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CHAPT1'-;R I 

INTRODUCTION 

After estimating the entries in a strictly positive doubly 

stochastic matrix, Sinkhorn observed that the row and column sums 

of the matrix A of the observed values are not equal to 1 due to 

the inherent errors of the experiment. 

To remedy this situation he scaled the rows of A to obtain 

a row stochastic matrix A1 and then scaled the columns of A1 to 

obtain a column stochastic matrix A • Continuing this procedure,2

he generated a sequence A1 , A2 , A ••• by alternately scaling the rows
3 

and colums of matrices. He observed, and eventually proved [5] 

that S =lim A exists and is doubly stochastic. The doublyn--') C'c> n 

stochastic matrix S can be directly obtained from A by a single 

scaling of each row and column of A. This is equivalent to pre 

and post multiplying A with properly chosen diagonal matrices D1 

and n2 • 

Later, Sinkhorn and Knopp [7] proved that if A is a non

negative square matrix and the sequence A1 , A2 , A ••• is generated
3 

as above, then S = lim A exists if and only if A has at least one 
n ·-?OE> n 

positive diagonal. Furthermore, S can be represented as S =n A D2 ,1 

where n1 and D2 are diagonal matrices with positive main diagonals, 

1 
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if and only if A has total support. They also proved that D1 and 

are unique up to a scalar multiple if and only if A is fullyD2 

indecomposable. 

Some of the results of Sinkhorn and Knopp quoted above 

were also obtained by Brualdi, Parter and Schneider [l] who 

used different techniques in their proof. 

A similar problem was considered earlie~.by Marcus and 

Newman [3]. Given a non-negative symmetric matrix A, under what 

condition does there exist a diagonal matrix D such that D A D is 

doubly stochastic? 

Marcus and Newman [3] gave the following sufficient 

conditions: A is strictly positive or A is positive semidefinite 

without a zero row. 

Brualdi, Parter and Schneider (1] gave the weaker sufficient 

condition: A has a strictly positive main diagonal. 

None of the above conditions is nesessary, as illustrated 

by A =(~ ;) • 

In this thesis we prove that the condition: "A has total 
1) 

support" is sufficient and necesBary. 

In Chapter II we review the relevant theory of non-negative 

matrices and present a theorem which serves as a tool in the proof 

of our main result in Chapter IV. Chapter III deals with stochastic 

matrices and also contains some other results which may be of 

1) After this thesis was writtea and the main result published 
in (9] , it was brought to our attention that Marshall and Olkin (10] 
obtained yet another sufficient condition, namely that the matrix is 
copositive. 

http:earlie~.by
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independent interest. Here we also explain how to construct all 

pairs (D1 , D2) of diagonal matrices such that D1 A D2 is doubly 

stochastic, from a single given pair with this property, and 

establish the relationship between D and D when A is symmetric.1 2 

In Chapter IV, we prove our main result, the DAD theorem 

for symmetric matrices and give a necessary and sufficient condition 

for the uniqueness of D. 



CHAPTER II 

NON-NEGATIVE MATRICES 

2.1 Decomposable and Indecompos~ble matrices 

Definitions. A real square matrix is positive (non-negative) 

if its entries are all positive (non-negative). We write A > 0 

(A~ O) to indica~e that the matrix A is positive (non-negative). 

An n-square matrix P = (pij) is a permutation matrix if there exists 

a permutation o-of the first n natural numbers such that P is defined 

by 
if j = 0 (i) 

if j J ~(i) 

A permutation matrix P = (p .. ) with all p .. =1 is called an 
l.J l.l. 

identity matrix and is denoted by I. It follows from the definition 

of a permutation matrix that (i) The transpose of a permutation matrix 

is a permutation matrix. (ii) The product of two permutation matrices 

of the same order is again a permutation matrix. (iii) The inverse 

of a permutation matrix is equal to its transpose. 

A square matrix A is said to be decomposable if there exists 

a permutation matrix P such that P A PT = (A1 
A3 

are square matrices and 0 is a matrix of zeros. 

If such a permutation matrix P does not exist, then A is 

indecomposable. 

4 
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Decomposable and indecomposable matrices are also called 

reducible and irreducible respectively in the literature. 

2.1.1 If A~ 0 is an n-square indecomposable matrix, then 

(I + A)n-1 } O. 

Proof. It suffices to show that (I+ A)n-1 
y) 0 for any 

non-null n-component vector y ~ o. 

Let z = (I + A) y. 

We will show that z has more positive components than 1 does. 

Assuming the contrary, from z ~ y (component wise) follows 

that the i~ component of z is positive if and only if the i~ 

component of y is positive. Choosing a suitable permutation matrix 

P, we can write P y = ( ~ ) and P z = ( ~ ) , where y 1 and y2 are 
1 2 

strictly positive vectors of the same dimension, say k. Let us 

write the matrix P A PT in the form (AA11 A12 ) where A and A
' 11 2221 A22 

are squo:.~::i:::.7~s2.is(~:):1:::k.~~) ( ~J . 
This gives A12 y =o. Since y ) O, we must have A12 =O,1 1 

violating the indecomposiblity of A. Since y has at least one positive 

component, (I + A) y he.a at least two, and by induction (I + A) 1 y 

has at least i+1 for i = 1, 2, ••• , n-1. In particular we wve 

(I + A~n-l y ) 0 for arbitrary non-null y. 

2.1.2 Let A f O be indecomposable. Then for any given i 
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and j, there exiGts an integer m) 0 such that 
(m)

aij ) 0 where 

(m)a.. 
1J 

denotes the (i,j) entry of mA • 

Proof. First consider the case when i p j. Let 

B = (b . .) 
1J 

= (I + A)n-1 = An-1 + (n-11) An-2 +. • .+ I ••• ( l) 

Since by 2.1.1 the (i,j) entry of B is positive, at least 

one term in the above expansion has a positive (i,j) entry. Hence 

(m) > O f 1 ,. / 1a ..J .or some ~ m~ n- •
1 

It remains to show th~t for arbitrary 1 ~ i < n, a .. (m) > O 
,~ ~ 11 

for some m. The case when a .. ) 0 is trivial. Suppose that a .. > 0 
11 1J 

(A being indecomposable can not have a zero row). Let m' be such 

that a .. (m') ) o. Then choosing m = m' + 1 we have 
1J 

Let A ~ 0 be an n-square Indecomposable matrix 

1with strictly positive main diagonal. Then An- ) o. 

Proof. The nonzero places of a product of non-negative matrices 

are determined by the nonzero places of the factors. Hence the 

nonzero places of An-1 are those of (I+A)n-1 and hence An-1 > 0 • 

2.2 Perron-Frobenius theorem 

We now state (without proof) some fundamental results on non

negative matrices. Perron proved these results for positive matrices 

in 1907 and Frobenius extended them to non-negrttive matrices in 1912. 

Theorem 2.1 (Perron and Frobenius) 

Let A ) 0 be an n-square indecomposable matrix, then 

(i) A has a positive eigenvalue~ of multiplicity one. 

(ii) The moduli of all other eigenvalues of A are less 

than or equal to /:J • 
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(iii) 	 There existn a positive eigenvector x corresponding 

to ,;:; . 
(iv) 	 If the number of eigenvalues of A of modulus /' 

is h and h} 1, then there exists a Permutation 

matrix P such that 

0 A12 0 ••• 0 

0 0 ... 0A23 

. . . • • • •
PAPT ••• (1)= 

• • • . • • . • • 

0 0 0 A
h-1,h 

0 0 ••• 0~,1 

where the diagonal zero submatrices are square. 

2.3 Primitive and Imprimitive matrices 

Definitions: The quantity fJ defin~d in theorem 2.1 is 

called the maximal root of A. Let h be the number of eigenvalues 

of modulus ~ • 

Then A 	is called primitive, if h = 1 and imprimitive otherwise. 

In the latter case h is called the index of imprimitivity. 

By definition1 primitive and imprimitive matrices are necessarily 

indecomposable. 

An imprimitive matrix with index of imprimitivity h ) 1 

is sometirnP,S called 'cyclic matrix of index h'. 
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2.3.1 Every positive integer power of a primitive matrix is 

primitive. 

Proof Let A be a primitive matrix with maximal root ~ 

and let m be any positive integer. Then, since ,,,c> is a simple eigen

value of A and is the only eigenvalue of A of its own modulus, 

is a simple eigenvalue of Am and is the only eigenvalue of Am 

of modulus /)m. Thus we need to prove only that Am is indecomposable. 

Assuming the contrary, let us suppose that for some v , A
'// 

is decomposable. Then we can a,ssume that 

••• ( 1) 

where and are square. 

Since A is indecomposable, by theorem 2.1, there exists a 

positive eigenvector y corresponding to the maximal root p such 

that 

A y = p Y• 

••• (2)Then 

Let y = (~~), where y1 ) 0 and y2 ) O. 

Then from (1) and (2) we have 

This shows that ;:iv is an eigen-value of A •
3

Since AT is also indecomposable and has /> as its maximal 

T
root, again by theorem 2.1 we have Az=;:>z, for some z ) o. 
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Repeating the entire process on we conclude as before 

that ;:-:> 
)! 

is also an eigenvalue of and hence of 
I 

1/Being an eigenvalue of both A and A
3

, jJ must be a1 

multiple eigenvalue of which is a contradiction. 

2.3.2 If A is primitive, then there is a power of A which 

is positive: 
11 

A ) 0 for some 11 # 1 

Proof Since A is primitive, by definition it is indecomposable. 

Hence by 2.1.2, there exists a positive integer m such that
1 

m1 	 (m1) (ml)
A = (a. . ) has all 7 0. 

l.J 

Again, since is primitive by 2.3.1 and hence indecomposable, 

Continuing in this way, we see that there exists a positive 

integer m such that Am = has all a. ~m) ) O. 
l. l. 

) o. 

Taking V = m(n-1), we have the desired result. 

Therefore by 2.1.3, 

2.3.3 If A ~ 0 is an imprimitive matrix with index of 

imprimitivity h) 1, then h = 2 if A is symmetric. 

Proof By the Perron-Frobenius theorem, there exists a 

permutation 	matrix P such that PAPT has the form 2.2(1). 

If A is symmetric, then so is PAPT and the form matrix 

in 2.2 (1) is symmetric only if h = 2. 

for some 

has 

as well as 
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2.3.4 Let A ~ 0 be an imprimitive matrix with index of 

imprimitivity h > 1. Then there exists a permutation matrix P such 
h, 

= £ A., where each is Primitive. (Here t designates
1i=1 

direct sum as in [3]). 

Proof The direct computation of the powers of PAPT of 

2.2(1) gives us PA~T = ~ A. • It can be shown that each Ai has the 
1i=1 

same set of eigenvalues. We need to prove that each A. is primitive.
1 

Assuming the contrary, let some A. be imprimitive. Then 
1 


Ah ( ) h
has at least h+1 eigenvalues of modulus ,tJ , where /' is 

the maximal root of A. This implies that A has at least (h+1) 

eigenvalues of modulus /:J which contradicts the hypothesis that A 

is an imprimitive matrix with index of imprimitivity h. 

2.4 Support and total support 


Definition Let A = (a .. ) be a non-negative n-square matrix. 

1J 

We say that A has support if there exists a permutation d" of the 
n 

first n natural numbers such that ;r A has 
i=1 

total support if it has at least one nonzero entry and for each 

a .. > 0 there exists a permutation er such that j = <r(i) and
1J 

n 
lT 
r=1 

2.5 Fully indecomposable matrices 

A square matrix A),, 0 is said to be Partly decomposable 

if there exist permutation matrices P and ~ such that PAq 

can be written in the form: 
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p A Q 

where and A are square matrices and 0 is a matrix of zeros.
3 

If no such P and Q exist, then A is said to be 

fully indecomposabl!• 

It follows from the definitions that every decomposable 

matrix is partly decomposable and every fully indecomposable matrix 

is indecomposable. 

Obviously, if a n-square matrix A ~ 0 is partly decomposable, 

then it contains a p b¥ (n-p) zero sub-matrix, for some positive 

integer p. 

2.5.1 Let A be a n-square partly decomposable matrix with 

total support, then there exist permutation matrices P and Q such 

that 

k. 
PAQ A.= ~ l 

where each A. is fully indecomposable.
l 

Proof By definition there exist permutation matrices 

=( ~~ :J P1 

and such that where andQ1 P1 A Q1 A1 A2 

are square. Since A has total support and A1 and A2 are square, 

A = 0 and both and have total eunport.A1 A23 

Thus p A A1 + A2 where A1 and A are square
Q1 = • 

1 2 
•matrices with total support (A1 + A2 is the direct sum of A1 and 

A2 ). If either A or A is partly decompos.qble, it can be decomposed 1 2 

similarly. 
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Thus the repeated apnlication of the above argument shows that there 

exist permutation mn.trices P and Q such that P A Q has the 

desired form. 

2.5.2 A symmetric primitive matrix A with total support 

is 	fully indecomposable. 

Proof. Sunpose that A is not fully indecomposable. Then 

•there exist permutation mntrices P and Q such that P A Q = A1 + A2 , 

where both and are square.A1 A2 
2 T T • T

Let S = P A Q • Th.en P A P -- A1 A A A1 + 2 2· 

Th.is shows that A
2 is decomposable, which is a contradiction, because 

from the primitivity of A follows the primitivity and indecomposability 

2of A • 

Corollary. If A is a symmetric partly decomposable matrix 

with total support, then A is either decomposable or an imprimitive 

mntrix with index of imprimitivity h =2. 

Proof. By 2.5.2 A cannot be primitive. Hence A is 

either decomposable or an indecomposable matrix with index of 

imprimitivity h ) 1 and by 2.3.3, h =2. 

2.5.3 Let A ij 0 be a symmetric imprimitive matrix with 

total support. Th.en there exists a permutation matrix P such that 

where the diagonal zero submatrices are square and A is fully1 

indecomposable. 
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Proof Since A is symmetric, by 2.3.3 its index of imprimitivity 

is 2. So, by the Perron-Frobenius theorem there exists a Permutation 

matrix P such that 

p A PT =( 0 T 	 A1) 

0 J
A1 

where is a square submatrix and 0 is a square matrix ofA1 

zeros. We now show that is fully indecomposable.A1 

Assuming the contrary there exist permutation matrices P1 

and such that = B +· B
2

, where B and B areQ1 P1 A1 Q1 1 1 2 

square matrices with total support. 

Then =P~ (B1 +• B2 ) Q~ andA1 

This shows that is decomposable.A1 AT 
1 

2 = A1 1
Since P A2 PT = ( P A PT) A~ +• A~ A there exists a 

permutation matrix S such that S A2 ST is the direct sum of more 

than two indecomposable matrices. This contradicts the fact that 

the index of imprimitivity of A is 2. 

2.5.4 Combining 2.5.2 with 2.5.3, we can now state the 

following. 

Theorem 2.2. Let A ~ 0 be a symmetric i.ndecomposable matrix 

with total supoort. Then either A is fully indecomposable or else 
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there exists a permutation matrix P such that 

where A is fully indecomposable.1 

As a corollary of the above theorem we obtain the following. 

Theorem 2.3. Let A be a symmetric non-negative matrix with 

total su~port. Then there exists a permutation matrix P such that 

PA PT is the direct sum of m~tricP-s A1 , A2 , •••~, where each A. 
1 

is either fully indecomposable or else is of the form Ai = (:~ Bi' 

i oi} 
where Bi is fully indecomposable and is a matrix of zeros.o1 



CHAPTER III 

STOCHh.'3TIC MATRICF,S 

Definitions: A non-negative square matrix A is called 

~ow-stochastic (column stochastic) if all its row (column) sums 

are equal to one. 

A is doubly stochastic if it is both row stochastic and 

column stochastic. 

3.1. Some fundamental results on doubly stochastic matrices 

The following theorem, due to Konig [3] forms the basis of 

many results known about doubly stochastic matrices. 

Theorem 3.1 (Konig). Every doubly stochastic matrix has a 

positive diagonal. 

Corollary 1 (Birkhoff). Every doubly stochastic matrix is the 

convex combination of permutation matrices. 

Proof. Let S be a doubly stochastic matrix. We then have 

to show that there exist permutation matrices P1 , P
2

, ••• Pk and 

positive numbers t1 , /.. 2 , ••• ~k such th.'1t S = A. 1 P1 + /\. 2 P2 +•••+ Ak Pk 

where 

Since 	 S is a doubly stochastic matrix, it has a positive 

such. sdiAgonal. Let s 1 ~( 1 )' s2 cy(2 ) •••sn 'T'(n) be one If is not a 

perllUtation matrix, then taking /\ 1 = min si o-( i) we can write 
1,i~n 

where is a permutation matrix having 

1's in the positions (i, cr(i))' i =1, 2, ••• n and is aR1 

doubly stochastic matrix. 

15 



16 

We observe that the doubly stochastic matrix containsR1 

more zeros than s. 

We can then decompose R in the same way and get
1 

where ares • A-1 p1 + f,2 p2 + <1 - ~1 ~ ) R2 , P and P2 1 2 

permutation matrices and R is doubly stochastic.2 


Continuing this way, we get finally 


s = A1 P1 + /.- 2 P2 +•••+ tK PK+ RK 

where Rk is a matrix of zeros and f'- 1 + 1 +•••+ ;{k = 1.2 

Corollary 2. Every doubly stochastic matrix has total support. 

Proof. The proof follows immediately from the Corollary 1, 

because every doubly stochastic matrix S is the convex combination 

of Permutation mRtrices P. has total support.
1 

Corollary 3. (Perfect and Mirsky). Let A be an arbitrary 

matrix of order n. Then there exists a doubly stochastic matrix S 

of order n such that the non-zero plnces of S are precisely the 

non-zero places of A, if and only if A has total support. 

Proof. If A has total support, then for such non-zero 

place (i,j) of A there exists a permutation matrix which is non-zero 

at (i, j). Taking such permutation matrices (one for each non-zero 

entry of A) and taking their arithmetric mean, we obtain the desired 

doubly stochastic matrix. 

On the other hand, we know from Corollary 2 that every 

doubly stochastic matrix A has total support. 
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3.2 Doubly stochastic limit and its diagonal represenation 

Definition. Let A7/ 0 be a square matrix with a positive 

diagonal. Then the sequence of non-negative matrices { 'It} obtained 

from A by alternately normalizing the rows and columns of A converge 

to a limit S which is doubly stochastic. This limit is called the 

doubly stochastic limit of A. 

We recall Sinkhorn and Knapp's result that the diagonal 

representation of the doubly stochastic limit S in the form D A D2 ,
1 

where and n are diagonal matrices with positive main diagonalsD1 2 

is possible if and only if A has total support .. and D and n are1 2 

unique up to a scalar factor if and only if A is fully indecomposable [?]. 
The above result is used to prove the following. 

Lemma 3.1. Let a non-negative n-square matrix M be the 

direct sum of k fully indecomposable matrices M.' i = 1, •••k 
k. k, 1 

and let D1 = L. Si and D2 = °CT. be diagonal matrices such
1i=1 i=1 

that is doubly stochastic. Then if n• and n• are diagonal
1 2 

matrices with the property that D1 M D2 is also doubly stochastic, 

there exist positive numbers ~l' of... 2 • • • c{k su"h that 

k. k 
n• = z. o(. Si and D* - z:~ Ti.1 1 2 - 1. ii=1 1= 

k, 
Proof. Since M D T. is doubly stochastic,D1 = L: Si M.2 1 1i=1 

so is each Si Mi Ti. 

k • k, 

Let D"' = z::::. x. and n• - ~ Y.
1 1 2 - 1i=1 i=1 

Then, since D"' M D"' is also doubly stochastic, we similarly1 2 
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conclude that so is each X. 
l. 

M. 
l. 

Y.• 
l. 

It follows that S. 
1 

M. 
1 

T,
l. 

= X. 
1 

M. 
l. 

Y.,
l. 

i = 1, 2 ..• K. 

Moreover, since each M. is fully indecomposable, by the uniqueness
l. 

part of the theorem of SinKhorn and Knopp (7] , there exist positive 

numbers o<.1 , o\2 •.• o<,k such that x = d.. i Si1 

i = 1, 2 ... K. 

and, y = .:r.1 T. 
V\l. 	 1i 

3.2.1. Assuming that A is a partly decomposable matrix with 

total support, we will show how to generate all pairs (Gl, G2) of 

diagonal matrices such that G A G is doubly stochastic, given
1 2 

any pair (Dl, D2) with the same property. 

There exist permutation matrices p and Q such that 

A* = P A Q is the direct sum of K fully indecomposable matrices 

Al, 	A2 ... AK. 

Let S = D1 A D2 , then Di A* D2 is also doubly stocbasti~, where 
K, 

D' = P D PT and So, we may write D' - S,
1 1 	 1 - L. l.i=l 

k 
and 	 D' = r Ti where s. and Ti are diagonal matrices of the 

2 i=l 	 l. 

same 	order as the order of A.• 

Now, if (D1, D2) is any other pair of diagonal matrices 

l. 

such 	that D" A* D" is also doubly stochastic, then by Lemma 3.1,1 2 

there exists positive numbers o\ 
1

, o\2 ... o\ K such that 

K, k. 
D" = L ,,L • s. and ·D" = ~ 

1 
T .•1 - .... 1. l. 2 o<, i l.i=l 	 i=l 
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k 

Now let G1 = PT ( ~,;.. s. ) p and let 


. 1 1 11= 
k 

G2 = Q ( E cf.
1 

. T.1 
) QT, 

i=1 l. 

Then G1 A G2 is doubly stochastic. 

Theorem 3.2. Let M be an indecomposable symmetric non-negative 

matrix with total support and let and be diagonal matricesD1 D2 

with positive main diagonals such that D1 M D2 is doubly stochastic. 

Then n = p D for some p ) o.2 1 


Proof. By theorem 2.2, either M is fully indecomposable 


p
or else there exists a r· ·rmutation matrix such that 
M'I \

P M PT = M• where M1 is fully indecomposable.= (~~ o)' 
We consider the two cases separately. 


Case 1. M is fully indecomposable. 


Let D1 M D2 =S. 


Then since S
T =D2 M D1 is also doubly stochastic and 


D and n are unique up to a scalar multiple, it follows that1 2 


= p D1 for some p ) o.
D2 

Case 2. M is not fully indecomposable. 

Let D' and D' are diagonal matrices w]th positive main
1 2 

diagonals such that D1 M• D2 is d~ubly stochastic, where Di and D2 are defined as 

follows: T10 

s2 

' 

)' 02 = ( 0 ~) 
0 ~1M1T2)= T( S2M1T1 

THere s1M T and S2M1T1 are doubly stochastic and so
1 2 


T T

is (S2M1T1) = T1M1S2. 

Then 
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Since M is fully indecomposable, it follows that1 

= p s1 and T = p s2 for some p / o.T1 2 

Hence D'2 = p D'1 for some p > o. 

Now, taking = P 
T 

D.J P we have theD1 

required result. 

Remark. When A is decomposable and n A D is doubly1 2 

stochastic, the relation between D and n is exhibited as follows:
1 2 

There exists a permutation matrix P such that P A PT is 

the direct sum of indecomnosAble matrices A1' A2' Ak. 
D(1) D(k) D(1) ... D(k)Let ... and be the diagonal1 ' 1 2 2 

D(i) D(i)matrices such that A. is doubly stochastic. Then1 l. 2 
k .. 

= PT ( }.D(i))P = PT D(i))Pta~ine- D1 and D2 (~ we see that 
. 1 1 2 ' 
l.= i=1 

D1 A D is doubly stochastic and in view of the above theorem, each2 

D~i) is a scalar multiple of D~i). 

3.3 '~he diagonal equivalence of non-negative matrices to 

non-negative matrices with prescribed rowa. 

In this section, we extend a. result or· SinKhorn about 

strictly positive matrices to the cace of certain types of non-ne~ative 

matricec. 

As a tool we use a sufficient condition of Brualdi, Parter 

and Schneider [1J for the existence of a diagonal matrix D 

such that D J\ D is row stochastic, quoted in Chapter I. 

3.3.1. In [6] Sinkhorn proved that corresrionding to each 

strictly positive matrix il there exist a unique row stochastic matrix of 
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the form D A D, where D is a diagonal matrix with positive 

entries. 

As a corollary he proved the following: Corresponding to 

each positive n-square matrix A and each set of positive real 

numbers· p, p2 ,
1 

... p 
n 

there is a unique matrix of the form DAD 

with row sums where D is a positive diagonal 

matrix. 

We generalize this for non-negative matrices. 

Theorem 3.3. Let A be a non-negative n-square matrix with 

a positive main diagonal and let p
1 

, ••• pn be given positive 

numoers. Then there exists a unique matrix of the form D A D 

with I'IOW sums where D is a diagonal matrixpl' P2' •.• pn' 

with positive main diagonal. 

and let A. 

Then B has a positive main diagonal. By [1] , there exists a 

positive diagonal matrix D such that D B D is row stochastic. 

Let S = D B D. Then 

D A D. 



CHAPTER IV 

THE DIAGONAL EQUIVALENCE OF A NON-NEGATIVE SYMMETRIC 


MATRIX TO A DOUBLY STOCHASTIC MATRIX 


4.1 The D A D Theorem 

In this section, we establish a necessary and sufficient 

condition on a non-negative symmetric matrix A such that there 

exists a diagonal matrix D with positive main di~~onal with the 

property that D A D is doubly stochastic. 

Definition. A non-negative matrix A has Property D if 

there exists a diagonal matrix D with positive ma.in diagonal such 

that DA D is doubly stochastic. 

Theorem 4.1. Let A7/ 0 be a symmetric matrix. Then A has 

Property D if and only if A has total support. 

Proof. Since every doubly stochastic matrix has total support, 

it follows that if A has property D, then A has total support. 

Now, let us assume that A is a non-negative symmetric matrix 

with 	total support. Then we distinguish between the two cases. 

Case 1. A is indecomposable. 

By theorem 3.2 there are diagonal matrices n and1 D2 

with positive main d:J.agonals such that D A n is doubly stochastic
1 2 

and = ~ D for some P7 o.n2 1 

If we now choose D =\Jli" n
1 

, then DAD is doubly stochastic. 

22 
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Case 2. A is decomposable. 


Then there exists a permutation matrix P such that 

k ' 
:Z:::. A. ' where each A. is a symmetric indecomposable 

i=1 1 l. 

matrix with total support. 

By C:ase 1, there exist diagonal matrices D1 , D .••• DK2 
such that D. A. D. is doubly stochastic, for i = 1, 2, ••• k. 

l. l. l. 
k, le.T,k,

Now let D = PT ( ::E:: Di) P. !!'hen DAD= P L Di.L J\. t, Di) p 
i:1 i=1 i=1 l. 

is doubly stochastic and the theorem is proved. 

Remark. It is easy to see that the result of Brualdi, Parter 

and Schneider quoted in Chapter I about the existence of a non-negative 

diagonal matrix D such that D A D is doubly stochastic, follows 

as a special case of theorem 4.1. 

For, if a symmetric matrix A = (a ..)~ 0 has a positive
l.J '/ 

(',i")
main diagonal, then every non-zero element a .. 1 J is associated

1J 

with a positive diagonal consisting of and all other mainaij' aji 

diagonal entries of A excepting aii and ajj• 

4.2. Uniqueness in the D A D theorem 

Let A7; 0 be a symmetric matrix with total support and 

let D~O and G);O be diagonal matrices such that DAD and GAG 

are doubly stochastic. Then, since the doubly stochastic limit of 

A is unique, it follows that D A D = G A G. 

It is therefore natural to ask when D is unique. We deal 

with this problem in the present section. 
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Lemma 4.1. Let AQ' 0 be a symmetric fully indecomposable 

matrix. Then there exists a unique diagonal matrix D)/ 0 such that 

D A D is doubly stochastic. 

Proof. The existence of D is a part of theorem 4.1. We 

prove only uniqueness here. 

Let D7/ 0 and G 7/0 be two diagonal matrices such that 

D A D and G A G are both doubly stochastic. 

Let B = D A D. th.en G A G = G D-1 B D-1 G. Since A is 

fully indecomposable, so is B and by the theorem of 

Sinkhorn and Knopp, there exists a positive number of.. such that 

1G n- = J. I and D-1 G =l I, where I is an identity matrix of 

the same order as the order of B. 

The above equalities are s.,1tisfied only if .( = 1 and 

therefore D =G. 

Theorem 4.2. Let Aq O be a symmetric matrix with total 

support and let D4' 0 be a diagonal matrix such that D A D is 

doubly stochastic. Then D is unique if and only if there exists 

a permutation matrix P such that P A PT is the direct sum of 

fully indecomposable matrices. 

T • •Proof. Let PAP =A + A2 + ••• + ~ and let1 

D = PT (D +D2 +••• +Dk) P, where the order of n is the same
1 1 

as the order of Ai. 

Now, D A D is doubly stochastic if and only if 

P D A D PT = (P D PT) (P A PT) (P D PT) is doubly stochastic. 
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But this is doubly stochastic if and only if each of the matrices 

D A. D. is doubly stochastic, for i =1, 2, ••• k.
i 1 1 

Clearly, D is unique if and only if each D. is unique.
1 

If each A. is fully indecomposable, then the uniqueness of each 
1 

D. follows from Lemma 4.1. 
1 

If some A. is not fully indecomposable, then by theorem 2.3. 
1 

A. where B. is fully indecomposable and 'O' is= G~ :i)·1 1 

1 

=D. 1 +• D. 2 ,a matrix of zeros. We may then write D. where 
1 1 1 

B. is doubly stochastic.Di1 Di21 

In this case for an arbitrary o< >o we can define 

1 
Gi = o(i Di1 + Di2 and ~ 

• • • , • • •G PT (D += 1 + D2 + ••• + Di-1 + Gi + Di+1 ••• + Ik' p 

Then G A G is doubly stochastic. 

Remark. From the proof of the theorem 4.2 we can see that 

if D is not unique, then there exists a simple relationship 

between D and all other diagonal matrices Gt/ 0 such that G A G 

is doubly stochastic. 

McMASTER UNIVE.RSITY \.~l'tMff 
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