuclear Matter theory 

will be enumerated with a discussion of the G-matrix. 

In Chapter III, the forces examined in this thesis 

will be elaborated on, with respect to their physical meaning 

and their treatment in the computer program. 

In Chapter IV, there will be detailed results .of .an 

examination of the Sprung forces G-0, G-1 and G-3 using the 
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General Oscillator Model or "Poor Man's Hartree Fock" 

Chapter V will list the results of a stu dy of the 

4A nuclei using a full Hartree Fock calculation. 



CHAPTER I 


1.1 Ha'r'tr-ee· Fock 'Theo'ry 

Historically, Hartree Theory (1928) was a direct 

application of the Variational principle in atomic physics. 

A particle or electron was said to move in a field provided 

by the central stationary nucleus and each of the other 

remaining electrons. The practical solution of this scheme 

proceeded as follows. Each electron was treated in turn 

with modifications being made to both the potential and 

wave functions recursively until the change between successive 

steps was less than a given tolerance. Although somewhat 

successful, the method had two fundamental problems: 

(a) the wave functions were not orthogonal, and 

(b) the wave function s were not antisyrnmetrized, 

as they ought to be when dealing with fermions. The Pauli 

principle could be taken into account only incidentally. 

These problems were overcome by the development of Hartree 

Fock Theory, largely owing to the efforts of Fock and J.C~ Slater 

(1930). The complete wave function of the system was treated 

as a determinant of single particle wave functions 

l/Jn (rl) ~J 
nl 

(r 2) ljJnl (rA) 
1 

ljJn (rl) ljJn2 (r2) ljJn 2 (rA) 
21ljJ = 

/AT l/Jn (r l) 1/J n (r2) l/Jn (rA)
A .A A 

5 
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This wave function obeys the Pauli principle in 

that two identical rows would cause the determinate to 

vanish as it is antisymmetric and the exchange of any 

two rows or columa:a would result in a change of sign 

In addi tion it can be demonstrated that the wave functions 

are orthogonal since all orbitals mo ve in the same potential. 

Practic ally ,howeve:r: , it is similar t o Hartree theory and 

the solution can also be carr ied out recursively. 

Recently, Nuclear Physics has been able to com­

fortably adopt Hartree Pock Theory. Although there is no 

dominating force centre to attract or repel nucleons , each 

does exist in a field created by the mutual interaction 

with its neighbours. One difficulty, however, was that 

Hartree Pock is a first order process . This c reated no 

problem in atomic physics which dealt with the relatively 

weak coulomb force; however special care is required in 

nuclear physics to keep the second order component of the 

force as small as possible if one wishes to apply Hartree 

Pock theory directly t o the nucleon-nucleon force. 

No attempt is made here to develop Hartree Pock 

theory. This has been done numerous times and is well 

known . However there are various practical approaches 

from which to choose. 

The coordinate space approach developed by Veneroni 

and Vautherin (1967) has r ecently been adapted by X. Campi 

(1972) to the study o f the Sprung type effective force. 
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The problem is solved iteratively in r-space on a grid of 

0.1 fm. steps. The approach is very good for spherical 

nuclei and can be used for large nuclei. There is no 

problem with truncation of the basis set and the computer 

code is very fast. It cannot be used for deformed nuclei 

unless one assumes sphericity, in which case the results are 

not too meaningful. 

In order to study deformed nuclei one must use a 

matrix dragonalization approach similar to that developed 

by Dr. Volkov and his students. 

Hartree Pock is an application of the Variational 

principle 

The variational principle c an be shown to be equivalent to 

matrix diagonalization. This will be the justification of 

our approach. 

An arbitrary function 1J; can be written in terms of 

a complete set of functions 
00 

1J; = l: 
i 

c. 
l 

¢ . 
l 

where 

c. = f ¢"; 1J; d l 
l l 

However one cannot in practice sum to infinity, so we 

truncate the basis to N functions which we believe will 

adequately represent 1J; 
N 

1J;app = I a . cp . 
i=l l l 

To find the ground state we now take 



8 

<c~ IH-\I~ > = o app app 

The variation itself is not general but is limited to 

the above mentioned subset. Thus we may write 

N 

= 2: d. ¢.o~app 1 1i=l 

The integral 

* fo~app (H-\) ~app dT = O 

becomes 

L: J(d.*cb. [H-\] a. ¢.)d-r = 0 
1 ' 1 J Jij 

or 

L: ( I«t>ilH-\ 1¢.>a .)d. = 0 

i j J J 1 


The bracket must be zero for any arbitrary d. or d.* 
l l 

I<¢.IH-\!¢.>a. = o 

j 1. J J 


N 

I ( H . . - Ao . . ) a . = 0


lJ lJ Jj=l 

This is the matrix expression for N equations in N unknowns . 

The determinant of the coefficients is zero if the solution 

exists. This is equivalent to the diagonalization of the 

matrix H. The eigenvalues determined by 

IH . . -\6 .. 1 = 0
l.J lJ 

This wil l give N values of \ the lowest being the ground 

state . 

However , the justification of our approach is 

more by analogy than by rigour. The variation above was 
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of the wave function only. For a density dependent 

force the potential should also be varied. This as 

we shall later see leads to the rearrangement term. 

Thus the above derivation is somewhat less than rigorous . 

Dr. Volkov and his collaborators (Manning 1967, 

Hughes 1970, Lassey 1972) used single particle wave 

functions which were the product of a space, spin, and 

isospin part. 

ljJ (r,0,T) = <P (r) X (0) T (T)
n n n n 

This is only an approximation owing to the inclusion of 

spin orbit and Coulomb terms in the Hamiltonian. However, 

it is assumed to be a good approximation since the contri­

butions of these other f orces are small. Thus the wave 

functions are considered separable. 

The space part of the single particle wave functions 

are expanded as the sum of cylindrically symmetric harmonic 

oscillator basis functions 

N 


<P n = 2:: c. ljJ. i=:n,m,n

l l z

i 

These are of the form 

If; (/Cip,¢ , /Sz ) = P (/ap ) ¢ ( ¢ )Z {/Sz)
n,m,n n,m m n 

2 2 

and are the solutions of the equation 

where E. 
l 
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A more detailed description of the cylindrical 

harmonic oscillator functions is given in Appendix 1 o r 

Copley and Volkov (1966). 

The Hartree Fack calculations were restricted to 

a basis of the first four shells; l~, lp, 2s-ld and 2p-lf 

All quantum numbers must be consistent with N=2n+lml+n2 where 

N is the principle quantum number having the values N=0,1,2,3, .. . 

A list of these is also given in Appendix 1. 

Each deformed cylindrical harmonic oscillator basis 

state which has been used requires oscillator constants 

a and S. This gives us a formidable number of parameters 

to be fitted. For any calculation of the properties of 

a particular nucleus with a given force we adopt a two step 

procedure. The first step is to obtain a set of optimum 

oscillator constants consistent with the orthogonality 

constraints also indicated in Appendix 1. The program which 

accomplishes this has gone by the name MINDET in the past . 

Our version is called MDNMSG. 

To optimize the a. and S. values, the procedure
l l 

which Lassey (1972) called the Genera l Oscillator Model 

(G.O. M.) or poor man's Hartree Fock , treats each state as 

a single harmonic oscillator state. Unlike Hartree Fock, 

there is no mixing. However each state is allowed to have 

dif ferent values of a and S subject to the orthonogality 

a nd time reversibiJ.ity constraints . The oscillator cons tants 

refer,oniy to the space part are not 
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different for different spin and isospin states. Each 

state may thus have up to four particles in it. 

A suitable configuration of states is chosen for a 

given nucleus and the energy is minimized as a function cf 

a and S's. 

In addition to the set of osciilator constants to 

be used in the Hartree Pock calculations the binding energy 

2 2for the nucleus, its radius, and such properties as <p >, <z >, 

quadrupole moment and crude single particle energy levels 

are calculated. 

This procedure was used to examine Sprung~ family 

of forces before choosing one for further study using the 

Hartree Pock program. 

Given the set of oscillator constants for a particular 

force and nucleus, Hartree Pock calculations were performed. 

Besides the properties mentioned above, we calculate the 

nuclear asymmetry and improved single particle levels for 

both the protons and neutrons separately. In addition 

density maps were obtained for some cases. 

The choice of the cylindrical harmonic oscillator 

basis was a matter of utility. This basis has the advantage 

that deformed nuclei may be handled with a reasonably small 

basis, and the calculation o f matrix elements can procede 

rapidly. However, the wave functions do not have good 

angular momentum and are only moderately successful with 
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. . 11 . 1 . h 24 32t riaxia y symmetric nuc ei sue as Mg or S. To do 

these properly a much larger basis would be necessary or the 

use of a cartesian harmonic oscillator basis would be 

advisable. In the cartesian basis, 

l]J(x,y,z) = X(x) Y(y) Z(z) 

However, these have neither good angular momentum j or its 

z-component m. 

In order to have good angular momentum and a good 

z-component a spherical basis is necessary. 

l]J(r,8,cp) = R(r) 8(8) <P (cp) 

The spherical bas is would require an inordinately 

large basis set to properly deal with deformed axially 

symmetric nuclei , let alone triaxial nuclei. 

Thus a compromise must be made and the choice was 

the deformed cylindrically symmetric basis. 



CHAPTER II 


From the study of nuclei over the last four decades 

certain facts have been established. Nuclei saturate. 

This means the volume of the nucleus is proportional to the 

number of particles 

R a: r 
0 

where r is a proportionality constant of about 1.2 fm. 
0 

From electron scattering,the central density of 

all but the lightest nuclei/is found to be about 0.17 nuc lei 

3 per fm . The binding energy per particle is found to be 

quite constant also, about 8 MeV per particle. The semi­

emperical mass formula, b ased on a liquid drop picture of 

the nucleus, gives quite a good fit to nuclear binding energie s ~ 

E/A 

+ E + E + E . +Ed f . + ...coul shell pair e ormation 

Here the terms on the second line represent particular 

small effects which do not vary smoothly from nucleus to 

nucleus. They must be estimated from theory o r removed simply 

by smoothing the data. The parameters a 
1 
... a c an then be

4 

adjusted to give a best fit to nuclear binding energies. 

From these facts, the idealized system of nuclear 

matter has been invented . It is an infinitely large nucleus, 

with the density p e q ual to a constant. Since it is a 

13 
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homogen eous system the single particle orbitals will be 

plane waves and the occupied states will fill a sphere of 

radius kF in momentum space. Here 

The value p=0.17 particles per cubic fermi c o rresponds 

-1
to k F = 1. 36 fm • To avoid an infinite coulomb energy 

we suppose the coulomb force to be turned off. Then , 

because nuclear matter forces are charge symmetric we 

expect N=Z and the binding e ne rgy of the system will be 

the coefficient a in the semi-empirical mass formula,
1 

since A+00 • This has the value -16 MeV per particle. 

Nuclear matter is popular with theorists because there 

are no surface effects and the single particle orbitals are 

represented by plane waves. Thus nuclear matter has become 

a testing ground for models of the nucleon-nucleon force. 

As the theory is generally accepted it is non-relativistic 

and includes the two-body force only. The forces used must 

provide reasonab le fits to the nucleon-nucleon scattering 

data. (Some authors such as Nogami, Ross and Bhaduri, (1970) 

and Loiseau (1971) believe the three-body force may con­

tribute a small amount to the net energy per particle, 

about 1 Me V) . 

The Brueckner theory of nuclear matter requires that 

one evaluate the G-rnatrix, which is defined in analogy to 

the Lipmann-Schwinger equation for the reaction matrix T : 
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This is derived from two-body scattering theory 

3ik•r d q<rl~> = e - J<rl~> 
2 k2 .q - -1€ 

T~e -is is equivalent to the usual asymptotic boundary 

condition 

ik•r eik·r 
<rl~> : ~ e + f (8)

r 

By studying the· integral term of the Lippmann-Schwinger 

equation one may identify 

•where f(6) is the usual scattering amplitude; k.k = kk'cos 8 

We can iterate the equation for !~>: 

i 1 II~> = I~> - ! vi k> + -V-Vk>e ,.... e e --­

1 1 1- - v - v - vi~>e e e 
• 

from which: 

<~' Ivi~> = <~' lvl ~> - < k I v .!. v I k> 
- e ..... 

+ < ~ I v e 
-
1 v ! 

e 
vlk> - ..... 

Finally we can define 

with 
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which is the Lipmann-Schwinger e quation for the T operator. 

Thus T is defined as the operator whose matrix element is the 

scattering amplitude. In the above we have identified 

1l 'V 
e 2 k2 .q - -H.: 

The (+is) prescription for treating the singularity 

at the pole (q=k ) effectively forbids scattering into state 

k, which is already occupied. 

Similarly in nuclear matter theory where there are 

more than two particles, the analogous equation, called the 

Brueckner Goldstone equation is 

G =·v - V Q_ G 
e 

Q prevents scattering into occupied states below 

the fermi surface, 

ik I <k 
I F 

The denominator e becomes 

U is the single particle potential and W is the starting 

energy . 

· of the two interacting particles in their initial states a and S. 

With Brueckner theory the two body problem is solved 


e xactly , allowing for the presence of other particles in an 


average waye Two particles are considered to be in a potential 


created by all the other particles and they are subject to 
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the Pauli principle. This is in contrast to Hartree Fack 

theory which considers each single particle as in a field 

created by all the other particles. Thus it is a solution 

of the one body problem allowing for the presence of other 

particles in an average way. 

In 	the Brueckner theory 

E/A = <T> + ~p 	 I <mn!Glmn> 

mn 


+ higher cluster contributions 

If we compare this to the semi empirical mass formula 

value for binding energy per nucleon of -16 MeV per 

particle we may identify 

<T> 	 ~ - +23 MeV 

~P 	 I <mnlGlrnn> ~ -35 MeV 

mn 


others 	 ~ -4 MeV 

Total 	 ~ -16 MeV 

This, if we recall , is all in aid of treating the 

true potential which has an infinite core in a workable 

fashion. We now see that 

<mnlGlmn> = <mn IV I1V >True mn 

where ~mn is a correlated two body wave function. 

To apply the Bre eckner theory to finite nuclei is 

more difficult. The single particle orbitals, which were 

simply plane waves , are replaced by some suitable basis 

which represents as closely as possible finite nuclear 
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single particle orbitals. Q limits excitation to unoccupied 

states and the denominator e will refer to the energies of the 

particles under consideration in the finite nucleus. 

Hartree Fock states are then computed using the 

appropriate G-matrix for finite nuclei as the net two­

body interaction. However, BruecJ ~Tuer lfartree Fock is 

difficult because of the double self consistency; the 

Hartree Fock self consistency, and the Brueckner self 

consistency of the G matrix which involves the single 

particle energies and orbitals but which also determines 

them. 

Instead of the above complicated procedure, Brueckner , 

Gamme l and Weitzner (1958) proposed to split the calculation 

into two separate parts. They proposed to calculate G in 

nuclear matter as a function of density and then use it 

to do Hartree Fock calculations. The Local Density · Approximation 

is employ ed, in which one u ses the G matrix appropriate 

to the density p{R) at the point where the particles interact. 

Such an approximation would be justified if the density p (R) 

varied slowly over a distance equal to the range of the 

nucleon-nucleon force. 

In later work the further approximation was made 

of replacing G (which is now local) by a "local effective 

interaction." This was done since one has more intuition as 

to how a local force should look and behave. The criterion 

for the local effective force is that 
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as closely as possible c~ 3-5% in practice at worst) 

Because Veff is local, it turns out that the best 

one can hope to do _is fit to the diagonal matrix elements 

of G. This is probably sufficient since these are the most 

important matrix elements in nuclear matter. 

Sprung has constructed a density dependent effective 

force ~ which reproduces the G matrix elements for a reasonable 

range of densities. This was done by fitting his function 

to the true G matrix values in nuclear matter at several 

densities. The value of the density used with such a force 

is dete rmined by the Local Density Approximation. This, 

however is not an unambiguous function. It may take the 

form of the centre of mass density, the geometric or the 

arithmetic mean density of the . two particles being considered. 

The particular form which Sprung and Campi found 

best, and which is used in this study is the arithmetic mean. 

This will be discussed briefly in the next chapter. It is 

·hoped however that keeping track of the density dependence 

of the G matrix in this way that one will more or less be 

using the correct G matrix for finite nuclei 

~ <mnlG lmn>F N 



CHAPTER III 


THE POTENTIAL 

{a) The Hamiltonian 

The Hamiltonian used by Dr. Volkov, his collaborators 

(Manning 1967, Hughes 1970) and this author is 

H = 

A 2 	 A 
+ 	 L: 

e 
+ c l: 

i<j Ir. -r. j i=l 
-l -J 

where T. is the one body kinetic energy operator, V.. is 
l 	 l] 

a 	 two body potential, T is the centre of mass kinetic c.m. 

energy operator which is subtracted out of the total 

Hamiltonian leaving an intrinsic Hamiltonian. The last 

two terms are the Coulomb and the spin orbit terms 

respectively. 

The Hamiltonian used by X. Campi and Dr. Sprung 

(1972) in the coordinate space representation includes, 

in addition an energy dependent term (X. Campi 1972) 

(W-W ) A 8 (r)
0 

where W (kF) is twice the average energy of a particle
0 

in nuclear matter at fermi momentum kF and W is the 

corresponding energy for the two interacting particles in 

the finite nucleuse The energy dependent force acts only 

on S states. 

The effect of the energy dependent term is found 

20 
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to be about 0.6 MeV per particle . Also Campi's (1972) 

calculations for E/A are about 300 keV low for light 

nuclei. Since it would be awkward to amend our programme 

to include the W-dependent force, we have allowed for 

both these effects by renormalizing the Sprung Banerjee 

force so as to saturate nuclear matter with a binding 

energy of 17.5 MeV per particle, (unless otherwise indicated). 

This compare s to X. Campi, who used 16.5 MeV per particle. 

The adjustment of the binding energy per particle E/A or 

the saturation density kF is carried out according to the 

prescription given by Sprung and Banergee (1971). 

(b) Types of Potentials 

In recent years several 11 realistic" forces have 

been developed (Reid (1 968) , Hamada Johnston (1962), etc.). 

These however are difficult to handle owing to their strong 

repulsive core. Thus two classes of approximation have 

been evolved: 

(a ) the phenomenological force 

(b) the effective force derived from a realistic 

force. 

Dr. Volkov's approach was that of the phenomenological 

interaction. As we have already indicated the phenomeno­

logical force is a rather ad hoc mathematical function 

which may or may not bear any relation to the realistic 

force. However, it is constrained by the following condi tious 

(Hughes (1970)): 
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1) That the interaction reproduce the correct, 

experimentally determined s-wave phase shifts for free 

nucleon-nucleon scattering at various relative energies, 

especially those which are important for nucleons inter­

acting within a finite nucleus. 

2) That the interaction have roughly the same 

long range behaviour as "realistic" potentials. 

3) That the interaction saturqtes nuclea r matter 

at the "correct" saturation density, 

-1
kF = 1.36 fm 

and binding energy per particle, 

E/A = -16 .MeV 

4) That the interactions have smal l second order 

correction terms in nuclear matter. 

5) That the matrix elements for the interaction 

be easily evaluated. 

In the second "realistic force" case, one wishes 

to approximate the G-matrix elements as closely as possible 

with some well behaved effective interaction potential. 

In both types of forces developed at McMaster , 

gaussians have been used to facilitate the calculations 

of matrix elements . 

(i) The Volkov Potential 

Initially Volkov used a double gaussian two body 

inte raction (Volkov 1965, Hughes 1970) of the forrn 
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r2 . . 2 

V (r) = {Va exp (- -. - ) + V exp (- _E_)} 


A 2 r . A 2 

a r 

(W + MP + BP + HP )x a -r 

where P 1 P and P are the Majarana or space exchange
X 0 T 

operator, Bartlett or spin and Heisenberg or isospin 

exchange operators.respectively. V and V are the a r 

attractive and repulsive strengths ·of the force respectively. 

However these forces did not saturate nuclear matter 

and only crudely fitted the S-wave scattering data. 

An improvement in the S-wave scattering fit was 

accomplished by making A velocity dependent. (Hughes, 1970)
r 

where k is the relative wave number. These forces did then 

saturate nuclear matter but at an unrealistically high density, 

c9rresponding to 

-1
k F = 2. 5 fm 

Thus, in order to get a realistic saturation density 

of nuclear matter, density dependence was incorporated 

(Volkov 1969, Hughes 1970, Manning 1967, Manning and Volkov 

1967, Lassey 1972) 

V(r) 

xtw +MP +BP +HP l 
x a -r 
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where k n = (3TI p)n/3
F 2 

and · 

The Volkov forces specifically mentioned in this 

thesis will have saturation density kF = 1.36 fm-l and 

B.E./A = -16 MeV. 

The development of these forces and the choice and 

determination of the various parameters is elaborated on 

at great length by Hughes (1970). 

(ii) The Sprung-Banerjee Potential 

Dr.Sprung's force is an effective interaction derived 

from the realistic Reid potential. It is a local, effective 

interaction which reproduces the G matrix for reasonable 

densities of infinite nuclear matter. It has been shown 

that the non-local nature of the realistic force can be 

simplified to a local momentum dependent force by Brandow 

(1966). However further simplification to a purely local 

force in each partial wave is possible by averaging the 

momentum dependence over the Fermi sea at a given density 

(Donnelly 1968, Bhaduri and Warke 1968, Negele 1970, and 

Seimens 1970). A purely central force was created by averaging 

over the angular momentum states as well. Thus due to 

averaging,the force has no explicit momentum dependence, nor 

dependence on ~and J. It still has an exchange character 

which we now discuss. 
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The force is expressed as a sum of Gaussians with 

a simple parameterization of the density dependence 

5 r 2 
V (r) = L:[V. 0 (WMBH) .+V!k ni(WMBH) ~]e-(X-:-) 

. l l l F l l 
1 

Three families of forces were produced: G-0, G-1 and 

G-3 with the index o f the density dependence 

n. = n = 0.5, 1.0 and 3.0 
l 

respectively, 

The force can be alternatively expressed by stating 

the force which acts in each (S,T) subspace; triplet even, 

singlet even, sing let odd and triplet odd. These were 

converted to the more convenient (for our program anyway) 

Ttigner, Majorana , Bartlett and Heisenberg exchange parameters 

by the transformations 

3s = W + M + B + H 

1s = W + M - B - H 

lp = W - M - B + H 

3P = W - M + B - H 

where W + M is normalized to 1. following the Volkov convention 

In Chapter four the various families of forces are 

studied: density approximation G-0, G-1, G-3; saturation 

density, kF; and symmetry energy. The prescription for each 

of these is given by Sprung and Banerjee (1971) . 
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The problem is to use a force equivalent to that of 

Campi for the Hartree Fock calculations of chapter five 

so that a meaningful comparison can be made. This is 

because Campi found his force to give good results for 

208nuclei up to Pb, while in the present work we study 

-1only light nuclei. The force used was G-0, with kF = 1.35 fm , 

BE/A= 17 .5 MeV and symmetry energy prescription. 

(c) Density Dependence 

As mentioned above, density dependence was found 

necessary by Volkov and Hughes in their study of pheno­

menological forces to produce a more realistic saturation 

density in nuclear matter and to prevent the collapse of nuclei 

with A>l6. (Hughes 1970) 

In nuclear matter , density is a constant 

p = 	_2_ k • 3 

3 7T2 F 


However for finite nuclei where the density varies with r, 

the Local Density Approximation is used. The 

symbol p is often interpreted as the density at the centre 

of mass. 

However this would give too high a density for two particles 

at opposite sides of the nucleus since the density at the 

centre of the nucleus is invariably quite high , while the 

particles would actually be in a low density region. 
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Volkov and Hughes (1970) have considered as alternatives 

both the geometric and the arithmetic means of the densities 

p (R) 

p (R) 

and have concluded that the arithmetic mean is superior. 

Sprung and Campi (1972) have also come to this conclusion~ 

The arithmetic mean gives the correct symmetry energy in 

nuclear matter, as compared to proper G-matrix calculations. 

In order to quickly determine the density at a point, 

the density is first calculated properly as the surn of 

squared orbitals, but then is fitted to a single gaussian. 

This approximation is used since it allows us to use Volkov's 

matrix element program even for the density dependent force. 

The fitting is done by constraining the gaussian to have 

2 2the same <p >, <z > and normalization as the nuclear density. 

This approach was sufficient for the Volkov type 

force which had a weak density dependence. For forces with 

strong density dependence, however, we may require a more 

).
accurate approximation. We could expand the p as a sum of 

several gaussians. This would be especially critical in 

the case of strong deformation or asymmetry (Hughes 1970). 

(d) Rearrangement Term 

As had already been indicated, the use of density 

dependent forces requires the variation of the density 

dependent force, as well as the wave functions. This not 
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only alters the variational nature of the matrix diagona­

lization approach, but also adds an extra complicating term 

to the Hartree Fock equations. This term is called the 

rearrangement term. The density dependence is a way of 

including in an approximate way the presence of other nucleons 

in the nucleus. The importance of the density dependent 

force and the rearrangement term has been indicated by 

Ripka (1969)~ 

"It may be thought at first sight, that the density 

dependent forces are just one more of the effective interactions 

already used, and that the density dependence just adds a 

few extra parameters to the force so that it will obviously 

give a better fit to nuclear spectra. This point of view 

is wrong. The reason is that the density dependence of the 

force changes the dynamics of the system. Indeed, each time 

the density of a nucleus is changing--either because nucleons 

are captured or lost, or because the nucleus is vibrating 

or still because the nucleus makes a transition into a 

deformed shape--the interaction between all the nucleons is 

altered and this may result in a collective motion which is 

given the unimaginative name of rearrangement effects." 

The following discussion also follows Ripka closely. 

The Hartree Fock Hamiltonian 

E = < q, IH( p) I <P> 

= l:<a IT Ia> + ~ I <aS Iv( o ) Iaf3-f3a> 
a, Cl f3 
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becomes 

oE = <oaltla> + ! l: < oaS Iv( p) IaS-B a>
2 B 

A 
+ 	! l: <YB I~v ( P) h S- BY>
2 yB 


for 	each variation of a. 

Now each single particle orbital can be expanded: 

i.J; =· l: 	 C.
Cl 

1J1 . (r)
Cl • 	 l. l. 

l. 

where 1Jli(r) is an harmonic oscillator orbital. 

The variation becomes 

0 	 Cl*
[E - e l: c. C~] = 0 

Cl* a l. l.oc. 	 i 
l. 

Now the density becomes 

Cl* 
P (r) = Il1JJ (r) 12 = l: l: c. c~ cp. * (r) ¢. (r)

Cl 	 l. J l. J- Cl 	 Cl ij 

If the 	density dependent potential is of the form 

where 	r = Ir -r I ... 1 -"' 2 

and if the d e nsity dependence is of the form f~(lp(r 1 )p(r2T) V 

as in Lassey's case, then the derivative of the potential 

av 
Cl* ac. 

l. 
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(lplp2) v 	 3 p fv 	 2 ~ v.1 {r) { ~ ---­
P1 	 + ~ ac.a*J 

1 

where 

ap(r1) 
; a*ac. 

1 

This allows us to evaluate the "rearrangement term" 

The derivative of the potential becomes: 

This simply means the average of values at R=r and R=r2 .1 

In Ripka's paper (1969) this is the term: 

* dv¢ . {R) ¢. ( R) -d 
1 J p 

Ripka finds the Hartree Fock equations 

L<ilhlj>C~ = e c~ 
. J a 1
J 

whe~e h is the Hartree Fock field whose matrix elements 

are 

<ilhjj> = <ijtjj> + 	 L<iajv!ja> 

a 


+ ~- l: <a.6 I cp , {R) ¢ . (R) ddvl a. 6> 
2 a.6 1 J 	 p 
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This last term is the rearrangement term. It then follows 

that: 

oT 

*oc. a 
J_ 

= 

= I c.a<iltlj>

J
j 

and 

ov 1 0 a* S* ca= { L L c. ck ems <jk Iv i £m> t-* 2 Q,cSC. a oc. Ci* JaS jk£m
J_ J_ 

The indices i=j and ~=a or i=k and ~=S give 2 equivalent 

terms, and so they drop out when differentiated, giving 

? I I c~ c~ c! <iklvl£m> 
S k £m 

The summation can further be reduced since ¢S 

giving 

I E <iS Iv I£S>CQ, a 
s Q, 

Or if we change the dummy index Q, to j 

where S = sum over Hartree Fock orbitals. 

Thus in detail the rearrangement field is obtained 

from 
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Thus: 

1 	
\) 

\)
~i lhRI .> = L: <aS lv 1 (r) (/p1 p 2) 1 

¢. * (r1 ) ¢j (r)
- J 2 	 2 {p(rl) 1aS 


1

+ 	p(r )¢i 

* ( r 2 ) ¢ j ( r 2 ) } IaS > 
2 

For a zero range force v 1 (r)+~(r1-r 2 ) and P (r1) = p (r ) = p (P)
2 

1 I dv * I= -2 2: <aS (-dk ¢. 
1 

{R) ¢. (R) aS> 
aS P . J 

If we allow <al = ¢a * to switch places with ~i * (R) and 

similarly ¢. {R) with ja> we get
J 


1 

= -2 L: <iS I (ddv)R¢ * {R) ¢ (R) I jS>

aS P a a 

*But L: ¢ (R) ¢a (R) = p(R) 
a a 

Thus 	 for the delta function force 

In general one must deal with more complicated forces 

including exchange terms 

+ exchange 

By interchanging the dummy indices a and S we get 

+ exchange 
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Thus the direct rearrangement terms are simply the previously 

calculated matrix elements of 'J. (r)_(lp1 p ) v multiplied by v
2 

\) df
where 	 v (lplp2) is Pdp 

The exchange part is not so simple. This is 

* 1 . 	 v v ¢a {r1) ¢ S (rl)
2 	 L <i S I vl (r) {IP 1 P2 ) 2 P ( r 1 ) Ia j > 

aS 

The factor 2 
1 can be removed from each term if the dummy 

indices are changed, a+S, $+a, 1+2, and 2+1 in the second 

term. This gives 

This can be restated as in Lassey's Thesis (1972) 

1 
2 L 

s 
<isl (p dv)

dp L 
a 

*<b (rl) ¢a (r2) ¢13 (rl)· a 

p(rl)¢S(r2) 
!Sj> 

where p ~~is v 1 (r) (/p1 p2 )v 

and la> has been replaced by IS > by multiplication and 

division by ¢ 6 (r2 ). This is approximated by Lassey to 

AL <iBIP dv jSj>s dp 

It was also shown that for a zero range force A = 0.5. 

Using the Slater approximation, which treats the wave functions 

as plane wave s in calculating the mi xed density, ~ can be argued 
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to be close to 0.5, again for short range interactions. The 

approximation A = constant is probably not a good one, but 

we have so far been unable to improve on this aspect of the 

calculation. {See below) 

40. 1 . 1 1 1 .From a stud y o f sing e partic e eve s in Ca as 

a function of A we find agreement with the single particle 

energies of Campi for both neutrons and protons as follows: 

Level 

s -0.5 

p o.o 

d +0.5 

This is not understood at all. Total binding 

energy does not depend much on A. There is either no minimum 

or an inconsequentially shallow one. The radius decreases 

l i nearly as A decreases for both neutrons and protons. The 

S levels are not bound enough and the 2s level is quite above
112 

the a level.
312 

In addition there seems no justification for varying 

t he value A to obtain the lowest binding energy as was done by 

Lassey. Hi$ choice of A would appear to be arbitrary. We have 

chosen A = 0.4 since it is close to 0.5, and because the single 

particle energies are not totally unreasonable at that value. 

However a A of 0.3 could position the p and d levels slightly 

better, within 3 MeV ,of the Campi levels . A little more spin 

orbit force might help by separating the p levels a bit more. 

However we may be paying the price of not having the W-dependent 
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force in the Hamiltonian. 

It is believed that the approach may be improved by 

approximating ~S(r1r2 ) to a gaussian instead of a constant. 

The estimate of Lassey from the Slater approximation was: 

j (k r)
0 0 

If kFr =x and k r - y.
0 

2 2 x yrv (1 - •.• ) ( 1 - ... )~S (r 1'r2 > 10 6 

x 2 /1 : 2 
e - e -y ' /6rv 

If we estimate k 2 rv 3k 2 we find 
0 SF 

2 
x 2 

e --5 -k r 
2/Srv = e F~S ( r 1'r2) 

-1
Since we can approximate kF rv 1 fm . we get 

2 
-r /5

~ {r r ) rv es 1 2 

It is from this type of estimate that we obtain the approximation 

1"2 ~ - A rv 0.4 

The problem is that, since the entire Volkov approach is 

gaussian oriented, the programme requires that ~ (r 1 ,r2 ) be 

either a gaussian or a constant. 

(e) The Coulomb Potential 

Owing to the use of axially symmet ric wave functions 

t.i"le two body matrix elements of the Couiomb potential canno t 
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easily be calculated as they can for a spherically symmetric 

basis. There is a closed form in terms of hypergeometric 

functions, however the expression is so complicated that the 

computer code would be time consUi~ing. If we are to use 

the standard Volkov matrix element code, then the Coulomb 

potential 

2 eV (r) = c r 

must be expressed as a sum of gaussians: 

The fitting procedure used to determine the Cn and 

Bn coefficients is described in the Appendix of Lassey's 

thesis (1972). The matrix elements of V (r) can be quitec 

reasonably reproduced with Nc=6. The strengths c and 
n 

ranges Bn are tabulated below in Table 3.1, as computed by 

Lassey. 

Table 3.1 

n -1Cn(fm ) Bn ( fm) 

1 315.060 0.014972 

2 10.3501 0.21660 

3 1.23224 0.78641 

4 0.47666 1.6841 

5 0.26451 3.5436 

6 0.19582 11.822 
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The matrix elements are accurate within 0.5%. Errors 

greater than 0.1% are for matrix elements o f small magnitude 

(Lassey , 1972). Hlgh accuracy i s no t required at small 


2 
r owing to an r weighting factor in the matrix element. 

On the other hand the finite radius o f the nuc leus ~xc~~e $ 

a poor fit at large r. For these reasons the results are 

accurate. 

(f) The Spin Orbit Interaction 

The Shell model demonstrated the importance of 

the spin-orbit interaction. This force split the degenerate 

p,d, •.. levels and divided the energy levels up into shells 

corresponding to the observed magic numbers. 

The two body spin orbit interaction can be approximated 

by the one body operator 

for spherical nuclei, but f o r deformed nuclei the one body 

operator becomes 

k is the momentum operator iV and p (r) is t h e density distribution 

(Bl in Stoyle 19 55) • 

The matrix elements of this operator can be readily 

calculated if we assume a gaussian density distribution. 

This procedure is explained in Appendix 3 of Lassey's thesis 

(1972). 

The spin orbit strength ULS used in this work was 

5
130 e0 MeV - fm which i s the same as that us e d by X. Campi. 
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References to forces A and B of Volkov , in Lassey's thesis 

5 use a spin orbit strength of 150.8 MeV fm which was 

derived by Negele for a similar effective interaction. 



CHAPTER 4 


Variational Calculations 

In this chapter Sprung's effective nucleon nucleon 

forces are studied using a simplified .Hartree Pock procedure. 

This is a variational calculation in which each orbital is 

represented by a single oscillator function. The variation 

is done with respect to the oscillator a. and S. of each 
l l 

single particle orbital ¢.. The even even nuclei up to 
l 

40 Ca were studied. Even though this is a simpler program 

than Hartree Pock, it is believed that the results will 

be reasonably good. The forces were studied to determine 

which would be most suitable for the Hartree Pock calcu­

lations, and in the process to determine the _general trends 

and properties of the forces with respect to binding energy 

per nucleon (Es) ,saturation density. (ks)' and symmetry energy 

value. 

4.1 Choice of Force 

In order to determine which form of Sprung's forces 

to use, one must consider the behavior of these forces, 

G-0, G-1 and G-3 with respect to saturation density kF' 

binding energy per nucleon in nuclear matter, and symmetry 

energy value. This behavior is measured with respect to 

total binding energy, radius, and sometimes single particle 

39 
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energies and quadrupole moments. 

16The first nucleus used for this study was 0. 

Since it is a spherical closed shell nucleus the effect 

of no mixing of basis orbitals should be minimal. Oxygen 

is 40cis not so large, as a, that the calculation would 

be time consuming. On the other hand it is not so 

small, as is 4He,that our treatment of the density 

dependence might be inadequate. 

The saturation density we selected at the outset 

was k = 1.35 frn-l since Campi had found that it had 
s 

worked well over the whole range of spherical nuclei. 

Since we can only examine nuclei up to A = 40, we 

cannot establish a preferred value for k in a reliable s 

way. 

Using this saturation density several variational 

1 cu1 at1ons were d one f or ' f orce G eac_h h ' ca . 16O using - 0 aving 

a different binding energy in nuclear matter. The cal­

culations were done with and without the Coulomb contribution 

in order to determine its effect on the total binding energy. 

The results are tabulated in Tabel 4.1. It is found 

that the effect of the Coulomb potential in 16
0 is to reduce 

the binding about 13 MeV and increase the radius about 

0.025 	fm. 

The favoured force would seem to be one with E of 17.5 
s 

MeV per particle in nuclear matter. The radius is essentially 
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TABLE 4.1 

With Coulomb Without Coulomb 

BE/A Total Binding Radius Total Binding Radius 
Energy Energy 

14.5 - 86.6 2.815 - 99.32 2.787 

16.0 -103.6 2.772 -116.53 2.747 

16.5 -109.06 2.758 -122.02 2.734 

17.0 -114 .. 85 2.746 -127.87 2.723 

17.5 -120.86 2.731 -133.95 2.708 

18.0 -126.32 2.723 

EXPT -127.62 2.73 
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the same as the experimental value, and the total binding 

energy is only 7 MeV low. This it is believed would be 

improved by the Hartree Fock procedure which allows mixing 

and should gain a few MeV binding energy. (See Ch. 5). In 

addition the value 17.5 MeV per particle seems reasonable 

compared to Campi's value of 16.5 MeV per particle. We 

do not have the"starting energy" dependent term in our 

Hamiltonian which Campi found to contribute about 0.5 MeV 

16per particle. Further Campi found his 0 calculation to 

be about 300 keV per particle underbound. 

As a further check on the reliability of this force 

40 a calculation wa s done for ca. The results were very 

good. The radius again was almost identical to the 

experimental value and the total binding energy was still 

about 0.4 MeV low per particle. (See Table 4.2) 

Using the same force, and the simplified Hartree 

40Fock programme, the A=4n _ nuclei from 4He to ca were 

studied. The results are tabulated in Table 4.3. 

As can be seen from Fig.4 .1 the binding energy 

per nucleon is lower in gereral than the experimental 

4values with 	the exception of He which is over bound. In 

16 40all but the 0 and ca nuclei the radii are too gre at by 

0.2 or 0.3 fm. It can be speculated that this discrepancy 

for the deformed nuclei is due to the lack of mixing of 
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TABLE 4.2 

E s Total Binding 
Energy 

Per Particle Radius 

17.5 326.25 8.16 3.51 

EXPT 342 8.55 3.50 



TABLE 4.3 

CALCULATED EXPERIMENTAL 

Nuclei A BE BE/A <r2 >1/2 Q Q/R BE BE/A <r2>1/2 

He 4 29.72 7.43 1.866 o.o o.o 28.3 7.075 1.67 

Be 8 52.3 6.54 2.63 6.75 0.977 56.5 7.06 

c 12 81.04 6.75 2.71 -3.76 -0.511 92.2 7.68 2.42 

0 16 120.86 7.55 2.73 0.00 0.00 127.6 7.975 2.73 

Ne 20 147.41 7.37 3.14 6.62 0.670 150.6 8.03 

Mg 24 171.5 7.16 3.24 6.44 0.612 198.3 8.26 2.98 

Si (prolate) 28 218.7 7.79 3.355 6.88 0.611 236.5 B.45 3.04 

Si(oblate) 28 208.5 7.45 3.39 -5.78 -0.504 :l36.5 8.45 3.04 

S(-prolate) 32 246.6 7.71 3.37 3.90 0.343 271 8.47 3.12­
3.33 

S(oblate) 32 239.6 7.49 3.42 -4.41 -0.377 271 8.47 3.12­
3.33 

Ar 36 289.5 8.04 3.455 -3.16 -0.264 306 8.5 

Ca 40 326.3 8.16 3.51 0.0 o.o 342 8.55 3.50 

~ 
~ 
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Figure 4.1 

B.E./A in MeV for the 4 A nuclei for force 

-1
G-0 ; k 

8 
= 135 fm , E 

9 
= 17.5 MeV 

(a) Solid line is the variational procedure 

(b) Broken line is experiment 
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basis orbitals; and the fact that we have not projected out the 

4ground state with J=O. The He discrepancy is not understoodo 

4In Campi's work there is seen a trend for He to be less 

underbound. In Table 4.3, the quadrupole moments of the 

nuclei are also quite reasonable. These will be compared 

with other calculations later. 

4.2 Comparison of Forces G-0, G-1, G-3 

Having obtained a G-0 force which g i ves such good 

results we then attempted to get a similar G-1 and G-3 

force and to compare them& The forces were normalized to 

a saturation density of k =1.35 fm-l and calculations were s 

performed for three or four values of binding energy per 

16 40nucleon for both 0 and ca. In Table 4.4a and 4.4b are 

16listed the binding energy and radii of 0 for the various 

binding energies per nucleon in nuclear matter using forces 

G-1 and G-3 respectively. Similarly Table 4.Sa and 4 .Sb 

40shaw results for ca. These results are displayed graphically 

16 40for 0 and ca in Figs. 4.2 to 4.5. 

16From Fig.4.2 we see that the binding energy of 0 

_will be lower for the G-1 and G-3 forces at a given binding 

energy per nucleon in nuclear matter, than fqr G-0; and that 

the G-1 and particularly the G-3 force will approach the G-0 

result only at abnormally large values of E 
s 

16From Fig.4.3 we se8 that the radii of 0 for the 
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TABLE 4.4a 

-1 160 ­Force G-1 k = 1. 35 f m for s 

E B eF.. BE/A Radius s 

16.5 106.158 6.635 2.727 

17.0 111.746 6.984 2.715 

17.5 117.425 2.339 2.704 

EXPT 127.6 7.98 2 ~:I_13 

TABLE 4 .. 4b 

-1 166Force G-3 k = 1.35 f m for s 

E B.E. BE/A Radius s 

16.5 91.097 5.694 2.681 

17.0 96.464 6.029 2.671 

17.5 101. 764 6.360 2.661 

18.0 107.121 6.695 2.652 
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TABLE 4. Sa 

-1 40
Force G-1 k = 1.35 f m for Ca s 

E BE BE/A Radius 
s 

16.5 285.24 7.131 3.5183 

17.0 300.07 7.502 3.5065 

17.5 315.10 7.878 3.4950 

EXPT 342. 8.55 3.50 

-1 40
Force G-3 k = 1.35 f m for Ca s 

E BE BE/A Radius s 

16.5 245.50 6.138 3.4978 

. 17.0 259.45 6.486 3.4886 

17.5 273.21 6.830 3.4 79 9 

18.0 287.08 7.177 3.4718 
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G-1 and G-3 forces are progressively lower than G-0. At 


E =17.5 the G-1 is about 4% lower and the G-3 is about 10% 

s 

lower than the G-0 force. The G-1 and G-3 radii would equal 

the G-0 (17.5 MeV/A) result at about E =16 . 4 and 14.0 MeV/A
s 

respectively. 

40Figures 4.4 and 4.5 show similar results for ca. 

Both binding energy per nucleon and the radius are lower 

for the G-1 and G-3 forces. 

The conclusion of this study was that the G-1 

and G-3 forces do not give results as reasonable as the 

-1G-0 force does at a saturation density of 1.35 fm . 

Thus the G-0 force seems at this stage to be more reliable. 

It was then believed that if f orce G-3 did not give 

-1reasonable results at ks=l.35 fm perhaps another value of 

the saturation density could be found which would give better 

results. The G-3 ·force was then normalized to k =l.30 fm-l 
s 

and calculations of BE and radius were performed at various 

BE/A in nuclear matter. 

16 40Table 4.6a and 4.6b give the results for 0 and ca 

respec t ively calculated with k =1.30 fm- 1 . These results s 

are disp layed in Fiqs. 4.6-4.9. 

In Fig.4.6 the binding energy of 160 is plotted as 

-1 a function of BE I A in nuclear matter for both k =1.30 fm 
8 

-1
and 1.35 fm • The new k =l.30 fm-l bind i ng energies are s 
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TABLE 4. 6a 


Force G-3 k = 1.30 fm-l for 160 

s 

E BE BE/A Radius s 

16.5 99.85 6.24 2.743 

17.0 105.18 6.57 2.734 

17.5 110.62 6.91 2.726 

18.0 116.08 7.26 2.718 

EXP 127. 2.73 

TABLE 4.6b 

-1 40
Force G-3 k = 1.30 f m for Ca s 

E BE BE/A Radius s 

16.5 263.83 6.60 3.594 

17.0 277.60 6.94 3.586 

17.5 291.61 7.29 3.578 

18.0 305.64 7.64 3.572 

EXP 342 3 ~ :>O 
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Figure 4.2 

B . a· f 16in ing energy o O vs. Es' both in MeV 

(a) Solid line is force G-0. 

(b) Broken line is force G-1. 

{c) Alternating dashes and dots is force 

G-3. 
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Figure 4.3 

16
Radius in fro of O vs. Es in MeV 

(a) Solid line is force G-0. 

(b) Broken line is force G-1. 

(c) Alternation dashes and dots is 

for force G-3. 
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Figure 4.4 

40Binding energy of Ca vs. Es' both in MeV 

(a) Solid line is force G-0. 

(b) Broken line is force G-1. 

(c) Alternating dots and dashes i s for force 

G-3. 
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Figure 4.5 

40Radius in fm. of ca vs. Es in MeV 

(a) Solid line is for force G-0. 

(b) Broken line is for force G-1. 

(c) Alternating dots and dashes, G-3. 
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Figure 4.6 

16
Binding energy of 0 vs. E , both in MeV s 

-1(a) Solid line G-0, k = 1.35 fro
5 

(b) Broken line G-3, k = 1.35 fm-l s 

(c) Alternat ing dots and dashes: G-3 

-1
k = 1.30 fm . s 
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Figure 4.7 

16
Radius in frn. of O vs. E in MeV s 

(a) Solid line: G-0, ks = 1.35 frn-l 

(b) Broken line: G-3, k 
s 

= 1.30 frn-l 

(c) Dashes and dots: G-3, ks = 1.35 frn-l 
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Figure 4.8 

40Binding energy of ca vs. E (both in MeV)s 

(a) Solid line G-3, k = 1.35 fm-l 
s 

-1
(b) Broken line G- 3, k = 1.30 fm s 
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-1much improved over the k =1.35 fm results. However s 

they are still lower than the G-0 binding energies by 

the same amount as the improvement. This suggests 

that k =1.25 fm-l would be a better choice. 
s 

If one looks at Fiq. 4. 7 the k =l. 30 fm-l radii - s 

are quite close to the G-0 results and a value of k =1.39 s 

would presumably line them up. 

40However the ca results are not so hopeful. 

40The total binding energy of Ca at E =17.5 in nuclear 
s 

matter is only 293 MeV, about 50 MeV short of the experi­

mental value. A very large change in saturation density 

would be necessary to approach the G-0 results. But what 

is more disturbing is Fig.4.9,which demonstrates that for 

k =l.30 the radii are already far too large. Any attempts 
40to improve the total binding energy of ca ~y lowering 

the saturation density would result in far larger radii. 

force G-3 wh ich gives consistent results for both 0 

The results could perhaps be reconciled but only 

at a ridiculously large E s in nuclear matter. This would 

make the 16
0 results terrible. Thus we cannot get a "good" 

16

40and Ca. This is also assumed to be the case, to a lesser 

extent for G-1. 

4. 3 Symmetry Energy of Nuclear Matter 

We will now study the character of force G-0 using 

different symmetry energy values. These forces were obtained 
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Figure 4.9 

40Radius in fm. of ca vs. E in MeV s 

(a) Solid line G-3, k = 1.35 fm-l 
s 

-1(b) Broken line G-3, k = 1.30 fm s 
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by normalizing the above force according to the following 

prescription. 

Degree of Change ls 
Component 

renormalization 

3s 
Component 

renormalization 

None (S = 34 MeV) ~(3S) 

One (S = 36 MeV) 2*~{ 3 S) 

Two (S = 38 MeV) 3*~( 3S) 

1Basically the s component is decreased by one unit and 

3the s increased by one unit for each deqree of change. This 

is elaborated upon more completely by Sprung and Banergee 

(1971). 

For various reasons 	it is justifiable to confine 

3the renormalization to the s state. One reason is the 

uncertainty in the rat io of the Tens or and central com­

ponents of the basic nucleon force. Another is that 

3the three body cluster is attractive in the s state and 

1repulsive in the S state. 

16First we calculated 0 using the three symmetry 

energy values. Table 4.7 gives the binding energies, radii, 

and crude single particle energies for each of these using 

our standard G-0 (17.5 1eV/A) force. 

In nuclear matter the symmetry energy term will 

vanish for N=Z. Thus for finite nuclei, with N=Z not very 

much would be expected to happen as we change the symmetry 

enerqy. As is evident this simplified Hartree Fock approach 
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16
Properties of 0 Calculated for different values of the 

Symmetry Energy of Nuclear Matter 

TABLE 4.7 
160 E = 17.5 MeV/Particle k = 1.35 fm-l 

s 	 s 

S = 34 MeV S = 36 MeV S = 38 MeV 

BE -120.604 -120.668 -120.426 

Coulomb 13.022 13.020 13.020 
Energy 

Radii 2.7343 2.7346 2.7347 

Neutron 
S.P. 	Energies 

ls - 41. 818 - 41.817 - 41.788 

lp - 25.938 - 25.944 - 25.912 

Proton 
S.P. 	Energies 

ls - 38.441 - 38.441 - 38.413 

lp - 22.723 - 22.729 - 22.698 
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does not distinguish between the different symmetry energy 

approximations. Similar results were observed for other 

binding energy per nucleon (16.5 MeV/A to 18.0 MeV/A) 

versions of force G-0. Thus it can be assumed spherical 

16 nuc1ei· sueh as 0 tota1 b'ina·1ng energy, raa··ii ana our 

crude single particle energies are insensitive to the symmetry 

energy. 

The deformed nuclei were then studied to see if 

this pattern of behaviour was also true for them. Three 

20 24 28nuclei, Ne, Mg and si were calculated using each 

of the symmetry energy approximations. As can be seen 

from Table 4.8 the binding energies, and radii were 

insensitive to the degree of change in the symmetry 

enerqy approximation. The radii are espec i ally insensitive. 

Thus we see that in this type of calculation there 

is no preference as to which force is best. Therefore we 

settled on G-0 with one unit of change since this is tne 

one which Campi found to be preferable for nuclei with 

N~Z ,,where the symmetry enerqy plays a much greater role . 

. In conclusion, G-0 force gives the best 

-1results when we select k =l.35 fm and E = 17.5 MeV. 
s s 

Force G-1 and G-3 give increasingly lower values for total 

16 40b i n d . energy an r a a·· or O anaing d ii f Ca. In a 11 cases 

as we increased BE/A, the binding enerqy in the finite 

nuclei rose linearly with a slope of ~1.2 and the radii 

decreased with a slope of 0.02. The attempt to correct 
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TABLE 4.8 


-1Deformed Nuclei E = 17.5 MeV/A, = 1.35 frnkss 

Symmetry Energy 34 MeV 36 MeV 38 MeV 

Binding Energy 

20
Ne -147.10 -147.19 -146.87 

Mg24 -171. 05 -171.15 -170.78 

Si28 -218.08 -:ll8.20 -217.75 

Radii 

. 26
Ne 3.1470 3.1476 3.1474 

Mg24 3.2488 3.2492 3.2493 

Si28 3.3592 3.3596 3.3596 
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the poor results for G~3 at k = 1.35 by setting k =1.30 
s s 

was not successfu l. If a value of k was chosen to 
s 

improve the total binding energy the radius would be 

unreasonably high. Finally the calculations we .. were 

doing were insensitive to changes in the symmetry energy 

value for both spherical and deformed nuclei. For the 

ensuing Hartree Fock calculations, the force G-0 with 

the symmetry energy adjusted by the "one unit" prescription 

was selected. 



CHAPTER 5 


5.1 IntYoduction 

In this chapter the results of calculating the 

properties of the light nuclei using the Hartree Fock 

approach will be tabulated. As stated above, in Chapter 

four we shall use the force G-0 of Banergee and Sprung (1971) 

-1normalized to a saturation density of k = 1.35 fm energys 

per nucleon E = 17.5 MeV, and symmetry energy S = 36 MeV. 
s 

The spin orbit strength is 130 MeV fm- 5 , the same as that 

used by X. Campi. 

First, the spherical nuclei will be studied in orde r 

to determine the limitations of the present computer program, 

by comparing our results with those of other authors, 

especially X. Campi. These are of spe cial interest because 

he also used the G-0 force of Sprung. He used the same 

parameters as above except for the energy per nucleon in 

nuclear matter. Campi's value was E = 16.5 MeV. We used a 
s 

value 1 MeV higher than Campi because we did not have a 

starting energy term which contributed about 0.6 MeV per nu­

cdeon, in our Hamiltonian. In addition Campi 1 s tot_al binding 

energies tended to be about 0.4 MeV per nucleon low for the 

liqht nuclei. Assuming that our method is equivalent to 

Campi's, we should obtain very good energies for He, O and Ca. 

Secondly, we studied the deformed nuclei, compa ring them 

to the results of Lassey and Volkov (1972) and Zofka and 

Ripka (1971), This was c one for each nucleus separately . 

74 




75 


From these observations we will attempt to draw some 

conclusions about the force G-0 and the structure of light 

nuclei. 

5 . 2 'The· P ro·gr-am 

The Hartree-Fock program which has been used to 

obtain the results in this chapter is a modification of 

HARF04S developed by Volkov, Manning and Lassey. The program 

was rewritten to accommodate up to a five gaussian density 

dependent force. With minor changes it could now be used 

f or a force with any nurober of gaussians. The only limitation 

would be computer time. Space is aonserved by summing the 

contributions of each gaussian and storing only one matrix 

for each of the Wigner, Majorana , Bartlett and Heisenberg 

exchange contributions . Momentum dependence of the range 

has been provided in order to accommodate the Volkov type 

forces. Each gaussian can have its own independent set 

of exchange parameters. 

When tested, using Volkov's force 13 (or A in the 

notation of Lassey's thesis (1972}) , Lassey ' s results were 

reproduced. 

The first major difficulty encountered using this program 

was the approximation made by Lassey to the exchange part of 

the rearrangement energy. As has already been indicated in 

Chapter three, a constant A was proposed as the approximation 

to the Slater exchange function. The mathematics suggested 

that the value of A should not differ greatly from \ = 0.5. 
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Figure 5.1 

Rearrangement Factor A vs. Atomic 

Number A 

(a} The solid line is rorce B of 
Lassey' s Thesis ·. 

(b) 	 The broken line is Force A of 
Lassey's Thesis. 
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Indeed, for the delta function force A was identical to 0.5. 

However, Lassey thought that A could be used as a 

variational parameter and varied to obtain the optimum 

total binding energy. Consequently the values of A varied 

from 0.25 to -0.02 (Lassey 1972) for forces A and B. (See 

Fig. 5:1) The value of A changed with atomic number, 

force and form of nucleus. (eg. different values were 

16 16
used for the O ground state, and O - 4 hole-4 particle 

excited state.) 

However, varying A I do not consider to be valid, 

since a change in A is equivalent to changing the strength 

of the force for the exchange part of the rearrangement 

term. The problem is, what value to use. 

For a given nucleus, the single particle energies 

varied with A. It was first thought that if the single 

particle energies were sensitive to A, perhaps these levels 

could be plotted as a function of A, using Sprung's G-0 force 

and the values compared with those of X. Campi. Where the 

values intersected, this would be the appropriate value o f A. 

Sin~le particle energy levels are plotted as a function 

\ f 16 ( . 5 2)o f A or O See Fig. : . The spin orbit splitting is 

about right and the lp , l p and ia 1evels were very
312 112 512 

c l ose to Campi's especia l ly for A ~0.5. However the ls
112 

level was high and would intersect Campi's value onlv if 

A was about -0.1 . 
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Figure 5.2 

16Single particl€ energy levels of O vs. A 

(a) left-hand side - proton levels 

(b) right-hand side - neutron levels 

(c) dots are H.F.C. calculations 

{d) faint lines- X. Campi calculations 

(e) heavy black lines - experimental values 
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The high s level, compared to Campi, is believed
112 

to be caused by the single gaussian approximation to the 

density. Oxygen has a depression in the density inside 

1.5 fm. The single gaussian, fitted to the r.m.s. radius 

and atomic number of the nucleus would predict too high 

a density in the central (s-wave) region and perhaps a 

little too lm~ a density in the limb (p.-wave) region of 

the nucleus {See Fig. 5:3). This is consistent with the 

force being less attractive on the ls state, than it 

would be if we pYoperly used the actual density profile. 

We propose to improve on this aspect of the work in the 

future. 

40If this analysis was correct, Ca should be less 

of a problem, since it had a maximum central density. In 

principle t.he s level should appear lower and coincide with 

Campi 1 s energy levels, giving a value for A. 

As one can see from the proton leve l s (Fig. 5:4) the 

agreement is worse. The s levels agree at \~-0.5, the p 

levels agree at A~ O.O, and the d levels agree at A~0.5. 

Thus no value of A duplicates Campi ' s results for 

the single particle energies. This is not at all understood. 

Part of the problem could be that 40Ca has filled the s-d 

shell with no opportunity to mix with a shell above it. However 

it is also believed that the constant A approximation to the 

Slater exchange function is inadequate. It is recommended 
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Figure 5.3 

Gaussian fit to oxygen density profile 

(a) Solid line - Gaussian approximation 

(b) Broken l i ne - true density 
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Figure 5.4 

Proton single particle levels (in MeV) 

40for Ca vs. /.. 

(a) Heavy lines - HFC values 

(b) Light lines - X. Campi values 
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that the constant be replaced by a guassian approximation . 

Further it was observed that total energy decreased 

with A, while all measurements of radii r , r , r increase 
p n m 

40linearly with A. (Fig. 5:5) The radius of ca is less 

. t. ' h 16sensi ive to A t an o. Later it will be demonstrated 

that for deformed nuclei the quadrupole moment is in­

sensitive to A, therefore the volume increases with A. 

This numerical experiment to determine \ has been 

inconclusive. A value of A=0.4 was chosen since it was 

consistent with A being close to 0.5, and it does not produce 

violent confl i ct between t he single parti c l e levels obtained, 

and those of X. Campi. (excep t for the ls l evels already no ted). 

5.3 	 Spherical Nucle i 

In this section we shal l compa re the spherical nucle i 

in 	particular. By "spherical" we mean the closed shell 

4 16 40 32nuclei He, 0 and ca, rather than those such as s for 

which there has been some speculation that it could also be 

spherical. (Zofka and Ripka, 1 971). 

For each o f t h ese nuclei a s pherical basis h a s been 

used. This g u a r ant ees spheri city and avoids t h e necessi ty 

of projecting out t he s pher i cal solution . 

The b as is was made s pherical by constraining the 

oscillator constan ts as fo l lows: 

Cl • = s . 
l l 

Cl + "I a 


B
s+ t -
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Figure 5.5 

Radii and binding energy with A 

(a) Upper left: Binding energy of 

16
0 vs. A 

(b) Lower left: Radius of 16
0 vs. A 

(c) Upper r ight: Binding energy of 

40 ca vs. A 

(d) Lower left: Radius of 40 ca vs A 

Radii in fm. 


Binding energies in MeV 
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where 	+ or - refer to the parity of the state. 

5.3.1 Oxygen 16 

With 	A fixed at 0.4 the Hartree Fock calculation 

16 
was done for O. As is obvious from the density map of 

16
0 (Fig. 5:6); it is indeed spherical. This, plus the 

density profile show the pronounced dip in density in the 

interior of the nucleus, which has become characteristic 

(Fig. 	5.7). 

C0mparing this result with the profile of Campi, 

one observes that his central density is about 0.02 fm- 3 

greater than our central density. The maxi mum is 0.1 fm 

closer to the origin, and there is less density at the 

surface than in our solution. This is consistent with an 

over-estimation of the central density b y the single gaussian 

density approximation and the subsequent compensation for this 

by the HF procedure. Since this has shifted the density out­

ward one would expect an increased radius. 

This is confirmed by the table of radii (Table 5.1). 

Our radius is close to that of Force A (henceforth called V-LA) 

of Volkov and Lassey (Lassey 1972). Of course Lassey had the 

same problem with the density a pproximation. However the results 

of X. Campi are closer to the results of Zofka and Ripka (1971), 

using forces Lineg and Bl. 

It should be noted here that Lineg is an approximation 
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Figure 5.6 

Density Distribution of 160 

Contour labelled as following in units of f m -3 

A 0.01 

B 0.02 

c 0.04 

D 0.06 

E 0.08 

F 0.10 

G 0.12 

H 0.14 

I 0.16 

J 0.18 

K 0.20 

Border markings are at intervals of 0.1 fm. 
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Fi.gure 5. 6 


\ 
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Figure 5.7 

Density profile of 160. Density in fm- 3 vs. 

radius in fm. 

(a) Solid line is HFC profile 

(b) Broken line is X. Campi profile 
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to the effective interaction of Negele {1970) which has been 

modified to make it linearly dependent on the density and 

identical to the interaction of Negele at k = 1.0 fm-l
1 

and k = 1.4 fm-l (Zofka and Ripka (1971)). Bl is the
2 

density independent force of Brink and Boeker (1967). 

The density profile of the V-LA force is very 

similar to our Hartree-Fock result, (Henceforth called HFC), 

with a central density of about 0.05 fm- 3 and a maximum 

3density of about 0.12 fm- at 1.5 fm. However the Negele 

3profile has a central density of 0.12 fm- and the maximum 

of 0.17 fm- 3 has shifted in to about 1.2 fm. This is more 

similar to the results of X. Campi. 

Clearly our program is giving central densities low 

by 25-30%, larger radii and extra density on the surface 

16for 0. 

In contrast the binding energies and the single 

particle energies are remarkably similar (Table 5:l(b) and 

(c).) . The binding energies are all about the same except 

that of Bl. It appears that one cannot obt ain both the 

radii and bindi~g energies near the experimental values without 

density dependence (Zofkaand Ri pka 1971). 

The single particle energies of the various density 

dependent forces are very similar. As has been discussed 

previously, X. Campi's single particle levels are similar to our s 

except for the ls level. _ The V-LA results are lower t han
112 
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TABLE 5.l(a) 

of 160Radii 

Mindet HFC x. Campi V-LA Lineg Bl 

Total 2.73 2.827 2.68 2.89 2.64 2.64 

Proton 2.838 2.69 2.90 2.66 /.. 6 6 

Neutron 2.815 2.67 2.87 2.62 2.61 

Charge (2.9l)t 2.75 2.97 2.72 2.72 

TABLE 5.l(b) 

of 160*Binding Energies 

Total 120.67 120.78 122.88 122.18 119.84 94.56 

Proton 53.82 54.60 55.56 

Neutron 66.84 66.19 66.62 

BE/A 7.54 7.55 7.68 7.64 7.49 5.91 

* 	 All signs of Binding Energies and Single Particle Energies are 
reversed. 

t 	 Obta ined by adding 0.08 fm to the mass radius. This is the increase 
calculated by most other sources. 



TABLE 5.l(c) 

96. 

Protons 

lsl/2 

lp3/2 

1P1;2 

ld5/2 

*Single Particle Energies 

Mindet HFC x. Campi 

38.44 29.17 33.16 

17.98 18.13 
22.73 

13.32 12.78 

2.53 3.33 

of 16
0 

V"'."'LA 

34.50 

20.82 

15.78 

3.09 

Lineg 

33. 

16.5 

-0.5 

Bl 

43.5 

18. 

-5.3 

GAP 10.79 9.45 12.68 17.0 23. 

Neutrons 

l sl/2 

l p3/2 

1P1;2 

l d5/2 

41. 82 

25.95 

32.25 

21.05 

16.32 

5.66 

36.38 

21.25 

15.81 

6.29 

37.46 

23.77 

18.66 

6.12 

~ 

o:"" 

":"" 

""" 

o:""'­

GAP 10.66 9.52 12.54 17.03 23.3 

* All signs of Single Particle Energies reversed. 
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Figure 5.8 

Proton single particle levels of 160 in MeV 

(a) Mindet calculation 

(b) HFC calculation 

(c) X. Campi calculation 

(d) V-LA calculation (dots show values for 

A = 0.40) 

(e) Lineg of Zofka and Ripka 

(f) Bl of Zofka and Ripka 
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Figure 5.9 

16Neutron single particle levels for 0 

(in MeV) 

{a) Mindet 

(B) HFC 

(c) x. Campi 

(d) V-LA 
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our results. However had A = 0.4 been used the single 

particle levels would have become: 

Proton Neutron 


A=0.12 A=0.4 A=0.12 A=0.4 


34.5 32.5 37.5 35.0lsl/2 

20.8 19.5 23.8 22.5lp3/2 

15.8 15.0 18.7 17.81P1;2 

3.1 2.6 6.1 5.5ldS/2 

These are closer to, but still not as high as 

our values. The single particle energies of Lineg are also 

not significantly different. If a spin orbit force had 

been incorporated by Zofka and Ripka the lp and ld levels 

would have split appropriately and the resulting ld l evel
512 

would have dropped about 2 or 3 MeV. 

The neutron single particle energies form a simi l ar 

pattern but are about 3 MeV lower owing to the absence of 

the Coulomb repulsion. (See Figs. 5.8 and 5.9). 

The gap energy, ie the energy difference between the 

highest occupied and lowest unoccup ied single particle level9, 

is about the same for both protons and neutrons. The di fferent 

gap energies of different authors form no neat pattern. However 

the values of HFC, x. Campi, and V-LA tend to be low and those 

o f Ripka and Zofkatend to be high. The experimental gap 

energy for both the neutron~ and proton~ is 11.S MeV . The 

Lineg gap energy of Zofka and Ripka would improve if a spin 

orbit term was included in their Hamiltonian. 
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5.3.2 Calcium 40 

Like Oxygen, Calcium is spherical. However instead 

of a density depression in the interior of the nucleus, 

there is a central maximum (Fig. 5:10 and 5:11). The HFC 

-3calculation has a central density of 0.222 frn then drops 

off to a shoulder or plateau at 2.25 fm with a density of 

-30.13 	fm . Then the density drops off more or less linearly 

-3again until at 5 fm the density is about 0.015 fm . 

This central density is too high. One reason for 

this is that the wave functions are unable to mix with 

states above the s-d shell. The p-f shell is of opposite 

parity and we supply no others above it. (Lassey 1972). 

Secondly, owing to the plateau, a gaussian approximation to 

the density, fit to the r.m.s. radius of about 3.56 fm, 

(which is well below the shoulder) will overestimate the 

shoulder density and possibly underestimate the central 

density. Thus the program will try to compensate by increasing 

the density in the central region at the expense of the 

plateau region. 

These combined effects may be seen by comparing our 

density profile with that of x. Campi. Campi has a lower 

central density, a higher plateau and reduced density on 

the surface outside 3.75 frn. 

Owj.~g to the r 2 weighting of the density, the height 

of the plateau is of crucial importance to the root mean 

square radius. Since the plateau is inside the r.rn.s. radius, 

the higher the plateau the lower the rad ius. The relative 
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_Fi.gure 5.10 

. " '"b . f 40
Density Distri ution o Ca 
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Figure 5.11 

40 - 3. . f'l f . . fDensi~y pro i e o Ca. Density in m vs. 

radius in fm. 

(a) Solid line - HFC 

(b) Broken line: X. Campi 
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TABLE 5. 2 (a) 

40Radii of Ca For Various Calculations 

Mindet HFC x. Campi V-LA Lineg Bl 

Total 3.52 3.561 3.41 3.62 3.38 3.39 

Proton 3.570 3.43 3.63 3.43 3.43 

Neutron 3.551 3.38 3.61 3.33 3.35 

Charge (3.64)t 3.49 3.70 3.50 3.50 

t Charge radius estimated by adding 0.08 fm to the mass radius. 

TABLE 5 • 2 (b) 

40Ca*Binding Energies of 

Total 324.80 324.17 333.2 354.33 326.8 254. 

Proton 127.76 128.37 144.35 

Neutron 197.45 195.80 209.99 

BE/A 8.12 8.10 8.33 8.86 8.17 6.35 

* The signs of the binding energies have been changed for convenience. 
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TABLE 5.2(c) 

Mindet HFC Campi V-LA Lineg Bl 

Proton 

46.56 36.03 42.36 45.03 39.8 60.lsl/2 

27.39 29.08 34.66lp3/2 
35.00 27.5 36. 

23.23 25.69 29.831P1;2 

21. 49 16.90 16.68 20.87ld5/2 
13.5 14. 

19.56 11.22 10.58 14.93ld3/2 

17.63 5.68 9.99 11. 79 10.5 12.2sl/2 

3.55 4.14lf7/2 

GAP 2.13 5.85 8.3 

Neutr on 

54.44 43.09 49.48 51.99lsl/2 

34.25 36.03 41. 43lp3/2 
42.08 

29.94 32.58 36.471P1;2 

28.24 23.58 23.39 27.36ld5/2 

26.35 17.90 17. 1 6 21. 42ld3/2 . 

24.47 13.05 16.73 18.772sl/2 

9.94 10.56 10.4lf7/2 

GAP 3.11 6.17 8.4 13.2 20.6 
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height of the central density is of lesser importance. 

Thus the high plateau of Ripka and ~ofka (19 71} 

of 0.15 fm- 3 results in a low r.m.s. mass radius of 3.35 fm. 

Both our HFC and V-LA calculations give a l ow plateau of 

-30.13 	fm and a higher r.m.s. radius of about 3.6 fm. Campi's 

-3results give a plateau at 0.147 fm and a r.m.s. radius of 

3.41 fm, both close to the experimen~~l va)ues. (Ripka and Zofka.) 

The central densities do not form a neat pattern. 

In addition to the factors previously ment i oned, their height 

clearly depends on the nature of the force such as the 

attractive/ repulsive strength at short range. 

This comparison of the binding energies of 40 ca 

hs ows f-ewer 1 't'regu ari ies than ~in the case fo 16o. As b fe ore 

the binding energy obtained using force Bl i s far too low, 

even though the radius is not unreasonable. Again it 

appears density dependence is useful in reconciling these 

data. 

The effective forces used in the HFC, Lineg, and 

X. Campi calculations all give similar resu l ts. They are 

all underbound. However X. Carnpi's calculation is not as 

underbound as ours, possibly owing to the starting energy 

term in his Hamiltonian • . 

The phenomenological force V-LA however is overbound . 

Why the binding energy did not drop for the HFC cal­

culation over the Mindet is somewhat problematic. One would 

not expect it to drop much, because the s-d shell is filled, 
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and mixing would be minimal. However it should drop a 

little. The HFC result however is less bound. This is 

because the Mindet program ignored the exchange part of 

the rearrangement term. This is equivalent to the A=O.O 

calculation which gives an extra 1 MeV to the total binding 

energy (see section 5.2). Thus the Mindet total binding 

energy should be 323.8 T'i.eV, while mixing would allow the total 

binding energy to drop another 0.4 MeV. A similar argument 

would account for the very small decrease in the binding 

16 h . . 11 denerqy f or O w en mixing was a owe . 

The single particle spectrum (Fig. 5:12 and 5:13) of 

40 16ca reveals a pattern that was also true for 0. The Bl 

force of Zofka and Ripka which has no density dependence 

produced a spread out spectrum with a verv low ls level. 

Our results which use the strongly density dependent Sprung 

force produced a compact and qenerally higher spectrum, while 

the Volkov force which employs a weak density dependence gives 

an intermediate spectrum. 

The explanation is in terms of the density dependence 

and rearrangement term. If there is no density dependence 

and therefore no rearrangement term the binding energy per 

particle is 

where t _ is the kinetic energy of particle "i" and s. is 
l i 
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Figure 5.12 

40Proton single particle levels of ca (in MeV) 

(a) Mindet 

(b) HFC 

(c) X. Campi 

(d) V-LA 

(e) Lineg 

(f) Bl 
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Figure 5.13 

40Neutron single particle levels for ca (in MeV) 

(a) Mindet 

(b) HFC 

(c) X. Campi 

(d) V-LA 
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the single particle energy of particle "i". Now E/A is 

about ~8 MeV. The kinetic energv term contributes about 

+8 MeV 
l A ·1

ie = 2A L (16 MeV) = A (16 A) MeV = 8 MeV
2

The single oarticle term mustthen contribute about -16 MeV. 

Thus the average of the sinqle particle energies must be 

about -32 MeV. Therefore some levels must be quite low, 

at say -60 MeV and thus more spread out. 

If there is density dependence the binding energy 

per particle will contain an additional rearrangement term 

E/A 

This contributes about -4 MeV. (Campi and Sprung 1972) Because 

the radius is still the same, the kinetic energy term still 

contributes +8 MeV , leaving -12 MeV to be provided by the 

single particle energies. Therefore the single particle 

energies must now average only -24 MeV . The spectrum then 

will be hiqher and less spread out. 

This also partially explains the decrease in the 

values of the sinqle particle levels as A decreases. As A 

decreases, the exchange portion of the rearrangement enerqy 

is decreased. This means the average of all the sinole particle 

energies must become more negative in order to maintain a 

constant binding energy. Consequently they move downward. 
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The Lineg spectrum, the HFC and Campi single particle 

values are similar. The application of a soin orbit term 

in the Lineg Hamiltonian would have split the lp and ld levels 

and made it appear even more similar. This is consistent 

since each uses an effective force derived from a realistic 

force. 

One feature is different. From a comparison of our 

HFC spectrum with that of X. Campi we see t he ls and 2s
112 112 

levels are abnormally hiah. The V-LA spect rum also shares 

a high 2s level. This could be due to the s levels not
112 

being able to mix with higher even shells. However the most 

important cause must be that the density is overestimated 

in the region of the plateau by the single gaussian density 

approximation. Whethe r the central density is overestimated 

or underestima t ed bv the qauss i an is of little consequence 

since the plateau which extends from 1.5 to 2.5 fm, a considerable 

2width in terms of the nucleus, is weighted bv r . Since the 

density is overestimated in this region the proaram will 

attempt to compensate by removing densitv from this region, 

outward toward the surface hence the low plateau for HFC and 

V-LA, and the larqe radius. The same reasoninq can be used 

to explain the slightly hiqher lp levels in the HFC spectrum 

than in that of X. Campi, since the plateau region would 

be composed, in large measure of lp density. 

Finally the V-LA spectrum should be 2-3 MeV higher 

on the whole since ~ =0.0 was used. 
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A comparison of our HFC single particle values with 

experiment at first would indicate they should come down, 

or spread a little. Certainly the 2s should come down, 

probably below the ld level, but definitely to produce
312 

a wider gap between the 2s and lf level, consistent
112 712 

with a closed shell nucleus. 

However the single particle eigenvalues are only an 

approximation to the separation enerqies. It would be 

39 39better to calculate K or ca and look at the difference 

40in binding energy between them and ca. However, even if 

40 you did that, the wave function for ca less one particle 

may contain a fair amount of "spurious centre of mass motion". 

40This would be considerably more than in the case of ca. 

Thus one should correct for this. Becker of Oak Ridqe 

claims the correction for the ls level may be as high as
112 

10 MeV. 

This, in addition to the larqe experimental errors 

associated with the observed sinqle particle energies indicates, 

that the calculated levels are not hopelessly incompatable 

with experiment. 
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5.3.3 Helium 4 

Most authors, includino Jofka and Ripka do not include 

4He in a study of light nuclei. However a comparison of the 

calculations of Volkov and Lassey, X. Campi and this author 

for 4He is included for completeness. 

The HFC density profile of 4He is basically a 

gaussian. (See Fig. 5.14 and 5.15) 

~ = 0.9998 ¢000+0.00381 ¢002 + 0.00538 $100 

The form of is a gaussian (See Appendix 1) Campi's density¢000 

profile is very similar to ours, but deviates slightly at the 

4top. This indicates that the density of He is not quite a 

gaussian. Even for this small a nucleus the basis may not be 

large enough to allow fine adiustments, or perhaps the gaussian 

density approximation inaccurately estimates the densitv just 

enough to cause the proqram to over-compensate by accumulating 

extra density inside 0.7 fro and outside 2.0 fm. 

The radii tabulated in Table 5.3(a) are very similar. 

Our radius is slightly smaller than the radius of X. Campi, 

reflecting the slight excess of density on the surface. The 

V-LA radius demonstrates, as we have already observed, a 

tendency of that force to produce large radii. 

All the forces produce too large a radius when compared 

to experiment. Our calculated mass radius should be increased for 

proton size but decreased for centre of mass motion. Thus the 

mass radius should be slightly larger (perhaps 0.03 fm) than 

exp eriment, However our radii are about 10-20% larger than 
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f i.gure 5.14 


Pensity Distribution of 4He 


\ 
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Figure 5.15 

40Density Profile of ca 

Density in fm- 3 vs. radius in fm 
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Total 

Proton 

Neutron 

Charge 

Total 

Proton 

Neutron 

BE/A 

Proto~ 

Neutr on 

TABLE 5. 3 (a) 

· Radii of 4He 

Mindet HFC x. Campi 

1.866 1. 853 1.83 

1.856 

1.851 

TABLE 5.3(b) 

Binding Energies of 

29.755 29.746 27.72 

14.501 14.534 

15.254 15.212 

7.43 7.43 6.93 

TABLE 5. 3 (c) 

Single Particle Energies 

24.55 18.866 19.55 

25.30 19.593 20.28 

V-LA 

2.025 

2.028 

2.021 

4He 

25.61 

12.so 

13.11 

6.40 

4of He 

19.56 

20.23 

Exp 

1.67±.04 

28.295 

7.074 

19.813 

20.577 

http:1.67�.04
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Figure 5.16 

Proton and Neutron Single Particle Energy Levels 

4in MeV of He 

(a) Mindet Calculation 

(b) · HFC Calculation 

(c) x. Campi Calculation 

(d) V-LA Calculation 

(e) Exp. 
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experiment. This may reflect a difficulty with the Local 

Density Approximation. This treats the density statistically, 

yet there are only four particles. In addition the density 

decreases rapidly within two fm makinq any approximation prone 

to error. 

The sinqle particle energies are all very similar. 

As usual the HFC level is higher than the other ls single 

particle levels. This again could reflect a tendency of the 

density approximation to p roduce higher single particle levels 

3since the density is underestimated by up to 0.05 fm- between 

0.7 fm and 2.0 fm. It could also reflect an incorrect value of 

A or the effect of the starting energy term being absent. 

The separation energies are very close to the "experi­

mental" 	values quoted. These values were calculated from the 

4 3 4difference in the bindinq energies of He and He , then He 

and 3He for the proton and neutron respectively. Consistent 

with experiment the proton and neutron single particle energy 

levels differ by about 0.7 MeV. 

5.3.4 Conclusions 

In this section we have studied the limitations of the 

HFC program by calculations of the spherical nuclei. 

For the exchange part of the rearranqement term A=0.4 

was chosen. This may not be the best value, (and indeed it ought 

to be improved by replacing the Slater exchange function with 

a guassian), but the results are not in violent disaqreement with 

those of X. Campi. 



125 


l~ general the radii and subsequently the volume 

increase1 with A. The total binding enerqy, while almost 

constant decreases slightly. The single particle levels 

rise with A, and with the strenqth of the density dependence. 

The systematic tendencies of the nuclei were invariably 

connected to the density dependence. The single gaussian would 

consistently overestimate the density in the s-wave region. 

The program would attempt to compensate by removing density to 

16the surface. In 0 this meant a lower central density. in 

40 ca a lower plateau, but in all cases it produced qreater 

density on the surface and an increased root mean squared 

radius. In addition the s levels were hiqh compared to 

x. Campi. 

The 	 total binding energy shows a tendency to be low, 

4 4except for He . He is difficult because the L.D.A. may not 
. 40 

be very reliable (See Chapter 3). At the other extreme Ca 

has not been qiven a large enough basis to allow sufficient 

mixinq. 

Finally calculations were made for symmetry enerqies 

S = 34 MeV and S = 38 MeV in addition to the S = 36 MeV results 

listed above. As expected these nuclei were insensitive to 

chanqes in the symmetry enerqy. 

We have found several systematic similarities and 

differences between the forces and the programs. Now we shall 

study the deformed nuclei. 



126 


5. 4 Deformed Nucl·ei 

In this section we shall examine the deformed nuclei 

40 up to ca comparing our result for each nucleus, with 

results of other, similar, calculations. We shall then look 

for 	systematic patterns in the observations over the entire 

range of our nuclei. 

Certain nuclei were omitted from this thesis because 

8 12cthe 	calculations refused to converge. These were Be, 

16and 0* (4 particle-4 hole configuration). Each of these 

had in common a dumbell-like density distribution along at 

least one axis and little or no density along the others. 

As a result the gaussian density approximation cannot properly 

represent the density. This difficulty was not critical for 

Volkov and Lassey since their forces had a weak density 

dependence. However the larqe errors in the density approxi­

mation coupled with the strong density dependence of the Sprung 

force combined to cause a rotation of the density distribution 

of the nucleus. The result was that the iterative procedure 

would not converge. 

Similar difficulties were encountered for many of the 

nuclei, however this problem was overcome by constraining, 

<mlHlm'> = 0 

for 	m ~ m' 

(where m = J z) . 

The axial symmetry imposed by this constraint at the outset 

of the calculation was considered sufficient to maintain axial 

symmetry throughout the entire iteration. This was not preci s e ly 
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true. However for most nuclei this procedure qave reasonable 

24 32results. However, the triaxial nuclei, Mg and s, did 

rotate slightly. The values quoted for these nuclei are 

believed to be close to the converged values. 

Since we are dealing with deformed nuclei, there 

must be some quantitative way of expressinq this departure 

from sphericity. The root mean square radius of protons 

(neutrons) is defined as the square root of 

(p+n, Z+N for neutrons). 

The mass r.m.s. radius is 

R2 2 2 
= !cz R + NR )

A p n 

= !c< 2> + < 2> )A r p r n 

The intrinsic quadrupole moment is defined as 

2 2Q = (3 <z > - <r >)
0 

This may be defined for the proton or neutron in an analagous 

fashion. However this value increases wi th A rather than being 

only shape dependent. Thus we renormalize: 

2 2D = Q /AR = Q /<r >
0 -o 0 

with analagous expressions for the protons and neutrons. 
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oP = oP;z R 
2 

= QP/<r2> 
0 0 p 0 p 

2Dn = On/NR = Qn/<r2> 
0 ·- o n o n 

If the nucleus is prolate, (is longer along the z 

svmmetry axis than the radius in the p direction) , the 

quadrupole moment will be positive. If the nucleus is 

oblate having 

then the quadrupole moment will be negative. 

If the nucleus is not axially symmetric, this asymmetry 

is measured by 

with appropriate Q P and Q n for the protons and neutrons2 2

respectivelv. The renormalization _has been done in two 

different ways by different authors. Volkov and Lassev 

define the mass asymmetry as 

while Zofka and Ripka define it alternatively as 

ZR Q2
D = 

2 <r2> 

The transformation from one to the other is (Lassey 

1972): 

DZR = 1=_(z-D )D V 
2 3 0 2 
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In this thesis D will mean o ZR with the same convention2 2

for the protons and neutrons. 

The r.m.s. charge radius is best compared with the 

experimental radius which is often calculated from electron 

scattering. Two corrections are made to the proton r.m.s. 

radius: one for the centre of mass, the other for the finite 

proton radius. 

2 2 2 2 2R = R + <r > proton - (2a + o )/A
c p 


2 1/ 2
where <r > = 0.76 fm.proton 

For large enough nucle i the centre of mass correction is 

4neglegible, but not for A<40. For He this correction help s 

t o reduce the excessively large radius. However cancel l ation 

d u e to the fin ite proton size le a v e s only a 2 % overall reduction . 

The single partic le states we use, and hence the sinqle 

particle levels do not have a good m . However the z component
£ 

of angular momentum k = mt+ ms is a good quantum number, and 

states of ±k are degenerate. For comparision with Jofka and 

Ri pka we will lis t both !k l and lmi ' I , where m£' is the m£ 

value of the largest component of the state. Where there are 

t wo large comp onent s , both mi 's will be liste d, with the 

largest b eing first. For asymmetric nuclei only parity TI will 

b e a good q uant um number, however for comparison the above 

p r ocedur e will be also used. 

5 . 4.1 Neon 20 

20From t he density map of Ne (Fi g 5.17) it is evident 
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Figure 5.17 

20
• t D . ·-b . fD_ensi y istri ution o Ne 
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that the nucleus is prolate, with several prominant clusters 

of density. A close examination of this map suggests that 

the density be interpreted as five alpha-particles in the 

configuration of a triqonal bipvramid. Since any orientation 

about the z-axis is equally probably, the density appears as 

a ring of three alpha-particles in the x-y plane, with one 

alpha particle above and another below this plane on the 

z axis. The interpretation of the density in terms of alpha-

particles is reinforced bv a direct comparison of the outer 

4contours of 20Ne with those of He {Fiq 5.18) as shown by 

Lass~v. 

Volkov and Lassev have reported (1972) that clusterinq 

is enhanced bv 

{a) mixing states, which bring an admixture contributions 

from excited states to the core. 

(b) 	 saturation resultinq from odd state repulsion 

owing to the exchange combination,and 

(c) 	 saturation due to the strength of the density 

dependence. 

Clustering is minimized bv saturation effects depending 

on the strength of the momentum dependence in the range, 

Sprung's force is a Serber type with weak odd state 

repulsion. It has no momentum dependence. The clusterinq 

must be largely dependent on the density dependence which 

is stronger than that of Volkov. 
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I 

Figure 5.18 

. .. . b . f 2 0 . th 4 . . dD.ens1ty D1str1 ut1on o Ne wi He Density Superunpose 
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Enhancement of clustering may also be induced in 

nuclei with a depression in the centre by the gaussian 

density approximation overestimating the density and then 

compensatinq for this by moving the density toward the 

surface. This could qive low central densities, high 0+ 

single particle levels and larqe radii, as argued in the 

previous chapter. 

20Ne was analysed as a function of A. As with 

spherical nuclei the single particle levels and the radii 

increased linearly with A. The binding energy remained 

relatively constant, but increased slightly with A. 

However the shape, or quadrupole moment remained invariant. 

(Tab1 e 5 • 4 ( a ) ) • 

Compared with the other forces; both the HFC and V-LA 

radii were larger (Table S.S(a)). This is in keeping with the 

density approximation. The shape parameters are similar with 

HFC being slightly more prolate. 

The bindinq energtes of both the HFC and V-LA are 

remarkably similar as are the other parameters mentioned above. 

The total binding energv is greater than LINEG and much greater 

than Bl (see Table 5.S(c)). 

The single particle levels (Fig. 5.19 and Table 5.S(d)) 

follow a predictable pattern. HFC are compact, while Bl is 

spread out. The V-LA levels would be about 2.5 MeV higher had 

A=0.40 been used instead of \ =0.04. Owing to the prolateness 

of the nucleus the 0 state, which has z dependence is lower 

(see 142) 
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TABLE 

A -0.5 

Radius 

Mass 3.088 

Proton 3.098 

Neutron 3.079 

Binding Energy 

Total -152.54 

Proton - 67.33 

Neutron - 85.21 

Quadrupole 6.189 

Moment 

Single Particle Energies 

Proton 0+ - 35.97 

Neutron 0+ - 39.83 

5. 4 (a) 

0.0 

3.164 

3.175 

3.153 

-152.90 

- 67. 7 3 

- 85.17 

6.187 

- 32.31 

- 36.05 

0.4 

3.233 

3.245 

3.222 

-151.91 

- 67.41 

- 84.50 

6.183 

- 29.62 

- 33.25 
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Mass 

Proton 

Neutron 

Charge 

Mindet 

3.148 

TABLE 5.S(a) 

Radii of 20Ne in frn · 

HFC V-LA 

3.234 3.220 

3.245 3.230 

3.222 3.211 

(3.31) 3.300 

Lineg 

2.96 

2.99 

2.92 

3:os 

Bl 

2.97 

2.99 

2.94 

3.04 

Expt Charge Rad i us is 2.91 frn. 

Shape 

TABLE 5.5(b) 

Parameters for 20Ne 

<r2>1/2(frn) 

<p2>(frn2) 

<z 2 >(fm2 ) 

D ( f rn 2 )
0 

2
D 2 (f rn) 

3.148 

4.385 

5.522 

0.672 

0.0 

3.234 

4.909 

5.546 

0.591 

o.o 

3.220 

5.057 

5.313 

0.537 

o.o 

2.96 

4.183 

4.549 

0.563 

0.0 

2.97 

4.249 

4.542 

0.545 

0.0 
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TABLE 5.5(c) 

Total 

Proton 

Neutron 

BE/A 

Binding Energies for 

Mindet HFC V-.LA 

147.19 151.91 151.45 

64.20 67.41 67.36 

82.99 84.50 84.09 

7.36 7.58 7.57 

20Ne 

Lineg 

143.0 

7.15 

Bl 

112.4 

5.62 
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TABLE 5. 5 (d) 

20Single Particle Energies of Ne 

Proton 

k7f 7f Mindet HFC V-LA Lineg Blmi 

1/2+ o+ 39.49 29.62 36.59 34.1 45. 

1/2 0 26.85 21.85 25.31 22.0 26. 

3/2 1 25.46 18.55 22.30 16.7 18. 

1/2 - 1 21.19 14.98 17.93 

1/2+ o+ 19.44 15.07 14.05 10.7 12. 

3/2+ l+ 2.80 5.45 3.5 -3. 

GAP 12.18 8.6 6.7 15. 

Neutrons 

1/2+ o+ 43.52 33.25 40.19 

1/2 0 30.45 25.31 28.77 

3/2 1 29.32 22.21 25.89 

1/2 1 25.05 18.57 21.45 

1/2+ o+ 22.90 18.45 17.34 

l+3/2+ 6.46 9.13 

5/2+ 2+ 6.63 7.54 

GAP 11. 83 8.21 6.93 15.21 
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Figure 5.19 

20Proton Single Particle Energy Levels of Ne 

(a) Mindet Calculations 

(b) HFC Calculations 

(c) V-LA Calculations 

(d) Lineg Calculations 

(e) Bl Calculations 
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Figure 5.20 

20Neutron Single Particle Energy Levels of Ne 

(a) Mindet Calculations 

(b) HFC Calculations 

(c) V-LA Calculations 
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than the two 1- levels which have a p dependence. The 

most obvious anomaly is that the d state o+ level has dropped 

down below the 1- level. The O+ state is mainly prolate 

2with a z dependence. 

20The HFC density of Ne shows very strong clustering 

on the z axis at about ± 3 fm, having a value of about 0.171 fm- 3 

-3compared to the central density 0.093 fm • This is clearly 


not well represented by a gaussian. The central density will 


be overestimated and the cluster density will be underestimated. 


Density will be removed from the centre toward the surface. 


The cluster will seem very attractive qiving an excessively 


low s type o+ level while the s type o+ level rises. 


The neutron levels are 3-4 MeV lower than the proton 

single particle levels. 

A comparison of the HFC calculations for the three 

symmetry energy values showed no changes which could be 

attributed to anything more than the error in renormalizinq. 

5.4.2 Magnesium 24 

The density map of 24Mg (Fig.5.2l)res embles a bitetrahedra l 

configura tion of six alpha-particles. Two alphas on the x-axis 

touching each other atr= O , with t wo above and t wo below i n 

the y-z plane touching each other on the z axis ± 2.5 fm from the 

origin~ Clusterinq is more pronoun c e d for the upper and l ower 

20regions of the nucleus t h an along the x axis. As with Ne 

the system seems to favour buildinq up density in the prolat e 
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0 

Q 

F i.gur.e . 5 • 2.1 (a) 

,·24
pensity Distribution of · Mg in the x-z plane 
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figure 5. 21 (b) 


. . . b ~ f . h 1
24Density D1str1 ution o Mg in t e y-z p ane 
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reqion at the expense of other regions, in this case both 

the s and p regions. 

The size parameters (Table 5.6 (a) and (b)) reveal 

that the radii tend to be larger for both HFC and v~LA than 

for Lineg and Bl. For Lineg, Mq is a little more prolate 

but not nearly as asymmetric. One would wonder if our approach 

is favourino asymmetry. This is not inconceivable since the 

proqram has shown a tendency to move density toward regions 

of high density and the surface. 

The binding enerqies are similar, HFC being a little 

more bound than Lineg, and Bl being extremely underbound. A 

pattern is developing where V-LA is slightly more bound than 

HFC. 

The single particle levels (Fig. 5.22) reveal the 

typical o+, 0-, 1-, 1- •.. pattern for prolate nuclei with 

Bl spread out and HFC less so. However, HFC differs in that 

the s-d (O+) level has come down below one of the p(l-) levels. 

This is indicative of low density in the p region, hence the 1­

level risinq and high density in the d(O+) region dropp ing that 

level. The filling of the d state in the y-z plane gives the 

off- a x is clustering. The usual poverty of density in the centre 

causes the high 0+ s state. On the whole the s.p. levels are 

not g r eatly different from those of Lineg; however, there is 

strong evidence of qreater a symmetry. The V-LA levels would be 

2-3 Me V higher if A=0.4 had been used instead of A=0.01. The 1­

level is not as high, which is in agreement with the high er 
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TABLE 5. 6 (a) 

of 24MgRadii for Various Calculations 

Mindet 

Mass 3.246 

Proton 

Neutron 

Charge 

<r2> 1 /2 3.246 

<p2> 4.88 

<z2> 5.67 

D 0.612 
0 

D2 

Total 171.15 

Proton 72.28 

Neut ron 98.87 

BE/ A 7.13 

HFC V-LA 

3.35 3.38 

3.36 3.39 

3.34 3.37 

(3. 43) 3.46 

TABLE 5.6(b) 

Share Parameters of 

3.35 3.38 

5.44 5.57 

5.80 5.85 

0.548 0.537 

0.164 -0.141 

TABLE 5.6(c) 

Binding Energ i es for 

184. 24 186.53 

80.00 81.33 

104.24 105.20 

7.68 7.77 

24M 
~ g 

24Mg 

Lineg 

3.14 

3.18 

3.10 

3.24 

.3 .14 

4.70 

5.16 

0.570 

-0.088 

172.8 

7.20 

Bl 

3.16 

3.19 

3.13 

3.24 

3.16 

4.83 

5.16 

0.552 

-0.089 

133.7 

5.16 
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TABLE 5.6(d) 

24MgSingle Particle Energies of 

Proton 

(m £) 7T Mindet HFC V-LA Lineg Bl 

o+ 40.49 31. 64 38.77 36. 47. 

0 - 32.41 25.78 29.38 24. 30. 

1 - 25.12 21. 46 25.06 20. 23. 

1 - 22.78 13.92 19.29 17. 18. 

o+ 20.31 15.00 16.30 12. 13. 

l+ 15.49 12.28 13.53 10. 11. 

l+ 4.33 5.98 5. - 1.5 

GAP 7.95 7.55 5. 13.5 

Neutron 

(m,e) 7T Mindet HFC V-LA Lineg Bl 
o+ 45.31 35.85 43.00 

0 36.81 29.92 33.49 

1 25.31 29.23 

1 18.46 23.45 


o+ 
 18.97 20.31 


l+ 
 16.37 17.50 


l+ 
 8.98 10.25 

GAP 7.39 7.25 4.83 12.14 
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Figure 5.22 

Pr oton Single Particle Energy Levels of 24Mg 

(a ) Mindet Calculations 

(b) HFC Calculations 

(c ) V-LA Calculations 

(d) Lineg Calculations 

(e ) Bl Calculations 
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density of the p region clusters that they obtain. 

5.4.3 Silicon 28 

Silicon 28 has two low level forms, one prolate the 

other oblate. The prolate (Fig. 5.23) is composed of two rings 

of t h ree alpha particles above and below a central one. The 

oblat e (Fig. 5.25) has the confiquration of a ring of five 

alpha particles surrounding two axial alpha particles touching 

at z =O. 

First we shall study the prolate form. Our radii 

are 5 % larger than for Lineg. The shape parameter D indicates 
0 

that HFC and V-LA give not quite as prolate a solution. The 

energ ies are again highest for V-L A and a little lower for 

HFC. The nuclei of Zofka and Ripka are less bound (see Tables 

5.7 (a), (b) and (c)). 

The single particle . levels show the typical prolate 

lower levels ordering. However the d(l+) level has dropped 

below the 0+ level. This is indicative of the strong clustering 

off the z-axis in the d region. The p(l-) levels are high owinq 

to little density in the x-y plane. The ls(O+) level is also 

hiqh c onsistent with the relatively low density ar r=O, the 

region of another alpha particle. (Fig . 5 . 2 4 and Tab 1 e 5 . 7 ( d) ) . 

The HFC levels would be similar to the Lineg levels if 

spin o rbit were added to the latter. The V-LA results should 

be 3- 4 MeV higher if A=0.4 was used ins tead of A=-0.02. 

The gaps would all be similar if spin orbit were added 

to Lineq. The neutron single particle levels are about 5 MeV 
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Figure 5. 23 

28
De nsity Distr i bution of Prolate si 
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TABLE 5.7(a) 

Radii of Silicon 28 Prolate 

Mindet HFC V-LA Lineg Bl 

Mass 3.360 3.440 3.495 3.28 3.32 

Proton 3.452 3.504 3.32 3.35 

Neutron 3.428 3.486 3.23 3.28 

Charge (3.52) 3.57 3.38 3.40 

TABLE 5.7(b) 

Shape Parameters of 28Si Prolate 

<r2>1/ 2 3.360 3.440 3.495 3.28 3.32 

<p2> 5.223 5.640 5.863 5.023 5.095 

<z2> 6.064 6.236 6.351 5.703 5.894 

D 0.612 0.581 0.560 0.595 0.609 
0 

02 o.o o.o o.o 0.0 

TABLE 5.7(c) 

Binding Energies of 28Si Prolate 

Total 218.20 219.08 224.94 209.4 161. 

Proton 91.35 92.88 96.32 

Neutron 126.85 126.20 128.61 

BE/A 7.78 7.824 8.034 7.48 5.75 
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TABLE 5.7(d) 

28 . 1 t
Single Particle Levels of Si Pro a e 

Protons 

kn rn 1T Mindet HFC V-LA Lineg Bl 
R, 

1/2 + o+ 41.21 33.12 40.92 37. 49. 

1/2- 0 36.24 28.05 32.95 27. 35. 

-
3/2- 1 28.40 21.09 26.45 20. 23. 


1/2.,.._ 1 24.21 17.44 22.21 


1/2.+. o+ 22.67 15.24 18.58 14. 15. 


3/2+ l+ 21.,65 15.34 16.92 11. 11. 


1/2+ l+ 18.43 10.43 12.84 


2+5/2+ 5.59 7.20 2.5 -2.5 

4.84 5.64 8.5 13.5GAP 

Neutrons 

i;P o+ 46.76 38.04 45.80 

1/2'"' 0 41.32 32.90 37.70 

-
3/T 1 33.51 26.00 31.28 

-
l/T 1 29.32 22.26 26.96 


l/i° o+ 27.60 20.16 23.31 


l+
3/2
+ 26.51 20.11 21.50 


1/2
+ l+ 23.29 15.30 17 .. 46 


+ 
 2+5/2 10 .. 65 12.00 

GAP 4 •. 65 5.46 8.35 13.54 
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Figure 5.24 

28Pr oton Single Parti cle Energy Levels of Prolate si 

{a ) Mindet Calculations 

(b ) HFC Calculations 

(c ) V-LA Calculations 

( d ) Lineg Calculations 

(e } Bl Calculations 
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lower than the proton levels. 

The oblate form of 28si (Fig 5.25) is reputed to be 

the g round state. The HFC and V-LA calculations show the 

oblate to be the qround state by 0.5 and 0.2 MeV respectively. 

The Bl and Lineg forces indicate that the prolate is the 

ground state by 2.0 and 3.0 MeV respectively. 

From table 5.8 we see that our iadii are about 0.25 fro 

large r than those of Zofka and Ripka. The HFC radii are 

large r for the oblate, the V-LA are both similar, while the 

Lineg and Bl radii are larger for the prolate state. However 

our q uadrupole moment, D is not as large as the other ones,
0 

(See Table 5. 8 (b) )_. The V-LA nucleus is most bound, HFC is 5 MeV 

less bound with Lineg and Bl quite underbound comp ared to the 

experimental value of 236.53 MeV. 

The HFC quadrupole moment is less negative owing to 

the central clusters being at larger z than V-LA. This is 

consistent with the previously mentioned z-axis density build-up 

at the expense of the core. 

The oblate single particle levels show a distinct l y 

diffe r ent pattern than do the prolate levels. The 0- level 

is now above the two 1- levels. The l+ level moves up and the 

2+ levels move down. This is consistent with the density beina 

local i zed nearer the x-y plane than the z axis. 

The pattern of the levels is fairly uniform from force 

to force, except for compactness and the ":\-depression" of 



.157 


~i_gure 5. 25 


Density Di stribution of Oblate 28si 
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TABLE 5.8(a) 

Ra d..11 o f 28s.1 Oblate For Various Calculations 

Mindet HFC V-LA Lineg Bl 

Mass 3.393 3.496 3.496 3.25 3.26 

Proton 3.507 3.504 3.29 3.29 

Neutron 3.486 3.487 3.20 3.23 

-Charge (3.58) 3.58 3.35 3.35 

TABLE 5. 8 (b) 

28SiShape Parameters of Oblate 


<r2>1/2 
 3.393 3.496 3.496 3.25 3.26 

<p2> 9.607 9.520 9.808 8.708 8.775 

<z2> 1.903 2 : 103 2.414 1.822 1.853 

D -0.504 -0.337 -0.408 -0.481 -0. 4 77 
0 

0.0 o.o 0.0 o.o o.oD2 

TABLE 5.8(c) 

f 28s.Binding En ergies 0 l Oblate 

Total 208.08 220.24 225.09 206.4 159.0 

Proton 86.48 93.92 96.53 

Neutron 121.59 126.31 126.56 

BE/A 7.43 7.87 3.04 7.34 5.68 

EXP 236.53 
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TABLE 5.8(d) 

28Single Particle Levels of si Oblate 

Protons 

k m TI e Mindet HFC V-LA Lineg Bl 

1/2 o+ 42.16 31.56 40.50 37. 50.5 

-3/2 1 31.53 24.97 30.12 25. 30. 

1/2 1 23.56 28.72 

1/2 0 22 .. 06 19.13 22.53 18. 

5/2 2+ 19.95 15.B4 17.34 12.5 12. 

1/2 o+ 17.70 14.00 15.02 11 13. 

3/2 2+ 12.99 14.54 12.5 12 

3/2 l+ 4.30 6.53 s. -2. 

GAP 8.69 8.01 6.5 14. 

Neutrons 

1/2 o+ 47.69 36.36 45.39 

-3/2 1 36.55 29.70 34.B6 

1/2 1 ' 28.27 33.46 

1/2 0 27.21 23.93 27.36 

5/ 2 2+ 24.74 20.50 21.77 

1 / 2 o+ 22.25 18.68 19.63 

3/ 2 2+ 17.64 19.07 

3/ 2 l+ 9.26 11.39 

GAP 8.38 7.68 6.41 13.82 
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Figure 5.26 

28Proton Single Particle Energy Levels of Oblate si 

(a) Mindet Calculations 

(b) HFC Calculations 

(c) V-LA Calculations 

(d) Lineg Calculations 

(e) Bl Calculations 
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V-LA. In both HFC and V-LA the 2+ levels are a bit lower 

than Lineg and Bl. This could mean more clusterinq in our 

nuclei. The 0+ is too high for HFC indicating a strong 

central density depression. 

The energy qaps are similar for HFC and V-LA. 

Spin orbit force will decrease the gap of both Lineg and 

Bl ma king the former smaller than the others. 

The neutron levels are about 5 MeV lower than the 

proton single particle levels. 

5.4. 4 Sulphur 32 

Most Hartree Fock calculations, including those of 

Volko v and Lassey (1972), and Zofka and Ripka (1971) predict 

32a triaxial ground state for s. However there appears to be 

several low lying confiqurations. Nakai et al of Berkley (1970), 

using the reorientatio n effect in projectile Coulomb excitation, 

with beams from the Berkley Hilac, -measured the static quadrupole 

32moment of s and found it to be prolate. 

HFC calculations have been done for prolate (Fig. 5.27) 

oblate (Fig 5.28) and triaxial (Fig. 5.29) configurations of 

32s. The triaxial form, is first compared with the other 

calculations. 

32S, the clown nucleus (Fiq. 5.30), has the confiquration 

of two diamonds one above and one below the x-y plane, with an 

alpha particle at each vertex. This is triaxial, the longer 

dimens ion being along the y-axis. 
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_Fi.gure 5 •. 27 


32
. . .b t' f 1
Density Distri u ion o Pro ate S 
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~i.gure 5 . 28 


pensity Di stribution of Oblate 32s 
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1!igure 5.29(a) 

32 . h 1 

pensity Distribution of Triaxial 

S in t e x-z p ane 
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F.igure S .. 29(b) 

_Density Distribution of Triaxi al 

32s in the y-z plane 
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32 S trioxial 

lz 
x 
plane 

lz . 
y 
plane 

Figure 5.30 

32
9omposite of Triaxial s 
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The radii follow the established pattern. The HFC 

and V-LA radii are larger than those of f,ofka and Ripka. The 

shape parameters however, are quite different. (Table 5. 9b) 

The asymmetry D is small for Zofka and Ripka, larqer for V-LA
2 

and largest for HFC. The quadrupole moment D however is vice­
o 

versa. 

The binding energies compare well with the experimental 

value of 271.77 MeV with the exception of Bl. 

The single particle levels are quite interesting. In 

each case we have the typical oblate pattern O+, l+, 1-, 0-, 

(when only the parity is a good quantum number, the 

m£ is that of the largest component of the linear combination 

which makes up our state) • The order of the remaining levels 

changes from calculation to calculation. The HFC configuration 

has a hole at r~O which is consistent with the hiqh, unoccupied 

0+ state. The V-LA configuration (Lassey 1972) is a plane of 

6 alpha particles in the y-z plane, with one alpha on either 

side of the plane on the x-axis. In contrast to HFC, the V-LA 

single particle level has a l+ unoccupied state, the O+ having 

come down, owing to no central minimum. The Zofka and Ripka 

spectra are most similar to the V-LA results. The configuration 

is probably most similar to Lassey 's. However the t wo low 2+ 

levels probably indicate a more uniform density distribution in 

2 d 2 .the <x > an <y > regions. Hence the lower D • In any e .rent
2 

one would not e xpect a central minimum for either Lineg or Bl . 

(Fig. 5.31). 



TABLE 5.9(a) 

32Radii of Triaxial 8 

Mindet HFC V-LA 

Mass 3.427 3.536 3.549 

Proton 3.546 3.558 

Neutron 3.525 3.541 

Charge (3.62) 3.62 

EXP 3.24 ±0.02 

TABLE 5. 9 (b) 

Shape Parameters for Triaxial 

<r2>1/2 3.427 3.536 3.549 

<p2> 9.304 9.214 9.474 

<z2> 2.439 3.286 3.124 

D -0.377 -0.211 -0.256 
0 

0.192 -0.165D2 

TABLE 5.9 (c) 

Binding Energies of Tri axial 

Total 238.93 256.64 26fi.59 

Proton 96.71 107.05 112.41 

Neutron 142.23 149.55 154.19 

BE/A 7.467 8.020 8.33 
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Lineg 

3.31 

3.36 

3.26 

3.42 

32 5 

3.31 

8.60 

2.35 

-0.356 

+0.095 

328 

242.2 

7.57 


Bl 

3.34 

3.37 

3.30 

3.44 

3.34 

8.74 

2.38 

-0.358 

+0.098 

186. 

5.82 
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TABLE 5.9(d) 

Single Particle Levels of Triaxial 32
8 

Protons 

lT Mindet HFC V-LA Lineg Bl 

+ 43.71 (0) 33.63 (O) 42.41 (0) 38.1 (0) 52.7 (0) 

33.71 (1) 28.46 (1) 33.75 (1) 27. (1) 34. {l) 

33.26 (1) 23.78 (1) 29.93 (1) 25. (1) 30. (1) 

26.33 (0) 21.22 (0) 26.05 (0) 21. (0) 24.5 (0) 

+ 21.60 (1) 16.35 {2) 19.15 (2) 14. {2) 14.3 (2) 

+ 20.97 (2) 15.91 (1,2) 18.00 (1, 2) 13. (2) 13.0 (2) 

+ 17.38 (2) 11.93 (1) 14.47 (0,2) 11. (0) 11. 5 ( 0) 

+ 15.20 (0) 11. 56 (1, 2) 13.58 (0'1) 10.5 (1) 11.0 {l) 

+ 5.29 (0) 7.41 (1) 5.5 ( 1) -0.5 (1) 

GAP 6.37 6.17 5.0 11. 5 

Neutrons 

+ 50.02 (0) 39.08 (0) 47.92 ( 0) 

39.42 (1) 33.85 (1) 39.15 {l) 

39.01 (1) 29.21 (1) 35.35 (1) 

32.15 (0) 26.58 (0) 31.46 (0) 

+ 27.09 (1) 21.78 (2) 24.41 (2) 

+ 26.47 (2) 21.26 (1) 23.21 (1'2) 

+ 22.87 (2) 17.28 (1) 19.64 (QI 2) 

+ 20.63 (0) 17.02 (1,2) 18.84 ( 0 '1) 

+ 10.94 (0) 12.92 (1) 

GAP 6.08 5.92 5.10 11.17 
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It must be realized that the HFC confiquration may be 

forced by the tendency of this program with this force, to remove 

density from the central region to the prolate zones. 

This nucleus oives us an opportunity to study the 

single particle levels and other properties for various 

32configurations of an A particle system. For the HFC, s 

nucleus, all three configurations are basically a ring of 

four alpha particles above and below the x-y plane. The 

differing distances between the alpha particles creates the 

differences in the radii, energies and single particle levels. 

(Table 5.10). The triaxial configuration is the ground state. 

Single particle energies are lowest for protons and neutrons 

as well. Consistent with this the gap is larger, indicatinq 

more stability. However the prolate radius is smallest, closer 

to the experimental value of 3.24±0.2 fm. The characteristic 

proton single particle enerqy levels are seen in Fig. 5.32. 

32For triaxial s, the gaps have a similar pattern to 

previous observations. The V-LA calculation used \=0.01. 

The neutron and proton levels were separated by about 5.5 MeV. 

32zofka and Ripka stated that s may become spheric al 

with the add i tion of a spin orbit term in the Hamiltonian. This 

32was not the case. The true ground state of s may be a linear 

combination of several configurations, some already mentioned 

above, or perhaps some without good parity (Kelson 1971); pear 

shaped states req uirinq excitations from the s-d to the p-f shell. 
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Figure 5.31 

32Proton Single Particle Energy Levels of Triaxial s 

(a) Mindet Calculations 

(b) HFC Calculations 

(c) V-LA Calculations 

(d) Lineg Calculations 

(e) Bl Calculations 
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TABLE 5.10 

32Properties of Various Configurations of s 

a. 	 Radii Prolate Oblate Triaxial 

Mass 3.482 3.557 3.536 

Proton 3.494 3.567 3.546 

Neutron 3.471 3.547 3.525 

Charge (3.56) (3.64) (3.62) 

b. 	 Shape Parameters 

<r2>1/2 3.482 3.557 	 3.536 

2
<p > 6.973 9.569 9.214 

<z2> 5.153 3.082 3.286 

D 0.275 -0.269 -0.211 
0 

o.o 	 0.001 -0.19202 

c. 	 Binding Energies 

Total 254.60 255.96 256.64 

Proton 105.80 106.87 107.05 

Neutron 148.80 149.10 149.55 

BE/A 7.956 7.999 8.02Q 

a. 	 Proton Binding Energies 

'IT E (m_e) k E (m,e) k E (mi) 

+ 	 33.57 (0) 1/2 33.01 ( 0) 1/2 33.63 ( 0) 

27.67 ( 0) 1/2 27.19 (1) 3/2 28.46 (1) 

23.89 (1) 3/2 25.58 (1) 1/2 23.78 (1) 

21.40 (1) 1/2 20.14 (0) 1/2 21.22 ( 0) 

+ 	 16.00 (1) 3/2 16.93 (2) 5/2 16.35 (2) 

+ 	 15.80(0,1)1/2 15.64(1,2)3/2 15.91 (1, 2) 

+ 	 11.11(1,0}l/2 12.94 (1) 1/2 11.93 (1) 

+ 	 10.98 (2) 5/2 11.54 (2,1) 3/2 11.66 (1, 2) 

+ 6.60 (2) 3/2 5.56 (0) 1/2 5.29 (0) 

GA1' 4.38 5 .. 98 6,37 
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Figure 5.32 

32Proton Single Particle Energy Levels of S 

(a) Prolate 

(b) Oblate 

(c) Triaxial 
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5.4.5 Argon 36 

Argon is almost spherical with a very small negative 

quadrupole moment. At first qlance one cannot miss the wide, 

and very deep depression in the density in the interior of 36Ar. 

(Fig. 	5.33). The outer contours are very similar to those 


40 
o f Ca, wit. h someth'ing removed f rom t h e centre. 

This appears to be a bubble nucleus. x. Campi in a 

parallel 	calculation obtained a similar ground state bubble 

. t t b . 1 recents h ape f or 36Ar assuming. i o e spherica • In a 

paper by C.Y. Wong et al (1972) it was sugqested that the 

bubble was some what de e per t han would be obtained from simp le 

40removal of the 2s state from ca. We also checked this wi t h t he 

40HFC ca, but the density dropped only 20%. The central density 

of Calcium was found to be 

40% due to ¢000 

20% " 

40% " 

The best explanation of the depression is obtained 

4 40by subtracti n q t he He density prof ile from the ca profile . 

As one can see, (Fig . 5.34 ) this density difference is 

36 40parallel to t h e ~r densi ty prof i le. I t would a ppear that c a 

is composed of a centra l alpha particle with the other nine 

arr anged a round it in the form of a "shell". 36 Ar is just t h e 

shell after t h e central 4He "y olk" has been removed. The r emoval 

of this inner densi ty c a uses the shell density to relax inward 
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~ i..gure 5. 3 3 


r a· 'b . f 36
pensity istri ution o Ar 
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Figure 5.34 

36 . 	 f'l fDensity Pro i e o Ar 

40(a) 	 Broken and Dotted Line - ca density 

l ·a . 36 a .(b) 	 So i Line - Ar ensity 

. (40 4 ) d .(c ) Brok en Line - Ca - He ensity 
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Figure 5.35 

36
Proton Single Particle Energy Levels of Ar 

40Caand 

36Ar(a) 	 HFC levels of Oblate 

40Ca(b) 	 HFC levels of Oblate 

36Ar(c) HFC levels of Prolate 
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Figure 5.36 

36Density Profile of Ar 

(a) X. Campi's Calculation 

(b) Oblate Calculation 
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slightly. This would seem to indicate an overwhelming 

tendency for nuclei to maintain a structure as close to the 

closed shell nuclei as possible, even if the structure is 

something as improbable as a bubble. 

X. Campi found the HFC solution for 36Ar with a 

uniform (non bubble) shape lay about 3 MeV above the bubble 

state. Lassey (1972) found that some forces produced a 

central maximum. However V-LA gave a minimum. An attempt to 

obtain a central maximum with HFC failed. The state was 

slightly prolate, with not quite as deep a hole, a slightly 

smaller radius, total energy about 2.7 MeV above the ground 

state and single particle levels . almost identical to the 

oblate, except for labelling and a slightly lower unoccupied 

O+ state (Fig. 5.35). 

It is interesting to compare the 36Ar single particle 

levels with those of 40 ca. The levels are remarkably similar. 

One can see the spin orbit splitting is similar in each. One 

also sees the splitting of levels by deformation, and the relative 

ordering of the prolate or oblate single particle levels. Finally 

one can observe the dramatic drop of the occupied 2s level.
112 

However, even this is not a large enough drop (Sect 5.3.2). The 

36 . d th 1 h b 

40 

h o1 e in A is. so eep that e 0+ eve1 as moved a ave some o f 

the negative parity f states. Clearly both resemble the Ca
712 

nucleus except for the O+ level due to the emptv central region. 

As one would expect the radii were considerably larger 

using our approach. The X. Camp i calculation had a central 
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-3density at 0.048 f m a peak of 0.155 f m -3 at 2.35 fm _. and 

dropped below the HFC density at 3.5 fm. The HFC nucleus 

had a central density of 0.023 f m -3 and a peak of 0.126 f m -3 

at 2.6 fm. (See Fig. 5.36). Clearly the density approximation 

has removed density from the central region to the surface. The 

depression is intensified, however the bubble is clearly due 

to the force G-0. 

Not only is X. Campi's radius smaller than HFC and 

2 . 

V-LA, so are those of Zofka and Ripka. V-LA still produces 

sliqhtly larger radii than HFC. (Tab1 e 5 . 11 ) . 

The shape parameters i ndicate no asymmetry n However 

the quadrupole moment D , although always negative varies 
0 

considerably. X. Campi's of course is 0.0. The HFC value 

is the next larqest, with V-LA being a factor of two larger, 

then Lineg a nd Bl another f actor o f t wo l a rger. It would 

appear that the quadrupole moment is very sensitive either to 

the force or the method of cal culation. The latter is at least 

partly suggested by the results, since HFC and V-LA are both 

small relative to Lineq and Bl. However Lassey , using the 

same program found D to vary by as much as a factor of t wo 
0 

usina v a rious fo rce s. 

The energies are best for HFC and V-LA with V-LA still 

slightly more bound. The X. Campi and Lineg enerqies are ve r y 

similar, continuinq the pattern observed for spherical nuclei. 

Bl is far too l ow. (Table 5.11). 



187 

a . Radii Mindet 

TABLE 5 . 11 

Properties of 

HFC 

36Ar 

x. Campi V-LA Lineg Bl 

Mass 3.461 3.590 3.330 3.614 3.35 3.37 

Proton 3.600 3.348 3.622 3.40 3.41 

Neutron 3.580 3.311 3.606 3.30 3.33 

Charge (3.67) 3.417 3.695 3.46 3.48 

b. Shape Parameters 

2 1/2
<r > 3.461 

2 
9.044<p > 

2 
2.937<z > 

D 
0 

-0.265 

D2 0.00 

3.590 

8.905 

3.985 

-0.073 

0.00 

3.330 

9.392 

3.696 

+o.o 

0.00 

3.614 

9.322 

3.739 

-0.141 

o.oo 

3.35 

8.42 8 

2.795 

-0.253 

0.00 

3.37 

8 . 59 ~ 

2. 76 ( 

-0. 27 ( 

0.00 

c. Bind ing Energies 

Total 275.58 296.49 280.76 309.57 282.16 218.2 

Proton 109.37 121.55 128.56 

Neutron 166.22 174.94 181.00 

BE/A 

Experimental 

7.655 

306.71 

8.236 7.799 8.599 7.85 6 . 0 E 
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TABLE 5.ll(d) 

Single Particle Levels 

(i) McMaster Approach 

Protons 

m 7f Mindet k m 'IT HFC V~LA 
R, R, 

0 + 45.04 1/2 0 + 34.14 43.52 

1 35.14 3/2 1 27.53 34.22 

1 1/2 l _, 0 26.93 33.56 

0 31.06 1/2 0,1 23.40 29.15 

2 + 22.36 5/2 2 + 17.34 20.42 

2 + 3/2 1,2 + 16.54 19.31 

1 + 20.27 1/2 0,1 + 15.87 18.46 

1 + 3/2 2,1 + 11.89 14.54 

0 + 17.34 1/2 1,0 + 10.99 13.25 

1/2 0 + 0.37 6 .. 7 3 

7/2 3 3.20 4.48 

GAP 7.79 6.52 

0 + 52.08 1/2 0 + 40.22 49.61 

1 41 .. 56 3/2 1 33.58 40.22 

1 1/2 1,0 32.98 39.61 

0 37.55 1/2 0,1 29.36 35.12 

2 + 28.54 5/2 2 + 23.34 26.22 

2 + 3/2 1,2 + 22.55 25.13 

1 + 26.42 1/2 0,1 + 21.81 24.31 

1 + 3/2 2,1 + 27.89 20.36 

0 + 23.48 1/2 1,0 + 16.94 19.12 

1/2 0 + 7.18 1 3. 26 

7/2 3 8.87 10. 08 

GAP 8.0 1 5 .. 84 
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Table 5 .11 (d) Continued 

(ii) x. Campi 

n£J TI Protons Neutrons 

+ 38.795 45.275lsl/2 

27.860 34.160lp3/2 

25.965 32.2941P1;2 

+ 15.518 21.646ld5/2 

+ 5.544 11.5992sl/2 

+ 9.624 15.667ld3/2 

GAP 4.080 4.068 

(ii i ) Zofka and Ri pka Protons 
I 

mi TI Lineg Bl 

0 + 39. 56. 

1 27. 34.5 

0 23 29.5 

2 + 14 15.5 

0 + 12.5 12.5 

1 + 11.5 11.5 

0 + .s. 0 -1. 

Neutron Gap 6.21 . 12 .17 

Proton Gap 6.5 12.5 
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Figure 5.37 
36Proton Single Particle Energy Levels of Ar 

(a) Mindet Calculation 

(b) HFC Calculation 

( c ) x. Campi Ca l culation 

(d) V-LA Calcu lation 

(e) Lineg Calculation 

(f) Bl Calculation 
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The single particle levels are each individually 


. . 1 t o th . d . 4 0c . 1 e partic1
s1m1 ar eir correspon inq a sing . e spectrum 

with the exception .of deformation splitting, and the elevated 

0+ levels. The spectra of the various calculations have similar 

patterns. All have an unoccupied 0+ level and a fairly large 

gap. This may indicate that each of the calculations we have 

compared is a bubble nucleus. (Fig. 5.37). 

5. 5 co·nc"lusions 

5.5.1 	 Systematics 

In contrast to Mindet and Lineg the binding energy per 

nucleon for HFC rises rather smoothly with A to a maximum for 

36 40Ar. The anomalous drop for ca is believed to be a con­

sequence of a limited basis. In general the HFC BE/A is 

0.4-0.5 MeV higher than Lineg, both of which incre ase with 

A. However, HFC is about 0.5 MeV below experiment. (Fig. 5.38). 

The mass radius of HFC is consistently about 0.2 fm 

hiqher than Lineq or experiment. A similar pattern would exist 

for charge radius, except the curves would be a little higher. 

This curve, like the BE/A curve also has very small curvature. 

(Fig. 	 5.39). 

The only pattern rigorously followed by the quadrupole 

moment D is that doubly maqic nuclei have a value 0.0, being
0 

oblate for smaller A and prolate for slightly larger A. In 

the region halfway between one may have Hartree Fock solutions 

with two or more competitive forms. 
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Figure 5.38 

Binding Energy Versus Atomic Number 

(a) Circles - Experimental Values 

(b) Solid Line with circles - HFC Calculations 

(c) Solid Line Wi th triangles - Mindet Calculations 

(d) Broken Line With Circles - Lineg Calculations 
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Figure 5.39 

Mass Radius in Fermis Versus Atomic Number 

(a) Solid Line - HFC Calculations 

(b) Broken Line - Lineg Calculations 
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Figure 5.40 

HFC Single Particle Energy Levels Versus Atomic Number 

(a) 	 Left-hand side prolate nuclei 

32(b) triaxial s 

(c) Right-hand s i de oblate nuclei 
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TABLE 5.12 

Radii of Nuclei 

4He 160 20Ne 24Mg 28Sip 28
8

0 32
8

P 32
8

0 32
8 

T 36Ar 40Ca 

Mass 1.853 2.827 3.234 3.35 3.440 3.496 3.482 3.557 3.535 3.590 3.561 

Proton 1.856 2.838 3.245 3.36 3 .452 3.507 3.494 3.567 3.546 3.600 3.57C 

Neutron 1.851 2.815 3.222 3.34 3.428 3.485 3.471 3.547 3.525 3.580 3.55] 

Shape Parameters of Nuclei 

r 
2 1/2 

1.853 2.827 3.234 3.35 3.440 3.496 3.482 3.557 3.535 3.590 3.56] 

2 
2.289 5.326 4.909 5.440 5.640 9.520 6.973 9.569 9.214 8.904 8.45: 

2 z 1.145 2.663 5.546 5.799 6.236 2.703 5.153 3.082 3.286 3.985 4. 2 2E 

D 
0 

o.o o.o 0.592 0.548 0.581 -0.337 0.275 -0.269 -0.211 -0.73 o.o 

D2 o.o 0.0 o.o -0.164 o.o o.o o.o 0.0 0.192 o.o o.o 

Dinding Energies of Nuclei 

Total 29.746 120.785 151.911 184 . _239 2l9. 080 220.236 254.600 255.965 256.638 296.494 324.17: 

Proton 14.534 54.597 67.407 80.003 . 9?..877 93.921 105.797 106.868 107.052 121.551 128.37~ 

Neutron 15.212 66.188 84.503 104.236 126.203 126.315 148.804 149.097 149.549 174.942 195.so; 

Experiment 28.295 127.617 160.642 198.251 236.532 236.532 271.773 271.773 271.773 306.708 342.36( 

BE/A 7.43 7.54 7.59 7.677 7.824 7.865 7.956 7.999 8.020 8.236 8 .10~ 

BE/A(Exp ) 7.074 7.976 8.032 8.260 8.448 8.448 8.493 8.493 8.493 8.520 8. 55! 

....... 
'-0 
'-0 



Single Particle Levels 

P r otons 

4He 

18.87 

160 

29.17 

20Ne 

29.63 

.24Mg 

31.64 

~ 8 sip 

33.12 

2a
8 

.o 
.. J_ 

31.56 

32 8 P 

33.57 

32 80 

33.01 

32
8

T 

33.64 

36Ar 

34.42 

40Ca 

36.03 

17.98 21. 85 

18.55 

25.78 

21.46 

28.06 

21.09 

24.97 

23.56 

27.67 

23.89 

27.19 

25.59 

28.46 

23.78 

27.53 

26.93 
27.39 

13.32 15.07 15.00 17.44 19.13 21. 40 20.15 21. 22 23.40 23.23 

14.98 13.92 15.35 15.84 16.00 16.93 16.35 17.34 

12.29 15.24 14.00 15.80 15.65 15.91 16.54 16.90 

10.43 12.99 11.11 12.94 11. 93 15.87 

10.98 11.54 11.66 11. 89 11.22 

10.99 

5.68 

noccupied -0.51 2.53 2.80 4.33 5.59 4.30 6.60 5.56 5.29 3.20 3.55 

GAP 19.38 10.79 12.18 7.96 4.84 8.69 4.38 5.98 6.37 7.79 2.13 

Neutrons 

19.59 32.25 33.25 35.85 38.05 36.36 39.13 38.52 39.08 40.22 43.09 

21.05 25.31 

22.21 

29.92 

25.31 

32.89 

26.00 

29.70 

28.27 

33.15 

29.37 

32.60 

30.96 

33.85 

29.21 

33.58 

32.99 

34.25 
I\.,) 

0 
0 

16.32 18.57 18.97 22.26 23.93 26.89 25.46 26.58 29.36 29.94 

18.45 18.45 20.16 20.50 21.43 22.30 21. 79 23.34 



Tab le 5 . 12 Cont inued 


4 160 20Ne 24Mg 28Sip 28 8 io 32 P 3280 32 T 36Ar 40Ca
He 	 8 8

16.37 20.12 18.68 21. 25 20.97 21.26 22.55 23.58 

15.30 17.64 1 6 .57 18.24 17.29 21.81 

16.41 16.89 17.02 17.89 17.90 

16.94 

13.05 

:J.occupied 	 0. 5 8 5.66 6.63 8.98 10.65 9.26 12.41 11.25 10.94 8.87 9.94 

GAP 19 .01 1 0.66 11. 82 7.39 4.65 8.38 4.00 5.64 6.08 8.07 2~11 

tv 

I-' 
0 
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Asymmetry follows from the filling of only one of 

them£=+ m wavefunctions, where m = 1,2, •.• 

The entire panorama of HFC observations for each 

nucleus is tabulated in table 5.12. 

The proton single particle levels are reasonably 

flat indicating good saturation properties. There is a smooth 

flow of levels from one nucleus to another without wild jumps 

in values, except for the empty 0 1/2+ level of oblate and 

32 . . 1 	 h 1 1 dt r1ax1a s. (Fig. 5.40). Te s.p. eves are compresse 

owinq to the strong density dependence and the s or 0 1/2+
112 

levels are high owing to the density app roximation. 

5.5.2 	 Clusterinq 

Clustering has been discussed previously, (Section 5.4.1) 

and by Lassey (1972). However some obse r vations are wort h wh ile . 

First, alpha particle clustering is clearly observable. 

Particles find it energetically favourable to be in qroups of 

four - two protons and two neutrons. This should not come as 

a great surprise however. 4He as a free nucleus is incredibly 

stable. An addition of one neutron to 3He causes a qain in energy 

4of 20.58 Me V while the addit i on of another neut ron to He 	 i s 

3
impossible. A similar gain is made by adding a proton to H. It 

should not be surprising if this stability were not at leas t 

partly preserved in the nucleus. Indeed, Day has shown that 

some four body c l ustering is present in nuclea r matter, con­
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Nucleus A BINDING ENERGY tiB.E. B.E. Per Nucleon 
(MeV) (MeV) (MeV) 

Helium 3 7.72 	 2.57 
20 .~ 58 . 

4 	 28.30 7.08 
-0.96 

5 27.34 	 5.47 

Carbon 11 73.44 	 6.68 
18.72 

12 92.16 7.68 
4.95 

13 97.11 7.47 

Oxygen 15 111. 95 	 7.46 
15.67 

16 127.62 7.98 
4.14 

17 131.76 7.75 

Neon 19 143.77 	 7.57 
16.87 

20 160.64 8.03 
6.76 

2 1 167.40 7.97 

Calcium 39 326.32 	 8.37 
15.7 3 

40 342.0 5 8.55 
8.36 

41 350.41 8 .S4 
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Figure 5.41 

Neutron absorption cross section (in barns) 

vs neutron number 
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Figure 5.42 

Neutron scattering cross section in barns 

vs neutron number 
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tributing about one MeV per particle of binding energy. 

As can be seen in Table 5.13, many 4A nuclei are 

extremely stable. Not only can this be seen in terms of 

enerqy differences, but also in terms of cross-section. 

From Figure 5.41 we see that the neutron absorption cross 

section is very low for even numbers of neutrons, and high 

for odd. From Fig. 5.42 the scatterinq cross section is 

12 16highest for c and 0. The optimization of these stability 

properties, coupled with low mass is of course desirable for 

nuclear reactor moderators. Thus we see that these important 

nuclear properties, as some p roperties in Chemistry, are 

dependent on the qeometry of the nucleus. 

To further illustrate what I mean, 4He is not the only 

12clustering noticable in the density maps. The c ring is 

. 20 d 1 28 h 16 h do b servable in Ne, an pro ate S. T e O tetra e ron 

. 20 24 d 1 28 h 1 h 1 fin Ne, Mg, an pro ate S. T e p anar, four o e- our 

16 32 40particle excited 0 is seen in s. Both ca in a positive 

form and 4He in a neoative form are present in 36Ar. Thus 

clusterinq is not confined to only Helium. The s e of course 

correspond to the broader qaps in the shell model spectrum, 

not just the doubly magic nuclei. 

Another interesting analysis is done by considering the 

4geometry illustrated by the density maps to be merely He 

nuclei separated by some bond distance, and calculate the bond 

energy. This is done using experimental binding enerqies, and 



209 


the HFC geometry. The bond energy Q is calculated as follows: 

Q = {B.E.(AZ) - ~ x (28.295)} ~NB= 6E/NB 

4where NB is 	the number of bonds counted between He clusters. 

12 16
For example c would have NB=3, 0 would have NB = 6 etc. 

The remarkable thing is that this Q is almost a constant 

(See Table 5.14 and Fiq. 5.43). Further evidence for the 

alpha particle, observed years ago, is that 6E is linear with 

A. (Fig. 5.44). 

A further indication of this alpha structure is alpha 

decay of 4A nuclei. Curiously, the energy required to trigger 

alpha decay is the same order of magnitude as the bond energy 

times the number of bonds broken. 

Nuclei a 	 Energy n. Q nxQ 

7.66 2 2.425 4.85 

9.6 3 2.432 7.27 

7.49 3 2.132 6.396 

9.50 4 2.132 8.528 

11.22 3 2.589 7.77 

5 2.589 12.70 

- too many bonds 

very high - too many bonds 

In the above table n is the number of bonds broken, Q the bond 

energy and nQ the total energy lost. 

In each case above more eneray is needed than just the 

energy of the n bonds. Some energy is distributed to the rest 
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TABLE 5.14 

Bond Energies 

Nuclei BE(AZ) 
. A 

4x28.295 .6.E NB Q 

12c 92.160 84.885 7.275 3 2.425 

160 127.617 113.180 14.537 6 2.423 

20Ne 160.647 141.475 19.187 9 2.132 

24Mg 198.251 167.770 28.481 11 2.589 

28si (o) 236.532 198.065 38.467 16 2 .• 404 

32S(t} 271.773 226.360 45.413 'Vl6-18 2.523 

32S(p} 271.773 226.360 45.413 'Vl8-20 2.523 

36Ar 306.708 254.655 52.153 21 2.483 

40Ca 342.048 282.950 59.098 rv27-30 2.189 
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Figure 5.43 

Bonding Energy Versus Atomic Number 
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Figure 5.44 

Alpha Cluster Energy Difference Versus Atomic Number 
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of the nucleus, perhaps in a vibration or rotation mode. 

Ne has different decay channels depending on which alpha 


24
is ejected.For Mg only the outer prolate alphas are removed. 

For heavier nuclei the energy for alpha decay is either very 

hiqh or not indicated at all. This is because there are too 

many bonds to be broken. 

It is conceivable, that as we study the structure of 

nuclei. more of their properties may .be understood in terms of 

their geometry. Such things as radii and shape are obvious. 

Single particle levels can partly be explained this way. Going 

backwards, using the clustering and bonding concepts one can 

obtain total energy. Separating the procedure for protons 

and neutrons will give two different bonding energies. The 

procedure may be made more sophistocated by considering bonding 

4of more complex clusters than He . Even saturation becomes 

understood in terms of very stable clusters. 

The alpha particle approach has been tried by Brink 

et. al. (1970) using force Bl. He obtained solutions which 

12 16 20 were more bound for C, O and Ne. However his heavier 

nticlei were not as bound as the more conventional Hartree 

Fock. In addition they obtained quite different configurations 

24 28 24for both Mg and S. The Mg nucleus was oblate, having 

a ring of four alphas surrounding t wo central alphas on the 

28z axis. The oblate si resembled a flattened prolate con­

figuration, two carbon rings above and below a central alpha. 
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Clearly this is too simple a model. 

5.5.3 	 Discussion of Zofka and Ripka's Paper 

In the paper by Zofka and Ripka there are several 

misconceptions. 

32It is suggested that 28si and s are spherical nuclei 

owing to the electromagnetic properties of their neighbouring 

odd A nuclei. This is not supported by recent experiment 

32. h . . ff 2 B . ' bl d .using t e reorientation e ect. Si is o ate an S is 

prolate. 

It is suggested that the addition of a spin orbit 

12c 28 32. t . ld 	 Si. d S b sph erica1 •in eraction cou cause , an to ecome . 

This we did not observe. It is suggested that these nuclei 

have the right number of nuclei to form closed shells. However 

these moderate gaps in the shell model spectrum do not 

necessitate spherical nuclei. Spin orbit may take a a
312 

level above the 2s but it also forces down the d level
112 

, 
512 

and too much spin orbit could bring an f below the 2s
712 112 

level. 

It is suggested that the energy gap is a measure of 

stability of a HF solution and hence Bl is more stable since 

the neutron energy gaps are consistently larger. Aside from 

the fact that no spin orbit was included, which would have 

reduced the gaps, the spread in levels in largely due to 

the strength of the density dependence and the subsequent 

rearrangement term. In addition the separation energy is not 
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necessarily equal to the single particle energy especially 

for density dependent forces. Thus one cannot equate the 

gap with stability. 

In view of their small gaps with density dependence 

it was wondered whether the energy gain due to deformation 

would be overcome by the spin orbit interaction thus favouring 

a spherical nucleus. This was not so. 

They also seem to suggest that their structures for 

the heavier nuclei are not alpha type because they are 

different than the configurations of Brink et. al. This 

is not true. They are different, but they are merely different 

configurations of alpha particles. 

It has been suggested that for the Lineg force the 
2 . 

r epulsive rearrangement term is of the form p (3 7/3p), where V 

i s the effective interaction which acts mainly on the high 

density central region to raise preferentially the lower orbits. 

However the lower levels are raised owing to the rearrangement 

term which forces a smaller average single particle level of 

24 MeV rather than an average of 32 MeV for no density dependence. 

I n addition , even though the form of the rearrangement term would 

appear to be that of a surface potential, Campi has found that 

·+1-. spread rather evenly over the entire nucleus. In addition 

the central density is not always high. If the central density 

is very low, the o+ levels will be quite high. 

As Ripka and Zofka found for Lineg, the Sprung G-0 force 

gives good results when renormalized. We have obtained reasonable 
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single particle energies, density distributions, radii and 

binding energies. 

5.5.4 Suggestions 

It has been shown that the results depend to a significant 

degree on the method of calculation. Very different forces, 

Lineg and Bl or HFC and V-LA gave similar results. On the 

other hand different programs, HFC and X. Campi, obtained 

differing results. The fault is clearly on the part of HFC 

and V-LA. The density must not be replaced by a single g~ussian 

but by a double (or more) guassian approximation. At the same 

time, the Slater exchange function can be approximated by a 

gaussian instead of a constant A. 

One would like to be able to calculate four hole-four 

. 16 12 8particle O*, C and Be. 

It would be impractical to increase the basis until 

larger faster and cheaper computers are available. Before that 

day arrives more sophist cated techniques may well be evolved. 

It will be interesting to calculate the 4A±l nuclei. 

believe the 4A structure will be maintained, with the extra 

particle, or hole densi ty spread and over the entire nucleus. 

Finally, it might also be interesting to calculate s ome 

excited states or alternative configurations of various n uc lei . 

5.5.5 	 Epilogue 

20Having compared the stru cture of Ne to the 15000 y e ar 

old Ven us o f Wil l endor f , I have concluded t hat the Ontario 

Government has spent t wo do llars fo r every one o f tho se years to 

p r ove t here i s noth ing new i n Phy sics. 

I 



Appendix 1 


Cylindrical Harmonic Oscillator Wave Functions 


This appendix is a review of the paper by CoPley and 

Volkov (1965). Thebasis functions are eigenfunctions of the 

wave equation 

2n 2 2 	 2 2 2 
~ (-V + a p + B z ]¢n rn n (p,z,¢) 

2M ' ' z 


= En rn n ¢n m n (p,z,¢)
' ' z ' ' z 

The energy eigenvalue is 

The eigenfunctions are of the form 

¢ . {p,z,¢)
n,m,nz 

where 

~12 	 2 
P m(/ap) = ( 2 cm ! ( 1/2 ) lml L lml (ap2)e-l/2 ap 

n (n+ I m I ) ! a p n 

2Lnlml (ap ) is 	the associated Laguerre polynomial 

al/2 1/2 2 
Z ( /Sz) = ( 	 ~ ) H (/Sz)e-l/2Sz

l/2 2n z 	 n17f n . z 
z 

Hn (x) is the Hermite polynomialz 

1 im¢ 

= (2 n) 1/2 e 
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The quantum numbers satisfy the following equation 

N = 2n + !ml + n z 

where N = 0, 1, 2 ••• 

The oscillator lengths a and S are chosen to ensure the 

ort hogonality of the basis states. (Lassey(l972) and Manning 

(1967)). See Table A.l. 

In order that orthogonality hold one must adhere to the 

following conditions. 

Either a4 = or =~l s6 s1 


a7 = a2 or Sa = S2 


fl 
a8 = a3 or S10= S3 
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TABLE A.l 

Number n m n z parity Oscillator Parameters 

1 o · 0 0 + a.l Bl 

2 0 0 1 a.2 B2 

3 0 +1 0 a.3 83 

4 0 -1 0 0.3 B3 

5 0 0 2 + 0.4 B1 

6 0 +l 1 + a.5 f3 4 

7 0 -1 1 + a.5 B4 

8 0 +l 0 + a.6 B5 

9 0 -2 0 + a.6 85 

10 1 0 0 + a.l 86 

11 0 0 3 a.7 82 

12 0 +l 2 a. 8 83 

13 0 -1 2 a. 8 83 

14 0 +2 1 a.9 87 

15 0 -2 1 a.9 87 

16 1 0 1 a.2 88 

17 0 +3 0 a.10 Bg 

18 0 33 0 a.10 89 

19 1 + l 0 a. 3 810 

20 1 1 0 a. 3 810 
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