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CHAPTER I

INTRODUCTION

Though considerable amount of research in Optimal
Control Theory has been done since 1957, the first results
concerning.the sensitivity analysis of optimal systems were
published only as recently as 1963 [11, 24]. Since then, a
rapidly growing number of technical articles have appeared

and as a result a very broad field of research was started.

Due to its short existence, this area of research
is still in its infant s%age. There are only a few general
importanf results; many difficult problems have been
uncovered but little has been done in the direction of ob-

taining the solutions.

_Unlike automatic control systems,..optimal control
processes are associated with a given cost functional.
When the Optimal Control Theory is considered as a set,
" the studies of the necessary and sufficient conditions for
the optimal control and the senéitivity analysis can be re-
garded as the three major subsets. Sensitivity analysis in
Optimal Control Theory consists of two major problems. If
fhe implementation of the optimalhcontrol is not unique, com-

parison between different implementations in the light of



sensitivity is one of thé major topics in the field of
sensitivity analysis. Recent research emphasises .on

the comparison between open- and closed-loop implemen-
tations. Another topic of sensitivity analysis is in
the direction of reducing the sensitiviiy. Without
innovating the configuration of two degrees of freedom,
two approaches are possible. First, the given cost
'fﬁnctional'is modified and a new optimal control

policy is consequently developed. The most popular
approach is to include a scalar function of sensitiv-
ity in the given cost functional. Second, the given
cost functional is not changed and the choice of im-
plementation is based on‘the result of coﬁpariéon as
there are only two types of implementations available.
In this thesis, a third approach is formulated. 1In
contrast to the first approach, the given cost func-
tional is unchanged so that the control thus implemented
iéroptimal with respect to the given cost functional

as desired;ﬂ‘Differing from the”second'approach a
prototype of implementation which is the configura-

tion of two degrees of freedom is applied. The scope of
the present work is limited in the direction of reduc-
ing vérious sensitivities without making any comparison
between the suggested configuration Qith either the open-

or the closed-loop implementations.



Pontryagin's Minimum Principle is pegafded as the
basic tool in determining the optimal control. Sufficient
treétment of the control problem and the technique of
obtaining.the optimal control will be given in Chapter II.
The physical and mathematical aspects of changes in the plant
parameters are evaluated in Chapter IITI. In addition, the
sensitivity is redefined since the term has offen been
>misused and the need for clarification is obvious. Chapter
IV introduces the configuration of two degrees of freedom
in optimal control systems, and forﬁulates the implementation
problems where the technique developed in Chapter II is readily
applicaﬁle. Chapter V exposes the field of sénsitivity
analysis using the linear system with a quadrétic cost
functional as an illustration and the idea developed in

Chapter IV is applied to this special yet important system.



CHAPTER TII

OPTIMAL CONTROL SYSTEMS

2.1 Introduction:

Knowledge of the physical world is based upon experi-
ment and abstraction. The engineer examines specific physical
systems with definite objectives in mind, while the theoreti-
cian attempts to discover the basic laws which govern and

describe the behavior of physical systems in general.

In the role played by the enéineer, a physical system
is considered as a black box. Certain input "signals" td
one black box are applied in order to observe and measure the
resultant output "signals". The ultimate objective is the
determination of an input which will produce an output with
certain desired: characteristics and which will minimize
~the-Mcost"-of .operation. A trial and error procedure may
be applied to achieve the objective but except when one is
very lucky, in general it would not work. The aim of this
chapter is to supply a systematic technique for determining

such an input and to discuss its characteristics.

2.2 Mathematical Description of Control Processes:

There are two different ways of describing

control processes: - (i) by means of state variables and



(ii) by transfer functions. Recent developmeﬁts in
optimal control theory are based on using vector dif-
ferential equations as models for physical systems and
rely heavily on the concept of state. In approximate
terms, the state of a system may be defined as the
‘minimum.information about the system at some instant
of time t, which, together with a specification of the

0

input vector u(t) for all time subsequent to t en-

OI
ables the computation of the output vector c(t) for

all time subsequent to t In other words, knowledge

0"
of the state at tO obviates-the need for any informa-
tion about the past behavior of the system'for predict-
ing its future. Knbwledge of the output is generally
not sufficient. The state may be regarded as separat-
ing the system's past from its future. This defini-
tion of state suffices for our later development; and
for the precise definition one may refer to Zadeh and
Desoer [52].

Let u(t fJ denote all values of u(t) in

o't
the interval of t0<t<tf and x(t) denote the state.

The state concept can be expressed mathematically as

c(t) = c{x(to), u(toft]} t>t . [2.2.1]

Equation (2.2.1) .states thatAthe future output behavior



can be determined from a knowledge of (or equivalently,
is a function of) the present state, énd a specifica-
tion of the future>inpu£ signal. It is possible to
show that, if certain care is taken in the mathematical

definition of state, then

x(t) = x{x(to),u(to,t]} v t>t [2.2.2]

0

which means the future state behavior of the system
also depends only on the present state and the future

input. Equation (2.2.2) is better represented by

*

x(e)=¢{t: x(t)),ulty,tl} vest [2.2.3]

0

where ¢ is the transition function of time determined
according to the knowledge of'x(to) and u(to,t]. The
state x(t) of a system in equation (2.2.3) contains suf-
ficient information about the system; in usual practice,
state x(t) in the form of equation (2.2.3) is not avail-
able directly. A differential system is a dynamical
system with the system state variable x(t) described by

a set of differential equations,
X (t)=£(x(t) ;u(t),t) - [2.2.4]

with x(to) as initial point and ¢ in equation (2.2.3) as

the solution to the vector differential equation (2.2.4).



By the existence theorem [40] for differential équation
(2.2.4) the components of £ and %% must be continuous on
RxRY%T where n is the dimension of x(t) with x(to)eRn,q is
the dimension of u(t) with a piecewise continuous function
u(t) from T into r4 and T is the open time interval with
T:(TO,Tf), T0<t0<t<Tf. Both n and g are assumed to be fin-
ite.

The control processes or physical plants, or
simply systems, which are consideréd through all chapters
are continuous-time dynamical differential systems des-
cribed by the systems of differential equation (2.2.4) with
x(tO) as initial point and equation (2.2.3) ihe solution.
Sample-data system will be excluded.

All the developments that follow are based on the
vector differential equations as models of the physicél
systems. In tﬁe older literature on control theory, how-
ever, the same‘systems are modeied by transfer functions.
In the new approach, state yariables, transition matrix,
etc. are used and the mathematical tools are abstract
linear algebra and differential equation théory. In the
old approach, the key words are frequency response, pole
zero pattern, etc. and the main mathematical tool is com-
plex function theory. It is very unfortunate that the gap

between the old and the new approaches become wider and

wider, but no bridging of this increasing gap will be



attempted in this thesis.

The Control Problem:

The basic ingredients of the (optimal) control

problem are

1) a control process which is to be "controlled"

2) a cost functional or performance index which measures
the effectiveness of a given "control action".

3) the objective of the control process

4) a set of constraints.

As discussed in the previous section, the con-

trol process under consideration ig

% (£) =£ (x () ,u(t) ,t) | o [2.3.1]
with the transition function ¢ given as

x(t)=¢ (tix(ty)ult, t]) : [2‘.3.2]

The transition function ¢ depends on the control‘u(to,t]

- when the initial point x(to) is specified. If more than
‘one control u(to,t) in R¥xT satisfies the objective of
the control process, a choice must be made among the can-
didates. A cost functional is established for this pur-
pose. In general, a cost function J is a scalar integral

function and takes the form of
t

£
T(usty b)) =Kix(e) £+ Lix(e) u(e), pat

0 [2.3.3]



virhere‘tf is the final time. The inteérand L is assumed to
be a continuous real-valued function on R™xRIxT and K is a
continuous real valued function on R"xT. The optimal con-
trol u*(to,tjg Qf the control process associated with the cOst
funétional J is the control which satisfies the constraint

and the objective of the control pfocess'and which gives a
minimum value for the cost functional J relatively with
respect'to the possible candidates. Since finding the

maximum of a real-valued function is the same as finding

the minimum of the negative of the function, it is clearly
sufficient to consider only the minimization of the cost
functional.

The objective of the control process specifies
both the initial conditions and the final conditions for
the state and time. The initial conditions supply the in-
formation about the initial timé_?o?To' and the initial
state X(tO)' Without 1058 of generality let the initial
time be specified and the initial state be given as a
point in R™. The final conditions supply the information
about the final time tf<Tf, and the final state x(tf).

The final time may or may not be specified while the final
state can be a point, free, in a target set, in a moving
target set or a moving point. This will be discussed in

more detail in the next section.

Since the control process is degcribed by egqua-
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tion (2.3.1), the constraint set, if there is aﬁy, must be
described also in terms of either the control or the state.
Hence there are two types of constraints, i.e. the control
constraint and the state constraint. Let Ut be a closed,
bounded and convex subset of R? and denote the collection

of the sets Ut'by Q; that is,

Q={Ut:teT=(T0,Tf)} ‘ | [2.3.4]

Moreover, all the elements in U, must be bounded and piece-

t
wise continuous. In general, the constraint is given as
uefl where the set Q is described by equation (2.3.4). If

Q=Rq, then the optimal control problem is unconstrained in

control. Magnitude constraint can be expressed as

Q={U:teT}
q
“with U= { T ne :|u; |}
i=1l
where Misare given constants and ei...eq is the natural

basis of R%. Norm constraint is expressed as

Ut={u:||u(t>]|<M} VeeT= (T, ,Tg)

and Q={Ut:teT}.

Similarly, the state constraint can be constructed.
With all the notions developed, the optimal con-

trol problem is formulated as
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"To find a control u, ueQ, which takes .the
initial set to the final set and which minimizes the cost
functional (2.3.3)."
Note that the state constraint is excluded. If it is not
the case suitable modifications are suggested by Berkovitz
[5] and McGill [36] and the development is very similar to the
unconstrainted one.
Major, topics invdlving the optimal ceontrol problem are:
1) The existence and uniqueness~of the optimal control
2) The techniques of obtaining the optimal control
analytically or numerically if it exists.
3) The sensitiviﬁies of the optimal system, the comparison
’betﬁeen different implementations in the light of sen-
sitivities if the implementation of the optimal control
is not unique and the reduction of sensitivities by im-
plementation if it is possible.

Pontryagin's Minimum Prihciple:

In the early fifties, minimum time control laws
were obtained for a variety of second and tﬁird order
systems. In 1956, a principle; leading to the solution of
the general problem of finding a control process, was
hypbthesized by Pontryagin on the basis of the results of
work done by him, Boltyanskii and Gamkrelidze. This prin-
ciple, which received the name, "Maximum Principle", was

verified at first for individual types of systems and, in
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particular, in the case of linear systems. A year later
the proof of optimality for minimum £ime control problem
was completed by Boltyanskii and Gam~krelidze. 1In three
years time, the maximum principle was extended to the
general case of minimizing an arbitrary function of the
integral function of variable systems and a detailed pre-
sentation of basic results was obtained by Pontryagin and
his associates. [41] In this section, the celebrated
Maximum principle! of Pontryagin will bé given without
proof. A rigorous derivation based on geometric arguments
is présented by Pontryagin et.al. A less rigorous demon-
stration than Pontryagin's is given by Athans and Falb [2].

th

Consider a given n order control process with

(TO,T§=T as interval of definition and with state equation
x(t)=f (x(t) ,u(t),t) [2.4.1]
Q is a given subset of R? such that

u(t)eq . vV teT [2.4.2]

and u(t-)=u(t) _ v teT [2.4. 3]

except at a finite number of points in time.

1 since the minimization not maximization of a cost

functional is considered, it will be called the minimum

Principle of Pontryagin.
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The transition function for the given control process is
x(t)=¢(t;x(t0),u(t0,t]) [2.4.4]

The cost functional is given as
. €,
te) =K (x(tg) te)+ [ 7 Lx,u,t)dt [2.4.5]

%

J(u,to,

where L(x,u,t) is a real-valued function on Ranqu and

K(x,t) is a real-valued function on RxT. It is assumed

- 3F 9L Of oL .
that the components of £, L'§§'§§ rNEY and 5§ are contin-
ous on RnxﬁxT, where & ¢ RY. Both the initial time t

0
and the initial state k(to) are given. By an admissible

arc(x,u5 it is meant that x{t) satisfies (2.4.4) and that
the corresponding u satisfies (2.4.2) and (2.4.3). The
Hamiltonian function H(x,p,u,t) is a real-valued function
nxl vector x, the nxl vector p, the gxl vector u and t

and is given by

H(x,p,ullt)éL(x,u,t)+fT(x,u,t)p(t) [2.4.6]

The canonical system associated with the control process

(2.4.1) is a 2nth order system of differential equations:

3H (X,E,urt)

x(t) = 57 _ [2.4.7]
. -dH(x,p,u,t ’
p(r) =2 Lrs ) | [2.4.8]

In view of the assumption made, the functions H and %% are

. . n n_ = - .
continuous on R xR xOxT. Consequently by the existence

theorem, there exist a state ¥ and a costate P which are
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the solution of the canonical system corresponding to Q4 in
”Q; The arc (x*(t),u*(t)) is said to be optimal if
(x*(t) ,u*,(t)) is admissible and if the cost functional

J(u*to,tf) is a minimum, oxr mathematicaily

J(u*,t ,tf)=Min J(u,t

e o rte) [2.4.9]

0
Pontryagin's Minimum Principle states that

if u* is the optimal control, x* is the optimal state tra-

jectory and p* is the optimal cost state trajectory corres-

ponding to u*, then the Hamiltonian H(x*,p*,u*,t) is a

minimum with respect to u; or mathematically

H(x*,p*,u*,t)=Min H(x*,p*,u,t) [2.4.106]
uef o
or equivalently, H(x*,p*,u*,t)<H(x*,p*,u,t) Fue®, [2.4.11]

In the case where Q=Rq, that is no constraint,

equation (2.4.10) can be replaced by

oH

S (X%, ¥ u*, 1) =0 ' [2.4.12]

Note that the optimal trajectory x* and the op-
timal costate trajectory p* must satisfy the canonical
systeﬁ. With the given initial condition x*(t0)=x(t0)
where both tO and x(tO) are given, n boundary conditions

are regquired to determine x*(t) and p*(t) from the canoni-

cal system. These boundary conditions are supplied by the



transversality condition which depends on the terminal set.
Several cases which will be considered are:

1) £, is fixed and x(tf) is free

f
2) tf is fixed and x(tf) is a fixed point in R
3) tf is fixed and x(Ef) is in the target set S, a smooth

k-fold in R™ given by'Si{xrgl(x)=0...gn;k(x)io}

4) t_ is free and x(tf) is free

£
5) tf is free and x(tf) is a fixed point in Rn

6) tf is free and x(tf) is in the target set 8, a smooth

k-fold in k" given by S={x:gl(x)=0,...gn_k(X)=0}

£
‘smooth k+1 fold in R"xT given by S={x:gl(x,t)=0...

7) t. is free and x(tf) is in the moving target set S, a

gn_k (x,t) =0}
8) tf is free and x(tf) is a moving point given by

S={(g(t),t)=teT}

~In-case -8, it—iswassumed~thatr§(t) is a continuously diff-
erentiable function from T into R®. In case 7, it is
assumed that the functions gi&,t),%%i(x,ﬁ), and %%i(x,t)
are continuous on R"xT for all iel[l,n-k] and that the vec-
tors %%i(x,t) are linearly independent at each point of S.
Corresponding to different terminal conditions, the real-
valued function K(x(tf),tf) is modified. As a function of
the control u(t), the Hamiltonian i.e. equation (2.4.10), is
a minimum at u*. The bghavior of the Hamiltonian along

the optimal trajectory depends on the terminal conditions.
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Together with the transversality condition, Pontryagin's
Minimum principle for case (1) to case (8) can be stated
as

If u*(t) is the‘optimal control, then
equation(2.4.10) must be satisfied where the canonical

system is rewritten as

oH
X* (t) = = [2.4.13]
x* (%) 0P| &
pr(t) = - 38 [2.4.14]
0X| 4
and co:responding to the terminal condition (1) to (8),

the following‘transversality condition must be met respect-

ively:
2
1) K=K(x) where K, Qg, and %§§ are continuous, then
. 3K
p*(tf) ""532 X*(tf) : [2.4.15]
te om
H (t) = H¥(t)- f =% | dat [2.4.16]
t *

2) K=0 then there is no condition on p*(tf) and equation
(2.4.16) holds

9K 32K

3) K=K(x) where x, X and ng?z are continuous, then
p*(t ) = nfk a, 29i + & [2.4.17]
A LI x* (t )

where o; are constants and equation (2.4.16) holds.

9K 92K 5K 32K

"3%’ %2 3¢ and TEz are continuous, then

4) K=K(x,t) where K


http:equation(2.4.10

17

9K i
* — .
(tg) =23 "t [2.4.18]
BY (t0) =5t g r2.47107
f
, . te 52
Caw (t)=H*(tf)— j 55| da [2.4.20]
. + l* ’
5) K=0 then there is no condition on p*(tf) and
,H*(tf)=0 [2.4.21]
e am '
and H*(t) = - [ 7 5|4t [2.4.22]
v t
6) K=K (x,t) where K(x £) %g gx2 gi and gtf are contlnuous
then N
) n-k ]
pr(ty) = § o, STLI 4 K| [2.4.23]
i=1 T-f

and equations (2.4.19) and (2.4;20) hold.
3K 92K BK 32K

7) K=K(x,t) where K(x,t) 7%’ 3xZ’ 5€ d 3gz are continu~
_ous then ,
n-k
393 oK
*(t.) = a. 1 + = [2.4.24]
P f i'—z‘l 1 X *tf X *tf
n-k
993 9K
H*(t_ ) =) oy 1, - =5 [2.4.25]
£/ 745 L9 |* e T BE| R
and equation (2.4.20) holds.
52
8) K=K(x,t) where K(x,t), éE(x,t)r EE( E) ., 9°K (x,t)r
90X .at ax

éi%(x t) and E)—E}i(x t) are continuous, then
ot axot "’ !
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‘there is no condition on p*(tf) and

= dg
H* (o) = p*(ty) Fi b [2.4.26]
T t
and H*(t) = p*(tf) g-% * £ [tf —g—iii*dt [2.4.27]

General optimal control problems will fall into
one of the eight cases listed above. By no means,-they will
cover all the control problems, but similar conditions may
be obtained. In the cases where the initial time and the
initial state x(to) are not speciﬁied as a point,
initial transversality_conditions can be similarily evalu-
ated. When the control processes (2.4.1) and the cost
“function (2.4.5) do not explicitly depend on time, the
Hamiltonian along the optimal trajectory must be zero when
is fixed and becémes a constant when t_. is free. From

£ £

case (4) to case (8) where t

t
£ is free, one additional con-
dition is imposed on H*(tf) and this locates the optimal
~final time.

In fact, Pontryagin's Minimum Principle repre-
sents a set of necessary conditions for optimality oxr more
precisely, for local optimality. If there exists a control
i(t)eQ which satisfies all the necessary conditions as im-
posed, the control G(t) is said fovbe an extremal rather

than an optimal. Note that the extremal is not necessarily

the optimal. In the next section, a sufficient condition
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will be given, which represents a strengthening of the
necessary conditions.

It has been proved [33] that for a linear system

X(t)=a(t)x(t)+h(u,t) [2.4.28]

associated with a cost functional given by

t
=K (x(t,) ,tp) + jtf {Ly(x,€)+Ly (u,t)}  [2.4.20]

0.

J(u,to,

the extremal is also the optimal.

Sufficient Condition for Optimality:

In examing questions concerned with the theory
of optimum systems, it is necessary to note the numerous
works of R. Bellman, which are systématically presented in
[4]. The method of ﬁdynamic programming” develdped by
- -Bellman -gives a new tool for the solution of the control
problems which are closely associated with Pontryagin's
minimum principle. In this section, the sufficient condi-
tions for optimality will be stated in conjunction with
Bellman's functional concept of dynamic programming.

. . n
Consider a control process in R

X(t)=Ff(x(t) ,ult)t) [2.5.1]

where the admissible controls, u(t), are-all bounded and

piecewise continuous function on a fixed finite time inter-
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val T0<t<Tf.or T=[T0,Tf], with values in some restraint set

QeRq, and steering the initial state x(to) to a target set

San. The cost is

t
Jla,tg,tg) = [ T LGx,u, ) At (x(ty)) [2.5.2]
t
0
“where f,K, and L are in class C' in all arguments.

- Consider the Hamiltonian

T
H(x,p,u,t)=L(x,u,t)+£(x,u,t)p(t) [2.5.3]

Let {i(t) be an extremal control with corresponding

state % (t) and costate P(t) such that

H(x,p,0,£)= Min H(x,p,u,t) : [2.5.4]
: el
where % and p are determined from the canonical system,
with.the boundary conditions satisfying the transversality
condition. |

—-Assume-that -the control law-G(t) is a feed-back

one such that
a(t)=0(&,D5,t) ’ [2.5.5]

Substitute equation (2.5.5) into (2.5.2) and denote

" [2.5.6]
oA [ ~ . A f AN
J(X,to,tf)—J(u,to,tf)—K(x(tf))+ft0 L(%,4 ,t)dt

Consider a time-varying cost functional defined as
A tf . .
J(R,t) = [ "L(%,0(%,8,t),t)dt [2.5.7]
t

Differentiating with respect to t, equation (2.5.7) yields



21

T A
~L(%,G,t) = ﬁimx t) &+ gi(x,t) - [2.5.8]

Substituting equation (2.5.1) into (2.5.8) we have

23 (2 2Lt [ 1
5E(x,t)%L(x,u,t)+£ (2,4 t) ( t)= 2.5.9

In view of the definition of Hamiltonian, eguation (2.5.9)

can be rewritten as

Q1q>‘

(%, t)+I(x, i(ﬁ,t),ﬁ,t5=0 [2.5.10]

~Equation (2.5.10) is known -as the Hamiltonian-Jacobi-
Bellman equation which is a partial differential equation
for the function ﬁ(ﬁ,t). The boundary condition is

J(R,t

f)=K(>’2(tf)) for ﬁ(tf)es [2.5.11]

Assume that there exists a feed—-back control law
i and let J(&,t) be the solution of the Hamiltonian-Jacobi-

Bellman equation with the boundary condition (2.5.10).

Assume also that (ﬁ,ﬁ) is an admissible arc with ﬁ(t )ES
and u(x,t) = ﬁ(ﬁ,%%(x t) ,t), then the control @ is optimal
with optimal trajectory R and with cost J*(ﬁ,to,tf)=

J(x(to)to).
Combining eguations (2.5.4) and (2.5.10), we have

25 T
+ Min {L(%,0,t) + 5§(§<,t) f(%,u,t)}= 0
uef? '

3J(%,t)
3t

[2.4.12]
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Upon discretizing equation (2.5.11), a recursive equation
can be obtained. Hence the optimal cbst trajectory can be
approximated through the use of high speed computer.

The Hamilton ~Jacobi~-Bellman eqﬁations repre-
sent a requirement on the behavior of the cost. Analyti-
cally, the equation is often quite difficult to solve if
not impossible. Hence the equation is most often used as
a check on the optimality of a control derived from the
necessary conditions as stated by ?ontrjagin's Minimum

Principle.
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CHAPTER III

SENSITIVITIES OF OPTIMAL CONTROL PROCESSES

3.1 Introduction:

When a givén input is applied té a given plant, the
output of the plant does not necessarily agree closely with
the value that is expected. The expected output is obtained
from the knowledge of the input-output relationship of the
plant and is rather a theoretical value. Excluding the
measurement errors that may be involved, the discrepancies
of the experimental output from the theoreticai can be
accounted for by two categories of disturbances to the plant.
The external disturbances to the planf are generally regarded
as the noise and the iﬁternal perturbation is regarded as
the plant paramgter variation. The noise is considered as
an additional input but discussion of its effects is beyond
the scope of the present work.

The plant parameter is regarded as the independent
variable upon which some plant arguments depend. The
plant arguments are determined by the interest of the de-
signer; they may be eigenvalues of the plant, for the cost
or the terminal state. Sensitivity in the gross sense is
defined as the change of the dependent argﬁment due to the
change of the plant.parameter. Corresponding to various

plant arguments, various sensitivities are defined. The
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purpose of this section is to introduce the definitions of

various sensitivities and theilr measures.

3.2 The Physical and Mathematical Aspects of the Plant
Parameters:

The physical plants in engineering differ widely in
forms.” In spite‘of the specific differences, a large class
of engineering systems is described by a mathematical model.
Certain differences are expected between the physical systems
and ifs mathematical models. Generally, the correspondence
between the mathematical model and its physical system is
quite satisfactory; however, this is not always the case.
To account‘for the discrepancies, a plant parameter w is

included in the mathematical model as
x(t,w) = F(x,u,t,w) ’ [3.2.1]

and the physical plant is factitiously represented by
LR = FGu,t) | [3.2.2]
where X 1s the state trajéctory and u is the control. The
plant parameter is included due to the uncertainty involved
during the process of obtaining the mathematical model through
identification. If the plant is scrutinized in more detail,
it is possible to determine the system function f in equa-
tion (3.2.1) as a function for the parameter w. Hence there

exists a value W, such that the mathematical model

i(t,wo) = f(x,u,t,wo) [3.2.3]
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agrees closely enough with the physical model of equation
(3.2.2). And the drifts of the plan£ parameter from w0 to
w will then take account of any uncertainties in the iden-
tification process. The mathematical model (3.2.3) is
called the nominal plant and the physical plant (3.2.2) is.
represented by .the mathematical model of equation (3.2.1)
with the parameter w in the neighborhood of its nominal
value W |

In some cases, the physiéal plant may have an
exact mathematical model but the plant parameter is intro-
ducedIWhen the elements of the physical plant are sensi-
tive to environmental conditions. Some of the components
of the.physical system may be sensitive to temperature,
humidity etc. WNominally, the physical system is assumed
to bé operated under certain temperature and humidity.

If the physical plant is constructed such that
the character of each of its ceﬁponents can be evaluated, the
corresponding mathematical model can be directly obtained.
This procedure of analysis is always employed especially
in passive network. It is well known that the labelled
value of the components of the physical plant cannot be
exaét and in usval practice, the tolerances of the compon-
ents are given by ‘the manufacturer. In this case, the

need of inserting the plant parameter is obvious and the

way of obtaining the corresponding mathematical model
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(3.2.2) is also easy.

| From the physical point of &iew, the plant para-
meter arises from uncertainties in indentification, from
environmental effect or from the dinaccurate--values of the
components. Many other factors may be involved depending
on the specific -plant.

From the mathematical point of view, the plant
paraméters are divided into two categories according to
the fashions that the plant parametér changes. Stochastic
plant parameter [13] varies in an unpredictable fashion and
and the magnitude of the plant parameter cannot be estim-
ated at any time. On the contrary, a deterministic plant
parameter is predictable at any time. In the present
work, the discussion of the stochastic plant parameter
will be ignored.

It is.impractical to restrict the plant parameter
to be a scalar. In many cases, fhere-is more than One indepen-
dent plant parameter in the system. And the plant para-
meter is considered as a vector quantity. The plant with a
vector plant parameter will be called the multi-parameter |
systemn.

The deterministic plant parameters are further
classified into two categories. Consider a plant parameter
w in the time interval of [TO,Tf] and assume that the plant

is operating in the time interval of [to’tf] where [to,tf]
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is a small line segment in [To’Tf]’ i.e. TO<<t0<tf<<Tf.
If the plant parameter takes the value of w in the time
iﬁterval of [to,tf] and has a negligible change around w in
the whole interval of [to,tf], then the plant parameter is
considered as constant in [to,tf]. By a constant plant
parameter, it is meant that the plant parameter takes a
constant value in [to,tf] but may be time dependent on a
large interval [TO,Tf]. However, if the change of the

plant parameter around a certain valqe is large enough not

to be neglected in the interval of [t,,t¢], then the plant
parameter is considered as time dependent. In investigating
the physical plants due to the variation of plant parameters,
incremental change of the time-varying plant parameter is
considered while the change in constant plant parameter is
assumed to be differential. In many aspects, the approach

in either case is similar and discussion on the plants

with time-varying plant parameter will not be exclusively
made. Whenever required, important differences between

time-varying and constant plant parameters will be

emphasized.

Various problems involved in the physical plant
yield various mathematical forms of the plant parameters.
In general, the representation cof the physical plant by
equation (3.2.1) together with thé nominal system of equa-

tion (3.2.3) describes more fully than equation (3.2.3).
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Mathematical solution of eqﬁation (3.2.3) is
possible for any given control and boundary condifions.
In the analysis of practical systems, along with the ob-
taining of solutions, it is extremely important to have a
knoWlédge of the variations of the solution with respect
to plant'parameters. Sensitivity énalysis represents a |
further connection between the matheﬁatical model and the
physicai system, and enables the engineer to.apply the
results from analyzing equations to physical systeﬁs with

far gréater dependability.

Sensitivities for Control Systems:

The idea of sensitivity was introduced by Bode

in one of his fundemental works[6]. In a feedback cir-
cuit, the sensitivity Sg for a system argument T is given
by
T_31ne )
Sg Py [3.3.1]

where 0 is the gain through the complete system. The
definition was modified and extended by Horowitz, [20]

Truxal [48] and Mason [35] as

T _ 2nt
Sy = 515 B [3.3.2]

where T is any system argument of interest and 0 is any

system variable. Equation (3.3.2) can be rewritten as
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v [3.3.3]

In words, the sensitivity of T with respect to 6
is the percentage change in 6 which causes the change in T.
All changes are restricted to be differentially small.

Corresponding to equation (3.3.2), the sensitiv-

ity for argument T may be defined, alternatively, as

T_3T
S5=5T0 . [3.3.4]

It was used by Ur [49] in analyzing the locus of the
closed loop root with respect to the variation in the open
loop parameter.

Among several definitions of sensitivity, equa-
tion (3.3.3) is generally used; however its disadvantage
is also well known. Whenever the system argument T or the
parameter 6 is a vector, the definition must be modified.
Goldstein and Kuo [15] extended Mason's [35] definition of
single parameter sensitivity significéntly to the multi-
parameter case. Hakimi and Cruz [17] constructed some
sensitivity measures with multiple parameter variations
and Lee [34] introduced the concept of sensitivity group.
All the works attempt to give a reasonable sensitivity
measure for a scalar system argument T with multiparameter
variations. Even so, the multiparameter sensitivity

appears to be quite complicated and the extension to a vec-
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tor system argument T is difficult.

Instead of considering sensitivity, Cruz and
Perkins [7, 38] constructed the sensitivity matrix and its'
corresponding measure. It was modified by Kriendler and

sensitivity was defined as

T 3T '

Equations (3.3.3) and (3.3.5) are similar in form , but
the concepts are different. Equation (3.3.3) expresses in
terms of percent change. If the percent change in T is
large while.the percent change in 6 is small, the»sensiti—
vity in equatioh (3.3.3) will be large. Therefore it can
be concluded that the argument T is very sensitive to the
, pafameter 8. Conclusion of this kind cannot be drawn by
using definition (3.3.5). The changé‘in T is small in
percentage but may be large relative to the change in 6.
Consequently, sensitivity from equation (3.3.5) is very
large even if the argument T is not sensitive to the para-
meter 6. Sensitivity by equation (3.3.5) does not imply
anything ahd the sensitivity measure must be developed.
Basically,'in Cruz and Perkins' approach, both the sensi-
tivity and its measure are constructed for the purpose of

comparison.
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3.4 Sensitivities for Optimal Control Systems:

For the automatic systems, major analytical work
was done in the frequency domain; therefore the sensitiv-
ities are functions of the complex frequency. For optimal
control systems, all sensitivities are defined in time do-
main. The cost or the performance sensitivity was defined
by Dorato [11] in 1963 and the terminal state sensitivity by
Holtzman and Horing [19] in 1965. KXriendler [29] has
elaborated a precise definition and the important implica-
tions for the term "state sensitivity". Various authors
have been investigating sensitivity without carefully
specifying the sensitivi%y they are referring to. Thus
the term sensitivity has become more confusing than ever.
This section is devoted to clarify the terms and to

establish suitable measures for the comparison.

In one of the first works on the sensitivities
of optimal control, Dorato suggested a definition of

sensitivity for the cost functional (3.4.1).

t
J = TGty =/ LGxCtw),ult,w),D)dt [3.4.1]
t
0

due to the change of the plant parameter w. The control

process is given as
x(t,w) = f(x(t,w),ult,w),t,w) [3.4.2]

where x(t,w) is an nxl state vector
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u(t,w) is a qx1l control vector
w is anrxl plant parameter vector.
At nominal, i.e. w = W,, the cost functional has the
value of J(wo,to;tf)vwhich is a minimum if the nominal
éontrol u(t,wy) is optimal. The variation of the cost

functional due to a small change of the plant Sw,dw = w-w,

is
AT (W) = J(W,to,tf) - J(wq,to,tf) (3.4.3)

Expanding J(w,t t¢) around w, by Taylor series, it is

seen that

' T
J(w,to,tf) = J(wo,to,tf) +-3J(W’to’tf) ,
W Sw
W=W,
1 T 32J(w,t_,te)
+ -—'- GW w, 0’ f l (SW + o 0 o o
(3.4.4)

Combining equations(3.4.3) and (3.4.4), the incremental
change of the cost functional is expressed as

T

sw o+ L ow
2

oW ow? Wo
\ 0 ’

. - )
AJ(W) - BJ(W’tO’tf) T [3 J(W,to,tf)] Sw

+elooo-:oeo' (3.”‘.5)



Denote
' T
63wy = 2J(Matyte) Sw (3.4.6)
dw W
. T
and - 62J(w) = Llew aJ(W’Jto’tf) sw
2 w2 W A (3.4.7)
Hence AJ(w) becomes
AJ(w) = 8J(w) + §2J(w) + ..., (3.4.8)

or 8w - 0 the

For an infintesimal change of w around wg,

“higher order variations are negligible. Or when the cost
functional J(w,totf) has a Frechet derivative , the change

of the cost functional is approximated by

) T
AT Y= 6T (wy = 29w st Lt

aw

W (3.4.9)
Wo

The cost sensitivity Si is therefore defined as

J
gY - aJ(w,tO,tf)‘

W
W W (3.4.10)

In words, the cost sensitivity is the first partial

33

derivative of the cost functional with respect to the plant

parameter w at its nominal value wy,. It is important to
note that the cost sensitivity indicates a meaningful
relationship with the change of the cost functional only

if w is close enough to w, or the cost functional has a
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Frechet derivative. Without this hidden assumption, the
cost sensitivity is not sufficient to give enough information
about the change of the cost functional and confusion may

arise.
By cost insensitivity, it is meant that
ST =0 (3.4.11)
The term "insensitivity" must not be carried too far
literally. By equation‘(3.4.9), cost insensitivity implies

AT (W) = 0 (3.4.12)

Or in words, the change of cost functional is approximately
equal to zero. As the higher order terms are neglected,
AJ(w) can not be identically zero even if cost insensitivity
is achieved. But as far as first order approximation is

concerned, the cost insensitivity is the most ideal case.

In the multiparaﬁeter cases, the cost sensitivity
is a rxl constant vector in R*. If the implementation of
the optimal control at nominal is not unique, several cost
sensitivity vectbrs are obtained. For the purpose of
comparing different implementations in the light of cost
sensitivity, a scalar measure must be established. This

measure will be called the cost sensitivity measure denoted

J

W+ Dorato [111] has proposed a cost sensitivity

by SM
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measure given by

J _ J || 2
s = | Sy | (3.4.13)

which is simply the squared norm of the cost sensitivity.
When the plant parameter is a scalar, i.e. r = 1, the
squared norm of the cost sensitivity becomes the square of

the cost sensitivity.

The adopted definition for cost sensitivity suffers
one major disadvantage, that is the change of the plant
parameter w is small enough around w, or the cost functional
has a Frechet derivative. Realizing this, Sinha and Atluri
[3, u5, u6] aba%doned the definition by Dorato and proﬁosed.

another definition for cost sensitivity as

) - -A—%;(Jﬂl (3.4.14)
where Aw is the Ehange of the plant parameter. Realistically,
Sinha and Atluri's definition is more useful than Dorato's.
Howevér, two major difficulties may be introduced by
definition (3.4.14). As AJ(w) in equation (3.4.14) is
given by equation (3.4.8), to develop some analytical
result;is very difficult if ﬁot impossibie. Moreover,
in the multiparameter case, definition (3.4.14) must be
modified. Whatever modification will be made, the work

to obtain the modified cost sensitivity will be very
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laborious.

The cost sensitivity in equation (3.4.10) is regarded
as absolute because it is defined basically as the difference
between the cost at w and that at w,. Another definition
of cost sensitivity that is of comparative nature waé
. introducéd by Rohrer and Sobral [42]. For a given plant
parameter w, the relative cost sensitivity for the control
u(t,w) is defined as the difference between the actual
value of cost and that which would be obtained, if the
control u(t,w) were optimal with respect to the plant
parameter at w. The reason for this definition goes back
to the philosophy of optimality with respect to a given
cost functional. The control u(t,w,) is determined such
that the cost functional (3.4.1) is minimized. If the
implementation of u(t,w,;) is not unique, there may exist
an implementation such that the control u(t;w) is also
optimal with respect to the cost functional (3.4.1) at
Wy. According to the definition of comparative cost
sensitivity, cost sensitivity reduction by implementation
is to find an implementation'u(t,w) such that u(t,w,) is
optimal at w, and such that the value of the cost func-
tional corivesponding to u(t,w) is close to the minimum
one at w. This is an interesting préblem but it will not

be considered here in the present work as the plant at w,



is considered much more important than the plant at w.

- In general, the optimal (minimum) valués of the.cost
function at bothvwO and w are very close to each other.
Hence although the concepts of absolute and relative cost
sensitivities are different, the results are about the

same.

-For clarification, the cost sensitivity is defined

according to equation (3.4.10) and the measure is given by
equation (3.4.13). Equation (3.4.11) is considered as

the cost insensitive condition.

In many practical casés, the main interest of the
control system engineer is centered upon the system's
response or trajectofy. Therefore, the deviation of the
optimal state trajectory in the presence of the plant

parameter variations is of great interest.

Let x(t,w) be the state trajectory at w and
x*(t) be the nominal trajectory. Again by Taylor series
expansion, x (t,w) can be written as

x(t,w) = x%(t) + x(t,w)
oW

Sw + ... (3.4.15)
Yo

The error vector e(t) is therefore given by

i T
e(t) = x(t,w) - x#(t) = axlL,w) §W + e
: oW
Wo

37
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A measure for the error vector, EM? s, was first formulatéd
by Cruz and Perkins [7] as
t
X £
EM_= /" |le(t)][? at
Yooty (3.4.17)

The important assumption that the state trajectory
has a Frechet derivative was made by Kriendler [28]. And
the state sensitivity y(t) was defined as

y(_t) - ax(t ,W)

ow W (3.4.18)

" Note that y(t)éw 2 e(t) when the assumption is inserted;

: ’ >
and the measure for error vector EMw becomes as

t , o
Y sty T )y (1) swat

1]

X
EM_
W tO ‘
(3.4.19)
In comparing different implementations of the nominally
éptimal éontrol, the change of the plant parameter §w
is assumed to be identical for every possible implementation.
Therefore the term dw appears in equation (3.4.19) is
redundant and Kriendler [29] defined a measure for the state
sensitivity y(t) as

| +
sy = 5 yToynat
o t
' 0 (3.4.20)
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4In the multi-parameter case, y(t) isan nﬁf matrix function
of:time. Hence the state sensitivity measure of equation
(3.4.20) must be further modified. It is suggested here
that the norm square of the matrix y(t) be the integrand

replacing yT(t)y(t),or rewritten as

X te '
sM, = 1 7 ||y()||?dt n (3.4.21)
to
The sensitivity measure given by equation (3.4.21) is

known as the integral state sensitivity.

‘It is important to note that the works by Cruz
and Perkins and that by Kriendler are very closely
related to each other. However some subtle differences/
between them must be heeded otherwise confusion may

arise, [31, u7].

For clarification, the sensitivity 1s defined by
equation (3.4.18) and its corresbonding measure by
(3.4.21). The problem 6f réducing state sensitivity by
implementation is to find an implementation for a con-
trol such that it is optimal at nominal with respect to
a given cost functional and such that the integral state

sensitivity is relatively reduced.

In the area of sensitivity analysis in optimal

control systems, the sensitivity of terminal condition



is less emphasized. It has been shown in Chapter II
that various terminal conditions could have been assumed
by different control processes. In the case where x(tf)
is free, the investigation of the terminal state

sensitivity is rather redundant.

Denote x*®*(t) the optimal state trajectory at
nominal and x(t,w) the state trajectory in the presence
of plant parameter variation. The terminal error vector
is

- ax(t,w) T

ow

SwW. +..
Wosts

e(tg) = x(tf,w) - x*(tf)

(3.4.22)

Assume that the state trajectory has a Frechet derivative,

then
e(ty) = 3x(t,w) W
oW Woste (3.4.23)

Again, in comparing different implementations, §w is
identical for all possible implementations. Hence the
terminal state sensitivity, or terminal sensitivity, is

defined by Horing and Holtzman[19] as

t
S £ oax(t,w) - y(tf)

v W wg,te (3.4.24)

40
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In the multi-parameter case, the terminal sensitivity Sw
is annxr constant matrix; the norm square of that
matrix is then a suitable measure for terminal sensitivity

or

te te ’ :
sM, = |8, 12 = [[y(te)[l? (3.4.25)

By terminal insensitivity, it is meant that
y(tf) =0 (3.4.26)

in which case, the terminal error vector e(tf) is
approximately a null vector. As far as first order
approximation is concerned, the terminal insensitivity

is an ideal case.

Corresponding to the terminal sensitivity, the
initial sensitivity is denoted by y(to)a Without loss
of generality, the initial state for an optimal
control process is a given point é(tg) with the initial
time to specified. 1In general, the initial point x(ty)
can be set very accurately and is independent of the
plant parameter. Hence, the initial insensitivity that

v

y(ty) =0 (3.4.27)

is always assumed.

By the sensitivity alone, it can be the cost

sensitivity, the state sensitivity or the terminal



sensitivity. To reduce the sensitivity by implementation
'is the problem of finding an implementation for-the con-
trol such that the control is hominally optimal with res-
pect to a given cost functional and such that the
sensitivity measure is reduced relative to other

possible implementations.

42



CHAPTER IV

REDUCTION OF SENSITIVITIES BY IMPLEMENTATION

b.1 Introduction:

“As discussed in Chapter II, the optimal control
input to a nominal plant can be obtained by current
techniques available. But the way.of achieving this
- determined optimal control, or, the implementation of
the nominally optimal control is not restricted by any
means. Generally threé types of implementation‘schemes
are possible. Open-.and closed-loop implementations have
been extensively studied while the impiementation by two
degrees of freedom does not appear to have been studied

in the field of optimal control theory.

As will be shown later, the configuration of two
degrees of freedom providés the designér with some
flexibility, and because of this feature, it is possible

to realize the reduction in the sensitivity of interest.

4.2 State Sensitivity Eguation:

The term '"state sensitivity equation”, or

"sensitivity equation" in a shorter form, was introduced



by Kokotovic and Rutman [25, 43]. However, before putting
forward the state sensitivity equation into the plant
under consideration, certain modifications must be made

and certain assumptions must be clarified.
Consider a plant (4.2.1)
%(t,w) = flx,u,t,w) o (4.2.1)

where w is the plant parameter with nominal value at w;.
Denote x%(t) and u*(t) as the optimal trajectory and

control for the nominal plant (4.2.2 ), respectiVely.
i(t,wo) = f(x,u,t,wo) (4.2.2)

associated with a given cost J(W,to,tf). Define an
 imp1ementation vector v(t) as the partial derivative of
the control u(t,w) with respect to the plant parameter
W as
v(t) = ult,w)

ow W =W - (4.2.3)
When the plant parameter drifts away from w,; to w, the
state trajectory will also deviate from thevnominally
optimal, i.e. x%(t). Pértially differentiating equation
(4.2.1) with respect to w, we get

ax(t,w) _ 3f , 3f dx . 3f du

dw 3w = 93X 9w = du oW (4.2.4)



Setting the above equation at the nominal value, we have

) d x(t,w)

2 4 x(t,w), _ af 4 of ax
oW (dt w=w0‘" oW waw, X WEW, oW WEW,)
; 3f au
dU|WW, AW |{W=W, (4.2.5)

Combining equations (4.2.3) and (3.4.18), equation (4.2.5)

may be written as

9 ,dx(t,w) of

sw (T at )Iwo - 5§lw0 y o+ au’wo vty W,
(4.2.6)
where .
af | _ of | |
dW(|w, ~ 3w WEW, and so forth. If the plant

parameter w is time-invariant, the following equation holds.

3 ax(t,w) _ _d,ax(t,w) _ody(t) _ .,
ow (T at )lwo N e PR - T A
(4.2.7)
Hence equation (4.2.6) can be rewritten as,
ox WO Ju WO oW WO (4-2-8)

It is known that the state sensitivity depends
on the implementation of the nominally optimal control
and this is assured by equation (4.2.8). Since the

relationship between y(t) and v(t) is linked by
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equation .(4.2.8); it is therefore called the state

sensitivity equation for the implementation v(t).

The functions gi’ and gg- are known functions of
Yo lw0
x%(t) and u®(t). In order to evaluate the state sensi-
tivity y(t) for any given v(t), the function g%l' must
W
: 0

"be given. In other words , it must be assumed that the
plant (4.2.1) is known not only at the nominal value,
which is equation (4.2.2 ) but also known as a function
of the plant parameter} i.e. equation (4.2.1). This
assumption is not restrictive at all, as the role of
plant parameter can be approximated for most of the

practical plants. In some cases where gi cannot be

W
obtained, the approach will be different and will be

discussed in a later section.

As a priori condition to the meaningfulness of
the state sensitivity equation, the nominally optimal

trajectory and control must be known. Hence the functions

af and 3% can be regarded as known functions of
time.

It must be emphasized that equation (4.2.7) holds
only for‘time~invariant plant parameter. Consequently,

the state sensitivity equation (4.28) is not valid for



time-varying plant parameter. A new sensitivity function
‘may be defined in termsof the first order change in the

trajectory due to the variations in the time-varying

parameters. This first order dispersion is given by the
equation
. _3f . 3f  of
6% = Fx0x + Fydu + Fréw (4.2.9)

e

where 6x x(t,w) - x(t,wo), su = ult,w) - u(t,wo)

and 8w = w-w, for suitably small éw. In this case, one
more assumption must be added, tha% is, the value of

the plant parameter is given so that éw is known. With
suitable modifications 6f the sensitivity measufe, the
development for time—varying and time-invariant plant

parameter is very similar; and exclusive -discussion on

the time warying plant parameter will be skipped.

b.3 Open-and Closed-Loop Implementations:

From current technique, the nominally optimal
control u®(t) is-obfained as a function of time. Corres-
ponding to u*(t), there exists a physical system which
realizes the signal u®(t). The direct feeding of the
signal u*(t) into the plant is called the open-loop
implementation as illustrated in Figure (1). When the
plant parameter w drifts away from the nominal value,

the state trajectéry will change from x%*(t) to x(t,w)

L7



u(tl‘

_x(t,w)

x(t,w) = fx,u,t,w)

Figure 1.

Open-Loop Implementation
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while the open-loop control u*(t) remains unchanged.

-Mathematically, it is expressed as
v (t) =0 (4.3.1)

where vo(t) is the open-loop implementation vector as
derived by equation (4.2.3). Substituting equation (4.3.1)
into eguation (4.2.8), the state sensitivity equation for

open-loop implementation is

_ of of
yo(t) = gg,w yo + mw
0 : 0
(4.3.2)

where yo(t) is the sta%e sensitivity for open—loop imple-
mentation . If the initial condition that yo(to) = 0 is
assumed, then the state sensitivity yo(t) is determined
from equation (4.3.2). If u®(t) is uniquely determined,
then so is y,(t). Hence no flexibility can be obtained

from the open-loop implementation.

Implementation by combining the state variables in
a proper fashion and feeding the resultant into the plant
is called.the closed-loop imblementation. Linear or non-
linear feedbacks are possible. Generally, non-linear

feedback control is written as

ult,w) = h(t,x(Ct,w)) - (4.3.3)
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and linear feedback is
ult,w) = H(t)x(t,w) . (4.3.4)

Non-linear feedback is rather complicated, and iittle
knowledge about it is available in the current field of
obtimal control theory. Hence it is excluded for the
following discussion. Even for‘the linear feedback imple-
mentation, its existence is not guaranteed for most of
the optimal systems. Figure (2) illustrafes the élosed—
loop implementation with linear feedback.

When the plant parameter deviates from its nominal
value, so dOesyfhe state trajectofy x(t,w). However the
state variables are fed back as the input +to the plant
and may or may not regulate thé plant in a desirable
fashion. The implemehtation vector for the closed-loop

implementation with linear feedback is
ve(t) = H(t)yc(t) (4.3.5)

where yc(t) is the state sensitivity for the closed-loop
implementation with linear feedback. Combining equations
(4.3.5) and (4.2.8), the state sensitivity equation for

closed-loop implementation is

yc(t) = -a———




ult,w) x(t,w)
S~ x(t,w) = f{x,u,t,w) C
)
- H(t)
Figure 2.
Closed-Loop Implementation
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In some cases, the feedback block H(t) is uniquely
 determined. With the iﬁitial condition that ycéto) = 0,
the closed-loop state sensitivity yc(t) is uniquely
determined from equation (4.3.6). Hence both the exist-
ence of the closed-loop implementation and the flexibility
from the configuration cannof be guaranteed, except for the

~case of linear systems with quadratic cost functionals.

4.4 The TDF (Two-degree of freedom) Implementation:

The application of the configuration of two degrees
of freedom was demonstrated by Horowitz [20] in reducing
the pole sensitivity of an automatic control system. In
optimal control theory, current research has been involved
with the comparison 6f open - and closed-loop implementa-
tions of a nominally optimal control. As shown in
the previous section, the implementations by open- or
closed-loop do not yield any flexibility for the designer
to reduce the sensitivity of his interest. Here, the
implementation by two degrees of freedom is introduced to

accomplish this purpose.

The configuration of two degrees of freedom is a
combination of the open - and closed-loop schemes; hence
it is better called "the TDF configuration". As
illustrated in Figure (3), the TDF implementation consists

of two parts, the open loop portion g(t) and the feedback




g(t)

x(t,w) = f(x,u,t,w)

@
Y

x(t,w)

A

M(t)

Figure 3.

TDF Implementation
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portion M(t). At time t and value of wy the control

u(t,w) is mathematically expressed as
ult,w) = M(t)x(t,w) + g(t) (4.4.1)

where x(t,w) is the state trajectory corresponding to the
control u(t,w). Here only linear feedback in x(t,w) is
considered. Non-linear feedback is also possible; but
it will not be considered here due to the complexity.

It is understood that the state variables must be access-
ible for the designer, otherwise, the TDF

implementation will have no practical meaning at all.
Moreover, it is noted that both the open- and closed-loop
portions are dependent only on time. Generally, three

different types of the TDF implementation are possible,

u, (t,w) = M(t,wIx(t,w) + g(t) (4.4.2)
ug(t,w) = M(t)x(t,w) + gl(t,w) (4.4.3)
uq(t,w) = M(t,w)x(t,w) + g(t,w) (4.4.4)

with the corresponding implementation vectors as,
v, (t) = Myx*(t) + M(t,w )y, (1) (4.4.5)
va(t) = MOt,wyly () + gy o (4.4.6)

vy () = Mx#(t) + MCt,w )y, (1) + g (B.4.7)

54
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where M, (t) = M, = o and g =A§% = g, ().

ow W W
0 0

The plant parameter dependence of M and g may take two
forms. If M and g are assumed to be implicit functions
of the plant parameter, then the plant parameter must be
physically available. This requirement appears to be
-impractical for most physical plants. Hence M and g can
only be explicit functions of wj; however, two problems
may arise. The choice of the physical blocks of the plant
on which M and g depend is rather érbitrary but important
and there is no logical or systematic approach available.
Hence the method of trial and‘error must be resumed. The
physical block of the plant upon which M and g must depend
may not be reconstructed. Foreseeing the difficulties
involved, the investigation of the implementation schemes
of equation (4.4.2) to (4.4.4) will be abandoned. Hence,
by the TDF implementation, it is meant that the control

is given by equation (4.4.1) of which the conditions that

aM(t)

W = 0 ('4.'4.8)
dg(t) _
W = 0 (L.4.9)

must be satisfied by any pair of [M(t),g(t)].

Nominally, the control in equation (4.4.1) takes
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the value of

u(t,w ) = M()x(t,w,) + g(t) (4.4.10)

Now the control u(t,w,) must be optimal with respect to
the nominal plant associated with a given cost functional
and the trajectory x(t,w;) must be the hominally optimal

state trajectory, or mathematically

1

u(t,wo) u*(t) (4.4.11)

x¥(t) (L.4.12)

1t

x(t.w )
0

Hence equation (4.4.10) yields
u®(t) = M(E)x*(t) + g(t) (4.u4.13)

Equation (4.4.13) is the optimal condition at nominal and
must be satisfied by any pair of [M(t),g(t)]. This con-
dition relating M(t) and g(t) hence defines a set of
[M(t),g(t)] in RT% x RY x [t,,te) and this set will be
called the admissible implementation set. Every element
in the admissible implementation set must satisfy equation

(4.4.13).

In the extreme cases, the element [0,g(t)] in the
admissible implementation set denotes the open-1loop
implementation and the element [M(t),0] is the closed-

loop implementation. Obviously, the admissible
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implementation set includes these fwo special elements;
hoﬁever, the elements in the set are far beyond exhausted.
In other words, besides open- and closed1loop implementa;
tions, there are numerous TDF‘ implementations to realize
.the nominally optimal control. .For every given M(t),
there corresponds a uniqueAg(t) so that {M(t),g(t)} is

in the set. However, the exiétence of an M(t) correspond-
ing to a given g(t) is not guaranteed by equation (4.4.13).
And even if the M(t) does exist, it is generally non-
unique. Because of this non-bilateral relationship
‘betweéh M(t) and g(t), the application of the TDF.imple—
mentation to an optimal control system, depends on the
manipulation of the feedback portion M(t) so that certain

specifications are met.

The implementation vector v(t) for the implementa-

tion equation (4.4.1) is given by
v(t) = M(t)y(t) (4.4.14)

where y(t) is the state sensitivity corresponding to u(t)
in equation (4.4.1). Combining equation (4.4.14) and
(4.2.8), the state sensitivity eQuation for the TDF
implementation is '

y(t) = (%ﬁ‘ + %5' M)y(t) + %5-

w W W
0 0 0 (4.4.15)

With the assumption that y(tgf“s*o; the state sensitivity



y(t) is determined for any given M(t). The time function

of
W W is considered as the driving function in the state

0
senéitivity equation (4.4.15). The feedback portion M(t)
is not determined yet; it may be a function of y(t);
hence equation (4.4.15) isvnét néCessarilj'a linear
differential equation. It will.be shown later that M(t)
is chosen in such a manner that various sensitivifies
will be reduced. Also, it is noted that the state

sensitivity is independent of the open-loop portion

g(t).

Replacing M(t) by H(t), equation (4.4.15) will be
identical with equation (4.3.6). The difference between
the two equations is that H(t) is used in the impiementa—
tion of the nominally optimal control and M(t) is not;
in fact, M(t) is not restricted by any means sd far.

In the dual impiementétion, g(t) is used to meet the
optimal condition at nominal, while M(t) is applied to
reduce various sensitivities. The following sections

discuss how M(t) is utilized.

4.5 Cost Sensitivity:

It was proved by Pagurek [37] that the open- and

58

closed-loop implementations yield identical cost sensitivity

for linear systems under certain assumptions. The idea

was accepted by Witsenhausen and the extension to larger
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classes of system with more generalized cost functional

was succéssfully done [50]. Since then, modifications were
made>by Dunn [121, Youla and Dorato [51], Kokotovic and
Heller [26], and Kokotoviec, Heller & Sannuti [27]. All

the work done compares the velative merits between open-

and closed-loop implementations of the optimal control for
various plant and different cost functionals. The cost
sensitivity for the TDF implementation has not been evaluatea,
yet the development follows closely the work done by

Kokotovic, Heller and Sannuti [271].

Consider the plant (4.5.1) associated with the

cost functional (4.5.2) as,

x(t,w) = F(x,u,t,w) (4.5.1)
te
J(w,to,tf) = K(X(tf)) + f L(x,u,t,w)dt
to :
(4.5.2)

Note that the integrand of the cost functional can be a
function of the plant parameter w. Assume that the initial
time t, and initial state x(t,) are specified. The final
time t. and final state x(tg) will be discussed later.

For the plant under consideration, there is no constraint
on the control or the state trajectory. Let W, be the

nominal value of the plant parameter w. It is assumed that

of of of oL s oL
the components of f, —, -—, —, L, —, —=, and — are
P ?ox? at’ sw’ 7 ax’ at’ dw



continuous over the interval [tg,tel..

For an unconstrained problem, the optimal control

u®*(t) at nominal must satisfy the following conditions,

. aH(u*,wo)
P:’:(—t) = - ..__...____._'._.__.*
IR (4.5.3)
BH(U.*awo)
= 0 (4.5.4)
auu

where H(u*,wo)-= L{x*,u%,t,w,) + fT(X*,u*,t,wo)b*(t)
and p¥t) is the co-vector corresponding to the nominal
system. -In doing so, the plant (4.5.1) is set to
nominal and the'optimal control u*(t) is then obtained
by Pontryagin's minimum principle. The procedure can
be reversed by applying Pontryagin's minimum principle
first then setting all the values at nqminal. Define

a Hamiltonian function as

- T
H(u,w) = L(x,u,t,w) + £ (x,u,t,w)p(t)

(4.5.5)

where p(t) is the co-vector at w. For every value of w,
the corresponding co-vector is p(t) and the optimal

control u(t,w) at w must satisfy,

dH(u,w)
ax

p(t) = - (4.5.6)

dH(u.w) _
™ =0 (4.5.7)
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The control u(t,w) that satisfies equation (4.5.6) and
. (4.5.7) is the optimal control at w. However, this is
more than necessary because it is required that the con-
trol is optimal at nominal only. Hence setting equations

(4.5.6) and (4.5.7) at nominal, we have

x  lw, (4.5.8)

(4.5.9)

Now p(t) will be the co-vector at nominal. The partial
derivative of the Hamiltonian in equation (4.5.5 )
with respect to w is given by

T
_ . 3f (wou,t,w)
3w - oW ow

dH(u ,w) dL(x,u,t,w)

p(t)

(4.5.10)

The cost sensitivity is obtained by differentiating

equation (4.5.2);

DI, ty,te)  ax(te)  aK(x(tg))

ow oW ax(tg)
t T T
¢ g To3x 3L, 3u” 3Ly dlggy
to dw. 3x 9w du ow

(4.5.11)
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Setting equation (4.5.11) to w;, and substituting equations

 (3.4.18), (3.4.24) and (4.2.3) into the resultant equation,

it yields
J T tr
50 = y(te) aK(x(te) s {yT%E X %hl
3X(tf) 'to ) WO w wO
+ VTEL }dt :
Ju (4.5.12)

w‘0
. T, , .
Replacing L by H(u,w) - f p* where p#(t) is the co-vector

at nominal, we have

t T
4 . T 9 .
s7 =y akeny + s TR -] G
aX('tf) . 'to Wo wo
e T
T o of . 3L
T (Bulw aulw p¥) * éﬁlw rdt (4.5.13)
0 0

Combining equations (4.5.8) (4.5.9) and (4.5.13), we have

t
T f .
ax(tf) t,
t T T
f’ Tsf Y, 3 L.
- f {y P p¥ + ngi p* - 3%— rdat
to Wy W W,
(4.5.14)

Integrating the first integral of équation (4.5.14) by

parts, we have
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g9 = y(e)TRKG(te)) | (T aqtf
w o y(tgd = Poy

3X(tf) 0

t
£ . T ,
+ . ;o {ly - §§ y %5 v) p¥ + %% }at
0 W, Wy W
(4.5.15)

Substituting equation (4.2.8), equation (4.5.15) is

simplified to

J ToK(x(t, ’
Sw = Y(tf) BK(X(tf)) T *]'tf N te 3 T 5L
3% (tr) Y PRy, Iodgw| pR o+ g, Yt
ty W, W

v : (4.5.16)

Setting equation (4.5.10) at w, and combining with equation’
(4.5.16), we have

o7 ToKGx(tg)) oty ¢ dH(u,w)

= y(tg) - &
v f ax(te) y'P ]to T / oW dt

w
0

(4.5.17)

Recalling that y(t,) 0 is assumed, equation (4.5.17) is

rewritten as

t
_ aK(x(tf))} . ; foH(u,w) at

T
- y(tg) {p*(tf) 5 :
t : 9
x( f) t, W

w
<,
1

(4.5.18)
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~With suitable boundary condition on x(tg), the
~optimal values of x*(t) and u*(t) at nominal are deter-
mined as known functions of time. As the functions

af oL

aw}w and dw|w

0 o are functions of x*(t) and u®*(t),

aH(u,w) |- .
ow |wy is then a function of time and is independent

of the implementation of the nominally optimal control.

The values of p*(tf) and aK(X(tf)) can be calculated and
Bx(tf) :

are not acgessible to be changed.. In equation (4.5.18),
the only quantity subjected to the designer's manipulation
is the terminal sensitivity y(tg) which depends on the
implementation of thg nominally optimal control via thé
state sensitivity equation. In general, the integral

term of equation (4.5.18) is non-zero, and y(ty) cannot be
zero as far as cost insensitivity is concerned. Therefore
it can be concluded that the cost insensitiVity is achieved
at the expense of terminal sensitivity. It is also 6bvious
that the cost and términal insensitivities cannot be
realized at the same time in any implementation of optimal

control at nominal.

It is known from equation (4.5.18) that the cost
sensitivity depends also on p*(t), and p*(tp is related to
X*(tf).by the transversality condition. Therefore, the cost

sensitivity depends also on how the boundéry point x%*(tg)



is specified. Four different categories of boundary

“conditions are analysed as follows.

1. Case 1: ty is specified and x(tg) is a point

. - . n
given in R :

The term K(x(tf)) in this case is zero. The optimal
" control problem at nominal becomes a two-point boundary-value
problem, and p*(tg) is fixed consequently. The cost

sensitivity in this case 1is:

. .
J T f

S0 = -y (tppH(ty) + ?E%U_zﬂ)_l ar  (#.5.19)
2. Case 2: te is specified and X(tf) is free:

Through the transversality condition, the value

p*(ty) is given by

p*(tf) - aK(X('tf))
2% (tg) (4.5.20)

The cost sensitivity in this case becomes

J tr
g - ; TaH(u,w) dt (4.5.21)

which is a predetermined constant (or vector) and does not

depend on implementation.
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3. Case 3: tg is specified and x(tf) is an element

of a k-fold in R":

If S is a smooth k-fold in rR" and the final con-
_ dK(x(t¢))

dition 1is giv s x(tg)eS, then the vector p*(te)
grven as xitg > ‘ P f ax(tg)

must be transversal to the smooth k-fold. Let S be given
as

z; (x(tg)) = 0 r = [1,...n-k] (4.5.22)

then the boundary condition is given by

' Nk azy(x(te))  aK(x(te))
pH(te) = T ajo ST b
j=1  Camx(tg ax(te)

(4.5.23)

where a's are constant. The cost sensitivity in this case

is given by

: . -k t
Jg T n 3z (x(t)) faH(u,w)
Sg = v (tg) 2oy LT LT e e

i=1 SX(“tf) to W

dat

b, Case 4: tf is free

The final state can be fixed as in case 1, free as
in case 2, or restricted to be in a given k-fold as in
case 3. The corresponding cost sensitivities will take

the same expressions respectively as if te is specified.

In the first three cases, the cost sensitivity does

not depend on the implementation. In case 2 where x(tf) is
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free, ‘this is true for K(x(tg)) = 0 or K(x(tg)) # 0

.In other words, the cost éensitivity is the same for any
implementation if x(tg) is free. This astonishing result
was obtained by Pagurek [37], eﬁtended by Witsenhausen
[50] and Dunn [12] and finally clarified by Dorato and

Youla [51] and Kokotovic et al [26, 27].

It is very important to notice that equation
(4.5.18) is a valid form for cost sensitivity only if
equations (4.5.8) and (4.5.9) are true. In the cases
where the control is uhder some constraints, equation
(4.5.9) does not necessarily hold: Following closely
the development outlined above, the cost sensitivity for

the cases when there are control constraints 1is found to

be
J T AK(x(te)) . tf om ToH
S, = vy (te)[Z 2 E77 — pR(tp) 1+ 5o + v . dt
3X(tf) tO u
Yo Y
(4.5.24)

To focus the.problem is necessary as the éases in
optimal control are so prodigious that it is simply imposs-
ible to evaluate case by case. Case 2 is beyond discussion
in the light of cost sensitivity reduction by implementation
as it was already shown that this is impossible. A typical
problem of unconstrained control with fixed end point, i.e.

case 1, will be considered in the following sections.
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Cases 1 and 3 are very similar in many features and similar

procedures will lead to similar results as expected.

4.6 Cost or Terminal Insensitivities with Integral
State Sensitivity Reduction:

It was shown that addifional freedom is available
for the TDF implementation of equation (4.4.1).
The state sensitivity is affected by the closed loop por—
tion M(t) via equation (4.4.15). By suitable adjustment
of M(t), a specific y(tg) may be obtained but this is not

necessarily guaranteed.

To be more specific, the plant under consideration

is
x(t,w) = flx,u,t,w) - C(4.6.1)

and the cost functional is

£
£
J(w,tO,Tf) = [ TL(x,u,t,w)dt (4.6.2)
t _
0

with both initial t, and final t_. times specified, and

f
both initial x(t,) and final x(tf) states given. The

cost sensitivity has been proven to be

t
J T £
S, = -y (tf)p*(t )+ 5 TaH(u,w)
f t, ey . dt (4.6.3)

0
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dH(u,w) | _ 3L(x,u,t.w) + BFL (% ,u,t,w) % (1)
sw - ow ow p )
W, W W
(4.6.4)

Noting that both L and f are known functions of the plant

parameter, and that 2L

e are known functions

and 3f
oW

: Wo Wo
- of time, the integral term in equation (4.6.3) is constant

denoted by c as

t
S £: (CHR "D I

tg o7 ‘ ‘ (4.6.5)

The constant c¢ willbélévector if w is a vector otherwise

¢ is a scalar.

Recall that cost insensitivity implies Si = 0,

and it will be achieved if
T ,
y (te)p*(te) = ¢ (4.6.6)

Above equation is regarded as the mathematical specifica-
tion for cost inéenéitivity in fixed end points optimal
control problem. If the plant pabameter w is a scalar,
equation (4.6.6) defines a hyperplane in R"™ spanned by
the n-components of y(tf). If the plant parameter is a
rxl vector, equation (#.6.6) can be rewritten in the

component form as,



I
§7ji(tf)Pj*(tf) = c:.  jell,r] (4.6.7)

where yji(tf) are the elements of nxr matrix y(tg), pj*(tf)
are the components of p*(tg) and cj are the components of
the rxl constant vector c. For every i, iell,rl, equa-

nxyr

tion (4.5.7) defines a hyperplane in R spanned by the
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elements of y(tg). The intersection of all these r hyper

s=planes defines a smooth rx(n-1) fold in R"*Y. This

rx(n-1) fold will be called the cost insensitive fold in
R™Y. Note that the cost insensitive fold is a zero fold
when n=1. This implies that y(tg) is a determined 1lxr
constant vector when n=1. In all other cases, there are
always more unknownsin'y(tf) than the number of equations
derived from.equation (4.6.6) as n>1,r>0 and nr>r where

nxr is the number of unknown in y(tf) and r is the number

of equations. In other words, the terminal sensitivity

y(tg) is not uniquely determined by the cost insensitivity

specification for systems with two or more state variables

For all cases, the cost-insensitive fold is non-empty.

Let h(t,y,M) be a nxr matrix defined by

of .

Mly + 59 (4.6.8)
W w
0 0

af
+ Ju
Y
0

o f
h(t,y,M) = (5%

and the state sensitivity equation.(H.H.IS) is rewritten

as



y(t) = h(t,y,M) , (4.6.9)

with y(to)'= 0. Recall that the integral state sensitivity
is defined by

tf '
Sy () []? at (4.6.10)

I(M
To

The state sensitivity equation (%.6.9) is a function of an
undetermined matrix M(t). In sensitivity reduction, the
function M(t) is adjusted such that the sensitivity
specification is met. Three types.of sensitivity have
been defined and the choice of the sensitivity to be
reduced depends on the specification. Therefore, it is
factitiously assumed that different sensitivity specifica-

tions are given.

When the interest is focused on the terminal
sensitivity, the ideal case is to achieve terminal
insensitivity, that is, y(tg) = 0. It is, therefore, re-
quired to find a matrix function M(t5 driving y(t) from y(t0)=O
to y(tf) = 0 via the stateisensitivity equation (4.6.9).

Note that the existence of such a matrix function M(t)
must be assumed without further verification. It was
proved by Holtzman and Horing [19] that for a class of
liﬁear feedback systems, there is a finite range of para-
meter variations which has no effect on the terminal

condition. It was shown by Gadabassi et. al. [16] that
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for a class of linear time-invariant Systems; it is
impossible to achieve the insensitivity of a specified
terminal condition by open loop implementation. However
in applying the TDF implementation, it is distracting
to prove that there exists at least one matrix function
M(t) driving y(t,) = 0 to a specified y(tg) via the

differential system (4.6.9).

If the interest lies in the cost sensitivity, the
best case that can be achieved is to have the cost
insensitive design, that is, Si = 0. It is therefore
required to find a matrix function M(t) driving y(ty) = 0
to a point y(tf) via the state senéitivity equafion
(4.6.9). The terminal point y(tg) is restricted to be'
in the cost insensitive hyperplane.. Note that in both
cost and terminal insensitive designs, the matrix
function M(t) is adjusted such that a desirable y(tg) is

obtained. Consequently, the cost and terminal insensi-

tivities are mutually exclusive in general.

For the purpose of reducing the state sensitivity,
it is requifed to find a matrix function M(t) which steers y(t)from
y(ty) = 0 to any point in Rnx? via the state sensitivity
equation (4.6.9) and which minimizes the integral state
sensitivity. This is a well defined control problem and

the necessary conditions for the optimality of M(t) are
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given by Pontryagin's Minimum Principle’.

In the cost and terminail inseﬁsitive design, there
may exist numerous matrix functions M(t) which satisfy
the insensitive speéification. Among the possible can-
didates, it is desirable to have an optimal M(t), which
yields a minimum value for the corresponding integral
state sensitivity. Hence a mixed type of sensitivity
specification can be formulated. The problem of in-
sensitive design with integral Stéte sénsitivity reduction
can be stated as to find a matrix function M(t) which steers
y(t) from y(to):Uto a specified terminal point y(tg) via
the differential system (4.6.8) and (4.6.9) and which
minimizes the integral state sehsitivity (4.6.10). For
cost insensitive implementation with integral state
sensitivity reduction, the ferminal point y(tg) is re-
stricted to be.in the cost insensitive hyperplane. In
the case of terminal insensitive design with integral
state sensitivity reduction, the terminal point y(ty)

is specified as a null vector or matrix.

As a  priori condition to all the problems which
have been formulated, it must be assumed that the

2h

ah oh . .
components of h, J¢ , and 5; are continuous in RUFIxRTEY

x
[tg,tgl. The Pontryagin's Minimum Principle will then
supply the necessary conditions for the optimal implementa-

tion M(t). The basic schemes introduced in this section
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have been discussed in [53]. However, before expecting
meaningful results or practical solution, the problems

must be further refined.

4.7 Soft Constraint & Design Objectives:

In applying Pontryagin's minimum principle to the
cost or terminél insensitive problemé, the corresponding
Hamiltonian functions are linear in M(t), which is the
feedback portion of the . TDF : - implementation.
As the problém is actually a class of singular problems
[2, 18, 2171, the solution, if it exists, will have no
practical value if there are no reasonable constraints

imposed on M(t).

Realize that M(t) represents -the signal in time
domain as well as the physical system of which the impulse
response is given by M(t) [8]. It is well known that the
energy of any physical signals‘must be finite. Hence a
reasonable constraint on M(t) is

tf
S [ MCE) ]2 dt < k (4.7.1)

to
where k is a finite constant. This basic constraint will
be called the soft constraint. The value of k in the
soft constraint is relatively arbitrary and carries no
meanihg in general and yet the behaviour of M(t) depends

heavily on the constant. Unless it is required, it is
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advised to include the soft constraint in the performance
index I(M) in equation (4.6.10) as

t .
I(M) = S f_{1|y(t)||2 + gl M(t) |} at

Tty
(4.7.2)

where 8 is a weighting constant which allows the designer
-t .
3 . o f :
to put a relative weight between [ || y(t)]|]2dt and

t K
i) f||M(t)[Pdt. It is obvious that the soft constraint

to

of equation (4.7.1) is, therefore, obviated.

In the cost insensitive implementation problem,
the boundary condition on y(tg) is restricted to be in the
smooth rx(n-1) fold in R” as given by equation (4.6.6 );
Besides satisfying the cost insensitive specification, the
terminal sensitivity can be relatively minimized. The
first way of achieving terminal sensitivity reduction is to

modify the performance index I(M) (4.7.2) as

t
T = el yep 12 ¢ 5 Tlyeo ]2+ s e |23t
tO
(4.7.3)

where o is a positive weighting constant. Another possible
way is to find an element y*(tf) in the cost insensitive
fold such that |[|y*(t{)]|? is a minimum, then the boundary

condition is equated to y*(tf).
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It has beén clarified in section 4.6 that cost and
terminél insensitive design can hafdly be satisfied
simultaneously in any implementation. The choice between
the two insensitivities must be made by the designer.
Besides satisfying either the coét or the terminal in-
sensifivity, the.feedback portion M(t) of the TDF im-
Plementation is chosen such that the integral state |
sensitivity is minimized. Moreover, for cost insensitive
design, M(t) is.chosen such that both the terminal and

the integral state sensitivities are minimized.

Té»summarize, some flexibilities from the TDF
implementation are accessible to the designer. A problem
has . been formulated and stated as, "to find a matrix
function M(t) driving y(t) from y(t0)=0 to a given y(tg) via
system (4,6.85 and (4.6.9) and minimizing the performance
index given by equation (4.7.3)". TFor terminal insensitiv-
ity, y(tg) = 0 and o = 0. For cosf’insensitivity y(tg) =
y*(tg) and o = 0 or y(ff) in the cost insensitive fold and
o # 0. The necessary conditions for M(t) to be the optimal
implementation problem as formulated are qbtained via
Pontryagin's Minimum Principle. The opén loop portion
g(t) of equation (4.4.1) is obtained from equation (4.4.10)

upon determining M(t).

The outlined scheme is systematic and generalized

so that a minimum modification is required to meet various
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sensitivity specifications. The constants o and B8
in equation (4.7.3) are adjustable so that the designer is
able to emphasize his interest. Also additional constraints

on M(t) or y(t) are permissible.

However, as an a priori condition to the suggested
"scheme of ‘design, the plant function f(x,u,t,w) must be
————a~known function of -the plant parameter w, so that the

———term 3% ~+in -the-state-sensitivity equation can be

OW |y
0
evaluated. When the plant function f is known only at
nominal i.e. only f(x,u,t,w;) is given, the whole

~suggested scheme will fail and another approach must be

~-—-—developed.

4.8 Preventive Deéign:

Basically, the plant function f(x,u,t,w) in equa-
tion (4.2.1) is a function of the plant parameter w. The
role of w in f may be too expehsivé‘to identify or, in
some casés impossiblg° Also, it may not be economical to
obtain detailed knowledge about the plant parameter if the
chance for the nomiﬁal system to change is fairly small
and the effort to approximafe the relation of w and f is
tremendous. For all these situations, the only information

supplied to the designer is the nominal plant and the
of

Wlw
0

function is not known. Hence for any given im-

Q2

plementation scheme, i.e. giveh v(t) as a function of y(t),
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the state sensitivity y(t) cannot be predicted from the
state sensitivity equation (4.2.8). ,Therefore,.to achieve
terminal insensitivity by desiéning a suitable implementa-

tion is hopeless.

As there is an unknown function in the‘state
sensitivity equation, the state sensitivity y(t) cannot
be controlled by the implementation of the nominally
optimal control in a desirable manner. The cost sensitivity
given by equation (4.5.19) depends on the terminal sensi-
tivity y(tf). If y(ff) cannot be controlled by the imple-
mentafion, nor can the cost sensitivity. It is true that
the cost sensitivity cannot have any value as required.
However the cost insensitivity can be achieved‘pointwise

in time under fairly restrictive assumptions.
Consider a nominal plant (4.8.1)
x(t,wy) = f(x,u,t,wy) ‘ (4.8.1)

which is also represented by

i(t,wo) = f(x,u,t,w)!
' o (4.8.2)

where the plant function f(x,u,t,w) in equation (4.8.2)
is an unknown function of the plant parameter w. Let

the cost functional associated with the nominal plant be



J(w,ty.ty) = fth(x,u,t)dt (4.8.3)
vtO ’

As the role of the plant parameter is not given, the
integrand L(x,u,t) in equation (4.8.3) cannot be a func-
tion of w as in equation (4.5.2). Also the scalar func-
tional K(x(tf)) in equation (4.5.2) is zero. This is
necessary for cost insensitivity by realizing the fact
that the control of y(te) is impossible. If K(x(te))
is non-zero, the cost sensitivity derived from equation
(4.8.3) will depend bn the terminal sensitivity and the
insensitive specification is therefore impossible to

achieve. It is assumed that the initial time t, and the

79

initial state x(t,) are specified and the control is under

af  3f 3L AL

no constrai . Th t f f
constraints e cqmponen s O > 3% ® 3t ° 3% ° a3t

and L are continuous in Ranqx[to,tf] where n is the

dimension of the state trajectory, x(t,w,) and q is the

dimension of the control. Hence the necessary conditions

for the optimal‘control are expressed as,

Mlu,w) ) - g O (h.s.)

e
BE(t) = - aH(u,w)l
Ix W, (4.8.5)

where H(u,w) = L(x,u,t) + fT(X:U:tsw)p*(to) and p*(t)

is the costate vector at wy. Note that the functions



80

OH(u,w)
su

3H . :
ax(QAE— are defined even if the
W

0

and

Hamiltonian function H(u,w) is not defined. The cost
functional at time t is
t

J(w,to,t) = S L(x,u,t)dt (4.8.6)

o

where t, <t<ty. The pointwise cost sensitivity is defined
as

dJ(w,t,,t)

s9 ()
) w dw W

(4.8.7)

It is obvious that pointwise cost insensitivity implies

- . J . .
cost insensitivity, or mathematically, Sw(t) = 0 implies
Si(tf) = Si = 0. The pointwise cost sensitivity is

obtained-by partially differentiating equation (4.8.6)
and setting the resultant equation at w,, and is

expressed as

T T

1
L L
SO RTINS -S-;' o "g"ﬁ’ }dt
t, W, w W, W,
(4.8.8)

Assume that the TDF implementation given in
equation (4.4.1) is applied. Substituting equations

(3.4,18), . (4.4.14) into equation (4.8.8), we have
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J ) Te o 51, T3l
s (t) = Sy {g;lw + M 53'w

yat ' (1.8.9)
tOv 0 0 i

where y(t) is the state sensitivity corresponding to the
TDF implementation. As indicated by equation (4.8.9),
the pointwise cost sensitivity depends on the state
sensitivity which cannot be determined. However, point-
wise cost insensitivity is achieved without knowing y(t)

if the condition,

=0 (4.8.10)

|Wo 1wo

is satisfied for all time in the interval of (tysted.
Equation (4.8.4) can be rewritten as

Ju 2u
Wo Wo

T
oL + of (x,u,t,w) D

it
o

(4.8.11)

Combining equations (4.8.11) and (4.8.10), we have

MTaf (x,u,t,w p# = 2L (4.8.12)
Ju : X
Wo Wo
The functions AEI and 3% are functions of the optimal
Xlwo v :

trajectory x*(t) and control u®(t) which can be regarded
as known functions of time. Hence M(t) can be determined

pointwisely in time from equation (4.8.12).

T
The gxl1 vector function of time %%~ p* , must not

Wo
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be a null vector for all time t, te(to,%f] unless the

time function %% is also a null vector at that

W
specific point, inowhich case equation (4.8.12) is
automatically satisfied independently of M(t). For
all the cases discussed in section 4.5, it has been shown
that the cost sensitivity 'is identical for all implementa-
tions in the admissible implementation set when x(tg)
is free. As K(x(tg)) is zero in the preventive design,
p*(tg) will be a null vector for nominal optimality.

Hence it can be concluded that equation (4.8.12) does

not hold in general when x(tg) is free.

Because of the condition that %g p* #0,vte(t, tel,
w ,
0

the pointwise cost insensitive design is applicable only
to a limited number of cases depending mainly on the
nominally optimal characteristics. The shortage of the
preventive de$ign‘is expected since the knowledge about
the plant is given at the veryninimﬁm. It is not required
to know the plant function-f as a function of the plant
parameter w; the pointwise insensitive design can be
applied practically to all bptimal control problems
provided that the restrictive condition is satisfied.

As far as sensitivity reduétion is concerned, the point-
wise cost insensitive design is therefore the ultimate

resort of the TDF configuration.
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4.9 Conclusion:

The TDF implementation consists of two physical
blocks represented mathematically as the open-loop portion
g(t), and the closed-loop portion M(t). The feedback
block M(t) is ﬁsed to achieve insensitive design or to
meet different sensitivity specifications and g(t) is used
in the implementation of the nominally optimal control,
upon knowing M(t). Depending on the knowledge about the
plant, two approaches are derived. If the plant function
is given as a function of plant parameter, cost or terminal
insensitive designs are possible. Besides fulfilling the
insensitive specification, the designer is able to reduce
the integral state sensitivity relatively among the possible
implementations. If only the nominal plant is known, the
situation is not very optimistic. However, pointwise cost
insensitive design may be achieved provided that a fairly

restrictive condition is satisfied.



CHAPTER V

LINEAR SYSTEMS WITH QUADRATIC

COST FUNCTIONALS

5.1 Introduction:

The techniques of determining the optimal control
and the application of the dual configuration have been
developed for a general system associated with a generalized
cost functional. The systems considered in this chapter
are linear and the cost functionaliquadratic. The
sensitivity analysis in optimal control theory has beeﬂ
studied for a limited number of years yet some important
‘results havg been obtained, mostly concerning the linear
systems with quadratic cost functionals. The purpose of
this chapter s to explore the field of sensitivity
analysis in optimal control theory By presenting the
well-developed results and also tb illustrate tﬁe new
approach in sensitivity reduction which has been in-

novated in Chapter IV.

5.2 Open- and Closed-Loop Implementations:

One of the most powerful design techniques that

has been fully developed to date deals with the design

-8



of the optimal cohtrol for a linear system, possibly time
varyiﬁg, with respect to a quadratic cost functional.

The pioneering work in the area was done by Kalman [23].
The Hamilton—Jacobi;Bellmen equation is utilized as the

method of attack.
Consider the linear system at nominal
%(t,wo)_= A(t,wo)x(t,wo) + B(t,wo)u(t,wo) (5.2.1)

and the cost functional

t
T 1 tr
T = I Chpu O Px(gug) 2,/ T (t,w QU xCt,m ) +
' 0
ul (LW OR(Oult,w,))dt (5.2.2)

where x(t,wo) is the nxl state vector for the nominal

system, u(t,w,) is the gxl control vector for the nominal

system, and v is the rxl nominal time invariant parameter

vector.

It is assumed that F is a symmetric nxn positive
semidefinite constant matrix and that Q(t) and R(t) are
respectively nxn and rxr positive definite symmetricvmat—
rices. To simply the notations, let x(t) = x(t,w,),

u(t) = u(t,wo), A = A(t,wo) and B0 = B(t,wo). Equation

0

(5.2.1) and (5.2.2) are rewritten as

85
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X(t) = Agx(t) + Byult) - (5.2.3)
t
T = Bl e Px(ep)t 1 T + uTORMEIND 1at

-tO
(5.2.4)

Assume that the initial time t, and the initial state x(to)

are given. Define the Hamiltonian as

H o= 20x7(0Q(H)x(t) + uT (DR ] + [Agx(t) + Byu(t) 1 p(t)
(5.2.5)
where p(t) is the nxl costate vector. The canonical system

is

%(t) = Apx(t) + Byu(t) | (5.2.6)

3

BCE) = —ATp(t) - QUE)x (1) (5.2.7)

There is no constraint on the control u(t), hence by

Pontryagin's Minimum Principle, the optimal control is
u(t) = ~R-1()B, T (t)p (L) (5.2.8)

Denote the control of (5.2.8) as u*(t) and its correspond-
ing canonical variables as x®(t) and p*(t) which are the

solutions of  equations (5.2.6) and (5.2.7).
For a feedback control law, let
p¥(t) = K(t)x*(t) (5.2.9)

where K(t) is an nxn matrix to be determined. The optimal
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feedback control law is obtained by combining equations .

(5.2.9) and (5.2.8) as
uk(t) = =R™1()B,TK(t)x* (1) (5.2.10)

Differentiating equation (5.2.9) and combining equations

(5.2.6), (5.2.7) and (5.2.8), we have

[KCE) + K(H)A, - K(OBRI()BTK(E) + Ay K(t) + Q) Ix# () = 0

(5.2.11)

Equation (5.2.11) must hold independently of the value of

x*(t). This implies

T

K(t) + K(£)A, + AOTK(t) + Q(t) - K(OBRI()B TK(t) = 0
(5.2.12)

which is the well-known Riccati equation. Note that K(t)
is symmetric if the boundary condition on K(t) is also

symmetric.

For sufficient condition, let J¥*(x,t) be

J#(x#,1) = $x*T(0K()x* (t) (5.2.13)

The Hamilton-Jacobi-Bellman equation becomes

9 T4 . 1T 1,T
SEJ + %%?fﬁx (£)Q(t)x(t) f U (D)R(t)u(t)

+ xT(0A, T3+ uTe)p, T4y = 0 (5.2.14)
. . xu
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Replacing u(t) in (5.2.4%) by u®* in (5.2.10), it can be
easily shown that J%(x,t) in equation (5.2.13) is the
solution for the Hamilton-Jacobi-Bellman equation provided

that K(t) is symmetric.
Hence the optimal control is given by (5.2.15)
ut(t) = -R™1(t)B, 0%
axX*™
which is equation (5.2.10).

When x(tg) is not specified, the boundary condi-

tion for p*(tg) is given by

¥

pH(te) = Fx(typ) (5.2.16)

Comparing equations (5.2.16) and (5.2.9), it is obvious

that
K(tg) = F (5.2.17)

which 1is symmefric. Hence equation (5.2.13) is the

solution for equation (5.2.14).

When x(tg) is given as a point and F = 0 there is
no condition on p#(tg). Hence both p*(t,) and p*(tf)
are determined from the canonical system (5.2.6) and
(5.2.7) corresponding to the optimal control (5.2.8).

The boundary condition for the K(t) matrix will be
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pE(ty) = K(tglx*(ty) (5.2.18)

i

p*(tg) = K(tp)x¥(tg) (5.2.19)

instead of the equation (5.2;17). Note that K(tg) will
be no longer symmetric, and J#*(x*,t) in equation (5.2.13)
owill not.be the solution for the Hamilton-Jdacobi-Bellman
equation. However, there still exists a matrix K(t)
which is the solution of the Riccati equation. In the
case where X*(tf) = 0, it is well known that K(t)»«~ as
t>te. A practical disadvantage of this solution is the
physical realizability. and the extreme sensitivity of

the feedback controller as t approaches to tg.

Combining equations'(5.2.10) and (5.2.6), the

feedback system is represented by
x%5(t) = G (t)x(t) (5.2.20)
G, (t) = Ay - BoR™I(£)B,TK () (5.2.21)

Hence, in general,for a linear system with quadratic cost
functional ,open- and closed—lbop implementations are
guaranteed. This is illustrated in figure (4) and (5).

The two syctems are said to be nominally equivalent.



u,(t) x(t,w) = A(t,w) @(t,w)

x(t,w)+B(t,wiuy(t)

u () = -R7NEIBCE, W) p* (t)

Figure 4.
Open-Loop Implementation for
Optimal Linear System with Quadratic

Cost Functional.
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us(t,w)  x(t,w) = A(t,w) x. (t,w)
T x (W B, wu (T, w) "

A

Gy ()

Co(t) = Alt,wy) - B(t,wy)R-1(t)BT (t,wy)K(t)

uc(t,w) = Go(t)xc(t,w)

Figure 5.
Clbsed—Loop Implementation
Optimal Linear System with

Quadratic Cost Functional.
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5.3 Comparlson between Open- and Closed- Loop
Implementations:

Equation (5.2.1) represents the nominal system
with the plant parameter at Wy. When the plant parameter
changes from the nominal value w, to a value w, the linear

system becomes

x(t,w) = A(t,w)x(t,w) + B(t,w)ult,w)
(5.3.1)
and the cost functional is

t

% / f{XT(t,w)Q(t)x(t,w)

TG, tyste) = 2xT(te,w)Fx (te,u) +

+ uT(t,w)R(t)u(t,w)}dt'

(5.3.2)

As the open-loop control uo(t) is independent of the plant
parameter, hence the corresponding implementation vector

is zero, that is

u, (t,w) = -R-1()B Tp#(+) ' (5.3.3)
vo(t) = 3{tw) o g
oW g (5.3.4)

The closed-loop control uc(t,w)<isvrewritten as

Cug(t,w) = -RTI(E)BTK() x (t,w) (5.3.5)
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where x(t,w,) = x(t,w) = x*(t). It is obvious
Yo
“that when W, changes to w, the closed-loop control will
change tco. The corresponding implementation vector

v (t) is

vty = BetbWl s gy TRy ()
. Wo

(5.3.6)

where y_(t) is the closed-loop state sensitivity.

The state sensitivity equation for the linear
system is obtained by differentiating equation (5.3.1)

with respect to w,

y(t) = Ax®(t) + Boud(t) + Ajy(t) + Bov(t)

(5.3.7)
where A = 3A(t,w) and By = aB(t,w)
W w |y W |y
0 0
which are known functions of time. Putting equations

(5.3.4) and (5.3.6) into (5.3.7), the state sensitivity

equations for open- and closed-loop implementations are,

respectively,
Yo (1) = A x*(t) + Byu*(t) + Ay, (t)
(5.3.8)
R = o By - -1 T
yc(t) = AWX (t) + Bwu (t) + Aoyc(t) BOR BO Kyc(t?

(5.3.9)



where y, and y, are respectively the state sénsitivity\
for open- and closed-loop configurations. With the
assumed initial condition that'yo(to) = yc(to) =0

it is obvious that y,(t) tf y,(t). 1In other words,

x, (t,w) # xc(t,w) where x,(t,w) and Xc(t,w) are respect-
ively the state trajectory corresponding to open- and

closed-loop implementations.

With all the differences between the open- and
closed—ioop implementations, three- types of sensitivity
must be evaluated. It is further assumed that both the
final time t; and the final state x(tg) are given and

that F in equation (5.2.2) is a null matrix.

Equation (4.5.19) is a general expression for the
cost sensitivity. For linear systems (5.3.1) with the
Quadfatic cost (5.3.2) with F = 0, the derivative of the
Hamiltonian with respect to the plant parameter is given

as

_B_E l - o’ | :': T *
3W|w0 = [A x*(t) + Byuu®(t)1 p*(t) (5.3.10)

Denote a vector ¢ as
te T
c = J T[AE(t) + B ou*(t) I p*(t)dt (5.3.11)
To
which is a constant rxl vector. By equation (4.5.19) the

cost sensitivity for open-loop control Si(vo) is directly
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obtained as
sY(v,) = -y Tt Jp*(te) + ¢ (5.3;12)
w 0 0 f f

and the cost sensitivity for closed-loop control Si(vc)

is

J = T E3 -

S, (Vo) = -yt (te)p*lte) + o (5.3.13)
Let S(VO,VC) be a constant defined as

| . ; |
S(vg,ve) = 1ISutvd |12 = |l sy v |1

(5.3.14)

By the definition of the norm, S(v,,v,) can be expanded

to

S(vy,ve) = P (tp) y, ey T(te) - y_(tpdy (g bpt(ee)

2cT{y (t;) - yo(te)¥Tp#(ts) (5.3.15)

The values p*(tg) and c .are calculated and y,(tg) and
yc(tf) are fixed and can be obtained from their correspond-
ing state sensitivity equations. Hence the constant
S(VO,VC) is well defined. If S(v,,v,) > 0, then it can

be concluded that closed-loop implementation is less
sensitive to plant parameter variation with regard to the
cost sensitivity than the open-loop implementation.
However, the values c, y.(tg), and yo(tf) cannot be

generalized and, in the light of cost sensitivity, the
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comparison of open- and closed-loop implementations depends
on individual problems. Hence there is no general

conclusion.

With respect to state sensitivity, it is well known
that feedback configuration can provide a reductioﬁ
of sensitivity to fhe variations of the plant parameters.
Whether linear optimal systems provide the closed-loop
sensitivity reduction has been answered affirmatively by
Kalman [24] and Anderson [1] on the basis of the analogy
of their results with the classical return difference.
By applying a modification of the relationship between
open- and closed-loop segsitivity, Cruz and Parkins [7] proved
some results which are similar to Kalman's and Anderson's.
Kriendler then applied-all the results in the proof of

closed loop sensitivity reduction [29].

For a linear time-invariant system with quadratic
cost functional and a scalar plant parameter, the closed-
loop implementation is less sensitive in view of the state
sensitivity than opén¥loop implementation, or mathematically,

t! t! '
Of Yo ()Z2(t)y (t)dt < Of vo(t)Z2(t)y,dt (5.3.16)

where 7 = KTBOR"lBOTK. The result can be extended to the
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case where Z = I and the time interval [0,t'] can be
“extended to (==, + =), Kriendler also succeedec ih
extending the result of sensitivity reduction by

closed loop implementation to linear time-varying
system with quadratic cost [30]. Attempt has been made

to extend the result to non-linear systems [281].

With respect‘to terminal condition, little
research has been done. It was proved by Holtzman and
Horing [18] that for a class of feedback system with
minimum control energy policy, that is, Q = 0, and F = 0,
there is a finite range of paramefer variations which have
no effect on the termical conditions. An interesting

remark on this was made by Porter [39].

In general, current results indicate a more
favorable side for closed-loop implementation in the
aspect of state and terminal sensitivities. In cost

sensitivity, general conclusion is impossible.

5.4 Current Approaches in Sensifivity Reduction:

In the previous section, current research asserts
that optimally linear systems with closed-loop implementa-
tion are, in one sense or another, .less sensitive than
the equivalent open-loop systemc. In spite of fhe fact
that such a characteristic is a reassuring result, it

actually does not solve a very practical question.



Assume the optimal control has been calculated and
implementéd with a closed-loop contrcller. The state
sensitivity is calculated. Obviéuslj it may or may not
satisfy the desired specifications. If not, what can be
done to improve the seﬁsitivity?‘ Gavrilovic and
Petrovic [14] and Siljak aﬁd Dorf [uu] suggesfed the
introduction of sensitivity terms in the given cost

functional J, for example,

T
I = 7|y ()] at (5.4.1)
to

the design procedure then is to choose the control which

minimizes the cost functional J s
¥ .

J, = J + ol '  (5.4.2)

where o is a scalar. The design procedure is essentially
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based on computing the control and the resulting sensitivity

for several values of a. By doing this, the designer may

“eventually satisfy the specification on the state

sensitivity.

The basic scheme of introducing a cost function
J, has been modified by Kahne [22,32], D'Angelo, Moe and
Hendricks [9] and Dompe‘and Dorf [10]. In Kahne's
approach, it is assumed that the system matrix B in the
plant equation (5.3.1) does not depend on the plant

parameter and that the,éﬁigaﬂl- in the state sensitivity
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equation is negligible. With these, the state sensitivity

equation becomes

y(t) = A (Dx(t) + Ajy(t) (5.4.3)
together with the linear system

2(t) = ACt,wx(t) + B(tul(t) (5.14.4)

where w is known value of the plant parameter. A cost

functional including the senéitivity is suggested as

t
Jg = 2xTCEp)Fx(eg) + %é r TR + uT ORI
. 0
.+ yI(H)D()y () 1t (5.4.5)

where D(t) is a symmetric positive semi;definite nxn matrix
and is at least twice differentiable in t. The optimal
coﬁtrol is then determined by system (5.4.3) and (5.4.4)
with respect to the cost functional Jy. Simulation of the

optimal control is illustrated in Figure (6) and is given

by
u(t) = -RIBT(Ky,x(t) + K;,y(t)] (5.4.6)

where K;, and K;, are the partitioned matrices of K and

K is the solution of a modified Riccati equation.

D'Angelo, Moe and Hendricks have developed a

sensitivity differential equation:



P(t) %(t,w)=A(t,w)x(t,w)

x(t)

Y

+ B(t)u(t)

A

@ < R-lBKll

R™IBK;, | [y(t)=ACt,w)y(t) + .
c(t)x(t) N
u(t) = -R7IBK,;x(t) - RTIBK,,y(t)
Figure 6.

Structure of Low State Sensitivity

Optimal Linear System by Kahne
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awl awd ™™ 5y™ gt ¥iti-r'-q
(5.4.7)
~where 3 y(0,w) -0 ie[0,L]
awl
and where y(t,w) = §§§£4Hl and K(t,w) is the feedback

system to be determined. The optimal control is then

assumed in the form of

‘ 3" (t,w)
R-1(0) BT (1w K, (1) 2
0 3w

u(t,W) = -
r

nme

where K, are symmetric partitioned matrices of K such

m
that 3—5%2 = 0 for m > 1. The plant equation
oW

(5.3.1) and the sensitivity differential equation (5.4.7)

are used associated with a cost functional given by

tf
Jg = L 7 [uTRu + XTQX + sTMs]at
+ ,
0
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where M is a nLxnlL symmetric positive semi-definite matrix.



The implementation of the optimal control is illustrated
in Figurev(7). More details about both approaches are

given in references [9, 22].

In both approaches, the state sensitivity and
its higher order derivatives are used to implement the

optimal control. The realization of the functions

L
v, 2% ... i-% merges as a new problem. Moreover, the
oW oW
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assumptions in Kahne's approach aré not realistic in many

cases.

If the designer has the freedom to add to the
given cost functional a term of state sensitivity as
illustrated, he may as well have the freedom to use

the following cost functional,

tr
J == .5 (xTQx + «u Rwadt (5.4.10)
where o 1is a éonstant, By trying several values for a,

the designer may finally obtain the desired sensitivity.

In all the approaches discussed in this section,
the original cost functional is modified to meet the
sensitivity reduction requirement. Hence the control
thus implemented will not be nominally optimal with
respect to the given cost functions. In general, this

is not desirable. Moreover, the reduction of cost
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Simulation of Optimal Control
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Senéitivity and  terminal sensitivity have never been
?nvesfigated. The next section illusfrates the new
approach in sensitivity reduction which has been
innovated in Chapter IV.

5.5 Sensitivity Reduction by Implementation of
Optimal Control:

It has been,illustrated in Chapter IV that
sensitivity reduction can be achieved by the application
of the TDF dimplementation, i.e. the configuration with
two degrees of freedom. Consider a linear system
(5.2.1) with a nominal control u®*(t) which is optimal
with respect to a given quadratic cost functional (5.2.2).
The implementation of the optimal control by TDF con-

figuration is given by
u(t,w) = M(t)x(t,w) + g(t) (5.5.1)

where x(t,w) is the state trajectory corresponding to the
control u(t,w) at any value of w. The time functions M(t)
and g(t) are related by the condition that the cohtrol
u(t,w) must be optimal nominally, or mathematically |
u(t,wy,) = u*(t). Hence for any value of M(t), the

function g(t) is determined from
g(t) = u(t) - MOtI)x*(t) (5.5.2)

where x*(t) is the known. optimal state trajectory at
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nominal. The function M(t) is determined such that the

‘insensitive condition is achieved whenever possible.

Let y(t) denote the state sensitivity correspond-

ing to the TDF. implementation (5.5.1) and the state

sensitivity equation is

y(t) = (AO + BOM)y(t) + fw(t) (5.5.3)
where ‘fw(t) =.wa*(t) + Bwu*(t) (5.5.4)
is a known function of time.

Assume that the control problem (5.2.1) and
is a fixed end-point problem. The cost sensitivity

corresponding to the TDF implementation is
sY(v) = —yT(te)ph(t,) + (5.5.5)
wlv) = -y £)P £ c 5.

where c is a rxl vector given by equation (5.3.11).

cost insensitive condition is then given by
T apr(eg) = (5.5.6)
y fP f—C e O .
Together with a cost functional

t
TOD =al] vy |2+ 1 ]y o) [|2e]] MCE) [[Bat

0 (5.5.7)

(5.2.2)

The

an optimal implementation problem will be formulated as
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finding a matrix function M(t) driving y(t ) = 0 to a
given y(tg) via system (5.5.3) (5.5.4) and minimizing

the cést function I(M). The boundary condition-y(tf) is
a nxr null matrix for the terminal insensitive design and
y(tg) satisfies thel condition (5.5.6) in the case of

cost insensitive design.

The rest of the section is devoted in illustrating

Pontryagin's minimum principle to solve the optimal
implementation,problem. For simplicity, assume that the
plant is a scalar, i.e. » = 1.‘ The feedback portion of the
TDF dimplementation, M(t), is a gxn matrix function of
time witﬁ the cqmponents mkj(t). Let y; ajy bik
and fj be the components of y(t), A,(t), B (t) and f (t)
respectively where i=1l, ...n; j=1, ...n and k=1,...qg
In component forms, equations (5.5.3) and (5.5.7) are

rewritten as,

gs (1) 5 o b. f. (5.5.8)
. (t = ¥ ..y, + I . VAR J . e O
yl . al:]y:] - lkmk]y] 1 5
J IK
n ten q,n
IM) = of y 2(tg) +  J 7{ y32(t) + 8 mk.Z(t)}dt
. . . |
1 _ to 1 k,J
, (5.5.9)
Define a Hamiltonlan as
n ~ q,.n ) n,n n
- 2
1 ks3] 153 1
n)n)q
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where zi(t) are the components of a nxl vector z(t). The

cononical system 1is

W
. - - aH
z:(t) = -2y. - £ @az:z. - I Z:beym . = -2
1 i 3 1173 5.k J7JkTk1 3y 1
(5.5.11)
. () n n,q 5 . SH
. = ¥ a..v. + T ca My 2V + PO R .
yi i ljyj n ik™kjY5 i 373
(5.5.12)

and the necessary condition for the optimality of My is

w . .
oH _
0 = —— = 28m} . + & z.b. y. (5.5.13)
amkj -8 k] ;1 lkyj

Assume that 8 > 0 , hence from equation (5.5.13), we have

= b (5.5.14)

1 n
M3 T T 1 PiPikY3

Substituting equation (5.5.1%) into (5.5.11) and (5.5.12),

the canonical system becomes

G () = 2 I +f (5.5.15)
y. = Z a..y. — ——— . 4 y. . . .
i n 1373 28 k] ik 171k’ 3] 1
n y; ngn
z:(t) = -2y: - L as::2: + —= I z.b.. z.b (5.5.16)
i 1 3 Ji%i 28 jk1 Jk7171k

Or in vector form, the optimal implementation M(t) is
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. 1 ST T -
M = - 5.5.17
(t) y B,2Y ‘ ( - )

associated with the canonical system,

gt) = (A, - %E B,B,TzyT)y + £, (5.5.18)
2(t) = -2y - AOTZ + %E-szBOBOTz (5.5.19)

Equations (5.5.17), (5.5.18) and (5.5.19) determines the
féedback portion of the TDF implementation (5.5.1)

and the open portion g(t) is given by equation (5.5.2).
The n boundary conditions that y(t,) = 0 are assumed. To
solve thé canonical systeﬁ of diffefential equation
(5.5.18) and (5.5.19), n more boundary condition ére
required. For terminal insensitivity, the boundary
condition is y(tg) = 0. For cost insensitivity, the

transversality condition requires that
z(tg) = ypE(te) + 20y (te) (5.5.20)

where y is a constant. The boundary condition for the
canonical system is then given by equations (5.5.6)

and (5.5.20). The cost insensitivity with terminal
sensitivity reduction, the boundary condition on y(te)

is the point which is on the hyperplane (5.5.6) and which
yields a minimum distance to the origin. In any case,

it becomes a two-point boundary-value problem. Analytical

solution is not likely and high-speed computer must be used.
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The cost function I(M) .in eqﬁation (5.5.9) contains
two constants, i.e. o and 8. These two constants must be
fixed before the optimal implementation block M(t)
is calculated. The constant a is not included in the
system of differential equations (5.5.18) and (5.5.19)
and therefore is nof significant. The constant B is
inserted in order to remove the problem involved in the
singular extremal. From physical ?oint of view the feed-
back gain || M(t)||? is limited when 8 # 0. By doing that,
the soft constraint is then removed. 1In general the
value for B is small enough so that the integral state
sensitivity term becomes significant. However, as a
result of primary investigation, too small a value for
‘B will cause instability of the differential system

(5.5.18) and (5.5.19).

In this section, the new approach has been applied
to reduce the sensitivities for a linear systems with
guadratic cost functional. Differing from Kahne's or
D'Angelo's approaches, the state sensitivity is not used
as the components of implementation. Also, the TDF
configuration enables the designer to realize the possibility
of both cost insensitive and terminal insensitive designs.

However the development so far is beyond perfection. Many
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problems are still involved in the new approach, for example,
the systematic way of obtaining a solution for the canonical

system (5.5.18) and (5.5.19), which is actually a problem of

two~point boundary-value searching.



CHAPTER VI

CONCLUSION

In this thesis, a new approach to sensitivity
reduction in optimal coﬁtrol systems is introduced. Current
researchers endeavour to modify the given cost functional
in order to satisfy the sénsitivity specification.
The application of the TDF configuration removes the necessity
of changing the original cost functional. Cost insensitive
and terminal insensitive designs have, in the past, been
ignored because of the apparent impoésibility. However, it
has been clearly shown here that it . is indeed realizable.
The application of the TDF implementation to the reduction of
the integral state sensitivity is not so well developed as
the other two. More information is required about the sensi-
tivity specification and about the constraints concerning the
physical feedback portion of the TDF cénfiguration is required.
Upon knowing this the TDF configuration is readily applicable

with some modifications wherever required.

As noted in the introduction of the thesis, the field
of sensitivity analysis in optimal control theory is relatively
new. Moreover, the application of the TDF configuration in
the implementation of a given optimal control has been

demonstrated for the first time in this thesis. Because of

- 111 -



112

these two facts, many results and concepts developed here
are primitive and prospective in nature. Refinement and

verification of the theory are obviously required.

As a result of introducing the TDF configuration,
various new problems may arise. 'The one which is of
immediafe concern is the investigation of the so-called two-
point boundary-value problem for non;lineaf systems with
special emphasis on the numerical techniques. Here,
the canonical system of equations (5.5.18) and (5.5.19)
demands more attention. The comparison with the TDF
configuration and the open- or closed-loop implementations
is also a new topic in sensitivitybanalysis. Here it has
already been shown that, in general, there exists an imple-
mentation of the optimal control by TDF configuration which
" i1s superior to the closed- or open~loop configurations
in the aspects of cost or terminal sensitivities. However,
in the light of state sensitivity; this is not necessarily

true. Further investigation is required to supply the answer.

Besides applying the TDF configuration in reducing
the sensitivity, the configuration can be used to solve the
multi-optimality problem which can be stated as finding an
implementation such that the control is optimal at more than:

one value of the plant parameter.

In conclusion, the TDP configuration is introduced
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as a new approach to sensitivity reduction. The potentiality
of the configuration is far beyond exhausted and more effort

is required to discover its full value.
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