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ABSTRACT

Some experiments designed to test the validity of the edge-
spread function (ESF) model for neutron radiographic image formation are
described; in addition the experiments are meant to illustrate the
application of ESF methods to two areas of practical concern. First,
the prediction of optical density curves for specified material and
geometric configurations is considered; then, the use of ESF methods 1in
dimensioning irradiated reactor fuel elements is examined. Overall, the
results indicate that within the framework of assumptions which ESF
theory is based upon, the correlation between theory and experiment is
excellent. The results also suggest that in situations which deviate from
the theoretical ideal, the ESF method may serve as a good first approxi-

mation to more complex models.
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1. INTRODUCTION

1.1 Overview

(1-4)

In a number of earlier works »a theoretical method for the
analysis of neutron radiographic images has been developed in considerable
generality. This method is called edge-spread function (ESF) analysis, and
it attempts to describe the processes occurring in neutron radiography which
lead to image "unsharpness'", or blurring. As mentioned, the mathematics
have been highly developed; unfortunately, experimental testing of this
model has been limited to very simple or basic situations.(Z’S)

It is the purpose of this report, then, to partially remedy this
situation; some of the more practical applications of ESF theory will be
examined from an experimental viewpoint, so as to properly determine whether
or not the theory is of any utility. Since this is meant to be a preliminary
investigation, the emphasis will tend to be on the comparison of theoretical
and experimental results, rather than on the development of any sophisticated
techniques. It will be shown however, that there appears tc be considerable
justification for the application of ESF methods; thus, in the concluding chap-
ter there will be some discussion of the extension of these methods to commer-
cial non-destructive testing, with some emphasis on making the techniques amen-
able to routine application.

This work is devoted to an experimental evaluation of the mathematical
theory of neutron radiographic imaging based on the use of edge-spread functions.
For ease of reference, a brief discussion of some basic principles is provided in
the remainder of this chapter. The necessary mathematics and some examples of

convertor response function for specific cases are presented in chapter 2.



Chapter 3 examines some simple applications of the theory, and chapter 4
considers a practical problem; specifically, the matter of dimensioning irrad-
iated reactor fuel elements will be the subject of an ESF analysis. Finally,
in chapter 5 some conclusions and suggestions for further development will

be presented.

1.2 Image Formation Processes

Before any experimental examination of ESF methods is undertaken,
a brief discussion of some of the physical processes involved is necessary;
also, an heuristic approach may aid in clarifying the mathematics which will
be developed in chapter 2. Consider figure 1-1, which shows a simple representation
of the image formation process: a collimated beam of nearly mono-energetic
neutrons strikes a sample, and its intensity is modulated according to thickness
and cross-section factors. Then, the now-heterogeneous beam passes through
the film into a convertor foil, whereupon secondary photo-effective radiation
is emitted and thus causes exposure of the film.

Several assumptions are made in the representation used here: first,
the incident beam is assumed to be perfectly collimated. While the inclusion
of beam divergence is not particularly difficult, it will be neglected for simp-
licity. This will have negligible consequences for the experimental portion
of this work, since the radioaraphy facility used has an excellent collimation
ratio. Second, only absorption by the samples will be considered, leading to
a considerable simplification of the mathematics. The third assumption is that
beam interaction with the film is negligible; this is justified by noting that

if the neutrons were at all efficient in interacting with the film, then the
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Fig. 1-1: The image formation process in neutron radiography.



convertor screen would not be reauired. Finally, the film-convertor sep-
aration is taken to be zero; note that in figure 1-1 this distance is
areatly exaggerated.

The net result of these assumptions is to imply that all image
"smearing" effects are due only to the conversion process, i.e. the
isotropic emergence of the secondary radiation about the point of neutron
absorption. This phenomenon can best be described by noting that a
micro-densitometer scan of the optical density pattern resulting from a
knife-edged object is not a step-function; rather, it has a "spread-out"
appearance similar to that illustrated in figure 1-2. The end result of
the secondary radiation source divergence is to create uncertainty in a
number of types of measurement; for example, obtaining the dimensions of
an object from a radiograph becomes increasingly difficult as higher
orders of accuracy are required, since the spreading effect becomes
increasingly significant.

The main point to be made is that a means of predicting the
convertor response (and thus the optical density) is required which
accounts for the spreading phenomena, and in addition takes into considera-
tion other object parameters, such as shape and cross-section. The
approach to be used in this work utilizes the edge-spread function method;

the mathematical framework needed is the subject of chapter 2.

1.3 Relationship between Convertor Response and Optical Density

As described in the previous section, the quantity obtained in
the preliminary calculations is the convertor response, or fractional

screen flux. However, this is not the quantity which is measured from
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a radiographic image; rather, the optical density, or the film blackness
is being examined. This quantity is defined in terms of the incident

and transmitted light fluxes thus:
D = Optical Density = log]o[IO/IT] 11.1)

The Togarithmic definition is of no particular importance; it merely
serves to reduce the range of the independent variable, since the density
is a rather slowly-varying function of the exposure. for the case of neutron
radiography.

One point of importance here is the matter of background density,
or film "fog"; this is the inherent optical density of the film, and is
due to the material of the film base and to the film development processes.
It is possible to ignore the background density in any analysis; however,
it is usually subtracted from all measurements, according to standard pro-
cedures, since this allows a more direct correlation between density and
exposure, i.e. zero exposure giving zero density. This procedure will be
adopted throughout this report, so that all values quoted for optical density

will be such that

Dactua1 - Dmeasured £ Dback (1.2)

where Dback is the value appropriate to the type of film being discussed.
Now, some relationship is required which gives optical density as
a function of convertor response; very generally, a transformation T is

required such that



D(x) = T{Sy(x)} (1.3)
where SA(X) is the convertor response, or "secondary flux".
The two most 1ikely forms for T are graphical and polynomial transforms;
the former requires knowledge of density-exposure relationships, as
given by manufacturer specification sheets, while the latter only involves

curve-fitting: one specifies D(x) such that

N ]
b6 = L ¢;[5,(x)T’ (1.4)
1=

where N is very likely to have a maximum value of 2 or 3. It has been
suggested that a linear fit will be sufficient, but it appears to this
author, on the basis of preliminary work,<2) that a quadratic form is
more appropriate: the linear fit seems best suited to higher values of
optical density, which may not be routinely achieved in practice. None-
theless, in this work a linear model will generally be used so as to
simplify the calculations.

Admittedly, more sophisticated models are available; for example,

the following has been used to good effect in some instances:(s)

(an)j'] (1.5)
1 (j-1)!

-an
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where a = film grain area,

n = number of incident photons per unit area,

1]

r = number of "hits" required to make the emulsion grain developable.



However, this model requires a knowledge of both the film-agrain character-
istics and the statistical properties of the incident photo-flux: one has
to be able to specify an appropriate value for n. In general, the amount of
difficulty required to implement the more sophisticated models is not worth
the very slight gains in accuracy; thus, for the purposes of this work, the
simple convertor response/density transform will be used for the sake of
simplicity and compactness. In addition, emphasis will be placed on the
polynomial techniques, since these lend themselves to greater numerical

accuracy, and are ideal for use on a computer.

1.4 Experimental Facilities

This section deals with the equipment used to obtain the experimental
data examined in this report. To some extent, a "black box" approach will
be used, in that specific details of a given instrument will not be considered.
This is of small consequence, since the purpose of this report is to consider
data obtained from existing equipment, rather than to make any major modifica-
tions to the present set-up.

The basic apparatus consists of the Vertical Through-Tube illustrated
in figure 1-3. Neutrons in the core are moderated and scattered by approxi-
mately one foot of graphite in the bottom of the tube, which has been
placed in an empty position in the grid plate that makes up the base of the
core. This neutron beam is then collimated to a diameter of one inch by
about eleven feet of lead shot and small polyethylene beads contained
between two aluminum annuli. Over the remaining length of aluminum tube,
the beam spreads out to a diameter of approximately two and three-quarter

inches. Taking the divergence length as the distance from the top of the
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collimator to the end of the tube, or fifteen feet, then the angle of

beam diveragence, ed’ is

= (.28°

In other words, the beam diameter increases by about five millimetres for
every metre one moves away from the collimator. This collimation ratio
is quite acceptable for purposes of neutron radiography.

Above the collimator is a water shutter; this is simply a large
aluminum canister which is drained or filled by means of a small electric
pump. When the shutter is pumped full, the depth of water is sufficient
to cut off about ninety-five percent of the beam intensity.

At the top of the through tube, there is an aluminum work tray
for holding samples and film cassettes. The tray metal is one-eight of
an inch thick; the resulting attenuation of the beam is about 0.5 percent,
so that any effects the tray may have on the neutron beam can be neglected
in the analysis.

The remaining components of this radiography facility consist of
the personnel shielding (two boxes filled with wax), the inlet/outlet line
for the water, a small pump, and an auxiliary storage tank for the water
pumped out of the tube. All parts are removable.

In considering the radiation beam created with this facility, one

must note that the beam is not "pure"; in other words, there are radiations
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(6)

other than thermal neutrons present. Using an ASTM beam purity indicator' °,
it has been found that the make-up of the beam is as shown in Table 1-1.
As will become apparent, the relatively large y-ray content may lead to
some difficulty in interpreting any results (cf. chapters 3 and 4).

The actual flux of thermal neutrons can be very roughly estimated
in the following manner: for optical densities around unity (the film
blackness through which the letters on a printed page can just be made out),

(7)

an often quoted figure for the minimum necessary time-integrated flux
is 109 n/cm2. Using this facility, unit optical density can be obtained
in about seven to fifteen minutes, depending on film type and reactor power

level. Clearly, the flux can be determined from

o' = ¢/Ty : (1.6)

where ¢ is the integrated flux (n/cmz),¢' is the "flux rate" (n/cmz—sec),
and Te is the exposure time. Using the numbers given previously, the result-

ing estimated flux is such that

6

1.1 x 10% < o' < 2.4 x 10° :

n/cm--sec

This result should be viewed with some caution, since it assumes that the
film blackening is entirely due (indirectly) to thermal neutrons, whereas

in reality the y-radiation also tends to blacken the film. If one assumes
that the optical density specifically caused by a given type of radiation

is proportional to the amount of that radiation in the beam, then the values

given in Table 1-1 can be used to correct the flux values given previously:

¢" = 0.7¢' (1.7)



Table 1-1: Radiation Content of the VTT Beam

Type of Radiation Approximate Content (%)
Thermal neutrons 65
Low-energy v's 25
Epithermal neutrons 5
Scattered neutrons 5!

N.B. 1) Values are obtained using an ASTM beam purity indicator.

2) Scattered neutrons are assumed to be thermal, so that the total
thermal content is =70%.

12
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where ¢" is the flux corrected to represent neutron exposure only. This
changes the estimated ranae of flux values to

5 6

7.7 x 107 ¢ ¢" < 1.7 x 10 n/cmz—sec
Again, it should be noted that this result is only approximate.

The films used for this work were Kodak Types AA and T industrial
radiography films. Type AA is medium-grain, hiagh speed film, and was
used for set-up work because relatively short exposure times were required
to obtain sufficient optical density for the purpose of analysis. Type T
is fine-grained, slow film; it appears that about one and one-half to two
times the exposure required for Type AA is necessary to achieve the same
blackness on Type T, but the fine grain helps to cut down experimental
"noise". Both film types were developed using standard procedures, which
is to say five minutes in the developer, one minute in the stop bath, about
three minutes in the fixer, and then prolonced washing in water. A small
darkroom was set up in the reactor building to facilitate film handling.

To analyze the radiographs, a number of densitometers were used.
In particular, two spot densitometers were used for in-place measurements of
absolute density, and a Leitz scanning micro-densitometer with a Hewlitt-
Packard chart recorder was used for relative measurements over greater dis-
tances. Some of the difficulties involved in applying these devices are
discussed in chapters 3 and 4.

Finally, to analyze the numerical data obtained from the radiographs,
a program was written which was capable of predicting the convertor response
for any combination of materials and geometry; if desired, the program is also

capable of comparing these theoretical results to experimental data. To this



end, extensive use was made of McMaster's CDC6400 and CYBER 170/30 compu-

ters.
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2. MATHEMATICAL PRELIMINARIES

2.1 The Theory of Edge-Spread Function Methods

In the previous chapter, a brief description of the processes
leading to neutron radiographic image formation was given, in terms of
the physical concepts involved. The purpose of the present chapter is to
outline the theory behind a particular model which has been developed to
describe these processes in mathematical terms. The model to be described
is the so-called edge-spread function method, which has been used to some
extent as an alternative to the more complicated optical transfer function
methods; these make considerable use of Fourier transform techniques. The
ESF method has been developed to a considerable extent in recent years,
at least with reagard to its applications to neutron radiography; the initial
basic applications of the theory can be found in references 1 and 3,
while the generalized theory can be found in references 2 and 4. Since
the theoretical background is well-established, only an outline of the
mathematics will be given here.

In modelling the image formation process, one needs to consider both
the effects of sample properties and the effects of the convertor foil on
the neutron beam. The former causes the beam intensity to become non-uniform;
since only sample absorption is being considered here (cf. section 1.2), then
this non-uniformity can be described by an exponential expression which might
be called the attenuation function:

zp(U)

6(u) = exp { -J £ (u,z)dz} (2.1)

a
z,(u)

15
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Here, zp and z, are the upper and lower limits of the object thickness
at the point x=u; the geometry is illustrated in figure 2-1. Za(u,z) is
the macroscopic absorption cross-section.

To examine the effects of the convertor foil, one can view the
conversion process as being governed by a probability distribution. In
other words, the probability of secondary radiation striking the film in

a region du about a point x, after emission from the convertor at point u,

is given by

NL(x,u)du (2.2)

L(x,u) is called a line-spread function (LSF); N is a normalization constant,
yet to be specified. If one now takes the product of eguations (2.1) and
(2.2), the resulting function is indicative of the fraction of the total
secondary radiation emitted by the convertor which ends up in the region

du after the neutron beam is attenuated by the sample. This is called the

fractional convertor response, and is denoted by

ds, = NL(x,u)é(u)du (2.3)

The subscript "A" refers to sample absorption. Clearly, the total convertor

response is given by
+o

5,(x) = N J Lo baluidn (2.4)

u=-o

To determine a value for N, one takes advantage of the fact that L(x,u) is

a probability distribution, and thus must satisfy the condition
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N j L(x,u)du =1 (2.5)

This requires specifying a form for L(x,u), which is not overly difficult;

(3)

it has been found that a suitable expression for the purposes of neutron

radiography is the Lorentzian defined by

1
1+ C(x-u

L(x,u) = )2 (2.5)

C is the so-called Lorentzian coefficient, and has units of inverse length-

squared. If this is substituted into equation (2 5), then one can

show that
N = /C/n (2.7)
Thus, the final form for the convertor response is
5,(x) = & f L(x,u)(u)du (2.8)
U=-o

This expression can be put into a more useful form by noting that beyond
the object boundaries there is no material attenuation of the neutron beam;
then, since Za(u,z) is zero, ¢(u) is equal to unity, and as a result the

equation for the convertor response becomes

SA(x) = 1. + %—{tan'][/f(x—xo)] - tan'] [/E(x-xn)]}
e
+ 22 L) (u)du (2.9)

X
n
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Here, X and xp are the left- and right-hand boundaries of the object,
corresponding to its edages.

There are a number of ways in which equation (2.9) can be applied.
For example, if the dimensions, material properties, and geometry of a
sample are known, then the convertor-response (and eventually the optical
density) corresponding to that object can be predicted. Contrarily, if
the dimensions are not known, then some sort of iterative method, or
perhaps a least squares technique, could be used to determine values for
these dimensions. These two ideas are examined in chapters 3 and 4
respectively and, as will become apparent, the results indicate that with
some refinement, ESF methods may be very useful in non-destructive examina-
tions. However, before proceeding on to the experimental work, the conver-
tor response functions for the samples to be considered will be derived;

this will be the subject of the next section.

2.2 Specific Examples of Convertor Response Functions

Since the derivation of the convertor response function is a fairly
straight-forward matter for any object of known properties, it seems that
it would be convenient to collect all the functions together in tabular
form, along with a figure illustrating the relevant features of each object.
To further simplify matters, note that regardless of the nature of ¢(u),

the expression for SA(x) (cf. equation 2.9) always contains the terms

So(x) = 1.+ 1 ftan” [/C(x-x )] - tan”! [/C{x-x,)]) (2.10)

The only differences in the form of SA(x) arise because of the integral

term; thus, let a "perturbation" function be defined by
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X
[ L(x,u)4(u)du (2.11)
X

This function is shown in Table 2-1, along with the figures. It is clear
that the convertor response function is now given by

SA(x) = So(x) + P(x) (2.12)

In the interest of simple notation, some definitions will be made
here which will be used througout the remainder of this work. Because the
inverse tangent function appears so often, it will be denoted by the follow-

ing short forms:

t(u) = tan” | [/C(x-u)]
(2.13)

t(u)' = tan'][/f(w-u)]
w

Using this notation and equation (2.6), the integral of the Lorentzian function

can be easily shown to be
b

( L(x,u)du =
a

L It(a) - t(b)] (2.14)
/C

The remainder of this chapter consists of Table 2-1, as indicated, and
concludes the mathematical disgression required for an appreciation of ESF
theory. The next two chapters consist of the experimental portion of this

work.
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Table 2-1: Examples of Convertor Response Functions
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Table 2-1 cont'd
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3. SIMPLE EXAMPLES OF THE APPLICATION OF ESF METHODS

In this chapter, the theoretical functions derived for the geometries men-

tioned in section 2.2 will be compared to the densitometer scans obtained
from experimental radiographs; in this manner, the usefulness of the ESF
methods in predicting optical density patterns will be illustrated. In
addition, some of the drawbacks of the method will be examined. Specifically,
problems with the Lorentzian coefficient and with the converter response/
optical density transformation will be discussed.

One of the sources of experimental error here arises from the choice
of materials used in the models. In constructing the various objects, comp-
romises had to be made between low scatter-to-absorption ratios, and availa-
bility and ease of handling. Thus, one settles for aluminum models instead
of silver or gold.

The particular geometries chosen for examination were the stepped
block, the linear razor and the hollow cylinder (see the figures in Table 2-1);
the results are shown in figures 3-la, 3-1b and 3-1c, and include
the different results for linear and quadratic fits of convertor response to
optical density. The results are good, considering the crudity of the
measurements. In particular, dimensional calibration causes some problems,
since corrections are required for beam divergence (which causes image magni-
fication) and for beam intensity variations (the non-uniform profile creates
some uncertainty in exactly how one should scale the data). The former is
of little importance, since it can be approximately corrected for by use of
the beam collimation ratio; however, the beam intensity profile cannot
properly be accounted for without the considerable computational work required
for a de-convolution procedure. Thus, some judgement is required in

associating density variations with specific object features.
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The effects of the beam variations are particularly evident in
figure 3-1a, which shows the results for the stepped block. The roughness
of the right-hand portion of the curve makes it impossible to scale the
data exactly; however, in the other regions of the curve, the fit of the theory
to the experiment is quite good, particularly the horizontal scaling. Notice
that the beam asymmetry is only a serious problem with the larger objects; the
range of interest in figure 3-la is about 2.5 cm (1.0 in.), while in figures
3-1b and 3-1c the range is about 1.3 cm (0.5 in.), and thus there are fewer
obvious major deviations in the experimental curves. Note that only
the larger variations are due to the beam profile; the smaller and more numer-
ous "blips" are due to a combination of chart-recorder machine noise, and
finite film grain size. This is particularly apparent in figure 3-1b, where
the "noisiness" in the bottom portion of the curve meant an average value
had to be used as a base value of the density; thus, negative values were
obtained.

The next point of interest is the matter of the convertor response-to-
film density transformation. From the figures, it is apparent that the choice

of a Tinear or quadratic transform, i.e.

(ws)
"

aO + a]SA

2
bO + b]SA - bZSA

=
"

is not a major factor, at least for the range of optical densities considered
here. Figure 3-1a shows very little difference between the transformations,
and in figure 3-1b there was so little difference that the quadratic form is

not shown at all.
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The reason for considering the second-order transform at all is more
or less entirely past experience. Previous work(4) has shown that the quad-
ratic can provide a better fit, and this is verified by examination of
figure 3-1; overall, the quadratic transformation fits the experimental
curve much better than does the linear fit.

The geometries considered here illustrate the difficulties of using
a quadratic or higher polynomial transform; for example, with the stepped
block there are three distinct regions of constant optical density (not
considering beam asymmetry), and thus three coordinate pairs (Sgi), D(i))

(i = 1,2,3) can be found, so that the second-order transform can be calcu-
lated with little difficulty.

When the hollow cylinder is considered, finding the points is slightly
more difficult; two points, corresponding to the centre of the scan and the
region where the density tends to unity, can be determined quite easily.
However, the third point will have considerably more uncertainty associated
with it, for two reasons: first, the variation of optical density over
small distances is greater, hence the finite size of the densitometer search
head means one is using an average value, D, rather than a discrete value,
D(i). Secondly, assigning a specific spatial location to a value is easy.
for Sgi), since it is a calculated value; however, it is not usually a simple
matter for D(i), because of the averaging referred to previously and occasion-
ally because of the nature of the equipment used (i.e. hand-held spot densito-
meters versus scanning micro-densitometers).

Finally, the same problems exist for the linear razor as for the
hollow cylinder, only to a greater extent, at least for this case: the varia-

tion of density with x is even greater than for the hollow cylinder, and

thus the uncertainties in the values of the third coordinate pair become very
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significant. This may be the reason why the linear and auadratic fits were so
similar in this case.
Clearly, there is room for considerable error in this aspect of the
ESF techniques. However, the problems can be minimized by use of better equip-
ment (specifically, densitometers with some form of distance calibration),
and, if need be, working with high optical densities, where a linear trans-
formation will be quite sufficient.
Examination of figures 3-la, 3-1b, and 3-1c shows that the fit of
the theory to the experimental curves differs primarily at or about the edges
of the objects: the experimental curves are somewhat better defined. Initially,
this was thought to be due to numerical round-off error in the computer pro-
gram written for this purpose, since the majority of the cases involved a num-
erical integration of the equation for the convertor response. However, this
idea was discarded when it became apparent that the edge-smoothing effect was
almost as bad for the cases where an exact solution of the integral could be
obtained. Additionally, the library integration routine used in the program
has been tested enough to guarantee a high degree of accuracy in the results.
Thus, the error due to numerical round-off or truncation is acknowledged, but
is dismissed as being insignificant.

Another possible cause of the error is the ever troublesome Lorentzian
coefficient. This parameter determines (or, more accurately, is related to)
the half-width of the Lorentzian spread function, and thus it determines the
amount of "smoothing" which occurs about an object edge or other discontinuity.
This effect is illustrated in figure 3-2, which shows the value of the convertor
response at the edge of a linear razor as a function of CL' By definition of
the range of the convertor response, the values which are greater than unity

do not make physical sense, since they imply that one is getting more radiation



101 §-

SA(EDGE)

99

.98 |
104 10° 10® 107
LORENTZIAN COEFFICIENT, CL (M

The value of the convertor response at the edge of a linear razor,

Fig. 3-2:
as a function of the Lorentzian coefficient.

LE



32

out of the convertor than went in. However, not all of the less-than-unity
values are acceptable either; the computer results showed that, for C, greater
than the value which gives a minimum SA (edge), greater-than-unity values of
SA are obtained, which do not fit into the theory, as stated previously. The
reason for this may be that as one lets CL tend to infinity, the Lorentzian
becomes a delta-function in the 1imit; however, computers do not handle limit-
ing processes very well in some cases, and thus the results obtained may be of
a rather dubious nature. Hence, it is suggested that this effect may be consi-
dered as a sort of "alarm system" for the validity of the Lorentzian coeffic-
ient used. Notwithstanding, one should realize that this is only a suggested
explanation, and thus should be considered with caution.

A more plausible cause of the edge smoothing effect is the following:
the radiographic facility used for this work is a vertical through-tube set
up as described in the previous chapter. Unfortunately, the design
of the VTT is such that the radiation beam is not solely composed
of thermal neutrons; the actual composition is approximately 70% thermal, 25%
v-rays and 5% epithermal neutrons. The epithermals are of no concern, since
they interact inefficiently with both the x-ray film and the gadolinium con-
verter foil. However, the y-ray portion of the beam is of considerable inter-
est to this work, since y-rays interact quite efficiently with film. As a
result, one need not consider any spreading effects (since there is no second-
ary radiation involved in the image formation), so that the optical density
due to y-radiation will be proportional to the attenuated y-flux, and the

convertor response:



D(x) = No (x) + N, [ Lixsude (w)de (3.2)

where ¢n and ¢Y are the attenuation functions for neutrons and y-rays
respectively, and NY and Nn are normalization factors. This is not meant

to be a definitive representation of the dual-process density function, of
course; the true form is 1ikely to be much more complicated. The point to
be made is that this representation of D(x) will reflect the discontinuities
which may occur in ¢Y and L but which are masked in on by the spreading of
the secondary radiation; thus, this form for D(x) will be much "sharper" or
more nearly discontinuous at the object edges. However the dual-process
density is formulated, it is a systematic error which cannot be removed
without extensive re-design of the existing experimental set-up.

Contrarily, the theoretical model can be adjusted to compensate for the

presence of different radiations.

One very simple method of examining this problem is to assume that
the total optical density is equal to a sum of optical densities caused by

specific radiations; in this case, one obtains

where DY is the density for the indicated radiation. Now, assume that the
density due to a particular kind of radiation is proportional to the amount
of radiation in the beam; thus, correcting for the epithermal portion of

the neutrons,

D
Y = .30 (3 4)
Dtota] -90
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This approach may not be strictly correct, since it assumes that interactions
with the film emulsion are similar for both the beam y-rays and the convertor
secondary radiation. This may not be the case, since the beam y-radiation

is likely to be of higher energy than the thermal neutrons and can potentially
cause multiple reactions in the emulsion. Neglecting this, substitution of

the previous result into equation (3.3) gives

O
13

0.3
= D [1 - 1]
n T 0.9 (3.4)
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If this result is compared to the theoretical results, some improvement may

be obtained. However, this idea will not be pursued further, since the approach
described here is terribly over-simplified, and the results would not be particu-
larly significant. The presence of other radiation than thermal neutrons should
be noted, and considered in the examination of the results.

This concludes the discussion of the elementary applications of ESF
methods. As has been indicated, there is considerable room for improvement in
the technique, but the areas of uncertainty are such that they can be optimized
or, in some cases, eliminated. A particular thorn in the side of this researcher
is the Lorentzian coefficient; however, some interesting alternative means of

(4).

dealing with this parameter have been developed elsewhere In the meantime,
the present chapter should have illustrated the basic uses of the method; in

the next chapter, an application to a practical problem will be discussed.



4. THE APPLICATION OF ESF METHODS TO THE MEASUREMENT OF FUEL ELEMENT
DIMENSIONS

The purpose of this chapter is to illustrate, from a more
realistic point of view, both the virtues and the drawbacks of
ESF methods. This was made possible by what amounts to a stroke of
luck: a model fuel element containing natural and enriched uranium
was made available to various institutions in Canada and the United
States for neutron radiographic studies, and McMaster happened to
be one of the institutions chosen. In particular, this facility
was chosen because "considerable work is being done on the theoreti-
cal solution of the problems connected with dimensional measurements".(g)
When one is involved in the analysis, management, and solution
of the various problems associated with the utilization of fissile
reactor fuels, a means of obtaining useful data is necessary. To
get information from experiments on fresh fuel is relatively straight-
forward, since there is 1ittle or no radiation hazard, although there
is the problem of the chemical toxicity of plutonium fuels; however,
once the fuel has been exposed to a reactor environment, handling
it in a manner suitable for the acquisition of numerical data becomes
a rather complicated business. Thus, various indirect techniques of
measurement are necessary.
One of the techniques which has found some application is
neutron radiography; the method is particularly appropriate, since
a fuel element continues to produce neutrons for some time after
removal from a reactor core (although at a greatly reduced rate). The

disadvantages lie in the fact that the fission products which are
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generated in the element by the irradiation of the fuel tend to

emit various radiations which are quite capable of causing film black-
ening (i.e. a y-radiograph) and in addition prevent easy handling
of the fuel.

The solution to these problems is to use an alternative
method called transfer radiography; this involves exposing a metal
foil made of some material with a large absorption cross-section
(e.g. dysprosi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>