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CHAPTER I 


CRYSTAL 	 DYNAMICS AND NEUTRON SCATTERING 

A. 	 INTRODUCTION 

Crystals have been known to man for thousands of years. 

The word crystal, which originally referred to quartz alone, 

was later applied to materials which exhibited marked regulari­

ties in their external appearance. Such regularities are now 

known to result because the atoms which compose such solids are 

arranged in an ordered fashion throughout the crystal. 

Many solids, including metals, minerals and salts, are 

polycrystalline. They consist of many very small crystals, 

known as crystallites, arranged in different orientations and 

separated by various types of imperfection. In recent times 

methods have been developed for growing large single crystals 

of many of these materials, in which the ordered arrangement 

of atoms exists throughout the specimen. This has stimulated 

a large amount of experimental research into the properties 

of these materials. 

The arrangement of the atoms in a crystal is most 

commonly determined by x-ray diffraction techniques. The first 

materials to be studied were the alkali halides KCl, NaCl, KBr, 

and KI, whose structures were reported by W. L. Bragg (1913). 

More recently both neutron and electron diffraction techniques 
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have been utilized to probe the atomic structure of matter. 

At all temperatures the atoms in a material are moving. 

In a simple solid they execute small oscillatory motions 

about their equilibrium positions: the study of atomic motions 

is known as crystal dynamics, or lattice dynamics. The kinetic 

energy of an atom increases with increasing temperature, and 

the heat capacity of a material may be defined as the energy 

required to raise its temperature by one degree. Dulong and Petit 

(1819) observed that the product of the heat capacity per unit 

weight, and the atomic weight, was roughly a constant, inde­

pendent of the material. This result was explained by Richarz 

(1893) by analogy with the kinetic theory of gases. 

By the turn of the century there was considerable evi­

dence that the Dulong and Petit law was incorrect at low tempera­

tures. Einstein (1907) proposed that a solid containing N atoms 

be represented by a set of 3N independent oscillators of identical 

frequency v. Using Boltzmann's statistics he obtained the 

result 

(I-Al)2 , 
[exp(hv/kBT)-1] 

where cv is the heat capacity (at constant volume), kB and h 

are Boltzmann's and Planck's constants, and T is the temperature. 

Debye (1912) generalized Einstein's theory by assuming 

a distribution of frequencies for the atomic oscillators. Re­

garding a solid as a continuum, he obtained the result 
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c (I-A2)v 

where x = hv/kBT and xD = hvD/kBT = eD/T. In this expression 

VD is the maximum frequency in the material, and eD is known 

as the Debye temperature. The Debye theory predicts that 

3Cv ~ T at very low temperatures. This is in agreement with 

experiment, since only long wavelength vibrations are excited 

at such temperatures, and the discrete nature of the material 

may therefore be disregarded. The Einstein model is incorrect 

at low temperatures. At high temperatures both the Einstein 

and the Debye theory predict the Dulong and Petit value which 

is simply 3NkB. 

Born (1965) has described how he and von Karman (1912) 

came to develop an atomic theory of lattice vibrations. Their 

paper appeared only "a few weeks" after that of Debye. It is 

now known that this theory is superior to the Debye theory, 

but for many years the Born-von Karman theory lay dormant 

because there was no direct information about the individual 

vibrational frequencies in a solid. 

Born and von Karman postulated a system of atoms which 

move as though connected by Hookeian springs. The motions 

of the individual atoms are complicated in this picture, but 

the system may be regarded instead as a collection of inde­

pendent oscillators having frequencies given by the dispersion 

relation, 



4 

v =i v Cs.j) i= w (s_j) /2n (I-AJ) 

where 9. is the wave vector of the mode, and j is a "branch 

index". The energy levels of a harmonic oscillator of fre­

quency v are separated by an amount hv: this quantum of energy 

is generally called a "phonon" by analogy with the word photon*. 

The first experimental determination of phonon frequen­

cies was that of Olmer (1948), who measured the intensity of 

diffuse scattering of x-rays by a crystal of aluminium. Several 

other metals were examined in the fifties, and these measure­

ments collectively served to demonstrate that the Born-von Karman 

model is basically correct. The x-ray technique has now been 

very largely superseded by the method of slow neutron inelastic 

scattering. 

Since the mass of a neutron is comparable with atomic 

masses, it is not unreasonable that thermal neutrons have ener­

gies comparable with phonon energies in a crystal (~ 0.025 eV). 

In addition the de Broglie wavelength of a thermal neutron 
0 

(~ 1.8 A} is comparable with interatomic distances. For 

this reason both the energy and the wave vector of a thermal 

neutron are changed substantially when it is scattered by a 

phonon, and in consequence these changes may be measured fairly 

easily to within a few per cent. Such is not the case with 

r-
The term "phonon" is attributed to Tamm, by Maradudin and 
Fein (1962), who give a reference to Seitz (1952). Ziman 
(1960) quotes Frenkel (1932) as the originator of the word. 
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electromagnetic radiation. X-rays have wavelengths of the 

right order, but their energies are ~ 10 4 ev. The energy change 

on scattering by a phonon is too small to be measured: instead 

the phonon energy is deduced from the intensity of the diffuse 

scattering, a complicated and somewhat indirect procedure. 

On the other hand, infrared photons have energies comparable 

with phonon energies, but because of their long wavelength 
~ 5 0 
(~ 10 A), they can only interact with single phonons if they 

have very small wave vector. 

Measurements of phonon frequencies in aluminium by the 

neutron scattering method were first made by Brockhouse and 

Stewart (1955) and by Carter et al. (1957). Since that time 

the field has expanded rapidly. Several types of spectrometer 

have been developed, and methods of automatic operation are 

steadily being improved and diversified. A wide variety of 

systems has been examined and the spectra of excitations other 

than phonons are now measured. In the last few years considerable 

attention has been paid to improving the accuracy of the 

measurements through a better understanding of the various 

factors, such as instrumental resolution and the choice of 

instrumental parameters, which determine the possible errors 

in the measurements. General References 1-4, and 7 give some 

idea of the past and present scope of the field. 

Substantial advances have also been made in the theory 

of crystal dynamics. Ludwig (1967) describes developments in 
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the theories of molecular crystals, anharmonicity and thermo­

dynamics, and the interaction between phonons and various 

types of radiation. Clearly both the theorists and the experi­

mentalists in this field are very active at the present time. 

B. OUTLINE OF THE THESIS 

The remainder of this chapter contains a description of 

the theory of lattice dynamics in the harmonic approximation, and 

a review of the theory and practice of slow neutron scattering. 

None of this work is original; it is included in order to pro­

vide a useful background for the discussion which follows. 

Measurements of normal mode frequencies in rubidium are 

described in Chapter II. The results are analysed in several 

ways, and phonon frequency distributions are presented. 

Chapter III contains a brief account of the anharmonic 

theory of vibrations in crystals and their effect on the neutron 

scattering cross section. Calculations of the effects of anhar­

monicity on individual vibrational modes, and on the heat capacity 

in rubidium, are described and discussed. 

A measurement of the lattice spacing in rubidium metal, 

and the characterization of the single crystal used in the phonon 

measurements, are described in Appendix I. Appendices II and III 

contain discussions of "spurious" scattering processes, and of 

the effects of instrumental resolution. Some of the algebra in­

volved in simplifying various anharmonic expressions is described 

in Appendices IV and V, and the last two appendices (VI and VII) 

supplement the reprints at the end of the thesis, which describe 

a measurement of the scattering amplitude of rubidium, and work 

on the crystal dynamics of potassium chloride. 



C. LATTICE DYNAMICS IN THE HARMONIC APPROXIMATION 


(i) The Potential Energy 

The dynamical behaviour of a crystalline solid is 

determined by the form and relative strength of the interac­

tions between its constituent atoms. Solids are generally 

classified according to their properties into such categories 

as metals, inert-gas solids and ionic crystals. The various 

microscopic theories of lattice dynamics may be classifed 

in a similar way. These theories differ with respect to their 

assumptions about the predominant forces in the material, but 

they are all based on a very general formulation of the poten­

tial energy due to Born and von Karman (1912). This formulation 

is based on two assumptions. 

In the adiabatic approximation it is assumed that the 

electrons in the solid instantaneously take up a configuration 

appropriate to that of the displaced nuclei, and that their 

energy may therefore be effectively included in the potential 

energy of the nuclei. The degree of validity of this approxi­

mation has been discussed by several authors. Peierls (1955) (p.6) 

states that in metals the approximation is not justified, 

but this view is not generally held. Born and Huang (1954) 

discuss the approximation, and conclude that it is valid for 

"all important crystal properties". 

Secondly we make the realistic assumption that the nuclear 

7 
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displacements are small compared with interatomic distances. 

We therefore write the potential energy of the system, ¢(~) 

where R denotes the nuclear positions, as a Taylor's series 

in the displacements: 

1 = ¢ ( R) + l: ¢ ( .Q,) u ( .Q,) + -21 l: ¢"'a ( .Q, .Q,' ) ua ( .Q,) u a ( Q, ' )J 

- o .Q,a a a 	 .Q, a ~µ µ 

.Q, I 13 

+ 	 7 l: ¢ (.Q,.Q,'.Q,")u (.Q.)u (.Q.')u (t")
3	 .Q, a a.Sy a 13 y 

.Q, Is 

.Q,"y 

+ ~! L: ¢ (.Q,.Q,'.Q,".Q,"')u (.Q.)u (t')u (t")u (t"') 
.Q, a,t"y al3ycr 	 a 13 y a 
.Q, I 13 I .Q, II I 0 

+ •••• (I-Cl) 

Here u (t) is the a component of the displacement of atom t,
a 

and 

¢ ( .Q,)
a 

au (t)auQ(.Q,')a µ o 

¢ (.U,'t") = a.Sy 	 au (t)au 0 (R. 1 )au (.Q.")a µ y o 

a4¢ (R) 


<Pasycr(.Q,.Q.'t"t"') =au (.Q.)au (t•)au (~")au (t'") 
 <r-c 2 ) 
a S y a o 

The subscript o indicates that the expressions are evaluated 

with the nuclei in their equilibrium positions. 
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In most theories of lattice dynamics a further approxi­

mation, the harmonic approximation, is made: terms in Eq. 

(I-Cl) containing three or more displacements are neglected. 

In this way the equations of motion decouple, and the atomic 

motions may be represented as a system of independent simple 

harmonic oscillators. The harmonic approximation is an ex­

cellent starting point for treating many properties of the 

crystal lattice. 

In the remainder of this section and in Chapter II we 

shall stay within this approximation. The consequences of 

retaining higher order terms in the potential energy will be 

discussed in Chapter III. The general Born-von Karman 

theory, which is presented in the following pages, is not res­

tricted to systems with two body forces. In particular we 

note that "atomic force constants'' (introduced in the following 

subsection) which are often extracted from the measured 

dispersion curves of metals, include the effect of many-body 

forces. On the other hand the majority of theoretical treat­

ments of lattice vibrations assume a two-body potential, but 

again parameters of these models which are fitted to experiment 

will incorporate the effects of many-body forces if they 

are present. 

(ii) Equations of Motion, and the Dynamical Matrix 

To simplify the discussion we shall consider a per­

fect crystal with no defects or impurities, and we shall neglect 
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surface effects. These topics have been discussed by Elliott 

(1966) and by Wallis and Gazis (1965) respectively. The fol­

lowing treatment is further specialized to the case of one 

atom per primitive unit cell. 

The Hamilton~an rar the crystal, H, contains a kinetic 

energy term, 

• 2 
u ( 9.,)

a 

where m is the mass of a~ atom, and the dot denotes differen­

tiation with respect to time. The potential energy is written 

(in the harmonic approximation) as 

<P (R) = ¢ (~) I + 2.: cp a.(£) uLl (,Q,) + ~ 2.: ¢ (££')u (£)u,_(X,') ( I-C3) 
aµ0 a i::> o 	 £a £ a 


£'13 


Using Hamilton's equation, 


2
ma u (£)3H a= duo. cu 

we obtain 


mu(£)="'{, + l: ¢ Q(££')u,,,(.Q,') 

:i. +'a'; t'S aµ P 

We immediately note that. -:;; (£) is a component of the force 
a 

on atom 2. in the equ1.lib.c i um configuration, which therefore 

vanishes. The equation of motion is then 

(I-C 4)mu a (£) = ­

The "atomic force const.:;.;;t" (AFC), ¢ai3 (£9, 1 
), is the negative 

m
2
ΣT

l
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of the a component of the force on atom i, when atom i• is 

displaced unit distance in the S direction. It only depends 

on the relative positions of atoms i and i•. Furthermore 

the number of independent AFC's for a particular shell of 

neighbours is very considerably reduced by symmetry. For 

example there are only 3 independent nearest neighbour AFC's 

in the face centred cubic (f.c.c.) lattice. (See also 

Brockhouse et al. 1968b). 

If the AFC's for a particular shell of neighbours are 

derivable from a potential V(r) which depends only on scalar 

r, then they may be expressed in terms of radial and tangen­

tial force constants as follows: 

(I-CS) 

Under these "axially symmetric" conditions, there are only 

two independent AFC's per shell of neighbours. 

If the constant term~ (R) j , in Eq. IT-C3) ,is taken 
- 0 

to be independent of volume, then an extra (equilibrium) con­

dition exists linking the AFC's. For the b.c.c. case this 

condition is (Brockhouse et al. 1968b): 

(1XX)-(1XY)+(2YY)+4(3ZZ)+ll(4YY)-11(4YZ)+4(5XX)-4(5XY)+ ••. = 0 

Here the number inside the brackets denotes the shell of 

neighbours and the letters denote the element of the 3x3 

force constant matrix for this shell. In metals the constant 
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term is sometimes taken to be volume dependent, in which case 

the equilibrium condition, as stated above, no longer holds. 

Following Brockhouse et al. (1968b) we shall take "central 

forces" to mean axially symmetric forces which satisfy the 

equilibrium condition. 

We write a trial solution to Eq. (I-C4) as 

(I-C6) 

This solution satisfies the Bloch condition, and represents 

a periodic vibration of frequency w. For a particular wave-

vector ~there are 3 modes of vibration, labelled j = 1,2,3: 

ea(~j) is a component of a unit eigenvector, or polarization 

vector, and C(~j) is an amplitude factor. The general solution 

is obtained by summing Eq. (I-C6) over~ and j. Substituting 

Eq. (I-C6) into Eq. (I-C4), we obtain a set of 3 equations 

(IC-7) 

where 

(IC-8) 

is an element of the dynamical matrix ~' which is seen to 

be independent of i, since terms in the summand only depend 

on relative displacements. 

An infinitesimal uniform translation of the crystal 

in the x-direction may be represented by u (~) = o for all a ax 

i. Since no internal forces act, il (i) = O. Substitutinga 
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into Eq. (I-C4), we obtain the important result: 

L: ¢ (,U, ' ) = 0 , or 
Q, I a.S 

¢ (.U,) = - Z' ¢ (,Q,Q,') (IC-9) 
Cl.µ

0 
Q,' Cl.µ

0 

where the prime indicates exclusion of the term Q, = Q,'. We 

may therefore write 

D (s) = z' c1>'"" 0 (ii 1 )[exp{is·EU,'i)}-ll (IC-10)
a.S Q,' ""µ 

where r(Q,'Q,) = £(,Q,') - r(Q,). 

Multiplying both sides of Eq. (IC-7) by ea.(~j), sum­

ming over a., and using the fact that ~(gj) is a unit vector, 

we have 

(I-Cll) 

Thus solutions to Eq. (I-C4) are obtained by diagonalizing 

the dynamical matrix. 

It remains to determine the allowed values of ~· The 

"cyclic boundary condition" (see Born and Huang (1954), p.45) 

is normally employed. We simply state the result. 

For a crystal with N primitive cells there are N 

states uniformly distributed within the first Brillouin zone 

of the reciprocal lattice. The reciprocal lattice is defined 

ia•bby the set of vectors b such that e - - = 1, where a is a 

vector of the direct lattice. The first Brillouin zone is 
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usually defined ?UCh that every point within the zone is closer 

to the origin than to any other reciprocal lattice point. 

In the case of a crystal with n atoms per primitive 

unit cell, a particular atom is labelled (ik), where£ desig­

nates the cell, and k the atom within the cell. The equations 

of motion become 

l: cp (£k£'k')u (£'k')as s£'k'S 


in an obvious extension of the notation, and we now obtain 


l: (I-Cl:2)

aS 

kk' 


with 

Z' <Pao (£k£'k') [exp{is•;:(£'k' ,£k) }-1]. (I-Cl3) 
£ 'k I µ 

The branch index j takes on 3n values. 

If the interatomic potential ¢(r) is only a function 

of Ir!, the dynamical matrix may be expressed in terms of its 

Fourier transform, ¢(Q). 

Assuming two-body interactions only, we note that~(~), 

the total potential energy, may be written as a sum of indivi­

dual terms cp ( \ E. (£ £ ' ) I ) ::: cp ( £ £ ' ) : ­

= 1 L ¢(££I)
2 ££' 


Thus 
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and 
o2 cI>(R) 

Defining 

cjl (r) (I-Cl4) 

where N/O is the number of cells per unit volume, we obtain 

Therefore, using Eq. (I-ClO), 

D <s) = L:' ¢"' 0 (U,')[exp{-is_•E_(.U, 1 )}-l]
CX. f3 fl I ....., µ 

= ~ JQ"'Q 0 ¢(Q) ~·. [exp{i(Q-s)•£(fl!l')}­
(2TI)3N "" µ ,,, 

Now 

~ 1 ia • r. lds_) (I-Cl5)[., e ,;m. -J = 
j 

il if S is a reciprocal lattice vector G. (I-Cl 6 )where t:..· (s_) = 
0 otherwise. 

Therefore 

(I-Cl7) 
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The displacements u (9,) may be written in terms of a. 

phonon creation and destruction operators, a*(-s.j) and a(s.j), 

in the following way. A general expression for u (£) is a. 

ua.(9,) =. E. C(gj)ea.(s_j)exp{i[9_"E_(£) - w(gj)t]}. (I-Cl8) 
SlJ 

The total vibrational energy of the system is simply 

E 	= 2T = m ·l: 
9, a. 

=Nm 	E <IC(s_j) i 2>w 2 (s_j). (I-Cl9) 
9j 

We may also write (Eq. III-AlO ) : 

E = Z [n(s_j) + }l.trw(s_j), 
s_j 

where 

(I-C20) 

and therefore 

Defining phonon operators 

A(s_j) = a(s_j) + a*(-s_j) (I-C21) 

we obtain 

(J-C22) 
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and 

(I-C23) 

and finally 

..tf ~ ~ 

ua(,Q,) =(2Nm) l: ( w ( ~j ) ) 
2 

A ( sr_j ) ea (s_j ) exp { i [ Sl •!:. ( ,Q,) -w (gj ) t ] } . (I-C24) 
s_j 

(iii) Metals 

In this section we apply the above results to the 

situation in metals. We consider three contributions to the 

interionic potential V(r) (a) the repulsive Coulomb interac­

b b . (c) ( ) 2 h . h .t ion. etween are ions, V !:. = Z e 2; r, were Z is t e .ionic 

charge, (b) the repulsive overlap potential, which is normally 

taken to be of the Born-Mayer type, V(R) (!:.) = Ae-ar, and 

(c) the indirect (attractive) interaction, v(E) (!:_)I via the 

conduction electrons, including the electron-electron interac­

tion. Ziman (1964) has shown that V(r) may be regarded as 

the effective potential between neutral "pseudoatoms" in a 

metal. We may take this as further justification for using 

the adiabatic approximation in the case of metals. 

A number of calculations of the phonon dispersion relation 

in metals have been based on the 11 pseudopotential" method. 

On the other hand measured dispersion curves are commonly 

analysed to obtain empirical atomic force constants. We 

shall now consider these topics. 
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(a) The Pseudopotential Method 

Only a brief outline of this important subject will 

be 	given. A useful account has been given by Harrison (1966). 

The one-electron Schrodinger equation is written 

where V(£) is the potential seen by an electron. The wave-

function ~ is written as a sum of orthogonalized plane waves: 

~ = l: as. (1-P) I-k+a> = (1-P) cp,
.:;;&.s. 

where P 	 is a projection operator. Equation (I-C25) then becomes 

where ¢ is the "pseudowavefunction" and W is the pseudopoten­

tial. 

The effect of this rearrangement is to produce an 

equation which contains a relatively small potential W. Using 

second order perturbation theory, we obtain the energy of 

the state cp!s as: 
2 

-tf2k2 l<k+s_lwlk>l 
E(~) = ~ + <~jWjk> + l: 1 (I-C26) 

s. 

We assume a local pseudopotential, and write 

W(r) = 	l: w ( Ir-r . I ) (I-C2 7) 
. - -J
J 

so that 
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(I-C28) 


where the structure factor 

(I-C29} 


and the form factor 

w(q) = ~ f exp{-i~·!}w(r)d3r ( I-C30) 

where 0 is the volume of the solid and N is the number of ions. 

The total electron energy per ion is then 

E = 1 L: 
el N k<k 

F 

where the free electron contribution, Efe' is 

-fi2k2 
Z (~ __F + W ) 

5 2m o 

and the band structure contribution, Ebs' is written 

Ebs = L:' S*(~)S(~)F(q) (I-C31) 

~ 

Here the "energy-wave number characteristic", F(q), is 

F (q) = 20 iw(q) 
1
2 2m (I-C32)

3 

I( 2 Tr ) N -112 

k<;kF 

The summation over k<kF has been replaced by an integral. 

This yields the result 

2 
F(q) = - 09 2 !w(q) I2 

[E:(q)-1] (I-C33) 
8Tre N 
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where the Hartree dielectric function 

(I-C34) 

and n = q/2kF. 

The effect of screening is included in the following 

way. The pseudopotential is written as the sum of two terms: 

0 1w(r) = w (r) + w (r) 

i.e. , 

(I-C35) 

0Here w is the potential due to Coulomb interaction with the 

ions, while w' is the potential due to Coulomb interaction 

with the electrons: w' is related through Poisson's equation 

to the fluctuation in electron charge density,which is in turn 

obtained from the first order wave functions. The same inte­

gral, which appears in Eq. (I-C32), enters this calculation, 

and we obtain 

w ( q} = w 0 (q 1/ E: ( q) 

and finally 
- ~q 

(I-C36)F (q) = 2 

2 

I w0 ( q ) 12 r1 - E: tq ) ] . 
87Te N 

The dynamical matrix is written as the sum of three 

terms, corresponding to the three contributions to the inter-

ionic potential: 

(I-C37) 
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The Coulomb term may be treated by Ewald's method, as described 

by Kellermann (1940). The repulsive term is generally small 

and is often neglected. The electronic term is related to 

the electronic energy per ion, Eel' by 
28 E 

D~~) (s_) = N ~: (~ua {,Q,}~~S (£'}) [exp{iS:E_(£',Q,) }-1] (I-C38) 

The positions of the ions are only contained in Ebs' and we 

therefore have 

2 
( CJ [S*(K)S(K)] 
dUa (9-) CluB (,Q, 1 J 

and therefore 

D (E) (a) = 
aS ~ 

or 
D (E) (er) = as .:;i. 

(I-CJ 9) 

This expression is analogous to equation (I-Cl7). We 

shall discuss the application of this method to the alkali metals 

in Chapter II. 
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(b) Analysis of Dispersion Curves of Metals 

The interatomic forces in a metal are expected to de­

crease with increasing interatomic separation. As an approxi­

mation, we may assume that these forces extend out to i'th 

nearest neighbours only. A linear least squares fit to the 

measured dispersion curves along the symmetry directions then 

yields a set of AFC's ¢as(££'), and the usefulness of the 

approximation is largely determined by the agreement between 

the measured frequencies and those calculated using the set 

of AFC's. In practice the dispersion curves of many metals, 

with the notable exception of lead (Brockhouse et al. 1962), 

are adequately described using AFC's out to fewer than 10 

neighbours. Furthermore these AFC's may be used to calcu­

late frequencies at a mesh of points in reciprocal space, 

and hence g(v), the phonon frequency distribution or density 

of states. Knowing g(v), thermodynamic properties of the 

material may be calculated. Corrections for departures from 

harmonicity may sometimes be estimated. 

A detailed account of this method of analysis has 

been given by Svensson et al. (1967) with particular reference 

to copper. An analysis of the dispersion curves of rubidium 

is given in Chapter II. 

(iv) Ionic Crystals 

The simplest picture of the interionic forces in ionic 

crystals is the rigid ion model of Born (see Born and Huang 
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1954). The ions are regarded as rigid units, and the inter-

ionic potential contains a long range Coulomb term and a 

short range repulsive contribution of the Born-Mayer type. 

The equations of motion are then written: 

mw 2U = DU = (R + Z C Z) U (I-C40)= - =- = = = = ­

where u contains the ionic displacements, mand ~ are diagonal 

matrices containing the ionic masses and charges respectively, 

~ is the dynamical matrix, ~ is the repulsive contribution, 

and C is a matrix of "Coulomb coefficients", 

a2((r)-1) 
C (~kk') = - I' [~~~-=-~~~~-

as ~'k' aua (~k) dUS (~ 1k I) 


with~= ~(~'k' ,Qk). These coefficients may be calculated by 

Ewald's method. 

An extension of this model, which is generally necessary 

in order to obtain reasonable agreement with experiment, is 

the shell model which has been described by Cowley et al. (1963). 

We consider now displacements of an ion core relative to the 

outer shell of electrons in the ion. The equations of motion 

become: 

where W contains the shell displacements, Y is a diagonal 

matrix containing the shell charges, and~ and g represent 

the core-shell and shell-shell repulsive interactions. These 
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equations may be solved for ~ yielding 

mw 2u = [ (R+ZCZ) - (T+ZCY) (S+YCY) -l (T+YCZ)] U (I-C41)= - = === = === = === = === ­

This expression simplifies when ~ lies along a symmetry direc­

tion. 

Calculations based on the shell model invariably involve 

further approximations. The matrices ~' g and ~ are commonly 

chosen to differ only by a scaling factor. For example Cowley 

et al. (1963) chose ~ = ~ = ~/Ys where ys is a constant. 

Various other approximations and their validity are discussed 

in this paper. The short-range repulsive forces are often 

taken to be axially symmetric forces between first or first 

and second neighbours only, and sometimes further conditions 

are imposed. The matrices ~, g and ~ are normally expressed 

in terms of mechanical and electrical polarizabilities (Cowley 

etal. 1963). 

The application of the shell model to the case of 

potassium chloride is described in a reprint at the end of 

this thesis (Copley et al. 1969). 

This concludes our discussion of lattice dynamics in the 

harmonic approximation. In the remainder of this chapter, we 

shall consider the theory and practice of neutron scattering, 

with particular reference to the study of lattice vibrations. 
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D. NEUTRON SCATTERING THEORY 

(i) The Born Approximation and Fermi Pseudopotential 

We have already noted (Section IA) that there are 

many similarities between X-ray scattering and neutron scat­

tering. The starting points for the two theories are however 

quite different, since there are fundamental differences 

in the form of interaction between the radiation and the 

scatterer. 

X-rays are scattered by electrons. The scattered 

amplitude in the forward direction from a single atom or ion 

is proportional to the number of electrons, z. The amplitude 

decreases away from the forward direction. This behaviour is 

described by the form factor f. (sin 8/'A), where i indicates 
l 

that f depends on the atom or ion, e is the Bragg angle, and 

'A is the wavelength. The form factor is not exactly known: 

it is generally calculated by a Hartree-Fock or related 

method. 

Neutrons are predominantly scattered by nuclei. There 

is a further important interaction, in solids containing 

atoms with unpaired spins, between the magnetic moments of the 

atom and of the neutron (see e.g. Bacon 1962), but that 

interaction will not concern us here. An exhaustive list 

of the known interactions of slow neutrons with matter has 

been given by Shull (1967). 

Slow neutron scattering is treated within the framework 



26 

of the first Born approximation. At first sight this might 

seem inadmissible since the nuclear interaction potential 

cannot be regarded as a small perturbation compared with the 

energy of the neutron. This objection is avoided through 

representation of the nuclear interaction by the Fermi 

pseudopotential (Fermi 1936): 

2 
V(r) = 2rn b6(r) (I-Dl)- m 

n 

where m is the neutron mass. This delta function represen­n 

tation is justified since the range of the nuclear interaction 

( ~ 2 x l0-13 cm) is very small compared with the wavelength 

of a thermal neutron (I'\, 10-a cm). The "scattering amplitude", 

b, is determined by experiment (see e.g., Bacon 1962). The 

scattering properties of the nucleus are completely deter­

mined by the scattering amplitude. 

Scattering amplitudes vary somewhat erratically with 

Z, in contrast with the smooth variation for X-rays. Further­

more, because of the short range of the interaction, neutrons 

are scattered isotropically by a nucleus, so that the "form 

factor" for neutrons is independent of scattering angle. 

(ii) Van Hove's Treatment 

Van Hove (1954) has developed an elegant method for 

treating the scattering of radiation within the first Born 

approximation. For the case of neutrons scattered by a system 

of identical particles with scattering length b, the differen­
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tial scattering cross section per unit solid angle ~, per 

unit energy interval E, is written: 

(I-D2) 

where 

(I-D3) 

and 

x o(w + (E -E )/~). (I-D4)n m 

Here Q = k - k' and '1'l"w = E - E' are the wave vector 
- -0 - 0 

and energy transfer to the system, and k (E ) and k' (E')
-0 0 

are the wave vector (energy) of the incident and scattered 

neutrons respectively. En and Em are the energies of the 

initial and final states of the system In>, )m>; g(n) 

is the relative population of state In> given by 

g(n) = exp(-En/kBT)/~ exp(-Ei/kBT). (I-D5) 
l. 

The positions of the N particles are described by the vectors 

The scattering cross section, Eq. (I-D2), is the 

product of two terms. The first term, A, contains information 

about the neutron and about the type of scatterer. The 

function S(~,w) contains information about the structure of 

the scattering system. It is the Fourier transform of the 
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generalized pair distribution function G(£,t) which, in 

the absence of quantum effects, has the following significance: 

given a particle at position£' at time t', G(£,t) measures 

the probability that there is a particle at r'+r at time 

t'+t. 

We now distinguish two types of cross-section. Since 

the neutron has spin 1/2, a nucleus with non-zero spin has 

two scattering lengths corresponding to parallel and anti-

parallel configurations. Furthermore different isotopes 

generally have different scattering lengths. Coherent 

scattering results when waves scattered by identical nuclei 

(i.e. nuclei of the same isotope, having the same spin) 

interfere with one another. Incoherent scattering, on the 

other hand, results from scattering by the individual nuclei. 

The total scattering cross section is related to the sum of 

the squared scattering amplitudes of the nuclei, whereas 

the coherent cross section is related to the square of the 

sum of the scattering amplitudes. The scattering cross section 

is then written as a sum of coherent and incoherent cross 

sections: 

2 2 2d 0 d o(COH) d o(INC)
= + ( I-D6)

drtde: drtde: drGde: 

where 
2 <b>2k I

d o(COH) = 5COH(Q_,w)drtde: -tr ko 
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and 

The expressions for SCOH(g,w) and SINC(g,w) are given by 

Van Hove (1954). In the majority of experiments, including 

those reported here, incoherent scattering contributes an 

undesirable background beneath the observed resonance. 

Fortunately the incoherent scattering cross section is 

generally smaller than the coherent cross section. In 

certain cases important information about the phonon density 

of states has been obtained from measurements of incoherent 

scattering cross sections (Stewart and Brockhouse 1958, 

Page 1967). 

The Van Hove formalism is particularly useful for 

treating scattering from liquids and magnetic systems. In 

these situations the interest lies in the correlation between 

atoms, or spins, at different sites. Truly elastic scat­

tering (1'lw = 0), inelastic scattering (...ffw ~ 0), and scat­

tering without regard to energy transfer (6(~w) = 00 ) 1 yield 

information about time-averaged correlations (6t = 00 ) , 

correlations between two different times (6t ~ 0), and 

correlations at a particular time (6t = O) respectively. 

These relationships result from the connection between S(g,w) 

and G (,E. 1 t) • 
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(iii) Scattering by a Crystal 

The scattering of neutrons by a crystal may be 

treated using expression (I-D4) for the scattering function. 

Since the anharmonic situation will be considered in Chapter 

III, a brief outline of lthe harmonic theory (SjSlander 1958) 

will be given here. A simplified account (in which it is 

assumed that all modes of a given ~ are degenerate and that 

the polarization of one of the modes is parallel to 2) is given 

by Kittel (1963). 

Writing the atomic position E.~ in Eq. (I-D4) as an 

equilibrium position ~~ plus a displacement £~, the Heisen­

berg representation is utilized to obtain 

-oo 

(I-D7) 

where the brackets<< •.• >> denote the thermal average, and 

the delta function in Eq. (I-D4) has been replaced by its 

Fourier transform. 

The thermal average is simplified using the relation 

(Messiah 1962, p. 442): 

A B A+B 1 e e = e exp 2 cA,B). 

The displacements £~(t) are written in terms of the operators 
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A(~j), as in Eq. (I-C24). The thermal average in Eq. (I-D7) 

is then separated into a time-independent part, known as the 

Debye-Waller factor: 

exp [ - 2W (Q_) ) 

2= exp { - < rQ.. ~) > } (I-D8) 

and a time-dependent part: 

2~ <rg,. ~ <sj )1 
exp { 2Nm L:. exp (i~ •~n n • ) 

~J ().) (~j) !v!v 

x [ (n (~j) +l) exp Hw (~j) t) +n (~j) exp (iw (~j) t)])} (I-D9) 

Expression (I-D9) is expanded in a power series which, to­

gether with Eq. (I-D8), is substituted into Eq. (I-D7): 

sums such as L: exp(i~·£,Q,) are replaced by multivalued delta 
,Q, 

functions 6(~) using Eq. (I-Cl6), and the time-dependent 

exponential terms such as exp(i[w+w (~j)) t) are integrated 

over time to give delta functions in energy. The first term 

in the final expression is the zero-phonon (elastic 

scattering) function: 

(I-DlO) 

The delta functions simply express the conditions for Bragg 

reflection: V is the volume of the crystal. 

The next term gives the one-phonon cross-section: 
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[g_.~(gj)]2
= (2n) 3 N exp[-2W(Q)l~2 ~ 

V - m gj w (gj) 

x [ (n (g_j) _+l),.o (w-w (gj) ) +n (9j) 6 (w+w (9j) ) ] /::, (9_-9) (I-Dll) 

The delta functions in this expression express conservation 

of wave vector and energy. The cross section contains terms 

corresponding to phonon creation (neutron energy loss) and to 

phonon annihilation (neutron energy gain). Since these cross 

sections are proportional to n(~j)+l and n(~j) respectively, 

measurements of high frequency excitations and/or measure­

ments at low temperatures must be performed with neutron 

energy loss. Further consequences of equation (I-Dll) 

will be discussed with particular reference to rubidium in 

Section IID. 

We proceed now to a general discussion of the prac­

tical side of neutron scattering - the spectrometers and 

their operation. 
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E. NEUTRON SCATTERING METHODS 

(i) Types of Instrument 

A variety of instruments is used for measurements of 

slow neutron scattering cross sections. (see e.g. papers in 

General Reference 4, Vol. II, and General Reference 7). 

As indicated in Section ID, the natural variables 

of a scattering experiment are the energy and wave vector 

transfers, ~w and ~· Instruments are therefore designed to 

define the direction and energy (and hence the wave vector) 

of the incident and scattered beams of neutrons. The energy 

is generally defined in one of two ways: by its time of 

flight over a measured distance, or by Bragg reflection from 

a single crystal. 

In many time-of-flight machines a particular neutron 

velocity is selected by a system of beam choppers. The first 

chopper defines an origin in time, and the second chopper is 

phased to transmit neutrons of the desired velocity. Sub­

sequent choppers reduce the fast neutron contribution to the beam. 

In an alternative arrangement a rotating crystal fulfils the 

twin functions of pulser and monochromator. The energy of a 

scattered neutron is deduced from its time of arrival at the 

detector. Such spectrometers are more suited to experiments 

on liquids than to measurements of excitations in single crystals. 
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The inelastic scattering measurements described in 

this thesis were made using the McMaster triple-axis spectro­

meter at the E2 hole of the NRU reactor, Chalk River (Brockhouse 

et al. 196Ba). A schematic diagram of the spectrometer is shown 

in Fig. I-1. A particular wavelength A is selected from the 
0 

"white" reactor beam by Bragg reflection at the first mono­

chromator crystal. A second crystal, mounted parallel to the 

first, reflects the beam parallel to its original direction. 

The monochromatic beam is incident on the specimen, and neutrons 

scattered through the angle ~ are incident on the analyser 

crystal. Those of wavelength A' are Bragg reflected into the 

signal detector (B). In order to compensate for fluctuations 

in reactor power, counting occurs for a preset number of counts 

accumulated in the fission monitor counter which is placed in 

the incident beam. Collimators serve to define the direction 

of the beam at each stage. 

In many respects this spectrometer is typical. The 

twin monochromator system is however an unusual feature of the 

instrument. It has the advantage that the specimen table is 

fixed, and since the monochromator is in-pile the external 

shielding requirements are considerably reduced. The extra 

detector (labelled A in Fig. I-1) is useful for identifying 

various types of unwanted scattering process (see Appendix II). 

In most measurements of elastic scattering intensities 

a double~axis spectrometer is employed. The analyser crystal 

is omitted and scattered neutrons of all energies are counted. 
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This procedure is justified because the ratio of inelastic 

to elastic events within the crystal is generally very small. 

On the other hand certain elastic scattering measurements 

are best performed using a triple axis spectrometer set to 

accept neutrons with wavelength A' =A in the detector. For 
0 

example the lattice constants of several alloys were measured 

in this way (Hallman 1969). 

An undesirable feature of the present double mono­

chromator system in the E2 triple-axis spectrometer is the 

existence of contaminant wavelengths in the incident beam. 

Since these contributions to the incident beam have shown up 

in some of the measurements (Section IID), it is worthwhile 

to describe how they are produced. The monochromator crystals 

are made of copper, with (220) axes vertical and (220) planes 

parallel to their major faces. With this arrangement other 

sets of planes are parallel in the two crystals (see the inset 

in Fig. I-1). For every setting of the monochromator Bragg 

angle GM , there are therefore additional contaminant contri­

butions to the beam incident on the specimen. The principal 

contaminant is reflected from (331) planes in the crystal: 

a weaker contaminant, which is present at large values of 

GM, arises from (33l) planes. 

The wavelengths of the various components in the beam 

are easily evaluated. Defining S = cos-l (vi9) as the angle 

between neighbouring (220) and (331) planes, we have 
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Ao = 2d220 sinGM 

Ac = 2d331 sin (GM+6) 

Al 
c = 2d331 sin(G -6)M 

(I-El) 

I 

where A, Ac' and Ac are the wavelengths of the (220), (331) and 

(33l) components, and d and are the spacings between220 d 331 

(220) and (331) planes respectively. 

The contaminants can be removed by rotating one of the 

monochromator crystals about the normal to the major (220) faces. 

This operation must await an extended reactor shutdown since it 

involves removal of the in-pile plug. 

(ii) Operation of the Triple-Axis Spectrometer 

The triple•axis spectrometer is particularly useful 

for studies of phonon (and other) dispersion relations in single 

crystals. Five conditions must be satisfied in order to observe 

a peak in the scattered intensity due to a (harmonic) excita­

tion in the crystal. 

:±flw = E - E' (conservation of energy) (I-E2)
0 

Si + G = Q_ = k - k' (conservation of wave vector) ( I-E3)
-0 

w = w (s.j) (the dispersion relation). (I-E4) 

On the other hand there are only four angular variables: GM and 

GA (the monochromator and analyser Bragg angles respectively), 

¢, and ~ (the orientation of the specimen with respect to the 

incident beam, Fig. I-1). As a result peaks are only observed 
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for certain settings of the spectrometer. 

With the advent of the Constant Q and Constant E 

techniques, (Brockhouse 1961) the full capabilities of the 

triple-axis spectrometer were realized. In the Constant Q 

method, the angles are varied in such a way that q remains 

fixed and the energy transfer-flw is varied. Counts are 

accumulated at each point on the scan for a given monitor 

count. Typical peaks obtained in rubidium using ~his method 

are shown in Fig. II-2. The corresponding vector diagrams, 

indicating the initial and final positions on the scan, are 

also shown. Generally either eM or eA is kept constant 

throughout the run. Though corrections should be applied 

for the factor (k'/k) in the cross ~ection formula, Eqs.,
0 

(I-D2, I-D3),and for the variation of analyser efficiency 

with eA, the "fixed GM" mode is often chosen because the 

design of the spectrometer is simplified. At present the E2 

spectrometer is operated only in this mode. The Constant E 

method is analogous to Constant Q: both eM and eA are fixed, 

and ~ and ~ are varied so that Q follows a straight line path 

in reciprocal space. 

The bulk of the work described in this thesis was 

performed on the E2 spectrometer at Chalk River. Subsidiary 

measurements were made using the double- and triple-axis 

spectrometers installed at the McMaster reactor (Brockhouse 

et al. 1968a ). Both triple-axis instruments are controlled by 
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punched cards, as described by Rowe (1966). The cards are 

obtained as output from a computer prograrmne which, in its 

present modification (due to the author in collaboration with 

Mr. A. Larose), can calculate scans along any straight line 

path in (Q,w) space. In normal operation the spectrometer is 

run continuously and the angles are checked several times 

daily. 



CHAPTER II 


HARMONIC ASPECTS OF THE CRYSTAL DYNAMICS OF RUBIDIUM 

A. INTRODUCTION 

The elements lithium, sodium, potassium, rubidium, 

and caesium together with francium, whose most stable iso­

tope has a 21 minute half-life, occupy Group lA of the 

periodic table and are known as the alkali metals.* Atoms of 

these metals have the closed shell electronic structure of 

the inert gases He, Ne, Ar, Kr, Xe and Rn respectively, plus 

a single s-electron in the outer shell. In the condensed state, 

an alkali metal may be regarded as a collection of positive 

ion cores immersed in a negative sea of conduction electrons. 

The alkalis are considered the simplest of all metals and 

consequently a large body of experimental and theoretical 

work has been devoted to these materials. 

Most of the experimental work has been performed on 

Na and K, since they are less reactive and more readily 

available than Rb and Cs (see e.g., Brotherton et al. 1962). 

A disadvantage of using Li or Na for many low temperature 

experiments is the occurrence of a partial martensitic transi­

tion from the body centred cubic (b.c.c.) phase to a low 

*Apparently (Holmyard and Palmer 1939) Abu Mansur Muwaffak, 
a celebrated Persian physician in the 10th century A.D.

1 
was the first to distinguish between the carbonates of sodium 
and potassium. These substances were extracted from plant ashes 
by the Arabs, who described them as al- qali , "the ash", from 
which we obtain the moderm term, alkali. 

40 
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temperature close-packed structure with stacking faults. No 

such transition has been observed in K, Rb or Cs (Barrett 

1955, 1956). 

Some properties of the stable alkali metals are listed 

in Table II-1. In order to demonstrate trends in certain 

properties, including the lattice constant and the thermal 

expansion, values for the five metals have been taken from the 

same reference. Martin (1965) has noted that "the temperature 

variations of the densities of the alkali metals are not es­

tablished with any great certainty". For Rb and Cs the errors 

"may be as high as ±1%". An experimental determination of 

the lattice parameter of rubidium, by neutron diffraction, 

is reported in Appendix I. 

The low temperature limiting values of the Debye 

temperature for the specific heat, ec, are also taken from 
0 

Martin (1965). The slow neutron cross sections for absorp­

tion (crabs) and for coherent and incoherent scattering (acoh' 

ainc) are from the "barn book" of Hughes and Schwartz (1958). 

The value of a h for Rb is given as 3.8 barns in this re-co 

ference but a supplement (Goldberg et al. 1966) and a recent 

compilation in Acta Crystallographica (the Neutron Diffraction 

Commission, 1969) give the value 9.1 barns, which was reported 

by Mueller et al. (1963). More recent measurements of Copley 

(1970), Wang and Cox (1970), and Meriel (1970) favour a value 

between 5.7 and 6.7 barns (see Appendix VI). 



TABLE 

Atomic Number 

Atomic Weight 

Isotopes 

a o 
Lattice Constant (A) 
(at 78°K) 

Martensitic Transition 
Temperature 

bThermal Expansion
(10- 6 o K- l) 

Compressibilityc 
(at 4 ° K ) ( 10- 5 a tm • - 1 ) 

Elastic Constants cl l 
(at 78°K) cl 2 
(10 10 dynes/cm 2 ) C4 4 

Debye temperaturej 
ec ( o K)

a 

II-1. Properties of the 

Li Na 

3 11 

6.939 22.990 

92.6% Li~ 100% Na23 

7.4% Li 

3.49 4.238 

rv78°K rv36°K 

rv4 7 	 'V6 8 

0.78 1. 39 

14.44d 8.2le 
12.11 6.83 
10.94 5.78 

344 152.5 

stable alkali metals 

K Rb 

19 37 

39.102 85.47 

93.1% K39 72.2% Rb 
85 

6.9% K41 27.8% Rb87 
0.02% K40 (Ti =4. 7Xl0 l 0y) 

(T1=1.3xl0 9 y) ~ 

~ 

5.247 5.605 

rv83 	 rv9 0 

2.88 3.48 

4.lOf 3.2Sg 
3.41 	 2.73 
2.61 	 1. 98 

90.6 	 55.6 

(continued next page) 

Cs 
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132.91 

100% Csl33 

6.07 

'V9 7 

4.41 

2.46h 
2.05 
1. 48 

.i::. 
tv 

38.4 



TABLE II-1 (continued) 

Li Na K Rb Cs 

Melting Temperaturek 

TM(OK) 
453 371 337 312 303 

Neutron Cross 
Sectionst 
(barns) 

crabs 
crcoh 
Oinc 

71 
0.4 
0.8 

0.5 
1. 55 
1. 9 

2.1 
1. 5 
0.7 

0.7 
5. 9rn 
1.7 

29 
3.0 
4 

Mohs Hardnessn 0.6 0.4 0.5 0.3 0.2 

aBarrett (1956). See also Appendix I. 

bValues preferred by Martin (1965). 
c Swenson (1955). 

dSlotwinski and Trivisonno (1969). 

eDiederich and Trivisonno (1966). 

fMarquardt and Trivisonno (1965). 

gGutman and Trivisonno (1967) 

hKollarits and Trivisonno (1968). 

jMartin (1965). 

kSrnithells (1962), p. 695. 

tHughes and Schwartz (1958). 

rnCopley (1970). See also Appendix VI. 
n Weast (1968). 

.,,. 
w 



44 


Several properties of Rb are conveniently tabulated 

by Filyand and Semenova (1968). A book by Perel'man (1965) also 

contains much useful information on Rb and Cs. 

The determination of the phonon dispersion relation 

in rubidium, which is reported in this chapter, was undertaken 

for several reasons. 

(1) 	 Though many authors have calculated dispersion curves 

for the alkali metals, generally by the pseudopotential 

method, the amount of experimental information is fairly 

limited. At the time this work was started, only the 

dispersion curves of sodium and potassium had been 

measured. It was felt that measurements on another of 

the alkali metals would be worthwhile. 

(2) 	 The volume thermal expansion coefficients, av' for the 

alkali metals, are considerably larger than those of 

any other metal at the same reduced temperature T/Tm' 

(T is the melting temperature). Borelius (1963) has m 

compiled thermal expansion data for 16 metals: in order 

of increasing melting point, they are Hg, K, Na, Sn, Pb, 

Al, Ag, Au, Cu, Ni, Pd, Pt, Rh, Ir, Mo, and W. The 

volume expansivities (in units of l0- 5°K-l) , at the 

melting point, are 25 and 27 for Na and K respectively: 

in the same units a = 17 for Hg. For the remainingv 

metals the volume expansivity at T generally decreases m 
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with 	increasing T . Aluminium (T = 933°K) has the m m 

largest value, av = 13, whereas tungsten (Tm = 3650°K) 

has a ~ 4 (obtained by extrapolation of data which exists v 


up to 2700°K). 


The 	 large values of a for the alkali metals indicate v 

that the effective interatomic potential is more anharmonic 

than in other metals, at the same reduced temperature, T/T . 
rn 

Anharmonic effects will therefore be more pronounced. 

addition T is small for the alkalis so that these ef­m 

fects appear at relatively low (and therefore more acces­

sible) temperatures. The effects of temperature on the 

phonon spectrum are consequently of some interest. 

(3) 	 Of the five alkali metals, rubidium has the best neu~ron 

cross sections (Table II-1) , whereas the remaining two 

choices for a neutron scattering experiment (Li and Cs) 

have the worst cross sections. 

(4) 	 There is no martensitic transformation in rubidium 

(Barrett 1955, 1956). 

(5) 	 Both caesium and rubidium have melting points close to 

room temperature. This makes them preferable to lithium 

for anharmonic studies. The melting point of caesium 

is uncomfortably low, whereas precautions need only be 

taken to keep a rubidium crystal away from heat. (The 

unfortunate demise of the crystal, described in a later 

section, is not believed to result from its melting). 
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B. EXPERIMENTAL AND THEORETICAL WORK ON THE ALKALI METALS 

The crystal dynamics of the alkali metals has been 

the subject of much theoretical work over past years. A use­

ful review is given by Joshi and Rajagopal (1968). Cochran 

(1966) gives references to some of the earlier work. 

The first fundamental calculation of the lattice 

vibration frequencies in a metal (Na) was that of Toya (1958). 

Following Fuchs (1935, 1936) he wrote the interionic potential 

as the sum of three terms, namely the Coulomb repulsion, the 

overlap repulsion, and the attractive interaction via the 

conduction electrons (Section I C(iii)). The dispersion 

curves of sodium were subsequently determined by Woods et al. 

(1962), and the agreement between these measurements and 

Toya's calculation is noteworthy. 

More recent theoretical work on the phonon spectra of 

metals is due to many authors, including Vosko et al. (1965), 

Animalu et al. (1966), Schneider and Stoll (1966a, 1966b), 

Wallace (1968, 1969), Prakash and Joshi (1969) and Ashcroft 

(1968). Further references are contained in papers by Price 

et al. (1970) and by Blanchard and Varshni (1970). Most 

of these workers adopt the pseudopotential, or model poten­

tial, approach, which was outlined in Section I c. On the 

other hand, Vosko et al. (1965) used many-body perturbation 

theory to treat the electron-ion interaction term. 

Cochran (1963) adopted a different approach, extracting 
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an effective potential from the experimental measurements of 

Woods et al. (1962) on Na. 

The dispersion curves of potassium were measured by 

Cowley et al. (1966), and found to be very similar in shape 

to those of sodium. These authors analyzed their results to 

obtain atomic force constants (as did Woods et al. for sodium), 

and they also obtained an effective potential using an 

extension of Cochran's method. More recently preliminary 

reports of experimental measurements on lithium (Smith et al. 

1968) and rubidium (Copley et al. 1968) have appeared. 

The present chapter reports further work on rubidium, 

including measurements at different temperatures. Attempts 

have been made to correct the measurements for experimental 

effects such as resolution and unwanted scattering processes, 

so that a reliable set of results is available for comparison 

with theory. Such corrections are particularly large in 

the case of rubidium, principally because the lattice spacing 

is large and the unit cell in reciprocal space is therefore 

unusually small. Furthermore the phonon frequencies in this 

metal are uncomfortably low with the result that unwanted 

elastic scattering processes are more commonly picked up. 

The details of these corrections are described in Appendices 

II and III • 

Section !IE contains an analysis of the measurements, 

and calculations of the phonon frequency distribution for 
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rubidium. The final section of the chapter is devoted to 

a detailed discussion of unexpected observations in the course 

of the measurements, together with a consistent explanation. 

C. MEASUREMENT OF NORMAL MODE FREQUENCIES 

The frequencies of the normal modes of vibration of 

body-centred cubic (b.c.c.)rubidium, for wave vectors along 

five symmetry directions in the reciprocal lattice, have been 

measured at several temperatures using the Chalk River (E2) 

triple-axis spectrometer (Section Ii). 

The specimen was a single crystal of cylindrical cross 

section, purchased from Research Crystals Inc., Richmond, 

Virginia. It measured 3-l/8" long by l-1/2" diameter. A 

truncated cone at one end of the crystal occupied one third 

of the total length, narrowing to 3/8" diameter at the end 

(Fig. II-1). The crystal was examined, and subsequently 

sealed in an aluminium can, using a commercial dry box filled 

with argon. Protective grease, which surrounded the specimen, 

was first removed using facial tissues. A black film (of 

oxide/hydroxide?) was removed by wiping the surface with 

tissues soaked in xylene. The crystal was then transferred 

to an aluminium can having 0.040" walls, fitted with a 

re-entrant cap and an indium 0-ring. The can was finally 

screwed up and sealed with epoxy cement. 

After the first experimental run at low temperature, 

the specimen was removed from the cryostat and a small amount 
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of material which had oozed through the indium seal caught 

fire. Since then there have been no further problems of this 

nature. It is clear that the metal must be treated with 

respect. 

An event of more significance did however occur toward 

the end of the experimental work. A long series of measure­

ments was made between October and December of 1969, using a 

helium cryostat. The specimen was left in the cryostat, under 

vacuum, until March 1970. At that time an attempt to check 

the alignment of the crystal was thwarted because of very poor 

intensity. On further examination the specimen was found 

to be largely polycrystalline, and the conical end contained 

three crystals at about 60° to each other. No explanation 

for this behaviour has yet been found. Attempts to purchase 

another crystal ha.we been unsuccessful, and the experimental 

work was therefore concluded somewhat prematurely. 

The crystal was initially aligned using the twin.axis 

spectrometer at the McMaster reactor (Brockhouse et al. 1968a} 

A {llO] axis was found within 2° of the cylindrical axis, and 

the (200) rocking curves were 0.4° wide, indicating that the 

mosaic spread in the crystal was of this order. A careful 

search for extra crystals in the specimen in March 1969 

(Appendix I ) demonstrated that it was indeed single. Most 

of the measurements reported in this thesis were made with 

a (110) scattering plane. Certain branches were measured, 
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at 120°K only, with a (100) scattering plane instead. 

Inelastic scattering measurements of phonons were made 

using the McMaster triple axis spectrometer at Chalk River 

(Brockhouse et al. 1968a) almost exclusively in the constant 

Q mode of operation (Section ID). The monochromator used 

(220) planes of copper, and the analyser used (200) and 

(occasionally) (220) planes of copper. Soller collimators 

were employed to reduce the horizontal divergence of the 

8 11beam. For most of the measurements, collimators with 

0.1 11 plate separation were used. For some of the measurements, 

two inches of single crystal quartz were inserted in the 

incident beam to reduce second-order contamination. The 

choice of collimation was determined by the conflicting re­

quirements of good experimental resolution and good intensity. 

With the system described above, the collimation was fairly 

well matched to the mosaic spreads of the monochromator, 

specimen, and analyzer (Brockhouse 1966). 

The fixed incident frequency v was generally 4.79 
0 

1012THz (l THz = cps). Some of the earlier measurements 

were made at other frequencies, between 3.8 and 5.5 THz. 

Several considerations affect the choice of v . In particular,
0 

the energy resolution improves with larger eM, smaller v • 
0 

With v = 4.79 THz, and the above collimation, the energy
0 

resolution was approximately 0.2 THz (full width at half 

maximum) : this value was obtained from the width of a plot 
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of scattered intensity against analyzer angle, using a vana­

dium specimen (which scatters almost completely incoherently 

(Brockhouse 1955)). 

On the other hand, the proportion of second-order 

contaminant in the incident beam increases and (toward the 

low frequency end of the available range) the intensity of the 

main beam decreases, with decreasing v • Furthermore in 
0 

order to avoid detecting a peak resulting from elastic scat­

tering by the specimen of the "(331) contaminant" (section 

ID), followed by second-order Bragg reflection off the analyzer 

crystal, v must be chosen greater than [v + v /4), where o max c 

vmax is the maximum frequency in any scan, and vc is the 

frequency of the contaminant. 

Most of the measurements were made using cryostats 

filled with liquid nitrogen. The more recent measurements 

were made with extra radiation shielding around the specimen. 

Furthermore two separate cryostats have been used. For these 

reasons, a number of temperatures ranging between 95 and 140°K 

were obtained for these measurements. Results have also been 

obtained at 205°K using dry ice, and a series of runs was 

made at 12°K using a liquid helium cryostat (made by Andonian 

Associates Inc. ). With the inner well of this cryostat 

filled with liquid nitrogen, further measurements were made 

at 80°K. The tail section of the cryostat was modified to 

accommodate the large specimen (Fig. II-1). Temperatures 
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Fig. II-1. 	 A scale drawing of the tail section of the 
helium cryostat which was used for the ex­
periments at 12°K. 
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were generally measured using copper-constantan thermocouples; 

platinum and germanium resistance thermometers have also 

been employed. 

D. TREATMENT OF RESULTS 

Phonons with wave vector~ lying along the IOOs], [sss], 

IssOJ, r%~s] and fsslJ directions (i.e., directions 6, A (and 

F), ~, D and Gin the notation of Koster (1957)), have been 

measured, using the constant Q technique (Section IE). (The 

first Brillouin zone of the face centred cubic (f.c.c.) re­

ciprocal lattice is shown in Fig. AIV-l(a). 

To optimize the intensity of a phonon, several factors 

had to be considered. The quantity Ig·~(~j)] 2 in Eq. (I-Dll) 

was maximized by choosing g as nearly parallel as possible 

to ~(~j). In many experiments Joi itself is also maximized, 

but in the present situation the Debye-Waller factor is 

also an important consideration. For example the optimum 

value of Jgl at 110 and 220°K is about 3.6 (2n/a) and 2.5 (2n/a) 

respectively. 

The results of several constant Q scans are shown 

in Figs. II-2 and II-3. In Fig. II-2 the (100) and (llO) 

planes of the reciprocal lattice are shown, and vector dia­

grams for the first and last points on the scan are included 

appropriate to the measurements shown. These and subsequent 

vector diagrams correspond to a view from below the spectrometer. 
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the right and-corresponding vector diagrams 
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Many of the measured groups are similar in appearance to those 

of Fig. II-2. In such cases the frequency of the phonon, and 

its polarization (through the term [Q•e] 2 in Eq. (I-Dll)), are 

unambiguously determined. 

In a number of cases the situation is more complicated. 

Some examples are shown in Fig. II-3. Additional peaks in the 

intensity distribution can arise in several ways. For example 

it can happen that the specimen is aligned to Bragg reflect 

neutrons in the incident beam into the analyzer. Elastic in­

coherent scattering from the analyzer will then give extra 

counts in both the signal and the background counters. Scans 

(a) to (d), and (f), show peaks in both counters. In (a) and 

(b) the peaks are believed to arise from elastic scattering 

off the aluminium container surrounding the specimen. The 

sharp rise at the high frequency end of scan (c), and the 

peak in (d~ result from Bragg reflections in the specimen. 

The high frequency peak in (f) remains unexplained. The 

peak in scan (e) is caused by elastic incoherent scattering 

of the (33l) component of the incident beam, and second 

order reflection in the analyzer. 

Some of the additional peaks observed in Constant Q 

scans were easily identified by inspection. Most of the 

others have been identified using a computer programme which 

is described in Appendix II Several peaks however have 

not been explained. Extra care has been taken in estimating 
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the centre of the one-phonon peak when additional peaks have 

been observed. 

Extra peaks at lower frequency have been rather con­

sistently observed in a large number of scans of the [OO~)L 

branch, under a wide variety of conditions. The effect, and 

its (somewhat unexpected) explanation, are discussed in Sec­

tion IIF. 

In many cases the intensity distribution "seen" by 

the signal counter contains a one-phonon peak superimposed 

on a residual curve which decreases with increasing frequency. 

For example the peak in Fig. II-3, scan (d), is superimposed 

on a residual curve indicated by the dot-dash line. The 

slope of this curve partly results from the variation of 

analyzer sensitivity with neutron energy, and from the factor 

k'/k
0 

in the cross section formula (Eqs. I-D2, I-D3). 

These variations with energy transfer are avoided if k , 
~ 

rather than ~·, is varied during a scan (Section IE). There 

are also contributions from incoherent elastic and multiple 

phonon scattering off the specimen. The residual curve 

has been taken into account in assigning values to the 

peak positions. 

The intensity in the background counter does not de­

crease with increasing frequency. Neutrons entering this 

counter have been incoherently scattered off the analyzer 

crystal. Therefore the frequency scale is not relevant to 
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this counter, and no sloping curve is expected. 

Considerable attention has been paid to the effects 

of instrumental resolution on the peak positions. These 

effects were calculated using a force constant model derived 

from the 1968 measurements. An account of this work is 

given in Appendix III. The results presented in the present 

section have been corrected for resolution. 

The normal mode frequencies in rubidium are given in 

Table II-2. The columns labelled 85°K and 120°K include 

phonons measured between 80 and 95°K and between 120 and 140°K 

respectively. The 120°K measurements are shown in Fig. II-4. 

The errors in the phonon frequencies were assigned 

with due regard to the width and shape of the group, and 

the counting statistics. In a number of cases more than one 

measurement of the same mode was made, and an error was 

assigned accordingly. For a well defined group the error is 

taken to be ±er where r is the full width at half maximum 

of the group, and c is generally between 0.05 and 0.1. These 

errors are believed to be fairly realistic (see e.g. Svensson 

et al. (1967) for a discussion of errors). The analysis 

of Section IIE indicates that they may be overestimated 

by about 50%. 

E. ANALYSIS OF RESULTS 

(i) Force constant models 

The dispersion curves of rubidium are similar in shape 
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TABLE II-2 Normal mode frequencies (in THz) for the symmetry 
branches in rubidium at 12, 85, 120 and 205°K. 

Branch l; 12°K 85°K 120°K 205°K 

0.1 	 0.215±0.01 

0.15 	 0.305±0.015 

0.2 0.41 to. 01 0.405±0.01 0.40 ±0.01 0.355±0.01 

0.25 	 0.49 ±0.02 0.47 ±O. 02 

0.3 0.59 ±0.01 0.575±0.01 0.57 ±0.01 

[OOc;]T 0.35 0.66 ±0.02 

0.4 0.795±0.015 0.76 ±0.01 0.755±0.02 0.705±0.02 

0.5 0.96 ±0.01 0.93 ±0.01 0.895±0.025 

0.6 1.12 ±0.02 1. 08 ±0.01 1.065±0.015 1. 01 ±0.02 

0.8 1.325±0.015 1. 28 ±0.015 1. 27 ±0.015 1. 24 ±0.02 

0.9 	 1. 30 ±0.015 

1. O* 1. 385 ±0. 015 1. 35 ±0.015 1. 32 ±0.02 1. 24 ±0.03 

0.2 0.535±0.02 0.495±0.02 a.so ±0.025 0.47 ±0.025 

0.25 0.64 ±0.02 0.61 ±0.03 0.62 ±0.02 0.565±0.025 

0.3 0.74 ±0.02 0.71 ±0.02 0.72 ±Q,02 0.69 ±0.025 

0.35 0.82 ±0.015 0.82 ±0.02 0.82 ±0.02 

0.4 0.93 ±0.015 0.91 ±0.025 0.88 ±0.025 0.87 ±0.02 

0.45 1. 01 ±0.025 0.98 ±Q.02 

(OOt;]L 0.5 1.075±0.02 1.075±0.03 1. 05 ±0.02 

0.6 1. 23 ±Q.03 	 1.225±0.05 

0.65 	 1. 23 ±Q.04 

0.7 	 1. 23 ±Q.04 1. 20 ±0.04 

0.75 	 1. 27 ±a.o4 

(continued next page) 
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TABLE II-2 Normal mode frequencies 
branches in rubidium at 

(in THz) for the symmetry 
12, 85, 120 and 205°K (cont'd) 

Branch l;; 12°K 85°K 120°K 205°K 

roor;;JL 0.8 1. 34 ±0.05 	 1.275±0.03 

0.9 	 1.305±0.02 

1. O* 1. 385 ±0. 015 1. 35 ±0.015 1. 32 ±0.02 1. 24 ±0.03 

0.1 	 0.235±0.03 

0.15 	 0.35 ±0.03 

0.2 0.45 ±0.02 0.435±0.025 0.48 ±0.02 0.42 ±0.04 

0.3 0.68 ±0.03 0.69 ±0.03 0.71 ±0.03 

P;l';I';] T 0.4 1. 00 ±0.04 0.93 ±0.05 0.92 ±0.03 

0.45 1. 02 ±0.03 

0.5* 1.13 ±0.015 1.08 ±0.02 1.10 ±0.02 1. 03 ±0.03 

0.55 	 1. 20 ±0.04 

0.6 	 1. 26 ±0.04 1.12 ±0.04 

0.7 1. 32 ±0.04 1.33 ±0.03 1. 325±0. 02 

0.8 	 1. 32 ±0.03 1. 21 ±0.04 

0.9 	 1.33 ±0.05 

1. O* 1. 385±0. 015 1. 35 ±0.015 1. 32 ±0.02 1. 24 ±0.03 

0.1 0.595±0.02 0.58 ±0.025 0.525±0.03 

0.2 1.065±0.015 1. 03 ±0.02 1. 01 ±0.03 

(r;;r;;i;]L 0.3 1. 33 ±0.015 1.325±0.015 1. 28 ±0.03 

0.35 	 1. 31 ±0.025 

0.4 1.345±0.02 1.335±0.02 1.305±0.025 1. 25 ±0.03 

0.45 	 1. 24 ±0.04 

(continued next page) 

http:1.335�0.02
http:1.345�0.02
http:0.525�0.03
http:0.595�0.02
http:0.235�0.03
http:1.305�0.02
http:1.275�0.03


61 

TABLE II-2 Normal mode frequencies (in THz) for the symmetry 
branches in rubidium at 12, 85, 120 and 205°K (cont'd) 

Branch z; 12°K 85°K 120°K 205°K 

0.5* 1.13 ±0. 015 1. 08 ±0. 02 1.10 ±0. 02 1. 03 ±0. 03 

[z;z;z;]L 0.55 0. 9 35 ±0. 03 

0.6 0. 77 5 ±0. 02 0.74 ±0. 02 0.72 ±0. 03 0.68 ±0. 0 2 5 

0.65 	 0.64 ±O. 03 

0.7 0.605±0.03 	 0.60 ±0. 03 0.55 ±0. 02 

0.75 	 0 • 6 8 5 ±O . 0 2 5 

0.8 0.90 ±0.02 	 0.87 ±O. 03 0.805±0.015 

0.9 	 1. 20 ±0.04 1.10 ±0.04 

0.95 	 1.285±0.03 

1. O* 1.385±0.015 1. 35 ±0.015 1.32 ±0.02 1. 24 ±0. 03 

0.1 	 0.285±0.02 

0.15 	 0.395±0.02 

0.2 	 0.525±0.015 0.46 :t:O. 01 

0.25 0.66 ±0.03 

Iz;z;O]T2 0.3 0.75 ±Q.015 0.735±0.015 0.735±0.02 0.66 ±0.01 

0.35 	 0.79 ±0.015 

0.4 	 0.85 ±o.015 0.785±0.015 

0.45 0.89 ±0.015 

0.5* 0.96 ±0.03 0.95 ±0.02 0.885±0.02 0.84 ±0.025 

0.1 	 0.11 ±0.025 

0.2 0.20 ±0.02 

[t;<;O)Tl 0.3 0.265±0.02 

0.4 	 0.315±0.02 

0.5* 	 0.34 ±0.02 0.34 ±0.03 0.32 ±0.025 

(continued next page) 
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TABLE II-2 Normal mode frequencies (in THz) for the symmetry 
branches in rubidium at 12, 85, 120 and 205°K (cont'd) 

Branch r;; 12°K 85QIK 120°K 205°K 

0.1 0.41 ±0. 02 0.395±0.02 

0.2 0.88 ±o. 02 0.84 ±o. 015 0.82 ±O. 03 0. 785 ±0. 02 

(?;r;;O]L 0.3 1. 235 ±Q. 02 1.17 ±o. 02 1. 18 5 ±0 . 0 2 5 1.125 ±0. 02 

0.4 1. 415 ±o. 02 1. 34 ±0. 0 2 

0.5* 1. 50 ±o. 02 1.48 ±o. 025 1. 465 ±O. 02 1. 41 ±0. 05 

0.0* 0.96 ±0.03 0.95 ±0. 02 0.885±0.02 0.84 ±0. 02 5 

0.1 0 . 8 9 5 ±0 . 0 2 5 

0.15 0.92 ±0. 0 35 

0.2 0. 9 45 ±0. 04 

[ 1:~r;;] A 0.25 0.975±0.0322 

0.3 1. 07 ±0.015 

0.35 1.035±0.03 

0.4 1. 08 ±0.06 

0.5* 1.13 ±0.015 1. 08 ±0.02 1.10 ±0.02 1. 03 ±0.03 

0.0* 1. 50 ±0.02 1. 48 ±0.025 1.465±0.02 1. 41 ±0.05 

0.2 1. 42 ±0.02 

0.3 1. 39 ±0.02 1. 34 ±0.02 

0.4 1. 25 ±0.025 

0.5* 1.13 ±0.015 1. 08 ±0.02 1.10 ±0.02 1. 03 ±0.03 

11
[~21:;] 'TT 0.6 0.965±0.015 

0.7 0.785±0.015 0.77 ±0.015 

0.8 0.59 ±0.015 

0.9 0.405±0.015 

1. o* 0.34 ±0.02 0.34 ±0.03 0.32 ±0.025 

(continued next page) 
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TABLE II-2 Normal mode frequencies 
branches in rubidium at 

(in THz) for the symmetry 
12, 85, 120 and 205°K (cont'd) 

Branch I',; 12°K 85°K 120°K 205°K 

0.0* 1.385±0.015 1. 35 ±0.015 1. 32 ±0.02 1. 24 ±0.03 

0.1 	 1. 27 ±0.02 

0.2 1. 04 ±0.03 

[t;t;l]A 0.3 0.78 ±0.03 

0.4 	 0.49 ±0.025 

0.45 0.37 ±0.03 

0.5* 0.34 ±0.02 0.34 ±0.03 0.32 ±0.025 

0.0* 1.385±0.015 1. 35 ±0.015 1. 32 ±0.02 1. 24 ±0.03 

0.1 	 1. 29 ±0.025 

0.2 1. 205±0. 02 

[I',; 1',;l) '1T2 0.3 1. 07 ±0.02 

0.4 0.94 ±0.03 

0.5* 0.96 ±0.03 0.95 ±0.02 0.885±0.02 0.84 ±0.025 

0.0* 1.385±0.015 1.35 ±0.015 1. 32 ±0.02 1. 24 ±0.03 

0.1 1. 335±0. 02 

[I',; 1',;l] 'TT 1 0.2 1. 36 ±0.05 

0.3 	 1. 42 ±0.03 

0.4 1. 47 ±0.03 

0.5* 1. 50 ±0.02 1. 48 ±0.025 1.465±0.02 1. 41 ±0.05 

Note: 	 an asterisk indicates that the same measurement is repor­
ted elsewhere in the table. For example the phonon fre­
quency at symmetry point H is given for [001',;)T and 
L,t; = 1.0; [1',;t;t;]T and L,t; = 1.0; and [~~s]A, '!T2, and '!Tl 
for t;= 0.0. 

http:1.465�0.02
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to those of sodium (Woods et al 1962) and potassium (Cowley 

et al 1966). The measurements have been analysed to obtain 

AFC's for different force models following the procedures of 

Svensson et al. (1967). Least squares fits are made to force 

models which include interactions out to n'th nearest neigh­

bours, for n = 1, 2, ...• 8. Far each fit various statistical 

quantities are obtained including 

N 2 ~ = [N-1 L: (\J, -\).) ] (II-El)62 1C 1iN N 12 2 2 
= [L: w. (m'V. - m\J. ) I L: W.]"2 (II-E2)64 1 1C 1 1i i

N
2 2 

= (N-K) -l L: [(\J. -'V.)/o.] (II-E3)x 1C 1 1i 

where \J. and \J. are the calculated and measured frequencies,
1C 1 

and is the assigned error, for the i'th measurement: No1 

is the number of measurements, and K is the number of adjustable 

parameters (i.e., AFC's). The weights w. are assigned accor­
1 

ding to the least-squares prescription 

-2w. = W· 
I 

( \J . a . ) 
1 1 1 1 

I 

where W. is 
1 

a weight which is fed in. In the present case 

these weights 
I 

(Wi) were set to unity with no loss of generali-
I 

ty, since a change in w. is equally well expressed by altering
1 

a . • 

Results of a run using the complete data at 120°K are 


2
shown in Fig. II-S(a). The plots of 6 2 , 6 and x essentially4 

tell the same story: first and second neighbour forces are 

1 
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Fig. II-5. Atomic force constant fits to the data at 120°K. The "goodness of fit", 
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sufficient to improve the fit considerably, whereas more 

distant neighbour forces are very weak. Svensson et al. (1967) 

note that the errors in the force constants are only physically 

meaningful "if an entirely adequate fit to the data was in 

fact obtained". With this in mind it is clear that forces out 

to third neighbours must be considered important. A third 

neighbour fit to the 120°K measurements is shown at the top 

of Fig. II-14. 

2It is noteworthy that x settles at about 0.35, and 
p p

6 and 6 settle to values of about 0.55 x and 0.6 x2 4 
6 2 6 4 

respectively, where the superscript P means the predicted 

value of the quantity, i.e., the value obtained by replacing 

(v. -v.) with o . in equations (II-El, II-E2). This indi­ic 1 1 

cates that the assigned errors cri are overestimated by about 

50%. Thus the assigned errors, which averaged about 0.075r 

for good groups (Section IID), should probably be made 

about 0.05r. Svensson et al. (1967) reached a similar con­

clusion for copper. Furthermore an analysis of the other 

alkali metal measurements (see Fig. II-6) leads to the same 

conclusion. 

The slight improvement in fit, between n = 5 and n = 6 

(Fig. II-5), largely results from an improvement in the fit 

Jl 
to the £22~JA branch. This is illustrated in Fig. II-7(a). 

The I~}~JA branch has been separately analysed to obtain inter­



2 

' ' 

GENERAL 

NO ELASTIC 

' . ........ .............­

68 


FORCES, 

CONSTANTS 

Li 98°K 

Na 90°K 

K 9°K 

"------:::-....... - ----~·- .. --­
-~. .............. ··················· 


"---· ......... ,..r. - - - - __ .:.:~· .....wr. 
--............. ........._.__ 


o--~---.__~------~---~~.......~~--~~--~~---~~--~-
2 3 4 6 7 8 

n 
Fig. II-6. 	 The "goodness of fit" for fits to Rb at 12 and 

120°K, and to Li, Na, and K. In the cases of 
Li and of Rb at 12°K, there was insufficient data 
for a fit to 8 neighbours. In the case of Rb at 
12°K, the elastic constant (C11-C12)/2 was in­
cluded in the fit to ensure stability of the 
lattice. 
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planar force constants (Brockhouse et al. 1968b). These 

are given by 

mw 2 = ¢ + ~ ¢ [1-cos(nTI~)] (II-E4) 
o n n 

The analysis indicates that a good fit is obtained if three 

interplanar force constants are included. These quantities 

are related to the AFC's as follows: 

= 8(1XX) + 8(2YY) + 16(3XX) + 8(4XX) + 16(4YY) ...¢0 

= 2(2XX) - 8(3XX) + B(SXX) + 8(8YY)¢2 

= 2(6XX) - 8(8XX)¢4 

¢1 = ¢3 = 0 

The notation for the AFC's is explained in Table II-3. It 

is clear that the improvement in the AFC fit between n = 5 

and n = 6 occurs because it corresponds to inclusion of a third 

interplanar force constant for the [~~s]A branch. An AFC fit 

to all the measurements except this branch is essentially 

identical to the fit which includes this branch. 

Forces to third neighbours are nearly sufficient to 

fit the measurements of the fOO~)L branch (Fig. II-7(b)). 

Since the effects of instrumental resolution are particularly 

marked for this branch, and since the branch is thought to 

be more anharmonic than others, this fit is probably satis­

factory. A fit was also made to all the measurements except 

the [OO~)L branch. Though the first neighbour force constants 

are unchanged, the remaining AFC's are somewhat different and 
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2their errors are considerably larger, whereas x is unaffected. 

It appears that there is insufficient orthogonal information 

to determine these parameters when the (OOs]L branch is 

excluded. Fig. II-7(b) shows the [00~) branches calculated 

using AFC's from the fit to all but the (OOs]L branch. 

If the elastic constants of rubidium at 120°K (see 

Section IIE) are included in a fit to all branches, the quan­

tities ~ 2 , ~ and x2 are somewhat larger (Fig. II-S(b)), but4 
the first few AFC's are not changed. Since the ultrasonic 

-3measurements correspond to far smaller values of s(< 10 ) , 

the elastic constant slopes need not coincide with neutron 

measurements for s ~ 0.1. Indeed a difference in the sound 

velocity in these two ranges of wave vector is theoretically 

predicted (Cowley et al. 1968). For this reason no further 

fits have been made with the elastic constants included. 

Fits to an axially synunetric force model are identical 

out to four neighbours (Fig. II-S(b)). Beyond n = 4 the 

general force model gives a slightly better fit, largely 

because it involves more parameters. The central force 

x2condition is very restrictive for small n, and is 

considerably enhanced (Fig. II-S(b)). For n > 6 the central 

2force condition has little effect on x AFC's from various 

fits to the 120°K data are given in Table II-3. 

General force model fits to measurements at different 

temperatures indicate that the interatomic forces in rubidium 
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TABLE II-3 Atomic force constants for various fits to the 
measurements on rubidium at 120°K 

(units are dynes/cm) 

Reference AFC GF(n=3) GF (n=4) AS (n=4) CF (n=4) 
atom 

(111) 	 lXX 615.2± s.a 617.8± 8.1 

lXY 737.4± 7.6 739.5± 8.3 

(200) 	 2XX 453.7±14.9 455.6±18.7 

2YY 16.9± 9.2 11. 6±11. l 

(220) 	 3XX -37.6± 4.7 -34.0± 6.1 

3ZZ - 2.2± 7.5 - 2.7±10.4 

3XY -51. 6± 7.9 -61. 0±11. 4 

(311) 	 4XX ­
4YY 

4YZ 

4XZ 

GF: General Forces 

AS: Axially Symmetric Forces 

CF: Central Forces 

The force 	constant matrix, for 

nXX nXY 

nXY nYY 

nXZ nYZ 

3.2± 7.1 

0.2± 3.6 

4.1± 5.8 

3.2± 3.2 

613.0± 7.6 613.8± 7.6 

740.0± 8.2 735.6± a.1 

447.8±17.9 456.0±17.8 

17.7± 9.7 17.5± 9.7 

-40.2± 4.9 -43.6± 4.8 

5.8± 7.7 7.6± 7.6 

-47.2± 8.0 -50.3± 8.0 

3.6± 5.7 - 6.4± 4.9 

- 0.8± 3.1 3.9± 2.8 

0.6± 1. 5 -2.7± 1.1 

1. 7± 2.5 -4.0± 2.0 

n'th nearest neighbours, is 

nXZ 

nYZ 

nZZ 

See also Brockhouse et al. (1968b). 
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are of longer range at low temperatures. This is illustra­

ted in Fig. II-6. Clearly fourth neighbour interactions are 

appreciable at 12°K, but not at 120°K. There is insufficient 

data to obtain reliable information of this kind from the 85 

and 205°K data. Table II-4 lists AFC's obtained from fourth 

neighbour fits to the measurements at different temperatures. 

We note that lXX and lXY decrease, but 2XX increases, with 

increasing temperature. This feature is discussed later in 

this section. 

It is instructive to compare force systems in the 

different alkali metals, as determined from analyses of the 

2dispersion curves. The "goodness of fit", x , is shown in 

Fig. II-6, for general force model fits (with no elastic 

constants) to the experimental data. It is clear that the 

force system is of longer range in the lighter metals. Further­

more Table II-5 shows that the ratio of 2XX to lXX (or lXY) 

increases as the atomic mass increases. Thus we see that 

two types of trend occur (i) on going from the lighter to 

the heavier alkali metals, and (ii) on increasing the 

temperature (in Rb) : the trends are (a) a decrease in the 

range of the interatomic forces, and (b) an increase in the 

ratio of second to first neighbour AFC's. 

The first trend indicates that the electron-phonon 

interaction is weaker in the heavier metals. This conclusion 

is consistent with the fact that the ratio (w/w ), where w 
p p 

is the ion plasma frequency, increases with increasing atomic 
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TABLE II-4 Atomic force constants for four­

neighbour general force model fits to rubidium 
at different temperatures. (Units are dynes/cm). 

Reference AFC 12°K* 85°K 120°K 205°K 
atom 

(111) 	 lXX 669.4±11.3 657.4±18.l 617.8± 8.1 590.7±15.6 

lXY 787.5±11.3 746.3±26.2 739.5± 8.3 679.6±20.9 

(200) 	 2XX 396.7±27.9 400.2±37.3 455.6±18.7 437.9±38.8 

2YY 21.7±16.8 7.1±26.7 11.6±11.l -35.0±19.9 

(220) 	 3XX -36.8± 8.8 -13.2±13.8 -34.0± 6.1 -13.6±10.6 

3ZZ - 9.0±13.5 -24.9±13.6 - 2.7±10.4 9.8±22.2 

3XY 42.6±13.9 -11.0±39.4 -61.0±11.4 -75.1±19.7 

(311) 	 4XX 17.6± 7.9 -12.5±16.3 - 3.2± 7.1 -16.4±11.3 

4YY - 3.8± 5.1 - 2.5± 4.4 0.2± 3.6 -11.3± 6.5 

4YZ - 9.5± 6.8 -26.7± 9.3 4.1± 5.8 - 0.2±17.6 

4XZ - 8.8± 3.8 - 1.8±13.7 3.2± 3.2 7.4±10.3 

*The elastic constant ~(c 11-c 12 ) was included in this fit to 

ensure stability of the lattice. 
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TABLE II-5 	 A comparison of first and second neighbour atomic 
force constants obtained from fits to the alkali 
metals. (Units are dynes/cm.) 

Li (98°K) (l) Na(90°K) (2 ) K(9°K) (3 ) Rb (12°K) 

lXX 

lXY 

2XX 

2YY 

2355 

2489 

631 

50 

1178 

1320 

472 

104 

786 

895 

432 

29 

669 

788 

397 

22 

( l ) 

(2) 

(3) 

Smith et al. (19 6 8 ) 

Woods et al. (1962) 

Cowley et al. (1966) 
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mass, being about 0.52 for Li and 0.61 for Rb, for the zone 

boundary [ttO]L mode. 

The second trend, towards a larger ratio of second to 

first neighbour AFC's in the heavier metals, may be seen 

directly in the dispersion curves for the [OOt] direction. 

The splitting of the L and T branches is largely determined 

by the AFC 2XX: a nearest neighbour only force model predicts 

degenerate L and T branches. This splitting is somewhat larger 

in the heavier metals, and the value of s at the crossover 

of the two branches (or for which they begin to overlap) be­

comeslarger as Z increases. The increased splitting of the 

L and T branches in the heavier alkali metals is to be expected 
h

from an examination of the ratio (c11;c44 ) 
2 

, which is equal 

to the ratio of the slopes of the two branches at very small 

t. From Table II-1, the above ratio is 1.14, 1.19, l.25 and 

1.29 for Li, Na, K and Rb respectively. The first and 

second neighbour AFC's have been used to fit the parameters 

of a simple Morse potential (see Section IIIB) • The results 

are shown in Figure II-8. It will be seen that, as a conse­

quence of trend (b) above, the minimum in the potential moves 

nearer to the second neighbour position in the heavier metals. 

The second neighbour atoms, at (a,0,0) etc., will execute 

relatively large oscillations, and the [OOt]L branch is 

expected to be rather anharmonic. In addition the Morse 

potential is shallower and less parabolic in the heavier metals. 
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potential. 
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(ii) Reciprocal Space Analysis 

In the previous subsection, a real space analysis of 

the measurements was described. We now consider an analysis 

in terms of a potential in reciprocal space. The dynamical 

matrix may be written as a sum over reciprocal lattice 

vectors ~ (Eq. I-Cl7): 

where ¢(Q) is the Fourier transform of the real space potential 

¢{r), whose first and second derivatives are related to the 

AFC's of the previous subsection. Cochran (1963) showed how 

to extract a function ¢(Q) from measurements of the normal mode 

frequencies in sodium. His method was extended by Cowley et 

al. (1966), who analysed the dispersion curves of K and Na in 

this way. Blanchard (1969) (see also Blanchard and Varshni 

1970) analysed Na, K, and Rb using both methods. Following 

Cochran, he first subtracted the Coulomb contributions to the 

dynamical matrix, and then obtained an electronic potential 

tunction ¢E(Q). 

The present measurements on Rb have been analysed to 

obtain the function H(Q) which is defined by 

2 e N
¢(Q) = "2" IT H(Q) 

Q 

The procedure was exactly that of Cowley et al. (1966). Through 

the good offices of Dr. W.J.L. Buyers, extensive use was made 

of programmes belonging to the neutron scattering group at 

Chalk River, to calculate H(Q) and the real space potential ¢(r). 
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Fits were made to the 12°K and the 120°K measurements, 

with and without elastic constants included, and for several 

values of the cutoff Q • In Fig. II-9 fits (which include the c 

elastic constants) are compared for K and Rb, and for Rb at 

12 and 120°K. It will be observed that the fits for Rb and K 

are similar: the larger fluctuations in peak height in the 

case of Rb are a consequence of the smaller body of experimental 

data. The fits to Rb at two different temperatures are 

very similar, as is expected. A typical fit to the 120°K measure­

ments, using a cutoff of 2x(2n/a), is shown in Fig. II-14. 

The form of the function H(Q) is considerably influenced 

by the choice of Q-values for which the function is specified. 

This is especially true for large Qc' as is shown on the left 

side of Fig. II-10. The symbols indicate the positions at 

which the function is specified. It will also be observed that 

the computed errors increase rapidly as Q is increased,c 

since there is then insufficient data to determine H(Q). 

On the other hand it is difficult to obtain a good fit if Qc 

is too small. On the right side of Fig. II-10 fits with and 

without elastic constants are compared, for different values of Q . 
c 

Clearly fits with Q • 1.6 are relatively poor <x 2 
~ 1.6). For 

c 

large values of Qc very large changes in peak height may occur 

unless the elastic constants are included.in the fit. 

Most of the above remarks have been made by Cowley et al. 
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(1966) or by Buyers and Cowley (1969), regarding potassium. 

In Chapter III we examine the Fourier transforms of 

some of these functions, and harmonic and anharmonic force 

constants derived therefrom are compared with force constants 

obtained by other methods. 

(iii) 	 Fundamental Calculations: Comparison with 
Experime·nt 

Many authors have calculated dispersion curves for 

the alkali metals (see Section IIB). Toya (1958) presented 

calculations for Na, and later for K, Rb and Cs (Toya 1959). 

The agreement between experiment and these calculations is 

considerably poorer for Rb than for Na and K: Toya predicts 

a general trend toward smaller values of (w/w ) (where w p p 

is the plasma frequency), as the mass is increased, whereas 

the opposite trend is observed experimentally. Animalu 

et al. (1966) obtained curves which are in relatively good 

agreement with experiment for Na, K and Rb, but their calcu­

lations for Li were as much as 50% too high. Both Schneider 

and Stoll (1966b), and Ho (1968), presented calculations of 

phonon frequencies in Rb which are in good agreement with 

the measurements*. Direct comparisons with the published 

measu~ements for Rb (Copley et al. 1968) have been made by 

*The author is grateful to Dr. T. Schneider and Dr. P. s. 
Ho, who kindly sent tables of calculated phonon 
frequencies. 
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Prakash and Joshi (1969), Price et al. (1970), and Blanchard 

and Varshni (1970)! The published frequencies were not 

corrected for resolution, and slightly better fits to experiment 

can probably be obtained using the corrected frequencies. 

For example Price et al. (1970) note that the f ssO]Tl and 

the [~~s]A branches are less well predicted by theory than 

the others. Corrections to the measurements for resolution 

bring them into significantly better agreement with the theore­

tical curves. 

Price et al. (1970) used an Ashcroft pseudopotential 

(Ashcroft 1966), which is defined by: 

V(r) = 0 for r < rA 

2V(r)=- ze /r for r > rA. 

They then fitted the measured dispersion curves using various 

choices for the dielectric function. The simplest type of 

screening is given by the Hartree function (Eq. I-C34). This 

function may be written as 

£H(q) = 1 + V(q)L(q) 

where V(q) = 4ne 2/q2 and L(q) is the Lindhard function. It 

is customary to include the effects of exchange and correla­

tion by writing a generalized dielectric function in the form 

tThe author is grateful to Dr. David Price, and to Dr. Varshni, 
for sending preprints of these papers. 
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V(q)L(q)(
€ q) = l + 1-V(q)L(q)f (q) 

where f (q) is a generalized "Hubbard function". The problem 

is to obtain an expression for f (q) which is correct in its 

behaviour for all values of q. Various atomic properties 

may be fitted to experiment to obtain f(q): each property 

is sensitive to f (q) in a different way, so it is not surpri­

sing that functions f(q), obtained from different properties, 

are not identical. Conversely a Hubbard function which fits 

one property well is unlikely (at the present time at least) 

to predict other properties well. 

In order to estimate the third and fourth derivatives 

of the effective potential in real space, quantities which 

are needed to perform the anharmonic calculations in Chapter 

III, the present measurements have been compared with calcu­

lations using an Ashcroft potential and the following form 

for f (q) : 

f (q) with n = q/2kF 

Following the suggestion of Dr. D. W. Taylor*, the quantity 

B2 was made an adjustable parameter. The only other parameter 

is rA' the cutoff of the Ashcroft potential. 

The author is very grateful to Dr. Taylor for many useful 

discussions, and for the computer programme used in these 

calculations. 
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Several values of rA, and several values of 62 , 

have been tried: good agreement with experiment <x 2 = 0.99) 

was obtained for two sets of parameters: 

2
#1 ; rA/a = 2.38 6 = 1.1 

0 

62
#2 ; rA/a = 2.40 = 0.7

0 

A calculation, using the second set of parameters, is shown 

in Fig. II-14. 

62The value of may also be determined by requiring 

that the long wavelength limiting value of £(q) be con­

sistent with the compressibility of the electron gas. The 

formula of Geldart and Vosko (1966) (their equation 5.1) gives 

an unrealistic negative compressibility in the case of rubidium, 

so that this approach is not acceptable in the present situation. 

The idea of varying 62 is therefore very reasonable. 

Frequency shifts, corresponding to a 1% increase in 

volume, have also been calculated using the above model. The 

details of this calculation are given in Section IIIC. 

(iv) Constant Frequency Contour Plots 

Unsmoothed computer plots of constant frequency con­

tours in the (100) and (llO) planes are shown in Figs. II-11 

and II-12. The dynamical matrix (obtained from 12°K AFC's) 

was diagonalized for a mesh of points in each plane, and the 

intersection of a particular contour with the line joining 

two adjacent mesh points was obtained by linear interpolation. 
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This section of the progranune, together with the associated 

plotting routine, was obtained from the University Computing 

Centre. The polarization vectors in the plane are also 

plotted. 

The plots for the (100) plane (Fig. II-11) were simply 

obtained by sorting the three frequencies at each mesh point 

into order of increasing size. This procedure yields conti­

nuous frequency contours and polarization vectors, as shown. 

Note in particular the sharp curvature of the contours near 

to the IOO~] direction (plots (a) and (c)) and the rapid 

change in direction of the polarization vectors near to this 

direction. This feature is discussed in Section !IF. 

The plots for the (llO) plane (Fig. II-12) are more 

complicated, because two surfaces cross one another along 

the A and F directions (r to P, and P to H). This feature 

is mentioned in Appendix III. By including a few extra test 

statements in the frequency contour progranune, continuous 

plots were obtained as shown. Note again the same type of 

behaviour near the IOO~] direction as in the plots for the 

(100) plane. Another interesting feature is the maximum at 

~{0.20, 0.20, 0.66) in plot (c). This feature is believed 

to produce the highest peak in the frequency distribution 

of rubidium (see below). several other features of these 

curves will be mentioned in the discussion of resolution ef­

fects in Appendix III. 
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(v) Frequency Distributions 

Phonon frequency distributions g(v), at 12 and 120°K, 

have been calculated by the method of Gilat and Raubenheimer 

(1966), using AFC's from the general force model fits out to 

4 and 3 neighbours respectively. The distributions are shown 

in Fig. II-13, normalized to the same area: a bin width of 

0.0025 THz was employed, and the mesh number (n, in the notation 

of Gilat and Raubenheimer (1966)) was 40. The distributions 

are also given in Table II-6. 

Several abrupt changes in slope occur in the function 

g(v); these "critical points" may be correlated with certain 

features of the dispersion relation v = v(~). In the discussion 

which follows, it should be noted that the accuracy to which 

frequencies are quoted reflects the accuracy of the calculation 

of g{v): it does not imply that the model is capable of 

predicting experimental frequencies to such accuracy. It 

may be useful to consult the constant frequency plots in 

Figs. II-11 and II-12, in order to visualize various features 

of the dispersion relation. If we consider the 12°K spectrum, 

we may readily identify critical points, following Dixon et 

al. (1963), at v = 0.343 and 0.947 THz (labelled N and N )
1 2 

which result from saddle points in the two transverse branches 

1 1 
at the point <21210). The cutoff at 1.513 THz (N3) corres­

1 1ponds to the maximum in the longitudinal branch at (2 ,2 ,o). 

The sharp spike at 0.597 THz, labelled A1 
I 

, corresponds to a 



12 
f'-z 

IOI- 12°K
Rb 120°K- --- --	 7 \ ,.I 

11 

I I 

I I 

I I 


-Cf) 
~ I I 
z 	 I I8~ 	 4; / (XIO) \ I I:::> 

>­
I 
I 
Ict: 
I 
I

<{ 
ct: A;/ 	

I 

l 	
I ~ 6 I m I 

ct: 1.38 1.40 1-42 I 
<{ I 

I- I 
I 

I 
I 

I 

I 
I / 

L// 	

,, 
/ 	 -,.~ - 41 	

I 
I 

~ N, ,, 
/ 

Ol 

21-	 (' 
I 


I 

I 


~ 

0 0.2 	 Q.4 0.6 0.8 1.0 1.2 

FREQUENCY (THZ) 

I 
I 
I 
I 

I 

I 

I 
I 

I 

I 

\ 

I 


\ 

\ 

\ 

I 

\ 
I 
I 
I 
I 
I 
I 
I 
I 
I \1N3 
I 
I 
I 
I 
I 

1.4 1.6 
\0 

Fig. II-13 Phonon frequency distributions at two temperatures. The region 
between 1.365 and 1.42 THz is also shown on a xlO scale. 

0 



91 

TABLE II-6 Phonon f r•quency distributions for rubidium at (a) 
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TABLE II-6 Phonon frequency distributions for rubidium at (b) 
120°K • (continued) 
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saddle point (two maxima, one minimum) on the [''s]L, or A1 , 

branch, at ~ ~ 0.68: this critical point occurs at very nearly 

the same value of ~ in the four alkali metals which have been 

studied. 

The principal peak in the 12°K phonon spectrum is 

shown in detail in the inset to Fig. II-13. There.are three 

" distinct discontinuities in slope. The point labelled A1 , 

at 1.373 THz, results from a saddle point on the [~s,]L 

branch at ' ~ 0.36. The discontinuity at 1.393 THz (H) 

corresponds to the triply degenerate point (l,O,O). It is 

interesting to note that this high symmetry point does not 

correspond to the highest peak in g(v) for Rb at 12°K, nor for 

Rb at 120°K, nor for K, whereas the principal peak in the 

distribution function for Na is indeed at the frequency of 

the point H(l,O,O). The peak marked z, in the distribution 

for Rb at 12°K, occurs at 1.410 THz. It almost certainly 

results from a local maximum in the (llO) plane at 

~(0.20, 0.20, 0.66), which is visible in Fig. II-12. A 

similar off-symmetry maximum occurs in K and in Rb at 120°K. 

There remains a weak discontinuity at 1.11 THz,5 

identified in Fig. II-13 by a question mark. It occurs at a 

frequency 1-1/2 to 2% lower than that of the point (~ 1 ~ 1 ~) 
labelled P (1.133 THz). A similar discrepancy obtains in both 

Na and K. The discontinuity occurs at 2.87 and 1.77 THz,5 

whereas the point P has frequency 2.905 and 1.799 THz,respec­
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tively. No satisfactory explanation for this behaviour has 

been found. 

The frequency distribution for Rb at 120°K shows a 

general shift to lower frequencies, as expected from the 

phonon measurements. The first moment of g(v) is 0.971 and 

0.939 THz at 12 and 120°K respectively. The positive moments 

of the 12°K distribution are in good agreement with the values 

given by Martin (1965) in his analysis of the specific heat 

data of Filby and Martin (1965), on the assumption that the 

specific heat below about half the Debye temperature is har­

monic. The negative moments of the distribution are a few 

per cent smaller than those given by Martin (1965); these 

moments are sensitive to the low frequency end of the phonon 

spectrum, and therefore to the low frequency phonon measure­

ments, which are the most difficult to correct for the effects 

of resolution. The discrepancy is not at all unreasonable 

in view of these considerations. 

Various thermodynamic properties, such as the entropy 

and the heat capacity of the lattice, may be calculated from 

the frequency distribution function. Such calculations are 

presented in Section IIID, together with numerical estimates 

of the principal quasiharmonic and anharmonic corrections to 

these quantities. 
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(vi) Comparison with Elastic Constants 

The limiting slopes of the phonon dispersion curves 

at very small~, i.e., very long wavelength, determine the 

velocities of sound propagation in this regime. Neutron 

11 13 
measurements give information in the frequency range 10 - 10

cps, whereas ultrasonic velocity measurements are commonly 

made in the range 10 7 - 10 9 cps. It is none the less instruc­

tive to compare measured ultrasonic velocities with the neutron 

scattering measurements. 

The elastic constants of rubidium have been measured 

using the ultrasonic pulse echo method by Roberts and Meister 

(1966) and by Gutman and Trivisonno (1967). The former measure­

ments are on average about 15% lower than those of Gutman and 

Trivisonno, at 78°K. More recently Pauer (1968) has mea­

sured the pressure derivatives of the elastic constants of 

rubidium. His zero pressure measurements at 195°K agree to 

within 3% with the results of Gutman and Trivisonno (extra­

polated to the same temperature). The latter measurements have 

therefore been used for comparison with the neutron scattering 

work. 

Gutman and Trivisonno (1967) obtained the elastic 

constant c11 : (1) from measurements of the three wave veloci­

ties in the [110] direction, and (2) directly from the longi­

tudinal wave velocity in the [001] direction. The latter 

values are about 3% higher at all temperatures, whereas the 
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internal consistency of each set of measurements is better 

than 1%. Their measurements in the (110] direction alone have 

been used for the present comparison. 

The straight lines from the points r in Fig. II-4 

represent velocities of sound obtained from the elastic con­

stants by interpolation to 120°K. The agreement with the 

neutron measurements is good for the [OOs] and [ssOJ directions. 

In the [ss~] direction the elastic constant lines have larger 

errors since the slopes are obtained by combining at least two 

measured elastic constants. In view of this the agreement is 

again satisfactory. The discrepancies noted by Copley et al. 

(1968) result from using the measurements of Roberts and 

Meister (1966). 

At other temperatures the agreement, between the 

ultrasonic work of Gutman and Trivisonno (1967) and the neutron 

measurements, is again satisfactory. There is no experimental 

evidence for zero sound (Cowley et al. 1968) in rubidium. 

(vii) Discussion 

In previous sections we have described the measurement 

of phonon frequencies in rubidium, and several different 

methods of analysis have been explored. We have concentrated 

on the harmonic aspects of the lattice dynamics. The 

measurements at different temperatures have been independently 

analysed within the framework of the. harmonic approximation, 

and the results of these analyses have then been compared. 
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No attempt has been made to examine the shifts in frequency 

of different modes as a function of temperature: this topic 

is discussed in the following chapter. 

Looking at Fig. II-14 it is clear that there is no 

particular problem involved in fitting theoretical models to 

the dispersion curves of rubidium. The figure shows three 

different types of fit to the 120°K measurements on Rb. The 

pseudopotential calculation is not quite as good as the 

others, but it must be remembered that the modelused 

only two adjustable parameters. It should be noted that 

no evidence of Kohn anomalies (Kohn 1959) exists for rubidium, 

nor is this unexpected: the electron-phonon interaction is 

weak in the alkali metals (weakening slightly more as the 

atomic mass increases), so that the strength of Kohn anomalies 

is very considerably reduced in comparison with a metal such 

as lead (Brockhouse et al. 1962). 

Since phonon measurements now exist for four alkali 

metals, it is instructive to examine the degree of homology 

that exists between the vibrations in the different metals. 

Mean frequency ratios (R) for different pairs of alkali 

metals are given in Table II-7. The standard deviation of an 

individual ratio from the mean (cr), the average error of a 

ratio (estimated from the experimental errors, and denoted 

by 6), and the number of ratios (N), are also given. In 

every case, except for Li/Na , a is smaller than 6, so that 
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(within experimental errors) the lattice vibrations are homo­

logous. The values of o given in Table II-7 differ from those 

listed by Copley et al. (1968) because an incorrect expression 

was used to compute the values given in that paper. 

The fifth row of Table II-7 contains frequency ratios 

R appropriate to 0°K; these were obtained by correcting the 
0 

ratios R using the measured temperature dependence of the 

elastic constants as a guide. 

If the interatomic potentials in the alkali metals 

are identical in shape, differing only by a scaling factor 

proportional to the lattice constant, then the frequency ratio 

may be expressed as (Brockhouse 1959): 

On the other hand the Lindemann relation (Mott and Jones 1936) 

may be expressed as 

where eDi is the Debye characteristic temperature of metal i, 

and TMi is its melting temperature. 

The above ratios are also given in Table II-7. 

In every case the ratios R and (eD ;eD2 ) are close, and lie 
0 1

between the ratios predicted by the above relations. There 

is little to choose between them. 

In conclusion, we have seen that the harmonic aspects 

of the crystal dynamics of the alkali metals are well understood, 
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to the extent that theory and experiment are in accord. 

In addition several systematic trends are observable, as 

the mass is increased. In the following chapter we shall see 

that the situation is not as simple as regards the anharmonic 

properties of these metals. 

F. 	 THE {OO~JL BRANCH 

We have already noted that corrections for resolution, 

TABLE II-7. 	 Mean frequency ratios, and their errors, for 
different pairs of alkali metals. Other ratios 
of interest are also given. Values for M,a, TM' 
and taken from Table II-1.e0 

Li/Na Li/K Li/Rb Na/K Na/Rb K/Rb 

2.326 	 3.831 6.319 1. 635 2.742 1. 671 
R=<v1/v 2 > 

±0.028 	 ±0.036 ±0.056 ±0.004 ±0.016 ±0.006 

a 0.155 0.189 0.304 0.040 0.119 0.052 

0.123 0.205 0.583 0.076 0.151 0.95 


N 	 30 27 29 82 56 78 


Ro=<vl/\12>0 2.31 3.89 6.14 1. 67 2.68 1. 60 

2.21 	 3.57 5.64 1.61 2.55 1. 58§
1 1 

2 
M2a2TM1 

2.44 	 4.14 6.79 1. 69 2.78 1. 642 
MlalTM2 

2.26 	 3.80 6.19 1 •.68 2.74 1.63801/802 
McMASTER UNIVERSITY LIBRARY 
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as well as the occurrence of unwanted spurious peaks, are 

important considerations in the analysis of neutron scattering 

measurements on rubidium. These topics are discussed further 

in Appendices II and III. In this section we shall give de­

tailed consideration to the {00,]L branch. Extra peaks were 

observed in Constant Q scans of this branch, and for a long 

time they c!flef'iedo explanation. We first describe the obser­

vations and some initial ideas regarding the origin of the 

extra peaks. A consistent explanation is then offered, 

and finally we discuss the possibility that such effects may 

be observed in other systems. 

(i) Observation of Extra Peaks 

Several examples of extra peaks observed in constant 

2 scans of the (00,]L branch are shown in Figs. II-15 and 

II-16. Fig. II-15 shows six scans for ' = 0.3 taken under 

various sets of conditions. From symmetry considerations, and 

because Q is (except for scan (d)) parallel to ~L' the eigen­

vector for the longitudinal mode, we expect to see only one 

peak in each scan. From independent measurements of the IOO,]T 

branch, which showed no unusual behaviour, we know that the 

frequency of the transverse mode is about 0.57 THz for ' = 0.3. 

This frequency lies between the two observed peaks in each 

scan of Fig. II-15, and we therefore associate the higher 

frequency peak with the L mode. Fig. II-16 shows the depen­

dence of the effect on ' at 205°K. The sharp rise in the 

counts at low frequency, for small '' results from elastic 
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incoherent scattering. We note from Fig. II-16 that two 

peaks are only observed clearly for ~between 0.2 and 0.4, 

and in each case the transverse mode frequency lies between 

the two observed peaks. 

The combined results at 85 and 120°K are shown in part 

(a) of Fig. II-17. The two "branches" observed in scans with 

2 parallel to~ (i.e., longitudinal scans) are labelled L 

and L'. The L' "branch" lies about 15% below the transverse 

branch. Similar plots at other temperatures indicate that 

there is a general trend toward lower frequencies as the 

temperature is increased. 

It should be remarked that Woods et al. (1962) observed 

peaks at lower energy transfer in scans of the [OO~]L branch, 

and "their energy did not correspond exactly with that of 

the transverse branch. 11 Furthermore Smith et al. (1968) 

mention that they observed "a number of extraneous peaks in 

the phonon spectrum". In a note added in proof (and in a 

private communication from Dr. H. G. Smith) it is stated that 

some low energy peaks in the [OO~)L branch remain unexplained. 

To the author's knowledge no explanation for this type of 

behaviour h•s yet been advanced. 

(ii) Ideas Regarding the Origin of the Extra Peaks 

Since the extra peaks described above persist under 

a wide variety of experimental conditions, most of the possible 
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spurious processes described in Appendix II can be discarded 

straightaway. The fact that the peaks are observed for dif­

ferent values of ~' for example, indicates that it is not 

the result of a particular combination of wave vectors&,,~', 

leading to a Bragg peak. It is also noteworthy that the back­

ground counts do not show structure. The only possibility, 

of those listed in Appendix II , is multiple scattering. 

However it is difficult to understand why the extra peak 

does not occur at (or very near) the frequency of the transverse 

mode. 

Extra peaks will result if a specimen containing more 

than one single crystal is used. A careful examination of 

the specimen was therefore undertaken (Appendix I ), and it 

was established that only one crystal of sufficient size to 

produce observable one-phonon peaks existed in the specimen. 

It is in any case difficult to understand why an extra crystal 

would produce extra peaks in only one out of twelve branches. 

Furthermore it is noteworthy that the natural lithium crystal 

used by Smith et al. (1968) still gave extra peaks in this 

branch whereas the isotopic crystal (which was not single) gave 

extra peaks in several branches. (The double peaks in the 

[''']T branch in Li have been explained separately. (See 

Appendix III). 

A tempting explanation for the extra peaks in Rb was 

that they resulted from marked anharmonicity in the branch. 
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Calculations by Cowley and Cowley (1965) indicate that certain 

modes in the alklai halides can have multiply peaked line shapes. 

However there was no indication of such line shapes in calcula­

tions by Buyers and Cowley (1969) on potassium. 

A radically different idea was put forward by Overhauser 

(1970). On the assumption that the ground state of rubidium is 

a charge density wave state (see e.g., Overhauser 1968), he 

calculated the phonon spectrum of rubidium and was able to pre­

dict extra "longitudinal'' modes. This occurs because the 

symmetry of the lattice may be lowered to tetragonal by a 

charge density wave. There are several objections to this idea, 

and it is not believed to be the correct explanation. In the 

following paragraphs, we consider experimental details which 

are fully able to explain the observations. It has been re­

marked that experimental considerations are more likely to be 

the reason for unexpected observations than are major changes 

in theory. This seems to be true in the present case. 

(iii) The Explanation 

It was remarked above that multiple scattering was a 

possible explanation, but that a 15% shift in frequency was 

difficult to understand. A small shift is possible however, 

as a result of finite instrumental resolution. To check 

this possibility, an existing computer programme (originally 

written by Dr. E. R. Cowley) would have had to be modified to 
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allow for multiple scattering, and it was not clear how to 

formulate this modification. Fortunately no such changes 

were necessary. The programme, which is briefly described in 

Appendix III , was initially run without modification, and it 

immediately predicted double peaks for the [OO~]L branch! 

The source of the extra peak was quickly established. 

Fig. II-17, part (b), shows constant frequency contours in a 

portion of the (110) plane, which is normal to the (llO) scattering 

plane: the central line, which is the [001] direction, lies 

in the (110) plane. The diagram shows the behaviour of the 

transverse mode (eigenvector ~T) lying in the (110) plane, for 

small displacements of ~ above and below the scattering plane. 

Referring now to part (c) of Fig. II-17, we observe that the 

resolution function drops off either side of the scattering 

plane (qz is the component of ~ normal to the scattering plane). 

Furthermore the quantity (2·~) 2 increases, roughly as shown. 

Thus the intensity of scattering by this mode has the indicated 

type of behaviour. Referring now to the lower portion of (c), 

we see that the dispersion relation for this mode has con­

siderable downward curvature with the result that a peak is 

observed at a frequency significantly lower than the value for 

q = o. z 

To see why this effect is not observed in other branches, 

or in other types of system, we refer first to Figs. II-11, 
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II-12. It is immediately apparent that, for modes with polari­

zation in the plane, (a) the polarization vector changes direc­

tion rapidly for small displacements of ~ from the (001] direc­

tion, but only slowly for small displacements from other symmetry 

directions, and (b) the curvature of the frequency surfaces 

is very much more marked close to the [001] direction. The 

rapid change in direction of the polarization vectors results 

in a more intense extra mode, and the large curvature leads to 

a large shift of the mode. 

These two effects are related. For small ~ we may use 

the long wavelength approximation to obtain, using standard 

perturbation theory: 

(II-Fl) 

t.wT" e11-e12 e: 2 
= ( )- (II-F2)

WT" 2e 44 r,;2 


2

t.wL e 4( e 12+e 4 4 > ~ + 

= [__!! + 1 0 (£...) (II-F3)
WL ell e11 (e11-e44> r,; 2 r,;4 

(II-F4) 

where the subscripts T' and T" refer to modes polarized in and 

normal to the plane; t.wL' t.wT' and t.wT" are the changes in 

frequency of the three modes, and ~ is the change in direction 

of the polarization vectors in the plane, when ~ is changed from 
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( 0 , 0, r;) to ( e: , e: , r;} with e: < < r; • 

We now see that the extra peaks were observed as a 

result of relaxed vertical* resolution and the fact that 

(c11-c 44 ), the energy denominator in Eqs. (II-Fl, F3 and F4), 

is relatively small. The vertical resolution of the instrument 

is comparable with that of other instruments (for example 

Buyers and Cowley (1969) had 1° and 4° collimation in k 
--0 

and k', which is very similar to the collimation of the McMaster 

spectrometer, 1.3° and 4°). Thus it is the small difference 

between c11 and c44 , together with the small size of the 

reciprocal lattice (Section IIB) , which leads to pronounced 

extra peaks. 

In Fig. II-18 experimental line shapes are compared 

with calculation. The experimental curves were obtained 

from the actual measurements (Fig. II-16) by subtracting 

off the background and the elastic incoherent contribution to 

the intensity. The solid curves were calculated using AFC's 

appropriate to 205°K,and parameters for the resolution function 

as in Appendix III .Somewhat better agreement (shown by 

dashed lines) was obtained using slightly poorer vertical 

resolution [M = 100 (a/2TI) 2 : see Appendix III]. The33 

agreement between theory and experiment is quite good 

considering that only one parameter can be varied: the calculated 

* In the present discussion "vertical" means normal to the 
scattering plane. 
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intensities relative to one another are completely determined, 

but the ratio of the experimental intensity scale to the 

theoretical intensity scale is arbitrary. The discrepancies be­

tween calculation and experiment, particular for ~ = 0.3, may 

result because no set procedure exists for subtracting off 

the large background from the experimental measurements. 

(iv} Discussion 

Clearly the above explanation can be tested by examining 

the behaviour of a scan as a function of vertical resolution. 

Such an experiment was planned in March 1970 but it was aban­

doned because the Rb crystal was no longer useable (see Section 

IIC). Instead an experiment on potassium was attempted using a 

crystal kindly lent by Dr. R. A. Cowley. The best run, with 

and without vertical collimation, is shown in Fig. II-19 

(the inset shows the type of lineshape observed by Woods et al. 

(1962) in Na). Though the results are by no means conclusive, 

there is definite evidence of a low frequency peak in K which 

is reduced in intensity when vertical collimation (O.l" in 8" 

in the scattered beam) is put in. 

No extra peaks were observed in K by Cowley et al. (1966) 

because detailed scans were restricted to a frequency range 

which did not extend low enough in frequency for the extra 

peak to be observed (Dolling 1970). 

Let us now consider whether extra peaks are likely to 
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show up in experiments on other types of systems, as a result 

of a rapid change in direction of the eigenvectors. Two ques­

tions arise: first, under what circumstances do such rapid 

changes occur, and second, what type of resolution function is 

necessary in order to see an extra peak? 

Rapid changes in polarization direction are likely to 

occur when two modes have nearly the same frequency. However 

such changes can only occur if they are allowed by symmetry. 

Referring to either the lower left- or the lower right-hand 

side of Fig. II-18 we note that modes polarized parallel to the 

x- and y-directions (hereafter designated modes X and Y) can 

only interact if ~ is displaced in the x-direction, from po­

sition 1 to position 4: modes Y and z can only interact if ~ 

is displaced vertically to position 3. In the left-hand 

diagram, which represents the measurement of a longitudinal 

phonon (mode Y), we see that poor resolution parallel to Q does 

not lead to interaction with modes X or Z: however poor 

vertical resolution can mix in mode z. This is exactly the 

situation in the [OO~]L branch in the alkali metals. In the 

case of a transverse phonon measurement, poor resolution 

parallel to Q results in the interaction of the transverse 

mode X with mode Y. 

The crossing of the L and T2 branches in the [~~O] 

direction in an f.c.c. material (see e.g., Svensson et al. 1967) 

is a situation where the eigenvectors of the two branches change 
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direction rapidly, if ~is displaced slightly from the symmetry 

direction. The T2 mode is polarized parallel to [001]. It 

follows from the above arguments that: 

(a) 	 for measurements of the L mode conducted in the (001) scat­

tering plane, poor vertical resolution will result in 

strong interaction with the T2 mode; 

(b) 	 for measurements of the L mode in the (llO) plane, poor 

resolution in the plane, normal to Q, has the same effect; 

(c) 	 for measurements of the T2 mode in the (llO) plane, poor 

resolution parallel to Q results in strong interaction with 

the L mode. 

Furthermore we should note that, though two peaks may 

not be observed, considerable shifts may still occur as a result 

of interactions with other modes. If the energy resolution is 

poor the two peaks may not be resolved with the result that the 

modes appear to be attracted to one another. Clearly extra 

precautions should be taken if measurements are contemplated 

where this type of complication is likely to occur. 

{v) 	 Phonon Frequencies for the lOO~]L Branch 

The shift in frequency of the [OO~]L modes in Rb, as 

a result of relaxed vertical collimation, is easily calculated 

for small ~. The ''true" frequencies lie 0.02 to 0.03 THz 

below the measured frequencies in Rb, for ~ < 0.5. For ~ ~ 5 



116 


the type of correction is not clear. Assuming the extra peak 

is still resolved, but too weak to be separated from the back­

ground, the shift bR is still positive: on the other hand 6R 

is negative if we assume that the extra peak is not resolved. 

An additional complication is that the neutron groups 

for the upper part of the branch were very weak. This is re­

flected in the large errors assigned to these measurements. 

For this reason the shifts are not significant since they are 

at most ±0.02 THz whereas the errors are of order ± 0.04 THz. 

The [OO~)L branch in the alkali metals is believed to 

be more anharmonic than the other branches. Glyde and Cowley 

3(1970) predict a crossover in this direction for b.c.c. He 

when cubic anharmonicity is taken into account. A crossover 

was observed in lithium by Smith et al. (1968), and Brockhouse 

(1968) suggested that it resulted from anharmonicity. Further­

more Millington (1969) found evidence of anharmonicity in the 

(OO~]L branch in an analysis of his own room temperature time­

of-flight measurements on sodium. It may well be that the 

weak, poorly defined, groups observed in Rb result from consi­

derable anharmonic damping of these modes. 

Wallace (1968) has noticed a "kink" in the measured 

{00,JL branch in Na and K, for ~between 0.6 and 0.7. There 

is also slight evidence of such behaviour in Rb, but the present 

results are by no means conclusive. 



CHAPTER III 


ANHARMONIC PROPERTIES 

A. THEORY OF ANHARMONICITY 

(i) Introduction 

The harmonic approximation, which has been desc~ibed 

in previous sections, is evidently a good approximation, 

capable of explaining many of the observed dynamical prope~ties 

of real crystals. On the other hand, the approximation pre­

dicts a number of results which are not satisfied in real crystals. 

Among these predictions, (a) there is no thermal expansion, 

(b) the adiabatic and isothermal elastic constants are equal, 

and independent of temperature and pressure, and (c) the heat 

capacity tends to a constant value at high temperatures. It 

is clear that the theory must be extended to allow for depar­

tures from harmonicity. 

In this section we shall first discuss the quasi­

harmonic theory, in which the phonon frequencies are assumed 

to be volume-dependent, but independent of temperature at 

constant volume. We shall then consider the principal effects 

of intrinsic anharmonicity, which we may think of as anhar­

monicity at constant volume, with particular reference to the 

lattice vibrations. Finally, we take a brief look at the idea 

of etfective frequency distributions, and the anharmonic con­

117 
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tributions to thermodynamic functions. 

The discussion that follows is generally restricted to 

monatomic cubic lattices, and in particular the b.c.c. lattice. 

(ii) The Quasiharmonic Approximation 

In this subsection we shall determine the volume de­

pendence of the normal mode frequencies in terms of the 

anharmonic atomic force constants (AAFC's) ¢ (~~·~"). This a. Sy 

will enable us to calculate the thermal expansion. 

We first demonstrate that the AAFC's are non-zero. 

Owing to the rotational invariance condition (Leibfried 1965, 

Born and Huang 1954), these quantities are related to both the 

second and third derivatives, V" and V'" of the potential 

V(E)· Clearly V" is non-zero, and therefore at least some of 

the anharmonic coefficients are non-zero. Furthermore Leibfried 

(1965) states that, in the case of an f .c.c.nearest neighbour 

central force model, setting V'" = V"" = 0 leads to the un­

expected result that the thermal expansion is negative. 

We now derive the shift in frequency, due to thermal 

strain, of the mode A = (~j). This problem has been treated 

by Maradudin (1962). The frequency of the mode A, in the 

harmonic approximation, is given by (Eqs. I-ClO, I-Cll): 

mw
2 

(A) = L: e (A)e 0 (A) L:' ¢ S(~~')[exp{i~·E_(~'~)}-1]. (III-Al) 
a.S a. µ ~· a. 

We consider an isotropic strain n = 6a/a, which we 
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shall regard below as a thermal strain (rather than as a 

mechanical strain). The atomic positions are changed by amounts 

n£(!1.), and the AFC <Pae(Jl.JI.') becomes 

<P,.,,o(Jl.JI.') + n l: ¢ (J1.J1.'J1.")r (JI.") . 
.... µ Jl."y aey y 

The change in frequency of the mode A is therefore obtained 

from Eq. (III-Al) as: 

2mw(A)llw(A) = n ;e ea(A)e 6 (A) Jl.'~,Q, ¢aSy(J1.J1.'J1.")ry(J1.")[exp{ig_•!_(,Q,',Q,)}-l] 

fl," Y (III-A2) 

The Gruneisen parameter for the mode, given by 

a dw (A)y OJ = d Jl.n w OJ = - (III-A3)3w(A) dad in V 

is simply obtained from Equation (III-A2). 

In the absence of external stresses, the condition which 

determines n is that the Helmholtz free energy F be a minimum*. 

We wxite {Born and Huang 1954) 

F =-kB T Jl.n Z (III-A4) 

where the partition function, z, is a sum over all possible 

configurations fl, of the system: 

In the harmonic approximation, the energy of configuration E,Q, 


is the sum of two terms, 


*Throughout this thesis the term "free energy" signifies the 

Helmholtz free energy, and is denoted by F. 

http:P,.,,o(Jl.JI
http:Pae(Jl.JI
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(III-AS) 


where ¢ _ ¢(~) j • A particular configuration i may be ex­
0 0 

pressed as a set of occupation numbers n(A), and therefore 

we obtain 

which gives after some manipulations 

F = ¢ + kBT E in(2 sinh x(A)], (III-A6) 
o A 

where 

(III-A7) 

Furthermore the entropy is 

ClFs = - aT =kB E {X(A)Coth X(A)-in(2 sinh X(A))}, (III-A8) 
A 

the heat capacity is 

2
C = T 2.§_I =kB E {x2 (A)cosech x(A)}, (III-A9) 

v ClT v A 

and the internal energy is 

- 1E=F+TS = ¢ +kBT E X(A)Coth x(A)=¢ + E .frw(A) [n(t,)+'1], (III-AlO)
0o A ~ 

where n(A) is the Bose-Einstein population factor*, 

*Note that elsewhere in this thesis the Bose-Einstein population 
factor is simply denoted by n(A) or n(~j). 

r 
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The derivative of F with respect to thermal strain 

n is, to lowest order (Ludwig 1967): 

(III-All) 

The second term may be written in terms of Gruneisen parameters 

The change in ~o with thermal strain is related to its 

change with mechanical strain, and for cubic crystals the 

appropriate equation is 

3BVn , 

where B is the bulk modulus. We now put 3F/an equal to zero, 

to obtain 

3BVn - ~ E ~w(A)coth x(A)y(A) = O (III-Al2) 
A 

Comparing Eqs. (III-AlO) and (III-Al2) we see that 

(III-Al3) 

and the thermal expansion coefficient, a = dn/dT, is given by 

(III-Al4) 

In these expressions E(A) and C(A) are respectively the energy 

and heat capacity of the mode A. 

Various measured thermodynamic quantities (e.g., heat 

capacity, Debye-Waller factor) are sometimes expressed in terms 

of equivalent Debye temperatures e (see Barron et al. (1966), 
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§4.1, for a helpful discussion). The corresponding frequency 

w = kB8/~ defines the cutoff of the Debye frequency distri­

bution which correctly predicts the thermodynamic quantity. 

If the actual frequency distribution were a Debye distribution, 

e would be independent of temperature T, and the same for every 

property. In practice e varies with T and depends on the 

property. 

In the limits of low and high temperature, various Debye 

temperatures may be written as expansions involving Debye 

frequencies wD(n): these are defined as the cutoff of the 

Debye distribution which has the same n'th moment as the true 

distribution. For example the leading term in the high tempera­

ture expansion for 8c(T), the Debye temperature characteristic 

of the heat capacity, is 

Lim 8c(T) = ~wD{2)/kB 
T-r-oo 

It is sometimes desirable to correct Debye 8's for 

the effect of thermal expansion, in order to facilitate comparison 

with theory. The corrections involve bulk Gruneisen parameters 

y(n), which are defined by 
/:: y(\)wn(\) 
\ (III-Al5)Y (n) = 

For example high temperature values of ec (V,T) may be correc­

ted to the fixed volume V by writing (Barron et al. 1964)
0 
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y (2)ec (V ,T)
0 = (~}v 

0 

We now have two types of GrUneisen parameter, y(A) and y(n), 

in addition to the well known thermodynamic function y(V,T) which 

is given by 

(III-Al6)y (V ,T) = 

where BT and BS are the isothermal and adiabatic bulk moduli, 

and C and C are heat capacities at constant volume and con-v p 

stant pressure respectively. 

Clearly a calculation of the mode y's can give impor­

tant information about the quasiharmonic corrections to physi­

cal quantities. Such a calculation is presented in Section 

IIIC. 

(iii) Intrinsic Anharmonicity 

There are several indications that the correction for 

thermal expansion, outlined above, is not always sufficient to 

account for differences between experimental measurements and 

the appropriate harmonic theory. 

For example, an analysis by Newsham (1966) of heat 

capacity data for silicon and germanium shows that , at high 

temperatures, there is an extra contribution to the heat ca­

pacity, of the form AT, with A ~ 3 x 10- 4 cals/°K2/gm 

atom; this is attributed to anharmonicity. Furthermore, 

measurements of the elastic constants of several materials 



124 


(Cu, Al, CuZn, KCl and NaCl), as a function of both temperature 

and pressure, enabled Lazarus (1949) to calculate the intrinsic 

temperature dependence (i.e. the temperature dependence at 

constant volume) of the elastic constants. It was found com­

parable to the temperature dependence at constant pressure: 

in the quasiharmonic approximation there is no intrinsic 

dependence on temperature. 

We shall see below that anharmonicity introduces in­

teractions between the previously independent normal modes of a 

crystal. These interactions largely account for thermal 

resistivity; furthermore, finite phonon lifetimes, which 

result from phonon-phonon interactions, show up as an increase 

in the natural width of a phonon with temperature, first observed 

in aluminium by Larsson et al. (1961) and in lead by Brockhouse 

et al. (1961). 

A useful qualitative discussion of anharmonicity has 

been given by Barron (1965a). Let us consider the potential 

energy of a system, and write it as 

(III-Al7) 

The terms in this equation bear a one-to-one correspondence 

to the terms in Eq. (I-Cl). The term vanishes (Section IC),¢1 

and in the harmonic approximation terms beyond are neglected:¢ 2 

the normal mode frequencies are determined by the coefficients 

¢as<ii'), which enter ¢2 • To allow for thermal expansion 
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we go to the quasiharmonic approximation, which gives shifts 

in the normal mode frequencies in terms of ¢3 . 

To the next order in (u/r) (the ratio of a vibrational 

amplitude to the interatomic spacing), there are terms in 

J¢ 3 ]
2 and in ¢ 4 • These are the terms which concern us here. 

When they are included, the normal modes are no longer inde­

pendent. Instead they have finite lifetimes, and in general a 

shift in frequency will occur. Because ¢ 2 , and are¢ 3 ¢ 4 

functions of the (temperature dependent) amplitudes, the widths 

and shifts will also be dependent on temperature. 

Maradudin and Fein (1962) have shown that the delta 

functions in Eq. (I-Dll) become "pseudo-Lorentzian" functions / 

when anharmonic interactions are introduced: 

f(\,D)TIO [D±w (\)] -+ (III-Al8) 

Here, and in later equations, n denotes the energy transfer. 

The shift ~ and width r are seen to be functions of n, so that 

the line shape can have structure. However, if ~ and r are 

small compared with w, as is often the case, the line shape 

is approximately Lorentzian. The half width at half height is 

then r, and the shift of the peak is ~. 

A variety of techniques has been employed to study 

anharmonic effects in solids. Cowley (1963,1968) gives 

references to much of the earlier work. The mathematics is 

long and involved, and will not be reproduced here. Instead we 
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shall very briefly examine the differences between the harmonic 

and the anharmonic derivations of the scattering cross section. 

In both cases the starting point is Van Hove's equation 

(I-D4). The displacements are written in terms of phonon 

operators, using Eq. (I-C24), and a time independent Debye-

Waller factor is then separated out. The anharmonic Debye-

Waller factor (Maradudin and Flinn 1963) retains terms to all 

2 powers of u • A one phonon scattering cross section, which may 

be defined as the contribution to S(~,w) proportional to o2 
, 

is then written as 

[~·~(;\)]2
2TT 2Nrls1 (Q,w) = Vm exp[-2W] L: (III-Al9)w (;x.)

;\ 

where the spectral function J(~) is 
00 

J(n) = f exp(int)<<A(A,t)A(-A,D)>>dt (III-A20) 

In the harmonic approximation the spectral function 

is simply obtained because the only time dependence in A(;\,t) 

is of the form exp(iwt). It is given below in Eq. (III-A29). 

The anharmonic case is quite different. The modes 

are no longer independent of each other, and the displacement 

of an atom, due to a particular mode, is no longer a simple 

periodic function of time. On the other hand the probability 

of creation or annihilation of a phonon is essentially inde­

pendent of time: that is, the phonon operators are not 

functions of time. In the present treatment, however, we regard 
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the modes as non interacting, so that the operators assume a 

complicated time dependent form. This is the Heisenberg 

picture. The advantage of this approach is that normal mode 

frequencies and eigenvectors, determined using a harmonic 

model, may be inserted into the final anharmonic expressions. 

The evaluation of the spectral function, J(O), for 

an anharmonic crystal, is a formidable task. Cowley (1963) 

shows that it may be written as 

and that, to lowest non-vanishing order, the function ~(A,0) 

is given by 

(III-A22) 

where the thermal shift ~T(A) has already been given, 

(III-A23) 

(III-A24) 

and f(A,0) is given by 

r( ',r.) = $Jif. ~ V('l\t/\111\2 ' ) 12 (r.)~o (III-A25)I\ H t.. ' s 
~ AlA2 

with 

-1 -1
R(O) = (n 1+n 2+1) [(w1+w 2+n)P + (w 1+w -n)P]2

-1 -1+ (n 2-n1 ) [(w1-w 2-n)P + (w 1-w 2+o)P] (III-A26) 
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and 

(III-A27) 

In the above expressions n. and w. refer to the mode x., and 
1 1 1 

the subscript p indicates the principal value. The coefficients 

V(A,A 1 ,A 2 ) and V(A,-A,X 1 ,-x1 ) are explained in Section IIIB. 

Note that there is only one contribution to r, and 

that the cubic terms (6 and f) are functions of O, whereas3 

the quartic shift (6 4 ) is not. More generally 6 3 , r and 6 4 

are functions of A= (~j) and X
I = (~, j'): wave vector is 

conserved, but the polarization of the mode may be altered 

by the anharmonic interaction. However the off diagonal contri­

butions, such as 6 (XX' ,0), with X'~X, are identically zero3 

for the symmetry directions which we shall consider (see e.g. 

Buyers and Cowley 1969). 

In the harmonic approximation 6 and r vanish. Using 

the representation 

cS (x) =.!_Lim [ e: J, (III-A2B)2 2TI e:-+O x +e: 

we find that 

= 2TI{[n(A)+l)cS{w(X)-O]+n(A)cS[w(X)+O]}. (III-A29) 

Substituting Eq. (III-A29) into Eq. (III-Al9), we get back 

the harmonic expression, Eq. (I-Dll). 
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Calculations of cubic shifts and widths, and 

quartic shifts, are reported in Section IIIC. We now pass to 

a consideration of the thermodynamic properties of an anharmonic 

crystal. 

(iv) Effective Freguency Distributions 

In the harmonic approximation, various thermodynamic 

properties of a system (such as the free energy and the entropy) 

may be expressed as a sum of individual contributions from each 

normal mode (see e.g. Eqs. III-A6, III-AB). In each of these 

expressions the summand only depends on (~j) through the fre­

quency of the mode. The thermodynamic properties may there­

fore be written: 

~w
T]g(w)dw (III-A30)F = Oo + kBT f in(2 sinh 2k 

B 

S = kB Jr [ ~kwT coth ~w - in(2 sinh ~w~Jg(w)dw (III-A31)2 B 2kBT 2kBT 

where the frequency distribution is normalized to 3N, and N is 

the number of atoms in the solid. 

The above expressions are valid in the quasiharmonic 

approximation, in which case the frequency distribution, g(w), 

is volume dependent. 

Anharmonic contributions to thermodynamic properties 

may be calculated using perturbation theory. The principal 

contributions to the free energy are (Leibfried and Ludwig 1961) 
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(III-A32) 

6F 4 = 3 	 (III-A33) 

where 

(III-A34) 

and 

(III-A35) 

Anharmonic contributions to the entropy and to the 

heat capacity are obtained by differentiating the above ex­

pressions with respect to temperature. 

Comparing Eqs. (III-A24) and (III-A33), we have 

~ 6F 4 =4I: (2n+l)6 4 0,). (III-A36) 
A 

Cowley (1963) states that, "after some manipulation" an exact­

ly similar expression may be obtained for 6F in terms of3 

63 (A) = 6 (A,w). Overton (1968) has shown how to obtain this3 

result. 

By differentiating Eq. (III-A30) we may obtain an ex­

pression for the change in free energy b.F resulting from changes 

b.(A) in the normal mode frequencies: 

b.F 	 =~I: coth x(A) ~b.(A) ="¥I: (2n+l)6(A) (III-A37) 
A A 

This equation correctly gives the change in the free 

energy resulting from thermal ex~ansion, with b.(A) denoting the 
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corresponding change in frequency of the mode A. However 

the change in free energy resulting from anharmonicity is 

onlt p~edicted correctly by Eq. (III-A37l when 6(A) is 

replaced 	by 2
1 c6 (A)+6 (A)], rather than by [6 (A)+6 4 (A)].

3 4 3 

The quasiharmonic phonon density of states 

gqh(w) = 	E c[wqh(A)-w] (III-A38) 
A 

is simply corrected for anharmonicity by writing 

g(w) = E c[wqh(A)+63 (A)+64 (~)-w]. (III-A39) 
A 

If this expression is substituted into Eq. (III-A30), the 

anharmonic contribution to F is too large by a factor of two. 

In order to obtain the correct anharmonic free energy, we must 

use the following "effective frequency distribution for the 

free energy": 

(III-A40) 

The quartic anharmonic entropy is obtained as 

= - 6 

(III-A41) 
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We see that the quantity (Sqh+bS 4) is correctly pre­

dicted by substituting (wqh+A ) for w in Eq. (III-A31) for4

the entropy; this is also true of the cubic anharmonic term 

As 3 (Barron 1965b). Thus the"effective frequency distribution 

for the entropy" is simply 

The situation regarding the heat capacity is somewhat more 

complicated. We shall return to this subject in our discus­

sion of thermodynamic properties in Section IIID. 
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B. THE ANHARMONIC POTENTIAL 

(i) Definition 

In the previous section, the quantities V(A,A 1 ,A 2 ) and 

V(A,-A,A ,-A ) were introduced. They are related to the third1 1 

and fourth derivatives of the real space potential in the 

following manner. 

The first two anharmonic terms in the expansion of 

the total potential energy, Eq. (I-Cl), are 

<P =;. L: ¢ (tt't")u (t)u (R.')u (R.")3 o £ a aSy a S y 
,Q, I s 
R, "y 

1 
L: ¢ (R.£'£"£'")u (R.)u (R.')u (t")u (£'")<P 4 = 24 

R, a aSycr a S y a 
,Q, I s 
t" y 
,Q, I II O 

Writing ua(t) in terms of phonon operators (Eq. I-C24), 

we obtain 

where 

L: ¢ (££'£")
££'£" aSy 
a Sy 

x ea(A 1 )e 6 (A 2 )ey(A 3 )exp{i[~1 ·£(R-)+~2 ·~(t') 

(III-Bl) 
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and 

L: 
9,9,'9,"9,'" 

ai3ya 


x ¢ai3ya(9,9, 1 9,"1'")ea(A 1 )e 13 CA 2 )ey(A 3 )e0 (A 4 ) 


(III-B2) 

In both the above expressions, the sum over 1 may be simply 

replaced by an additional factor N multiplying the right hand 

side. Note too that we are only interested in V(A ,-A 1 ,A 2 ,-A 2 )1 

so that the 6 function in the second expression is automatically 

satisfied. 

In the previous section expressions were given for the 

principal contributions to the shift and width of a mode resulting 

from anharmonicity. These expressions contain the anharmonic 

force constants¢ (££'£") and¢ (9,£'£ 11 5/, 111 
). In the re­ai3y ai3ya 

mainder of this section we describe several methods which 

have been used to estimate these quantities. 

(ii) Estimates of the Anharmonic Atomic Force Constants 

We assume a two body central potential V(r). The 

AAFC's are related to the derivatives of this potential (see 

Eq. AIV-1). In this work we perform calculations out to second 

nearest neighbours, so that we are interested in knowing 
I II II II 

the values of v. and v. for i = 1 and 2, where i denotes the 
l l 

shell of neighbours. It seems reasonable to work with only 
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first and second neighbours,since we have already seen that 

the harmonic frequencies are well fitted by considering forces 

out to third or fourth neighbours. 

(a) Volume Dependence of the Elastic Constants 

Probably the most direct experimental information con­

cerning the third derivatives of the interatomic potential in 

rubidium comes from experimental measurements of the elastic 

constants as a function of pressure. Pauer (1968) measured 

the change in the transit time of an ultrasonic pulse with 

pressure for the three modes propagating in the [110] direction 

at 195°K. Using the relation 

(III-B3) 

where y. is the long wavelength limit of the Grilneisen parameter
l. 

of the mode i, and BT is the isothermal bulk modulus, which 

l?auer gives as 26.3 kbar at 195°K, he obtained 

y (L) = 1.37 ± 0.04 

y(T2) = 1.06 ± 0.01 

y (Tl) = 1.20 ± 0.04 (III-B4) 

For a central force model we may relate these quantities 

to the first three derivatives of the potential, in the fol­

lowing way. We first write 

2 mw (S) = ~ ¢ [1-cos(nTiq/q )]
n n max 
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where ~ are interplanar force constants. These may be expressed
n 

in terms of AFC's (Brockhouse et al. 1968b), and hence in terms 

I II 

of the derivatives v., v.. For very small q, we obtain, con­
1. 1 

sidering first and second neighbours only, 

2 2 
I 

2 4V1 B II 2 I II7T S1
WL = {3"r" + 3 vl + -V + 2V } (III-B5a)r 2 22mq 2 1 2 max 

2 7T2q2 BV1 
I 

4 
= {- + 

II + !_ v'} (III-B5b)WT2 2 3r 3 Vl r 22mq 1 2 max 


2 7T 2S1 2 

= {!_ v I + ~v 

I 

+ 2V " } {III-B5c)WTl r 1 r 2 22mq 2 1 2 max 

where r 1 (= ~a/2), and r (=a), are the first and second neighbour2 

distances respectively. 
2d.Q.nw 1 d ( .Q.nw )Now = ­y = - dtnV 'b da 

so that (after some manipulations) we have 
I II I II 

[(4r1/3)V +r +281+a -S l1 2v 2 2 2 (III-B6a)
6t2a 1+2s 1+a 2+s 2J 

I II 

[(4r /3)V1 +as +4a -46 ]1 1 2 2 
(IIr-B6b)24[a.1+82l 

I II 

+68 1+a. -8 ][r2v 2 2 2 (III-B6c)
6[2a.l-281+a.2+82l 

Using the 12°K and 120°K AFC's given in Table II-4, 

the following values are respectively obtained: 

from Eq. (III-B6b) 
I II 

(4r1/3)v1 =(-25380±170) and (-23730±150) dynes/cm. 
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from Eq. (III-B6c) 

r v I " = (-6410±45) and (-6490±55) dynes/cm.
2 2 

from Eq. (III-B6a) 

+ r
2
v 

2 
I " = (-31800±210) and (-30200±210) dynes/cm. 

Though these results are not completely compatible, they give 

one a good idea of the sign and magnitude of the third deriva­

tives. 

In particular, note from Eq. (III-B6c) that yTl is 

very sensitive to r v ' " • This means that this derivative is2 2 

rather well determined by this method. 

It is interesting to note that the normal mode f requen­

cies in Rb are predicted to better than 10% using a three force 

constant model (lXX, lXY and 2XX nonzero), with the force 

constants determined from the elastic constants. This indi­

cates that the anharmonic force constants derived above are 

fairly realistic. The harmonic and anharmonic force constants 

derived from elastic constant data are listed in Table III-1. 

(b) The Morse Potential 

The AFC's, which are obtained from an analysis of the 

phonon dispersion curves (Section IIE) may be related to the 

first and second derivatives of an interatomic potential (see 

Eq. I-CS). In order to obtain higher derivatives, the first 

and second derivatives, for first and second neighbours, have 
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been fitted to a Morse potential: 

-2a.(r-r ) -a.(r-r ) 
V (r) = e:[e 0 - 2e 0 ] (III-B7) 

whose n'th derivative is given by 

-2a. (r-r ) -a. (r-r )

Vn(r) = 2(-a.)ne:[2n-le o -e o ]. 


The best values of the parameters are, at 12 and 120°K res­

pectively: 

a.= 0.779 and 0.700 A-l 
0 

= 5.256 and 5.341 A 

e: = 746 and 850 ergs. (III-BS) 

Using these parameters, the derivatives listed in Table III-1 

were obtained. 

These parameters differ markedly from those obtained by 

Girifalco and Weizer (1959) , by fitting to the energy of sub­

limation, the compressibility, and the lattice constant. On 

the other hand Bruno (1970) obtained the following values: 

= o.692i- 1 
a. 

0 

= 5.345A 

e: = 875 ergs, 

by fitting to the energy of vacancy formation, the compressi­

bility, and the lattice constant. The latter values are in 

good agreement with those obtained by fitting to the AFC's. 

The derivatives of the Morse potentials at 12 and 120°K 

are listed in Table III-1. 
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(c) 	 Fourier Transform of the "Total Potential" 
in Reciprocal Space 

The Fourier transform of the "total" potential <jl(Q_), 

introduced in Section IIE, is the real space potential whose 

first and second derivatives give the AFC's. Values for the 

AFC's and for the third and fourth derivatives, for three 

different fits to the 12°K measurements are listed in Table 

III-1. These quantities were obtained using a programme which 

was kindly made available by Dr. W.J.L. Buyers at Chalk River. 

The sets of values labelled 1, 2 and 3 in Table III-l corres­

pond to the functions shown on the left side of Fig. II-9 , 

with cutoffs of 1.6, 2.0 and 2.4 respectively. Clearly #2 

and #3 are very similar, but #1 predicts a very different value 
II II 

for v1 

Blanchard (1969) analysed the dispersion curves of Rb 

using the method of Cowley et al. He obtained an electronic 

potential function <PE(Q) which he then transformed into real 

space and added to the real space Coulomb potential. The 

derivatives of this potential* have been evaluated by numerical 

differentiation. They are given in Table III-1. These values 

are comparatively inaccurate, since V(r) was only specified 
0 

at intervals of 0.2 A. It is satisfying to note that the 

first and second derivatives are in reasonable agreement with 

those derived from the AFC analysis (Section IIE). 

* The author is very grateful to Dr. Blanchard for sending 
numerical values of the real space potential. 
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(d) 	 Effective Potentials Obtained from Pseudo­
potentials 

Ho (1968) calculated phonon dispersion curves for the 

alkali metals using a Heine-Abarenkov pseudopotential, and a 

modified Hubbard function to allow for exchange and corre­

lation effects. The parameters of his calculation were fitted 

to measured elastic contents. Ho also presented effective 

real space potentials which were obtained by Fourier trans­

forming the pseudopotential, and adding in the Coulomb potential, 

2 
e /r. In every case the minimum in the effective potential 

lies 	close to the second neighbour position. 

Blanchard (1969) fitted the parameters of a model, 

based on a Bardeen (1937) pseudopotential and an exchange and 

correlation term of his own, to the measured frequencies for 

Na, K, and Rb. He then obtained interatomic potentials which 

are similar in shape to those of Ho ( 1968). 

In Section IIE, calculations of phonon frequencies 

using a simple Ashcroft potential were reported. The two 

pseudopotentials which gave the best agreement with experiment 

have been Fourier transformed to yield interatomic potentials. 

The integral we require is 

0 	 2 sin(qr)
Ve{r) = rVe(q)q 	 dq,qr271'2 

0 

where 
4Tie

2 
2 E(q)-1v (q}e 	 = - Oq2 cos (qrA) E(q) 
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Since Ve(q) dies away rapidly at large q, the function 

was arbitrarily set equal to zero after the second 	zero 

2 2
(q rA ~ l.51T). At very small q, Ve(q) goes as -41Te /q , so that 

it cancels the Coulomb potential Vc(q). To avoid infinities at 

q=O, we write 

V(r) '= V (r) + V (r) • 
c e 

00 	 00 

2 
= 2e J sin(qr)d( r) + _g_ J v ( ) 2 sin(rrl dq1Tr (qr) q 	 e q q (qr21T2 

e 2e sinx 0 
= - -

0 	

dx + -2-

0 

reVe(q)q sin(qr)dqr 1Tr x 21T r 

2 2 r
0 	 t::. 

The first integral is simply 

2e2 (rt::. - (rt::.) 3 - :rrr- 313 + •••• ) 

so that for rt::. << 1, we need retain only the first term. The 

second integral was evaluated using Filon's method (Froberg 

1965). The derivatives of V(r) were subsequently obtained by 

numerical differentiation. They are listed in Table III-1. 

(iii) Choice of Values 
I 11 II II 2 II II 

The values of r , r v , and r , listed in Table1v1 2 2 2v2 

III-11 show a spread of roughly ± 20%, so that the "preferred 

values", given at the bottom of the table, can be used with 
I II 

some confidence. The third derivatives, in particular r ,2v2 

were chosen to reproduce the measured long wavelength GrUneisen 

parameters of Pauer (1968). This is discussed in Section IIIC. 
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r 1
2v1 

"" The derivative shows considerably more spread. Neglec­

ting values obtained from the Morse potential, which is 

probably the poorest of the methods described abov~ and the 

value obtained from "total potential" #1, the spread is about 

±20%. 

We come now to the calculation of shifts and widths, 

and in Section IIID to the calculation of thermodynamic proper­

ties. 



: 
I 
) 

t 

TABLE III-1 	 The first four derivatives of the interatomic potential in rubidium 
for 1st and 2nd neighbours, evaluated by several different methods 
(see text). The units are dynes/cm throughout. 

I 
I 
' 	 II II I II I II' 	 -1 I 2 "" 2 "" \J ri1v~ r2 v2 vl v2 rlvl r2V2 rlvl r2V2 

12°K 	 -19,000 -6400Elastic Constants (108) (0) (1783) (354)1200 K 	 -17,800 -6500 

12°K -130 35 2243 389 -21,600 -6450 180,000 69,000
Morse Potential 

120°K -124 31 2089 447 -18,200 -6200 140,000 60,000 

"Total Potential" il -130 51 2142 447 -13,500 -8990 21,000 60,000 

#2 -146 29 2231 388 -17,900 -7590 81,000 76,000 

#3 -145 30 2243 385 -17,900 -7510 72,000 77,000 

Ashcroft Potential #1 -155 18 2100 375 -16,500 -7200 86,000 66,000 

#2 -120 42 2150 425 -17,000 -7400 87,000 67,000 

Blanchard 	 -133 34 2040 408 -15,000 -8000 68,000 57,000 

Harmonic AFC's 12°K -118 22 2244 397 

l.o 	 120°K -122 17 2090 454 

Preferred Values 	 -118 22 2244 397 -17,000 -6250 80,000 70,000 

J' 
D 

..... 
~ 
w 
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C. CALCULATIONS OF PHONON FREQUENCY SHIFTS AND WIDTHS 

In this section we present calculations of the effects 

of thermal expansion and intrinsic anharmonicity on the fre­

quency and width of phonons in rubidium. 

Equations for the various quantities have been given 

in Section IIIA. These expressions are very considerably 

simplified in Appendix IV. In that appendix, the particular 

case of an axially symmetric potential is considered, and 

the symmetry of the b.c.c. lattice is fully exploited. The 

final expressions obtained in Appendix IV are derived for 

first and second nearest neighbours. 

In Section IIIB we have considered various methods of 

calculating the anharmonic atomic force constants. The 

preferred values listed in Table III-1 were used in the 

present calculations. 

We consider first the quasiharmonic shifts, resulting 

from thermal expansion. 

(i) Thermal Expansion 

GrUneisen parameters have been calculated,for ~ along 

the five major symmetry directions in Rb. Comparing Eqs. 

(III-A3) and (AIV-Bl) it is clear that 

y(gj) = 
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where I is given by Eq. (AIV-C3). Results for the [00() and 

[(,0] directions are shown in Fig. III-1. The solid lines 

represent values calculated using the preferred values for the 

third derivatives. It will be observed that the agreement between 

calculation and experiment (Pauer 1968) , for long wavelength 

modes in the ((,0) direction, is quite good. The dotted and 
I II 

dashed lines indicate the effects of increasing jr1v1 j and 

lr2v
I II 

I respectively, by 10%. Note that certain modes are2 

only sensitive to one of these quantities. For example the 
I II 

[00,]T and the ('(0]T2 modes are independent of r v On2 2 

the other hand the [''O]Tl mode is very sensitive to this 
I II 

quantity(but independent of r ), as was mentioned in Section1v1 
I II 

IIIB. This means r v can be rather reliably obtained from2 2 

the elastic constant work. 

Complete results, for all five syrrunetry directions, 

are shown in Fig. III-2 as solid lines. The dashed lines 

represent calculations based on an Ashcroft model (Section IIE 

(iii)). Phonon frequencies were calculated for two volumes 

differing by 1%, and values of y(~j) were then trivially 

obtained. This procedure is related to that of Wallace (1968), 

who obtained his results by differentiating the dynamical 

matrix. The behaviour of the Tl branch in Rb is probably 

a result of the finite difference method of calculation which 

was employed with the Ashcroft potential. The present 

calculations compare quite well with those of Wallace (1968) 
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Fig. III-1. 	Grilneisen parameters calculated with different 
sets of values of v~"and v;", for two directions 
in rubidium. 
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for Na and K. Coulthard (1970) has also examined the effects 

of volume changes in his calculations of phonons in Na, Al 

and Pb. 

The thermal strain n, and the ratio (a/S), where S 

is the compressibility, are shown in Fig. III-3. These curves 

were obtained by summing over 14 points in the IBZ. Identical 

results,to within 0.2%, were obtained by summing over 70 points 

in the IBZ. The "experimental values", shown in Fig. III-3, 

were obtained by using values of a and S respectively due to 

Hackspill (1911) and Swenson (1955) • The isothermal compres­

sibility has been measured by Swenson (1955) (see Table II-1) 

and by Bridgman (1942, 1948), by static methods. Rice (1965) 

used the shock-wave method to obtain the adiabatic compressi­

bilit~ and this quantity may also be obtained from measure­

ments of elastic constants (Gutman and Trivisonno 1967). Ginell 

and Quigley (1965) analysed the work of Swenson and of 

Bridgman, and concluded that both sets of data are good, al­

though some of the earlier measurements (Bridgman 1942) must 

be regarded with suspicion. Swenson's low temperature value 

was used to obtain the thermal strain curve shown in Fig. III-3. 

The experimental thermal expansion coefficient is not 

well known. The situation has been summarized by Kelly and 

Pearson (1955). Early macroscopic measurements (Hackspill 

-6 -11911) ,gave a ~ 90 x 10 °K , but x-ray measurements favour 

-6 -1 a value nearer 66 x 10 °K • In view of this large uncer­
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Figure III-3. 	 The ratio of thermal expansion coefficient 
to compressibility, and the thermal strain. 
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tainty in the experimental numbers, no useful comments 

can be made regarding the adequacy of the present calculation 

of (a/e). 

Thermal shifts for individual modes (~j) are obtained 

from y(~j) and from the change in thermal strain with temperature. 

The results are discussed in a later subsection. 

(ii) Quartic Shifts 

The quartic shifts ~ 4 (A) were calculated using Eq. 

(AIV-C6). The sum over ~2 converged rapidly as the density 

of points in the IBZ was increased. Shifts calculated with 

70 and 204 points in the IBZ (Mn = 10 and 15 respectively) 

differed by <0.5%. The results, for the three major symmetry 

directions, are shown in Fig. III-4. The effect of changing 

the fourth derivatives is also illustrated. Note that the 

quartic shifts for the I~~O]Tl branch are independent of 
2 1111 

, and for the [OO~]T and [~~O]T2 branches the shifts arer 1v1 
2 1111 

independent of • An analogous situation was found inr 2v 2 

the case of the thermal shifts. Note in particular the strong 
2 1111 

dependence on r v of the quartic shift for the symmetry2 2 

point H. 

The temperature dependence of the quartic shift of the 

mode at H is shown in Fig. III-4. The behaviour of the other 

quartic shifts is similar. 

Using values for the derivatives of the interatomic 

potential in potassium, kindly supplied by Dr. G. Dolling, 
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quartic shifts at 299°K have been calculated and are shown 

in Fig. III-5. The shifts calculated by Buyers and Cowley 

(1969) are also shown. The present calculations used deriva­

tives appropriate to a potential having a cutoff of 2.0, 

whereas Buyers and Cowley used a cutoff of 1.6. In view of 

this difference, the agreement between the two calculations 

is not bad: in particular the shape of the curves, and the 

signs of the shifts, are the same, with the exception of 

the [ssO]L and [ssslL branches (the latter at small~). By 

adjusting the derivatives within reasonable limits, considerably 

improved agreement can be achieved. Note that very large 

values of 6 4 (~) for the ['~O]Tl branch (more than 50% of v(~) 

itself) are predicted by both the real space and the reci­

procal space calculations. 

(iii) Cubic Shifts and Widths 

We have already noted that 6 (A,0) and f(A,0) are3 

considerably more complicated quantities to calculate than 

6T(A) and 6 4 (A). There are several complications. In the 

first place, 6 and r are functions of ~, so that an extra3 

"do loop" is involved in the computations. Secondly, the 

calculation for a general mode A involves a sum over the 

whole zone, whereas 6 only requires a sum over the irreducible4 

l/48th of the zone. In this work we restrict our attention to 

the high symmetry directions, in which case sums over smaller 

fractions of the whole zone are sufficient (Appendix IV, Section E). 
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The most troublesome computational problem is the 

representation of the Cauchy principal values and the delta 

functions which appear in the expressions for 6 3 (.A,rG) and r (.A,O). 

Maradudin et al. (1962) discuss this problem, and suggest 

that the principal value and the delta function be written 

as series in Legendre polynomials. In this work we have used 

the simpler representation (Maradudin and Fein 1962): 

(III-Cl) 

The choice of E is dictated by conflicting requirements. To 

obtain a faithful representation, E must be very small; on 

the other hand E must be larger than the smallest increment 

in x which results from the use of a finite mesh of points in ~ 

space (Maradudin et al. 1962). This point has also been 

discussed by Bohlin and Hogberg (1968). The separation of 

values of 0 for which the function is calculated (designated 

LlrG) is also important. 

To get an idea of suitable values for E and M (then 

mesh number, defined in Appendix IV), let us consider the 

frequency distribution function (Eq. III-A38), with the above 

representation for o(x). Fig. III-6 shows calculations of 

g(v) using three different values of E, and three values of 

Mn. For comparison, consult Fig. II-13 which shows an 

accurate calculation of this function. In Fig. III-6 we see 

that, for a particular value of E, an increase in M tends 
n 

to dampen the wiggles in the function. For smaller values 
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of E, it is necessary to go to larger values of M (and
n 

therefore longer computing times) in order to remove the 

wiggles, but the end result is considerably closer to the "true" 

function, which is shown in Fig. II-13. Further tests indicate 

that 6n should be roughly equal to E for optimum results. 

Bohlin and Hogberg (1968) have examined the effect~ of changing 

E and Mn, on the cubic shifts and widths themselves. 

The frequency distribution shown in Fig. II-13 was 

calculated by the method of Gilat and Raubenheimer (1966). 

Recently Gilat and Karn (1969) extended this method to include 

functions of the form 

I (w) = C E f 
j 

IBZ 

and Gilat and Bohlin (1969) showed how to calculate the cor­

responding principal value function 

C J F(~j) 3
G(w) = ­ i ~ [w-w(~j)] d ~ • 

IBZ 
This method assumes a knowledge of the derivatives 

and involves considerable programming to obtain areas of sur­

faces in reciprocal space. To the author's knowledge the method 

has not been used to calculate anharmonic properties. 

Another method of calculation would be to obtain the 

widths by an accurate histogram method. The shifts could then 

be obtained utilizing the Kramers-Kronig relations (Pines 

and Nozieres 1966). Gilat and Bohlin (1969) have stressed 
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the problems involved with this method, and we have not attemp­

ted to use it. 

(iv) Results of the Calculations 

Lineshapes have been calculated for modes in the three 

major symmetry directions. The lineshape is given by 

2w (>._) r o" 0)
L{\,O) = 2 2 2 2 2 

[w (\)-0 +2w(\)6{\,0)] +4w (\)f (\,O) 

where 6(\,n) contains three contributions (Eq. III-A22). 

Some examples of lineshapes at 205°K are shown in Fig. III-7. 

Clearly they depart from the Lorentzian shape in some cases. 

From these plots, widths and shifts have been obtained and 

are shown by solid lines in Fig. III-8. The measured shifts, 

obtained from Table II-2, are also shown with their error 

bars. 

The agreement between the theoretical and experimen­

tal shifts is satisfactory in the case of the [OO~]T and 

the ['~O]T2 branches. The shifts for the longitudinal direc­

tions are generally underestimated by the theory. In the 

case of the [00,]L branch the experimental shifts may be 

in error because of the additional complication of the "extra 

branch" (Section !IF). A large positive shift is predicted 

for the [~~O]Tl branch. Though no measurements of this branch 

were made at 205°K, the measurements of the zone boundary mode 

at lower temperatures indicate that the shift is small and, 
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if anything, negative. An analogous situation exists in 

potassium (Buyers and Cowley 1969). We shall return to this 

aspect of the work in Section IIIE. 

It is interesting to note that the theory predicts 

an increase in the separation of the L and T branches in the 

[00~] direction as the temperature is increased. This behaviour 

is manifest in the measurements, as can be seen from the fact 

that the ratio of second to first neighbour AFC's increases 

with increasing temperature (Section IIE(i)). 

No comparison between theory and experiment has been 

made in the case of the widths, because reliable experimental 

widths are not available. The problem of extracting reliable 

anharmonic widths is considerable, and in the present case 

the errors would be at least as large as the widths themselves. 

Further discussion of the shifts and widths in rubidium 

will be postponed until after calculations of the heat capacity 

have been described (Section IIID). 

In order to examine the validity of these calculations, 

cubic shifts and widths, defined as ~[A,W(A)] and f[A,W(A)], 

have been computed for potassium at 299°K using the derivatives 

supplied by Dr. Dolling. The (somewhat fortuitous) good agree­

ment between this calculation and that of Buyers and Cowley 

{1969) is illustrated in Fig. III-9. The sizeable disagreement 

for the [~~O]T2 branch is surprising and has not been explained. 

Several groups have performed calculations of anharmonic 
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phonon frequency shifts and widths. Cowley and Cowley (1965) 

calculated these quantities for the f 111] direction in the 

alkali halides, using a shell model obtained from experi­

mentally measured phonon frequencies. More recently Buyers 

and Cowley (1969) performed calculations on potassium. Further­

more Bohlin and Hogberg (1968) and Hogberg and Sandstrom (1969) 

have looked at the inert gas solids and at aluminium: these 

calculations were based on a Lennard-Jones potential and on 

a pseudopotential approach respectively. Koehler et al. 

(1970) also computed shifts and widths in aluminium, but they 

performed sums in real space, obtaining derivatives from the 

Fourier transform of a pseudopotential fitted to phonon 

measurements. These latter calculations are therefore similar 

in many respects to the work reported here. A major .difference 

is that the present calculations were made for a body centred 

cubic metal. Glyde and Cowley (1970) and Horner (1970) 

reported calculations of cubic anharmonic effects in b.c.c. 

3He, and find them to be relatively large. 
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D. THERMODYNAMIC PROPERTIES 


Harmonic expressions for the free energy and the en­

tropy,in terms of g(w), have been given in Eqs. (III-A30) and 

(III-A31). The heat capacity is simply given by (cf. Eq. 

III-A9) 

(III-Dl) 

In order to calculate the true entropy and heat 

capacity, including both harmonic and anharmonic contributions, 

several approaches are possible. 

(1) 	 One may first calculate normal mode frequencies in the 

harmonic approximation, and from them the harmonic entropy 

Sh , and heat capacity· ch The three shifts 6T' and6 3 6 4 

for each mode may then be calculated, and from them the 

corresponding quantities 6ST, 6s 3 and 6S 4 etc. are ob­

tained. (We shall discuss the difference between (6Cv)T 

and (6Cp)T below.) 

(2) 	 Given a model with volume dependent parameters, one may 

first calculate normal mode frequencies in the quasi-

harmonic approximation as a function of volume. All 

that remains then is to calculate 6 and 6 as functions3 4 

of volume, and hence the changes in S and C resulting 

from anharmonicity. 

(3) 	 Using a temperature dependent frequency distribution, ob­
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tained from measurements of phonon frequencies at 

different temperatures, the total entropy may be calcu­

lated directly. The heat capacity is then obtained by 

differentiation. The procedure adopted by Miiller (1969) 

(see also Miiller and Brockhouse 1970) is closely related 

to this method. 

Cowley and Cowley (1966) adopted method (1) above to 

calculate thermodynamic properties of KBr and Nal. The har­

monic g(w) was essentially obtained by taking the frequency 

distribution calculated from measurements of phonon frequen­

cies at 90°K, and correcting it to 0°K for the effect of 

thermal expansion. On the other hand Cowley (1970) has used 

method (2) to make more detailed computations of various 

properties of the alkali halides. Owing to the very large 

degree of cancellation between the cubic and quartic contri­

butions to these properties, and because the resultant an­

harmonic contribution is sensitive to volume changes, the 

two methods give dissimilar results. Method (2) is felt to 

be more realistic. 

In the present calculations we have concentrated on 

method (1). The harmonic frequencies were obtained from 

AFC's fitted to the 12°K measurements on Rb. They therefore 

include the shift resulting from zero point motion, plus a 

very small shift appropriate to the temperature of the measure­

ments. The latter shift has been neglected in the present work. 
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Let us now consider the various contributions to the 

thermodynamic properties. Expressions for the harmonic con­

tributions have already been given (Eqs. III-A31, III-Dl). 

They were calculated using the frequency distribution at 12°K, 

shown in Fig. II-13. In the next three subsections we 

consider the remaining contributions to the anharmonic proper­

ties. The results of the calculations are evaluated in the 

final subsection. 

{i) Quasiharmonic Contribution 

For the free energy we have (using Eq. III-A37), 

1 
tiFT = .tr 	 L: (n + 2) tiT (A) • 

:\ 
tiT (A) 

Now y(A) = 1 
so that we obtain- 3n 	 w (;\) 

= - 3n 	 L: E(:\)y(;\) 
:\ 

2= - 9VBn . 	 (III-D2) 

For the 	entropy we have 

where the prime indicates differentiation with respect to T. 

It follows that 

tiST = 9VBna. (III-D3) 

The change in c v is obtained as 

{tiCv)T = --'fl.T f II 

n tiT(;\) 

= 3n L: Tc' (t.)y(t.) (III-D4) 
:\ 
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To obtain (6Cp)T we must include an extra term, since 

the shift 6T(A) is a function of T if the volume is not held 

constant. We then have 

(cf. Cowley and Cowley 1966). 

Now 

= - 3w(A)y{A)a +higher order terms. 

Therefore 
I 

(6Cp)T - (6Cv)T = ~Ta ~ n w(A)y(A) 

2= 9VBa T (III-DS) 

This is the well known thermodynamic relation for C -c 
p v 

(Zemansky 1957). 

The above quantities are trivially obtained, once 

a and n have been calculated (Section IIIC). The exception 

is (6Cv)T' which is easily calculated by modifying the ther­

mal expansion programme to do the appropriate sum. 

As with the thermal strain calculation in Section IIIC, 

the 0°K compressibility value of Swenson (1955) was used for 

these calculations. The temperature dependence of (6Cv)T and 

of (6Cp)T - (6Cv)T is shown in Fig. III-10. Note that the 

former quantity tends to zero at high temperatures. This is 

because in the quasiharmonic approximation, where no interac­

tions between modes occur, the high temperature limit for Cv 
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is simply 3NkB 
1 
regardless of the frequencies of the phonons. 

(ii) Quartic Contribution 

Expressions for 6F and 6s 4 , in terms of the quartic4 

shifts 6 (A), have been given in Eqs. (III-A36) and (III-A41).4 

The quartic heat capacity is given by 

= -24T 

These quantities have been calculated using an extended 

version of the programme which calculates quartic shifts (Section 

IIIC). The convergence of the sums is illustrated (for the 

case of 6C ) in Fig. III-10. As more wave vectors are included,4 

j6c 4 j increases monotonically, and quickly saturates. A sum 

over 40 wave vectors in the IBZ is sufficient to obtain 

numbers to an accuracy of 1%. 

The temperature dependence of 6C 4 is also illustrated 

in Fig. III-10. It is negative, and at high temperatures it is 

about 7% smaller in magnitude than the contribution resulting 

from thermal strain. 

(iii) Cubic Contribution 

The cubic contribution to the free energy is given 

by Eq. (III-A32). The expression may be written as a sum over 
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cubic shifts analogous to Eq. (III-A36). The cubic shifts, 

in Section IIIC above, were obtained using a programme which 

was specialized to treat the three principal symmetry direc­

tions only, whereas shifts for all values of~ are required 

in the present case. In addition it is important to opti­

mize the speed of this type of programme, so a separate pro-

gramme, named FREEJ, was written to calculate cubic contributions 

to the thermodynamic properties. The details of this programme 

are given in Appendix V. 

The convergence of the sums is illustrated in Fig. 

III-10. The quantity 6C is shown as a function of the number3 

of wavevectors in the full zone. Unlike the situation with~2 
6C 4 , the sum to give 6C oscillates, but again the convergence3 

is rapid. The temperature dependence of 6C 3 is also shown 

in Fig. III-10. It is almost identical in size, but opposite 

in sign, to 6c • The resultant anharmonic heat capacity is4 

therefore very small. We shall discuss this further below. 

(iv) The Experimental Heat Capacity 

The most reliable measurements of the heat capacity 

of rubidium are those of Filby and Martin (1965) • More 

recent measurements by Martin (1970), for temperatures below 

3°K, are the most accurate for this temperature range. In order 

to obtain suitable numbers for comparison with calculation, 

we have taken the constant pressure (C ) measurements of Filby
p 

and Martin (1965), and we have subtracted (a) an electronic 
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contribution, 

-4c = yT = 6.25 x 10 T cal/°K/gm atom e 

using the value of y obtained by Martin (1970), and (b) a 

lattice vacancy formation contribution, 

as given by Martin (1965). At 300°K, Ce = 0.19 and Cvac = 0.42 

cal/°K/gm atom: at 200°K however Ce = 0.13 and Cvac = 0.002 

cal/°K/gm atom. The remaining heat capacity is the lattice 

heat capacity Ci. Both Cp and Ci are shown in Fig. III-11. 

{v) Comparison of Theory and Experiment 

In the upper half of Fig. III-11, the solid line shows 

the harmonic lattice heat capacity which was calculated using 

Eq. (III-Dl) and the 12°K g(w) presented in Fig. II-13. The 

dashed line shows the total lattice heat capacity, calculated 

by a method similar to that of Miiller and Brockhouse (1970). 

We shall return to this below. 

The lower half of Fig. III-11 shows the difference 

between various experimental and calculated heat capacities 

and the calculated harmonic value. The dot-dash line shows 

the sum of the quasiharmonic and anharmonic heat capacities. 

It is essentially the same as the quasiharmonic contribution 

alone, since the anharmonic terms are found to cancel out. 

Clearly there is a discrepancy between the calculated 
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and experimental lattice heat capacities. Assuming that the 

experimental values are correct, and that the computer pro-

grammes are working properly, it appears that the quasihar­

monic and/or the anharmonic contributions to c~ are too small. 

We shall consider the two possibilities in turn. 

At high temperatures the quasiharmonic contribution 

to Cn is essentially the (C -c ) correction, Eq. (III-D5).
JV p v 

This may well be underestimated, by several per cent at room 

temperature, because 0°K values for the compressibility and 

the atomic volume have been used throughout: note however 

that these two quantities change in the same way with tempera­

ture, so that the correction is small. Filby and Martin (1965) 

-6 -1used Hackspilrs (1911) macroscopic value of a = 90 x 10 deg , 

to obtain (Cp -c v ) = 0.70 cal/°K/grn atom at 290°K. The present 

-6 -1calculations give a = 65 x 10 deg , and (C
p 
-c v ) = 0.40 

cal/°K/gm atom at that temperature. This value for a is in 

reasonable agreement with microscopic (diffraction) measure­

ments. In this work no comparison is made with the Cv values 

of Filby and Martin (1965). 

It is harder to evaluate the accuracy of the calculations 

of ~c 3 and ~c 4 • There are no new adjustable parameters in 

~c 3 , but ~c 4 involves the fourth derivatives of the potential. 

We have already noted that the quartic shifts for the ['~O]Tl 

branch were unusually large. It appears that a theory which 

predicts smaller shifts for this branch will also predict a 
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net positive anharmonic contribution to Ci. We will return 

to this in Section IIIE. 

To the author's knowledge, this work represents the 

first calculation of the anharmonic heat capacity of a metal 

using a realistic potential: the early work of Keller and Wallace 

(1962) , based on a Lennard-Jones potential, predicts a large 

negative anharmonic contribution to Ci, which is clearly in 

disagreement with experiment. Apart from the work of Cowley 

and Cowley (1~66) on alkali halides, recent calculations of 

anharmonic thermodynamic quantities have been devoted to the 

inert gas solids (see e.g. Klein et al 1969). 

The dashed lines in Fig. III-11 represent a calculation 

of the total lattice heat capacity Ci(T) using a method similar 

to that of Miiller and Brockhouse (1970). Their equation [8] 

may be written 

I
TG (T ,T ) 


Ci (T) = k {l - g(v,T )

B G(T,T ) } 0 

0 

0 

where x = (hv/kBT)G(T,T );g(v,T ) is the frequency distribution
0 0 

at T = T , and G(T,T ) is the mean ratio of the frequencies
0 0 

at temperatures T and T ,
0 

v (g_,j ,T) 
G (TIT ) = < ( . ) > o v g_,J,T g_,j

0 

Experimental ratios, for T = 85, 120 and 205°K, and 

T0 = 12°K, are given in Table III-2: the quantities cr, 6 and N 



174 


are explained in Section IIE(vii). The ratios have been 

fitted to a function of the form 

c1 - [exp(e/T)-1) 

and the result is shown in Fig. III-12. This function has 

the correct behaviour at low temperatures, and it gives a 

reasonable fit to the data. 

The results of this calculation are in fair agree­

ment with experiment; this indicates that the measured fre­

quency shifts in rubidium are consistent with the measured 

anharmonic heat capacity, but it says nothing about the origin 

of these effects. 
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TABLE III-2. Mean frequency ratios, and their errors, for 
rubidium at 85, 120 and 205°K relative to 12°K. 

20585 	 120 

<\J ('I')/V(l2°K) > 0.972 ± 0.004 0.965 ± 0.006 0.907 ± 0.006 

a 0.021 0.034 0.027 

0.058 o.057 0.055 

N 28 36 21 

TEMPERATURE (°K) 
100 	 200 300 

1.0.-..~------------~--~----~--~~--~---

-0 .. 
.....-

0.9 

G (T, 0) •1 ­ 0.032 

[expC65/T) - ~ 


Fig. III-12. 	 Mean frequency ratios for rubidium at 85, 120 and 
205°K, relative to 0°K. The line shows a fit to 
the points. The difference between the frequencies 
at 0 and 12°K has been neglected. 
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E~ CONCLUSIONS 

In Sections IIIC and IIID we have looked at calcu­

lations of the quasiharmonic and anharmonic contributions, to 

lowest order, to the vibrational modes and the heat capacity 

in rubidium. To a large extent the calculations account for 

the observed frequency shifts, and there is no reason to 

suppose this will not be the case with the widths, when such 

measurements become available for comparison with theory. The 

discrepancies which exist may result from uncertainties in 

the third and, to a larger extent, the fourth derivatives of the 

potential, which are required for this calculation. Another 

possibility is that the calculations would be improved if the 

sums over neighbours were extended to more distant shells. 

The agreement between the present (real space) calculations 

and the reciprocal space calculations of Buyers and Cowley 

(1969) indicates that this is unlikely to be very important. 

In view of the very large cancellation between the 

cubic and quartic contributions to the heat capacity, it is 

possible that a calculation based on method (2) of Section 

IIID would yield superior results. Koehler et al (1970) 

calculated shifts and widths in aluminium using this method. 

The large positive shifts calculated for the [~~O]Tl 

branch (Section IIIC) are not observed experimentally, either 

in Rb or in K. If we assume a possible 20% uncertainty 

(which is probably pessimistic) in each contribution to the 
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calculated shifts, then the calculations are not in disagree­

ment with experiment. On the other hand, the fact that the 

present calculations compare well with those of Buyers and 

Cowley (1969), indicates that there may be a real difference. 

It is possible that higher order terms in the anharmonic 

expansion must be considered. Since this is a very time­

consuming, complicated task, and since even higher derivatives 

of the interatomic potential are required, it is felt that 

such a calculation should only be attempted when more accurate 

experimental numbers are available for comparison with theory. 

It is also possible that a calculation to higher order will 

yield values for the anharmonic heat capacity in better agree­

ment with experiment. 

There is clearly plenty of room for improvement 

in the experimental determination and the theoretical calcu­

lation of anharmonic effects in the simple metals. No doubt 

the next few years will see increased activity in this important 

and exciting field. 
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APPENDIX I 

THE LATTICE SPACING OF RUBIDIUM, AND A 

DETAILED EXAMINATION OF THE LARGE RUBIDIUM CRYSTAL 


A. THE LATTICE SPACING OF RUBIDIUM 

Several workers have measured the lattice spacing 

of rubidium by x-ray methods: Pearson (1958) summarizes 

the available data and remarks that "the lattice spacings 

appear to be somewhat uncertain". The x-ray measurements 

are shown in Figure AI-1. To the author's knowledge the 

only macroscopic measurements of the thermal expansion co­

efficient of Rb, apart from those of Kelly and Pearson (1955), 

who obtained very variable result~ are due to Hackspill (1911) 

and Deuss (1911), both of whom obtained a= 90 x 10- 6 °K- 1 , 

in the range 0 - 30°C. 

In this appendix, neutron diffraction measurements 

of the lattice spacing of Rb at several temperatures are 

reported. The neutron method has the advantage that the 

beam "sees'' the whole crystal whereas, because of high 

absorption, x-rays are scattered by a very thin region near 

the surface of the crystal (~ 0.1 nun thick for Rb). This is 

particularly relevant to the work of Kelly and Pearson (1955), 

who noted that the alkali metal tended to stick to its glass 

container. This can produce undesirable strains in the 

surface region. Furthermore any surface contamination (such 



5.725 
' 

f). sv {1928) 

D BK (1939) \ y 
)( 

O<( - 5. 700r- "i1 HRL 0945) x_RAYS •- •
• KP (1955) 
0 8 { 1956) 


(!) 5.675r­ x PRE SENT WORK {NEUTRONS) az-u 
1 T )( 

~ 5.650 
(/) 

w 5-625u 1:
J­ •t~ 5-600....J 

lo 
5.575 

I I I I I I I 
0 50 100 150 200 250 300 

(oK)TEMPERATURE 
Fig. AI-1 The lattice spacing of rubidium metal as a function of temperature. The x-ray I-' 

-...J 
measurements are due to Simon and Vohsen (SV) (1928), Bohrn and Klemm (BK) (1939), "' Hume-Rothery and Lonsdale (HRL) (1945), Kelly and Pearson (KP) (1955), and Barrett 
(B) (1956). No errors were quoted by 0 Bohm and Klemm (1939). The errors in the 
measurements since 1950 are ± O.OOlA. 



180 


as oxide or hydroxide) is of more consequence in x-ray work. 

Measurements were initially made using the McMaster 

(E2) spectrometer at Chalk River, operated as a diffractometer 

(Hallman and Brockhouse 1969). Subsequent analysis of these 

results suggested that the temperature of the specimen had 

not been properly determined, so further experiments were 

performed using the triple-axis spectrometer at the McMaster 

reactor with a much improved method of measuring the tempera­

ture. Since rubidium has a low Debye temperature (~ 56°K), the 

elastic scattering intensity (for all but the lowest index 

reflections) drops rapidly with increasing temperature. The 

experiments at the low flux McMaster reactor were therefore 

restricted to the lower temperatures, and the room temperature 

result obtained using the much higher flux of the Chalk River 

reactor was retained. 

The method was essentially that of Ng et al (1967). 

The instrumental parameters are given in Table AI-1. Vertical 

Soller collimators were employed, with the indicated length 

and slit separation. Poorer resolution had to be tolerated 

for the experiment at McMaster, because of the low beam 

intensity. For maximum resolution a large scattering angle 

(¢) is desirable. On the other hand the Debye-Waller factor 

restricts one to low index reflections, particularly at the 

higher temperatures. For example, the (440) reflection is 

roughly 35 times weaker than the (330) reflection, at room 
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temperature. Kelly and Pearson (1955) were only able to 

obtain reflections out to ¢ ~ 60° at this temperature. Another 

complication is the necessity of avoiding peaks from the 

aluminium container: since the lattice spacings of Al and 

Rb are very nearly in the ratio 1:12, this is a severe limi­

tation. 

Measurements were made of the (330) and (330) reflec­

tions (¢ ~ 110° to 115°) in a small (l" diam. by 2'' high) 

crystal of rubidium. The specimen contained two crystals, 

which gave reflections with intensities in the approximate 

ratio 3:1, about 0.4° wide and separated by about 1.5°, but 

this did not complicate the measurements. The spectrometer 

was calibrated by measuring reflections in powders of copper 

and germanium, and in single crystals of copper, germanium 

and silicon. The temperature of the rubidium crystal was 

monitored using copper-constantan thermocouples at each end 

of the specimen. The thermocouple wires were fed through a 

small hole in the top of the cryostat, sealed with a high 

vacuum wax, to avoid introducing extra junctions at this 

point. 

The results are presented in Table AI-2 and in Fig. 

AI-1. They are clearly in good agreement with the measure­

ments of Kelly and Pearson (1955) • The present measurements 

do not fall on a straight line, which is the behaviour 

predicted by the simple quasiharmonic theory except at low 

temperatures (cf. Fig. III-3). In view of this, it would be 
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well worth while to perform further measurements over the 

full temperature range, in order to determine the detailed 

behaviour of the lattice spacing as a function of temperature. 

TABLE AI-1. Instrumental parameters for the lattice spacing 
measurements. The mosaic spreads are denoted 
by n. 

Experiment 1 2 

Spectrometer E2 (Chalk River) McMaster Reactor 
(triple-axis) (triple-axis) 

0 0 

Wavelength 2.268 A 2.207 A 

Monochromator cu(220) ;n=20' Cu(200) ;n~20 1 

Analyser cu(220);n~20 1 cu(220);n=20' 

Collimation 
(k
-0 

and k') 
-

0.05" in 8 II 0 • 1 II in 811 

TABLE AI-2. Results of the lattice spacing measurements. 

Temperature 
(± 1°K) 

(OK) 78 197 303 

Lattice sp~cing 
(± 0.001 A) 

0 

(A) 5.609 5.655 5.7035 
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B. A DETAILED EXAMINATION OF THE LARGE RUBIDIUM CRYSTAL 

In order to check that the large (l-l/2x3") crystal 

of rubidium was indeed single, in connection with the observations 

described in Section IIF, a series of w rocking curves was run 

for different tilt angles X· The x drive shaft of a commercial 

two-circle x-ray goniometer was fitted with a motor, cam and 

microswitch assembly similar to those used to control the other 

angles on the McMaster spectrometers. The crystal was mounted 

on the goniometer head, and measurements were made at room 

temperature using the triple-axis spectrometer at McMaster, 
0 

operated as a diffractometer with a wavelength of 1.41 A. The 

scattering angle was fixed at 20.2°, the value appropriate 

to the (110) plane spacing. Because of the large Debye-

Waller factor of Rb at room temperature, examination of higher 

index reflections would have taken a prohibitively long time. 

With no Soller collimators in the beam path, the 

crystal was tilted about the [001) axis (Fig. AI-2), through 90° 

in steps of 2.5°. At each setting of the tilt x, the crystal 

was rocked through 180° about the vertical axis between 

(0,0,12) and (0,0,-12). In this way one quarter of the spherical 

scattering surface was scanned, bounded by the planes (100) 

and (010). 

The results are presented in Fig. AI-2. As expected, 

1 + (4 x 1/2) = 3 [110] reflections are observed. The peak 

intensity of these reflections was typically 25,000 counts. 



Fig. AI-2 Constant intensity contours for the 
large crystal of rubidium, as a 
function of ~ and x (see diagram top 
right) • Successive contours corres­
pond to 200, 300, 400, 1000 and 
10,000 counts in the main diagram, and 
to 200, 400, 600, 800, N/2, 1500 and 
2000 counts in the inset at bottom 
right: N is the number of counts at 
the peak height. The resolution func­
tion is indicated in each case by a 
half intensity contour labelled Ge 
(germanium). 
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The half peak intensity contour for a (111) reflection from a 

(relatively) perfect germanium crystal is included in Fig. AI-2 

to indicate the resolution of the experiment. 

The (220) reflection in rubidium, and a (220) reflec­

tion from the germanium crystal (which occurs at very nearly 

the same scattering angle), were examined with 1/10" in 8" 

horizontal Soller slit collimators (to improve the resolution 

in x), in the incident and scattered beams. The results are 

shown in the inset to Fig. AI-2. 

It is clear from this work that (at the time of the 

experiment, March 1969) the crystal was indeed single. The 

comparatively small ratio of signal to background occurs because 

no Soller collimators were used. The increase in background for 

l~I > 45° occurred because the x motor assembly, as well as 

the goniometer circle, were partially in the neutron beam. 
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APPENDIX II 

SPURION - A COMPUTER PROGRAMME WHICH SEARCHES FOR 

SPURIOUS NEUTRON SCATTERING PROCESSES 


It was mentioned in Section IID that a number of 

constant 2 scans in rubidium exhibited structure in addition to 

the expected one-phonon peak. Initial attempts to explain these 

observations were only moderately successful. A computer pro-

gramme, called SPURION, was therefore written by the author. 

With this programme, a systematic search for possible spurious 

processes is made. In the present context a spurious process 

includes any process other than the intended one-phonon scat­

ter±ng process. Depending on its cross section, a spurious 

process may or may not result in an observable spurious peak, 

or "spurion". The programme indicates which spurious processes 

can occur for a particular setting of the spectrometer: the 

user then decides whether these processes explain, both quali­

tatively and at least semi-quantitatively, the observations. 

Fig. AII-1 shows a simplified flowchart of the programme. 

The master card contains information common to a series of 

constant Q scans, including the (principal) incident frequency 

and the lattice constant of the specimen. Given thisv01 

information, the other components of the incident beam, with 

frequency v
0 

I and wave vector ~I (I>l) are calculated. These 
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include the (331) and (33l) contaminants (see Section IE) 

and higher order components. A phonon card is then read. This 

card contains details of a particular scan, i.e., the com­

ponents of Q, the range of the scan, and the number of steps. 

For each point (N) on the scan, 
I 

and the angles ~, ~ , andv1 

eA are calculated, and the higher order components with frequency 

vJI and wave vector~ 
I (J>l), which can be Bragg reflected by 

the analyser, are generated. 

For each v I(including v ), tests l to 3 below are
0 01 

performed. In each case, a message is printed if a possible 

process is detected. 

Test 1. Bragg reflection in specimen, into analyser 

Consider the vector diagram at the top of Fig. AII-2. 

This represents a particular spectrometer setting charac­

terized by a wave vector transfer ~' and a positive energy 

transfer (since lk' I < l~I). If the line AB is produced 

to c, such that AC=OA, the vector diagram OAC represents an 

elastic scattering process. If C lies close to a reciprocal 

lattice point R, as in the diagram (the dashed circle re­

presents schematically the instrumental resolution), then 

the incident beam may be Bragg reflected into the analyser. 

Part of this beam will be incoherently scattered by the 

analyser into both detectors. There will therefore be an 
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increase in the count rate in both counters. In the pro­

granune, the vector 

S ~ k - jk Jn' 
- -oI -oI ­

where n' is a unit vector in the direction of~·, is 

formed. If s is approximately equal to a reciprocal 

lattice vector, a Bragg reflection can occur in the speci­

men and an appropriate message is printed out. Scans 

(c) and (d) in Fig. II-3 show this type of behaviour. 

The sharp upward rise in (c) is a (332) reflection in the 

specimen off the second order (i.e.,the 440) component of 

the incident beam. The situation is illustrated in the 

lower part of Fig. AII-2. 

Test 2. "Powder" peak off aluminium container 

If ~/2 is approximately equal to the Bragg angle for 

re!lection from a set of planes in the aluminium can 

which encloses the specimen, a "powder" peak may be ob-

se,rved. The peaks in both counters in scans (a) and (b), 

Fig. II-3, are believed to result from (200) reflections 

in the can. The effect is more pronounced in the 12°K 

result since there is an extra can in the beam when the 

helium cryostat is used (Fig. II-1). 

Test 3. Reflections into the background counter 

The angle between the two counters in the analyser is 

approximately 40°. If the background counter is at the 
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smaller scattering angle (case 1 in Fig. AII-3), it may 

be in a position to pick up neutrons which pass straight 

through the analyser. This can occur over a range of 

about 10° in 8A. 

In both case 1 and case 2 (Fig. AII-3), there is 

the possibility that neutrons will be Bragg reflected 

by the analyser into the background counter. Since the 

collimation between the analyser and the counter is poor, 

the scattering plane can be at an angle anywhere between 

about 15° and 25° to the (200) plane. The programme 

searches for (420) and (311) Bragg reflections into the 

counter, since these are the most likely ones to occur. 

Fig. AII-3 illustrates a peak in the background 

counter attributed to elastic incoherent scattering off 

the specimen and a (311) reflection in the analyser. 

Though such a reflection lies out of the plane, it is 

still allowed: the active section of the detector sub­

tends an angle of at least 30° to the analyser crystal. 

Real and reciprocal space diagrams of the situation in 

the analyser are shown at the bottom of Fig. AII-3. Note 

that the reciprocal space diagram shows the projection 

on to the (100) plane, so that the reciprocal lattice 

point (311) becomes (310). 

For each v I (including v01 ), and furthermore for
0 

each v~ (including vi), three further tests are performed. As 
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before, appropriate messages are printed when a possible 

spurious process is found. 

Test 4. Incoherent elastic process in the specimen 

If v ~ v', an incoherent elastic process in the
oI J 

specimen can occur, leading to a peak in the signal counter. 

Scan (e) (Fig. II-3) shows a very large peak due to 

incoherent elastic scattering of the (33l) contaminant 

(frequency 12.49 THz) and then second order (i.e. 400) 

reflection in the analyser. 

Test 5. Other phonons 

We have seen that there are several contributions to 

the incident beam, and furthermore several frequencies 

(corresponding to different order reflections) can be de­

tected by coherent scattering from the analyser. With 

each combination we associate an energy transfer 

and a wave vector transfer 

It has already been remarked (Section IE) that one-

phonon peaks are only observed for certain spectrometer 

settings. There are four angular variables, but five 

equations to be satisfied: conservation of energy and 

wave vector (i.e. the above equations with I=J=l), and 
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in addition the phonon dispersion relation - all these 

must be satisfied. 

It can happen that the energy and wave vector trans­

fer hvIJ and ~IJ' for I and/or J greater than 1, satisfy 

the dispersion relation. In this case a peak could be 

observed in the signal counter . 

In the programme, hvIJ and ~IJ are first evaluated. 

Using a simple force constant model the 3 frequencies 

appropriate to ~IJ are then found. If one or more of the 

frequencies is approximately equal to vIJ' a message is 

printed. The products [~{QIJ, j) ] 
2 

are also given, since 

they largely determine the intensity of such a spurion. 

This message has appeared on many occasions but no peaks 

have been identified as resulting from this cause. 

Test 6. Multiple scattering 

A common cause of trouble in certain materials is 

multiple scattering (Brockhouse et al. 1961 ). This is 

illustrated in Fig. AII-4. In the situation called Type 

l, the incident neutron is Bragg reflected within the 

crystal: 

G = k - k"
-0 

lk I =Jk" I
-0 ­

It is then inelastically scattered into the analyser: 

Q k 
II 

- k 
I 

~s= 
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Figure AII-4. Multiple scattering diagrams, and a peak at­
tributed to multiple scattering. 
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The energy transfer is still (v - v') , and the total
0 

wave vector transfer is still 2, since 

G + ~S = 2· 

2The factor (Q·~) in the one-phonon scattering cross sec­

tion (Eq. I-Dll) is replaced by (S41s·~) 2 • Thus modes with 

the same ~' but with polarization other than the intended 

polarization, may be detected. The alternative situation 

(Type 2) is also depicted in Fig. AII-4. Here an inelastic 

process is followed by an elastic process. 

To check for multiple scattering (Type 1), the dis­

tance from the terminus of ~I to all reciprocal lattice 

points in the vicinity is determined. If this distance is 

nearly equal to !~II' this type of scattering can occur. 

A related procedure is involved in testing for type 2. 

Tests for multiple scattering have been limited to the 

principal wave vectors ~l and 
I 

. In this case it is a~1 
simple matter (given some knowledge of the dispersion rela­

tion) to check first to see which peaks could possibly 

result from multiple scattering. Such a peak must occur 

at a frequency appropriate to the reduced wave vector ~ 

of the scan. Unless this is so, Test 6 (Fig. AII-1) is 

generally avoided, since it is a relatively lengthy proce­

dure. 

The scan shown in Fig. AII-4 shows two well defined 
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peaks. The upper peak is the zone boundary [ssO] longi­

tudinal mode. The lower peak is very probably the T2 mode, 

observed by multiple scattering. The vector diagram (which is 

of type 1) shows that ~S has a sizeable component parallel 

to ~2 • The frequency of the T2 phonon at 12°K is 0.96 

THz (Table II-2) whereas the peak in the scan occurs at 

about 1.05 THz. This difference occurs because the Bragg 

condition for the incident wave vector is best satisfied 

at a frequency transfer significantly greater than the 

frequency of the T2 phonon. 
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APPENDIX III 

EFFECTS OF FINITE RESOLUTION IN THE TRIPLE-AXIS 
SPECTROMETER 

A. Previous Work 

The resolution of the triple-axis spectrometer has 

been discussed by several authors. M¢ller and Nielsen (1970) 

give a useful review, with references to earlier work. 

In a conventional experiment using a triple-axis 

spectrometer, counts are accumulated at a series of settings 

of the various angles of the spectrometer. With each setting 

we may associate a frequency transfer w and wave vector 

transfer 2 1 where 

w = w - w 
0 

2=~-k'. 

Here w0 (~) and w' (~
1 

) are the frequency (wave vector) of the 

incident and scattered beams respectively. 

Finite collimation of the beam, and finite mosaic 

spreads in the monochromator and analyser, lead to uncer­

k 1tainties in w , k , w' and and therefore to uncertainties 
0 -0 ­

in w and 2· In energy-wave vector space the most probable 

values of 2 and ware represented by the point (Q,w). The 

probability that 2 and w have particular values is given by 

the "resolution function" 
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RQ- -(6Q,6w)_,w ­

where 6Q = Q - Q1 6w = w - w , and the subscripts indicate 

that the function depends parametrically on Q and w. 

Following Cooper and Nathans (1967) we assume Gaussian 

distributions of mosaic blocks in the monochromator and analyser, 

and Gaussian transmission functions for each collimator. The 

resolution function may then be written as 

1 4 	 4 - ­
Rx -(6Q,6w) = R exp{- - L L XkMk 0 (~,w)X 0 }
~,W - 0 2 k=l !=l N N 

where x1 = 6Qx' = 6Qy, = 6Qz and x4 =6w: for conveniencex2 x3 

the x direction is chosen parallel to Q, and the z direction is 

chosen normal to the scattering plane. The 4x4 matrix ~, known 

as the resolution matrix, is a complicated function of the 

spectrometer setting, the mosaic spreads, and the collimations. 

R is the value of R- -(O,O).o 	 0_,w ­

The equation 


E X M 	 X = 2(tn2)
k k9, tkt 

defines an ellipsoid in (Q,w) space such that R = R /2 for 
0 

every point on its surface. One axis of this "resolution el­

lipsoid" is normal to the scattering plane. ~ may therefore be 

factorized into a 3x3 matrix and the element M In many33 . 

experiments the resolution normal to the scattering plane is 

relatively poor, so that M33 is comparatively small. 
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In the common "parallel" setting of the spectrometer, 

illustrated in Fig. AIII-l(a~ the neutron beam is scattered 

alternately to the left and to the right by the monochromator, 

sample and analyser. With this arrangement another axis of 

the resolution ellipsoid lies roughly parallel to Q and the 

remaining axes lie in the (6Q ,6w) plane. The slope of the 
y 

major axis in this plane corresponds to a typical slow neutron 

velocity (e.g., a few km/sec). The focussing properties of 

the triple-axis spectrometer have been considered by Collins 

(1963), Peckham (1964), Bergsma and van Dijk (1965), and by 

Peckham et al. (1967). Graphical methods may be used to deter­

mine the optimum setting of the spectrometer for observation 

of a well focussed peak, i.e., an intense, narrow peak. The 

directions of scattering at monochromator, sample and analyser, 

and the position of Q relative to the nearest reciprocal 

lattice point, are chosen to optimize the focussing diagram. 

This last point is illustrated in Fig. AIII-1. With the 

"parallel" setting of the spectrometer there is considerable 

correlation between 6Q and 6w, as mentioned earlier. In y 

Fig. AIII-1 one of the transverse dispersion curves either side 

of a reciprocal lattice point is shown. The ellipses represent 

the resolution in the (Qy ,w) plane. The resolution function 

varies slowly within this region of ~ and wand is here assumed 

to be constant. In situation 1 the ellipse passes slowly 

through the dispersion curve during a constant Q scan and the 
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observed peak is broad. Situation 2 is quite different: the 

ellipse passes rapidly through the dispersion curve, and 

the resonance is narrow. 

The measurements reported in this thesis were made with 

the McMaster spectrometer at Chalk River in the "parallel" set­

ting. Wherever possible measurements were made in a focussed 

position following certain "rules-of-thumb" for this spectro­

meter (see e.g. Brockhouse 1966). 

The fact that the width of an observed resonance 

depends on instrumental resolution, was noted by Brockhouse 

et al. (1961), and widths of high temperature phonons were ob­

tained by comparison with the widths of corresponding groups at 

100°K. Though this procedure is still widely used (see 

e.g. Buyers and Cowley 1969), an alternative approach is some­

times adopted. This involves a calculation of the instrumental 

resolution in terms of the various mosaic spreads and collimating 

elements of the spectrometer. It is generally done in one of 

two ways. Cooper and Nathans (1967) give an expression for the 

width in terms of the resolution matrix elements. They consider 

a planar dispersion surface and assume the scattering cross 

section is constant, over the region of (~ 1 w) space where the 

resolution function is appreciable. Stedman and Nilsson (1966) 

instead calculate individual contributions from each collimator 

and each monochromating crystal, and hence they obtain the 

instrumental width. The effect of specimen mosaic spread, which 
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broadens transverse peaks, is readily included in such calcu­

lations. 

Brockhouse et al. (1961) noted that finite instrumental 

resolution can also shift a peak position. In a later paper 

(Brockhouse et al. 1962) they considered the shift which results 

because of finite energy resolution. For a peak with centre 

at frequency vM, having a width W, they give the shift as 

2 
~v ~ w /4vM. 

Shifts in peak positions, resulting from finite reso­

lution, were observed in LiF by Dolling et al. (1968). These 

workers remarked that two effects will introduce shifts which 

can become apparent in the case of long wavelength acoustic 

modes. For wave vectors slightly removed from a syrmnetry 

direction, the frequency surface is normally of the form: 

where v(o ,o ) is the frequency at a point o from the syrmnetry
y z y 

direction in the scattering plane, and oz above the scattering 

plane: A and B may be positive or negative. This parabolic 

dependence can produce a shift in the peak position. Secondly 

the variation of the scattering cross section with frequency 

is most marked at low frequency. For this reason the spread 

in wave vectors along the syrmnetry direction introduces a small 

downward shift in the observed position of the peak. In this 

work (Dolling et al. 1968) shifts of 2-3% were reported. More 
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recently Raunio (1969) has observed shifts of about 8% in 

similar measurements on KCl. 

Collins et al. (1969) observed marked asymmetry in 

neutron groups from long wavelength magnons in iron. This asym­

metry arises from the curvature of the magnon dispersion curve 

and the fact that the resolution out of the scattering plane 

was relatively poor. 

Another effect of resolution which has received atten­

tion recently is the artificial splitting of a neutron group 

for I'~~)T modes in cubic and similar crystals (Cowley and 

Pant 1970). Such splittings have been observed in calcite 

(Cowley and Pant 1970), and in KCl by Raunio and Almqvist 

(1969) and by the author. Double peaks observed by Smith et. 

al. (1968) for small ~ modes in this branch in lithium probably 

result from the same cause. 

B. Resolution Effects in Rubidium 

In the present work on rubidium, we have already noted 

the appearance of extra peaks in the [OO~]L branch. Seeking 

an explanation for this effect, it became clear that the behaviour 

of the dispersion relation near to the [OOs] direction was 

influencing the observed neutron groups. In this section we 

consider the effect of resolution on measurements of the other 

branches. The [OO~]L branch is discussed separately in Section 

IIF. 
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For a particular setting of the spectrometer, corres­

ponding to wave vector transfer ~ and frequency transfer w, 
the scattered intensity is simply 

where a(~,w) is the differential scattering cross section, and 

the subscripts Q,w have been omitted from R. The one-phonon 

scattered intensity r (~,w) is obtained if the one-phonon
1 

differential scattering cross section is used. For energy loss 

this is (cf. Eq. I-Dll): 

a1 (Q,w) 
-

=AL: 
gj 

rQ. ~ <s.j ) J2 
( j) 

~ s. fn(gj)+l]o(w-w(gj)) x 6(Q_-g) (AI II-Bl) 

where A is a constant, so that we obtain 

fn(gj)+l]R(Q_-Q,w(gj)-w)}dg_ (AIII-B2) 

where g is the reduced wave vector associated with g_. 

Using Equation (AIII-B2), with an early set of atomic 

force constants (Copley et al. 1968), shifts 6R resulting from 

vertical resolution (i.e., resolution normal to the scattering 

plane) have been calculated using a programme originally written 

by Dr. E. R. Cowley. Since the resolution in the plane is much 

better than it is normal to the plane (e.g. M11 is typically 

at least an order of magnitude larger than M33 ), this procedure 

is justified. Finite energy resolution is incorporated into 

the calculation, mainly because the intensity r 1 (q,w) is 
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calculated for a discrete set of values of w and the integra­

tion over Q is replaced by a sum over a set of values of Q. If very 

good energy resolution is used, the delta functions in Eq. 

(AIII-Bl) are very unlikely to peak at any of the values of 

~ for which r 1 (0,~) is calculated~ For these calculations 

was chosen as 150 (a/2rr) where a is the lattice constantM33 
2 

of rubidium. This corresponds to a full width at half height 

in qz of 0 .11 (2rr/a). This choice of M33 is consistent with 

values obtained using the expressions of Cooper and Nathans 

(1967) with vertical collimations of l in 45 and 1 in 15 in the 

incident and scattered beams respectively. These numbers were 

determined from the geometry of the spectrometer. 

We now consider the effects on the different branches 

in turn. In the following, a positive shift means that the mea­

sured frequency is higher than the true frequency. Shifts 

are given below in THz. 

(i) 	 [OO~]T. The shifts 6R are small, ~ 0.005, whether 


measurements are made in the (001) or the (llO) scattering 


planes. 


(ii) 	 [OO~]L. See Section IIF . 

(iii) 	 [~~~]T. 6R is generally negative and small. For small ~ the 

groups can split if the vertical resolution is sufficiently 

relaxed (Cowley and Pant 1970). Close to the degenerate 

points P and H, the longitudinal mode can influence the 

lineshape. For example, with Q = (O.l, 0.1, 2.9J, the 
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contributions from both polarizations are unresolved, and 

the 	resulting peak is shifted ~ 0.05 THz below the 

transverse frequency. 

(iv) 	 ['ssJL. Again the shifts are small. They may be of either 

sign, depending on 2· Near to P the shifts are slightly 

larger, i.e.,~± 0.01(5). 

(v) 	 [''O]T2. The situation at the zone boundary, point N, is 

discussed with the [1~,]A branch below. For ' ~ 0.15, 

6R ~ 0.015 whereas for ' ~ 0.4, 6R ~ 0.01. 

(vi) 	 f ''O]Tl. This 

resolution of 

normal to the 

rapidly. This 

branch is especially sensitive to the 

the instrument. For small displacements 

(''0) direction the frequency increases 

is clearly visible in Fig. II-12. The 

measured frequencies lie well above the true frequencies: 

6R 	 ~ 0.02. Fig. AIII-1 (lower half) shows the effect of 

resolution on this branch. The elastic constant line is 

the 	same as in Fig. II-4. The situation at the zone 

boundary is discussed with the (''l)A branch below. 

(vii) 	 ['sOJL. Shifts for this branch (including the point N) 

are negligible, whether measurements are made in the (001) 

or the (llO) plane. 

( .. 	') 111 ] h' b . .v111 ~~' A T is ranch is of particular interest. Since it 

is symmetrical about the point P, it may be completely 

determined by measuring phonons between neighbouring 

points N and P, with Q nearly parallel to the line joining 
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these points (Fig. AIII-2(a)). A general point Nin the 

(110) plane is of the form (1/2 + h, 1/2 + h,1) where h 

and 1 are integers. We may distinguish even and odd 

points depending whether 1 is even or odd. We now con­

sider the vertical (110) plane through the line NePN
0 

(subscripts e and o refer to even and odd points respec­

tively). This plane is illustrated in Fig. AIII-2(b). 

Constant frequency contours in the (110) plane, which join 
. 11 

to the 122,]A branch, are shown in Fig. AIII-2(c) (cf. 

Fig. II-12). It is clear from this figure that the shift 

tlR is positive (negative) for measurements between Ne 

and P (N and P). This predicted behaviour is observed 
0 

experimentally, as shown in Fig. AIII-2(d). The calculated 

shifts are sufficient to account for the observed dif­

f erences between the measurements taken nearer even and 

odd points N. 

11The 	 [22~]A phonon at N itself, i.e., the zone boundary 

['~O]T2 phonon frequency, is affected in the same way. 

(ix) 	 [i~~]TI. The shifts for this branch are very small. 

(x) 	 {'~l]A. This branch, including the mode with ' = 0.5, which 

is the zone boundary [''OJ Tl phonon, may be measured in 

either scattering plane. Modes measured in the (llO) plane 

are not shifted, whereas negative shifts ~ 0.015 occur 

when modes with ' ~ 0.25 are measured in the (001) plane: 

nearer N the shifts are small, whereas at N 6R ~ +0.02. 
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Fig. AIII-2. Illustrating the effects of vertical resolution 
on the [~~~)A branch. 
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(See Figs. II-11, II-12). 

Experimental measurements of the [ssO)Tl zone boun­

dary mode in both scattering planes confirm this prediction. 

The best values, from three measurements in the (001) plane 

and three in the (liO) plane (at 120°K), are 0.35 ± 0.02 and 

0.31 ± 0.02 THz respectively. The correction for resolution 

lowers the first value to 0.33 ± 0.02 THz, in improved 

agreement with measurements in the (llO) plane. This is 

illustrated in the lower part of Fig. AIII-1. 

(xi), (xii) Cssllrr2,rr1. The shifts for these branches are small. 



211 
APPENDIX IV 


SIMPLIFICATION OF ANHARMONIC MATRIX ELEMENTS 


In Section IIIA, expressions were derived for the 

shift in frequency of a mode A= (~j), caused by thermal ex­

pansion (6T), and for the principal contributions to the 

shift and width of a mode resulting from "true" anharmonicity, 

63, 6 and r. In this appendix we shall simplify these4 

expressions, making particular use of the symmetry properties 

of the cubic lattice. 

First we shall examine the important symmetry proper­

ties of the anharmonic atomic force constants (the AAFC's), 

with particular reference to the two·body axially symmetric 

force system which is assumed in this work. In Section B 

the summations over atomic positions (in the expressions 

for the shifts and widths) are performed. In each case one 

or two examples of the method are shown, and the complete 

results out to third neighbours are given in tables. 

Section C contains a discussion of the summations over ~-vectors 

related by symmetry and over cartesian coordinates. Since 

eigenvectors enter the summations it is generally insufficient 

to sum over the irreducible volume within the first Brillouin 

zone. An alternative procedure for simplifying the matrix 

elements entering the cubic and quartic expressions is briefly 

discussed in Section D. The final section contains a dis­

cussion of various weighting schemes and the generation of 
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wave vectors within various "irreducible" volumes in recipro­

cal space. 

In subsections treating the cubic shift ~ it is to3 
be understood that the cubic width r is treated in exactly 

the same fashion as ~ 3 , with R(n) replaced by -iTIS(n): see 

Eqs • ( I I I -A2 3) / ( I I I -A2 5 ) • 

A. Properties of the Anharmonic Atomic Force Constants 

In the following, we assume a two body axially 

synunetric force system. The cartesian second derivatives of 

this potential (i.e.,the AFC's) are given by Eq. (I-CS). The 

third and fourth derivatives (i.e., the AAFC's) are then 

and 

+s s 0 0 +s 0 s c +s 0 s c +s s c 0 )C (R)/Ra a µy µ y acr µ a ay y a aµ 3 

(AIV-Al) 

where 

C2(R) =¢II - ¢I/R 

C3(R) =¢III - 3¢II/R + 3¢I/R 

C4(R) =¢IV - 6¢III/R + 15¢II/R2 - 15¢I/R3 (AIV-A2) 
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In these expressions R = IE (,Q, I ,Q,) I and s = R /R. Furthermore a a 

d qi d2<Pcp I ¢II etc. (AIV-A3)= I = -2dr r=R dr r=R 

The following properties of the AAFC's will be used 

in subsequent sections. The first four properties are quite 

general. 

(1). 	 Since the order of differentiation is immaterial, we may 

permute pairs of indices so that 

<P ( ,Q, ,Q, I ,Q, II ) = ¢ (,Q, I ,Q, ,Q, II ) etc.
a.By Bay ' 

¢a (,Q,,Q,',Q,",Q,'") =¢a (,Q,',Q,",Q,,Q,' 11 
) etc. aµycr µya.a 

(2). The AAFC's depend only on separations so that, in an 

obvious notation: 

,;, Q ( ,Q, ,Q, I ,Q, II ) = ,;, Q ( 0 I ,Q, I - ,Q, I ,Q, II - ,Q,) etc., 
~aµy 	 ~aµy 

"' (,Q,,Q,',Q,",Q,'") ="' (,Q,-,Q, 11 ,,Q,'-£ 11 
, O,,Q, 111 -£ 11 

) etc. 
~aµycr0 	 0~aµycr 

(3). 	 Translational invariance requires that (Born and Huang 

1954, p. 221): 

¢ (,Q,,Q, I ,Q, II) = Q
a.By 

£~',Q,"<Pa.Bycr(,Q,,Q,',Q,",Q,'") = O. 
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(4). On inversion of the atomic coordinates we obtain 

A- (>?,>?,'>?,") = _,.i_ (->?, ->?,' ->?,") 
~asy 	 ~asy ' ' 

A- (>?,>?,'>?,">?,'")=+A- (->?, ->?,' ->?," ->?,'")
~aSycr 	 ~aSycr ' ' ' • 

Hence 	 (using property 2 above) 

For the two-body axially symmetric interaction, there 

are additional properties. In this approximation only 

two of the indices >l,>l' ••• can be different. 

(5). 	 Examining Eqs. (AIV-Al) we note that the cartesian in-

dices may be permuted independentlyof the labels >l,>l'. 

Therefore 

<Pa Sy (>l >l >l ' ) = <P SaY ( >l R. >l ' ) etc ., 

<Pasycr(R.>l.Q,>l') = <PayaS(>l>l>l>l') etc. 

(6). 	 Performing one of the differentiations with respect 

to the other end of the vector £(R-'>l), we obtain 

<P (R,.Q,.Q,') = -<P (R.>l'.t')a Sy 	 a Sy 

<PaSycr(.Q..Q.R..t') = -<PaSycr(>l>l.t'.Q.') 

See also Leibfried and Ludwig (1961), p. 295. 

Using properties (1) - (6) above, it is convenient to 

obtain some further relations. 
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(7). From (1) and (5) it is clear that the labels Q. and Q.' 

may be permuted independently: 

¢ 
0 

(.R,.R,.R,') = ¢ 0 (.R.Q.'.R,) etc.,Cl.µy Cl.µy 

(8 ) • using ( 2 ) and ( 4 ) , 

= ¢ (000-h)aSycr 


Finally, using (2) again, 


,+, (.R,.R,.R,.R,') = ,+, (i'.R.'.R.'R.)

~aSycr ~aSycr 

Similarly (using (7) also), 


¢ (Q.U,') = _,+, (.R..R.'.R.')
a Sy ~aSy 

which is the same result as in (6) above. 

(9). Using properties (2) and (3) we have 

L: ¢ Q (0010110111) 0
.R.'Q.11Q.'" aµycr "'"'"' = • 

For two-body forces (Q.' , Q. 11 
, Q.' 11 = 0 or Q.) , we have 

Using property (6), we obtain 
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+ <P 0 (00,U,) + <P 0 (0111)] = 0 aµycr aµycr 

Using property (6), we obtain 

<P Q (0000) = - L: I <P Q (0001) o aµycr aµycr
1 

This result is used to simplify the expression for the 

quartic shift. 

B. The Summations Over Atomic Positions 

As the first stage in simplifying the expressions 

obtained in Chapter III, we shall perform the sums over atomic 

positions. We consider first, second and third neighbours 

in the b.c.c. lattice, but it should be noted that first and 

second neighbours in the f .c.c. lattice have the same symmetry 

as third and second neighbours in the b.c.c. lattice, so that 

the results presented in this section are also applicable to 

the f .c.c. lattice, with only a few small modifications. 

(i) The Thermal Expansion 

The shift in frequency of the mode A, due to a 

thermal strain n, is written (Eq. III-A2): 

(AIV-Bl)= fn/rnw(A)]L: e (A)ea(A)L: 
ae a µ y 

with 

fasy<s.> = ~ ~;t 1 <Paey {11'1")ry(1")[exp{is_•E_(1'1)}-l].1 
1 " 

Since we are assuming two body forces, we consider 

only 1" = 1 or 1" = 1' . Therefore 
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Using properties (6) and (7) above, we obtain 

= l: <P (00.R,)r (i)[l-cos(cr•r(i))] (AIV-B2)
i>O aSy y ~ ­

where we have taken the origin at ~(O). Note that the 

first expression above is written in the form of differences 

r (i'i), indicating that the expression is independent of y 

the choice of i. 

The notation i > 0 indicates that the summation is 

performed over half the neighbours such that only one member 

of each pair of neighbours related by the inversion operation 

is included. For example, of the six second nearest neighbours 

one member of each pair, (200, 200), (020, o2o), (002, 002) 

is included. 

We rewrite Eq. (AIV-Bl) as 

with 

f (i) (er) = l: <P 0 ( 0 0 i . ) r ( i . ) [ 1-cos a • r ( i . ) ] , aSy ~ aµy 1 y 1 ~ - 1i.>0 
1 

where i denotes the i'th nearest neighbour shell. The quan­

tities f (i) (a) are readily evaluated in terms of the derivativesaSy ~ 
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c2i' c3i' and c 4i (Table AIV-1). We need only consider four 

distinct cases, for each i: 

(i) 	 y all different,a' 13 ' 

(ii) a = e = "'(I 

(iii) a = 13 "I "'(I 

(iv) 	 a "I 13 = y. 

As an example we shall evaluate f<1)<s)·
xxx 


f(l) (a) = ¢ x(O,O,lll) •(a/2)•[1-cos(q +q +q )]
xxx ~ xx 	 x y z 

+ ¢xxx(O,O,Ill) • (-a/2) •[l-cos{-qx+qy+qz)] 

+ ¢ (O,O,lll) • (a/2) • [1-cos (q -q +q ) ] xxx 	 x y z 
+ ¢ (O,O,lll) • (-a/2) • [1-cos (-q -q +q ) ] xxx 	 x y z 

In the above expression, and in similar expressions 

later in this appendix the components of s. are given in units 

of (2/a) • 

Now 

<Pxxx(0,0,111) 


<Pxxx(O,O,lll) 


¢xxx(O,O,lll) 


¢xxx<o,o,II1) 


Hence 

f(l) (a) 	 = aA Cl-cosq cosq cosq ). 
xxx~ 31 x y z 

Complete results for i = 1, 2 and 3 are given in Table AIV-2. 
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(ii) The Quartic Shift 

From Eqs. (III-A24) and (III-B2) we have 

1 
n2+2 

L14 (;l,) = (--­
Nm2 w1 

w2 

where 

l = -4 L: <Pf'\/aya (.Q.,.Q,' .Q.,11 .Q.,' ") exp{i [SI.1 ·E_n n ,+q2 "E.i119,' II]}
.Q., I .Q, II .Q, I II "'~ 	 Iv 1v 

(AIV-B3) 

In 	the above, e (1) = e (A 1 ) etc. a a 

Again considering two body forces, with one atom at 

the origin (.Q.. = O),we obtain: 

-iSI. •r (9v)2
haSycr(l2) = ~ ¢aSycr(0000) + ~ L:' I¢aSycr(0009v)e ­

.Q, 

is_ 	 • r ( i) -is_ • r ( .Q..) 
+ ¢aSycr(009vO)e 2 - + ¢asya(O.Q..OO)e l ­

i <SI.2-Sl1) •E. (.Q,) 	 -i <s.1+SI.2) •E. (,Q,) 
+ ¢aSycr(O.Q...Q..O)e 	 + ¢aSycr(O.Q..09v)e 

-is. ·r<n1+ ¢aSycr(009v.Q..) + ¢a6ycr(O.Q...Q.,.Q..)e - ] 

Using properties (6) - (9) above, this becomes 
-iSI. •rLO is_2 ·,£(9v) 

hasya(l2) = ~ ~' [¢asya(OOO~){e 2 - + e 

is.1· E,( .Q.,) i <SI.2-s.1) •E,(9v) -i<s.1+s.2> ·E_(.Q..) 
+ 	e - e -e 

-is_ •r (.fl)1+ e - - 2}] 
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Since 
-is. •r(.Q.) is. •r(.Q.) 

L:' ¢ 0 (OOO~)e l - = Z' <Paoya(OOO.Q.)e l - I
.Q. aµya 	 ~ µ 

Eq. (AIV-B2) reduces to the form 

h 0 (12) = - L: ¢ 0 (OOO.Q.)Il-cos(si.1 ·E_(~))][l-cos(si.2 ·E_(.Q.)))aµycr .Q.>O aµycr 

This is written as 

5 
h Q (12) = I: L: h (i) (12) 

aµycr i K=l aSya,K 

where 

h (i) (12) = l: ¢ s (000.Q.) µ cos Sl. •r (.Q.).aSycr,K 	 a ya K K ­.Q.>0 

In this expression 

l = -1 	 , = l;µ1 	 = ).J2 f.13 = f.14 = 2 
. 

f.15 

= ; - ; = o.Sl.3 Sl.1 + Sl.2 Sl.4 = Sl.1 Sl.2 Sl.5 

and si.1 , si.2 are as before. 

Then there are four distinct cases for each i: 

(i) a = s = y = (JI 

(ii) a = s = y ":f a, 

(iii) a = f3 ":f y = a, 

(iv) a = f3 ~ y ":f a I with a r a. 

We consider two examples. 

First we evaluate h <2 ) (12) •xxyy,K 

h < 
2 ) (12) = -<P (0,0,0,100)µ cos (2q )xxyy,K xxyy 	 K KX 
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-¢ (0,0,0,010)µ cos(2qKY)xxyy K 

-¢ (0,0,0,001)µ cos(2qKZ)xxyy K 

' (Table AIV-1)Now -<l>xxyy(0,0,0,100) = C32+ c22" 

-¢ (0,0,0,010)xxyy 

Therefore 

Secondly, consider 

h( 3 ) (12) = -¢ (0,0,0,110)],l cos(2q +2q y)
zxyz, K zxyz K KX K . 

-¢ H(O,o,o,110)µK cos(2qK -2q )zxy" . x Ky 

-pzxyz(0,0,0,101)µK cos(2qKX+2qKZ) 

-<j> (0,0,0,lOl)µ cos(2q -2q )
zxyz K- KX K~ 

-¢ (0,0,0,011)µ cos(2q +2qK ) 
zxyz K KY ,z 

-¢zxyz(O,O,O,Oll)µK cos(2qKY-2qKZ) 

Now -<j> (0,0,0,110)zxyz 

-¢ (O,O,O,llO)zxyz 

The remainder vanish, so that 

h <3 ) (12)
zxyz,K 
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The results for i = 1, 2, and 3 are given in Table AIV-3. 

Since the indices a, S, y, a may be permuted in h~~~cr,K(l2), 
only one permutation of each set of indices is given. 

(iii) 	 The Cubic Shift 

The cubic contribution to the shift is (Eq. III-A23): 

(AIV-B4) 

Here (Eq. III- Bl) : 

where 

For convenience we drop the ~-function, keeping in mind that 

the wave.vector is conserved. With the origin at ~ = 0, and 

for two-body forces, we have 

2igaay<~1~2~3)= ¢asy(OOO) + ~· {¢aSy(OOi) 

x expii~3 ·£(£)]+¢aSy(O~O)exp[i~2 ·E(i) ]+ ¢aSy(O~~) 

(AIV-B5) 


Using properties (4), (6) and (7) and remembering conservation 

of wave vector, Eq. (AIV-BS) becomes 
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,;;i.K •r(Q,).sin a -

We now write 

= 2: 
i 

where 

E ¢ 0 (OOQ,.)sin[s. •r(Q,.)]
apy l K - l

,(/,.> 0 
l 

There are three distinct cases for each i: 

(i) a, S, y all different, 

(ii) a = S = y, 

(iii) a = S "f y. 

As an example we evaluate 

¢ xyz 

+ ¢ xyz 

+ ¢ xyz 

+ ¢ xyz 

Now 

¢ (0,0,111)xyz 

¢ xy z <o , o , I 11 ) = 

¢ (O,O,lll) = xyz 

¢ (O,o.,II1)xyz 

Therefore 

(l) (a a a )gxyz, K .;;i.1.;;i.2.;;i.3 

(O,O,lll)sin(q +q +q )KX Ky KZ 

(O,O,lll)sin(-q +q +q )KX Ky KZ 

(O,O,lll)sin(q -q +q )KX KY KZ 

(O,O,lll)sin(-q -q +q )KX Ky KZ 

(Table AIV-1) 
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'I'he results for i = 1, 2 and 3 are given in Table AIV-4. Since 

. (i) ( )the indices a, f3 , y may be permuted 	 only onein ga.Sy,K S.1S.2S.3 ' 

permutation of each set of indices is given. 

c. 	 The Summations over Equivalent Wave Vectors and Over 
Cartesian Coordinates 

The expressions for the thermal expansion a, and the 

quantities 6
3 

, 6 and r, contain summations over wave vectors4 

uniformly distributed throughout the first Brillouin zone 

(BZ). Since the summands contain eigenvectors, it is not 

necessarily true that a summation over the irreducible (l/48)th 

of the BZ (the IBZ) is equivalent. In this section we shall 

show that (i) in the case of a a summation over the IBZ is equi­

valent, (ii) the summand in the expression for may be6 4 

cast in such a form that a summation over the IBZ is sufficient 

and equivalent, and (iii) the situation is considerably more 

complicated in the case of 6 (see below).
3 

The summations over a, S, y (and a in 6 4 ) are also per­

formed. We consider the thermal expansion first, and then 

the quartic shift. The cubic terms are considered last, in 

view of their additional complications. 

(i} The Thermal Expansion 

From Eqs. (III-Al4), (III-A3), and (AIV-Bl) we have 

BZ c (gj)-1 
a (T) = 9VB 	 L: 


s_j Mw 2 (g_j) 
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where the first summation is over ~ in the first Brillouin zone. 

We may rewrite the above expression as 

-l IBZ C (gj) 
(AIV-Cl)a(T) = 9VB ~ 2 ST 

SlJ mW (~j) 

where 

The notation ~ indicates a summation over the 48 wave 
48 

vectors ~· which are equivalent to ~in the IBZ. Writing 

g = (r,s,t), ~(~j) = (u,v,w), and using Table AIV-2, we obtain 

where D2 , P2 , P4 and P6 are defined in Table AIV-5. The 

above expression includes contributions from first and second 

neighbours. The contribution from third neighbours is similarly 

evaluated. We note that I is invariant with respect to all 

the operations of the cubic group (~ transforms in the same 

way as~). We may therefore write 

ST = 48I a (AIV-C4) 

and a summation over the IBZ is sufficient. 
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(ii) The Quartic Shift 

The quartic shift may be written as 

Li4 0\1)= 
,fl 
2Nm w1 

IBZ 
E 

~2j2 

1 
n2+2 

( 
w2 

E 
i 

s. 
l 

(AIV-CS) 

where the first summation is ovez the irreducible volume of 

the first Brillouin zone and the second is over shells of 

neighbours. The quantity s. is a sum over the 48 wave 
l 

vectors equivalent to ~2 : 

s. = L: ea.(l)es(l) t: e (2)e (2) L: h (i) (12). 
l Y a a.13ycr,Ka.Sycr 48 K 

We first simplify the sums over K. For i = 1 there 

are two types of sum: 

{a) 1 = L: cos(q )cos(q )cos(q )1 KX Ky KZ 
K 

= 1 - clxclyclz-c2xc2y0 2z 

l 
+ 2(c3xc3yc3z+c4xc4yc4z) 

where c 1x denotes cos(qlx), etc. This simplifies to 

where of course s 1x denotes sin (qlx) etc. 

(b) = L: sin(q x)sin(q )cos(q )µ •K Ky KZ K 
K 
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In a similar way this becomes 

For i = 2 there is only one type of sum: 

= (1-cos (2q1x)) (1-cos (2q 2x)]. 

The sum over equivalent wave vectors may now be performed. 

For a. = S there are four types of sum and for a f B there 

are another four: 

(i) a = B = y = (J (v) a = y = 0 f B 

(ii) a = s f y = 0 (vi) a = y f (3 = 0 

(iii) a = s = y f 0 (vii) a = y f B f 0 f a. 

(iv) a. = s f y f (J f a (viii) a f (3 f y = a f a 

For case (i) ' with a = x, the contribution to sl is 

e x 
2 (1) r e 2 (2) r h(l) (12)

48 x xxxx,KK 

2 = A4lex(l) r e~(2)I 148 

The contribution to s is2 

e 2 (1) r ex2 (2) r h (2 ) (12)
x K xxxx,K48 
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2 	 2 2 2= 16A32ex(l) [l-cos(2qlx)] [1-u cos(2r)-v cos(2s)-w cos(2t)] 

+ 8A42ex 2 (1) [2-cos (2 q 1y)-cos (2q1 z)] [2-u2 (cos (2s) 

+cos(2t))-v2 (cos(2t)+cos(2r))-w2 (cos(2r)+cos(2s))]. 

Here (r,s,t) and (u,v,w) are components of the unrotated 

wave vector and eigenvector ~(2) respectively.~2 
As a further example, we consider case (iii), with 

a = x, a = y. For i = 1, the contribution is 

2 
ASlex(l) 	 L: ex(2)ey(2)I 2 (3 )

48 

e 2 (1) [c	 c c -1] L: e (2)e (2)s 2 = ASl x 1x 1y 1 z x y x s 2y c 2 z
48 

vwsin(s)sin(t)cos(r)+wusin(t)sin(r)cos(s)]. 

For i = 	2 there is no contribution. 

A complete list of contributions, for i = 1 and 2, is 

given in Table AIV-6. Note that the contribution for case 

(vi), i = 2 vanishes. We may see this in the following way. 

The contribution is simply (for a = y = x, S = a = y) : 

e (l)e 	(1) L: e (2)e (2) L: h (2 ) (12) 
x y 48 x y K xyxy,K 
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x l: 
48 ex( 2 )ey( 2 )[I3(l)+I3(2)] · 

Since the functions 1 ( are even, we see that the sununands
3 

are odd with respect to x or y or both. The term therefore 

vanishes. 

The final step in simplifying Si is to perform the 

sums over a, S, y, and cr. The results are given in Table AIV-7, 

for the eight cases. The quartic shift, to second neighbours 

may now be written as: 

(AIV-C6) 

where 

sl + S2 = KlD2 + K2P2 + K3P4 + K4P6 (AIV-C7) 

Here K
1 

, K2' K3 and K4 are independent of <s.2 j 2) ' and given by 

Kl = 16(A + 2A61) Dl + 32(2ASl + A7l)Pl41 

K2 = 32(A + 2A5l)Dl + 64(A61 - 2A71 )Pl71 

(AIV-C8) 

and D2 , P 2 , and P are simple invariant functions of s.P 4 6 2 

and ~(2), given in Table AIV-5. The quantities appearing in 

equations (AIV-C8) are defined in Tables AIV-1 and AIV-5. 
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(iii) The Cubic Shift 

The expression for the cubic shift, Eq. (AIV-B4), in­

volves three wave vectors. The summation over s. in Eq. (AIV-B4) is
3 

trivial because of the ~-function in V(A A A ). The summation1 2 3 

over j must however be retained.3 

The 48 wave vectors s.3 •, given by s.3 ' = -s.1 - s.2 ' 

(where s. ' are the 48 wave vectors equivalent to g ), are in2 2

general inequivalent. In certain cases, depending on s.1 , there 

is a smaller group of equivalent wave vectors such that the~2 
corresponding vectors s. are equivalent. In this work we

3 

consider three cases: 

(a) If s. = 	(O,O,z:,;), the 8 vectors s. = (±r,±s,t) and1 2 


g = (±s,±r,t) define 8 equivalent vectors
2 

s.3 = (+r,+s,-t-z:,;) and <+s,+r,-t-z:,;). 

(b) If s.1 = 	 (r;,r;,z:,;), there are 6 vectors s. = (r,s,t), (s,r,t),2 

(r,t,s), etc., such that vectors s. are equivalent.3 

+(c) 	 If s.1 = (r;,z:,;,O) there are 4 vectors s.2 = (r,s,-t) and 

+(s,r,-t), such that the vectors s. are equivalent.3 


We may therefore write 


(AIV-C9) 

with 

(AIV-ClO) 
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The first summation is over the appropriate irreducible portion 

of the BZ, depending on ~l' and the second summation is over 

the N(~1 ) equivalent wave vectors ~2 and ~3 • 

The summation over a,S,y is also considerably simpli­

fied for the major symmetry directions because ~(l) is well 

defined. 

As in the previous subsection,we first simplify the 

sums over K in 

There are two types of sum for i = 1, and one type for i = 2. 

They are 

(a) 

(c) = ~ sin(2qKx), etc. (AIV-Cll) 
K 

For ~l along the three principal symmetry directions, 

the above sums take the special forms given in Table AIV-8. 

We shall now demonstrate the summations over a,S,y 

and over the equivalent wave vectors ~2 , for the case of the 

[00,]T branch. The eigenvector ~(l) is, in general, 

~(l) = (i,m,O), with i 
2 + m

2 = 1. 

The eigenvectors ~.(2) and ~(3) corresponding to = (r,s,t), are~2 
given by 
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~(2) = (u,v,w) 

e(3) = (u',v',w'). 

We then have 

We now note that changing the sign of q 2x or q 2y changes the 

sign of u or u respectively; furthermore swapping q 2x and1 2 

q 2Y has the effect of swapping and u2 • 
Thereforeu1 

Complete results, for the seven branches, are given 

in Table AIV-9. 

D. Alternative Formulation Using Scalar Products 

The cubic and quartic terms have been considerably 

simplified in the previous section. Several steps are involved 

in this reduction, and there is always the possibility that a 

mistake has been made at some stage. To minimize this possibility, 
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the expressions have been partially reduced in a somewhat 

different way. The two methods have then been compared by 

doing sample calculations on the computer using both methods. 

(i) 	 The Quartic Term 

The quartic shift may be written as 
1 

n +­
(-2..l)w 	 (AIV-Dl)

4w2 

where 
g •ri· g •ri. 

~ 	 ' 2( 1 - i) ' 2( 2 - i)J
~ sin sin 	 i (AIV-D2)2 	 2£.>0 
i 

and 

J . 	 = - l: cp f3 ( 0 0 0 i . ) e (1) e f3 (1) ey ( 2) e
0 

( 2) 

1 af3yo a yo 1 a 


Using Equation (AIV-Al) we may largely separate the summations 

over a,S,y,o , to obtain 

2 2
Ji= c4i[~·~(l)J [~·~(2)] 


2 2 

+ 	c 3 

I 

i{[~·~(l)l +[~·~(2)] +4[~·~(l)Jf~·~(2)]~(1)·~(2)l} 

2 
+ c2

II 

i{l + 2[~(1)·~(2)]} 	 (AIV-D3) 

The quantity w has been calculated for a set of4 

random values of (~2 j 2 ), with an arbitrary set of coefficients 

c 41 , c 42 , etc., out to second neighbours. It was compared with 

the quantity (S1+s2 ) (Eq. AIV-C7), calculated with the same 

input parameters. In every case the agreement was exact. The 

second method of evaluating the matrix element is more than 

100 times faster. 
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(ii) The Cubic Term 

This 	may be expressed as 

IBZ(s_ ) 
L 

1 
[R(~)/(w 2w 3 )JW3 (AIV-D4) 

S.2j2j3 

where 
2 

(AIV-DS)L L {L sin[a •r{t.)]}J
.&j( - 1i t.>0 K 

1 

and 

J= !: 
aSy 

¢ a 
a~y 

(OOt. )e 
1 a 

(l)e 0 
µ 

(2)e (3) 
y 

Using Eq. (AIV-Al) this reduces to 

I 

+ c
2 

i { C.2:~(1) J [e (2) ·~(3) ]+[~·~(2) J [~(3) ·~(l) J+[-2_·~(3) J [~(l) ·~(2) J} 

(AIV-D6) 

The quantity w has been calculated by the above method
3 

and then compared with E s (Eq. AIV-ClO). Agreement is3
N (s_l) 

obtained for all seven branches, and the latter method is about 

15, 12, and B times faster for the [OOs], Csssl, and [ssOJ branches 

respectively. 

E. Irreducible Volumes in the First Brillouin Zone 

The various sums over s_, which appear in the expressions 

for the thermal expansion, and for 6 3 , r, and 6 are performed4 

over portions of the BZ. In this section we shall consider 

the conditions for S. to lie within the various "irreducible"zones 

(IBZ's), and the method of weighting wave vectors which end 

on the surface of the zone. 
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First we consider the whole BZ (Fig.AIV-l(a)). This 

is defined by the equations 

Jxl + !YI < 1 

IYI + !zl < 1 

Jz! + !xi < 1 (AIV-El) 

where x, y and z are the components of gin units of (2n/a). 

A general point has weight 1: a point lying on a surface has 

weight 1/2, and a point lying on an edge (H-P) has weight 1/3. 

The points P and H have weights of 1/4 and 1/6 respectively. 

The sums over g are generally performed using a "shifted" 

mesh of points (cf. Gilat and Dolling 1964, Gilat and Rauben­

heimer 1966). This mesh is defined by 

where the m are running integer indices, and 6 is the mesh a q 

size, which is such that M 6 = (rr/a), where M is an integern q n 

known as the mesh number. With this arrangement the weighting 

scheme is simplified, since we need only consider what happens 

at surfaces which do not contain the origin. For each irre­

ducible zone, the above conditions on g (Eq. AIV-El) must 

be satisfied, and the weight of a point is the product of its 

weight in the complete BZ and its "multiplicity" M within 

the irreducible zone. These multiplicities are defined 

below. 
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{a) 
p 

{b) IBZ 
X"?;.y '?:.Z'?:.O 

p 

H 

(c) [ooc] 
X'?:.Y'?:.0 

H 

p H 

(d) 

H p 

H 
p 

H 

Fig. AIV-1. (a) 	 The first Brillouin zone, corresponding to 
the body centred cubic direct iattice; 

(b)-(e) Various "irreducible" Brillouin· zones. 
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The normal IBZ (Fig. AIV-l(o)) may be defined by 

the further condition 

(AIV-E2) 

A general point has M = 48: if x = y or y = z, M = 24, whereas 

if x =y = z, M = 8. Thus the point (O.l,O.l,O.l) has weight 

8, and the point (0.7,0.3,0.3) also has weight 8 since y = z 

and the point lies on the edge denoted by Fin Fig.AIV-l(b). 

Finally we consider the three special IBZ's used in 

calculations of the cubic shift and width of certain modes. 

These zones are shown in Fig. AIV-1 (c), (d) and (e). 

(i) If g = (O,O,~), we define an IBZ by the further 

condition 


x > y > 0 


The weight of a point is its weight in the IBZ 

divided by 6. 

(ii) 	 For g 1 = (~ 1 ~ 1 0) we have the extra conditions 


x > y , z > o. 


The weight of a point is its weight in the IBZ, divided 

by 12. 

(iii) 	 For g1 = (~'''~), the extra condition is 

x ~ y ~ z. 

The weight of a point is its weight in the IBZ,divided 

by 8. 
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TABLE AIV-1 Symbols used in this appendix. 

c2i = { <P n - <j>'/R)i 
2 

II{ <t> f - 3¢ 11 /R + 3¢ I /R ) i c3i = 
11 12 3

{ <t> II 11c4i = - 64>' /R + 154> • /R - 1S<P /R )i 

I 

c2.1 = C2i/Ri 

I 

= c 3 ./R·c3i 1 1 .. 
= c 2 ./R. 2 

c2i 1 1 

The subscript i indicates that the quantity is 

evaluated for r = Ri where Ri is the separation 

between i'th nearest neighbours. 

c { j) = cos { q j) ; s { j ) = sin { q j ) j = x, y or z 

c(2j) = cos{2qj); s(2j) = sin{2qj) j = x, y or z 

CCC = c(x)c(y)c{z); ccs = c(x)c{y)s(z), etc. 

SSS = s{x)s{y)s{z); SSC = s{x)s(y)c{z), etc. 

d{2x) = c{2y) + c{2z), etc. 

f {2x) = 1 - c{2y)c(2z), etc. 

h{2x) = 1 + s {2y) s {2z), etc. 

{continued) 
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TABLE AIV-1 symbols used in this appendix (cont'd) 

I 

= 2 (C31/3/! + C21 //!) 
I 

= 2 (C31/313" + /!C21 ) 
" 

4 (c41/9 + 2c31 + 3c21 ) 
I 

:I!! -4 (C41/9 + C31 ) 
I It 

= 4 (c41/9 + 2c31 /3 + c 21 ) 
I 

= -4 (c41/9 + c 31 /3) 

All = 2All 
i 

A21 = 2A21 

A31 = 2A31 

A12 
I 

= C22 

A22 = C32 + JC22 

II 

n 

" 

A13 = C33 + 6C23 A13 = A13//2 

A23 = 4C23 A23 = A23/2/2 

A33 = C33 + 2C23 
II 

AJ3 = AJ3//2 

As3 
II 

= 6C23 

A63 = ­ (C43/2 + 3C33 
" 

A93 = C33 + 2C23 
II 

Ag3 = -C33 
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-1 (i)
TABLE AIV-2 Values of (a )faSy(~), for all combinations 

~ . 

of a, S, y and for i = 1,2, and 3. The 

symbols are defined in Table AIV-1. 

i=l i=2 i=3 

xxx 

xxy 

xxz 

xyx 

xyy 

A31 (1-ccc) 

A
21 

(1-ccc) 

A21 (1-ccc) 

A 21 SSC 

A.2l SSC 

A22 [1-c(2x)) 

A12 [1-c(2y)] 

A12 [1-c(2z)]] 

0 

0 

A13 (2-c(2x)d(2x)] 

A
23 

f (2x)+A33 f (2z) 

A
23

f (2x)+A
33

£(2y) 

A33h (2z) 

xyz All SSC 0 

xzx 

xzy 

A21 scs 

All scs 

0 

0 

A33h(2y) 

0 

xzz A21 scs 0 A33h(2y) 

yxx 

yxy 

yxz 

A21 SSC 

A 21 SSC 

All SSC 

0 

0 

0 

A33h (2z) 

A 33h (2z) 

yyx 

yyy 

yyz 

yzx 

A21 (1-ccc) 

A31 (1-ccc) 

A21 (1-ccc) 

All css 

A
12 

[1-c(2x)] 

A22 [1-c(2y)] 

A
12 

[1-c (2z) ] 

0 

A
23

f (2y)+A33f(2z) 

A
13 

[2-c(2y)d(2y) J 

A
23

f (2y)+A33t(2x) 

yzy 

yzz 

A21 

A21 

css 

css 

0 

0 

A 33h(2x) 

A
33

h(2x) 

zxx 

zxy 

A21 

All 

scs 

scs 

0 

0 

zxz A21 scs 0 

(continued) 
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'l:'ABLE_ J,.IV-2 

a Sy i=l 

-1 (i)
Values of (a )faSy(~), for all combinations 

of a, $, y and for i = 1, 2 and 3. The symbols 

are defined in Table AIV-1 (cont'd) 

i=2 i=3 

zyx 

zyy 

zyz 

zzx 

zzy 

zzz 

cssAll 

cssA21 

cssA21 


A21 (1-ccc) 


A (1-ccc)
21 

A31 (1-ccc) 

0 

0 

0 

A [1-c(2x)]12 

A12 [1-c (2y)] 

A22 [1-c(2z)] 

0 

A33h(2x) 

A33h ( 2x) 

A23 f (2z)+A33f (2y) 

A f (2z)+A33f(2x)23

A [2-c(2z)d(2z)]13 
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TABLE AIV-3 Values of 
-1, (i)

(µK ,haSycr,K(l2), for i=l,2 and 3. Only 

one permutation of each set of indices a,S,y,cr is 
given. The function does not change on permutation 
of the indices. The sUbscript K is understood. Symbols 
are defined in Table AIV-1. 

i=l i=2 i=3 

xx xx A41 CCC A32c(2x)+A42d(2x) A
43

c(2x)d(2x)+A53c(2y)c(2z) 

xxxy ASl SSC 0 A63s(2x)s(2y) 

xxx.z A51 scs 0 A63s(2x)s(2z) 

xxyy A61 CCC A52d(2z)+A62 c(2z) A
73

c(2x)c(2y)+A83c(2z)d(2z) 

xxyz A?l css 0 A93s(2y)s(2z) 

xxzz A61 CCC 

xyyy ASl SSC 0 


xyyz A scs 0 A s(2x)s(2z)
71 93

xyzz A?l SSC 0 A s(2x)s(2y)93

xzzz ASl scs 0 A s(2x)s(2z)
63

YYYY A CCC A c(2y)+A d(2y) A c(2x)d(2x)+A c(2x)c(2z)41 32 42 43 53

yyyz ASl css 0 A s(2y)s(2z)63

yyzz A CCC A a(2x)+A c(2y) A c(2y)c(2z)+A c(2x)d(2x)61 52 62 73 83

yzzz A css 0 A s(2y)s(2z)51 63

zzzz A CCC A c(2x)d(2x)+A c(2x)c(2y)41 43 53
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TABLE AIV-4 	 Values of g~~~,K(~1~2~3 ), for i = 1, 2 and 3. 

Only one permutation of each set of indices 

a. , s, y is given. The function does not change 

on permutation of the indices. The subscript 

K is understood. Symbols are defined in 

Table AIV-1. 

a. Sr i=l i=2 	 i=3 
I 

xxx 
I 

sec A22 s(2x) 	 A13s(2x)d2x)A31 
I 	 I I 

xxy csc A s(2y) 	 A23s(2y)c(2z)+A33c(2x)s(2y)A21 12

xxz I 
ccs A12 s(2z) A; 3c(2y)s(2z)+A; 3c(2x)s(2z)A21 

I 	 I I 

xyy sec A12 s(2x) 	 A s(2x)c(2z)+A s(2x)c(2y)A21 23 33

xyz I 
SSS 0 0-All 

I 

xzz A21 sec A12 s(2x) 	 A~ 3 s(2x)c(2y)+A~3 s(2x)c(2z) 
I 	 I 

YYY A31 csc A22 s(2y) 	 A s(2y)d(2y)
13

I 

yyz ccs A12s(2z) 	 A
I 

c(2x)s(2z)+A
I 

c(2y)s(2z)A21 23 33

yzz 
I 

csc A s(2y) A~ 3c(2x)s(2y)+A; 3s(2y)c(2z)A21 	 12
I 

zzz A31 ccs A s(2z) 	 A~ 3 s(2z)d(2z)22
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TABLE AIV-5 Further symbols used in this Appendix. 

n = cos (r)cos (s)cos (t) - 12 

pl = 

p2 = uvsin(r)sin(s)cos(t)+vwsin(s)sin(t)cos(rj+wusin(t)sin(r)cos(s) 

2 2 2 
p3 = l-[e (l)cos(2q ) + e (l)cos(2q ) + e (l)cos(2q )]x 1x y 1y z 1 z 

2 2 2
p4 = 1 - [u cos(2r) + v cos(2s) + w cos(2t)] 

2 2 = 2-{e (l)[cos(2q )+cos(2q )] + e (l)[cos(2q )+cos(2q )]PS x 1y 1 z y 1 z 1x 
2 

+e (1) [cos (2q x) + cos (2q Y)]}
2 1 1


2 2
P = 2-{u [cos(2s) + cos(2t) ] + v [cos(2t) + cos(2r)]6 


2
+ w [cos(2r) + cos(2s)]} 
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TABLE AIV-6 Contributions to the quantity s., defined in 
l 

Section C(ii) of this Appendix, for a par­

ticular choice of a, S, y, a • 

Case Example i Contribution to s. 
l 

(i) 	 xxxx 1 16A41ex 2 
(1) D1D2 

2 16A32ex 
2 

(1) [l-cos(2q1x)JP4 

+aA42e~(l) [2-cos(2q1y)-cos(2q 1 z)JP 6 

2(ii) 	 xxyy l 16A61ex(l)D1D2 

22 8A62ex(l) [l-cos(2q1 z) JP 6 
2

+8A52ex(l) [l-cos(2qlx)JP 6 

+16A52 e~(l) [l-cos(2q1Y)]P 4 

2(iii) xxxy 	 l 16A51ex(l)D1P2 

2(iv) xxyz 	 1 16A71ex(l)D1P2 

(v) xyxx 	 1 16A51ex(l)ey(l)s1xslyclzD 2 

(vi) xyxy 	 1 16A61ex(l)ey(l)s 1xslyclzP 2 

(vii) xyxz 	 1 -16A71ex(l)ey(l)s1xslyclzP 2 

(viii) xyzz 	 1 16A71ex(l)ey(l)s 1xslyclzD 2 
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TABLE AIV-7 Contributions to the quantity s., defined 
l. 

in Section C(ii), surcuned over all permutations 

for each of the eight cases. 

Case Example N i Contributions to s. 
l. 

(i) xxxx 3 1 16A 1o41o 2 

2 16A32 P4P5 + 8A42P6P7 

(ii) xxyy 6 1 32A61o1o2 

2 8A62P6P7 + 8A52P4P 7 + 16A52P 6P 5 

{iii) xxxy 12 1 64A P51o1 2 

(iv) xxyz 6 1 32A71o P1 2 

(v) xyxx 12 1 64A P1o51 2 

(vi) xyxy 12 1 64A6lplp2 

(vii) xyxz 24 1 -12BA71 P3P2 

(viii) xyzz 6 1 32A P D71 1 2 
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TABLE AIV-8 The sums defined by Eq. (AIV-Cll), for the 
three major symmetry directions. 

For g 1 = (0, 0, r;) : 

= sin(r)sin(s) fsin(t)-sin(t+t)]r 1 


= sin(r)cos (s) [cos (t)-cos (t+t)]
I 2 (1) 


= cos (r) sin (s) [cos (t)-cos (t+I:;)]
I 2 (2) 


I (3) = sin (1:;) +cos (r) cos (s) [sin (t)-sin (t+I:;)]
2 


= = 0
13(1) I 3 (2) 


I (3) = sin(21:;)+sin(2t)-sin(2(t+1:;))
3 

For g1 = (1:;,1:;,1:;): 

= sin3 (1:,;)+sin(r)sin(s)sin(t)-sin(r+r;)sin(s+1:;)sin(t+1:;)r 1 

= sin(1:;)cos 2 (,)+sin(r)cos(s)cos(t)-sin(r+1:;)cos(s+1:;)cos (t+I:;), 
etc. 


r 3 (l) = sin(21:;)+sin(2r)-sin(2(r+1:;)), etc. 


For g1 = (1:;,1:;,0): 

= [sin(r)sin(s)-sin(r+1:,;)sin(s+1:;)]sin{t)r 1 


I 2 (l) = sin(1:,;)cos(1:;)+[sin(r)cos(s)-s~n(r+1:;)cos(s+1:;)]cos(t) 


r 2 (2 ) = sin(t)cos(,)+[cos(r)sin(s)-cos(r+1:;)sin(s+1:;)]cos(t) 


r 2 (3 ) = [cos(r)cos(s)-cos(r+1:;)cos(s+1:;)]sin(t) 


r 3 (l) = sin(21:;)+sin(2r)-sin(2(r+1:;)) 


r 3 (2 ) = sin(21:;)+sin(2s)-sin(2(s+r,;)) 


r 3 (3 ) = sin(2t) 


[Note that r 2 (l) = r 2 (2 )] 
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TABLE AIV-9 The sums L s
3 

, defined in Section AIV-C(iii), 
N (g_i) 

for the seven major branches. 

SumSil Pol. 

I I 

(O,O,r;) T 8 4{[uu•r 2 (l)A31+(vv'+ww')r 2 (l)A21 

+(uv'+vu')r 2 ( 2 )A~ 1 +(uw'+wu')H3 
-(vw'+wv')I 1A~ 1 J 2 + 

Ivv 1 r 2 ( 2 )A; 1+(uu'+ww')I 2 ( 2 )A~ 1 
I 

+(uv'+vu')r 2 (l)A21+(vw'+wv')H3 

- ( 
I ]uw'+wu')I 1A11 

2 ~ 
1 

(O,O,r;) L 8 8((uu'+vv')H3+ww'G 3 

-(uv'+vu')r 1A~ 1+(uw'+wu')I 2 (l)A~ 1 

(z;,,r;,c;;) T 6 

where 

Xl = UUIGl + (vv'+ww')Hl 

+ (uv'+vu')H +(uw'+wu')H
2 3 

I I ) I- ( vw +wv r A1 11 

X = vv'G +(uv'+vu')H2 2 l 

+(uu'+ww')H +(vw'+wv')H2 3 
' -(uw'+wu')I A1 11 

X = ww'G +(uw'+wu')H3 3 1 

+(vw'+wv')H +(uu'+vv')H2 3 
I 

-(uv'+vu')I A1 11 

(continued) 
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TABLE AIV-9 The sums r s
3

, defined in Section AIV-C(iii), 
N (S,. ) 

for the seve~ major branches (cont'd) 

Pol. N (S,l) Sum 

(r,;,1;,1;) L 6 2rx1+x 2+x
3

J2 

(x1 ,x ,x are given above)2 3 

(1;,1;,0) T.2 4 4[(uu'+vv')H +ww'G
3 3 

- (uv'+vu' )A 
I 

11 I l 

+(uw'+wu')H +(vw'+wv')H J2 
1 2

(1;,1;,0) L,Tl 4 2[uu 1 G1 ±vv 1 G2 

+{(vv'+ww')±(uv'+vu')}H1 

+{(uv'+vu')±(uu'+vv')}H2 

+{(uw'+wu')±(vw'+wv')} 

I 2 
x (H3-I1All)] 

for i = 1,2,3 

for i = 1,2, 3 

(2) The+(-) signs apply in the expression for 

the direction (1;,1;,0) for L(Tl) polarizations 

respectively. 

Note (1) 
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APPENDIX V 


FREE3, A PROGRAMME TO CALCULATE CUBIC ANHARMONIC 

CONTRIBUTIONS TO THERMODYNAMIC FUNCTIONS 


The expression to be evaluated is (Eq. III-A32): 

(AV-1) 

with N3 given by Eq. (III~A34). The quantities 6S 3 and 

6C 3 are also calculated. 

Comparing Eqs. (AIV-B4) and (AIV-D4) for the shift 

6 3 (A 1 ,D), and noting that V(A 1 A2 \ 3 ) contains the restriction 

that 

we find that 

(AV-2) 

where 

Y<A 1 A A ) = IL: L: {L: sin[s_ •£(L)]}Jl 
2 (AV-3)

2 3 1i i.>0 K K 
1 

and J is given by Eq. (AIV-D6). 

We may immediately drop the sum over s_ in Eq. (AV-1)
3 

because of the restriction noted above. In addition the sum 

over s.1 need only be performed over the irreducible l/48th 

of the first BZ (i.e. the IBZ). The sum over s_ must however
2 

be performed over the whole zone. The wave vector s_ is chosen1 
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to '.lie on an even mesh, and g2 (and therefore g3 ) lie on 

an odd mesh. That is, 

qla = h\1aliq (a = x,y,z) 

1-q2a = (ll\2 a 2) liq, (a = x,y,z). 

As before, Mnliq = (TI/a), where Mn is an integer known as 

the mesh number. 

In the first section of the programme the following 

quantities are calculated and stored, for each value of ~ on 

an odd mesh in the IBZ: 

a = 1 to 3qa 

\) (gj ) j = 1 to 3 

ea(gj) j = 1 to 3; a = 1 to 3 

w(g) 

j = 1 to 3 i = 1 to 4 

i = 1 to 4 

a = 1 to 3 

W(g) is the weight of the vector g in the whole zone. This 

is given in Section E of Appendix IV. In order to avoid over-

counting when g2 is transformed into the whole zone, we must 

introduce extra conditions. If qx = or = the weightqy qy qz' 

is halved, and the weight is further dividedif qx = qy = qz' 

by 3. The remaining quantities are defined as follows: 
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dl = ex + ey + ez 

d2 = ex + ey - ez 
(9j) understood. 

-d3 = ex e + ezy 


e - e - e
d4 = x y z 

s 1 
I 

(g) = sin(qx + qy + q )z 
I 

8 2 (9) = sin(qx + qy - qz) 

s3 
I 

<so = sin(qx - qy + qz) 
I 

S4 (9_) = sin(qx - qy - qz) 

s ~ (SL) = sin (2q ) a = 1 to 3 
0

These quantities are required in order to evaluate Y{A 1 A2A3 ). 

For each temperature, and for each (SLj), the quantities 

n, (dn/dT), and (d 2n/dT2 ) are also stored. 

We now come to the main section of the programme. 

First the vector Sll is generated on an even mesh in the IBZ. 

Values of v(g,j) and ~{g,j) are obtained, and so is the weight 
I 

W (SL1 ). Since g1 is on an even mesh, this weight is given 

by the prescription of Section E, Appendix V, with several 

additional conditions. If x ~ y ~ z = O, M = 24. If 

x = y ~ z = O, M = 12, and if x ~ y = z = O, then M = 6. Here 

x, y and z are the components of g1 • 

A value of Sl2 is now selected. A wave vector in the 

IBZ is read from the table of values, together with the other 

stored quantities. Since g2 must be summed over the whole zone, 
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.. 
the wave vector must be transformed using each of the 48 

operations of the cubic group in turn. In addition the 
I 11 

quantities ~1gj), d(gj), s. (g) and s Cg) must be transformed . 
J. a 

These transformations are listed in Table AV•l. The vector 

is now obtained, by writing g = -g1 - g 2 . It is trans­g3 3 

lated back to the first zone, and the transformation necessary 

to bring it into the IBZ is then found. The values of v, ~' 

etc. are obtained from the table, and appropriately transformed 

because g is not necessarily in the IBZ.3 

The complete expression for 6F may be written as
3 

41'!2 IBZ 

= m 3c g~ 
(AV-4) 

where 
IBZ

2 (AV-5) 

.9.1 
c = (48) x l: 

The above equation summarizes the order in which the various 

summations are performed in the programme. Typical timings 

are as follows (for calculations at one temperature only):­

M = 2 12 secs. n 

M = 3 54 secs. n 

M = 4 165 secs. n 

In practice it is found that the sum has converged to within 

± 1% when M = 4 is used. This value of Mn corresponds ton 

128 wave vectors in the whole zone, and 14 wave vectorsg2 gl 
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in the IBZ. 

The sum over ~l includes the origin,for which w = O,1 

and the eigenvectors are not well defined. To avoid this 

complicationy we have excluded the origin from the sum over 

~1 • The normalization factor c is calculated both including 

and excluding the origin. The results obtained when c includes 

the origin are appropriate to very low temperatures, since 

the origin does not contribute at these temperatures; converse­

ly the results obtained when the origin is excluded are 

appropriate to high temperatures, since the contribution of 

the origin is then similar in size to other contributions. In 

practice the difference between the two results, being equal 

to l/2M 3 , is small. n 
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TABLE AV-1 The 48 equivalent wave vectors g are listed. For 
each value of g, the quantities d 1 ,d 2 ,d 3 and d 4 
are given in terms of Ul = Ex+Ey+E 2 , U2 = Ex+Ey-EZ' 
U3 = Ex-Ey+E 2 , and U4 = Ex-Ey-Ez. Here E is ~n 
eigenvectDr corresponding to the wave vector g = 
(X,Y,Z). The ei~envector ~(g) transforms in tne same 

way as g, and Sa(~) transforms in the same way as qa• 
The quantities 8 ! (g) transform in the same way as 
the dt·. For exakp~, if g = (Y,Z,-X) [no. 13], d1 = 
sin(- X-Y-ZJ), d2 = sin(X+Y+Z), d3 = sin(-fX-Y+Z]), 
d4 = sin(X+Y-Z). 

n nqx qy qz dl d2 d3 d4d1 d2 d3 d4 qx qy qz 

yy U1 -UL+ U3 -U2x z U1 U2 U3 UL+ 25 z x1 

yy U2 -U3 U4 -U126-U4 -U3 -u2 -u12 -z x-x z 
U3 -u2 U1 -U427U3 UI+ U1 U2 z -Y x3 x -Y z 
Ul+ -u1 U2 -U3-z -Y x28-u2 -u1 -U4 -U3l+ -x -Y z 

yy -U4 U1 -U2 U3U2 U1 u4 U3 295 z -xx -z 
yy -U3 U2 -u1 U430-U3 -U4 -U1 -U26 -x -z -z -x 

-u2 U3 -U4 U17 z -Y -xx -Y -z U4 U3 U2 U1 31 

-u1 U4 -U3 U2-u1 -u2 -U3 -U4 328 -z -Y -x-x -Y -z 
yg y x z U1 U2 -u 4 -U3z x U1 -UI+ U2 -U3 33 

U3 U4 -u2 -u13 L+ -Y x z10 U3 -u2 U4 -u1-v z x 
y y -U4 -U3 U1 U2U2 -U3 U1 -UL+ 3511 -x z-z x 

-u2 -U1 U3 UI+U4 -u1 U3 -U2 3612 -v -x z-v -z x 
yy U2 U1 -U3 -UL+37-U4 U1 -U3 U213 x -zz -x 

U4 U3 -u1 -u2-Y x -z3814 -Y z -x -u2 U3 -u1 U4 
yy -U3 -U4 U2 U1-U3 U2 -U4 U1 3915 -x -z-z -x 

-U1 -u2 U4 U34016 -U1 U4 -U2 U3 -Y -x -z-Y -z -x 
yy U1 U3 U2 U4x z1+117 U1 U3 -Ul+ -u2z x 
yy -U4 -u2 -U3 -U14218 U2 U4 -U3 -u1 -x z-z x 

y y U2 U4 U1 U3-U4 -u2 U1 U3 4319 z -x x -z 
yy -U3 -u1 -U4 -U241.+20 -U3 -U1 U2 UL+ -x -z-z -x 

U3 U1 U4 U24521 z x -Y U3 U1 -u2 -U4 x z -v 
-u2 -U4 -u1 -U34622 UL+ U2 -U1 •U3 -x z -Y-z x -Y 

U4 U2 U3 U1l+ 723 -u2 ·U4 U3 U1z -x -Y x -z -Y 

-z -x -Y 4824 -u1 -U3 U4 U2 -u1 -U3 -u2 -U4-x -z -Y 
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APPENDIX VI 


THE COHERENT NEUTRON SCATTERING AMPLITUDE OF RUBIDIUM 


Shull and Wollan (1951) first measured the coherent 

12neutron scattering amplitude of rubidium (b:R}jf) as 0.55xlo- cm., 

using a powder sample of RbCl. More recently Mueller et al 

(1963) obtained a value of 0.85xl0-12 cm., again using a RbCl 

powder specimen. In view of this discrepancy it was felt worth­

while to redetermine this quantity using powders of RbCl, 

RbBr, and RbI. This work is described in a reprint at the 

end of this thesis (Copley 1970). We obtained 

bRb = (0.68 5 ± 0.01) x 10-12 cm. 

The observed powder peaks are shown in Figure AVI-1. 

For each compound the left and right hand peaks are (111) 

and (200) reflections respectively. In the case of the bromide, 

the experimental points for the (111) scan are shown instead, 

since no peak as such was discernible. The upward arrow 

indicates the expected position of this reflection. The numbers 

in brackets are proportional to the number of incident neutrons 

for each point on the appropriate scan (i.e. the monitor count). 

It will be observed that the ratio of the (111) 

intensity to the (200) intensity can be determined to within 

a few per cent in the cases of RbCl and RbI. The calculated 

scattering amplitude is insensitive to small changes in these 
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Fig. AVI-l. 	 The observed (lll) and (20Q) powder peaks 
in three rubjdium halide~. Tne scattering 
angle,¢, is given by ¢ = ¢ - ¢ . The small 
numbers in brackets indiclte c8unting times. 
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ratios, as can be seen in Fig. AVI-2, where the ordinate is 

proportional to the intensity ratio. Furthermore a systematic 

source of error in determining the intensity ratios would 

lead to inconsistent results. This is illustrated in Fig. 

AVI-2. The solid arrows indicate the values of bRb deduced 

from the measured intensities. The dashed arrows point to 

values of bRb which would be obtained if the intensity ratios 

were smaller by 1/3 : clearly they are no longer compatible. 

Thus a systematic discrepancy of this type may be safely dis­

counted. 

Since this work was completed, two other determinations 

of bRb have been reported. Wang and Cox (1970) obtained a 

value of (0.70 ± 0.02 ) x l0-12 cm., and Meriel (1970) re­
5 5 

12ported bRb = (0.704 ± 0.008) x l0- cm. Both of these 

measurements were made using RbCl powder specimens. It is 

satisfactory to note that the value we obtain from measurements 

on RbCl alone, (0.69 ± 0.01) x lo-12 cm., is in agreement with 

these other values. 
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Fig. AVI-2. 	 The ratio of the structure factors for odd and even peaks, as 

a function of the scattering amplitude of rubidium. 
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APPENDIX VII 


LATTICE DYNAMICS OF POTASSIUM CHLORIDE 


Because of the relatively high neutron absorption 

cross section of chlorine, the first measurements of phonons 

in alkali halides were made on NaI (Woods et al. 1960) and 

on KBr (Woods et al. 1963). More recently several other conunon 

alkali halides have been examined, with the notable exception 

of KCl. In this appendix we consider a neutron scattering 

investigation of phonons in KCl. 

This work was motivated by the need for shell model 

parameters for KCl, from which optical properties may be calcu­

lated, for comparison with experiment. The experiments were 

carried out by the author, in collaboration with Dr. G. A. deWit 

in the early stages, and the subsequent shell model fits and 

calculations of the frequency distribution were performed by 

Dr. R. W. MacPherson and Dr. T. Timusk. The work is described 

in a reprint at the end of this thesis (Copley et al. 1969). 

The dispersion curves are also shown in Fig. AVII-1. 

Raunio and Almqvist (1969) have also measured the dis­

persion curves of KCl. In a later publication, Raunio (1969) 

described measurements of phonon widths in three alkali chlo­

rides. The Swedish work was recently analysed by Raunio and 

Rolandson (1970), who give shell model parameters for KCl and three 

other alkali halides. Their fits to the KCl data have somewhat 

smaller standard errors than those of Copley et al. (1969). 
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Figure AVII-1. The dispersion curves of KCl at 115°K. The points denote the 
measured phonons, and the lines show a shell model calculation 
(Model VI of Copley et al. 1969). 
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The Debye-Waller factors (Bi) of KCl were incorrectly 

calculated in the paper by Copley et al. (1969). An erratum 

was subsequently published. The Calculated values of B. 
]. 

have 

been corrected for thermal expansion using the formula 

(Willis 1969): 

(AVII-1) 

where qh and h denote the quasiharmonic and the harmonic 

values, y is the Gruneisen constant, and x is the volume 

expansion coefficient. Values of y and x were taken from White 

(1965), Rubin et al. (1962), and Leadbetter and Newsham (1969). 

Since the "harmonic" values B h were calculated using a 
' i ' 

frequency distribution appropriate to 115°K, the quantity T 

was replaced by (T - 115), in Eq. (AVII-1). 

The results of this calculation are shown in Fig. AVII-2. 

The quasiharmonic values of the Debye-Waller factor are seen to 

deviate from the harmonic values above room temperature. 

It is satisfactory to note that the quasiharmonic values are 

in reasonable agreement with the measurements of Willis (1970) 

up to 600°K. The discrepancy at 900°K indicates that "true" 

anharmonic contributions have become important at this 

temperature. The measurements of Patomaki and Linkoaho (1969) 

and of Jayalakshmi and Viswamitra (1970) are also in reasonable 

agreement with the present calculations. 



263 

' 


10 


9 


8 


7 


N­ 6
o<[-
5
CD 

4 


3 


2 


2 4 JB 

• Wa (Cl) 

v Wo (K) 
+ PL 0
• JV 

x 

0 100 200 300 

)( Wi (Cl) 

o Wi (K) 

---- Cl 

K 

o--~---~~..._~_,_~~---~_,_~~---~__..~~--~__.__. 

200 400 600 800 


TEMPERATURE (°K) 
Figure AVII-2. Debye-wa+ler tactors in KCl. The 

measurementsof James and Brindley 
(1928) (JB), Wasastjerna (1946) (Wa), 
Patomaki and Linkoaho (1969) (PL), 
Jayalakshmi and Viswarnitra (1970) (JV), 
and Willis (1970) (Wi) are also shown. 
The calculatio~s of Buyers and Smith 
(1968) (BS) are indicated. 



264 

BIBLIOGRAPHY 

l A. 	 GENERAL REFERENCESI 

•I 

1. 	 Inelastic Scatterin of Neutrons in Solids and Li uids. 
International Atomic Energy Agency, Vienna 1961 . 

2. 	 Inelastic Scatterin of Neutrons in Solids and Li uids. 
Two volumes). Internationa Atomic Energy Agency, 

Vienna (1963). 

3. 	 Inelastic Scattering of Neutrons (Two volumes). 
International Atomic Energy Agency, Vienna (1965). 

4. 	 Neutron Inelastic Scattering (Two volumes). Interna­
tional Atomic Energy Agency, Vienna (1968). 

5. 	 Phonons and Phonon Interactions, edited by T. A. Bak, 
W. A. Benjamin Inc., New York (1964). 

6. 	 Lattice Dynamics, edited by R. F. Wallis, Pergamon 
Press, London (1965). 

7. 	 Thermal Neutron Scatterin1, edited by P. A. Egelstaff. 
Academic Press, New York 1965). 

8 . 	 Phonons in Perfect Lattices and in Lattices with 
Point Imperfections, edited by R.W.H. Stevenson. 
Oliver and Boyd, Edinburgh (1966). 

B. 	 SPECIFIC REFERENCES 

A. 	 0. E. Animalu, F. Bonsignori, and V. Bortolani, Nuovo 
Cimento _!!, 159 (1966). 

N. 	 w. Ashcroft, Phys. Lett. ~, 4S (1966). 

N. 	 W. Ashcroft, J. Phys. C !r 232 (1968). 

G. 	 E. Bacon, Neutron Diffraction, Second Ed., Clarendon 
Press, Oxford (1962). 

J. 	Bardeen, Phys. Rev. ~' 688 (1937). 

C. 	 s. Barrett, J. Inst. Metals, ~, 43 (1955). 

C. 	 S. Barrett, Acta Cryst. ~, 671 (1956). 



265 


.. 


T. 	 H. K. Barron, Discussions of the Faraday Society .!Q_, 
69 (1965a). 

T. 	 H. K. Barron, in General Reference 6, p. 247 (1965b). 

T. 	 H. K. Barron, A. J. Leadbetter and J. A. Morrison, 
Proc. Roy. Soc. (London) A279, 62 (1964). 

T. 	 H. K. Barron, A. J. Leadbetter, J. A. Morrison, and 
L. 	 s. Salter, Acta Cryst. ~, 125 (1966) . 

J. 	Bergsma and c. van Dijk, Reactor Centrum Nederland 
Report RCN-34 (1965) • 

R. 	 Blanchard, Ph.D. Thesis, University of Ottawa 
(unpublished) (1969). 

R. 	 Blanchard and Y. P. Varshni, (to be published) 
(1970). 

L. 	 Bohlin and T. Hogberg, J. Phys. Chem. Solids~, 1805 
(1968). 

B.Bohm 	and w. Klemm, z. anorg. u. allgem. Chem. 243, 69 
(1939). 

G. 	 Borelius, In Solid State Physics, edited by F. Seitz 
and D. Turnbull, Vol. 15, p. 1. Academic Press, New 
York (196 3) • 

M. 	 Born, in General Reference 6, p. 1 (1965). 

M. 	 Born and K. Huang, Dynamical Theory of Crystal Lattices, 
Clarendon Press, Oxford (1954). 

M. 	 Born and T. von Karman, Phys. Zeit. 13, 297 (1912). 

w. 	 L. Bragg, Proc. Roy. Soc. (London) A89, 248 (1913). 

P. 	 W. Bridgman , Proc. Amer. Acad. Arts and Sci. 74, 425 
(1942). 

P. 	 w. Bridgman, Proc. Amer. Acad. Arts and Sci. 2§_, 55 (1948); 
2§_, 71 (1948). 

B. 	 N. Brockhouse, Phys. Rev. Letters ~, 256 (1959). 

B. 	 N. Brockhouse, in General Reference 1, p. 113 (1961). 

B. 	 N. Brockhouse, in General Reference 8, p. 110 (1966). 



266 

.. 
B. 	 N. Brockhouse, in General Reference 4, Vol. I, p. 163 

(1968). 

.. B. 	 N. Brockhouse, T. Arase, G. Caglioti, M. Sakamoto, 
R. N. Sinclair, and A.D.B. Woods, in General Reference 1, 

.. p • 531 (1961). 

B. 	 N. Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and 
A. 	 D. B. Woods, Phys. Rev. 128, 1099 (1962). 

B. N. Brockhouse, G. A. deWit, E. D. Hallman and J. M. Rowe, 
,.. in General Reference 4, Vol. II, p. 259 (1968a). 

B. 	 N. Brockhouse, E. D. Hallman, and s. c. Ng , in 
Magnetic and Inelastic Scattering of Neutrons by Metals, 

I" 	 edited by T. J. Rowland and P. A. Beck, Gordon and 
Breach Inc., N. Y. (1968b).

I B. N. Brockhouse and A. T. Stewart, Phys. Rev. 100, 756 
(1955); see also B. N. Brockhouse and A. T.---st"ewart, 
Revs. Modern Phys. lQ_, 236 (1958). 

T. 	 D. Brotherton, O. N. Cole and R. E. Davis, Trans. Met. 
Soc. AIME, 224, 287 (1962). 

R. J. Bruno. Private Communication (1970). 


·w. J. L. Buyers and R. A. Cowley, Phys. Rev.~, 755 (1969). 


W. 	 J. L. Buyers and T. Smith, J. Phys. Chem. Solids~, 
1051 (1968). 

R. 	 s. Carter, H. Palevsky, and D. J. Hughes, Phys. Rev. 106, 
1168 (1957). 

w. 	 Cochran, Proc. Roy. Soc. (London) A276, 308 (1963). 

W. 	 Cochran, in General Reference 8, p. 53 (1966). 

M. 	 F. Collins, Brit. J. Appl. Phys. 14, 805 (1963). 

M. 	 F. Collins, V. J. Minkiewicz, R. Nathans, L. Passell 
and G. Shirane, Phys. Rev. 179, 417 (1969). 

M. J. Cooper and R. Nathans, Acta Cryst. 23, 357 (1967). 

~. R. D. Copley, Acta Cryst. A26, 376 (1970). 

J. 	R. D. Copley, B. N. Brockhouse and s. H. Chen, in 
General Reference 4, Vol. I,p. 209 (1968). 



267 

J. 	R. D. Copley, R. W. MacPherson and T. Timusk, Phys. 
Rev. 182, 965 (1969); B !_, 4193 (1970) (Erratum). 

M. 	 A. Coulthard, J. Phys. C~, 820 (1970). 

R. 	 A. Cowley, Adv. Phys. ~, 421 (1963). 

R. 	 A. Cowley, Rep. Prog. Phys. 31, 123 (1968). 

E. 	 R. Cowley. Private Communication (1970). 

R. 	 A. Cowley, W.J.L. Buyers, E. C. Svensson and G. L. Paul1 

in General Reference 4, Vol. I, p. 281 (1968). 

R. 	 A. Cowley, W. Cochran, B. N. Brockhouse and A.D.B. Woods, 
Phys. Rev. 131, 1030 (1963). 

E. 	 R. Cowley and R. A. Cowley, Proc. Roy. Soc. (London) 
A287, 259 (1965). 

E. 	 R. Cowley and R. A. Cowley, Proc. Roy. Soc. (London) 
~, 209 (1966) . 

E. 	 R. Cowley and A. K. Pant, Acta Cryst. (to be published) 
(1970). 

R. 	 A. Cowley, A. D. B. Woods and G. Dolling, Phys. Rev. 150, 
487 (1966). 

p. 	Debye, Ann. Physik ~, 789 (1912). An English translation 
of this paper is contained in "The Collected Papers of 
Peter J. W. Debye~ Interscience, New York (1954). 

E. 	Deuss, Vierteljahrsschr. naturforsch. Ges.zurich 56, 15 
(1911). ­

M. 	 E. Diederich and J. Trivisonno, J. Phys. Chem. Solids 27, 
637 (1966) • 

A. 	 E. Dixon, A. D. B. Woods and B. N. Brockhouse, Proc. Phys. 
Soc. (London) 81, 973 (1963). 

G. 	 Dolling. Private Communication (1970). 

G. 	 Dolling, H. G. Smith, R. M. Nicklow, P.R. Vijayaraghavan, 
and M. K. Wilkinson, Phys. Rev. 168, 970 (1968). 

P. 	 L. Dulong and A. T. Petit, Ann. chim. et. phys. [2], !.Q_, 
395 (1819) • 



268 


.. 	 A. Einstein, Ann. Physik. 22, 180 (1907) • 

R. 	 J. Elliott, in General Reference 8, p. 377 (1966). 

E. 	 Fermi, Ricerca Sci. 7, 13 (1936) [English translation: 
u.s.A.E.C. report NP~2385]. 

J. 	D. Filby and D. L. Martin, Proc. Roy. Soc. (London) 
~, 83 (1965). 

M. 	 A. Filyand and E. I. Semenova, Handbook of the Rare 
Elements, Vol. I, Tr·ace El·ements and Light Elements, 
translated and edited by M. E. Alferieff, Boston 
Technical Publishers Inc., Cambridge, Mass. (1968). 

J. 	Frenkel, Wave Mechanics, Elementary Theory, 1st Ed., 
p. 	265. Oxford (1932). 

C.-E. 	Froberg, Introduction to Numerical Analysis, p. 181. 
Addison-Wesley Publishing Co., Reading, Mass. (1965). 

K. 	 Fuchs, Proc. Roy. Soc. (London) Al51, 585 (1935). 

K. 	 Fuchs, Proc. Roy. Soc. (London) Al57, 444 (1936). 

D. 	 J. w. Geldart and s. H. Vosko, Can. J. Phys. ,!!, 2137 
(1966); ~, 2229 (1967) (Erratum). 

G. 	 Gilat and L. Bohlin, Solid State Commun. z, 1727 (1969). 

G. 	 Gilat and G. Dolling, Phys. Lett. ~, 304 (1964). 

G. 	 Gilat and z. Karn, Phys. Rev. Lett. 22, 715 (1969); ~' 
1028 (1969) (Erratum) • ­

G. 	 Gilat and L. J. Raubenheimer, Phys. Rev. 144, 390 (1966). 

R. 	 Ginell and T. J. Quigley, J. Phys. Chem. Solids~, 
1157 (1965). 

L.A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687 (1959). 

H. 	 R. Glyde and R. A. Cowley, Solid State Commun. ~, 923 
(1970). 

M. 	 D. Goldberg, S. F. Mughabghab, B. A. Magurno, and v. M. May, 
Neutron Cross Sections , Brookhaven National Laboratory 
report BNL-325, 2nd Ed., Suppl. no. 2, Vol. IIA (1966). 



269 


.. E. J. Gutman and J. Trivisonno, J. Phys. Chem. Solids ~, 
805 (1967). 

L. 	 Hackspill, Compt. rend. 152, 259 (1911). 

E. 	 D. Hallman, Ph.D. Thesis, McMaster University, Hamilton 
(unpublished) (1969). 

E. 	 D. Hallman and B. N. Brockhouse, Can. J. Phys. !Z., 1117 
(1969) • 

w. 	 A. Harrison, Pseudopotentials in the Theory of Metals, 
W. A. Benjamin, Inc., New York (1966). 

P. 	 s. Ho, Phys. Rev. 169, 523 (1968). 

T. 	 Hogberg and R. Sandstrom, phys. stat. sol. ~, 169 (1969). 

E. 	 J. Holmyard and w. G. Palmer, A Higher School Inor§anic 
Chemistry, p. 196, J.M. Dent and Sons, London (1 39). 

H. 	 Horner, Phys. Rev. Lett. ~, 147 (1970). 

D. 	 J. Hughes and R. B. Schwartz, Neutron Cross Sections, 
Brookhaven 	National Laboratory report BNL-325, 2nd Ed. 
(1958). 

W. 	 Hume-Rothery and K. Lonsdale, Phil.Mag. l§_, 842 (1945). 

R. 	 W. James and G. W. Brindley, Proc. Roy. Soc. (London) 
Al21, 162 (1928). 

K. 	 Jayalakshmi and M. A. Viswamitra, Phys. Lett. 31A, 70 
(1970). 

s. 	K. Joshi and A. K. Rajagopal. In Solid State Physics, 
edited by F. Seitz and D. Turnbull, Vol. 22, p. 160. 
Academic Press, New York (1968). 

J.M. Keller and D. c. Wallace, Phys. Rev. 126, 1275 (1962). 

E. 	 W. Kellermann,Phil. Trans. Roy. Soc. (London) 238, 513 
(1940). 

F. 	M. Kelly and W. B. Pearson, Can. J. Phys. 33, 17 (1955). 

c. 	Kittel, QUantum Theory of Solids, John Wiley, New York 
(1963). 

M. 	 L. Klein, G. R. Horton, and J. L. Feldman, Phys. Rev. 184, 
968 (1969). 



270 


.. T. 	 R. Koehler, N. s. Gillis, and D. c. Wallace, Phys. Rev . 
B.!_, 4521 (1970). 

W. 	 Kohn, Phys. Rev. Lett. ~, 393 (1959). 

F. 	 J. Kollarits and J. Trivisonno, J. Phys. Chern. Solids ~' 
2133 (1968). 

G. 	 F. Koster. In Solid State Physics, edited by F. Seitz and 
D. 	 Turnbull, Vol. 5, p. 174. Academic Press, New York 
(1957). 

K. 	 E. Larsson, s. Holrnryd, and U. Dahlborg, in General 
Reference 1, p. 587 (1961). 

D. 	 Lazarus, Phys. Rev. J.j_, 545 (1949). 

A. 	 J. Leadbetter and D. M. T. Newsham, J. Phys. C. ~, 210 
(1969). 

G. Leibfried, in General Reference 6, p. 237 (1965). 


G •. Leibfried and W. Ludwig. In Solid State Physics, edited by 

F. Seitz and D. Turnbull, Vol. 12, p. 275. Academic 
'~ress, New York (1961). 

W. 	 Ludwig, Recent Developments in Lattice Theory, Springer 
Tracts in Modern Physics, Vol. 43 (1967). 

A. 	 A. Maradudin, phys. stat. sol. ~, 1493 (1962). 

A. 	 A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962). 

A. 	 A. Maradudin, A. E. Fein, and G. H. Vineyard, phys. stat. 
sol. ~, 1479 (1962). 

A. 	 A. Maradudin and P.A. Flinn, Phys. Rev. 129, 2529 (1963). 

W. 	 R. Marquardt and J. Trivisonno, J, Phys. Chern. Solids~, 
273 (1965). 

D. 	 L. Martin, Phys. Rev. 139, AlSO (1965). 

D. L. Martin, Can. 	 J. Phys. i!r 1327 (1970). 

P. 	Meriel, Cornpt. rend. 270 (serie B), 560 (1970). 

A. 	 Messiah, Quantum Mechanics, John Wiley, New York (1962). 



271.. 

A. 	 P. Miiller, Ph.D. Thesis, McMaster University, Hamilton 
(unpublished) (1969). 

A. 	 P. Miiller and B. N. Brockhouse, Can. J. Phys. (to be 
published) (1970). 

A. 	 Millington. Private Communication (1969). 

H. 	 B. M¢ller and M. Nielsen , "Resolution of Neutron Spec­
trometers for Inelastic Neutron Scattering", to be 
published in the Proceedings of the IAEA Panel Meeting 

on Instrumentation for Neutron Inelastic Scattering 
Research. International Atomic Energy Agency, Vienna (1970). 

N. 	 F. Mott and H. Jones, The Theory of the Pro~erties of 
Metals and Alloys, Clarendon Press, Oxfordl936). 

M. 	 H.Mueller, S. s. Sidhu, L. Heaton, R. L. Hitterman and 
H. W. Knott, Argonne National Laboratory report 
ANL-6797, 393 (1963). 

Neutron Diffraction Commission, Acta Cryst. A25, 391 (1969). 

D. 	 M. T. Newsham, Phys. Rev. 152, 841 (1966). 

s. 	c. Ng, E. D. Hallman, and B. N. Brockhouse, Mater. Res. 
Bull. ~' 69 (1967) • 

Ph. 	 Olmer, Acta Cryst. 1, 57 (1948); Bull. soc. franc. 
mineral. 71, 144 (1948). 

A. 	 W. Overhauser, Phys. Rev. 167, 691 (1968). 

A. 	 W. Overhauser. Private Communication (1970). 

W. 	 C. Overton, J. Phys. Chem. Solids~, 711 (1968). 

D. 	 J.Page, Proc. Phys. Soc. ~, 76 (1967). 

L. 	 K. PatomakiandM. v. Linkoaho,Acta Cryst. A25, 304 (1969). 

L. 	 A. Pauer, Office of Naval Research, Technical Report No. 
11, Contract Nonr. 1141 (05),Project NR 017-309 (1968). 

w. 	 B. Pearson, Handbook of Lattice S acin s and Structures 
of Metals and Alloys, Pergamon Press, New York 1958). 

G. 	 E. Peckham, United Kingdom Atomic Energy Authority Report, 
AERE-R 4380 (1964). 



272 

G. 	 E. Peckham, D. H. Saunderson, and R. I. Sharp, Brit. 
J. 	Appl. Phys. _!!, 473 (1967). 

R. 	 E. Peierls, Quantum Theory of Solids, Clarendon Press, 
Oxford (1955). 

F. 	M. Perel'man, Rubidium and Caesium, translated by R.G.P. 
Towndrow. 1st English Ed. MacMillan, New York (1965). 

D. 	 Pines and P. Nozieres, The Theory of Quantum Liquids, .. Vol. I, p. 104. Benjamin, New York (1966) • 

S. 	Prakash ands. K.Joshi, Phys. Rev. 187, 808 (1969). 

D. 	 L. Price, K. s. Singwi, and M. P. Tosi, Phys. Rev. (to be 
published) (1970). 

G. 	 Raunio, phys. stat. sol. 35, 299 (1969). 

G. 	 Raunio and L. Almqvist, phys. stat. sol. 33, 209 (1969). 

G. 	 Raunio and s. Rolandson, Phys. Rev. B (to be published) 
(1970). 

M. 	 H. Rice, J. Phys. Chem. Solids 26, 483 (1965). 

F. 	 Richarz, Ann. Physik !§_, 708 (1893); .§2_, 702 (1899). 

c. 	A. Roberts and R. Meister, J. Phys. Chem. Solids 27, 
1401 (1966). 

J. 	M. Rowe, Ph.D. Thesis, McMaster University, Hamilton 
(unpublished) (1966). 

T. 	 Rubin, H. L. Johnston, and H. W. Altman, J. Phys. Chem. 
~, 948 (1962). 

T. 	 Schneider and E. Stoll, Phys. kondens Materie ~' 331 
(1966a). 

T. 	 Schneider and E. Stoll, Phys. kondens Materie ~' 364 (1966b). 

F. 	 Seitz, Im erfections in Nearl Perfect Cr stals, p. 15. 
John Wi ey, New York 1952 • 

C. 	 G. Shull, Transactions of the American Crystallographic 
Association, li 1 (1967). 

c. 	G. Shull and E. o. Wollan, Phys. Rev. 81, 527 (1951). 



273 .. 

F. 	 Simon and E. Vohsen, z. physik. Chem. A, 133, 165 (1928). 

A. 	 Sjolander, Arkiv Fysik 14, 315 (1958). 

T. 	 Slotwinski and J. Trivisonno, J. Phys. Chem. Solids~' 
12 7 6 (19 6 9 ) . 

H. 	 G. Smith, G. Dolling, R. M. Nicklow, P. R. Vijayaraghavan 
and M. K. Wilkinson, in General Reference 4, Vol. I, p. 149 
(1968). 

C. 	 J. Smithells, Metals Reference Book, (3rd Ed.) Vol. II. 
Butterworths, London (1958). 

R. 	 Stedman and G. Nilsson, Phys. Rev. 145, 492 (1966). 

A. 	 T. Stewart and B. N. Brockhouse, Rev. Mod. Phys. l..Q_, 250 
(1958). 

E. 	C. Svensson, B. N. Brockhouse and J. M. Rowe, Phys. Rev. 
155, 619 (1967). 

c. 	A. Swenson, Phys. Rev. ~' 423 (1955). 

T. 	 Toya, J. Res. Inst. Catalysis, Hokkaido Univ. ~' 183 (1958). 

T. 	 Toya, J. Res. Inst. Catalysis, Hokkaido Univ., 21 60 (1959). 

L. 	 Van Hove, Phys. Rev.~, 249 (1954). 

s. 	H. Vosko, R. Taylor, and G. H. Keech, Can. J. Phys. 43, 
1187 (1965). 

D. 	 c. Wallace, Phys. Rev. 176, 832 (1968). 

D. 	 c. Wallace, Phys. Rev. 178, 900 (1969). 

R. 	 F. Wallis and D. C. Gazis, in General Reference 6, p. 537 
(1965). 

F. 	F. Y. Wang and D. E. Cox, Acta Cryst. A26, 377 (1970). 

J. 	A. Wasastjerna, Soc. Sci. Fennica Commentationes Phys. Math., 
13, 1 (1946). Quoted in International Tables for X-ray 
Crystallography, ed. Kathleen Lonsdale, (Kynoch Press, 
Birmingham, England, 1962), Vol. III, p. 240. 

R. 	 C. Weast (Editor), Handbook of Chemistry and Physics, 
49th Ed., p. F-18, The Chemical Rubber Company, Cleveland, 
Ohio (1968). 



274 
.... 

G . 	 K. White, Proc. Roy. Soc. (London) 204 (1965).~' .. 
B. 	 T. M. Willis, Acta Cryst. Ae, 277 (1969) . 

B. 	 T. M. Willis, Private Communication (1970) • 

A. 	 D. B. Woods,B. N. Brockhouse, R. A. Cowley, and w. 
Cochran, Phys. Rev. 131, 1025 (1963). 

A. 	 D. B. Woods, B. N. Brockhouse, R. H. March, A. T. Stewart 
and R. Bowers, Phys. Rev. 128, 1112 (1962). See also 
A.D.B. Woods, B.N. Brockhouse, R. H. March and R. Bowers, 
Proc. Phys. Soc. 79, 440 (1962) and Bull. Arn. Phys. Soc. 
~' 261 (1961). ~ 

A. 	 D. B. Woods, w. Cochran, and B. N. Brockhouse, Phys. Rev. 
119, 980 (1960). 

M. 	 W. Zemansky, Heat and Thermodynamics, 4th Ed., p. 251. 
McGraw Hill, New York (1957). 

J. 	M. Ziman, Electrons and Phonons, p. 16. Oxford (1960). 

J. 	M.Ziman, Adv. Phys. (Phil. Mag. Suppl.) 13, 89 (1964). 



Reprinted from A eta Crystallographica , Vol. A 26 , Part 3, May 1970 

PRINTED IN DENMARK 

Acta Cryst. (1970). A26, 376 

A redetermination of the coherent neutron scattering amplitude of rubidium. By J. R . D. CoPLEY , Deparrment of 
Physics, McMaster University , Hamilton, Ontario, Canada 

(Received 25 June 1969) 

The coherent neutron scattering amplitude of rubidium has been remeasured using powders of RbCI , 
RbBr, and RbI. A consistent value, (0·68s ± 0·01) x io- 12 cm, was obtained, differing significantly from 
earlier measurements. The new value is believed to be more reliable. The bound cohe1ent scattering cross­
section is 5·9 ± 0·2 barns. 

The coherent neutron scattering amplitude of rubidium 
(bRb) was first measured by Shull & Wollan (1951) who 
obtained bitb= O· 55 (scattering amplitudes are given 
throughout in units of 10- 12 cm) . In their structure study 
of RbMnF3, Pickart, Alperin & Nathans (1964) found this 
value low, and favoured a value of about 0·63. Mueller, 
Sidhu, Heaton , Hitterman & Knott (1963) reported a value 
of 0·85. In view of the considerable discrepancy between 
these measurements, a further investigation has been under­
taken in order to obtain a better va lue of b1ib. 

The previously published values were both obtained by 
the powder diffraction technique (Bacon, 1962) using 
samples of RbCI and an external standard. The present 
measurements were made by the powder method using 
cylindrical samples of RbCl, RbBr, and RbI (which have 
the NaCl structure) using the halogens as internal stan­
dards . For cylindrica l geometry and the NaCl structure, 
the integrated intensity, P, of the reflexion from a set of 
planes (hkl) is P = Kjl/(sin 0 sin 20) where 

l= lbRb exp (- WRb)±bx exp (- W x )! ZA. 

Here j is the multiplicity of the (hkl) planes, 0 is the Bragg 
scattering angle, bx is the coherent scattering amplitude of 
the halogen, the exponential terms are Debye- Waller tem­

perature factors, and A is the absorption factor: P, I, j, 0, 
WRb, Wx , and A depend on the indices hkl. K is a constant 
depending on details of the spectrometer and on the size 
of the sample. The plus (minus) sign is used when h, k, l 
are all even (all odd) . In this wo1 k, the intensities of the 
111 and 200 reflexions from each halide were measured 
and a consistent value of bRb was obtained from the inten­
sity ratios P11 i/Pzoo. 

Measurements were made at room temperature using the 
McMaster University triple-axis spectrometer at Chalk 
River (Brockhouse, de Wit, Hallman & Rowe, 1968) with 
}, = l ·335 A. The analyser was set to count neutrons elas­
tically scattered by the specimen. Use of a double mono­
chromator and an analyser significantly reduces second 
order contributions to the measured intensities. The spe­
cimens (obtained from K & K Laboratories, Plainsview, 
New York, 99·9% pure), were contained in a half inch 
diameter aluminum can having 0·012 inch walls. 

The ratios Rx= l11 i/lzoo, are given in Table 1. The 111 
peak in RbBr was too weak to be seen. The errors as­
signed to the ratios R x arise from counting statistics . 
Neglecting the absorption and temperature factors we may 
write Rx = (bRb- bx)Z/(bRb + bx)Z. Since R Br is very small , 
bRb c=. bBr . The values of bRb listed in Table I were obtained 

Fig. I . The ratio (bRb-bx)2/(bRb +bx)2 as a function of bRb, for the three halogens. The arrows indicate the values of bRb deduced 
from each intensity ratio, neglecting temperature corrections. The short horizontal lines represent uncertainties in bRb arising 
from uncertainties in the values of bx . 
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from the ratios R x, corrected for the temperature factors 
as described below . The values of bx are a ls0 5iven in 
Table I. Fig. I illustrates the dependence of hRb on the 
ratios R x. 

Table I. Powder dijfi·action results from several Rb halides 

R x= / 11 1/ / 200 is calculated from the observed intensities; bx is 
the assumed halogen scattering amplitude, and bRb is the 
calculated scattering amplitude for Rb. Scattering amplitudes 
in units of 10­ 12 cm. 

Cl Br 
0·0272 ± 0·001 O·O ± 0·0002 0·0164 ± 0 ·001 
0·963 ± 0·00 I* 0·67 ± 0·02t 0·52 ± 0·02"!" 
0·69 ± O·Ol 0·67 ±0·025 0·67 ± 0·03 

* Koester ( 1967) . 
·r Shull & Wollan (195 1). 

Individual room tempe1ature Debye- Waller parameters, 
B; = W1, 1tk1()./sin (Ji,ki)Z were calculated (Dolling, Smith, 
Nicklow, Yijayaraghavan & Wilkinson, 1968) using the 
breathing shell model (Schroder, 1966) with the elastic and 
optical constants as input pararr.eters . In the worst case, 
that of Rbl, inclusion of the temperature factors reduces 
the calculated value of bnb by (0·7 ± 0·7) % to the value 
given . The average Debye- Waller parameter for Rbl, ob­
tained from the relative intensities of 8 even hkl reflexions, 
was 3·6 Az, in substantial agreement with ca lculated values 
of 3-4 and 3·6 (5) Az, for the Rb + and I - ions respectively. 
The degree of contamination of the monochromatic beam 
is best estimated from the ratio R nr, since the !st order 
I I 1 reflexion also contains a 2nd order 222 contribution. 
On this basis, corrections to hHb are estimated to be < O· l % . 
Absorption corrections are < 0·01 % . 

From the 3 independent measurements of hRb, we obtain 
a best value, hRb = 0·68 5 ± 0·01. The bound coherent scat­
tering cross-section, 4nbRb2, is 5·9 ± 0.2 barns. This work is 
in agreement with recent measurements of Wang & Cox 

(1970), who obtain bab = 0·70s±0·02s from the intensities 
of 18 reflexions in a powder sample of RbCl. Mueller et al. 
(1963) obtained bnb = 0·85 using an external nickel standard. 
In that experiment an intensity ratio /111 / fzoo=0·030 was 
obtained (Mueller, 1969), which gives hRb'.::'.0·68. However 
the 11 I and 200 reflexions were not fully resolved. These 
considerations indicate that the present measurements a re 
more reliable than the earlier work . 

The author is grateful to Professor B. N. Brockhouse for 
his advice and encouragement, a nd to Drs M. H . Mueller 
and D. E. Cox for useful discussions relating to this work. 
R. W. MacPherson assisted with the shell model calcula­
tions. This work was supported by a grant from the Na­
tional Research Council; I am pleased to acknowledge an 
N.R.C. Studentship , and the support and encouragement 
of Atomic Energy of Canada, Ltd. 
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Phonon dispersion curves along the [00!], [Ofl], [Otl], and [!tl] directions in KC! at l15°K have 
been measured by inelastic scattering of slow neutrons using the McMaster University triple-axis spec­
trometer at Chalk River. Various versions of the shell model have been fitted to the measurements. They 
are also compared with Kucher's predictions and with the results of Schroder's breathing-shell model. 
Several quantities are calculated using the best-fit shell model. The main features of the frequency dis­
tribution function do not, in general, occur at the frequencies of the symmetry points X and L. The most 
prominent peak in the frequency distribution is at 155 cm- 1• It agrees with the strongest peak in the Raman 
spectrum of KC!. The Debye temperature, the Debye-Waller factor, and the inelastic structure factor are 
also calculated. 

I. INTRODUCTION 

T HE lattice vibrations of most of the common 
alkali-halide crystals have been investigated by 

slow neutron spectroscopy and by diffuse x-ray scatter­
ing. The most complete measurements to date have been 
made on LiF, 1 NaF,2 NaCl, 3 N"aI, 4 KBr, 5 and KI 6 by 
neutron spectroscopy and on N aF 7 and N aCI 8 by x-ray 
scattering. Potassium chloride is perhaps the most 
obvious crystal still missing from this list and although 
some diffuse x-ray measurements exist for KC! 9 •10 there 
are several reasons why a more complete investigation 
of the lattice vibrations should be undertaken . 

Work on the optical properties11 of both pure <Ln<l 
defect-containing crystals has demonstrated that for 
a ful l understanding of the influence of the lattice vibra­
tions, detailed dynamic models based on neutron spec­
troscopy are essential. KCl is a good material for optical 
studies of all kinds because it can be prepared more 
easily in highly pure form than some of the other alkali 
halides. For this reason a large amount of experimental 
work has been done on this substance. KC! has long 
been a favorite in color-center research. 

* \Vork supported in part by the ::\ ational Research Council of 
Canada and in part by the Alfred P. Sloan Foundation. 
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Tela 9, 1609 (1967) [English transl.: Soviet Physics- Solid Stale 
9, 1265 (1967)]. 

11 For recent reviews on localized vibrations see A. A. Maradu­
din, in Solid Stale Physics, edited by F. Seitz and D. Turnbull 
(Academic Press Inc., New York, 1966), Vols. 18 and 19; see also 
M. V. Klein, in Physics of Color Centres, edited by W. B. Fowler 
(Academic Press Inc., New York, 1968). 

From a lattice dynamics point of view, KC! is also of 
special interest. A number of good measurements of its 
macroscopic properties have been made, and it has been 
possible to calculate dispersion curves from these 
data using several theoretical models. Noteworthy 
among these calculations are those of Tolpygo and 
co-workers, 12 •13 of Hardy, 14 and more recently of 
Schroder. 15 It is of interest to compare these predictions 
of the phonon frequencies with actual measurements. 
A survey of models of this type may help us towards 
a better understanding of lattice dynamics from a 
microscopic point of view. 

In Sec. II we review briefly the experimental tech­
niques. The measured frequencies <.Lt various points 
along symmetry directions are given in Sec. Ill. The 
predictions of models based on macroscopic parameters 
are compared with experiment in Sec. IV. The shell 
model used by Woods et al. 4 and by Cowley et al. 16 is 
introduced and least-squares fits of this model to the 
measurements are given. In Sec. V the results of sev­
eral calculations using the best least-squares-fit model 
are presented and compared with results of other 
experiments. 

II. MEASUREMENTS 

The phonon dispersion curves of KCl were measured 
by slow neutron inelastic scattering using the McMaster 
University triple-axis spectrometer at Chalk River.17 
This instrument uses twin monochromating crystals 
which produce a beam of neutrons of energy Eo and 
wave vector k0 normal to the reactor face. Neutrons of 
energy E' and wave vector k', scattered from the speci­

12 K. B. Tolpygo and I. G. Zaslavskaya, Trudy Inst. Fiz. Acad. 
Nauk Ukr., SSR, No. 4, 71 (1953) [English transl.: United 
Kingdom Atomic Energy Authority, Harwell Report AERE­
lransl. 972 (1963) (unpublished)]. 

13 T. I. Kucher, Zh . Eksperim. i Teor. Fiz. 32, 498 (1957) 
[English transl.: Soviet Phys.- JETP 5, 418 (1957)]. 

"]. R. Hardy, Phil. Mag. 7, 315 (1962). 
15 U. Schroder, Solid State Commun. 4, 347 (1966). 
"R. A. Cowley, W. Cochran, B. 1 . Brockhouse, and A. D. B. 

Woods, Phys. Rev. 131, 1030 (1963). 
17 B. N. Brockhouse, G. A. de Wit, E. D . Hallman, and J.M. 

Rowe, in Neutron Inelastic Scattering (International Atomic 
Energy Agency, Vienna, 1968), Vol. II, p. 259. 
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Fm. 1. Dispersion curves along 
major symmetry directions in KC! at 
115°K. The open and filled circles de­
note the measured phonons. The solid 
line shows the model-VI fit. The 
dashed lines represent the breathing­
shell-model calculation using param­
eters deduced from macroscopic data 
(model III). The dotted lines are the 
predictions of Kucher. The notation 
is explained in the text. The TI~ (Z3) 

and 1110(Z,) branches are omitted for 
clarity. 

REDUCED WAVE VECTOR COORDINATE ~ "oq/2,, 

men and selected by the analyzing crystal, are counted 
using a He3 neutron detector. 

In a one-phonon coherent scattering process, energy 
and wave vector are conserved18 : 

Eo-E' = (li2/ 2mN)(k0
2-k'2 ) = ±hv, (1) 

ko-k'=Q=2n+q, (2) 

where mN is the mass of the neutron, Q is the wave­
vector transfer, and 't is a reciprocal-lattice vector. The 
upper (lower) sign in Eq. (1) refers to phonon creation 
(annihilation). In this approximation the frequency v 
and wave vector q of the phonon obey the dispersion 
relation v=v1(q), where j is the branch index; for a 
crystal having n atoms per (primitive) unit cell, the 
dispersion relation has 3n branches. The constant-Q 
method 19 was used throughout this experiment. Fixed 
incident neutron wavelengths, 27f/ /i0, between 1.425 
and 1.335 A, were employed, corresponding to frequen­
cies between 9.75Xl012 cps (325 cm- 1

) and 11.09Xl012 

cps (370 cm- 1) , and only neutron energy-loss (i.e., 
phonon creation) processes were examined. 

The specimen, obtained from the Harshaw Chemical 
Co., was a cleaved single crystal of potassium chloride, 
2tX2tX! in. with faces parallel to {200} planes. Mea­
surements were made in the (100) and (liO) scattering 
planes. ·where possible, measurements were made so 
that the path of the beam through the crystal was not 
too long, owing to the appreciable (34 b) absorption 
cross section20 of chlorine. 

18 G. Placzek and L. Van Hove, Phys. Rev. 93, 1207 (1954). 
10 B. N. Brockhouse, in Inelastic Scattering of Neutrons in Solids 

and Liquids (International Atomic Energy Agency Vienna 1961) 
p. 113. ' ' ' 

2o Neutron Cross Sections, Brookhaven National Laboratory Report 
No. 325 compiled by D. J. Hughes and R. B. Schwartz (U. S. 
Government Printini Office, Washington, D. C., 1958), 2nd ed. 

The crystal was mounted in a metal cryostat and 
cooled from above to 115±5°K. 

III. RE SUL TS 

The measured phonons are shown in Fig. 1 and listed 
in Table I. The branches are labelled according to their 
polarization relative to q. The [On] T 1 and Tz branches 
are polarized parallel to [Oli] and [100], respectively, 
and the [0.\1] A, I11, and I12 branches have polarization 
vectors parallel to [010], [100], and [001], respectively. 
The [0.\1] branches are symmetrical about the point 
W, and, to avoid confusion, two of the IT branches have 
been omitted from the figure. The components of q are 
given in uni ts of 27r/a. 

For any wave vector q, along these symmetry direc­
tions, there are two branches of each polarization. The 
lower branch is labelled A (acoustic) and the upper 
branch is labelled 0 (optic). 

The dispersion curves in Fig. 1 are also labelled ac­
cording to the irreducible representations of the wave 
vector, using the notation of Bouckaert et al.21 

From a consideration of the inelastic structure factor 
(see Sec. V) each group has been unambiguously as­
signed to a branch of the dispersion curves. Where two 
branches of the same polarization come close to each 
other, no difficulty was encountered in branch assign­
ment, since the structure factors for A and 0 branches 
differ markedly at these points. The point (t,t,t) is not 
as well determined as some of the other symmetry 
points, since it was difficult to obtain good neutron 
groups at this point. 

The errors assigned to the measured frequencies are 
normally ±0.lr, where r is the width (full width at 

11 L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. 
50, 58 (1936). 
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TABLE I. Normal-mode frequencies of KC! measured at 115°K. 
The branch index j is shown. The frequencies are in units of 
1012 cps. 

v j v j 
l=aq/27r (Acoustic) (Optic) 

[001] T 
0.0 4.39 ±0.03 4,5 
0.2 0.69 ±0.03 1,2 
0.3 4.44.±0.05 4,5 
0.4 1.12s±0.03 1,2 
0.5 4.53 ±0.1 4,5 
0.6 1.50 ±0.03 1,2 
0.7 4.45 ±0.05 5,6 
0.8 1.72 ±0.05 1,2 
1.0 1.76 ±0.05 1,2 4.53 ±0.05 4,5 

[001] L 
0.0 6.39 ±0.1 6 
0.2 1.47 ±0.08 3 6.25 ±0.08 6 
0.4 2.83 ±0.08 3 5.55 ±0.04 6 
0.5 5.13 ±0.03 6 
0.6 3.95 ±0.06 3 4.58 ±0.05 6 
0.8 3.59 ±0.04 3 4.49 ±0.05 6 
1.0 3.23 ±0.05 3 4.70 ±0.05 6 

[Oil] T1 
0.2 1.43 ±0.02 2 
0.4 2.69 ±0.02 2 
0.6 3.10 ±0.1 2 3.73 ±0.03 3 
0.7 2.57 ±0.04 1 
0.8 2.16 ±0.03 1 4.38 ±0.06 4 

[Oll] T2 
0.2 0.89 ±0.03 1 4.41 ±0.05 5 
0.4 1.67 ±0.02s 1 
0.5 4.57 ±0.06 5 
0.6 2.47s±0.02s 1 4.56 ±0.06 6 
0.8 3.02s±0.04s 3 4.60.±0.04 6 

[011] L 
0.2 1.71 ±0.06 3 5.96 ±0.08 6 
0.35 5.56 ±0.1 6 
0.4 3.31 ±0.06 3 
0.5 4.75 ±0.06 6 
0.55 4.08 ±0.06 4 
0.7 3.46 ±0.05 3 
0.8 2.75 ±0.06 2 4.51 ±0.05 5 

[mJT
0.1 4.37 ±0.04 4,5 
0.2 1.41 ±0.05 1,2 4.23 ±0.06 4,5 
0.3 2.04 ±0.15 1,2 4.02 ±0.04 4,5 
0.4 2.64 ±0.13 1,2 3.72 ±0.04 3,4 

[mJL
0.2 2.12 ±0.04 3 S.97 ±0.04 6 
0.3 5.70 ±0.07 6 
0.4 3.91 ±0.03 5 5.25 ±0.05 6 
0.5 4.60 ±0.02 5 

[Oil] II1 

0.5 2.57 ±0.1 1,2 
0.7 2.92 ±0.1 3 

[Oil] II2 

0.1 4.65 ±0.06 6 
0.3 4.61 ±0.08 6 
0.5 4.62 ±0.06 5,6 
0.7 4.56 ±0.06 5 
0.9 4.54 ±0.06 5 

[Oll]A 
0.1 1.78 ±0.09 2 
0.2 2.27 ±0.06 2 
0.3 2.67 ±0.13 2 
0.4 3.33 ±0.07 3 
0.5 3.83 ±0.06 4 
0.6 4.13 ±0.06 4 
0.8 4.49 ±0.07 4 

half-maximum) of the measured neutron group. In a few 
cases, where poor groups were obtained, the assigned 
errors are larger. (See note added in proof.) 

IV. MODELS 

The lattice vibrations of the alkali halides have been 
represented by three closely related formulations: the 
shell model used by Woods et al., 4 extended by Cowley 
et al., 16 and originally introduced by Dick and Over­
hauser22; Hardy's deformation dipole model, 14 and 
Tolpygo and Zaslavskaya's dipole model. 12 All the 
models are in the framework of the adiabatic and har­
monic approximations. The Coulomb interactions and 
the short-range repulsive "overlap" forces are taken 
into account, and an attempt is made to account for 
the effect of the polarization of the ions on the lattice 
vibrations. The differences between the formulations 
have been discussed by Cowley et al. 16 We have fitted 
our data with the shell model, and compared the results 
with those due to Kucher13 and to Tolpygo and 
Zaslavskaya, with Schroder's breathing-shell model, 15 

and with Hardy's calculations. 
The general shell model has a very large number of 

adjustable parameters. We have used the approxima­
tions due to Cowley et al. to reduce it to 11. These ap­
proximations assume that the overlap forces act only 
through the outer shells of valence electrons and that 
they extend only out to second-nearest neighbors. With 
axially symmetric forces, the parameters for the most 
general model under these assumptions are the radial 
and tangential short-range force constants A, B, An, 
En, A22, and B22 between the K+-c1-, K+-K+, and 
Cl--Cl- nearest-neighbor ions, respectively, the ionic 
charge Ze, and the electrical and mechanical polariza­
bilities a1, a2, di, and d2 for the K+ and Cl- ions, respec­
tively. The parameter B may be eliminated, since it is 
related to En, Bi2, and Z by the stability condition 
B+2Bu+2B22= -taMZ2, where a:l\!= 1.74756 is the 
Madelung constant. Noncentral forces are taken into 
account by introducing a parameter B", so that B is 
replaced everywhere in the equations of motion by 
B+ B". The 11 independent parameters are therefore 
A, B", An, Bu, A22, B22, Z, a1, di, a2, and d2. 

A modification of the model is Schroder's breathing­
shell model, in which a new coordinate is introduced to 
express the compression (monopole) deformation of the 
shells. It is assumed that the spring constants between 
the cores and shells of the ions are the same for the com­
pression as for the dipole deformations. This avoids the 
need for any new parameters. 

We obtained the best-fitting values of the shell-model 
parameters by means of a nonlinear least-squares fit to 
the frequencies along certain symmetry directions using 
the program by Marquardt.23 The calculation was per­
formed on the CDC 6400 computer at the McMaster 
computing center. The parameters of the fits are given 
in Table II and the calculated frequencies are presented 

22 B. G. Dick and A. W Overhauser, Phys. Rev. 112, 90 (1958). 
23 D. W. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 

(1963). This program is available from Share General Program 
Library, Catalog No. SDA 3094 (unpublished). 

http:Marquardt.23
http:model.12
http:4.60.�0.04
http:1.12s�0.03
http:4.44.�0.05
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TABLE II. Shell-model parameters for KC! at 115°K. Parameters for model III were estimated from the bulk properties of KC! (Table 
IV). The parameters for all other models were obtained from the results of least-squares fitting to neutron scattering data. Parameters 
Au and Bu are zero for all these models. The short-range force constants are in units of e2/ 2v, where vis the volume of the primitive 
unit cell. 

Model 
param­

eters Units I II III IV v VI 

A 
B 
B" 
A22 
B 22 
z 

e2/2v 
e2/2v 
e2/2v 
e2/ 2v 
e2/ 2v 

e 

9.91 ±0.19 
-1.53 

0.402±0.13 
-0.14 ±0.18 

0.25 ±0.084 
0.735±0.015 

11.48 ±0.36 
-1.21 

0.158±0.075 
-0.095±0.12 

0.060±0.050 
0.895±0.029 

12.58 
0.2782 

- 0.5884 
0.7587 

-0.3169 
0.900 

12.24 ±0.80 
-1.08 

0.02 ±0.12 
0.01 ±0.14 
0.028±0.061 
0.928±0.057 

12.07 ±0.16 
-0.96 

0.910±0.014 

12.12 ±0.53 
-1.17 

0.075±0.07 
- 0.10 ±0.20 

0.058±0.047 
0.918±0.049 

"'' di 
1/v 
e 

0.01974 
0.0753 

0.034±0.014 
-0.060±0.071 

0.028±0.006 
-0.014±0.024 

0.028±0.010 
-0.025±0.045 

a2 
d2 

1/v 
e 

0.047±0.005 
0.123±0.028 

0.04888 
0.1865 

0.036±0.016 
0.087±0.086 

0.035±0.007 
0.131 ±0.022 

0.035±0.010 
0.121±0.028 

Std. 
error 
x2 

1012 cps 0.126 
9.47 

0.077 
2.36 

0.141 
4.93 

0.071 
2.29 

0.065 
1.45 

0.065 
1.35 

in Fig. 1 as the solid line for the model that best fits 
the data (model VI). 

The standard errors given in Table H were calculated 
from 

. ')? l /? 
N (Vobs' -Vmodeli ~) - ' 

S.E.= ( N-KEl 
where N is the number of observations, K is the number 
of adjustable parameters, and the v's are the phonon 
frequencies. The standard error represents an over-all 
average error in the fitted frequencies. We have also 
calculated the quantity 

1 N ( Vobsi_Vmodeli) 
2 

x2=-- L ' 
N-K•=t u; 

where u ; is the estimated experimental error for the ith 
phonon. 

Table III gives some elastic and optical quantities 
calculated from the models and compares these with 
direct experiments. Table IV contains constants used in 
the calculations. 

TABLE III. Calculated elastic co11stants, high-frequency dielec­
tric constant, and small q-value optical frequencies for the various 
models of KC!. Values for the breathing-shell model, model Ill, 
are input parameters interpolated from experimental data to 
l15°K; no has been calculated using the LST relation.• The 
elastic constants are in units of 10 11 dyn / cm2 and the frequencies 
are in uni ts of 1012 cps. 

Model I II III IV v VI Observed 

C11 3.15 4.46 4.60 3.53 4.76 4.72 4.60 
C12 0.095 0.53 0.58 0.71 0.70 0.63 0.58 
c.. 0.583 0.73 0.653 0.73 0.70 0.72 0.653 

1.0 1.73 2.l 5 2.22 2.08 2.08 2.15 
·~ 
VTO 4.39 4.42 4.36 4.41 4.43 4.41 4.36 
VLO 6.36 6.35 6.36 6.39 6.33 6.34 

• Reference 38. 

Model I is a rigid-ion model with second-neighbor 
interactions between chlorine ions. The frequencies of 
the model are in error by up to 9%, especially along the 
[Ort] direction. The elastic constants determined from 
the model are in wide disagreement with the ultrasonic 
values. 

Model II has polarizable chlorine ions. The standard 
error has been reduced considerably, and the elastic 
constants obtained are closer to the experimental values 
than those of model I. The high-frequency dielectric 
constant is still in considerable error. 

Model III is the breathing-shell model and was not 
fitted to the neutron-scattering data. Its parameters 
were estimated from the values of the bulk properties 
of KCl interpolated to 115°K, given in Table III. Dis­
persion curves for this model are plotted for comparison 
with the data as the dashed curve in Fig. l. The over-all 
agreement with experiment of the calculated dispersion 
curves is quite good. The value of VLO at small q values 
is in excellent agreement, but there are discrepancies in 
the initial slopes of the longitudinal branches and the 
agreement around point Xis not very good. The param­
eters of model III were used as the initial guess in all the 
least-squares fits. 

Model IV is a fitted breathing-shell model. The fit 
is slightly improved over model II, and the high­
frequency dielectric constant is in good agreement with 
experiment. However, the elastic constants now show 
discrepancies. 

Note that the change in going from a breathing-shell 
model fitted to macroscopic parameters to one fitted to 
neutron measurements is not large, particularly in the 
case of the short- and long-range polarizabilities. This 
implies that within the breathing-shell-model frame­
work the neutron measurements are in agreement with 
the macroscopic constants. 

Model Vis a six-parameter shell model with both ions 
polarizable and no second-neighbor repulsive forces. 
Model VI includes second-neighbor repulsive forces 
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between chlorine ions and has a parameter to allow for 
noncentral forces . The errors of these last two models 
are essentially the same. Model VI gives a slightly better 
fit than model V to VTo at small q. The mechanical 
polarizability of the K+ ion in models IV- VI, while 
negative, is smaller than the error associated with it, so 
that no significance should be attached to its sign. 

Another model with the full 11 parameters adjustable 
gave no significant improYernent in fit and is not in­
cluded in Table II. Model \"I was therefore selected as 
the best model for the purpose of reproducing the fre­
quencies and was used in all the subsequent calculations. 

Figure 1 also shows Kucher'sl:i calculated values as 
the dotted curve. The agreement with the neutron 
measurements is generally good. Similarly the calcula­
tions of Hardy are in qualitative agreement with experi­
ment, although discrepancies of the order of 103 are 
common in both cases. Some of these variations might 
be due to the use of room-temperature macroscopic con­
stants in the fitting. It can be seen, however, that even 
when parameters interpolated to 115°K (model III ) 
are used, the standard error is more than twice as large 
as for model VI, filled directly to neutron data. 

V. CALCULATIONS FROM MODEL VI 

A. Frequency Distributions 

The frequency distribution function g(v)dv is shown 
in Fig. 2. It was obtained by solving the shell-model 
dynamical matrix in the octant 0<qx<27r/ a, O<q11 

<27r/ a, and 0<q,<27r/ a at 10 000 randomly chosen 
points. The frequencies were sorted into a histogram 
containing 127 bins. Figure 3 shows the frequency 
spectrum ordered according lo the branch index j: at 
each q, the six frequencies are numbered j = 1, · · ·, 6 in 
order of increasing size. Figure 3 also shows the location 
of some of the symmetry points as given by model VI. 
For the phonons at rand X, the model differs from ex­
periment by less than 23. The whole [5rt] TA branch, 
however, is predicted high by the model and the zone­
boundary frequency could be as much as 7 cm-1 lower 
than the value predicted by the model (106.2 cm-1). 

TABLE IV. Values of constants used in the KC! calculations. 

~a=ro=3.12 A VTo=4.36Xl012 cps• 

v=2ro3 =60.8 A3 ai=l.201 J..3 b 


e2/2v= 1896 dyn /cm2 a2=2.974A3 h 

M+=39.102 amu C11=4.60X l011 dyn / cm2 • 

M_=35.457 amu C12=0.58X1011 dyn / cm20 

·~= 2.15b C44 =0.653X l011 dyn/cm 2 • 

•o= 4.57• 

• See the Appendix. 
b .1. R. T essman. A. H. Kahn. and \V. Shockley, Phys. R ev. 92. 890 

( 1953). 
' Interpolated to l 15°K from M. H. l\orwood and C. V. Briscoe. Phys. 

Rev. 112, 45 (1958). 
d Interpolated to 115°K from ~I. Born and K. Huang, Dynamical Theory 

of Crystal Lattices (Oxford University Press. Oxford, 1954). T able 17. p. 
85; and from D. H. Martin. Advan. Phys. 159, 223 {1960) . 

•Interpolated to l 15°K from M. C . R obinson a nd A. C. H. Hallett. 
Can. J . Phys. 44. 2211 ( 1966). 

o,,_o__,..to__,,,20~-----~---s.,.o~_..,,._,=--0' 
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FIG. 2. Total frequency distribution calculated from model 
VI using 10 000 randomly selected wave vectors sorted into 127 
bins. 

It can be seen that the zone-boundary symmetry 
points do not, in general, correspond to very distinct 
features in the total g(v) curve. It has been customary to 
use points X and L to explain peaks in the second-order 
Raman spectra.21 With the exception of the lowest X 
frequency there seems to be little justification for this 
procedure at present. 

T he very strong peak at 155 cm-1 arises from a saddle­
point in the sixth branch, which does not correspond to 
any of the symmetry points. This peak has been seen by 

QrC--~F----"f~-~0--~0---+___ ~ ' · 2'.O 2.0 3T' "·r- ·~ 6'i'.~'--, cps 

300C 

2000 

, 
"O 

~ 

Frc. 3. I ndividual frequency distributions for the six branches, 
for the 10 000 wave vectors of Fig. 2. The points have been omitted 
fo r clarity. The frequencies of the symmetry points r, X, and L 
are shown for each branch. 

24 E. Burstein, F. A. Johnson, and R. Loudon, Phys. Rev. 139, 
1239 (1065) . 

http:spectra.21
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o Wosastjerna K: 
2 )( 

JB '. 

970 	 COPLEY, MACPHERSON, AND TIMUSK 182 

~ .. 
230 

w
a:: 
~ 220 
<I'.
a:: 

..."' .. :..;""- ....··. 
, 
.... ···.. .·...... 

: ... 
· ··­...... . 

w 
Q_ 
::;: 
w 
f-­ 210 ..·. 
w EXPERIMENT 
~ SHELL MODEL ... 
w 
0 

200 

0 50 100 150 200 250 300 

TEMPERATURE (°K) 

FIG. 4. Debye characteristic temperature 0/) obtained from the 
heat capacity. The theoretical curve was calculated from model 
VI. The experimental points were derived from Cp measurements 
(Ref. 29), which were first corrected to give c•. 

Callender and Pershan25 in the second-order helium­
temperature Raman spectrum of KCl at 2X 155 cm- 1 

and in the :fluorescence sideband of KCl:Sm++ by 
Bron.26 The half-width of this peak in the samarium 
fluorescence is only 2.5 cm-1 and its position is 156 
cm-1.21 

The peak at 107 cm-1 is related to a near-degeneracy 
of a saddlepoint at (0.51, 0.51, O) and a maximum near 
(0.5,0.5,0.5). This singularity is of some interest since 
it occurs in all alkali-halide crystals for ~4 symmetry 
branches at this point in the zone. Measurements of 
the impurity-induced far-infrared absorption in KBr 
show that the rise in the second branch from the saddle 
point to the maximum occurs in a 0.3-cm-1 interval. 
A similar effect should be observable in KCl near 107 
cm-1• 

B. Heat Capacity, Debye Temperature, 
and Debye-Waller Factor 

Using Eqs. (14.1) and (2.3) of Blackman,28 the heat 
capacity c. and Debye temperature eD have been cal­
culated from the frequency distribution function g(v). 
The calculation is compared with the experimental 
measurements of Berg and Morrison29 in Fig. 4. At very 
low temperatures E)D is sensitive to the low-frequency 
part of g(v); the calculated values depend on the method 
of calculating g(v) and have been omitted from the 
figure. Using de Launay's30 procedure, and the elastic 
constants predicted by model VI, we obtain ElD(O) 
= 241°K. Estimating the initial slopes of the <lisper­

20 R. H. Callender and P . S. Pershan, in Proceedings of Interna­
tional Conference on Light Scattering Spectra of Solids, New York 
University, 1968 (unpublished). 

25 W. E. Bron, Phys. Rev. 140, A2005 (1965). 
21 M. Buchanan (private communication). 
2s M. Blackman, in Handbuch der Physik, edited by S. Fliigge 

(Springer-Verlag, Berlin, 1955), Vol. VU, Pt. 1. 
29 W. T. Berg and J . A. Morrison, Proc. Roy. Soc. (London) 

A242, 467 (1967) . 
• 0 ]. de Launay, ]. Chem. Phys. 30, 91 (1959). 

sion curves (and hence the elastic constants) gives 
ElD=238°K. 

In the low-temperature region, the calculated curve 
lies a few degrees below the experimental points. Better 
agreement would be expected if a frequency distribution 
appropriate to the temperature T were used to obtain 
eD(T). At high temperatures, the experimental values 
fall off rapidly. This is interpreted as an anharmonic 
effect, since the harmonic approximation predicts that 
E)D becomes Constant at high temperatures. 

For a cubic crystal, the Debye-Waller factor vV; is 
related to the total mean-square displacement (u1

2) of 
ion i by 

where31 

2h ICij(q) 1
(u;2) L: [ni(q)+!J.

47r2NM1 q; v;(q) 

Here e;/q) is the eigenvector of the ith ion in the (q,j) 
normal mode and n;(q) = (eh•; (q J I ksT -1)-1. 

The quantity B;= f87r2(u;2) has been calculated using 
individual frequency distribution functions 1 for the two 
ions, and is shown in Fig. 5. 

The experimental measurements32 
•
33 of B 1 are in poor 

agreement with the calculation. The experimental diffi­
culties have been pointed out by Buyers and Smith,34 

and in view of this the disagreement is not surprising. 
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FrG. 5. Debye-Waller parameter B and the total mean-square 
displacement (u2} for the K+ and c1- ions. The curves were cal­
culated from model VI. The points are the measurements of 
Wasastjerna (Ref. 33) and of James and Brindley (JB, Ref. 32). 

31 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory 
of Lattice Dynamic~ in the Harmonic Approximation (Academic 
Press Inc., New York, 1963) . 

32 R . W. James and G. W. Brindley, Proc. Roy. Soc. (London) 
A121, 162 (1928). 

33 ]. A. Wasastjerna, Soc. Sci. Fennica Commentationes Phy. 
Math., 13, 1 (1946); quoted in International Tables for X-Ray 
Crystallography, edited by K. Lonsdale (Kynoch Press, Birming­
ham, England, 1962), Vol. III, p. 240. 

34 W. J. L. Buyers and T. Smith, J. Phys. Chem. Solids 25, 483 
(1964). 
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C. Inelastic Structure Factor 

The intensity of a (one-phonon) neutron group (q,j) 
observed in a constant-Q scan is35 •36 

k')li[n1(q) +!±fl 
l=N ( - IFJ 2, 

ko 41r1,1(q) 

where N is the number of primitive cells in the crystal, 
and the upper (lower) sign refers to phonon creation 
(annihilation). The structure factor IF J2 is given by 

IFl 2= IL b;ei2'rr ·r;Q. e;1(q)M,-1 12e-W;(Q) 12' 

where b;, ri, M ;, and W; are the coherent scattering 
length, position vector, mass, and Debye-Waller factor, 
respectively, for the ith atom or ion. For wave vectors 
along a symmetry direction in KC!, this reduces to 

IFl 2 = (Q ·VY Ib1M 1- 112e-Wi<Olb1(q) 
±b~2-l/2e-W2(Q) ~2j(q) 12' 

where Vis a unit vector in the direction of the polariza­
tion vector of ion 1, and Vh= e; : The upper (lower) 
sign is used when the reciprocal-lattice vector -t involved 
[see Eq. (2)] has even (odd) indices; subscripts 1 and 
2 refer to the K+ and c1- ions, respectively. 

The Debye-Waller factors W;, for Q = (0,0,6)X27r/ a 
and T= 100°K, are Wi=0.211, W2=0.216, and e-W1/ 

e-W2 = 1.005. We may therefore neglect the difference in 
the Debye-Waller factors and write 

IFl2= (Q· J/)2e2Wav(Q) I J I 2, 

36 I. Waller and P. 0 . Froman, Arkiv Fysik 4, 183 (1952). 
ae B. N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747 

(1958). 

where the "reduced inelastic structure factor" 

IJI 2= Ib1M1-112 h 1(q)± b2M 2-112h;(q) I 2. 

Using the values20 b1=0.345 and b2= 0.98, and eigen­
vectors calculated from model VI, IJI 2 has been calcu­
lated for the major symmetry directions and is shown in 
Fig. 6. The curves show important differences from the 
analogous curves for N'al 4 and LiF, 1principally because 
of the similarity of the ionic masses and because of the 
large ratio of the scattering lengths. 

Comparison with the dispersion curves (Fig. 1) indi­
cates that rapid changes in I J I 2 occur whenever the 
separation of the acoustic and optic branches of the same 
polarization has a minimum value. At such points the 
two acoustic curves (for even and odd 't) intersect, 
indicating that one of the ions is stationary. Similarly 
the two optic curves cross, and for this mode the other 
ion is stationary. For phonons (q,j) at (0,0,0.68) LA, 
(0,0.5,1) AO, (0,0.6,0.6) LO, (0.5,0.5,0.5) LA and TO, 
and (0,0.51,0.51) T10, only the c1- ions are moving 
and I JI 2= bd/ M c1""'0.027 b/ amu. At (0,0,0.68) LO, 
(0,0.5, 1) AA, etc., the Cl- ions are stationary and 
IJl 2 =h2/MK~0.003. For all values of -t the former 
modes are about nine times as intense as the latter 
modes and only the former modes can be observed. This 
effect is fortunately limited to very small regions in q, 
particularly in the longitudinal cases. 

VI. CONCLUSION 

We have presented measurements of phonon fre­
quencies along the major symmetry directions in KC! at 
115°K. Neutron groups of well-defined frequency and 
polarization were observed at all q values except near 
(!,!,!)X211'/a. The frequencies found agreed quite well 

http:0,0,0.68
http:0,0.51,0.51
http:0,0,0.68
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with a shell-model calculation based on macroscopic 
parameters; if the parameters are allowed to vary to 
give a best fit to the neutron measurements the agree­
ment is further improved. The polarizabili ties that are 
obtained in this way do not take on unphysically large 
negative values as was observed in KBr. 

In the case of KCl at least, it seems that the shell 
model, in its various forms, offers a good description of 
the dynamical behavior of the lattice. KCl seems to 
behave very much like an ideal ionic crystal; even the 
rigid-ion model gives a fit that has only twice the stand­
ard error of the best shell model. 

Using the best least-squares-fit shell model we have 
calculated some properties of KC!. The frequency dis­
tribution g(v) shows the characteristic sharp peaks as­
sociated with saddle points in the frequency spectrum, 
the strongest of which can also be found in the Raman 
spectrum of KC!. Up to about 70°K the Debye tempera­
ture calculated from g(v) is in good agreement with data 
from specific heats. 

One of the main motivations for undertaking this 
work has been to provide good phonon frequencies for 
use in interpreting other experiments, in particular 
those optical effects where phonons play an important 
role. 

Note added in proof. Recently G. Raunio and L. 
Almqvist have measured dispersion curves in KCl at 
80 and 300°K, by neutron inelastic scattering. Their 
results are generally in good agreement with our own. 
Their measurements of the [tnJ TA branch, however, 
lie as much as 73 higher. Since the higher frequencies 
are in better agreement with our model VI (see Sec. 
IV), and since these workers took extra care to investi­
gate the dispersion surfaces in the vicinity of this 
branch, we believe their results for this branch are 
more reliable than our own. 
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APPENDIX : TO FREQUENCY AT q -'> 0 

At the time of these measurements we were unable to 
find in the literature a recent measurement of the trans­
verse (q ---'> 0) optical frequency. We made a determina­
tion of VTo(q---'> O) ourselves with a far-infrared spec­
trometer on evaporated thin films of KC!. Such measure­
ments are very difficult to interpret because of the im­
portance of surface effects resulting from the very small 
penetration of the light. The observed peaks are gen­
erally very much broader than one would expect37 for 
optical phonons. We also found an effect due to the 
differential expansion of the substrate which we at­
tempted to correct for by extrapolating from quartz 
and lithium-fluoride substrates to a hypothetical KC\ 
substrate. Our results are summarized in Table V, and 

TABLE V. Lyddane-Sachs-Teller relation• and comparison 
with infrared absorption (reststrahlen) frequency. 

vw(q--> 0) v-ro(q---> 0) v-ro(q--> 0) 
T 

(°K) 
Neutrons 
(10" cps) 

Neutrons 
(1012 cps) 

Infrared 
(1012 cps) (•o/•~) 112 

(vr,o/v-ro)q~o 
Neutrons 

4.2 
115 
300 

6.39±0.l 
4.50±0.03 

4.39±0.03 4.36±0.07 
4.19±0.05 4.19±0.07 

1.46 J.46 

a Reference 38. 

it can be seen that they agree with the neutron measure­
ments. Table\' also gives a comparison of our measured 
frequencies at q ---'> 0 with the prediction by Lyddane, 
Sachs, and Teller38 (the LST relcltion). It will be seen 
that this relation, wLO= (£o/ £_,,) 1i 2wTo, holds for KCl. 
This is in agreement with results for the other alkali 
halides. 

'' E . R. Cowley and R. A. Cowley, Proc. Roy. Soc . (London) 
A287, 259 (1965) . 

38 R . H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59, 
73 (1941). 




