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PREFACE 

In this century, a great deal of work has been done in the theory 

of groups and in the theory of semigroups. To the extent that monoids 

are special semigroups and groups are special monoids, we also know some­

thing about monoids. Moreover, there have appeared some papers dealing 

exclusively with monoids, usually abelian monoids. As far as the author 

can determine however, these have been relatively few in number; also, 

no really systematic treatment of monoids by themselves has yet appeared. 

This paper attempts to provide an elementary introduction to the 

theory of abelian monoids. Most of the results are quite standard, or 

at least routine. As far as the author can determine, however, most of 

the results found in Chapter 1, § 3, Chapters II and III, and Chapter IV, 

§f 6, 7 are new. 
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NOTATIONS 

Any notations that are not standard are introduced as the need arir ,. 

A partial summary of the notations used is included here for the reader's 

convenience. 
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CHAPTER I 

PRELIMINARY NOTIONS 

J l: Introduction 

Definition l. A monoid is an ordered triple (M, ·, i), where 

M is a set, • is an associative binary operation on M, i c M, and 

m~i = m = i·m, for any m c M. We call i the identity element of the 

monoid. If moreover a,b = b·a for any a, b c M, then we call 

(M, • , i) an abelian monoid. II 

Remarks: 1. 	 We shall observe the usual convention of referring 

to a monoid in terms of its underlying set only, 

unless there is ambiguity. 

2. 	 When the monoid's operation is denoted multiplicatively, 

we shall usually denote its identity by 1. 

3. 	 When the monoid•s operation is denoted additively, 

we shall usually denote its identity by o. 

4. 	 Unless indicated otherwise, we shall normally write 

monoids multiplicatively. I/ 

Notations: 1. 	The class of all abelian monoids will be denoted ot. 

2. 	The class of all abelian groups will be denoted 

I.Ab. 	 II 

Definition 2: Let M, N be monoids. Let f: M--+ N. We say 

1 
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f is a morohism of monoids (or monoid homomorphism) if and only if 

f(l) = 1 and f(xy) = f(x) f(y) for any x, y c M. II 

Definition 3: Let M be a monoid, and let NS M. We say N 

is a submonoid of M, denoted N < M, if and only if 1 c N and, 

x, y c N implies xy c N. II 

If is a family of submonoids of a monoid M, then(Ni\£ I 

it is easily seen that {:'1 Ni< M. Thus, it makes sense to talk 

about the submonoid of M generated by some subset S of M; namely 

n ")\ t where 1\ = f N < M I s ~ N } • 

Notationally, if a c M, then we will denote the submonoid 

generated by a, by < a >. Of course, < a > = { 1, a, 2 a3 , ... }.a ' 

Also, we will have occasion to refer to { 1, a 2 , a3 
t ••• } t and this 

Iwill be denoted < a > • It should be noted that < a >I and <a>,{a) 

are not necessarily the same. 

Definition 4: Let M be a monoid, and let N < M. Then we say 

N is finitely generated if and only if there exists Se N such that N 

is the submonoid generated by s, and S is finite. II 

Two monoids which come to mind most readily are the set f o, 1, 2, ••• } 

under addition, and the set { 1, 2, 3, ••• } under multiplication. The 

former set will be denoted fWo, while the latter will be written ~. 

When considered as monoids, the operations will be as above unless other­

wise stated. 

Notationally, we will use ::Z to denote the set of rational integers, 

and when considered as a monoid, the operation will be assumed to be addition. 
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Occasionally we will refer to IR , and this will be understood 

to be the set of real numbers. 

It is assumed that the reader is familiar with the concept of 

congruence relation - in our case an equivalence relation 9 in an 

abelian monoid M such that a&b, x9y implies ax:9by, for all 

a, b, x, y c M. The set of congruence classes will be denoted MI 9, 

and of course this is also an abelian monoid under the induced operation. 

One particular congruence relation is introduced below - one 

which at first glance may seen somewhat unnatural. The main reason for 

introducing it is that it results in a quite satisfactory theory of factor 

monoids with respect to a submonoid. 

Definition 5: Let N < M c Ot. Then ,.., (N) is the binary relation 

in M defined by x,.., y (N) if and only if there exist n, n' c N such 

that xn = yn'. II 

Proposition l: Let N < M c Ol • 

Then ,.., (N) is a congruence relation. II 

Proof: That the relation is reflexive and symmetric is clear. 

Also, x ,v y (N), y"' z (N) implies there exist n, n •, q, q' c N such 

that xn = yn', yq = zq', and so xnq = yn'q, yqn' = zq'n', n,q,n',q' c N. 

Thus, x(nq) = z(q'n'), nq, q'n' c N, whence X"" z(N). It follows 

that tv (N) is an equivalence relation. 

Moreover, x,vy (N), a"" b (N) implies there exist n, n', q, q' c N 

such that xn = yn', aq = bq'. Thus (xa)(nq) = (yb)(n'q'), nq, n'q' c N, 

and so xa- yb (N). II 
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Corollary: Let N < Mc 0t • 

Then M I- (N) c or , whose identity is the congruence class 

containing l. 

Proof: Clear. /I 

Notation: Let N < M c OC • Then M /- (N) is denoted M / N. II 

Theorem l: Let N < M c Ol • 

Let p: M......., M/N by m ......+ m, where m is the congruence 

class containing m. Let M' c or • Let f: M ---+ M' be a morphism of 

monoids such that f(n) = l for any n c N. 

Then there exists a unique g: M;1,J---+ M' such that f = gop. 

(Illustration: 

M 
p 

MIN 

l 3! ' ..
~~ f , ..,., ""'"' M' ) 

Proof: The uniqueness of g is clear, as p is onto. 

Indeed, the only possible candidate for g is given by 

p(m) ~ f(m) for any m c M. All we have to do is check that this is 

well-defined. Now, p(x) = p(y) implies there exist n, n' c N such 

that xn =yn', whence f(x) f(n) = f(y) f(n•), f(n) = f(n•) = 1, and 

so f(x) = f(y). II 

Proposition 2: Let M c or • Let N be a subgroup of M (i.e. 

N < M, N c ,fl b). Let x, y c M. 

Then x"' y (N) if and only if xN = yN. 
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Proof: ~): x ,v y (N) implies there exist n, 

that xn =yn', whence xnN =yn'N, n, n• c N, and so 

<= ): xN = yN implies x·l = y·n, 1, .n 

x "'y (N) follows, and we are done. 

n • c N such 

xN = yN. 

c N. Then 

II 

§ 2: Connected Submonoids 

Definition 6: Let N < M c Of • We say that N is a connected 

submonoid of M, denoted N t M, if and only if n, nx c N implies 

x c N. II 

We note that this concept goes by at least two other designations 

in the literature. In [ 9 ], N is called closed; while in [10 ], N 

is said to have the isolation property. The fact that the nomenclature 

has yet to be standardized is what prompts us not to hesitate in using 

our own. It was felt that the condition n, nx c N implies x c N 

suggested connectedness more than isolation, as an intuitive concept; 

while "closed" seemed somehow too strong. 

Perhaps the most immediate motivation for considering connected 

submonoids is the following observation. 

Proposition 3: Let N < M c Of • 

Then N ~ M if and only if there exists~= M----. M' a 

morphism of monoids such that N = Ker f =f m c MIf(m) = 1 } • 

Proof: .. ) : Let f: M~ M' be a monoid homo.phism such 

that N = Ker f. Then n, nx c N implies f(n) = f(nx) = l; that is, 



6 

f(n) = 1, f(n) f(x) = 1, whence f(x) = 1, and so x c N. Thus, N ~ M. 

=+): Let N ~ M. Let f: M---+ M/N be the natural map. 

Now, n c N implies n·l = l·n, 1, n c N, and so n""l (N) • Then 

n c Ker f is clear. Also, n c Ker f implies f(n) = 1, whence there 

exist x, y c N such that nx = ly. Then x, nx c N, and n £ N 

follows. Thus, N =Ker f. II 

Corollary: Let N < M c or.. 

Let f: M ___,. M/N be the natural map. 


Then N t M if and only if N =Ker f. 


Proof: Clear. 	 II 

Theorem 2: Let N t M c 01. 


Then the following are equivalent: 


1. M/N is a group. 

2. For 	each x c M, there exists y c M such that xy c N. 

Proof: Let p: M --+ M/N be the natural map. 

1 =+ 2): 	Let x c M. As M/N is a group, we know there exists 

y c M such that p(x) p(y) = 1. Then we have 

p(xy) =p(l); and so there exist n, n' c N such 

th.at xyn =n', which implies n, nxy c N, whence 

xy c N. 

2=+1): 	Let p(x) c M/N. Then there exists y c M such 

that xy c N. It follows that p(xy) = p(l); thus 

p(y) is the inverse of p(x). II 

Example: Let n c ~ • Then ~ o / < n > is a cyclic group of 

order n. II 
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Example: Let n c N , n > 1. Let P = { xn I x c 1\1 ) • Then 

N/P is an infinite group such that every element has order a factor 

of n. II 

Proposition 4: Let M c or • Let N be a subgroup of M. 

Then N ~ M. 

-1 	 -1Proof: Let n, nx c N. Then n , nx c: N, and so n nx c N; 

thus x c: N. II 

Proposition 5: Let M c Ill b. 


Then N ~ M if and only if N is a subgroup of M. 


-1Proof: ~): x c: N implies x, xx c N, which implies 


-1 
x 	 c: N. 

<:::: ): Proposition 4. II 

Definition 7: Let Mc 01 • Then !!:, = f x c Ml 3 y c M+ xy = 1}. 

The elements of M* are called the units of M. If M* = { l}, then 

we say that M is rigid. II 

Remarks: 1. 	 M* is a subgroup of M, and contains every subgroup 

of M. 

2. M/M* is 	rigid. II 

2 3Lemma 1: Let 1 I, a c M c Ol such that 1, a, a, a, ••• are 

2 r+m-1not all distinct. 	 Then there exist r, m c 1\1 such that 1, a, a , • •. a 

r+m r are distinct but a = a • Moreover, there 	exists a unique n c N such 

nthat r ~ n ~ 	r + m - 1, m divides n and a is an idempotent. 

Proof: SeP. Clifforcl and Preston ( 3; Theorem 1.9, P• 20]. II 



8 

Theorem 3: Let M c Ot • 

Then the following are equivalent: 

1. N ~ M ~ N = M or N = { l} • 

2. M satisfies one of the following: 

i M = { l }. 

ii M is a cyclic group of prime order. 

iii There exists 6 c M such that 9 ,J 1, x 9 = 9 

for any x c M; and for each a c M such that 

a /. 1, there exists n(a) c N such that an(a) = 9. 

Proof: 2 ~ l): 1 Trivial 

ii N l M implies N is a subgroup of M, 

and so N = { 1 } or N = M. 

iii Let {1} /. N ~ M. Then, there exists 

a c N such that a/. 1, and so B = an(a)c N. 

Thus, 8, 9xc N for any x c M, which 

implies x c N for any x c M. Hence N =M. 

l=Oi-2): Assume M .J { 11. 

As M* t M, we know M* = { 1) or M* = M. If M* = M, then N t M 

if and only if N is a subgroup of M. It follows that M has no non­

trivial subgroups, and so M is a cyclic group of prime order. 

Assume M* /. M; i.e. M* = { 11 • 

For each u c M, define 

T ( u) = f x c M ( 3 p, q c No · l · up x = u q } • 

Clearly 1 c T(u). Also, x, y c T(u) implies there exist P, q, r, s c ~o 

such that uPx = uq, ury =us; whence up+rx:, =uq+s, p+r, q+s c AV0 ; 

implies there existit follows that x:r cT(u). Moreover, x, xy c T(u) 
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8P, q, r, s c 1\1 o such that u • We then see that 


p+r q+r p+r p+s q+r p+s

U X=U 9 1 U 'X:f=U t and so u y = u ; hence y c T(u). 

Thus, T(u) ~ H for any u c M. So we have that 1 ,{ u c H implies 

T(u) = M (as u c T(u)). 

Let 1 ,{ a c H. Now H* = f 1} ; so a 2 I 1. Thus, T(a2 ) = ~l 

and hence a c T(a2 ). It follows that there exist Pt q c No such 

2p+l 2q 2that is, a =a , Pt q c Alo. Thus, 1, a, a , • • • 

are not all distinct and a I 1. Hence, there exists n(a) c r\l such 

n(a)that a is an idempotent, (Lemma 1). Moreover, an(a) ,{ 1. 

thus, M =T(an(a)) 

•U 	 ~. n(a)p n(a)q 'l= { x c MI 3 p, q c •• o ' 7 a x =a J 


n(a) n(a) J
= {xcM l a x=a ; 

n(a) n(a)


i.e. 	 a x = a for any x c M. 

Now this is true for any 1 I a c M. As a, b c M, {l} implies 

an(a) =an(a)bn(b) = bn(b), define 9 = xn(x) \/ x c M'. {1}. It is 

then readily seen that 8 has all the desired properties. 

Corollary: Let M c Ol. 

Then the following are equivalent: 

1. 	 N<M implies N = { 1 l or N = M. 

2. 	 M satisfies one of the following: 

i M = { 1}. 

ii M is a cyclic group of prime order. 

2iii M= { 1, e} , e = e ,{ lo 

Proof: 2 =+ 1): Clearo 
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l ~2):Now, N t M implies N < M which implies 

N = { l} or N = M. Thus, by the theorem, 

M = { l } , or M is a cyclic group of prime 

order, or there exists 9 c M such that 9 I 1, 

x 9 = 8 for any x c M, and for each 1 ~ a c M 

n(a)there exists n(a) c IV such that a = 9. 

Assume MI { l} and M is not a cyclic group of prime order. 

Then f1, 8 } < M. Hence, M= { 1, 9}. II 

Let Mc ot Let (N.). I be a family of connected submonoids 
l. l.C 

of M. It is easily seen that n 
icI N. t 

]. 
M. Thus, we can make the 

following definition. 

Definition 8: Let N E M c OT • Then the connected cover of N, 

denoted con N, is given by n )"' I where 't- = l s l: M I N ~ s ) . II 

Proposition 6: Let N < M c Ol. 


Then con N = { y c M I 3 x c N ·t· xy c N ) • 


Proof: Let A = l y c MI 3 x c N+ xy c N } • Clearly, A Si con N. 

Now, 1 c A is clear. Let y, y' c A. Then there exist x, x' c N such 

that xy, x'y' c N, which implies (xx')(yy') c N, xx' c N; thus yy' c A. 

Also, let y, yy' c A. Then there exist x, x' c N such thnt 

xy, x'yy' c N; that is, x(x'yy'), xy c N. It follows that [x'(xy)]y' c N, 

x'(xy) c N, whence y' c A. Thus, A~ M. Also, n c N implies ln, 1 c N, 

which implies .n c A. Hence, N Sii A~ M. 

Thus, con N = A. II 
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~ 3: Normally Connected Submonoids 

Notation: The class of all abelian monoids M such that 

x2 = x implies x = 1, is denoted J. II 

Clearly, .A b S ~ S or.. 

Definition 9: Let N < M c QC We say that N is a normally 

connected submonoid of M, denoted NAM, if and only if a, b c N, 

ax 2 = bx implies x c N. II 

The motivation for considering normally connected submonoids is 

' contained in the following. 

Proposition z: Let N < M c OC • 

Then N A M if and only if there exists f: M ~ M', M' c ~, 

such that f is a monoid homomorphism and N =Ker f. 

Proof: <#=== ): It is clear that Ker f < M. 

2 2Let a, b c Ker f, x c M such that ax bx. Then f(a) f(x)= = 
f(b) f(x), a, b c Ker f. Clearly, f(x) 2 = f(x) c M' c~, whence 

f(x) =1, which implies x c Ker f. 

Thus, Ker fA M. 

==>): Let N A M. Let f: M --+ M/N be the natural map. 

Then N A M implies that n, nx c N ,_. nx 2 = (nx)x, n, nx c N ~ x c N. 

Thus Ni M, and so Ker f = N. II 

Corollary: Let N A M c d< . 

Then N t Mo 
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Proof: Contained in the proof of the proposition. II 

Let M c Ol • Let (N. ) . I be a family of normally connected 
J. J.C 

(')
submonoids of M. Then it is easily seen that . IN. 6 M. 

l.C l. 

Definition 10: Let N S: M c Ol • Then the normally connected 

cover 	of N, denoted con N, is given by wheren )'-, 
1'= {st:,MI N~sl. 	 II 

Proposition 8: Let N < M c dl. 

2
Let D = { d c M \ 3 n c N · J · d = nd } • 


Then con N = con D. 


Proof: It is clear that N < D < con D < coi N. Thus, it remains 

only to show that con Dl:, M. 

2
Let ~, k c con D, x c M such that ~x = k x. Since ~, k £. con D,

2 2 2 

we have there exist c D such that ~dl, k2d2 c D. Therefore~' d
2 


2

d1d2~x = d1d2k2x which implies [ (dl~) d2] x2 = [ (d2k2) dl1x. That 

is, there exist c D such that d x 2 = d4x.4 	 3 ~· d

Now there exist n , n c N such that d2 d2 = n4d4•= n3d3'3 4 3 4 

Th~, d x 2 d4x= 3


~ d2d2 2 d4x 
2 
4 3x 	 = d4d

3

2
~ (d d x) = n4d4d d4x4 3 3
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~ x c con D. 

Hence, con D A M. // 

Theorem 4: Let Mc~. 


Then the following are equivalent: 


1. NAM implies N = \ 11 or N = M 

2. N~M implies N 11\ or N M= = 
3. N<M implies N = i 11 or N = M 

4. Either M= {.11 or M is a cyclic group of prime order. 

Proof: 4 ~ 3 ==-+ 2 ~ 1): Clear. 

21 :::::> 4): Let a c M and assume a 2 i 1. Then ~ < a > = M, 

2 2r 'land so M = con D, where D = { d c M \ 3 r c r\f o ·~· d = a d J. In 

particular, a c con D and so there exists d c D such that ad c D, 

whence there exist r, s c No with d2 
= a2r d, (ad/ =a28 (ad). 

2r+2 d = a2s+l d.It follows easily that a

Let m = I (2r + 2) - (2s + 1) I, and note that m /0. It is 

not difficult to show that aud = au+mx d for any x c ~ o and for 

any ucl\lo with u .2: min l 2r + 2, 2s + 1 1 • 
Now, let t c 1\1 o such that t .2: min f 2r + 2, 2s + 1 l and 

t: -2r (mod m). Then t !! 2t + 2r (mod m), and so 2t + 2r = t + mx, 

for some x c No. We can then argue that (atd)2 = a2td2 = a2ta2rd = 
a2t+2rd = at+mxd = a t do It follows that atd = 1, and so a c M*. 

Thus, a 2 I 1 ==+ a c M* and hence M is a group. Now it is 
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easy to see that every subgroup of an abelian group is normally connected, 

and so M is a group with no non-trivial subgroups. The result follows. II 

Lemma 	 2: Let M be an abelian monoid such that for any a, b, x c M, 

2 ax = bx implies there exists n c f\l such that (ax)n = bn. 

Then every connected submonoid of M is normally connected. 

Proof: Let N ~ M. Let x c M, a, b c N such that 2 ax = bx. 

Then there exists n c ~ such that whence n n ax 

( na , bn c N) , and so n x c N. 

If n =1, we are done. If nl 1, then n > 2 and so 

whence n-1x c N. By 

repeating this, we see that x c N. II 

Proposition 9: Let Mc tr.!J. 


Then the following are equivalent: 


1. 	 N ~ M implies N 4 M. 

n ax 2 n-2=ax x 

2 	 n n
2. y = cy implies there exists n ~ "1 such that y = c ' 

'q y, c c M. 

3. 	 ax2 = bx implies there exists n c N such that 

(ax)n =bn, "if a, b, x c M. 

Proof: 1 ~ 2): 	 Let y, cc M such that Y2 = cy. Then y c con 

< c >=con< c > and so there exist s, u c f'\fo 

s usuch that c y =c • Using induction and the 

fact that Y2 = cy, it is easy to show that 

r+l r a.\t 
y 	 =c y for any r c 1wo. It follows that 
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c "" = y s+l and hence that c2u = (cu)2 = 

If 2u =u +a+ 1 9 then u = s + 1, and 

s+l s+l ~,so c = y , s + 1 c two. If 2u I u + s + 1, 

2 3then 1, c, c , c , ••• are not all distinct, ar.d 

so cu c M*. It follows that ys+l c M*, and 

then y c M*, whence y = c. In either case, the 

implication is established. 

2 ===0> 3): Let a, b 9 x c M such that ax 2 ='bx. Then 

2 2 2 2 2
b a x = b abx, and so (abx) =b2 (abx). By 

(2), there exists u c ~ with (abx)u = (b2 )u, 

v c N with (bu.)v = (_auxu)v,. hence the result
' 

follows by taking n =uv. 

3 ~ 1): Lemma 2. II 

Proposition 10: Let M c ~ • Then the following are equivalent: 

1. N < M ~ N ~ M. 

2. M is a torsion group. 

Proof: 2 =-'> 1): Assume M is a torsion group. Let N < M. Let 

n c N. Now there exists x c N such that n x 
= lo 

-1If x = 1, then n = 1 which implies n c N. 

x-1 -1If x > 1, then n n = 1 which implies n = 
x-1n c N. Thus N is a subgroup of M9 and so 

N « M. 
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l ~ 2): Let a c Mo 

2	 2Suppose 1, a, a , a3 •• • are all distinct. As { 1, a , a3, a 4 ••• ) < 

s 2 3 l 2 2 r 2 3 which 

2 3 4 

we have l 1, a. a, ••• t M. But a, a a c l 1, a a, 

implies a c l 1, a 	 , a , a , ••• } : -- contradiction. 

2 3Thus, 1, a, a , a , ••• are not all distinct, whence there exists 

n n c N such that a is an idempotent, and so there exists n c N 

such that a 
n =1. 

It follo•ts that M is a torsion group. II 

Corollary: Let M c IR b. 


Then the following are equivalent: 


1. Every submonoid of M is a subgroup of M. 

2o M is a torsion group. 

Proof: Clear. 	 II 

§ 4: Saturated Submonoids, and Localization 

Definition 11: Let N < M c ot • We say N is a saturated 

submonoid of M if and only if xy c N implies x, y c N, for any 

x, y c M. II 

Let M c (/( • Let 	 (N.). I be a family of saturated submonoids 
l. l.C 

of M. Then 'Jr N1 is a saturated submonoid of M.1
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Definition 12: Let N =Mc 0(. Then the saturated cover (or 

saturation) of N, denoted sat s, is given by where 

7f = f S < M f N ~ S, S a saturated submonoid of M \. II 

Proposition 11: Let S < M c 0( • 


Then sat S = { x c M f 1 y c M + x:, c S J • 


Proof: Let T = { x c M f 3 y c M .,. x:, c SJ • Clearly T ~ sat s. 

Now, x c S implies xl cs, and so x c T. Thus, SS To 

Also, x, x' c T implies there exist Y, y' c M such that 

x:,, x'y' cs, whence (xx•)(yy') cs, and so xx' c T. Moreover, 

x:, c T implies there exists z c M such that x:,z c S, and so x, y c T. 

Hence, T is a saturated submonoid of M. 

Thus, sat S =T. II 

Definition 13: Let f6 -j I 5 Mc (1(. Then I is called an ideal 

of M if and only if IM S: I. If, moreover, ab c I implies a c I 

or b c I for any a, b c M, then I is called a prime ideal. II 

Proposition 12: Let ¢ ; S ~ M c «. 

Then the following are equivalent: 


1. S is a saturated submonoid of M. 

2. M\S is a prime ideal of M. 

Proof: 1 ~ 2): Let i c M\S, m c M. Suppose im c s. Then 

i cs, -- contradiction. Thus, (M'\S)M ~ M\S. 

Also, ab c M.\S implies a c M\S or 
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b c M\S, for a, b \ M\S implies ab cs. 

Hence, M\S is a prime ideal of M. 

2 ~ 1): 	 It is easily seen that l c s. Let a, b c s. 

If ab~ s, then a c M\S or b c M\S; - ­

-contradiction. Thus, a, b c s implies ab c ( 
oJ. 

Also, let x:, c s. Suppose x ~ s or y \ s. 

Then x:, c M\S; contradiction. Hence, 

sat S =S < M. II 

Definition 14: Let M, or • Then the cancellative part of M, 

denoted C(M), is { c c M I ex = cy -. x =y 1. If C(M) = M, then 

we say M is cancellative. The class of all cancellative monoids is 

denoted 1:. • II 

It is clear 	that Ill b ~ J:. S: J S: (I(_ II 

Proposition 13: Let Mc QC. 


Then: 


1. C(M) 	 is a saturated submonoid of M. 

2. M* is 	a saturated submonoid of M. 

3. If S 	 is a saturateo submonoid of M, then M* <Si M. 

Proof: 1. Clearly 1 c C(M). 

Now, c, c' c C(M) .. (ex= cy mil) x =y; c'x = c• yo+ x = y) 

-::=> (cc'x =cc•y-. c'x = c'y ~ x = y) 

=> ec' c C(M). 

Also, let cc' c C(M). Then c'x = c•y =+ cc•x = cc•y ~ x = Y, 

and so c• c C(M). Hence, C(M) is a saturated submonoid of M. 
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2. Clearly, M* < M. Also, ab c M* implies there exists 


u c M such that abu =1, which implies a, b c M*. Thus M* is a 


saturated submonoid of M. 


3. Let S be a saturated submonoid of M. Now, 1 cs. 


Thus, u c M* implies there exists v c M such that u-v =1, whence 


u c ls. Hence, M* < s. Also, n, nx c S ~ nx c S =+ x c So II 


The concept of localization in commutative rings with unit is well 

established, as, for example, in Lang .( 6; II, § 3] . 

The purpose of the remainder of this section is to parallel this 

development in abelian monoids. It will be seen that a more natural 

setting for a theory of localization is that of abelian monoids. 

Definition 15: Let S < M c Ol • Let M$ S = { (m, s) I m c M, S c S} 

be considered as a monoid under componentwise multiplication. Then =(S) 

is a binary relation on ME& S given by (a, b) ii (x, y) (S) if and only 

if there exists s c S such that ays = bxs. II 

Proposition 14: Let S < M c Of. 


Then !! (S) is a congruence relation. 


Proof: (a, b) =(a, b) (S), as abl•bal, l cs. That 

(a, b) =(x, y) (S) implies (x, y):: (a, b) (S), is clear. 

Also (a, b) 5 (x, y) (S), (x, y).E: (u, v) (S) implies there 

exist s, t c S such that ays = bxs, xvt =yut. We then have 

aysvt =bxsvt = bsy~t, b, y, v, s, t cs, whence (av) (yst) = (bu) (yst), 

yst c s, and so (a, b) =(u, v) (S). Thus, a (S) is an equivalence 

relation. 
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Moreover, (a, b) =(x, y) (s), (a', b') ii (x'i, y') {S) implies 

there exist s, s' c S such that ays = bxs, a'y's' = b'x's'. Then we 

have (aa•){yy•)(ss') = (bb')(xx•)(ss'), ss• cs, whence. (aa', bb') ­

(xx•, yy') (S), and finally (a, b)(a•, b') = (x, y){x', y') (S). II 

Definition 16: Let S < M c ()( • Then (M $ S) I =(S) is 

called the localization of M at s, and is denoted s-1M. Also, the 

congruence class containing (m, s) is denoted m/s. II 

Proposition 15: Let S < M c Ol • 

Let 'f 

Then ~ is 1 - 1 if and only if S < C(M). 

Proof: -+ ): Assume cp is 1 - 1. Let s cs, x, y c M such that 

sx = sy. Then xla = lys, s cs, which implies x/1 = y/1. It follows 

that ff (x) = ff (y) , and so x = Y• 

4== ): Assume s < C(M). Then ., (x) = 'f (y) implies 

//x/1 = y/1, which implies there exists s c s such that sx = sy; so x = ,/ . " 

Proposition 16: Let S < M c ()(. 

Let a/b c s-1M. 

Then a/b c (s-~)• if and only if a c sat s. 

Proof: =+): a./b c (S-1M) • =+ 3 c/d c s-1M such that ac/bd = 1/1 

~ 3 s c S such that acs = bds 

:0 acs c S 

~ a c sat S. 
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4== ) : a c sat S =+ 3 x c M such that ax c S 

1~ (a/b) (bx/ax) = 1/1, bx/ax c s- M 

~ a/b c (S-~)·. II 

-1Corollary: Let S <Mc or such that S M = 


Then sat S = M. 


1Proof: m c M ~ m/1 c s- M =+ m/1 c (S-1M)* ~ m c sat s. II 

Proposition 17: Let S < M c «. 
-1 ( )-1Then S M = sat S M. 

Proof: Let (a, b), (x, y) c M$ s. 

Now, (a, b) = (x, y) {S) implies there exists s c S =sat S such 

that ays = bxs which implies (a, b) =(x, y) (sat s). 

Also, (a,b) == (x, y) (sat S) implies there exists s c sat S such 

that ays = bxs which implies there exist s, t c M such that ayst = bx:, t, 

st c s, and so (a, b) = (x, y) (S). 

Thus, =(S) and • (sat S) are the same relation. Hence, 

s-1M = (sat S)-1M. II 

Proposition 18: Let S < M c ()(, 

Then there is a biunique correspondence between the set of all 

1prime ideals of s- M and the set of all those prime ideals of M which 

are disjoint from s. 

Proof: See Maury [ 7: p. 54-57]. II 

Notation: Let f: A~ B. Then f.(A) = l f(a) c B I a c AJ. II 



22 


Proposition 19: Let S < M c 0C • 

Let 'P : M ~ s-~ by m t--+ rn/1. 

Then: 1. 'f • (S) Si (S-~)• 

2. 	 If f: M ___,. N is a monoid homomorphism such that 

1f • (S ) ~ N*, then there exists a unique g: s- M ~ N 

such that f =g•~. 

Proof: 1. s c S 	"=+ 1/s c s-1M 

=+ (1/s) (/> (s) = l 

~ (I) (s)c (S-1M)* 

2. 	Let g: s-1M~ N by rn/s...,.. f(m)f(s)-1 • 

To check that g is well-defined, we note 

that rn/s = n/t implies there exists 

u c S such that mtu = snu which implies 

f{m)f(t)f{u) = f{s)f{n)f(u), f(s),f{t),f{u) c N* 

and so f(m)f{s)-l = f{n)f(t)-1 • 

Then (g • 'P ) (m) = g(rn/1) = f(m), for any m c M 

which implies g • '/> = f. 

Thus, we need only show that g is unique. LPt 

g': s-1M~ N such that g' • 'f> = r. Then 

g'(m/1) = f(m) = g(rn/1) for any m c M. For each s c S, 

'ca 1 	 <;)1 = g 1 •;) = f(s) g'(l(s) which implies g' 1 s = 
1 I 	 ~ f(s)-. Thus, g'(rn/s) = g (m/1) g'(l/s) = f(m) f(s) = 

g(rn/s). Hence, g' = g. II 



CHAPTER II 


LATTICE CONSIDERATIONS 


Throughout this chapter, the lattice of submonoids of an abelian 

monoid M will be denoted IL (M). 

Definition 1: An abelian group G is called locally cyclic if 

and only if for any finite subset S of G, ihe subgroup of G generated 

by S is cyclic.· II 

Definition 	2: Let L be a lattice. 

Then: l. 	 Let x, y c L. We say x covers y, denoted x +y, 

if and only if x > y and x 2 a 2 y implies a= x 

or a= y. 

2. 	 We say L is semi-modular if and only if for each 

x, y c L, x J, x /\ y, y,i x I\ y implies xv y ,1, x, 

xv y ,l. y. II 

The reader is assumed to be familiar with the concepts of modular 

lattice and distributive lattice. 

Lemma 1: Let G be an abelian group. 


Then the lattice of subgroups of G is modular. 


Proof: See 	Birkhoff [ l; p. 65 J. II 

Lemma 	 2: Let G be an abelian group. 
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Then the following are equivalent: 

1. the lattice of subgroups of G is distributive. 

2. G is locally cyclic. 

Proof: See Birkhoff [ 1, p. 96]. /,I
I 

Theorem 1: Let M c c!J • 


Then the following are equivalent: 


1. IL (M) is modular. 

2. IL (M) is semi-modular. 

5. M is a torsion group. 

Proof: l ~ 2): True for any lattice. 


2 =+ 3) : Let a c M. 


2 3
Suppose 1, a, a, a, ... are all distinct. Let 

2 4 6 7 8 I 3 4 6 7 8x = l 1, a , a , a , a , a9 
t .•• J and Y= 1, a, a, a a , a9 ... } .a ' ' a ' ' 

4 6 7 8 9Clearly x, y c IL(M). Now, x I\ y = f1, a , a , a , a , a , •.• J and 

2 3 4xv y = f 1, a , a , a , a5 
t ••• J • It is then evident th"lt x covers 

X /\ Y and that Y covers X A Y. However, XV Y does not cover X, 
< 2 4 5 6 } <for X I { 1, a, a, a, a, ••• I XV Y. Hence, IL {M) is not 

semi-modular and we have a contradiction. 

2Since 1, a, a , are not all distinct, and Mc~ , it 

nfollows that there exists n c N such that a = l (Chapter 1, Lemma 1, 

page 7 ). Hence, M is a torsion group. 

3 ===+ 1): Since M is a torsion group, it follows that 

L (M) is the lattice of subgroups of M 

(Chapter 1, Proposition 10, Corollary) 

and hence must be modular (Lemma 1). II 



25 


Corollary: Let ME~. 


The the following are equivalent: 


1. IL 	(M) is distributive. 

2. M 	 is a locally cyclic torsion group. 

Proof: l =+ 2): 	IL (M) distributive implies JL (M) modular, and so, 

by the theorem, M is a torsion group. Thus M 

is a group whose lattice of subgroups is distributive, 

and hence M is locally cyclic. 

2 .-.1): 	Clear from Lemma 2 and Chapter 1, Proposition 10, 

Corollary, page 15. II 

Definition 3: Let K <Mc()(. Then K is called a modular 

cover in M if and only if L ~ K implies L(N fl K) = (LN) fl K, for any 

L, N c L (M). II 

Remark: M and f 1} are always modular covers in M. II 

Theorem 2: Let K < M c ()( • 


Then the following are equivalent: 


1. K 	 is a modular cover. 

2. 	 x, xy c K implies there exist a., f3 c No such that 

xy = x 
a. yf3 and yl3 c K. 

Proof: 1-.2): 	Let x, xy c K. Now < x > S: K. So < x > (< y > n K) = 
( < x > < y >) (') K. But xy c ( <x > < y >) () K 

implies xyc <x> ( < y > () K) and so there 

exist a. t 13 c No such that xy = xa.yf3, yf3 c K. 
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2 ==+ 1): 	Let L, N c L (M) such that L E K. That 

L(N fl K) 4a (LN) n K is well-known. 

Let xy c (LN) fl K, x c L, y c N. Then x, xy c K, whence 

a. 13there exist ex., f3 c No such that xy =x 	y, yl3 c K. We then have that 

(X. ~ (X. 
xy = x y, x c L, l c N fl K, and so xy c L(Nll K). 

Thus, L(N fl K) = (LN) fl K. II 

Corollary: Let K ~ M c OC. 


Then K is a modular cover. 


l 1 1Proof: x, xy c K implies xy = x y, y c K. 	 II 

Proposition 1: Let K <Mc Ab. 


Then the following are equivalent: 


1. K is 	a modular cover in M. 

2. K is a subgroup of M. 

3. K J: 	 M. 

Proof: l ~ 2): Let x c K. To establish the implication, we 

-1 	 -1
need only 	show that x c K. Now, x, xx c K 

which implies there exist ex., p c No such that 

-1 (X. -13 -13xx = x x t x c K. We distinguish two 	 cases. 

x- 13C	ase one: Assume we can choose ex. rJO • Then xx-l -- xcx.x-P, c K 

-1 cx.-1 -13 a.-1 -13 ... K -1implies x = x x ' x t x .... whence x c K. 

2 2 -1Case two: Assume we must have ex.= o. 	 Now, x , x x c K, and 
2r' _, _,2 -1so there 	exist I , G c No such that xx = x x x c K. Thus,' 


-1 2, -1 - I _, 

xx = x x ' x c K. Suppose '¥ /. o. Then 2 't -1, G c No, which 

implies 2 't -1 = 0 (By assumption of case two); but then 't • N o, -- a 
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_, 	 _, 

contradiction. So 'If =o. Thus, x = x t which implies x c K for 

some 

b ; 

, 

a, 

c No. 
then 

If '= o, then x = 1, 

'-1x c K; it follows that 

and -1 c K is clear. Ifx _, 
'-1x ' x c K, and so 

-1 x -6 '-1= x x c K. 

2 =+ 3): Chapter 1, Proposition 4, page 7. 


3 .. 1): Theorem 2, Corollary. II 


Proposition 2: Let Mc~. 


Let K be a modular cover in M. 


Let y c con K. 


n n+l
Then y c M* or there exists n c N o such that y , y c K. 

Proof: y c con K implies there exists x c K such that xy c K, 

which implies there exist a., µ c No such that xy = xa.y'p, y'p c K. If 

a.= o, (3 = o, then xy =1 which implies y c M*. If a.= o, µ I o, then 

13-1 	 13-1 y'pxy = y'p which 	 implies x = and so c K, r - 1 c No. If y ' y ' 
a.-1 'p 0 1a.# o, then xy = xa.y'p which implies y =x y ' and so y ' y c K. II 

Proposition 3: Let M* < K < M c ~ , where K is a modular 

cover. 

Let y c con K. 

Then < y >' S K. 

Proof: The proposition is clear if y c M*, so we assume y ~ M*. 

n n+lThen there exists n c ~ o such that y , y c K, and we choose n 

minimally. The proposition is clear if n = 0 or n = 1, so we assume 

n 	.2: 2. 
n n+l 2n n+lNow y, y c K implies y , y c K, and so we have 

~l ~1~1 ~, 
y , y y 	 c K. It follows that there exist a., J3 c '"' o such that 
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n+l n-1 a(n+l) ~(n-1) f3(n-l) K 
y y = y y ' where y c • 

n+l n-1Suppose 0 = O, ex.= o. Then y y = 1, and so y c M*; -- a 

contradiction. 

n-1 (a-l)(n+l)
Suppose 0 =o, « i o. Then y = y ex. - 1 c/\Vo, 

n-1whence y c K. But this contradicts the minimality of n. 

l(n-1)Suppose i:3 = 1. Then y c K, which also contradicts the 

minimality of n. 

Thus, 0 ~ 2. 

n+l n-1 a(n+l) µ(n-1)
Now, y y =y ,ycMc..C:, 

2n = a(n+l) + 0(n-1), i:3 ~ 2 

2n - a(n+l) > 2 
n - 1 

2ex.< 
n + 1 

a :S 2/3 (as n ~ 2) 


... a= o. 


So 2n = 0(n-l), 0 2 2. Then 2(n-1) + 2 = ~(n-1), 0 2 2, whence 

(n-1) (0-2) = 2, 0 ~ 2. It follows that n-1 divides 2, and so n = 2 

or n = 3. 

8
Suppose n i 2. Then .;.y 

4 
c K and also y c K. Now, 

y3' Y3Y5 c K implies there exist t 's c IV o such that ;y5 = ;?( y5& 

y 5& 
c K, which implies 8 = 3 71' + 5E As &=O implies 3 divides 8• 

(contradiction), and S ~ 2 imnlies 8 > 10 (contradiction), we must 

5have S = 1. Thus, y c K. Then, .;, i3y2 c K, which implies there 

3A 21t 2Jtexist A c No such that /y2 = y y c K. Now, 5 = 3>.. + 2TC.' n: ' y 

Since TC= 0 implies 3 divides 5 (contradiction), and n: = 2 implies 

3 divides 1 (contradiction), and TC~ 3 implies 5 ~ 6 (contradiction), 
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II 

therefore 1t = 1, and so y 
2 

c K. But this contradicts the minimality 

of n. Hence n =2. 

It follows readily that < y >' S K. 

Theorem 3: Let M be a rigid cancellative monoid. 


Let K < M. 


Then the following are equivalent: 


1. 	 K is a modular cover. 

2. 	 K is connected or K = < y >' for any y c con K\K. 

3. 	 K is connected or there exists y c M such that 

K=<y>'. 

Proof: l ~ 2): Assume K is a modular cover. 

Assume K is not connected. Let y c con K\K. Then there 

exists a c K such that ay c K. 

Let x c K such that xy c K, but otherwise arbitrary. Now 

a.fj 13there exist a., i3 c No such that xy = x y, y c K. Suppose µ = o, 

a.= o. Then xy = 1 which implies y c M* and so y c K·t -- a contradiction.
' 

a. 	 a.-1Suppose 13 = o, a. > 1. Then xy = x which implies y = x c K·
' 	 ' 

-- a contradiction. Suppose t3 = 1. Then yl c K·t -- a contradiction. 

Thus, µ ,2: 2. 

a. i3-l 	 cx.-1 fj-1So x = x y ' i:3 - 1 c N • Suppose a. ,! 0. Then 1 = x y ' 

13-1which implies whence y c K; -- a contradiction. Thus, x = y 

and so x c < y >. 

We have shown that x, xy c K ~ x c < y >. 

Let k c K. Then a, ay c K, ka, kay c K implies a c < y >, 

ka c <y>, from which it follows that there exist n, m c No such that 

m n n-mky = y • If m ,:::: n, then k = y c < y >. If n .::S m, then ky
m--n = 1 
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which implies whence kc< y >. 

Hence, K~<y>. Now, <y>'SK. So K=<y> or K=<y>'. 

But it is easily checked that < y > is connected. Thus, K = < y >•. 

2 ~ 3): Trivial. 

3 ===> 1): The implication is known if K is connected. 

Assume there exists y c M such that 	 K = < y >•. Let a, ax c K. 

n mThen there exist n, m c J\'-' o such that a= y, ax= y, which implies 

n m n-m 1 y x = y • If m ,5 n, then y x = 1, whence x c M* and so x c K,
' 

1 1 	 m-n ax= ax. If n < m, then x = y If, moreover, m-n /. 1, then 

1 1 1 x c < y >• = K, which implies ax= ax x c K. If, on the other
' 

Om mhand, m -· n = 1, then x = Y, and so ax = a x , x c K. 

Thus, a, ax c K implies there exist a., r, c No such that 

aa.xl3 xf3 cax = K. Hence, K is a modular cover. 	 II' 

Corollary: Let K < ~o. 


Then the following are equivalent: 


1. K is a modular cover. 

>12. There exists n c No such that 	 K = < n > or K = < n 

Proof: It is easily checked that M ~ AV o if and only if there 

exists n c No such that M = < n >. The result follows. II 

It would seem reasonable to expect some sort of decent structure 

to appear in the lattice of modulRr covers in an abelian monoid M, 

although, of course, this lattice is usually not a sublattice of IL (M). 

The example of No shows that not even semi-modularity can be expected, 

for it is not difficult to see that the lattice of modular covers in~ o 

is found by taking the lattice of natural numbers partially ordered by 
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divisibility and then splitting each point into two points. The 

illustration below should make clear what this means. 

~ 
<.:l > 

I 
<~)I 

\ 
< '- > 

<•> 

I 


< I >' 

I 

<'3 > 

I 

< '3 >

I 

< Jo) 

I 
<Jo) 

~ 
l 

. .<S' > 

<s-')' 

I 

< 1s-') 

< 15') 

It is seen that < 2)' J, <2 > ' A < 3 ) 1 , <. 3 >' .J, <2 > ' I\ <3 > ' , 
1but < 2 ) 1 V < 3 ) 1 % < 2 ) • 



CHAPTER III 

FORMAL GAUSS CONTENT 

In the theory of rings, the concept of unique factorization domain, 

or factorial domain, is well known. One theorem of particular interest here 

is that the ring of polynomials over a factorial domain is again a factorial 

domain. This theorem is especially easy in the case that the original domain 

is a field; the general theorem, of course, is somewhat more involved. 

The main point of this chapter is to provide a proof of this 

theorem based only upon the theory of abelian monoids, and a few selected 

axioms. 

The concept of an irreducible element a of an abelian monoid A 

will be that a= xy, x, y c A imolies x c A• or y c A•. Of course, we 

could also insist that a be a non-unit, but we will find the statements 

in what follows to he more conveniently-expressed if we do not impose this 

restriction. As would be expected, a factorial monoid will be an abelian 

monoid A with the property that every element is a product of irreducibles 

and moreover that the non-unit elements of such a product are unique except 

for order and multiplication by a unit. It is easily seen, as with rings, 

that in the presence of the first property, the second is equivalent to: 

if p, a, b c A, p irreducible, and p divides ab, then p divides a 

or p divides b. 

In what follows, we will assume throughout the following situation: 

D is an abelian cancellative monoid. The abelian group D-1D (see 

Chapter 1, ~ 4) will be denoted q(D). Also, p(D) and p(q(D)) are 
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abelian cancellative monoids. All of these objects are subject to the 

following axioms (referred to as "property 5", or "property 3", for 

example, in the text that follows): 

1. 	 D ~ p(D) < p(q(D)); q(D) < p(q(D)) 

2. 	 p(D) () q(D) = D 

3. 	 p(D)* = D*, p(q(D))• = q(D) 

4. 	 p(q(D)) is a factorial monoid. 

5. 	 n c p(q(D)) implies there exists d c D such that 

dn c p(D). 

6. 	 f: p(D)~ D/D• is a monoid homomorphism such that 

p(D) =D·Ker f and when restricted to D, f is the 

natural map. 

By taking D to be the multiplicative monoid of a domain, p(D) to be 

the multiplicative monoid of the polynomial ring over D, and p(q(D)) to 

be the multiplicative monoid of the polynomial ring over the field 

q (D) U f O} , we see that the first four properties are clearly satis:f"ied, 

that the fifth deals with the existence of common denominators, and that 

the sixth is the usual Gauss content function on the polynomial ring. In 

what follows, p(D) will be denoted M, while p(q(D)) will be written N. 

It should be noted that we could raise the status of p by making 

it a functor, and the same could be done for q. That is, let q be the 

functor from .x: to ~b given by A t-+ A-lA, and let p be a functor 

from r. to J:.. such that: 

1. 	 A< p(A) < p(q(A)), for any Ac I:.. 

2. 	 p(A) ll q{A) = A, for any A c r. 
3. 	 p(A)• = A* , for any A c J::. 



4. 	 G c Ab implies p(G) is a factorial monoid 

5. 	 n c p(q(A)) implies there exists a c A such that 

an c p(A), for any Ac J:.. 

6. 	 for each Ac J:. , there exists a monoid homomorphism 

fA: p(A)---+ A/A• such that A·Ker f = p(A), and when 

restricted to A, f is the natural map. 

Now the case where p(D) is taken from a polynomial ring is not 

the only situation in which the above axioms are satisfied -- although it 

is admittedly the most interesting. There are at least two other cases. 

The first, and most trivial case is that afforded by taking p to be the 

identity functor. A second case is given by taking p to be the functor 

defined by A,..._. A 6) No, where A $ AV o = { (a, n) I a c A, n c /\Vo J 
considered under componentwise operation, and with a and (a, 0) being 

identified for each a c A. That this functor satisfies the axioms is 

easily checked (take fA((a, n)) =a', where a• is the natural image of 

a)• 

We now proceed to establish the proof mentioned on page 32. In so 

doing, the situation we are assuming throughout the rest of this chapter 

(described above) can be pRrtially summarized by the following diagram. 

J<., f < M 

1 

D/D1'­
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Lemma 1: Let d c D, m c M. 

Then d divides m in M if and only if f(d) divides 

f(m) in D/D•. 

Proof: ==+): By assumption, m = dx for some x c M. It follows 

that f(m) = f(d) f(x), and we are done. 

4=a): It is clear that there exists d" c D such that 

f(m) = f(d) f(d"). Also, since M= D·Ker f, there exists d' c D such 

that m = d'k for some kc Ker f. It is then easily seen that f(d I) : 

f(dd"). It follows readily that d' = dx for some x c D, whence d'k = 

dxk, and so d divides m in M. II 

Lemma 2: Let d c D, m c M, kc Ker f such that k divides dm. 

Then k divides m. 

Proof: By assumption, dm = km' for some m' c M. Looking 

at the image of each side under f, we see that f(d) divides f(m•). 

By Lemma 1, there exists m" c M such that m'::: dm", whence km'= dt"'l"k, 

and so dm = dm"k. Using the fact that M is cancellative, we deduce 

m = m"k, and we are done. II 

Lemma 3: Let n c N. 


Then there exists n• c N* such that nn• c Ker f. 


Proof: By property 5, there exists d c D such that dn c M. 

Now, M = D•Ker f•t so let d' c D, k c Ker f such that dn = d'k. But 

q(D) = N*, and so d' has an inverse, say d". Then k = d"dn, and, 

by taking n• = d"d, we are done. II 



Lemma 4: Let k c Ker f and let (n.) be a finite family of 
l. 

elements of N such that k = ,r i n. • 
l. 

Then there exists a corresponding family (n.•)
l. 

in N* such that 

(n.n.•)
1 l. 

is a family in Ker f and k = ,r • . n.n.•
1 ]. ]. 

Proof: By Lemma 3, there exists a family (m. •) in N* such- l. 


that (n.m.•) is a family in Ker f. Now N* = q (D); so for each i,

l. l. 

let m.• = x./y., x., y. c D. Set x = 1!x., Y = ,ry Clearly,
l. l. l. l. l. 1 1 i i. 

T Yi ,r •k = m. •n.. It follows that xk = y T. m. •n., and so . m. n.
i xi 1 1. l. 1 1 l. l. 1 

divides xk. 

By Lemma 2, Tmi•ni divides k in M. Thus, there exists 

m c M such that k =m Tm. •n.. We note that f(m) = 1 follows. 
1 1 1 

Define and n. • = m. • for all i /. 1. Clearly,
1 1 

k ='!n.n. •. Also, for any i /. 1, it is obvious that n. • c N* and 
l. l. 1 l. 

that n.n. • c Ker f. It remains to show that n * c N* and that 
1 l. 1 

n • c Ker f.
1

n
1 

k = m"!' m. •n. 
l. 1 l. 

implies k = km 1!" m. •, whence m~m. • = 1. It follows that m c N*,
l. 1 1 l. 

and thus mm • c N*. Hence, n • c N*. II1 1 

Lemma 5: Let m c M be irreducible in M. Then m is irreducible 

in N. 

Proof: Since M= D·Ker f, there exist d c D and kc Ker f 

such thnt m = dk. But m is irreducible in M. Hence, d c M* or 

k c M*. Now M* = o•. Thus, if k c M* , then m c D < q ( D) , and so 

m c N*. 
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We assume, therefore, that d c M*. It follows readily that 

m c Ker f. 

Now, let n
1

, n c N such that m =n
1

n • By lemma 4, we may2 2

choose n •, n • c N* such that n •, n • c Ker f and m = n •n •.1 2 1n
1 2n2 1

n1 2n2

By the irreducibility of m in M, either nlnl• c M* or n2n • c M* • 2 

But M* = o• < N*. Thus, n.n.•, n. • c N* for either i = l or i = 2. 
l. l. l. 

Hence, c N* or n c N* • IIn1 2 

Lemma 6: Let n c N be irreducible in N. 


Let n• c N* such that nn• c Ker f. 


Then nn• is irreducible in M. 


Proof: Let ml, m2 c M such that nn• = m1m2• Now, 

f(m )f(m ) = f(nn•) = 1. Since D/D• is rigid (see Chapter 1, Definition 71 2

page 7 ), it follows that ml, m2 c Ker f. 

It is easily seen, from the irreducibility of n, that m. c N• 
l. 

for either i = l or i =2. Now, N* = q(D); so m. c q(D) n :p( D) 
l. 

for either i = l or i = 2. By property 2, we see thn.t ml c D or m2 c D. 

But ml' m2 c Ker r. It follows that ~c n• or m2 c o•. II 

Lemma 7: Let d c D be irreducible in D. 


Then d is irreducible in M. 


Proof: Let m c M such that d Now, in N,ml, = mlm.2.2 
-1

1 = d m1m2 , and so ml' m c N* . Thus, ml, m c q ( D) n p ( D) • Hence,
2 2 

ml, m2 c D. But d is irreducible in D. It follows that ~c n• or 

m2 c o•, and we are done. II 



Theorem 1: Assume D is a factorial monoid. Then M is a 

factorial monoid, where M= p(D). 

Proof: Let m c M. 

Then there exist d c D and kc Ker f such that m =dk. 

Since D is a factorial monoid, we know that d is a product of irreduciblf's 

in D, and hence, by Lemma 7, a product of irreducibles in M. Now, 

kc N, and N is a factorial monoid. Thus, k = T n., where each n. 
l 1 l 

is an irreducible in N. By Lemna 4, there exist n. * c N* such that 
l 

Moreover, by Lemma 6,n.n. • c Ker f for all and 
l l 

n.n.• is irreducible in M for each i. 
l l 

It follows ':.hat m is a product of irreducibles in M. 

Now, let di, m•, m" c M such that m divides m'm" (in M), and 

m is irreducible. It is easy to see that if we can show that m divides 

m' or m divides m" then we are done.
' 

Now, there exist d' c D, k' c Ker f such that m = d'k'. By 

the irreducibility of m, and noting that M* = D*, it is readily seP.n 

that either m c D or m c Kerr. 

Assume first that m c D. Since m divides m'm", we have that 

f(m) divides f(m•)r(m") in D/D*, where f(m) is irreducible in n/1)•. 

But D/D* is a factorial monoid. Hence, f(m) divides f(m') or f(m) 

divides f(m"). By Lemma 1, m divides m' or m divides m". 

If, on the other hand, we assume that m c Ker f, then we can 

argue as follows. By Lemma 5, m is irreducible in N. Thus, in N, 

either m divides m' or m divides m" • Without loss of generality, 

we may assume m divides m' and so there exists n c N such th·1t
' 

m' = mn. Now, by propP.rty 5, there Pxists d c D such that dn c M. Also, 
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m'd = mdn, where m'd, m, dn c M. Thus, m divides m'd in M, where 

m c Ker f, d c D, and m' c M. By Lemma 2, m divides m' in M. // 



CHAPTER 4 

CATEGORICAL CONSIDERATIONS 

i 1: Introduction; Coreflections and Reflecti'ons 

In this chapter we will be considering the categories (JC , ~ , 

l:. , and .'1 b. Our main purpose will be to identify some of the more 

important categorical objects of Of, and to a lesser extent those in cJ 

and J:.. as well. Jll b is, of course, a well lmown category. Because our 

main attention will be directed to dl, any categorical concept mentioned 

in this chapter which does not referecplicitly to some category will be 

assumed to refer to (1( • Normally, a concept considered strictly within 

some subcategory of (J'( , say I. for example, will be prefixed with that 

category; for example, we would speak of a S:.. -epimorphism. 

On the whole, definitions of standard categorical concepts are 

assumed to be known by the reader. Readers for whom this assumption is 

false are referred to Mitchell [ 8]. 

Notationally, given maps will be assumed to be monoid homomorphisms 

unless otherwise stated. 

Proposition 1: Let A, B c (7( , f: A ~ B. 


Then: 1. f is an isomorphism if and only if f is 1-1 and onto. 


2. f is a monomorphism if and only if f is 1-1. 

Proof: 1. ~):True in any concrete category. 

~):The only ccnceivable candidate for an inverse 

of f is both ohvious and easily verified. 

40 
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2. ~ ): True in any concrete category. 

~): Let x, y c A such that f(x) = f(y). Let 

M= f (xn, ~) I n c No} with componentwise multiplication. Clearly 

Mc (}( • Let a: M ~ A by (xn , yn)· ~ xn , for any n c /\I o. 

fl·. M ~ A b ( n n) ._____,,. nand p y x t y r---r y • for any n c A.Vo. It is easily 

seen that a and ~ are monoid homomorphisms, and readily checked that 

fa= fl3. Since f is a momomorphism, we have a= 13, which implies 

a((x, y)) = i3((x, y)), and so x = y. Hence, f is 1-1. II 

Lemma 1: Let S < M c (JC. 

Let (f: M---+ s-1M by m ~ m/1 

Then cp is a epimorphism. 

Proof: Let N c (I( Let a, 13: S-lM __..,. N such that o:cp=0cp• 

Then o:(m/1) = (J(m/1) for any m c M. Let s c s. 

Then o:(1/1) = 13(1/1) 

~ a(s/1) a(l/s) = i3(s/l) 0(1/s) 

~ a(s/1) a(l/s) =a(s/1) 13(1/s), a(s/1) c N* 

a(l/s) = f3(1/s). 

It follows that o:(m/s) = ~(m/s) for any m/s c S-1M. Hence, 'I' is 

an epimorphism. II 

Corollary: Epimorphisms are not necessarily onto. 

Proof: Take S = M= Alo in the lemma. II 

Proposition 2: Let M c (}(. 


Let 'f : M~ M-lM. by m ~ m/1. 


Then <f is an epimorphic coreflection li.nto Fi b. 
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Proof: We know that 41 is an epimorphism. Also, it is readily 

checked that M-~ is a group. Let G c Jl9 b and f: M ~ G. 

Clearly f(m) c G* = G for any m c M. Hence, there exists a unique 

g: M-
1

M ~ G such that f = g cp (Chapter 1, Proposition 19, page 22). II 

Proposition 3: Let Mc P,. 


Let ,v be the binary relation on M defined by x,.,, y if and only 


if there 	exists m c M such that mx = my. 

Then ,v is a congruence relation. 

Moreover, let p: M ~M/- be the natural map. 

Then p is an onto coreflection into r:.. 

Proof: It is readily checked that ,...,. is a congruence relation 

and obvious that p is onto. Also, it is easily seen that M/,v c J:, 

Let C c l:. and f: M~ c. Now, p(x) = p(y) 

implies there exists m c M such that mx = my, 

whence f(m)f(x) = f(m)f(y), and so f(x) = f(y). 

Th.us, we may well define g: M/.,., ~ C by 

p(x) ~ f(x). It is easily seen that g is a 

monoid homomorphism and that gp = f. 

Moreover g is unique, for g'p = f implies g'p = gp, p onto, 

and so g' = g. II 

Proposition 4: Let M c ()(. 


Let N = { n c M ( n 2 = n } • 


Let p M ___. M/ ~ N be the natural map. 


Then p is an onto coreflection into r:J. 


Proof: 	 It is clear that p is onto. 



2Now, p(x)2 = p(x) implies x "'x (~ N). It follows that 

there exist a, b c con N such that ax 
2 = bx. From this we get 

x c con N, and so p(x) = l. Thus, M/ ~ N c t:1 • 

Let D= f d c Mf 3 n c N·J • d 2 =nd ] Then -con N = con D. 

Let f: M--+ I c -.:J . Now n c N implies 

n 2 = n, which in turn implies f(n) 2 = f(n), M 
whence f(n) = l. Also, d c D implies there 

exists n c N such th~t d 
~ =nd-. From this 

I we get f(d )2 = f(d ) , and so f(d) = 1. 


Finally, x c -con N implies x c con D, which 


implies there exists d c D such that dx c D; so f(d) = 1, f(d.)f(x) = 1, 


and hence f(x) = 1. 


Thus there exists a unique g: M/ ~ N~ I such that f = gp, 

(Chapter 1, Theorem 1, page 4). II 

Proposition 5: Let u: M*·~ Mc (J( be the natural injection. 

Then u is a monomorphic reflection out of /Fl b. 

Proof: It is clear that u is a monomorphism and of course that 

M* c II b. 

Let G c /II b and f: G --+ M. M ...<-­
Now, G c J9 b implies r. (G) c i9 b, 

which in turn implies f.(G) E. M*. Thus 

we may define g: G ___,. M* by x ~ f(x). 

Obviously, f = ug and the fact u is a 

monomorphism ensures that g is unique. II 
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We hr:1ve now that /fib ~ 1: ~ e7 ~ d( is a chain of full coreflective 

subcategories of (Ir , and moreover that Rb is a reflective one. In 

searching to determine whether or not J: and c!J are also reflective in (l( 

we are first lead to<r>nsider whether or not we want to insist that the 

reflections be monomorphisms. Without this restriction, I suspect, but 

have failed to prove, that J: and~ are not reflPctive. It can be 

proved, however, that, in general, monomorphic reflections out of J:. 

and r::!J do not exist. 

2Example: Let M = f 1, e J c Pr where e =e'/-1. 

Then M has no monomorphic reflection out of ~ or J::. . 

Proof: Suppose M does have a monomorphic reflection out of~ 

or J:: • Without loss of generality, we may assume that the domain of such 

a reflection is a submonoid of M. But M \ irJ and M t J:. • Thus, the 

domain of the reflection must be fl} • Define f: N o ~ M by 

n ~ en. Clearly, there does not exist a morphism g: No~ f 1 Jsuch 

that ug = f' where u: { 1 l ~ M. Noting thnt AV0, r1 J c cJ and 

/IV o, { 1 l c J:.. , we are done. /I 

f 2: Various Identifications 

It i.s clear thn t f l } is the zero of all four of the c:oi. tegories 

we are considering. Consequently, we shall often denote f 1 1 by o, 

even when considered as a submonoid of a multiplicatively written monoid. 

Similarly, if f: A ~ B by a t--+ 1 for any a c A, then f will 

usually be denoted o, or OAB if the context is not clear. 



If f: A ---.i, A by a ~ a for any a c A, then f is usually 

denoted id, or idA. 

Prooosition 6: Let (A.). I be a family of abelian monoiis. 
l. 1C 

Then: 1. 	 the product of this family, denoted J;r Ai' is 

J<ai \er I ai c Ai V i c I J 
2. the coproduct of this family, denoted . 

@ 
I A.'l. 

is 
1C 

S(a.). I c _TI 	 A. I a. =1 for all but finitelyl 1 ].C 1C 1 1 

many i c I}. 	 II 

Proof: Routine. 	 II 

Proposition 7: Let f, g: A ~ B. 


Let E = f x c A J f(x) = g( x) J• 

Let u: E ----11 A by x t--+ x. 


Then u is an equalizer for f and g. 


Proof: Routine. 	 II 

Corollar:£! Let f: A---+ B. 


Let K = f x c A I f(x) = 1 J. 

Let u: K __.., A by x ~ x. 


Then u is a kP.rnel of f. 


Proof: We note that u is an equalizer for f and o. II 

Proposition 8: Let f, g: A--+ B. 

Let ~ = f R ~BX BI R is a congruence relation, (f(n), g(a)) c R, 

\/acA}. 

Let ,.., = n R. 
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Let p: B---+ B/_.. be the natural map. 


Then p is a coequalizer for f and g. 


Proof: Since (pf)(a) = p(f(a)) 

= p(g(a)) (as f(a)""' g(a)) 

= (pg)(a)' 

therefore pf= pg. 

Let q: B -4 K such that qf = qg 

C3 p ){3/......,Let a be the binary relation in B defined 

by x a: y if and only if q(x) = q(y). It " ~ 3!h 
,. ~ J, 

is then easily checked that a is a congruence I< 
rel·!tion. Moreover, qf = qg implies q(f(a)) = 

q(g(a)) for any a c A, whence f(a) • g(a) 


for any a c A. Thus,,.., ~ 11. so X""Y implies x !! y. Hence we may 


well define h: B/-~K by p(b) ~ q(b) for any b c B. Now, 


(hp) (a) = q(a) for any a c A, is clear. Thus, q = hp. Moreover, 


as p is onto and thus an epimorphism, we are ensured that h is u: iqmJ. fl 


Corollary: Let f: A~ B. 


Let p be the coequalizer for f and o. 


Then p is a cokernel for f. 


Proof: Clear. II 

Although the above description of cokernels is accurate, it is 

apparent that it is not as useful as it might be. For this reason we 

give below a different description, together with an independent proof. 



Proposition 9: Let f: A~ B. 


Let p: B~ B/f.(a) be the natural map. 


Then p is a cokernel for f. 


Proof: It is readily checked that pf= o. 

Let q: B---+ K such that qf = O. 

q(f(a)) =1 for any a c A, whence 

q(n) = 1 for any n c r.(A). Thus, 

there exists a unique h: B/f.(A)~ K 

such that q = hp, (Chapter 1, Theorem 1, 

page 4). II 

by (x, 

Proposition 10: Let r
1

: A
1 
~ A, r

2
: 

Let P = {(x, y) x c A
1

, y c A
2

, f
1

(x) 

Let p
1 

: P ~ A
1 

by (x, y) ~ x, and 

y) ~ y. 

A
2 
~ A. 

= f/y)}. 

p
2 

: P----+ A
2 

Then 

A, --~)R
;. 

is a pullback. 

Proof: Routine. II 

Proposition 11: Let r : A ~ A
1

, r : A~ A •
1 2 2

Let ~ = { R I R is a congruence relation in A X A ,
1 2 

(r (:l), 1) R(l, r (a)) Va c A}.
1 2
 

Let ;v = n ~ 
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Let P = (A
1 

X A
2 

) / ;'\;". 

Let p
1 

: A
1 
~ P, p

2 
: A

2 
~ P be the natural maps. 

Then 
A 

f, 1 
A, 

is a pushout. 

Since (n f )(a)= pl(rl(a))E!:22.f: · 1 l 

= L(f {a), l)] (i.e. the con~ruence
1 

class containing (r {a), 1))1
= [(l, r/a))J (as {f (a), 1)...-(1, r (a)))

1 2 

= (p r )(a), for any a c A,
2 2 

given by (x,y) • (a, b) if and only if 

It is 

readily checked that= is a congruence 

relation and that ,.., ~ a . Thus we may 

well define h: P ~ P' by 

[ (x, y)J ~ r; Cx) p~(y). It is then 

easy to show th·it p~ = hp , p~ = hp
2 

, and that h is unique. II1 

Proposition 12: Let f: A ~ B. 


Let f: A~f.{A) by a~f(a). 


Let u: r.{A)---.B by xr-+x. 




1+9 


Then 

is the image of f. 

Proof: Easy. II 

Lemma 2: Let A < B c ()(, 

For ench N < B such that A S N, define iN: A ~ N by 

a...-..... a. 

Then there exists M < B such that A~ M, iM is an epimorptism, 

and A < M' < B, iM' an epimorphism implies M' =M. 

Proof: Let ?I- = f N / A < N < B, i N is an epimorphism J • 
It is clear th~t "I' I¢, for Ac '1" Let M be the submonoid of B 

p;enerated by U ')"- . It is easily checked that A < M < B and that 

A < M' < B, iM' an epimorphism ,... M' C: M. 

It remains to show that iM is an epimorphism. Let f,1: M~D 

such that fiM = giM. Now it is easy to show that b c M if and only if 

b is a finite product of elements of \J "It'. 'l1hus, it is sufficient to 

show that for ea.ch N c 'l/" , f(x) = g(x) for any x c N. 

Let N c ~ • Define f': N---+ D by n t-+ f(n) and 

f".' : N---+ D by n t--+ g(n). Then, fiM = giM implies f( x) = g(x) 

for any x c A, whence f' (x) = g' (x) for any x c A, and so f'iN :;; g iN. ' . 

But i 
N 

is an epimorphism. Hence f' = g'. II 

Notation: In the above lemma, we denote M by epi (A). II8



Proposition 13: Let f: A~ B. 


Let f: A---+ f.(A) by a...--. f(a). 


Let i: r.(A) ~ epiB(f.(A)) by f(a)~ f(a). 


Let j: epiB(r.(A))~B by x~ x. 


Let p = if. 


Then 

BA 

r~ /J
( f {R))

11"P's 

is a coimage for f • 

.!1:.22!= It is clear that p is anfl)imorphism and that jp = f. 

Let q: A--+ K be an epimorphism, 
f Band u: K --+ B such that uq = f. Let A 

u: K ~ u. (K) by k .....-+ u(k). Now 

uq = f implies f •(A)~ u. (K). Let 

v: f.(A) __... u.(K) by x ~ x. 


It is easily checked that vf = uq. 


But q is an epimorphism (by assumption), 


as is u (since it is onto). Thus, uq 


is an epimorphism; hence vf, and so v. 


It follows that u.(K) E. epiB(f.(A)). Hence, 


we may define h: K~ epiB(f. (A)) by f,. (R> --~) (A. ( 1<) 

'\r ff 

k f--+ u(k), and it is seen that hq = p 

and jh = u. II 

~ y
ef's Cf,t.11)) 

"'. :3 h 

K 

To conclude this section, we present below some examples of 

coimages. This is intended to serve three purposes: first, to r,ive some 

MCMASTER UNIVt.HSfL't Lljjt(Ata 
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feeling for what coimages in (1( look like; second, to give some more 

varied examples of epimorphisms that are not onto (for f': A____,. epiB 

(f.(A)) by a~ f(a) is such whenever epiB(f.(A)) F r.(A)); and 

third, to give some ground work for counterexamples to be given later. 

Lemma 3: Let M < G c /Fi b. 


Let H be the subgroup of G generated by M. 


Let i: M--+ H by m t,-l> m. 


Then i is an epimorphism. 


Proof: H is just (See Lemma 1). 

Proposition 14: Let f: A--+ G, where A c (J( , G c IR h. 


Let H be the subgroup of G generated by r.(A). 


Then H = Coim f. 


Proof: We must prove that H = epiB{f.(A)). f~ (~) 

Let i: f * ( A) ---+ H by x ~ x. 
 y '\ 

Now we know that i is an epimorphism. So N H 
let j: f• (A)--+ N < G by x ~ x, where ~/
f.(A) < N and j is an epimorphism. Clearly, K 
if we can show that N < H, then we are done. 

Let K be the subgroup of G generated by N. Evidently H < K. 

Let k: N --+ K and h: H~ K be the n;ltural injections. Now, 

kj = hi is clear. Also, j is given to be an epimorphism and by Lemma 3, 

k is also; hence kj and so hi is. It follows that h is an 

epimorphism. In p.."lrticular, h is an ¥1 b-epimorphism and is thus onto. 

Hence, H = K, and so N < H. 

II 

II 
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Proposition 15: Let f: A___.,. B. 

Let B' 	 be B with a zero adjoined. That is, B' = B \:) ( e} , 

2where be= eb = e = e for any b c B. 

Let f': A~ B' by a~ f(a). 

Then Coim f' = Coim f. 

Proof: 	 If e I Coim f', then the proposition is clear. 

Suppose e c Coim f'. 'l'hen define D = Coim f' cJ { e' } where 

xe' = e'x = e'e' =e' for any x c Coim f'. Define g: Coim f'~ D 

by xt---+x and h: Coimf'~D by x~fx,if x;i!e,e',if x=e.1 

Let i: f!(A)---+ Coim f' by x ,-...+ x. Then it is easily seen that 

gi = hi but g ;i! h. But this contradicts the fact that i is an 

epimorphism. II 

Proposition 16: Let f: A~ B. 


Let A'=A\!/{eA}, where 
 for any a t: A; 

and B' 	 be defined similarly. 

Let f': A' ~ B' by x .-.fr(x), if x t: Al., eB' if x = eAJ. 
Then Coim f' = Coim f U f eB ) • 

Proof: It is not difficult to verify that i: f!(A') ~ Coim f v[eB} 

by x t--l) x is an epimorphism, and hence that Coim f V f eBJ 5: Coim f'. 

Suppose that equality does not hold; that is, that Coim f ~ Coim f'\ feB J < B. 

Then there exist g, h: Coim f'' f eB}-+N such that g ,. h but gj = hj, 

where j: f.(A)___.Coimf•,feBJ. Let N'=N\.:l(eN}asusual. 

Define g': Coim f'----+ N' and h': Coim f'~ N' in the obvious way, 

and k: f!(A')~Coim f' by x ~f'(x). Then it is seen that 

g'k = h'k. But k is an epimorphism, and so g' = h', whence g = h. 

Contradiction. II 
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Proposition 17: Let f: A---+ B. 


Let M c tJt. 


Let g: A~ B~ M by a t-+ ( f(a), 1). Then 


Coim g = f 	(b, 1) I b c Coim f } • 

Proof: Let K = ( (b, 1) / b c Coim f J. Clearly K S Coim g. 

Now, let i: g.(A)~ Coim g be the natural map. Define 

u: Coim g ~ B(i) M by (x, y) t--+ (x, y) and v: Coim g---.B(i) M by 

(x, y).....,... (x, 1). Then ui = vi is clear, and, since i is an epimorphism, 

u = v. Thus, if (x, y) c Coim g, then y = 1. It folJ.ows easily that 

K = Coim g. II 

§ 3: Extremal Morphisms; Exactness 

Definition 	l: ( See Herrlich [ 4; p. 61 J ) • Let f: A-4 B. 

Then: 1. 	 f is callP.d an extremal monomorphism if and only if 

i f is a monomorphism. 

ii f = np, P an epimorphism, implies p is an 

isomorphism. 

2. 	 f is called an extremal epimorphism if and only if 

i f is an epimorphism 

ii f = un, u a monomorphism, implies u is an 

isomorphism. 	 II 

We note that in a balanced category, f is an extremal monomorphism 

(extremal epimorphism) if and only if f is a monomorphism (epimorphism). 



While it is well known that IR b is a balanced category, we see from 

Lemma 1, Corollary, that (!(, eJ , and ~ are not balanced. 

We recall below a few known facts concerning extremals. 

Lemma 4: Let ?I' be any category. 


Let A c ~ 


Then idA is an extremal monomorphism and an extremal epimorphism. 


Proof: Easy. II 

Lemma 5: Let if' be any category. 


Let f be an extremal monomorphism (extremal epimorphism). 


Let f = pu. 


Then u is an extremal monomorphism (pis an extremal epimorphism). 


Proof: Easy. II 

Proposition 18: Let~ be any category. 


Let u: E--+ A be an equalizer in ~. 


Then u is an extremal monomorphism. 


Proof: It is proved in Mitchell [ 8 ] that u is a monomorp::ism. 

Let u = fp, pan epimorphism. Now, u is an equalizer; let 

it equalize a, b: A~B. 

So, au = bu .. 
E "" (-1 B 

afp = bfp J,-=+ ... af = bf ,Ji/,
3 h uh = f=- ·~· .. uhp = fp 

F 

uhp-=+ = u 

,. hp= id 
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But id is an extremal monomorphism and p is an epimorphism, hp= id. 

Thus, p is an isomorphism. II 

Corollary: Let ~ be a category with zeroes. 

Let f: A~ B. 

Then f is a kernel~ f an equalizer 

~ f an extremal monomorphism. 

,. f a monomorphism. 

Proof: Clear. II 

We turn now to the question of defining what we want to mean 

when we say a sequence A f ) B g ~ C is exact. It seems perfectly 

natural to insist thRt the concept of exactness should at least contain 

the restriction that Im f = Ker g. The issue is whether or not this 

restriction by itself would lead to a worthwhile theory of exactness. 

In answering this, we note that any such theory would surely have the 

result that if O ~ B g ~ C is exact, the g is a monomorphism, 

but we find that this would not be true in t7r if we took only the restriction 

indicated above. A counterexample is obtained by taking B = No, C = f 1, e J , 
2 n(where e = e I- 1), and g to be defined by n !---+ e for any n c Alo 

(e0 = 1); for we see then that Im O = Ker g and yet g is not 1 - 1. 

For this reason then, we adopt the definition indicated below. 

Considering that the second restriction is redundant in ;:J b, but not 

redundant in (/( , ~ , or J:. we feel that this definition is the next 

most natural one to adopt. 
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Definition 2: We say A --..!... B g ~ C is exact at B if 

and only if 1. Im f = Ker g, 

2. Coker f 	= Coim g. II 

Theorem 1: Let f: A~ B. 


Then the following are equivalent: 


1. f: A ---+ B 	 is an extremal epimorphism. 

2. f: A --+ B 	 is onto. 

3. A --.L... B ~ 0 is exact. 

Proof: 1 ==> 2): 	 Assume f is an extremal epimorphism. Let 

f': A--+ r.(A) by a~ f(a). Let 

u: r.(A)---+ B by f(a)~ f(a). Then 

f = uf', u a monomorphism, implies u is 

an isomorphism, whence u is onto. Thus 

r.(A) = B, and so f is onto. 

2 ~ 3): 	 Assume f is onto. Clearly, Im f = B =Kero. 

Also, Coker f = B/B ~ 0 = Coim o. Thus, 

A f ~ B O ,. 0 is exact. 

3 =+ 1): 	 Assume A ~ B ~ 0 is exact. Then 

Im f = Ker O =B implies f is onto, and so 

f is an epimorphism. 

Let f = un, where u is a monomorphism. Now f is onto. 

Thus, u is onto, and so u is an isomorphism. 

Hence, f is an extremal epimorphism. II 

Theorem 2: 	 Let f: A--+ B. 
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Then the following 	are equivalent: 

l. f: A ----1> B 	 is an extremal monomorphism. 

2. 0 ~ A ....!....:. B is exact. 

Proof: l ~ 2): 	Assume f is an extremal monomorphism. Since 

f is l - 1, it is clear that Im O = Ker f = I 1 J • 

Let f': A-4epiB(f.(A)) 

by a~ f(a) and 

u: epi (f.(A)) --4 	B by 

x ~ x. Then f = uf' , 


f' an epimorphism implies 


f' is an isomorphism, which 


in turn implies Coker O = A/ f1J IV 
A ~ epiB ( f *(A)) = 


Coim f. Thus, 0 ~A ~B is exact. 


2 ::=;>l): 	Assume o~ A ~B is exact. It is clear 

that we may take id: A~ A to be the cokernel 

of o. Let 

f': A-+epiB(f* (A)) 

by a ~ f(a) and 

u: epiB(f.(A))~ 	B A 
by x ~ x. 

Since Coim f = epiB(f.(A)), it follows that there exists a unique 

i: A~ epi8(f.(A)) such that i id= f' _. i = f'. By the exactness 

at A>', we see that i (i.e. f') is an isomorphism. It follows that f 

is a monomorphism and that epiB(f.(A)) = r.(A). 



Let f = nq, q an epimorphism, q: A~ D. Now, there exists 

a unique h: D---l>f.(A) such that 

hq = f' uh = n. We notice that
' BA 

qf'-~q = qf' 
-1

f' = q, which implies 

qf·-~ = and thus his 1-1. ~ ;/idD' f.i (R)
• Thus, d c D -. h(d) c f• (A) 

=> 3 a c A ·~· f(a) = h(d) 

~ f' (a) = h(d) 
D 

~ (hq )(a) = h(d) 


::::!> h(q(a)) h(d)
= .. q(a) = d, 

and so q is onto. It follo1,:s that q is an isomorphism. II 

The observations below that conclude this section are designed to 

show that, in spite of the good behaviour of exact sequences as exhibited 

in the preceding, our concept of exactness is still capable of some rather 

strange behaviour. 

Proposition 19: Let A ~ B ~ 0 be exact. 


Let i: Ker f ~ A by x ~ x. 


Then Ker f i > A ~ B O ~ 0 is not necessarily exact 


at A. 

n
Proof: Take No f '>{ 1, e} O i, 0 where f: n~ e,

' 

2
and e = e ~ 1. Since f is onto, we know this is exact. However, 


Ker r~No ~ll el ~o is not exact at No, for Coker i 

' 

is seen to be Alo, while Coim f = f 1, e} • II 
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Proposition 20: Let O ~ A f ~ B be exact. 


Let p: B --+ Coker f be the natural map. 


Then O .....2..... A ~ B ~ Coker f is not necessarily exact 


at B. 

Proof: Take o ~ < 1 >• ~No where f is the natural 

injection. It will be shown in ~ 5, Theorem 4 that this is exact. Now 

it is easily checked that Coker f = 0 and thus Ker p = AVof.<1 >' = Im f. 

Thus, 0 ~ < 1 >' --k J'+I o ~ Coker f is not exact at No. II 

Proposition 21: Coreflectinn into ,:/ b, f:., or cJ does 

not necesnarily preserve exactness. 

Proof: Let M = /Jo l:I fel where e + n = n + e = e + e = e
' 

for any n c fJ o. Let f: No ~M by n I---+ n. Then 

0 --l4No ~ M is exact (see Proposition 15). 

It is easily checked that the sequence when coreflected into ~ 

or ~ becomes O --2. No ~ O, which is not exact; and when 

core fleeted into lfJ b becomes O ~ Z ~ O, which is not exact. II 

§ 4: Hom (A, B) 

Notation: As expected, for each A, B c d( , the set of all 

monoid homomorphisms is denoted Hom (A, B). II 

Proposition 22: Let A, B c (l(, 

Define the bjnary operation 0 in Hom (A, B) by f O g 

a f-+ f(a)g( a). 
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Define 0: A~ B by a~ 1. 


Then (Hom (A, B), 0
, O) c (7(, 


Proof: Clear. II 

Corollary: (/( is a semiadditive category. II 

Proposition 23: Let A c (7( , B c ~. 


Let J:. (A) be the coreflection of A into J:.. 


Then Hom(A, B) ~ Hom( J;. (A), B). 


Proof: For each f c Hom(A, B), define f': J: (A)~ B by 

[a]..--.+ f(a), where [a] is the congruence class containing a (see 

Proposition 3). It is easily checked that f' is well defined and that 

f ' c Hom ( .t (A ) , B) • 

The mapping f ~ f' is routinely seen to be an isomorphism. II 

Proposition 24: Let f c Hom(A, B). 


Then the following are equivalent: 


1. f c Hom(A, B)*. 

2. f.(A) ~ B*. 

Proof: Easy. II 

Proposition 25: Let M c d(. 


Then the following are equivalent: 


1. id c Hom(M, M)•. 


?. M is tl group. 


3. Hom(M, M) is a group. II 
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Proof: Cle:ir. 	 II 

Lemma 6: Let B c (J( 


Then B ~ Hom( No, B). 


Proof: For each b c B, define fb: No ~ B by n ~ bn. 

Then it is routinely chP.cked that the mapping b ~ fb is an isomorphism 

from B into Hom ( N o , B) • II 

Theorem ,2: Let A, B c d(, 


Then: 1. B c ,:Jb => Hom (A, B) c 1/b. 


2. B c 	 r. ... Hom (A, B) c i:. . 

3. 	 B c .J ==!> Hom (A, B) c ,J. 

4. 	 A c Ill. .. Hom (A, B) c Rb. 

5. A c 1:. ~ Hom (A, B) c J:.. 

6. A c t:J ~ Hom (A, B) c cJ 

7. Hom (A, B) c ,:Jb ~ A c Ill b or B c #lb. 

8. 	 Hom (A, B) c J:. ,.+ B c J:... 

9. 	 Hom (A, B) c t:J ~ A c If) b or Bct::J. 

Proof: 	 1. Clear from Proposition 24. 


2 • Dlsy. 


.3. F..asy. 


4. Clear 	from Proposition 24. 

5. 	 Let Mc:Qr\cC . By Lemr,a 6, Hom ( No, M) ';t M l 1:. 

even though Noc s.:. . 

6. 	 Let Mctt,~. By Lemma 6, Hom ( No, M) ~ M ~ cJ 



?. 	 Let H = f x clR f O c x ~ 1 J be considered multiplic,,tiv0.l:: 

Clearly, H, No c (/( \fA b. 

Let f c Hom (H, J\/ o). Suppose f I o. Then there exists a c H 

such th11t f(a) = n Io, a I 1. Then n = f(a) = f((~ /n) = 2n f(~), 

zy-;;' c H, and so fC~ > =! \ /\Vo. Thus f = o. Hence, Hom ( H,/\Vo) c /Rh, 

8. 	 Take A c /Rb, B c «\ct • Then the result io 

clear by Proposition 24. 

9. 	 Assume A ~ F/ b. 

2Suppose Then there exists n c B such that n =nil.• 

Define f: A~B by at--+1 if a c A* and a...-.. n if a~ A*. 

Then it is routinely checked that f c Hom(A, B)' f2 = ft and thus f = o. 

Hence A = A*. But this contradicts our assumption. II 

§ 5: Free Abelian Monoida 

Proposition 26: Let I bP. a set. 


Let F = .@ J\1/i), where N/i)=No for any i ,. I. 

l.C 1 

Then F is the free ahelian monoid on I I/ p;en"":?rr1tors. 

Proof: See Chevalley [ 2; Chapter 1, § 6]. 	 II 

CorollA.ry: The free objects of (/(, .) , and i:. coincide. Ii' 

The remainder of this section will be devoted to a small Rtudy 

of the structure of submonoids of the free monoids. 

http:CorollA.ry
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Theorem 4: Let F be a free abelian monoid. 

Let N < F and f: N~F be the natural map. 


f
Then 0 ~N )F is exact. 

Proof: We must show that Coim f = N. We know that N < Coim f < F. 

(f) N Ci)Suppose N ! Coim f. Now, let F= . I o and choose 

.i. ~ (n.). cCoim f \. N such that n. < m. for any (m.).i! c Coim 

lC 

f' \:.1 lC 1 icI 1- icI 1 1 1 x. n.1 }
Let M = { (ai ( x.). I c Coim f J(:) j (bi with1) 

icI J 1 l.C )icI 
x. 2

1 2n. n. x. + n.(b. = (a. 1 1 x:i. 1 
l ) icI 1 and (b. i). I (a.

) icI )icI (a. = )icI1 1 l.C 1. 

for any (x.). I c Coim r'-..o. Clearly Mc dr. 
1 l.C 

Define g: 

h: Coim f ~ M by 

n. 
(b. 1 

). I' if (x.). I= (n.). r·
1 l.C 1 l.C 1 l.C 

To ensure th~t h c Hom (Coim f, M), we need check only that (x.). I'
1 lC 

(x.). I+ (y.). I= (n.). I~ x. = 0 for any i 
1 1C 1 lC 1 lC 1 

or y. = 0 for any i. Now, (x.). I' (y.). I c N would imply
1 1 lC 1 lC 

(n.). I c N -- a contradiction. So without loss of generality, we may
l. lC 

£. £. assume (x.). I~ N. It follows that n. < . I x .• But
l 1C icI l. - l.C 1 

(x.). I+ (y.). I = (n.). I implies that x. < n. for any i. More­
l. lC l l.C l. l.C 1 - 1 

£ £. ~ over, if x. < n. for some i, then we get x. < n. < x. t 
1 1 icI 1 icI 1 - id 1. 

which is impossible. Hence, x. = n. for any i and so (y.). I= o. 
1 l. 1 l.C 

Thus, h is a morphism of monoi<ls. Define f': N---+ Coim f to be the 

natural map. Then we have gf' = hf', f' an epimorphism, and so e = h. 

In particular, g((n.). ) = h((n.). ) and we have our contradiction. II1 l.C 1 1 lC1



Corollary 1: Let F be a free abelian monoid. 


Let F' = F \:I { e } , where e is an adjoined zero. 


Let N < F' and f: N ~ F' be the natural map. 


Then O O > N f ~ F' is exact. 


Proof: If e ~ N, then the result follows from Proposition 15. 


If e c N, then the result follows from Proposition 16. II 


Corollary 2: Let~ o be considered multiplicatively. 


Let N < No and let f: N-+Alo be the natural map. 


Then O O > N --4N o is exact. 


Proof: We need only note that /\Vo~(.~, ti/ (i) )\.:.)1...,.., 0 re 1• II 

It is well known that any subgroup of a free abeli~n group is 

free, while it is easy to find a non-free submonoid of a free ahelian 

monoid. It would seem to be instructive therefore to look at the free 

submonoids of free abelian monoids. Many things can indeed be said on 

this topic, of which the following are perhaps the most noteworthy. 

Proposition 27: Let n £ ~­

"' Let N < i~l ~o (i) = F. 


Then the following are equivalent: 


1. N ~ F. 

2. There exist a.. c No, i, .j = 1, ••• , n such that 
n1J n 

~ ~ i N:.: _2: a .x .) J
{ ( j=l \ /j t ••• ' J=1 nJ J 

0 1 
ii ••• tall' aln 

a: } ii O, ... ' 8nl. ' nn 



Proof: 2 ~ 1): Let such a. . exist.
lJ n n 

£ ~ Define f: F~N by (\, ••• , xn)~ (j=l a ..x . J'=lanJ.xJ.)lJ J, ••• , ­

It is clear that f is a well-defined onto monoid homomorphism. We thus 

need only show that f is 1 - 1. But the fact that the determinant is 

not zero is quickly seen to ensure this. 

1 ,===,. 2): Let f: F ____. N be an isomorphism• 

Let (o, •.. , o, 1, O, ••• , O) t--+ (a j, ••• , a .) where the 1
1 nJ 

is in the j~ component. Then it is clear that N is as described in i. 

Suppose the required determinant is zero. Then the system 

= 0••• + 

a z = 0 nn n 

has a non-trivial solution in 4t and hence a non-trivial solution in z 
Let (zl' .. . ' z ) be a non-trivial solution in Z . Define 

n 

x. = z. if z. > o, x. = 0 if z < o, = 0 if z. >o and 
l 1 1- l i Yi 1 ­

y. = -z. if z. < o. Then it is easily seen that (xl, ... ' x ),
1 l 1 n 


... ' y 
n 

) are distinct elements of F whose images under f are the 


same. But this contradicts the fact that f is 1 - 1. II 

Corollary: Let N < No. 


Then the following are equivalent: 


1. N ~ No. 

2. There exists n c No such that N = < n >. 

3. N l No. 

Proof: l ~ 2): Clear. 

2 .,. 3): Easy. II 

http:J'=lanJ.xJ
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The fact that the free submonoids of /\Vo are exactly the 

connected submonoids is a situation not found in the free abelian monoids 

on more than one generator. 

That connected submonoids are not necessarily free is seen by 

considering the submonoid N of ~ o<i> f\.\,/ o, where 

N = { (3a + c, 3b + c) f a, b, cc No}. 

That free submonoids are not necessarily connected can be deduced 

from the proposition above and the one below. 

Proposition 28: Let N oEI> IV o ~ N < /\Vo© /\Vo. 


Then the following are equivalent: 


1. N t /\Vo@No. 

such that N = { ( a.x, Py) I x, y c /\I o) .2. There exist 

Proof: 2 =:I) 1) : Obvious 

1 ~ 2): Assume N is connected. 

Now, we know that there exist a, b, c, d c Alo such thnt 

ad - be-/. 0 and N = I (ax+ by, ex+ dy) ( x, y c No J (Proposition 27). 

Suppose a, b, c, d-/. o. Let n c ~ such that n > a/b, n ~ c/d. 

Then (bn - a, dn - c) c ~o<f> ~o and (a, c) + (bn - a, dn - c) = (bn, dn), 

where (a, c), (hn, dn) c N. Since N is connected, it follows that 

(bn - a, dn - c) c N. This is easily shown to be impossible, and so one 

of a, b, c, d is zero. 

Without loss of generality, assume d = o. Since ad F be, we 

have b IO, c Fo. It remains to show that a= O. 

Suppose a-/. o. Then let n c /\/ such that n ~ b/a. It 

follows that (nn b, en) c No@ No, (b, O) + (an b, en) = (an, en), 

(b, O), (an, en) c N, and hence (an - b, en) c N. But this is easily 
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shown to 	be impossible. 

§ 6: Projectives 

Definition 3: Let p c (}(. , p 
Then we say that p is projective if 	 h 

,. 	 l+and only 	if for each f: P~B and for L:.' 

each epimorphism q: A~B, there exists A ,. 3 

h: 	 P ____. A such that f = qh. 

We say that P is extremally projective if and only if for each 

f: P---+ B and for each extremal epimorphism q: A-4B, there exists 

h: P ~	A such that f = qh. II 

Lemma 7: Let (P.). I be a family of abelian monoids. 
1 ic 

is projective (extremally projective) if and onlyThen i~ Pi 

if P. is projective (extremally projective) for any i c r. 
1 

Proof: Routine. 	 II 

We introduce the definition below in order to facilitate the 

proof of the lemma that follows. It may as well be noted here that that 

lemma will be seen to be the main result which allows us to identify all 

the projectives and extremal projectives in OC, t:!J , and J:. 

Definition 4: Let x c Mc(/( , where M is written additively. 

Then the height of x in M, denoted M-ht (x), is given by 

sup { n c No J 3 x1 , ••• , xn c M \ foJ ·J· x = x + ••• + xn J . //
1 
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Example: f\.Vo - ht (n) = n for any n c No. 

Z- ht (x) = m for any x c Z 
 II 

Lemma 8: 	 Let p c (/( and let p be written additively. 

EB N (i) N o<i) =Let F = 	 where No for any i c P. . p O 	 ' 1C 

~ Let q: 	 F--+P by (x.). p ~ icP xii.1 1C 

Let j: 	 P~F s~ch that id = pj.p 


Then P is free. 


Proof: Since id= pj, then it is clear 

that j is 1 - 1, and so P is isomorphic to a 

submonoid of F. It follows easily that every 

F 	 p
element of F and of P has finite height. 

Let x c P, fol. Then there exists n c N, 

such that x = x + ••• + xn ' with n maximal. Now,
1 

and j(x.)=O implies x.=0 (since j isl-1), which is false. 'Phus 
1 	 1 

F - ht (j(x)) > P - ht (x). Let F - ht(x) = m. Then, there exist 

••• , ym c F'\.{ o} such that j(x) = Yl + ••• y ' whence+ m 

+ q(y ). Now we know that m _> n. Suppose m In. Then,. m 

without loss of generality, we may assume q(y) =o. But we note that 
m 

P is isomorphic to a submonoid of F, and this, together with the definition 

of q, is easily seen to imply that Ker q = f O } • Hence, y = 0 and m 

we have our contradiction. 

Thus, F - ht (j(x)) = P - ht (x), for any x c P. 

Now, every non-zero element of P is a sum of elements of height 

one, and so P is generated by its height one elements. Moreover, each 

such elcmcnt has as its imaee under j a height one element which must 



then be of the form (ui \cP' where u. 
l. 

= 0 for all i c P except 

i = i', and u. 1l 
= 1. It follows easily that and hence p 

., ' 
is free. II 

Theorem 5: Let P c <J(. 


Then: 1. P is extremally projective if and only if P is free. 


2. P is projective if and only if P is trivial. 

Proof: 1. Assume P is extremally projective. Then P has 

the properti~s given in Lemma 8, and so P is free. On the other hand, 

it is easy to show that /\Vo is extremally projective and so, by Ler.irn11 7, 

every free abelian monoid is extremally projective. 

2. ThRt the trivial monoid is projective is obvious. Assume 

P is projective. It is then again seen by Lemma 8 that P is free. 

Suppose P is not trivial. Then by Lemma 7, AV o is pro jective. De fine 

f: No~z by n~-n, and 
,. No 

q: !Wo-->, 2 by n~n. By i, .•' 

,• .... 
, ,• 

,Lemma 3, q is an epimorphism. . . lf 

Since No is projective, there 

u· 
N. z 


exists h: l+lo~No such that t 

f = qh. In particular, -1 = f(l) = 
q(h(l)) = h(l). Thus, •l c f+lo which is clearly nonsense. II 

Corollary 1: The theorem remains true when stated witU n J 

or within .t. 

Proof: Clear. II 
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Corollary 2: A direct summand of a free abelian monoid is free. 

Proof: Let F = A '9 B, F free. 

Then F is extremally projective, whence A is extremally 

projective (Lemma?), and so A is free. II 

§ 7: Injectives 

Definition 5: Let Q c (}{, A (3 
Then we say Q is injective , 

, , h 
if and only if for each f: A~ Q , ,fl , , 

, 

and for each monomorphism u: A ~ B, , , 
/!:., 

Q
there exists h: B ~ Q such that 


f = hu. 


We say Q is extremally injective if and only if for each 


f: A --4 Q and for each extremal monomorphism u: A~ B, there exists 

h: B ..__. Q such th·,t f = hu. II 

Lemma 9. Let Q c !fl b. 


Then the following are equivalent: 


1. Q is a divisible group. 

2. Q is /,q b-injective. 

3. Q is extremally injective in II b. 

Proof: 1 # 2): See Lambek [ 5; Chapter 4, § 4.2] • 

2 ~ 3): It is well known that u: A~ B is an 

A b-monomorphism if and only if it is an extremal monomorphism in lllb. // 
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Proposition 29: Let Q c QC ( .7 , .I:.. ) such that Q is injective 

(el -injective, $:.. -injective). 

Then Q is a divisible group. 

Proof: Suppose Q is not a group. 
TVo 

u. 
)~ 

Then there exist.s a c Q\Q*. Define f: No-+ Q ,,, , 
by n ~ an. Define u: /\'lo~ Z by n ~ n. , , I,fl , 

Then there exists h: 2---.:, Q such that f = hu. Q 
~, 

In particular, a= f(l) = (hu)(l) = h(l), and 

so h(l) ' Q*. But Z a group implies h. ( Z) ~ Q*. Thus we have a 

contradiction and so Q is a group. 

Moreover, it follows that Q is IF/ b-injective. By Lemma 9 1 

Q is a divisible group. II 

Theorem 6: Let Q c ()( such that Q is extremally injective. 

Then Q = f 1} or Q contains a zero. 

Proof: Let u: Q ~ Q \!If e} be the natural map, where e 

is an adjoined zero. Now u is an Q 

extremal monomorphism (Proposition 15). 

Thus, there exists h: Q i.:.J { e} ---+ Q such '" 1
l: 

that id= hu. Also, h(a) = a for any 

a c Q is clear. 

Now, h(e)a = h(e)h(a) = h(ea) = h(e) for any a c Q. Thus 

either h(e) is a zero of Q, or h(e) = 1 and so a= 1 Va c Q. II 

Theorem 7: Let Q c (I(, 


Then Q is injective if and only if Q is trivial. 
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Proof: That { 1} is injective is clear. 

Assume Q is injective. Then Q is extremally injective and 

so Q is trivial or contains a zero. (Theorem 6). But Q injective 

implies Q is a divisible group (Proposition 29). Hence, Q is 

trivial. II 

Lemma 10: Let Q be a divisible group. 

Let f: A~ Q. 

Let u: A---+ B be a monomorphism such thr1t its coreflection 

into /fl b is also a monomorphism. 

Then there exists h: B ~ Q such that f = hu. 

(A. I 

Proof: Let a.: A~ A-lA and A-'R ), 13·'B 
'•pj '(3: B--+ B-lB be the natural maps, and i °' ' C(, 

I 
I,A > B ,u t: A-lA --+ B-lB be the induced map. .f' 

I 
Let f': A-lA ~Q by .,,'l+ ., -. , 

!3 

' 

x/y ~ ) f(x) f(y)-1. It is easily seen G ~- -., -­
that f' is well defined and that f = f'a.. 

Now Q is ,Ab-injective (Lemma 9). Thus, there exists 

g: B-1B ~ Q such that f' = gu', whence f'a. = gu •a., f = gu 'a., and 

so f = (g~)u (as u•a = ~u is easily checked). II 

Theorem 8: Let Q c I. , 


Then Q is J: -injective if and only if Q is a divisible group. 


~: Assume Q is 4 -injective. Then Proposition 29 ensures 

that Q is a divisible group. 

Assume Q is a divisible group. Now, if A, B c 1:.. and 
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u: A--+ B is a 

coreflection into 

and we are done. 

monomorphism, then it is readily checked that its 

/:, b is also a monomorphism. Hence, Lemma 10 applies 
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