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CHAPTER I

CRYSTAL DYNAMICS AND NEUTRON SCATTERING

A, INTRODUCTION

Crystals have been known to man for thousands of years.
The word crystal, which originally referred to quartz alone,
was later applied to materials which exhibited marked regulari-
ties in their external appearance. Such regularities are now
known to result because the atoms which compose such solids are
arranged in an ordered fashion throughout the crystal.

Many solids, including metals, minerals and salts, are
polycrystalline. They consist of many very small crystals,
known as crystallites, arranged in different orientations and
separated by wvarious types of imperfection. In recent times
methods have been developed for growing large single crystals
of many of these materials, in which the ordered arrangement
of atoms exists throughout the specimen. This has stimulated
a large amount of experimental research into the properties
of these materials.

The arrangement of the atoms in a crystal is most
commonly determined by xX-ray diffraction techniques. The first
materials to be studied were the alkali halides KCl, NaCl, KBr,
and KI, whose structures were reported by W. L. Bragg (1913).

More recently both neutron and electron diffraction techniques

i



have been utilized to probe the atomic structure of matter.

At all temperatures the atoms in a material are moving.
In a simple solid they execute small oscillatory motions
about their equilibrium positions: the study of atomic motions
is known as crystal dynamics, or lattice dynamics. The kinetic
energy of an atom increases with increasing temperature, and
the heat capacity of a material may be defined as the energy
required to raise its temperature by one degree. Dulong and Petit
(1819) observed that the product of the heat capacity per unit
weight, and the atomic weight, was roughly a constant, inde-
pendent of the material. This result was explained by Richarz
(1893) by analogy with the kinetic theory of gases.

By the turn of the century there was considerable evi-
dence that the Dulong and Petit law was incorrect at low tempera-
tures. Einstein (1907) proposed that a solid containing N atoms
be represented by a set of 3N independent oscillators of identical
frequency v. Using Boltzmann's statistics he obtained the

result
exp (hv/kT)

c. = 3Nk, (B

(I-a1)
(4
v B kBT

[exp(hv/kBT)-l]2

where CV is the heat capacity (at constant volume), kB and h

are Boltzmann's and Planck's constants, and T is the temperature,.
Debye (1912) generalized Einstein's theory by assuming

a distribution of frequencies for the atomic oscillators. Re-

garding a solid as a continuum, he obtained the result



)

3 x4exdx

— (I-A2)
[ex-l]2

T

C. = 9Nk, (/)
v B eD
(@]

where x = hv/kBT and x_ = th/kBT = eD/T. In this expression

D
Vp is the maximum frequency in the material, and eD is known
as the Debye temperature. The Debye theory predicts that

CV « T3 at very low temperatures. This is in agreement with
experiment, since only long wavelength vibrations are excited
at such temperatures, and the discrete nature of the material
may therefore be disregarded. The Einstein model is incorrect
at low temperatures. At high temperatures both the Einstein

and the Debye theory predict the Dulong and Petit value which

is simply 3NkB.

Born (1965) has described how he and von K&rmé&n (1912)
came to develop an atomic theory of lattice vibrations. Their
paper appeared only "a few weeks" after that of Debye. It is
now known that this theory is superior to the Debye theory,
but for many years the Born-von Kidrmé&n theory lay dormant
because there was no direct information about the individual
vibrational frequencies in a solid.

Born and von K4rmé&n postulated a system of atoms which
move as though connected by Hookeian springs. The motions
of the individual atoms are complicated in this picture, but
the system may be regarded instead as a collection of inde-
pendent oscillators having frequencies given by the dispersion

relation,



v = v(gj) = wlgj)/2m (I-A3)

where g is the wave vector of the mode, and j is a "branch
index". The energy levels of a harmonic oscillator of fre-
guency v are separated by an amount hv: this gquantum of energy
is generally called a "phonon" by analogy with the word photon*,

The first experimental determination of phonon frequen-
cies was that of Olmer (1948), who measured the intensity of
diffuse scattering of x-rays by a crystal of aluminium. Several
other metals were examined in the fifties, and these measure-
ments collectively served to demonstrate that the Born-von K&rm&n
model is basically correct. The x-ray technique has now been
very largely superseded by the method of slow neutron inelastic
scattering. |

Since the mass of a neutron is comparable with atomic
masses, it is not unreasonable that thermal neutrons have ener-
glies comparable with phonon energies in a crystal (¥ 0.025 ev).
In addition the de Broglie wavelength of a thermal neutron
(% 1.8 A) is comparable with interatomic distances. For
this reason both the energy and the wave vector of a thermal
neutron are changed substantially when it is scattered by a
phonon, and in consequence these changes may be measured fairly

easily to within a few per cent. Such is not the case with

*

The term "phonon" is attributed to Tamm, by Maradudin and
Fein (1962), who give a reference to Seitz (1952). Ziman
(1960) quotes Frenkel (1932) as the originator of the word.



electromagnetic radiation. X-rays have wavelengths of the

right order, but their energies are =~ lO4 ev. The energy change
on scattering by a phonon is too small to be measured: instead
the phonon energy is deduced from the intensity of the diffuse
scattering, a complicated and somewhat indirect procedure.

On the other hand, infrared photons have energies comparable
with phonon energies, but because of their long wavelength

~ 105 g), they can only interact with single phonons if they
have very small wave vector.

Measurements of phonon frequencies in aluminium by the
neutron scattering method were first made by Brockhouse and
Stewart (1955) and by Carter et al. (1957). Since that time
the field has expanded rapidly. Several types of spectrometer
have been developed, and methods of automatic operation are
steadily being improved and diversified. A wide variety of
systems has been examined and the spectra of excitations other
than phonons are now measured. In the last few years considerable
attention has been paid to improving the accuracy of the
measurements through a better understanding of the various
factors, such as instrumental resolution and the choice of
instrumental parameters, which determine the possible errors
in the measurements. General References 1-4, and 7 give some
idea of the past and present scope of the field.

Substantial advances have also been made in the theory

of crystal dynamics. Ludwig (1967) describes developments in



the theories of molecular crystals, anharmonicity and thermo-
dynamics, and the interaction between phonons and various
types of radiation. Clearly both the theorists and the experi-
mentalists in this field are very active at the present time.

B. OUTLINE OF THE THESIS

The remainder of this chapter contains a description of
the theory of lattice dynamics in the harmonic approximation, and
a review of the theory and practice of slow neutron scattering.
None of this work is original; it is included in order to pro-
vide a useful background for the discussion which follows.

Measurements of normal mode frequencies in rubidium are
described in Chapter II. The results are analysed in several
ways, and phonon frequency distributions are presented.

Chapter III contains a brief account of the anharmonic
theory of vibrations in crystals and their effect on the neutron
scattering cross section. Calculations of the effects of anhar-
monicity on individual vibrational modes, and on the heat capacity
in rubidium, are described and discussed.

A measurement of the lattice spacing in rubidium metal,
and the characterization of the single crystal used in the phonon
measurements, are described in Appendix I. Appendices II and III
contain discussions of "spurious" scattering processes, and of
the effects of instrumental resolution. Some of the algebra in-
volved in simplifying various anharmonic expressions is described
in Appendices IV and V, and the last two appendices (VI and VII)
supplement the reprints at the end of the thesis, which describe
a measurement of the scattering amplitude of rubidium, and work

on the crystal dynamics of potassium chloride.



C. LATTICE DYNAMICS IN THE HARMONIC APPROXIMATION

(i) The Potential Energy

The dynamical behaviour of a crystalline solid is
determined by the form and relative strength of the interac-
tions between its constituent atoms. Solids are generally
classified according to their properties into such categories
as metals, inert-gas solids and ionic crystals. The various
microscopic theories of lattice dynamics may be classifed
in a similar way. These theories differ with respect to their
assumptions about the predominant forces in the material, but
they are all based on a very general formulation of the poten-
tial energy due to Born and von Kirmén (1912). This formulation
is based on two assumptions.

In the adiabatic approximation it is assumed that the
electrons in the solid instantaneously take up a configuration
appropriate to that of the displaced nuclei, and that their
energy may therefore be effectively included in the potential
energy of the nuclei. The degree of validity of this approxi-
mation has been discussed by several authors. Peierls (1955) (p.6)
states that 1in metals the approximation is not justified,
but this view is not generally held. Born and Huang (1954)
discuss the approximation, and conclude that it is valid for
"all importaﬁt crystal properties".

Secondly we make the realistic assumption that the nuclear



displacements are small compared with interatomic distances.
We therefore write the potential energy of the system, ©(R)
where R denotes the nuclear positions, as a Taylor's series

in the displacements:

= ;___ [ '
¢(R) = ¢(R) o + Ea ¢a(2)ua(2) + 51 Zza ¢a8(22 )ua(l)us(i )
L'8
l [} n ' "
+ 3T Qza ¢QBY(£2 L )uu(z)us(k )uy(l )
2'B
/Q/"‘Y
1
— tongmna ' AL L]
+ T ) a§£"Y ¢@BYU(2£ A" )ua(z)uB(Q )uy( )ug(l )
»Q,'B,,Q,"'O’

+ e (I-Cl)

Here ua(z) is the o component of the displacement of atom &,

and
(5) = 2B
¢a aua(z)

o]

320 (R) |

bop (2E") = aua(z)aue(z')io

330 (R)
- aua(z)aus(l‘)auYTQ")

Sugy (422"

o}

349 (R)

(22'2"8"") = auaTﬂ aus (Z')Buy(ﬂ") 3110(52«—;' v_l)

¢u8yc (I-c2)

o

The subscript o indicates that the expressions are evaluated

with the nuclei in their equilibrium positions.



In most theories of lattice dynamics a further approxi-
mation, the harmonic approximation, is made: terms in Eqg.
(I-Cl) containing three or more displacements are neglected.

In this way the equations of motion decouple, and the atomic
motions may be represented as a system of independent simple
harmonic oscillators. The harmonic approximation is an ex-
cellent starting point for treating many properties of the
crystal lattice.

In the remainder of this section and in Chapter II we
shall stay within this approximation. The consequences of
retaining higher order terms in the potential energy will be
discussed in Chapter III. The general Born-von K&rmé&n
theory, which is presented in the following pages, is not res-
tricted to systems with two body forces. In particular we
note that "atomic force constants" (introduced in the following
subsection) which are often extracted from the measured
dispersion curves of metals, include the effect of many-body
forces. On the other hand the majority of theoretical treat-
ments of lattice vibrations assume a two-body potential, but
again parameters of these models which are fitted to experiment
will incorporate the effects of many-body forces if they

are present.

(ii) Equations of Motion, and the Dynamical Matrix

To simplify the discussion we shall consider a per-

fect crystal with no defects or impurities, and we shall neglect
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surface effects. These topics have been discussed by Elliott
(1966) and by Wallis and Gazis (1965) respectively. The fol-
lowing treatment is further specialized to the case of one
atom per primitive unit celil.

The Hamiltonian ifor the crystal, H, contains a kinetic

energy term,

where m is the mass of an atom, and the dot denotes differen-
tiation with respect to time. The potential energy is written

(in the harmonic approximation) as

— iy _']_'_ ' LI T -
¢(R) = %(R) + z ¢a(2)ua(ﬁl) +5 I %8(“ )uu(Q)uB(z ) (I-C3)
o] Lo L o
L8
Using Hamilton's equation,
. 5p, (L) ma®u_(2)
N ‘)—‘. = - 3 -— ’
duaix 7t 8t2
we obtain
— 13 - A ! R - ¥ t
mua(i) IS T Q§B ¢a8(2£ )uB(Q )

We immediately note that -3 () 1s a component of the force
on atom 2 in the equiiibrium configuration, which therefore

vanishes. The eguation ¢f motion is then

mﬁa(i) = - L ¢a8(£2')u (L"), (I-C4)

A

§

The "atomic force constant” (AFC), ¢ ,(22'), is the negative
o El
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of the o component of the force on atom %, when atom &' is
displaced unit distance in the B direction. It only depends
on the relative positions of atoms % and f'. Furthermore
the number of independent AFC's for a particular shell of
neighbours is very considerably reduced by symmetry. For
example there are only 3 independent nearest neighbour AFC's
in the face centred cubic (f.c.c.) lattice. (See also
Brockhouse et al. 1968b).

If the AFC's for a particular shell of neighbours are
derivable from a potential V(r) which depends only on scalar
r, then they may be expressed in terms of radial and tangen-

tial force constants as follows:

_¢a8(22') = "¢ ar + r2

%08 av , Yo¥p @’v _ 1 av (1-C5)

r=|r(8)-r(&")|

Under these "axially symmetric" conditions, there are only
two independent AFC's per shell of neighbours.

If the constant term ¢ (R) o in Eq. (I-C3),is taken
to be independent of volume, then an extra (equilibrium) con-
dition exists linking the AFC's. For the b.c.c. case this

condition is (Brockhouse et al. 1968b):

(1XX) = (1XY)+(2YY)+4 (322)+11 (4YY)-11(4YZ)+4 (5XX) -4 (5XY)+ ... = 0

Here the number inside the brackets denotes the shell of
neighbours and the letters denote the element of the 3x3

force constant matrix for this shell. In metals the constant
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term is sometimes taken to be volume dependent, in which case
the equilibrium condition, as stated above, no longer holds.
Following Brockhouse et al. (1968b) we shall take "central
forces" to mean axially symmetric forces which satisfy the
egquilibrium condition.

We write a trial solution to Eq. (I-C4) as

u, (2) = C(gjle, (girexplilg -z (W) -wlgi)tl}. (I-C6)

This solution satisfies the Bloch condition, and represents

a periodic vibration of frequency w. For a particular wave-
vector g there are 3 modes of vibration, labelled j = 1,2,3:
ea(gj) is a component of a unit eigenvector, or polarization
vector, and C(gj) is an amplitude factor. The general solution
is obtained by summing Eg. (I-C6) over g and j. Substituting

Eq. (I-C6) into Eqg. (I-C4), we obtain a set of 3 equations

mwz(gj)ea(gj) = Dae(g)es(gj) (IC-7)

z
<]
where

D.g (@ oqp (28" Vexplige (2 () -x (") 1} (IC-8)

z
g
is an element of the dynamical matrix D, which is seen to
be independent of £, since terms in the summand only depend
on relative displacements.

An infinitesimal uniform translation of the crystal

in the x-direction may be represented by u (&) = 6ux for all

o
£. Since no internal forces act, ﬁa(z) = 0., Substituting
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into Eq. (I-C4), we obtain the important result:

Z' ¢a8(22') = 0, or
L
’ = - T ¥ I"‘
dyg (£2) B 0gg(22") (1C-9)
where the prime indicates exclusion of the term 2 = 2'. We
may therefore write
= T 1 iore ' - -
Dy (@) i' dqp (22 ) [exp{igesx(2'2)}-1] (IC-10)

where r(2'2) = r(&') - £(®).

Multiplying both sides of Eg. (IC-7) by ed(gj), sum-
ming over o, and using the fact that e(qj) is a unit vector,

we have
e (g3) = ZB e, (43)D, g (Q)eq (g3) (I-C11)
0}

Thus solutions to Eq. (I-C4) are obtained by diagonalizing
the dynamical matrix.

It remains to determine the allowed values of . The
"cyclic boundary condition" (see Born and Huang (1954), p.45)
is normally employed. We simply state the result.

For a crystal with N primitive cells there are N
states uniformly distributed within the first Brillouin zone
of the reciprocal lattice. The reciprocal lattice is defined
by the set of vectors b such that eii.é = 1, where a is a

vector of the direct lattice. The first Brillouin zone is
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usually defined such that every point within the zone is closer
to the origin than to any other reciprocal lattice point.
In the case of a crystal with n atoms per primitive
unit cell, a particular atom is labelled (%k), where % desig-
nates the cell, and k the atom within the cell. The equations

of motion become

mkﬁu(lk) = = g'i's ¢a8(zkﬁﬂd)u6(2'k')

in an obvious extension of the notation, and we now obtain

2 . . ' )
my W (gj) = 58 ea(gjk)DaB(gkk )ee(gjk ) (I-C12)
kk'
with
Das(gkk') = ! ¢a8(£k2'k')[exp{ig'g(l'k',zk)}~l]. (I1-C13)

L'k!
The branch index j takes on 3n values.

If the interatomic potential ¢ (r) is only a function
of |r|, the dynamical matrix may be expressed in terms of its
Fourier transform, ¢ (Q).

Assuming two-body interactions only, we note that ¢(R),
the total potential energy, may be written as a sum of indivi-
dual terms ¢ (|r(2a')|) = ¢(28'):-

S(R) = 5 RRICE
»Q/'

Thus
TR ) PR v




15

and ,
3¢ (R) 3% (82")
28y = = S :
¢a8( : Bua(ﬁ)aus(z')‘o Sua(mauB(2 Mo
Defining
plr) = —Lo J $(Qe™2°E a3 , (I-C14)
(27)°N

where N/Q is the number of cells per unit volume, we obtain

3% (2e')  _ @

= 1 Q. Q.0(Q)e
aua(l)auéTlT) (2“)3N o8

iger (22') 43,

Therefore, using Egq. (I-Cl0),

Dyplq) = 2! ¢ 5(22") [exp{-ig.x (22")}-1]

,Q,'
{2 .
= ——— 1Q,0,0(Q) I' [exp{i(Q-g) r(er')}-
(2m)°n | @ F 2" ==
. 3
exp{iQer(28')}1d7Q
Now
. 3
pv et2TEy o (2“5 A (I-C15)
3
where A(g) = 1l if g is a reciprocal lattice vector G. (I-C16)
0 otherwise.
Therefore
Dygla) = é[(g&g)a(gfg)8¢(\§fgl) ~G,Gg¢ (G)] (I-C17)
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The displacements ua(Z) may be written in terms of
phonon creation and destruction operators, a*(-gj) and a(gj),

in the following way. A general expression for uu(z) is

u,(2) = I Clgile (gilexplilg-r(2) - w(gjltll}. (I-C18)
g3

The total vibrational energy of the system is simply

E =20 =mz3g <u (L)%
[o ]
L0

=mzZI I

, 2 2 . 2 .
%o g3 <|c(gi) | >e " (giw(q])

= Nm Z' <lc(gj)|2>w2(gj). (I-C19)
g7
We may also write (Eq. III-AlQ ):

E=32 I[n(gj) + %&hm(gj).
g3

where
n(gqj)= {exp@w(g3) /kym)-1}"1 (I-C20)
and therefore
1 sy 120 2, .
In(gy) + Fiw(gi) = Nm<|C(gi) | >w(g])
Defining phonon operators
A(gj) = algj) + a*(-gj) (I-C21)

we obtain

<|a(gd) %> = 2n(gd) + 1 (1-c22)



17

and

<IC(gj)]2> = 5ﬁﬁj§§?7 <]A(gj)]2> (1-C23)

and finally

u, (4) = () L (Y A(@)e, (@i explilg r(D-ulgield. (1-C24)

(iii) Metals
In this section we apply the above results to the
situation in metals. We consider three contributions to the

interionic potential V(r) : (a) the repulsive Coulomb interac-

(c) 2 2

tion between bare ions, V (r) = 2%e”/r, where Z is the ionic

charge, (b) the repulsive overlap potential, which is normally

(R) ~or

(r) = Ae , and

(E)

taken to be of the Born-Mayer type, V
(¢) the indirect (attractive) interaction, V (r), via the
conduction electrons, including the electron-electron interac-
tion. Ziman (1964) has shown that V(r) may be regarded as
the effective potential between neutral "pseudoatoms" in a
metal. We may take this as further justification for using
the adiabatic approximation in the case of metals.

A number of calculations of the phonon dispersion relation
in metals have been based on the "pseudopotential" methcod.
On the other hand measured dispersion curves are commonly

analysed to obtain empirical atomic force constants. We

shall now consider these topics.
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(a) The Pseudopotential Method

Only a brief outline of this important subject will
be given., A useful account has been given by Harrison (1966).

The one-electron Schrddinger equation is written

(#2/2m) vy + V(r)y = Ey (1-C25)

where V(r) is the potential seen by an electron. The wave-

function Yy is written as a sum of orthogonalized plane waves:

v = I a_(1-P) |k+g> = (1-P)¢,
g 1 -

where P is a projection operator. Egquation (I-C25) then becomes
[(-62/2m) V2 + W1¢ = E¢

where ¢ is the "pseudowavefunction" and W is the pseudopoten-
tial.

The effect of this rearrangement is to produce an
equation which contains a relatively small potential W. Using
second order perturbation theory, we obtain the energy of

the state ¢k as:
22 | <k+q|wlk> |2

E (k) ='HZI]; + <k|W|k> + T' — > > (I-C26)
@e/2m) (k- |k+q|“)
We assume a local pseudopotential, and write
W(r) = & w(|£—£j|) (1-C27)
J

so that
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<k+q|Wlk> = s(q)w(g) (I-C28)

where the structure factor

S{gq) = % z exp{—ig.Ej} (I-C29)
]
and the form factor

w(g) = % exp{—ig-g}w(r)d3r (I-C30)

where Q is the volume of the solid and N is the number of ions.

The total electron energy per ion is then

= 1 =
E,gy =5 L E(K) =Eg + E
k<kp

where the free electron contribution, Efe' is
£°x2
+ W)

3
Z(§ 2m o

and the band structure contribution, E is written

bs’
Eps = ;' S* (q)s(g)F (q) (I-C31)

Here the "energy-wave number characteristic", F(qg), is

12 2m a>k

2 (k2| Keg|) 2

Flg) = —2% lw(q)

3 (I-C32)
(2m)°N

k<kF

The summation over k<kF has been replaced by an integral.

This yields the result

Flg) = 22— lwig)|? [e(q)-1] (1-C33)
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where the Hartree dielectric function

2
1-n
T in s

1+n

me
1 oy

elg) = + —— (1 +
2ﬂkfh2n2

1, (I-C34)

and n = q/ZkF.
The effect of screening is included in the following

way. The pseudopotential is written as the sum of two terms:

wl(r) = wo(r) + wl(r)

i.e.,

wo(q) + wl(q) (I-C35)

w(q)

Here w0 is the potential due to Coulomb interaction with the
ions, while w' is the potential due to Coulomb interaction
with the electrons: w' is related through Poisson's equation
to the fluctuation in electron charge density,which is in turn
obtained from the first order wave functions. The same inte-
gral, which appears in Eg. (I-C32), enters this calculation,

and we obtain

wig) = w°(q)/e(q)

and finally

2
F(q) = :_E;_ wo( ) 2 1 - 1 ] (I-C36)
d 8mTe“N ‘ b elg) "’

The dynamical matrix is written as the sum of three
terms, corresponding to the three contributions to the inter-

ionic potential:

(I-C37)

o
i
o
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The Coulomb term may be treated by Ewald's method, as described
by Kellermann (1940). The repulsive term is generally small
and is often neglected. The electronic term is related to

the electronic energy per ion, Eel' by
2
(E) B

Dug (@) = N i: (Buaiziaug(z')

) [exp{ig.r(2'8) }-1] (I1-C38)

The positions of the ions are only contained in Ey o and we

therefore have
2

* Pep = ' F(x) ( 82fs*(K)S(f)J
Bu, (R)dug (')« su_ (2)5ug (X7]

1 . .
= Ej i' KQKBF(K){expflﬁfgg,£]+expﬁiﬁcr2,2]}
and therefore
D (E)( ) = 1 ' k x F(x) Z'{expli(g+k)er +
oB d N “a“g X PLIATR) Loy

exp(i(g-k).r  ,l-explic.x,, I-expl-ixer ., 1},

or
(E) — 1 i i
Dyg () = 2 é {(§+g)a(§fg)BF(1§#g£)
- G,GgF(G)} (I-C39)
This expression is analogous to equation (I-Cl7). We

shall discuss the application of this method to the alkali metals

in Chapter II.
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(b) Analysis of Dispersion Curves of Metals

The interatomic forces in a metal are expected to de-
Crease with increasing interatomic separation. As an approxi-
mation, we may assume that these forces extend out to i'th
nearest neighbours only. A linear least squares fit to the
measured dispersion curves along the symmetry directions then
yvields a set of AFC's ¢a8(22'), and the usefulness of the
approximation is largely determined by the agreement between
the measured frequencies and those calculated using the set
of AFC's. In practice the dispersion curves of many metals,
with the notable exception of lead (Brockhouse et al. 1%962),
are adequately described using AFC's out to fewer than 10
neighbours. Furthermore these AFC's may be used to calcu-
late frequencies at a mesh of points in reciprocal space,
and hence g(v), the phonon frequency distribution or density
of states. Knowing g(v), thermodynamic properties of the
material may be calculated. Corrections for departures from
harmonicity may sometimes be estimated.

A detailed account of this method of analysis has
been given by Svensson et al. (1967) with particular reference
to copper. An analysis of the dispersion curves of rubidium
is given in Chapter II.

(iv) Ionic Crystals

The simplest picture of the interionic forces in ionic

crystals is the rigid ion model of Born (see Born and Huang
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1954), The ions are regarded as rigid units, and the inter-
ionic potential contains a long range Coulomb term and a
short range repulsive contribution of the Born-Mayer type.
The equations of motion are then written:
2

(

WU = DU = U (T-C40)

3

R+ 2

@]
leq

where U contains the ionic displacements, m and Z are diagonal
matrices containing the ionic masses and charges respectively,
D is the dynamical matrix, R is the repulsive contribution,

and C is a matrix of "Coulomb coefficients",

2 -1 .
C . (gkk') = - 5 [——8) ) (e™2'L -1)]
of 2'k'  du (2k)du, (2'k")
o g8
with r = r(2'k',2k). These coefficients may be calculated by

Ewald's method.

An extension of this model, which is generally necessary
in order to obtain reasonable agreement with experiment, is
the shell model which has been described by Cowley et al. (1963).
We consider now displacements of an ion core relative to the
outer shell of electrons in the ion. The equations of motion

become:

where W contains the shell displacements, Y is a diagonal
matrix containing the shell charges, and T and § represent

the core-shell and shell-shell repulsive interactions. These
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equations may be solved for W yielding

-1

2 )7L

w?u = [(rezg

-3¢

+¥Cz)1U  (I-C41)

ns
lie

) - (Z+ZC

<

) (8+XC

1[4

This expression simplifies when g lies along a symmetry direc-
tion.

Calculations based on the shell model invariably involve
further approximations. The matrices R, S and T are commonly
chosen to differ only by a scaling factor. For example Cowley
et al. (1963) chose R =T = 8/vg where y is a constant.

Various other approximations and their validity are discussed
in this paper. The short-range repulsive forces are often
taken to be axially symmetric forces between first or first
and second neighbours only, and sometimes further conditions
are imposed. The matrices Y, S and T are normally expressed
in terms of mechanical and electrical polarizabilities (Cowley
et al. 1963).

The application of the shell model to the case of
potassium chloride is described in a reprint at the end of
this thesis (Copley et al. 1969).

This concludes our discussion of lattice dynamics in the
harmonic approximation. In the remainder of this chapter, we
shall consider the theory and practice of neutron scattering,

with particular reference to the study of lattice vibrations.
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D. NEUTRON SCATTERING THEORY

(1) The Born Approximation and Fermi Pseudopotential

We have already noted (Section IA) that there are
many similarities between X-ray scattering and neutron scat-
tering. The starting points for the two theories are however
quite different, since there are fundamental differences
in the form of interaction between the radiation and the
scatterer.

X-rays are scattered by electrons. The scattered
amplitude in the forward direction from a single atom or ion
is proportional to the number of electrons, Z. The amplitude
decreases away from the forward direction. This behaviour is
described by the form factor fi(sin 8/)), where i indicates
that f depends on the atom or ion, 6 is the Bragg angle, and
A is the wavelength. The form factor is not exactly known:
it is generally calculated by a Hartree-Fock or related
method.

Neutrons are predominantly scattered by nuclei. There
is a further important interaction, in solids containing
atoms with unpaired spins, between the magnetic moments of the
atom and of the neutron (see e.g. Bacon 1962), but that
interaction will not concern us here. An exhaustive list
of the known interactions of slow neutrons with matter has
been given by Shull (1967).

Slow neutron scattering is treated within the framework
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of the first Born approximation. At first sight this might
seem inadmissible since the nuclear interaction potential
cannot be regarded as a small perturbation compared with the
energy of the neutron. This objection is avoided through
representation of the nuclear interaction by the Fermi

pseudopotential (Fermi 1936):

_ 27806 (x)

V(r) (I-D1)

m
n
where m is the neutron mass. This delta function represen-
tation is justified since the range of the nuclear interaction

-13

(~ 2 x 10 cm) is very small compared with the wavelength

8 cm), The "scattering amplitude",

of a thermal neutron (v~ 10~
b, is determined by experiment (see e.g., Bacon 1962). The
scattering properties of the nucleus are completely deter-
mined by the scattering amplitude.

Scattering amplitudes vary somewhat erratically with
Z, in contrast with the smooth variation for X-rays. Further-
more, because of the short range of the interaction, neutrons

are scattered isotropically by a nucleus, so that the "form

factor" for neutrons is independent of scattering angle.

(ii) Van Hove's Treatment

Van Hove (1954) has developed an elegant method for
treating the scattering of radiation within the first Born
approximation. For the case of neutrons scattered by a system

of identical particles with scattering length b, the differen-
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tial scattering cross section per unit solid angle , per

unit energy interval ¢, is written:

2
dg _ -
Joge = AS(Qsw) (I-D2)
where 2
A= b- k! (I-D3)
= x 3
‘o)
and
2
S(Q,w) = I g(n) L |<m| Z exp(ig-ER)}n>;
n m =1
x §({w + (En—Em)/ﬁ). (I-D4)
Here Q = k - E' and Hy = Eo - E' are the wave vector

and energy transfer to the system, and £o (EO) and k' (E")
are the wave vector (energy) of the incident and scattered
neutrons respectively. E and E are the energies of the

initial and final states of the system |n>, |m>; g(n)

is the relative population of state |n> given by

g(n) = eXp(—En/kBT)/E exp (-E, /kT). (I-D5)

The positions of the N particles are described by the vectors
EQ‘

The scattering cross section, Eg. (I-D2), is the
product of two terms. The first term, A, contains information
about the neutron and about the type of scatterer. The

function S(g,w) contains information about the structure of

the scattering system. It is the Fourier transform of the



28

generalized pair distribution function G(r,t) which, in
the absence of quantum effects, has the following significance:
given a particle at position r' at time t', G(xr,t) measures
the probability that there is a particle at r'+r at time
t'+t.

We now distinguish two types of cross-section. Since
the neutron has spin 1/2, a nucleus with non-zero spin has
two scattering lengths corresponding to parallel and anti-
parallel configurations. Furthermore different isotopes
generally have different scattering lengths. Coherent
scattering results when waves scattered by identical nuclei
(i.e. nuclei of the same isotope, having the same spin)
interfere with one another. Incoherent scattering, on the
other hand, results from scattering by the individual nuclei.
The total scattering cross section is related to the sum of
the squared scattering amplitudes of the nuclei, whereas
the coherent cross section is related to the square of the
sum of the scattering amplitudes. The scattering cross section

is then written as a sum of coherent and incoherent cross

sections:
a’s  _ a®o(com . a®o(inc) (I-D6)
dode - dQde dQde
where 2
[}
as (com) P>k

dnae -~ A kg Scon (@)
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and
2 2
ao(ancy _ (B2 mb> 0.0)
dfide A E; INC =’
The expressions for SCOH(Q,w) and SINC(Q,w) are given by
Van Hove (1954). In the majority of experiments, including

those reported here, incoherent scattering contributes an
undesirable background beneath the observed resonance.
Fortunately the incoherent scattering cross section is
generally smaller than the coherent cross section. 1In
certain cases important information about the phonon density
of states has been obtained from measurements of incoherent
scattering cross sections (Stewart and Brockhouse 1958,
Page 1967).

The Van Hove formalism is particularly useful for
treating scattering from liquids and magnetic systems. 1In

these situations the interest lies in the correlation between

atoms, or spins, at different sites. Truly elastic scat-
tering (fw = 0), inelastic scattering #w # 0), and scat-
tering without regard to energy transfer (A (Hiw) = «), yield

information about time-averaged correlations (At = «),
correlations between two different times (At # 0), and
correlations at a particular time (At = 0) respectively.
These relationships result from the connection between S(Q,w)

and G(xr,t).
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(iii) Scattering by a Crystal

The scattering of neutrons by a crystal may be
treated using expression (I-D4) for the scattering function.
Since the anharmonic situation will be considered in Chapter
ITII, a brief outline of »the harmonic theory (Sj6lander 1958)
will be given here. A simplified account (in which it is
assumed that all modes of a given g are degenerate and that
the polarization of one of the modes is parallel to Q) is given
by Kittel (1963).

Writing the atomic position r, in Egq. (I-D4) as an

L
equilibrium position R, plus a displacement Yo the Heisen-

berg representation is utilized to obtain

_ 1 i, iwt
S(Q,w) = T zi‘ exp[-iQ 522,] e
x <<exp[—ig-gz(t)]exp[ig-gl,(o)]>>dt (1-D7)

where the brackets <<...>> denote the thermal average, and
the delta function in Eg. (I-D4) has been replaced by its
Fourier transform.

The thermal average is simplified using the relation
(Messiah 1962, p. 442):

eAeB = eA+B exp %[A,B].

The displacements Eg(t) are written in terms of the operators
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A(gj), as in Eq. (I-C24). The thermal average in Eg. (I-D7)
is then separated into a time-independent part, known as the

Debye-Waller factor:

2

2 i) +1
exp[-2W(Q)] = exp{-‘%%ﬁ L z(gj) }
g3
= eXP{-<[_Q_'1_1_]2>} (I-D8)
and a time-dependent part:
2

el 3 (la@)]

2Nm g3 w(g3) eXP(iQ'Bglu)

x [(n(gj)+l)exptiw(gilt)+n(gilexp(inwl(gi)t)1)} (I-D9)

Expression (I-D9) is expanded in a power series which, to-
gether with Eq. (I-D8), is substituted into Egq. (I-D7):

sums such as I exp(ig-gg) are replaced by multivalued delta
functions A(g? using Eq. (I-Cl6), and the time-dependent
exponential terms such as exp(ifw+w(gj)]t) are integrated
over time to give delta functions in energy. The first term
in the final expression is the zero-phonon (elastic

scattering) function:

2

So(Qrw) = (Zw)3N V-lexp[-zw(g)]d(w)A(g) (I-D10)

The delta functions simply express the conditions for Bragg
reflection: V is the volume of the crystal.

The next term gives the one-phonon cross-section:
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3N £ [Q-e(gi)1?
Sl(Q_,w) = (2m) T exp[—ZW(_Q_)]-i-I—n- Z' —w-(—gj)
a3
x [ (n(gd)+1) 8 (w-w(g]i))+n(gj) s (wtwlgj)) 1a(Q-q) (I-D11)

The delta functions in this expression express conservation
of wave vector and energy. The cross section contains terms
corresponding to phonon creation (neutron energy loss) and to
phonon annihilation (neutron energy gain). Since these cross
sections are proportional to n(gj)+l and n(gj) respectively,
measurements of high frequency excitations and/or measure-
ments at low temperatures must be performed with neutron
energy loss. Further consequences of equation (I-D11)
will be discussed with particular reference to rubidium in
Section IID.

We proceed now to a general discussion of the prac-
tical side of neutron scattering - the spectrometers and

their operation.
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E. NEUTRON SCATTERING METHODS

(1) Types of Instrument

A variety of instruments is used for measurements of
slow neutron scattering cross sections. (see e.g. papers in
General Reference 4, Vol. II, and General Reference 7).

As indicated in Section ID, the natural variables
of a scattering experiment are the energy and wave vector
transfers, Mlw and Q. Instruments are therefore designed to
define the direction and energy (and hence the wWave vector)
of the incident and scattered beams of neutrons. The energy
is generally defined in one of two ways: by its time of
flight over a measured distance, or by Bragg reflection from
a single crystal.

In many time-of-flight machines a particular neutron
velocity is selected by a system of beam choppers. The first
chopper defines an origin in time, and the second chopper is
phased to transmit neutrons of the desired velocity. Sub-
sequent choppers reduce the fast neutron contribution to the beam.
In an alternative arrangement a rotating crystal fulfils the
twin functions of pulser and monochromator. The energy of a

scattered neutron is deduced from its time of arrival at the

detector. Such spectrometers are more suited to experiments

on ligquids than to measurements of excitations in single crystals.
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The inelastic scattering measurements described in
this thesis were made using the McMaster triple-axis spectro-
meter at the E2 hole of the NRU reactor, Chalk River (Brockhouse
et al. 1968Ba). A schematic diagram of the spectrometer is shown
in Fig. I-1. A particular wavelength AO is selected from the
"white" reactor beam by Bragg reflection at the first mono-
chromator crystal. A second crystal, mounted parallel to the
first, reflects the beam parallel to its original direction.

The monochromatic beam is incident on the specimen, and neutrons
scattered through the angle ¢ are incident on the analyser
crystal. Those of wavelength A' are Bragg reflected into the
signal detector (B). In order to compensate for fluctuations

in reactor power, counting occurs for a preset number of counts
accumulated in the fission monitor counter which is placed in
the incident beam. Collimators serve to define the direction

of the beam at each stage.

In many respects this spectrometer is‘typical. The
twin monochromator system is however an unusual feature of the
instrument. It has the advantage that the specimen table is
fixed, and since the monochromator is in-pile the external
shielding requirements are considerably reduced. The extra
detector (labelled A in Fig. I-1l) is useful for identifying
various types of unwanted scattering process (see Appendix II).

In most measurements of elastic scattering intensities
a double-axis spectrometer is employed. The analyser crystal

is omitted and scattered neutrons of all energies are counted.
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This procedure is justified because the ratio of inelastic

to elastic events within the crystal is generally very small.
On the other hand certain elastic scattering measurements
are best performed using a triple axis spectrometer set to
accept neutrons with wavelength A' = Ao in the detector. For
example the lattice constants of several alloys were measured
in this way (Hallman 1969).

An undesirable feature of the present double mono-
chromator system in the E2 triple-axis spectrometer is the
existence of contaminant wavelengths in the incident beam.
Since these contributions to the incident beam have shown up
in some of the measurements (Section IID), it is worthwhile
to describe how they are produced. The monochromator crystals
are made of copper, with (220) axes vertical and (220) planes
parallel to their major faces. With this arrangement other
sets of planes are parallel in the two crystals (see the inset
in Fig. I-1). For every setting of the monochromator Bragg
angle @M , there are therefore additional contaminant contri-
butions to the beam incident on the specimen. The principal
contaminant is reflected from (331) planes in the crystal:

a weaker contaminant, which is present at large values of

<) arises from (331) planes.

MI
The wavelengths of the various components in the beam

1

are easily evaluated. Defining B = cos -~ (/I9) as the angle

between neighbouring (220) and (331) planes, we have
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Ao = 2d220 51n®M
xc = 2d331 51n(®M+B)
] - N - -
xc = 2d331 51n(®M B) (I-E1)

1
where A, xc, and AC are the wavelengths of the (220), (331) and

(331) components, and d220 and d331

(220) and (331) planes respectively.

are the spacings between

The contaminants can be removed by rotating one of the
monochromator crystals about the normal to the major (220) faces.
This operation must await an extended reactor shutdown since it

involves removal of the in-pile plug.

(i1) Operation of the Triple-Axis Spectrometer

The triple-axis spectrometer is particularly useful
for studies of phonon (and other) dispersion relations in single
crystals. Five conditions must be satisfied in order to observe
a peak in the scattered intensity due to a (harmonic) excita-

tion in the crystal.

o = Eo - E! (conservation of energy) (I-E2)
g+G=9Q = Eo - k' (conservation of wave vector) (I-E3)
w = wlgj) (the dispersion relation). {I-E4)

On the other hand there are only four angular variables: @M and

@A (the monochromator and analyser Bragg angles respectively),

¢, and ¥ (the orientation of the specimen with respect to the

incident beam, Fig. I-1l). As a result peaks are only observed
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for certain settings of the spectrometer.

With the advent of the Constant Q and Constant E
techniques, (Brockhouse 1961) the full capabilities of the
triple-axis spectrometer were realized. In the Constant Q
method, the4angles are varied in such a way that Q remains
fixed and the energy transfer fiw is varied. Counts are
accumulated at each point on the scan for a given monitor
count. Typical peaks obtained in rubidium using this method
are shown in Fig. II-2. The corresponding vector diagrams,
indicating the initial and final positions on the scan, are
also shown. Generally either @M or OA is kept constant
throughout the run. Though corrections should be applied
for the factor (k'/ko) in the cross section formula, Egs.,
(I-D2, I-D3),and for the variation of analyser efficiency
with @A, the "fixed @M" mode is often chosen because the
design of the spectrometer is simplified. At present the E2
spectrometer is operated only in this mode. The Constant E
method is analogous to Constant Q: both @y, and 0, are fixed,
and ¢ and y are varied so that Q follows a straight line path
in reciprocal space.

The bulk of the work described in this thesis was
performed on the E2 spectrometer at Chalk River. Subsidiary
measurements were made using the double- and triple-axis
spectrometers installed at the McMaster reactor (Brockhouse

et al. 1968a ). Both triple-axis instruments are controlled by
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punched cards, as described by Rowe (1966). The cards are
obtained as output from a computer programme which, in its
present modification (due to the author in collaboration with
Mr. A. Larose), can calculate scans along any straight line
path in (Q,w) space. 1In normal operation the spectrometer is
run continuously and the angles are checked several times

daily.



CHAPTER 1II

HARMONIC ASPECTS OF THE CRYSTAL DYNAMICS OF RUBIDIUM

A. INTRODUCTION

The elements lithium, sodium, potassium, rubidium,
and caesium together with francium, whose most stable iso-
tope has a 21 minute half-life, occupy Group 1A of the
periodic table and are known as the alkali metals.* Atoms of
these metals have the closed shell electronic structure of
the inert gases He, Ne, Ar, Kr, Xe and Rn respectively, plus
a single s-electron in the outer shell. In the condensed state,
an alkali metal may be regarded as a collection of positive
ion cores immersed in a negative sea of conduction electrons.
The alkalis are considered the simplest of all metals and
consequently a large body of experimental and theoretical
work has been devoted to these materials.

Most of the experimental work has been performed on
Na and K, since they are less reactive and more readily
available than Rb and Cs (see e.g., Brotherton et al. 1962).
A disadvantage of using Li or Na for many low temperature
experiments is the occurrence of a partial martensitic transi-

tion from the body centred cubic (b.c.c.) phase to a low

*Apparently (Holmyard and Palmer 1939) Abu Mansur Muwaffak,

a celebrated Persian physician in the 10th century A.D,,

was the first to distinguish between the carbonates of sodium
and potassium. These substances were extracted from plant ashes
by the Arabs, who described them as al-qali‘, "the ash", from
which we obtain the moderm term, alkali.

40
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temperature close-packed structure with stacking faults. No
such transition has been observed in K, Rb or Cs (Barrett
1955, 1956).

Some properties of the stable alkali metals are listed
in Table II-1. 1In order to demonstrate trends in certain
properties, including the lattice constant and the thermal
expansion, values for the five metals have been taken from the
same reference. Martin (1965) has noted that "the temperature
variations of the densities of the alkali metals are not es-
tablished with any great certainty". For Rb and Cs the errors
"may be as high as *1%". An experimental determination of
the lattice parameter of rubidium, Py neutron diffraction,
is reported in Appendix I.

The low temperature limiting values of the Debye
temperature for the specific heat, eg, are also taken from
Martin (1965). The slow neutron cross sections for absorp-
tion (cabs) and for coherent and incoherent scattering (Ocoh’
Oinc) are from the "barn book" of Hughes and Schwartz (1958).

The value of 9 for Rb is given as 3.8 barns in this re-

oh
ference but a supplement (Goldberg et al. 1966) and a recent
compilation in Acta Crystallographica (the Neutron Diffraction
Commission, 1969) give the value 9.1 barns, which was reported
by Mueller et al. (1963). More recent measurements of Copley

(1970), wang and Cox (1970), and Meriel (1970) favour a value

between 5.7 and 6.7 barns (see Appendix VI).



TABLE II-1.

Li
Atomic Number 3
Atomic Weight 6.939
Isotopes 92.6% Lig
7.4% Li
. a,?

Lattice Constant” (A) 3.49
(at 78°K)
Martensitic Transition “v78°K
Temperature
Thermal Expansionb 47
(lO-GOK—l)
Compressibilityc 0.78
(at 4°K) (10" °atm.” )

d
Elastic Constants Ci: 14.44
{at 78°K) Ci» 12.11
(10'° dynes/cm?) C,, 10.94
Debye temperatureJ 344
6c (°K)

Na
11
22.990

100% Na

4.238

v36°K

23

K
19
39.102

93.1% K32
6.9% k4l
0.02% K40

(1,=1.3x10%)

1
]

5.247

83

2.88

4.10f

3.41
2.61
90.6

(continued

Properties of the stable alkali metals

Rb

37
85.47
72.2% RbS>

27.8% Rb87

(1,=4.7x101'%y)

1
i

5.605

90

3.48

3.259

2.73

1.98
55.6

next page)

Cs
55
132.91

100% Cs

97

2.46
2.05
1.48

38.4

133

A



TABLE II-1

Li Na
Melting Temperaturek 453 371
T (°K)
M
Neutron Cross ogps 71 0.5
Sections? Ocoh 0.4 1.55
(barns) 0inc 0.8 1.9
Mohs Hardness” 0.6 0.4
8parrett (1956) . See also Appendix I.
Pyalues preferred by Martin (1965).
cSwenson (1955).
dSlotwinski and Trivisonno (1969).
e

Diederich and Trivisonno (1966).
Marquardt and Trivisonno (1965).
9Gutman and Trivisonno (1967)
hKollarits and Trivisonno (1968).
IMartin (1965) .

Ksmithells (1962), p. 695.
2Hughes and Schwartz (1958).
mCopley (1970) . See also Appendix VI.

Nyeast (1968) .

(continued)

312

144
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Several properties of Rb are conveniently tabulated

by Filyand and Semenova (1968). A book by Perel'man (1965) also

contains much useful information on Rb and Cs.

The determination of the phonon dispersion relation

in rubidium, which is reported in this chapter, was undertaken

for several reasons.

(1)

(2)

Though many authors have calculated dispersion curves
for the alkali metals, generally by the pseudopotential
method, the amount of experimental information is fairly
limited. At the time this work was started, only the
dispersion curves of sodium and potassium had been
measured. It was felt that measurements on another of

the alkali metals would be worthwhile.

The volume thermal expansion coefficients, o for the
alkali metals, are considerably larger than those of

any other metal at the same reduced temperature T/Tm,
(Tm is the melting temperature). Borelius (1963) has
compiled thermal expansion data for 16 metals: in order
of increasing melting point, they are Hg, K, Na, Sn, Pb,
Al, Ag, Au, Cu, Ni, P4, Pt, Rh, Ir, Mo, and W. The
volume expansivities (in units of 10—5°K—l), at the
melting point, are 25 and 27 for Na and K respectively:

in the same units a, = 17 for Hg. For the remaining

metals the volume expansivity at Th generally decreases
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with increasing Tm. Aluminium ('I‘m = 933°K) has the

largest value, a, = 13, whereas tungsten (Tm = 3650°K)

has e, ~ 4 (obtained by extrapolation of data which exists
up to 2700°K).

The large values of o, for the alkali metals indicate

that the effective interatomic potential is more anharmonic
than in other metals, at the same reduced temperature, T/Tm'
Anharmonic effects will therefore be more pronounced. in
addition Tm is small for the alkalis so that these ef-
fects appear at relatively low (and therefore more acces-

sible) temperatures. The effects of temperature on the

phonon spectrum are consequently of some interest.

(3) Of the five alkali metals, rubidium has the best neutron
cross sections (Table II-1l), whereas the remaining two
choices for a neutron scattering experiment (Li and Cs)

have the worst cross sections.

(4) There is no martensitic transformation in rubidium

(Barrett 1955, 1956).

(5) Both caesium and rubidium have melting points close to
room temperature, This makes them preferable to lithium
for anharmonic studies. The melting point of caesium
is uncomfortably low, whereas precautions need only be
taken to keep a rubidium crystal away from heat. (The
unfortunate démise of the crystal, described in a later

section, is not believed to result from its melting).
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B. EXPERIMENTAL AND THEORETICAL WORK ON THE ALKALI METALS

The crystal dynamics of the alkali metals has been
the subject of much theoretical work over past years, A use-
ful review is given by Joshi and Rajagopal (1968). Cochran
(1966) gives references to some of the earlier work.

The first fundamental calculation of the lattice
vibration frequencies in a metal (Na) was that of Toya (1958).
Following Fuchs (1935, 1936) he wrote the interionic potential
as the sum of three terms, namely the Coulomb repulsion, the
overlap repulsion, and the attractive interaction via the
conduction electrons (Section I C(iii)). The dispersion
curves of sodium were subsequently determined by Woods et al.
(1962), and the agreement between these measurements and
Toya's calculation is noteworthy.

More recent theoretical work on the phonon spectra of
metals is due to many authors, including Vosko et al. (1965),
Animalu et al. (1966), Schneider and Stoll (1966a, 1966b),
Wallace (1968, 1969), Prakash and Joshi (1969) and Ashcroft
(1968) . Further references are contained in papers by Price
et al. (1970) and by Blanchard and Varshni (1970). Most
of these workers adopt the pseudopotential, or model poten-
tial, approach, which was outlined in Section I C. On the
other hand, Vosko et al. (1965) used many-body perturbation
theory to treat the electron-ion interaction term.

Cochran (1963) adopted a different approach, extracting
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an effective potential from the experimental measurements of
Woods et al., (1962 on Na.

The dispersion curves of potassium were measured by
Cowley et al. (1966), and found to be very similar in shape
to those of sodium. These authors analyzed their results to
obtain atomic force constants (as did Woods et al. for sodium),
and they also obtained an effective potential using an
extension of Cochran's method. More recently preliminary
reports of experimental measurements on lithium (Smith et al.
1968) and rubidium (Copley et al. 1968) have appeared.

The present chapter reports further work on rubidium,
including measurements at different temperatures. Attempts
have been made to correct the measurements for experimental
effects such as resolution and unwanted scattering processes,
so that a reliable set of results is available for comparison
with theory. Such corrections are particularly large in
the case of rubidium, principally because the lattice spacing
is large and the unit cell in reciprocal space is therefore
unusually small. Furthermore the phonon fregquencies in this
metal are uncomfortably low with the result that unwanted
elastic scattering processes are more commonly picked up.

The details of these corrections are described in Appendices
IT and III .,
Section IIE contains an analysis of the measurements,

and calculations of the phonon frequency distribution for
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rubidium. The final section of the chapter is devoted to
a detailed discussion of unexpected observations in the course

of the measurements, together with a consistent explanation.

C. MEASUREMENT OF NORMAL MODE FREQUENCIES

The frequencies of the normal modes of vibration of
body-centred cubic (b.c.c.)rubidium, for wave vectors along
five symmetry directions in the reciprocal lattice, have been
measured at several temperatures using the Chalk River (E2)
triple-axis spectrometer (Section IB).

The specimen was a single crystal of cylindrical cross
section, purchased from Research Crystals Inc., Richmond,
Virginia. It measured 3-1/8" long by 1-1/2" diameter. A
truncated cone at one end of the crystal occupied one third
of the total length, narrowing to 3/8" diameter at the end
(Fig. II-1l). The crystal was examined, and subsequently
sealed in an aluminium can, using a commercial dry box filled
with argon. Protective grease, which surrounded the specimen,
was first removed using facial tissues. A black film (of
oxide/hydroxide?) was removed by wiping the surface with
tissues soaked in xylene. The crystal was then transferred
to an aluminium can having 0.040" walls, fitted with a
re-entrant cap and an indium O-ring. The can was finally
screwed up and sealed with epoxy cement.

After the first experimental run at low temperature,

the specimen was removed from the cryostat and a small amount
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of material which had oozed through the indium seal caught
fire. Since then there have been no further problems of this
nature. It is clear that the metal must be treated with
respect.

An event of more significance did however occur toward
the end of the experimental work. A iong series of measure-
ments was made between October and December of 1969, using a
helium cryostat. The specimen was left in the cryostat, under
vacuum, until March 1970. At that time an attempt to check
the alignment of the crystal was thwarted because of very poor
intensity. On further examination the specimen was found
to be largely polycrystalline, and the conical end contained
three crystals at about 60° to each other. No explanation
for this behaviour has yet been found. Attempts to purchase
another crystal hawe been unsuccessful, and the experimental
work was therefore concluded somewhat prematurely.

The crystal was initially aligned using the twin-axis
spectrometer at the McMaster reactor (Brockhouse et al. 1968a)
A [110] axis was found within 2° of the cylindrical axis, and
the (200) rocking curves were 0.,4° wide, indicating that the
mosaic spread in the crystal was of this order. A careful
search for extra crystals in the specimen in March 1969
(Appendix I ) demonstrated that it was indeed single. Most
of the measurements reported in this thesis were made with

a (110) scattering plane. Certain branches were measured,
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at 120°K only, with a (100) scattering plane instead.

Inelastic scattering measurements of phonons Were made
using the McMaster triple axis spectrometer at Chalk River
(Brockhouse et al. 1968a) almost exclusively in the constant
Q mode of operation (Section ID). The monochromator used
(220) planes of copper, and the analyser used (200) and
(occasionally) (220) planes of copper. Soller collimators
were employed to reduce the horizontal divergence of the
beam. For most of the measurements, 8" collimators with
0.1" plate separation were used. For some of the measurements,
two inches of single crystal gquartz were inserted in the
incident beam to reduce second-order contamination. The
choice of collimation was determined by the conflicting re-
quirements of good experimental resolution and good intensity.
With the system described above, the collimation was fairly
well matched to the mosaic spreads of the monochromator,
specimen, and analyzer (Brockhouse 1966).

The fixed incident frequency v, was generally 4.79
THz (1 THz = 1012 cps). Some of the earlier measurements
were made at other frequencies, between 3.8 and 5.5 THz.
Several considerations affect the choice of Vo© In particular,
the energy resolution improves with larger eM, smaller Vo
With Vo T 4.79 THz, and the above collimation, the energy
resolution was approximately 0.2 THz (full width at half

maximum): this value was obtained from the width of a plot
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of scattered intensity against analyzer angle, using a vana-
dium specimen (which scatters almost completely incoherently
(Brockhouse 1955)).

On the other hand, the proportion of second-order
contaminant in the incident beam increases and (toward the
low frequency end of the available range) the intensity of the
main beam decreases, with decreasing Vo Furthermore in
order to avoid detecting a peak resulting from elastic scat-
tering by the specimen of the " (331) contaminant" (Section
ID), followed by second-order Bragg reflection off the analyzer

crystal, Vo must be chosen greater than [vm + vc/4], where

ax

Voax is the maximum frequency in any scan, and Ve is the
frequency of the contaminant.

Most of the measurements were made using cryostats
filled with liquid nitrogen. The more recent measurements
were made with extra radiation shielding around the specimen.
Furthermore two separate cryostats have been used. For these
reasons, a number of temperatures ranging between 95 and 140°K
were obtained for these measurements. Results have also been
obtained at 205°K using dry ice, and a series of runs was
made at 12°K using a liquid helium cryostat (made by Andonian
Associates Inc., ). With the inner well of this cryostat
filled with liquid nitrogen, further measurements were made

at 80°K. The tail section of the cryostat was modified to

accommodate the large specimen (Fig. II-1). Temperatures
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were generally measured using copper-constantan thermocouples;
platinum and germanium resistance thermometers have also

been employed.

D. TREATMENT OF RESULTS

Phonons with wave vector g lying along the [00z], [zzzl,
{zgol, [%%C] and [rzl] directions (i.e., directions A, A (and
F), I, D and G in the notation of Koster (1957)), have been
measured, using the constant Q technique (Section IE). (The
first Brillouin zone of the face centred cubic (f.c.c.) re-
ciprocal lattice is shown in Fig. AIV-1l(a).

To optimize the intensity of a phonon, several factors
had to be considered. The gquantity [Q_-g(gj)]2 in Eq. (I-D11)
was maximized by choosing Q as nearly parallel as possible
to e(gj). In many experiments ]g] itself is also maximized,
but in the present situation the Debye-Waller factor is
also an important consideration. For example the optimum
value of |Q| at 110 and 220°K is about 3.6 (2m/a) and 2.5 (27m/a)
respectively.

The results of several constant Q scans are shown
in Figs. II-2 and II-3. 1In Fig. II-2 the (100) and (110)
planes of the reciprocal lattice are shown, and vector dia-
grams for the first and last points on the scan are included
appropriate to the measurements shown. These and subsequent

vector diagrams correspond to a view from below the spectrometer.
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Fig. II-2. The (100) and (110) planes of the reciprocal
lattice for the body centred cubic structure.
Two Constant Q neutron groups are shown on
the right and corresponding vector diagrams
are shown to the left.
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Many of the measured groups are similar in appearance to those
of Fig. II-2. 1In such cases the frequency of the phonon, and
its polarization (through the term [Q_-g]2 in Egq. (I-D1l1l)), are
unambiguously determined.

In a number of cases the situation is more complicated,
Some examples are shown in Fig. II-3. Additional peaks in the
intensity distribution can arise in several ways. For example
it can happen that the specimen is aligned to Bragg reflect
neutrons in the incident beam into the analyzer. Elastic in-
coherent scattering from the analyzer will then give extra
counts in both the signal and the background counters. Scans
(a) to (d), and (f), show peaks in both counters. In (a) and
(b) the peaks are believed to arise from elastic scattering
off the aluminium container surrounding the specimen. The
sharp rise at the high frequency end of scan (c), and the
peak in (d), result from Bragg reflections in the specimen.

The high frequency peak in (f) remains unexplained. The
peak in scan (e) is caused by elastic incoherent scattering
of the (331) component of the incident beam, and second
order reflection in the analyzer.

Some of the additional peaks observed in Constant Q
scans were easily identified by inspection. Most of the
others have been identified using a computer programme which
is described in Appendix II . Several peaks however have

not been explained. Extra care has been taken in estimating
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the centre of the one-phonon peak when additional peaks have
been observed.

Extra peaks at lower frequency have been rather con-
sistently observed in a large number of scans of the [00g]L
branch, under a wide variety of conditions. The effect, and
its (somewhat unexpected) explanation, are discussed in Sec-
tion IIF.

In many cases the intensity distribution "seen" by
the signal counter contains a one-phonon peak superimposed
on a residual curve which decreases with increasing frequency.
For example the peak in Fig. II-3, scan (d), 1s superimposed
on a residual curve indicated by the dot-dash line. The
slope of this curve partly results from the variation of
analyzer sensitivity with neutron energy, and from the factor
k'/kO in the cross section formula (Egs. I-D2, I-D3).

These variations with energy transfer are avoided if &o'
rather than k', is varied during a scan (Section IE). There
are also contributions from incoherent elastic and multiple
phonon scattering off the specimen. The residual curve

has been taken into account in assigning values to the

peak positions.

The intensity in the background counter does not de-
crease with increasing frequency. Neutrons entering this
counter have been incoherently scattered off the analyzer

crystal. Therefore the frequency scale is not relevant to
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this counter, and no sloping curve is expected.

Considerable attention has been paid to the effects
of instrumental resolution on the peak positions. These
effects were calculated using a force constant model derived
from the 1968 measurements. An account of this work is
given in Appendix 1III. The results presented in the present
section have been corrected for resolution.

The normal mode frequencies in rubidium are given in
Table II-2. The columns labelled 85°K and 120°K include
phonons measured between 80 and 95°K and between 120 and 140°K
respectively. The 120°K measurements are shown in Fig. II-4.

The errors in the phonon frequencies were assigned
with due regard to the width and shape of the group, and
the counting statistics. In a number of cases more than one
measurement of the same mode was made, and an error was
assigned accordingly. For a well defined group the error is
taken to be fcl' where T is the full width at half maximum
of the group, and ¢ is generally between 0.05 and 0.1l. These
errors are believed to be fairly realistic (see e.g. Svensson
et al. (1967) for a discussion of errors). The analysis
of Section 1IIE indicates that they may be overestimated

by about 50%.

E. ANALYSIS OF RESULTS

(i) Force constant models

The dispersion curves of rubidium are similar in shape
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TABLE II-2 Normal mode frequencies (in THz) for the symmetry
branches in rubidium at 12, 85, 120 and 205°K.
Branch z 12°K 85°K 120°K 205°K
0.1 0.215%0.01
0.15 0.305%0.015
0.2 0.41 20.01 0.405%0.01 0.40 %0.01 0.355%0.01
0.25 0.49 *0.02 0.47 *0.02
0.3 0.59 *0,01 0.575%0.01 0.57 *0.01
[00z]T 0.35 0.66 *0.02
0.4 0.795+0.015 0.76 0,01 0.755+0.02 0.705+0.02
0.5 0.96 $0.01 0.93 $0.01 0.895+0.025
0.6 1.12 #0.02 1.08 #0.01 1.065+0.015 1.01 #0.02
0.8 1.325+0.015 1.28 #0.015 1.27 #0.015 1.24 #0.02
0.9 1.30 #0.015
1.0 1,385%0,015 1.35 *0.015 1.32 #0.02 1.24 *0.03
0.2 0.535%0.,02 0.495%0.02 0.50 *0.025 0.47 $0.025
0.25 0.64 *0.02 0.61 #0.03 0.62 #0.02 0.565%0.025
0.3 0.74 *0.02 0.71 *0.02 0.72 *0.02 0.69 *0.025
0.35 0.82 *0.015 0.82 *0.02 0.82 *0.02
0.4 0.93 *#0.015 0.91 #0.025 0.88 *0.025 0.87 iOL02
0.45 1.01 *0.025 0.98 *0.02
[00z]L 0.5 1.075%0.02 1.075%0.03 1.05 #0.02
0.6 1.23 *0.03 1.225%0.05
0.65 1.23 #0.04
0.7 1.23 #0.04 1.20 *0.04
0.75 1.27 #0.04

(continued next page)
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TABLE II-2 Normal mode frequencies (in THz) for the symmetry
branches in rubidium at 12, 85, 120 and 205°K (cont'd)
Branch g 12°K 85°K 120°K 205°K
[00z]L 0.8 1.34 *0.05 1.275+0,03
0.9 1.305%0.02
1.0* 1.385#0,015 1.35 #0.,015 1.32 0.02 1.24 £0.03
0.1 0.235%0.03
0.15 0.35 +0.03
0.2 0.45 #0.02 0.435%0.025 0.48 #0.02 0.42 *0.04
0.3 0.68 #0.03 0.69 *0.03 0.71 x0.03
(gzzlT 0.4 1.00 #0.04 0.93 #0.05 0.92 +0.03
0.45 1.02 %0.03
0.5* 1.13 +0.015 1.08 +0.02 1.10 #0.02 1.03 0.03
0.55 1.20 x0.04
0.6 1.26 +0.04 1.12 +0.04
0.7 1.32 #0.04 1.33 %0.03 1.325+0.02
0.8 1.32 +0.03 1.21 +0.04
0.9 1.33 +0.05
1.0 1.385%0.015 1.35 #0.015 1.32 +0.02 1.24 +0.03
0.1 0.595+0.02 0.58 £0.025 0.525+0.03
0.2 1,065+0.015 1.03 £0.02 1.01 +0.03
(zzzlL 0.3 1.33 +#0.015 1.325+0.015 1.28 +0.03
0.35 1.31 +0.025
0.4 1.345+0.,02 1.335%0.02 1.305+0.025 1.25 +0.03
0.45 1.24 +0.04

(continued next page)
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TABLE II-2 Normal mode frequencies (in THz) for the symmetry
branches in rubidium at 12, 85, 120 and 205°K {(cont'd)
Branch z 12§K 85°K 120°K 205°K
0.5* 1,13 #0.015 1.08 £0.02 1.10 #0.02 1.03 +0.03
[zgglL  0.55 0.935+0.03
0.6 0.775%0.02 0.74 *0.02 0.72 0.03 0.68 0.025
0.65 0.64 *0.03
0.7 0.60520.03 0.60 *0.03 0.55 %0.02
0.75 0.685%0.025
0.8 0.90 #0.02 0.87 #0.03 0.805%0.015
0.9 1.20 *0.04 1.10 %0.04
0.95 1.285%0.03
1.0* 1.385%0.015 1.35 £0.015 1.32 #0.02 1.24 *0.03
0.1 0.285%0.02
0.15 0.395%0.02
0.2 0.525+0.015 0.46 =0.01
0.25 0.66 *0.03
[zzO]lT2 0.3 0.75 *0.015 0.735%0.015 0.735%0.02 0.66 *0.01
0.35 0.79 *0.015
0.4 0.85 *#0.015 0.785%*0.015
0.45 0.89 #0.015
0.5* 0.96 *0.03 0.95 £0.02 0.885%0.02 0.84 *0.025
0.1 0.11 *0.025
0.2 0.20 #0.02
[zz0lTl 0.3 0.265%0.02
0.4 0.315%0.02
0.5 0.34 %0.02 0.34 #0.03 0.32 *0.025 -

(continued next page)
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TABLE II-2 Normal mode frequencies (in THz) for the symmetry
branches in rubidium at 12, 85, 120 and 205°K (cont'd)

Branch z 12°K 85°K 120°K 205°K

0.1 0.41 0.02 0.395%0.02
0.2 0.88 #0.02 0.84 *0.015 0.82 *0.03 0.785%0.02
[520]L 0.3 1.235%.02 1.17 #0.02 1.18540.025 1.125%0.02
0.4 1.415%0.02 1.34 #0.02

0.5* 1,50 *0.02 1.48 20.025 1.465%0.02 1.41 *0.05

0.0* 0.96 #0.03 0.95 0.02 0.885+0,02 0.84 +0.025

0.1 0.895+0.025
0.15 0.92 #0.035
0.2 0.945:0.04
[%%c]A 0.25 0.975%0.03
0.3 1.07 $0.015
0.35 1.035%0.03
0.4 1.08 +0.06
0.5% 1.13 #0.015 1.08 #0.02 1.10 *0.02 1,03 #0.03
0.0* 1.50 *0.02 1.48 *0.025 1.465%0.02 1.41 *0.05
0.2 1.42 *0.02
0.3 1.39 #0.02 1.34 #0.02
0.4 1.25 +0.025
0.5* 1,13 #0.015 1.08 #0.02 1.10 #0.02 1.03 #0.03
[%%c]n 0.6 0.965%0.015
0.7 0.785%0.015 0.77 %0.015
0.8 0.59 #0.015
0.9 0.405%0.015

1.0~ 0.34 £0.02 0.34 #0.03 0.32 #0.025 -

(continued next page)
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TABLE II-2 Normal mode frequencies (in THz) for the symmetry
branches in rubidium at 12, 85, 120 and 205°K (cont'd)

Branch z 12°K 85°K 120°K 205°K

0.0 1.385%0.015 1.35 %0.015 1.32 #0.02 1.24 $0.03

0.1 1.27 £0.02
0.2 1.04 +0.03
[zzl]A 0.3 0.78 +0.03
0.4 0.49 +0.025
0.45 0.37 +£0.03

0.5* 0.34 +x0.02 0.34 £0.03 0.32 +0.025 -

0.0* 1.385x0,015 1.35 #0.015 1.32 #0.02 1.24 £0.03

0.1 1.29 x0.025

0.2 1.205+0.02
[zgl]lm2 0.3 1.07 x0.02

0.4 0.94 +0.03

0.5* 0.96 £0.03 0.95 #0.02 0.885+x0.02 0.84 +0.025

0.0* 1,385*0.015 1.35 #0.015 1.32 #0.02 1.24 +0.03

0.1 1.335x0.02
[gzllml 0.2 1.36 +0.05
0.3 1.42 +£0.03
0.4 1.47 +0.03

0.5* 1.50 #0.02 1.48 +0.025 1.465+0.02 1.41 *0.05

Note: an asterisk indicates that the same measurement is repor-
ted elsewhere in the table. For example the phonon fre-
quency at symmetry point H is given for [00Z]T and
L,z = 1.0; [zzzlT and L,z = 1.0; and [%%c]A, 712, and ml
for z= 0.0.
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to those of sodium (Woods et al 1962) and potassium (Cowley

et al 1966). The measurements have been analysed to obtain
AFC's for different force models following the procedures of
Svensson et al. (1967). Least squares fits are made to force
models which include interactions out to n'th nearest neigh-
bours, for n = 1, 2, .... 8. For each fit various statistical

guantities are obtained including

N

_ -1 _ 2.% _

A2 = [N ; (Vic vi) ] (II-E1)
Nt 2.2, N 3

— - 2 -—

Ay = [i Wi(m\)ic mvi) / ? Wi] (II-E2)
2 1 X 2

x° = (N-K) ° E [(vic—vi)/oi] (II-E3)

where Vic and Vi are the calculated and measured frequencies,
and o; is the assigned error, for the i'th measurement: N

is the number of measurements, and K is the number of adjustable
parameters (i.e., AFC's). The weights Wi are assigned accor-
ding to the least-squares prescription

' -2
W, = Wi(vici)

'
where W, is a weight which is fed in. In the present case
these weights (Wi) were set to unity with no loss of generali-
ty, since a change in Wi is equally well expressed by altering

G'.
1

Results of a run using the complete data at 120°K are

shown in Fig. II-5(a). The plots of A A, and x2 essentially

2" T4

tell the same story: first and second neighbour forces are



| 2 3 4 5 6 7 8 N
) ! ¢ ) ) ¥ ) ¢ (b)
= 8\ (@) 2.0+ ' X2
S \ IXY 5
= \ /*ﬁ —F—3 —§F—F—1 ~: GENERAL FORCES
; T b e WITH ELASTIC
@) % IXX ; CONSTANTS
—F—F—I—F—1 ¥ —~—A-S F
~ % e Ne—F sl ¥ ORCES
i~ ¥
 ae O \ 2XX '
o < T T I iy
o . 11 |
x g 4 \ \ o\ i
~ \ b
°q o\ | Rb 120°K 3
- 0O - Az | \
N pd I~
Q < e
n 0.5
O
W
<
| | | | ] L |
2 3 4 5 6 7 8n
| 2 3 4 5 6 7 8 p

[+)}
[}
Fig. II-5. Atomic force constant fits to the data at 120°K.

The "goodness of fit",
xz, is dimensionless.,

Units for the remaining quantities are indicated.
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sufficient to improve the fit considerably, whereas more
distant neighbour forces are very weak. Svensson et al. (1967)
note that the errors in the force constants are only physically
meaningful "if an entirely adequate fit to the data was in
fact obtained". With this in mind it is clear that forces out
to third neighbours must be considered important. A third
neighbour fit to the 120°K measurements is shown at the top
of Fig. II-14.

It is noteworthy that x2 settles at about 0.35, and

p

A, and A4 settle to values of about 0.55 x Ag and 0.6 x A4

2
respectively, where the superscript P means the predicted
value of the qguantity, i.e., the value obtained by replacing
(V;o"Vvy) with 0, in equations (II-El, II-E2). This indi-
cates that the assigned errors o, are overestimated by about
50%. Thus the assigned errors, which averaged about 0,075T
for good groups (Section IID), should probably be made
about 0.05T'. Svensson et al. (1967) reached a similar con-
clusion for copper. Furthermore an analysis of the other
alkali metal measurements (see Fig. II-6) leads to the same
conclusion.

The slight improvement in fit, between n = 5 and n = 6
(Fig. II-5), largely results from an improvement in the fit

to the [%%c]A branch. This is illustrated in Fig. II-7(a).

The [%%C]A branch has been separately analysed to obtain inter-
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2 GENERAL FORCES,
2 NO ELASTIC CONSTANTS
Li 98°K
Na 90°K
B K 9°K
|
12°K
Rb 120°K
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Fig. II-6. The "goodness of fit" for fits to Rb at 12 and

120°K, and to Li, Na, and XK. In the cases of

Li and of Rb at 12°K, there was insufficient data
for a fit to 8 neighbours. In the case of Rb at
12°K, the elastic constant (C;1~C:12)/2 was in-
cluded in the fit to ensure stability of the
lattice.
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branch are shown. Third neighbour atomic
force constant f£its are shown in (b} for

the [00r1 direction.
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planar force constants (Brockhouse et al. 1968b). These
are given by

mw2 = ¢o + T ¢n[l—cos(nﬂ;)] (ITI-E4)
n

The analysis indicates that a good fit is obtained if three
interplanar force constants are included. These guantities

are related to the AFC's as follows:

¢o = 8(1lXX) + 8(2YY) + 16(3XX) + B8(4XX) + 1l6(4YY) ...
d)z = 2(2XX) - B(3XX) + 8(5XX) + 8(8YY)

¢4 = 2(6XX) - 8(8XX)

41 = 05 = 0

The notation for the AFC's is explained in Table II-3. It
is clear that the improvement in the AFC fit between n = 5
and n = 6 occurs because it corresponds to inclusion of a third
interplanar force constant for the [%%C]A branch. An AFC fit
to all the measurements except this branch is essentially
identical to the fit which includes this branch.

Forces to third neighbours are nearly sufficient to
fit the measurements of the [00Z]L branch (Fig. II-7(b)).
Since the effects of instrumental resolution are particularly
marked for this branch, and since the branch is thought to
be more anharmonic than others, this fit is probably satis-
factory. A fit was also made to all the measurements except
the [00f]L branch. Though the first neighbour force constants

are unchanged, the remaining AFC's are somewhat different and
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their errors are considerably larger, whereas X2 is unaffected ,
It appears that there is insufficient orthogonal information
to determine these parameters when the [00Z]L branch is
excluded. Fig. II-7(b) shows the [00z] branches calculated
using AFC's from the fit to all but the [00z]L branch.

If the elastic constants of rubidium at 120°K (see
Section IIE) are included in a fit to all branches, the quan-
or b, and xz are somewhat larger (Fig. II-5(b)), but
the first few AFC's are not changed. Since the ultrasonic
%),

tities A

measurements correspond to far smaller values of C(f 10°
the elastic constant slopes need not coincide with neutron
measurements for 7z ~ 0.1l. Indeed a difference in the sound
velocity in these two ranges of wave vector is theoretically
predicted (Cowley et al. 1968). For this reason no further
fits have been made with the elastic constants included.

Fits to an axially symmetric force model are identical
out to four neighbours (Fig. II-5(b)). Beyond n = 4 the
general force model gives a slightly better fit, largely
because it involves more parameters. The central force
condition is very restrictive for small n, and x2 is
considerably enhanced (Fig. II-5(b)). For n > 6 the central
force condition has little effect on X2. AFC's from various
fits to the 120°K data are given in Table II-3.

General force model fits to measurements at different

temperatures indicate that the interatomic forces in rubidium
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TABLE II-3 Atomic force constants for various fits to the

measurements on rubidium at 120°K
(units are dynes/cm)

Reference AFC GF (n=3) GF (n=4) AS (n=4) CF (n=4)

atom

(111) 1Xx 615.2¢+ 5,8 617.8+ 8.1 613.0+ 7.6 613.8% 7.6
1Xy 737.4+x 7.6 739.5+ 8.3 740.0% 8.2 735.6x 8.1

(200) 2XX 453,7+14.9 455.6+18.7 447.8+17.9 456.0x17.8
2YY - 16,92 9,2 11.6+11.1 17.7+ 9.7 17.5% 9.7

(220) 3XX -37.6+x 4,7 -34.0+ 6.1 -40.2+ 4.9 -43.6+ 4.8
322 - 2.2+ 7.5 - 2.7%10.4 5.8+ 7.7 7.6% 7,6
3X¥Y  -51,6% 7.9 -61.0%#11.4 =-47.2+ 8.0 -50.3+ 8.0

(311) 4XX - - 3.2+ 7.1 3.6 5.7 - 6.4+ 4.9
4YY - 0.2 3.6 - 0.8+ 3.1 3.9+ 2.8
4Y7Z - 4.1+ 5.8 0.6+ 1.5 =-2.7+ 1.1
4Xz - 3.2+ 3.2 1.7+ 2.5 -4.0x 2.0

GF': General Forces

AS: Axially Symmetric Forces

CF: Central Forces

The force constant matrix, for n'th nearest neighbours, is

nXx

nXY

nXz

nXY nXxz
nYy nYZ
nY?Z nzz

See also Brockhouse et al. (1968b).
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are of longer range at low temperatures. This is illustra-
ted in Fig. II-6. Clearly fourth neighbour interactions are
appreciable at 12°K, but not at 120°K. There is insufficient
data to obtain reliable information of this kind from the 85
and 205°K data. Table II-4 lists AFC's obtained from fourth
neighbour fits to the measurements at different temperatures.
We note that 1XX and 1lXY decrease, but 2XX increases, with
increasing temperature. This feature is discussed later in
this section.

It is instructive to compare force systems in the
different alkali metals, as determined from analyses of the
dispersion curves. The "goodness of fit", x2, is shown in
Fig. II-6, for general force model fits (with no elastic
constants) to the experimental data. It is clear that the
force system is of longer range in the lighter metals. Further-
more Table II-5 shows that the ratio of 2XX to 1XX (or 1XY)
increases as the atomic mass increases. Thus we see that
two types of trend occur (i) on going from the lighter to
the heavier alkali metals, and (ii) on increasing the
temperature (in Rb): the trends are (a) a decrease in the
range of the interatomic forces, and (b) an increase in the
ratio of second to first neighbour AFC's.

The first trend indicates that the electron-phonon
interaction is weaker in the heavier metals. This conclusion
is consistent with the fact that the ratio (w/wp), where wp

is the ion plasma frequency, increases with increasing atomic



TABLE II-4 Atomic force constants for four-
neighbour general force model fits to rubidium
at different temperatures.
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(Units are dynes/cm).

Reference AFC 12°K* 85°K 120°K 205°K

atom

(111) 1XX 669.4+11.3 657.4+18.1 617.8+ 8.1 590.7%15.6
1XY 787.5+11.3 746.3+26.2 739.5+ 8.3 679.6+20.9

(200) 2XX 396.7+27.9 400.2x37.3 455.6+18.7 437.9:+38.8
2YY 21.7+16.8 7.1+26.7 11.6+211.1 -35.0+£19.9

(220) 3XX -36.8x 8.8 -13.2+13.8 -34.0+ 6.1 -13.6x10.6
322 - 9,0£13.5 -24.9+13.6 - 2,7+10.4 9.8+22.2
3XYy 42.6213.9 -11.0+39.4 -61.0+11.4 -75.1#19.7

(311) 4XX 17.6x 7.9 -12.5%#16.3 - 3.2+ 7.1 -16.,4+11.3
4YY - 3.8+ 5.1 - 2.5% 4.4 0.2+ 3.6 -11.3% 6.5
4YZ - 9.5+ 6.8 -26.7% 9.3 4.1+ 5.8 - 0.2+17.6
4XZ - 8,8+ 3.8 - 1.8+13.,7 3.2 3.2 7.4+210.3

*The elastic constant %(Cll—clz) was included in this fit to

ensure stability of the lattice.
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TABLE II-5 A comparison of first and second neighbour atomic
force constants obtained from fits to the alkali
metals. (Units are dynes/cm.)

(1) yagoex) @) k(9ex) 3 mb(12°%)

Li (98°K)
1XX 2355 1178 786 669
1XY 2489 1320 895 788
2XX 631 472 432 397
2YY 50 104 29 22

(1) Smith et al. (1968)
(2) Woods et al. (1962)

(3) Cowley et al. (1966)
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mass, being about 0.52 for Li and 0.61 for Rb, for the zone
boundary [zz0]L mode.

The second trend, towards a larger ratio of second to
first neighbour AFC's in the heavier metals, may be seen
directly in the dispersion curves for the [007] direction.

The splitting of the L and T branches is largely determined

by the AFC 2XX: a nearest neighbour only force model predicts
degenerate L and T branches. This splitting is somewhat larger
in the heavier metals, and the value of 7 at the crossover

of the two branches (or for which they begin to overlap) be-
comes larger as Z increases. The increased splitting of the

L and T branches in the heavier alkali metals is to be expected
from an examination of the ratio (Cll/c44)%' which is equal

to the ratio of the siopes of the two branches at very small

. From Table II-1l, the above ratio is 1.14, 1.19, 1l.25 and
1.29 for Li, Na, K and Rb respectively. The first and

second neighbour AFC's have been used to fit the parameters

of a simple Morse potential (see Section IIIB). The results
are shown in Figure II-8. It will be seen that, as a conse-
quence of trend (b) above, the minimum in the potential moves
nearer to the second neighbour position in the heavier metals.
The second neighbour atoms, at (a,0,0) etc., will execute
relatively large oscillations, and the [00Z]L branch is
expected to be rather anharmonic. In addition the Morse

potential is shallower and less parabolic in the heavier metals.
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(ii) Reciprocal Space Analysis

In the previous subsection, a real space analysis of
the measurements was described. We now consider an analysis
in terms of a potential in reciprocal space. The dynamical
matrix may be written as a sum over reciprocal lattice

vectors G (Eq. I-Cl7):

D@ =é [(G+g)  (G+q) g9 (|Gt+g]) -G Ggo (G) T,

where ¢ (Q) is the Fourier transform of the real space potential
¢(r), whose first and second derivatives are related to the
AFC's of the previous subsection. Cochran (1963) showed how
to extract a function ¢ (Q) from measurements of the normal mode
frequencies in sodium. His method was extended by Cowley et
al. (1966), who analysed the dispersion curves of K and Na in
this way. Blanchard (1969) (see also Blanchard and Varshni
1970) analysed Na, K, and Rb using both methods. Following
Cochran, he first subtracted the Coulomb contributions to the
dynamical matrix, and then obtained an electronic potential
function ¢E(Q).

The present measurements on Rb have been analysed to
obtain the function H(Q) which is defined by

2

$(Q) = S5 T H(Q)
Q

The procedure was exactly that of Cowley et al. (1966). Through
the good offices of Dr. W.J.L. Buyers, extensive use was made
of programmes belonging to the neutron scattering group at

Chalk River, to calculate H(Q) and the real space potential ¢ (r).
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Fits were made to the 12°K and the 120°K measurements,
with and without elastic constants included, and for several
values of the cutoff Qc‘ In Fig. II-9 fits (which include the
elastic constants) are compared for K and Rb, and for Rb at
12 and 120°K. It will be observed that the fits for Rb and K
are similar: the larger fluctuations in peak height in the
case of Rb are a consequence of the smaller body of experimental
data. The fits to Rb at two different temperatures are
very similar, as is expected. A typical fit to the 120°K measure-
ments, using a cutoff of 2x(2m/a), is shown in Fig. II-14.

The form of the function H(Q) is considerably influenced
by the choice of Q-values for which the function is specified.
This is especially true for large Qc’ as is shown on the left
side of Fig. II-10. The symbols indicate the positions at
which the function is sPecified. It will also be observed that
the computed errors increase rapidly as Qc is increased,
since there is then insufficient data to determine H(Q).

On the other hand it is difficult to obtain a good fit if Qc

is too small. On the right side of Fig. II-10 fits with and
without elastic constants are compared, for different values of Qc
Clearly fits with Q. = 1.6 are relatively poor (x2 = 1.6). For
large values of Q. very large changes in peak height may occur
unless the elastic constants are included . in the fit.

Most of the above remarks have been made by Cowley et al.
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(1966) or by Buyers and Cowley (1969), regarding potassium.
In Chapter III we examine the Fourier transforms of

some of these functions, and harmonic and anharmonic force

constants derived therefrom are compared with force constants

obtained by other methods.

(iii) Fundamental Calculations: Comparison with
Experiment

Many authors have calculated dispersion curves for
the alkali metals (see Section IIB). Toya (1958) presented
calculations for Na, and later for K, Rb and Cs (Toya 1959).
The agreement between experiment and these calculations is
considerably poorer for Rb than for Na and K: Toya predicts
a general trend toward smaller values of (w/wp) (where wp
is the plasma frequency), as the mass is increased, whereas
the opposite trend is observed experimentally. Animalu
et al. (1966) obtained curves which are in relatively good
agreement with experiment for Na, K and Rb, but their calcu-
lations for Li were as much as 50% too high. Both Schneider
and Stoll (1966b), and Ho (1968), presented calculations of
phonon frequencies in Rb which are in good agreement with
the measurements*. Direct comparisons with the published

measurements for Rb (Copley et al. 1968) have been made by

*The author is grateful to Dr. T. Schneider and Dr. P. S.
Ho, who kindly sent tables of calculated phonon
frequencies.
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Prakash and Joshi (1969), Price et al. (1970), and Blanchard
and Varshni (1970)T The published frequencies were not
corrected for resolution, and slightly better fits to experiment
can probably be obtained using the corrected frequencies.
For example Price et al. (1970) note that the [zz0]T1l and
the [%%C]A branches are less well predicted by theory than
the others. Corrections to the measurements for resolution
bring them into significantly better agreement with the theore-
tical curves.

Price et al. (1970) used an Ashcroft pseudopotential

(Ashcroft 1966), which is defined by:

vi(ir) = 0 for r < r,

Vi(r)=~ Ze2/r for r > Tpe
They then fitted the measured dispersion curves using various
choices for the dielectric function. The simplest type of

screening is given by the Hartree function (Eq. I-C34). This

function may be written as

egla) =1 + V(g)L{q)
where V{(q) = 4Tre2/q2 and L(g) is the Lindhard function. It
is customary to include the effects of exchange and correla-

tion by writing a generalized dielectric function in the form

TThe author is grateful to Dr. David Price, and to Dr. Varshni,

for sending preprints of these papers.
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VI{g)L(q)
= +
€@ =1+ T E@
where f(q) is a generalized "Hubbard function"., The problem

is to obtain an expression for £(g) which is correct in its
behaviour for all values of g. Various atomic properties
may be fitted to experiment to obtain f(g): each property

is sensitive to f(g) in a different way, so it is not surpri-
sing that functions f{g), obtained from different properties,
are not identical. Conversely a Hubbard function which fits
one property well is unlikely (at the present time at least)
to predict other properties well.

In order to estimate the third and fourth derivatives
of the effective potential in real space, quantities which
are needed to perform the anharmonic calculations in Chapter
III, the present measurements have been compared with calcu-
lations using an Ashcroft potential and the following form

for f(q):

2

1 | ,
flq) = 7[ 2 =]+ with n = q/2kg

n +g

Following the suggestion of Dr. D. W. Taylor*, the quantity
82 was made an adjustable parameter. The only other parameter

is Ipt the cutoff of the Ashcroft potential.

*

The author is very grateful to Dr. Taylor for many useful
discussions, and for the computer programme used in these
calculations,
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Several values of r and several values of 82,

AI

have been tried: good agreement with experiment (x2 = 0.99)

was obtained for two sets of parameters:

2.38 , 8% = 1.1

2
#2 ; ry/a_ = 2.40 , g% = 0.7 .

#1 ; rA/ao

A calculation, using the second set of parameters, is shown
in Fig. II-14,.

The value of 82 may also be determined by requiring
that the long wavelength limiting value of e(q) be con-
sistent with the compressibility of the electron gas. The
formula of Geldart and Vosko (1966) (their equation 5.1) gives
an unrealistic negative compressibility in the case of rubidium,
so that this approach is not acceptable in the present situation.
The idea of varying 82 is therefore very reasonable.

Frequency shifts, corresponding to a 1% increase in
volume, have also been calculated using the above model. The

details of this calculation are given in Section IIIC.

(iv) Constant Frequency Contour Plots

Unsmoothed computer plots of constant frequency con-
tours in the (100) and (110) planes are shown in Figs. II-1l1
and II-12., The dynamical matrix (obtained from 12°K AFC's)
was diagonalized for a mesh of points in each plane, and the
intersection of a particular contour with the line joining

two adjacent mesh points was obtained by linear interpolation.
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(110) plane. The gymmetry points are

indicated.

Every fifth contour is
labelled with the frequency in THz.
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This section of the programme, together with the associated
plotting routine, was obtained from the University Computing
Centre. The polarization vectors in the plane are also
plotted.

The plots for the (100) plane (Fig. II-1l1l) were simply
obtained by sorting the three frequencies at each mesh point
into order of increasing size. This procedure yields conti-
nuous frequency contours and polarization vectors, as shown.
Note in particular the sharp curvature of the contours near
to the [00gz] direction (plots (a) and (c)) and the rapid
change in direction of the polarization vectors near to this
direction. This feature is discussed in Section IIF.

The plots for the (110) plane (Fig. II-12) are more
complicated, because two surfaces cross one another along
the A and F directions (I' to P, and P to H). This feature
is mentioned in Appendix III. By including a few extra test
statements in the frequency contour programme, continuous
plots were obtained as shown. Note again the same type of
behaviour near the [00g] direction as in the plots for the
(100) plane. Another interesting feature is the maximum at
~v(0.20, 0.20, 0.66) in plot (c). This feature is believed
to produce the highest peak in the frequency distribution
of rubidium (see below). Several other features of these
curves will be mentioned in the discussion of resolution ef-

fects in Appendix III.
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(v) Fregquency Distributions

Phonon frequency distributions g(v), at 12 and 120°K,
have been calculated by the method of Gilat and Raubenheimer
(1966), using AFC's from the general force model fits out to
4 and 3 neighbours respectively. The distributions are shown
in Fig. II-13, normalized to the same area: a bin width of
0.0025 THz was employed, and the mesh number.(n, in the notation
of Gilat and Raubenheimer (1966)) was 40. The distributions
are also given in Table II-6.

Several abrupt changes in slope occur in the function
g(v); these "critical points" may be correlated with certain
features of the dispersion relation v = v(g). In the discussion
which follows, it should be noted that the accuracy to which
frequencies are quoted reflects the accuracy of the calculation
of g{v): it does not imply that the model is capable of
predicting experimental fregquencies to such accuracy. It
may be useful to consult the constant frequency plots in
Figs. II-1l1 and II-12, in order to visualize various features
of the dispersion relation. If we consider the 12°K spectrum,
we may readily identify critical points, following Dixon et

al. (1963), at v = 0.343 and 0.947 THz (labelled N, and N2)

1
which result from saddle points in the two transverse branches
at the point (%,%,0). The cutoff at 1.513 THz (N3) corres-
ponds to the maximum in the longitudinal branch at (%,%,0).

The sharp spike at 0.597 THz, labelled Ai, corresponds to a
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TABLE II-6 Phonon frequency distributions for rubidium at (a)
12°K

«00375 .00625 00875 .0112% ,01375 LU1€25 ,31875 ,i2125 ..2375%

.00125

FREQUENCY
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Phonon frequency distributions for rubidium at (b)
(continued)

120°K.

TABLE II-6

L2375

«01e25 401875 .G2125

«00375 .0C625 .00875 01125 .C1375

.00125
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saddle point (two maxima, one minimum) on the [gzz]L, or Al,
branch, at 7 = 0.68: this critical point occurs at very nearly
the same value of ¢ in the four alkali metals which have been
studied.

The principal peak in the 12°K phonon spectrum is
shown in detail in the inset to Fig. II-13. There.are three
distinct discontinuities in slope. The point labelled A;,
at 1.373 THz, results from a saddle point on the [ZzzlL
branch at ¢ = 0.36. The discontinuity at 1.393 THz (H)
cbrresponds to the triply degenerate point (1,0,0). It is
interesting to note that this high symmetry point does not
correspond to the highest peak in g{(v) for Rb at 12°K, nor for
Rb at 120°K, nor for K, whereas the principal peak in the
distribution function for Na is indeed at the frequency of
the point H(1,0,0). The peak marked Z, in the distribution
for Rb at 12°K, occurs at 1.410 THz. It almost certainly
results from a local maximum in the (110) plane at
~(0.20, 0.20, 0.66), which is visible in Fig. II-12. A
similar off-symmetry maximum occurs in K and in Rb at 120°K.

There remains a weak discontinuity at 1.115 THz,
identified in Fig. II-13 by a question mark. It occurs at a
frequency 1-1/2 to 2% lower than that of the point (%,%,%)
labelled P (1.133 THz). A similar discrepancy obtains in both
Na and K. The discontinuity occurs at 2.87 and 1.775 THz,

whereas the point P has frequency 2.905 and 1.799 THz,respec-
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tively. No satisfactory explanation for this behaviour has
been found.

The frequency distribution for Rb at 120°K shows a
general shift to lower frequencies, as expected from the
phonon measurements. The first moment of g(v) is 0.971 and
0.939 THz at 12 and 120°K respectively. The positive moments
of the 12°K distribution are in good agreement with the values
given by Martin (1965) in his analysis of the specific heat
data of Filby and Martin (1965), on the assumption that the
specific heat below about half the Debye temperature is har-
monic. The negative moments of the distribution are a few
per cent smaller than those given by Martin (1965); these
moments are sensitive to the low frequency end of the phonon
spectrum, and therefore to the low frequency phonon measure-
ments, which are the most difficult to correct for the effects
of resolution. The discrepancy is not at all unreasonable
in view of these considerations.

Various thermodynamic properties, such as the entropy
and the heat capacity of the lattice, may be calculated from
the frequency distribution function. Such calculations are
presented in Section IIID, together with numerical estimates
of the principal guasiharmonic and anharmonic corrections to

these quantities.
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(vi) Comparison with Elastic Constants

The limiting slopes of the phonon dispersion curves
at very small g, i.e., very long wavelength, determine the
velocities of sound propagation in this régime. Neutron
measurements give information in the frequency range 101l - 1013
cps, whereas ultrasonic velocity measurements are commonly
made in the range 107 - lO9 cps. It is none the less instruc-
tive to compare measured ultrasonic velocities with the neutron
scattering measurements.

The elastic constants of rubidium have been measured
using the ultrasonic pulse echo method by Roberts and Meister
(1966) and by Gutman and Trivisonno (1967). The former measure-
ments are on average about 15% lower than those of Gutman and
Trivisonno, at 78°K. More recently Pauer (1968) has mea-
sured the pressure derivatives of the elastic constants of
rubidium. His zero pressure measurements at 195°K agree to
within 3% with the results of Gutman and Trivisonno (extra-
polated to the same temperature). The latter measurements have
therefore been used for comparison with the neutron scattering
work.

Gutman and Trivisonno (1967) obtained the elastic
constant Cll:(l) from measurements of the three wave veloci-
ties in the [110] direction, and (2) directly from the longi-

tudinal wave velocity in the [001] direction. The latter

values are about 3% higher at all temperatures, whereas the
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internal consistency of each set of measurements is better
than 1%. Their measurements in the [110] direction alone have
been used for the present comparison.

The straight lines from the points T in Fig. II-4
represent velocities of sound obtained from the elastic con-
stants by interpolation to 120°K. The agreement with the
neutron measurements 1is good for the [00z] and [zz0] directions.
In the tccc] direction the elastic constant lines have larger
errors since the slopes are obtained by combining at least two
measured elastic constants. In view of this the agreement is
again satisfactory. The discrepancies noted by Copley et al.
(1968) result from using the measurements of Roberts and
Meister (1966).

At other temperatures the agreement, between the
ultrasonic work of Gutman and Trivisonno (1967) and the neutron
measurements, is again satisfactory. There is no experimental

evidence for zero sound (Cowley et al. 1968) in rubidium.

(vii) Discussion

In previous sections we have described the measurement
of phonon frequencies in rubidium, and several different
methods of analysis have been explored. We have concentrated
on the harmonic aspects of the lattice dynamics. The
measurements at different temperatures have been independently
analysed within the framework of the harmonic approximation,

and the results of these analyses have then been compared.
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No attempt has been made to examine the shifts in frequency
of different modes as a function of temperature: this topic
is discussed in the following chapter.

Looking at Fig. II-14 it is clear that there is no
particular problem involved in fitting theoretical models to
the dispersion curves of rubidium. The figure shows three
different types of fit to the 1l20°K measurements on Rb. The
pseudopotential calculation is not gquite as good as the
others, but it must be remembered that the modelused
only two adjustable parameters. It should be noted that
no evidence of Kohn anomalies (Kohn 1959) exists for rubidium,
nor is this unexpected: the electron-phonon interaction is
weak in the alkali metals {weakening slightly more as the
atomic mass increases), so that the strength of Kohn anomalies
is very considerably reduced in comparison with a metal such
as lead (Brockhouse et al. 1962).

Since phonon measurements now exist for four alkali
metals, it is instructive to examine the degree of homology
that exists between the vibrations in the different metals.
Mean frequency ratios (R) for different pairs of alkali
metals are given in Table II-7. The standard deviation of an
individual ratio from the mean (c), the average error of a
ratio (estimated from the experimental errors, and denoted
by 6), and the number of ratios (N), are also given. 1In

every case, except for Li/Na ., ¢ is smaller than §, so that
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(within experimental errors) the lattice vibrations are homo-
logous. The values of § given in Table II-7 differ from those
listed by Copley et al. (1968) because an incorrect expression
was used to compute the values given in that paper.

The fifth row of Table II-7 contains frequency ratios
Ro appropriate to 0°K; these were obtained by correcting the
ratios R using the measured temperature dependence of the
elastic constants as a guide.

If the interatomic potentials in the alkali metals
are identical in shape, differing only by a scaling factor
proportional to the lattice constant, then the frequency ratio

may be expressed as (Brockhouse 1959):
<Vv,/vn>= (M a2/M a2)1/2 .
1772 292771°1

On the other hand the Lindemann relation (Mott and Jones 1936)
may be expressed as
a _ 2 25
Vy/vy> = (8hy/8p,) = Ty Myay/Ty,Miar) o
where eDi is the Debye characteristic temperature of metal i,

and T is its melting temperature.

Mi
The above ratios are also given in Table II-7.

In every case the ratios RO and (eDl/eDZ) are close, and lie

between the ratios predicted by the above relations. There

is little to choose between them.

In conclusion, we have seen that the harmonic aspects

of the crystal dynamics of the alkali metals are well understood,
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to the exterit that theory and experiment are in accord.
In addition several systematic trends are observable, as
the mass is increased. 1In the following chapter we shall see
that the situation is not as simple as regards the anharmonic

properties of these metals.

F. THE [00z]L BRANCH

We have already noted that corrections for resolution,

TABLE II-7. Mean frequency ratios, and their errors, for
different pairs of alkali metals. Other ratios
of interest are also given. Values for M,a, TM’
and eD taken from Table II-1.

Li/Na Li/K Li/Rb Na/K Na/Rb K/Rb

2.326 3.831 6.319 1.635 2,742 1.671

R=<vl/v2>

0,028 *0.036 +0.056 +0.004 +0.016 +0,006
o] 0.155 0.189 0.304 0.040 0.119 0.052
$ 0.123 0.205 0.583 0.076 0.151 0.95

N 30 27 29 82 56 78
2,31 3.89 6.14 1.67 2.68 1.60

2.21 3.57 5.64 1.61 2.55 1.58

2,44 4.14 6.79 1.69 2.78 1.64

6D1/6D2 2.26 3.80 6.19 1.68 2.74 1.63

MCMASTER[NWVERSHYIJBRARY
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as well as the occurrence of unwanted spurious peaks, are
important considerations in the analysis of neutron scattering
measurements on rubidium. These topics are discussed further
‘in Appendices II and III. In this section we shall give de-
tailed consideration to the [00z]L branch. Extra peaks were
observed in Constant Q scans of this branch, and for a long
time they defiedc explanation. We first describe the obser-
vations and some initial ideas regarding the origin of the
extra peaks. A consistent explanation is then offered,

and finally we discuss the possibility that such effects may

be observed in other systems.

(1) Observation of Extra Peaks

Several examples of extra peaks observed in constant
Q scans of the [00z]L branch are shown in Figs. II-15 and
II-16. Fig. II-15 shows six scans for ¢ = 0.3 taken under
various sets of conditions. From symmetry considerations, and

because Q is (except for scan (d)) parallel to e

ey the eigen-

vector for the longitudinal mode, we expect to see only one
peak in each scan. From independent measurements of the [00Zz]T
branch, which showed no unusual behaviour, we know that the
frequency of the transverse mode is about 0.57 THz for ¢ = 0.3.
This frequency lies between the two observed peaks in each

scan of Fig. II-15, and we therefore associate the higher
frequency peak with the L mode. Fig, II-16 shows the depen-
dence of the effect on ¢ at 205°K. The sharp rise in the

counts at low frequency, for small g, results from elastic
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incoherent scattering. We note from Fig. II-16 that two
peaks are only observed clearly for ¢ between 0.2 and 0.4,
and in each case the transverse mode frequency lies between
the two observed peaks.

The combined results at 85 and 120°K are shown in part
(a) of Fig. II-17. The two "branches" observed in scans with
Q parallel to g (i.e., longitudinal scans) are labelled L
and L', The 1' "branch" lies about 15% below the transverse
branch. Similar plots at other temperatures indicate that
there is a general trend toward lower freguencies as the
temperature is increased.

It should be remarked that Woods et al. (1962) observed
peaks at lower energy transfer in scans of the [00f]L branch,
and "their energy did not correspond exactly with that of
the transverse branch." Furthermore Smith et al. (1968)
mention that they observed "a number of extraneous peaks in
the phonon spectrum". 1In a note added in proof (and in a
private communication from Dr. H. G. Smith) it is stated that
some low energy peaks in the [00z]L branch remain unexplained.
To the author's knowledge no explanation for this type of

behaviour has yet been advanced.

(ii) Ideas Regarding the Origin of the Extra Peaks

Since the extra peaks described above persist under

a wide variety of experimental conditions, most of the possible
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spurious processes described in Appendix II can be discarded
straightaway. The fact that the peaks are observed for dif-
ferent values of Q, for example, indicates that it is not
the result of a particular combination of wave vectors k,/k',
leading to a Bragg peak. It is also noteworthy that the back-
ground counts do not show structure. The only possibility,
of those listed in Appendix II , is multiple scattering.
However it is difficult to understand why the extra peak
does not occur at (or very near) the frequency of the transverse
mode.,

Extra peaks will result if a specimen éontaining more
than one single crystal is used. A careful examination of
the specimen was therefore undertaken (Appendix I ), and it
was established that only one crystal of sufficient size to
produce observable one-phonon peaks existed in the specimen.
It is in any case difficult to understand why an extra crystal
would proddce extra peaks in only one out of twelve branches.
Furthermore it is noteworthy that the natural lithium crystal
used by Smith et al. (1968) still gave extra peaks in this
branch whereas the isotopic crystal (which was not single) gave
extra peaks in several branches. (The double peaks in the
[22Z]T branch in Li have been explained separately. (See
Appendix I1I),

A tempting explanation for the extra peaks in Rb was

that they resulted from marked anharmonicity in the branch.
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Calculations by Cowley and Cowley (1965) indicate that certain
modes in the alklai halides can have multiply peaked line shapes.
However there was no indication of such line shapes in calcula-
tions by Buyers and Cowley (1969) on potassium.

A radically different idea was put forward by Overhauser
(1970). On the assumption that the ground state of rubidium is
a charge density wave state (see e.g., Overhauser 1968), he
calculated the phonon spectrum of rubidium and was able to pre-
dict extra "longitudinal" modes. This occurs because the
symmetry of the lattice may be lowered to tetragonal by a
charge density wave. There are several objections to this idea,
and it is not believed to be the correct explanation. In the
following paragraphs, we consider experimental details which
are fully able to explain the observations. It has been re-
marked that experimental considerations are more likely to be
the reason for unexpected observations than are major changes

in theory. This seems to be true in the present case.

(iii) The Explanation

It was remarked above that multiple scattering was a
possible explanation, but that a 15% shift in frequency was
difficult to understand. A small shift is possible however,
as a result of finite instrumental resolution. To check
this possibility, an existing computer programme (originally

written by Dr. E. R. Cowley) would have had to be modified to
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allow for multiple scattering, and it was not clear how to
formulate this modification. Fortunately no such changes
were necessary. The programme, which is briefly described in
Appendix III , was initially run without modification, and it
immediately predicted double peaks for the [00Z]L branchl

The source of the extra peak was quickly established.
Fig. II-17, part (b), shows constant frequency contours in a
portion of the (110) plane, which is normal to the (110) scattering
plane: the central line, which is the [001] direction, 1lies
in the (110) plane. The diagram shows the behaviour of the
transverse mode (eigenvector gT) lying in the (110) plane, for
small displacements of g above and below the scattering plane.
Referring now to part (¢) of Fig. II-17, we observe that the
resolution function drops off either side of tﬁe scattering
plane (qz is the component of g normal to the scattering plane).
Furthermore the quantity (g-_e_,I.)2 increases, roughly as shown.
Thus the intensity of scattering by this mode has the indicated
type of behaviour. Referring now to the lower portion of (c),
we see that the dispersion relation for this mode has con-
siderable downward curvature with the result that a peak is
observed at a frequency significantly lower than the value for
q, = 0.

To see why this effect is not observed in other branches,

or in other types of system, we refer first to Figs. II-1l1,
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II-12. It is immediately apparent that, for modes with polari-
zation in the plane, (a) the polarization vector changes direc-
tion rapidly for small displacements of g from the [001] direc-
tion, but only slowly for small displacements from other symmetry
directions, and (b) the curvature of the frequency surfaces
is very much more marked close to the [001] direction. The
rapid change in direction of the polarization vectors results
in a more intense extra mode, and the large curvature leads to
a large shift of the mode.

These two effects are related. For small g we may use
the long wavelength approximation to obtain, using standard

perturbation theory:

2
AwT, _ [cll+clz+zc44 _ (C12+C44) €2 0(64) (11-F1)
o = 5C Tl iz + o=
T 44 44'€117C44) ¢ z
AWy c,,-C 2
—L - (2 (I1I-F2)
" 44
2
bup  Cay  (Cha#C4,) e2 el
o Tl ten ez o (I11-F3)
L 11 119€117C44) ¢ r
2 2(C12+C44)2 &2 4
tan®o = — O(E—) (II-F4)
(C,1-C, 0% 72 4
1144

where the subscripts T' and T" refer to modes polarized in and

normal to the plane; AwL, Aw and AwT" are the changes in

Tl

frequency of the three modes, and o is the change in direction

of the polarization vectors in the plane, when q is changed from
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(0,0,z) to (e,e,z) with € << 7.

We now see that the extra peaks were observed as a
result of relaxed vertical* resolution and the fact that
(Cll—C44), the energy denominator in Egs. (II-F1l, F3 and F4),
is relatively small. The vertical resolution of the instrument
is comparable with that of other instruments (for example
Buyers and Cowley (1969) had 1° and 4° collimation in L9
and k', which is very similar to the collimation of the McMaster
spectrometer, 1.3° and 4°). Thus it is the small difference
and C

between C together with the small size of the

11 44’
reciprocal lattice (Section IIB), which leads to pronounced
extra peaks.

In Fig. II-18 experimental line shapes are compared
with calculation. The experimental curves were obtained
from the actual measurements (Fig. II-16) by subtracting
off the background and the elastic incoherent contribution to
the intensity. The solid curves were calculated using AFC's
appropriate to 205°K,and parameters for the resolution function
as in Appendix III .Somewhat better agreement (shown by
dashed lines) was obtained using slightly poorer vertical

resolution [M = 100 (a/2n)2 : see Appendix III ]. The

33
agreement between theory and experiment is quite good

considering that only one parameter can be varied: the calculated

*
In the present discussion "vertical" means normal to the

scattering plane.
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intensities relative to one another are completely determined,
but the ratio of the experimental intensity scale to the
theoretical intensity scale is arbitrary. The discrepancies be-
tween calculation and experiment, particular for ¢ = 0.3, may
result because no set procedure éxists for subtracting off

the large background from the experimental measurements.

(iv) Discussion

Clearly the above explanation can be tested by examining
the behaviour of a scan as a function of vertical resolution.

Such an experiment was planned in March 1970 but it was aban-

doned because the Rb crystal was no longer useable (see Section

IIC). Instead an experiment on potassium was attempted using a
crystal kindly lent by Dr. R. A. Cowley. The best run, with
and without vertical collimation, is shown in Fig. II-19

(the inset shows the type of lineshape observed by Woods et al.
(1962) in Na). Though the results are by no means conclusive,
there is definite evidence of a low frequency peak in K which
is reduced in intensity when vertical collimation (0.1" in 8"
in the scattered beam) is put in.

No extra peaks were observed in K by Cowley et al. (1966)
because detailed scans were restricted to a frequency range
which did not extend low enough in frequency for the extra
peak to be observed (Dolling 1970).

Let us now consider whether extra peaks are likely to
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show up in experiments on other types of systems, as a result
of a rapid change in direction of the eigenvectors. Two ques-
tions arise: first, under what circumstances do such rapid
changes occur, and second, what type of resolution function is
necessary in order to see an extra peak?

Rapid changes in polarization direction are likely to
occur when two modes have nearly the same frequency. However
such changes can only occur if they are allowed by symmetry.
Referring to either the lower left- or the lower right-hand
side of Fig. II-18 we note that modes polarized parallel to the
x- and y-directions (hereafter designated modes X and Y) can
only interact if g is displaced in the x-direction, from po-
sition 1 to position 4: modes Y and Z can only interact if g
is displaced vertically to position 3. 1In the left-hand
diagram, which represents the measurement of a longitudinal
phonon (mode Y), we see that poor resolution parallel to Q does
not lead to interaction with modes X or Z: however poor
vertical resolution can mix in mode Z. This is exactly the
situation in the [00Z]L branch in the alkali metals. In the
case of a transverse phonon measurement, poor resolution
parallel to Q results in the interaction of the transverse
mode X with mode Y.

The crossing of the L and T2 branches in the [3z0]
direction in an f.c.c. material (see e.g., Svensson et al. 1967)

is a situation where the eigenvectors of the two branches change
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direction rapidly, if g is displaced slightly from the symmetry
direction. The T2 mode is polarized parallel to [001]. It

follows from the above arguments that:

(a) for measurements of the L mode conducted in the (001) scat-
tering plane, poor vertical resolution will result in

strong interaction with the T2 mode;

(b) for measurements of the L mode in the (110) plane, poor

resolution in the plane, normal to Q, has the same effect;

(c) for measurements of the T2 mode in the (110) plane, poor
resolution parallel to Q results in strong interaction with

the L mode.

Furthermore we should note that, though two peaks may
not be observed, considerable shifts may still occur as a result
of interactions with other modes. 1If the energy resolution is
poor the two peaks may not be resolved with the result that the
modes appear to be attracted to one another. Clearly extra
precautions should be taken if measurements are contemplated

where this type of complication is likely to occur.

(v) Phonon Frequencies for the [00z]L Branch

The shift in frequency of the [00z]L modes in Rb, as
a result of relaxed vertical collimation, is easily calculated
for small . The "true" frequencies lie 0.02 to 0.03 THz

below the measured frequencies in Rb, for ¢ < 0.5. For g > 5
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the type of correction is not clear. Assuming the extra peak
is still resolved, but too weak to be separated from the back-
ground, the shift Ap is still positive: on the other hand Ar
is negative if we assume that the extra peak is not resolved.
An additional complication is that the neutron groups
for the upper part of the branch were very weak., This is re-
flected in the large errors assigned to these measurements.
For this reason the shifts are not significant since they are
at most *0.02 THz whereas the errors are of order + 0.04 THz.
The [00z]L branch in the alkali metals is believed to
be more anharmonic than the other branches. Glyde and Cowley
(1970) predict a crossover in this direction for b.c.c. He3
when cubic anharmonicity is taken into account. A crossover
was observed in lithium by Smith et al. (1968), and Brockhouse
(1968) suggested that it resulted from anharmonicity. Further-
more Millington (1969) found evidence of anharmonicity in the
[00z]L branch in an analysis of his own room temperature time-
of-flight measurements on sodium. It may well be that the
weak, poorly defined, groups observed in Rb result from consi-
derable anharmonic damping of these modes.
Wallace (1968) has noticed a "kink" in the measured
[00%]L branch in Na and K, for 7 between 0.6 and 0.7. There
is also slight evidence of such behaviour in Rb, but the present

results are by no means conclusive.



CHAPTER III

ANHARMONIC PROPERTIES

A. THEORY OF ANHARMONICITY

(i) Introduction

The harmonic approximation, which has been described

in previous sections, is evidently a good approximation,
capable of explaining many of the observed dynamical properties
of real crystals. On the other hand, the approximation pre-
dicts a number of results which are not satisfied in real crystals.
Among these predictions, (a) there is no thermal expansion,
(b) the adiabatic and isothermal elastic constants are equal,
and independent of temperature and pressure, and (c) the heat
capacity tends to a constant value at high temperatures. It
is clear that the theory must be extended to allow for depar-
tures from harmonicity.

In thié section we shall first discuss the quasi-
harmonic theory, in which the phonon frequencies are assumed
to be volume-dependent, but independent of temperature at
constant volume. We shall then consider the principal effects
of intrinsic anharmonicity, which we may think of as anhar-
monicity at constant volume, with particular reference to the
lattice vibrations. Finally, we take a brief look at the idea

of effective frequency distributions, and the anharmonic con-

117
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tributions to thermodynamic functions.
The discussion that follows is generally restricted to

monatomic cubic lattices, and in particular the b.c.c. lattice.

(ii) The Quasiharmonic Approximation

In this subsection we shall determine the volume de-
pendence of the normal mode frequencies in terms of the
anharmonic atomic force constants (AAFC's) ¢asy(22'2"). This
will enable us to calculate the thermal expansion.

We first demonstrate that the AAFC's are non-zero.
Owing to the rotational invariance condition (Leibfried 1965,
Born and Huang 1954), these quantities are related to both the
second and third derivatives, V" and V'" of the potential
V(r). Clearly V" is non-zero, and therefore at least some of
the anharmonic coefficients are non-zero. Furthermore Leibfried
(1965) states that, in the case of an f.c.c.nearest neighbour

central force model, setting V'" = V"' = 0 leads to the un-

expected result that the thermal expansion is negative.

We now derive the shift in frequency, due to thermal
strain, of the mode A = (gj). This problem has been treated
by Maradudin (1962). The frequency of the mode A, in the

harmonic approximation, is given by (Egs. I-C10, I-Cll):

no? (0) = 5 e  (\eg (M) I' 9o (20") lexpliger (2'4)}-1]. (III-A1)
aB 2!

We consider an isotropic strain n = Aa/a, which we
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shall regard below as a thermal strain (rather than as a
mechanical strain). The atomic positions are changed by amounts

nr(%), and the AFC ¢a8(22') becomes

¢a8(21') +n lEY ¢aBY(R£'2")rY(Z").

The change in frequency of the mode )\ is therefore obtained
from Eq. (III-Al) as:
2mw (A)Aw(r) = n = ea(k)es(k) z

¢
"y (III-AZ2)

(22'2")rY(2")[exp{ig-g(z'z)}—l]

The Grilineisen parameter for the mode, given by

d an w()) a dw (A\)
y(h) = SR WAL - o (III-A3)
d an V 3w()) da

is simply obtained from Equation (III-A2).
In the absence of external stresses, the condition which
determines n is that the Helmholtz free energy F be a minimum*,

We write (Born and Huang 1954)

F =-kg T n 2 (III-A4)
where the partition function, Z, is a sum over all possible
configurations & of the system:

2 = 3 exp(-E,/k_.T)
2 voB

In the harmonic approximation, the energy of configuration E2

is the sum of two terms,

*Throughout this thesis the term "free energy" signifies the
Helmholtz free energy, and is denoted by F.


http:P,.,,o(Jl.JI
http:Pae(Jl.JI
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E, = ¢ + I [n()+=1w(), (ITI-A5)
s o N 2 ,

where ¢_ = @(B)lo. A particular configuration % may be ex-
pressed as a set of occupation numbers n(A), and therefore

we obtain
o0

7 = eXP(—Qo/kBT)g nEO exp{—[n(k)+%}ﬁw(k)/kBT}

which gives after some manipulations

F=9¢ + k_T 3 an(2 sinh x()\)], (III-A6)
o} B N
where
x()) =<ﬁw()\)/2kBT (III-A7)
Furthermore the entropy is
s = - 3E =k, ¢ {x(\coth x(A)-2n[2 sinh x(1)1}, (ITI-A8)
A

the heat capacity is

c_ =171 38| - k., T {xz(x)cosech2 x(\) 1, (IT1-A9)
v T v B N

and the internal energy 1is

E=F+TS = 6_+k_T I x(A)coth x(A\)=¢_+ I 4w (A) [A (\)+3], (III-Al0)
o "B X o

where n()\) is the Bose-Einstein population factor*,

R0 = {explw(A)/kgT] - 1375,

*
Note that elsewhere in this thesis the Bose-Einstein population
factor is simply denoted by n(X) or n(gj).
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The derivative of F with respect to thermal strain

n is, to lowest order (Ludwig 1967):

oF ) oF dw (X)

e T i ooy G

) . (ITI-A11)

The second term may be written in terms of Gruneisen parameters
v (A). The change in ¢O with thermal strain is related to its
change with mechanical strain, and for cubic crystals the
appropriate equation is

0
§ﬁ~ = BBVW ’

where B is the bulk modulus. We now put 9F/3n equal to zero,
to Obtain

3BVn - % L Hw(r)coth x(A\)y(h) = 0 (ITI-A12)
A

Comparing Egs. (III-Al0) and (III-Al2) we see that

I EO)Y (V) (ITI-A13)

n:——:l—-
VB

and the thermal expansion coefficient, a = dn/dT, is given by

= -

o = §v§ i C(X>Y(X). (III Al4)

In these expressions E()) and C()\) are respectively the energy
and heat capacity of the mode X.

Various measured thermodynamic quantities (e.g., heat

capacity, Debye-Waller factor) are sometimes expressed in terms

of equivalent Debye temperatures 6§ (see Barron et al. (1966),
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84.1, for a helpful discussion). The corresponding freguency

w = kBS/h defines the cutoff of the Debye frequency distri-
bution which correctly predicts the thermodynamic quantity.

If the actual frequency distribution were a Debye distribution,
6 would be independent of temperature T, and the same for every
property. In practice 6 varies with T and depends on the
property.

In the limits of low and high temperature, various Debye
temperatures may be written as expansions involving Debye
frequencies wD(n): these are defined as the cutoff of the
Debye distribution which has the same n'th moment as the true
distribution. For example the leading term in the high tempera-
ture expansion for ec(T), the Debye temperature characteristic

of the heat capacity, is

Lim 6°(T) = A (2) kg

Trco
It is sometimes desirable to correct Debye 6's for
the effect of thermal expansion, in order to facilitate comparison
with theory. The corrections involve bulk GriUneisen parameters

y{(n), which are defined by

Iy (Vw0
vy{n) = A T (ITI-Al5)
Zow (A
A

For example high temperature values of ec(V,T) may be correc-

ted to the fixed volume Vo by writing (Barron et al. 1964)
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y (2)
v
= ()
(V’ T) VO

c
9 (VO,T)

eC

We now have two types of GrUneisen parameter, y(A) and y(n),
in addition to the well known thermodynamic function y(V,T) which

is given by
30LVBT 3aVBS
y(V,T) = = = - (III-Al6)
v p

where BT and BS are the isothermal and adiabatic bulk moduli,
and CV and Cp are heat capacities at constant volume and con-
stant pressure respectively.

Clearly a calculation of the mode y's can give impor-
tant information about the quasiharmonic corrections to physi-

cal qguantities. Such a calculation is presented in Section

IIIC.

(iii) Intrinsic Anharmonicity

There are several indications that the correction for
thermal expansion, outlined above, is not always sufficient to
account for differences between experimental measurements and
the appropriate harmonic theory.

For example, an analysis by Newsham (1966) of heat
capacity data for silicon and germanium shows that , at high
temperatures, there is an extra contribution to the heat ca-

4 cals/°K2/gm

pacity, of the form AT, with A ~ 3 x 10~
atom; this is attributed to anharmonicity. Furthermore,

measurements of the elastic constants of several materials
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(Cu, Al, CuZn, KC1l and NaCl), as a function of both temperature
and pressure, enabled Lazarus (1949) to calculate the intrinsic
temperature dependence (i.e. the temperature dependence at
constant volume) of the elastic constants. It was found com-
parable to the temperature dependence at constant pressure:

in the gquasiharmonic approximation there is no intrinsic
dependence on temperature.

We shall see below that anharmonicity introduces in-
teractions between the previously independent normal modes of a
crystal. These interactions largely account for thermal
resistivity; furthermore, finite phonon lifetimes, which
result from phonon-phonon interactions, show up as an increase
in the natural width of a phonon with temperature, first observed
in aluminium by Larsson et al. (1961l) and in lead by Brockhouse
et al. (1961).

A useful qualitative discussion of anharmonicity has
been given by Barron (1965a). Let us consider the potential
energy of a system, and write it as

¢ = ¢y F 9y * 0, 7 ¢4t byt e (I11-217)

The terms in this equation bear a one-to-one correspondence

to the terms in Eq. (I-Cl). The term ¢4 vanishes (Section IC),
and in the harmonic approximation terms beyond ¢, are neglected:
the normal mode frequencies are determined by the coefficients

¢d8(££'), which enter ¢2. To allow for thermal expansion
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we go to the quasiharmonic approximation, which gives shifts
in the normal mode frequencies in terms of ¢3.

To the next order in (u/r) (the ratio of a vibrational
amplitude to the interatomic spacing), there are terms in
|¢3]2 and in ¢4. These are the terms which concern us here.
When they are included, the normal modes are no longer inde-
pendent. Instead they have finite lifetimes, and in general a
shift in frequency will occur. Because ¢2, ¢3 and ¢4 are
functions of the (temperature dependent) amplitudes, the widths
and shifts will also be dependent on temperature.

Maradudin and Fein (1962) have shown that the delta
functions in Eq. (I-D1l) become "pseudo-Lorentzian" functions,
when anharmonic interactions are introduced:

r'(%,Q)
[x{w (V) +a (A, Q) 11%+T2 (A, Q)

TS [Qrw(r)] - (ITI-A18)

Here, and in later equations, i denotes the energy transfer.
The shift A and width T are seen to be functions of @&, so that
the line shape can have structure. However, if A and T are
small compared with w, as is often the case, the line shape
is approximately Lorentzian. The half width at half height is
then I', and the shift of the peak is A.

A variety of techniques has been employed to study
anharmonic effects in solids. Cowley (1963,1968) gives
references to much of the earlier work. The mathematics is

long and involved, and will not be reproduced here. Instead we
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shall very briefly examine the differences between the harmonic
and the anharmonic derivations of the scattering cross section.

Invboth cases the starting point is Van Hove's equation
(I-p4). The displacements are written in terms of phonon
operators, using Eq. (I-C24), and a time independent Debye-
Waller factor is then separated out. The anharmonic Debye-
Waller factor (Maradudin and Flinn 1963) retains terms to all
powers of u2. A one phonon scattering cross section, which may
be defined as the contribution to S(Q,w) proportional to Q2,

is then written as

2
_ 2TT2N‘H [_Q__'E_(X)]
S,(Q,w) = T exp[—2W]§ 0 A(Q-g)J(Q) (II1I-A19)

where the spectral function J(Q) is

o

J(Q) = exp (1Qt)<<A(X,t)A(-1,0)>>dt (ITI-A20)

-

In the harmonic approximation the spectral function
is simply obtained because the only time dependence in A(A,t)
is of the form exp(iwt). It is given below in Eq. (III-A29).

The anharmonic case is quite different. The modes
are no longer independent of each other, and the displacement
of an atom, due to a particular mode, is no longer a simple
periodic function of time. On the other hand the probability
of creation or annihilation of a phonon is essentially inde-
pendent of time: that is, the phonon operators are not

functions of time. In the present treatment, however, we regard
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the modes as non interacting, so that the operators assume a
complicated time dependent form. This is the Heisenberg

picture. The advantage of this approach is that normal mode

frequencies and eigenvectors, determined using a harmonic

model, may be inserted into the final anharmonic expressions.

The evaluation of the spectral function, J(Q), for
an anharmonic crystal, is a formidable task. Cowley (1963)

shows that it may be written as

2
- A ALQ
I (9)=[1-exp (-#/k 1) ] s S (DT — (III-A21)
[T (X)) =Q7+2w (M)A (X, 2) ] T+4w ™ (M) T 7 (X, Q)
and that, to lowest non-vanishing order, the function A(X,Q)
is given by
A(x,Q) = AT(X) + A3(A,Q) + A4(A) ' (III-A22)
where the thermal shift AT(A) has already been given,
ay(n,q) = - L8 v 2 III-A2
3 = - = I VLA ) [TR(Q) (III-A23)
Al,kz
A, (X)) = 12 T OV(A,=2, Xy ,=2;)2n,+1) (ITI-A24)
4 x \ AT AN LA B ket Rt
1
and T'(),Q) is given by
rx,q) = i%—t z V(A,Al,xz)lzsm) (III-A25)
A AqA
172
with
R(Q) = (n,+n.+1) [ (w 4w +2) T + (0w +w.-0) %]
1772 17927 p 17927 p
+ (n,-n.;) [(w,-w -Q)_l + (w,-w +Q)—l] (I1T-A26)
2 71 172 P 172 P
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and

s(qQ) = (nl+n2+l)[6(w1+w2—ﬂ)—6(wl+w2+9)]
(nz—nl)[S(wl—wZ-Q)—G(wl—w2+Q)]. (III-227)

In the above expressions ni and wy refer to the mode ki' and
the subscript p indicates the principal value. The coefficients
VX, Ays2y) and VI(X, =X, Ay,-%y) are explained in Section IIIB.
Note that there is only one contribution to I', and
that the cubic terms (A3 and T') are functions of Q, whereas
the quartic shift (A4) is not. More generally by, T and 8,
are functions of X = (gj) and A= (g, 3'): wave vector is
conserved, but the polarization of the mode may be altered
by the anharmonic interaction. However the off diagonal contri-
butions, such as A3(xx',n), with A'#)\, are identically zero
for the symmetry directions which we shall consider (see e.g.
Buyers and Cowley 1969).
In the harmonic approximation A and T vanish. Using

the representation

§(x) = % Lim [—f—], (III-A28)
e+0 X" +¢
we find that
Tuag () = [l-exp (<B2/k ™)1 aw )76 [w? (1) -2
= 2n{ln(M)+116[w (M) -Q1+n () 8 [w(A)+Q]}. (III-229)

Substituting Eg. (III-A29) into Eq. (III-Al9), we get back

the harmonic expression, Eq. (I-D11l).
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Calculations of cubic shifts and widths, and
quartic shifts, are reported in Section IIIC. We now pass to
a consideration of the thermodynamic properties of an anharmonic

crystal,

(iv) Effective Freguency Distributions

In the harmonic approximation, various thermodynamic
properties of a system (such as the free energy and the entropy)
may be expressed as a sum of individual contributions from each
normal mode (see e.g. Egs. III-A6, III-A8). 1In each of these
expressions the summand only depends on (gj) through the fre-
quency of the mode. The thermodynamic properties may there-

fore be written:

— . 1w _
F = <I>O + kBT 4n{2 sinh m]g(w)dw (ITII-A30)
f
E ot Hw . Huw
= e an e, m ettt d ITI-A31
S = kg [2kBT coth 2kgT 2n(2 sinh 2kB@]g(w) w )

where the frequency distribution is normalized to 3N, and N is
the number of atoms in the solid.

The above expressions are valid in the quasiharmonic
approximation, in which case the frequency distribution, g(w),
is volume dependent.

Anharmonic contributions to thermodynamic properties
may be calculated using perturbation theory. The principal

contributions to the free energy are (Leibfried and Ludwig 1961)
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__ & 2 -
AF, = - g \ Az,A [V A0 5) | N4 (ww,wg) (III-A32)
172”3
AF4 = 3 V(Al,-kl,kz,-kz)N4(wlw2) (ITI-A33)
AqA
172
where
(n.+1) (n,+n,+1)+n.n n, (n.+n.+1l)-n.n
1 2 3 23 17273 23
N, (W waw,) = +3 (III-A34)
37717273 wl+w2+w3 -w1+w2+w3
and
N4(wlw2) = (2nl+l)(2n2+l). (ITI-A35)

Anharmonic contributions to the entropy and to the
heat capacity are obtained by differentiating the above ex-
pressions with respect to temperature,

Comparing Egs. (III-A24) and (III-A33), we have

AF4 = %-Z (2n+l)A4(A). (ITI-A36)

Cowley (1963) states that, "after some manipulation" an exact-
ly similar expression may be obtained for AF3 in terms of
A3 (A) = A;(h,w). Overton (1968) has shown how to obtain this
result.

By differentiating Eq. (III-A30) we may obtain an ex-
pression for the change in free energy AF resulting from changes
A(A) in the normal mode frequencies:

A A
This equation correctly gives the change in the free

energy resulting from thermal expansion, with A()X) denoting the
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corresponding change in frequency of the mode A. However
the change in free energy resulting from anharmonicity is
only predicted correctly by Eg. (III-A37) when A(X) is

replaced by %[A3(X)+A4(x)], rather than by [A3(k)+A4(k)].

The quasiharmonic phonon density of states

gqh(w) = I 6[wqh(x)—w] (III-A38)
A

is simply corrected for anharmonicity by writing

g =z sl )+a, M)+, ) -ul. (I1I-A39)
% .
If this expression is substituted into Eq. (III-A30), the
anharmonic contribution to F is too large by a factor of two.
In order to obtain the correct anharmonic free energy, we must
use the following "effective frequency distribution for the

free energy":

gFlw) = 2 sleT () +3 (a5 (N +a, (1) -u] (III-A40)
\

The quartic anharmonic entropy is obtained as

oAF

4
AS = e e—
4 3T v
2dn2

ALA

172
=-a:1 ¥ A0 (III-A41)
) aT 4 ‘ '
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We see that the gquantity (th+AS4)is correctly pre-
dicted by substituting (wqh+A4) for w in Eg. (III-A31) for
the entropy; this is also true of the cubic anharmonic term
As3(Barron 1965b). Thus the'"effective frequency distribution

for the entropy" is simply
g% (w) = glw).

The situation regarding the heat capacity is somewhat more
complicated. We shall return to this subject in our discus-

sion of thermodynamic properties in Section IIID.
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B. THE ANHARMONIC POTENTIAL

(i) Definition

In the previous section, the guantities V(k,kl,xz) and

VIX,=Ar A -)A;) were introduced. They are related to the third

1'
and fourth derivatives of the real space potential in the
following manner.

The first two anharmonic terms in the expansion of

the total potential energy, Eq. (I-Cl), are

— l ] n ] n
¢, = z I ¢aBY(22 2 )ua(z)ue(z )uY(z )

L a
'8
2’“‘Y
— l 1 n " 1 " T
% =37 T Gapyo WL u (ug (2N (R ag (1)
L' B
Q," ,Y
2""0'

Writing ua(l) in terms of phonon operators (Eg. I-C24),

we obtain

®3 = ) i \ V(X1A2X3)A(K1)A(XZ)A(X3)
17273

®4 = ) AZA ) V(X1A2A3A4)A(A1)A(X2)A(X3)A(A4)r
1727374

where
1 ; _ﬁ3 }%
VA A A,) = = ) o (22'2")
172737 6 gy wow.Nom> gatgr OBY

17273 a8y

x ea(Xl)eB(Az)eY(A3)exp{i[gl-£(2)+gz-£(2')

+ 93 r(eM]}a(gy+g,+gs) (III-B1)
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and
4 3
1 4
V(A AaAA,) = { } T
172734 27 16wlw2w3%N4m4 LLTgrg
o.Byo
x %BYO(M'%"Q'")ea('xl)es(Az)eY(x3)e0(>\4)

X exp{l[gl.-r;(z)-{-gz.-{(gl)+g3.£(£n)+g4.£(2|u)]}

x A(gl+92+33+g4). (III-B2)

In both the above expressions, the sum over £ may be simply
replaced by an additional factor N multiplying the right hand
side. Note too that we are only interested in V(Al,-kl,kz,—xz)
so that the A function in the second expression is automatically
satisfied.

In the previous section expressions were given for the
principal contributions to the shift and width of a mode resulting
from anharmonicity. These expressions contain the anharmonic

force constants ¢aBY(£2'2") and ¢ (22'2"2'"). 1In the re-

aByo
mainder of this section we describe several methods which

have been used to estimate these gquantities.

(ii) Estimates of the Anharmonic Atomic Force Constants

We assume a two body central potential V(r). The
AAFC's are related to the derivatives of this potential (see
Eg. AIV-1). In this work we perform calculations out to second
nearest neighbours, so that we are interested in knowing
0 wa

the values of Vi and Vi for i = 1 and 2, where i denotes the

shell of neighbours. It seems reasonable to work with only
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first and second neighbours,since we have already seen that
the harmonic frequencies are well fitted by considering forces

out to third or fourth neighbours.

(a) Volume Dependence of the Elastic Constants

Probably the most direct experimental information con-
cerning the third derivatives of the interatomic potential in
rubidium comes from experimental measurements of the elastic
constants as a function of pressure. Pauer (1968) measured
the change in the transit time of an ultrasonic pulse with
pressure for the three modes propagating in the [110] direction

at 195°K. Using the relation

v; = -Bpd(&nt)/dP, (ITII-B3)

where Y; is the long wavelength limit of the Grineisen parameter

of the mode i, and BT is the isothermal bulk modulus, which

Pauer gives as 26.3 kbar at 195°K he obtained

Y(L) = 1.37 % 0.04
y(T2) = 1.06 & 0.01
v(Tl) = 1.20 * 0.04 (III-B4)

For a central force model we may relate these quantities
to the first three derivatives of the potential, in the fol-

lowing way. We first write

mwz(g) = T Qn[l-cos(an/qmax)]
n
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where @n are interplanar force constants. These may be expressed

in terms of AFC's (Brockhouse et al. 1968b), and hence in terms
"

of the derivatives Vi, V. For very small g, we obtain, con-

sidering first and second neighbours only,

]

2 2
2 _ m q _8- n g_ ] n _
wr = - 3 {3r + 3Vt 3 v, + 2v2} (III-B5a)
™nax 1 2
2 2 s8vy! " '
W= T LAyt A (III-B5b)
T2 T o 2 3r; T 31T, 2
qmax
2 néq? L4 ot L2 "
wpy = —a— {2V, + =V, + 2v,] (III-B5c)
2m Y ) 2
qmax

where rl(= vY3a/2), and r2(=a), are the first and second neighbour

distances respectively.

Now _ _dinw _ _ 1 d(znwz)
Y= 7 v & da

so that (after some manipulations) we have

n
[(4r1/3)V1 +r,V, +281+a2—82]

[(4r./3)V. +88. +4a . -48.]
_ 1 1 1 2 2
YTZ = 24[041""32] (ITI-B6b)

tn
) [r,v, +68,+0,-8,]
6[20,-28;+0,¥8,]

Yy (III-B6c)

Using the 12°K and 120°K AFC's given in Table II-4,
the following values are respectively obtained:

from Eq. (III-B6b)

rn
(4r,/3)V; =(-25380%170) and (-23730%150) dynes/cm.
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from Eq. (III-B6cC)

r,v, = (-6410%45) and (~6490%55) dynes/cm.

2
from Eq. (III-Bé6a)

e 0

(4r1/3)Vl + r2V2 = (-31800£210) and (-30200:210) dynes/cm.

Though these results are not completely compatible, they give
one a good idea of the sign and magnitude of the third deriva-
tives.

In particular, note from Eg. (III-B6c) that Yoy is
very sensitive to rZV;"' This means that this derivative is
rather well determined by this method.

It is interesting to note that the normal mode frequen-
cies in Rb are predicted to better than 10% using a three force
constant model (1XX, 1XY and 2XX nonzero), with the force
constants determined from the elastic constants. This indi-
cates that the anharmonic force constants derived above are

fairly realistic. The harmonic and anharmonic force constants

derived from elastic constant data are listed in Table III-1.

{b) The Morse Potential

The AFC's, which are obtained from an analysis of the
phonon dispersion curves (Section IIE) may be related to the
first and second derivatives of an interatomic potential (see
Eq. I-C5). In order to obtain higher derivatives, the first

and second derivatives, for first and second neighbours, have
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been fitted to a Morse potential:

—Za(r—ro) —a(r—ro)
vVir) = ele - 2e 1, (III-B7)

whose n'th derivative is given by

-2u(r—ro) -a(r—ro)

n—le -e ].

vli(r) = 2(-a)"e[2

The best values of the parameters are, at 12 and 120°K res-

pectively:
o = 0.779 and 0.700 A”!
r, = 5.256 and 5.341 R
€ = 746 and 850 ergs. (III-B8)

Using these parameters, the derivatives listea in Table III-1
were obtained.

These parameters differ markedly from those obtained by
Girifalco and Weizer (1959), by fitting to the energy of sub-
limation, the compressibility, and the lattice constant. On

the other hand Bruno (1970) obtained the following values:

o = 0.692a° %
r = 5.345A
o)
= 875 ergs,

by fitting to the energy of vacancy formation, the compressi-
bility, and the lattice constant. The latter values are in
good agreement with those obtained by fitting to the AFC's.

The derivatives of the Morse potentials at 12 and 120°K

are listed in Table III-1.
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(c) Foq;ier Transform of the "Total Potential"
in Reciprocal Space

The Fourier transform of the "total" potential ¢(Q),
introduced in Section IIE, is the real space potential whose
first and second derivatives give the AFC's. Values for the
AFC's and for the third and fourth derivatives, for three
different fits to the 12°K measurements are listed in Table
III-1. These quantities were obtained using a programme which
was kindly made available by Dr. W.J.L. Buyers at Chalk River.
The sets of values labelled 1, 2 and 3 in Table III-1 corres-
pond to the functions shown on the left side of Fig. II-9 ,
with cutoffs of 1.6, 2.0 and 2.4 respectively. Clearly #2

and #3 are very similar, but #1 predicts a very different value

nw
l L]
Blanchard (1969) analysed the dispersion curves of Rb

for V

using the method of Cowley et al. He obtained an electronic
potential function ¢E(Q) which he then transformed into real
space and added to the real space Coulomb potential. The
derivatives of this potential* have been evaluated by numerical
differentiation. They are given in Table III-1l. These values
are comparatively inaccurate, since V(r) was only specified

at intervals of 0.2 i, It is satisfying to note that the

first and second derivatives are in reasonable agreement with

those derived from the AFC analysis (Section IIE).

*
The author is very grateful to Dr. Blanchard for sending
numerical values of the real space potential.
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(d) Effective Potentials Obtained from Pseudo-
potentials

Ho (1968) calculated phonon dispersion curves for the
alkali metals using a Heine-Abarenkov pseudopotential, and a
modified Hubbard function to allow for exchange and corre-
lation effects. The parameters of his calculation were fitted
to measured elastic contents. Ho also presented effective
real space potentials which were obtained by Fourier trans-
forming the pseudopotential, and adding in the Coulomb potential,
ez/r. In every case the minimum in the effective potential
lies close to the second neighbour position.

Blanchard (1969) fitted the parameters of a model,
based on a Bardeen (1937) pseudopotential and an exchange and
correlation term of his own, to the measured frequencies for
Na, K, and Rb. He then obtained interatomic potentials which
are similar in shape to those of Ho (1968).

In Section IIE, calculations of phonon frequencies
using a simple Ashcroft potential were reported. The two
pseudopotentials which gave the best agreement with experiment
have been Fourier transformed to yield interatomic potentials.

The integral we require is

-]

_ & 2 sin(gr)
Vo) = =5 | v (@)g® 345 dq,

2ﬂ2
o}
where 2
_ _ 4rme 2 elg)-1
Ve(q) = >— COS (qrA) (D)

Qg
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Since Ve(q) dies away rapidly at large g, the function
was arbitrarily set equal to zero after the second zero
(g r, 2 1.5m). At very small g, Ve(q) goes as —4ne2/q2, so that
it cancels the Coulomb potential Vc(q). To avoid infinities at

g=0, we write

Vir) = Vc(r)w+ Ve(r). )
2 . .
_ 2e sin (gr) Q 2 sin{qgr)
= Tr qr) - 4l + — | Vo l@a® gy da
o A o
e2 2e2 sinx Q de
= —— - - dx + V_(g)g sin(gr)dqg
r TY 2n2r e
o

The first integral is simply

BT R TS Bt )
TT IR
so that for rA << 1, we need retain only the first term. The
second integral was evaluated using Filon's method (Frdberg
1965). The derivatives of V(r) were subsequently obtained by

numerical differentiation. They are listed in Table III-1l.

(1ii) Choice of Values

" wn nn

2 . .
The values of rlvl ’ r2V2 , and r2V2 , listed in Table

ITII-1, show a spread of roughly = 20%, so that the "preferred

values", given at the bottom of the table, can be used with

some confidence. The third derivatives, in particular r2V2 '

were chosen to reproduce the measured long wavelength Grlineisen

parameters of Pauer (1968). This is discussed in Section IIIC.
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The derivative rivy shows considerably more spread. Neglec-
ting values obtained from the Morse potential, which is
probably the poorest of the methods described above, and the
value obtained from "total potential" #1, the spread is about
+20%,

We come now to the calculation of shifts and widths,
and in Section IIID to the calculation of thermodynamic proper-

ties.



TABLE III-1 The first four derivatives of the interatomic potential in rubidium

for 1lst and 2nd neighbours, evaluated by several different methods

(see text). The units are dynes/cm throughout.

- [ 1 u [1] [ ] (1} 2 " i 2 "nin
rllVl r V2 Vl V2 erl r2V2 erl r2V2
) 12°K ~19,000 -6400
Elastic Constants 5 op  (108) (0) (1783) (354) -17,800 -6500
. 12°K  -130 35 2243 389 -21,600 -6450 180,000 69,000
Morse Potential  j,00x  _7124 31 2089 447 -18,200 -6200 140,000 60,000
"Total Potential" #1 -130 51 2142 447 -13,500 -8990 21,000 60,000
42 ~146 20 2231 388 -17,900 -7590 81,000 76,000
43 ~145 30 2243 385 -17,900 -7510 72,000 77,000
Ashcroft Potential #1 -155 18 2100 375 -16,500 -7200 86,000 66,000
42 ~120 42 2150 425 -17,000 -7400 87,000 67,000
Blanchard ~133 34 2040 408 -15,000 -8000 68,000 57,000
Harmonic AFC's  12°K  -118 22 2244 397 - - - -
120°K  -122 17 2090 454 - - - -
Preferred Values ~118 22 2244 397 -17,000 -6250 80,000 70,000

EVT
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C. CALCULATIONS OF PHONON FREQUENCY SHIFTS AND WIDTHS

In this Section we present calculations of the effects
of thermal expansion and intrinsic anharmonicity on the fre-
quency and width of phonons in rubidium.

Equations for the various quantities have been given
in Section IIIA. These expressions are very considerably
simplified in Appendix IV. In that appendix, the particular
case of an axially symmetric potential is considered, and
the symmetry of the b.c.c. lattice is fully exploited. The
final expressions obtained in Appendix IV are derived for
first and second nearest neighbours.

In Section IIIB we have considered various methods of
calculating the anharmonic atomic force constants. The
preferred values listed in Table III-1 were used in the
present calculations.

We consider first the quasiharmonic shifts, resulting

from thermal expansion,

(1) Thermal Expansion

Grlineisen parameters have been calculated,for g along
the five major symmetry directions in Rb. Comparing Egs.

(III-A3) and (AIV-Bl) it is clear that

-1

y(gj) = ——— L e (gjle,(gj)f (q)
3mw™ (g])
- _ Ia
3mw? (g3)
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where I is given by Egq. (AIV-C3). Results for the [00z] and
[zz0] directions are shown in Fig., III-1l. The solid lines
represent values calculated using the preferred values for the
third derivativés. It will be observed that the agreement between
calculation and experiment (Pauer 1968), for long wavelength
modes in the [zz0] direction, is quite good. The dotted and

dashed lines indicate the effects of increasing |r1Vl | and
lrzvéul respectively, by 10%. Note that certain modes are
only sensitive to one of these quantities. For example the
[00z]T and the [zz0]T2 modes are independent of rzvé” . On
the other hand the [zz0]Tl mode is very sensitive to this

quantity (but independent of r,Vy ), as was mentioned in Section

IIIB. This means r2V2 can be rather reliably obtained from
the elastic constant work.

Complete results, for all five symmetry directions,
are shown in Fig. III-2 as solid lines. The dashed 1lines
represent calculations based on an Ashcroft model (Section IIE
(iii)). Phonon frequencies were calculated for two volumes
differing by 1%, and values of y(gj) were then trivially
obtained. This procedure is related to that of Wallace (1968),
who obtained his results by differentiating the dynamical
matrix. The behaviour of the Tl branch in Rb is probably
a result of the finite difference method of calculation which

was employed with the Ashcroft potential. The present

calculations compare guite well with those of Wallace (1968)
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for Na and K. Coulthard (1970) has also examined the effects
of volume changes in his calculations of phonons in Na, Al
and Pb.
The thermal strain n, and the ratio (a/B8), where B
is the compressibility, are shown in Fig. III-3. These curves
were obtained by summing over 14 points in the IBZ. Identical
results,to within 0.2%, were obtained by summing over 70 points
in the IBZ. The "experimental values", shown in Fig. III-3,
were obtained by using values of o and B respectively due to
Hackspill (1911) and Swenson (1955). The isothermal compres-
sibility has been measured by Swenson (1955) (see Table II-1)
and by Bridgman (1942, 1948), by static methods. Rice (1965)
used the shock-wave method to obtain the adiabatic compressi-
bility, and this quantity may also be obtained from measure-
ments of elastic constants (Gutman and Trivisonno 1967). Ginell
and Quigley (1965) analysed the work of Swenson and of
Bridgman, and concluded that both sets of data are good, al-
though some of the earlier measurements (Bridgman 1942) must
be regarded with suspicion. Swenson's low temperature value
was used to obtain the thermal strain curve shown in Fig. III-3.
The experimental thermal expansion coefficient is not
well known. The situation has been summarized by Kelly and
Pearson (1955). Early macroscopic measurements (Hackspill
6 °K_1

°k™L. 1In view of this large uncer-

1911) ,gave o = 90 X 10° , but X-ray measurements favour

a value nearer 66 x 10 °
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tainty in the experimental numbers, no useful comments
can be made regarding the adequacy of the present calculation
of (a/R).
Thermal shifts for individual modes (gj) are obtained
from y(gj) and from the change in thermal strain with temperature.

The results are discussed in a later subsection.

(11) Quartic Shifts

The quartic shifts A4(A) were calculated using Eqg.
(AIV-C6). The sum over g, converged rapidly as the density
of points in the IBZ was increased. Shifts calculated with
70 and 204 points in the IBZ (Mn = 10 and 15 respectively)
differed by <0.5%. The results, for the three major symmetry
directions, are shown in Fig. III-4. The effect of changing
the fourth derivatives is also illustrated. Note that the
quartic shifts for the [zz0]Tl branch are independent of
rivi", and for the [00z]T and [zz0)T2 branches the shifts are

9

independent of r2V2 .  An analogous situation was found in

the case of the thermal shifts. Note in particular the strong

dependence on rgvgu of the quartic shift for the symmetry
point H.

The temperature dependence of the quartic shift of the
mode at H is shown in Fig. III-4. The behaviour of the other
quartic shifts is similar.

Using values for the derivatives of the interatomic

potential in potassium, kindly supplied by Dr. G. Dolling,
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quartic shifts at 299°K have been calculated and are shown

in Fig. III-5. The shifts calculated by Buyers and Cowley
(1969) are also shown. The present calculations used deriva-
tives appropriate to a potential having a cutoff of 2.0,
whereas Buyers and Cowley used a cutoff of 1.6. In view of
this difference, the agreement between the two calculations
is not bad: in particular the shape of the curves, and the
signs of the shifts, are the same, with the exception of

the [zz0]L and [zzz]L branches (the latter at small g). By
adjusting the derivatives within reasonable limits, considerably
improved agreement can be achieved. Note that very large
values of A4(g) for the [Zz0]Tl branch (more than 50% of v(q)
itself) are predicted by both the real space and the reci-
procal space calculations.

(iii) Cubic Shifts and Widths

We have already noted that A3(X,Q) and T'(x,Q) are
considerably more complicated quantities to calculate than
AT(X) and A4(A). There are several complications. In the
first place, A3 and I' are functions of ), so that an extra
"do loop" is involved in the computations. Secondly, the
calculation for a general mode A involves a sum over the
whole zone, whereas A4 only regquires a sum over the irreducible
1/48th of the zone. In this work we restrict our attention to

the high symmetry directions, 1in which case sums over smaller

fractions of the whole zone are sufficient (Appendix IV, Section E).
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The most troublesome computational problem is the
representation of the Cauchy principal values and the delta
functions which appear in the expressionsfor'AB(A,Q) and T'(x,Q).
Maradudin et al. (1962) discuss this problem, and suggest
that the principal value and the delta function be written
as series in Legendre polynomials. In this work we have used
the simpler representation (Maradudin and Fein 1962):

lim

1 . _ 1 -
'}z)p - imé (X) = c+0+ (F-i_e)' (III Cl)

(
The choice of ¢ is dictated by conflicting requirements. To
obtain a faithful representation, e must be very small; on
the other hand € must be larger than the smallest increment
in x which results from the use of a finite mesh of points in g
space (Maradudin et al. 1962). This point has also been
discussed by Bohlin and HOgberg (1968). The separation of
values of Q@ for which the function is calculated (designated
AQ) is also important.

To get an idea of suitable values for ¢ and Mn (the
mesh number, defined in Appendix IV), let us consider the
frequency distribution function (Eq. III-A38), with the above
representation for §(x). Fig. III-6 shows calculations of
g(Vv) using three different values of e, and three values of
Mn' For comparison, consult Fig. II-13 which shows an
accurate calculation of this function. 1In Fig. III-6 we see
that, for a particular value of &, an increase in Mn tends

to dampen the wiggles in the function. For smaller values
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of €, it is necessary to go to larger values of Mn (and
therefore longer computing times) in order to remove the
wiggles, but the end result is considerably closer to the "true"
function, which is shown in Fig. II-13. Further tests indicate
that AQ should be roughly equal to € for optimum results.
Bohlin and Hogberg (1968) have examined the effects, of changing
e and M_, on the cubic shifts and widths themselves.

The frequency distribution shown in Fig. II-1l3 was
calculated by the method of Gilat and Raubenheimer (1966).
Recently Gilat and Kam (1969) extended this method to include

functions of the form

I(w) =C 3 | F(gi)élu-ulgi)la’y,
J

IBZ
and Gilat and Bohlin (1969) showed how to calculate the cor-

responding principal value function

o C F(g3) 3
S =51 Wt YL

IBZ
This method assumes a knowledge of the derivatives (BF(gj)/(Bqa),

and involves considerable programming to obtain areas of sur-
faces in reciprocal space. To the author's knowledge the method
has not been used to calculate anharmonic properties.

Another method of calculation would be to obtain the
widths by an accurate histogram method. The shifts could then
be obtained utilizing the Kramers-Kronig relations (Pines

and Noziéres 1966). Gilat and Bohlin (1969) have stressed
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the problems involved with this method, and we have not attemp-

ted to use it.

(iv) Results of the Calculations

Lineshapes have been calculated for modes in the three

major symmetry directions. The lineshape is given by

20 (\)T (A, Q)
(w2 () -0%+20 (V) A (0,0) 1 %+4w () T2 (1, Q)

L(x,Q) =

where A()A,2) contains three contributions (Eq. III-A22).
Some examples of lineshapes at 205°K are shown in Fig. III-7.
Clearly they depart from the LorentZzian shape in some cases.
From these plots, widths and shifts have been obtained and
are shown by solid lines in Fig., III-8. The measured shifts,
obtained from Table II-2, are also shown with their error
bars.

The agreement between the theoretical and experimen-
tal shifts is satisfactory in the case of the [00Z]T and
the [{z0]T2 branches. The shifts for the longitudinal direc-
tions are generally underestimated by the theory. 1In the
case of the [00z]L branch the experimental shifts may be
in error because of the additional complication of the "extra
branch" (Section IIF). A large positive shift is predicted
for the [zz0]Tl branch. Though no measurements of this branch
were made at 205°K, the measurements of the zone boundary mode

at lower temperatures indicate that the shift is small and,
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if anything, negative. An analogous situation exists in
potassium (Buyers and Cowley 1969). We shall return to this
aspect of the work in Section IIIE.

It is interesting to note that the theory predicts
an increase in the separation of the L and T branches in the
[00z] direction as the temperature is increased. This behaviour
is manifest in the measurements, as can be seen from the fact
that the ratio of second to first neighbour AFC's increases
with increasing temperature (Section IIE(i)).

No comparison between theory and experiment has been
made in the case of the widths, because reliable experimental
widths are not available. The problem of extracting reliable
anharmonic widths is considerable, and in the present case
the errors would be at least as large as the widths themselves.

Further discussion of the shifts and widths in rubidium
will be postponed until after calculations of éhe heat capacity
have been described (Section IIID).

In order to examine the validity of these calculations,
cubic shifts and widths, defined as A[A,w()X)] and T[A,w(A)],
have been computed for potassium at 299°K using the derivatives
supplied by Dr. Dolling. The (somewhat fortuitous) good agree-
ment between this calculation and that of Buyers and Cowley
(1969) is illustrated in Fig. III-9. The sizeable disagreement
for the [zz0]T2 branch is surprising and has not been explained.

Several groups have performed calculations of anharmonic
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phonon frequency shifts and widths. Cowley and Cowley (1965)
calculated these quantities for the [111l] direction in the
alkali halides, using a shell model obtained from experi-
mentally measured phonon frequencies. More recently Buyers
and.Cowley (1969) performed calculations on potassium. Further-
more Bohlin and H6gberg (1968) and HOgberg and Sandstrdm (1969)
have looked at the inert gas solids and at aluminium: these
calculations were based on a Lennard-Jones potential and on
a pseudopotential approach respectively. Koehler et al.
(1970) also computed shifts and widths in aluminium, but they
performed sums in real space, obtaining derivatives from the
Fourier transform of a pseudopotential fitted to phonon
measurements. These latter calculations are therefore similar
in many respects to the work reported here. A major difference
is that the present calculations were made for a body centred
cubic metal. Glyde and Cowley (1970) and Horner (1970)
reported calculations of cubic anharmonic effects in b.c.c.

3He, and find them to be relatively large.
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D. THERMODYNAMIC PROPERTIES

Harmonic expressions for the free energy and the en-
tropy,in terms of g{w), have been given in Egs. (III-A30) and
(III-A31). The heat capacity is simply given by (cf. Eq.

III-A9)

Ho 2 2, H
c, = kg J (7EET) cosech (iiﬁf)g(w)dw. (II1I-D1)

In order to calculate the true entropy and heat
capacity, including both harmonic and anharmonic contributions,
several approaches are possible.

(1) One may first calculate normal mode frequencies in the

harmonic approximation, and from them the harmonic entropy

Sh, and heat capacity Ch. The three shifts AT' A3 and A4

for each mode may then be calculated, and from them the

corresponding quantities AST, AS, and AS etc. are ob-

3 4

tained. (We shall discuss the difference between (ACV)T

and (ACP)T below.)

(2) Given a model with volume dependent parameﬁers, one may
first calculate normal mode frequencies in the quasi-
harmonic approximation as a function of volume. All

as functions

that remains then is to calculate A. and A

3 4
of volume, and hence the changes in S and C resulting

from anharmonicity.

(3) Using a temperature dependent frequency distribution, ob-
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tained from measurements of phonon frequencies at
different temperatures, the total entropy may be calcu-
lated direétly. The heat capacity is then obtained by
differentiation. The procedure adopted by Miiller (1969)
(see also Miiller and Brockhouse 1970) is closely related

to this method.

Cowley and Cowley (1966) adopted method (1) above to
calculate thermodynamic properties of KBr and NalI. The har-
monic g(w) was essentially obtained by taking the frequency
distribution calculated from measurements of phonon frequen-
cies at 90°K, and correcting it to 0°K for the effect of
thermal expansion. On the other hand Cowley (1970) has used
method (2) to make more detailed computations of various
properties of the alkali halides. Owing to the very large
degree of cancellation between the cubic and quartic contri-
butions to these properties, and because the resultant an-
harmonic contribution is sensitive to volume changes, the
two methods give dissimilar results. Method (2) is felt to
be more realistic.

In the present calculations we have concentrated on
method (l). The harmonic frequencies were obtained from
AFC's fitted to the 12°K measurements on Rb. They therefore
include the shift resulting from zero point motion, plus a
very small shift appropriate to the temperature of the measure-

ments, The latter shift has been neglected in the present work.
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Let us now consider the various contributions to the
thermodynamic properties. Expressions for the harmonic con-
tributions have already been given (Egs. III-A31, III-D1l).
They were calculated using the frequency distribution at 12°K,
shown in Fig. II-13., In the next three subsections we
consider the remaining contributions to the anharmonic proper-
ties. The results of the calculations are evaluated in the

final subsection.

(1) Quasiharmonic Contribution

For the free energy we have (using Eq. III-A37),

_ 1l
AFT =X i (n + 7)AT(A).
1 AT(A)
Now y(A) = - W OOOT so that we obtain
AF;, = = 3n Z EM)y (X))
A
2
= - 9VBn“. (III-D2)

For the entropy we have

AS = =K I n AT()\)I
A

where the prime indicates differentiation with respect to T.

It follows that

AST = 9VBna. (ITI-D3)

The change in CV is obtained as

(ACV)T = -AT i n AT(A)

=3n ZTC (A)y(r) (III-D4)
A
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To obtain (ACP)T we must include an extra term, since
the shift AT(A) ig a function of T if the volume is not held

constant. We then have

(ACp)T = (ACV)T - T i n AT(A)

(cf. Cowley and Cowley 1966).

Now . a
by (V) = = Fp [3000YOON]

= - 3w())y(A\)a + higher order terms.

Therefore
1
(Acp)T - (ACV)T = 3ATa § n w(x)y ()
= 9VBa’T (III-D5)
This is the well known thermodynamic relation for Cp—Cv
(Zemansky 1957).
The above guantities are trivially obtained, once
o and n have been calculated (Section IIIC). The exception

is (AC which is easily calculated by modifying the ther-

V)T'
mal expansion programme to do the appropriate sum.

As with the thermal strain calculation in Section IIIC,
the 0°K compressibility value of Swenson (1955) was used for
these calculations. The temperature dependence of (ACV)T and
of (ACP)T - (ACV)T is shown in Fig. III-10. Note that the
former quantity tends to zero at high temperatures. This is

because in the gquasiharmonic approximation, where no interac-

tions between modes occur, the high temperature limit for Cv
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The guasiharmonic and anharmonic contri-

butions to the heat capacity. The conver-
gence of the sums is also indicated.
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is simply 3NkB,regardless of the frequencies of the phonons.

(ii) Quartic Contribution

Expressions for AF4 and AS4, in terms of the quartic
shifts A4(A), have been given in Egs. (III-A36) and (III-A4l).

The gquartic heat capacity is given by

d(As,)
8q =T 3T -
_ _ _ _ l [1] [] 1
= -24T % V(Al, Al,Az, Az)[(nl+§)n2 + nn,
Ao

11 1
=-TH % n2A4(A2)—24T I nin,

- o V(Al,—kl,kz—xz)
2 172

These quantities have been calculated using an extended
version of the programme which calculates quartic shifts (Section
ITIIC). The convergence of the sums is illustrated (for the
case of AC4) in Fig. III-10. As more wave vectors are included,
]AC4] increases monotonically, and qguickly saturates. A sum
over 40 wave vectors in the IBZ is sufficient to obtain
numbers to an accuracy of 1%,

The temperature dependence of AC4 is also illustrated
in Fig. III-10. It is negative, and at high temperatures it 1is

about 7% smaller in magnitude than the contribution resulting

from thermal strain.

(iii) Cubic Contribution

The cubic contribution to the free energy is given

by Eq. (III-A32). The expression may be written as a sum over
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cubic shifts analogous to Eq. (III-A36). The cubic shifts,
in Section IIIC above, were obtained using a programme which
was specialized to treat the three principal symmetry direc-
tions only, whereas shifts for all values of gq are required
in the present case. In addition it is important to opti-
mize the speed of this type of programme, so a separate pro-
gramme, named FREE3, was written to calculate cubic contributions
to the thermodynamic properties., The details of this programme
are given in Appendix V.

The convergence of the sums is illustrated in Fig.

III-10. The quantity AC., is shown as a function of the number

3
of wavevectors g5 in the full zone. Unlike the situation with

AC the sum to give AC3 oscillates, but again the convergence

4!
is rapid. The temperature dependence of AC 4 is also shown
in Fig. III-10. It is almost identical in size, but opposite
in sign, to AC4. The resultant anharmonic heat capacity is
therefore very small. We shall discuss this further below.

(iv) The Experimental Heat Capacity

The most reliable measurements of the heat capacity
of rubidium are those of Filby and Martin (1965). More
recent measurements by Martin (1970), for temperatures below
3°K, are the most accurate for this temperature range. In order
to obtain suitable numbers for comparison with calculation,
we have taken the constant pressure (Cp) measurements of Filby

and Martin (1965), and we have subtracted (a) an electronic
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contribution,

c_ =y =6.25 x 107

T cal/°K/gm atom
using the value of y obtained by Martin (1970), and (b) a

lattice vacancy formation contribution,

Coae = (6.79x10%/7%) exp(-3.63x10°/T) cal/°K/gn atom

as given by Martin (1965). At 300°K, Ce = 0.19 and Coac = 0.42

cal/°K/gm atom: at 200°K however Ce = 0,13 and Cvac = 0.002

cal/°K/gm atom. The remaining heat capacity is the lattice

Both C_ and C, are shown in Fig., III-11,.

heat capacity CQ. P 9

(v) Comparison of Theory and Experiment

In the upper half of Fig. III-11, the solid line shows
the harmonic lattice heat capacity which was calculated using
Eq. (III-D1) and the 12°K g(w) presented in Fig. II-13. The
dashed line shows the total lattice heat capacity, calculated
by a method similar to that of Miiller and Brockhouse (1970).
We shall return to this below.

The lower half of Fig. III-11 shows the difference
between various experimental and calculated heat capacities
and the calculated harmonic value. The dot-dash line shows
the sum of the quasiharmonic and anharmonic heat capacities.
It is essentially the same as the gquasiharmonic contribution
alone, since the anharmonic terms are found to cancel out.

Clearly there is a discrepancy between the calculated
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Fig. III-11 The heat capacity of rubidium, and the
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the harmonic value (see text).
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and experimental lattice heat capacities. Assuming that the
experimental values are correct, and that the computer pro-
grammes are working properly, it appears that the quasihar-
monic and/or the anharmonic contributions to Cz are too small.
We shall consider the two possibilities in turn.

At high temperatures the quasiharmonic contribution
to C, is essentially the (Cp-CV) correction, Eg. (III-DS).
This may well be underestimated, by several per cent at room
temperature, because 0°K values for the compressibility and
the atomic volume have been used throughout: note however

that these two quantities change in the same way with tempera-

ture, so that the correction is small. Filby and Martin (1965)

used Hackspill's (1911) macroscopic value of o = 90 x 10_6 deg—l,
to obtain (Cp-CV) = 0.70 cal/°K/gm atom at 290°K, The present
6

calculations give o = 65 x 10 deg-l, and (Cp-CV) = 0.40

cal/°K/gm atom at that temperature. This value for o is in
reasonable agreement with microscopic (diffraction) measure-
ments. In this work no comparison is made with the CV values
of Filby and Martin (1965).

It is harder to evaluate the accuracy of the calculations

of AC, and AC,. There are no new adjustable parameters in

3 4

AC but AC involves the fourth derivatives of the potential.

3’ 4
We have already noted that the quartic shifts for the [7Z0]T1l
branch were unusually large. It appears that a theory which

predicts smaller shifts for this branch will also predict a
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net positive anharmonic contribution to C We will return

0"
to this in Section IIIE.

To the author's knowledge, this work represents the
first calculation of the anharmohnic heat capacity of a metal
using a realistic potential: the early work of Keller and Wallace
(1962) , based on a Lennard-Jones potential, predicts a large
negative anharmonic contribution to Cz, which is clearly in
disagreement with experiment. Apart from the work of Cowley
and Cowley (1966) on alkali halides, recent calculations of
anharmonic thermodynamic quantities have been devoted to the
inert gas solids (see e.g. Klein et al 1969).

The dashed lines in Fig. III-1l1l represent a calculation

of the total lattice heat capacity CR(T) using a method similar

to that of Miiller and Brockhouse (1970). Their equation [8]
may be written
. Ymax
TG (T,To) x2ex
Cu(T) = kp{l ~ —gy—} g(v,T ) =S~ dv
L B G T,TO o (ex—l)2
o
where x = (hv/kBT)G(T,TO);g(v,TO) is the frequency distribution

at T = To’ and G(T,To) is the mean ratio of the frequencies

at temperatures T and To'

v(g,3,T)
G(T, T ) = < - > .
o vlg,J,To5 q.]
Experimental ratios, for T = 85, 120 and 205°K, and

T, = 12°K, are given in Table III-2: the quantities o, § and N
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are explained in Section IIE(vii). The ratios have been

fitted to a function of the form

C
[exp (6/T)-1]

and the result is shown in Fig. III-12. This function has
the correct behaviour at low temperatures, and it gives a
reasonable fit to the data.

The results of this calculation are in fair agree-
ment with experiment; this indicates that the measured fre-
quency shifts in rubidium are consistent with the measured
anharmonic heat capacity, but it says nothing about the origin

of these effects.
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TABLE III-2, Mean frequency ratios, and their errors, for
rubidium at 85, 120 and 205°K relative to 12°K.

T (°K) 85 120 205
<v(T)/v(12°K)> 0.972 + 0,004 0.965 + 0.006 0.907 + 0.006
o : 0.021 0.034 0.027
8 0.058 0.057 0.055
N 28 36 21

TEMPERATURE (°K)

o 100 200 300

o L
E
O
0.9t
G(-r. o) '1_ 0.032
[exp(esx T) - 1]

Fig., III-12. Mean frequency ratios for rubidium at 85, 120 and
205°K, relative to 0°K. The line shows a fit to
the points. The difference between the frequencies
at 0 and 12°K has been neglected.
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E. CONCLUSIONS

In Sections IIIC and IIID we have looked at calcu-
lations of the guasiharmonic and anharmonic contributions, to
lowest order, to the vibrational modes and the heat capacity
in rubidium. To a large extent the calculations account for
the observed frequency shifts, and there is no reason to
suppose this will not be the case with the widths, when such
measurements become available for comparison with theory. The
discrepancies which exist may result from uncertainties in
the third and, to a larger extent, the fourth derivatives of the
potential, which are required for this calculation. Another
possibility is that the calculations would be improved if the
sums over neighbours were extended to more distant shells.
The agreement between the present (real space) calculations
and the reciprocal space calculations of Buyers and Cowley
(1969) indicates that this is unlikely to be very important.

In view of the very large cancellation between the
cubic and quartic contributions to the heat capacity, it is
possible that a calculation based on method (2) of Section
ITID would yield superior results. Koehler et al (1970)
calculated shifts and widths in aluminium using this method.

The large positive shifts calculated for the [7z0])T1
branch (Section IIIC) are not observed experimentally, either
in Rb or in K. If we assume a possible 20% uncertainty

(which is probably pessimistic) in each contribution to the
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calculated shifts, then the calculations are not in disagree-
ment with experiment. On the other hand, the fact that the
present calculations compare well with those of Buyers and
Cowley (1969), indicates that there may be a real difference.
It is possible that higher order terms in the anharmonic
expansion must be considered. Since this is a very time-
consuming, complicated task, and since even higher derivatives
of the interatomic potential are required, it is felt that
such a calculation should only be attempted when more accurate
experimental numbers are available for comparison with theory.
It is also possible that a calculation to higher order will
yield values for the anharmonic heat capacity in better agree-
ment with experiment.

There is clearly plenty of room for improvement
in the experimental determination and the theoretical calcu-
lation of anharmonic effects in the simple metals. No doubt
the next few years will see increased activity in this important

and exciting field.
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APPENDIX I

THE LATTICE SPACING OF RUBIDIUM, AND A
DETAILED EXAMINATION OF THE LARGE RUBIDIUM CRYSTAL

A., THE LATTICE SPACING OF RUBIDIUM

Several workers have measured the lattice spacing
of rubidium by x-ray methods: Pearson (1958) summarizes
the available data and remarks that "the lattice spacings
appear to be somewhat uncertain". The x-ray measurements
are shown in Figure AI-1l. To the author's knowledge the
only macroscopic measurements of the thermal expansion co-
efficient of Rb, apart from those of Kelly and Pearson (1955),
who obtained very variable results, are due to Hackspill (1911)

6 ox~1

and Deuss (1911), both of whom obtained o = 90 x 10~
in the range 0 - 30°C.

In this appendix, neutron diffraction measurements
of the lattice spacing of Rb at several temperatures are
reported. The neutron method has the advantage that the
beam "sees" the whole crystal whereas, because of high
absorption, x-rays are scattered by a very thin region near
the surface of the crystal (v 0.1 mm thick for Rb). This is
particularly relevant to the work of Kelly and Pearson (1955),
who noted that the alkali metal tended to stick to its glass

container. This can produce undesirable strains in the

surface region. Furthermore any surface contamination (such
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as oxide or hydroxide) is of more consequence in x-ray work.

Measurements were initially made using the McMaster
(E2) spectrometer at Chalk River, operated as a diffractometer
(Hallman and Brockhouse 1969). Subsequent analysis of these
results suggested that the temperature of the specimen had
not been properly determined, so further experiments were
performed using the triple-axis spectrometer at the McMaster
reactor with a much improved method of measuring the tempera-
ture. Since rubidium has a low Debye temperature (v~ 56°K), the
elastic scattering intensity (for all but the lowest index
reflections) drops rapidly with increasing temperature. The
experiments at the low flux McMaster reactor were therefore
restricted to the lower temperatures, and the room temperature
result obtained using the much higher flux of the Chalk River
reactor was retained.

The method was essentially that of Ng et al (1967).
The instrumental parameters are given in Table AI-1l. Vertical
Soller collimators were employed, with the indicated length
and slit separation. Poorer resolution had to be tolerated
for the experiment at McMaster, because of the low beam
intensity. For maximum resolution a large scattering angle
(¢) is desirable. On the other hand the Debye-Waller factor
restricts one to low index reflections, particularly at the
higher temperatures. For example, the (440) reflection is

roughly 35 times weaker than the (330) reflection, at room
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temperature. Kelly and Pearson (1955) were only able to

obtain reflections out to ¢ = 60° at this temperature. Another
complication is the necessity of avoiding peaks from the
aluminium container: since the lattice spacings of Al and

Rb are very nearly in the ratio 1:v2, this is a severe limi-
tation.

Measurements were made of the (330) and (330) reflec-
tions (¢ = 110° to 115°) in a small (1" diam. by 2" high)
crystal of rubidium. The specimen contained two crystals,
which gave reflections with intensities in the approximate
ratio 3:1, about 0.4° wide and separated by about 1.5°, but
this did not complicate the measurements. The spectrometer
was calibrated by measuring reflections in powders of copper
and germanium, and in single crystals of copper, germanium
and silicon. The temperature of the rubidium crystal was
monitored using copper-constantan thermocouples at each end
of the specimen. The thermocouple wires were fed through a
small hole in the top of the cryostat, sealed with a high
vacuum wax, to avoid introducing extra junctions at this
point.

The results are presented in Table AI-2 and in Fig.
AI-1. They are clearly in good agreement with the measure-
ments of Kelly and Pearson (1955). The present measurements
do not fall on a straight line, which is the behaviour
predicted by the simple gquasiharmonic theory except at low

temperatures (cf., Fig. III-3). In view of this, it would be
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well worth while to perform further measurements over the
full temperature range, in order to determine the detailed

behaviour of the lattice spacing as a function of temperature.

TABLE AI-1l. Instrumental parameters for the lattice spacing
measurements. The mosaic spreads are denoted

by n.

Experiment 1 2
Spectrometer E2 (Chalk River) McMaster Reactor

(triple-axis) (triple-axis)
Wavelength 2.268 A 2.207 A
Monochromator Cu(220);n=20" Ccu(200);n=20"
Analyser Cu(220);n=20" Cu(220) ;n=20"
Collimation
(k, and k') 0.05" in 8" 0.1" in 8"

TABLE AI-2. Results of the lattice spacing measurements.

Temperature (°K) 78 197 303
{(z 1°K)
o
Lattice spacing (A) 5.609 5.655 5.7035

(£ 0.001 R)
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B. A DETAILED EXAMINATION OF THE LARGE RUBIDIUM CRYSTAL

In order to check that the large (1-1/2x3") crystal
of rubidium was indeed single, in connection with the observations
described in Section IIF, a series of Yy rocking curves was run
for different tilt angles ¥x. The x drive shaft of a commercial
two-circle x-ray goniometer was fitted with a motor, cam and
microswitch assembly similar to those used to control the other
angles on the McMaster spectrometers. The crystal was mounted
on the goniometer head, and measurements were made at room
temperature using the triple-axis spectrometer at McMaster,
operated as a diffractometer with a wavelength of 1l.41 i. The
scattering angle was fixed at 20.2°, the value appropriate
to the (110) plane spacing. Because of the large Debye-
Waller factor of Rb at room temperature, examination of higher
index reflections would have taken a prohibitively long time.

With no Soller collimators in the beam path, the
crystal was tilted about the [001]) axis (Fig. AI-2), through 90°
in steps of 2.5°. At each setting of the tilt ¥, the crystal
was rocked through 180° about the vertical axis between
(0,0,vY2) and (0,0,-v2). In this way one quarter of the spherical
scattering surface was scanned, bounded by the planes (100)
and (010).

The results are presented in Fig. AI-2. As expected,
1+ (4 x 1/2) = 3 [110] reflections are observed. The peak

intensity of these reflections was typically 25,000 counts.



Fig. AI-2

Constant intensity contours for the
large crystal of rubidium, as a
function of Y and x (see diagram top
right). Successive contours corres-
pond to 200, 300, 400, 1000 and

10,000 counts in the main diagram, and
to 200, 400, €00, 800, N/2, 1500 and
2000 counts in the inset at bottom
right: N is the number of counts at
the peak height. The resolution func-
tion is indicated in each case by a
half intensity contour labelled Ge
(germanium) .
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The half peak intensity contour for a (111) reflection from a
(relatively) perfect germanium crystal is included in Fig. AI-2
to indicate the resolution of the experiment.

The (220) reflection in rubidium, and a (220) reflec-
tion from the germanium crystal (which occurs at very nearly
the same scattering angle), were examined with 1/10" in 8"
horizontal Soller slit collimators (to improve the resolution
in ¥X), in the incident and scattered beams. The results are
shown in the inset to Fig. AI-2.

It is clear from this work that (at the time of the
experiment, March 1969) the crystal was indeed single. The
comparatively small ratio of signal to background occurs because
no Soller collimators were used. The increase in background for
|| > 45° occurred because the x motor assembly, as well as

the goniometer circle, were partially in the neutron beam.
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APPENDIX IT
SPURION - A COMPUTER PROGRAMME WHICH SEARCHES FOR
SPURIOUS NEUTRON SCATTERING PROCESSES
It was mentioned in Section IID that a number of
constant Q scans in rubidium exhibited structure in addition to
the expected one-phonon peak. Initial attempts to explain these
observations were only moderately successful. A computer pro-
gramme, called SPURION, was therefore written by the author.
With this programme, a systematic search for possible spurious
processes is made. 1In the present context a spurious process
includes any process other than the intended one-phonon scat-
tering process. Depending on its cross section, a spurious
process may or may not result in an observable spurious peak,
or "spurion". The programme indicates which spurious processes
can occur for a particular setting of the spectrometer: the
user then decides whether these processes explain, both guali-
tatively and at least semi-quantitatively, the observations.
Fig. AII-1 shows a simplified flowchart of the programme.
The master card contains information common to a series of
constant Q scans, including the (principal) incident frequency
Vol and the lattice constant of the specimen. Given this
information, the other components of the incident beam, with

frequency Vor and wave vector EoI (I>1) are calculated. These
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Fig. AII-1l., A simplified flowchart of the programme
SPURION.
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include the (331) and (331) contaminants (see Section IE)

and higher order components. A phonon card is then read. This
card contains details of a particular scan, i.e., the com-
ponents of Q, the range of the scan, and the number of steps.

For each point (N) on the scan, vi and the angles ¢, ¥ , and

6, are calculated, and the higher order components with frequency

A

v& and wave vector E& (J>1), which can be Bragg reflected by

the analyser, are generated.

For each voI(including v tests 1 to 3 below are

ol) [}
performed. In each case, a message is printed if a possible

process is detected.

Test 1. Bragg reflection in specimen, into analyser

Consider the vector diagram at the top of Fig. AII-2.
This represents a particular spectrometer setting charac-
terized by a wave vector transfer Q, and a positive energy
transfer (since |k'| < |k ). If the line AB is produced
to C, such that AC=0A, the vector diagram OAC represents an
elastic scattering process. If C lies close to a reciprocal
lattice point R, as in the diagram (the dashed circle re-
presents schematically the instrumental resolution), then
the incident beam may be Bragg reflected into the analyser.
Part of this beam will be incoherently scattered by the

analyser into both detectors. There will therefore be an
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Figure AII-2.

Illustrating the production of a peak in a
constant scan, resulting from Bragg re-
flection in the specimen and incoherent
scattering in the analyser.
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increase in the count rate in both counters. 1In the pro-

gramme, the vector

$ = kor = lkoqln

where n' is a unit vector in the direction of k', is
formed. If S is approximately equal to a reciprocal
lattice vector, a Bragg reflection can occur in the speci-
men and an appropriate message is printed out. Scans

(c) and (d) in Fig. II-3 show this type of behaviour.

The sharp upward rise in (c) is a (332) reflection in the
specimen off the second order (i.e.,the 440) component of
the incident beam. The situation is illustrated in the

lower part of Fig. AII-2.

Test 2. "Powder" peak off aluminium container

If ¢/2 is approximately equal to the Bragg angle for
reflection from a set of planes in the aluminium can
which encloses the specimen, a "powder" peak may be ob-
served. The peaks in both counters in scans (a) and (b),
Fig. II-3, are believed to result from (200) reflections
in the can. The effect is more pronounced in the 12°K
result since there is an extra can in the beam when the

helium cryostat is used (Fig. II-1).

Test 3. Reflections into the background counter

The angle between the two counters in the analyser is

approximately 40°. If the background counter is at the
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smaller scattering angle (case 1 in Fig. AII-3), it may
be in a position to pick up neutrons which pass straight
through the analyser. This can occur over a range of
about 10° in eA.

In both case 1 and case 2 (Fig. AII-3), there is
the possibility that neutrons will be Bragg reflected
by the analyser into the background counter. Since the
collimation between the analyser and the counter is poor,
the scattering plane can be at an angle anywhere between
about 15° and 25° to the (200) plane. The programme
searches for (420) and (311) Bragg reflections into the
counter , since these are the most likely ones to occur.

Fig. AII-3 illustrates a peak in the background
counter attributed to elastic incoherent scattering off
the specimen and a (311) reflection in the analyser.
Though such a reflection lies out of the plane, it is
still allowed: the active section of the detector sub-
tends an angle of at least 30° to the analyser crystal.
Real and reciprocal space diagrams of the situation in
the analyser are shown at the bottom of Fig. AII-3. Note
that the reciprocal space diagram shows the projection
on to the (100) plane, so that the reciprocal lattice
point (311) becomes (310).

For each Vo (including vol)' and furthermore for

I

each v& (including vi), three further tests are performed. As
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CASE | CASE 2

S : SIGNAL DETECTOR
B: BACKGROUND DETECTOR

150}~
T X Q=(1.3,1.3,07)
° el
w» 100 °
-
2
) [ )
8 o0
S0 ® SIGNAL
o BACKGROUND
| 1 1
1.0 1.5

FREQUENCY (THZ)

200 PLANES 3ll PLANES

°
220

020°

Figure AII-3. Illustrating the way an increase in counting
rate can occur in the background detector

" alone.
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before, appropriate messages are printed when a possible

spurious process is found.

Test 4. 1Incoherent elastic process in the specimen

If Vol v&, an incoherent elastic process in the
specimen can occur, leading to a peak in the signal counter.
Scan (e) (Fig. II-3) shows a very large peak due to
incoherent elastic scattering of the (331) contaminant

(frequency 12.49 THz) and then second order (i.e. 400)

reflection in the analyser.

Test 5. Other phonons

We have seen that there are several contributions to
the incident beam, and furthermore several frequencies
(corresponding to different order reflections) can be de-
tected by coherent scattering from the analyser. With

each combination we associate an energy transfer

]
hvpy = h (Vo = Vi)

and a wave vector transfer

QIJ = l(-oI - EJ *

It has already been remarked (Section IE) that one-
phonon peaks are only observed for certain spectrometer
settings. There are four angular variables, but five
equations to be satisfied: conservation of energy and

wave vector (i.e. the above equations with I=J=1), and
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in addition the phonon dispersion relation - all these
must be satisfied.

It can happen that the energy and wave vector trans-
fer hv and Qry7 for I and/or J greater than 1, satisfy
the dispersion relation. In this case a peak could be
observed in the signal counter

In the programme, th and Qg are first evaluated.

J

Using a simple force constant model the 3 frequencies

appropriate to are then found. If one or more of the

Qrg

frequencies is approximately equal to v a message is

1J’
printed. The products[g(Q_IJ.j)]2 are also given, since
they largely determine the intensity of such a spurion.

This message has appeared on many occasions but no peaks

have been identified as resulting from this cause.

Test 6. Multiple scattering

A common cause of trouble in certain materials is
multiple scattering (Brockhouse et al. 1961 ). This is
illustrated in Fig. AII-4, In the situation called Type

1, the incident neutron is Bragg reflected within the

crystal:
G = k_ - k"
- —o -
_ "
x| =]x"]

It is then inelastically scattered into the analyser:

Bys =k -k
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FREQUENCY (THZ) —

Figure AII-4. Multiple scattering diagrams, and a peak at-
tributed to multiple scattering.
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The energy transfer isstill (vo - v') , and the total

wave vector transfer is still Q, since

€+ Qys = &

The factor (g_-g)2 in the one-phonon scattering cross sec-

tion (Egq. I-D1ll) is replaced by 9)2. Thus modes with

(Qus
the same g, but with polarization other than the intended
polarization, may be detected. The alternative situation
(Type 2) is also depicted in Fig. AII-4. Here an inelastic
process is followed by an elastic process.

To check for multiple scattering (Type 1), the dis-

tance from the terminus of Eo to all reciprocal lattice

I

points in the vicinity is determined. If this distance is

nearly equal to |k |, this type of scattering can occur.

A related procedure is involved in testing for type 2.
Tests for multiple scattering have been limited to the

!

1

simple matter (given some knowledge of the dispersion rela-

principal wave vectors Eol and k In this case it is a
tion) to check first to see which peaks could possibly
result from multiple scattering. Such a peak must occur
at a frequency appropriate to the reduced wave vector g
of the scan. Unless this is so, Test 6 (Fig. AII-1) is
generally avoided, since it 1s a relatively lengthy proce-
dure.

The scan shown in Fig. AII-4 shows two well defined
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peaks. The upper peak is the zone boundary [zz0] longi-
tudinal mode. The lower peak is very probably the T2 mode,

observed by multiple scattering. The vector diagram (which is

of type 1) shows that QMS has a sizeable component parallel
to &ro- The frequency of the T2 phonon at 12°K is 0.96

THz (Table II-2) whereas the peak in the scan occurs at
about 1.05 THz. This difference occurs because the Bragg
condition for the incident wave vector is best satisfied
at a frequeﬁcy transfer significantly greater than the

frequency of the T2 phonon.
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APPENDIX III

EFFECTS OF FINITE RESOLUTION IN THE TRIPLE-AXIS
SPECTROMETER

A. Previous Work

The resolution of the triple-axis spectrometer has
been discussed by several authors. Mgller and Nielsen (1970)
give a useful review, with references to earlier work.

In a conventional experiment using a triple-axis
spectrometer, counts are accumulated at a series of settings
of the various angles of the spectrometer. With each setting
we may associate a frequency transfer w and wave vector

transfer Q, where

Here wo(Eo) and w'(h') are the frequency (wave vector) of the
incident and scattered beams respectively.

Finite collimation of the beam, and finite mosaic
spreads in the monochromator and analyser, lead to uncer-
tainties in Wy 50, w' and E' and therefore to uncertainties
in w and Q. In energy-wave vector space the most probable
values of Q and w are represented by the point (Q,&). The

probability that Q and w have particular values is given by

the "resolution function"
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R-é-’&) (AQ,AU))

where AQ = Q - é, Aw = w - & , and the subscripts indicate
that the function depends parametrically on § and &.

Following Cooper and Nathans (1967) we assume Gaussian
distributions of mosaic blocks in the monochromator and analyser,
and Gaussian transmission functions for each collimator. The

resolution function may then be written as

4 4

1 ~ .
RQ'&(AQ,Aw) = Rexpl- 5 I I XM (Qu)X

}
2 k=1 g=1 K KL

L

where xl = AQX, X2 = AQy, X3 = AQé and X4 =Aw: for convenience
the x direction is chosen parallel to Q, and the z direction is
chosen normal to the scattering plane. The 4x4 matrix M, known
as the resolution matrix, is a complicated function of the

spectrometer setting, the mosaic spreads, and the collimations.

R, is the value of Rgla(g,o).

The equation

y X.M. X = 2{&n2)
k4 kk2 2

defines an ellipsoid in (Q,w) space such that R = RO/Z for
every point on its surface. One axis of this "resolution el-
lipsoid" is normal to the scattering plane. M may therefore be

factorized into a 3x3 matrix and the element M In many

33°
experiments the resolution normal to the scattering plane is

relatively poor, so that Mg is comparatively small.
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In the common "parallel" setting of the spectrometer,
illustrated in Fig. AIII—l(aL the neutron beam is scattered
alternately to the left and to the right by the monochromator,
sample and analyser. With this arrangement another axis of
the resolution ellipsoid lies roughly parallel to Q and the
remaining axes lie in the (AQy,Aw) plane. The slope of the
major axis in this plane corresponds to a typical slow neutron
velocity (e.g., a few km/sec). The focussing properties of
the triple-axis spectrometer have been considered by Collins
(1963), Peckham (1964), Bergsma and van Dijk (1965), and by
Peckham et al. (1967). Graphical methods may be used to deter-
mine the optimum setting of the spectrometer for observation
of a well focussed peak, i.e., an intense, narrow peak. The
directions of scattering at monochromator, sample and analyser,
and the position of Q relative to the nearest reciprocal
lattice point, are chosen to optimize the focussing diagram.

This last point is illustrated in Fig. AIII-1. With the
"parallel" setting of the spectrometer there is considerable
correlation between AQY and Aw, as mentioned earlier. In
Fig. AIII-1 one of the transverse dispersion curves either side
of a reciprocal lattice point is shown. The ellipses represent
the resolution in the (Qy,w) plane. The resolution function
varies slowly within this region of § and & and is here assumed
to be constant. 1In situation 1 the ellipse passes slowly

through the dispersion curve during a constant Q scan and the
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observed peak is broad. Situation 2 is quite different: the
ellipse passes rapidly through the dispersion curve, and
the resonance is narrow.

The measurements reported in this thesis were made with
the McMaster spectrometer at Chalk River in the "parallel" set-
ting. Wherever possible measurements were made in a focussed
position following certain "rules-of-thumb" for this spectro-
meter (see e.g. Brockhouse 1966).

The fact that the width of an observed resonance
depends on instrumental resolution, was noted by Brockhouse
et al., (1961), and widths of high temperature phonons were ob-
tained by comparison with the widths of corresponding groups at
100°K. Though this procedure is still widely used (see
e.g. Buyers and Cowley 1969), an alternative approach is some-
times adopted. This involves a calculation of the instrumental
resolution in terms of the various mosaic spreads and collimating
elements of the spectrometer. It is generally done in one of
two ways. Cooper and Nathans (1967) give an expression for the
width in terms of the resolution matrix elements. They consider
a planar dispersion surface and assume the scattering cross
section is constant, over the region of (Q,w) space where the
resolution function is appreciable. Stedman and Nilsson (1966)
instead calculate indiwvidual contributions from each collimator
and each monochromating crystal, and hence they obtain the

instrumental width. The effect of specimen mosaic spread, which
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broadens transverse peaks, is readily included in such calcu-
lations.

Brockhouse et al. (1961l) noted that finite instrumental
resolution can also shift a peak position. 1In a later paper
(Brockhouse et al. 1962) they considered the shift which results
because of finite energy resolution. For a peak with centre

at frequency v having a width W, they give the shift as

M’

AV = W2 4y, .

M

Shifts in peak positions, resulting from finite reso-
lution, were observed in LiF by Dolling et al. (1968). These
workers remarked that two effects will introduce shifts which
can become apparent in the case of long wavelength acoustic
modes. For wave vectors slightly removed from a symmetry
direction, the frequency surface is normally of the form:

_ 2 2
v(éy,éz) = v(0,0) + Ady + Béz

where v(éy,éz) is the frequency at a point Gy from the symmetry
direction in the scattering plane, and Gz above the scattering
plane: A and B may be positive or negative. This parabolic
dependence can produce a shift in the peak position. Secondly
the variation of the scattering cross section with frequency

is most marked at low frequency. For this reason the spread

in wave vectors along the symmetry direction introduces a small
downward shift in the observed position of the peak. In this

work (Dolling et al. 1968) shifts of 2-3% were reported. More
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recently Raunio (1969) has observed shifts of about 8% in
similar measurements on KC1l.

Collins et al. (1969) observed marked asymmetry in
neutron groups from long wavelength magnons in iron. This asym-
metry arises from the curvature of the magnon dispersion curve
and the fact that the resolutioh out of the séattering plane
was relatively poor.

Another effect of resolution which has received atten-
tion recently is the artificial splitting of a neutron group
for [%zz]T modes in cubic and similar crystals (Cowley and
Pant. 1970). Such splittings have been observed in calcite
(Cowley and Pant. 1970), and in KC1l by Raunio and Almgvist
(1969) and by the author. Double peaks observed by Smith et.
al. (1968) for small g modes in this branch in lithium probably

result from the same cause.

B. Resolution Effects in Rubidium

In the present work on rubidium, we have already noted
the appearance of extra peaks in the [00z]L branch. Seeking
an explanation for this effect, it became clear that the behaviour
of the dispersion relation near to the [00f] direction was
influencing the observed neutron groups. In this section we
consider the effect of resolution on measurements of the other
branches, The [00z]L branch is discussed separately in Section

IIF.
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For a particular setting of the spectrometer, corres-
ponding to wave vector transfer Q and frequency transfer &,

the scattered intensity is simply

I(Q,&) = J[ o(g,w)R(g—g,m—&)dgdw

where c(g,&) is the differential scattering cross section, and
the subscripts {,& have been omitted from R. The one-phonon
scattered intensity Il(g,&) is obtained if the one-phonon
differential scattering cross section is used. For energy 1loss
this is (cf. Eg. I-D11l):

[g-e(gi)]?
w{g3)

ol(Q_,w) = A 3

_ [n(gj)+1]18 (w-wlgj)) x A(Q-g) (AIII-BI)
a3

where A is a constant, so that we obtain

[n(gj)+1IR(Q-§,w(gj)~-®)}daQ (AIII-B2)

. 2
o [Qre(g])]
Il (Q_,U)) = A I § w(gj)

where g is the reduced wave vector associated with Q.

Using Equation (AIII-B2), with an early set of atomic
force constants (Copley et al. 1968), shifts AR resulting from
vertical resolution (i.e., resolution normal to the scattering
plane) have been calculated using a programme originally written
by Dr. E. R. Cowley. Since the resolution in the plane is much

better than it is normal to the plane (e.g. M 1 is typically

1

at least an order of magnitude larger than M this procedure

33) 14
is justified. Finite energy resolution is incorporated into

the calculation, mainly because the intensity 11<g,a) is
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calculated for a discrete set of values O©Of & and the integra-
tion over Q is replaced by a sum over a set of values of Q. If very
good energy resolution is used, the delta functions in Eq.
(AIII-Bl) are very unlikely to peak at any of the values of
@ for which Il(é,m) is calculated. For these calculations
M33 was chosen as 150 (a/2'rr)2 where a is the lattice constant
of rubidium. This corresponds to a full width at half height
in g, of 0.11(27m/a). This choice of M;3 is consistent with
values obtained using the expressions of Cooper and Nathans
(1967) with vertical collimations of 1 in 45 and 1 in 15 in the
incident and scattered beams respectively. These numbers were
determined from the geometry of the spectrometer.

We now consider the effects on the different branches
in turn. In the following, a positive shift means that the mea-
sured frequency is higher than the true frequency. Shifts

are given below in THz.

(i) [00z]JT. The shifts AR are small, ~ 0,005, whether
measurements are made in the (001l) or the (110) scattering
planes.

(ii) [00z]L. See Section IIF .,

(iii) [zzz]lT. Ap is generally negative and small. For small g the
groups can split if the vertical resolution is sufficiently
relaxed (Cowley and Pant 1970). Close to the degenerate

points P and H, the longitudinal mode can influence the

lineshape. For example, with Q = (0.1, 0.1, 2.9,, the
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contributions from both polarizations are unresolved, and
the resulting peak is shifted n~ 0.05 THz below the
transverse freqguency.

(iv) l[zzzlL. Again the shifts are small. They may be of either
sign, depending on Q. Near to P the shifts are slightly
larger, i.e., ~ * 0.01(5).

{(v) [zz0]T2. The situation at the zone boundary, point N, is
discussed with the [%%C]A branch below. For  ~ 0.15,

AR ~ 0.015 whereas for 7 ~ 0.4, AR ~ 0,01,

(vi) [zz0]Tl. This branch is especially sensitive to the
resolution of the instrument. For small displacements
normal to the {[gz0] direction the freqguency increases
rapidly. This is clearly visible in Fig. II-12. The
measured frequencies lie well above the true frequencies:
bp v 0.02. Fig. AIII-1 (lower half) shows the effect of
resolution on this branch. The elastic constant line 1is

the same as in Fig. II-4. The situation at the zone

boundary is discussed with the [zzl]A branch below.

(vii) {zzO0]JL. Shifts for this branch (including the point N)
are negligible, whether measurements are made in the {(001)
or the (110) plane.

(viii) I%%C]A This branch is of particular interest. Since it
is symmetrical about the point P, it may be completely
determined by measuring phonons between neighbouring

points N and P, with Q nearly parallel to the line joining
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these points (Fig. AIII-2(a)). A general point N in the
(110) plane is of the form (1/2 + h, 1/2 + h,%) where h
and % are integers. We may distinguish even and odd
points depending whether £ is even or odd. We now con-
sider the vertical (110) plane through the line N_PN_
(subscripts e and o refer to even and odd points respec-
tively). This plane is illustrated in Fig. AIII-2(b).
Constant frequency contours in the (110) plane, which join
to the I%%:]A branch, are shown in Fig. AIII-2(c) (cf.
Fig. II-12), It is clear from this figure that the shift
Aﬁ is positive (negative) for measurements between Ne

and P (No and P). This predicted behaviour is observed
experimentally, as shown in Fig. AIII-2(d). The calculated
shifts are sufficient to account for the observed dif-
ferences between the measurements taken nearer even and
odd points N,

The [%%c]A phonon at N itself, i.e., the zone boundary
[zz0]T2 phonon frequency, is affected in the same way.
[%%C]ﬂ. The shifts for this branch are very small.

[zzl]A. This branch, including the mode with ¢ = 0.5, which
is the zone boundary [%z0] Tl phonon, may be measured in
either scattering plane. Modes measured in the (110) plane
are not shifted, whereas negative shifts ~ 0.015 occur

when modes with § < 0,25 are measured in the (001) plane:

nearer N the shifts are small, whereas at N AR ~ +0.02.



209

(1ITO) PLANE

(b)

fNo (1TO) PLANE

(110) PLANE

N
ol
000 110
- > (d)
X Ne — P
©) I N o N, — P P
) ) A o 1 [P S
L/""\_\\/\,\/\//\—/\/—d g P .
\ / E ,
N, > Lo PREN-1
N /<< \\°/ ////< N 5 ,/O/
o P e -
\0,9\ o ,/ \\\\“\\>°'9 gos -~ 50 ~ .
1
(110) PLANE 00 B
c‘= Q/ZTT —
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on the [%%z]A branch.
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(See Figs. II-1l1, II-12).

Experimental measurements of the [zz0]T1l zone boun-
dary mode in both scattering planes confirm this prediction.
The best values, from three measurements in the (001) plane
and three in the (110) plane (at 120°K), are 0.35 * 0,02 and
0.31 £ 0.02 THz respectively. The correction for resolution
lowers the first value to 0.33 % 0.02 THz, in improved
agreement with measurements in the (1I10) plane. This is

illustrated in the lower part of Fig. AIII-1l.

(xi), (xii) I[zgl)lm2,7l. The shifts for these branches are small.
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APPENDIX IV

SIMPLIFICATION OF ANHARMONIC MATRIX ELEMENTS

In Section IIIA, expressions were derived for the
shift in frequency of a mode A = (gj), caused by thermal ex-
pansion (AT), and for the principal contributions to the
shift and width of a mode resulting from "true" anharmonicity,
Az, A4 and ' In this appendix we shall simplify these
expressions, making particular use of the symmetry properties
of the cubic lattice.

First we shall examine the important symmetry proper-
ties of the anharmonic atomic force constants (the AAFC's),
with particular reference to the two-body axially symmetric
force system which is assumed in this work. In Section B
the summations over atomic positions (in the expressions
for the shifts and widths) are performed. In each case one
or two examples of the method are shown, and the complete
results out to third neighbours are given in tables.

Section C contains a discussion of the summations over g-vectors
related by symmetry and over cartesian coordinates. Since
eigenvectors enter the summations it is generally insufficient
to sum over the irreducible volume within the first Brillouin
zone. An alternative procedure for simplifying the matrix
elements entering the cubic and quartic expressions is briefly
discussed in Section D. The final section contains a dis-

cussion of various weighting schemes and the generation of
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wave vectors within various "irreducible" volumes in recipro-
cal space.

In subsections treating the cubic shift Ay it is to
be understood that the cubic width T is treated in exactly
the same fashion as A3, with R(Q) replaced by -imS(Q): see

A. Properties of the Anharmonic Atomic Force Constants

In the following, we assume a two body axially
symmetric force system. The cartesian second derivatives of
this potential (i.e.,the AFC's) are given by Egqg. (I-C5). The

third and fourth derivatives (i.e., the AAFC's) are then

¢dBY(2££') = sasBsYc3(R) + (sa68Y+ssé +sYéuB)C2(R)/R,

Yo

and

-¢a870(2222') = SaSBSyScc4(R> + (sasséyo+sasY6BO

+SGSOGBY+SBSYGGG+SBSOGQY+SY506GB)C3(R)/R

+ + & S )CZ(R)/RZ, (AIV-al)

dasayc ayaeo + aodBy

where
c,(R) = ¢*% - ¢T/R

cy(R) = ¢ - 3T R + 36T/R

IV _ g, 1II

Cy(R) = ¢ /R + 15¢71/R% - 154183 (AIV-A2)
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In these expressions R = |£(2'£)| and S, = Ra/R' Furthermore
1 a I _ a%e
" = g7 y 0 = — etc. (alv-a3)
r=R dr r=R

The following properties of the AAFC's will be used
in subsequent sections. The first foutr properties are guite
general.
(1). Since the order of differentiation is immaterial, we may

permute pairs of indices so that
LR = 1 "
¢a8Y(22 L") ¢Buy(£ 2") etc.,

¢QBYO(£Z'2"Z'") = ¢8Yu0(2'2"22'") etc.,

(2)+ The AAFC's depend only on separations so that, in an

obvious notation:
to — | - "_,
¢QBY(22 L") = ¢aBY(0,z L,4"=2) etc,,

¢ ®2'2"2'") = ¢ (2=2",8'=2", 0,8""-4") etc.

afyo aByo

(3). Translational invariance reguires that (Born and Huang

1954, p. 221):

z
28"

¢aBY(££'£") =0

z

22.2u¢a670(2£'£"£'") =0 .
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(5).

(6).

214

On inversion of the atomic coordinates we obtain

¢aBY(22'£") = —¢aBY(—2,—2',-E")

(;QNQ,',Q,",Q,'") = +¢ (‘21-2',—2",-2'")-

¢a8yo oByo

Hence (using property 2 above)

¢aBY(££2) = ¢aBY(OOO) = 0.

For the two-body axially symmetric interaction, there
are additional properties. In this approximation only

two of the indices £,%2'... can be different.

Examining Egs. (AIV-Al) we note that the cartesian in-
dices may be permuted independentlyof the labels 2,2°'.
Therefore

Dogy (BLL') = ¢ (221") etc,

upyo (FIIL') = 0o g (RRL2") ete.

Performing one of the differentiations with respect

to the other end of the vector r(L2'f%), we obtain

¢ (222') = =¢ (22'2")

aBy aBy

(2228') = -¢ (222'2")

¢a8yc aByo

See also Leibfried and Ludwig (1961), p. 295.

Using properties (1) - (6) above, it is convenient to

obtain some further relations.
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(7). From (1) and (5) it is clear that the labels 2 and &'
may be permuted independently:
¢uBY(£22 ) = ¢a8y(z£ L) etc.,

(2228")

%08y0 = %u8yo(22'20) etc.

(8). Using (2) and (4),

{(2222") (000h) where h=2'-%

¢a6y0 ¢a8yo

¢a8YO(OOO-h)

Finally, using (2) again,

(2228') = ¢ (2'2'2'2)

¢u8yc oByo

Similarly (using (7) also),
' - - 1ot
¢dey(2££ ) ¢aBY(£2 L")
which is the same result as in (6) above.

(9). Using properties (2) and (3) we have

pipngen fagyaoztatitm) = o.
For two-body forces (£',2",2'" = 0 or &), we have
t
¢a8vc(0000) + i [¢QBYO(OOOR) + ¢GBY0(0020)

+ ¢aeya(ogoo)+ ¢aBYO(0220) + ¢aBYO(020£)

Using property (6), we obtain
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+ ¢ (0022) + ¢aBYc(0222)] =0

aByo
Using property (6), we obtain

(0000) = - ' ¢
b2

(0002) .

¢a8yo aByo

This result is used to simplify the expression for the

quartic shift,

B. The Summations Over Atomic Positions

As the first stage in simplifying the expressions
obtained in Chapter III, we shall perform the sums over atomic
positions. We consider first, second and third neighbours
in the b.c.c. lattice, but it should be noted that first and
second neighbours in the f.c.c. lattice have the same symmetry
as third and second neighbours in the b.c.c. lattice, so that
the results presented in this section are also applicable to

the f.c.c. lattice, with only a few small modifications.

(i) The Thermal Expansion

The shift in frequency of the mode X, due to a

thermal strain n, is written (Eq. III-A2):

Ap(A) = [n/mw(x)]azs ea(x)es(x)§ £opy (@ (AIV-B1)
with
—_ l t " 1] : . L] -
£ugy (@ = 3 2{:# Gugy (R'A")T (2") lexp{ig-r(2'e)}-1].
Q,"

Since we are assuming two body forces, we consider

only 2" = 2 or 4" = &' . Therefore
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__J_-_ ! vt '
0LBY(Q) =3 z'iz [¢QBY(22 Q)ry(l) + ¢aBY(22 2 )ry(z )]

x [expliger(2'8)-1].

Using properties (6) and (7) above, we obtain

N B

foapy (@ =3 I 045, (21T (2'0) [L-explig r (1" }]

LV#R

= z ¢

o Pasy (OOR)ry(Q)[l—cos(g-g(l))] (AIV-B2)

where we have taken the origin at r(0). Note that the
first expression above is written in the form of differences
rY(z'Z), indicating that the expression is independent of
the choice of %.

The notation £ > 0 indicates that the summation is
performed over half the neighbours such that only one member
of each pair of neighbours related by the inversion operation
is included. For example, of the six second nearest neighbours
one member of each pair, (200, 200), (020, 020), (002, 002)
is included.

We rewrite Eg. (AIV-Bl) as

_ (1)
fapy (@) = i fapy @
with
(1) - _ .
fasy(g) = 2?>0 ¢asy(00£i)rY(li)[l cos g E(Qi)],
i

where i denotes the i'th nearest neighbour shell. The quan-
i

g

tities fé i(g) are readily evaluated in terms of the derivatives
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C C,., and C

2i’ 731 4i
distinct cases, for each i:

(Table AIV-1l). We need only consider four

(i) o, B, v all different,
(ii) o =8 =y,
(iii) o = B # v,
(iv) a # B = v.
As an example we shall evaluate f( )(g)

£ (1)

£ ey () ¢xxx(0,0,lll)-(a/2)4l-cos(qx+qy+qz)]
+ Oyxx(0,0,111) + (~a/2) * [1-cos (-q,+q +q,) ]
+ ¢ (o,o,lil)-(a/2)-[l—cos(qx-qy+qz)]
+ b, (o,o,iil)-(—a/2)-[1—cos<-qx—qy+qz>1

In the above expression, and in similar expressions

later in this appendix the components of ¢ are given in units

of (2/a).
Now
bresee (000,111) = C51/3/3 + VI Cy) = % Ay
0y (070, 111) = - % Agq
§ sy (040,1T1) = 5 Ay,
by (040,T11) = = S A,

Hence
(l)(g) = ah, (l~c05qxcosqycosqz).

Complete results for i = 1, 2 and 3 are given in Table AIV-2,.



219

{(ii) The Quartic shift

From Egs. (III-A24) and (II1-B2) we have

A nz*%
Ay () = z ) I e (le,(lle (2)e_(2)h (12)
4 :
mluy gp3, “2 agyo & PO aEYe
where
l trgn rn 5 - .
Ragyo (12) = F I, |, Capyo (#1478 N explilg) L)ty Tonginl)

(AIV-B3)
In the above, ea(l) = ea(kl) etc.

Again considering two body forces, with one atom at

the origin (£ = 0),we obtain:

-ig,r(8)
(0000) + = Z' [6 2

48YC L OLBYG(OOOIL)e

_ 1
haByc(lz) =79

cr (L) -ig,+r(2)

i =0
+ ¢aBYO(O£OO)e

o
+ 9,0y (0020)e

i(g,-gqq) (2] ~i{g;+g,) *x ()

+ ¢ (0220)e + ¢qBYU(OROZ)e

aByo

-1 l.-r—(g)

+ ¢ (0022) + ¢aBYO(0222)e 2 ]

aByoc

Using properties (6) - (9) above, this becomes
-ig,*r(2) ig,.x(Q)
(12) 72, s

l ) .
haByc vy i'[¢asyc(000£){e

ig.er(g) ilg,=gq) (&) =i(gy+g,) - xr{2)
‘e 9;° £ - e 79/ L o 9179,/ "L
—ig,y-r(s)

+ e - 21}]
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Since
, “igyer () igy-r ()
i ¢aBYC(0002)e = i ¢uBYO(0002)e ’

Eq. (AIV-B2) reduces to the form

(12) = - &

B.gyo o ¢aeyc(0002)Il—cos(gl'g(l))][l—cos(g2'£(2))]

This is written as
5

_ (1)
haBYG(lz) = i Kil haBYo,K(lz)
where
(1) _ .
haByc,K(lz) = REO ¢a8Yc(0002)uK cos g r(s).

In this expression

]

1
My Mo -1 My = Uy = 5 7 Ug = 1;
d3 =493 Y9y 1 94 "4 — 4
and dyr 4, are as before.

Then there are four distinct cases for each i:

(1) o =8=vy =0,
(ii) o = 8 = v # 0,
(iii)a = B # v = 0,
(iv) a =B # vy #o0 , with o # O.

We consider two examples.

, (2)
First we evaluate hxxyy,K(lz)'

(2)

hxxyy K

(12) = -¢ (0,0,0,100)14K cos(Zqu)

XXYY
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-¢ yy(O,O,O,OlO)uI< cos(2q. )

XX Ky
—¢xxyy(0,0,0,001)uK cos(2qKz)
NOW =0y (040,0,100) = Cy,+ Cpy (Table AIV-1)
-¢xxyy(o,o,o,010) = c§2+c;2
~4xxyy (0+0,0,001) = Cyy
Therefore
h(2) (12) = uK{(C52+C;2)[cos(2qu)+cos(2qu)]+C;2 cos(quz)}

XXYY K

Secondly, consider

(3) _ .‘
hzxyz,K(lz) = ¢zxyz(0’0’0’llo)um»cos(qux+2qu)
~¢ (O,O,O,lIO)pK‘cos(Zqu-Zqu)

_¢nyz(0,0,0,101)uK cos(Zqu+2qKz)

ZXy2

-¢ (Ololollol)uK‘ COS(Zqu_2qK¥)

ZXYZ

-¢ (O,O,O,Oll)pK cos(2qK

ZXyz +2qu)

y

_¢zxyz(0,0,0,011)uK cos(2qu—2qKz)

(0,0,0,110)

]
Now "9 2xyz C53/2

_¢zxyz (0,0,0,110)

1
~C33/2
The remainder vanish, so that

(3) _ ' . .
hZXyZ,K(lz) = -4, C3y 51n(2qu)51n(2qu).
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The results for i = l,'2, and 3 are given in Table AIV-3.
Since the indices a, B, Y, 0 may be permuted in h(l) (12),
aByo,K

only one permutation of each set of indices is given.

(iii) The Cubic Shift

The cubic contribution to the shift is (Egq. III-A23):

2

18

A (}\ 'Q) = - X
37 " Ay

V(1112A3) R(Q) (AIV-B4)

3

Here (Eq. III-Bl):

3
A 3 :
122 e (Aey(rde (A [2ig { )1
8wlw2w3Nm3 gy o127y agy ‘219293

V(A1A2A3)=% {

where

219,8y @19293) = T, Oqpy (PR explilay r ()

g, (') +g5er (8") 138 (g *+g,tgs)
For convenience we drop the A-function, keeping in mind that

the wave.vector is conserved. With the origin at £ = 0, and

for two -body forces, we have

2igaey(glg2g3)= ¢aey(000) + i' {¢GBY(002)

x exp[ig3-£(£)]+¢QBY(0£0)exp[ig2-£(2)]+ ¢QBY(0££)
x expli(g,+gq) *r ()]} (AIV-B5)

Using properties (4), (6) and (7) and remembering conservation

of wave vector, Eg. (AIV-B5) becomes



3
Tagy 18p8y) = I Gaay (000 I

K=1

We now write

3.
- (1)
Japy 192930 = P T 9apy,« (919295

r

where
(i) — 1 .
gaBy,K(919293) = £§>0 ¢QSY(OORi)sm[gK r(f,)]
i

There are three distinct cases for each i:

(i) a, B, Y all different,
(ii) a =8 =1vY,
(iidi) a =B # v.

(1)

As an example we evaluate gxyz’K(glgzga)

(1) _ .
gxyz , K (91§29.3) = ¢Xyz (0,0,111)sin (qKX+qu+qKz)

+ ¢Xyz(o,o,ill)sin(-qKX+qu+qKz)
+ ¢xyz(0,0,111)sin(qKX—qu+qKz)
+ ¢Xyz(o,o,iil)sin(-qu-qu+qKz)
Now
gz (070/111) = C51/3/3 = Za,, (Table AIV-1)
¢xyz(o,o,111) = - % 11
¢xyz(0,o,1il) = - % Al
$yyz (000,111) = 5 A,
Therefore

g(l)

sin QK'E(R).

xyz,K(919233) = -2A,, sin q_, sin Uy SiN gy y-

223
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The results for i = 1, 2 and 3 are given in Table AIV-4. Since

the indices a, B, y may be permuted in g;;i,K(919233)' only one

permutation of each set of indices is given.

C. The Summations over Egquivalent Wave Vectors and Over
Cartesian Coordinates

The expressions for the thermal expansion a, and the

A, and ', contain summations over wave vectors

guantities A3, 4
uniformly distributed throughout the first Brillouin zone
(BZ). Since the summands contain eigenvectors, it is not
necessarily true that a summation over the irreducible (1/48)th
of the BZ (the IBZ) is equivalent. In this section we shall
show that (i) in the case of a a summation over the IBZ is equi-
valent, (ii) the summand in the expression for A, may be
cast in such a form that a summation over the IBZ is sufficient
and equivalent, and (iii) the situation is considerably more
complicated in the case of Asg (see below).

The summations over a, R, y (and o in A4) are also per-
formed. We consider the thermal expansion first, and then

the quartic shift. The cubic terms are considered last, in

view of their additional complications.

(i) The Thermal Expansion

From Eqs. (III-Al4), (III-A3), and (AIV-Bl) we have
BZ :
-1 C(gj)
a(T) =558 I ———— I e_(gjlezlgi) Z £ (g)
9VB .
93 sz(gj) ag B y aBy
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where the first summation is over g in the first Brillouin 2zone.

We may rewrite the above expression as

= pemme X S (AIV-C1)
SVB a3 mwi(gj) T

a(T)
where

S. =% I e (g'ile (g Ef o (q"') .
T 48 aby o'd g\’ tapy 'd

The notation Z indicates a summation over the 48 wave
48

vectors ¢q' which are equivalent to g in the IBZ. Writing
g = (r,s,t), el(gj) = (u,v,w), and using Table AIV-2, we obtain

= 51 : e . _
I=a aéy ea(gj) eB(gj)faBY(g) (AIV-C2)

= —(A3l+2A21)D2+2(A11+2A P,+A_ ,P,+A. P (AIV-C3)

21) 2 772274 771276

where D and P, are defined in Table AIV-5. The

2" Par By 6
above expression includes contributions from first and second
neighbours. The contribution from third neighbours is similarly
evaluated. We note that I is invariant with respect to all

the operations of the cubic group (e transforms in the same

way as ¢). We may therefore write

ST = 481 a (AIV-C4)

and a summation over the IBZ is sufficient.
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(ii) The Quartic Shift

The quartic shift may be written as

X IBZ n2+%
A, (Xq)= z ( ) I S. (AIV~C5)
47710 \ml wy T
mwy  dpdp

where the first summation is over the irreducible volume of
the first Brillouin zone and the second is over shells of
neighbours. The gquantity S; is a sum over the 48 wave
vectors equivalent to g5
s = QEYU ey (Deg(L) I e (2)e(2) 2 hééic'K(IZ).
We first simplify the sums over k. For i = 1 there

are two types of sum:

Ing

(a) Il = cos(qu)cos(qu)cos(qKz)

A

1- clxclyclz_02xc2y022
1
7(C35%3yC3274x 4y az’

where Cix denotes cos(qlx), etc. This simplifies to

I, = (l1-c

1 ) (l_c

1x°1y°1z 2xC2y°22) *€1x51y512%2x52yS22

+slxclyslzs2xc2ys2z+slxslyc1252x52yc22,
where of course S, denotes sin (qlx) etc.

(b) 12(3) = E sin(qu)sin(qu)cos(qKz)uK.
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In a similar way this becomes

(c 1)

12(3) = S1x°1y°12z 2xc2y022_1)+52x52y022(clxclyclz_

T81xC1y512%2x52yS2z T C1x51yS1252xC2y S22°
For i = 2 there is only one type of sum:

K'X) 1JK

= [l-cos(2qlx)][l—cos(2q2x)].

The sum over equivalent wave vectors may now be performed.
For o = B there are four types of sum and for o # B there

are another four:

(1) a=8=y=0 (v) o=y =0#8
(ii) a =B #Y =20 (vi) a =y #B =0
(iii) o =8 =Yy #o0 (vii) o=y #B#oF#a
(iv) a =B #FY #0Fa (viii) a # B # vy =0 # o

For case (i), with o = x, the contribution to Sl is

2
ex(l) L e2(2) z h(l) (12)
48 ~x o XXXX,K
= 2,e2(1) 2 e (2)1
48 “x 1
— 2 - —
= 16A4lex(l)[1 clxclyclz][l CZXCZyCZZJ'
The contribution to 82 is
2 2 (2)
ex(l) z ex(2) )} hxxxx,K(lz)

48 K
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2
A_.e (1) & 2 2 2
327x 48 ex(2)13(1¢A42ex(1) 28 ex(2)[13(2)+13(3)]

16A32e§(1)[l—cos(2qlx)][l-uzcos(Zr)-vzcos(25)—w2cos(2t)]
+ 8A42ei(l)[2-cos(2qu)—cos(2qlz)][2—u2(cos(25)
+cos(2t))—v2(cos(2t)+cos(2r))—w2(cos(2r)+cos(25))].

Here (r,s,t) and (u,v,w) are components of the unrotated
wave vector d, and eigenvector e(2) respectively.

As a further example, we consider case (iii), with

o =X, 0 =Y. For 1 = 1, the contribution is
A e2(l) T e (2)e (2)1
517x 48 X y 2(3)
- 2 -
- A51 ex(l)[clxclyclz 1]z ex(z)ey(2)82x52y022

48

=16A51ei(1)[c -1l]j [uvsin(r)sin(s)cos (t)+

1x%1y°1z
vwsin(s)sin(t)cos (r)+wusin(t)sin(r)cos(s)].

For i = 2 there is no contribution.

A complete list of contributions, for i = 1 and 2, is
given in Table AIV-6. Note that the contribution for case
(vi), 1 = 2 vanishes. We may see this in the following way.

The contribution is simply (for o« = v = %x, B =0 = y):

(2)
1 1 2 2
e )ey( ) 28 ex( )ey( ) E hxyxy,K(IZ)
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= A62ex(l)ey(l) LI e

e 2)ey(2)I3(3)+A52ex(l)ey(l)

< ¢
X I
Since the functions 13( ) are even, we see that the summands
are odd with respect to x or y or both. The term therefore
vanishes.

The final step in simplifying S; is to perform the
sums over a, B, Y, and o. The results are given in Table AIV-7,
for the eight cases. The gquartic shift, to second neighbours

may now be written as:

X IBZ n2+%
A, (Xq)= X (~———) (8.,+S.), (AIV-C6)
41 Nme . W, 1 %2
1 9232
where
s1 + 8, = K1D2 + K,P, + KyP, + K,P, (AIV-C7)

Here Kl' Ky, L and K, are independent of (92j2)’ and given by

K, = 16(A41 + 28.1)D; + 32(2Ag; + A,q)Py

Ky = 32(A5; + 2A;51)D) + 64(A,, - 2A.,)P;

Ky = 16A,,P3 + 16A P,

Ky = 16Ag,Py + B(A,, + A, )P, (AIV-C8)

and D2, P2, P4 and P6 are simple invariant functions of 45
and e(2), given in Table AIV-5, The quantities appearing in

equations (AIV-C8) are defined in Tables AIV-1l and AIV-5.



230

(iii) The Cubic Shift

The expression for the cubic shift, Eg. (AIV-B4), in-
volves three wave vectors. The summation over d3 in Eq. (AIV-B4) is
trivial because of the A-function in V(Alkzl ). The summation
over j3 must however be retained.

The 48 wave vectors g,;', given by g,' = -g; - g,

(where gz' are the 48 wave vectors equivalent to 92)' are 1in
general inequivalent. 1In certain cases, depending on 9y there
is a smaller group of equivalent wave vectors d, such that the

corresponding vectors gy are equivalent. In this work we

consider three cases:

(a) 1If d; = (0,0,z), the 8 vectors 4, = (¢r,*s,t) and
d, = (¢s,%r,t) define 8 equivalent vectors
95 = (+r,+s,-t-g) and (+s,+r,-t-C).

(b) 1If dq; = (z,z,z), there are 6 vectors d, = (r,s,t), (s,xr,t),

(r,t,s), etc., such that vectors g5 are equivalent.

(c) If g4; = (z,z,0) there are 4 vectors dq, = (r,s,tt) and

(s,r,tt), such that the vectors g, are equivalent.

We may therefore write

Ay (X,0) = (——=—) ) [R(Q)/ (w,wqy) ] I S (AIV-C9)
3 aNm® 3 273" Nt(g,) 3
Wy 923293 =§]
with
2
S3 =| I ea(l)ee(Z)ey(3)gasy(91329~3) . (AIV-C10)

oBy
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The first summation is over the appropriate irreducible portion
of the BZ, depending on g;. and the second summation is over
the N(gl) equivalent wave vectors g, and gs.

The summation over o,B,y is also considerably simpli-
fied for the major symmetry directions because e(l) is well
defined.

As in the previous subsection,we first simplify the
sums over K in

= (1)
Jupy (919293) = i z Iogy, (9192937 -

There are two types of sum for i = 1, and one type for i = 2.

They are

(a) Il = i sin(qu)sin(qu)sin(qKz)

(b) 15 1) =i sin(qu)cos(qu)cos(qKz), etc.

(c) 13(1). i sin(2q ), etc. (AIV-C11)

For g, along the three principal symmetry directions,
the above sums take the special forms given in Table AIV-8.

We shall now demonstrate the summations over ao,B8,Y
and over the equivalent wave vectors Qo for the case of the
[00Z]T branch. The eigenvector e(l) is, in general,

e(l) = (&,m,0), with 22 + m2 = 1.

The eigenvectors e(2) and e(3) corresponding to q, = (r,s,t), are

given by
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(u,v,w)

I

e(2)

e(3)

Il

(u',v',w').

We then have

Sy=la{uu'T,y ) Ag "t (VW Hww ') I, (1A, Hluvi+vut) I, 5 Ry
HUW RN (T (3) By "+ (3)R ) T (VWY I)I Ry, T

1 )
+m{vv'I '+(uu'+ww')12(2)A21

2(2)P31

e 2
+(uV'+vu')Iz(l)A21'+(vw'+wv')(12(3)A21'+I3(3)A12)—(uw'+wu')IlAll 1]

2
= [oU+mU,]1%.
We now note that changing the sign of d,y OF q2y changes the

sign of Ul or U2 respectively; furthermore swapping dox and

q2y has the effect of swapping Ul and U2. Therefore
L S, = 2(U,+mU )2 + 2(2U,-mU )2 + 2(2U,+mU )2 + 2(2U.,-mU )2
N 3 1 2 1 2 2 1 2 1

_ 2 2

—4(Ul + U2 ) .

Complete results, for the seven branches, are given

in Table AIV-9.

D. Alternative Formulation Using Scalar Products

The cubic and quartic terms have been considerably
simplified in the previous section. Several steps are involved
in this reduction, and there is always the possibility that a

mistake has been made at some stage. To minimize this possibility,
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the expressions have been partially reduced in a somewhat
different way. The two methods have then been compared by

doing sample calculations on the computer using both methods.

(1) The Quartic Term

The quartic shift may be written as

X IBZ n2+%
A4(x1) = E;EZ— . ( s )W4 (AIV-D1)
1 4272
where
d71°Le4 doXLy.
W, =2t £2 I sin®(FNsin? b, (@a1v-p2)

48 i £i>0
and

J, ==% ¢

(000%.)e (L)e,(l)e_(2)e_(2)
1 aByo TG B Y o

oByo
Using Equation (AIV-Al) we may largely separate the summations
over o,8,Y,0 , to obtain

J,
1

Cpylsre() 1?5 e(2)1?
cy; (s el 1%+[s e(2))%+als e (1) 1s-e(2)le(1) e (2) ]}

+ 0o {1 + 2[e(l) e (2)1%) (AIV-D3)

The quantity W4 has been calculated for a set of
random values of (gzjz), with an arbitrary set of coefficients
C41’ C42, etc., out to second neighbours. It was compared with
the quantity (Sl+52) (Eg. AIV-C7), calculated with the same
input parameters. In every case the agreement was exact. The
second method of evaluating the matrix element is more than

100 times faster.
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(ii) The Cubic Term

This may be expressed as

A IBZ (g,)
A3(Al,9) = 9~4§———) X [R(Q)/(w2w3)]W3 (AIV-D4)
4Nm~w 353
1 d27273
where
{ } ’
W, = I Z Z L sin[g _*xr{2.)1}J (AIV~D5)
3 N(g;) |1 2,>0 « FTE
and
J= I ¢ (002.)e (l)e,(2)e_(3)
a8y aBy i’ "o B Y
Using Eg. (AIV-Al) this reduces to
J = Cy;ls,e(l)][s-e(2)]s-e(3)]

+ Czi{lg-g(l)][3(2)°§(3)]+[§-g(2)][9(3)-9(1)]+[§-§(3)][g(l)-g(Z)]}

(AIV-D6)
The quantity W3 has been calculated by the above method
and then compared with z S3 (Egq. AIV-C1l0). Agreement is
N(g,)
1

obtained for all seven brafiches, and the latter method is about
15, 12, and 8 times faster for the ([00z], [zzzl, and [zz0] branches

respectively.

E. Irreducible Volumes in the First Brillouin Zone

The various sums over ¢, which appear in the expressions
for the thermal expansion, and for A3, I', and A4 are performed
over portions of the BZ. In this section we shall consider
the conditions for g to lie within the various "irreducible" zones
(IBZ's), and the method of weighting wave vectors which end

on the surface of the zone.
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First we consider the whole BZ (rig.AIV-1(a)). This

is defined by the equations

x| + |yl <1
lyl + |z| <1
lz| + x| <1 (AIV-EL)

where x, y and z are the components of g in units of (2n/a).
A general point has weight 1: a point lying on a surface has
weight 1/2, and a point lying on an edge (H-P) has weight 1/3.
The points P and H have weights of 1/4 and 1/6 respectively.

The sums over g are generally performed using a "shifted"
mesh of points (cf. Gilat and Dolling 1964, Gilat and Rauben-

heimer 1966). This mesh is defined by

qOL = (mOL - %)Aq , (o = X,¥,2)

where the m, are running integer indices, and Aq is the mesh

size, which is such that MnAq = (n/a), where M_ is an integer

known as the mesh number. With this arrangement the weighting
scheme is simplified, since we need only consider what happens
at surfaces which do not contain the origin. For each irre-
ducible zone, the above conditions on g (Eq. AIV-El) must

be satisfied, and the weight of a point is the product of its
weight in the complete BZ and its "multiplicity" M within

the irreducible zone. These multiplicities are defined

below,
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H

Fig. AIV-1l. (a) The first Brillouin zone, corresponding to
the body centred cubic direct lattice;

(b)-(e) Various "irreducible" Brillouin zones.
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The normal IBZ (Fig. AIV-1{b)) may be defined by

the further condition

X>y>z>0 (AIV-E2)

A general point has M = 48: if x = y or v = 2, M = 24, whereas

if x "y =2, M = 8, Thus the point (0.1,0.1,0.1) has weight

8, and the point (0.7,0.3,0.3) also has weight 8 since y = z

and the point lies on the edge denoted by F in Fig.AIV-1(b).

Finally we consider the three special IB2's used in

calculations of the cubic shift and width of certain modes.

These zones are shown in Fig. AIV-1 (c), (d) and (e).

(i)

(iii)

If g = (0,0,z), we define an IBZ by the further

condition

The weight of a point is its weight in the 1IBZ
divided by 6.

For q; = {z,z,0) we have the extra conditions

The weight of a point is its weight in the IBZ, divided

by 1l2.

For 4; = (z,z,7), the extra condition is
X2y 2 2.

The weight of a point is its weight in the IBZ,divided

by 8.
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TABLE AIV-1 Symbols used in this appendix.

Coi = (87 = ¢7/R);
o2

C3j = (¢'" = 3¢"/R +3¢'/R);
Cqz = (8" - 60'"/R + 150" /R% - 150" /R)
Cyi = C2i/Ry
C31 = C31/Ry

o 2
C2i = C2i/Ry

The subscript i indicates that the quantity is

evaluated for r = R; where R; is the separation

between i'th nearest neighbours.

c(j) = coslqy); s(j) = sin(qy) j=x, yorz

c(2j) = cos(2qj); s(2j) sin(2qj) j =x, yor z

ccce c(x)c(y)lec(z); ccs c(x)c(y)s(z), etc.

SSs s(x)s(y)s(z); ssc s(x)s(y)c(z), etc.

d(2x)

c(2y) + c(2z), etc.

£f(2x) 1l - c(2y)c(22z), etc.

h(2x)

1l + s(2y)s(2z), etc.

(continued)



TABLE AIV-1 Symbols used in this appendix (cont'd)

Al
Az
A3l
Ag1

]

2C3,/373 P Ay T 2R
' L}

2(031/3,6' +Cy /V3) i Ay = 2R,
t []

2(C3l/3/3' + ./1¥c2l ) 7 Azy = 273

]

4(Cy1/9 +2C39 /3 +Cpyp )

~4(C4y/9 +Cyp /3)

22
]
C32 + 3C22‘

C

N ”
Cqr * 6C32 + 3C22

3C,,
' "
C32 +Cp
c
22

[ { ?

C33 + 6Cp3 i A1z = A13/v/2

[} L}

4Cz3 i A23 = A23/2/2
] 1

C33 + 2Cp3 ; A3z = A33/v/2Z

C43/2 +6(C33 +C23 )

6C23

-(C43/2 +3C33 )

"

C43/2 + 2(C33 + Cog3 )
C33 + 2C23

-C33
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TABLE AIV-2 Values of (a 1)f
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(1)
aBy
of o, B, vy and for i = 1,2, and 3. The

symbols are defined in Table AIV-1.

(g), for all combinations

aBy i=1 i=2 i=3

XXX A3l(l-ccc) A22[l—c(2x)] Al3[2—c(2x)d(2x)]
XXy A21(l—ccc) Alzil—c(Zy)] A23f(2x)+A33f(22)
XXZ A, (l-cce) Ay, [1-c(22)]] A23f(2x)+A33f(2y)
XyX A,, ssc 0 A33h(22)

¥Yy By ssc 0 A,h (22)

Xy 2z All ssc 0 0

XZX A21 scs 0 A33h(2y)

xzy Ay, scs 0 0

Xzz A,, scs 0 A33h(2y)

VXX A21 ssc 0 A33h(22)

yXYy A, ssc 0 A33h(2z)

VYXZ All ssc 0

yyX Azl(l—ccc) Alz[l—c(Zx)] A23f(2y)+A33f(Zz)
Yyy A3l(l-ccc) A22[l-c(2y)] Al3[2—c(2y)d(2y) ]
yyz AZl(l—ccc) Alz[l—c(ZZ)] A23f(2y)+A33f(2x)
yZX All css 0

yzy A21 css 0 A33h(2x)

vzz A,y Css 0 A33h(2x)

ZXX AZl sCs 0 A33h(2y)

zXy All scs 0 0

zxz A,; scs 0 Aj3h(2y)

(continued)
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-1, (1)

TABLE AIV-2 Values of (a )faBY

of o, B, vy and for i = 1, 2 and 3. The symbols
are defined in Table AIV-1 (cont'd)

(q), for all combinations

aBy i=1 i=2 i=3

2yx All css 0 0

2yy A21 css 0 A33h(2x)

zZyz A21 Ccss 0 A33h(2x)

Z2ZX A2l(l—ccc) Alz[l-c(Zx)] A23f(22)+A33f(2y)
zzy A21(l—ccc) Alz[l—c(Zy)] A23f(22)+A33f(2x)

zz2z A3l(l—ccc) A22[l-c(2z)] Al3[2—c(22)d(22)]



TABLE AIV-3 Values of (u,
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l)hézio,n(lz)' for i=1,2 and 3. Only
one permutation of each set of indices o,8,Yv,0 is
given. The function does not change on permutation
of the indices. The subscript « is understood. Symbols
are defined in Table AIV-1.

i=1 i=2 i=3
XXXX A, ccc A32c(2x)+A42d(2x) A43c(2x)d(2x)+A53c(2y)c(22)
XXXy A, ssc 0 A635(2x)s(2y)
XXXZ ASl scs 0 A63s(2x)s(22)
XXYY Ag, ccc A52d(22)+A62c(2z) A73c(2x)c(2y)+A83c(2z)d(22)
XXy 2 A, css 0 A93s(2y)s(22)
xxzz  Agq ccc A52d(2y)+A62c(2y) A73c(2x)c(22)+A83c(2y)d(2y)
XYYy Ay, ssc 0 A63s(2x)s(2y)
Xyyz A-, scCs 0 A93s(2x)s(2z)
XyzZz A, ssc 0 A93s(2x)s(2y)
Xzz2z A51 scs 0 A63s(2x)s(22)
YYYY A41 cce A320(2y)+A42d(2y) A43c(2x)d(2x)+A53c(2x)c(2z)
yyyz A51 css 0 A63s(2y)s(22)
yyzz Ag, ccc A52d(2x)+A62c(2y) A73c(2y)c(22)+A83c(2x)d(2x)
yzzz Ay Css 0 A58 (2y) s (22)
2222 A41 ccc A3zc(22)+A42d(22) A43c(2x)d(2x)+A53c(2x)c(2y)
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(i)
oBy,K
Only one permutation of each set of indices

Values of g (glg2g3), for i = 1, 2 and 3.
0, B, vy is given. The function does not change
on permutation of the indices. The subscript

Kk is understood. Symbols are defined in

Table AIV-1.

aBy i=2 i=3 —
XXX scc A22s(2x) Ai3s(2x)d2x)

XXy csc Alzs(Zy) Aé3s(2y)c(22)+A;3c(2x)s(2y)
XX2Z ces A125(2z) Aé3c(2y)s(2z)+Aé3c(2x)s(2z)
Xyy scc A, ,s(2x) Aé3s(2x)c(22)+Aé3s(2x)c(2y)
Xyz sSSs 0 0

X2z scc Alzs(zx) Aé3s(2x)c(2y)+Aé3s(2x)c(22)
Yyy csc A225(2y) Ai3s(2y)d(2y)

yyz ccs Alzs(Zz) Aé3c(2x)s(22)+A;3c(2y)s(2z)
yzz csc A128(2Y) Aé3c(2x)s(2y)+AéBS(2y)c(22)
zZz2 cecs A,,s(2z2) Ai3s(2z)d(22)
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TABLE AIV-5 Further symbols used in this Appendix.

Dy = ©1x%1yC12 -1

D2 = cos(r)cos(s)cos(t) - 1

Pl = ex(l)ey(l)slxslyclz+ey(l)ez(l)slyslzclx+ez(l)ex(l)slzslxcly
P, = uvsin{r)sin(s)cos (t)+vwsin(s)sin(t)cos(n+wusin(t)sin(r)cos(s)

P, = l-[ei(l)cos(2qlx) + ei(l)cos(quy) + ei(l)cos(quz)]

P, =1 - [u2cos(2r) + v2cos(25) + w2cos(2t)]

P. = 2—{ei(l)[cos(2qu)+cos(2qlz)] + ei(l)[cos(2qlz)+cos(2qlx)]
5
+ez(l)[cos(2qlx) + cos (2qu)]}
P, = 2—{u2[cos(23) + cos(2%) ] + v2[cos(2t) + cos(2r)]

+ w2[cos(2r) + cos(2s)]}
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TABLE AIV-6 Contributions to the quantity S; v defined in
Section C(ii) of this Appendix, for a par-

ticular choice of a, B, vy, o .

Case Example i Contribution to Ss
. : 2
(1) XXXX 1 16A4lex(l)DlD2
2
2 l6A32ex (l)[l—cos(2qlx)]P4

2
+8A42ex(l)[2-cos(2qu)—cos(2qlz)]P6

(ii) XXYY 1 16A6lei(l)DlD2
2
2 8A62ex(1)[l-cos(2qlz)]P6
2
+8A52ex(l)[l-—cos(2qlx)]P6

2
+16A52ex(l)[l-—cos(2qu)]P4

(iii) XXXy 1 16a,,e2(1)DP,
(iv) 3xyz 1 16A7le}2{(l)DlP2
(v) XY XX 1 16A5lex(l)ey(l)slxslyclzD2
(vi) XY XY 1 16A6lex(l)ey(l)slxslyclzPZ

(vii) XY X2 1 -16A7lex(l)ey(l)slxslyclzP2

(viii) Xyzz 1 16A7lex(l)ey(l)slxslyclzD2
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Contributions to the quantity Sy defined

in Section C(ii), summed over all permutations

for each of the eight cases.

Case Example N i Contributions to Si
(i) XXXX 3 1 16A41D1D2

2 16A32P4P5 + 8A42P6P7
(ii) XXYY 6 1 32A61D1D2

2 8A62P6P7 + 8A52P4P7 + 16A52P6P5
(iii) XXXY 12 1 64A51D1P2
(iv) XXyz 6 1 32A71D1P2
(v) XY XX 12 1 64A51P1D2
(vi) XY XYy 12 1 64A ., P P,
(vii) Xyxz 24 1 -128A.,P,P,
(viii) Xyzz 6 1 32A_,P.D

717172
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TABLE AIV-8 The sums defined by Eg. (AIV-Cll), for the
three major symmetry directions.

For g; = (0,0,%):
Il = gsin({r)sin(s) [sin(t)-sin(t+z)]
12(1) = gin(r)cos(s) [cos (t)~cos (t+C)]
I2(2) = cos(r)sin(s) [cos(t)-cos (t+7)]
12(3) = sin(z)+cos(r)cos(s) [sin(t)~-sin (t+7)]
I31) =T3¢y = ©
13(3) = sin(2z)+sin(2t)-sin(2(t+z))

For 91 = (2,0,8):

I1 = sin3(§)+sin(r)sin(s)sin(t)—sin(r+;)sin(s+c)sin(t+;)

Iy = sin(c)cosz(c)+sin(r)cos(s)cos(t)—sin(r+g)cos(s+;)cos (t+17),
etc.

13(1) = sin(2z)+sin(2r)~-sin(2(r+z)), etc.

For g, = (2,z,0):

I, = [sin(r)sin(s)-sin(r+g)sin(s+g)]sin(t)

I;(1) = sin(g)cos(g)+[sin(r)cos(s)-sin(r+g)cos (s+z)]lcos(t)
I,(2) = sin(g)cos(g)+[cos (r)sin(s)-cos (r+g)sin(s+z)]cos (t)
I,y = [cos(r)cos(s)-cos (r+Z)cos (s+Z) Isin(t)

I3(1) = sin(2g)+sin(2r)-sin(2(r+zg))

13(2) = gin(2z)+sin(2s)-sin(2(s+z))

13(3) = sin(2t)

[Note that I ]

2(1) ~ f22)
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The sums

N(gi)
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S3, defined in Section AIV-C(iii}),

for the seveh major branches.

Sum

(0,0,%)

(Z,3,2)

L

T

; 1 ! 1 ! '
4{ [uu Iz(l)A31+(vv +ww )IZ(l)A2l

1 t ] ]
+ {(uv'+vu )I2(2)A21+(uw +wu )H3

] t ' 2
- (vw'+wv )IlAll] +
] ' 1 '
[vv I2(2)A3l+(uu'+ww )12(2)A21
1
+ {uv +vu’)12(l)A21+(vw +wv')H3

2,

- ' 1 !
(uw ' +wu )IlAll] I

] 1 ]
8 (uu'+vv )H3+ww G3
- ' ! ' T '
(uv'+vu )IlAll+(uw +wu )I2(1)A21

+(vw'+wv')12(2)Aél]

. .
2 [X]+XT+X5-X X =X X =X X, ]

where

— 1] ]
Xl = uu!Gl + (vv'+ww )Hl

+ (uv'+vu')H2+(uw'+wu')H3

- 1 ' !
{(vw " +wv )IlAll

= ' v '
X2 vv G2+(uv +vu )Hl

+(uu'+ww')H2+(vw'+wv')H3

]
- (uw'+wu )IlAll
X3 = wWw GB+(uw'+wu')Hl
+(vw’+wv')H2+(uu'+vv')H3

1]
- 1 1
(uv'+vu )IlAll

{continued)
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TABLE AIV-9 The sums I Sy, defined in Section AIV-C(iii),
N(g.)
for the sevef major branches (cont'd)

43 Pol. N(g;) Sum
2
(Xl,Xz,X3 are given above)
(z,2,0) T2 4 4[(uu'+vv')H3+ww'G3
- 1 ' '
{(uv'+vu )AllIl
+(uw'+wu')Hl+(vw'+wv')H2]2
(z,2,0) L,T1 4 2[uu'Glivv'G2
+{(vv'+ww')i(uv'+vu')}Hl
+{(uv'+vu')i(uu'+vv')}H2
+{ (uw'+wa' )+ (vw'+wv') }
' 2
x(Hy=IjA;4)]
]
Note (1) Gi = Iz(i)A3l+13(i)A22 for i=1,2,3
1) . _
Hi = I2(i)A21+I3(i)A12 for i=1l,2, 3

(2) The +(~) signs apply in the expression for
the direction (z,2,0) for L(Tl1l) polarizations

respectively.
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APPENDIX V

FREE3, A PROGRAMME TO CALCULATE CUBIC ANHARMONIC
CONTRIBUTIONS TO THERMODYNAMIC FUNCTIONS

The expression to be evaluated is (Eq. III-A32):

VO A phg) | 285 (quyey) (AV-1)

)
A A3

172

with N; given by Eq. (III=A34). The quantities AS; and
AC3 are also calculated.

Comparing Egs. (AIV-B4) and (AIV-D4) for the shift
A3(Al,9), and noting that V(A1A2A3) contains the restriction

that
d; * 92 t 93 = G

we find that

V(A A 0.0 |2 = -4t Y (A A As) (AV-2)
17273 B 72Nm3w WA, W 17273
17273
where
, — : . 2 _
YA A,03) = |2 I {f sinlg +x(2;)1}3 (AV-3)
i 2i>0 K

and J is given by Eg. (AIV-D6).

We may immediately drop the sum over ds in Eg. (AV-1)
because of the restriction noted above. In addition the sum
over g, need only be performed over the irreducible 1/48th
of the first BZ (i.e. the IBZ). The sum over g5 must however

be performed over the whole zone. The wave vector 4, is chosen
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to !l1ie on an even mesh, and ds (and therefore g3) lie on

an odd mesh, That is,

qla = mloch ’ (o = XIYIZ)
1 .
oy = (m2a - ®x)bq, (o = x,y,2).
As before, MnAq = (m/a), where Mn is an integer known as

the mesh number,
In the first section of the programme the following
quantities are calculated and stored, for each value of g on

an odd mesh in the IBZ:

q, o =1 to 3

v(gj) j=1to 3

ea(gj) j=1to 3; a=1to3
W(g)

di(gj) j=1to3; 1i=1t%tod4
si(g) i=1¢to 4

sa(g) a =1 to 3

W(g) is the weight of the vector g in the whole zone. This
is given in Section E of Appendix IV. In order to avoid over-
counting when q5 is transformed into the whole zone, we must

introduce extra conditions. If dy = 4, Or 9, = d, the weight

Y Y

is halved, and if dy = d, = 4,, the weight is further divided

Y
by 3. The remaining quantities are defined as follows:
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dl = e, + ey + e,
d, = e_ +e_ - e
2 X Y z o (gJ) understood.
d3 =e, - ey + e,
d4 = eX - ey - ez

si(g) = sin(q, + q
sé(g) = sin(q, + 4y - q,)

s;(g) = sin(g, - q, *+ 9,)

X Y
s;(g) = sin(qX - qy - qz)
s;(g) = sin(2q,) a =1 to 3

These quantities are required in order to evaluate Y (A A, Aj).

For each temperature, and for each (gj), the quantities
n, (dn/dT), and (dzn/de) are also stored.

We now come to the main section of the programme.
First the vector d; is generated on an even mesh in the IBZ.
Values of v(g,j) and e(q,j) are obtained, and so is the weight
W'(gl). Since d; is on an even mesh, this weight is given
by the prescription of Section E, Appendix V, with several
additional conditions. If x #y # 2z =0, M = 24, If
X=y# 2=0, M= 12, and if x # y = z = 0, then M = 6. Here
X, ¥y and z are the components of gy

A value of g, is now selected. A wave vector in the
IBZ is read from the table of values, together with the other

stored quantities. Since 45 must be summed over the whole zone,
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the wave vector must be transformed using each of the 48
operations of the cubic group in turn. In addition the
quantities e(gj), d(gj)., si(g) and s;(g) must be transformed
These transformations are listed in Table AV=1l. The vector

43 is now obtained, by writing d3 = ~9; ~ 9. It is trans-
lated back to the first zone, and the transformation necessary
to bring it into the IBZ is then found. The values of v, e,
etc. are obtained from the table, and appropriately transformed
because d3 is not necessarily in the IBZ.

The complete expression for AF, may be written as

3

AF 5 442 IBZ IBZ . 5 Y (A A A 5) N, (wywows)
= 3 I W (gp) I Wldy) g 533 — (AV-4)
m-C g 9 17273 1%2%3
where
, IBZ IBZ
C=(48)" x ¥ W (gy) Iz W(g,) - (AV-5)
1 22

The above equation summarizes the order in which the various
summations are performed in the programme. Typical timings

are as follows (for calculations at one temperature only):-

M =2, 12 secs.
M =3, 54 secs,

M =4 , 165 secs.

In practice it is found that the sum has converged to within
+ 1% when Mn = 4 1is used. This value of My corresponds to

128 wave vectors 4, in the whole zone, and 14 wave vectors g,
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in the IBZ.

The sum over 43 includes the origin,for which wy = 0,
and the eigenvectors are not well defined. To avoid this
complicationy we have excluded the origin from the sum over
4y+ The normalization factor C is calculated both including
and excluding the origin. The results obtained when C includes
the origin are appropriate to very low temperatures, since
the origin does not contribute at these temperatures; converse-
ly the results obtained when the origin is excluded are
appropriate to high temperatures, since the contribution of
the origin is then similar in size to other contributions. In
practice the difference between the two results, being equal

to 1/2Mn3, is small.
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The 48 equivalent wave vectors g are listed. For
each value of ¢, the quantities d;,d:;,ds; and d,

are given in terms of Ul = Eyx+E +E,, U2 = E +E,-E,,
U3 = Ey-E,+E,, and U4 = Ex-Ey-E;. Here E is an
eigenvectdr corresponding to” the wave vector =
(X,Y,2). The eigenvector e(g) transforms in t%e same
way as ¢, and gg(g) transforms in the same way as qq.
The quantities g. (g) transform in the same way as
the d;. For exaﬁp e, if g = (¥,2,-X) [no. 13], d1 =
sin(-TX—Y—Z]), dz = sin(X+¥+2), d3 = sin(-[X-Y+2]),
d4 = sgin (X+Y"Z) .

-2 Uus U3 U2 U1 31 Z -Y =X {=-U2 U3 -U4 UL

Zz ur ue U3 U4 25 Z Y X Ut =Us U3 -u2 i
Z | =U4 -U3 -U2 -U1 26 {~-Z Y X Uz -u3 U4 -U1l
z U3 Us UL U2 27 Z =Y X U3 -uz Ul -U4
Z |-U2 -U1 -U4 -U3 28 | =Z -Y X us -U1 U2 -U3

-z u2z Ui U4 U3 29 Z Y -X |-U& ULl -U2 U3
-Z |-U3 -U4 -U1 -U2 30 -2 Y =X |-U3 U2 -ULl U4

-2 |=-U1 ~U2 -U3 -U4 32 |~Z -Y =X |-Ul U4 -U3 U2

X | Ut -U4 U2 -U3 || 33| v Xx Z | u1 U2 -U4 -U3
X | U3 -u2 U4 -Ut 3 |-y x 2| u3 U4 -U2 -ut
X | U2 =U3 Ut =-U4 |l 35| Y -x Z |-U4 -U3 UL U2
X | U4 =U1 U3 -U2 || 36 |-Y =X Z |=-U2 -U1 U3 Ux
X |~U4 UL -U3 U2 || 37| ¥ x -z | U2 UL -U3 -U&
-X |-U2 U3 -U1 U4 |} 38 j-Y X =Z | U4 U3 =-UL =U2
-x |-U3 U2 -u4 UL 39| Y -X -2 }|-U3 -U4 U2 U1
-Xx |-U1 U4 -u2 U3 || 40 -y -x -2 |-Ul -U2 U4 U3

TABLE AV-1
n
1 X Y
21 =X Y
3 X =Y
4| =X =Y
5 X Y
6| -X Y
7 X =Y
81X =Y
9 Y 2Z
10~y 2
11 Y -2
12 | =Y -2
13 Y 2
14| -y 2
15 Y =Z
16 | =Y =2
17 zZ X
18| -2 X
19 Z =X
20| =2 =X
21 Z X
22 | -2 X
23 Z -X
24 | =Z =X

W :L

Y utr U3 -U4 ~U2 41 X 2 Y Ui u3 uz Us4
Y U2 U4 -uU3 -Ut 42 | =X Z Y |=-U& -U2 =-U3 -U1L
Y [|-U4 U2 UL U3 43 X =2 Y uz U4 UL U3
Y |-U3 -U1 U2 U4 L | =X =Z ¥ |=U3 -ULl -U4 =U2
-Y u3d U1l -U2 =-Us4 45 X Z =Y U3 U1l U4 U2
-Y Uus U2 =-U1L -uU3 Lo | =X Z -Y }-U2 -UL4 =-U1l -U3
-Y |-U2 -U4 UI UL 47 X =2 =Y us vz U3 u1
-Y |-U1 -U3 U& U2 48 | =X =-Z =Y |-U1 -U3 =U2 =-Ub4
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APPENDIX VI
THE COHERENT NEUTRON SCATTERING AMPLITUDE OF RUBIDIUM
Shull and Wollan (1951) first measured the coherent
neutron scattering amplitude of rubidium (b_.) as O.55><10“12 cm. ,
using a powder sample of RbCl. More recently Mueller et al

(1963) obtained a walue of 0.85x10_12

cm,, again using a RbC1
powder specimen. In view of this discrepancy it was felt worth-
while to redetermine this quantity using powders of RbCl,

RbBr, and RbI. This work is described in a reprint at the

end of this thesis (Copley 1970). We obtained

12

bRb = (0.685 ¥ 0.01) x 10 cm,

The observed powder peaks are shown in Figure AVI-1.
For each compound the left and right hand peaks are (111)
and (200) reflections respectively. In the case of the bromide,
the experimental points for the (111) scan are shown instead,
since no peak as such was discernible. The upward arrow
indicates the expected position of this reflection. The numbers
in brackets are proportional to the number of incident neutrons
for each point on the appropriate scan (i.e. the monitor count).
It will be observed that the ratio of the (111)
intensity to the (200) intensity can be determined to within
a few per cent in the cases of RbCl and RbI. The calculated

scattering amplitude is insensitive to small changes in these
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A =1.335
¢°= -1.56 RbCl
2000+ —20,000
- .
10.0.6 —10,000
- T
© 25
200 2000
[0,0 = —H1000
; = —t—t
5 : 25

U&
1000~ (3) —2000
———p

Rbi

O 1
l I9 202!22232425
Fig. AVI-1l. The observed (1ll) and (20Q) powder peaks

in three rubidium halides. The scattering

angle,¢, is given by ¢ = ¢ . The small
numbers in brackets lndlcgte cguntlng times.
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ratios, as can be seen in Fig. AVI-2, where the ordinate is
proportional to the intensity ratio. Furthermore a systematic
source of error in determining the intensity ratios would
lead to inconsistent results. This is illustrated in Figqg.
AVI-2. The solid arrows indicate the values of bRb deduced
from the measured intensities. The dashed arrows point to
values of bRb which would be obtained if the intensity ratios
were smaller by 1/3 : clearly they are no longer compatible.
Thus a systematic discrepancy of this type may be safely dis-
counted.

Since this work was completed, two other determinations

of b b have been reported. Wang and Cox (1970) obtained a

R
value of (0.705 * 0.025) X J.O-12 cm., and Meriel (1970) re-
ported bRb = (0.704 t 0,008) x 10—12 cm. Both of these

measurements were made using RbCl powder specimens. It is

satisfactory to note that the value we obtain from measurements

12

on RbCl alone, (0.69 & 0.01) x 10 cm., is in agreement with

these other values.
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APPENDIX VII

LATTICE DYNAMICS OF POTASSIUM CHLORIDE

Because of the relatively high neutron absorption
cross section of chlorine, the first measurements of phonons
in alkali halides were made on Nal (Woods et al. 1960) and
on KBr (Woods et al. 1963). More recently several other common
alkali halides have been examined, with the notable exception
of KC1l. In this appendix we consider a neutron scattering
investigation of phonons in KCl.

This work was motivated by the need for shell model
parameters for KCl, from which optical properties may be calcu-
lated, for comparison with experiment. The experiments were
carried out by the author, in collaboration with Dr. G. A. deWit
in the early stages, and the subsequent shell model fits and
calculations of the frequency distribution were performed by
Dr. R. W. MacPherson and Dr. T. Timusk. The work is described
in a reprint at the end of this thesis (Copley et al. 1969).
The dispersion curves are also shown in Fig. AVII-1.

Raunio and Almgvist (1969) have also measured the dis-
persion curves of KCl. In a later publication, Raunio (1969)
described measurements of phonon widths in three alkali chlo-
rides. The Swedish work was recently analysed by Raunio and
Rolandson (1970), who give shell model parameters for KCl and three
other alkali halides. Their fits to the KC1l data have somewhat

smaller standard errors than those of Copley et al., (1969).
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The Debye—Wallerfactors(Bi) of KC1l were incorrectly
calculated in the paper by Copley et al. (1969). An erratum
was subsequently published. The calculated values of B, have
been corrected for thermal expansion using the formula
(Willis 1969):

B, 3 = 8" + 2yxm) (AVII-1)

where gh and h denote the quasiharmonic and the harmonic
values, y is the Gruneisen constant, and x is the volume
expansion coefficient. Values of y and yx were taken from White
(1965), Rubin et al. (1962), and Leadbetter and Newsham (1969).
Since the "harmonic" wvalues, Bih, were calculated using a
frequency distribution appropriate to 115°K, the quantity T
was replaced by (T - 115), in Egq. (AVII-1l).

The results of this calculation are shown in Fig. AVII-Z2.
The quasiharmonic values of the Debye-Waller factor are seen to
deviate from the harmonic values above room temperature.
It is satisfactory to note that the quasiharmonic values are
in reasonable agreement with the measurements of Willis (1970)
up to 600°K. The discrepancy at 900°K indicates that "true"
anharmonic contributions have become important at this
temperature. The measurements of Patomdki and Linkoaho (1969)
and of Jayalakshmi and Viswamitra (1970) are also in reasonable

agreement with the present calculations.
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A redetermination of the coherent neutron scattering amplitude of rubidium. By J.R.D. CopLEY, Department of

Physics, McMaster University, Hamilton, Ontario, Canada

(Received 25 June 1969)

The coherent neutron scattering amplitude of rubidium has been remeasured using powders of RbClI,
RbBr, and Rbl. A consistent value, (0:685+0-:01) x 10712 cm, was obtained, differing significantly from
earlier measurements. The new value is believed to be more reliable. The bound coherent scattering cross-

section is 5-9 +0-2 barns.

The coherent neutron scattering amplitude of rubidium
(bwrv) was first measured by Shull & Wollan (1951) who
obtained brn=0-55 (scattering amplitudes are given
throughout in units of 10-12 ¢cm). In their structurc study
of RbMnF3, Pickart, Alperin & Nathans (1964) found this
value low, and favoured a value of about 0-63. Mueller,
Sidhu, Heaton, Hitterman & Knott (1963) reported a value
of 0-85. In view of the considerable discrepancy between
these measurements, a further investigation has been under-
taken in order to obtain a better value of bro.

The previously published values were both obtained by
the powder diffraction technique (Bacon, 1962) using
samples of RbCl and an external standard. The present
measurements were made by the powder method using
cylindrical samples of RbCl, RbBr, and RbI (which have
the NaCl structure) using the halogens as internal stan-
dards. For cylindrical geometry and the NaCl structure,
the integrated intensity, P, of the reflexion from a set of
planes (hkl) is P= Kjl/(sin 0 sin 20) where

I= [bRb exp (— Wrv)+bx exp (— Wx)|2A .

Here j is the multiplicity of the (hk/) planes, 6 is the Bragg
scattering angle, bx is the coherent scattering amplitude of
the halogen, the exponential terms are Debye-Waller tem-

perature factors, and A is the absorption factor: P, I, j, 0,
W=rb, Wx, and A depend on the indices /4k/l. K is a constant
depending on details of the spectrometer and on the size
of the sample. The plus (minus) sign is used when 4, k, /
are all even (all odd). In this work, the intensities of the
111 and 200 reflexions from each halide were measured
and a consistent value of bry was obtained from the inten-
sity ratios Py11/P2oo.

Measurements were made at room temperature using the
McMaster University triple-axis spectrometer at Chalk
River (Brockhouse, de Wit, Hallman & Rowe, 1968) with
4=1-335 A. The analyser was set to count neutrons elas-
tically scattered by the specimen. Use of a double mono-
chromator and an analyser significantly reduces second
order contributions to the measured intensities. The spe-
cimens (obtained from K & K Laboratories, Plainsview,
New York, 99:9% pure), were contained in a half inch
diameter aluminum can having 0-012 inch walls.

The ratios Rx=1I111/I200, are given in Table 1. The 111
peak in RbBr was too weak to be seen. The errors as-
signed to the ratios Rx arise from counting statistics.
Neglecting the absorption and temperature factors we may
write Rx=(brb— bx)?/(brv+bx)2. Since Rpr is very small,
brv ~ber. The values of by listed in Table 1 were obtained
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Fig. 1. The ragio (bR.n — bx_)Z/(th + b.x)2 as a function of brw, for the three halogens. The arrows indicate the values of brp deduced
from each intensity ratio, neglecting temperature corrections. The short horizontal lines represent uncertainties in bry arising

from uncertainties in the values of bx.
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from the ratios Rx, corrected for the temperature factors
as described below. The values of bx are alse given in
Table 1. Fig.1 illustrates the dependence of brn on the
ratios Rx.

Table 1. Powder diffraction results from several Rb halides

Rx=111/1>00 is calculated from the observed intensities; bx is
the assumed halogen scattering amplitude, and brp is the
calculated scattering amplitude for Rb. Scattering amplitudes
in units of 10712 cm.

X Cl Br I
Rx 0-027, +0:001 0:0 £0:0002  0-0164+0-001
bx 0-963 +0:001* 0-67 +£0-027 052 +0-027
bry 0:69 +0:01 0:67 +£0:025 0:67 +0-03

* Koester (1967).
T Shull & Wollan (1951).

Individual room tempeiature Debye—Waller parameters,
Bi= Wi, na(A/sin Onrr)? were calculated (Dolling, Smith,
Nicklow, Vijayaraghavan & Wilkinson, 1968) using the
breathing shell model (Schroder, 1966) with the elastic and
optical constants as input parameters. In the worst case,
that of Rbl, inclusion of the temperature factors reduces
the calculated value of brn by (0:7+0:7)% to the value
given. The average Debye-Waller parameter for Rbl, ob-
tained from the relative intensities of 8 even hk/ reflexions,
was 3'6 A2, in substantial agreement with calculated values
of 3-4 and 3-6 (5) A2, for the Rb+ and I~ ions respectively.
The degree of contamination of the monochromatic beam
is best estimated from the ratio Rsr, since the 1st order
111 reflexion also contains a 2nd order 222 contribution.
On this basis, corrections to bry are estimated to be <0-1%.
Absorption corrections are <0-01%.

From the 3 independent measurements of brn, we obtain
a best value, bro=0-685+0-01. The bound coherent scat-
tering cross-section, 4nbrn?, is 5-9 + 0.2 barns. This work is
in agreement with recent measurements of Wang & Cox

(1970), who obtain brn=0-705+ 0025 from the intensities
of 18 reflexions in a powder sample of RbCl. Mueller et al.
(1963) obtained hrn=0-85 using an external nickel standard.
In that experiment an intensity ratio /111//200=0-030 was
obtained (Mueller, 1969), which gives brn ~0-68. However
the 111 and 200 reflexions were not fully resolved. These
considerations indicate that the present measurements are
more reliable than the earlier work.

The author is grateful to Professor B.N. Brockhouse for
his advice and encouragement, and to Drs M.H.Mueller
and D.E.Cox for useful discussions relating to this work.
R.W.MacPherson assisted with the shell model calcula-
tions. This work was supported by a grant from the Na-
tional Research Council; I am pleased to acknowledge an
N.R.C. Studentship, and the support and encouragement
of Atomic Energy of Canada, Ltd.
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Lattice Dynamics of Potassium Chloride*
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Phonon dispersion curves along the [00¢], [0¢1], [0{(], and [¢¢¢] directions in KCl at 115°K have
been measured by inelastic scattering of slow neutrons using the McMaster University triple-axis spec-
trometer at Chalk River. Various versions of the shell model have been fitted to the measurements. They
are also compared with Kucher’s predictions and with the results of Schrioder’s breathing-shell model.
Several quantities are calculated using the best-fit shell model. The main features of the frequency dis-
tribution function do not, in general, occur at the frequencies of the symmetry points X and L. The most
prominent peak in the frequency distribution is at 155 cm™. It agrees with the strongest peak in the Raman
spectrum of KCl. The Debye temperature, the Debye-Waller factor, and the inelastic structure factor are

also calculated.

I. INTRODUCTION

HE lattice vibrations of most of the common
alkali-halide crystals have been investigated by
slow neutron spectroscopy and by diffuse x-ray scatter-
ing. The most complete measurements to date have been
made on LiF,! NaF,2 NaCl? Nal,* KBr,? and KI ¢ by
neutron spectroscopy and on NakF 7 and NaCl ® by x-ray
scattering. Potassium chloride is perhaps the most
obvious crystal still missing from this list and although
some diffuse x-ray measurements exist for KCl *10 there
are several reasons why a more complete investigation
of the lattice vibrations should be undertaken.

Work on the optical properties’ of both pure and
defect-containing crystals has demonstrated that for
a full understanding of the influence of the lattice vibra-
tions, detailed dynamic models based on neutron spec-
troscopy are essential. KCl is a good material for optical
studies of all kinds because it can be prepared more
easily in highly pure form than some of the other alkali
halides. For this reason a large amount of experimental
work has been done on this substance. KCl has long
been a favorite in color-center research.

* Work supported in part by the National Research Council of
Canada and in part by the Alfred P. Sloan Foundation.

t National Research Council of Canada Studentship holder.
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From a lattice dynamics point of view, KCl is also of
special interest. A number of good measurements of its
macroscopic properties have been made, and it has been
possible to calculate dispersion curves from these
data using several theoretical models. Noteworthy
among these calculations are those of Tolpygo and
co-workers,2:1* of Hardy," and more recently of
Schroder.'® It is of interest to compare these predictions
of the phonon frequencies with actual measurements.
A survey of models of this type may help us towards
a better understanding of lattice dynamics from a
microscopic point of view.

In Sec. 1T we review briefly the experimental tech-
niques. The measured frequencies at various points
along symmetry directions are given in Sec. 111. The
predictions of models based on macroscopic parameters
are compared with experiment in Sec. IV. The shell
model used by Woods et al.* and by Cowley et al.'®is
introduced and least-squares fits of this model to the
measurements are given. In Sec. V the results of sev-
eral calculations using the best least-squares-fit model
are presented and compared with results of other
experiments.

II. MEASUREMENTS

The phonon dispersion curves of KCl were measured
by slow neutron inelastic scattering using the McMaster
University triple-axis spectrometer at Chalk River."
This instrument uses twin monochromating crystals
which produce a beam of neutrons of energy Eq and
wave vector ko normal to the reactor face. Neutrons of
energy E' and wave vector k', scattered from the speci-

12K, B. Tolpygo and I. G. Zaslavskaya, Trudy Inst. Fiz. Acad.
Nauk Ukr., SSR, No. 4, 71 (1953) [English transl.: United
Kingdom Atomic Energy Authority, Harwell Report AERE-
transl. 972 (1963) (unpublished)].

13T, I. Kucher, Zh. Eksperim. i Teor. Fiz. 32, 498 (1957)
[English transl.: Soviet Phys.—JETP 5, 418 (1937)]

14 J. R. Hardy, Phil. Mag. 7, 315 (1962).

15 U. Schroder, Solid State Commun. 4, 347 (1966).

16 R. A. Cowley, W. Cochran, B. N. Brockhouse, and A. D. B.
Woods, Phys. Rev. 131, 1030 (1963).

17 B. N. Brockhouse, G. A. de Wit, E. D. Hallman, and J. M.
Rowe, in Neutron Inelastic Scaliering (International Atomic
Energy Agency, Vienna, 1968), Vol. II, p. 259.
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men and selected by the analyzing crystal, are counted
using a He® neutron detector.

In a one-phonon coherent scattering process, energy
and wave vector are conserved's:

Eo—E'=(/2my) (ki — k)= v,
ko—k'=Q=2rt+q,

(1)
()

where my is the mass of the neutron, Q is the wave-
vector transfer, and = is a reciprocal-lattice vector. The
upper (lower) sign in Eq. (1) refers to phonon creation
(annihilation). In this approximation the frequency »
and wave vector q of the phonon obey the dispersion
relation »v=v,(q), where j is the branch index; for a
crystal having # atoms per (primitive) unit cell, the
dispersion relation has 3z branches. The constant-Q
method!® was used throughout this experiment. Fixed
incident neutron wavelengths, 2mw/ko, between 1.425
and 1.335 A, were employed, corresponding to frequen-
cies between 9.75X 102 ¢ps (325 cm™!) and 11.09X 10"
cps (370 cm™'), and only neutron energy-loss (i.e.,
phonon creation) processes were examined.

The specimen, obtained from the Harshaw Chemical
Co., was a cleaved single crystal of potassium chloride,
21X 23X 3 in. with faces parallel to {200} planes. Mea-
surements were made in the (100) and (110) scattering
planes. Where possible, measurements were made so
that the path of the beam through the crystal was not
too long, owing to the appreciable (34 b) absorption
cross section®? of chlorine.

18 G, Placzek and L. Van Hove, Phys. Rev. 93, 1207 (1954).

19 B. N. Brockhouse, in I'nelastic Scattering of Neutrons in Solids
and Liquids (International Atomic Energy Agency, Vienna, 1961),
p. 113.

20 Neutron Cross Sections, Brookhaven National Laboratory Report
No. 325 compiled by D. J. Hughes and R. B. Schwartz (U. S.
Government Printing Office, Washington, D. C., 1958), 2nd ed.
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The crystal was mounted in a metal cryostat and
cooled from above to 1154 5°K.

III. RESULTS

The measured phonons are shown in Fig. 1 and listed
in Table I. The branches are labelled according to their
polarization relative to q. The [0{¢] Ty and T, branches
are polarized parallel to [011] and [100], respectively,
and the [0¢1] A, 1Ty, and 11, branches have polarization
vectors parallel to [010], [1007], and [0017], respectively.
The [0¢1] branches are symmetrical about the point
W, and, to avoid confusion, two of the IT branches have
been omitted from the figure. The components of q are
given in units of 27/a.

For any wave vector q, along these symmetry direc-
tions, there are two branches of each polarization. The
lower branch is labelled A (acoustic) and the upper
branch is labelled O (optic).

The dispersion curves in Fig. 1 are also labelled ac-
cording to the irreducible representations of the wave
vector, using the notation of Bouckaert et al.*!

From a consideration of the inelastic structure factor
(see Sec. V) each group has been unambiguously as-
signed to a branch of the dispersion curves. Where two
branches of the same polarization come close to each
other, no difficulty was encountered in branch assign-
ment, since the structure factors for A and O branches
differ markedly at these points. The point (3,3,3) is not
as well determined as some of the other symmetry
points, since it was difficult to obtain good neutron
groups at this point.

The errors assigned to the measured frequencies are
normally 40.1T, where T' is the width (full width at

4 1. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys, Rev.
50, 58 (1936).
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TasLE I. Normal-mode frequencies of KCl measured at 115°K.

The branch index j is shown. The frequencies are in units of

10*2 cps.

v 5 v 7
t=aq/2n (Acoustic) (Optic)
[00¢]T

0. 439 +003 45
0.2 0.69 +0.03 1,2
0.3 4.44,40.05 4,5
0.4 1.12;+0.03 1,2
0.5 453 +£01 45
0.6 1.50 £0.03 1,2
0.7 445 +0.05 5,6
0.8 1.72 £0.05 1,2
1.0 1.76 £0.05 1,2 453 £0.05 4,5
[00¢] L
0.0 6.39 £0.1 6
0.2 1.47 £0.08 3 6.25 £0.08 6
0.4 2.83 £0.08 3 5.55 +£0.04 6
0.5 5.13 £0.03 6
0.6 395 £0.06 3 458 +£0.05 6
0.8 3.59 £0.04 3 449 +£0.05 6
1.0 3.23 £0.05 3 4.70 +£0.05 6
[0¢c] Ty
0.2 1.43 £0.02 2
0.4 2.69 +0.02 2
0.6 3.10 £0.1 2 3.73 £0.03 3
0.7 2.57 £0.04 1
0.8 2.16 £0.03 i [ 438 +£0.06 4
[0sx] T2
0.2 0.89 £0.03 441 £0.05 3
0.4 1.67 £0.02; 1
0.5 457 £0.06 5
0.6 247;+0.02; 1 4.56 £0.06 6
0.8 3.02;40.04; 3 4.60;+0.04 6
[0 L
0.2 1.71 £0.06 3 5.96 £0.08 6
0.35 5.56 0.1 6
0.4 331 006 3
0.5 475 £0.06 6
0.55 408 +0.06 4
0.7 3.46 40.05 3
0.8 2,75 £0.06 2 451 £0.05 5
L] T
0.1 437 +£0.04 4,5
0.2 141 £005 1,2 423 +£0.06 45
0.3 204 +£0.15 1,2 4.02 £0.04 4,5
0.4 2.64 £0.13 1,2 3.72 £0.04 34
[cce] L
0.2 2.12 4-0.04 3 5.97 +£0.04 6
0.3 5.70 £0.07 6
0.4 3.91 £0.03 5 5.25 £0.05 6
0.5 4.60 £0.02 5
[0¢1] 1,
0.5 257 £01 1,2
0.7 292 +0.1 3
[0¢1] 11,
0.1 465 £0.06 6
0.3 4.61 £0.08 o6
0.5 4.62 £0.06 5,6
0.7 4.56 £0.06 5
0.9 454 £0.06 3
[0r1]A
0.1 1.78 £0.09 2
0.2 2.27 £0.06 2
0.3 2.67 £0.13 2
0.4 3.33 0.07 3
0.5 3.83 £0.06 4
0.6 4.13 +0.06 4
0.8 449 +0.07 4

half-maximum) of the measured neutron group. In a few
cases, where poor groups were obtained, the assigned
errors are larger. (See note added in proof.)
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IV. MODELS

The lattice vibrations of the alkali halides have been
represented by three closely related formulations: the
shell model used by Woods ef al.,* extended by Cowley
et al.,'® and originally introduced by Dick and Over-
hauser??; Hardy’s deformation dipole model,’* and
Tolpygo and Zaslavskaya’s dipole model.’> All the
models are in the framework of the adiabatic and har-
monic approximations. The Coulomb interactions and
the short-range repulsive “overlap” forces are taken
into account, and an attempt is made to account for
the effect of the polarization of the ions on the lattice
vibrations. The differences between the formulations
have been discussed by Cowley ef al.'® We have fitted
our data with the shell model, and compared the results
with those due to Kucher® and to Tolpygo and
Zaslavskaya, with Schroder’s breathing-shell model,®
and with Hardy’s calculations.

The general shell model has a very large number of
adjustable parameters. We have used the approxima-
tions due to Cowley et al. to reduce it to 11. These ap-
proximations assume that the overlap forces act only
through the outer shells of valence electrons and that
they extend only out to second-nearest neighbors. With
axially symmetric forces, the parameters for the most
general model under these assumptions are the radial
and tangential short-range force constants A, B, A1,
Byy, Ase, and Bs between the K+-Cl-, K*+-K*, and
CI=-CI~ nearest-neighbor ions, respectively, the ionic
charge Ze, and the electrical and mechanical polariza-
bilities a1, as, d1, and ds for the K+ and Cl~ ions, respec-
tively. The parameter B may be eliminated, since it is
related to By, By, and Z by the stability condition
B+2Bu+2Bsy=—%auZ? where ay=1.74756 is the
Madelung constant. Noncentral forces are taken into
account by introducing a parameter B”, so that B is
replaced everywhere in the equations of motion by
B+B". The 11 independent parameters are therefore
A, B”, A, B, Ass, Bos, Z, ay, di, as, and ds.

A modification of the model is Schroder’s breathing-
shell model, in which a new coordinate is introduced to
express the compression (monopole) deformation of the
shells. It is assumed that the spring constants between
the cores and shells of the ions are the same for the com-
pression as for the dipole deformations. This avoids the
need for any new parameters.

We obtained the best-fitting values of the shell-model
parameters by means of a nonlinear least-squares fit to
the frequencies along certain symmetry directions using
the program by Marquardt.?® The calculation was per-
formed on the CDC 6400 computer at the McMaster
computing center. The parameters of the fits are given
in Table IT and the calculated frequencies are presented

22 B. G. Dick and A. W Overhauser, Phys. Rev. 112, 90 (1958).

22D, W. Marquardt, J. Soc. Indust. Appl. Math. 11, 431
(1963). This program is available from Share General Program
Library, Catalog No. SDA 3094 (unpublished).
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TasLE II. Shell-model parameters for KCI at 115°K. Parameters for model IIT were estimated from the bulk properties of KCI (Table
IV). The parameters for all other models were obtained from the results of least-squares fitting to neutron scattering data. Parameters
A1 and By are zero for all these models. The short-range force constants are in units of ¢2/2v, where v is the volume of the primitive
unit cell.

Model

param-
eters Units I 11 11T 18Y A% VI
A e2/2v 991 +0.19 11.48 +0.36 12.58 12.24 +0.80 12.07 +0.16 12.12 40.53
B e?/2v —1.53 —1.21 0.2782 —1.08 —0.96 —1.17
B” e2/2v 0.4024-0.13 0.158+0.075 —0.5884 0.02 £0.12 e 0.075+0.07
A2 e2/2v —0.14 +0.18 —0.095+0.12 0.7587 0.01 +0.14 —0.10 £0.20
B, e2/2v 0.25 +0.084 0.060+0.050 —0.3169 0.028-+0.061 e 0.05840.047
Z e 0.73540.015 0.895+40.029 0.900 0.92840.057 0.9104:0.014 0.91840.049
a 1/v ce e 0.01974 0.0344-0.014 0.0284-0.006 0.0284-0.010
d, e e 0.0753 —0.06040.071 —0.014+0.024 —0.025+0.045
as 1/v 0.04740.005 0.04888 0.036+0.016 0.03540.007 0.03540.010
ds e 0.123+4+0.028 0.1865 0.08740.086 0.13140.022 0.12140.028
Std
error 102 cps 0.126 0.077 0.141 0.071 0.065 0.065

x2 9.47 2.36 493 2.29 1.45 1.35

in Fig. 1 as the solid line for the model that best fits
the data (model VI).
The standard errors given in Table 1T were calculated

from
N (Vobsi_Vlno(!cli)"Y 162
sE.~(Z ___) ,
i=1 N=~K
where IV is the number of observations, K is the number
of adjustable parameters, and the »’s are the phonon
frequencies. The standard error represents an over-all
average error in the fitted frequencies. We have also
calculated the quantity

3 1 g: Vobs' —Vmodel" z
Xi= 5
N—K =1 oi

where o, is the estimated experimental error for the ith
phonon.

Table IIT gives some elastic and optical quantities
calculated from the models and compares these with
direct experiments. Table IV contains constants used in
the calculations.

TaBrE III. Calculated elastic constants, high-frequency dielec-
tric constant, and small g-value optical frequencies for the various
models of KCI. Values for the breathing-shell model, model TIT,
are input parameters interpolated from experimental data to
115°K; »1o has been calculated using the LST relation.* The
elastic constants are in units of 10! dyn/cm? and the frequencies
are in units of 101? cps.

Model T is a rigid-ion model with second-neighbor
interactions between chlorine ions. The frequencies of
the model are in error by up to 99, especially along the
[0¢¢] direction. The elastic constants determined from
the model are in wide disagreement with the ultrasonic
values.

Model II has polarizable chlorine ions. The standard
error has been reduced considerably, and the elastic
constants obtained are closer to the experimental values
than those of model I. The high-frequency dielectric
constant is still in considerable error.

Model IIT is the breathing-shell model and was not
fitted to the neutron-scattering data. Its parameters
were estimated from the values of the bulk properties
of KCl interpolated to 115°K, given in Table ITI. Dis-
persion curves for this model are plotted for comparison
with the data as the dashed curve in Fig. 1. The over-all
agreement with experiment of the calculated dispersion
curves is quite good. The value of v1,0 at small q values
is in excellent agreement, but there are discrepancies in
the initial slopes of the longitudinal branches and the
agreement around point X is not very good. The param-
eters of model 111 were used as the initial guess in all the
least-squares fits.

Model 1V is a fitted breathing-shell model. The fit
is slightly improved over model II, and the high-
frequency dielectric constant is in good agreement with
experiment. However, the elastic constants now show
discrepancies.

Note that the change in going from a breathing-shell
model fitted to macroscopic parameters to one fitted to

Model I II . 1v Y VI Observed  neutron measurements is not large, particularly in the
50 30 L 38 dbe in Lo case of the short- and long-range polarizabilities. This
(Cj]‘: 0:(1);5 053 Oéh 0;1 Ozé() 0é§ 0.58 implies that within the breathing-shell-model frame-
Ciu 0583 073 0653 073 070 072 0.653 work the neutron measurements are in agreement with
€ 1.0 173 245 2.22 208 208 215 the macroscopic constants.
vro  4.39 442 436 441 443 441 436 o 3 y :
vio . 636 635 636 639 633 634 e Model V is a six-parameter shell model with both ions

s Reference 38.

polarizable and no second-neighbor repulsive forces.
Model VI includes second-neighbor repulsive forces
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between chlorine ions and has a parameter to allow for
noncentral forces. The errors of these last two models
are essentially the same. Model VI gives a slightly better
fit than model V to vro at small q. The mechanical
polarizability of the K* ion in models IV-VI, while
negative, is smaller than the error associated with it, so
that no significance should be attached to its sign.

Another model with the full 11 parameters adjustable
gave no significant improvement in fit and is not in-
cluded in Table IT. Model VI was therefore selected as
the best model for the purpose of reproducing the fre-
quencies and was used in all the subsequent calculations.

Figure 1 also shows Kucher’s' calculated values as
the dotted curve. The agreement with the neutron
measurements is generally good. Similarly the calcula-
tions of Hardy are in qualitative agreement with experi-
ment, although discrepancies of the order of 109, are
common in both cases. Some of these variations might
be due to the use of room-temperature macroscopic con-
stants in the fitting. It can be seen, however, that even
when parameters interpolated to 115°K (model III)
are used, the standard error is more than twice as large
as for model VI, fitted directly to neutron data.

V. CALCULATIONS FROM MODEL VI
A. Frequency Distributions

The frequency distribution function g(v)dv is shown
in Fig. 2. It was obtained by solving the shell-model
dynamical matrix in the octant 0<¢.<2m/a, 0<gq,
<2r/a, and 0<¢.<2w/a at 10000 randomly chosen
points. The frequencies were sorted into a histogram
containing 127 bins. Figure 3 shows the frequency
spectrum ordered according to the branch index j: at
each q, the six frequencies are numbered j=1, ---, 6 in
order of increasing size. Figure 3 also shows the location
of some of the symmetry points as given by model VI.
For the phonons at I and X, the model differs from ex-
periment by less than 29}. The whole [{{¢] TA branch,
however, is predicted high by the model and the zone-
boundary frequency could be as much as 7 cm™! lower
than the value predicted by the model (106.2 cm™t).

TABLE IV. Values of constants used in the KClI calculations.

LACE T I CEIEESIYANIAIN [-C'S 'O'F = KIC1

la=r=3.124
2=2r"=60.8 A3
e?/2v=1896 dyn/cm?*
M;=39.102 amu
M_=35.457 amu
€o=2.15b

vro=4.36X10'2 cps®
a;=1.201 A3b
a;=2.974 A3b
Ci1=4.60X10" dyn/cm? ¢
C12=0.58X10'* dyn/cm?®
C14=0.653 X101 dyn/cm? ¢

eo=4.57¢

a See the Appendix.

( l’J.)R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 92, 890
1953).

¢ Interpolated to 115°K from M. H. Norwood and C. V. Briscoe, Phys.
Rev. 112, 45 (1958).

d Interpolated to 115°K from M. Born and K. Huang, Dynamical Theory
of Crystal Lattices (Oxford University Press, Oxford, 1954), Table 17, p.
85; and from D. H. Martin, Advan. Phys. 159, 223 (1960).

e Interpolated to 115°K from M. C. Robinson and A. C. H. Hallett,
Can. J. Phys. 44, 2211 (1966).
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Fic. 2. Total frequency distribution calculated from model
VI using 10 000 randomly selected wave vectors sorted into 127
bins.

It can be seen that the zone-boundary symmetry
points do not, in general, correspond to very distinct
features in the total g(v) curve. It has been customary to
use points X and L to explain peaks in the second-order
Raman spectra.?* With the exception of the lowest X
frequency there seems to be little justification for this
procedure at present.

The very strong peak at 155 cm™" arises from a saddle-
point in the sixth branch, which does not correspond to
any of the symmetry points. This peak has been seen by
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F16. 3. Individual frequency distributions for the six branches,
for the 10 000 wave vectors of Fig. 2. The points have been omitted
for clarity. The frequencies of the symmetry points I', X, and L
are shown for each branch.

24 E. Burstein, F. A. Johnson, and R. Loudon, Phys. Rev. 139,
1239 (1965).
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Callender and Pershan? in the second-order helium-
temperature Raman spectrum of KCl at 2)X155 ecm™
and in the fluorescence sideband of KCl:Sm** by
Bron.?® The half-width of this peak in the samarium
fluorescence is only 2.5 cm~' and its position is 156
Cm_1.27

The peak at 107 cm™! is related to a near-degeneracy
of a saddlepoint at (0.51, 0.51, 0) and a maximum near
(0.5,0.5,0.5). This singularity is of some interest since
it occurs in all alkali-halide crystals for Z4 symmetry
branches at this point in the zone. Measurements of
the impurity-induced far-infrared absorption in KBr
show that the rise in the second branch from the saddle
point to the maximum occurs in a 0.3-cm™ interval.
A similar effect should be observable in KCI near 107
cm™ L

B. Heat Capacity, Debye Temperature,
and Debye-Waller Factor

Using Eqgs. (14.1) and (2.3) of Blackman,?? the heat
capacity C, and Debye temperature ©@p have been cal-
culated from the frequency distribution function g(v).
The calculation is compared with the experimental
measurements of Berg and Morrison® in Fig. 4. Atvery
low temperatures ®p is sensitive to the low-frequency
part of g(v); the calculated values depend on the method
of calculating g(») and have been omitted from the
figure. Using de Launay’s® procedure, and the elastic
constants predicted by model VI, we obtain ©p(0)
=241°K. Estimating the initial slopes of the disper-

25 R, H. Callender and P. S. Pershan, in Proceedings of Interna-
tional Conference on Light Scattering Spectra of Solids, New York
University, 1968 (unpublished).

26 W. E. Bron, Phys. Rev. 140, A2005 (1965).

27 M. Buchanan (private communication).

28 M. Blackman, in Handbuch der Physik, edited by S. Fligge
(Springer-Verlag, Berlin, 1955), Vol. VII, Pt. 1.

2 W, T. Berg and J. A. Morrison, Proc. Roy. Soc. (London)
A242, 467 (1967).

8 J, de Launay, J. Chem. Phys. 30, 91 (1959).
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sion curves (and hence the elastic constants) gives
Op=238°K.

In the low-temperature region, the calculated curve
lies a few degrees below the experimental points. Better
agreement would be expected if a frequency distribution
appropriate to the temperature 7" were used to obtain
Op(7T). At high temperatures, the experimental values
fall off rapidly. This is interpreted as an anharmonic
effect, since the harmonic approximation predicts that
©p becomes constant at high temperatures.

For a cubic crystal, the Debye-Waller factor W; is
related to the total mean-square displacement (u?) of
ion 7 by

2Wi=350%u?),
where?!
h les(a)]?

2y = [ il
)= T o L@+

Here e;;(q) is the eigenvector of the ¢th ion in the (q,J)
normal mode and 7;(q) = (e/i@/*¥8T —1)—1,

The quantity B;=387*(x;*) has been calculated using
individual frequency distribution functions! for the two
ions, and is shown in Fig. 5.

The experimental measurements®:3 of B; are in poor
agreement with the calculation. The experimental diffi-
culties have been pointed out by Buyers and Smith,?*
and in view of this the disagreement is not surprising.
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F1c. 5. Debye-Waller parameter B and the total mean-square
displacement (#2) for the K* and CI~ ions. The curves were cal-
culated from model VI. The points are the measurements of
Wasastjerna (Ref. 33) and of James and Brindley (JB, Ref. 32).

1 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory
of Lattice Dynamics in the Harmonic A pproximation (Academic
Press Inc., New York, 1963).

32 R. W. James and G. W. Brindley, Proc. Roy. Soc. (London)
A121, 162 (1928).

3 J. A. Wasastjerna, Soc. Sci. Fennica Commentationes Phy.
Math., 13, 1 (1946); quoted in Infernational Tables for X-Ray
Crystallography, edited by K. Lonsdale (Kynoch Press, Birming-
ham, England, 1962), Vol. III, p. 240.

(1;;4\?;’. J. L. Buyers and T. Smith, J. Phys. Chem. Solids 25, 483
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C. Inelastic Structure Factor

The intensity of a (one-phonon) neutron group (q,7)
observed in a constant-Q scan is®3:36

\,(k’)h[nj(q) +3+3]
il m e T
ko 4mv;(q)

where V is the number of primitive cells in the crystal,
and the upper (lower) sign refers to phonon creation
(annihilation). The structure factor |F|? is given by

|Fl2= | biemrrnQ- e (@M @] 2,

|F|*,

where b;, r;, M;, and W, are the coherent scattering
length, position vector, mass, and Debye-Waller factor,
respectively, for the ith atom or ion. For wave vectors
along a symmetry direction in KCl, this reduces to

|F|2=(Q- V)| buM 2 1@, (q)
ib2M2_1/26—W2(Q)£2j(q) |2 )

where V is a unit vector in the direction of the polariza-
tion vector of ion 1, and V&=e,: The upper (lower)
sign is used when the reciprocal-lattice vector = involved
[see Eq. (2)] has even (odd) indices; subscripts 1 and
2 refer to the K+ and Cl~ ions, respectively.

The Debye-Waller factors W, for Q= (0,0,6) X 27/a
and T=100°K, are W,=0.211, W.=0.216, and ¢ 71/
e~ W2=1.005. We may therefore neglect the difference in
the Debye-Waller factors and write

IF[2=(Q‘ V)Qe—2Wav(Q)|f|2,

% J. Waller and P. O. Froman, Arkiv Fysik 4, 183 (1952).
a ;; SB) N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747

where the “reduced inelastic structure factor”
| f12=10:M 1281 (q) = b.M 57128, 5(q) | 2.

Using the values?® b;=0.34; and 5,=0.98, and eigen-
vectors calculated from model VI, | f|2 has been calcu-
lated for the major symmetry directions and is shown in
Fig. 6. The curves show important differences from the
analogous curves for Nal 4 and LiF,! principally because
of the similarity of the ionic masses and because of the
large ratio of the scattering lengths.

Comparison with the dispersion curves (Fig. 1) indi-
cates that rapid changes in | f|? occur whenever the
separation of the acoustic and optic branches of the same
polarization has a minimum value. At such points the
two acoustic curves (for even and odd =) intersect,
indicating that one of the ions is stationary. Similarly
the two optic curves cross, and for this mode the other
ion is stationary. For phonons (q,7) at (0,0,0.68) LA,
(0,0.5,1) AO, (0,0.6,0.6) LO, (0.5,0.5,0.5) LA and TO,
and (0,0.51,0.51) T,0, only the CI~ ions are moving
and |fl2=bCl2/MCIQO.027 b/amu. At (0,0,068) LO,
(0,0.5,1) AA, etc., the Cl~ ions are stationary and
| f]*=0bx*/M g~0.003. For all values of = the former
modes are about nine times as intense as the latter
modes and only the former modes can be observed. This
effect is fortunately limited to very small regions in g,
particularly in the longitudinal cases.

VI. CONCLUSION

We have presented measurements of phonon fre-
quencies along the major symmetry directions in KCl at
115°K. Neutron groups of well-defined frequency and
polarization were observed at all q values except near
(3,3,3) X2r/a. The frequencies found agreed quite well


http:0,0,0.68
http:0,0.51,0.51
http:0,0,0.68

AL
gu”

with a shell-model calculation based on macroscopic
parameters; if the parameters are allowed to vary to
give a best fit to the neutron measurements the agree-
ment is further improved. The polarizabilities that are
obtained in this way do not take on unphysically large
negative values as was observed in KBr.

In the case of KCl at least, it seems that the shell
model, in its various forms, offers a good description of
the dynamical behavior of the lattice. KCl seems to
behave very much like an ideal ionic crystal; even the
rigid-ion model gives a fit that has only twice the stand-
ard error of the best shell model.

Using the best least-squares-fit shell model we have
calculated some properties of KCl. The frequency dis-
tribution g(v) shows the characteristic sharp peaks as-
sociated with saddle points in the frequency spectrum,
the strongest of which can also be found in the Raman
spectrum of KCl. Up to about 70°K the Debye tempera-
ture calculated from g(») is in good agreement with data
from specific heats.

One of the main motivations for undertaking this
work has been to provide good phonon frequencies for
use in interpreting other experiments, in particular
those optical effects where phonons play an important
role.

Note added in proof. Recently G. Raunio and L.
Almqvist have measured dispersion curves in KCl at
80 and 300°K, by neutron inelastic scattering. Their
results are generally in good agreement with our own.
Their measurements of the [{{{] T4 branch, however,
lie as much as 79, higher. Since the higher frequencies
are in better agreement with our model VI (see Sec.
IV), and since these workers took extra care to investi-
gate the dispersion surfaces in the vicinity of this
branch, we believe their results for this branch are
more reliable than our own.
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APPENDIX: TO FREQUENCY AT ¢— 0

At the time of these measurements we were unable to
find in the literature a recent measurement of the trans-
verse (q — 0) optical frequency. We made a determina-
tion of vro(q— 0) ourselves with a far-infrared spec-
trometer on evaporated thin films of KCI. Such measure-
ments are very difficult to interpret because of the im-
portance of surface effects resulting from the very small
penetration of the light. The observed peaks are gen-
erally very much broader than one would expect® for
optical phonons. We also found an effect due to the
differential expansion of the substrate which we at-
tempted to correct for by extrapolating from quartz
and lithium-fluoride substrates to a hypothetical KCl
substrate. Our results are summarized in Table V, and

TasLe V. Lyddane-Sachs-Teller relation®* and comparison
with infrared absorption (reststrahlen) frequency.

vLo(q— 0) vrolg— 0) vro(g— 0)
T  Neutrons Neutrons Infrared (vro/vro)g—o
(°K) (102 ¢cps) (102 cps) (102 cps) (eo/es)'’® Neutrons

4.2 4.50£0.03
115 6.39+0.1 4.3940.03 4.3640.07
300 4.194-0.05 4.19+0.07

1.46 1.46

a Reference 38,

it can be seen that thev agree with the neutron measure-
ments. Table V also gives a comparison of our measured
frequencies at ¢ — 0 with the prediction by Lyddane,
Sachs, and Teller®® (the LST relation). It will be seen
that this relation, wro= (€r/ €)' *wro, holds for KCI.
This is in agreement with results for the other alkali

halides.

3 E, R. Cowley and R. A. Cowley, Proc. Roy. Soc. (London)
A287, 259 (1965).

3 R, H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59,
73 (1941).





