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An investigation is carried out to determine whether or not 

on the basis of theory one expects axial asymmetry in heavy nuclei. 

The average one-body potential well is taken as an anisotropic harmonic 

oscillator, modified by the usual.£.·.! and !_2 forces. The method of 

matrix diagonalisation is used to find the eigenvalues. Residual inter­

action between nucleons is also treated in the pairing approximation. 

The calculations show that prolate axial symmetry is favoured in each 

of the nuclei considered. It is possible to indicate the underlying 

physical reasons for this result. 

Assuming equilibrium prolate axial symmetry an attempt is made 

to understand the collective excited levels in the transition region, 

i.e. the region between spherical nuclei and permanently deformed nuclei. 

A model calculation is done to show how the levels can be obtained. 
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INTRODUCTION 

The shell model introduced by Mayer and Jensen in 1949 proved to 

be a major breakthrough in the theory of nuclear structure. In this model 

each nucleon is supposed to move independently in some sort of spherical 

potential generated by all other nucleons. A single-particle spin-orbit 

force is postulated to give the sequence of magic numbers. If the strength 

of the spin-orbit force is suitably chosen then this model adequately 

explains many phenomena; for example, the ground state, the excited states, 

etc. 

It soon became evident, however, that this description was 

incomplete. One piece of evidence came from the quadrupole moments of some 

nuclei. If one assumes that nucleons always fill up orbits in a spherical 

potential then the theoretical prediction of quadrupole moments of nuclei 

fall short of experimental values in very many cases. In such cases, it 

must be assumed that nucleons fill up orbits in some aspherical potential. 

Since nuclear forces are short-range, this aspherical potential is 

presumably due to some aspherical shape of the surface. This shape can be 

described by some parameters which we call the collective coordinates. 

Various phenomena point out the fact that one should incorporate 

in the theory the dynamics of these coordinates. Many features of fission 

phenomena can be understood in terms of the motion of these collective 

coordinates. Also nuclei seem to have energy levels which are collective 

in nature, i.e. which cannot be explained simply in terms of nucleon 

1 




2 

excitation. One might say then that these are the energies associated 

with the collective coordinates. One is thus led to a description of the 

nucleus as a shell structure which is capable of performing oscillations. 

This naturally leads to a generalisation of the shell model; not 

only do we allow for energy levels which are associated with collective 

coordinates but also the equilibrium shape of the nucleus may be non­

spherical. Extended shell model levels for such deformed nuclei have been 

calculated by several authors (Ni 55, Go 56, Ne 60). One still retained 

one basic feature of the shell model; that nucleons fill up orbits 

independently in some sort of potential. 

This last assumption is somewhat in error. The nucleus is a ma~­

body system interacting via a two nucleon potential (not much work has been 

done to examine effects of a possible three or more body force). There may 

be an attractive short range part of the basic two nucleon force which 

cannot be incorporated in an overall single-particle potential. This 

residual interaction may have strong influences on some nuclear properties. 

The need for examining the effects of such possible and plausible forces 

came from various sources (Bo, Mo, Pi 58). On the basis of the single­

particle model one would expect to see low-lying intrinsic excitations in 

nuclei, odd or even-even. These low-lying single-particle excitations are 

absent in the case of even-even nuclei. This suggests that there are strong 

forces which prevent the breaking of pairs of nucleons. This force cannot 

be entirely diagonal since then it cannot prevent the occurrence of low­

lying two-particle excitations at about twice the single particle energies 

corresponding to exciting the pair as a whole. The necessity of treating 

this residual interaction was seen also from considerations of moments ot 



inertia of nuclei. Theoretical calculations on the basis of the 

hydrodynamic model consistently gave too low values for moments of inertia. 

Calculations based on the simple single-particle model gave too high values 

for the moments of inertia, namely that of a rigid body. It was shown that 

two-particle correlations will reduce this value considerably. 

The need to treat such a short-range two-body force was known in 

solid state physics and Bardeen, Cooper and Schrieffer's theory of super­

conductivity treated this type of force in an elegant way (Ba, Co, Sc 57). 

In this theory, a short-range residual interaction strongly binds any two 

electrons moving with opposite momenta and in singlet states (Cooper pairs). 

By virtue of this force electrons are continually scattered from one state 

of zero total momentum to another. 

Following the methods of superconductivity, the formal apparatus 

of tackling the problem in the nuclear case was set up by Belyaev (Be 59). 

Since then it has been applied by very many workers to predict moments of 

inertia (Ni, Pr 61), energy levels of nuclei (Ki, So 60), equilibrium 

deformations of nuclei (Be,' Sz 61), etc. 

Most of the work in determining equilibrium deformation has assumed 

axial symmetry as a premise to start from. Our work has been to examine 

if nuclei in the deformed region would prefer axial asymmetry or not 

according to the present set up of the theory. Residual interaction has 

been treated by the method of the pairing model. Some attempt is also made 

to obtain the collective spectra in the transition region, i.e. the region 

between deformed nuclei and spherical nuclei. 



CHAPTER 1: NUCLEAR COLLECTIVE MOTION 

This chapter provides a basis for the calculations done in 

chapter 5. Here we are concerned with the dynamics of the collective 

coordinates. Numerical estimates of the various parameters entering our 

equations can be made on the basis of the hydrodynamic model but one 

should recognise that the estimates can at best be very crude. 

Let us write with Bohr (Bo 52) the equation of the surface of the 

nucleus as 

R • R0 [ l + .2. q "'AJlw Y "~ ] 1.1 
x>,,., 

Here the o( 's are the collective coordinates. They are 
>-/A.

dynamical variables, i.e. they change with time. Y 's are normalised
'>. ,.., 

spherical harmonics with Condon-Shortley phase. Since both R and R are 
0 

real and Y 's in general are complex, o(. 's in general are complex. 
x~ ~~ 

The problem is to study the dynamics of the nucleus as o( 's
)./A' 

change with time. It can be shown that a motion of o(. leads to a change
0 

of the nuclear volume. This is the "breathing mode" of the nucleus (Fe 57) 

and the energies associated with such modes are expected to be high; motion 

of q 1 merely leads to a centre of mass motion (Pr 62). Thus the lowest 

order to consider is o{ octupole vibrations associated with ct have2 3 
also been found but we will not be concerned with them; these occur at 

higher energies. 
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Accordingly we write 

1.2R = Ro [ 1 + zol 2 f-' y 2 f" ] 
~ 

Let us initially assume that the deviation from sphericity is 

small. We can then write the potential energy associated with such 

coordinates as 

The kinetic energy will be 

1.4 

The energy values of a Hamiltonian which is a sum of eqns. 1.3 and 

1.4 can be written as 

1.5 

with 

w = 1~ 
We could refer to the integral number n as the number of phonons 

of character 2f. A phonon of 2 f'- character has 
f' 

total spin 2, Z-axis spin 

projection f' and parity even. Elementary considerations show that a state 

with no phonon is O+, with 1 phonon is 2+, with 2 phonons is O+, 2+, 4+, 

with 3 phonons is O+, 2+, 3+, 4+, 6+, etc. The spectrum of such an 

idealised Hamiltonian is equispaced (Fig. 1.1). 

Let us now transform the Hamiltonian to a coordinate system fixed 

in the nucleus. Such a procedure is clearly convenient to treat nuclei 

which have non-zero equilibrium deformation. For· the body-fixed system we 

choose a coordinate system whose axes coincide with the principal axes of 
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0+, 2+, 3+, 4+, 6+ 


O+, 2+, 4+ 


2+ 


O+ 


Fig. 1.1. 	 Level Spectrum corresponding to eqn. 1.5. 

l l 

closed shell deformed region closed shell 

Fig. 1.2. 	 Near closed shells we expect spectrum corresponding to 

Fig. 1.1. 

In deformed regions we expect spectrum corresponding to 

Fig. 1.3. 
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the nucleus. The nuclear surface in this coordinate system can be written 

as 

1.6R • R [ 1 +
0 

The a2 ~ 's can be expressed in terms of the o{ 2 Y 's by means of 

the relation 

1.7 

Here the e •s are the three Eulerian angles specifying the1

orientation of the body-fixed system with respect to the space-fixed system. 

2The matrix elements ~v are related to those used by .Rose (Ro 57) by 

D2the following equation = i 1'-- \I D2• (Rose). 
ft- "I ,... "" 

The inverse relation is 

1.8 

"'II 

With our choice of coordinate systems = a2 _ • 0 ; a2 1 1
' ' 

Thus a , a2 (or a._2> and the three Eulerian angles take over the 
0 

role of the five --'""r's . 
It is convenient to make a further substitution 

a 
0 = f' cosy 

1.9 

•2 Ill a_2 
1. -

/2 
psin "t 

The equation of the surface (l.6) then becomes 
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We can easily see the physical significance of pand Y. 
The total deformation is given by 

., 

thus p is a measure of total deformation. 

The signigicance of 'I can be seen by writing the three body-

fixed axes explicitly. 

~ • R jt; pcosf]R(o,¢•) • 
0 

[1 + 

RX= R(~, O) = R0 [ l + {f. f oos (f·~>J •R0 [ l - ff pcos (1 + 3>J 1.11 

Ry• R(~, ~) • R0 [ l + ~ pcos (f-~~ =R0 [ l - ff. rcos (t- 3>] 
21t 41tThe above equations show that for 'I = 0, 3 , 3 the nucleus is 

a prolate ellipsoid of revolution about z, X and Y axes respectively; for 

'/= ~, lt, ~ it is an oblate ellipsoid of revolution about Y, Zand X 

axes respectively. At any other value of ~it is an ellipsoid with three 

unequal axes. 

It is also worthwhile to note the following symmetry properties. 

....~ 2nY, T +- and Y+4n describe the same
3 3 

nuclear surface and can be obtained from one another by an interchange of 

the axes. 

Y and - '/ define the same nuclear shape. Therefore the 

Y -dependence of any quantity which is a function of the nuclear shape only 

is given by f(cos 3 '/ ) • 
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We now return to the problem of transforming the Hamiltonian 

defined by 1., and 1.4 to the body-fixed system. 

To transform 1.4 we first use the relation 1.8 and then to obtain 

the quantum mechanical formulation of the problem, replace time derivatives 

by differential operators by standard techniques (Pa ,,). 

The kinetic energy term is then given by 

' Jft.2 ~ . 
..L sin ''I + L -__,,,......__,,.....--­
a"( Kml 8Br2 sin2('f-~ K)~ 

1.12 

The ~'s are the usual angular momentum operators. 

The potential energy is transformed to 

Solution of the Hamiltonian defined by 1.12 and 1.1, was given for 

the spin I • 0 case by Bohr (Bo 52); it was extended to all I-states by 

Bes (B~ 59). One, of course, gets the spectrum shown in Fig. 1.1. The 

solutions can be written as 

where K is restricted to even values and IIMK} is a normalised wave 

function given by 

( DMKI + (-)I DI )
M,-K 

1 2A potential energy function 2 Cp minimizes at p• 0 (spherical 

shape). The above Hamiltonian is thus valid only for nuclei with spherical 
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equilibrium shape. Thus one would expect the above Hamiltonian to be 

applicable to nuclei near the closed shells. Even near the closed shells 

anharmonic terms in the potential (1.3) may spoil the simple equispaced 

spectrum (Ke, Sh 62). 

Between two closed shells there are regions in the nuclear periodic 

table which show distinct rotational spectra. The existence of rotational 

spectra is associated with a deformation of shape (Ke 59). In such a case 

we must write 

v • !
2 

and a priori we have no information about c. In a general case we then 

write 

v. vcp,Y> 1.14 

and try to solve the Hamiltonian given by the sum of 1.12 and 1.14. It is 

to be noted that we are limiting ourselves to even-even nuclei. Our 

treatment so far has completely ignored a particular degree of freedom, 

namely, intrinsic excitation. This appears to be valid for low energy 

excitation of an even-even system, but for an odd-even system one must 

also include the motion of the last odd nucleon. This will introduce some 

complications since there will be coupling between the odd-nucleon and the 

even-even core. Since our work is concerned with even-even systems we do 

not pursue this point further. 

The solution of the Hamiltonian given by 1.12 and 1.14 is obtained 

by making an essentially Born-Oppenheimer approximation. One assumes that 

the nucleus is strongly stable about some equilibrium deformation ( p , Y ).
0 0 

Most authors consider 'I • o. The Hamiltonian becomes 
0 
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H • 
1i2 

A4 _L + ! D( g - ~ )2- 2B ,- a~ 2 r ro 

2 
16. _!._ 1 tJ i ~ y a 1 A( y y )2- 2B p2 sin 3y its n / TY + 2 - o 


1i2 ~ Q~ ~ ]

- - [ + + - + V( fJ. y ) 1.152

8B r2 sin2 
(¥ -

2;> sin (Y - ~) sin2 Y f o' o 

The eigenfunctions of 1.15 are normalized in a space with volume 

element f>4 d~ Isin 3i / d Y d ..0... where dll.• sin9 d9 d¢ d'f ; V( (1 , 't )
0 0 

is a constant and can be left out. 

Let p"p 2 4f where 'f is the wavefunction of 1.15. This leads 

to the eigenvalue equation 

where 

2
H' • -~ (L - i) + .! oc B - a >

~ ap2 p2 2 r ro 

2
"'t1 1 a a i 2 

- ~ ~ 2 sin 3 Y a Y sin 3 y ay + 2 A( y - yo) 

ft2 [ ~ Q~ $ ] 1.16+~ 2 2 + 2 4 + 2 
BB r sin (l' - -j> sin (Y - -j> sin "( 

Assume now that the amplitudes are small and 'I • o. Hence in 
0 

1.16 we replace sin 3'( by 3Y, f by p , cos Y by 1 in the appropriate
0 

places. Thie leads to 

H' = H + H + H_, + ul + u2 1.17rot. p 1 
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with 

1.18 


The terms u and u2 represent rotation vibration interaction and1 

are small. The effects of these can be taken into account by perturbation 

methods. Neglecting these the wavefunction is given by 

¢ • f( p) g( Y) D(Q) normalised in a space with volume element 

d~ y dy d.n... 

The eigenvalues of H t are ro • 

112 [Erot. = 2 I(I + l) - K2] 1.19 

The wavefunctions are the D-matrix elements referred to earlier. 

Neglecting zero-point energy the eigenvalues of Hf are 

where 
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The eigenfunctions :f H{J are 

B wt6(B:t fb 22ti e 1.21fn ( r> = n,a Hnp u~ P)f 2 ~ •' 

Neglecting zero point energy the eigenvalues of Hy are 

Ey = n 1icJr c..J = 1.22 
'( y' rr 

For a given n'I , K takes on value 

K 
2 = n 

y ' 
n 

'{ - 2 ' ••• ~o 

The wavefunctions are 

( n~ ~ K/2) ! B~y 
2B (J'Y 2lf ei K,n 

y 
= 

1i [rr :K/2) 03 
'I 2 

K/4
B WY K/2 

x ( - y 2) L (B~y y~ 1.23ii n.,,+ K/2 

2 

The last factor is a Laguerre polynomial. 

The level spectrum to be expected is shown in Fig. 1.3. The pattern 

is indeed widely seen in the deformed region of the nuclear periodic table, 

i.e. 152s A~ 188 and A ~228. This provides one of the major triumphs 

of the Bohr-Mottelson theory. It is to be understood, however, that the 

theory in its simple form will not provide all the information that we might 
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4+ 

4+ 
2+ 

O+ 3+ 
B 2+ 

c 
---6+ 

---4+ 

---2+ 

---0+ 
A 

Fig. 1.3. 	 Level Spectrum to be expected in deformed regions. The levels 

have been shifted sideways for convenience. 

A corresponds to ground state rotational levels. 

B corresponds to rotational levels built on p-vibration. 

C corresponds to rotational levels built on Y -vibration. 
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want to have. For example we have used the same B for all the three parts 

of the Hamiltonian namely Hrot.' Hp and HY. One can estimate B from 

the hydrodynamic model, but the nucleus is not a classical fluid and the 

value of B must be very closely linked with the microscopic features that 

a given nucleus has. In particular, we expect the three B's for the three 

degrees of freedom to be different. Similarly, one may argue that the 

restoring forces C's must be obtained likewise from a microscopic theory. 

Recently such attempts have been made with remarkable success. These 

attempts include prediction of moments of inertia (Ni, Pr 61), evaluation 

of ~ and Y -vibrational levels, of the B's and C's as well as electro­

magnetic transition probabilities between various levels (B~ 61, Ma 62, 

Ur, Za 62). 

An alternative approach to explain nuclear spectra 

Bohr-Mottelson theory presupposes the equilibrium value of 'I to 

be 0 and explains the 2nd 2+ level as being associated with )'-vibration 

(see Fig. 1.3; Al, Bo, Hu, Mo, Wi 56). An alternative theory to explain 

the levels associated with Y-vibrational levels Con the Bohr-Mottelson 

theory) was proposed by Davydov (Da, Fi 58). In his model Y is not a 

dynamical variable, but a fixed parameter. If Y is not 0 or •/3, the 

nucleus is an asymmetric top. The problem thus reduces to finding the 

eigenvalues and eigenfunctions of an asymmetric top. Each value of J will 

have 2J + 1 different energy levels but not all of these are allowed. 

The wave-function is single-valued in the quantities ~/>-but 

there are various choices of the body-fixed axes all of which give the same 

«.r's but different 9, 1¥, </> and Y ( f is invariant). The wavefunction 
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must be invariant under any change of the body-fixed system which does not 

change the o(.. 's. In terms of group theory only those wavefunctions which r 
transform according to the symmetric representation of group D2 are allowed. 

This gives, for the first few spins,the following states 

J = 1 no level 

J = 2 2 levels 

J 1 level=3 

J = 4 3 levels 

J 2 levels=5 

J =6 4 levels. 

The spacings of the rotational levels depend on the three moments 

of inertia which can be expressed in terms of Y by the following relation 

1 
= K 2 2 

9 
4Bf sin (Y'-

23K) 

Thus it is possible to plot the energy levels as a function of Y • 

It should be noted that for Y=O, Davydov theory allows only one set of 

even spin-states. The ratio of the energies of the 2nd 2+ state and the 

let 2+ state should provide an information of the value of Y • One then 

hopes to obtain other information by using this value of Y • For example, 

one could calculate theoretically the rates of electric quadrupole 

transition. 

The Davydov theory has been extensively applied (Da, Ro 59, Ma, 

Ke 60) and at the present time enjoys as much success as the Bohr-Mottelson 

theory. One would like to understand, however, why such a model should work. 

Whether nuclei are axially symmetric or not depends on the form of the 

V(~, Y) function. It is possible to compute the potential energy function 
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from a more microscopic theory and determine if the function minimizes at 

some non-zero value of Y • Further the potential energy function must be 

fairly stable around the non-zero equilibrium value so that it makes sense 

to talk of a fixed Y-value when discussing levels which have energies of 

the order of 1 MeV. It is hoped that the situation will become clearer 

when more experimental evidence is obtained. At the present time, however, 

both the theories exist side by aide, often supplementing each other. 



CHAPTER 2: INDIVIDUAL STATES OF NUCLJOONS IN NUCLEI 

Basically, the nucleus is a many-body system and one would expect 

to obtain nucleonic states in a nucleus via the two-body force. Such an 

attempt is quite ambitious and' early in: 'the development of nuclear 

p~ysics the question was by-pa~sed.by postul~ting a single one-particle 

field which a nucleon feels. It is, however, understood now why such a 

theory works. Many body calculations with nuclear matter show that the 

"healing distance" (Go, Wa, We58) within the nucleus is short ·so that it 

makes sense to talk of approximately non-interacting particles. Of course, 

the particles are not entirely free, rather they are immersed in a one­

body potential which binds them to the nuclear volume. 

Two simple potentials which were studied are the harmonic oscillator 

2 2V = - V + l mw r
0 2 

and the square well 

V • -V
0 

, r(R 

• 0 r) R 

In the square well, the high degeneracy of the harmonic oscillator 

states is removed and states of high angular momentum move down in energy. 

The actual nuclear case is probably somewhere in between these two 

extremes. It was clear that neither the harmonic oscillator nor the 

square well nor the intermediate case provide an adequate potential 

because they produce magic numbers in the wrong places. A spin orbit 

18 
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2.1 

force of the form Cl•s (with C (0) is required to produce the correct 

sequence of magic numbers. 

Thus a reasonable potential to assume is the following 

1 2 2 
- V + - mw r + Ct • s + D ~ 

0 2 ~ ~ ­

Where the last term (D <0) has been added as a correction to the 

harmonic oscillator approximation.­

A potential energy of the form ! mC#l2 r 2 is attributable to a
2 

spherical nucleus. Nuclear forces are short range and hence we expect 

the equipotentials to follow the surface. It was mentioned earlier t:tiat 

there are regions in the nuclear periodic table where nuclei have 

deformation. This is exemplified by the occurrence of rotational spectra, 

which in turn imply the existence of axes. Thus in a general case our 

harmonic oscillator approximation must take the form 

! m w2 x•2 + ! m w2 y•2 + ! m w2 z•2
2 x 2 1 2 z • 

The case which has been extensively studied is that of axial 

synnetry for which W • W ·~ ~ • In the following only Nilsson's 
x 1 z 

calculations will be reviewed, since this is the most dependable result 

we have. Nilsson introduces a parameter 6 defined in the following way 

The assumption that the nuclear volume be independent of 

deformation leads to ""x w'1 "'z = w~ where WO is the value of 
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W (6) for 6 • O; 6 is related to the quantity p defined in chapter 1 

in the following way 

6 ~ .95 p 
By introducing a coordinate transformation 

-;w 
x = j--2 x• .etc. 

- 1'I 

the Hamiltonian 

H • - ~ v '2 + ! m Cw 2 x• 2 + w2 Y • 2 + w 2 zt 2) + c.e. s + n.e2 
2m 2 x y z -- ­

transforms to 

where 

and 

Nilsson then chooses a representation with basis vectors 

IN.e I\ ) Is l ) where I s X ) is the spin part, with ~ the a projection.z 

N is the usual 3-dimensional harmonic oscillator principal quantum number; 

/\ is the 3-axis projection of .e. In this represen~ation, H. and .I- are 
- 0 ­

diagonal and .e •s has oft diagonal elements but connects only basis vectors 

with the same N. Th~ operator r 2 Y20 has off-diagonal elements and 

moreover connects states with different N values (the difference in N 

being an even number). In the major part of his work, Nilsson neglects this 

coupling between different N values. 
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The H part of the Hamiltonian in 2.2 contributes merely equal
0 

diagonal elements for a given N, and hence it is necessary to consider 

only 

Defining now 


1 c
.x. -2 --.­- tiW 
0 

,.., ~ - c 2.; 

and 

o t.> Cr» 
? - 0

Xw 
0 

one has 

The final calculations now consist in diagonalizing the Hamiltonian 

H - H for each N. This gives the energy values and the wavefunctions in 
0 

an axially symmetric potential well. 

The values of ')', and }A- are chosen so as to reproduce the shell 

model states at 6 =o. The value of w 
0 

is obtained by taking the mean 
0 

value of r• 2 for all nucleons to be equal ~ (1.2 x 10-l; Al/;)
2 

cm2 which 

gives ii W • 41 A-l/; MeV. The value of '>'is fixed at o.05. In this first 
0 

calculations Nilsson considers the ~ values given in table 2.1. In his 

appendix A Nilsson suggests a method of reducing the errors in calculation 

which arise from the coupling of different N values. This is the method 

followed·in our calculations. Consider the following transformation 
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• x• R •' 7 = yo ~; ~· z•~ 
~pplied to the Hamiltonian in 2.2. This gives 

2.4H • H + H + H + C.l•s n.e2 
'f ~ ~ -- + ­

where 2 
l ( aH~ • -1i"' --+ etc. 

~ 2 x a~ 2 

-
'. 

- ­We note that in the absence of ,e • s or .e2 force the solutions are 

In~) l.,.,_'l) fn.'S) with n.~ + n. + n'S • N a good quantum number. 
7 

The idea now is to treat only that part of the ,e. s and .e2 forces 

which conserves the principal quantum number. Accordingly an ~perator 

,et is defined with components-
• - i lt> ..!.. - ~ 1. ) etc 

l a~ a~ • 

The perturbation term to consider then is 

Hpert. 

Nilsson shows explicitly that the effect of H t is small. Apart from per • 

the smallness of H t , it is even questionable which Hamiltonian H or per • 

Ht is a better description for a deformed nucleus. · ~ is the proper 

correction for a spherical nucleus but there is no reason why a spherically 

s1111111etric correction is the right one for a non-spherical potential well. 

The Nilsson model has been extensively applied with tr~endous 

success. The original calculations were modified for some shells, namely 

different f"" values were employed. Some level shifts were also introduced 

(Mo, Ni .59). These ~ere done chiefly by comparing experimental levels in 

odd•A nuclei. This is in the correct spirit of the calculations which aim 

at reproducing as many experimental evidence as one can. The model has 



withstood a host of experimental facts; prediction of spin and parity of 

levels, prediction of single-particle magnetic moment, electromagnetic 

transition rate between different intrinsic states, etc. It has also been 

used to determine equilibrium deformations of nuclei. For this, one fills 

up the lowest levels at each deformation with the given number of nucleons. 

Assuming no residual interaction, the energy of the nucleus is the sum of 
'. 

the energies of these levels. By doing the calculation at all deformations, 

one can then locate the minimum in energy and hence determine the equilibrium 

deformation. Of course, Nilsson's calculations are done only for two 

. 'It 
extreme Y values, 0 and 3 , and hence cannot answer the quest~on whether 

some nuclei are non-axial or not. However, it can tell whether or not the 

prolate shape is preferred to the oblate shape. :Earlier calculations by 

Mottelson and Nilsson had indicated that the prolate is favoured to the 

oblate in most cases. Some attempts will be made later to show why this 

was so. 

The question of axial asymmetry in nuclei is an interesting one. 

Davydov's theory completely hinges on it. Extensive calculations by Newton 

(Ne 60) for low mass nuclei had indicated that in some cases axial asymmetry 

might be favoured. Newton however did not take anf residual interaction 

into account. It is, therefore, important to see what the theory predicts 

for heavy nuclei, .specifically, in the region 152~ A~ 188. Also of 

interest is to know what modifications will be introduced by the pairing 

forces. 
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Table 2.1 

t--values used by Nilsson in his 1955 paper; ). • .05 

Shells /A' value 

N • O,l,2 r-= 0 

N • 3 ~- .35 

N • 4 ~- .45, .55 (for protons) 

N • 5,6 #A-• .45 

N •? ,..,. .40 



·CHAPTER 3: A SPECIAL KIND OF RESIDUAL INTERACTION: THE PAIRING MODEL 

The simplest version of the shell model is that of particles 

moving independently of each other in an over-all single particle 

potential. More sophisticated treatments take two body correlations into 

account to various degrees; in this way one has the extreme single particle 

model, the single particle model and the individual particle model. The 

usual approach is to treat the closed shell as inert and introduce a two­

body force between particles outside the closed shell. One can then 

reduce the problem to that of matrix diagonalization (Ku 56). 

For deformed nuclei the level density becomes more uniform and 

closed shells are on the same footing as the outside levels. One, 

therefore, looks for some method of treating a large part of the residual 

in~eraction without having to take recourse to matrix diagonalization. 

As mentioned earlier the residual interaction that we wish to take into 

account must reproduce the energy gap that is observed in even-even nuclei. 

This or course at once reminds one of the electron-electron correlation 

via phonon interaction in superconductivity. 

Further, the two-body force in nuclei appears to have the following 

feature. Consider a nucleus which is a combination of two closed shells 

plus or minus two particles (Mo 59). The observed levels of the nucleus 

are then obtained by combining configurations Jjm ) and I jm2) where the1

\jm)'s are the shell model states. There are many states obtainable from 

the combination of ljm1>and f jm2) and in the absence of any residual 
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interaction they will all be degenerate. Experiments indicate that of all 

the various spin states permissible, the O+ state is by far the lowest. 

One would then attempt, as a first approximation, to treat a force which 

has non-zero matrix elements between states like I jm, j - m, J =O) only, 

where the symbol I jm, j - m, J =0) means that I jm) and fj - m) combine to 

give total spin o. 

The problem is best treated by methods of second quantization. 

The following notation will be employed. We label the states by "II; -v 
will then indicate the time-reversed state. We at once consider deformed 

nuclei; for spherical nuclei, one has a few particles in one.j~shell which 

is degenerate. This degenerate case can be exactly solved (Ke 61); or 

one can also use the approximation method of deformed nuclei. 

For convenience, v will stand for the j component in Nilsson
3 

states; the - V state then has - j 3 as the 3 component. 

According to the approximation we have wished to make, we consider 

the Hamiltonian 

+where a.., , av are the creation and annihilation operators respectively of 

the state v ; the symbol Iv , - v, J = 0) means that the states Iv) and 

I -'I) have combined to total spin J =o. 

The next simplifying approximation is obtained by setting 

<-Y, - 'I, J =o I v I v', - v', J =o> = - a 
where G gives the strength of the pairing interaction. 
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We now try to define quasi-particles which already embody in 

themselves a large part of the pairing interaction. For this a Bogoliubov-

Valatin canonical transformation is applied. We define 

a_,+ 

where U v , V-J are numbers and satisfy the condition 

~ + ~ • 1 

In order to obtain results in the system of quasi-particles, it 

is convenient to remove the restriction that the number of nucleons be a 

constant of motion. We thus consider an auxiliary Hamiltonian 

H' = H - X N where N = 

and ·fix A by requiring that <~ 0 I NI ~o> =n' the given number of 

nucleons. J q;; >is, by definition, the ground state. 
0 

The inverse relations for eqns. 3.2 are 

With these relations the Hamiltonian H' becomes 

H' 

where 

2u = l (lv - ~) 2v; - A /G - G ~ v! ; A =G 2 u" v.., 3.9 

H20 = 2. [< tv - ). > 2u.., v'i - A<U:-V: > - 2a u., v? J<cc; p; + p./l-1 > 3.1 
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H' contains products of four quasiparticle operators. Since
int. 

we are interested in going to a system of independent (or at the worst, 

weakly interacting) particles, we will neglect this term. The effect of 

this term has been estimated to be small (Be 59, Ni, Pr 60). 

To obtain a system of free ~uasiparticles we next set H20 • 0 

identically. This gives 

([... -'>.)2U V -~(U2 -V2)-2GU v3 = 0 .. y .., ., .., 'II .., 3.9 

Defining l.., :. l-1 - G~ one obtains from 3.9 

l - ).y 

,., 

t.., ~ 

( E.., - ). )2 + A 2 

,,, - ) 

Defining we obtain 

The Lagrange multiplier A. is to be eliminated now. For this, 

express the number operator N = (a:. a + a+ a u) in terms of quasi­
,. -I -"i - .. 

partj_cle operators. By relations 3.4. 
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The ground-state is the zero quasi-particle state so that A is 

eliminated by the following equation 

= n 

(n = the given number of particles). 

The energy of the ground state is simply 

= 

The higher states for an even-even system can be cons~ructed by 

creating two, four, etc. quasi-particles. A two quasi-particle state 

would be d."+ of~, 1~0) and its energy with respect to the ground state is 

given by E + E , ; this difference is at least 2 A; hence A can be 
.,, 'I 

defined 	as the energy gap. 

For an odd nucleus, the ground state could be denoted by c(+ Jf )
.., 0 

where Ip ) is the even-even ground state. An excited state is then given
0 

by ci<+. 	 If> and the difference in energy is simply E , - E no gap will 
y 0 'I i 

be exhibited. 

We note in passing that for G =0 (and consequently /l =O), 

equations 3.10 and 3.11 give 

2v2 = u = o for1 ' "I v 

v2 = 0 ' 
u2 

v 1 for l _,) A 

" 	
= 

Thus A is the chemical potential and one gets back the usual 

zero temperature Fermi distribution. For non-zero G, however, the 

distribution is smeared out (Fig. 3.1). 



without pairing 

\ 

with pairing 

' 

Fig. 3.1. Effect of the pairing correlation on the distribution function. 

Finally, we wish to write the zero quasi-particle state in terms 

of our older particles. It is easy to show that the state which obeys the 

relation 

is given by 

where I 0) is the true vacuum. 

Mottelson (Mo 59) arrives at the above formulae from a slightly 

different approach. We wish to solve the Hamiltonian 

H = ' l .. (a+ a + a+ a ... ) - G L a+ a+ a , a , 
~ ... -I "I - y - v 'I, ·I' y - y v - v 

The most direct thing to do is to construct an operator 

~ + +A= £. AV a~ a_~ where the Ay's will depend upon the energies of the levels 

as well as the strength of the pairing interaction. If we are trying 

to create an N (N = even) particle system, we should operate AN/2 on true 



vacuum. However, construction of the operator A is difficult. Hence we 

try the next best thing. We begin with a trial wave·function 

TT (U + V a+ a+ "i ) I0) 
~ y "I 'I ­

which is easy to work with but does not conserve the number of particles. 

This is the price we must pay for starting with an easy state vector. It 

is then necessary to introduce an auxiliary Hamiltonian H' =H - ~N and 

fix X , as mentioned earlier. Mottelson shows that the condition 

6 ( f I H' Icf> ) =0 leads to all the equations deduced earlier. 
0 0 

The pairing force has only a small effect on the binding energy; 

however, it is important to include the pairing force in calculations of 

equilibrium deformation. We can elucidate this point further. Without 

the pairing interaction,the states are filled up to the Fermi level; the 

levels above have no influence at all. With pairing the distribution is 

smear.ed out, and the behaviours of the levels just above the Fermi sea 

also contribute to the total behaviour. In considering equilibrium 

deformation one is faced with small changes of energy and contributions of 

the levels above the Fermi sea may play an important part. 

We notice from 3.9 that the pairing force contributes a term to 

the self-consistent field, viz. GUi v? and does in a sense cause a 

renormalization of the single particle energies l~ of the deformed field. 

It originates from the diagonal part of the pairing Hamiltonian and therefore 

has the character of a self-energy term. From its nature, we see that it 

affects mostly those energy levels close to the Fermi level, but is other­

wise small. One may take the experimental single-particle energies as the 

renormalized energies; in a theoretical calculation one can also define the 

http:smear.ed


energies calculated to be the renormalized energies or just ignore the 

term for the reason explained above. 

Finally, the strength of the pairing interaction G should be 

chosen so as to reproduce the increase in the ground-state binding energy 

of even-even system. One can also estimate the value of A from the 

position of the first excited two quasi-particle state • The value of G 

also depends upon the number of states in which pairwise scattering is 

allowed to take place. Belyaev has shown that states far removed from the 

Fermi surface contribute to the wavefunction only through a renormalization 

of G. Bes and Szymanski (Be, Sz 61) in their investigation of axially 

symmetric deformation considered scattering between 24 levels near the 

Fermi level. We have used the same values as they have: namely AG =26.5 MeV. 
n 

and AG =32.2 MeV. The neutrons and protons occupy different levels in p . 

all the nuclei that we consider; hence we do not consider any pairing inter­

action between neutrons and protons. 



CHAPTER 4: CALCULATIONS ON THE QUESTION OF AXIAL ASYMMETRY IN !WCI.EI 

It is well known that the collective model is remarkably successful 

in describing various nuclear properties in the region 152~ A ~188. 

Assuming axial symmetry, the equilibrium' 'deformation in this region has 

been calculated previously without any residual interaction (Mo, Ni 59) 

and also with residual interaction (B~, S~ 61). For a group of nuclei in 

this region p~ 0.3 from these calculations ( p, '/ were defined in chapter 1). 

The results are in good agreement with experiments. 

We wish to see if ~ =0.3, Y =0 is a consistent assumption for 

these nuclei; that is, at this p value, whether a non-zero Y- value is 

energetically more favourable or not. 

Specifically the nuclei chosen are sm154, Gd156, Gdl58, Gdl60, Dy162, 

Dyl64, Erl66, Erl6B and Yb172• The calculations are envisaged in two stages. 

First, single particle levels will be calculated for p=0.3, Y = 0 cft~ 

i =0 is the prolate shape and Y=3is the corresponding oblate shape. 

One can then calculate equilibrium deformation by doing Mottelson-Nilsson 

(Mo, Ni 59) type calculation. Second, residual interaction will be included 

using the method of the pairing interaction. 

Calculation of single-particle levels 

The equation to solve is 

33 




The following transformation is made 

m""y
x• r:x• 7 • Y' J 1i 

Equation 4.1 transforms to 

( H ~ + H + H + c.e. s + o.1-) If • E 'l 

~ '? ~ -- ­

where 
H~ • ~ flj,Jx (- a~22 + ~2) etc, 

The idea is to replace .e • s and £2- in eqn. 4.2 by ,et. s and ~ 
""""11>"""" ,,,,., -- ...... .... 

where .et is.the angular momentum in the pseudospherical coordinates. This- . 

is the method or appendix A in Nilsson's work (Ni 55);(see also· chapter 2). 

Nuclear forces are short range, so we postulate that equipotentials 

follow the shape or the surface. This gives 

WOw x • 
l -if r cos ( '( + ~) 

"-> y • 
Wo 

4.; 

1 - ff; pcos CY-~) 

I.Jo 
tJ = z 

1 + ~ f cos t 

(A.) is fixed by requiring the condition or volume conservation
0 

(chapter 2); W LJ le) =W; ; 1i ~ = 41A-l/} MeV. This completely defines x y z 0 0 

the frequencies. 

It is convenient to define two other deformation parameters B and r 
and use the following parametrization (Ne 60) instead. 
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wx = W (B, r) [ 1 + B COB ( r + ~) ] 

= W (B, r) [ 1 + B COB ( r - 3) J 4.4WY 

w • W (B,r) [ 1 - B COB r 1z 

The values of B, r and W(B, r) will be taken from Newton's work. 

They are listed in table 4.1. 

The Hamiltonian we consider can now be broken up into two parts 

H and H' with 
0 

2 2 2
1 ( a a a 2 2 2 )H • - 1i W (B r ) - - - - - - + ~ + b + 'S 4.5 

0 2 as2 a~2 a'S2 ., ct 

and 

Choice of representation: 

The basis vectors chosen are 

cp Nlj .fl. = Rnl ( f) l lj .fl. (¢, 9, s) 

r • <~ 2 + '? 2 + ~ 2>Y2 

-
r.:
2 

e• [ r<n + .e + 3/2>]3/2 


.e +Y2
The factor L is a Laguerre polynomial with the Morse and Feshbach 
n 

definition (Mo, Fe 53). 



- - -

- - -

y, .ej .n.. = c.e 1/2 .n..- 1/2 1/2 I .e 1/2 j Jl. > 1.e .n.- ~ ~~ 

+ ce 1/2 Jl+ 1/2 - l/2Jt 1/2 j .n.> Y.e .n.+~ ~ -~ 

The Clebsch-Gordan coefficients and the spherical harmonics have 

Condon and Shortley phases. 

For a given N, the only non-zero matrix elements of H in this re­
.· 0 

presentation are all diagonal and equal. Hence, we need consider H' only. 

Of H', £t • s and ~ have diagonal elements only with values 

j(j+l) - .ec.e2+1) - s(s+l) and .ec.e+l) 

( there is no need to keep the subscript on ,e ) respectively. 

Further, Nilsson shows (Ni 55, appendix A) 

Since cf> N.e j .J2.. is a linear combination of 4> N,e Al , it follows 

that the relation holds in this representation also. By a similar token 

2 
2 2

( cp N .e J_..I - a~ 2 + a~2 + ~ - '1 1cf> N .e j .n. ) 

2
2= 6N N' (<P N .e j ..n_I <5 2 

- 'l ) I <P N .e j.I\.) • 

Remembering that matrix elements between states with the same N 

only are to be calculated, we can then write H' as 

~ 2 fi 2 y22 + 1 2-2H' = - 2 J ~ 1iW B cos r f - 2 J ~ ii w B sin r fY20 
2 

+ Clt•s + D~. 



Now 

2
{N.fj-ll.f r2 

y2,,..r N£ 1 j' A') = {N£1 p IN£') (£jAIY2,.J.ee j' ,d) 

{Nil f 2 1N:l) • (N+3/2) 

<N, .e - 2 1r2 1 N .e> = JcN - .e • 2 ><N • .e • i > 

(lj.n..IY2r1£'j'JL') • J~ (j' 2'.n.'l"'fj'2j.n.)(j2-l/20lj2j' -1/2) 

Since ,.... is 0 or ± 2, we see that a state .Jl. will be connected to 

itself, and .fl ± 2 only • 

For the nuclei we have chosen neutron levels have to be calculated 

up to N =6 and proton levels up to N =5. For N =6, the matrix is or order 

28 x 28, the basis vectors being 16 13/2 6 13/2), I6 13/2 6 9/2) ••••• 

I6 13/2 ' 6 -11/2 > ; I 6 11/2 6 9/2 >t '6 11/2 6 5/2 > ••••• 16 11/2 6 -11/2 >; 

I 6 9/2 4 9/2 >; f6 9/2 4 5/2 > • • • • • 16 9/2 4 - 7 /2 >; 
I 6 112 4 5/2 > • • • • • r 6 112 4 - 112> ; I6 5/2 2 5/2 > ••••• 

I 6 5/2 2 - 3/2 >; I6 3/2 2 1/2 >' I 6 ;12 2 - 3/2 > and 

I6 1/2 O 1/2). For N =5 the matrix is of order 21x21, for N • 4 it is 

15 x 15 and for N = ; it is 10 x 10. 

For the coefficients C and D we take the values recommended by 

Nilsson and Prior (Ni, Pr 60). It is well known that different values of 

Dare needed to calculate neutron and proton levels. Further, the same level 

shifts which they suggest have also been made. These are listed in table 4.2. 

With these assignments of parameters, we can use Newton's result for 

N =O, 1, 2, ;, 4 (neutrons) and for N =O, 1, 2 (protons). N =5, 6 levels 

for neutrons and N = ;, 4, 5 level~ for protons were calculated in the 
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IBM ?CY;JO computer in the University of Toronto. The well-known method of 

Jacobi was used for matrix diagonalisation. 

Since five Y-values were chosen, this then corresponds to 

diagonalising twenty-five matrices. Actually thirty matrices were 

diagonalised, '( =f being always calculated twice to guarantee accurac1 

of calculations as will be explained no~~- F.qn. 4.3 shows that ( p, g) 
and(-~, f> correspond to the same physical situation. It is then 

advantageous to calculate w (B • r)' B and r for both ( p, ~) and C-p ~ ~) 

and obtain energy values using both the set of parameters. In this way it 

was checked that the energy values calculated for the large matrices are, 

at the worst, off by l in the fifth decimal place. A check with Newton's 

results was also made and the agreement was exact. 

The energy values are tabulated in appendix 1. To them is to be 

added (N + ~) lic.J where N is the relevant principal quantum number; it is 

to be emphasized that U) is deformation dependent and has to be taken from 

tabie 4.1. (Note the difference from Newton's tables.) The levels give 

the unshifted energy values. 

To save space, the wavefunctions have not been given, although they 

we~e calculated. They can, however, be obtained on writing.to the author. 

F.guilibrium deformation without pairing 

The top curves in figs. 4.1 to 4.9 correspond to the plot 

Llv ( ~ , ""I) as a function of y for the nine nuclei mentioned. F.ach 
0 

energy level contains two nucleons, one nucleon corresponding to the time 

reversed state. The different curves within each diagram correspond to 

different intrinsic configurations. It is seen that in each of the cases 

http:writing.to
http:no~~-F.qn
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V= 0 is favoured to any other Y-value. This is not ·in entire agreement 

with a previous work reported by Dutt and Mukherjee (Du, Mu 62) and we 

proceed to show why it is not so. 

l. 	 Dutt and Mukherjee consider the same parametrization as is made in 

eqn. 4.4 but consider B to be independent ofY. Actually Bis a 

function of both p and Y , hence the range of energy values they 

obtain really belong to some complex ~-Y contour. While this is the 

major difference, there are minor differences also. 

2. 	 They use different values for D, the coefficient of the ,e2- force.-
3. 	 They completely neglect the N =6 shell for neutrons. 

4. 	 No level shift is made in their work. 

Equilibrium deformation with pairing 

To include the pairing correlation we now solve 

H = ~ l.v (a: a + a+ a ) - G l_ a~. a+ a , a , 4.6L p v --{ -Y .. -v y - 'ti 
\I Y, y' 

where the lv's are the energy values we have already calculated; - ~ 

corresponds to the time reversed state v , av+ and a~ are the creation and 

annihilation operators respectively of the statev and G is the strength 

of the pairing interaction. ~he ground state energy of eqn. 4.6, as is well 

known from the methods of the pairing model (see chapter 3), is given by 

A2 
4.7 

where 

E = 2 c.., 2v; -a 

~ - ).v2 1 	 4.8.., 	 = 2 (1­
J <l1 - )..)2 + A

2 ~ 
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and 

4.9A 
2 

• a Lu" v~ u)' • J 1 - v; 
'). is to be eliminated from the condition 


!'y - ) 

n 4.10L( 1 ). )2 + ,,2 ) •J(l" ­

where n is the given number of particles. 

For the nuclei we consider, neutrons and protons occupy different 

states and are not correlated by the pairing interaction. The problem thus 

separates out into two systems, the neutron system (the N-system) and the 

proton system (the P-system). Different pairing strengths are to be 

\
attributed to the different systems. We use the values given by Bes and 

Szymanski; they allow scattering between 24 levels near the Fermi sea and 

fix Gnat 2~·5 MeV. and Gp at 2i·2 MeV. 

In our case, it was seen earlier that even without the residual 

interaction all the nuclei considered favoured prolate symmetry. Since the 

residual interaction basically leads to configuration mixing, it is obvious 

that the conclusions will not be changed except possibly at the end of the 

mass region considered. 

As examples, pairing model calculations were carried out on three 

nuc1ei : m , -J an • o ca cu a e o eqn. • , we nee oS 154 n..162 d Ybl72 T 1 1 t E f 4 7 d t 

know '). and t/. Eqn. 4.9 can be rewritten as 

2 1a = 
(~ 

4.11 
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Eqns. 4.10 and 4.11 were solved in the Bendix G-15D computer at 

2McMaster University to find ). and A • The trick lies in noting that n 

2is determined chiefly by ~ and G is determined chiefly by A • One can, 

2therefore, use an iterative procedure. '). and 4 having been determined, 

it is trivial to calculate E as given by eqn. 4.7. 

The curves obtained after doing th~ pairing model calculations 

are given in the figures at the end of this chapter. It will be seen 

that different intrinsic configurations lose their meaning and the curves 

become considerably flattened. 

Some comments are to be made on the use of eqn. 4.7. It might be 

argued that the nuclear potential is really generated by two body forces 

and hence we should have a factor~ in front of the summation in eqn. 4.7. 
\ \

Here, however, we adopt the point of view of Bes and Szymanski (Be, Sz 61; 

see also Mo 57) which is as follows. 

Superimposed upon the harmonic oscillator there is of course a 

central binding field. If we include the factor ~ this means that we are 

putting a constraint on the binding field, namely that we do not allow it 

to vary. 

On the other hand, it is known that the factor ~ must not be present 

when calculating nuclear excitation spectra. In this case, the change in 

the potential energy (~ the sum of individual changes) is increased by an 

exactly equal amount which comes from the change in the field. 

The least ambiguous way, therefore, seems to be to treat the change 

in deformation as a many-particle excitation. It should be added that 

calculations were also done with a factor ( and all our conclusions about 

equilibrium deformation remained unchanged. 
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It is well known that under the condition of volume conservation 

coulomb energ~ favours prolate to oblate (Mo, To 54). For the nuclei 

considered coulomb energy difference between prolate and oblate shapes is 
0 

'Z 0.2 fiW; from quite general considerations this energy will increase 

like - cos 

0 

3y between )" = 0 and 'I= 3. 

Discussion of the results obtained 

Having thus convinced ourselves that with the usual description of 

nuclear potential and residual interaction the above nuclei will favour 

prolate axial symmetry, we now ask: what are the features of the theory 

that lead consistently to prolate equilibrium deformation? 

A simple model to consider is a three-dimensional harmonic oscillator 

without any ,e. s or ,e2 force. Zaikin (Za 59) has shown that in this model 

some nuclei will have axial asymmetry. Unpublished calculations of Gursky 

(Gu 55) had also shown this. If one restricts oneself to only prolate and 

oblat~ shapes, then in the first half of a shell a prolate shape will be 

favoured and in the last half, an oblate shape. 

Lemmer and Weisskopf have given semiquantitative arguments as to 

how this behaviour can change because of an ,e2 force (Le, We 61). For-
convenience of calculations, they use a force '?""4 where '1. is positive. 

Nilsson's calculations with a n,e2 force (D <0) pulls higher angular momentum 
. .-
4states down; an ~ 'f' term pushes the lower angular momentum states up and 

thus the level ordering is affected in a similar way. An explicit 

calculation is now done for N = 4 shell using perturbation theory. Fixing 

the value of 7 by comparing with D, the authors show that the symmetry 

between prolate and oblate shapes is destroyed and that prolate continues 

to be favoured throughout most of the shell. 
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Let us first do a model calculation for our nuclei assuming no 

-,e • -s or ,I- force and no level shift (the level shifts made in the exact 
.... 

calculations are unimportant in deciding the question of equilibrium 

deformation). With the model Hamiltonian, the proton systems in our nuclei 

are filling up the last half of the N = 4 shell and the neutrons are at 

about the middle of the N =5 shell. One ~ould thus expect the oblate 

shape to be energetically more favourable than the prolate shape. As 

154 162 and Erexamples of magnitudes of preference, in sm , Dy
168 the oblate 

0 
is the more stable state by an amount ~ 1.2 1i w • 

0 

Thus the ,e2 force is an important !actor in determining axial-
symmetry in so far as it affects the energy levels in an unfilled shell. 

There is, however, another factor which is crucial for all our calculations. 

For the nuclei considered N =o, 1, 2 and 3 shells are always 

completely filled up by both protons and neutrons. We now show that the 

contribution to energy from these completely filled shells is such as to 

favo\tr the prolate shape. 

Using the eqn. 4.3 and the condition for volume conservation 

0 [ -2... 2 1 i 3/2
WO = WO 1 - lbi ~ + i'2 (z+i) (33 

Coe 3'f] 
W , W and W can now be completely determined in terms of x y z 

w 
0 

o' pand r (from eqn. 4.3) . 

First assume that there are no ,,e • a and ,e 2 forces present. The 

states are then labelled by Jn , n , n ) • The contribution from a x y z 

completely filled shell N to the energy is 
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ET(N) • l [ (DX + ~) li wx + (DJ + ~) 1i!.l1 + (n. + ~) ll"'zJ 
all states in N 

The factor of 2 in eqn. 4.12 comes from apin degeneracy. The 

expression shows that Y = 0 will b.e favoured. 

2We now prove that these considerations apply even when --£• s and·£­
forces are present. For convenience imagine the matrix of the Hamiltonian 

formed in the I jm) representation. so that the ,e • s and ,e2 forces are ,.,. - .... 
entirely diagonal. The total contribution to the energy is just the sum 

of the diagonal elements of the matrix. The sum of the diagonal elements 

from the oscillator part is still given by eqn. 4.12; the diagonal elements 

from ,e• s and ,e2 do not depend on the deformation. Thus the conclusions 

ms.de.earlier remain unchanged. 

The difference in energy from closed shells N • o. lt 2, 3 (both 

neutrons and protons) add up to z .67 1i w 
0 

• A look at the curves in 
0 

figs. 4.1 to 4.9 will show that this is crucial for obtaining prolate 

equilibrium deformation. However, in the absence of £-dependent forces,-the unfilled shell may favour the oblate shape by an amount which is greater 
0 

than 0.67 1i w and hence the influence of the filled shells may not be 
0 

2sufficient to reverse the result. But ,e force does substantially reduce-

the amount of which a partially filled shell may favour the prolate shape; 

it does this by its influence on the order of the level whereby higher .e­-
states are filled sooner. 

The following example is instructive. Consider nucleons filling 

up N = 4 shell. We will do a Lemmer-Weisskd.pf type calculation but instead 

http:Lemmer-Weisskd.pf


- --

of an ~4 force we will use the usual ,e2- force. To start with, let us-
forget about contributions from N =O, 1, 2 and 3 shells. 

Without the ,e2- and .e •s forces, we now calculate the energy at 

r • 0.3 and ~ • -0.3 for each case as N • 4 fills up. We denote by 


/::. E the energy difference between the oblate and the prolate for a given 


number of nucleons. Straight forward cal~ulation now gives 

'' 

0 

!J E i • - 1.18 1t"' which occurs when there are 18 nucleons. m n. o 


To include now the effects of the ,e • s and ,e2- forces we use
- - ..,., 
Nilsson's asymptotic solutions for single-particle energies and wavefunctions. 


For the large value of p we are considering the approximation is. not bad 


(See Mo, Ni 59). The wavefunctions are denoted by I n , n , A , l. )

z J. 


where 


= n + nn .L x '1 

/\ = .}-axis projection of ,e-
and 'l = .}-axis spin projection. 


The energy values are 


1 2(n + 2> 1i.wz + (nJ. + 1 ) Ji c.;1J. + c AI + D ( ,. + 2n J. nz + 2n + n.L )
z z 

where C and D are the coefficients of the ,e • s and the ,e2- f~rce respectively.-• - - 0 

We now again calculate A E for C = - 0 .1 nw and D • - 0.0275 1i w as the
0 0 

0 

shell fills up. Now, however, !J E . is only - .52 'liW which occurs formin. · o 
24 nucleons. In fact, all marked preferences for the oblate are smoothed 

out and the background of N =O, 1, 2, 3 shells becomes decisive. 

The kind of behaviour from closed shells is not peculiar to potentials 

of the form 4.3 only. Rather it is a property of volume conservat~on. For 

example, Davydov and Zaikin (Da, Za 59) consider the following potential. 
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-~ w 0 
e k :a 1 to 3

k 
• w 

0 

k 

A similar calculation as above will again show that the prolate will 

be favoured to the oblate to third order .in 1. 

An alternative approach: The self-consistent method 

Since this behaviour of closed shells is pertinent to volume 

conservation methods, it is worthwhile to find out how the closed shells 

will behave under a different method of calculation of equilibrium. The 

method we have used so far will be referred to as the volume conservation 

method. The alternative method we will discuss will be referred to as the 

self-consistent method. It was first suggested by Belyaev (Be 59) and has 

been discussed by Kerman (Ke 60) and Bes (Be 61) and B~s and Szymanski . 

(B~, Sz 61). 

The self-consistent method starts by postulating that there are 

quadrupole-quadrupole forces between nucleons; if ~t were not so, the 

nucleu~ would always be spherical, its energy and wavefunctions being 

determined by the modified isotropic harmonic oscillator field and the pairing 

force. A two-body quadrupole force will be difficult to handle, hence we 

do the next best thing; we assume that a quadrupole field exists and each 

nucleon interacts with this field. Thus we consider the following 

Hamiltonian 
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where 

and 

~ • 2Z~ - ~ - ~ 

The value of k will depend upon the strength of the quadrupole 

interaction. This Hamiltonian describes an axially symmetric system but for 

an orientation it is sufficient to compare the oblate and prolate cases. · 

The self-consistency condition on the quadrupole moment is given 

by 

4.14 

where 

To satisfy eqn. 4.14 we introduce a Lagrange multiplier and find 

the eigenstate ~ of an auxiliary Hamiltonian 

4.15 

where 

4.16 

"' The value of f-- at each Q is determined by the analogue to eqn. 4.14, 

viz. 
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When the real system is in state ~ which is not one of its energy 

eigenstates, the expectation value of its quadrupole moment is Q and the 

energy expectation value of the system is 

1 2 ,.. 
E = (~ IL Hi + 2 kQ + ,.,..QI ~ ) 4.17 

where ~ kQ2 has been added to prevent counting of pairs twice. 

It can be shown (Be 61) that at equilibrium deformation, i.e. 

aE/aQ =O, the Lagran~e multiplier vanishes and the Hamiltonian used to 

generate the wavefunctions is the actual Hamiltonian of eqn. 4.13. Hence 

if we take the value of Q given by aE/aQ • o, the function ~· of eqn. 4.15 

is actually ~o and we have found a stationary state with a self-consistent 

value of Q. 

Let us apply these results to a nucleus which has a few shells filled 

up and some nucleons in an unfilled shell. Suppose the total system has 

equil·ibrium deformation ~· 

The energy of the nucleus at ~ is then 

4.18 

The auxiliary Hamiltonian H' for the corresponding deformation of 

opposite sign, i.e. - ~ is 

where f'
,.. 

is chosen to give 

4.19 

The energy expectation value at this deformation is 



- - -
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Of course this state ~ is not a stationary state of the nucleus 

and rapidly changes in time; if the nucleus is prepared in this state with 

moment - ~' it will eventually go to the state ~' since this is, by 

definition, the equilibrium state. The expectation value E(-~) of 

eqn. 4.20 is of course larger than the energy E(~) of the stationary state~ 

We ask, however, the question: what is the contribution of the closed shells 

to the energy difference between the two configurations? 

The difference in energy values is 

+ E' un 

where the subscripts Cl and un refer to closed and unfilled shells 

respectively, and 

We may consider the contributions from closed shells to be 

4.21 

Now first assume that there are no ,e • s or ,e2- forces. Then 

2 J3(kCL ""')E' (-CL) (N + l)(N + 2)(2N + 3) 1i '-'> [ 3 -wr- t2 4.22c,e ""T = 12 - 2 4 . m ~ 

ECl (~) = 2 (N + l)(N +1~)(2N + 3) li(.t) [3 - 3 k2 
2

~4 J 
mw 
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(N + l)(N + 2)(2N + 3) n 
4.24= - 2 6 - ;w 

From eqns. 4.21 to 4.24 we obtain 

oEC/) • (N + l)(N + 2)(2N + 3) ___£__ 
~ 2 N 

If we now wish to include the effects of the ,e • s and ,I- forces for 

the above calculations we can do so by exploiting again Nilsson's asymptotic 

solutions (Ni 56). It is then easy to verify that all the above calculations 

remain unchanged. Thus the closed shells follow the preference of the total 

system and the simple conclusions of the volume-conservation method no longer 

hold good. 

Thus it is not at all abvious that the self-consistent method of 

calculation will always predict prolate equilibrium. A self-consistent 

calculation will proceed in the following stages. 

1. Now we must also include CY _ ) type of deformation and the2 2 + Y2 2
' ' 

Hamiltonian H.is generalised to the form 
' 

The auxiliary Hamiltonian is 

The first objective is to change the numerical values of f' and q­

in steps and calculate the energy values in terms of l.U • Wavefunctions 

are also needed. A consistent description will be obtained by 

restricting /"" to positive values only;<r.{3 need not exceed the value 
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2. 	 Pairing model calculations are done using the above single-particle 

energies and wavefunctions. In particular, the ground state energy 

and wavefunction, E' and I ~ ) are determined. 

3. 	 The energy is given by 

2
E • E' + ~ Q cos Y + 0- Q sin y + ~ kQ	 4.27 

where A 	 A · 
fA- = /4 - kQ cos y ; (i • <r - kQ sin y • 

We, however, need to know k in terms of (.f) which is done following 

the method of Mottelson (Mo 59). 

4. 	 We require that at equilibrium (for which IA. • kQ cos '/ and r eq. 

<r • kQ sin y ) the equipotential has the same shape as the density
eq. 


distribution. This gives 


1-~ <~ 0 J~xi_/~0>mcJ 
= 

1+~-~ <~oI } zi I i?o> 
2 2 

mw mw 

4.28 

«J 0 Ii ~ 1~0> 
"' 

1 + 
g..t;._ 2 (1"'/3 <!f o I i z~ Ji0 >2 + 2 
mw mw 

Of the various 14? )'s that are supposed to have been calculated, 

we pick up the one that satisfies eqn. 4.28. We have then determined 

kQ cos Y and kQ sin '{ in terms of W (alternatively, equilibriumeq. eq. 


values of /4- and ~ in terms of l.i' ) • 
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5. 	 The condition 

( <P I L2Z~ - xi - Yi f f ) = Q cos "( 

( <P I l. {3 (xi - Y~) I~ ) = Q sin V 

now allows us to determine Q cos Y and Q sin y in units of 
eq. eq. 

m'Tfc.J • From step 4 now we will have th~ value of k in terms of w • 

Thus there is only one parameter to determine,namely c..J. 

Alternatively, if we know k we " can determine the value of (..) • Bes and 

Szymanski suggest a value k =102 A-5/;5 (m~o/ MeV. No actual calculation 

with this value has been performed yet. 

Note that for axial 	asymmetry, eqn .. 4.28 must give tr-~ o. 

The self-consistent method is much harder than the volume 

conservation method because the energy is calculated somewhat indirectly. 

Specifically, eqn. 4.28 will be difficult to solve because of the very 

complicated nature of 1~0), the ground state wavefunction. We expect, 

however, the volume conservation method to be a good description of the 

nucleus since it is found that the "breathing modes" of the nucleus occur 

at high energy. A self-consistent method which also conserves the volume 

has not been formulated; this will, to say the least, make calculations 

very complicated. 
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Table 4.1 

Parameters B, r and w (eqn. 4.4), taken from Newton's work (Ne 60) j 

( ~, Y) and (- ~, ~ lt -Y ) correspond to the same physical situation• 

p •y. 0 1
Y• i2 1t 

1
Y• b 1t 

0.3 

B 

ainr 

cosr 

w 

0.1728776 

o.o 

1.0 

l.oo8029 

0.1786267 

0.327238 

0.944942 

l.oo8372 

0.1917971 

0.579354 

0.815076 

1.009199 

-0.3 

B 

sinr 

cos r 

w 

-0.2090109 

o.o 

1.0 

1.010372 

-o.2o41195 

0.197858 

0.980231 

1.010028 

-0.1917971 

o.416200 

0.909273 

1.009199 



Table 4.2 

Parameters defining the single particle level spectrum emplo1ed in the 

calculations. f' vas defined in chapter 2. The corresponding values of 
. . 

D are also given. The parameter C is fixed at -0.1 1l <,,;, which corresponds 
0 

to 1- • 0.05. 

Shells 
f' 

D 
Additional shifts 
in units of h 

0 

Protons N • O,l,2 

N • 3 

'N • 4 

N =5 

0 

.45 

.55 

.55 

0 

-.0225 

--0275 

-.0275 

- -
- -
- -

hll/2: -.Cfl5 

others: +.l 

Neutrons N • O,l,2 

N • 3 

N • 4 

N • 5 

N • 6 

0 

.35 

.45 

.45 

.45 

0 

-.0175 

-.0225 

-.0225 

-.0225 

- -
- -
- -
- -

11312 unchanged 

others: +.15 
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Captions for figs, 4,1 to 4,9 ( p, 52 to 63 ) 

The first six figures show the plot of 2 t.,,(f~;=-·'3,Y) against Y 

for various nuclei, The different curves within each diagram correspond 

to different intrinsic configurations , The lower diagrams in the last 

three figures correspond to the curves obtained after including the 

pairing correlation, 
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CHAPTER 5: A MODEL CALCULATION FOR '/-SOFT NUCLEI 

The earlier calculations (in chapter 4) have indicated that from 

the theory we generally expect heavy nuclei to be axially symmetric. It 

is therefore of interest to look at a particular region of the nuclear 
' 

periodic table where the asymmetric rotator theory of the nucleus has been 

extensively applied (Ke, Ma 59). The region of interest is A:: 188. An 

attempt will be made to obtain the collective levels from the Bohr-Mottelson 

theory. 

The collective Hamiltonian of an even-even system is (see chapter 1) 

4a 1 1 a a)~ - + - - sin }"( ­
ap p2 sin } y aY aY 

+ V( , ,"( ~ 'f • El! 

V( p,Y ) is the potential energy and is to be obtained from a 

microscopic theory. For example, we obtained vcr ,Y) for a few nuclei in 
0 

the previous chapter. By repeating the calculation for all p values we 

could obtain V( p,Y ) numerically. 

It would be nice to obtain an analytic expression for V( p, "f ) ; 

then we should have some means of solving equation 5.1. For a realistic 

one body nuclear potential this is impossible. The usual trick then is to 

expand V( p, Y) around ~ , Y • 
0 0 
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A 1AA2 1 2 5.2V( r ' y ) • 2 D( ,., - r 0) + 2 A y 

Note that we are already assuming y • o. 
0 

Of course, potential energy curves are not simple parabolas; 

however, so long as V( p, "'() is a steeply rising function around ( ~ ,0)
0 

the approximation is good. Taking a time-dependent approach, the system 

is spending most of its time around.( p , O) and third and higher order 
0 

terms in the Taylor series expansion are relatively unimportant. A 

criterion of how steeply rising is the function V( p, Y) is how high (in 

energy) the r- and y -vibrational levels are. The y -vibrational levels 

are, however, quite low for nuclei around A ~188. It is thus obvious that 

higher order terms in '( have to be considered. 

We now consider the following expansion. From quite general 

considerations, V( f, "Y ) is a function of cos 3 Y (see chapter l). We, 

therefore, can write the _following 

l 2 	 2
V( p' "() • 2 D( ~ - p ) + A cos 3 )' + C cos 3 y + ••••

0 

A, C, etc. will in general, be functions of p. Such an expansion 

may be helpful if it is found that odd powers of cos 3Y' have similar effects. 

Similarly, for even powers of cos 3y, one may gain an insight by merely 

considering cos2 3y • 

Fig. 5.1 shows the potential energy 	contour~ using eqn. 5.3. We 

2have P = .3 A = -p 'he..>; C • ••• 	= O; c.J ':e D/B where D is defined in
0 

eqn. 5.3 and B is the mass parameter in eqn. 5.1. With representative values 

of D and B we set 1'i W • •76 MeV. 

It will be seen that a term proportional to cos 3y reproduces the 

gross features of the potential energy contours as given in the literature 
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(see for example, Wi, Je 56). "A" is chosen to be negative so that the 

minimum occurs at Y=o. 

Method of calculation 

From eqns. 5.1 and 5.; we write now 

1 "' 2
H = Tkin. + 2DCp-p )e:. +A cos ;v + c cos 3y + ••• 5.4

0 

We now diagonalise the above Hamiltonian in the representation 

whose basis functions are eigenfunctions of the following equation 

5.5 

Eqn. 5.5 is the Y-unetable spectrum considered by Wilets and Jean 

(Wi, Je 56). 

Setting 1f( ~, y, 9 ) E f( p) , ( Y, 9i) we get1 

and 

Here ~ is an integer; it is degenerate with respect to the angular 

momentum for the first few states as follows: 
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0 I • 0~-
">- = 1 I • 2 

).. . 2 I = 2, 4 

). . 3 I = O, :;, 4, 6 

).. . 4 I = 2, 4, 5, 6 • •• 

,.. = •5 I 2, 4, 5, 6 ••• 

The construction of the y-dependent part of the wavefunction has 

\ ' )been done by D. R. Bee (Be 59 • The wavefunctions can be written as ¢,_IM 

where M is the :;-axis projection of angular momentum I in the space-fixed 

system. 

The p-part is constructed as follows. 


2
Putting <..:> =D/B; x • (B c..>/ti)~ (: • E/tt ,., ' we get 

5.8 

An approximate solution of eqn. 5.8 is readily obtained by expanding 

the effective potential v(x) about the minimum x' 

w• 2 2v(x) • .! [ (~+l)(~ +2) ( >j2 2 + x-x ~ v(x') + ~ (x - x')
x 0 

E • (n~ + ~) <..>' + v(x') 5.9 

The wavefunc~ions are 
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N F(x)
= 2 = 

x 

where N is a normalisation constant. 

The volume element of p is l d p that of )' is j sin 3YI dY. 

Effects of a cos '3 '( term 

As a model calculation we set B ='112 (.00756 Mev.-1 ), D =76 MeV.; 

p = .3 and A = - 2?1,.., p• Cutting off all basis functions beyond >. = 5,
0 

n =0 and ~ = 3, nf =1 we get the spectrum shown in fig. 5.2. It was 
p 

checked that for the small Y-dependent term we consider, the neglect of 

higher basis functions is justified. Also the spectrum is not sensitive 

to the power of p chosen in "A". It will be noticed that the small "(­

dependent term already brings out the features of rotation-vibration spectra. 

By means of a small i-dependent term we are able to increase the ratio of 

the ·energy of the first 4+ state to that of the first 2+ state from 2.35 

to 2.7. In the limit of complete f3 and y stability this ratio is 3.33 

(usual rotational spectrum). Wilets and Jean have shown that for a 

completely p-stable but completely Y -unstable nucleus this ratio is 2.5. 

However, if all the Y-stability comes from a cos 3 Y term, the second 2+ 

level must occur much higher than the first 4+ level. This is not always 

the case for nuclei in the transition region (La, Bo 61). 

Effects of a cos2 3Y term 

The introduction of a cos 2 3y term can help us out of this difficulty. 

The trends due to this term can be observed by using second order perturbation 

theory and neglecting the coupling between n p = 0 and n' =1 bands (this 
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coupling is small in our case). The ratio of the energy of the first 4+ 

state to the first 2+ state still increases but the first 4+ state is raised 

above the second 2+ state. By assuming a form A cos 3 y + B cos 2 3Y with 

A ( 0 and B )O, one can obtain equilibrium prolate symmetry as well as low 

Y-vibration. Further the I• 3 level which is too high under the influence. 

of a cos 3 Y term alone will move down also. 

The influence of higher orders powers· of cos 3 '/ is not expected to 

alter these qualitative features. This is because all odd powers of cos;Y 

connect the same states as cos 3Y does ( A). • odd); all even powers of 

cos ;y connect the same states as cos 2 3Y does ( A~ • even). Thus the 

effects are expected to be similar. 

The outcome of the above analysis seems to be the following; In 

order to get a high ratio (high compared to the value 2.5 which is obtained 

for a completely p-stable but completely Y-unstable spectrum) of the 

first 4+ to the first 2+ level as well as a Low-lying second 2+ state we 

must invoke a cos2 3Y term as well as a cos 3 Y term. A highly idealised 

case would be to consider the well shown in fig. 5.4 which roughly 

corresponds to a superposition of A cos 3 Y + C cos2 3Y. 

The ratio of the first 4+ to the first 2+ depends mainly upon the 

depth V whereas the occurrence of the second 2+ level will depend mainly 
0 

on the slope of V ( Y) and "a". In the case shown in the figure the energy 

of the second 2+ state varies roughly as l/a2 where "a" is the spread of 

the potential (Sc 49). For Y-stable nuclei like Dy the quantity 

v - V( "'( • ~) - V( Y • 0) r:: 2.5 to 4 MeV.; the - Acos 3 Y' term that we
0 ­

considered gave V = .46 MeV. The spectra in the region A • 190 indicate . 0 

that for these nuclei V is somewhere in between the value considered in 
0 

the calculations and the typical value of "(-stable nuclei. 
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Discussion 

It thus appears from the above semi-quantitative arguments that it 

will be possible to obtain the level spectrum of· Y -soft nuclei (for 

example Os190 or Pt192) from the Bohr-Mottelson theory. Closer scrutiny, 

however, reveals that a difficulty lies in explaining the rate of electro­

magnetic quadrupole transition from the .second 2+ to the ground state. 

This transition is completely forbidden in the Y -unstable spectrum 

(Wi, Je 56). A cos 3Y term destroys this forbiddenness but a cos2 3Y term 

does not violate this forbiddenness. The spectra of Y-stable nuclei (for 

example, Er166) suggests that the cos 3 Y term is the dominant term in the 

potential energy expansion for these nuclei. For Osl90 or Pt192 a cos2 3y 

term must also be important; hence the above mentioned transition rate 

should be weak in Os190• It is known, however, that this transition rate 

in 0s190 is not any weaker than the rates in other y-stable nuclei (~ 61). 

It has come to our notice that Tamura and Komai were able to fit 

the spectrum of Cd114 as well as transition rate by means of a cos 3 Y term 

only (Ta, Ko 59). 

The first step in understanding the spectra in the transition 

region must proceed by calculating the shape of V ( ~' Y) • This can be 

done by the method given in chapter 4. Having obtained V ( ~' Y) 

one can then proceed to break it up into the form A cos 3y + C cos2 3 Y 

by fitting the coefficients A, C etc. An alternative method would be 

to exploit single particle levels atY= 0 and use a perturbatiop theory. 

Thie method is given in appendix 2. 



O"f: I 
Fig. 5.1. 	 Potential energy contours (eqn. 5.3) in units of liW (=.?6 MeV.). 

We have p = .3; A= - {JfirAJ; C = ••• = o. The minimum has value 
0 

·- .31 lic.J 	and occurs at the point marked by the cross. 

..., 
~ 
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Fig. 5.2. Spectrum of Osmium 190. 



--

- - - - -

73 


A 	 B 


1·0 

/ · 5' 

1·0 
"1 0,3,t,,r1/\."# J - _,'--"...... 

-

"\ ., ~,4 	 ­
f\'S~.......-....::::
o·o -

-
o- - ­ -- - _YJy::., _Jj_


'A-=:.o- -- -= -- :_ -- -- 3 

.::- .:: - -:.. -:_ - __ - - - ....Ji:,-::: I ::.........- - - ._£_ ny=- o, n,.::. I 

- - - b 	 r 

- - -	 - :sl)­

r 
~n-=-1­

1 
J.- - - - - n:o-'L. 

1 

2.n ... o-
y 

1' 

Tl. -=- I 13 AND 
p 

Fig. 5.3. 	 Part A is the Y -unstable spectrum. 

Part Bis obtained by including -26 tu coe3y in the potential energy. 

Energies plotted in units of 1lW • .?6 MeV. 
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Fig. 5.4. 	 A highly idealised example to consider is the potential well 

shown above. This, of course, only roughly corresponds to a 

form A cos 3 Y + C cos2 3 Y. However, this examplifies why a 

harmonic approximation will be bad for obtaining the second 
-

2+ state in Y-soft nuclei. See also the text, chapter 5, 

page 69. 



CONCLUSIONS 

Using the method of volume conservation, the only method that has 

been used in any calculation of nuclear single-particle levels so far, we 

have tried to examine theoretically if one expects axial asymmetry in 

nuclei or not. The conclusion is that, at least for heavy nuclei, prolate 

axial symmetry is likely to be favoured. The result is traced to three 

causes: a) presence of an ..e 2 force; b) the cumulative behaviour of the ,,,,.,, 
shells which are filled completely; c) the coulomb interaction energy which 

favours the prolate shape. The last effect is not so important if the 

pairing correlation is not included. After the effects of the pairing 

correlation are taken into account, the energy curves flatten out consider­

ably and the coulomb energy becomes important. In the opinion of the author, 

there is no guarantee that the same conclusions would be reached if one 

tried to calculate the equilibrium deformation by the self-consistent method. 

The results that we obtain are, however, good to the extent that volume 

conservation holds good. 

Assuming prolate axial symmetry, a model calculation has then been 

performed to understand the nuclear spectra in the transition region from 

the Bohr-Mottelson theory. No data fitting has been attempted; rather, the 

aim has been to understand the trends. The conclusion is that it will be 

possible to obtain the positions of energy levels although a simultaneous 

agreement with electromagnetic transition rates may pose a problem. 
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Appendix 1 

By moving across a row we can follow a single-partidle energy level as 
a function of "'( • The columns refer, from left to right, to 

1 1 l 1
Y = o, 12 n' 6 "'' 4 "' and 3 n • 


N = 5; ""= .45 ; neutron levels 

-o.48934 -0.52530 -0.62269 -0.75265 -0.85641 

-0.95272 -0.96643 -0.99358 -0.89010 -0.95310 

-o.24o69 -0.28093 -0.32115 -0.34006 -0.31665 

-0.00379 -0.05628 -0.21628 -0.08530 -o.04o36 

-1.28629 -1.26323 -1.42338 -1.44499 -1.45295 

-0.73797 -0.67064 -0.87606 -0.85155 -o.84799 

-0.54977 -0.59211 -0.57698 -0.50057 -o.47643 

-0.04023 0.10139 0.25310 0.36922 o.42459 

0.29360 o.3458o 0.74876 0.87069 o.9136o 

-1.378o9 -1.39506 -1.22227 -1.19766 -1.19114 

-0•.93999 -0.92058 -0.65055 -0.55031 -0.57650 

-0.77092 -0.81002 -0.82605 -0.8o241 -0.78811 

-0.39184 -0.30963 -0.18944 -o.64779 -0.59917 

-0.05724 -0.09942 -0.06196 -0.02288 0.00987 

o.4o109 0.56839 0.12750 0.08857 0.05103 

-1.13945 -1.14o38 -1.13057 -1.10054 -1.08900 

-0.50267 -0.51122 -o.48793 -o.44267 -0.4o855 

-0.29128 -0.33969 -o.45392 -0.39458 -0.51058 

0.31766 0.18584 o.41146 o.45084 o.45117 

-0.73429 -0.75918 -0.82194 -0.98986 -0.89835 

0.04422 -0.01129 -0.11605 -0.21538 -0.2949? 
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N • 6; ~- .451 neutron levels 

The first 7 levels from the top are the 11312 levels 


-0.72220 -0.76o21 -0.86391 -1.25821 -1.22514 

-1.19218 -1.20768 -1.24273 -l.34o47 -1.31186 

-1.55176 -l.54o43 -1.5014o -1.47042 -1.46376 

-1.74764 -1.78291 -1•.8314o -1.866o5 -1.87854 

-1.67568 -1.64394 -1.61499 -1.6o579 -1.6o396 

-l.388o9 -1.39188 -1.38783 -1.00534 -1.12704 

-0.96903 -o.9958o -1.o6525 -1.14450 -1.15602 

-0.08678 -o.14oo5 -0.27648 -o.41982 -0.?0499 

-0.62843 -0.65991 -o.68494 -0.66100 -0.57674 

-0.43074 -o.45863 -0.58516 -0.70708 -0.70835 

o.28oo6 o.236o4 0.90085 o.204o3 0.17201 

-1.06689 -1.14226 -1.184o2 -1.18324 -1.18635 

-0.91657 -1.21231 -l.166o4 -1.15714 -1.15141 

-0.39690 -0.25957 0.53845 0.51650 0.58256 

-0.09649 -0.04161 0.37536 0.59913 o.6o519 

o.45834 0.68331 0.22284 -o.26o59 -0.21249 

-1.22671 -0.99684 -o.96o67 -o.41783 -0.38249 

-1.10029 -o.94o30 -0.90236 -o.84o76 -0.82514 

-0.72096 -o.64703 -0.52388 -0.91021 -0.86676 

-0.41774 -0.47461 -0.42598 -0.36798 -0.32625 

0.02693 o.44349 -0.24886 -0.13095 -0.23<>40 

o.44663 0.12904 -0.10108 0.02976 0.08699 

-0.86307 -0.87023 -o.84244 -0.78841 -0.76243 

-0.68996 -0.72119 -o.8ol30 -0.85662 -o.85443 

-o.o6523 -0.18992 0.03079 l.047~3 1.09911 

0.24503 0.18755 -0.02697 o.09081 0.12926 

-0.36855 -0.41201 -0.49904 -0.56359 -o.60617 

-0.14508 -0.20006 -0.34154 -0.54175 -0.52439 
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N =3; ~- .45; proton levels 

-0.75187 

-0.60085 

-o.4o462 

-0.39782 

-0.15860 

-0.14896 

-0.12700 

0.14285 

0.16922 

0.25266 

-0.74858 

-0.6ol38 

-o.38o34 

-o.42262 

-0.18284 

-0.20212 

-0.06003 

0.3424o 

0.06844 

0.16207 

-0.74202 

-0.59198 

-o.34o33 

-o.46232 

-0.27510 

-0.21702 

0.01937 

o.44835 

0.16886 

-0.03281 

-0.73785 

-0.55852 

-0.29512 

-o.49863 

-0.37156 

-0.22137 

0.08398 

0.52070 

0.16626 

-0.11288 

-0.73677 

-0.53033 

-0.27644 

-0.50172 

-0.43522 

-0.20022 

0.11694 

0.54623 

0.15597 

-0.16344 
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N • 4; ,.,.., ••55; proton levels 

-o.64399 -0.66283 -0.70855 -0.74762 -0.73221 

0.02966 -0.02733 -0.17028 -0.30733 -0.39525 

-1.02022 -l.oo614 -1.15297 -1.16701 -1.17236 

-0.51289 -0.56690 -0.58534 -0.56318 -0.54322 

-0.24509 -0.24304 -o.4o270 -o.44580 -o.42683 

0.27393 o.42710 o.56849 0.25484 0.25072 

-1.12820 -1.13639 -0.97185 -0.94o50 -0.93137 

-0.73356 -0.71721 -o.68o19 -0.65347 -o,64658 

-0.51252 -0.43515 -0.3484.5 -o.2778o -0.25036 

-0.10952 -0.03346 0.07894 0.16796 0.21004 

0.28246 0.21915 0.23989 -0.08746 -0.12857 

-0.85318 -0.86016 -0.86933 -0.85532 -0.83820 

-o·.25636 -0.31816 -o.226o5 -0.19985 -0.16981 

0.05594 0.01681 -0.03493 o.66475 0.69870 

-0.4ol47 -0.43127 -0.51168 -0.61722 -0.69971 
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N • 5; y.-• 0.55; proton levels 

The first 6 levels trom the top are the h1112 levels 

-o.63934 -o.67092 -0.75698 -o.8?:~55 -0.96795 

-1.10036 -1.10931 -1.12479 -1.01035 -1.oo852 

-1.42128 -1.39535 -1.56547 -1.59296 -1.60295 

-1.50376 -1.52815 -1.36059 -1.34487 -1.34114 

-1.2821, -1.27171+ -1.25460 -1.21898 -1.20768 

-o.88429 -0.90465 -0.95616 -1.10984 -1.07641 

-0.38747 -o.42925 -0.5,713 -0.72988 -o.64286 

-0.o6937 -0.11486 -0.21364 -o.44()92 -0.38503 

-o.8598o -0.78222 -1.00031 -0.99712 -0.99799 

-0.63305 -0.68556 -0.74153 -0.54322 -0.51045 

-0.10820 o.oi.oo2 0.18832 0.30233 0.35478 

0.27167 0.53759 0.71500 o.83563 0.87814 

-1.03051 -1.01863 -0.92152 -0.90050 -0.89153 

-o.86oo2 -0.91211 -0.69316 -0.63589 -0.61432 

-o.46<>92 -0.38584 -0.27835 -0.62678 -0.69164 

-0.10197 -0.16934 -0.11J501 -0.10700 -0.07105 

o.38o18 0.29597 0.35'4o5 0.38991 0.39148 

-0.64o96 -0.62657 -0.59774 -0.18130 -0.14269 

-0.36651 -o.4<>165 -o.42826 -0.31088 -0.41941 

0.25387 0.13971 0.05895 0.01103 -0.02780 

-0.10578 -0.15112 -0.29106 -o.46482 -0.57499 



Appendix 2. 

The coefficients or the cos3y and cos2 3y terms in the 


expansion or equation 5.3 can be obtained by exploiting single particle 


solutions at y==O in the following way. 


The single particle Hamiltonian is 

H = - 2~ V''l- + f m ( ~-z...,/l. +- <.J~ ';f''J- .+ w: ~''-) + C ! ·! +]),!'L A. 2-· I 

Since the objective ie merely to demonstrate how the expansion terms come 


about, the following calculations will be done to first order in P only. 


Using the relation 


etc. and introducing 

a coordinate transformation 'X = ~o X/ 

H= - t Jr w (v:_ r'-) + c. L ·~ + D,i'l­

+ f t; ~ [ _ ff,, p~ y (:i'=- ,..._';/~ - J!i ps.v..Y IH ><'--~j] 
Suppose now that we know the solution at Po , y- 0 


and want to generate solutions at ~ , y ~ 0 • Then , )J

0

2AF.= :}t;i..> [-1* ~. (c,,-,Y-i) <~ z'--x~-~1> - Jt:~. f,V..Y (.(3(/'-y"J~ A- 2
· 0 

We use eqn. A.2.2. for the range Y= 0 to Tt/3 and for the range l:::. Tt/3 


to 21t/3, the perturbative increment can be regarded as 


l l\Wo [-)! rJ C..-. (\4'-Y)-1} <v."'- .~-r) 


- ffi f. {~(¥"-YJ} </3 (l"-'l) I 

A. z.3 
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This ·means that in the range y • n/3 to 2n/'J We look at the level that is 

obtained by an interchange ot the X and Z axes. 

The !unction which ia given bf eqn. A.2.2 in the 


region Y-:: 0 to n/3 and b1 eqn. A.2.3 in the region Y= n/'J to 2n/'J can 


now be Fourier expanded in the torm t(p ) + L~ (~0) cos n3y where
0 

.the boundary condition implies that t(P0 ) + lkn (P ):. 00 

The physics ot the problem is such that We prefer to 
'' 

have the expansion in powers or cos 'J•y•. Thie means we write the expansion 

in the torm "° 2,., .,..1 oO 2.1'

f ( ~o) + L l<,_n+ I en 3Y T L K,..,.. C•~ 3"( 
,,... 0 . .,.., 


which tor our problem can be approX:imated aa 


f ( #Jo) + Lt (Po) CP '3Y' -t- W (~.) etts2-3Y 


with 


and 

Thus we write the energy ae 

C( p.,Y) = C. { {\, Y-=oJ + f(P.) ~ U.{t\) eq 3T + W(,.) 
where 

f ( P.) + u.(p,J + w( ~o) = o 
Generalising now 



By suitable choice or l'o it will be possible to have 

To include now the pairing force we have to consider 

£" = 2 2 ~.., v: - A.,_/<; 

where 
A. 7.·4 

and 

A. 2· ~ 

Now 

where ~ ( ~.,Y) is known from the previous expansion. 

B7 a similar token we write 

'A
1 (p,,Y)= A( p.,-v~o) + 3(p0 ) + o.(A,) Ger'·~'( t b (P.)C4Jr.''-3

Y 

tl2
( p

0 
, Y) : /l'l. ( p,, y.,.o) T h(~.) + C( p.) U,, 3Y + cl ( p0 ) (;o-. 

2 

3Y 

where .l and h are not additional unknowns but satisfy the condition 

+ o._( /Ao) + b (fo0 ) ::. 0 

+ C ( ('0 ) + c:.<, ( p,,) = 0 

Since N and Gare constants independent or deformation , eqns. A.2.4 
' 

and A.2.5 now determine CL,/:,, c. and J.. In the eqns.A.2.4 and A.2.5 we 

put equal to zero the coefficients or cos 3y and cos2 3r • One then has to 

solve two simultaneous equations. 

Extension to the case where both p and y vary is straightforward. · 
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