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PREFACE

In this century, a great deal of work has been done in the theory
of groups and in the theory of semigroups., To the extent that monoids
are special semigroups and groups are special monoids, we also know some-
thing about monoids, Moreover, there have appeared some papers dealing
exclusively with monoids, usually abelian monoids, As far as the author
can determine however, these have been relatively few in number; also,
no really systematic treatment of monoids by themselves has yet appeared,

This paper attempts to provide an elementary introduction to the
theory of abelian monoids, Most of the results are quite standard, or
at least routine, As far as the author can determine, however, most of
the results found in Chapter 1, § 3, Chapters II and III, and Chapter IV,

$§ 6, 7 are new,
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NOTATIONS

Any notations that are not standard are introduced as the need aris u.

A partial summary of the notations used is included here for the reader's

convenience.

[ W]

there exist (s)

such that

<

for any

R

is isomorphic to

is a submonoid of

is a connected submonoid of

is a normally connected submonoid of
covers

join

meet

M D> < e« D K A

belongs to
£,(A) {ea) | aen}
=> implies
< if and only if
f: A-—B f is a function (or morphism)from A into B

atr—> x a is mapped into x.

(vi)
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CHAPTER I

PRELIMINARY NOTIONS

§$ 1: Introduction

Definition 1; A monoid is an ordered triple (M, *, i), where

is a set, . is an associative binary operation on M, i € M, and

m= iem, for any m ¢ M, We call i the identity element of the

monoid, If moreover asb = b-a for any a, b ¢ M, then we call

(M, -, i) an abelian monoid. V4

Remarks: 1. We shall observe the usual convention of referring

to a monoid in terms of its underlying set only,
unless there is ambiguity,

2., When the monoid's operation is denoted multiplicatively,
we shall usually denote its identity by 1.

3. When the monoid's operation is denoted additively,
we shall usually denote its identity by O,

4, Unless indicated otherwise, we shall normally write

monoids multiplicatively. Y4

Notations: 1. The class of all abelian monoids will be denoted OT.

2. The class of all abelian groups will be denoted
&b, V4

Definition 2: Let M, N be monoids, Let f: M-—3 N, We say




f is a morphism of monoids (or monoid homomorphism) if and only if

f(1) =1 and f(xy) = £f(x) £f(y) for any x, y ¢ M, V4

Definition 3: Let M be a monoid, and let N &€ M, We say N

is a submonoid of M, denoted N <M, if and only if 1 € N and,

X, ye N implies xy ¢ N, V4
If (Ni)ieI is a family of submonoids of a monoid M, then
it is easily seen that g c‘i Ni <M., Thus, it makes sense to talk

about the submonoid of M generated by some subset S of M; namely
NN, where N = {N<u| sen},

Notationally, if a € M, then we will denote the submonoid
generated by a, by <a >, Of course, <a > = { 1, a, az, a3, ...} .
Also, we will have occasion to refer to { 1, az, 33, ...} , and this
will be denoted < a >', It should be noted that <a > and <a >\ {a}

are not necessarily the same,

Definition 4: Let M be a monoid, and let N < M, Then we say

N is finitely generated if and only if there exists S € N such that N

is the submonoid generated by S, and S is finite, . y/4

Two monoids which come to mind most readily are the set {O, 1, 2, ...}
under addition, and the set {1, 2, 3, ...} under multiplication. The
former set will be denoted No, while the latter will be written N ,

When considered as monoids, the operations will be as above unless other-
wise stated,

Notatic;nally, we will use Z to denote the set of rational integers,

and when considered as a monoid, the operation will be assumed to be addition,



Occasionally we will refer to IR , and this will be understood
to be the set of real numbers,

It is assumed that the reader is familiar with the concept of
congruence relation - in our case an equivalence relation 6 in an
abelian monoid M such that a®b, x@y implies ax@by, for all
a, b, x, y ¢ M, The set of congruence classes will be denoted M/ @,
and of course this is also an abelian monoid under the induced operation,

One particular congruence relation is introduced hbelow - one
which at first glance may seen somewhat unnatural, The main reason for
introducing it is that it results in a quite satisfactory theory of factor

monoids with respect to a submonoid,

Definition 5: Let N < M¢ Ot, Then ~ (N) is the binary relation

in M defined by x~ y (N) if and only if there exist n, n' ¢ N such

that xn = yn', V4

Proposition 1: Let N <Mge 01,

Then ~ (N) is a congruence relation, /4

Proof: That the relation is reflexive and symmetric is clear,
Also, x~y (N), y~ 2z (N) implies there exist n, n', q, q' ¢ N such
that xn = yn', yq = zq', and so xnq = yn'q, yqn' = zq'n', n,q,n’',q' € N,
Thus, x(nq) = z(q'n'), nq, q'n' ¢ N, whence x~ z(N), It follows
that ~ (N) is an equivalence relation,

Moreover, xay (N), aab (N) implies there exist n, n', q, q' e N
such that xn = yn', aq = bq', Thus (xa)(nq) = (yb)(n'q'), ng, n'q' € N,

and 8o xaa~ yb (N), V4



Corollary: Let N < Mg OU,

containi

Then M /~(N) ¢ OU, whose identity is the congruence class

ng 1.

Proof: Clear. V4

Notation: Let N<Me R, Then M/~ (N) is denoted M / N, /

Theorem 1: Let N <Mg¢g O,

Let p: M~ M/N by m l-->'r-n., where m is the congruence

class containing m, Let M' ¢ A, Let f: M—>M' be a morphism of

monoids such that f(n) =1 for any n ¢ N,

Then there exists a unique g: M/N —> M' such that f = gep,

(Illustiation:
P
M ——— M/N
P
<F X :
IYOSEYA LY F‘. )

Proof: The uniqueness of g is clear, as p 1is onto,

Indeed, the only possible candidate for g is given'by

p(m) V= f(m) for any me M, All we have to do is check that this is

well-def
that xn

so f(x)

ined, Now, p(x) = p(y) implies there exist n, n' €¢ N such
= yn', whence f(x) f(n) = £(y) f(n'), f(n) = £f(n') =1, and
£(y). /4

Proposition 2: Let Me¢ O , Let N be a subgroup of M (i,e,

N<M, N

e MAb), Let x, ye M,

Then x~ y (N) if and only if xN = yN,



Proof: =»): x~y (N) implies there exist n, n' ¢ N such
that xn = yn', whence xnN = yn'N, n, n' ¢ N, and so xN = yN,
< ): xN=yN implies x-1=y.n, 1, n e N, Then

x ~y (N) follows, and we are done, /4

§ 2: Connected Submonoids

Definition 6: Let N < M¢ O, We say that N is a connected

submonoid of M, denoted N X M, if and only if n, nx ¢ N implies

x ¢ N, /4

We note that this concept goes by at least two other designations
in the literature, In [ 9 J, N is called closed; while in [10 ], N
is said to have the isolation property., The fact that the nomenclature
has yet to be standardized is what prompts us not to hesitate in using
our own, It was felt that the condition n, nx ¢ N implies x ¢ N
suggested connectedness more than isolation, as an intuitive concept;
while "closed" seemed somehow too strong,

Perhaps the most immediate motivation for considering connected

submonoids is the following observation,

Proposition 3: Let N < Mg O,

Then N X M if and only if there exists f: M -—» MY a

morphism of monoids such that N = Ker f=={m e M |f(m) =1 }.

Proof: €=): Let f: M~—>M' be a monoid homofrphism such

that N = Ker f. Then n, nx ¢ N implies f(n) = f(nx) = 1; that is,



f(n) = 1, f(n) £(x) = 1, whence f(x) =1, and so x e N. Thus, N ¥X M,

=>»): Let N
Now, n e N implies n-1 =
ne¢ Ker £ is clear. Also,
exist x4 y € N such that

followse Thus, N = Ker f.

X Me Let f: M—>M/N be the natural map.
ln, 1, ne N, and so n~~ 1 (N). Then
n € Ker £ implies f(n) = 1, whence there

nx = ly. Then x, nx ¢ N, and n ¢ N

V4

Corollary: Let N<Me AL

Let f: M—>»M/N b

e the natural map.

Then N X M if and only if N = Ker f.

Proof: Clear.

V/4

Theorem 2: Let N X M e OT.

Then the following ar
l. M/N is a

2e For each

e equivalent:
group.

x € My there exists y ¢ M such that xy ¢ N,

Proof: Let p: M —> M/N be the natural map.

1=»2): Let xe M. As M/N is a group, we know there exists

yeM

pixy)

that

such that p(x) p(y) = 1. Then we have
= p(1); and so there exist n, n' ¢ N such

xyn = n', which implies n, nxy ¢ N, whence

xy € N.

2=P»1): Let pl(x) € M/N, Then there exists y ¢ M such

that

p(y)

Example: Let n € N

order ne

xy € No It follows that p(xy) = p(1); thus

is the inverse of p(x). : V4

. Then No/<n> isa cyclic group of

V4



Example: Let n ¢ N, n>1l, Let P= {xn‘ x € N}. Then
N /P is an infinite group such that every element has order a factor

of n, /4

Proposition 4: Let Me Ol , Let N be a subgroup of M,

Then N X M,

Proof: Let n, nx ¢ N, Then n-l, nx ¢ N, and so n"inx e N;

thus x ¢ N, V4

Proposition 5: Let M e M b,

Then N X M if and only if N is a subgroup of M,

Proof: =$»): x ¢ N implies x, xx L e N, which implies

x c N,

<=): Proposition 4, V/4

Definition 2: Let Me O , Then M* = fxchHycM-%xy:l}.

The elements of M* are called the units of M, If M* = {1}, then

we say that M is rigid. /4

Remarks: 1, M* is a subgroup of M, and contains every subgroup
of M,

2. M/M* is rigid. V4

Lemma 1: Let 1 # a ¢ Mec O such that 1, a, a2, 33, «ss are

+ e
not all distinct, Then there exist v, m ¢ N such that 1, a, a2, cee at " 1

C e r+m r . .
are distinct but a = a , Moreover, there exists a unique n ¢ N such

that r <n<r+m-1, mdivides n and a" is an idempotent,

Proof: See Clifford and Preston [ 3; Theorem 1.9, p. 20 ]. 4



Theorem 3: Let Mg O,

Then the following are equivalent:
l. NXM=>N=-M or N= §1}.
2. M satisfies one of the following:
i M= {13.
ii M is a cyclic group of prime order.
iii There exists @ ¢ M such that © £1, x & = 6
for any x € Mj; and for each a € M such that
a #1, there exists n(a) ¢ N such that an(a) = 6.
Proof: 2=p1): i Trivial
ii N XM implies N dis a subgroup of M,
and so N = {1} or N = M.
iii Let {1} £ N X M. Then, there exists

ae N such that a £1, and so 8= an(a)c N

.

Thus, 8, O@x e N for any x ¢ M, which

implies x e N for any x e M, Hence N = M,

1=p2): Assume M £ {13} .

As M* X M, we know M* ={1}or M* =M, If M* =M, then N¥X M
if and only if N is a subgroup of M. It follows that M has no non-
trivial subgroups, and so M is a cyclic group of prime order.

Assume M* £ M; i.ee M* = {1}.

For each u ¢ M, define

Tu) = fxe M| 3 p, qge No 5. WwPx =ul Y.
Clearly 1 ¢ T(u). Also, x, y € T(u) implies there exist 1p, q, ry s ¢ No

such that uPx = uq, ury = us; whence up+rxy = uq*s, p+r, q+8 € AV, 3

it follows that xy eT(u). Moreover, x, xy ¢ T(u) implies there exist



Py Qy 'y 5 € No such that upx =

WP - w8, vP Ty = wP*®, and so u*Ty = uP*®; nence y e T(w.

q’ urxy = u®. We then see that

Thus, T(u) XM for any ue M. So we have that 1 £ u e M implies
T(u) =M (as u e T(u)). .

Let 1 £acMe Now M* = §f1} 3 so a2 # 1. Thus, T(a®) = M
and hence a ¢ T(az). It follows that there exist  p, q ¢ No such

a2p+1 - 2q

that azPa = azq; that iS, a [ p-’ q € NOQ Thus’ 1, a’ az’ L)

are not all distinct and a £ 1. Hence, there exists n(a) ¢ N such

that an(a)

is an idempotent, (Lemma 1). Moreover, RICY /1.
Thus, M = T(an(a)')
{xc Ml 3 Py q € No - an(a)px= al’l(a)q }

{x enl an(a)x - an(a)} .

an(a)

n(a)
x

i.e. a for any x ¢ M.

Now this is true for any 1 £Aac¢ M., As a, b ¢ M\{l} implies

an(a) = an(a)bn(b) = bn(b), define 6 = n(x) V xe M\ {1}. It is

then readily seen that @ has all the desired properties. 4
Corollary: Let Me A.

Then the following are equivalent:
1. N<M implies N= {1} or N =M,
2. M satisfies one of the following:
i M=1{11}.
ii M is a e¢yclic group of prime order.

iid M={1, e}, e =e#1.

Proof: 2 =%1): Clear.



10

1 =>2):Now, N XM implies N <M which implies

N={1} or N =M, Thus, by the theorem,

M= {1}, or M is a cyclic group of prime

order, or there exists & ¢ M such that @ # 1,
x® =0 for any x e M, and for each 1 # ac M
n(a) _ o

there exists n(a) ¢ N such that a

Assume M # {1} and M is not a cyclic group of prime order.

Then fl,G} <M, Hence, M= {1,601}, V4

Let Me O , Let (Ni)icI be a family of connected submonoids
of M, It is easily seen that i,ch Ni X M. Thus, we can make the

following definition,

Definition 8: Let NE€ Me¢ O , Then the connected cover of N,

denoted con N, is given by n?‘, where ¥ = iS{MINE s}. V4

Proposition 6: Let N <M ¢ Q.

Then conN={ycM13ch-§-xycN}. .

Proof: Let A= §yeM)3Ixec NaxyecN}. Clearly, A€ con N,
Now, 1 ¢ A is clear, Let y, y' ¢ A, Then there exist = x, x' ¢ N such
that xy, x'y' ¢ N, which implies (xx')(yy') ¢ N, =xx' ¢ N; thus yy' ¢ A,
Also, let y, yy' € A, Then there exist x, x' € N such that
xy, x'yy' € Ny that is, x(x'yy'), xy € N, It follows that [x'(xy)ly' ¢ N,
x'(xy) ¢ N, whence y' ¢ A, Thus, A XM, Also, n ¢ N implies 1n, 1 ¢ N,
which implies n € A, Hence, N@® A X M,

Thus, con N = A, ‘ y/4



2
X =

11

§ 3: Normally Connected Submonoids

Notation: The class of all abelian monoids M such that

x implies =x = 1, is denoted J. /4

Clearly, ARb € & O

Definition 9: Let N <Me N . Ve say that N is a normally

connected submonoid of M, denoted NA M, if and only if a, b e N,

2

ax =

bx implies x ¢ N, V/4

The motivation for considering normally connected submonoids is

contained in the following.

Proposition 7: Let N < Mg .

Then N A M if and only if there exists f: M—> M', M' ¢ <J,

such that f is a monoid homomorphism and N = Ker f.

Proof: €&=): It is clear that Ker f < M,

Let a, be Ker f, x ¢ M such that ax® = bx. Then f(a) f(x)2 =

f(b) £(x), é, b ¢ Ker f. Clearly, f(x)2 = f(x) ¢ M' ¢, whence

f(x)

Then

Thus

= 1, which implies x € Ker £,

Thus, Ker fA M,
=>): Let NA M, Let f: M- M/N be the natural map.
NA M impiies that n, nx ¢ N == nx® = (nx)x, n, nx ¢ N =% x ¢ N,

NXM, and so Ker f = N, ' V4

Corollary: Let N A Me ON.

Then N X M,
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Proof: Contained in the proof of the proposition. V4
et Mg OU , Let (Ni)icI be a family of normally connected
submonoids of M., Then it is easily seen that ]ﬂ Ni a M.

Definition 10: Let N € Me¢ Al . Then the normally connected

cover of N, denoted con N, is given by ﬂr, where

*-{sau| nes}. V4

Proposition 8: Let N<Me O

Let D={ch‘3ncN-)-d2=nd}o

Then con N = con D.

Proof: It is clear that N < D  con D < con Ne¢ Thus, it remains
only to show that con DA M,

Let kl’ k2 € con Dy xe M such that llez = kX« Since kl' k2 € con D,

2
3 m
we have there exist dl’ d‘2 €¢ D such that kldl’ k2d2 € D. Therefore
2 . R 2
4,4 %% = djdkx which implies [(d;k,) dZ] x° = [(daka) dl] xe That
. 2
is, there exist d3, dl; € D such that d3x = dl*x.
R 2 2
Now there exist n3, n, € N such that d3 = 3c13, d‘+ = n,_’dh.
2
2.2.2 2
= djdzx" = djd.d, x
= 2 _
(dud3x) = nl}dud}dux
2
= n#dkde

= (dudsx)z - nﬁmhan), n2 e N
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=5 dude e Dy dth eD
=> x ¢ conD.
Hence, con DA M, V4

Theorem 4: Let M e .
Then the following are equivalent:

£1Y or N =M

1. NAO M implies N

2. NYXM implies N = §1} or N=M

3, N<M implies N §1} or N=M

"

Lk, Either M = {1} or M is a cyclic group of prime order.

Proof: 4 =% 3 =% 2 = 1): Clear.
1=>L4): Let ac M and assume aa;ll. Then -c-:-cE<a2>:M,
and so M = con D, where D={ch‘ 3 rcN0'9' dzzaard}. In
particular, a ¢ con D and so there exists d €¢ D such that ad ¢ D,

whence there exist r, s ¢ Mo with &® - o™ d, (ad)? = a%% (ad).

2r+2 2s+1
a d a

It follows easily that = de
Let m= | (2r +2) - (25 +1) |, and note that m £0. It is
not difficult to show that a'd = a* "X 4 for any x ¢ No and for

any ueNo with u_>_min{2r+2, 25 + 1§ .
Now, let t ¢ No such that t_>_minf2r+2, 25+1} and

tE -2r (mod m). Then t= 2t + 2r (mod m), and so 2t + 2r = t + mx,

for some x ¢ N o. We can then argue that (atd)2 = aztdz = aataard

2t+2r t+mx t
a d a

d = adoe It follows that atd =1, and so a ¢ M*,

Thus, a2 #1 =% acM* and hence M is a group. Now it is
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easy to see that every subgroup of an abelian group is normally connected,

and so M is a group with no non-trivial subgroups. The result follows. //

Lemma 2: Let M be an abelian monoid such that for any a, b, x ¢ M,
ax® = bx implies there exists n ¢ N such that (ax)® = bv".

Then every connected submonoid of M is normally connected.

Proof: Let N ¥ M, Let xe M, a, b e N such that ax2

bx.
Then there exists n ¢ N such that (ax)n = bn, whence anxn =b
(a®, b € N), and so X" ¢ N.

If n=1, we are dones If n# 1, them n>2 and so

ax® = a2 - bed® = bt (ax®, b ¢ N), whence &L e n. By
repeating this, we see that x ¢ N, /4

Proposition 9: Let M ¢ &2.

Then the following are equivalent:

1. N XM implies N A M.

2e y2 = ¢y implies there exists n e N such that yn = cn,

Vy’CCMo

3. ax2 bx implies there exists n ¢ N such that

(ax)n = bn’ V a’ b’ X € M.

Proof: 1= 2): Let y, ¢ ¢ M such that y2 = ¢yo Then y e con
<c¢c>=con<c¢ > and so there exist s,ucNo
such that csy =c Using induction and the
fact that ya = ¢y, 1it is easy to show that

yr+1 = cry for any r € WMo. It follows that



2 = 3):

3 = 1):

Propogition 10:

Proof: 2 =H 1):

15

e = ys+1, and hence that 2" = (¢™)? =

(ys+1)2 - (y2)5+l~~:= cu~|-.s-|-1

If 2u=u+8+1, then u=s +1, and
'S0 cs+1=ys+1,s+1cNo. If 2ufu+s + 1,
then 1, c, c2, c.3, ese are not all distinct, ard

so c¢” e M*, It follows that ys+l

e M*, and
then y ¢ M*, whence y = ce 1In either case, the
implication is established.

Let a, byxe M such that ax® = bx. Then
v2asx> = bzabx, and so (a’::»x)2 = bz(abx). By
(2), there exists ue N with (abx)® = (°)Y,
whence (b%)2 = (a%%)b%. Again, there exists
velWN with ()= (.auxu)‘.'; hence, the result

follows by taking n = uv.

Lemma 2. 4

Let M e<? . Then the following are equivalent:
1. N<M=>NJM

2. M is a torsion group.

Assume M is a torsion group. Let N < M. Let
n e N. Now there exists x ¢ N such that = 1,
If x=1, then n =1 which implies n-1 e N,

If x>1, then nn*%t -1 which implies n~

nx-:l ¢ N, Thus N is a subgroup of M, and so

N X M,
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1 =>2): Let ac M

»

Suppose 1, a, a2, a3 see are all distinct. As {l, a2, a3, a# ...} <l,

we have i 1, a2. a3, ...} X M, But aa, a2 ac {1, a2 a3, .0.3 s which

implies a ¢ { 1, a2, a3, ah, ...} : == contradiction.
Thus, 1, a, aa, a3, eses are not all distinct, whence there exists

ne N such that a® is an idempotent, and so there exists n ¢ N

such that an = 1.

It follows that M is a torsion group. /4

Corollary: Let M e Ab.
Then the following are equivalent:

l. Every submonoid of M is a subgroup of M.

2o M 1is a torsion group.

Proof: Clear. /4
§ 4: Saturated Submonoids, and Localization
Definition 11: Let N < Mg¢ 1l . We say N is a saturated
submonoid of M if and only if xy ¢ N implies x, y ¢ N, for any
V4

X, ¥y € M,

et Mec AT . Let (Ni)icI be a family of saturated submonoids

of M. Then {:} Ni is a saturated submonoid of M,
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Definition 12: Let NE€ Me¢ O . Then the saturated cover (or

saturation) of N, denoted sat S, is given by n?f, where

-=1s<u| NEs, S a saturated submonoid of M }. Y

Proposition 11: Let S <MedX.

Then sat S = {xch]ycM-i-xycS}.

Proof: Let T = { X e Ml 3 ye Mioaxye S} o Clearly T & sat S.
Now, x€ S implies x1€¢ S, and so x¢ Ts Thus, S & T.
Also, x, %' € T implies there exist y, y' € M such that
Xy, x'y' ¢ S, wvhence (xx')(yy') ¢S, and so xx' ¢ T. Moreover,
xy ¢ T implies there exists z ¢ M such that xyz ¢ S, and so x4 y ¢ T.
Hence, T is a saturated submonoid of M,

Thus, sat S = T, V4

Definition 13: Let @ A IS Me W . Then I is called an ideal

of M if and only if IM € I, If, moreover, ab ¢ I implies a ¢ I

or beI for any a, b e M, then I is called a prime ideal. Y

Proposition 12: Let @ £ S i Me A
Then the following are equivalent:
1. S is a saturated submonoid of M.

2e M\S is a prime ideal of M.

Proof: 1 =P 2): Let i ¢ M\S, m ¢ M. Suppose im ¢ S. Then
i ¢ S, =~ contradiction. Thus, (M\S)M @ M\S,

Also, ab ¢ M\§ implies a ¢ M\S or



b € M\S
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s for a, b X M\S implies ab ¢ S.

Hence, M\S 1is a prime ideal of M,

2= 1): It is easily seen that 1l ¢ S. Let a, b e S.

If ab§ S, then ac M\S or b e M\S; --

~contradiction. Thus, a, b € S implies ab ¢ .

Also, let xy € S. Suppose xX S or y X S.

Then xy ¢ M\S§ =~ contradiction. Hence,

sat S =

Definition J4: Let M¢

denoted C(M), is fce M| ex

S < M, V4

ot ., Then the cancellative part of M,

scy =» x=y}. If C(M) =M, then

we say M is cancellative, The class of all cancellative monoids is

denoted & ,

V4

It is clear that MAb € X €J € A, V4

Proposition 13: Let M

Then:

c OU.

1. C(M) is a saturated submonoid of M,

2. M* is a saturated submonoid of M,

3. If S is a saturated submonoid of M, then M* < S X M,

Proof: 1, Cleardy 1 ¢

c(M),

Now, cyc' c C(M)™> (cx=cy =» x=y; c'x=c' ympx = y

Also, let cc' € C(M),

and so c¢' ¢ C(M), Hence, C(M)

=> (ce'x =cc'y=» c'x =c'y =» x = y)
= cc' ¢ C(M).

Then c¢'x = ¢c'y =% cc'x

ce'ly = x =y,

is a saturated submonoid of M.



2 Clearly, M* < M, Also, ab :vM‘ implies there exists
u e M such that abu = 1, which implies a, b ¢ M*. Thus M* is a
saturated submonoid of M.

3. Let S be a saturated submonoid of M. Now, 1 ¢ S.
Thus, u ¢ M* implies there exists v ¢ M such that u.-v = 1, whence

ueS. Hence, M* < S, Also, n,nxe S => nxc S = x ¢ S, Y4

The concept of localization in commutative rings with unit is well
established, as, for example, in Lang «(6; II, § 3_] .

The purpose of the remainder of this section is to parallel this
development in abelian monoids. It will be seen that a more natural

setting for a theory of localization is that of abelian monoids.

Definition 15¢ Let S <Meg¢ Ol + Let M@ S = {(m,s)l mcM,ScS}

be considered as a monoid under componentwise multiplication. Then = (S)
is a binary relation on M@ S given by (a, b) & (x, y) (8) if and only

if there exists s € S such that ays = bxs. /4

Proposition 14: Let S < M ¢ Ol

Then ¥ (S) is a congruence relation.

Proof: (a, b) = (a, b) (S), as abl=bal, 1 ¢ S. That
(a, b) = (x, y) (8) implies (x, y) = (a, b) (S), is clear.
Also (a, b) = (x, v) (8), (x, y).= (u, v) (S) implies there
exist s, t € S such that ays = bxs, xvt = yut. We then have
aysvt = bxsvt = bsyut, b, ¥y, v, 5, t € S, whence (av) (yst) = (bu) (yst),
yst € S, and so (a, b) =(u, v) (S). Thus, E(S) is an equivalence

relation.
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Moreover, (a, b) = (x, y) (8), (a', b') = (x', y') (S) implies

there exist s, s8' ¢ S such that ays = bxs, a'y's' = b'x's'. Then we

have

(aa')(yy')(ss') = (bb')(xx')(ss'), ss' ¢ S, whence (aa', bb') =

(xx', yy*) (S), and finally (a, b)(a', b') = (x, y)(x', ¥') (8). Vi

Definition 16: Let S <Mg¢ AN , Then (MB®S) /=(8) is
1

called the localization of M at S, and is denoted S M., Also, the

congruence class containing (m, s) is denoted m/s, V4

8X =

that

x/1 =

Proposition 15: Let S <Mg¢ OU ,

Let 1 : M —> s~y by mi—> m/1.

Then ¢ is 1 - 1 4if and only if S < C(M).

Proof: == ): Assume { is 1 -1, Let s ¢ S, x, y ¢ M such that

y/1l. It follows

sy. Then xls = 1lys, s ¢ S, which implies x/1

p(x) = ¢ (y), and so x = y.

&=): Assume S < C(M)s Then ¢ (x) = ¢ (y) implies

¥/1, which implies there exists s ¢ S such that 8X = B8Y; 80 X = .

Proposition 16: Let S <M ¢ .

Let &/b [ S-lMo

Then a/b ¢ (S'lM)" if and only if a ¢ sat S.

Proof: =$): afb ¢ (s‘ln)* =2 3 c/de¢ s™IM such that ac/bd = 1/1
= 3 s € S such that acs = bds
=» acsc S

=p» ac sat S,

7

i
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&): acesatS=> 3 xecM such that axe S
= (a/b) (bx/ax) = 1/1, bx/ax ¢ S-lM
= a/b € (s-lM)*o //

Corollary: Let S <Mec O such that S™M= {1},

Then sat S = M.
Proof: me M ™ m/1 e SOM = m/le (S™IM)* = me sat S.  /

Proposition 17: Let S <M¢e A.
1

Then S™IM = (sat 8)~1 M,

Proof: Let (a, b), (x, y) ¢ M® S,

Now, (a, b) = (x, y) (§) implies there exists s ¢ S€ sat S such
that ays = bxs which implies (a, b) = (x, y) (sat S).

Also, (a,b) = (x, y) (sat S) implies there exists s ¢ sat S such
that ays = bxs which implies there exist 8, t ¢ M such that ayst = bx:st,
st ¢ S, and so (a, b) =(x, y) (S).

Thus, =(S) and % (sat S) are the same relation. Hence,

-1

SN = (sat $)7M, V4

Proposition 18: Let S <Me (.

Then there is a biunique correspondence between the set of all
prime ideals of S-lM and the set of all those prime ideals of M which

are disjoint from. S.
Proof: See Maury [.7; p. 5#-57], V4

Notation: Let f: A—»B. Then f,(A) = if(a) eBlac A»}. V4
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Proposition 19: Let S <Mg O .

Let ¢ : M—> S M by m +—> m/l.
Then: 1. ¢, (8) € (s~1m)*
2. If f: M~—>N is a monoid homomorpiism such that
f, (S )E€N*, then there exists a unique g: sy —> N

such that f = gewy.

1y

Proof: le s e S = 1/s e S
= (1/s) @ (s) =1
= ¢ (s)e (s"hu)*

Iy —> N by m/s > f(m)f(s)-l. M ———3N

f,(s)EN* A

PR

2. Let g: S~
To check that g is well-defined, we note
that m/s = n/t implies there exists ¥
u e S such that mtu = snu which implies 5-'.,4
f(m)£(t)f(u) = £f(s)f(n)f(u), £(s),£(t),f(u) ¢ N*
and so f£(m)f(s)™t = £(n)e(t)~L,

Then (ge ¢ )(m) = g(m/1) = f(m), for any me M
which implies ge ¥ = f,
Thus, we need only show that g is unique., Let
g's s™IM — N such that g's ¢ = f, Then
g'(m/1) = f(m) = g(m/1) for any me M, For each s ¢ S,
o 1

l= g'( -;- P ) = £f(s) g'(1/s) which implies g'(1/s) =

£(s)" L, Thus, g'(m/s) = g'fm/1) g'(1/8) = £(m) £(s)™F =

g(m/s), Hence, g' = g, V4



CHAPTER II

LATTICE CONSIDERATICONS

Throughout this chapter, the lattice of submonoids of an abelian

monoid M will be denoted H_ (M),

Definition 1: An abelian group G is called locally cyclic if

and only if for any finite subset S of G, the subgroup of G generated

by S 1is cyelic. /4

Definition 2: Let L be a lattice,

Then: 1, Let x, ye¢ L, We say x covers Yy, denoted x ! Yy
if and only if x>y and x> a >y implies a = x
or a =Y.

2, We say L is semi-modular if and only if for each
x, y e L, x~LxAy, yJ/ XAy implies xV yw'l X,

xvydy. Vi

The reader is assumed to be familiar with the concepts of modular

lattice and distributive lattice,

Lemma 1: Let G be an abelian group,

Then the lattice of subgroups of G is modular,
Proof: See Birkhoff [ 1; p. 651]. /

Lemma 2: Let G be an abelian group,

23
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Then the following are equivalent:
1. the lattice of subgroups of G is distributive,

2. G 1is locally cyclic,
Proof: See Birkhoff [1; p. 9% ]. 4

Theorem 1: Let Me<d ,

Then the following are equivalent:
1. JL (M) is modular.
2. L (M) is semi-modular.

3. M is a torsion group,

Proof: 1 = 2): True for any lattice,
2 =» 3): Let a e M,
2 3

Suppose 1, a, a , a°, ... are all distinct, Let

X = i 1, az, ah, a6, a7, a8, ag, ...} and Y = il, aB, au, a6, a7, a8, a9, ...} .

Clearly X, Ye IL(M), Now, XA Y= fl, a‘*, a6, a7, a8, a9, ...} ana
XV Y= il, a2, a3, ah, as, ves }. It is then evident that X covers
XAY and that Y covers XA Y, However, XV Y does not cover X,
for X ; i 1, a2, au, as, a6, vee } ; XV Y, Hence, IL(M) is not
semi-modular and we have a contradiction,

Since 1, a, a2, ... are not all distinct, and Mecd , it

follows that there exists n e N such that a" =1 (Chapter 1, Lemma 1,
page 7 ), Hence, M is a torsion group,
3 =3 1): Since M is a torsion group, it follows that
. (M) is the lattice of subgroups of M
(Chapter 1, Proposition 10, Corollary:)

and hence must be modular (Lemma 1). V4
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Corollary: Let ME J.
The the following are equivalent:
1. I (M) is distributive.

2. M is a locally cyclic torsion group,

Proof: 1=»2): l.(M) distributive implies I (M) modular, and soc,
by the theorem, M is a torsion group. Thus M
is a group whose lattice of subgroups is distributive,
and hence M is locally cyclic,
2=>1): Clear from Lemma 2 and Chapter 1, Proposition 10,

Corollary, page 15. V4

Definition 3¢ Let K< Mg O , Then K is called a modular

cover in M if and only if L € K implies L(NAN K) = (LN) N K, for any

L, Ne L), 4
Remark: M and {1} are always modular covers in M, /4

Theorem 2: Let K< Mg O,
Then the following are equivalent:
1. K is a modular cover,

2, x, xy € K implies there exist a, B ¢ No such that

P B

xy=x“y and y ¢ K,

Proof: 1=b2): Let x, xy ¢ K, Now <x> €K, So <x>((Ky>NK)-=
(<x><y>NK, But xye (<x><y>NK

implies xy ¢ <x > ( <y >N K) and so there

exist a, B € No such that xy = xayli’ yﬁ e K,

~
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2 =>1): Let L, Ne¢ IL (M) such that L € K, That
L(NNK) € (LN) N K is well=-known,
Let xye (INNNK, xeL, ye N, Then x, Xy ¢ K, whence

there exist «, P e Mo such that xy = xyP, yP ¢ K. We then have that

Xy = xayu, x* e L, yB e NN K, and so xy ¢ L(NAK),

Thus, L(NN K) = (LN) N K, /4

Corollary: Let K X M e O,

Then K is a modular cover,
. . 11 .1
Proof: x, xy ¢ K implies xy=xy , ¥ ¢ K, V/4

Proposition 1: Let K < Me Ab,

Then the following are equivalent:
1, K is a modular cover in M,
2, K is a subgroup of M,

3, KXM,

Proof: 1 =» 2): Let x ¢ K, To establish the implication, we
need only show that x-1 ¢ K, Now, x, xx_1 ¢ K
which implies there exist a, B € No such that

ol = xa'x-B, xP ¢ K. We distinguish two cases,

Case one: Assume we can choose o # O, Then xt = xax’p, xP ¢k
implies x":l = xa-lx-B, xa-l, x-'B ¢ K whence x-l € K,

2 2.-1
Case two: Assume we must have o =0, Now, x , xx ¢ K, and

- - -8
so there exist ¥, &8 ¢ No such that x°xt = x°7 x § y X

-1 2¥ -1 -8 -8
x x x

XX =

€ K, Thus,

€ K, Suppose ¥ #0, Then 2¥-1,§ ¢ AVo, which

?

implies 2¥ -1 = O (By assumption of case two); but then ¥ &N 0, -— a
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0. Thus, x=x-s, which implies x-s € K for

contradiction, So ¥
some cho. Ir § 0, then x =1, and x-lc K is clear, If
§ -1

- -8
§ #0, then xS 1. K; it follows that x , x ¢ K, and so

fl o8 x81 k

2 =» 3): Chapter 1, Proposition 4, page 7.

3 = 1): Theorem 2, Corollary, V4

Proposition 2: Let Me¢ &X.

Let K be a modular cover in M,
Let y ¢ con K,

+
Then y ¢ M* or there exists n ¢ N o such that yn, yrl 1 c K,

Proof: y ¢ con K implies there exists x ¢ K such that xy ¢ K,

which implies there exist «a, P ¢ N o such that Xy = xa'yB, yB ¢ K, If

a =0, =0, then xy =1 which implies y ¢ M*, If o =0, § # 0, then
xy = y° which implies x = yB"l, and so yB-l, ¥ e K, b-1cNo, 1f
o P

which implies y = xm-lyB

a#0, then xy=x7y , and so yo,ych.//

Proposition 3: Let M* < K < M¢e¢ X s where K is a modular

cover,
Let y ¢ con K,
|
Then <y > €K,
Proof: The proposition is clear if y ¢ M*, so we assume y Kk M*,
+
Then there exists n ¢ No such that yn, yn 1 € K, and we choose n

minimally., The proposition is clear if n =0 or n =1, so we assume

n22,

Now y", ,}'I.ﬁl e K implies y2n’ yn+l ¢ K, and so we have

+ + -
n 1, yn lyn 1 ¢ K, It follows that there exist «, Pec No such that
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yn+1yn-1 - ya(n+l)yB(n--1) yE(n—l) c

s where K.

Suppose f = 0, a = O, Then yn+lyn~1 =1, and so y & M*; -~ a
contradiction.

Suppose § =.O, a # 0, Then yn-l = y(a-l)(n+1); a-1c¢ NVO,
whence yn-l € K. But this contradicts the minimality of n,

Suppose P = 1, Then yl(n’l) e K, which also contradicts the

minimality of n,

Thus, B 2 2,

Now, yn+1yn-l - yun(nﬂ.) b(n-l)’ yeMe&k, p>2
=>» 2n = a(ntl) + B(n-1), B > 2
= 2n - aln+l) | 5
n-1 -
2
<
= %= n+ 1

= a <2/3 (as n > 2)
=» a =0,
So 2n = g(n-1), B > 2, Then 2(n-1) + 2 = B(n-1), B > 2, whence
(n-1) (B=2) =2, B >2, It follows that n-1 divides 2, and so n =2
or n=3,
Suppose n # 2, Then y5, yu ¢ K and also y8 e K. Now,

y}, y3y5 ¢ K implies there exist ¥ ,5 € N/o such that y3y5 = sz’yss ’

ySS € K, which implies 8 =3¥ +58 ., As & = O implies 3 divides 8
(contradiction), and § > 2 implies 8 > 10 (contradiction), we must
have & =1, Thus, y5 ¢ K, Then, yj, y5y2 € K, which implies there
exist A , me No such that )}yz = ynyan, y21t c K. Now, 5 = 3A + 2m,

Since n = 0 implies 3 divides 5 (contradiction), and n = 2 implies

3 divides 1 (contradiction), and n > 3 implies 5 > 6 (contradiction),
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therefore n =1, and so y2 € K, But this contradicts the minimality

of n, Hence n = 2,

It follows readily that < y >' € K, V4

Theorem 3: Let M be a rigid cancellative monoid,

Let K <M, |

Then the following are equivalent:
1. K 1is a modular cover,
2, K is connected or K = <y >' for any y ¢ con K\K,
3, K 1is connected or there exists y ¢ M such that

K=<y>,

Proof: 1 => 2): Assume K 1is a modular cover,

Assume K is not connected, Let Yy € con K\K, Then there
exists a ¢ K such that ay ¢ K,

Let x € K such that xy ¢ K, but otherwise arbitrary, Now

BB k.

there exist a, B e No such that xy = xay s Y € Suppose B = O,

1 which implies y ¢ M*, and so y ¢ K; -- a éontradiction.

fl

a =0, Then xy

Suppose B =0, a >1, Then xy = x*, which implies y = -1 e K;

-~ a contradiction, Suppose B = 1, Then yl ¢ K; -~ a contradiction,

Thus, B 2 2,

So x = xayﬁ-l, B=1c¢ N . Suppose « # O, Then 1 = xaalyﬁ—l,

which implies y ¢ M*, whence y ¢ K; -- a contradiction, Thus, x = yg-l

and so x ¢ <y?>,

We have shown that x, xy ¢ K = x¢ <y >,

Let X ¢ K, Then a, ay ¢ K, ka, kay ¢ K implies a e <y >,
ka ¢ <y>, from which it follows that there exist n, me¢ No such that

m n

ky =y, If m<n, then k=y ™

e<y> If n<m, then ky"" =1



which implies k ¢ M‘, whence k ¢ <y >,
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Hence, K&<y>, Now, <y>€K, So K=<y> or K=<y>',

But it is easily checked that < y > is connected, Thus,

2 =» 3): Trivial,

K=<y>‘.

3 =>» 1): The implication is known if K 1is connectied,

Assume there exists y ¢ M such that K = <

Then there exist n, me No such that a = yn, ax

i

y >'., Let a, ax ¢ K.

m . . .
Yy , which implies

yx=y". If m<n, then y" ™x =1, whence x ¢ M*, and so X e K,

11 m-n
ax = a' x

e If n<my then x=y =, If, moreover,

m-n # 1,

then

xe <y>' =K, which'implies ax = alxl, xl ¢ K, If, on the other

Om m

handy m«n=1, then x=y, and so ax=ax , x € K,

Thus, a, ax €¢ K implies there exist a, B ¢ No such that

a B B

ax = ax , x ¢ K, Hence, K is a modular cover,

Corollary: Let K < No,
Then the following are equivalent:
1. K 1is a modular cover,

2. There exists n ¢ No such that

K=<n?>

V4

or K=<n >',

Proof: It is easily checked that M X AVo if and only if there

exists n ¢ No such that M = < n >, The result follows,

V4

It would seem reasonable to expect some sort of decent structure

to appear in the lattice of modular covers in an abelian monoid M,

although, of course, this lattice is usually not a sublattice of I (M),

The example of I\Vo shows that not even semi-modularity can be expected,

for it is not difficult to see that the lattice of modular covers in N o

is found by taking the lattice of natural numbers partially ordered by



divisibility and then splitting each point into two points, The

illustration below should make clear what this means,

<D
<nl>'
<3> <s? .
<a> <3> <5’
T
<e <lo?Y <157
<6’ <iod' Cis?

It is seen that < 2>' § <2>' A <3»', K331 <2>' A <3

but <2ty <354 <251,
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CHAPTER III

FORMAL GAUSS CONTENT

In the'theory of rings, the concept of unique factorization domain,
or factorial domain, is well known, Cne theorem of particular interest here
is that the ring of polynomials over a factorial domain is again a factorial
domain, This theorem is especially easy in the case that the original domain
is a field; the general theorem, of course, is somewhat more involved,

The main point of this chapter is to provide a proof of this
theorem based only upon the theory of abelian monoids, and a few selected
axioms,

The concept of an irreducible element a of an abelian monoid A
will be that a = xy, x, ye A implies x ¢ A* or y ¢ A*, Of course, we
could also insist that a be a non-unit, but we will find the statements
in what follows to be more conveniently-expressed if we do not impose this
restriction, As would be expected, a factorial monoid will be an abelian
monoid A with the property that every element is a product of irreducibles
and moreover that the non-unit elements of such a product are unique except
for order and multiplication by a unit, It is easily seen, as with rings,
that in the presence of the first property, the second is equivalent to:
if p, a, beg A, p irreducible, and p divides ab, then p divides a
or p divides b,

In what follows, we will assume throughout the following situation:
D 1is an abelian cancellative monoid. The abelian group D-lD (see
Chapter 1, § 4) will be denoted q(D), Also, p(D) and p(q(D)) are
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" abelian cancellative monoids, All of these objects are subject to the
following axioms (referred to as "property 5", or "property 3", for
example, in the text that follows):
1. D ~ p(D) < plq(D)); q(D) < plq(D))
2. p(D)N q(D) = D
3. p(D)* = D*, p(q(D))* = q(D)
L, p(q(D)) is a factorial monoid.
5. n € p(q(D)) implies there exists d ¢ D such that
dn ¢ p(D),
6. f: p(D)—> D/D* is a monoid homomorphism such that
p(D) = D'Ker f and when restricted to D, f is the
natural map,
By taking D to be the multiplicative monoid of a domain, p(D) to be
the multiplicative monoid of the polynomial ring over D, and p(q(D)) to
be the multiplicative monoid of the polynomial ring over the field
q(D)V f()], we see that the first four properties are clearly satisfied,
that the fifth deals with the existence of common denominators, and that
the sixth is the usual Gauss content function on the polynomial ring. In
what follows, p(D) will be denoted M, while p(q(D)) will be written N,
It should be noted that we could raise the status of p by making
it a functor, and the same could be done for q. That is, let q be the

functor from X to #Ab given by A > Al

A, and let p be a functor
from & to & such that:

1. A < p(A) < p(q(A)), for any A ¢ &

2. p(A)N q(A) = A, for any A e X

3. p(A)* = £, for any A e &



L, Ge Ab implies p(G) is a factorial monoid
5. n € p(q(A)) implies there exists a € A such that
an € p(A), for any Ae X
6. for each A ¢ & s there exists a monoid homomorphism
£,: p(A) => A/A* such that A-Ker f = p(A), and when
restricted to A, f is the natural map.

Now thé case where p(D) is taken from a polynomial ring is not
the only situation in which the above axioms are satisfied -- although it
is admittedly the most interesting. There are at least two other cases,
The first, and most trivial case is that afforded by taking p to be the
identity functor, A second case is given by taking p to be the functor
defined by A+—> A ® Mo, where A® No= {(a, n)| aca, nelNo}
considered under componentwise operation, and with a and (a, O) being
identified for each a € A, That this functor satisfies the axioms is
easily checked (take fA((a, n)) = a', where a' is the natural image of
a),

We now proceed to establish the proof mentiomed on page 32, In so

doing, the situation we are assuming throughout the rest of this chapter

(described above) can be partially summarized by the following diagram,

m*=0" > Ker £ <M
N*= g (D) &—— D > pb)=M=D.ices §

l$

plyP)=N b/o”
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Lemma 1: Let de D, me M,
Then d divides m in M if and only if f(d) divides

f(m) in D/D*,

Proof: =>): By assumption, m = dx for some‘ x ¢ M, It follows
that f(m) = f(d) f(x), and we are done,
&> ): It is clear that there exists d" ¢ D such that
f(m) = £(d) £(d"), Also, since M = D-Ker f, there exists d' ¢ D such
that m = d'k for some k ¢ Ker f, It is then eas