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INTEODUCTION

In what follows I have selected a few problems arising in Mathematical
Physics and solved them by methods which sre general in their application.
Since all but the simplest problems give rise to partial differentisl equat-
ions 1 have included one chapter only, the first, in which the equations
arising zre ordinary differential eguations. This first chapter is composed
of & group of problems on the motion of helicsl springs, and is included
because it illustrates the application of operational methods to ordinary
aifferential equations with constaant coefficients.

In treating the solution of partial differential equuations no general
or complete solution nas been obtained except in Chapter 2 , and in problems
of the type treated the particular solution which satisfies the initial and
boundayy conditions of the problem can usually be obtained without first
deriving s general or & complete solution.

1 have chosen problems to illustrate various methods of solution .
Thus Chapter 2 illustrates the application of Fourier Series and also the
method of solution of partial differential equations by operators, This
chapter serves to compsre operational methods of solution of partial diff-
erential equations with otiher snd older methods. Chapters 3 and 4
illustrate the application of Bessel Punctions snd Legendre Polynomials.

In each of chapters 3, 4, and 5 I have assumed that s particular sol-
ution exists in the form of a product of two functions, esch of which is &
function of & different independant variable. This assumption is often

successful in problems of the type treated snd is justified by its success.

i.
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1 have derived the differentisl equations studied and included those
zssumptions made from the theory of Physics &s well as statements of any
approximations to actuality desirable for the solution of the equation.
Some of the initial and boundsry conditions have been chosen so as to simp-

lify solution but I have attempted to chose conditions compatible with

~gotuality and to simplify the problems by neglecting factors which have a

negligible bearing on the result. Solutions obtained should therefore
besr to actuality a relation consistent with the reasonableness of assump-
tions made and approximations included in the working.

I have included the pure mathematicsl treatment of functions applied
to the problems by footnote references to the source of the result used or
by a statement of the results in appendices to the nhaptora.' Wherever
possible I have treated each solution fully, applying well known results
only where desirable for brevity and otherwise obtaining the solution from
a full study of the particulasr functions arising. By so doing I have
attempted to make each chapter, though dealing only with & particular prob-

lem, illustrative of a lerge body of similar problems.

il.
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CHAPIGR 1.

Application of operational methods to ordinary differentisl equations

with constunt cpefficients.

The solution of ordinary differential eyustions with constant ooofﬁountq
o&n resdily be effected by opersationsl methods whioh are fully explained
in " Qperational iethods in applied Mathematiocs ", by H. 8., Carslaw and
J« Os Joeger ( Oxford University Fress ).1 Reference should be mads to
this book for a comprehensive treatment of the operational methods used
in thls chapter. Soms lmportant results snd & brief explanation of the
wethods used are contained in appendices to the chapter.

The following provlems are concerned with the motion of light

helical springs. They are representative of s large number of similsar

provlems urising in tihe various branches of Wathematlcal Physics.

5

I. Hereafter this book will be refered to a3 QO.M.in. Bl

L.



t f 8 al 8
A
Suppose that one end of a light helical spring C
5
( or light elastic chord | is attached to & 1\ 3
y, 2
fixed point of support at A =nd that the spring 4
hangs vertiocslly in a state of static equilibrium E
-
with & mess M attached to the other end of the -* T —ﬁ-B”
; . =
spring, B,, the elongation of the spring being £ . g E
=4
If an sdditional force is applied to M to % B’
produce & further extension 0‘« o the mass 'F
: ‘ ac
being displaced to Bo ynder the action of this d Y _ B
force and held in static equiliorium at B , and M!
|
at time ':-.-o this force is removed, then the i WECER G ‘Bo

mass M will stert to move.

In order to simplify discussiop of the subsequent motiom of M ,
whilst at the same time retaeining conditions whici will approximate to
those of actuslity, I shall make the following assumptions :-

(i) That the mass M ctteched to the spring is large compared with
the mass of the spring, and hence tist the mass of the spring may

be neglected in comparison with M .

(ii) fThat the spring is perfectily elastic, so that material stresses
and frictions may be neglected, and Hooke's Law holds for the

spring. ience the extension of the spring is proportionzal to the

applied force.

(4i1) That the medium in which the spring moves is such that resistance
to the motion of the mass M is proportional to the velocity, amnd
that the medium offers negligible resistance to the flexing of the
spring. i.e. Viscous damping occurs,the damping force being
proportional to the velocity of M and opposite in direction to the

direction of displacement of M .



Se
In mi original state of static equilibrium we have from (ii) abeve
M% =-ks L1
where .k is the modulus of elasticity of the spring.
At time E >O let the displacement of M velow B e 2 4

reckoned positive in a downwards direction. it time £ = O we have

doe _
eed, de = ° 1.2

it time £ > O the forces ascting on M are
(8) Mg scting verticslly dovmwards.
{b) Tension T in the spring scting verticsally upwards.
{e} Viscous damping proportional to the velocity, say /k%
acting in the direction opposite to the displacement of M .
Hence applying Kawton's second Law of iotion we get
M z = Mﬁ -T - K% dm
o=~ M%/.- k(a!-f-S) #\'
= —Jeae - J"%
Since Mi = &S from I.I &
iee. (_pz.'. .‘!"_])-1—:%_.)&: =

ox (:p+a,w+a)m =0, t>o0,
= __,_g,_> 2 a “&> Led
ere M O sn —F‘-

Lotion in = vacuum.

If the motion takes place in a vacuum, or if the demping force i

negligible, equstion 1.3 becomes
s 2 v
(334.4)%—0, ‘:'>0.7 led
with r=d s D=0 , When t-‘=0 .
-pt
imltiplying 1.4 by € ( 13)0) and intergrating with respeet to €
2

from 0 %o 00 , we get the Subsidary iquation

& See ippendices A and B.
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(+1+az)a:_ e Pd
;5-: d{;%z

Thus

Therefore x = d Ces at L5

The motion is therefore simple harmonic motion with amplitude dand

aw | 2N [Mm
T= z- i I 1.6

Thus the period depends on the modulus of elasticity of the npring,& »

period given by

the larger k is the smsller being the period and the greater the

frequency.

Yiscous damping.
if viscous dsumping is not negligible equation I.3 is
(‘p",,_ abd+a*)x =0, £>0
with x=d , Da=0 , when E=0 .
The Subsidisry sguation is

(e abbeat)® = (b+26)d

i e ++ - }
et OL{ P+ 2bp+a*

Three possible cases arise for consideration determined by the nature

of the roots of "Pz-l-— QW +a* = (8

Y A 42> ©O , roots being resl and distinct.

(44) L~a =0, roots being real and equal.

(ii1) ,0,2._ a" £ O , roots being complex and distinct.

& Sy
gase ({)=-e -0 >0
Let the roots be M= -1"+J ~a?* and Mz=-‘€v-—‘}(7’2-d". so that

Mg L M, Lo

The Subsidiary kquation is

(k-m) (b-m2) = = (F+24)d -



5.

e P+ 2l 7(: d{f_z(m.-»m,)
(o) (=) P-m)(b-2)
e e el
Therefore i ;%_;;{—m’ ‘Q'm-f'_ i -2,’”‘26}
Voo o |4 T ]

o tor ED>oO , since MM, 0.

=0 tor E=0.

M,M&z_d' Im,-em'f_ IIMQ LIWQE}
M, — g

= O ftor Ay, o€ — /le-@‘m’é

b [

Wiy — My

2
PDx = —

MA 2
AR

"

The graph of the displacement of M against l: is of the form shown
in the following diagrem. x

The displacement AC &pprosaches (4

Zero as b increczses.
Point of

/
i.e. M approaches B at a P inflection.

)

8teadilly decreasing speed and |
, / ,. :

its distance from P> becomes |

|
infinitesfimally small as E>» l?=m‘i,“1 s

$2_ a’  my=omz = ——&40.

The Subsidiary dquation is

fbn Y T B (prak)d

: = =d{ﬁz+@%ﬁ}

ience



mastans ¢ = d{ —M -&} .

= 4 (+ M)e
Lim 4 1+ &¢

Hence for E)O . x}o and > .e-érb =O¢
nlopm:dfvgeb&_'b_&-&t(,*_%) =_d—e_zt_-
< O tor l:>o
= 0 t"’ -
2
N _dﬂyﬁ{él’b Lt e } _ d& ('(;’6’6)'
i )

=0 ftr £= )
Lo tr 0K EKL /-(r
>0 >
The greph of the displacement of M asgainst € 1is of & form similar
to that for Case (i), the point of inflection being &t b‘ =}-er .
X’ remains positive and approaches zero as b increases.
M approsaches B’at an increzsingly slow speed.
This type of motion is called " dead beat ". If the retarding force
is decressed by sn arbritrarily smell smount, so that ~l72— 4140 s WO

have the third case for which the motion is oscillatory
5

case (414) —-oe- ballo [aD&>o),

The roots are complex and different. The Subsidiasry squation is

(P + abp+ a*)x = (p+ak)d
- ++ 24
ot d{ (P+4)>+ a* - b’}

= P+ L)%+ (Ja— &) (f|>+ L) 4{a=)

Therefore

T d{&s J~—¢,,6+f__smf"c’*e} s,;~@E+w)

-|c
where C = Vard? K:%‘i snda o = 4‘ .
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The solution represents &n oscillatory motion with an smplitude K 4.-

which decreases exponentially. The period is
e ar
T o e mj’_:.
K g“*{c Cos (cb4a) — S 8 @b+¢)}
o tor E=0

= O for £E>0 when ﬁw(_ct-l—d): %: faa oL

I
8
[

i.e. for £E= '—'g'-r. where 7 is an integer.

The greph of the displacement of M sgainst t is of the form shown

in the following diagram. (o,d)

7he amplitude steadily decrezses
as b inoreases and approaches

zero 58 © temds to infinity. 33, = 2
27T

Ja— &

The period of oscillation,

remains constant.

In the undamped case the period was 31 and so the period is

a
seen to be inoreased by damping.

ceu vibra a helical s s
In the preceeding discussion it was supposed that the point of support
of the spring, A , was fixed, but A may move in accordsnce with some
law which gives the displacement of A «8 & function of the time L .
Suppose that the displacement of A is given by

= £
where /3' is messured positive in & downward direction. The resultig
motion of the spring is said to be & forced vibration.
it at time E DO the displucesent of M from its position of

static equilibrium is 2 then the actusal extension of the spring is

S+c—4y

bt
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Zhe aqmuon of motion of M is

MES = My—h(sex—y) - h4F
— -k(:x: ) R,-—-. since M&-—kgtrom - A
= -‘k(x—f(é)) —hd a—{:

» 20 ¢ h 4 K
e it;-l- dk-f- x = 5—(&)

Y & + 26D+ a*)x = a’f—(&)) E>o 1.7
where (. _ >o and a’-___k>o .

én lntornung case arises when a7 >0 ( tee. a3 & >0 )

and -f(l:) is & simple normonic motion of peried ;'.2‘_7" . Then

£(€) = A 8ur € ( Wnere the amplitude A is constant )
and I.7 becones

(P4 abD+a?)x = A’ Asii wt, £>o0 44

x=A4, Px =0 tor k=0

alb’

The Subsidiary &quation is

<1>"z+ abp+a* ) = a’AJ‘.[P%;W wt de + (f+24)d

= QAw ab-)d
; i M S S
e a’Aw (‘l>+ &‘Qr) d
GFre) (P4 abpia’) P+ abpia

The second term on the right hand side contrivutes to the solution

that result obtuined for the preceeding problemy Case (iii), and this
contribution is due to free viobration. As € vecomes great the
contrdibution of this term becomes and thereafter remains small snd &
stesady state of motion will be resched to waicn its contribution is
negiigible. The final steady stute of motion can therefore be

considered us degermined by

3 Two other cases arise as ia the prececding problem
and wey be treated similarly.
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5 aA?A w
T T Fr o)+ 2bp+a?
sxpressing the right-nand side iln partial fraction form we get

= = a:/z\w - (A% oY) — 264 Rbrp + 474 (02 a%)
(@ P 4> [Py P> +24p +a>

e a’Aw @atw?)- Q_Lk} + 244%A w b 4.(,:;;&@ 2 22)
T G4l | Pt § @or48) Fratpiar

The second term on the rignt-nsnd side is similsr to the term ulyeady

4

neglected. From anslogy to Case (iil) of the preceeding probiem its
solution is of the form
K e tign, ety W)
wbere K and ol’aze senatante ana C = Jaz &2 «
Hence as € becomee great the oontribution of this term to the
final stesdy stute mey be neglected. The final stesdy state is thus

deterainsd by

- a’A w {(ai‘. w?) — 2bp

e
= a’A__ atw?)-& _ _ QL&_,.‘E_
@= w’);—‘f- 4.6% {( )1’2‘*" o™ P

Therefore

2A (@22 Sin wt — 2w Cos wl:}
T @) 45

= P sin(wt-)

a*A 2l
wers P = ama fAmB= 5+
‘/(a,‘—w’)"+4..ly"a)2 A" — €D
Thus squstion l.9 repressents the steady state of motion reached when

1.9

contributions due to free vibration have become negligiule. it is &
) L

sinusoldsl wotion of frequeacy - and of amplitude P. 12 @ is

large the amplitude is smsall snd the effect of the impressed force is

smalle

a?A ’
It W=AQ the amplitude is 2,28 A ‘hﬁ_{ﬂ

4 See appendix C.
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10.
Thus the amplitude may become large if the damping resistance coefficient
/Kz is small when compared with —kM .
For any given medium the meximum amplitude occurs when
(a’- w2)2+ 41716-)" is a minimum.
Since A and .E‘ sre positive constants for any given medium we geil &
minimum for jé"—-o {Caz;wz) 1+ 4»@72@2} = O
— 4w (~w?) 4 §bw = ©
w (AP~ w2—247) = ©
(D=0 gives s maximum. Hence for real ) ( a2> a&* ) the

minioum is given by

~ _ | amrk—L*
w-_-\la--—%z'—\/ 2 M2

Thus if the impressed frequency eyusls the natural fregquency of Vibratien

of the spring the amplitude may become dangerously large and the displace-~
ment of M become so great as to bresk the spring. e«g+ The natursal

' { 2 22 - S
frequency eof the spring considered is E.“ =ye-& , 8nd if O = 0-—-6‘

_ am
. 2
( Which is greater than the minimum given by con2= d’— 2.& ) then the
£ axt &2
impressed frequency —— c&n equal Y& When the impressed
29T am

frequency is equal to the natursl frequency of vibration we get the
phenomenon of resonsances It is to obvieate the possibility that the
frequency of the impulses generated by marching men muy strike tﬁat of a
pert of the structure of 2 bridge over which they are marching that a
column of soldiers is ordered to break step. The Biblical sccount of
the full of the walls of Jericho may &lso be explained if the seven
priests blowing on seven trumpets struck & sonic vibration identical
with that of & natural frequency of vibration of the structure of &

part of the walls.
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If the viscous damping is neglected ( 1.0./’\«=0 and therefore —5‘:0)
and 1f L0 = A gquation 1«8 decomes
(P*a*)x = a*Aginat, E£>0
x=d4d, D=0 tor E=0

L.10

The Subsidlary idgquation is

@®
e 2 _ b %
uf:,.a" e = a/}fe k&ud‘?df’-{— pd

Therefore

e = f_ﬂ(ﬁ&ab-al:eooab)+ d Ce> ab

Qa3
= As“*"“e'l'(‘l“ —Ajl:)(,'asa(r I.I
hgain if XY =0, Dx=o0 wmnl E=o0
X == é—(‘a:u- abt — at ee»sa(') le12
Both I.II and I.I2 represent vibrations compounded from a first term of
constant amplitude —% and a second term the amplitude of which increases

with £ 2nd can exceecd any preassigned value if E is taken sufficiently

large. it would therefore appear that it is possible to produce infinite

amplification and hence an infinite force. In practice the resistance
is never zero and although forced vibrations may become large when the

resistsnce is small the amplitude can never become infinitely lerge.




Consider masses M, and Ma. suspended from two light perfectly elastic

springs as shown in the diagrame. The point A is fixed. A

Suppose that the moduli of elasticity of the springs

are k, and -k,_ respectively, snd let 5, and Sz be

the extensions of the springs in the position of static gl altes = - LN
x
equilibrium. At time £ > O 1let the displacements _y____BM,

of the masses from this equilibrium position be JC and
AJ/ respectively. it time E=0 1et g Fe o
x=00,, 4=4o, De=Dy=0. F £y
If the motion takes place in a medium which offers negligible resistance
to the motion we have for the lower spring
M By = Mg Loy (a1 )
= —-k, (4*-—20.) since Ma% = ‘k:lsa-
and for the upper spring ‘ ;
M P2 = Mg+ R l-2)— &, (5,+x)
= k.z(ﬂ"'x')-'klx‘ since M/?/= ”%l'sl
These equutions can be written
i (DR &) 4 = o 1,13
<]>2+ a2 Hm) e — mby = o I.14
| e a"z.-"% . g = -kyMz and N’/;’ -

/
The Subsidiary iqu«tions are

22-; s (,",’f'__@.«z),g o~ -’P‘?{, I.16
(#4 e )5 -mbF = pr

waltiply 1,16 vy b, 1.16 by (#* &%) ena suvtrsot
(Fa I a4 )5 pb®S = (5580 6 bt
[#te fate 614m) P a2 [ T = PP, 48 (0t M)
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'F++ {42—{— éz(l—l-au)}f’;l_ az8*

Consider the roots of the demominator of the right-hand side above

4, {a"+ L(1+am) pPrarl =0
sives p = —5 [a+ b r+om) T [Ta*r £ rm) ™ a6’

Hence there are 4 roots which sre equal in magnitude but opposite in sign

~ Hence » =

in paire. Let them be ii«wu snd L‘A), » Where <= J:T and
= l),'%?[“"*‘@1("""“)"‘/{4’4—6‘(/4-%)}1.. a’--&’]
“a = S[E+E (1)t [T G 7 ]

. Hence we have

T o j?f'-'o-l- —h@{xa-rfm-j;g,)_

P+ o) (P+ @)
s 4’:# 2
ekl Ef’w* v Ma"m@l{f»‘m ST B
e F@i-b)xo-m Q;’#‘} (- 6) x, - ’ml’rﬁ»a}]
o= w3 P+ o2 2+ @
A-B— — = _ P
A ‘,’ + ’P-{-wz

where A = [w,’; .@?) A — M .5170
= (- &) Xmm by

[A Cos 63,€ = B ess wzl:] L1y
w,-w
and frem .14 ,(]>+o.+ Ban ) ac

S
e M’Co', = [A(“h— ‘@')CDS 3, € B(a’: 6'2) Ceo 692_11,;3

The motions of A|, and M, sre esch composed of two simple harmonic motions.

Therefore o =

m b 2(“" —-ws)

The freguency of those for A, and A),are the same but their amplitudes

sré different,
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Verification that 1.17 and 1,18 satisly 1.13

(D% L’)AJ = e A (- E)(b=7) co 0, ; J

M.@r"(w”-_a);) e . C‘dlz an ‘62 ) ) Cos co,
M&_ﬁfl i
oy e [A Cos &y B Cos w_,_l:]
63 w,-—ﬁ-Yw,-;—u,,)-# b + o
mb*

I

b 675 i Erm) [ £ * g

-

g ' e Jy2

ilso when E=0 o
A-B o (A)%-w:_).'«l?o

x = o M: . ...u"z == e
A2 8B (2 ) _ el fd) _
J& < /Wl.lrzcw, )_/“ /zm»é"(ld" A)f) ,y:’

1,17 and 1,18 sre therefore solutions of the problem.

This method of asclution may be extended to problems where there are more
than two springs connected in the manner of the above problems There
will be as many equations as springs. Viscous damping may also be
considered. These extensions lead to equations which may be solved
by the operational methods employed above, but the algebra involved will

be more arduous.
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A problem analogous to that of the motion of a helical spring in & medium
which offers negligible resistunce to the motion is that of the discharge
of the condenser in the simple electrical circuit shown, the resistance

of the circult being negligibles [l e

A condenser of oapacity C l ld

is discharged through an induction L

coil of inductsnce L. when the ___mb'zn'\____

circuit is closed. The circuit

is assumed to offer negligible resistance to the passage of current.
The charge Q on the plates of the condenser and the potential
difference V of the plates are connected by the eyuation

Q=cCyv

The current I flowing through the coil is given by I = - %%

Since the resistance R has been assumed to be negligible and the L.M.PF.
is Li—]é we nive Y - Lé—I-:O
i.es g' A —g’_ —
Cp"+ o})Q =0, eE>O0 1.19
where Q%= /
men =0, @=Q, P@P=0.

Bguation I, 19 is similar to l.4 above and it has the solution

% &
it R g

with period of oscillation given by /' 377—‘;6’_

4 problem anslogous to that of viscous damping of & helical spring

arises if the resistance K is not negligible. The voltage equstion is

v-ng-—IR=o



(3

(03 49 , d@ o _
i.e. d+La—E;+Z—E-R_.O

(D 2D+ a*)P=0, E>0 Lo

= e - S
vhere s—ér—-;,—L ) a-QL

wouation 1.20 is similar to equation I.3 asbove and its solution will be

similar to that of 1.3

A problem anslogous to that of forced vibration of & helical spring
is that of a condenser placed in series with s source of L.H.P. and which
discharges through an induction coil. The voltage equation is

V-LE -IR = §@© W
which gives ld

(D% 24D +4>)@ = a> () 5@

where §'(€) 1is the impressed Z.M.F. L

given as a funetion of & .
If the impressed E.M.F. is alternating and of the form
£(t) = E, Son &
we have
(:D”-y 2P+ a*)Q = aF EoSimw€, €50 a2
wmen t=0, P=q,, DdDy=o
Bquation I.21 is similar to 1.8 sbove and leads to a solution similar

to 1.9 »

An example in electrical theory of a problem giving rise to ordinary
simultaneous differsntial eguztions with counstant coefficients is

provided by currents I, and Iz flowing in coupled circuits as shown

{ M | |
le, L "5;

in the disgram. The currents

I, and I;, satisfy the following R
/
differential equations L/ Lz Rz
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I?‘
M DL, + (L,D+ R, D+ S¥E = o
MPL+ (LD+RD+F)I, = ©

If it is assumed that R( and Rzaro negligible the solution of these

equations is similar to the solution of equations I.I3 and I.I4 above.

It will therefore be seen that electical problems and mechanical

problems often lead to similsr differentisl equations.

Cc
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~ARPENDIX &
ace Tra
If X is a function of t and ﬁ is a real positive number large enough
to make the integral oonvu-g-
=) = f Frpae
defines ‘l‘/("»’) the Laplace rrmfom ot X.(t).

The following table lists some forms of xa’) and the corresponding x(ﬂ.

x(P) = S:"f"’ma) A 20
1 | _:;;_ | -
; '/,f,« o S ﬂ, e o i s
: ?‘T | 2 (+>R@)
Y 1,:: a” S at
Lk S it
6 ‘]?f-a’ Qindn al '(AF.>]“§/}
g >4 Cosl at (p>lal)
. @;f‘;;)z 5% Sive ab .
& (‘F{L‘;—jl 5’;‘3<g‘;~a(-_ atcnat)

In the above table the parampter (A 1is real except in 3 where it may be
complexe Results I to 7 may be obtained directly by integration.
8 is obtained by differentiating both sides of 5 with respect to 4 ,

amd 9 is similarly obtained from 4.

ak
5 Thus i ()= <€ then for the lLaplace Transform
to exist we must havedda, bub if (€)= ¢ &>

the Laplace Transform does not exist.
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It can be shown that if +a>o . then xéwa) ouuucm
x(Pta) = f‘; o2 (o) de

Hence a tnno similar to the above table can be made comnecting OC (7‘>+a)
snd 0 x{(-) o In fact the above teble will serve if 'P is replaced
by fp+a in the first column and euch result in the second column is

emltiplied by -e'ab i
: —af éa—-l
@gs From 2, is the lLaplace Trensformof € —
Gy [t

The method of application of the above transformetions is briefly explained
in Appendix B. ;

A comprehensive treatment of the wethods of solution together with proofs

of the validity of assumptions mude in the following ocondensed treatment

is given in OQ.Mein aole, Chapter 1.

Let A be s function of € anmd -'fb .;n real positive mumber.
o®
Assuming that Luwé& x)-‘-‘ O and that \< ch, AE  exists when ‘f‘)
]

Ed0
is zruhr than some fixed positive number, then

f et = L"—-"l—xli f’fz’Pfcolb = -t F‘O-C- (1)
wh-ro 9, is the value of 2wk E=0 ,

Again assuming that Luu\-ée,-"s;,:)zo, we have
jé"bpmdl— [ A :Dx] + ’Pj'.a o di
= -2, +P(- m¢+’l’w)
= -(’boco + 'xl)“' 1’3 (1)

where «’I', is the valus of Px when E=o .

6  Bes Q.Main Audie) Chapter 1, para.3, Theorem IV.



Hence by induction, making similer assumptions &s to i&u ( px) etc., .
E>oco

e get
: f e’f"fb; dt = #*aé‘,-l— Ty, + X )-I—f> (111)
Now gonsider the differentisl equution
(ID "¢ a, D" 4l D+ A )’x'~ = F(b) {(iv)
where 4, 4, ------ a,u are constants end 0, X7, --- - are the values
ot X, D, --c--. D% wnen E=0 ,
Eultiply {(iv) vy & # s integrate with respect to E trom O

to ©0 and apply results (1),{11) and {1ii). We get

Frat'd -t apb+ad)x
(F oot #7720+ - + PTuat Xt

+ Gz (Pt 1)
+ am-t Xo
oo
[
This is called the_Subsidisry scuation. The integrzl on the right-hand
7

8ide is evalusted from a table of laplece Transform:tions, Say it is

(Péfb) . Then we have
Gt ) 0P 4 )
e -y (Pot ) + 4, :x-, + PCP).

LS et t Gy b+ An

The right-hand gi4e is now split into partial fructions esch of which is

of the form of & known lLaplace Transformation, end hemce U is evalusted.

@8+ For the type of eyuation l.7 dealt with in this chepter

(D*+ a&D+ a*)x = a*§(&)

we get the Subsidiary squation

7 Such a table is given in O«l.in A.M., appendix V.
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fome ,',xo + 2, + 2bx. + P(P)

x* = :
+*+ AL+ a*
The right-hand side may be split into partial fractions each of the form

of one of the Laplace Transformations listed in Appendix A, or of the form
of these transformations with /f:’ replaced by f+a ( 'f’+4 >0 ).
w(t) can then be evaluated as the sum of these seperated transforms

8
from the table given in Appendix A.

8 For proof see Q.Msin A.M., Chapter I, psra.3, Theorems I to IV.
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~APPENDIX ©C
( See page 9 )
s i ' _ Bp+c  Db+E
<1>+ c.s")@:+2$’:+4’) 7+ w* +*+albp+a*
Hence B+ D - 'O
ALBR+C+E = ©

2B+l +oD =©
2C + *E = |
The determinant arising from the matrix of the left-hand side of this

system of equations is

.2 1 O I =246 1 2
1 o )| =|a Fao| =" )+ 4l o a’)
2 ol * ©
* S a* o | _ (w’-a")2+4.ls—’io’>o.
O PO P L e (R
= A e
onloz wl&b_oo 11:
] a* o X o a* I &
= -3k
Hence
- 24
bR R 2 = -D
(w-a?)"4 4 L>
and
| o
L 2 LZ z}_- ' o -—2‘7 ’ 2 2
w-a?)+ 40 | = =t = &a-
ci( ) aﬁo og; 0@"—-&10 at
a;a ‘: N, | o w
o
a w?
wan (147 4400
2 2 3
e
E= 1-9¢_ (w‘a’ﬂ“’“’“ Lo l} ,4%4;( a,)
- (- )%y Gl
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CHAPTZER 2

application of Fourier Series and of operational methods of solution to

partial differential equations.

ansverse a elastic
Consider a perfectly elastic string of length £ feet =nd weight W 1bs.
per unit of length which is stretched taut between two fixed points, the
origin and the point |_ (Z.o) on the X -axis.

Suppose that the string offers no resistance to bending and that it
is initially distorted into a curve having the equation

g = £

where f(x) is a single valued finite and continuous function of 5C for
0L 2kl -

I shall assume ;-

(1) that the displacement of the string is so small compared with
the length of the string »e/ that the length of the string msy be taken
as 46 for any position of thse string.

(11) that the temsion T of the string is so large compared with
the weight of the string WZ that gravitational forces acting onm the
string can be neglected.

a2,
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The component of | in the direction of the X’ -axis may be considered %0
be constant, and the displacement of a point ’P("':ﬂ’) of the string in the
direction of the J’ -axis is negligible compared with its displacement in
the direction of the Af -axis. Thus the vidration osn be considered as
completely determined by the component vibration parallel to the J.d/-axil.
it time [ consider

a segment of string of length

/ T+ AT

AS bvetween the points

P(x4) ama T 2x+Ax. %4—55).
Let the tensions at ¥ o
st P o T st T#+AT

respestively and let the 1ine of action of 7 be imolined at an angle O

to the positive direction of the OC -axis.

Since the horizontal components of the tensions et ¥ and T’, are
sensibly equal the difference in temsions at | and?’. AT , equals
the difference in the vertical components of the temsions at P and?’.
Also the Aa/-eoordimu of 1’ is a continuous function of the distance
X &nd time £,

The vertical component of the temsion at P is
sl'li B ﬁ;«. A &"’ 2
CT 9)1’ - (T Ag>o As’ T
and the vertical component of the tension at 'P is

o = (B‘Xé:u—A!,l:)
Al )?’ ¥ QS8

Since the displacement of the string from the equilibrium position
2 2
along the [ -axis is small the square of the slope ( (;—iﬁ) at any point

of the string can be neglected in compsarison with unity. Hence

0—#———(1"7) — Swwe = Tau 6 - %H —_— ?iﬂ/_é’_i)-
"

Jrewt® fle@? 7%

(bb(y(xs«—zvr,é) . QY (x+Ax,€)
Qx £0 N rpae

Similsarly
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-r Qx(x-l—M)"! i T (3:; (x, (—)
o s the rodvck of

By Newton's second law of motion this resultant force cqulsAtho mass of
/

the element I F (whioh was initislly of length A)c and therefore of

msss W AX  end has its centroid at & point XC, midway between X and

2+ Ax) and the acceleration in the direction of the »?/-axis, Hence

Wae/Py=9) - T chacw,b)_fagix,eg
% ( Vel =ut

2, X Px

y (x+Ax,€) < Ot(x 5 &)
T Qx (@-%o

: ( ,)’- ,Cx,é’)) oy 1—3‘{‘
| oL” x, s Ao

and as Qa?*

Qg (xeanst) _dy(x6)] 5V
Ax >0, XL and { (raae : ’Ka‘é;""‘ o

Pasaing to the limit we get

7.7 2% 2.1
= Qa -—1 b’>0 *
otz Cax/‘t. >

y N I
where lz/ is a continuous funetion of & and £ and Al = ‘v'?,'('
This differential equetion is therefore that of the vibrating string.

Substitute u= x4+at, v=oc-abt ia2.1. W have

% - o(3-%)

By ot (D T
%2—1" o & ‘29wav+cav2)
o E | %
s Vg a2y - 4 g
OE* @x Quov

Therefore 2,1 becomes 2

oy b E>o

b

Qudy 2.2
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Integrating 2.2 with reapect to Yy gives

Pn
and integrating with respect to (4 gives

4= [F@Wdu+ ¢(V) = Y+ @)
lees Ay = Y (x+at)+ ¢ (oc—at) 2.3
where ({J and (.P are arbitrary functions.

243 is the genmeral solution of 2.1 + For our particular problenm
we need to find functions l[J and (F which satisfy the following initial
and boundary conditions

() g = F(=) , E=9 .
w al%.___o S v 2.4
() 4g=0 when X =0 , E=o0 .
(a) /tr::o when oc= . B> o
A particular solution of 2.1 is given by writing
Y(x+at) = A Sin-R(x+at)
c’)(x—ab) = A S R(z-at)
The equation ﬂ: A &Akx represents & sinusoldal wave of amplitude
A and wave length )\ = % .

Replacing OC by x—AaE moves the ourve AL units in tue poaitive
direction of the * -axis, and replacing OC by oC+ak moves the curve
ab units in the negative direction of the 2 -axis.

Thus /(d/ = A & R (oc-al:) and —‘d*: A S@\,k(I'FAQ represent
sinusoidal waves moving towsrds the positive and the negative directions
of the X -axis respectively esch with speed A .

The eguation

4y = A Sin R (xt+alk)+ A &in R (x-at)
= 2A cun R Cos Rat #55

results from the superimposition of the sbove two sinuseidal waves and
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represents a standing wave of smplitude 2A Cos-kat varying with the

time £ ina simple harmonic manner, &nd for which stationary points are

given by wm
xr = -—-—-’(»u=o,:,z, ----- )

The solution 2.5 can be made to satisfy the boundary conditions 2.4(¢) and
2.4(d) by writing
/k = /’_LT { where - is an integer )
Then 2.5 becomes
/43/ —

and a solution in the form of an infinite series can be obtained by summing

2A Css MMal Seu T 2.6
£ £

1
solutions of the type 2.6 for values of M from | to 0O .,
= M'ﬂ"a— 1.4
1.0, /‘d’ Z A Ces £ San '” 2.7
M=t

is a solution satisfying 2.1 and the boundary conditions of our problem.
wmen L=0 the initisl conditions 2.4(a) and 2,4(b) have also to
be satisfied. From 8.7‘
(_a_% - _ZA M’H'a s;w%“'*t wm‘"’m
(e

Mn=1
= O  wen &E=o0

x=o x=4£

I From 2.7 it is seen that the

string can vibrate in an infinite

number of sinusoidal shapes,

e&ch shape correspounding to &

certain frequency.

The lowest frequency, given by

= | is called the

fundamental tone of the string

end the higher frequencies are

known =8 overtoues or harmonics.

Rough :kotﬁus to illustrate
the fundamental and first four
overtones sre fascing. The rapid
decrease in wave length i& very
noticable.
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Thus 2.7 satisfies initial condition 2.4(b). It remains to ensure that

/11/: :F@&) when £ =0 « When E=06 2.7 vecomes
oo
Y Aw Sin 2

Now f[x) was defined to be & single valued finite snd continuous function
of X for OK xil . If further f(x) has only a finite number of
maxima and minima h: this interval then :f(x) can be expanded in & convergent

2
half range Fourier Series of the form of 2.8. Thus if

Z ‘ fr’ﬂ"cc
2
and each term of this uriu is multiplied by ‘M g e get on integrating

between the limits O to £ £

S50 sin 1Bz b = 5> [ Ay son 17X ST A

F=10
The term on the right-hand side contsining A, is

wf (G 4T e = A“f(;- Crs LT ) foc
= A“[ac-’——wz”frx] = lAw

£

S

whilst the term on the right-hand side containing any other coefficient AS is

L
e e - f{mc-w-s e
0

i A 5 %’ (44+S)
52 '2- (n-% ) o @u—s’)'T
-— O ) unccfl/b and F 4 are htegars.
ot j’ §() S WT= doe
L

1e0s - 5 f—f-(m) Soan /er 2.9

2 These conditions imposed on ;F(x) are sufficient but not necessary
for the expansion in & half range Fourier Series. They are
satisfied in practice for all physical problems of this nature.
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Thus we hzve a solution of our problem which satisfies 2.1 and initisl

and boundary conditions 2.4 in the form of the infinite series

o L
- W uTat g, nix
,((,r lZ'{gjﬂx)SMM—é dm}ccs = &w.:z_ 2,10

The function f(x) which determines the initial distortion of the
string way sssume numerous form: consistent with the conditions placed
upon it. 40 interesting case arises when the string is plucked or
bowed initially. This case is of practicsl importance also.

Suppose that the stretched string 1s plucked &t its middle point.

( Plucking the string st any other point leads to & similar solution

with slightly more involved workiag ) The initisl distorticn will

be considered as determined by ?/ |

the equations "

a4 7 Y
/?/= -z-ﬁt for 0L XK T {4

!
! b

o e %{4"3‘) for %Lx‘ 4 5 = 1 xX

(£:9) (40
Then from equetion 2J0 we have

< <
- =< d’ y 2 y
Ay = Z{S Lm&w".%f_%dx-{; %@_z)g /hf/ﬁcdm
% ¥

4
{fxgmmedx+fwMMTxdm+£/Mm7rxdw}

L

-S|

S]]
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£ Y < W 2
=y ull | & 2wl
et b e
+ £% pos aW ~ L oosufl + £ Cos‘l"lr}
n n s
= 4d. 2L oo aT 84 g T
¥ 2qp2 z P | Ta
84 gd' A:O «s o 888G,

>
I
1l
>
S
)
o)
>
™
I
|

The recuired solution is therefore

N
2 Cos nTa b Son MM He
"‘f“ZA"" 3 £

M—
o l wu‘ﬂ'cpsuqratswu’]r
"";_Z/w R <L

=
mat g, Mo _ L cpg3Matyg, 3T
E ggL_ cos =2 &m.z., 3 Cos 3MAt g =2
7 +5, ers STabg, S 4o oooooe
A 2o, i ywMabe,, Wllx , ..
+m,_5u~_;__€a$T$u~__[ +

- 30(, g 2 ___Co—s@u")(r“b&»( u'l)'T;x: 2.11

@.u-l) #

By couaparison wnhZ (ﬂm ) 20 which is & convergent series, it can be
M=
shown that 2,11 is convergeat for ¢ <& X < £ ama EDO,
gd Tat T
Phe first term of 2.11 is -—q;—;_ﬁas nE &un "X , which represents
& vibration of weve length 2 snd smplitude 8%’-. This is the

fundamental vibration of the string and gives the fundamental tone.
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2
The second term represents & vibration of wave length "3" -é snd amplitude

8~
ﬁ , 8nd is therefore & third hermonic. The third term is & fifth

2
harmonic of amplitude 8551!’ N Succeeding terms represent seventh,
1 th

ninth, eleventh, etc. harmonics with rapidly decreasing amplitudes 2
49
8t 8t
1 ', 1 ', etc. of that of the fundamental vibration. The rapid
81 121

decrease in the amplitudes of succeeding overtones leads to & predominance
of the fundamental tone. The displacement of the string at any time
&s determined by 2.11 will therefore approximate to that given by the

fundamental vibration as a very rough first approximation. The exact
shape assumed by the vibrating string at sny time € is aiscussea below

on page 36 .

Solutions can be found to comply with initial distortions into many

other curves, or when the initial conditions are different to those of the
above problem. Thus if initislly every point of the stretched string is

given an initial velocity normal to the string and of magnitude F (x) .

F(x) veing s finite continuous function of X , then the initial conditions
)
o g & 751{—— F&), men E=o0

will lead to the expansion of F(x) in & convergent half range Fourier

Series.

The particular case where the stretched string is initially plucked
at its middle point may also be solved by operational methods. Operationsl

methods applied to partial differential equations &re very extensively
treated in O.M.in A.M. to which book I am indebted for the following

treatment of this particular problems The methods used illustrate the

power of this method of treatment to solve particular problems without

resource to any gemeralised result such as 2.,1I0.
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Operational method of solution of the problem of & stretched iight

elastic string of lemgth £ , initislly plucked st its middle point.

Equation 2.1 and the initial and boundary conditions 2.4 as applied

to our particular problem may be restated as follows

i
Ty F2E armed VEN

2t* Qo 3 2.12
Ay = %—-x, 041‘14‘42, E=o

‘f——“—%@*w)) §<x<.e) P N s
;—;—f:o, o<xe<c€ , E=o 2.14
/y/:: O for X=O andi = 'e, E>o 2,15

imltiply 2.12 by ,é { + S 0 ) and integrate with respect to E from

3
O teo &© ., Using 2.1I3 and 2.14 we get the Subsidiary dquation

o2 i—ﬂ’- ‘|=’ = —Pf(x), oixLl ;4
where () = %w for O<x & %
£(x)= M(e-x) tor $¢axsd

Let :J-/= A ecsh g +- Bwq,x 2.17

where 1:% s and A and B are functions of Ac .,

Differentiate 2,17 with respect to JC , e get

4 = g (Asiah g+ B cosh q)
d_émuc;w-f- i_ém g4 = 0

ir

Differentiating 8gain with respect to JXC gives

i:, fp(ACosw;x+Bsu~ﬁ~q,m)+q,( Stk g + C”ﬂ*‘})

3 Bee appendices A and B to Chapter I.
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Hence

iy el . Y
- 9F = 9 (Gx Sh92+ Bt ge)

and so 2.16 is satisfied by 2,17 if

dA . 4B &
= smkq,x-l—ﬁcasﬂ.cpm-_-—ff_:)

A db .-
A coct g2 + 42 siubega = o
From these last two equations we get
dA _ (&) .-
R S o
da a

2.18

But from 8,15 when X =0 , .,7= O, Hence from 2,17 when X.=0O, A= o,

and from 2,18

NRYRY PATRPO

Again from 2,15 when x=4£, JT/:O ; and hence from 2,17

AW cosh 4L + B(Y) ik gd = O

. B(l_) = .—-i- d&tivq/éf.f-(z) Miz dz
and from 2.18 ¥ e ¢
B(x) - _A_’.{’j‘fCZ) Crsﬂwllz dz - M%fffﬁ)wydz} 2.20
Then from 2.I7, 2.I9 and 2.20 we get
(L%: M%Mf;{z)wzzdz 2
g 2 73 g ’
+ Sk c}/w{;f'f(z) Cosh iz dz -ﬂﬂj f‘f(z) .2 zz 0‘2}

b a Gk gL G = (trigusikyl-Suhgz ok yl) J#e) gz dz
+ M@wf“z)(cuaﬂiz &fmk;é - si»-kaz enlgﬂjdz

_ g (de) [ o) Sty + g RSk e
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substituting for £(%) from 2.13 we get for 0 & ac ¢ £
==

/Z“Wg,éxf Mq,(-t-x)fzwq,zdz
= Mq,xfj goul 4 (0-z)dz
-+ cw,uc;acf(-e- Z)Mq,(e-Z)atz

= Sl (&) .z_cv;J_‘ic’; 5:&’:@5

+ wzpw[ Ze"‘;‘j@-) . 4 (&=z) J
+ M‘I/‘”[ ) -

M?(l-x){@-mkq,a‘—- Sw.ﬂscifac}
+M‘V‘”{ 1/&‘”*%—;}-%344 X onlh g (P-x)

¥ . £ 4
Sk §l-x)+ Lealtl ,w&_}

9" 7

i [&n&¢[é-x)ao:/~¢x +enh g (L- x)smkg,x]
- 7}- sube gz 2ol qL_

i
KN

+1 w t_‘gz . 2.21

o
g
f=
"
-
<
°
(N
"~
%
N
A
a
o
>

2.22
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fquation Z.22 way be obtained from 2.2] by replacing XC by L-2 , and

80 in order to find AX we need consider Z. 2.; only. From Z.21 we have

L — _ by Aé &MA’
24 Ak 2T = ,\24 AN 233
b A cesk i

where the first term on the right-hand side is obtained by the methods of
Chapter 1 and the second term by using &n Inversion Theorew, viz. that if
&
(P = f& Pex(e) at R(P >0
P
A\t —
x—«»

where X is s constant greater than the real part of all the singularities
of {l’«b\)

low consider the integral

then

prin \p .
As N eosh AL >
}’-1’& Aa

taken over the closed circuit shown in the diagram, the circle veing of

radius Er.zﬂ'é .

The poles of the integrand are at A=O &nd
A= i'.p(az-ll‘ﬂ"a (sm=1,2,3,- ).

Hence the circle does not puss through any

pole of the integrand.

AS MN~200 the integral over the &rc BCA
5
tends to zero. Hence the integral can be replaced by the limit when M > ®

of this integral over the closed circuit ABCA .

4 For- the conditions to be satisfied by the functions &and formal
proofs of this theorem see O.liein A.l. ,Chapter 1V, paras.z8-30.

5  'For proof see Q.M«in s.iis ,Chapter V, para.43.
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We now obtain the velue of the integral as an infinite series by spplying

the Theory of Hesldues.
The pole at N=0 gives

The pole at ) -..-;4'( &M'I)M gives

i < 34:2-12‘”’4& . 2 -(ZQ:q,e:—[ !7rx

6—:—;— [ eost. 3%

Ay —(2u-)Wa
e

< (Ra-1)Wak 3 ¢
2 ——(———zl’—“ @il (24:&1 ) Tae

[’_axmﬂ»%%+ < \2@iul. AL ;

2a |\ = t(2n~t Tia

o sz)rab : (au_,! o

e

2il30Te tos (B IT _ (ReAVT2 ), ()T
=2

= (- 2L N o Lazmac
Ta (&u—l)z'

Hence the pair of poles at ‘M give

C-') 4@ guvv( —’!7’:” -—-{ 4@4;’)7‘1 .e }
(an-1)* wa
(_%_)_Tzi-—— &WC___)_Tm Ces L,_L)lr‘_lé

pherefore from 2.21 we have

Ly - —f=r 5 0 Sin (a5 QT

(:lu- >

Z@W'L%”%%%f

I\

_,)2-
which is the same result as Zell &

For é &x & 4 replace ¢ in 2424 by €~x .
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sha d b t as E .
From 2.24 it is seen that 4{ is periodic in E ot period 2% .
Hemee the form of the motion for the interval O £ Ak £ 2L will ve
repeated periocdically anc it will be sufficient to discuss the changing

shape of the string during one interval only. Lquation 2,23 gives

400 i
£y = x2— 2 M suwb T A\
ad 2T | N cont AL
e
Now
Sonh AE .c:,‘!%---é'f“"",\5 -2($=) ,-_e__;\z
= =7
V) <
M%—-ﬁ 4'&’%'4_63“ | +¢ g

Since the series in the integrand of the right-hand side of 2,25 is
uniformly convergent it can ve integrated term by term and the right-hand

gide of 2.25 becomes
}74»400

A = Alab-(uutlt20] Mab-fusid-x
o) [{ ettt Mool b

{4
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6 ‘
It can be proved that YHiod

ad
A
f@ \2 = AiTaA wen a Do

y-ioo 2427
= O when 4 £ 0

The result 2.27 is now applied to successive terms of tne series 2.26 .

sonsider £ (1) in the interval o0 £ ak & £

2
and (ii) in the interval ‘% Lak £ 4L
: é[ab-%xj
For the interval (i) applying 2.27 the term < in 2,28

4 J £ ¥4
gives zero fc;r méé-;-ab. s+ ond Z(a 2 +x) vhen >3 —akb,
The term 4;;[41,-- =" > gives zero, and all other terms give zero.

Hence from 2,23

Y
a"Z"‘j/z‘— 2 when xé'—e,:—al’
= ac—-(a,l:—-f:-f—x) when m>‘-e,;—ab
oo — gk <€ _at
i.e =3 a when oc> S5
Therefore
24 '
Aj’ = -Zttl when wé '%—-4b
= %(%—d,b) wren w)%—ab 2.28
= O when d;b = ,'é_.
Afat-£ %
ac~-=
For the interval (ii) the term L“’( 24—-:::) gives j:[‘(ab-g.,_x).

e
e torn 2265 o Liat-f x) ma L ab-%
ant it gives zero when I )al:-—% . All other terms give zero.
Hence from 2,23
= £ £
éﬂ/ = T {(ab~-2-+x)-éa£‘--g—_~x)} when ¢ £ ab~

== x-—(df—;f-f‘x) when X = at-

Bl

&

6 See O.ilain A.P., Chapter 1V , Para.44.
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Therefore
— %m when X< aE-— %
:d(‘e —42£) wen T3> ab-F

- gx when aé—:—e
L

I

1

N

por L ak & 2L the motion takes place in the reverse order.

From 2.28 and 2.29 the form the string assumes as E changes is seen

to be as sketched in the diagram below. K———-‘z i

Zxcept for E= ﬁ or & multiple of 'f‘a A

the form of the string is made up of three L"-"c.’
straight parts. The outer parts have the /’/\\\

same gradients as the two parts of the Jz N o« aki 4
string at time E=o o 8nd the midule y)
part is parallel to the X -axis . __L i z
This middle part moves perpendicular to \/-ﬁ-4 aked
¢ -axis with velocity &=—— Qdd» o Whilst oo

its ends move with uzocuy Q. parsllel gt ab=L
to the XL -axis. 7\/

2
(%41"_'—" O except at the angles formed by the parts of the string as it

changes shape, and ;%i: O everyvhere. Hence the equation 2.12 ,

or 2.1 , is satisfied exzcept at these points.
1f the string is plucked &t a point X’=C | C’(-@ ) the same method

&s sbove may ve used with intervals

o<Lat £¢ : dL ak £ O-¢ d-d Lakt £ £

®
In the general case the form assumed by the string consists of two or more
straight parts at any time & » except when it is passing through the

position of static equilibrium.along the IC -axis «

e —




CHAPTER 3

Application of Bessel Functions to the solution of partial differential

equations of the second order . .

Small vibrations of a eircular membrane .

Consider a thin perfectly elastic circular membrane of radius A and

density f) units per unit of area . Suppose that it is fixed at its

edges, is under a tension T and is stretcned taut and flat in the

xg/ -plane with its centre at the origin . fThe tension | will be

uniform if the force exerted across a straight line of unit length in

the plane of the membrane is independant of the orientation of that line,
Suppose that initially each point of the membrane is slightly

displaced through a small distance Z normal to the ¢ -plane »

Alr resistance to subsequent motion will be neglected .

By reasoning similar to that used to derive the differential equation
satisfied by & light elastic string for small vibrations it can be shown
that if the membrane is distorted from the position of static equilibrium
and released at timse E£Z= O then the subsequent motion of any point of
the membrane may be considered as consisting entirely of vibrsation normal

to the mka/-plano . A consideration of the forces acting on an element

of the membrane leads to the dirferential equation :~

39.



2
e +‘3=) £>o
(3—-) — C (Dm> (as’ ) 3.1
where C = X
s

We need to find & function Z(x)y) which satisfies 3.1 and & set of boundary
and initisl conditions . In order to simplify the problem, in addition to
neglecting zir resistance, 1 shall assume that
(1) the initizl distortion is such that the membrane has the form of
a surface of revolution with the Z -axis as its geometrical axis.
(ii) for &ll values of E >0 the surface of the membrane is & surfsace
of revolution symmetricsl sbout the Z ~axis .

These assumptions suggest the use of cylindrical co-ordinates, and writing
x = +eos O
y = + e O
il e

I
egquation 3.1 becomes

2 1 Az 7.5

gf'_” = C :;i,_"' 4,;(31\:-‘- *‘%::— E>o 3.2
Since the membrsme is of radius (L and is fixed st its edges, Z=O for
&=a » E20.
Since the form of the membrane n&s been sssumed to be & surface of revolution
syumetrical asbout the Z -axis &t any time [ its equation must be & function
of + alone and independsnt of € . et it bve z = F(H ) ama
suppose that wnen E=o0 equation becomes Z = f(*) . e will

ers

also assume that &t time E=o ' oE = O .

Squation 3.2 , reduced since Z is independsnt of (O , and the initial snd

boundary conditions of our problem may be restated as follows

S

y A
s L 7% _L?_Z_>
e Gl ) pad L, e i

1 See appendix 4 to this chapter .
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(a) z= S—@’) when E£E=o0 .
g = T :
(v) = =0 waen E=0 3.4
(e) > = O tor £=a smd E>0 .

Assume that a solution of 3.3 exists which is the product of two functions,

the first of which is a function of A~ alone and the second & function of

t alone. _
1.e. z = RM® T(,b) 3.5
Substituting from 3.5 in 3.3 we get
T AT/ R 1L dR
- + —

R der = 44> 4’ d+

t BT . e2f . &R 1 _ 4R

T+ 96 = (K av TR 4+

The left-hand member of this last equation is a function of € alone and
the right-nand member is & function of ~+~ alone . Therefore the equation
can hold in general only if the members on either side each are equal to the

2
same constant, say — o{ j and we have

"J"—b-; B.6
w AR AR X2
i
— = 4+ 2 =
e + oy C,R o
4R, AR = 0 3.7
Afr‘ + d+ s ﬁ
where ﬁ" al/c . Aguation 3.6 has the complete solution
T = Acesab + B St 3.8
writing mzﬁ* in 3.7 we have since
AR _ L dR dz'e _ L 4°R
‘A~ B A+ ) dx B> A+t
that 3.7 becomes _L ﬂg s _L.. dR + ,R

P
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AR dR_,_x*R—.-_o

i.e. b a—’;),-'-— d‘} 3e9

which is a Bessel equation of order zero, @and the form ot' solution is well
Knowne In this problem however I shall work out the solution without
reference to known results and from first principles.

sssume that a solution of 3.9 exists in the form of an infinite power

series

2
R——-‘: xi(ao‘f‘alr-"a’x + - - o - "‘) ® Wher. ao#o *
oo
i Z aucc""""’

Mm=o

2 -1
R -5 @rn)anz"""

n=eo

P

R oo )( ) # xo(-i-‘u-z
BN (R RSB
Ax> ;é

Substituting in 3.9 we get

oo X 1-2 < X+m=1 g (E+n+l
Y rm)(tn-aurT 4 Y @AW AT+ )an® = O
Nso MN=0 n=e

A1

Bquating the coefficient of the lowest power of 2= to zero ( i.o.o& 4 o )

we get the indicisl eguation
a,,at(ol-l)-l- ap X = 0

2
aad = O

and if da#o sham £ =0 ,
dquating tue coefficient of the next power of 5C to zero, we get
(K+1)o a,+ (£+1)a, = 0
0‘1(0‘"")2 =0

s o{=0 . EASeE S -

mn+1
The genersal equation obtained by eguating the coefficient of x to zero is



(M+ 2)(“""" ') Ayen + (u+3)du+2 + 4w = O

. a S a“‘
Aw A B ey
(44-;-:!)
which holds for M =G, (,2, ----- ,  Hence, since 4,=— O ,
a3245=47= o P dgu_'—— """ = O
Qo Az Ao nw 4o
Gro—P2, aue-f2. g, g% Ao
4> 24* 5 s 2
2° 4 294 22“(41’)

(A

2 o
~R= aa{l..%’;.‘. ’:1%47~9‘,;x;’.—6’+ e .}z aoa;(x) = a.oa;(ﬁf) 3.10

A J;(/%r)fc’,cos ab+ C, Qun xt—} e

where the do has been absorbed in the nsw constants C,/ and C';_ .

Applying initial condition 3.4(b) to 3.1 we get

c. ; 2%
;lo(ﬂ,r) g O Es C_’i-—o
and 3.1I reduces to

B d, J;Cg,,,) Ces L E 3,12
The boundary condition J.4(c) gives for all values of
&y %(Ba) Coo at = O
Therefore /3 must be chosen so that J;[/&a) =0 , iees ﬂa-
must be one of the infinite number of positive roots of J,(x)= O .g
Suppose that ﬁa is the M/m.root of U:(x =0 , and denote it by /SMQ .

where ﬁua = Ay ( Mm.root of 3;(2'))

@
5 P = '5_4‘4 | 3.13
Now [5:-2—‘- d:é/{;M and 3.12 becomes
Z = C/M J;(lsa'*')&’scﬂmb 3.14

where C,IK is now used to demote the arbitrary constant .

2 See Appendix B to this chapter .
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3414 satisfies 3.3 and the initial &nd boundary conditions 3.4(b) and 3.4(c).
The sum of sny number of such solutions for different integral values of W
will also satisfy these conditions , and the following is therefore s solution

which satisfies them

F e Z c/fw J;(/?’ai*) Ces C@ub 3.15

The initial condition 3.4(a) remains to be satisfied. when £=0 3,15 becomes
o0

which must be identical with —S—Cf“) . i.e. the coefficients C‘: wust be

80 chosen that if /54;4 is any one of the infinite nuaber of positive roots

of J:,((&«r‘) =0 then

§+) = icﬁ&f

imltiply both sides of this last equation by J' (ﬁ“*‘)*dﬁ” where /6 a
the
is the A4\ root of T (’I)~ o Then integrate between the limits zero
3

to 4 We have

5003 var = f > & T k) T(aH)+ ¥

.{f/

= f 5 CIF G(Bt) JF LB Ar

o.il

fb /5: {/3/(3;05 )Jag*) - é@“«r’) J(/& +)}
Now put /f’.-: , and since J;(ﬁua) =0= ];(ﬁ_:a) we have

‘,("g'@') -];(&,,d’) FAd+ = O for M«?—“‘: 3,17

3 See aAppendix C to $his chapter .
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Equation 3.1I6 gives ' o

(4-42) [ 2T L) 7 L (p2) e
=+ 5 BT TR T »f

<=/
Ditferontisung voth sides of this last eguation wlth respect to we get

A f 2 Gl () L2+ )f;d PIBYTR) 4
v B TEITAL) - T G- TR TES

<=/

Now put ﬁ ﬂ and =4 , Since J,,% ‘1”)—-0 we get

Qﬂ’ er F SADISF LA dt = a%B,.C [To[ﬁ’“’a)]
: }’ IZC’ [T [ ar = 2 [T (Bua) [*

for A=W .

Thus from 3.16, 317 and 3.18 we have

f ) J‘[ﬂw)*"‘* 3 [ T8 %
. O = = [3-’ ) 1, f§(+) L)+

and the following is the required sclution of the problem

o a

2 [§¢+) T(AS) +dr

2= ) [HOEE e
m=! i [ 3:’(’%“'0')]

If the initial distortion is into & cone symmetrical about the [/ -axis,then

{—@") = d,él o Z/t)

where cL is the displscement of the centre of the mewbrane in the direction

MY
of the Z -axis . = lignt membrane, ve so distorted by pressure spplied
normally at its centre. ~gain uniform pressure scting in the direction of

the 7 -axis and exzerted equally all over the surface of the wmembrane would

appear to give an initial distortion of the form of & catenary of revolution.


http:Jo(A-r).JF
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APPENDIX A .
o N e
Consider the equation PE> c 5;," 4 (5_3.)
write e 4"6639 4= Cx,’;p ,4.4,2)5
‘af =488 : > ;‘,:_
z =% 8 = fan g
2z _ 2z 4 Q226
QX Q@+ Qx QB ©x
- % 2

p
oo orlon) + REEZS A0 + 220k 4 Vo 00)1, 0

: 7z 3%
atox®* Q X) TV 28 x>
W _ = = e Qs Ther .- gab
Qe & e [ + (%5)* +
10.2'% ____S‘;AQ?_B Su_ﬁ
ox* oy
% + sin0%E
0 = x | o R P :
- '?G
Q% _ 9% 050 =292 050800 4 92 Sl
2% ¢, , 292 &u 0.
T S AL

2. 2
Similariy 9= 2=

—— a—
——  m—

20 +29%2 30800+ 22 ¢%6
L s + 2426 it

,-i

+ % ¥ _ 292 O
30> +2 ~ yigo POEmC.

and the sbove equation becomes

2
2% i , 122 -'_QZ,L)
sgEe band v * s
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APPERDIX B.

The Bessel Function of order 4 is defined by 4
< M2 W (—-l)"éfx:mfﬁ2
(@) = 2";,—-& o 23 ot +2/u-h41_% La_t_-+_2-+ e +szr2k[_,§ !/mf-»é

B x_2£+% e
= -1 L [nt+R
Hence . :r() Zp( )k rnafk
. L) = ~
L= PRk

A rough greph of »(3' = :l;@:) follows. The equation U:,(x)-"—' O  has
an infinite number of positive roots and the approximate values of the first

four of these roots are shown on the graph. It is worth noting that the

roots sre spaceu st spproximately ™ units apart.

U

@




APPEEDIZ C

The following theory is used on pages 44 and 45.
(1) Iu(_oc): O has infinitely meny positive roots, ssy As>Az2, Ao

(ii) ,(X o J'a—: (t\t) is & solution of the equation
424" (4N Am 1 )4 = ©

Putting wu=Jzd, " Xx) snda V = @x) &8s two such solutions

4’ (4 No—qal+1)r = O
snd 406V”+C4'}‘x 4oC+1) vV = 0

sultiply the first of these equations by V &nd the second by 4L and sub-

-tract. Te get
& (AL/“’Z)""V = a'v-yin

torse tie sqution et i isis $50 w0 E= givin
—(P=p )fuvdx [w] —f ye[vi]" + IV e
= [.u’V v’u.J
Lo, (,\%_/k)f‘,—— Tu(2). T Jup) dox
Lo [,J O T ) - AT T |
rt A=), p= \j » wnere A; s A are voots ot J,,(X)=0 wna N # >3

Then

ffri T“Q‘-x).Jz Ju(Agx) Az
o [ e L) - AT T 5|


http:equatioi.11

.

sowput 2= o sinee Juu(A:) = Tu(A5) = O ve nave
fJ”'T@ e Ju(Ajx)dr =0 1 i#3 ()

Ditforontiato equation (4) pertislly with respect to A . e get

) f © Tu0) Tt () f 2T, ) T o) e

& xEu: T (M) JLém) Tz j:u[,\gc)_ Ax J;ou:):r x)J

s N = K e ot s o) e

u Fest o
[1E QR Tpr) e= [T e 425 @

Results (4), (B) and (C) zbove are of importance in application to pages
44 and 45.
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CHAPTER 4

Application of Legendre Polynomials to the solution of partiasl differential

equations of the second order.

Conduction of heat in & solid body.

Consider & solid body of uniform density f composed of & substance of
uniform specific heat C .« Let tae tempersture at & point 'P(X,‘t,z)
in the body be M degrees at time EDO . It will be assumed that LA
is & continuous function of position and time, and that no source or sink
of heat exists in the body.

sxperiments show that heat flows from points at higher tempersture
to points at lower temperature.

Consider an arbisrarilly chosen volmv of the body bounded by a
closed surface S o The amount' of heat A H which crosses an element
of surface AS' in time AE will ve assumed to ve proportional to the

greatest rate of decresse of the temperature AL . iees
u,
= &k AS At ou
St Qw

where k is the coefficient of thermal couductivity of the substance of
v u
the body (Calories/cm.sec.C in C.G.S. units) and g‘—;‘: is the rate of change

of JA in the direction of the mormel to that level surface, (= (onst,

4.1

which passes tLrough AS .

50.
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Let 71; be the vector representing the maximum rate of flow of heat at any

point of the body. Then

?1_/ = —-k grad (L
where grad AL ( or Vu ) is directed normally to the level surface = C'ousb
in the direction of increasing L , and the negative sigu is taken t¢ direct
.q/ in the direction of decressing A,
The total amount of neat H flowing outwards across the closed surface

S from the volume V/ in time AE is given from 4.1 by

H = —'Atfk ;%%—lds
= Atf‘f/,wds/ il

where q/ is tue component of 41/ normal to ,S/ at any point on it.
Now, to increwse tue temperature of &n element of volume AV oy Au &n
amount of heat equal to the product of the msss of the element. its specific

neat and the increase in temperature must be supplied, Hence

AH= pAVe Au = pc AV2L AL

and the total loss of pe2at from the volume V in time AE is therefore
H = - 4t f cp dVv 30

Bquating the right-hand sides of 4.2 and 4.3 we get

Ef%ds = -J%‘_*chdv

and applying the Divergence Theorem to the left-hand side of this equation
I
we get

- = _ (P4 oodV
Idivcl, dV = BE f
v v

1 For statement of the Divergence Theorem used here see ippendix i.
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But q'/' = -ﬂz grad o  snd so

f{ av (=R grea u) + cg%—‘é—}d\l’: o
&

1.0, ‘S;i—&v,’ix.+ cf?;%}dv-;o

Now V was chosen arbitrarilly, and since the integrand sbove is s contin-
-uous function the integral can only vanish if the integrend eguals zero.
If this were not so V. could be so chosen a8 to enclose s region throughout

which the integrand has a constunt sign. Hence
o -& V%u« + cp o _ ()
f 2E
u _ * Vix
@t cg
2
and if ¢ and f are both constant

z
u _ a*yuw, E>o

hTE i S

where A*=— ﬁ_ = Cowak,
o
For a steady distrivution of temperuture 4.4 reduces to the Laplace squation
2
V MW = O
2 2 2
LA Ar
X (?,&1.;- r_a___’_ '?_.1 L ESo 2
o8 Qx 7] ﬂ Az D .

2 The assumption that C s&and ¢ are constant, «nd therefore independant

of the tempersture i, camnot be 200eplg, i, gemeral but is reasonsble

in certzin cases, In fact & and @ vary slowly with the temperature
und if the temperature range is not lsarge this varistion will be neglig-
-able. In the problem studied later in this chapter & small temperature
range is considered and the asssumption is therefore reasonsble.

Again eguation 4.4 will not hold if sources or sinks of heat are

contained in the body. mmus if sources of heet &re continuously dist-
~ributed througnout the bedy s term must be added to the right-hand side

giving
(n .3 e f‘(x/ﬁ’;Z;b)
SE= 4 vu + c?

where .f is a funstion representing the strength of the sources.
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Bouations 4.4 cnd 4.5 qust be solved subject to the initial snd boundary
conditions of a particular problem For sxample if the surface of the
body is so insulated that no heat leaves the body then at the surfaccg—ﬁ= O -«
sgain the vody may radiate heat from its surface and be enclosed in an

evacuzted container, the lmmer surface of which is kept at & constant temper-

~atures Then uapplying Stephan's Law we have at the surface

zé%ﬁ = o (uf- uf)

where O is Stephan's surface constant for the body and IL, the constant
tewpersture of the inner surface of the contuiner.
If the initisl and surface conditions &re¢ known it can be proved
that the problem of finding the temperature at any point of the body at time
E >0 nss un unigue solution . In practice the applicstion of initial
and boundary conditions present considerable difficulty inm any but the simpler
problems. %o illustrate the application of Legendre Polynomials 1 hsave

chosen the following problex =

Flow of heat in 2 splid sphere.

Consider a solid sphere of unit radius and uniform density , specific heat
and thermal conductivity. Suppose that there exists a‘ateady state of
temperature distribution, the sphere being immersed in medis which maintain
one hemispherical half of its surface =zt & comstant temperature of 000. and
the other half of the surfuce &% a constant tempersture of Ioc.

Since the flow of heat is steady the temperature (A is independent of
£ 2nd therefore ‘2% = 0 , and (L is & solution of 4.5 .
We are dealing with s sphere and this suggests the use of spherical

co-ordinstes . writing
r= A8um Oclo ¢, .%fa='ff'£béa—é9ig4an4;7 , z=+ten 6

equation 4.5 becoumes



*’b’(u'f) Pl £a [ + cD"a o é > o 4.6
T swefae suéefaqv’ ;

Chose the plane which seperates the unegually nheated hemispheres as the
3'_(3/ ~plans. The temperature at any
point “P (4’, 9,@) will be independ-

-ant of (P , &nd the temperature distrib-

-ution to the right and left of the XZ-
plane will ve symmetrical.

It will therefore be sufficient to

consider ounly that part of the sphere which
lies to the right of the X7 -plane. Since L is independant of CP

eguation 4.6 vecoues

v 2(ut) a
.Y +Sw~9(39< 9@%):0, E>o0 s

and & solution of 4.7 must: bo found to satisfy the boundary conditiouns

(8) When =1 , M= gfor 0404%. e B

w’ ‘IB
(b} ¥hen Y= , U=0 for'a'(e(‘lr s E>o0

Assume that & solution of 4.7 can be found which is the product of two

functions , one of which is s function of 7~ alone snd the other & function

of 9 alone.

i.e. M = RC’*’) @(9)

Substituting this =olution in 4.7 we get

HORY) - F ek 1
+8 i P Rdeés“”gf‘[‘@é)=
A"(R*) dé S SRS
2 S"“’G S B,
R “ar o as(> e

The left-hand side of this equation 18 = function of + ulone and the

right-hand side is & function of O alones Thus the equality can only

hold if the members on eéither side sre eszehn équal to the same constant


http:tunoUo.ns
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Suppose that this counstant is 4 « Then we have

2
+ & r_’+)

PR, Lo e -
At+*
¥ 0‘@24—*“ )-a*R =
AR .
E SO PO s)-aR=o
2 A’R R
d+2 wg R=o0, t>0 4.10
which is an equation of tae Euler-Cauchy type.
Write *:.az,gi'-éz—r\" '%: 'z.____—”':- ‘
OLR dR dz L "chR _ 1 4R
A+ o dz dn“' = ¥ Az 2 oCR
1‘R_ 2 ‘____ — ‘E AN ~__ A [

Substituting in equation 4.I0 we have

A'R _dR Q%E— AR = o

Az dz
<
izi"' d=z =S T

The general solution is

® =A e‘m,Z_‘_ :B.o,mz'z (/\ and B are constants )

= Ad™L BaT? (aimn 5=+ .)

’ _._'__I

Therefore M+ my = — | and MM, = — tht,-l-l)
2
MM,y = ‘4.""'6‘4%"'“2 B

o = — mgmy = My (w4 1)

Hence the genersl solutioan can be written
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= (ma-(— l)

R =A+"+ B+ 4.11

where /(M) =a’,

The right-hand side of 4.9 gives
1 4 . A ta
2w O de(s‘“ ® 49}
writing a¥= m s+ () this becomes

L sa».ed@-,u (0 0 22 }+<M(M‘*’)@ =0

Write 2o 9= 9 i We have

48 _ _ ¢.0d8
40 doe

1 9) = 40/t g0+ 48
0 -~ 4(4g0) = 0§80+ Finc)
Hence the equation becomes

Sm"é I—" .Qenedgq.m(tm-u)é:o
(-7 58 — 2 $2 dmmr@=0

whick is a Legendre iquation with & singularity st = | and 2t 2 = -

Assume a solution of 4.12 in the form of & power series

e = x"‘(a‘,-f—a,x-f- o m i g xle ) 4.13

i a2 oo %t

=0

48 _ N acluri)x
x—;‘; (

|

oL+ oy

L8 = 5 aifuriorin) merict

A =0
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Substituting in 4.1I2 we get

~ 2c*) ;44‘@44—;)["*"'“’) et 2x Zd (x#4) x aat

<=0

00
4 m(m+1) ) a; 2%t = o
s

Z a (au}(xu-z)x""“ Z“*'("*")("*"")x’”"

Ai=0 <=0
= ¢ ¢
-2 Za'4 (""’""’)x‘ ;‘I" M[’*“*’)Z“L-td‘f: (@
' ,(:50 ; -1:::0 4,14

Bquating the coefficient of the lowest power of X° to zero ( i.e. the co-
efficient of xx-z’ we get the indicial equation
aoaL( K-1) = 0 4.16
Hence if a‘,:f O then either X=C or [ . :
Taking of = O and equating the coefficient of ﬁ:o‘- in 4,14 to zero gives
Qo(+1)ol = O sime X=O,
A, is arbitrsry. Take d,# o.

dguating the coefficient of a:'"’ in 4.14 to zero gives
dacs (%-f-.’l)(/n-l-l) - “"vi n 4 m/(fu,ﬁ)-—m(nu-/—))f: o
Lo Qe (41-*9)(‘"*’) = - du(m"—;- M- A = /w)

= —Amn (m-fu«)(m-f-fw-f- /)

_ m-m)(mtasr) dn

cdusa = (M+2)(n+1)
Hence PR /m(zm-f- 1) a,
TR Bt m{m"z)(tm-ﬂ)(m-f-s)
a4y = — L;)g t3)a, o

a, - . mm- g)éou- ){M+l)(mg)/1u+5j i

e e b e e e



(m=1)(m+2) a,

and a3:-

/3
- _ (m-3)(m+4q), ('m")("ms)("“*”)(””)
Qs N
54 L=
Ay = — L= Uom= 35 fomr 2) s+ ) or)
LZ (4
S R N L i T S T e T ey etc.

Substituting in 4.I3 for the coefficients in terms of 4o &nd A, we got

{ } = :r?'-f- MM 2 )(m+1)(m+3 ) oo

[+
o ~ ’){ "”"‘2) o Cnn-:)[nn—a)(m-r-z)(m-f- J
-+ aa{ i3 7

4.16

The first series on the right-hand side of 4.16 is an even function of X

and the second is un odd funotion of OC These two series are there-

fore linearly independsut snd (I, and d, are arbitrary constants.

The series converge for —| < o &£ | and 4.16 is thus a general solution

of 4.1I2 for ‘ml4 ' .

For { =/ we get the saze solution but witn A, =0 . ‘hus the

solution 4.1 includes the solution given by taking o/ = [

If M is an even integer the first series in 4.16 terminates =nd

reduces to & polynomial , whilst if /WL is an odd integer the second series
similarly reduces to a polynomiel « If (A, and A, sre so sdjusted as to

make these polynomials unity when OC =/ we get a set of Legendre poly-

nomials .'Pm(x) or R‘_Ca"s 9) since X'=0Cs56, ;

]

3 The subscriptsof the P 's indicate the valuel of W, and easch is &

particular solution of 4.12 for A the value of the subscript.
Thus from 4.16 z

To(e)=1 Tl(”"—) zx, hBE)=3x iy

P(x)—%w _ 3, Bl = Hxt e Y
(Ps(x)E cs/smg- 3/4.m3+ l5)8x) & @ el 4 q ¢t rtc.

The values of Legendre Polynomils are tsbulated for varius values
of AC They &re also called Surfuce Zonal Harmonics.
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Hence with 4.1I we get a solution of 4.7 given by

WU = {A‘F’”-&- B 470" }?m (ces ©)

or rather two particular solutions

A+™ T (ce56)
B+ g, (cos6)

I

U

and AL

The second of these particular solutions is inapplicable since it becomes

infinite as 4~ sapproaches zero. The particular solution applicable is

therefore |
m
4.17
and the expression for the temperature &t sny point inside the spuere must
be built up from terms of the type of 4.17 with a positive integer.

sach term of the following series satisfies 4.7
a
m
w = z A ¥ BulcesO) 4.18
mwm=0
When 4~ = | 4.18 becomes

i A A, Farlieens)

and if we determine the constsnts Au 80 &8 to satisfy the boundary
conditions 4.8 we shall obtsin s« solution of our problem.
if we write u(Q) = F(’x—) the proulem becomes that of expending

Féx) in the interval (=f!, /) in a series of Legendre polynomials.

o F(* = Z Am T (=) 4019

where F(x)= O for =1 < X0 snd F'[x).—.[ gor 0K (,
Multiply both sides of 4.19 by 'lfb(x)dx and integrate between the limits

—) to | for »C +« We get for M/ an integer



[re Tt de = f Z A B () B (o) e

w

A
T Am+ g
I / 2Au
Since ‘r"ﬁu(x)?méc) dx =0 it M#%ﬁnd fAu[‘Bt(x)_] itac = 2t
-f :

Therefore

A% = Q%-l-lf':'(x) () dac
—  Am+ f B () dx

* o
Hence using the values of ‘E(x) " ‘P,@c) s etc. given in footnote 3,page 58

we have

——j?@c)cm ...fm £

L
R
A, -_.f?(x)d:n = -—facol'r, = f_—

5 5[ P -_ 5
Az"‘z,?@")dx z] ( 0.

o 0"

! o PRESIT o 24

pu= 2t - 2 4)iem - 25

o
A% mxm ﬂf( et o o wg

: o 2 _a.a
AS.::-lz!, 5()doc f x--”* F)MT

aV
L R R T SR e T T SRR B G e e e s e

and substituting these values in 4,18 we get

u__._+34'?@059)~‘ y(en 9)+'3"«~ P(me)

— T ek e e e etc,
which is the required solutior to cur probliems
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APPENDIX A

The Divergence Iheorew.

Consider any closed surface S lying in the field of & vector 71; ¢ w®hich
represents the meximum rate of flow of heat st cmy poiat within s

The excess of neaf that flows out of ,S’ over that which flows inwards may
be mwessured in two different wayd,
(i) by finding the totsl outward
normal flux coross ,S' s &nd

{i1) by susming the aowrces snd
sinks or divergences for every
infinitesimal volume elewent
contained within S .

dquating (1) and (ii) we have

d8 = | avq dV
e

or

P-4 Vv

where 7\, is the outwmerd-drswn unit norusal to S * dS is the element of
surface, AV the sleuent of voluws snd ‘z/” or e -7-/' is the outward-drawn
couwponent of .é; norusl to S °
Phus in & vector field the surface integral of the normal cowponeat of the
flux over sany closed surface S equals the volume integrsal of the divergence -
tagen throughout the volume enclosed by g .

for & formel proof of this theorew see i,0.uebster's " Dynamics " or

ReGans's * atuﬁ’mruns in die Vektorasnalysis ".




CHAPTER 5

Simultaneous Partial Differential Equations.

Flow of electricity in s long imperfectly insulated cable.
Consider a long imperfectly insulated cable throﬁghaut the whole

length of whieh current leaks to earth. Suppose that the cable
AR 1is of length £ wiles,

el

The end A 1is attached to the At B
positive pole of a generator, the

' +
negative pole of which is earthed. Receiving
When the eircuit is closed the 2 it
cable carries an electric current | _
which flows from A through a - e

receiving apparatus at B ( e.gs a telegrephic key ) to earth.
Consider a point P distant 2C miles from A . Both the

voltage, V volts, and the Mont,I anps., at 1’ are continuous

functions of the time and the distance X of P from A .

I shall aessume that :

(1) the resistance of the cable is constant throughout its
length and is K ohms per mile,

(11) the conductance (inverse of resistance) from the insulate
ing sheathing of the cable to earth is constant throughout
the length of the cable end is G mhos per mile,

(111) the cable acts as an electrostatic condenser and that the

capacity of the cable and its inductance are each constant

624
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throughout the length of the cable,the capacity being  Farads
per mile and the inductance H Henrys per mile.

Consider an element ‘Fl” of length A , with e.m.fs
at P ama V+ AV at P/ . the change in voltage across
?P is caused by the resistance of the wire and decreased
induectance. Wie have

AV = — (IR Ax+ "IHAa-,)
. AV _ 2 ¢y
£ Mo = = I g SE H
and we AY_ 2V _ _R-H2L 5.1
Ard>0 Ax (a0 2.) 7
The decrease in current across P P’/ is due to leakage and

the action of the cable ag & condenser, we have
ALl = - VG Ax —(Z-YdAx
) e v
Hence -_— 2 b2
ax Vg - c(a’E

Lguations 5.1 and 5.2 are simultaneous differential equations
to determine v and I .

In normal telegraphic practice the conductance Gr and
the inductence H are small end it is reasonable to neglect then,
but this would not be true for high frequency transmission.
The capacity c of the cable cannot be neglected.

I shall consider the problem of low frequency transmission
and neglect Gr and H s 80 that 5.1 and 5.2 become

¥ TR 543
x
el = ¢V 5ud

Qx RE
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Differentiating 5.3 with respect to E end 5.4 with respect to

x gives 2V LA czl.’
ot 7]~ |
o o c:ra"V —_ RCI(‘—)!-:
Qx> — oot €
Again, differentiating 5.3 with respect to XC we have
| 22V o T 2V
Fer= ~ R & Rcrab
Thus we have two simultaneous egquations to determine and
2Y _ R
r? 2t 545
*T ) I
L = RC=
Qx2 ot 546

I shall suppose that before the receiving end of the eable at
is earthed there exists a steady state of voltage distribute-
ion in the cable and that the voltage at A is VA and the

voltage at B 1s Vg . The voltage V &t P will be &
funetion of L alone.

At tine £ =0 the recieving end at B is earthed and
hence the voltage at I becomes zero. Suppose that the volt-
age at A is maintained at a voltage %‘ . Thus for t =0

5.5 becomes 2V — o
de® -~

with V= \a for X=0 , V= VB for x=f£ .
The voltage at | at time E=01is

V = %(VB-'VA)-*' VA 5.7


http:equatio.ns
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L

Po £ind the voltage at I at time E > O we nave to solve

A e ke
2 Pt 5.8

subject to the conditions that

() Wwhen E=zo0 , V = %CVB- vﬂ)+vA
59

(v) vwmen ESo , V:VAfor 2z =0
and V= © gor X £

1

The voltage V (e, E) Vfor E > O can ve considered as made up of &
steady state distribution under the new conditions , say \/s(x) since

the steady state is a function of 5C alone , and & transient voltage ,

\/,r(m-,t) , which decreases rapidly with the time.  Hence

Viz,t) = V) + Voxe

After a short time the transient effects will become negligible and a

steady state will be established where the voltage at A is VA and

the voltage &t B is zero. Hehco, similarly to 5.7, we have

Rimii= ~ 23 Y,

and Viz.t)= VAO-%)‘I' \4(ac,l:) Bell

When X'=0 we have from 5.9 for b;o : V( Ot )= vA , and from

5,10

511
Vie.tr = Y+ Vo6
Vr(o.b) =0 ' k0. 5.12

I. The method of solution used will be similar to that used in the first
part of Chapter 2 , but the equation may also be solved by operational
‘methods ( See O.Moin A.M.,Chapter IX, paras.84-86, and in particular

Example 4 , para.84, which is similar to the problem here treated.)
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Again when t>0 we have from 5.9 for x:ﬁ > V(l.b! =0 , &and
from H5.11
Vid:&)r = Vt4,€)
L RERE w9 . B .13

From 5.9 we have V(a:.o) = %(‘%- ‘{4)4.% when l‘;:o » Whilst
from 5.11

Viz,o) = %(l-—%)-i- Viiz,0)

‘s ’ e .q}- »
. V.r(_a: o) = V:B 5. 14

How Vj(2) satisties 5.5 and so  V,(%c,E)mst satisty 5.5.
vr({t.b) is therefore s solution of 5.5 which satisfies the conditions
5.12, 513 and 5.14
{
Writing (,Lz = rC equation H5.5 becomes
2

. a? oV EMo 5. 16

— p— 2 , > [
Assume & splution of B.I5 &s a produet of two functions , one of which is

a function of A alone and the other & function of E slone. i.e¢

Vr(x.b) — X(m)._r(l:) B 16

Substituting H5.16 in 5.15 we get

X ar == &ZT A'lx
dt da*

Moo o - R R

AT dE ~ X d=x*

The left-hand side of the last equetion is a function of E slone and

the right-hand side is a function of JC alone. Hence the eguation
will hold in general only if the members on either side are equal to the

y 4
ssme constant , say -*/5 . Then we have
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dE ' 5.17
A*X 1X = 0.
and A + /5 B 18

Solutions of 5.i7 and 5.18 are e
T D
and X = ukz&:sﬂ:t + 'ka Sxfwﬂnc

where .k, ’ vkg_ and -—k3 are constants. The required solution of 5,16

is therefore _a’ﬁ,’b
e x p )
Viizb) = £ Cr Cofx + CySunfBoe
where C, and C, are constants determined by 5.123, 5.I3 and 5.14.
From .12 VT(o.b).—.o s >0 « S 0y =0
From 5.13 VT' (Z.l:):o v E>O C’,_S;uﬂbm =0
But Czt# O since this would lead to no solution. Therefore
Sen /gx =0 S A= ?‘g-r, fas o 1,83 > 4d )
Hence _42-(&_‘21)2-&
' £ # Mﬂ' <19
Vo(x,b) = cl S X o

The condition 5.14 remains to be satisfied. Since 5.19 satisfies 5.15

for m= 1,23, «c----- then
° -
V,-(x.b) » ZC‘M«'@ Sun ”—gx 5420
Mn=/
is also & solution of 5.15. when E=06 6.20 vecomes

XN
Vrix,0) = )_Cu S 4_2_77'3‘,
n=1

= = V.B from .14

P~
- ST
pie A o A
B
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. L
D e, dun L

S=1

=z b

m T

Multiply esch side of this equation by S dx& and integrate between

the limits =0 to =4 , We have

_\_/EfomM.——Z"dx = Z 51(35 Sun STX ¢ [, wilx o

£ £ £
o $=/ 9

The integral on the left-hand side is

L e
£ wix (.é % [ R
-l- X CosWZ 4 /= funxi = = = CosmT

and on thc right-nand side the term containing Cf,,L is

=0 ﬂ“‘” W) ds E“ 20T ;er] 2.

0
and & term coataining any other coottiohnt CS is , for § f W

L
pis CSIMSWx meM J e M: -SZﬂ'x &5@4‘!—527"& g

0
C -
2 ‘[%_m,sw@& e (w)f (M J

— (O since /1 and S are integers.

£ oMt v
ZCM_ —/;——Cﬁ/u

® -'4262-75%

™ M
n={( T
and e P > ( .2:. 2(-%-)2t Ww“rmx
- = B Y s Wl
Vie,t) = %O ) =in Cos %
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ica- “ﬂ’b
' nc Vs A ), Ree
Vix, &)= \6\0’,6 Z; e‘smqrs*“""’:{x 5421
/w’

From 5.21 it is seen that as &€ increases the contribution of
VT to V repidly decreases and quickly becomes negligible
when compered with Vj(|— %) . Thus if the eircuit re-
mains closed ( i.e. if the receiving end at B 1s earthed )
for a sufficliently long period a steady state of voltage dis-

txibution is attained finally with

V(=>t) = \ﬁ(l - % 5..22

The magnitude of the current I at a point F in the cable
at time £ ocan be caleculated by similer working from equation
5.6 and no useful purpose is served in doing so here.

The above method can also be applied to the problem of
variable heat flow in a rod of small uniform eross section which
is composed of a substance of uniforn density, specific heat and
thermal conduetivity; where the surface of the rod is impervious
to heat and no transfer of heat takes place across the surface,
the ends of the rod are kept at constant temperature and the
initiel temperature at any point in the rod is thus a funetion
of the dlstance of the point along the rod. The temperature
A2, E) satisfies the equation

Q_'."- —_— a"'ézi‘_
Rt Qx*
where a 'k/ —4& = thermal conduetivity, ¢ = specific heat

ef *
and f = density
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This equation will be subject to the following initial and
boundary conditions
(1) N =f(:c) when E=zo ,
(i11) wu = u, when =0, t
(111) @ = U, when =¢, FE

.

>0
=0
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