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ABSTRACT 

In this paper, we characterize the lifesaving objectives of emergency resource allocation and 

distribution in disaster response operations, and propose an integrated model that captures these 

objectives. We identify two types of fundamental needs in life saving operations. The need to 

“save as many lives as possible” is modeled as a lifesaving utility function; while the need to 

“save lives as quickly as possible” is modeled as a delay cost function. We also model the 

fairness consideration in resource allocation by balancing lifesaving utility, delay cost and 

equality. We also use a rolling horizon approach based on time space network to incorporate 

frequent information and decision updates; and integrate resource allocation and emergency 

distribution into one model. The integrated model is shown to be a linear or convex quadratic 

network flow problem. A case study on the Great Sichuan Earthquake in 2008 is used to explain 

the meaning of the important parameters and highlight the managerial implications.    
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INTRODUCTION 

 

After the “911” terrorist attacks in the United States, effectively responding to unpredictable and 

irregular emergency events has become of primal importance to society. Especially during recent 

years, large scale natural or man-made disasters have occurred frequently1. These disasters have 

caused large numbers of casualties and have often destroyed infrastructures such as electricity 

supply, transportation, and communication systems. The critical issues in such extreme events 

are how to respond immediately and how to schedule responses that can minimize the 

consequences of these disasters2. In this context, emergency logistics has been receiving greater 

attention by more and more academic scholars and emergency management practitioners3-5. 

Emergency logistics is defined as “the support function that ensures the timely delivery of 

emergency resources and rescue services into the affected regions”6 while humanitarian logistics 

is aimed at aiding people in surviving during and after a disaster. We do not emphasize the 

differences between emergency logistics and humanitarian logistics, and use the term to include 

both emergency and humanitarian logistics. 

 

In the existing literature, the necessity and importance of Operations Research / Management 

Science (OR/MS) models in emergency logistics have been well recognized7. Researchers in 

OR/MS have successfully identified many important research problems4,8 such as resource 

allocation, evacuation, demand assessment, and emergency distribution. However, most existing 

works rely on traditional OR models, and do not address the challenging characteristics of 

emergency logistics well2,3,9,10. 

 

In this paper, we consider rescue resource allocation and emergency distribution in the response 

phase of a disaster, in particular during the critical 72 hour time window directly after the event1. 

We propose an integrated model that can capture the essential lifesaving objectives of emergency 

response to large scale disasters. Our work differs from most existing studies in several aspects. 

We notice there are two types of needs in emergency response. These two needs can be 

summarized as “save as many lives as possible” and “reduce the pain of people waiting for 

supplies as quickly as possible”. We model these two needs as lifesaving utility and delay cost 

respectively and integrate them into the objective. Fiedrich et al.11 and Arora et al.12 also 

emphasize the importance of life saving utility, but they ignore the delay cost. There are also 

works that focus on minimizing the time to fulfill demands13-15. These works do not link time 

delays to possible consequences of resource shortage. 

 

We also model fairness in emergency logistics. In de la Torre et al.16, the vehicle routing policies 

are divided into two classes. Egalitarian policies maximize equality of delivery quantity or time, 

while utilitarian policies maximize the fulfilled amount of demand. Huang et al.17 study an 

egalitarian policy that minimizes the variance among the delivery times. They assume there is no 

need for resource allocation, which is often not the case in emergency logistics. Our approach 

differs in that we introduce an equality adjustment parameter, which allows us to make a tradeoff 

between the necessity to satisfy areas with more urgent needs and improve equality in serving all 

the areas. 

 

We propose to use a time space network and a rolling horizon approach to capture the dynamic 

nature of emergency logistics. Our model allows arrivals of supplies and demands at different 
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times, and the evolution of input data. The time space network approach has also been used by 

Haghani and Oh18 and Rottkemper et al.19 to tackle different but related research problems. 

 

We integrate resource allocation and emergency distribution into one model. A similar work can 

be found in Balcik et al.20, where they also consider such integration. However, their work 

mainly focuses on pick-up and delivery problems while our model incorporates the time space 

network and a different objective function. 

 

Our model not only has conceptual appeal, but also incorporates computational efficiency. Our 

integrated model can be shown to be a linear or convex quadratic network flow problem, which 

is well studied in the literature21,22. This makes our model especially suitable for real time 

decision support. 

 

Our paper is organized as follows. In Section 2, we conduct a literature review and identify the 

gaps in existing solutions. In Section 3, we build an integrated model for emergency logistics. In 

Section 4, we discuss the managerial implications of important model parameters. In Section 5, 

we present a case study based on the Great Sichuan Earthquake of May 12, 2008. Finally, we 

discuss the conclusions of our paper and suggest future research directions in Section 6. 

 

LITERATURE REVIEW 

 

In this section, we review existing research efforts that are closely related to our work. Literature 

regarding a comprehensive review of disaster management was reviewed4,7,8,23. We categorize 

the literature based on four dimensions and summarize the resulting classification in Table 1. 

The four dimensions are disaster scenarios, decision problems, objectives, and methodologies. 

 

We first look into disaster scenarios. It is important to realize that emergency response 

operations may be quite different for different types of disasters. For example, an earthquake 

often impacts the transportation infrastructure, while a pandemic flu does not. In Table 1, 

although a few studies specify the disaster type, such as earthquakes11,24 and pandemic flu12, 

most works discuss general disasters. 

 

In the second dimension in Table 1, we group the studies into decisions based on demand 

assessment, resource allocation, and emergency distribution. 

 

(1) The first challenge in immediate disaster response is to gather demand information from 

affected geographical areas. Potential problems include information gathering and 

communication, demand requirement forecasting, priority ranking, as well as area grouping. In 

Sheu5,25 the author investigates time-varying relief demand forecasting, area grouping and 

information uncertainty evaluation. Another work on the area grouping problem was conducted 

by Gong and Batta24. 

 

(2) The next issue is to allocate (limited) resources to affected areas based on their differing 

priorities. Fiedrich et al.11 first pointed out the significance of optimal resource allocation to 

affected areas during the initial search-and-rescue period after large scale earthquakes. Sherali et 

al.26 discuss general resource allocation after a natural disaster occurs. Some other works 



4 
 

consider specific resources. For example, Gong and Batta24 consider ambulance allocation and 

Arora et al.12 study antivirus resource allocation in a pandemic flu. Resource allocation in 

immediate disaster response often involves multiple resources with different requirements (e.g. 

periodical need vs. one-time need). Nevertheless, current research seldom models multiple relief 

items. 

 

(3) The most popular research decision problem in Table 1 is emergency distribution. Most 

works have focused on road damage, or vehicle availability, etc. Besides such conditions, it is 

difficult to distinguish these models from traditional distribution problems. 

 

In the third dimension, we consider the objectives of the research studies. Objectives can reflect 

the attitudes and principles of decision makers. In the context of emergency logistics, the 

primary goal is to save lives and reduce property loss under pressure of limited resource and 

time. However, most works focus on improving distribution performance through travel cost and 

time. A few researchers have focused on the value of life saving, and the assessment of demand 

fulfilment. 

 

In terms of methodologies used in these studies, most researchers follow deterministic 

optimization methods. Some works model the inherent uncertainties via scenario analysis or 

stochastic programming27. In emergency logistics, it is often critical to arrive at a good solution 

quickly. Thus many studies use artificial intelligence methods13,25,28. In addition, some 

researchers use simulation methods. 

 

In summary, a majority of these efforts rely on traditional OR models and do not capture the 

critical characteristics of emergency logistics, especially in the context of large scale disasters.  

 
Table 1: A Classification of Emergency Logistics Literature 

 
Disaster scenario 

Non-specified 14,20,26-32 

Earthquake 11,13,15,24,25 

Pandemic flu 12

 

Decision problem 
Demand assessment 13,24,25 

Resource allocation 11,12, 24,26, 

Emergency distribution 13-15,20,27-32

 

Objective 
Lifesaving 11,12 

Demand fulfilment 13-15,20,30 

Distribution performance (time, cost, path, etc.) 13,15,20,24,27-29,31,32 

 
Methodology 
Deterministic mathematical programming 11,12,14,15,24,29-32 

Scenario analysis / stochastic programming 27 

AI methods (fussy logic, entropy, immune affinity, etc.) 13,28 
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For example, the objectives of current studies mainly focus on improving distribution 

performance. Moreover, many researches only consider emergency distribution, assuming 

resource allocation is not an issue. This is unrealistic in disaster response operations, where 

resource allocation and distribution issues are intertwined. In the following, we propose a model 

that addresses gaps in the current literature. 

 

 

MODEL DEVELOPMENT 

 

Problem Description 

 

A disaster often causes severe damage and threatens people’s lives. Humanitarian aid is urgently 

needed in order to save lives and relieve the suffering of people in affected areas. Our research 

problem is how to distribute and deliver humanitarian aids from supply locations to demand 

locations efficiently through a transportation network in order to maximize lifesaving and 

minimize human suffering. 

 

We assume that the demands and supplies are geographically distributed and dynamically 

changing. Decisions have to be made dynamically based on available real-time information. We 

use a rolling horizon approach to cope with information updates33. At each decision epoch, we 

consider a discrete finite planning horizon, t = 0,1,··· ,T, where t = 0 represents the present 

decision epoch. We consider a single rescue item. There are n locations connected through a 

transportation network. Let dj ≥ 0 be the demand at location j; let sjt ≥ 0 be the available resource 

or supply (for allocation) at location j at time t, also called supply. Both dj and sjt are known 

model inputs; and there are multiple demands and supplies. We call a location with positive dj a 

demand location; a location with positive sjt for sofome t a supply location. It is referred to as a 

transfer location otherwise. We denote the collection of demand locations as G. A location can 

be both a demand location and a supply location. 

 

There are two types of decision variables. Let yjt represent the resource allocated to location j and 

received at time t; we call yjt the resource allocation decision variables. Let xjt,j’t’ represent the 

flow originating at location j at time t and arriving at location j’ at time t0; we call the xjt,j0t0 the 

distribution decision variables or routing decision variables. 

 

We assume that all the decision variables are continuous. 

 

The Objective Function 

 

We consider three different elements related to lifesaving in the objective function: Lifesaving 

utility, delay cost, and fairness. We will address these elements separately and then integrate 

them into one objective function. 

 

Linking demand and supply to lifesaving. To characterize a demand, it is insufficient to use the 

number of items needed. Demand is attached to people, and people differ in terms of health 

condition, self-help capability, etc. In humanitarian relief, the same item may have different life 
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saving effects on different people. We define the lifesaving utility as the effectiveness of life 

saving of a relief item. 

 

Let , i.e. the total resource received at location j in the entire planning horizon. 

Function Lj(Qj) represents the lifesaving utility at location j after receiving resource Qj, defined 

for 0 ≤ Qj ≤ dj; specifically, Lj(Qj) represents the increase in survival rate or welfare of the 

affected people at location j. This definition is consistent with Salmeron and Apte34, in a context 

of pre-positioning of hurricane relief items. Clearly, Lj(Qj) is monotonely nondecreasing in Qj. In 

the simplest form, Lj(Qj) is a linear function of Qj, i.e. Lj(Qj) = αjQj, where αj is called the 

marginal utility at location j. Marginal utility represents the relevant importance of demands. For 

instance, if location j was more severely damaged than location j0, αj should be set larger than αj0 

to represent the relative importance in lifesaving. The total utility collected at location 

. In the objective, we would maximize the overall lifesaving utility. 

 

Managing urgency through delay cost. The effect of receiving the relief item and the effect of 

not receiving the relief item are different. In the former case, the people who get the relief item 

will be saved or have a higher survival probability. In contrast, the people who do not get the 

relief item will suffer from thirst, hunger, injury or other severe conditions that can endanger 

human lives. The lifesaving effect happens at the moment the relief item is received, while the 

pain is accumulated along the time horizon in which the relief item is missing. We define the 

delay cost as the accumulated consequence along time of not receiving the relief item. 

Consequence reflects urgency. If the consequence of not receiving the relief item is more serious, 

then the demand is more urgent. In summary, we distinguish the lifesaving effectiveness and the 

urgency by lifesaving utility and delay cost. The difference between the concepts can be 

illustrated by temporary shelters. If a person received a temporary shelter, the person would be 

protected from the cold weather and the person’s survival probability would increase. If a person 

did not have a shelter, the person would suffer from cold. The longer the person is exposed to 

cold weather, the more pain the person will suffer, and the higher probability the person will not 

survive in cold weather. 

 

Delay cost is measured by the time of delay and the consequence of delay. For a given demand 

dj, the shortage in period . Let function cjt(vjt) represent the delay cost in 

period t caused by the shortage vjt. Then the total accumulated delay cost at location

). In the simplest form, cjt(vjt) is a linear function of shortage vjt independent of t, 

i.e. cjt(vjt) = βjvjt. Then the total delay cost at location . Since we use a discrete 

time horizon, βj represents the accumulated consequences of delay during one unit time caused 

by the shortage of one unit item, and we call it the unit delay cost. 

 

It is also possible to assume that the shortage consequences get more serious when the delay time 

increases. For instance, a typical person needs two to four liters of water per day; and a lack of 

water causes dehydration resulting in lethargy, headaches, dizziness, confusion and eventually 

death35. In this case we may assume the consequence of unit shortage will itself increase linearly 

along time, i.e. cjt(vjt) = (γjt+βj)vjt. Then the total delay cost at location . 

Note that γj represents the increasing rate of βj in one unit time, and we call this the increasing 

unit delay cost rate. 
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In the objective, we wish to minimize the overall delay cost. Note that we do not simply set an 

objective to minimize the travel time. Although travel time reduction implies delay time 

reduction, it does not reflect the consequence of delay. For example, the survival rate of trapped 

people in an earthquake decreases dramatically after a certain time window if there is no aid11. 

The decrease in the survival rate is the measurement of the consequence of delay, not the 

measurement of the time of delay itself. 

 

Dealing with fairness in resource allocation. When resources are insufficient to meet the needs 

of all of the affected people, it becomes necessary to ration those resources. 

 

We may allocate the supply based on the relative importance represented by αj in the linear 

utility function. For example, Sheu25 classified locations in decreasing importance. The 

allocation decision is to completely satisfy the most important location first, and then the second 

most important location, etc. The belief behind this approach is that it is fair to allocate the relief 

items according to relative importance. However, this definition of fairness is questionable. First, 

the “fairness” perceived by the decision maker could be different from the “fairness” perceived 

by the affected people. Sequential allocation might cause conflicts or unrest, as in the Haiti 

earthquake36. Second, the needs also have a dynamic aspect, i.e. urgency. The degree of 

“urgency” can change over time. For example, if we do not serve a need, the urgency could 

increase. It is hard to judge which is more urgent - suffering the most or suffering the longest - as 

can be seen in the Katrina hurricane37. 

 

Some researchers link “fairness” to equal allocation. Caro et al.38 argue that under the conditions 

in which demand for care far exceeds capacity, the utilitarian maxim of the greatest goods for the 

greatest number, interpreted only as the most lives saved, needs refinement. They define fairness 

as considering people’s needs “equally without favoritism or discrimination”. In Huang et al.17 

and de la Torre et al.16, “egalitarianism” in vehicle routing is also discussed. In these papers, 

“equality” or “egalitarianism” is realized by minimizing the variance in the arrival times of 

resources. 

 

Therefore, in creating a model for emergency logistics, it is important to distinguish the relative 

importance of different needs, while controlling the degree of “equality” explicitly and flexibly. 

To represent this concept of fairness we introduce a demand fill rate and make an 

equality adjustment negatively related to this fill rate. The equality adjustment element in the 

objective function is , where h ≥ 2 is a constant; and ω ≥ 0 is called the 

equality adjustment factor. We restrict h ≥ 2 to make sure the equality adjustment element will 

be monotonically nondecreasing in 0 ≤ Qj ≤ dj. 

 

The integrated objective function. Based on the previous analysis, the objective function brings 

together the three elements we have discussed, represented as Max Ʃj∈G uj(yj), where the vector 

y , and 

. (1) 
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We can verify that the objective function is a concave function of the decision variables. 

 

Constraint in Time Space Network 

 

To model the dynamic nature of emergency logistics, we use a time space network to describe 

the distribution flows in both time and space. A node in the time space network is represented as 

(j,t), where j is the location index, and t is the time index. Now we intentionally distinguish 

“location” and “node”. “Location j” refers to a node in the original geographical network; and 

“node (j,t)” refers to a node in the time space network. 

 

An arc in the time space network is represented as (jt,j0t0), which connects node (j,t) and node 

(j0,t0). Note that there is an arc (jt,j0t0) if and only if there exists a route in the geographical 

network linking location j and j0, and the travel time from j to j0 is t0 − t (t0 ≥ t). For each node 

(j,t) where t < T, there is an arc from (j,t) to (j,t+1), which allows the resource to remain at one 

location. We use N and A to denote the collections of nodes and arcs in the time space network. 

The distribution plan must satisfy: 

 

 
 

 

 

The first constraint is the flow balance constraint. The second constraint is the flow capacity 

constraint, where Ujt,j0t0 is the transportation capacity from location j to location j0. Note that the 

first and the second constraints hold for all locations including demand locations, supply 

locations and transfer locations. The third constraint requires that all the resources received by 

location j during the planning horizon cannot exceed the corresponding demand. The fourth 

constraint forces nonnegativity. Note the third and the fourth constraints only apply to demand 

locations. The fifth constraint forces the allocation to any non-demand location to be zero. 

 

Remark 1 Since the planning horizon is finite, it is possible that no supplies could arrive at any 

demand location before the end of the planning horizon. To guarantee the feasibility of (2), we 

can add a dummy node indexed as (n+1,T) (where n is the number of locations), and a 

corresponding decision variable yn+1,T (yn+1,T ≥ 0). For any node (j,t) such that sjt > 0, we add an 

arc from (j,t) to (n+1,T). We assume that the node (n+1,T) has zero supply ,and has demand 

(j,t):sjt>0 sjt, and add the constraint yn+1,T ≤ jt:sjt>0 sjt. We also add the flow balance 
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constraint corresponding to (n+1,T). With this treatment, we can guarantee that (2) is always 

feasible. 

 

Integration of Resource Allocation and Emergency Distribution 

According to previous discussions, the integrated model is represented as: 

 
 

where the vectors x = {xjt,j0t0}(jt,j0t0)∈A and y = {yjt}(j,t)∈N , and the constraint set X is defined by 

(2). 

 

We can verify that X is the feasible region of a network flow problem, and the objective function 

is linear or concave. Therefore, (3) is a linear program or convex quadratic network flow 

problem, depending on the parameters. Convex quadratic network flow problems can be solved 

in polynomial time and are well studied in the literature21,22. Moreover, the setting of the time 

space network naturally implies a rolling horizon approach. At each decision epoch, we consider 

a planning horizon that starts from the present epoch, and lasts for T periods. We collect all the 

data available at present and solve the optimization problem (3). At the next decision epoch, we 

update the data and solve a new problem (3). And so on. This rolling horizon approach avoids 

the difficulty in forecasting random distributions in stochastic programming approaches, or 

estimating uncertainty sets in robust optimization approaches. It allows decisions to be updated 

when the information is updated, and thus brings flexibility to the disaster response decision 

making process. 

 

MANAGERIAL IMPLICATIONS OF CRITICAL MODEL PARAMETERS 

 

In the integrated model (3), we have three types of critical parameters. First, the marginal utility 

αj characterizes lifesaving utility. Second, the unit delay cost βj and the increasing unit delay cost 

rate γj characterize urgency. Third, the equality adjustment factor ω characterizes the ethical 

equality belief of the decision maker. In this section, we discuss the managerial implications of 

αj, βj and γj, and ω. We show that these parameters lead to different resource allocation rules 

under certain conditions. In the following, we assume that any supply can arrive at any demand 

location before the end of the planning horizon, and that there are no transportation capacity 

limitations. 

 

Property 1 Relative importance first rule. In the objective function of (3), if we only include 

lifesaving parameters, and ignore delay cost and equality parameters, i.e. uj(yj) = , 

then the optimal solution is to allocate the resources to the demand locations sequentially 

according to decreasing relative importance, estimated by marginal utility αj. 

 

Proof: See Appendix. 
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Property 1 indicates that if we only consider the lifesaving feature, then it is optimal to allocate 

and distribute the resources according to the relative importance of the demands, estimated by 

marginal utility αj. The relative importance first rule was used by Sheu25. 

 

Property 2 Shortest path first rule. In the objective function of (3), if we only consider delay 

cost parameters, and ignore lifesaving and equality parameters, with delay cost parameters the 

same for different locations, i.e. , then the optimal 

solution is to allocate resources to the demand locations sequentially according to increasing 

travel times. 

 

Proof: See Appendix. 

 

Property 2 indicates that if we only consider the urgency feature, and the different locations have 

the same delay cost parameters, then it is optimal to satisfy the location with smallest travel time 

first, then the location with the second smallest travel time, and so on. 

 

Property 3 Equality fill rate rule. In the objective function of (3), if we only consider equality 

parameters, and ignore lifesaving and delay cost parameters, i.e. uj(yj) = ω[h −

 , and the total supply is less than the total demand, i.e., jt∈N:sjt>0 sjt <j∈G dj, then 

the optimal solution is to allocate the resources to the demand locations according to the same 

fill rates, defined as follows: . The optimal resource allocation decisions yjt
∗ 

satisfy . 

 

Proof: See Appendix. 

 

Property 3 indicates that if we ignore lifesaving and delay cost parameters, then it is optimal to 

allocate and distribute the resources “equally” in terms of the fill rate. This is similar to the “fair 

share” allocation policy used in an Assemble-To-Order manufacturing system39. Moreover, even 

when lifesaving and delay cost parameters exist, if the equality adjustment factor ω becomes 

larger, the allocation tends to be more equal among locations. This approximation result can be 

expressed as: 

 

Property 4 In (3), if the total supply is less than the total demand, and the optimal solution is 

unique, then when ω → ∞, the optimal solution will converge to the equal fill rate rule defined in 

Property 3. 

 

Proof: See Appendix. 

 

Property 4 is very useful when the input data are inaccurate, which is often the case in 

emergency logistics. It implies that the lifesaving and delay cost parameters don’t matter, as long 

as we use a large ω, the allocation tends to be approximately equal among all locations in terms 

of fill rates. 
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Our analysis of Properties 1, 2, 3 and 4 reveals managerial insights for these critical parameters. 

In practice, a supply may not be able to arrive at a demand location before the end of the 

planning horizon, or there may exist transportation capacity limitations. Then Property 1, 2, 3 

and 4 may not hold. Moreover, when all the parameters are considered simultaneously, equation 

complexity will make analytical solutions impossible, and a numerical approach becomes 

necessary. 

 

THE GREAT SICHUAN EARTHQUAKE CASE STUDY 

 

To illustrate the use of our model in practice, we analyze a case arising from the Great Sichuan 

Earthquake that happened in the northwestern province Sichuan in China at 14:28 p.m., May 12, 

200840. The main shock was magnitude 8.0, and many major aftershocks occurred. The Great 

Sichuan Earthquake resulted in the deaths of at least 69,016 persons, 368,565 persons were 

injured, and 18,498 persons were missing. Direct economic loss exceeded 845.14 billion Chinese 

Yuan (more than 100 billion USD). 

 

In the case design, all the data was derived from newspapers, online news, and official reports41. 

Throughout the case, we rounded all fractional numbers to integers. We summarize the time 

sequence of rescue activities in Table 2. From this table, we can see that the local governments 

responded about half an hour after the earthquake, and the provincial and national governments 

responded within six hours. In this case, we focus on providing decision support for provincial 

and national governments. We set one time unit at 2 hours. To illustrate how the proposed model 

works in a rolling horizon manner, we consider two decision epochs. The first decision epoch 

happens 2 hours after the earthquake; the second decision epoch happens 4 hours after the 

earthquake. For each decision epoch, we consider a planning horizon of 4 time units (T = 4), i.e. 

8 hours. Note that the planning horizons of two decision epochs may overlap. 

 
Table 2: Sequence of rescue activities in the Great Sichuan Earthquake 

Time Rescue events 

14:28 p.m. The earthquake happened. 

30 mins later Local hospital, government and rescue agencies arrived at 

affected areas. 

2 hours later Rescue teams from local counties arrived at affected areas. 

4 hours later Paramilitary forces organized by the Sichuan Military Region 

arrived at affected areas. 

6 hours later Chinese national rescue team flew to Chengdu City to assist 

emergency rescue. 

The next day Rescue teams from neighboring provinces arrived at affected 

areas. 

The following days Rescue teams from other provinces and other countries 

arrived 

 

We consider five locations: Chengdu City, Dujiangyan City, Wenchuan County, Beichuan 

County and Qingchuan County; and denote them as A,B,C,D,E. Related geography information 
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can be found online from Google Maps. Note that Chengdu City (A), as the provincial capital of 

Sichuan, played a central role in deploying and allocating rescue resources. During the rescue, 

almost all resources arrived at Chengdu City (A) first and then moved to the affected areas. 

Therefore we will treat the physical distribution network as a bipartite network, which consists of 

one supply location (A) and four demand locations (B,C,D,E). We used Google Maps to compute 

the regular travel times between A and B,C,D,E (in hours) as 1, 2.4, 5.2, 2.5. Since the 

transportation infrastructure was severely damaged and the travel times were much longer than 

usual due to the earthquake, we set the travel times from A to B,C,D,E as 2, 6, 6 and 8 (hours), 

i.e. 1, 3, 3 and 4 time units. 

 

After the earthquake, medical workers were an extremely important resource. Medical workers 

often carry multiple first aid medicines and equipment. We assumed that each medical worker 

could deal with 10 persons at a time. According to statistics in Wang et al.42, the ratio between 

injured people and available medical workers exceeded 50:1 during the first few hours after the 

earthquake. So we assumed that the available medical workers at supply location A could only 

satisfy 10% of the total demand at the first decision epoch, and 20% at the second decision 

epoch. Demand information can be obtained from casualty statistics from the earthquake. 

According to Tencent.com43, the casualties in locations B,C,D,E were 7,457, 58,454, 18,298, and 

20,272 respectively. After an earthquake, the actual number of casualties changes over time due 

to rescue activities and information updates. Hence we assumed that the demands at locations 

B,C,D,E were gradually revealed. Specifically, the demands revealed at these locations were 

30% at the first decision epoch, and 50% at the second decision epoch. Injuries revealed at 

locations B,C,D,E at the first decision epoch were 2237, 17536, 5491 and 6082 respectively, and 

the corresponding demands for medical workers were 224, 1754, 550 and 609. The total demand 

requirement for medical workers was 3137, and the medical workers available at location A were 

314 (3137 multiplying 10%). Similarly, at the second decision epoch, we assumed that the 

number of available medical workers was 731. 

 

We tested six different cases and show the data and results in Table 3. In all the cases, we set the 

constant h as 2 (see equation (1)). For each case, we considered the decisions at two consecutive 

decision epochs. The input data are αj,βj,ω,dj (for simplicity we assume γj ≡ 0). Note that ω is 

uniform for all locations. When a certain type of parameter was zero for all locations, we omitted 

this in the input data in Table 3. For example, in Case 1, only αj parameters are positive, and all 

the βj and ω parameters are zeroes. So the input data only show dj and αj. There are two types of 

outputs. Q∗
j represents the optimal total resource allocated to location j, i.e., , 

where  represent the optimal resource allocation decisions. Rj
∗ represents the fill rate for 

location j in the optimal solution, i.e., . For each case, the demand is the revealed 

demand at the second decision epoch found by subtracting the satisfied demand at the first 

decision epoch. Note that we assume that 50% of the demand are revealed at the second decision 

epoch, so we can find that the revealed demands for locations B,C,D,E at the second decision 

epoch are 373, 2923, 915 and 1014 respectively. For example, in Case 1 the , the for location 

C is 314, so the demand for location C at the second decision epoch is 2923 − 314 = 2609. 

 

At the first decision epoch, we do not have much information about the severity of damage at 

different locations. Note that Wenchuan County (C) is the earthquake epicenter. In general, 



13 
 

damage severity decreases with distance from the earthquake epicenter. So the values of αj 

(lifesaving parameter) are set according to the distances of locations from the earthquake 

epicenter, i.e., the closer to the epicenter, the higher the value of αj. We set αj for locations 

B,C,D,E as 4, 5, 3, 2 respectively. At the second decision epoch, we set the values of αj based on 

more accurate casualty information from the demand locations. For example, locations D and E 

were found to be affected much more severely than location B, although they were further away 

from the epicenter C. So we set αj for B,C,D,E as 2,5,4,3 respectively (importance levels 

decreasing as C,D,E, and B) at the second decision epoch. We would like to emphasize the 

difference in the distance to the earthquake epicenter (C) and the distance to the supply location 

(A). In our case, the former plays a role in Property 1 (at the first decision epoch), while the latter 

plays a role in Property 2. 

 

Table 3 illustrates how the proposed model works, and tests the impact and sensitivity of 

parameters αj, βj and ω. Case 1 only considers the lifesaving utility. Property 1 holds in Case 1. 

Since there is a severe shortage of the resource (availability of medical workers), all of the 

resource is allocated to the location with the highest marginal utility, i.e. location C. Case 2 

considers both lifesaving utility and delay cost. At the first decision epoch, the interaction 

between these elements results in a partial shift to location B which is closer to A than C but 

whose marginal utility is smaller than that of C. At the second decision epoch, this shifting effect 

is more obvious. The result is that all the resource goes to location D, which has the largest unit 

delay cost. Cases 2 and 3 keep lifesaving parameters constant, and use different delay cost 

parameters. Note that this setting does not make a difference between the optimal solutions of 

Cases 2 and 3 at the first decision epoch, but it does make a difference at the second decision 

epoch. In Case 3, the unit delay costs of both B and C increase to 2, B is closer to A than D, and 

C is more important than D. So the resource allocation shifts to locations B and C at the second 

decision epoch. Case 3, 4, 5 and 6 keep the same lifesaving and delay cost parameters, and 

increase the equality adjustment factor from 0 to 2 to 20 to 200. It is clear that the allocations to 

B,C,D,E become more even when ω increases. In Cases 1, 2, 3, location E never receives any 

resource because it is not the most important, and is the farthest away. When ω increases, the 

allocation to location E increases. When ω equals 200, the fill rate for location E is almost the 

same as those of other locations. This is compatible with Property 4. 
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The case study shows that the proposed approach has the potential to support decision making in 

emergency logistics. 

 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

In this paper, we propose an integrated model that focuses on lifesaving in emergency logistics. 

In our model, we formulate a utility function which reflects the lifesaving effectiveness of 

humanitarian supplies. We introduce a delay cost to reflect time urgency and measure the 

consequence of human suffering due to the delay of humanitarian aid. Our model also represents 

a method to deal with supply shortages by balancing priority and equality among affected areas. 

The modeling approach we use is innovative and different from traditional formulations of 

logistics problems that focus on cost saving and efficiency of logistics. Moreover, we allow 

multiple supply locations to satisfy multiple demand locations through multiple intermediate 
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locations, in contrast to most traditional logistics models that only consider the distribution of 

goods from a single warehouse to multiple locations. 

 

We also use a time space network to capture the dynamic aspects of emergency logistics. The 

time space network, together with a rolling horizon approach is especially suitable for real time 

decision support for emergency logistics. We also integrate resource allocation and emergency 

distribution into one model. This integration helps to make better decisions when the feasibility 

of resource allocation is highly dependent on transportation network conditions, which is often 

the case in disaster response. The integrated model also has computational appeal. It is a linear or 

convex quadratic network flow problem that can be solved efficiently, allowing for the design of 

decomposition algorithms. 

 

The proposed model establishes a new avenue for further research in emergency logistics. For 

instance, in our model we did not incorporate transportation capacity limitations on vehicle 

availability and load capacity. Further research should characterize this aspect as constraints. In 

our model, we only considered a single type of aid. In reality, different types of humanitarian 

aids are needed simultaneously. In this case, it will be more difficult to express the objective 

function and incorporate routing decision variables. In our model, we only considered the 

delivery of humanitarian aid to the affected areas. The same concepts in this paper could be 

applied to the evacuation problem in which people, especially those severely injured, need to be 

quickly transported to safe areas or medical treatment centers. Finally, to integrate our models 

with a real time decision support system, it is essential to design fast and robust algorithms that 

are able to solve large scale problems. 
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APPENDIX: PROOFS 

Proof of Property 1: If we ignore the delay cost, then we can treat  as a whole in 

the objective function, since no matter when a fraction of Qj arrives, the marginal utility αj will be 

the same. Through a marginal analysis44 we can verify that in the optimal solution, the demands 

will be satisfied in a sequentially decreasing order of the αj’s. 

 

Proof of Property 2: There is a finite number of nodes in the time space network. Therefore, we 

can enumerate all the routes between the supply locations and the demand locations. Consider 

any two routes r1 and r2, connecting the same pair of supply location and demand location. 

Suppose we transport one unit rescue item on both routes. If the travel time of route r1 is smaller 

than that of r2, then the delay cost incurred on route r1 will be smaller than that on route r2. 

Therefore, we will always prefer to transport the rescue item on route r1. Since the argument 

holds for general r1 and r2, the conclusion follows. 

 

Proof of Property 3: We assume that any supply can arrive at any demand location before the end 

of the planning horizon, and there is no delay cost. Thus the travel time between any two 

locations can be set to zero. Then the time space network can be omitted and the original model 

will reduce to a resource allocation problem 

 

 

s.  

(4) 

 ∀j ∈ G 

yjt ≥ 0 ∀t,j ∈ 

G, 

P  

where s0 = jt∈N:sjt>0 sjt. In this formulation, we can leave and replace the decision variables yjt by 

Qj. We can easily verify the solution in the result is optimal by induction. Indeed, (4) allocate 

resource among |G| locations. If we select any j1 ∈ G, and consider the resource allocation among 

j1 and all the locations in G\{j1}. Then we can reduce the problem (4) to  

 

s.t. q1 + q2 ≤ s0 

0 ≤ q1 ≤ d˜1 

0 ≤ q2 ≤ d˜2, 
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where decision variable q1 represents the resource allocated to location j1, and q2 represents all 

the resource allocated to locations G\{j1}, and d˜1 = dj1, and d˜2 = Pj∈G\{j1} dj. Since s0 < d˜1 + d˜2, 

q1 + q2 = s0 holds in the optimal solution. By substituting q2 by s0 − q1 and taking the derivative of 

the objective function with respect to q1, and setting it to 0, we can verify that the optimal 

solutions  and  satisfy . We can further allocate the resource  

among locations G\{j1} the same way, and so on. Therefore the conclusion follows. 

Proof of Property 4: Note that the optimal solution of (3) is equivalent to the optimal solution of 

 

s.t. (x,y) ∈ X. 

Clearly, when 0 and 0 for all j, so the objective function converges to (

. Since the optimal solution exists and is unique, the conclusion follows. 
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