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ABSTRACT 

Some experiments designed to test the validity of the edge-

spread function (ESF) model for neutron radiographic image formation are 

described; in addition the experiments are meant to illustrate the 

application of ESF methods to two areas of practical concern. First, 

the prediction of optical density curves for specified material and 

geometric configurations is considered; then, the use of ESF methods in 

dimensioning irradiated reactor fuel elements is examined. Overall, the 

results indicate that within the framework of assumptions which ESF 

theory is based upon, the correlation between theory and experiment is 

excellent. The results also suggest that in situat i ons which deviate from 

the theoretical ideal, the ESF method may serve as a good first approxi­

mation to more complex models. 
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1. INTRODUCTION 

1.1 Overview 

In a number of earlier works(l-4~a theoretical method for the 

analysis of neutron radiographic images has been developed in considerable 

generality. This method is called edge-spread function (ESF) analysis, and 

it attempts to describe the processes occurring in neutron radiography which 

lead to image "unsharpness", or blurring. As mentioned , t he mathematics 

have been highly developed; unfortunately, experimental testing of this 

model has been limited to very simple or basic situations.( 2,3) 

It is the purpose of this report, then, to partial ly remedy this 

situation; some of the more practical applications of ESF theory will be 

examined from an experimental viewpoint, so as to properly determine whether 

or not the theory is of any util ity. Since this is meant t o be a preliminary 

investigation, the emphasis will tend to be on the comparison of theoretical 

and experimental results, rather than on the development of any sophisticated 

techniques. It will be shown however, that there appears to be considerable 

justification for the application of ESF methods; thus, i n the concluding chap­

ter there will be some discussion of the extension of these methods to commer­

cial non-destructive testing, ~tith some emphasis on making the techniques amen­

able to routine application. 

This work is devoted to an experimental evaluation of the mathematical 

theory of neutron radiographic imaging based on the use of edge-spread functions. 

For ease of reference, a brief discussion of some basic principles is provided in 

the remai nder of this chapter. The necessary mathematics and some examples of 

converter response function for specific cases are presented in chapter 2. 
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Chapter 3 examines some si mpl e applications of the theory, and chapter 4 

considers a practical problem; specifically, the matter of dimensioning irrad­

iated reactor fuel elements will be the subject of an ESF analysis. Finally, 

in chapter 5 some conclusions and suggestions for further development will 

be presented. 

1 .2 	 Image Formation Processes 

Before any experimental examination of ESF methods is undertaken, 

a brief discussion of some of the physical processes involved is necessary; 

also, an heuristic approach may aid in clarifying the mathematics which will 

be developed in chapter 2. Consider fig ure 1-1, which shows a simple representation 

of the image formation process: a collimated beam of nearly mono -energetic 

neutrons strikes a sample, and its intensity is modulated according to thickness 

and cross-section factors. Then, the now-heterogeneous beam passes through 

the film into a converter foil, whereupon secondary photo-effective radiation 

is emitted and thus causes exposure of the film. 

Several assumptions are made in the representation used here: first, 

the incident beam is assumed to be perfectly collimated. While the inclusion 

of beam divergence is not particularly difficult, it will be neglected for simp­

1icity. This will have negligible consequences for the experimental portion 

of this work, since the radiography facility used has an excellent collimation 

ratio. Second, only absorption by the samples will be cons i dered, leading to 

a considerable simplification of the mathematics. The third assumption is that 

beam interaction with the film is negligible ; this is justified by noting that 

if the neutrons were at all efficient in interacting with the film, then the 
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convertor screen would not be required. Finally, the film-convertor sep­

aration is taken to be zero; note that in figure 1-1 this distance is 

greatly exag9erated. 

The net result of these assumptions is to imply that all image 

"smearing" effects are due only to the conversion process, i.e. the 

i sotropic emergence of the secondary radiation about the point of neutron 

absorption. This phenomenon can best be described by noting that a 

micro-densitometer scan of the optical density pattern resulting from a 

knife-edged object is not a step-function; rather, it has a "spread-out" 

appearance similar to that illustrated in figure 1-2. The end result of 

the secondary radiation source divergence is to create uncertainty in a 

number of types of measurement; for example, obtaining the dimensions of 

an object from a radiograph becomes increasingly difficult as higher 

orders of accuracy are required, since the spreading effect becomes 

increasingly significant. 

The main point to be made is that a means of predicting the 

convertor response (and thus the optical density) is required which 

accounts for the spreading phenomena, and in addition takes into considera­

tion other object parameters, such as shape and cross-section. The 

approach to be used in this work utilizes the edge-spread function method; 

the mathematical framework needed is the subject of chapter 2. 

1 .3 	 Relationship between Convertor Response and Optical Density 

As described in the previous section, the quantity obtained in 

the preliminary calculations is the convertor response, or fractional 

screen flux. However, this is not the quantity which is measured from 
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a rad iographic image; rather, the optical density, or t he film blackness 

is being examined. This quantity is defined in terms of the incident 

and transmitted light fluxes thus: 

( l. l) 

The logarithmic definition is of no particular importance; it merely 

serves to reduce the range of the independent variable , since the density 

is a rather slowly-varying function of the exposure . for the case of neutron 

radiography. 

One point of importance here is the matter of background density, 

or film "fog 11 
; this is the inherent optical density of the film, and is 

due to the material of the film base and to the film development processes. 

I t is possible to ignore the background density in any analysis; however, 

i t is usually subtracted from all measurements, according to standard pro­

cedures, since this allows a more direct correlation between density and 

exposure, i.e. zero exposure giving zero density. This procedure will be 

adopted throughout this report, so that all values quoted for optical density 

wi ll be such that 

( l . 2) 0actual = 0measured - 0back 

where Dback is the value appropriate to the type of film being discussed. 

Now, some relationship is required which gives optical density as 

a function of convertor response; very generally, a transformation T is 

required such that 
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D(x) = T{SA(x)} ( l. 3) 

where s.A.(x) is the converter response, or "secondary flux". 

The two most likely forms for Tare graphical and polynomial transforms; 

the former requires knowledge of density - exposure relationships, as 

given by manufacturer specification sheets, while the latter only involves 

curve- fitting: one specifies D(x) such that 

( l . 4) 

where N is very likely to have a maximum value of 2 or 3. It has been 

suggested that a linear fit will be sufficient, but it appears to this 

author, on the basis of preliminary work, ( 2) that a quadratic form is 

more appropriate; the linear fit seems best suited to higher values of 

optical density, which may not be routinely achieved in practice. None ­

theless, in this work a linear model will generally be used so as to 

simplify the calculations. 

Admittedly, more sophisticated models are available; for example, 

the following has been used to good effect in some instances:( 5) 

r (an)j-l-anD = 	l - e ( l . 5)
0	 I 

max 	 j=l (j-1)! 

where 	a = film grain area, 

n = number of incident photons per unit area, 

r = number of 11 hits II required to make the emulsion grain developable. 
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However, this model requires a knowledge of both the film-grain character­

istics and the statistical properties of the incident photo-flux: one has 

to be able to specify an appropriate value for n. In general, the amount of 

difficulty required to implement the more sophisticated models is not worth 

the very slight gains in accuracy; thus, for the purposes of this work, the 

simple converter response/dens i ty transform will be used for the sake of 

simpl i city and compactness. In addition, emphasis will be placed on the 

polynomial techniques, since these lend themselves to greater numerical 

accuracy, and are ideal for use on a computer. 

1 .4 Experimental Facilities 

This section deals with the equipment used to obtain the experimental 

data examined in this report. To some extent, a ''black box" approach will 

be used, in that specific details of a given instrument will not be considered. 

This is of small consequence, since the purpose of this report is to consider 

data obtained from existing equipment, rather than to make any major modifica­

tions to the present set-up. 

The basic apparatus consists of the Vertical Through-Tube illustrated 

in figure 1-3. Neutrons in the core are moderated and scattered by approxi­

mately one foot of graphite in the bottom of the tube, _ which has been 

placed in an empty position in the grid plate that makes up the base of the 

core. This neutron beam is then collimated to a diameter of one inch by 

about eleven feet of lead shot and small polyethylene beads contained 

between two aluminum annuli. Over the remaining length of aluminum tube, 

the beam spreads out to a diameter of approximately two and three-quarter 

inches. Taking the divergence length as the distance from the top of the 
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collimator to the end of the tube, or fifteen feet, then the angle of 

beam divergence, ed, is 

-1 0.875 
~ tan (12 x 15) 

= 0.28° 

In other words, the beam diameter increases by about five millimetres for 

every metre one moves away from the collimator. This collimation ratio 

is quite acceptable for purposes of neutron radiography. 

Above the collimator is a water shutter; this is simply a large 

aluminum canister which is drained or filled by means of a small electric 

pump. When the shutter is pumped full, the depth of water is sufficient 

to cut off about ninety-five percent of the beam intensity. 

At the top of the through tube, there is an aluminum work tray 

for holding samples and film cassettes. The tray metal is one-eight of 

an inch thick; the resulting attenuation of the beam is about 0.5 percent, 

so that any effects the tray may have on the neutron beam can be neglected 

in the analysis. 

The remaining components of this radiography facility consist of 

the personnel shielding (two boxes filled with wax), the inlet/outlet line 

for the water, a small pump, and an auxiliary storage tank for the water 

pumped out of the tube. All parts are removable. 

In considering the radiation beam created ~ ith this facility, one 

must note that the beam is not "pure"; in other words, there are radiations 
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other than thermal neutrons present. Using an ASTM beam purity indicator( 6), 

it has been found that the make-up of the beam is as shown in Table 1-1. 

As wi l l become apparent, the relatively large y-ray content may lead to 

some difficulty in interpreting any results (cf. chapters 3 and 4). 

The actual flux of thermal neutrons can be very roughly estimated 

in the following manner: for optical densities around unity (the film 

blackness through which the letters on a printed page can just be made out), 

an often quoted( 7 ) figure for the minimum necessary time-integrated flux 

is 109 n/cm2. Using this facility, unit optical density can be obtained 

in about seven to fifteen minutes, depending on film type and reactor power 

level. Clearly, the flux can be determined from 

(1 . 6) 

where <f> is the integrated flux (n/cm2
), <f> ' is the "flux rate" (n/cm2-sec), 

and Te is the exposure time. Using the numbers given previously, the result­

ing estimated flux is such that 

1.1 x 106 ~ <f> ' ~ 2. 4 x 106 n/cm2-sec 

This result should be viewed with some caution, since it assumes that the 

film blackening is entirely due (indirectly) to thermal neutrons, whereas 

in reality the y-radiation also tends to blacken the film. If one assumes 

that the optical density specifically caused by a given type of radiation 

is proportional to the amount of that radiation in the beam, then the values 

given in Table 1-1 can be used to correct the flux values given previously: 

<i> " = 0. 7<;> ( l . 7)I 



12 

Table 1-1: Radiation Content of the VTT Beam 

Type of Radiation 	 Approximate Content (%) 

Thermal neutrons 65 

Low-energy y 's 25 

Epithermal neutrons 5 

Scattered neutrons 5 

N.B. 1) Values are obtained using an ASTM beam purity indicator. 

2) 	 Scattered neutrons are assumed to be thermal, so that the total 
thermal content is ~70% . 
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¢11where is the flux corrected to represent neutron exposure only. This 

chang~s the estimated range of flux values to 

5
7.7 x 10 ~ ¢"~1 .7xlo6 n/cm2-sec 

Again, it should be noted that this result is only approximate. 

The films used for this work were Kodak Types AA and T industrial 

radiography films. Type AA is medium-grain, high speed fi lm, and was 

used for set-up work because relatively short exposure times were required 

to obtain sufficient optical density for the purpose of analysis. Type T 

is fine-grained, slow film; it appears that about one and one-half to two 

times the exposure required for Type AA is necessary to achieve the same 

blackness on Type T, but the fine grain helps to cut down experimental 

"noise". Both film types were developed using standard procedures, which 

i s to say five minutes in the developer, one minute in the stop bath, about 

th ree minutes in the fixer, and then prolonqed washing in water. A small 

darkroom was set up in the reactor building to facilitate film handling. 

To analyze the radiographs, a number of densitometers were used. 

In particular, two spot densitometers were used for in-place measurements of 

absolute density, and a Leitz scanning micro-densitometer with a Hewlitt-

Packard chart recorder was used for relative measurements over greater dis­

t ances. Some of the difficulties involved in applying these devices are 

discussed in chapters 3 and 4. 

Finally, to analyze the numerical data obtained from the radiographs, 

a program was written which was capable of predicting the convertor response 

for any combination of materials and geometry; if desired, the program is also 

capable of comparing these theoretical results to experimental data. To this 
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end, extensive use was made of McMaster 1 s CDC6400 and CYBER 170/30 compu­

ters. 



2. MATHEMATICAL PRELIMINARIES 

2. l The Theory of Edge-Spread Function Methods 

In the previous chapter, a brief description of the processes 

leading to neutron radiographic image formation was given, in terms of 

the physical concepts involved. The purpose of the present chapter is to 

outline the theory behind a particular model which has been developed to 

describe these processes in mathematical terms. The model to be described 

is the so-called edge-spread funct i on method, which has been used to some 

extent as an alternative to the more complicated optical transfer function 

methods; these make considerable use of Fourier transform techniques. The 

ESF method has been developed to a considerable extent in recent years, 

at least with regard to its applications to neutron radiography; the initial 

basic applications of the theory can be found in references l and 3, 

while the generalized theory can be found in references 2 and 4. Since 

the theoretical background is well-established, only an outline of the 

mathematics will be given here. 

In modelling the image formation process, one needs to consider both 

the effects of sample properties and the effects of the convertor foil on 

the neutron beam. The former causes the beam intensity to become non-uniform; 

since only sample absorption is being considered here (cf . section 1 .2), then 

this non-uniformity can be described by an exponential expression which mi ght 

be called the attenuation function: 

zp(u) 
~ (u) = exp { - J I: a(u,z)dz } ( 2. 1 ) 

zn(u) 

15 
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Here, zp and zn are the upper and lower limits of the object thickness 

at the point x=u; the geometry is illustrated in figure 2-l. L: a(u,z) is 

the macroscopic absorption cross-section. 

To examine the effects of the convertor foil, one can view the 

conversion process as being governed by a probability distribution. In 

other words, the probability of secondary radiation striking the film in 

a reg i on du about a point x, after emission from the convertor at point u, 

is given by 

NL(x,u)du ( 2. 2) 

L(x,u) is called a line-spread function (LSF); N is a normalization constant, 

yet to be specified. If one now takes the product of equations (2 .1) and 

(2 . 2), the resulting function is indicative of the fraction of the total 

secondary radiation emitted by the convertor which ends up in the region 

du after the neutron beam is attenuated by the sample. This is called the 

fractional convertor response, and is denoted by 

dSA = NL (x ,u) ~ (u)du (2.3) 

The subscript "A" refers to sample absorption. Clearly, the t otal conver to r 

response is given by 
+oo 

SA(x) = N f L( x ,u) ~ (u)du (2 .4) 

u=- oo 

To determine a value for N, one takes advanta ge of the fact that L(x ,u ) i s 

a probability distribution, and t hus must satisfy t he cond i tion 
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+oo 

N J L(x,u)du = ( 2 .5) 

u=-oo 

This requires specifying a form for L(x,u), which is not overly difficult; 

it has been found( 3 
) that a suitable expression for the purposes of neutron 

radiography is the Lorentzian defined by 

1L(x,u) = 	----=- (2 .6) 
1 + C(x-u) 2 

C is the so-called Lorentzian coefficient, and has units of inverse length-

squared. If this is substituted into equation (2 5), then one can 

show that 

N = /C/ rr 	 ( 2. 7) 

Thus, the final form for the convertor response is 
+oo 

SA(x) = v;- J L(x,u) ¢(u)du (2.8) 

u=- oo 

This expression can be put into a more useful form by noting that beyond 

the object boundaries there is no material attenuation of the neutron beam; 

then, since La(u,z) is zero, ¢(u) is equal to unity, and as a result the 

equation for the convertor response becomes 

SA(x) = 1. + l {tan- 1[/C(x-x )] - tan-l [/C(x-xn)] } 
Tr 	 p 

x 

IC fP ­+-:;;:--- L(x,u) ¢(u)du (2 . 9) 

x 
n 
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Here, xn and xp are the left- and right-hand boundaries of the object, 

corresponding to its edges. 

There are a number of ways in which equation (2.9) can be applied. 

For example, if the dimensions, material properties, and geometry of a 

sample are known, then the converter-response (and eventually the optical 

density) corresponding to that object can be predicted. Contrarily, if 

the dimensions are not known, then some sort of iterative method, or 

perhaps a least squares technique, could be used to determine values for 

these dimensions. These two ideas are examined in chapters 3 and 4 

respectively and, as will become apparent, the results indicate that with 

some refinement, ESF methods may be very useful in non-destructive examina­

tions. However, before proceeding on to the experimental work, the conver­

tor response functions for the samples to be considered will be derived; 

this will be the subject of the next section. 

2. 2 Specific Examples of Converter Response Functions 

Since the derivation of the converter response function is a fairly 

straight-forward matter for any object of known properties, it seems that 

it would be convenient to collect all the functions together in tabular 

form, along with a figure illustrating the relevant features of each object. 

To further simplify matters, note that regardless of the nature of ~ (u}, 

the expression for SA(x) (cf. equation 2.9) always contains the terms 

S (x) = l. + l {tan-1[/C(x-x )] - tan-l [/C(x-xn)] } (2.10)
0 7T p 

The only differences in the form of SA(x) arise because of the integral 

term; thus, let a 11 perturbation 11 function be defined by 



20 

P(x) L(x,u) <j> (u)du (2.11) 

u=x n 

This function is shown in Table 2-1, along with the figures. It is clear 

that the convertor response function is now given by 

(2.12) 

In the interest of simple notation, some definitions will be made 

here which will be used througout the remainder of this work. Because the 

inverse tangent function appears so often, it will be denoted by the follow-

i ng short forms: 

t(u) = tan- 1[/C(x-u)] 
(2 .13) 

1t(u) lw = tan- [/C(w-u)] 

Using this notation and equation (2 .6), the integral of t he Lorentz i an function 

can be easily shown to be 
b 

r L(x,u)du = l [t(a) - t(b)] (2 . 14) 
J IC a 

The remainder of this chapter consists of Table 2-1, as indicated, and 

concludes the mathematical disgression required for an appreciation of ESF 

theory. The next two chapters consist of the experimental portion of t his 

work. 
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Table 2-1: Examples of Converter Response Functions 

z1 

I 
I 

~ 

I 
I 
I 
I 
I z2 
I 
I 
I 
I 
I 
I 

~ , 

I 
I 

a 
I 

STE PPED 
BLOCK 

I 

Xn xp 

x < u ~ a- l: Zl ' n ­e 
<1> (u) = { - l: Z 

e 2 
' 

P(x ) = IC 
1T 

1 - l:Z l - z: z - l:Z 
= - {e t(x ) + (e 2-e 1)t(a)

1T n 
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Table 2-1 cont'd 

LINEAR 
RAZOR 

I 
II 

I I I I 
-a U=O a XO 

< xo :: I u I 
- 0 

-2LZ 
e 0 ,o~ i ui~a 

cp (u) = ( iul- X
0 

) 
exp [ - 2.i;z · ] , a < I u I ~ x o a-x 	 0

0 
-a 

1 	 J -2LZOP(x) =; {/C Lcp du + e [t(-a) - t(a)] 
-x

0 

XO 

+ 	IC J Lqi du } 

a 
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Tab?e 2-7 cont'd 

HOLLOW 

CYLINDER 


¢ 1(u) =exp [-2r ~] 

·72¢2 (u) = exp [-2r / r -u ]
2 

r2 
L¢7¢2du + j L¢ du }

2 
r7 



3. SIMPLE EXAMPLES OF THE APPLICATION OF ESF METHODS 

In this chapter, the theoretical functions derived for the geometries men­

tioned in section 2.2 will be compared to the densitometer scans obtained 

from experimental radiographs; in this manner, the usefulness of the ESF 

methods in predicting optical density patterns will be i llustrated. In 

add i tion, some of the drawbacks of the method will be examined. Specifically, 

problems with the Lorentzian coefficient and with the converter response/ 

opti cal density transformation will be discussed. 

One of tre sources of experimental error here arises from the cho ice 

of materials used in the models. In constructing the various objects, comp­

romises had to be made between low scatter-to-absorption ratios, and availa­

bil i~ and ease of handling. Thus, one settles for aluminum models instead 

of silver or gold. 

The particular geometries chosen for examination were the stepped 

block, the linear razor and the hollow cylinder (see the figures in Table 2-1); 

the results are shown in figures 3-la, 3-lb and 3-lc, and include 

the different results for linear and quadratic fits of converter response to 

optical density. The results are good, considering the crudity of the 

measurements. In particular, dimensional calibration causes some problems, 

since corrections are required for beam divergence (which causes image magni­

fication) and for beam intensity variations (the non -uniform profile creates 

some uncertainty i n exactly how one should scale the data). The former is 

of little importance, since it can be approxi mately corrected for by use of 

the beam collimatio n ratio; however, the beam intensity profile cannot 

properly be accounted for without the considerable computational work required 

for a de-convolution procedure. Thus, some judgement is required in 

associating density variations with specific object features. 

24 
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The effects of the beam variations are particularly evident in 

figure 3-la, which shows the results for the stepped block. The roughness 

of the right-hand portion of the curve makes it impossible to scale the 

data exactly; however, in the other regions of the curve, the fit of the theory 

to t he experiment is quite good, particularly the horizontal scaling. Notice 

tha t the beam asymmetry is only a serious problem with the larger objects; the 

range of interest in figure 3-la is about 2.5 cm (1 .0 in . ), while in figures 

3-lb and 3-lc the range is about 1 .3 cm (0.5 in.), and thus there are fewer 

obvious major deviations in the experimental curves. Note that only 

the larger variations are due to the beam profile; the smaller and more numer­

ous "blips" are due to a combination of chart-recorder machine noise, and 

finite film grain size. This is particularly apparent in figure 3-lb, where 

the "noisiness" in the bottom portion of the curve meant an average value 

had to be used as a base value of the density; thus, negative val ues were 

obtained. 

The next point of interest is the matter of the convertor response-to­

film density transformation. From the figures, it is apparent that the choice 

of a linear or quadratic transform, i.e. 

o = a0 + a1sA 
(3. 1 ) 

D = b0 + blSA + b2SA
2 

is not a major factor, at least for the range of optical densities considered 

here. Fi gure 3-la shows very little difference between the transformations, 

and in figure 3-l b there was so l ittle difference that the quadratic form i s 

not shown at all . 
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The reason for considering the second-order transform at all is more 

or less entirely past experience. Previous work( 4) has shown that the quad­

ratic can provide a better fit, and this is verified by examination of 

figure 3-1; overall, the quadratic transformation fits the experimental 

curve much better than does the linear fit. 

The geometries considered here illustrate the difficulties of using 

a quadratic or higher polynomial transform; for example, with the stepped 

block there are three distinct regions of constant optical density (not 

considering beam asymmetry), and thus three coordinate pairs (sii), D(i)) 

(i = 1,2,3) can be found, so that the second-order transform can be calcu­

lated with litt l e difficulty. 

When the hollow cylinder is considered, finding the points is slightly 

more difficult; two points, corresponding to the centre of the scan and the 

reg i on where the density tends to unity, can be determined quite easily. 

However, the third point will have considerably more uncertainty associated 

with it, for two reasons: first, the variation of optical density over 

small distances is greater, hence the finite size of the densitometer search 

hea d means one is using an average value, 0, rather than a discrete value, 

D(i). Secondly, assigning a specific spatial location to a value is easy. 

for sii), since it is a calculated value; however, it is not usually a simple 

matter for D(i), because of the averaging referred to previously and occasion­

ally because of the nature of the equipment used (i.e. hand-held spot densito­

meters versus scanning micro-densitometers). 

Finally, the same problems exist for the linear razor as for the 

hollow cylinder, only to a greater extent, at least for this case: the varia­

tion of density with x is even greater than for the hollow cylinder, and 

thus the uncertainties in the values of the third coordinate pair become very 
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significant. This may be the reason why the linear and quadratic fits were so 

similar in this case. 

Clearly, there is room for considerable error in this aspect of the 

ESF techniques. However, the problems can be minimized by use of better equip­

ment (specifically, densitometers with some form of distance calibration), 

and, if need be, working with high optical densities, where a linear trans­

formation will be quite sufficient. 

Examination of figures 3-la, 3-lb, and 3-lc shows that the fit of 

the theory to the experimental curves differs primarily at or about the edges 

of the objects: the experimental curves are somewhat better defined. Initially, 

this was thought to be due to numerical round -off error in the computer pro­

gram written for this purpose, since the majority of the cases involved a num­

erical integration of the equation for the convertor response. However, this 

idea was discarded when it became apparent that the edge-smoothing effect was 

almos t as bad for the cases where an exact solution of the integral could be 

obtained. Additionally, the library integration routine used in the program 

has been tested enough to guarantee a high degree of accuracy in the results. 

Thus, the error due to numerica l round-off or truncation i s acknowledged, but 

is dismissed as being insignificant. 

Another possible cause of the error is the ever troublesome Lorentzian 

coeff icient. This parameter determines (or, more accurately, is related to) 

the half-width of the Lorentzian spread function, and thus it determines the 

amount of "smoothing" which occurs about an object edge or other discontinuity. 

This effect is illustrated in figure 3-2, which shows the value of the convertor 

response at the edge of a· linear razor as a function of CL. By definition of 

the range of the convertor response, the values which are greater than unity 

do not make physical sense, since they imply that one is getting more radiation 
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out of the converter than went in. However, not all of the less - than -unity 

values are acceptable either; the computer results showed that, for CL greater 

than the value which gives a minimum SA (edge), greater-than-unity values of 

SA are obtained, which do not fit into the theory, as stated previously. The 

reason for this may be that as one lets CL tend to infinity, the Lorentzian 

becomes a delta-function in the limit; however, computers do not handle limit­

ing processes very well in some cases, and thus the resu l ts obtained may be of 

a rather dubious nature . Hence, it is suggested that this effect may be consi­

dered as a sort of 11 alarm system 11 for the validity of the Lorentzian coeffic­

ient used. Notwithstanding, one should realize that this is only a suggested 

explanation, and thus should be considered with caution. 

A more plausible cause of the edge smoothing effect is the following~ 

the radiographic facility used for this work is a vertica l through-tube set 

up as described in the previous chapter. Unfortunately, the design 

of the VTT is such that the radiation beam is not solely composed 

of thermal neutrons; the actual composition is approximately 70% thermal, 25% 

y-rays and 5% epithennal neutrons . The epithermals are of no concern, since 

they interact inefficiently with both the x-ray film and the gadolinium con­

verter foil. However, the y-ray portion of the beam is of considerable inter­

est to this work, s i nce y-rays interact quite efficiently with film. As a 

result, one need not consider any spreading effects (since there is no second­

ary radiation involved in the image formation), so that the optical density 

due to y-radiation will be proportional to the attenuated y-flux, and the 

converter response: 
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co 

I (3.2)D(x) = N <P ( x) + Nn 
y y 

u=-co 

where <P and <P are the attenuation functions for neutrons and y-rays 
n Y 

respectively, and NY and Nn are normalization factors. This is not meant 

to be a definitive representation of the dual-process density function, of 

course; the true form is iikely to be much more complicated. The point to 

be made is that this representation of D(x) will reflect the discontinuities 

which may occur in <P Y and <Pn' but which are masked in <P n by the spreading of 

the secondary radiation; thus, this form for D(x) will be much 11 sharper 11 or 

more nearly discontinuous at the object edges. However the dual-process 

density is formulated, it is a systematic error which cannot be removed 

without extensive re-design of the existing experimental set-up. 

Contrarily, the theoretical model can be adjusted to compensate for the 

presence of different radiations. 

One very simple method of examining this problem is to assume that 

the total optical density is equal to a sum of optical densities caused by 

specific radiations; in this case, one obtains 

= D + D (3 .3)0total Y n 

where D 
y 

is the density for the indicated radiation. Now, assume that the 

density due to a particular kind of radiation is proportional to the amount 

of rad iation in the beam; thus, correcting for the epithermal portion of 

t he neutrons, 

D 
y - .30 (3.4 )-0-to--'t'-a-l - ·9O 
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This approach may not be strictly correct, since it assumes that interactions 

with the film emulsion are similar for both the beam y-rays and the convertor 

secondary radiation. This may not be the case, since the beam y-radiation 

is likely to be of higher energy than the thermal neutrons and can potentially 

cause multiple reactions in the emulsion. Neglecting this, substitution of 

the previous result into equation (3.3) gives 

on ~ OT [l - 0.3]
0.9 

(3 . 4) 

If th i s result is compared to the theoretical results, some improvement may 

be obtained. However, this idea will not be pursued further, since the approach 

described here is terribly over-simplified, and the results would not be particu­

l arly significant. The presence of other radiation than thermal neutrons should 

be noted, and considered in the examination of the results. 

This concludes the discussion of the elementary applications of ESF 

methods. As has been indicated, there is considerable room for improvement in 

the technique, but the areas of uncertainty are such that they can be optimized 

or, in some cases, eliminated. A particular thorn in the side of this researcher 

is the Lorentzian coefficient; however, some interesting alternative means of 

dealing with this parameter have been developed elsewhere( 4). In the meantime, 

t he present chapter should have illustrated the basic uses of the method; in 

t he next chapter, an application to a practical problem will be discussed. 



4. 	 THE APPLICATION OF ESF METHODS TO THE MEASUREMENT OF FUEL ELEMENT 

DIMENSIONS 

The purpose of this chapter is to illustrate, from a more 

realistic point of view, both the virtues and the drawbacks of 

ESF methods. This was made possible by what amounts to a stroke of 

luck: a model fuel element containing natural and enriched uranium 

was made available to various institutions in Canada and the United 

States for neutron radiographic studies, and McMaster happened to 

be one of the institutions chosen. In particular, this facility 

was chosen because "considerable work is being done on the theoreti­

cal solution of the problems connected with dimensional measurements". (S) 

When one is involved in the analysis, management, and solution 

of the various problems associated with the utilization of fissile 

reactor fuels, a means of obtaining useful data is necessary. To 

get information from experiments on fresh fuel is relatively straight­

forward, since there is little or no radiation hazard, although there 

is the problem of the chemical toxicity of plutonium fuels; however, 

once the fuel has been exposed to a reactor environment, handling 

it in a manner suitable for the acquisition of numerical data becomes 

a ra t her complicated business. Thus, various indirect techniques of 

measurement are necessary. 

One of the techniques which has found some application is 

neutron radiography; the method is particularly appropriate, since 

a fuel element continues to produce neutrons for some time after 

removal from a reactor core (although at a greatly reduced rate). The 

disadvantages lie i n the fact that the fission products which are 

35 
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generated in the element by the irradiation of the fuel tend to 

emit various radiations which are quite capable of causing film black­

ening (i.e. a y-radiograph) and in addition prevent easy handling 

of the fuel. 

The solution to these problems is to use an alternative 

method called transfer radiography; this involves exposing a metal 

foil made of some material with a large absorption cross-section 

(e.g. dysprosium-16~ to the irradiated element, so that the emitted 

neutrons cause it to become activated. This is done either under 

water or in a very heavily shielded facility. After a su i table 

"exposure" time, the foil is placed in contact with a rad iographic 

film , such that the secondary radiation causes an image t o form. 

The result is a 11 true 11 neutron radiograph, since the film does not 

"see" any y-radiation from the object or in the radiation "beam". 

With care, the quality of a transfer radiograph can be made comparable 

to that of a directly-obtained radiograph. 

As will become apparent, it was possible to use a direct 

approach in obtaining the radiographs used in this work; however, it 

is thought that with some modification of the theory it will become 

possible to apply the model to transfer radiography. While this work 

deals only with dimensional measurements of irradiated fuel elements, 

the advantages of having a method of predicting image patterns 

for both direct and transfer methods can best be illustrated by 
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listing some other areas where neutron radiography of irradiated fuel 

has been proven useful; this is done in Table 4-1. Further details 

can be found in the references given. 

The construction of the element is shown in figure 4-1 

and the details of dimension and material are listed in Table 4-2. 

Not shown in the figure are the zircalloy end-caps on the tube, 

or the retaining (zircalloy) springs located at both ends, which 

hold the eight fuel pellets in place. As may be apparent, the 

pin is designed to permit measurements of the pellet diameters and 

the width of the gaps between the pellets (fuel) and the zircalloy 

tube (cladding). It should be pointed out here that the values 

of the diameters of the ground-down portions of the pellets are 

based on values supplied by the pins owner, hence the high degree 

of accuracy. 

The absorption cross-sections for the various pins were calcu­

lated by assuming that the microscopic cross-section for uranium 

dioxide was the same as that of uranium. This is justified by noting 

that the cross-section for oxygen is only about one-twentieth of that 

of 238u, and is about four orders of magnitude smaller t han that of 

u. Note that for uranium or other fissile materials, the capture 

cross-section must be used in the calculations; that is to say, one 

must consider absorption and capture-leading-to-fission processes, 

since both result i n the removal of neutrons from the beam. Any 

235
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Table 4-1: 	 Areas of Application of Neutron Radiography in Irradiated 
Fuel Element Analysis. 

Area of Application 	 References 

Dimensioning various irradiated 
materials. 

Measurement 	of creep and stress. 

Uniformity of property changes 
and isotopic distribution. 

Dimensioning of heat-transfer gaps 
to determine the location of 11 hot spots" 

9, 10, 11, 12 

13 

14 

15 
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PIN NO . 

8 

7 

6 

5 ~ ZIRCALLOY 

4 

3 

2 

~ NATURAL 

D ENRICHED 

U0 2 

U02 

Fig. 4- 1: The con s truction details of the RISO model fu el e lement . The end ­
caps and the retaining springs are not shown. 



40 

Table 4-2: Details of the Fuel Elements Construction. 

Pin No. Material R1(cm) Ma teri a 1 R2(cm) Material R3(cm) 

Nat. uo2 

2 Enriched uo 2 


3 Enriched uo 2 

4 Enriched uo2 


5 Enriched uo 2 


6 Enriched uo 2 


7 Enriched uo2 


8 Nat. uo2 


.6322 


.627425 


.622426 


.617425 


. 611950 


.606425 


.602150 


.6322 


Zi rca 11 oy 

Air 

Air 

Air 

Air 

Air 

Air 

Zircalloy 

.715 


.6325 


.6325 


.6325 


.6325 


.6325 


.6325 


.715 


Zi rca 11 oy 

Zircalloy 

Zi rca 11 oy 

Zi rca 11 oy 

Zi rca 11 oy 

Zircalloy 

. 715 


.715 


. 715 


. 715 


. 715 


. 715 


(16) (_cm-1 ) Material Absorption cross-section 

Zi rca 11 oy 0.0096 or 0.1453 (see text) 


Natural U02 0. 1831 


Enriched uo 2 (3.15%) 0.5918 
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possible effects of fast neutrons generated in this manner are neglected 

since they interact efficiently with neither film nor converter; further­

more, it is unlikely that they can be moderated down to thermal energies 

in the distance between the pin and the converter. Some problems with 

the cross-section for the cladding arose during the analysis; however, 

the discussion of this factor will be momentarily postponed. 

A brief mention of the experimental details is appropriate here: 

the pins were radiographed using Kodak T film with an exposure time of 

fifteen minutes. The peak portion of the beam was used for all shots, 

and to further ensure consistency in the positioning, a small aluminum 

crad l e was used. This device was constructed so that the pin was centred 

over a slot in the aluminum, with the slot width being somewhat greater 

than the outside diameter of the pin. Additionally, the edges of the 

slot were coated with a very thin layer of gadolinium oxide paint; this 

appeared in the radiographs as a thin white line, and allowed more accur­

ate dimensional scaling. The micro-densitometer magnification was set 

to 4X (the lowest possible on this machine), with a scanning field size 

of approximately l .0 mm x 0.1 mm. 

The results are shown in graphical form in figures 4-2a through 

4-2h ; the various figures show the optical density for each pin as a 

function of the radial coordinate and the cladding cross-section. The 

left- and right-hand sides of the density curves are shown together 

for each pin, even though there was enough of an asymmetry effect (due to 

the beam intensity profile) to cause minor problems with the vertical 

scaling. For convenience, all curves have been scaled to the range 
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(0., 1.0); in passing, it should be noted that the curves followed the 

expected pattern of larger drops in density (relative to the maximum 

value) for the enriched fuel than for the natural fuel pellets and a 

smaller drop in density as the pellet diameter decreased. 

Viewed as a whole, the results are excellent, and further indicate 

the possible usefulness of this method in dimensioning problems; however, 

when the figures are examined on an individual basis there are a number 

of points of contention. The most serious of these is the matter of 

the absorption cross-section for the cladding; this is illustrated 

in the figures by the sets of dashed lines. The information provided 

by the owners of the pin stated that the cladding was zircalloy, but 

it did not specify whether it was zircalloy-2 or zircalloy-4. A visual 

examination of the radiographs suggested the cladding was made of zirc­

al loy-2, since it is clearly visible in all the shots; this might be 

due to the presence of nickel in zircalloy-2, which has a fairly high 

11 211absorption cross-section. At any rate, the form was assumed, and 

the initial calculations were run on this basis. As is apparent from 

the figures, the results are dubious: there is no evidence of the gap 

between the pel l et and the sheath for even the largest cases, and there 

is little or no evidence of the sheath itself. Additionally, in some 

of the cases, the overall fit of the theoretical curve i s, basically, 

dismal. 

Initially, this was thought to be a numerical problem, so the 

va r ious cases were re-run with an extremely fine calculation mesh. This 

gave no improvement. Then, some calculational experiments were conducted 

wi t h the value of the Lorentzian coefficient, on the assumption that 

perhaps the line-spread function being used was too broad, and thus 
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could have an overall smoothing effect on the curve. This also was of 

no help; in fact, the various curves obtained only helped to illustrate 

the problems caused by CL in the limiting process described in chapter 

3. 

Finally, the cross-section value for the cladding was changed; 

the value used was that of so-called commercial zirconium, which con­

tains various other elements in addition to pure Zr. As can be seen 

in the figures, this greatly improved the fit of the theoretical curves 

to the data (in most cases); not only is the general fit of the curve 

excellent but the object features appear almost exactly as they do on 

the experimental curves. The gaps are not as well-defined on the theoretical 

curves, but this is thought to be due to a combination of LSF smoothing 

effects, uncertainty in the cross-section values, and possibly the pre­

sence of y-radiation in the beam. As mentioned previously, y-rays interact 

with the film without the aid of a converter screen, and as a result 

object disconti nuities may be more accurately reflected in the radio­

graphic image, and thus in the resulting line-scans. 

Some of the pins contained various defects, in the form of cracks; 

this is clearly visible in figures 4-2f and 4-2g corresponding to pins 

number 6 and 7. Each of these had a crack on the right side and as a 

result the agreement between theory and experiment is particularly poor 

here: no allowance was made for these defects when the attenuation 

function, ~ (u), was defined. One cannot properly say whether or not this 

effect was a contributing factor to the errors in the other curves, since 

the viewing angle specified for the radiographs was fixed; thus, one 

cannot determine from a visual inspection whether or not the other pins 
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might have been cracked. However, because of the obvious difference between 

theory and experimental data in the cases of known defects, it seems unlikely 

that the others could contain large cracks. 

Of the apparently undamaged pins, the cases of least agreement 

correspond to the two end pins, which are made of natural uranium diox­

ide. In particular, for either value of Ia(cladding) the sheath does 

not clearly show up in any of the theoretical curves, whereas in 

both of the experimental curves there is a region on the curve which can 

easily be associated with the cladding region. It is not entirely clear 

why the sheath does not show up well in the curve for the left side of 

pin number one; i t may be due to a defect, or to some temperamental quirk 

of the micro-dens i tometer. However, the point of importance is that the 

sheath is not clearly visible in the theoretical curves. This is a matter 

of some concern, since the point of having a theoretical model is to be 

ab l e to predict the effects of such features. The only plausible explana­

tion is that the values of the cross-sections for the two regions are 

close enough to 11 smooth out 11 most of the variation; this can be seen 

from inspection of the attenuation function for a two region cylinder: 

(4. 1 ) 

R and L are the radius and cross-section for the i-th region. Note 

that this equation only holds for Ju l~ R1. Equation (4.1) can be 

re-written as 

(4.2 ) 

Clearly, if L 2 and I1 are nearly equal, then the attenuation is basically 

determined by the outer i·egion (I 2,R2); contrarily, if I2 is very small, 

the atteunation will be detennined by the inner region ( L1,R1). This 

is what has occurred for the natural uranium dioxide pins: for zircalloy-2 
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the latter result holds, while for commercial zirconium, the former 

is the case. The point that matters is that the theoretical curve 

will be approximately equal to that which one would obtain for a single-

region cylinder, i.e., the sheath will not be easily visible in the 

theoretical curve. This is a point which should be kept in mind when 

using ESF analyses, since this "masking" effect could lead to serious 

errors; indeed, it is not unlikely that this has happened with the other 

pins. However, it may be possible, as was done here, to vary the cross-

sections in such a manner as to cause object features to be more easily 

visible. While t his will seriously affect the general usefulness of the 

method in dimensioning problems, it should not prevent the use of ESF 

techniques in predicting optical density "trends" (i.e. the overall 

shape of a curve as opposed to the finer details). In passing, it 

should be noted that for the natural fuel pins, the zi rcalloy-2 cross-

sections provide a better fit to the data, in that there is a small devia­

tion in the theoretical curve corresponding to the location of the clad­

ding. This suggests that the problem with the other pins was due to the 

relative values of the cross-sections, as previously discussed; inspection 

of the figures indicates that apart from the matter of the fuel pin gaps, 

the fit for Ea ~ladding) = 0.0~0 cm-l is comparable to that for Ea (clad­

ding) = 0.145 cm-l. The only major exceptions are the results for the 

left-hand sides of pins number l, 6, and 7; for 6 and 7, this is because 

of material defects. For number 1, there may be a defect, but this cannot 

be properly ascertained; hence, this particular result must be regarded 

with caution. 

To close this chapter, a summary of the highlights seems 

appropriate. First, there are the sources of error; t hese consist of 
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noise problems due to film grain and the analyzing equipment; dimensional 

problems, in scaling the data, because of the non-uniform beam intensity; 

the presence of y-radiation, in the beam itself and from the slightly 

active pins; a very small error due to not-quite-perfect beam collima­

tion; computational errors resulting from numerical integration; uncer­

tainty in the value of the Lorentzian coefficient; and uncertainty con­

cerning the values of absorption (or capture) cross-sections. While 

this may appear to be a fairly formidable array of errors, it should be 

pointed out that four of the seven causes of error are negligible, and 

the remaining three can be discussed and accounted for, at least on a 

qualitative basis. Another error which has not been mentioned is the 

matter of neutron scatter; while not a major problem for uranium,object scatter 

may be significant in other cases. However, the model used here cannot properl y 

account for scatter without extensive modification, so the subject must be 

passed over with the warning that it could be a serious problem: Ls is not 

always smaller than L , and this could lead to significant deviations from the a 

absorption-only model, particularly (and unfortunately) near the object edges. 

In concluding this chapter, it seems appropriate to point out that 

whi l e there is a need for improvement and refinement of the present edge­

spread function methods (particularly in the extension of the theory to account 

for object scatter and different types of radiation), there is every indication 

that the model is already a viable technique worthy of further development. 



5. SUMMARY AND CONCLUSIONS 

In the preceding chapters, some simple experiments which were intended 

to test the validity of ESF theory were described, and the various results were 

presented and discussed. The overall trend of these results was to indicate that 

the method has the potential for considerable generality and utility , subject 

to certain qualifying conditions. In order to illustrate this, a summary of 

the major points wi l l be provided, along with conclusions which may be more 

obvious when this work is viewed in its entirety. 

Chapters 1 and 2 consisted of the necessary background material. 

Specifi cally, chapter 1 discussed the physical aspects of image formation, the 

convertor response-optical density relationship, and the experimental facilities, 

while chapter 2 considered the mathematics of edge-spread functions and their 

use in describing neutron radiographic image formation. Here, it was shown 

t hat an expression could be derived for the convertor response due to any 

material/geometry combination with relatively little difficulty; the method of 

derivation is particularly amenable to computer treatment. 

In chapter 3, the basic application of the theory to predicting 

optical density patterns was considered. A number of simple objects were 

examined, and in doing so it was shown how the usefulness of ESF theory 

depends on the ideality of the exper iments: when the condit i ons are greatly 

different from those implied in the assumptions used to derive the ESF models 

(cf. chapters 1 and 2), the agreement between the data and the theory begins to 

break down. In pa r ticular, non-uniformity of the incident neutron beam profi le 

and the presence of other radiation than neutrons in the beam may seriousl y 

affect t he applicability of ESF methods. It would be useful to generalize the 

ESF model to include those situations where the incident beam is non-uniform 

(for example, when a divergent co l limator is used); however, it is not diff i cu l t 
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to correct the simpler cases on an empirical basis, which may be a simpler 

approach if one is dealing with routine applications. To correct for the 

effect of other radiations is a non-trivial matter, since these other radiations 

tend to interact with the 11 radiographic system" (the sample and the film) in 

a more complex fashion; this could be the subject of considerable future 

investigation. For the present, it can best be dealt with by modifying the 

experimental facility. 

Some difficulties with the numerical aspects of the ESF method were 

discussed; the various results indicated that the choice of a linear or a 

quadratic relationship between optical density and convertor response was a 

rather arbitrary matter, and one might as well use the linear transform 

to s implify calculations. This would be particularly useful in the average 

application, where "precision" involves millimetres, rather than micrometres; 

also , as mentioned, quadratic effects appear to be prominent only in the low 

optical density region, where very little practical work is done: to obtain 

useful information from a radiograph, one requires fairly high optical 

densities (cf. section 1.4). 

Some problems with the Lorentzian coefficient were encountered; in 

particular, it was shown how certain values of CL lead to non-physical values of 

convertor response. It is not clear as to whether or not this was only some 

sort of numerical phenomenon; looking at these and earlier exoeriments( 2,3), 

it appears that this problem may be connected to the experimental facility. As 

mentioned , there is some y-radiat ion in the beam, and this tends to 11 sharpen 

up" the radiographic images (cf. chapter 3). Now, values of CL are obtained 

by fitting ESF functions to experimental data; if these data represent neutron 

and gamma image formation processes, then it is not strictly correct to use the 

basic ESF functions of chapter 2 unless the y-rays represent a negligible 



57 


fraction of the beam make -up. It is obvious that the resolution of this matter 

will depend on further investigation. 

In chapter 4, a practical problem was considered, with encouraging 

results. Although the methods of obtaining an image of an irradiated fuel element 

would be quite different in practice, it was suggested that only slight modifi­

cations to the theory ~muld be required to accomodate these "different methods 11 
• 

Overall, the correlation between the experimental data and the predicted 

results was good; however, under close scrutiny, some further problems were 

encountered. 

When the absorption cross-sections of the various materials in the 

pin were calculated it was found that there was some doubt as to exactly what 

the pin was made of. In an assembly line situation, where one is examining 

some f raction of the total production, this could not occur: material 

properties would be specified, and one would look for deviations from the norm, 

particularly with regard to object geometry. That the ESF methods are suitable 

for this purpose is well illustrated by the cases of cracked fuel pellets, 

where there was a distinct difference between the theoretical and experimental 

results, even allowing for cross-section error. This difference would be even 

more apparent in a production situation, where all parameters are known; here, 

the uncertainty in cross-section implies furth er uncertainty in any dimensions 

obtained through use of ESF techniques, because the functions used to calculate 

these dimensions also depend on material properties. This was particularly 

apparent for the fuel pin cladding; it was clearly shown how the mathematics 

could be given more than one physical interpretation. This implies, naturally 

enough, that care must be used with ESF methods. It was then suggested that 

in cases where multiple exp lanations of the ESF results are possible, it might 

be more suitable to use the technique to predict trends arising from object 

property variations, rather than trying to pinpoint details. 



58 


The conclusions are the remaining matter of importance, and there 

appears to be four points of particular significance. Fi rst, it would appear 

that the ESF methods can be successfully applied to 11 real 11 problems, as well 

as to 11 textbook 11 cases; that is to say, one can predict with some degree of 

accuracy the optical density pattern for a fairly complicated combination of 

geometry and materials, as well as for the very simple cases considered previously. 

This leads into the next idea, which is that certain combinations of material 

and geometry may red uce that degree of accuracy to the point where only trends 

can be predicted, rather than exceedingly fine details; this means that some 

caution will have to be exercised when applying the method to dimensioning 

problems. The third point is not entirely resolved, but the basic idea is 

that i f one is only interested in trends (that is, predicting the broad form 

of an optical density pattern), then it is possible to use artificial values 

of the cross-sections to 11 enhance 11 the appearance of certain object features. 

This was done here by using the cross-section for a material similar to the 

one which has apparently been used. It may be possible to do this in such a 

manner as to facilitate a dimensioning procedure, but this must remain a matter 

of speculation for the time being. Finally, one should emp hasize a point which 

was made earlier: the ESF method as used here is specifically set up for neutron 

radiography; however, it appears that the end results may be quite sensitive 

to other features of the radiographic facility. In partic ular, if there are 

other radiations present in the beam (or if the object being radiographed is 

giving off some form of radiation), then the ESF results may be limited in 

their accuracy by the extent of the available information concerning the 

radiation fields present in or around the facility. 

It is apparent that the ESF method of neutron radiographic image 

analys i s is a flawed technique; it i s strictly applicable to a situation which 
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may not be easily realized in practice. However, the results of the work 

presented here indicate that the method is not without its merits; there is 

definitely an excellent case for applying this theory to simple situations, and 

this implies that the model will be a good first approximation for more compli­

cated theories. Additionally, for non-destructive examinations where only 

moderate accuracy is required, ESF methods should be of great utility. Thus, 

it is suggested that the edge-spread function methods of analysis be further 

investigated, both for use with other models and for its inherent interest 

as a basic investigat i on tool. 
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