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CHAPTER I 

INTRODUCTION 

Though considerable amount of research in Optimal 

Control Theory has been done since 1957, the first results 

concerning the sensitivity analysis of optimal systems were 

published only as recently as 1963 [11, 24]. Since then, a 

rapidly growing number of technical articles have appeared 

and as a result a very broad field of research was started. 

Due to its short existence, this area of research 

is still in its infant stage. There are only a few general 

important results; ma0y difficult problems have been 

uncovered but little has been done in the direction of ob

taining the solutions. 

Unlike automatic control systems, optimal control 

processes are associated with a given cost functional. 

When the Optimal Control Theory is considered as a set, 

the studies of the necessary and sufficient conditions for 

the optimal control and the sensitivity analysis can be re

garded as the three major subsets. Sensitivity analysis in 

Optimal Control Theory consists of t~o major problems. If 

the implementation of the optimal control is not unique, com

parison between different implementations in the light of 
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sensitivity is one of the major topics in the field of 

sensitivity analysis. Recent research emphasises -on 

the comparison between open- and closed-loop implemen

tations. Another topic of sensitivity analysis is in 

the direction of reducing the sensitivity. Without 

innovating the configuration of two degrees of freedom, 

two approaches are possible. First, the given cost 

functional is modified and a new optimal control 

policy is consequently developed. The most popular 

approach is to include a scalar function of sensitiv

ity in the given cost functional. Second, the given 

cost functional is not changed and the choice of im

plementation is based on the result of comparison as 

there are only two types of implementations available. 

In this thesis, a third approach is formulated. In 

contrast to the first approach, the given cost func

tional is unchanged so that the control thus implemented 

is optimal with respect to the given cost functional 

-as desired. Differing from the second approach a 

prototype of implementation which is the configura

tion of two degrees of freedom is applied. The scope of 

the present work is limited in the direction of reduc

ing various sensitivities without making any comparison 

between the suggested configuration with either the open

or the closed-loop implementations. 



3 

Pontryagin's Minimum Principle is pegarded as the 

basic tool in determining the optimal control. Sufficient 

treatment of the control problem· and the technique of 

obtaining the optimal control will be given in Chapter II. 

The physical and mathematical aspects of changes in the plant 

parameters are evaluated in Chapter III. In addition, the 

sensitivity is redefined since the term has often been 

misused and the need for clarification is obvious. Chapter 

IV introduces the configuration of two degrees of freedom 

in optimal control systems, and formulates the implementation 

problems where the technique developed in Chapter II is readily 

applicable. Chapter V exposes the f.ield of sensitivity 

analysis using the linear system with a quadratic cost 

functional as an illustration and the idea developed in 

Chapter IV is applied to this special·yet important system. 



CHAPTER II 


OPTIMAL CONTROL SYSTEMS 


2.1 Introduction: 

Knowledge of the physical world is based upon experi

ment and abstraction. The engineer examines specific physical 

systems with definite objectives in mind, while the theoreti

cian attempts to discover the basic laws which govern and 

describe the behavior of physical systems in general. 

In the role played by the engineer, a physical system 

is considered as a black box. Certain input 11 signals 11 to 

one black box are applied in order to observe and measure the 

resultant output "signals". The ultimate objective is the 

determination of an input which will produce an output with 

certain desired· characteristics and which will minimize 

the- -"cost 11--of operation. A trial and error procedure may 

be applied to achieve the ob]ective but except when one is 

very lucky, in general it would not work. The aim of this 

chapter is to supply a systematic technique for determining 

such an input and to discuss its characteristics. 

2.2 Mathematical Description of Control Processes: 

There are two different ways of describing 

control processes: (i) by means of state variables and 

- 4 
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(ii) by transfer functions. Recent developments in 

optimal control theory are based on using vector dif

ferential equations as models for physical systems and 

rely heavily on the concept of state. In approximate 

terms, the state of a system may be defined as the 

minimum information about the system at some instant 

of time t which, together with a specification of the0 

input vector u(t) for all time subsequent to t 0 , en

ables the computation of the output vector c(t) for 

all time subsequent to t 
0 

. In other words, knowledge 

of the state at t obviates the need for any informa
0 

tion about the past behavior of the system for predict

ing its future. Knowledge of the output is generally 

not sufficient. The state may be regarded as separat

ing the system's past from its future. This defini

tion of state suffices for our later development; and 

for the precise definition one may refer to Zadeh and 

Desoer [ 52 J. 

Let u(t ,tf] denote all values of u(t) in0 

the interval of t0 <t~tf and x(t) denote the state. 

Th.e state concept can be expressed mathematically as 

[2.2.1] 

Equation (2. 2 .1) .states that the future output behavior 
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can be determined from a knowledge of (or equivalently, 

is a function of) the present state, and a specifica

tion of the future input signal. It is possible to 

show that, if certain care is taken in the mathematical 

definition of state, then 

[2.2.2] 

which means the future state behavior of the system 

also depends only on the present state and the future 

input. Equation (2.2.2) is better represented by 

.. 
[2.2.3] 

where ¢ is the transition function of time determined 

according to the knowledge of-x(t ) and u(t ,tJ. The
0 0 

state x(t) of a system in equation (2.2.3) contains suf

ficient information about the system; in usual practice, 

state x(t) in the form of equation (2.2.3) is not avail

able directly. A differential system is a dynamical 

system with the system state variable x(t) described by 

a set of differential equations, 

x(t}=f (x(t) ,u(t) ,t) [2.2.4] 

with x(t ) as initial point and ¢ in equation (2.2.3) as0 

the solution to the vector differential equation (2.2.4). 
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By the existence theorem [40] for differential equation 

(2.2.4) the components of f and ~:must be continuous on 

RnxRqxT where n is the dimension of x(t) with x(t )£Rn,q is
0

the dimension of u(t) with a piecewise continuous function 

u(t) from T into Rq and T is the open time interval with 

T=(T ,Tf), T <t <t<Tf. Both n and q are assumed to be fin
0 0 0

ite. 

The control processes or physical plants, or 

simply systems, which are considered through all chapters 

are continuous-time dynamical differential systems des

cribed by the systems of differential equation (2.2.4) with 

x(t ) as initial point and equation (2.2.3) the solution.0

Sample-data system will be excluded. 

All the developments that follow are based on the 

vector differential equations as models of the physical 

systems. In the older literature on control theory, how

ever, the same systems are modeled by transfer functions. 

In the new approach, state variables, transition matrix, 

etc. are used and the mathematical tools are abstract 

linear algebra and differential equation theory. In the 

old approach, the key words are frequency response, pole 

zero pattern, etc. and the main mathematical tool is com

plex function theory. It is very unfortunate that the gap 

between the old and the new approaches become wider and 

wider, but no bridging of this increasing gap will be 
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attempted in this thesis. 

2.3 	 The Control Problem: 

The basic ingredients of the (optimal) control 

problem are 

1) a control process which is to be "controlled" 

2) a cost functional or performance index which measures 

the effectiveness of a given "control action". 

3) the objective of the control process 


4) a set of constraints. 


As discussed in the previous section, the con

trol process under consideration i~ 

x (t) =f (x (t) ,u (t) ,t) 	 [2.3.l] 

with the transition function ¢ given as 

x(t) =¢ (t;x(t ),u(t ,t]) 	 [2.3.2]
0 0 

The transition 	function¢ depends on the control u(t ,tJ0 

when the initial point x(t ) is specified. If more than
0 

one control u(t ,t) in RqxT satisfies the objective of
0 

the control process, a choice must be made among the can

didates. A cost functional is established for this pur

pose. In general, a cost function J is a scalar integral 

function and takes the form of 

tf 
J(u,t0 ,tf)=K(x(tf) ,tf)+ft L(x(t) ,u(t), t)dt 

0 [2.3.3] 
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V:here tf is the final time. The integrand L is ·assumed to 

be a continuous real-valued function on RnxRqxT and K is a 

continuous real valued function on RnxT. The optimal con

trol u* (t
0 

, t :fl of the control process associated with the cost 

functional J is the control which satisfies the constraint 

and the objective of the control process and which gives a 

minimum value for the cost functional J relatively with 

respect to the possible candidates. Since finding the 

maximum of a real-valued function is the same as finding 

the minimum of the negative of the function, it is clearly 

sufficient to consider only the minimization of the cost 

functional. 

The objective of the control process specifies 

both the initial conditions and the final conditions for 

the state and time. The initial conditions supply the in

formation about the initial time ~0 >T0 , and the initial 

state x(t ). Without los5 of generality let the initial
0 

time be specified and the initial state be given as a 

point in Rn. The final conditions supply the information 

about the final time tf<Tf, and the final state x(tf). 

The final time may or may not be specified while the final 

state can be a point, free, in a target set, in a moving 

target set or a moving point. This will be discussed in 

more detail in the next section. 

Since the control process is described by equa
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tion (2.3.l), the constraint set, if.there is any, must be 
. 


described also in terms of either the control or the state. 

Hence there are two types of constraints, i.e. the control 

constraint and the state constraint. Let Ut be a closed, 

bounded and convex subset of Rq and denote the collection 

of the sets Ut by D; that is, 

[2.3.4] 

Moreover, all the elements in Ut must be bounded and piece

wise continuous. In general, the constraint is given as 

uED where the set n is described by equation (2.3.4). If 

D=Rq, then the optimal control problem is unconstrained in 

control. Magnitude constraint can be expressed as 

D={U:tsT} 

q 


- ··with U - { ·l µ · e · : Iu · I~M · } . 1 l l l li= 

where M.sare given constants and e .... e is the natural 
l l q 


basis of Rq. Norm constraint is expressed as 


Ut={u: 1 lu (t) I l~M} 

Similarly, the state constraint can be constructed. 

With all the notions developed, the optimal con

trol problem is formulated as 
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"To find a control u, UE~, which takes _the 

initial set to the final set and which minimizes the cost 

functional (2. 3 . 3) . " 

Note that the state constraint is excluded. If it is not 

the.case suitable modifications are suggested by Berkovitz 

[5] and McGill [36] and th@ development is very similar to the 

unconstrainted one. 

Majo~ topics involving the optimal control problem are: 

1) The existence and uniqueness of the optimal control 

2) The techniques of obtaining the optimal control 

analytically or numerically if it exists. 

3) The sensitivities of the optimal system, the comparison 

between different implementations in the light of sen

si tivi ties if the implementation of the optimal control 

is not unique and the reduction of sensitivities by im

plementation if it is possible. 

2.4 Pontryagin's Minimum Principle: 

In the early fifties, minimum t;irne control laws 

were obtained for a variety of second and third order 

systems. In 1956, a principle, leading to the solution of 

the general problem of finding a control process, was 

hypothesized by Pontryagin on the basis of the results of 

work done by him, Boltyanskii and Gamkrelidze. This prin

ciple, which received the name, "Maximum Principle", was 

verified at first for individual types of systems and, in 
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particular, in the case of linear systems. A year later 

the proof of optimality for minimum time control problem 

was completed by Boltyanskii and Gam,..krelidze. In three 

years time, the maximum principle was extended to the 

general case of minimizing an arbitrary function of the 

integral function of variable systems and a detailed pre

sentation of basic results was obtained by Pontryagin and 

his associates. [41] In this section, the celebrated 

Maximum principle 1 of Pontryagin will be given without 

proof. A rigorous derivation based on geometric arguments 

is presented by Pontryagin et.al. A less rigorous demon

stration than Pontryagin' s is given by Athan:s and Falb [ 2]. 

Consider a given nth order control process with 

(T0 ,T~=T as interval of definition and with state equation 

x(t)==f (x(t) ,u(t) ,t) [2.4.l] 

Q is a given subset of Rq such that 

u(t)c::n V tc::T [2.4.2] 

and u (t-) =u (t) V tc::T [ 2. 4 ~ 3] 

except at a finite number of points in time. 

Since the minimization not maximization of a cost 

functional is considered, it will be called the_ minimum 

Principle of Pontryagin. 

1 
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The transition function for the given control process is 

[2.4.4] 

The cost functional is given as 

[2.4.5] 

where L(x,u,t) is a real-valued function on RnxRqxT and 

K(x,t) is a real-valued function on RnxT. It is assumed 

that the components of f L ~ ClL ,~ft' and ClL are contin' 'Clx'Clx a Clt 

ous on RnxnxT, where IT e Rq. Both the initial time t 
0 

and the initial state x(t ) are given. By an admissible
0 

arc(x,u) it is meant that x(t) satisfies (2.4.4) and that 

the correiponding u satisfies (2.4.2) and (2.4.3). The 

Hamiltonian function H(x,p,u,t) is a real-valued function 

nxl vector x, the nxl vector p, the qxl vector u and t 

and is given by 

H(x,p,u,t)=L(x,u,t)+fT (x,u,t)p(t) [2.4.6] 

The canonical system associated with the control process 

(2.4.1) is a 2nth order system of differential equations: 

i{t) = ClH(x,~~u,t) [2.4.7] 

• ( t) - -Cl H ( x I p , u , t)
P - ax [2.4.8] 

Cl IIIn view of the assumption made, the functions H and 3x are 

continuous on RnxRnxITxT. Consequently by the existence 

theorem, there exist a state x and a costate p which are 



the solution of the canonical system corresponding to fi in 

n. The arc (x*(t) ,u*(t)) is said to be optimal if 

(x*(t) ,u*/t)) is admissible and if the cost functional 

J(u*t ,tf) is a minimum, or mathematically
0 

J(u*,t ,tf)=Min J(u,t0 ,tf)0 [2.4.9]
usn 

Pontryagin's Minimum Principle states that 

if u* is the optimal control, x* is the optimal state tra

jectory and p* is the optimal cost state trajectory corres

ponding to u*, then the Hamiltonian H(x*,p*,u*,t) is a 

minimum with respect to u; or mathematically 

H(x*,p*,u*,t)=Min H(x*,p*,u,t) [2.4.10]usn 

or equivalently, H(x*,p*,u*,t)~H(x*,p*,u,t) ,vusn, [2.4.11] 

In the case where Q=Rq, that is no constraint, 

equation (2.4.10) can be· replaced by 

()H()u*(x*,p. * ,u * ,t)=O [2.4.12] 

Note that the optimal trajectory x* and the op

timal costate trajectory p* must satisfy the canonical 

system. With the given initial condition x*(t )=x(t )
0 0 

where both t and x(t ) are given, n boundary conditions
0 0

are required to determine x*(t) and p*(t) from the canoni

cal system. These boundary conditions are supplied by the 
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transversality condition which depends on the terminal set. 

Several cases which will be considered are: 

1) tf is fixed and x(tf) is free 

2) tf is fixed and x (tf) is a fixed point in Rn 

3) t· is fixed and x(ff) is in the target set S, a smooth
f 


k-fold in Rn given by S={x:g1 (x)=O .•. gn~k{x)~O} 


4) tf is free and x(tf) is free 


5) tf is free and x(tf) is a fixed point in R 

n 

6) tf is free and x(tf) is in the target set S, a smooth 


k-fold in kn given by S={x:g1 (x)=O, ... gn-k(x)=O} 


7) tf is free and x(tf) is in the moving target set S, a 


·smooth k+l fold in RnxT given by S={x:g (x,t)=O ...

1 


g k(x,t)=O}
n

8) tf is free and x(tf) is a moving point given by 


S={ (g {t) ,t) =tcT} 


·-In -case -8, it is -assumed that g (t) is a continuously diff

erentiable function from Tinto Rn. In case 7, it is 

(lg· . Clg
assumed that the functions g.~ 1 t) 1 -;::;-:f'-(x,t), and ~xLL(x,t)

1 0 L.. 0 

are continuous on RnxT for all ic[l,n-k] and that the vec

Cl g.
tors rx<x,t) are linearly independent at each point of $. 

Corresponding to different terminal conditions, the real-

valued function K(x(tf) ,tf) is modified. As a function of 

the control u(t), the Hamiltonia~ i.e. equation (2.4.10), is 

a minimum at u*. The behavior of the Hamiltonian along 

the optimal trajectory depends on the terminal conditions. 
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Together with the transversality condition, Pontryagin's 

Minimum principle for case (1) to case (8) can be stated 

as 

If u*(t) is the optimal control, then 

equation(2.4.10) must be satisfied where the canonical 

system is rewritten as 

x*Ct> = anl [2.4.13] 
ap * 

p*(t) = an! [2.4.14] 
ax * 

and corresponding to the terminal condition (1) to (8), 

the following transversality condition must be met respect.. 
ively: 

1) K K ( ) = x where K , (jKax, a 
2 
Kand axz are continuous, then 

*< > _aKI [2.4.15]P tf -ax x*(tf) 

t 
H (t) = H*(t )- f f an! dt [2.4.16] 

f t at * 

2) K=O then there is no condition on p*(tf) and equation 
(2.4.16) holds 

aK a2K .
3) K=K(x) where Ki ax and ax 2 are continuous, then 

p* (t ) 
f 

aKj [2.4.17] 
ax x*(t )

f 

where ai are constants and equation (2.4.16) holds. 


dK a2 K aK a2 K

4) K=K(x,t) where K,ax' ax 2 'at and at 2 are continuous, then 

http:equation(2.4.10
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p*(1:f)=~~'*tf 	 [ 2. 4". is J 

aK 
*t 	 [2.4.19]H*(tf)=-at 

. f 

H* 	(t)=H*(t )- ftf[a 0 1 +~ 2 ~ ]dt [2.4.20]
f t atl* at * 

5) K=O then there is no condition on p*(tf) and 

H*(t )=O [2.4.21]f 

t 
*dt 	 [2.4.22]and H*{t) = - f f ~~ 

t 

aK,a 2 K,aK and a 2 K are continuous
6 ) 	 K=K (x,t ) where K(x,t ) ax ax2 at at2 

then 

n-kP*(tf) = ' a. ~I + aK 	 [2.4.23]
i;l 1 ox * ax *,tf 

and equations (2.4.19) and (2.4.20) hold. 

aK a 2K aK Cl 2 K
7) 	 K=K(x,t) where K(x,t) ax' ""3'X7' at and afT are continu

ous then 
n-k 

p* (tf) = l 
i=l 

a. 
1 

agi I ax- *tf 
+ aKI 

ax *tf 
[2.4.24] 

n-k 
H* (tf) = l 

i=l 
a·1 

Clgil
d5{ *,tf -

ClKI 
at *tf [2.4.25] 

and equation (2.4.20) holds. 

ClK ClK Cl 2K
8) 	 K=K(x,t) where K(x,t), ax(x,t), at(x,t), -- (x,t)12ax 

2	 2a K 	 a Katz'"(x,t) and axat(x,t) are continuous, then 
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there is no condition on p*(tf) and 

[2.4.26] 

and [2.4.27] 

General optimal control problems will fall into 

one of the eight cases listed above. By no means, they will 

cover all the control problems, but similar conditions may 

be obtained. In the cases where the initial time and the 

initial state x(t0 ) are not speci~ied as a point, 

initial transversality .conditions can be similarily evalu

ated. When the control processes (2.4.1) and the cost 

function (2.4.5) do not explicitly depend on time, the 

Hamiltonian along the optimal trajectory must be zero when 

tf is fixed and becomes a constant when tf is free. From 

case (4) to case (8) where tf is free, one additional con

dition is imposed on H*(tf) and this locates the optimal 

final time. 

In fact, Pontryagin's Minimum Principle repre

sents a set of necessary conditions for optimality or more 

precisely, for local optimality. If there exists a control 

Q(t)EO which satisfies all the necessary conditions as im

posed, the control fi(t) is said to be an extremal rather 

than an optimal. Note that the extremal is not necessarily 

the optimal. In the next section, a sufficient condition 
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will be given, which represents a strengthening.of the 

necessary conditions. 

It has been proved [33] that for a linear system 

x(t)=A(t)x(t)+h(u,t) [2.4.28] 

associated with a cost functional given by 

tfJ - {L (x,t)+L2 (u,t)} [2.4.29]1t . 
0. 

the extremal is also the optimal. 

2.5 Sufficient Condition for Optimality: 

In examing questions concerned with the theory 

of optimum systems, it is necessary to note the numerous 

works of R. Bellman, which are systematically presented in 

[4]. The method of "dynamic programming" developed by 

Bellman gives a new tool for the solution of the control 

problems which are closely associated with Pontryagin's 

minimum principle. In this- section, the sufficient condi

tions for optimality will be stated in conjunction with 

Bellman's functional concept of dynamic programming. 

Consider a control process in Rn 

x(t)=f (x(t) ,u(t),t) [2.5.1] 

where the admissible controls, u(t), are all bounded and 

piecewise continuous function on a fixed finite time inter

http:strengthening.of


20 

val T <t<Tf or T=[T ,Tf], with values in some restraint set
0 0 

ncRq, and steering the initial state x(t ) to a target set
0

SER
n 

• The cost is 

[2.5.2] 

where f ,K, and L are in class C' in all arguments. 

Consider the Hamiltonian 

T 
H(x,p,u,t)=L(x,u,t)+f(x,u,t)p(t) [2.5.3] 

Let u(t) be an extremal control with corresponding 

state x(t) and costate p(t) such that 

A A A A 

H(x,p,u,t)= Min H(x,p,u,t) [2.5.4] 
UEQ 

where x and p are determined from the canonical system, 

with the boundary conditions satisfying the transversality 

condition. 

Assume that-the control law u(t) is a feed-back 

one such that 

u(t)=u(x,p,t) [2.5.5J 

Substitute equation (2.5.5) into (2.5.2) and denote 

t . [2.5.6] 

3cx,t0 ,tf)=J(6,t 0 ,tf)=K<x<tf))+ft~ L(x,a ,t)at 

Consider a time-varying cost functional defined as 

t 
Bcx,t) = f fL(x,u(x,p,t) ,t)dt c2.5. 7J 

t 

Differentiating with respect to t, equation (2.5.7) yields 
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()J T. ()J . 
-L(x,u,t) = ~ (XI t) X+ d t (XI t) [2.5.8] 

Substituting equation (2.5.1) into (2.5.8) we have 

A T 
~~(x,t)+L(x,u,t)+f (x,u,t)~~(x,t)=o [2.5.9] 

In view of the definition of Hamiltonian, equation (2.5.9) 


can be rewritten as 


A A 

~~(x,t)+H(x,~~(x,t) ,u,tY=o [2.5.10] 

. Equation (2.5.10) is known ·as the Hamiltonian-Jacobi-

Bellman equation which is a partial differential equation 

for the function 3(x,t). The boundary condition is 

A 

J(x,tf)=K(x(tf)) for x(tf)sS [2.5.11] 

Assume that there exists a feed-back control law 


u and let J(x,t) be the solution of the Hamiltonian-Jacobi-


Bellman equation with the boundary condition (2.5.10). 


Assume also that (x,u) is an admissible arc with x(tf)sS 

A 

and u(x,t) = u(x,~~(x,t) ,t), then the control u is optimal 
A 

with optimal trajectory x and with cost J*(u,t ,tf)=0 

3 (x (t
0

) t 
0 
). 

Combining equations (2.5.4) and (2.5.10), we have 

T()J(x,t) A 

+ Min { L ( xI uI t) + ~~ ( x I t) f ( x I u 1 t) } = 0dt us)2 
[2.4.12] 
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Upon discretizing equation (2.5.11) / a recursive- equation 

can be obtained. Hence the optimal cost trajectory can be 

approximated through the use of high speed computer. 

The Hamilton -Jacobi-Bellman equations repre

sent a requirement on the behavior of the cost. Analyti

cally, the equation is often quite difficult to solve if 

not impossible. Hence the equation is most often used as 

a check on the optimality of a control derived from the 

necessary conditions as stated by Pontryagin's Minimum 

Principle. 



CHAPTER ,III 

SENSITIVITIES OF OPTIMAL CONTROL PROCESSES 

3.1 Introduction: 

When a given input is applied to a given plant, the 

output of the plant does not necessarily agree closely with 

the value that is expected. The expected output is obtained 

from the knowledge of the input-output relationship of the 

plant and is rather a theoretical value. Excluding the 

measurement errors that may be involved, the discrepancies 

of the experimental output from the theoretical can be 

accounted for by two categories of disturbances to the plant. 

The external disturbances to the plant are generally regarded 

as the noise and the internal perturbation is regarded as 

the plant parameter variation. The noise is considered as 

an additional input but discussion of its effects is beyond 

the scope of the present work. 

The plant parameter is regarded as the independent 

variable upon which some plant arguments depend. The 

plant arguments are determined by the interest of the de

signer; they may be eigenvalues of the plant, for the cost 

or the terminal state. Sensitivity in the gross sense is 

defined as the change of the dependent argument due to the 

change of the plant parameter. Corresponding to various 

plant arguments, various sensitivities are defined. The 
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purpose of this section is to introduce the definitions of 

various sensitivities and their measures. 

3.2 	 The Physical and Mathematical Aspects of the Plant 
Parameters: 

The physical plants in engineering differ widely in 

forms.· In spite of the specific differences, a large class 

of engineering systems is described by a mathematical model. 

Certain differences are expected between the physical systems 

and its mathemat~cal models. Generally, the correspondence 

between the mathematical model and its physical system is 

quite satisfactory; however, this is not always the case. 

To account for the discrepancies, a plant parameter w is 

included in the mathematical model as 

. 
x(t,w) 	= f(x,u,t,w) [3.2.1] 

and the physical plant is factitiously represented by 

x(t) = f(x,u,t) [3.2.2] 

where x is the state trajectory and u is the control. The 

plant parameter is included due to the uncertainty involved 

during the process of obtaining the mathematical model through 

identification. If the plant is scrutinized in more detail, 

it is possible to determine the system function f in equa

tion (3.2.1) as a function for the parameter w. Hence there 

exists a value w such that the mathematical model0 

[3.2.3] 
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agrees closely enough with the physical model of equation 

(3.2.2). And the drifts of the plant parameter from w to
0 

w will then take account of any uncertainties in the iden

tification process. The mathematical model (3.2.3) is 

called the nominal plant and the physical plant (3.2.2) is 

represented by the mathematical model of equation (3.2.1) 

with the parameter w in the neighborhood of its nominal 

value w
0 

. 

In some cases, the physical plant may have an 

exact mathematical model but the plant parameter is intro

duced when the elements of the phy~ical plant are sensi

tive to environmental conditions. Some of the components 

of the physical system may be sensitive to temperature, 

humidity etc. Nominally, the physical system is assumed 

to be operated under certain temperature and humidity. 

If the physical plant is constructed such that 

the character of each of its c~mponents can be evaluated, the 

corresponding mathematical model can be directly obtained. 

This procedure of analysis is always employed especially 

in passive network. It is well known that the labelled 

value of the components of the physical plant cannot be 

exact and in usual practice, the tolerances of the compon

ents are given by the manufacturer. In this case, the 

need of inserting the plant parameter is obvious and the 

way of obtaining the corresponding mathematical model 
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(3.2.2) is also easy. 

From the physical point of view, the plant para

meter arises from uncertainties in indentification, from 

environmental effect or from the .inaccurate-values of the 

components. Many other factors may be involved depending 

on the specific plant. 

From the mathematical point of view, the plant 

parameters are divided into two categories according to 

the fashions that the plant parameter changes. Stochastic 

plant parameter [13] varies in an unpredictable fashion and 

and the magnitude of the plant parameter cannot be estim

ated at any time. On the contrary, a deterministic plant 

parameter is predictable at any time. In the present 

work, the discussion of the stochastic plant parameter 

will be ignored. 

It is impractical to restrict the plant parameter 

to be a scalar. In many cases, there is more than one indepen

dent plant parameter in the system. And the plant para

meter is considered as a vector quantity. The plant with a 

vector plant parameter will be called the multi-parameter 

system. 

The deterministic plant parameters are further 

classified into two categories. Consider a plant parameter 

w in the time interval of [T ,Tf] and assume that the plant0 

is operating in the time interval of [t .,tf] where [t ,tf]
0 0 
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is a small line segment in [T ,Tf]' i.e. T0 <<t 0 <tf<<Tf.
0 

If the plant parameter takes the value of w in the time 

interval of [t
0 
,tf] and has a negligible chc:i:nge around win 

the whole interval of [t 0 ,tf]' then ~he plant parameter is 

considered as constant in [t 0 ,tf]. By a constant plant 

parameter, it is meant that the plant parameter takes a 

constant value in [t 0 ,tf] but may be time dependent on a 

large interval [T 0 ,Tf]. However, if the change of the 

plant parameter around a certain value is large enough not 

to be neglected in the interval of [t 0 ,tf], then the plant 

parameter is considered as time dependent. In investigating 

the physical plants due to the variation of plant parameters, 

incremental change of the time-varying plant parameter is 

considered while the change in constant plant parameter is 

assumed to be differential. In many aspects, the approach 

in either case is similar and discussion on the plants 

with time-varying plant parameter will not be exclusively 

made. Whenever required, important differences between 

time-varying and constant plant parameters will be 

emphasized. 

Various problems involved in the physical plant 

yield various mathematical forms of the plant parameters. 

In general, the representation of the physical plant by 

equation (3.2.1) together with the nominal system of equa

tion (3.2.3) describes more fully than equation (3.2.3). 
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Mathematical solution of equation (3.2.3) is 

possible for any given control and boundary conditions. 

In the analysis of practical systems, along with the ob

taining of solutions, it is extremely important to have a 

knowl'edge of the variations of the solution with respect 

to plant parameters. Sensitivity analysis represents a 

further connection between the mathematical model and the 

physical system, and enables the engineer to apply the 

results from analyzing equations to physical systems with 

far greater dependability. 

3.3 Sensitivities for Control Systems: 

The idea of sensitivity was introduced by Bode 

in one of his fundemental works[6]. In a feedback cir

cuit, the sensitivity s~ for a system argument T is given 

by 

S T_(}Ine l][ 3 38 alnT • . 

where e is the gain through the complete system. The 

definition was modified and extended by Horowitz, [20] 

Truxal [48] and Mason [35] as 

a1n ·r= ---- [3.3.2]
Clln e 

where T is any system argument of interest and e is any 

system variable. Equation (3.3.2) can be rewritten as 
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ST=Cl'l'/T 
\ - [3.3.3]e ae;e 

In words, the sensitivity of T with respect to e 

is the percentage change in 8 which causes the change in T. 

All changes are restricted to be differentially small. 

Corresponding to equation (3.3.2), the sensitiv

ity for argument T may be defined, alternatively, as 

T ()T [3.3.4]8 e=arne 

It was used by ur [49] in analyzing the locus of the 

closed loop root with respect to the variation in the open 

loop parameter. 

Among several definitions of sensitivity, equa

tion (3.3.3) is generally used; however its disadvantage 

is also well known. Whenever the system argument T or the . . 

parameter 8 is a vector, the definition must be modified. 

Goldstein and ~uo [15] extended Mason's [35] definition of 

single parameter sensitivity significantly to the multi-

parameter case. Hakimi and ·cruz [17] constructed some 

sensitivity measures with multiple parameter variations 

and Lee [34] introduced the concept of sensitivity group. 

All the works attempt to give a reasonable sensitivity 

measure for a scalar system argument T with multi.parameter 

variations. Even so, the multi.parameter sensitivity 

appears to be quite complicated and the extension to a vec
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tor system argument T is difficult. 

Instead of considering s_ensitivity, Cruz and 

Perkins [7, 38] constructed the sensitivity matrix and its 

corresponding measure. It was modified by Kriendler and 

sensitivity was defined as 

ST=()T [3.3.5]e ae 

Equations '(3.3.. 3) and (3.3.5) are similar in form , but 

the concepts are different. Equation (3.3.3) expresses in 

terms of percent change. If the percent change in T is 

large while the percent change in e is small, the sensiti
.. 

vity in equation (3.3.3) will be large. Therefore it can 

be concluded that the argument T is very sensitive to the 

parameter 8. Conclusion of this kind cannot be drawn by 

using definition (3.3.5). The change in T is s~all in 

percentage but may be large relative to the change in 8. 

Consequently, sensitivity from equation (3.3.5) is very 

large even if the argument T is not sensitive to the para

meter e. Sensitivity by equation (3.3.5) does not imply 

anything and the sensitivity measure must be developed. 

Basically, in Cruz and Perkins' approach, both the sensi

tivity and its measure are constructed for the purpose of 

comparison. 
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3.4 Sensitivities for Optimal Control Systems: 

For the automatic systems, major analytical work 

was done in the frequency domain; therefore the sensitiv

ities are functions of the complex frequency. For optimal 

control systems, all sensitivities are defined in time do

main. The· cost or the performance sensitivity was defined 

by Dorato [11] in 1963 and the terminal state sensitivity by 

Holtzman and Boring [19] in 1965. Kriendler [29] has 

elaborated a precise definition and _the important implica

tions for the term "state sensitivity". Various authors 

have been investigating sensitivity.without carefully 

specifying the sensitivity they are referring to. Thus 

the term sensitivity has become more confusing than ever. 

This section is devoted to clarify the terms and to 

establish suitable measures for the comparison. 

In one of the first works on the sensitivities 

of optimal control, Dorato suggested a definition of 

sensitivity for the cost functional (3.4.1). 

t 
J = J ( w, t , t f) =f L ( x Ct ,.w) , u ( t, w) , t) d t [ 3 . 4 .1]

0 
to 

due to the change of the plant parameter w. The control 

process is given as 

x(t,w) = f(x(t,w),u(t,w),t,w) [3.4.2] 

where x(t,w) is an nxl state vector 
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u(t,w) is a qxl control vector 

w is an rxl plant parameter vector. 

At nominal, i.e. w = WO' the cost functional has the 

value of J(w
0 
,t 0 ,tf) which is a minimum if the nominal 

control u(t,w 0 ) is optimal. The variation of the cost 

functional due to a small change of the plant ow,ow = w-w 0 

is 

(3.4.3) 

Expanding J(w,t 0tf) around w0 by Taylor series, it is 

seen that 

owaw 
w=w 0 

T 
+ 	1 ow a2J(w,to,tf)I ow + •••• 

2 ! aw2 . w=wo 

(3.4.4) 

Combining equations(3.4.3) and (3.4.4), the incremental 

change Qf the cost functional is expressed as 

T
~J(w) = aJ(w,t 0 ,tf) 

aw 

(3.4.5) 
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Denote 
T 

oJ(w) = aJ(w,to,tf) ow (3.4.6) 

aw 

and 
(3.4.7) 

Hence bJ(w) becomes 

bJ(w) = oJ(w) + o 2 J(w) + •..... (3.4.8) 

For an infinitesimal change of w around w
0 

, or ow ->- 0 the 

higher order variations are negligible. Or when the cost 

functional J(w,t 0 tf) has a Frechet derivative , the change 

of the cost functional is approximated by 

T 

ow ( 3 • 4 • 9 ) 
aw 

The cost sensitivity SJ 
w 

{s therefore defined as 

aJ(w,t ,t )
0 f 

aw w0 
(3.4.10) 

In words, the cost sensitivity is the first partial 

derivative of the cost functional with respect to the plant 

parameter w at its nominal value w0 • It is important to 

note that the cost sensitivity indicates a meaningful 

relationship with the change of the cost functional only 

if w is close enough to or the cost functional has aw0 



Frechet derivative. Without this hidden assumption, the 

cost sensitivity is not sufficient to give enough information 

about the change of the cost functional and confusion may 

arise. 

By cost insensitivity, it is meant that 

(3.4.11) 

The term 11 insensitivity'1 must not be carried too far 

literally. By equation (3.4.9), cost insensitivity implies 

llJ(w) "' 0 (3.4.12) 

Or in words, the change of cost functional is approximately 

equal to zero. As the higher order terms are neglected, 

llJ(w) can not be identically zero even if cost insensitivity 

is achieved. But as far as first order approximation is 

concerned, the cost insensitivity is the most ideal case. 

In the multiparameter cases, the cost sensitivity 

. Rris a rxl constant vector in _ . If the implementation of 

the optimal control at nominal is not unique, several cost 

sensitivity vectors are obtained. For the purpose of 

comparing djfferent implementations in the light of cost 

sensitivity, a scalar measure must be established. This 

measure will be called the cost sensitivity measure denoted 

by SMJ. Dorato [11] has proposed a cost sensitivity
w 
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measure given by 

= II SJ II. 2 (3.4.13)w 

which is simply the squared norm of the cost sensitivity. 

When the plant parameter is a scalar, i.e. r = 1, the 

squared norm of the cost sensitivity becomes the square of 

the cost ~ensitivity. 

The adopted definition for cost sensitivity suffers 

one major disadvantage, that is the change of the plant 

parameter W is small enough around Wo Or the cost functional 

has a Frechet derivative. Realizing this, Sinha and Atluri 
,, 

[3, 45, 46] abandoned the definition by Dorato and proposed 

another definition for cost sensit"ivity as 

SJ = t.J(w) (3.4.14) 
w t.w 

I

where t.w is the ~hange of the plant parameter. Realistically, 

Sinha and Atluri's definition is more useful than Dorato's. 

However, two major difficulties may be introduced by 

definition (3.4.14). As t.J(w) in equation (3.4.14) is 

given by equation (3.4.8), to develop some analytical 

resultsis very difficult if not impossible. Moreover, 

in the multiparameter case, definition (3.4.14) must be 

modified. Whatever modification will be made, the work 

to obtain the modified cost sensitivity will be very 
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laborious. 

The cost sensitivity in equation (3.4.10) is regarded 

as absolute because it is defined basically as the difference 

between the cost at wand that at w0 • Another definition 

of cost sensitivity that is of comparative nature was 

introduced by Rohrer and Sobral [42]. For a given plant 

parameter w, the relative cost sensitivity for the control 

u(t,w) is defined as the difference between the actual 

value of cost and that which woul6 be obtained, if the 

control u(t,w) were optimal with respect to the plant 

parameter at w. The r~ason for this definition goes back 

to the philosophy of optimality with respect to a given 

cost functional. The control u(t,w 0 ) is determined such 

that the cost functional (3.4.1) is minimized. If the 

implementation of u(t,w 0 ) is not unique, there may exist 

an implementation such that the control u(t,w) is also 

optimal with respect to the cost functional (3.4.1) at 

w0 • According to the definition of comparative cost 

sensitivity, cost sensitivity reduction by implementation 

is to find an implementation u(t,w) such that u(t,w 0 ) is 

optimal at and such that the value of the cost funcw0 

-'cional cor:t·esponding to u ( t, w) is close to the minimum 

one at w. This is an interesting problem but it will not 

be considered here in the present work as the plant at w0 
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is considered much more important than the plant at w. 

·In general, the optimal (minimum) values of the cost 

function at both and w are very close to each other.w0 

Hence although the concepts of absolute and relative cost 

sensitivities are different, the results are about the 

same. 

-For clarification, the cost sensitivity is <lefined 

according to equation (3.4.10) and the measure is given by 

equation (3.4.13). Equation (3.4.il) is considered as 

the cost insensitive condition. 

In many practical cases, the main interest of the 


control system engineer is centered upon the system's 


response or trajectory. Therefore, the deviation of the 


optimal state trajectory in the presence of the plant 


parameter variations is of great interest. 


Let x(t,w) be the state trajectory at w and 


x*(t) be the nominal trajectory. Again by Taylor series 


expansion, x (t,w) can be written as 


T 
x(t,w) = x*(t) + ax(t,w) 8w + ... (3.4.15) 

aw 

The error vector e(t) is therefore. given by 

T 
e(t) - x(t,w) - x*(t) = 3x(t,w) 8w + ..••• 

aw 

(3.4.16) 
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A measure for the error vector, EM~ , was first formulated 

by Cruz and Perkins [7] as 

(3.4.17) 


The important assumption that the state trajectory 

has a Frechet derivative was made by Kriendler [28]. And 

the state sensitivity y(t) was defined as 

y(t) = ax(t,w) 
aw (3.4.18) 

Note that y(t)ow ~ e(t) when the assumption is inserted; 

and the measure for error vector EMx becomes asw 

(3.4.19) 

In comparing different implementations of the nominally 

optimal control, the change of the plant parameter ow 

is assumed to be identical for every possible implementation. 

Therefore the term ow appears in equation (3.4.19) is 

redundant and Kriendler [29] defined a measure for the state 

sensitivity y(t) as 

x
SMw = 

(3.4.20) 
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In the multi-parameter case, y(t) isan nxr matrix function 

of time. Hence the state sensitivity measure of equation 

(3.4.20) must be further modified. It is suggested here 

that the norm square of the matrix y(t) be the integrand 

replacing yT(t)y(t), or rewritten as 

SM-~ 
x 

= J 
tf 

lly(t)ll 2 dt (3.4.21)
IW 

to 

The sensitivity measure given by equation (3.4.21) is 

known as the integral state sensitivity. 

It is important to note that the works by Cruz 

and Perkins and that by Kriendler are very closely 

related to each other. However some subtle differences 

between them must be heeded otherwise confusion may 

arise. [31, 47]. 

For clarification, the sensitivity is defined by 

equation (3.4.18) and its corresponding measure by 

(3.4.21). The problem of reducing state sensitivity by 

implementation is to find an implementation for a con

trol such that it is optimal at nominal with respect to 

a given cost functional and such that the integral state 

sensitivity is relatively reduced. 

In the area of sensitivity analysi~ in optimal 

control systems, the sensitivity of terminal condition 
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is less emphasized. It has been shown in Chapter II 

that various terminal conditions could have been assumed 

by different control processes. In the case where x(tf) 

is free, the investigation of the terminal state 

sensitivity is rather redundant. 

Denote x*(t) the optimal state trajectory at 

nominal and x(t,w) the state trajectory in the presence 

of plant parameter variation. The terminal error vector 

l.S 

= ax(t,w) T + ••• 
aw 

(3.4.22) 

Assume that the state trajectory has a Frechet derivative, 

then 

e(tf) ~ ax(t,w) 
aw (3.4.23) 

T 

Again, in comparing different implementations, ow is 

identical for all possible implementations. Hence the 

terminal state sensitivity, or terminal sensitivity, is 

defined by Hering and Holtzman[l9] as 

= ax(t,w) 
aw (3.4.24) 
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'tf 
In the multi-parameter case, the terminal sensitivity Sw 

is an nxr constant matrix;· the norm square of that 

matrix is then a suitable· measure for terminal sensitivity 

or 

t 
SM f = (3.4.25)w 

By terminal insensitivity, it is meant that 

(3.4.26) 

in which case, the terminal error vector e(tf) is 

approximately a null vector. As far as first order 

approximation is concerned, the terminal insensitivity 

is an ideal case. 

Corresponding to the terminal sensitivity, the 

initial sensitivity is denoted by y(t
0 
). Without loss 

of generality, the initial sta~e for an optimal 

control process is a given point x(t ) with the initial0

time t 0 specified. In general, the initial point x(t 0 ) 

can be set very accurately and is independent of the 

plant parameter. Hence, the initial insensitivity that 

9 

y(t 0 ) = o (3.4.27) 

is always assumed. 

By the sensitivity alone, it can be the cost 

sensitivity, the state sensitivity or the terminal 
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sensitivity. To reduce the sensitivity by implementation 


is the problem of finding an implementation for the con


trol such that the control is nominally optimal with res


pect to a given cost functional and such that the 


sensitivity measure is reduced relative to other 


possible implementations. 




. CHAPTER IV 

REDUCTION OF SENSITIVITIES BY IMPLEMENTATION 

4.1 Introduction: 

As discussed in Chapter II, the optimal control 

input to a nominal plant can be obtained by current 

techniques available. But the way.of achieving this 

determined optimal control, or, the implementation of 

the nominally optimal control lS not restricted by any 

means. Generally three types of implementation schemes 

are possible. Open- .and closed-loop implementations have 

been extensively studied while the implementation by two 

degrees of freedom does not appear to have been studied 

in the field of optimal control theory. 

As will be shown later, the configuration of two 

degrees of freedom provides the designer with some 

flexibility, and because of this feature, it is possible 

to realize the reduction in the sensitivity of interest. 

4.2 State Sensitivity Equation: 

The term "state sensitivity equation", or 

"sensitivity equation" in a shorter form, was introduced 

-43
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by Kokotovic and Rutman [25, 43]. However, before putting 

forward the state sensitivity equation into the plant 

under consideration, certain modifications must be made 

and certain assumptions must be clarified. 

Consider a plant (4.2.1) 

*(t,w) = f(x,u,t,w) (4.2.1) 

where w is the plant parameter with nominal value at w0 • 

Denote x*(t) and u*(t) as the optimal trajectory and 

control for the nominal plant (4.2.2 ), respectively. 

(4.2.2) .. 

associated with a given cost J(w,t 0 ,tf). Define an 

· implementation vector v(t) as the partial derivative of 

the control u(t,w) with respect to the plant parameter 

w as 

v(t) = au(t,w) I 
aw w = w (4.2.3)

0 

When the plant parameter drifts away from to w, thew0 

state trajectory will also deviate from the nominally 

optimal, i.e. x*(t). Partially differentiating equation 

(4.2.1) with respect to w, we get 

ax(t,w) = af + .£.!. ax + af au 
aw aw ax aw au aw (4.2.4) 
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Setting the above equation at the nom~nal value, we have 

a Cd xCt,w)>j afj afj axj 
aw dt w=wo = aw w=wo ·+ ax w=wo aw w=wo 

+ lij au'au w=w 0 aw w=w 0 (4.2.5) 

Combining equations (4.2.3) and (3.4.18), equation (4.2.5) 

may be written as 

_l_ (dx(t,w))I = afl Y + afl v + afl aw dt w ax w au w aw w
0 0 0 0 

(4.2.6) 
where 

and so forth. If the plant 

parameter w is time-invariant, the following equation holds. 

~ (dx(t,w))j = -9.c~x(t,w) I ) = dy ( t) = y' ( t) 
aw dt dt aw w dtw0 0 

(4.2.7) 

Hence equation (4.2.6) can be rewritten as, 

y(t) 
(4.2.8) 

It is known that the state sensitivity depends 

on the implementation of the nominally optimal control 

and this is assured by eq~ation (4.2.8). Since the 

relationship between y(t) and v(t). is linked by 
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equation .(4.2.8); it is therefore called the state 

sensitivity equation for the implementation v(t). 

The functions lfI and ~1 are known functions of 
3x dUi 

WO WO 

x*(t) and u*(t). In order to evaluat~ the state sensi

tivity y(t) for any given v(t), the function lfll must 
aw w 

0 

be given. In other words, it must be assumed that the 

plant (4.2.1) is known not only at the nominal value, 

which is equation (4.2.2 ) but also known as a function 

of the plant parameter, i.e. equation (4.2.1). This 

assumption is not restrictive at all, as the.role of 

plant parameter can be· approximated for most of the 

practical plants. In some cases where lf cannot be aw 
obtained, the approach will be different and will be 

discussed in a later section. 

As a priori condition to the meaningfulness of 

the state sensitivity equation, the nominally optimal 

trajectory and control must be known. Hence the functions 

()f I and lil can be regarded as known functions of 
ax wo au w 

0 

time. 

It must be emphasized that equation (4.2.7) holds 

only for time-invariant plant parameter. Consequently,
l 

the state sensitivity equation (4.2~) is not valid for 
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time-varying plant parameter. A new sensitivity function 

may be defined in termsof the first order change in the 

trajectory due to the variations in the time-varying 

parameters. This first order dispersion is given by the 

equation 

()f ()f ()fox = axox + a-uou + awow (4.2.9) 

.
where ox x(t,w) - x(t,w 0 ), ou = u(t,w) - u(t,w 0 ) 

and ow = w-w 0 for suitably small ow. In this case, one 

more assumption must be added, that is, the value of 

the plant parameter is given so that ow is known. With 
' 

suitable modificatiombf the sensitivity measure, the 

development for time-varying and time-invariant plant 

parameter is very similar; and exclusive ·discussion on 

the time-varying plant parameter will be skipped. 

4. 3 Open- and Closed-Loop Implementations: 

From current technique, the nominally optimal 

control u*(t) is obtained as a function of time. Corres

ponding to u*(t), there exists a physical system which 

realizes the signal u*(t). The direct feeding of the 

signal u*(t) into the plant is called the open-loop 

implementation as illustrated in Figure (1). When the 

plant parameter w drifts away from the nominal value, 

the state trajectory will change from x*(t) to x(t,w) 
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_u_C_t_~""'---1 X<t ,w) = f(x ,u,_t ,w) ~> x(t ,w) 

Figure 	1. 

Open-Loop Implementation 
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while the open-loop control u*(t) remains unchanged. 

Mathematically, it is expressed as 

(4.3.1) 

where v 0 (t) is the open-loop implementation vector as 

derived by equation (4.2.3). Substituting equation (4.3.1) 

into equation (4.2.8), the state sensitivity equation for 

open-loop implementation is 

Yo(t) = !fl y + .£.flax· o aw 
wo wo 

(4.3.2) 

where y 0 (t) is the state sensitivity for open-loop imple

mentation . If the initial condition that y (t ) = 0 is
0 0 

assumed, then the state sensitivity y (t) is determined
0 

from equation (4.3.2). If u*(t) is uniquely determined, 

then so is y 0 (t). Hence no flexibility can be obtained 

from the open-loop implementation. 

Implementation by combining the state variables in 

a proper fashion and feeding the resultant into the plant 

is called the closed-loop implementation. Linear or non

linear feedbacks are possible. Generally, non-linear 

feedback control is written as 

u(t,w) = h(t,x(t,w)) (4.3.3) 
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and linear feedback is 

u(t,w) = H(t)x(t,w) (4.3.4) 

Non-linear feedback is rather complicated, and little 

knowledge about it is available in the current field of 

optimal control theory. Hence it is excluded for the 

following discussion. Even for the linear feedback imple

mentation, its existence is not guaranteed for most of 

the optimal systems. Figure (2) illustrates the closed-

loop implementation with linear feedback. 

When the plant parameter deviates from its nominal 

value, so does 
~ 

the state trajectory x(t,w). However the 

state variables are fed back as the input to the plant 

and may or may not regulate the plant in a desirable 

fashion. The implementation vector for the closed-loop 

implementation with linear feedback is 

(4.3.5) 


where yc(t) is the state sensitivity for the closed-loop 

implementation with linear fe~dback. Combining equations 

(4.3.5) and (4.2.8), the state sensitivity equation for 

closed-loop implementation is 

y (t) = !ti y + !ti Hy + E_[I
c ax c au c aw w (4.3.6)

WO WO 0 . 
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u(t,w) x(t,w ) ,,.x(t,w) = f(x,u,t,w) 

~ 

---c H(t) 

Figure 2. 

Closed-Loop Implementation 
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In some cases, the feedback block H(t) is uniquely 

determined. With the initial condition that yc(t 0 ) = O, 

the closed-loop state sensitivity yc(t) is uniquely 

determined from equation (4.3.6). Hence both the exist

ence of the closed-loop implementation and the flexibility 

from the .configuration cannot be guaranteed, except for the 

case of linear systems with quadratic cost functionals. 

4.4 The TDF (Two-degree of freedom) Implementation: 

The application of the configuration of two degrees 

of freedom was demonstrated by Horowitz [20] in reducing 

the pole sensitivity of an automatic control system. In 

optimal control theory, current research has been involved 

with the comparison of open - and closed-loop implementa

tions of a nominally optimal control. As shown in 

the previous section, the implementations by open- or 

closed-loop do not yield any flexibility for the designer 

to reduce the sensitivity of his interest. Here, the 

implementation by t~o degrees of freedom is introduced to 

accomplish this purpose. 

The configuration of two degrees of freedom is a 

combination of the open - and closed-loop schemes; hence 

it is better called "the TDF configuration". As 

illustrated in Figure (3), the TDF implementation consists 

of two parts, the open loop portion g(t) and the feedback 
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x(t, w)g(t) 
,..- x(t,w) = f(x,u,t,w)-.. +,of -""... 

-J,> 

..... 
M(t) 

Figure 3. 

TDF Implementation 
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portion M(t). At time t and value of w; the control 

u(t,w) is mathematically expressed as 

u(t,w) = M(t)x(t,w) + g(t) (4.4.1) 

where x(t,w) is the state trajectory corresponding to the 

control u(t,w). Here only linear feedback in x(t,w) is 

considered. Non-linear feedback is also possible; but 

it will not be considered here due to the complexity. 

It is understood that the state variables must be access

ible for the designer, otherwise, the TDF 

implementation will have no practical meaning at all. 

Moreover, it is noted that both the open- and closed-loop 

portions are dependent only on time. Generally, three 

different types of the TDF implementation are possible, 

u 2 Ct,w) = M(t,w)x(t,w) + g(t) (4.4.2) 

u 3 (t,w) = M(t)x(t,w) + g(t,w) ( 4 . 4 . 3 ) 

u 4 (t,w) = M(t,w)x(t,w) + g(t,w) (4.4.4) 

with the corresponding implementation vectors as, 



SS 


where Mw(t) = ~ = CJMI = .£.g_ I
Clw w Clw w 

0 0 

The plant parameter dependence of M and g may take two 


forms. If M and g are assumed to be implicit functions 


of the plant parameter, then the plant parameter must be 


physically available. This requirement appears to be 


·impractical for most physical plants. Hence M and g can 

only be explicit functions of w; however, two problems 

may arise. The choice of the physical blocks of the plant 

on which M and g depend is rather arbitrary but important 

and there is no logical or system~tic approach available. 

Hence the method of trial and error must be resumed. The 

physical block of the plant upon which M and g must depend 

may not be reconstructed. Foreseeing the difficulties 

involved, the investigation of the implementation schemes 

of equation (4.4.2) to (4.4.4) will be abandoned. Hence, 

by the TDF implementation, it is meant that the control 

is given by equation (4.4.1) of which the conditions that 

CJM(t) 
= 0 (4.4.8)ClW 

Clg(t) = 0 (4.4.9)ClW 

must be satisfied by any pair of [M(t),g(t)]. 

Nominally, the control in equation (4.4.1) takes 
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the value of 

(4.4.10) 

Now the control u(t,w 0 ) must be optimal with respect to 

the nominal plant associated with a given cost functional 

and the trajectory x(t,w 0 ) must be the nominally optimal 

state trajectory, or mathematically 

(4.4.11) 

x(t,w ) = x~':(t) (4.4.12) 
0 

Hence equation ( 4. 4 .10.) yields 

u.~·: ( t) = M ( t ) x ~·: ( t) + g ( t) ( 4 . 4 . 13) 

Equation (4.4.13) is the optimal condition at nominal and 

must be satisfied by any pair of [M(t),g(t)]. This con

dition relating M(t) and g(t) hence defines a set of 

[M(t),g(t)] in Rnxq x Rq x [t 0 ,tf] and this set will be 

called the admissible implementation set. Every element 

in the admissible implementation set must satisfy equation 

(4.4.13). 

In the extreme cases, the element [O,g(t)] in the 

admissible implementation set denotes the open-loop 

implementation and the element [M(t),O] is the closed-

loop implementation. Obviously, the admissible 
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implementation set includes these two special elements; 

however, the elements in the set are far beyond exhausted. 

In other words, besides open- and close~loop implementa

tions, there are numerous TDF implementations to realize 

.the nominally optimal control .. For every given M(t), 

there corresponds a unique g(t) so that {M(t),g(t)} is 

in the set.- However, the existence ofanH(t) correspond

ing to a given g(t) is not guaranteed by equation (4.4.13). 

And even if the M(t) does exist, it is generally non-

unique. Because of this non-bilateral relationship 

between M(t) and g(t), the application of the TDF imple

mentation to an optimal control system, depends on the 

manipulation of the feedback portion M(t) so that certain 

specifications are met. 

The implementation vector v(t) for the implementa

tion equatiori (4.4.1) is given ~y 

v(t) = M(t)y(t) (4.4.14) 

where y(t) is the state sensitivity corresponding to u(t) 

in equation (4.4.1). Combining equation (4.4.14) and 

(4.2.8), the state sensitivity equation for the TDF 

implementation is 

y(t) 

(4.4.15) 

With the assumption that y(t~) - - 0, the- state-- sensitivity 



58 

y(t) is determined for any given M(t). The time function 

af J 
aw w0 is considered as the drivi~g function in the state 

sensitivity equation (4.4.15). The feedback portion M(t) 

is not determined yet; it may be a function of y(t); 

hence equation (4.4.15) is not necessarily a linear 

differential equation. It will be shown later that M(t) 

is chosen in such a manner that various sensitivities 

will be reduced. Also, it is noted that the state 

sensitivity is independent of the open-loop portion 

g(t). 

Replacing M(t) by H(t), equation (4.4.15) will be .. 
identical with equation (4.3.6). The difference between 

the two equations is that H(t) is used in the implementa

tion of the nominally optimal control and M(t) is not; 

in fact, M(t) is not restricted by any means so far. 

In the dual implementation, g(t) is used to meet the 

optimal condition at nominal, while M(t) is applied to 

reduce various sensitivities. The following sections 

discuss how M(t) is utilized. 

4.5 Cost Sensitivity: 

It was proved by Pagurek [37] that the open- and 

closed-loop implementations yield identical cost sensitivity 

for linear systems under certain assumptions. The idea 

was accepted by Witsenhausen and the extension to larger 
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classes of .system with more generalized cost functional 

was successfully done [50]. Since then, modifications were 

made by Dunn [12], Youla and Dorato [51], Kokotovic and 

Heller [26], and Kokotovic, Heller & Sannuti [27]. All 

the work done compares the relative merits between open-

and closed-loop implementations of the optimal control for 

various plant and different cost functionals. The cost 

sensitivity for the TDF implementation has not been evaluated, 

yet the development follows closely the work done by 

Kokotovic, Heller and Sannuti [27]. 

Consider the plant (4.5.1) associated with the 

cost functional (4.5.2) as, 

~(t,w) = f(x,u,t,w) (4.5.1) 

tf 
= K(x(tf)) + J L(x,u,t,w)dt 

to 

(4.5.2) 

Note that the integrand of the cost functional can be a 

function of the plant.parameter w. Assume that the initial 

time t 
0 

and initial state x(t 0 ) are specified. The final 

time tf and final state x(tf) will be discussed later. 

For the plant under consideration, there is no constraint 

on the control or the state trajectory. Let w0 be the 

nominal value of the plant parameter w. It is assumed that 

af af af L ~ aL aL arethe components off, ax' at' aw' , ax' at' and aw 
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continuous over the interval [t 0 ,tf]. 

For an unconstrained problem, the optimal control 

u*(t) at nominal mu~t satisfy the following conditions, 

p<':(t) = 
(4.5.3) 

aHCu~·: ,w 0 ) 
= 0 (4.5.4)

au~·: 

where HCu~': ,w ) = L(x*,u*,t,w 0 ) + f 
T 

Cx*,u*,t,w 0 )p*(t)0 

and p\t) is the co-vector corresponding to the nominal 

system. ·In doing so, the plant (4.5.1) is set to 

nominal and the optimal control u*(t) is then obtained 

by Pontryagin's minimum principle. The procedure can 

be reversed by applying Pontryagin's minimum principle 

first then setting all the values at nominal. Define 

a Hamiltonian function as 

T 
H(u,w) - L(x,u,t,w) + f (x,u,t,w)p(t) 

(4.5.5) 

where p(t) is the co-vector at w. For every value of w, 

the corresponding co-vector is p(t) and the optimal 

control u(t,w) at w must satisfy, 

p(t) = (4.5.6) 

(4.5.7) 
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The control u(t,w) that satisfies equation (4.5.6) and 

(4.5.7) is the optimal control at w. However, this is 

more than necessary because it is required that the con

trol is optimal at nominal only. Hence setting equations 

(4.5.6) and (4.5.7) at nominal, we have 

aH(u,w)Ip(t) = 
ax W 

0 (4.5.8) 

aH(u,w)
0 = au w0 

(4.5.9) 

Now p(t) will be the co-vector at· nominal. The partial 

derivative of the Hamiltonian in equation (4.5.5 ) 

with respect to w is. given by 

T 
aH(u,w) = aL(x,u,t,w) + af (w,u,t,w) p(t) 

aw aw aw 

(4.5.10) 

The cost sensitivity is obtained by differentiating 

equation (4.5.2); 

tf T T 
+ J {~ aL + au aL + ~}dt 

aw ax aw au aw 

(4.5.11) 
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Setting ~quation (4.5.11) to w0 , and substituting equations 

(3.4.18), (3.4.24) and (4.2.3) into the resultant equation, 

it yields 

T 
+ v .£1=. }dt 

Clu (4.5.12) 

T 
Replacing L by H(u,w) f p* where p*(t) is the co-vector 

at nominal, we have 

tf T ClHI ClfTI .y(tf)T aK(x(tf)) + J . {y c- - -- p~:)
ClX W (lX

Clx(tf) t 0 0 w0 

+ V T <aH I li 
. IT .;, ) + ll=. j }au - au P aw dt (4.5.13)

WO WO Wo 

Combining equations (4.5.8) (4.5.9) and (4.5.13), we have 

aK(x(tf)) T. ·"ctty P" 
. ax(tf) 

tf TClfT 
p~': J {y  }dt

Clx 
to Wo· 

(4.5.14) 

Integrating the first integral of equation (4.5.14) by 

part::;;, we have 
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+ v )Tp~;• + -a1y - ..u. }dt 
au aw 

(4.5.15) 

Substituting equation (4.2.8), equation (4.5.15) is 

simplified to 

aL 
P* + aw 

w 
0 

}dt 

(4.5.16) 

Setting equation (4.5.10) at and combining with equation·w0 

(4.5.16), we have 

s~ = y(tf)TaK(x(tf)) T tf tf aH(u,w) 
Y P~·, J + f aw dtax(tf) tt 0 0 

(4.5.17) 

Recalling that y(t 0 ) = 0 is assumed, equation (4.5.17) is 

rewritten 	as 

aK(x(tf))} + f t faH(u,w) dt
ax(tf) t aw 

0 
W. 

(4.5.18) 
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With suitable boundary condition on x(tf), the 


optimal values of x*(t) and u*(t) at nominal are deter

mined as known functions of time. As the functions 


3.f I 3L I
3w w and 3w w are functions of x*(t) and u*(t),

0 0 

3H(u,w) 1 · 

3w is then a function of time and is independent
w0 

of the implementation of the nominally optimal control. 

The values of p*(tf) and 3K(x(tf)) can be calculated and 
3x(tf) 

are not accessible to be changed. In equation (4.5.18), 

the only quantity subjected to the designer's manipulation 

is the terminal sensitlvity y(tf) which depends on the 

implementation of the nominally optimal control via the 

state sensitivity equation. In general, the integral 

term of equation (4.5.18) is non-zero, and y(tf) cannot be 

zero as far as cost insensitivity is concerned. Therefore 

it can be concluded that the cost insensitivity is achieved 

at the expense of terminal sensitivity. It is also obvious 

that the cost and terminal insensitivities cannot be 

realized at the same time in any implementation of optimal 

control at nominal. 

It is known from equation (4.5.18) that the cost 


sensitivity depends also on p~'•Ci:f, and p~·:ct; is related to 


x*(tf) by the transversality condition. Therefore, the cost 

sensitivity depends also on how the boundary point x~·· ( tf) 
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is specified. Four different categories of boundary 

conditions are analysed as follows. 

1. 	 Case 1: tf is specifie~ and x(tf) is a point 

. Rngiven in : 

The term K(x(tf)) in this case is zero. The optimal 

control problem at nominal becomes a two-point boundary-value 

problem, and p*(tf) is fixed consequently. The cost 

sensitivity in this case is: 

tf I+ J aH(u,w) (4.5.19)dt 
t aw lw

0 . . 0 

2. 	 Case 2: tf is specified and x(tf) is free: 

Through the transversality condition, the value 

p*(tf) is given by 

= aKCxCtf)) 

ax(tf) (4.5.20) 

The cost sensitivit~ in this case becomes 

tf
J aH(u,w) dt 	 (4.5.21) 

t 0 aw 

which is a predetermined constant (or vector) and does not 

depend on implementation. 
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3. Case 3: tf is specified and x(tf) is an element 

of a k-fold in Rn: 

If S is a smooth k-fold in Rn and the final con

dition is given as x(tf)£S, then the vector p*(tf) 

must be transversal to the smooth k-fold. Let S be given 

as 
r = [l, ... n-k] (4.5.22) 

then the boundary condition is given by 

n-k 

p1:(t) = l:


f i=l 

(4.5.23) 


where a's are constant. The cost sensitivity in this case 

is given by 

T(t )n-k az.(x(tf))= -y f l: a· i . i-----
i=l ax(tf) 

+ 
t 

t
J faH(u,w) I 

aw w 
0 0 

dt 

4. Case 4: tf is free 

The final state can be fixed as in case 1, free as 

in case 2, or restricted to be in a given k-fold as in 

case 3. The corresponding cost sensitivities will take 

the same exprsssions respectively as if tf is specified. 

In the first three cases, the cost sensitivity does 

not depend on the implementation. In case 2 where x(tf) is 
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free, this is true for K(x(tf)) = 0 or K(x(tf)) t 0 . 

In other words, the cost sensitivity is the sam~ for any 

implementation if x(tf) is free. This astonishing result 

was obtained by Pagurek [37], extended by Witsenhausen 

[50] and Dunn [12] and finally clarified by Dorato and 

Youla [51] and Kokotovic et al [26, 27]. 

It is very important to notice that equation 

(4.5.18) is a valid form for cost sensitivity only if 

equations (4.5.8) and (4.5.9) are true. In the cases 

where the control is under some constraints, equation 

(4.5.9) does not necessarily hold~ Following closely 

the development outlined above, the cost sensitivity for 

the cases when there are control constraints is found to 

be 

(4.5.24) 

To focus the problem is necessary as the cases in 

optimal control are so prodigi?us that it is simply imposs

ible to evaluate case by case. Case 2 is beyond discussion 

in the light of cost sensitivity reduction by implementation 

as it was already shown that this is impossible. A typical 

problem of unconstrained control with fixed end point, i.e. 

case 1, will be considered in the following sections. 
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Cases 1 and 3 are very similar in many features and similar 

procedures will lead to similar results as expected. 

4.6 	 Cost or Terminal Insensitivities with Integral 
State Sensitivity Reduction: 

It was shown that additional freedom is available 

for the TDF implementation of equation (4.4.1). 

The state sensitivity is affected by the closed loop por

tion M(t) via equation (4.4.15). By suitable adjustment 

of M(t), a specific y(tf) may be obtained but this is not 

necessarily guaranteed. 

To be more specific, the plant under consideration 

lS 

x(t,w) = f(x,u,t,w) 	 (4.6.1) 

and the cost functional is 

(4.6.2) 

with both initial t 0 and final tf times specified, and 

both initial x(t 0 ) and final x(tf) states given. The 

cost sensitivity has been proven to be 

tf 
J aH(u.w) 

dt 	 ( 4 • 6 . 3 ) aw 
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TaH(u,w) = aL ( x , lLLL, w ) + af <x, u, t_l_tl 
aw aw aw 

(4.6.4) 

Noting 	that both L and f are known functions of the plant 

oL and af are known functionsparameter, and that aw aw 
wo wo 

of time, the integral term in equation (Lf,6.3) is constant 

denoted by c as 

tfaH(u,w) I 
c = 1 dt 

to . aw I ( 4 . 6 . 5 ) 
WO 

The constant c will be avector if w is a vector otherwise 

c is a scalar. 

Recall that cost insensitivity implies SJ = O, 
w 

and it will be achieved if 

(4.6.6) 


Above equation is regarded as the mathematical specifica

tion for cost insensitivity in fixed end points optimal 

control problem. If the plant parameter w is a scalar, 

equation (4.6.6) defines a hyperplane in Rn spanned by 

then-components of y(tf). If the plant parameter is a 

rxl vector, equation (4.6.6) can b~ rewritten in the 

component form as, 
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n 
"i.y· · (tf)p·<'•(tf) = C· iE:[l,r] ( 4 . 6 • 7 ) 
. J l J l 
J 

where Yji(tf) are the elements of nxr matrix y(tf), Pj*Ctf) 

are the components of p<'• ( tf) and ci are the components of 

the rxl const~nt vector c. For every i, iE:[l,r], equa

tion (4.5.7) defines a hyperplane in Rnxr spanned by the 

elements 'of y(tf). The intersection of all these r hyper 

.-'planes defines a smooth rx(n-1) fold in Rnxr. This 

rx(n-1) fold will be called the cost insensitive fold in 

Rnxr. Note that the cost insensit~ve fold is a zero fold 

when n=l. This implies that y(tf) is a determined lxr 

constant vector when n=l. In all other cases, there are 

always more unknownsin y(tf) than the number of equations 

derived from equation (4.6.6) as n>l,r>O and nr>r where 

nxr is the number of unknown in y(tf) and r is the number 

of equations. In other words, the terminal sensitivity 

y(tf) is not uniquely determined by the cost insensitivity 

specification for systems with two or more state variables. 

For all cases, the cost-insensitive fold is non-empty. 

Let h(t,y,M) be a nxr matrix defined by 

3f 3f
h(t,y,M) = d~ + au M}y + 3w (4.6.8) 

w 
0 

and the state sensitivity equation (4.4.15) is rewritten 

as 
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y(t) :: h(t,y,M) (4.6.9) 

with y(t ) :: O. Recall that the integral state sensitivity
0 

is defined by 

t 
I(M) :: f f II y(t) 11 2 dt (4.6.10) 

to 

The state sensitivity equation (4.6.Y) is a function of an 

undetermined matrix M(t). In sensitivity reduction, the 

function M(t) is adjusted such that the sensitivity 

specification is met. Three types of sensitivity have 

been defined and the choice of the sensitivity to be 

reduced depends on the specification. Therefore, it is 

factitiously assumed that different sensitivity specifica

tions are given. 

When the interest is focused on the terminal 

sensitivity, the ideal case is to achieve terminal 

insensitivity, that is, y(tf) ::. 0. It i~ therefor~ re

quired to find a matrix function M(t) driving y(t) from y(t 0 )::0 

to y(tf) :: 0 via the state ·sensitivity equation (4.6.9). 

Note that the existence of such a matrix function M(t) 

must be assumed without further verification. It was 

proved by Holtzman and Haring [19] that for a class of 

linear feedback systems, there is a finite range of para

meter variations which has no effect on the terminal 

condition. It was shown by Gadabassi et. al. [16] that 
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for a class of linear time-invariant sy~tems, it is 

impossible to achieve the insensitivity of a specified 

terminal condition by open loop implementation. However 

in applying the TDF implementation, it is distracting 

to prove that there exists at least one matrix function 

M(t) driving y(t 0 ) = 0 to a specified y(tf) via the 

differential system (4.6.9). 

If the interest lies in the cost sensitivity, the 

best case that can be achieved is to have the cost 

insensitive design, that is, SJ = 0. It is therefore 
w 

required to find a matrix function M(t) driving y(t 0 ) = 0 

to a point y(tf) via the state sensitivity equation 

(4.6.9). The terminal point y(tf) is restricted to be 

in the cost insensitive hyperplane. Note that in both 

cost and terminal insensitive designs, the matrix 

function M(t) is adjusted such that a desirable y(tf) is 

obtained. Consequently, the cost and terminal insensi

tivities are mutually exclusive in general. 

For the purpose of reducing the state sensitivity, 

it is required to find a matrix function M(t) which steers y(t)from 

y(t 0 ) = 0 to any point in Rnxr via the state sensitivity 

equation (4.6.9) and which minimizes the integral state 

sensitivity. This is a well defined control problem and 

the necessary conditions for the optimality of M(t) are 
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given by Pontryagin' s Minimum Principle'. 

In the cost and terminal insensitive design, there 

may exist numerous matrix functions M(t) which satisfy 

the insensitive specification. Among the possible can

didates, it is desirable to have an optimal M(t), which 

yields a minimum value for the corresponding integral 

state sensitivity. Bence a mixed type of sensitivity 

specification can be formulated. The problem of in

sensitive design with integral state sensitivity reduction 

can be stated as to find a matrix function M(t) which steers 

y(t) from y(t )=Oto a specified t~rminal point y(tf) via 
0 

the differential system (4.6.8) and (4.6.9) and which 

minimizes the integral state sensitivity (4.6.10). For1 

cost insensitive implementation with integral state 

sensitivity reduction, the terminal point y(tf) is re

stricted to be in the cost insensitive hyperplane. In 

the case of terminal insensitive design with integral 

state sensitivity reduction, the terminal point y(tf) 

is specified as a null vector or matrix. 

As a· priori condition to all the problems which 

have been formulated, it must be assumed that the 
Clh Clh 

components of h, at , and ay are continuous in RnxqxRnxrx 

[t 0 ,tf]. The Pontryagin's Minimum Principle will then 

supply the necessary conditions for the optimal implementa-· 

tion M(t). The basic schemes introduced.in this section 

http:introduced.in
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have been discussed in [53]. However, Defore expecting 

meaningful results or practical solution, the problems 

must be further refined. 

4.7 Soft Constraint & Design Objectives: 

In applying Pontryagin's minimum principle to the 

cost or terminal insensitive problems, the corresponding 

Hamiltonian functions are linear in M(t), which is the 

feedback portion of the TDF implementation. 

As the problem is actually a class of singular problems 

[2, 18, 21], the solution, if it exists, will have no 

practical value if there are no reasonable constraints 

imposed on M(t). 

Realize that M(t) represents.the signal in time 

doma'in as well as the physical system of which the impulse 

response is given by M(t) [8]. It is well known that the 

energy of any.physical signals must be finite. Hence a 

reasonable constraint on M(t) is 

tf 
J II M(t)ll 2 dt < k (4.7.1) 

where k is a finite constant. This basic constraint will 

be called the soft constraint. The value of kin the 

soft constraint is relatively arbitrary and carries no 

meaning in genera] and yet the behaviour of M(t) depends 

heavily on the constant. Unless it is required, it is 
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advised to include the soft constraint in the performance 

index !CM) in equation (4.6.10) as 

t 
I ( M ) = f f {I ty ( t ) 11 2 + s 11 M ( t ) 11 2 } d t 

to . 
(4.7.2) 

where S is a weighting constant which allows the designer 
. tf .. 

to put a relative weight between 1 11 yCt) ll2dt and 
to 

t 
f f!IMCt)l! 2dt. It is obvious that the soft constraint 

to 

of equation (4.7.1) is, therefore, obviated. 

In the cost insensitive implementation problem, 

the boundary condition on y(tf) is restricted to be in the 

smooth rx(n-1) fold in Rn as given by equation (4.6.6 ). 

Besides satisfying the cost insensitive specification, the 

terminal sensitivity can be relatively minimized. The 

first way of achieving terminal sensitivity reduction is to 

modify the performance index I(M) (4.7.2) as 

t 
I(M) =all y(tf)ll 2 + / f{ 11yCt)11 2 + sll net) ll 2 }dt 

to 

(4.7.3) 

where a is a positive weighting constant. Another possible 

way is to find an element y*(tf) in the cost insensitive 

fold such that llY~':(tf) 11 2 is a minimum, then the boundary 

condition is equated to y*(tf). 
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It has been clarified in section 4.6 that cost and 

terminal insensitive design can hardly be satisfied 

simultaneously in any implementation. The choice between 

the two insensitivities must be made by the designer. 

Besides satisfying either the cost or the terminal in

sensitivity, the feedback portion M~t) of the TDF im

plementation is chosen such that the integral state 

sensitivity is minimized. Moreover, for cost insensitive 

design, M(t) is chosen such that both the terminal and 

the integral state sensitivities are minimized. 

To summarize, some flexibilities from the TDF 

implementation are accessible to the designer. A problem 

has been formulated and stated as, "to find a matrix 

function M(t) driving y(t) from y(t )=0 to a given y(tf) via
0 

system (4.6.8) and (4.6.9) and minimizing the performance 

index given by equation (4.7.3)". For terminal insensitiv

ity, y(tf) = 0 and a = O. For cost insensitivity y(tf) .= 

y*(tf) and a = 0 or y(tf) in the cost insensitive fold and 

a # 0. The necessary conditions for M(t) to be the optimal 

implementation problem as formulated are obtained via 

Pontryagin's Minimum Principle. The open loop portion 

g(t) of equation (4.4.1) is obtained from equation (4.4.10) 

upon determining M(t). 

The outlined scheme is systematic and generalized 

so that a minimum modification is required to meet various 



77 

sensitivity specifications. The constants a and s 

in equation (4.7.3) are adjustable so that the designer is 

able to emphasize his interest. Also additional constraints 

on M(t) or y(t) are permissible. 

However, as an a priori condition to the suggested 

·scheme of ·design, the plant function f(x,u,t,w) must be 

-- ·---a-known·· function of -the plant parameter w, ·so that the 

·----term afl in the--state-sensitivity equation can be 
aw wo 


evaluated. When the plant function. f is known only at 


nominal i.e. only f(x,u,t,w 0 ) is given, the whole 


·suggested scheme will -fail and another approach must be 


- --developed. 


4.8 Preventive Design: 

Basically, the plant function f(x,u,t,w) in equa

tion (4.2.1) is a function of the plant parameter w. The 

role of w in f may be too expensive to identify or, in 

some case~ impossible. Also, it may not be economical to 

obtain detailed knowledge about the plant parameter if the 

chance for the nominal system to change is fairly small 

and the effort to epproximate the relation 0£ w and f is 

tremendous. For all these situations, the only information 

supplied to the designer is the nominal plant and the 

function af I is not known. Hence for any given imow w 
0 

plementation scheme, i.e. given v(t) as a function of y(t), 
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the state sensitivity y(t) cannot be predicted from the 
. 

state sensitivity equation (4.2.8). Therefore, to achieve 
. 


terminal insensitivity by designing a suitable implementa

tion is hopeless. 

As there is an unknown function in the state 

sensitivity equation, the state sensitivity y(t) cannot 

be controlled by the implementation of the nominally 

optimal control in a desirable manner. The cost sensitivity 

given by equation (4.5.19) dependi on the terminal sensi

tivity y(tf). If y(tf) cannot be controlled by the imple

mentation, nor can the cost sensitivity. It is true that 

the cost sensitivity cannot have any value as required. 

However the cost insensitivity can be achieved pointwise 

in time under fairly restrictive assumptions. 

Consider a nominal plant (4.8.1) 

(4.8.1) 

which is also represented by 

xct,w 0 ) = f(x,u,t,w>I 
iw (4.8.2)

0 

where the plant function f(x,u,t,w) in equation (4.8.2) 

is an unknown function of the plant parameter w. Let 

the cost functional associated with the nominal plant be 
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tf 
J L(x,u,t)dt (4.8.3) 

to 

As the role of the plant parameter is not given, the 

integrand L(x,u,t) in equation (4.8.3) cannot be a func

tion of was in equation (4.5.2). Also the scalar func

tional K(x(tf)) in equation (4.5.2) is zero. This is 

necessary for cost insensitivity by realizing the fact 

that the.control of y(tf) is impossible. If K(x(tf)) 

is non-zero, the cost sensitivity derived from equation 

(4.8.3) will depend on the ·terminal sensitivity and the 

insensitive specification is therefore impossible to 

achieve. It is assumed that the initial time t and the0 

initial sta~e x(t 0 ) are specified and the control is under 

no constraints. The components of f af af aL aL 
'ax'tt'~'~ 

and Lare continuous in RnxRqx[t ,tf] where n is the 
0 

dimension of the state trajectory, x(t,w 0 ) and q is the 

dimension of the control. Hence the necessary conditions 

for the optimal control are expressed as, 

aH<u,w)I = 0 (4.8.4) 
au w 

0 

aH(u,w)Ip*(t) = 
ax w 

0 (4.8.5) 

where H(u,w) = L(x,u,t) + fT(x,u,t,w)p*Ct 
0 

) and p*(t) 

is the costate vector at w0 • Note that the functions 
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aH(u,w)I are defined even if theau w and 
0 . 

Hamiltonian function H(u,w) is not defined. The cost 

functional at time t is 

t 
J(w,t ,t) = J L(x,u,t)dt (4.8.6)

0 
to 

where t 
0 

<t.:_tf. The pointwise cost sensitivity is defined 

as 

S~(t) = aJ(w,to2..!lj 
aw w (Lr.8.7)

0 

It is obvious that pointwise cost insensitivity implies 

cost insensitivity, or mathematically, SJ(t) = 0 implies
w 

S~(tf) = S~ = 0. The pointwise cost sensitivity is 

obtained by partially differentiating equation (4.8.6) 

and setting the resultant equation at w0 , and is 

expressed as 

. Tt T 
au /J {bL/ ~1 + -s~ Ct> = aw w ax aw 

t O o· WO WO 

(4.8.8) 

Assume that the TDF implementation given in 

equation (4.4.1) is applied. Substituting equations 

(3.Lf.18), (4.4.14) into equation (4.8.8), we have 
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(4.8.9) 

where y(t) is the state sensitivity corresponding to the 

TDF implementation. As indicated by equation (4.8.9), 

the pointwise cost sensitivity depends on the state 

sensitivity which cannot be determined. However, point

wise cost insensitivity is achieved without knowing y(t) 

if the condition, 

~1 + MT~1 = 0ax au w (4.8.10)
WO 0 

is satisfied for all time in the interval of (t 0 ,tf]. 

Equation (4.8.4) can be rewritten as 

~1 + afT(x,u,t,w)I p~': =· 0 au w au w (4.8.11) 
0 0 

Combining equations (4.8.11) and (4.8.10), we have 

MTaf (x,u,t,w) I p~·: (4.8.12)= ~1au · ax 
wo wo 

The functions ~I and lfI are functions of the optimal 
ax Iw au w

0 0 

trajectory x*(t) and control u*(t) which can be regarded 

as known functions of time. Hence M(t) can be determined 

pointwisely in time from equation (4.8.12). 

The qxl vector function of time ~-~IT p* , must not 
WO 
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be a null vector for all time t, tE(t 0 ,~f] unless the 

time function ~I is also a null vector at that 
X Wo 

specific point, in which case equation (4.8.12) is 

automatically satisfied independently of M(t). For 

all the cases discussed in section 4.5, it has been shown 

that the cost sensitivity is identical for all implementa

tions in the admissible implementation set when x(tf) 

is free. As K(x(tf)) is zero in the preventive design, 

p*(tf) will be a null vector for nominal optimality. 

Hence it can be concluded that equation (4.8.12) does 

not hold in general when x(tf) is free. 

Because of the condition that afl p* tO,VtE(t 0 tf],
au w 

0 

the pointwise cost insensitive design is applicable only 

to ~ limited number of cases depending mainly on the 

nominally optimal characteristics. The shortage of the 

preventive de9ign is expected since the knowledge about 

the plant is given at the veryminimum. It is not required 

to know the plant function·f as a function of the plant 

parameter w; the pointwise insensitive design can be 

applied practically to all optimal control problems 

provided that the restrictive condition is satisfied. 

As far as sensitivity reduction is concerned, the point-

wise cost insensitive design is therefore the ultimate 

resort of the TDF configuration. 
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4.9 Conclusion: 

The TDF implementatio~ consists of two physical 

blocks represented mathematically as the open-loop portion 

g(t), and the closed-loop portion M(t). The feedback 

block· M(t) is used to achieve insensitive design or to 

meet different sensitivity specifi~ation~ and g(t) is used 

in the implementation of the nominally optimal control, 

upon knowing M(~). Depending on the knowledge about the 

plant, two approaches are derived. If the plant function 

is given as a function of plant parameter, cost or terminal 

insensitive designs are possible. Besides fulfilling the 

insensitive specification, the designer is able to reduce 

the integral state sensitivity relatively among the possible 

implementations. If only the nominal plant is known, the 

situation is not very optimistic. However, pointwise cost 

insensitive design may be achi~ved provided that a fairly 

restrictive condition is satisfied. 



CHAPTER V 


LINEAR 	 SYSTEMS WITH QUADRATIC 

COST FUNCTIONALS 

5.1 IntrodOction: 

The techniques of determining the optimal control 

and the application of the dual configuration have been 

developed for a general system associated with a generalized 

cost functional. The systems considered in this chapter 

are linear and the cost functional quadratic. The 

sensitivity analysis in optimal control theory has been 

studied for a limited number of years yet some important 

results have been obtained, mostly concerning the linear 

systems with quadratic cost functionals. The purpose of 

this chapter ·is to explore the field of sensitivity 

analysis in optimal control theory by presenting the 

well-developed results and.also to illustrate the new 

approach in sensitivity reduction which has been in

novated in Chapter IV. 

5. 2 	 Open- and Closed- Loop Implementations: 

One of the most powerful design techniques that 

has been fully developed to date deals with the design 

-8Lf
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of the optimal control for a linea0 system, possibly time 

varying, with respect to a quadratic cost functional. 

The pioneering work in the area was done by Kalman [23]. 

The Hamilton-Jacobi-Bellmen equation is utilized as the 

method of attack. 

Consider the linear system.at nominal 

(5.2.1) 

and the cost functional 

1 T 1 tf T
J = 2x ( t.f , w ) Fx ( tf, w ) + J { x ( t , w ) Q ( t ) x ( t , w ) +

0 0 2 0 0 
to 

(5.2.2) 

where x(t,w
0 

) is the nxl state vector for the nominal 

system, u(t,w
0 

) is the qxl control vector for the nominal 

system, and w is the rxl nominal time invariant parameter
0 

vector. 

It is assumed that F is a symmetric nxn positive 

semidefinite constant matrix and that Q(t) and R(t) are 

respectively nxn and rxr positive definite symmetric mat

rices. To simply the notations, let x(t) = x(t,w 0 ), 

u(t) = u(t,w ), A = A(t,w ) and B = B(t,w ). Equation
0 0 0 0 0 

(5.2.1) and (5.2.2) are rewritten as 

http:system.at
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(5.~.3) 

(5.2.4) 

Assume that the initial time t 
0 

and the initial state x(t
0 

) 


are given. Define the Hamiltonian as 


H = ~[xT(t)Q(t)~(t) + uT(t)R(t)u(t)] + [A 0 x(t) + B u(t)]Tp(t)
0 

( 5 . 2 . 5 ) 

where p(t) is the nxl costate vector. The canonical system 

lS 

x(t) = A0x(t) + ~ 0 u(t) (5.2.6) 

p(t) 
T= -A 0p(t) - Q(t)x(t) (5.2.7) 

There is no constraint on the control u(t), hence by 

Pontryagin's Minimum Principle, the optimal control is 

(5.2.8) 


Denote the control of (5.2.8) as u*(t) and its correspond

ing canonical variables as x*(t) and p*(t) which are the 

solutions of equations (5.2.6) and (5.2.7). 

For a feedback control law, let 

p*(t) = K(t)x*(t) (5.2.9) 

where K(t) is an nxn matrix to be determined. The optimal 
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feedback control law is obtained by combining equations 

(5.2.9) and (5.2.8) as 

(5.2.10) 

Differentiating equation (5.2.9) and combining equations 

(5.2.6), (5.2.7) and (5.2.8), we have 

[K(t) + K(t)A - K(t)~ 0 R- 1 (t)~ TK(t) + A TK(t) + Q(t)]x*(t) = 00
0 0

(5.2.11) 

Equation (5.2.11) must hold independently of the value of 

x*(t). This implies 

(5.2.12) 

which is the well-known Riccati equation. Note that K(t) 

is symmetric if the boundary condition on K(t) is also 
! 

symmetric. 

For sufficient condition, let J*Cx,t) be 

(5.2.13) 

The Hamilton-Jacobi-Bellman equation becomes 

a~J* + tlt!f>{~T(t)Q(t)x(t) + }uT(t)R(t)u(t) 

+ xT(t)AOTaJ* + uT(t)BoTaJ*} = 0 (5.2.14)
ax* ax* 
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Replacing u(t) in (5.2.4) by u* in (5.2il0), it can be 

easily shown that J*(x,t) in equation (5.2.13) is the 

solution for the Hamilton-Jacobi-Bellman equation provided 

that K(t) is symmetric. 

Hence the optimal control is given by (5.2.15) 

u*(t) = -R- 1 (t)B0TaJ* 
· ax* 

which is equation (5.2.10). 

When x(tf) is not specified, the boundary condi

tion for p*(tf) is given by 

(5.2.16) 

Comparing equations (5.2.16) and (5.2.9), it is obvious 

that 

(5.2.17) 

which is symmetric. Hence equation (5.2.13) is the 

solution for equation (5.2.14). 

When x(tf) is given as a point and F = 0 there is 

no condition on p*Ctf). Hence both p*(t 0 ) and p*(tf) 

are determined from the canonical system (5.2.6) and 

(5.2.7) corresponding to the optimal control (S.2.8). 

The boundary condition for the K(t) matrix will be 
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instead of the equation (5.2.17). Note that K(tf) will 

be no longer symmetric, and J*Cx*,t) in equation (5.2.13) 

. will not be the solution for the Hamilton-Jacobi-Bellman 

equation. However, there still exists a matrix K(t) 

which is the solution of the Riccati equation. In the 

case where x*Ctf) = O, it is well known that K(t)+ 00 as 

t+tf. A practical disadvantage of this solution is the 

physical realizability.and the extreme sensitivity of 

the feedback controller as t approaches to tf. 

Combining equations (5.2.10) and (5.2.6), the 


feedback system is represented by 


x*(t) = G0 (t)x(t) ( 5. 2. 20) 

G (t) = A - B0R-l(t)B TK(t) (5.2.21)
0 0 0

Hence, in general,for a lire~ system with quadratic cost 

functional,open- and closed-loop implementations are 

guaranteed. This is illustrated in figure (4) and (5). 

The two sy~tems are said to be nominally equivalent. 
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x(t ,w) = A(t ,w) -~..fl ( t 'w) 
x(t,w)+B(t,w)u 0 (t) 

Figure 4. 

Open-Loop Implementation for 


Optimal Linear System with Quadratic 


Cost Functional. 
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x(t,w) = A(t,w) Xr(t 'w)l!.~ ( t 'w),. .....
x ( t,w) +B ( t,w) uc·< t, w) 

G0 (t).... -

Figure 5. 

Closed-Loop Implementation 

Optimal Linear System with 

Quadratic Cost Functional. 
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5.3 	 tomparison between Open- and Closed-Loop 
Implementa!ions: 

Equation (5.2.1) represents the nominal system 

with the plant parameter at w0 • When the plant parameter 

changes from the nominal value w to a value w, the linear
0 

system becomes 

*Ct,w) = ACt,w)x(t,w) + B(t,w)u(t,w) 

(5.3.1) 

and the cost functional is 

+ uT(t,w)R(t)u(t,w)}dt 

(5.3.2) 

As the open-loop control u 0 (t) is independent of the plant 

parameter, hence the corresponding implementation vect0r 

is zero, that is 

u Ct,w) = -R- 1 (t)B Tp*(t) 	 (5.3.3). 00 

= 0 
(5.3.4) 

The closed-loop control uc(t,w) is rewritten as 

Vo(t) 

(5.3.5) 
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where x(t,w 0 ) = x(t,w) I = x~:(t). It is obvious 
WO 

that when w
0 

changes to w, the closed-loop control will 

change too. The corresponding implementation vector 

(5.3.6) 

where yc(t) is the closed-loop state sensitivity. 

The state sensitivity equation for the linear 

system is obtained by differentiating equation (5.3.1) 

with respect to w, 

(5.3.7) 

where A = aA(t ,w) I and Bw = aB(t,w) I 
w aw w aw w 

0 0 

which are known functions of time. Putting equations 

(5.3.4) and (5.3.6) into (5.3.7), the state sensitivity 

equations for open- and closed-loop implementations are, 

respectively, 

(5.3.8) 

yc(t) = Awx*(t) + Bwu*(t) + A yc(t) - B R- 1 B0TKyc(t)0 0

( 5 . 3 • 9 ) 
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where and ye are respectively the st~te sensitivityy 0 

for open- and closed -loop configurations. With t:he 

assumed initial condition that·y (t ) = yc(t ) = 0 

0 0 

0 0 0 

it is obvious that y 
0 
(t) ~ yc(t). In other words, 

x (t,w) ~ xc(t,w) where x (t,w) and xc(t,w) are respect

ively the state trajectory corresponding to open- and 

closed-loop implementations. 

With all the differences between the open- and 

closed-loop implementations, three· types of sensitivity 

must be evaluated. It is further assumed that both the 

final time tf and the final state x(tf) are given and 

that F in equation (5.2.2) is a null matrix. 

Equation (4.5.19) is a general expression for the 

cost sensitivity. For linear systems (5.3.1) with the 

quad~atic cost (5.3.2) with F = O, the derivative of the 

Hamiltonian with respect to the plant parameter is given 

as 

nil = [Awx*(t) + ~ wu*(t)]Tp*(t) (5.3.10)
awlw 

0 

Denote a vector c as 

tf 
c = J [Awx*(t) + Bwu*(t)]Tp*(t)dt (5.3.11) 

to 

which is a constant rxl vector. By equation (4.5.19) the 

cost sensitivity for open-loop control S~(v 0 ) is directly 
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obtained as 

(5.3.12) 

Jand the cost sensitivity for closed-loop control Sw(vc) 

is 

(5.3.13) 

Let S(v 0 ,vc) be a constant defined as 

s <v o ' v c ) = 11 s~ <v o ) 11 2 

(5.3.14) 

By the definition of the norm, S(v 0 ,vc) can be expanded 

to 

(5.3.15) 

The values p*(tf) and c .are calculated and y 0 (tf) and 

yc(tf) are fixed and can be obtained from their correspond

ing state sensitivity equations. Hence the constant 

S(v 0 ,vc) is well defined. If S(v 0 ,vc) > O, then it can 

be concluded that closed-loop implementation is less 

sensitive to plant parameter variation with regard to the 

cost sensitivity than the open-loop implementation. 

However, the values c, Yc(tf), and y 
0 
(tf) cannot be 

generalized and, in the light of cost sensitivity, the 
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comparison of open- and c·losed-loop implementations depends 

on individual problems. Hence there is no general 

conclusion. 

With respect to state sensitivity, it is well known 

that feedback configuration can provide a reduction 

of sensitivity to the variations of the plant parameters. 

Whether linear optimal systems provide the closed-loop 

sensitivity reduction has been answered affirmatively by 

Kalman [24] and Anderson [l] on the basis of the analogy 

of their results with the classical return difference. 

By applying a modification of the relationship between 

open- and closed-loop sensitivity, Cruz and Parkins [7] proved 

some results which are similar to Kalman's and Anderson's. 

Kriendler then applied·all the results in the proof of 

closed loop sensitivity reduction [29]. 

For a linear time-invariant system with quadratic 

cost functional and a scalar plant parameter, the closed-

loop implementation is less sensitive in view of the state 

sensitivity than open-loop implementation, or mathematically, 

t' t' 

J yc(t)Z(t)yc(t)dt < J y 0 (t)Z(t)y 0 dt (5.3.16)


0 0 
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case where Z =I and the time interval [O,t'] can be 

. extended to (- 00 , + 00 ). Kriendler also succeeded in 

extending the result of sensitivity reduction by 

closed loop implementation to linear time-varying 

system with quadratic cost [30]. Attempt has been made 

to extend the result to non-linear systems [28]. 

With respect to terminal condition, little 

research has been done. It was proved by Holtzman and 

Haring [19] that for a class of feedback system with 

minimum control energy policy, that is, Q = 0, and F = O, 

there is a finite range of parameter variations which have 

no effect on the terminal conditions. An interesting 

remark on this was made by Porter [39]. 

In general, current results indicate a more 


favorable side for closed-loop implementation in the 


aspect of state and terminal sensitivities. In cost 


sensitivity, general conclusion is impossible. 


5.4 Current Approaches in Sensitivity Reduction: 

In the previous section, current research asserts 

that optimally linear systems with closed-loop implementa

tion are, in one sense or another, .less sensitive than 

the equivalent open-loop systems. In spite of the fact 

that such a characteristic is a reassuring result, it 

actually does not solve a very practical question. 
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Assume the optimal control has been calculated and 

implemented with a closed-loop controller. The state 

sensitivity is calculated. Obviously it may or may not 

satisfy the desired specifications. If not, what can be 

done to improve the sensitivity? Gavrilovic and 

Petrovic [14] and Siljak and Dorf [44] suggested the 

introduction of sensitivity terms in the given cost 

functional J, for example, 

(5.4.1) 

the design procedure then is to choose the control which 


minimizes the ~ost functional J.a 


Jd = J + aI (5.4.2) 

where a is a scalar. The design procedure is essentially 

based on computing the control and the resulting sensitivity 

for several values of a. By doing this, the designer may 

-eventually satisfy the specification on the state 

sensitivity. 

The basic scheme of introducing a cost function 

Jct has been modified by Kahne [22,32], D'Angelo, Moe and 

Hendricks [9] and Dompe and Dorf [10]. In Kahne's 

approach, it is assumed that the system matrix B in the 

plant equation (5.3.1) does not depend on the plant 

Parameter and that the au(t,w) in the state sensitivity
· aw 
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equation is negligible. With these, the state sensitivity 

equation becomes 

. (5.4~3) 

together with the linear system 

x(t) = A(t,w)x(t) + B(t)u(t) (5.4.4) 

where w is known value of the plant parameter. A cost 

functional including the sensitivity is suggested as 

+ yT(t)D(t)y(t)}dt (5.4.5) 

where D(t) is a symmetric positive semi-definite nxn matrix 

and is at least twice differentiable in t. The optimal 

control is then determined by system (5.4.3) and (5.4.4) 

with respect to the cost functional JK. Simulation of the 

optimal control is illustrated in Figure (6) and is given 

by 

(5.4.6) 

where and are the partitioned matrices of KandK11 K12 

K is the solution of a modified Riccati equation. 

D'Angelo, Moe and Hendricks have developed a 

sensitivity differential equation: 



100 

x(t)u(t) x(t,w)=A(t,w)x(t,w) _........ + B(t)u(t) 

R- 1 BK-- "'. -'1 1 

.~ . .. 

R- 1 BK y(t)=A(t,w)y(t) +... ,I'_1 2 .... .....c(t)x(t) 

Figure 6. 

Structure of Low State Sensitivity 

Optimal Linear System by Kahne 

Mr.MASTER UNIVERSll.Y 1..1aRAO 
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i+laiy(t,w) arA ai+l-rx(t2w) 
= l: (i+l) 


awi awr 
 awi+l-r
r=O r 

i+l L i+i-r' f (i+l) (i+l-r')( q)
l: I 

r' =O r=O q=O m= 0 r' q m 

(5.4.7) 

where a i y(O,w) = 0 
iE[O,L] 

aw1 

and where y(t,w) = Clx(t,w) and K(t,w) is the feedback 
• aw 

system to be determined. The optimal control is then 

assumed in the form of 

n 
u(t,w) l: 

r=O 

where K
0

v are symmetric partitioned matrices of K such 

that amKov- = 0 for m > 1. The .plant equation 
awm 

(5.3.1) and the sensitivity differential equation (5.4.7) 

are used associated with a cost functional given by 

where M is a nLxnL symmetric positive semi-definite matrix. 
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The implementation of the optimal control is illustrated 

in Figure (7). More details about both approaches are 

given in references [9, 22]. 

In both approaches, the state sensitivity and 

its higher order derivatives are used to implement the 

optimal control. The realization of the functions 
aLh _g_y merges as a new problem. Moreover, the

Y' aw ' awL 
assumptions in Kahne's approach are not realistic in many 

cases. 

If the designer has the freedom to add to the 

given cost functional a term of state sensitivity as 

illustrated, he may as well have the freedom to use 

the following cost functional, 

1 tf T 
(5.4.10)J = . J (x Qx

2 
to 

where a is a constant. By trying several values for a, 

the designer may finally obtain the desired sensitivity. 

In all the approaches discussed in this section, 

the original cost functional is modified to meet the 

sensitivity reduction requirement. Hence the control 

thus implemented will not be nominally optimal with 

respect to the given cost functions. In_ general, this 

is not desirable. Moreover, the reduction of cost 



--

103 

~(t,wj----£9>.--x(t,w)=A(t,w)x(t,w) 
-~ + B(t,w)u(t,w) 

x(t,w) 

I.,..... v_l _... v__]__ ... .....Al s 
r--" r-:;:-:-

v-2 I-· v?1R- 1 T ... 
~A2 ~;- •rl,___ . 0 -•n.• 'O. 

<r:: 
~ ."' -·A Vm.. IL 

Vm ..._-,,. ~ s
'---

Korn 

.... Koo -- x+ A -
- v 1 Ko1 -.. ~ -..+ •rl .. 0... . •n -.... . UJ 

·rl.. c::i: : . 
.... Vm ......+ """ 

Figure 7. 

Simulation of Optimal Control 

by D'Angelo, Moe and Hendricks 
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sensitivity and terminal sensitivity have. never been 

invesiigated. The next section illustrates the ~ew 

approach in sensitivity reduction which has been 

innovated in Chapter IV. 

5.5· 	 Sensitivity Reduction by Implementation of 
Optimal Control: 

It has been illustrated in Chapter IV that 

sensitivity reduction can be achieved by the application 

of the TDF implementation, i. e ·. the configuration with 

two degrees of freedom. Consider a linear system 

(5.2.1) with a nominal conirol u*(t) which is optimal 

with respect to a given quadratic cost functional (S.2.2). 

The implementation of the optimal control by TDF con

figuration is given by 

u(t,w) = M(t)x(t,w) + g(t) 	 (5.5.1) 

where x(t,w) is the state trajectory corresponding to the 

control u(t,w) at any value of w. The time functions M(t) 

and g(t) are related by the condition that the control 

u(t,w) must be optimal nominally, or mathematically 

u(t,w 0 ) = u*(t). Hence for any value of M(t), the 

function g(t) is determined from 

g(t) = u*(t) - M(t)x*(t) 	 (5.5.2) 

where x*(t) is the known optimal state trajectory at 
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nominal. The function M(t) is determined such that the 

·insensitive condition is achieved whenever possible. 

Let y(t) denote the state sensitivity correspond

ing. to the TDF implementation ( 5. 5 .1) and the state 

sensitivity equation is 

(5.5.3) 

where (5.5.4) 

is a known function of time. 

Assume that the control problem (5.2.1) and (5.2.2) 

is a fixed end-point problem. The cost sensitivity 

corresponding to the TDF implementation is 

(5.5.5) 

where c is a rxl vector given by equation (5.3.11). The 

cost insensitive condition is then given by 

(5.5.6) 

Together wit~ a cost functional 

I(M) =a II y(tf) 112 + f 
tf 

{llyCt)ll2+BllMCt)ll 2}dt 
to 

( 5 • 5 . 7 ) 

an optimal implementation problem will be formulated as 
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finding a matrix function M(t) driving y(t
0 

) = 0 to a 

given y(tf) via system (5.5.3) (5.5.4) and minimizing 

xhe cost function I(M). The boundary condition y(tf) is 

a nxr null matrix for the terminal insensitive design and 

y(tf) satisfies the condition (5.5.6) in the case of 

cost insensitive design. 

The rest of the section is· devoted in illustrating 

Pontryagin's minimum principle to solve the optimal 

implementation .problem. For simplicity, assume that the 

plant is a scalar, i.e. r = 1. The feedback portion of the 

TDF implementation, M(t), is a qxn matrix function of 

time with the components mkj(t). Let Yi , aij , bi~ 

and fi be the components of y(t), A0 (t), B0 Ct) and fw(t) 

respectively where i=l, ... n; j=l, ... n and k=l, ... q. 

In component forms, equations (5.5.3) and (5.5.7) are 

rewritten as, 

( 5 • 5 • 8 ) 

n tf n q,n
I(M) = al. yi 2 (tf) + f {L. Yi 2 (t) + B L. mkj 2 (t)}dt 

i t 0 i k,j 

(5.5.9) 
Define a Hamiltonian as 

n q,n n,n n 
H = E yi2(t) + B E mkj2(t) + E a .. y. z. + E z.f.

i] J i i ii·, jl k 'j l 


n,n,q 

+ E Z·b·kmk·y· (5.5.10)i i J J 

i 'j 'k 
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where z.(t) are the components of a nxl vector z(t). The 
l 

cononical system is 

w n,q 

= -2y. - E a· ·Z· - L Z·b·kmk· = 
l j Jl J J J lj,k 

(5.5.11) 

n n,q 
.ill._Yi<t) = E a .. y. + E + f · = J bikmkjYj l.. l]

l j ,k azi 
(5.5.12) 

and the necessary condition for the optimality of mkj lS 

w 
0 = = 2 Sm'· . + l: z. b. ky · (5.5.13) . kJ l l J 

l 

Assume that S > 0 , hence from equation (5.5.13), we have 

n 
mkJ' = 1 

E z.b.ky. (5.5.14)
2S i i i J 

Substituting equation (5.5.14) into (5.5~11) and (5.5.12), 

the canonical system becomes 

(5.5.15) 

n 
ziCt) = E a·· z · + (5.5.16)

j J l l 

Or in vector form, the optimal implementation M(t) is 
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M(t) (5.5.17) 

associated with the canonical system, 

(5.5.18) 

z(t) 2y A T z + yz TB o (5.5.19)= - - o l2B oB T z 

Equations (5.5.17), (5.5.18) and (5.5.19) determines the 

feedback portion of the TDF implementation (5.5.1) 

and the open portion g(t) is given by equation (5.5.2). 

The n boundary conditions that y(t 0 ) = 0 are assumed. To 

solve the canonical system of differential equation 

(5.5.18) and (5.5.19), n more boundary condition are 

required. For terminal insensitivity, the boundary 

condition is y(tf) = 0. For cost insensitivity, the 

transversality condition requires that 

(5.5.20) 

where y is a constant. The boundary condition for the 

canonical system is then given by equations (5.5.6) 

and (5.5.20). The cost insensitivity with terminal 

sensitivity reduction, the boundary condition on y(tf) 

is the point which is on the hyperplane (5.5.6) and which 

yields a minimum distance to the origin. In any case, 

it becomes a two-point boundary-value problem. Analytical 

solution is not likely and high-speed computer must be used. 
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The cost function I(M) .in equation (5.5.9) contains 

two constants, i.e. a and B. These two constants must be 

fixed before the optimal implementation block M(t) 

is calculated. The constant a is not included in the 

system of differential equations (5.5.18) and (5.5.19) 

and therefore is not significant. The constant B is 

inserted in order to remove the problem involved in the 

singular extremal. From physical point of view the feed

back gain 11 M(t)ll 2 is limited when Bi 0. By doing that, 

the soft constraint is then removed. In general the 

value for B is small enough so that the integral state 

sensitivity term becomes significant. However, as a 

result of primary investigation, too small a value for 

B will cause instability of the differential system 

(5.5.18) and (5.5.19). 

In this section, the new approach has been applied 

to reduce the sensitivities for a linear systems with 

quadratic cost functional. Differing from Kahne's or 

D'Angelo's approaches, the state sensitivity is not used 

as the components of implementation. Also, the TDF 

configuration enables the designer to realize the possibility 

of both cost insensitive and terminal insensitive designs. 

However the development so far is beyond perfection. Many 
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problems are still involved in the new approach, for example, 

the systematic way of obtaining a solution for the canonical 

system (5.5.18) and (5.5.19), which is actually a problem of 

two-point boundary-value searching. 



CHAPTER VI 

CONCLUSION 

In this thesis, a new approach to sensitivity 

reduction in optimal control systems is introduced. Current 

researchers endeavour to modify the given cost functional 

in order to satisfy the sensitivity specification. 

The application of the TDF configuration removes the necessity 

of changing the original cost functional. Cost insensitive 

and ter~inal insensitive designs have, in the past, been 

ignored because of the apparent impossibility. However, it 

has been clearly shown here that it.is indeed realizable. 

The application of the TDF implementation to the reduction of 

the integral state sensitivity is not so well developed as 

the other two. More information is required about the sensi

tivity specification and about the constraints concerning the 

physical feedback portion of the TDF configuration is required. 

Upon knowing this the TDF corifiguration is readily applicable 

with some modifications wherever required. 

As noted in the introduction of the thesis, the field 

of sensitivity analysis in optimal contI'ol theory is relatively 

new. Moreover, the application of the TDF configuration in 

the implementation of a given optimal control has been 

demonstrated for the first time in this thesis. Because of 

- 111 
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these two facts, many results and concepts developed here 

are primitive and prospective in nature. Refinement and 

verification of the theory are obviously required. 

As a result of introducing the TDF configuration, 

various new problems may arise. The one which is of 

immediate concern is the investigation of the so-called two

point boundary-value problem for non-linear systems with 

special emphasis on the numerical techniques. Here, 

the canonical sys·tem of equations (5.5.18) and (5.5.19) 

demands more attention. The comparison with the TDF 

configuration and the open- ~r closed-loop implementations 

is also a new topic in sensitivity analysis. Here it has 

already been shown that, in general, there exists an imple

mentation of the optimal control by TDF configuration which 

is superior to the closed- or open-loop configurations 

in the aspects of cost or terminal sensitivities. However, 

in the light of state sensitivity, this is not necessarily 

true. Further investigation is required to supply the answer. 

Besides applying the TDF configuration in reducing 

the sensitivity, the configuration can be used to solve the 

multi-optimality problem which can be stated as finding an 

implementation such that the control is optimal at more than 

one value of the plant parameter. 

In conclusion, the TDF configuration is introduced 
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as a new approach to sensitivity reduction. The potentiality 

of the configuration is far beyond exhausted and more effort 

is required to discover its full value. 
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