
Secure and Trusted Verification

SECURE AND TRUSTED VERIFICATION

BY

YIXIAN CAI, B.Eng.

a thesis

submitted to the department of computing & software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Science

c© Copyright by Yixian Cai, May 2015

All Rights Reserved

Master of Science (2015) McMaster University

(Computig & Software) Hamilton, Ontario, Canada

TITLE: Secure and Trusted Verification

AUTHOR: Yixian Cai

B.Eng., (Information Security Engineering)

Shanghai Jiao Tong University, Shanghai, China

SUPERVISOR: Dr. Karakostas, Dr. Wassyng

NUMBER OF PAGES: x, 120

ii

This thesis is dedicated to my parents.

Abstract

In our setting, verification is a process that checks whether a device’s program (im-

plementation) has been produced according to its corresponding requirements speci-

fication. Ideally a client builds the requirements specification of a program and asks a

developer to produce the actual program according to the requirements specification

it provides. After the program is built, a verifier is asked to verify the program. How-

ever, nowadays verification methods usually require good knowledge of the program

to be verified and thus sensitive information about the program itself can be easily

leaked during the process.

In this thesis, we come up with the notion of secure and trusted verification which

allows the developer to hide non-disclosed information about the program from the

verifier during the verification process and a third party to check the correctness of the

verification result. Moreover, we formally study the mutual trust between the verifier

and the developer and define the above notion in the context of both an honest and

a malicious developer.

Besides, we implement the notion above both in the setting of an honest and

a malicious developer using cryptographic primitives and tabular expressions. Our

construction allows the developer to hide the modules of a program and the verifier to

do some-what white box verification. The security properties of the implementation

iv

are also formally discussed and strong security results are proved to be achieved.

v

Acknowledgements

I would like to express my deepest appreciation to my supervisors, Dr. Karakostas

and Dr. Wassyng. Without them offering me the opportunity, I would never have

been able to be here and do research in this area. They really helped me a lot with

my research and without them this thesis would not be possible. They are really

great supervisors. They inspired me a lot and I learned a lot from them.

Moreover, I would like to thank the authors of the papers I read and cited in the

thesis. Especially I need to thank Dr. Goldwasser and the other co-authors of the

paper ”Reusable Garbled Circuits and Succinct Functional Encryption”. From their

papers I learned a lot about cryptography and computational theory.

I also need to thank my friends who spiritually supported me during these two

years when I felt lonely and homesick. Without them, these two years will not be as

colourful as it is.

Finally, I thank my parents for supporting me to go abroad and coming to see me

last summer. Their support is really important to me.

vi

Notation and abbreviations

FHE, fully homomorphic encryption

hpk, the public key of FHE

hsk, the secret key of FHE

SE, private key encryption

sk, private key of SE

G, a normal table graph

TS, the set of the tables in G

PTi, the ith table in TS

G′, an encrypted table graph of G

PT ′i , the encrypted table of PTi

U, a universal circuit

vii

Contents

Abstract iv

Acknowledgements vi

Notation and abbreviations vii

1 Introduction 1

1.1 Motivation . 1

1.2 Previous Work . 4

1.3 Our contribution . 7

1.4 Organization . 8

2 Preliminaries 10

2.1 Tables . 10

2.2 Table graphs . 11

2.2.1 Initial table graph . 11

2.2.2 The table graph in our construction 13

2.2.3 The structure graph of a table graph 16

2.3 The verifier and the verification algorithm 17

viii

2.4 Notations and definitions . 21

2.5 Fully homomorphic encryption . 23

2.6 Bit commitment protocols . 26

3 Secure and Trusted Verification for Honest Developers 30

3.1 Secure and Trusted Verification for honest developers 30

3.2 Our construction . 36

3.2.1 Problem description . 36

3.2.2 Technique outline . 38

3.2.3 Construction . 43

3.2.4 An example of applying condition/decision coverage verification

to our construction . 47

3.2.5 Proof of the implementation correctness and security 51

4 Secure and Trusted Verification for Malicious Developers 76

4.1 Secure and trusted verification for malicious developers 76

4.2 Our implementation with malicious developers 82

4.2.1 Technique outline . 82

4.2.2 Construction . 89

4.2.3 Proof of the implementation correctness and security 92

5 Conclusion and Future Work 112

5.1 Conclusion . 112

5.2 Future work . 113

5.2.1 Improving efficiency . 113

5.2.2 Hiding the graph structure . 115

ix

List of Figures

2.1 A table with input x . 11

2.2 An initial table graph G . 13

2.3 A table graph G . 15

2.4 The structure graph Gstruc of table graph G 16

2.5 The protocol of Naor’s construction (Naor, 1991) 29

3.1 The protocol of V S in Definition 16 34

3.2 The protocol of V S in our implementation 46

3.3 An initial table graph G of an implementation 47

3.4 An encrypted table graph G′ after applying V S to G 49

4.1 The protocol of V S in Definition 20 81

4.2 An example of the evaluation of table graph G and G′ 83

4.3 The protocol of V S in our implementation 91

x

Chapter 1

Introduction

1.1 Motivation

Verification is a process that checks whether a program has been produced according

to its corresponding requirements specification (the program can either be a software

program or a hardware device’s design documentation). Nowadays verification meth-

ods usually require good knowledge of the program to be tested and thus sensitive

information about the program itself can easily leak during the process. For instance,

in white box testing the code of the program to be tested is required, which leaks

everything about the program. Even in black box testing where the verifier has the

program only in the form of an executable, partial information about the program

itself can still leak. If the developer of the program is the one who provides the

program’s requirements specification and also the one who verifies whether the pro-

gram behaves as expected, then it does not need to hide the content of the program.

However, in most practical cases, the developer (DV) of the program, the verifier

(V), and the client (CL) who provides the program requirements specification are

1

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

not the same entity. The common scenario can be described as follows. CL builds

the requirements specification of a program and asks another party (DV) to produce

the actual program according to the requirements specification it provides. After the

program is built, CL asks a third party (V) to verify the program against its require-

ments specification, or verifies it himself. The reasons that DV can not play the role

of V are manifold. Firstly, CL may not trust DV and needs to verify whether DV

has built the program correctly. Secondly, introducing a third party to verify the

program may reduce the errors in the verification itself. In the above scenarios, if

DV just gives the program code unprotected to V , V knows everything about the

program easily. Hence if V is malicious, it can steal the intellectual property of DV

related to this program. We need to point out here that protecting information of the

program from leaking to the verifier is vital in many real life applications, despite the

fact that nowadays open-source software is becoming more and more popular (and

perhaps will become the mainstream one day). A typical example would be as fol-

lows: Car manufacturer A wants to buy car manufacturer B’s automotive navigation

system (which is B’s intellectual property). Before A buys the system, A wants to

verify whether the system is built according to its requirements specification. In such

a scenario, if B gives the system to A or any third-party verifier without any special

protection method, B risks leaking the system to A which may cost millions of dollars

of economic loss.

On the other hand, V needs to know the program in detail in order to correctly

verify the program. Therefore, if DV needs certain pieces of information about the

program to be non-disclosed (which we call ”non-disclosed information”) during the

verification of V , then the common scenario above is not applicable. Non-disclosed

2

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

information in real life application can be the code of the program, or a particular

module of the program.

Moreover, suppose there is a class of verification schemes that solves the above

problem. Then these verification schemes still may lead to other problems regarding

mutual trust between V and DV . Since these schemes prevent the non-disclosed

information of the program from leaking to V , DV may probably somehow use this

property to deceive V into believing that it does the verification correctly (even if the

program will not pass V ’s verification in white-box verification). When DV is honest,

this is not a problem. However, if DV is malicious, these verification schemes need

to provide a mechanism to allow V to check whether it actually does the verification

correctly (and if DV is honest).

Speaking of malicious activities, V can also be malicious. One scenario is that

V does not verify correctly by making mistakes in the evaluation of the program

(on purpose or unintentionally). Another scenario is that V attacks the verification

scheme to figure out non-disclosed information about the program that DV hides.

Hence verification schemes also need to take into consideration potential malicious

activities on V ’s side.

Additionally, suppose the client asks V to verify DV ’s program and there is a

way to ensure that DV and V are both honest. However, how can CL know whether

V and DV collude during the verification to deceive him? In other words, CL also

needs to be able to check the correctness of the verification. Broadly speaking, any

third party should be able to check the correctness of the verification.

In conclusion, a secure and trusted verification scheme should not only protect

the non-disclosed information of the program from leaking to V while allowing V

3

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

to correctly conduct the verification, but also provide a method for V and DV to

trust each other (if both parties are honest) or help them discover the other party’s

malicious activities (if at least one party is malicious). Besides, the verification scheme

should be publicly checkable, in order to provide a way to allow any third party to

check the correctness of the verification process.

1.2 Previous Work

The most typical type of information that a developer wants to be non-disclosed is

the content (code) of the program. This is also the focus of our work. In terms of

protecting the content of a program , there is plenty of work that has already been

done. One important concept is obfuscation. An obfuscated program is supposed to

have the same functionality as the original program, but it reveals no information

about the original program, other than what can be figured out by having black-

box access to the original program. In this area, there are already plenty of heuristic

obfuscation algorithms. General methods about how the code of a program should be

obfuscated are also widely studied, e.g., in (Collberg et al., 1997) and (Wang et al.,

2000). All these methods provide important guidance on achieving good obfuscation.

However, according to (Barak et al., 2001), an obfuscation algorithm that strictly

satisfies the definition of obfuscation does not exist. Hence, all obfuscation algorithms

can only achieve obfuscation to the extent of making obfuscated programs hard to

reverse-engineer, while non black-box information about the original program cannot

be guaranteed to be completely secret.

Though ideal obfuscation is impossible to achieve, there are still some other cryp-

tographic primitives that can be used to protect the content of a program. One is

4

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

point function obfuscation (Lynn et al., 2004). This paper shows that obfuscation of

a point function is totally possible, where a point function is a function that outputs

1 for one specific value as input and outputs 0 otherwise. This obfuscation scheme

is useful when it comes to protecting sensitive data in a program. But it does not

support obfuscation of arbitrary functions.

Another relevant cryptographic primitive is Yao’s garbled circuit (Yao, 1982). It

requires encoding of an arbitrary circuit C and its input x. Evaluation of the encoded

(garbled) circuit will generate C(x) without leaking any information about C or x

other than C(x). Yao’s garbled circuit scheme achieves nearly what obfuscation does

in terms of one-time usage, and is the foundation of works like one-time program

(Goldwasser et al., 2008). Its problem is that the garbled circuit can only be run

once. Many-time evaluation on the same garbled circuit would compromise the se-

curity of the garbled circuit. Recently, Goldwasser et al. (Goldwasser et al., 2013)

proposed a new garbled circuit scheme called reusable garbled circuit, which allows

many-time usage on the same garbled circuit and fully satisfies the security property

of Yao’s garbled circuit. In the same paper, Goldwasser et al. proposed the notion

of token-based obfuscation which is based on reusable garbled circuits. Token-based

obfuscation allows a user to run the token-based obfuscated program himself. He

can also freely choose any input as it likes. The difference between this obfuscation

and the obfuscation definition in (Barak et al., 2001) is that this obfuscation needs

the user to ask the developer who obfuscates the program to encode the input before

the user uses it. Token-based obfuscation guarantees that only black-box information

about the original program can be figured out from the obfuscated program. Thus

it is an ideal tool to protect the content of a program. The only problem about this

5

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

scheme is that when a program is token-based obfuscated, it becomes a black-box to

the user (due to the inherent nature of obfuscation), and thus makes white-box verifi-

cation hard to implement. Both token-based obfuscation and reusable garbled circuit

include the use of fully homomorphic encryption (FHE), which is a very powerful en-

cryption concept that allows computation over encrypted data. Gentry came up with

the first FHE scheme in 2009 (Gentry, 2009). FHE is also used in our construction.

On the other hand, plenty of work has been done in the field of verifiable computing

which is also relevant to our work. Verifiable computing allows the prover to generate

verifiable results of the computation of a function. A verifier (this is not the verifier in

our setting) can then verify whether the computation is done correctly according to

the verifiable results. A naive solution is to ask the verifier to repeat the computation

of the function. However, in many occasions this solution is both inefficient and

incorrect. Recently, works like (Cormode et al., 2012), (Thaler et al., 2012), (Vu

et al., 2013), (Setty et al., 2012a), (Setty et al., 2012b), (Parno et al., 2013), (Ben-

Sasson et al., 2013) which are based on the PCP theorem (Arora and Safra, 1998)

implemented systems that allow the verifier to verify the computation result without

reexecuting the function. The difference between verifiable computing and our work

is that one important goal of our work is to hide the content of a program, while for

verifiable computing, the program that needs to be computed is not hidden. So it

can not be directly applied to our work. However, verifiable computing is relevant

to our work and has the potential to be applied to the implementation of secure and

trusted verification (see Section 5.2.1).

6

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

1.3 Our contribution

Our contribution is threefold. Firstly, we give definitions regarding the notion of

secure and trusted verification (STV). Our definitions generalize the problem of pro-

tecting non-disclosed information of a program from leaking to the verifier while

allowing him to correctly verify the program. Furthermore, our definitions describe

the above problem both in the context of an honest and a malicious developer. More-

over we add the concept of third-party verification to our verification definitions. In

our definitions any third party should also be able to check whether the verifier does

the verification correctly and whether the developer is honest.

Secondly, we come up with an implementation of STV. In our implementation, a

program to be verified is regarded as a directed graph of the modules of the program

connected with each other. During the execution of the program, the modules will

output information and receive other modules’ information according to the graph.

The non-disclosed information in our implementation is the code of the modules

and the outputs of the modules that do not belong to the output of the program

(the output of the program is considered as public knowledge). Our implementation

guarantees that the non-disclosed information will not leak to the verifier even if the

verifier is malicious. Moreover, our implementation allows the verifier to verify the

program correctly regardless of whether the developer is honest or malicious. Besides,

our implementation is third-party checkable, which means that any third party can

check if the verifier does the verification correctly and if the developer is honest.

Our construction is based on the fully homomorphic encryption (FHE) mentioned in

section 1.2 and the bit commitment protocol (Naor, 1991). By using FHE we solve

the problem of protecting non-disclosed information and by using bit commitment

7

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

protocol we prevent the developer from being malicious.

Thirdly, we introduce the use of tabular expressions in our implementation of STV.

We propose the idea of using tabular expressions in (Wassyng and Janicki, 2003) to

represent the program specifics. The final program given to the verifier will be in

the form of a graph of encrypted tabular expressions, where the tabular expressions

describe the modules of the program. By adopting this idea, the branch structure and

data flow of the program will be exposed to the verifier, while the program specifics

and the intermediate inputs and outputs of the tabular expressions are protected.

Hence at least some extent of white-box verification of the program is feasible.

Below we list the important assumptions we make. Our implementations’ cor-

rectness and security properties in Chapter 3 and 4 are based on these assumptions.

These assumptions will be explained later when used.

Assumption 1. The table graph of a program is a directed acyclic graph.

Assumption 2. Given the table graph G of a program, the input domain and output

range of G are the same as the input domain and output range of the corresponding

program’s requirements specification Fspec.

Assumption 3. For any path of a table graph, there is at least one external input

to the table graph such that evaluating the table graph with this external input will

include evaluating the path.

1.4 Organization

In Chapter 2 we give some basics about FHE, tabular expressions and introduce

the definitions of some cryptographic primitives which are the foundation of our

8

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

construction. The format of tabular expressions of a program will also be discussed

in detail.

In Chapter 3 we give the definition of STV in the setting of an honest developer.

We also explain our construction of this verification scheme in this chapter and give a

proof to show the construction satisfies the definition. This chapter mainly discusses

the problem of how to hide the content of a program.

In Chapter 4 we give the definition of STV in the setting of a malicious developer.

We also explain our construction of this verification scheme in this chapter and give a

proof to show the construction satisfies the definition. This chapter mainly discusses

how to detect potential malicious activities of the developer.

In Chapter 5 we discuss some problems open for future study.

9

Chapter 2

Preliminaries

2.1 Tables

Tables (tabular expressions) are used for the documentation of software programs.

The concept was first introduced by David Parnas in the 1970s (Alspaugh et al.,

1992). Since then the semantics and syntax of tables have been widely discussed and

various types of tables were developed. The tables we use are from (Wassyng and

Janicki, 2003), which are already used in some critical software development and have

relative simple syntax and semantics. Figure 2.1 is an example of such a table.

In Figure 2.1 we can see that a table is divided into two columns: the left hand side

(lhs) Condition column and the right hand side (rhs) Result column. The conditions

in the lhs column are predicates while the contents in the rhs column are functions

(constant values are regarded as zero-arity functions). If a predicate pi(x) is satisfied

by an input x, then fi(x) will be the output of the table. Besides, the conditions

have disjointness and completeness properties: p1(x) ∨ p2(x) ∨ ... ∨ pn(x) = True;

pi(x)∧ pj(x) = FALSE,∀i, j ∈ [n]. Hence a table can be used to represent a module

10

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Figure 2.1: A table with input x

of a program and with different tables connecting to each other we can document a

complete program in the form of tables.

2.2 Table graphs

2.2.1 Initial table graph

In our construction in Chapter 3 and 4 we assume that we have the program in

the form of tables connecting to each other where the tables are the modules of the

program. We call the resulting graph with the vertices being the tables as a table

graph. The details of how to transform a program to a table graph is beyond the

scope of this thesis.

First we give our notations of concepts related to a table. A table with n rows

is denoted as T = (r1, r2, ...rn), where for any j ∈ {1, ..., n}, rj = (pj, fj) is the jth

row of T , with pj being the lhs predicate of rj and fj being the rhs function of rj.

11

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Suppose x is the input to T . Then T (x), the output of T , is defined as follows: if for

a row rj = (pj, fj) of T , pj(x) = 1 (the predicate pj is satisfied by the input x), then

T (x) = fj(x).

A table graph G = (V , E) is a directed acyclic graph. (According to Assumption

1, we only consider the case where a table graph has no cycles or self loops.) There

are two special nodes S and R in V . S represents the external inputs to the program

and R represents the outputs of the program. RS = V − {R, S} is the set of rows

and every vertex in RS is a row of a table. We denote RS = {r1, ..., rl}, assuming

there are l rows in total. The reason that a vertex in a table graph is not a table

but a row can be illustrated with the example in Figure 2.2. In Figure 2.2 we can

see that the first three rows of PT1 point to rows of table PT2. But the fourth row

of PT1 points to the output vertex R. This situation cannot be represented by using

tables as vertices. In this example vertices are the rows of the tables. Some rows in

the figure are put together to show that they come from the same table. Essentially

in a table graph the rows of a table do not need to be put together like in this figure.

For any edge e = (ui, uj), e ∈ E , ui, uj ∈ V is defined as follows:

(1) if ui = ri and uj = rj, ri, rj ∈ RS, then e indicates that the output of ri belongs

to the inputs of rj.

(2) If ui = S and uj = Tj, rj ∈ RS, then e indicates that the input of rj has external

inputs.

(3) If ui = ri and uj = R, ri ∈ RS, then e indicates that ri’s output is an external

output.

12

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Figure 2.2: An initial table graph G

2.2.2 The table graph in our construction

For our construction in Chapter 3 and 4 to work, we need a transformation of the

table graph introduced above. The transformation is to split every table in the initial

table graph into smaller tables, where each smaller table is a row of the original table.

This would give us a table graph of better granularity while preserving original table

graph functionality. To transform a row in the initial table graph to an independent

table, we put ”True” on the lhs of the table so that the rhs function will always be

evaluated. The rhs function of the new table will be a piecewise function that has

the same functionality as the rhs function of the row when the predicate on the lhs

of the row is satisfied by the input. The rhs function of the new table will output a

special symbol ⊥ if the predicate on lhs of the row is not satisfied. Besides, it will

output a special symbol > if the predicate on lhs of the row is satisfied.

We denote the table graph after the transformation as G = (V,E). The definition

of G is given below:

Definition 1. For an initial table graph G = (V , E), the corresponding table graph

13

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

G = (V,E) after the transformation is as follows:

(1) V has two special nodes S,R which are the same as the S,R in V. We denote

TS to be the table set of G. TS = V − {S,R}.

(2) Suppose the input x of any row ri ∈ RS is (x1, x2, ..., xs), where xi is one of the

inputs that corresponds to an incoming edge of ri. Then we define Fi as follows:

Fi’s input wi = (wi
1, ..., w

i
s), where for any wi

j, w
i
j = (>, xj).

Fi((w
i
1, ..., w

i
s)) = (>, ri(x)), if pi(x) = 1; Fi((w

i
1, ..., w

i
s)) = (⊥,⊥), if pi(x) = 0.

If any wi
j = (⊥,⊥), Fi((w

i
1, ..., w

i
s)) = (⊥,⊥). (> and ⊥ are special symbols

to indicate whether the predicate pij is satisfied by x. They are not boolean val-

ues ”True” and ”False”.) Moreover, we construct PTi ∈ TS such that PTi =

(True, Fi). Thus TS = {PT1, PT2, ..., PTn}.

(3) We require that for any table PTi ∈ TS, if the first parameter of its output is

⊥, then this output should not be used as an input to the subsequent tables which

PTi has an edge pointing to.

(4) For any edge e = (ui, uj), e ∈ E, ui, uj ∈ V

1 if ui = ri and uj = rj, ri, rj ∈ RS, then for the corresponding two tables

PTi, PTj ∈ TS generated from ri and rj according to step (2), (PTi, PTj) ∈ E.

2 if ui = S and uj = rj, rj ∈ RS, then for the corresponding table PTj ∈ TS

generated from rj according to step (2), (S, PTj) ∈ E.

3 if ui = ri and uj = R, ri ∈ RS, then for the corresponding table PTi ∈ TS

generated from ri according to step (2), (PTi, R) ∈ E.

14

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Figure 2.3 is an example which is the transformation result of Figure 2.2. In this

example every vertex is a table (PTi = (True, Fi), i ∈ {1, ..., 8}). In Definition 1(2),

Fi(x) always outputs two values, either (>, ri(x)) or (⊥,⊥). By that we mean each

of the two values take half of the total output’s length. The reason of adding >,⊥ to

Fi ’s output will be explained in Chapter 4.

Figure 2.3: A table graph G

From now on when we mention a table graph, we refer to the table graph intro-

duced in Definition 1. For a table graph G, we define an external input to be an input

that comes directly from S and an external output to be an output that goes directly

to R. An intermediate input is an input that comes from the output of another table

and an intermediate output is an output that is an input to another table.

15

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

2.2.3 The structure graph of a table graph

The vertices of a table graph are not meaningless nodes but tables which represent

details of a program. In our setting we can only know the relations between the

vertices of a table graph, and not the vertices’ content because the developer does

not want to reveal it. Hence we need a new type of graph to describe the relations

between the vertices of a table graph G, which we call the structure graph Gstruc of the

table graph G. Figure 2.4 is a structure graph of the table graph in Figure 2.3 where

the connections between vertexes 1-8 show the connections between PT1, ..., PT8 in

Figure 2.3.

Figure 2.4: The structure graph Gstruc of table graph G

Definition 2. A structure graph Gstruc = (Vstruc, Estruc) of the table graph G = (V,E)

is defined as follows:

16

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

(1) Vstruc has two special nodes S,R which are the same as S,R in V .

(2) For any vertex PTi ∈ TS = V −{S,R}, there is a corresponding vertex ui ∈ Vstruc

which is just an empty node.

(3) For any edge e = (vi, vj), e ∈ E, vi, vj ∈ V

1) If vi = PTi and vj = PTj, then for the two corresponding vertices ui, uj ∈

Vstruc, (ui, uj) ∈ Estruc.

2) If vi = S and vj = PTj, then for the corresponding two vertices S, uj ∈ Vstruc,

(S, uj) ∈ Estruc.

3) If vi = PTi and vj = R, then for the two corresponding vertices ui, R ∈ Vstruc,

(ui, R) ∈ Estruc.

Now that we have defined table graph G and its structure graph Gstruc, we are

going to give a notation related to the table graph. First we denote the operation

”[]” as follows:

G = [TS,Gstruc]

Operation ”[]” replaces the empty vertexes in Gstruc with the corresponding tables

in TS and thus reconstructs G from TS and Gstruc. This operation shows that G

consists of two non-overlapping parts which are TS and Gstruc.

2.3 The verifier and the verification algorithm

We denote the function Fspec to represent a program’s requirements specification,

which documents the intended behaviours of the program. Fspec has its input domain,

17

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

which we denote as Dspec, and its output range, which we denote as Rspec. We denote

X = {x1, ..., xt} as Fspec’s set of input variables. Consequently, Dspec is a multi-

dimensional set such that Dspec = {D1, ..., Dt}, where Di ∈ Dspec is the domain of

input xi. Similarly, we denote by Y = {y1, ..., ys} Fspec’s set of output variables, and

by Rspec = {R1, ..., Rs}, where Ri is the range of yi, the set of ranges of outputs Y .

Besides, the corresponding program’s table graph G also has its input domain D

and output range R. Because the program is an implementation of the requirements

specification Fspec, for simplicity, we assume D = Dspec, R = Rspec (see Assumption

2). (Although in reality, the two pairs (D, R) and (Dspec, Rspec) may not be the

same. The developer may for some reason produce a program that has a different

input domain other than the input domain of Fspec. Nevertheless, in this case there

must be a predetermined mapping provided by the developer to convert (Dspec, Rspec)

to (D, R) and same vice versa.)

Below we define the level of a table in G that will be used later in the thesis.

Definition 3. For a table graph G, the level of a table is defined inductively as follows:

(1) An external input to a table can be regarded as the output of a virtual level 0 table.

(2) A level k (k > 0) table is a table such that it has at least one incoming edge that

is from a level k − 1 table and no incoming edge comes from a table whose level

is larger than level k -1.

The input to a level k (k > 0) table PTi in G is xi = (xi1, ..., x
i
s), where xij ∈ xi

denotes an input variable which corresponds to an incoming edge from a table before

level k. The output variable of PTi is yi = PTi(x
i)(= Fi(x

i)). For any xij ∈ xi, if no

value is assigned to xij, x
i
j’s value is null. The evaluation of a single table PTi with its

18

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

input xi is the computation of yi = PTi(x
i)(= Fi(x

i)). If PTi is not evaluated, then

we regard the output of PTi as null. (A level k (k > 0) table also can be regarded as

a table such that among all its paths starting from a level 0 table, the longest path

is of length k.)

Given an external input X to the graph G, the evaluation of G, which is denoted

as G(X), is described below.

Definition 4. The evaluation of a table graph G with an external input X, is

defined below:

(1) The evaluation of G must evaluate the tables in G in the order of a topological

order TSO = (PTs1 , ..., PTsn) of G such that PTs1 is a source and PTsn is a sink.

(2) Suppose PTi1 , ..., PTis are the tables that have external outputs. Then their out-

puts belong to the external output of G. Namely, after finishing evaluation of

every table in the order of TSO, G(X) = {yi1 , ..., yis}, where {yi1 , ..., yis} are the

outputs of PTi1 , ..., PTis.

Definition 5 (Consistency). When evaluating a level k table PTi with its input xi,

for any xij ∈ xi, xij’s value can only be the output of another level o (o < k) table

where there is an outgoing edge from that table to PTi. If xij is (⊥,⊥) or if xij is null,

then we skip evaluating PTi and regard the output of PTi as null.

Remark 1. Definition 5 follows Definition 4. Besides, our definitions and imple-

mentations of secure and trusted and verification do not require the verifier to be

consistent.

We split the verification process into two parts. One part is to analyse the table

19

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

graph G with a verification method V GA (Verification test case Generation Algo-

rithm), and to generate a set of external inputs. The second part is to use the

external inputs to evaluate the table graph, and compare the outputs of G to the

outputs of Fspec. If they all match, then the table graph G behaves as expected with

the external inputs, which means that G passes the verification by V GA.

In our setting V GA is an algorithm that takes Gstruc, Fspec as input and outputs

information that guides the verification such as a set of external inputs to the table

graph G or certain paths of G. Here we point out that the output of V GA is not

necessarily the external inputs. The reason is related to our construction in chapter

3 and 4. In our construction we give as much freedom to the verifier as we can.

(By freedom we mean the choice of V GA.) Some V GA may not be able to directly

generate external inputs by analysing a encrypted version of G (after applying our

verification scheme to G.) But these V GA can generate instead information which

provides guidance as how to generate the external inputs, such as pointing out the

paths of the graph which these V GA want to evaluate. After processing this infor-

mation (and interact with the developer using a protocol of the verification scheme),

the verifier can convert it into a set of external inputs.

On the other hand, the developer may also want the verifier to verify the behaviour

of the table graph G (or a subgraph of G which can be a module of a program) with

particular external input values and expected outputs given by the developer, which

we denote as the critical point set CP .

Definition 6. For any CPi ∈ CP , CPi is a pair (X, Y), where X is an external

input to a subgraph of G which we denote as GX and Y is the external output of GX .

GX can be determined by X as the following:

20

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

(1) Suppose X = (x1, ..., xp). Then for any table PTti ∈ G, if the input to PTti

consists of only external inputs xi1 , ..., xiq ∈ X, put PTti into a set S.

(2) For this subgraph, we define the tables in S as positive tables. The rest tables in

G are initially labelled as negative tables. Then we relabel the negative tables of

G in a topological order to find the vertices of the subgraph GX . We set a negative

table’s label to positive if all of its incoming edges are from positive tables. After

trying to relabel all the negative tables, GX consists of all the positive tables in

G.

Definition 7 (Verifier and the verification algorithm). A verifier V is a polynomial-

time algorithm such that

V (1K , G, Fspec, CP, V GA) =


0 ,∃X ∈ EI: G(X) 6= Fspec(X) or

∃CPi = (X, Y) ∈ CP : GX(X) 6= Y ,

1 , otherwise,

where EI is generated by V , EI ⊆ D. (If G is unencrypted, V does not need to

interact with the verifier.)

2.4 Notations and definitions

Below are some basic widely-known cryptography notations and definitions that are

referred to throughout the rest of the thesis. We denote negl(K) to be the negligible

function with an input parameter K ∈ N such that for all c > 0, there exists N such

that for all K > N , negl(K) < K−c. The notation p.p.t. is the abbreviation for prob-

abilistic polynomial-time turing machine. We say that two ensembles {XK}K∈N and

{YK}K∈N, where XK , YK are probability distributions over {0, 1}l(K) for a polynomial

21

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

l(·), are computationally indistinguishable if for every p.p.t. algorithm D,

|Pr[D(XK , 1
K) = 1]− Pr[D(YK , 1

K) = 1]| ≤ negl(K).

If {XK}K∈N and {YK}K∈N are computationally indistinguishable, we also denote them

as {XK}K∈N ≈ {YK}K∈N (We use the definitions of negligible function and compu-

tational indistinguishability in (Goldwasser et al., 2013) with some adaptations).

Below we give the definition of a deterministic private key encryption (symmetric key

encryption) scheme from (Katz and Lindell, 2014) with some adaptations.

Definition 8 (Private key encryption scheme). A private key enryption scheme SE

is a tuple of three polynomial-time algorithms (SE.KeyGen, SE.Enc, SE.Dec) as

follows:

(1) The key generation algorithm SE.KeyGen is a probabilistic algorithm that takes

the security parameter K as input and outputs a key sk from the key space K =

{0, 1}K.

(2) The encryption algorithm SE.Enc is a deterministic algorithm that takes a key

sk and a plaintext M from the message space M = {0, 1}m(K), m(K) > K as

input and outputs a ciphertext C. Namely, C = SE.Enc(sk,M).

(3) The decryption algorithm SE.Dec is a deterministic algorithm that takes as input

a key sk and a ciphertext C and outputs the corresponding plaintext M . Namely,

M = SE.Dec(sk, C).

Message indistinguishability requires that an adversary must not be able to dis-

tinguish two ciphertexts even if it chooses the plaintexts of these two pieces of cipher-

texts. Below we give the definition:

22

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Definition 9 (Single message indistinguishability). A private key encryption scheme

SE = (SE.KeyGen, SE.Enc, SE.Dec) is single message indistinguishable if for any

security parameter K, for any two messages M,M ′ ∈M, and for any p.p.t. adversary

A,

|Pr[A(1K , SE.Enc(k,M)) = 1]− Pr[A(1K , SE.Enc(k,M ′)) = 1]| ≤ negl(K)

where the probabilities are taken over k ← SE.KeyGen(1K) and the coin tosses of A.

The private key encryption scheme SE we use in our construction in Chapter 4

satisfies Definition 8 and Definition 9. An example of such a private key encryption

would be a block cipher such as Data Encryption Standard (DES) (Standard, 1977).

2.5 Fully homomorphic encryption

In this section we introduce a powerful cryptographic primitive that we need in our

construction of content-secure verification scheme in Chapter 3 and 4, the fully ho-

momorphic encryption scheme.

The following definitions are from (Goldwasser et al., 2013), and are based

on (Vaikuntanathan, 2011) with some adaptations.

Definition 10 (Homomorphic encryption). A homomorphic (public-key) encryption

scheme HE is a quadruple of polynomial time algorithms (HE.KeyGen,HE.Enc,

HE.Dec,HE.Eval):

(1) HE.KeyGen(1K) is a probabilistic algorithm that takes as input the security pa-

rameter 1K and outputs a public key hpk and a secret key hsk.

23

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

(2) HE.Enc(hpk, x ∈ {0, 1}) is a probabilistic algorithm that takes as input the public

key hpk and an input bit x and outputs a ciphertext φ.

(3) HE.Dec(hsk, φ) is a deterministic algorithm that takes as input the secret key

hsk and a ciphertext φ and outputs a message x′ ∈ {0, 1}.

(4) HE.Eval(hpk, C, φ1, ..., φn) is a deterministic algorithm that takes as input the

public key hpk, a circuit C that takes n bits as input and outputs one bit, as well

as n ciphertexts φ1, ..., φn. It outputs a ciphertext φC.

Compactness: For all security parameters K, there exists a polynomial p(·) such

that for all input sizes n, for all x1, ..., xn and C, the output length of HE.Eval is at

most p(n) bits long.

Definition 11. Let C = {Cn}n∈N be a class of boolean circuits, where Cn is a set of

boolean circuits taking n bits as input. A scheme HE is C-homomorphic if for every

polynomial n, sufficiently large K, C ∈ Cn, and for every input bit sequence x1, ..., xn,

where n=n(K),

Pr



(hpk, hsk)← HE.KeyGen(1K);

φi ← HE.Enc(hpk, xi) for i = 1, ..., n;

φ← HE.Eval(hpk, C, φ1, ..., φn) :

HE.Dec(hsk, φ) 6= C(x1, ..., xn)


≤ negl(K) (2.1)

where the probability is over the coin tosses of HE.KeyGen and HE.Enc.

Definition 12. A scheme HE is fully homomorphic if it is homomorphic for the

class of all arithmetic circuits over GF(2).

24

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Definition 13. A scheme HE is IND-CPA secure if for any p.p.t. adversary A,

|Pr[(hpk, hsk)← HE.KeyGen(1K) : A(hpk,HE.Enc(hpk, 0)) = 1]−

Pr[(hpk, hsk)← HE.HeyGen(1K) : A(hpk,HE.Enc(hpk, 1)) = 1]| ≤ negl(K).

The following notion and Definition 14 of multi-hop homomorphism are from

(Gentry et al., 2010). Multi-hop homomorphism is about using the output of one

homomorphic evaluation as an input for another homomorphic evaluation. Not all

homomorphic encryption schemes support this property inherently.

An ordered sequence of functions ~f = {f1, ..., ft} is compatible if the output

length of fj is the same as the input length of fj+1 for all j. The composed func-

tion ft(...f2(f1(·))...) is denoted as (ft ◦ ... ◦ f1)(x). An extended procedure Eval∗ is

defined as follows: Eval∗ takes as input the public key PK, a compatible sequence

~f = {f1, ..., ft}, and a ciphertext c0. For i = 1, 2, ..., t, it sets ci ← Eval(PK, fi, ci−1),

outputting the last ciphertext ct.

Definition 14. Let i = i(K) be a function of the security paramenter. A scheme

HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) is an i-hop homomorphic en-

cryption scheme if for every compatible sequence ~f = {f1, ..., ft} with t ≤ i functions,

every input x to f1, every (hpk, hsk) in the support of HE.KeyGen, and every c in

the support of HE.Enc(hpk, x),

HE.Dec(hsk,Eval∗(hpk, ~f, c)) = (ft ◦ ... ◦ f1)(x)

We say that HE is a multi-hop homomorphic encryption scheme if it is i-hop for

any polynomial i.

25

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

From (Gentry et al., 2010) (Vaikuntanathan, 2011) we know that multi-hop eval-

uation issues are trivialized for fully homomorphic encryption schemes. Also, we

require the fully homomorphic encryption scheme FHE used in our construction in

Chapter 3 and 4 to satisfy IND-CPA security in Definition 13.

Fully homomorphic encryption has been only a concept for a long time. But re-

cently some concrete implementations of fully homomorphic encryption have been

invented. An example is Gentry’s first FHE implementation in the breakthrough

paper (Gentry, 2009). In this thesis we do not specify what kind of FHE implemen-

tation we use. Any FHE scheme can be applied to our construction in Chapter 3 and

4.

For simplicity, we sometimes denote FHE.Enc(hpk, x) as FHE.Enc(x) when we

do not care about the public key hpk. Moreover, when x = x1...xm is a m bit string

and m > 0, we use FHE.Enc(x) to denote FHE.Enc(x1)...FHE.Enc(xm). This

applies to FHE.Dec as well.

Similarly, for FHE.Eval with a circuit C as its input such that C outputs m bits,

sometimes we use FHE.Eval(hpk, C, FHE.Enc(hpk, x)) to denote

FHE.Eval(hpk, C1, FHE.Enc(hpk, x))...FHE.Eval(hpk, Cm, FHE.Enc(hpk, x)),

where Ci is a circuit that outputs the ith bit of C’s output.

Also we denote by λ = λ(K) the ciphertext length of a one-bit FHE encryption.

2.6 Bit commitment protocols

Below we give the definition of the Commitment to Many Bits Protocol by Naor

(Naor, 1991) with some adaptations.

26

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Definition 15 (Commitment to Many Bits Protocol). A commitment to many bits

protocol consists of two stages

(1) The commit stage: Alice has a sequence of bits D = b1b2...bm to which she wishes

to commit to Bob. She and Bob exchanges messages. At the end of the stage Bob

has some information that represents D which is denoted as EncD.

(2) The revealing stage: Bob knows D at the end of this stage.

The protocol must obey the following: For any probabilistic polynomial time Bobs, for

all polynomials p and for large enough security parameter K

(1) For any two sequence D = b1, b2, ..., bm and D′ = b′1, b
′
2, ..., b

′
m selected by Bob,

following the commit stage Bob cannot guess whether D or D′ was committed

with probability greater than 1/2 + 1/p(K).

(2) Alice can reveal only one possible sequence of bits. If she tries to reveal a different

sequence of bits, then she is caught with probability at least 1− 1/p(K).

An example of a commitment to many bits protocol is the construction in (Naor,

1991). This protocol will be used in our construction of STV in Chapter 4 and is

given below.

Let C ⊂ {0, 1}q be a code of 2m words such that the Hamming distance between

any c1, c2 ∈ C is at least ε · q. E is an efficiently computable function such that

E : {0, 1}m → {0, 1}q for mapping words in {0, 1}m to C. It is also required that

q · log(2/(2− ε)) ≥ 3K and q/m = c, where c is a fixed constant.

G denotes a pseudo-random generator G:{0, 1}K → {0, 1}l(K), l(K) > K such that

for all p.p.t. adversary A ,

|Pr[A(y) = 1]− Pr[A(G(s)) = 1] < 1/p(K),

27

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

where the probabilities are taken over y ∈ {0, 1}l(K) and seed s ∈ {0, 1}K chosen

uniformly at random. Gk(s) denotes the first k bits of the pseudo-random sequence

on seed s ∈ {0, 1}K and Bi(s) denotes the ith bit of the pseudo-random sequence on

seed s. For a vector ~R = (r1, r2, ..., r2q) with ri ∈ {0, 1} and q indices i such that

ri = 1, G~R(s) denotes the vector ~A = (a1, a2, ..., aq) where ai = Bj(i)(s) and j(i) is

the index of the ith 1 in ~R. If e1, e2 ∈ {0, 1}q, then e1⊕ e2 denotes the bitwise Xor of

e1 and e2.

Suppose Alice commits to b1, b2, ..., bm.

Commit Stage.

(1) Bob selects a random vector ~R = (r1, r2, ..., r2q) where ri ∈ {0, 1} for 1 ≤ i ≤ 2q

and exactly q of the ri’s are 1 and sends it to Alice.

(2) Alice computes c = E(b1, b2, ..., bm). Alice selects a seed S ∈ {0, 1}n and sends

to Bob EncD which is the following: Alice sends Bob e = c⊕G~R(s) (the bitwise

Xor of G~R(s) and c), and for each 1 ≤ i ≤ 2q such that ri = 0 she sends Bi(s).

Reveal Stage.

Alice sends s and b1, b2, ..., bm. Bob verifies that for all 1 ≤ i ≤ 2q such that ri = 0

Alice had sent the correct Bi(s), computes c = E(b1, b2, ..., bm) and G~R(s) and verifies

that e = c⊕G~R(s).

We denote ~R as R, the bits b1, b2, ..., bm as D, the seed s as Cert and give below

the protocol of the above construction in Figure 2.5.

28

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Figure 2.5: The protocol of Naor’s construction (Naor, 1991)

29

Chapter 3

Secure and Trusted Verification for

Honest Developers

The secure verification we are discussing in this chapter is two-fold: In Section 3.1

we will discuss the general case of secure and trusted verification and in Section 3.2,

we will discuss our construction.

3.1 Secure and Trusted Verification for honest de-

velopers

In this section, we define a general secure and trusted verification scheme in which

we do not specify what kind of information of a program is kept secret. Instead, we

classify the information that should be kept secret from anyone except the developer

as non-disclosed (secret) information and any other information as public information

which can be known by everyone. This is because there are many different kinds of

30

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

information that may need to be kept non-disclosed, such as certain parts of the whole

implementation, or the relations between the modules of the program, or in one case

the developer may want to hide the whole program while in some other cases it may

want only to hide a module of the whole program. We want to make our definition

of secure verification given in this section as general as it can be and include all cases

above.

Moreover, apart from providing a method to hide the non-disclosed information,

the verification scheme should also allow a developer to check whether the verifier

evaluates the table graph correctly. A malicious or incompetent verifier may not only

want to figure out the non-disclosed information but also warp the outcome of the

verification. For instance, an incompetent verifier may claim that the table graph of

a program does not pass the verification by a verification method, but what actually

happens is that the verifier makes some mistakes during the evaluation of the table

graph which causes the table graph’s output to deviate from its expected output.

Therefore, it is vital to require a method for a robust verification scheme to check the

correctness of the verification done by the verifier.

Definition 16 and Figure 3.1 below describe what a secure verification scheme (V S)

should be in the general case. V S includes an encryption algorithm V S.Encrypt that

outputs a secure version G′ of a table graph G. The verifier verifies G′ instead of

G, and during the verification process, it may need to interact with the developer

to correctly verify G′. In V S, if the verifier needs to interact with the developer, it

sends a piece of information x to the developer who calls V S.Encode(x) and returns

V S.Encode(x) to the verifier. After the evaluation finishes, whoever wants to check

whether the verifier has correctly evaluated the table graph G′ can use V S.Eval

31

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

together with a piece of public information (specified by V S.Eval) to find out.

Definition 16 (Secure and trusted verification). A secure and trusted verification

scheme V S is a tuple of p.p.t. algorithms (V S.Encrypt, V S.Encode, V S.Eval) such

that

(1) V S.Encrypt(1K , G) is a p.p.t. algorithm that takes the security parameter 1K

and the table graph G as input and outputs G′.

(2) V S.Encode is a p.p.t. algorithm that takes an input x and returns an encoding

Encx.

(3) V S.Eval is a p.p.t. algorithm that takes as input (1k, Certificate) and outputs 1

or 0, where Certificate is a piece of public information. V S.Eval has a verifier

V ′ hardcoded in it. V ′ is an honest verifier that satisfies Definition 7.

and V S satisfies Definition 17 and 18 below.

Definition 17 (Correctness). If V S.Eval(1K , Certificate) = 1, then

Prr[V (1K , G, Fspec, V GAr, CP)(r) =

V (1K , G′, Fspec, V GAr, CP)(r)] ≥ 1− negl(K), (3.1)

Prr[V (1K , G′, Fspec, V GAr, CP)(r) =

V ′(1K , G′, Fspec, V GAr, CP)(r)] ≥ 1− negl(K), (3.2)

where the probabilities are over the random bits r of V .

Definition 18 (Security). For two pairs of p.p.t. algorithms A = (A1, A2) and

S = (S1, S2),

32

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

1. SI consist of any piece of information that the scheme V S wants to hide and all

the information that can be known from it.

2. The oracle O in Expideal below outputs O(x) /∈ SI, for any input x that S2 chooses.

Consider the following two experiments:

Expreal(1K):

1. (G,CP, stateA)← A1(1
K)

2. (G′, CP ′)← V S.Encrypt(1K , G, CP)

3. a← AV S.Encode
2 (G′, G, CP ′, CP, stateA)

4. Output a

Expideal(1K):

1. (G,CP, stateA)← A1(1
K)

2. (G′′, CP ′′)← S1(1
K)

3. a← A
SO
2

2 (G′′, G, CP,CP ′′, stateA)

4. Output a

V S is secure if there exist a pair of p.p.t. simulators S = (S1, S2) and an oracle

O such that for all pairs of p.p.t. adversaries A = (A1, A2), the following is true:

33

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

∀ p.p.t. algorithm D,

|Pr[D(Expideal(1K)K∈N, 1
K) = 1]− Pr[D(Expreal(1K)K∈N, 1

K) = 1]| ≤ negl(K)

Figure 3.1: The protocol of V S in Definition 16

Remark 2. In Step 3 of Expreal in Definition 18, V S.Encode is not an oracle of

A2. A2 plays the role of a malicious verifier and A2 interacts with the developer just

like in Figure 3.1. A2 asks the developer to run V S.Encode with an input it chooses.

Similarly, in Step 3 of Expideal in Definition 18, SO
2 is also not an oracle of A2. A2

plays the role of a malicious verifier and A2 interacts with the developer, who unlike

in Expreal, runs SO
2 instead of V S.Encode. Whenever we say A2 queries V S.Encode

or A2 queries SO
2 , we mean A2 asks the developer to run V S.Encode or SO

2 .

Remark 3. In Figure 3.1, the questions asked by the verifier and the answers replied

by the developer are considered public knowledge known to everyone.

Remark 4. In Definition 16, the input of S1 is the security parameter 1K, plus any

public information that S1 needs to know.

34

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Remark 5. The idea to use experiments such as Expreal and Expideal is from (Gold-

wasser et al., 2013).

Definition 19. An honest developer is a developer that calls V S.Encode(x) to gen-

erate Encx in Figure 3.1 for the x the verifier chooses.

The definition above uses an assumption which we give below:

Assumption 4. Given a table graph G, a developer always uses V S.Encrypt to

encrypt it as described in Definition 16.

The above assumption implies that no matter whether the developer is honest

or not, it always uses V S.Encrypt to encrypt a table graph. For a dishonest devel-

oper who tries to hide bugs of its table graph, it can use a method M other than

V S.Encrypt to encrypt it. But doing this does not reduce the probability of detecting

bugs from the encrypted table graph, because once the encrypted table graph is given

to the verifier, it cannot be changed by the developer afterwards. Hence, suppose for

a table graph G with a bug B, the verifier will find B after verifying an encrypted

table graph G′ generated by V S.Encrypt. Moreover the verifier will find no bug after

verifying an encrytped table graph G′′ generated by M . Then this means that the

developer knows the existence of B and fixes it in G′′ by using M . In our setting we

need to point out that the verification is done on an encrypted table graph. Hence if

the encrytped table graph G′′ is really bug-free while the origianl table graph G has a

bug B, then it is not the verification scheme’s fault that the bug B is not detected. In

any case, the developer can always release a buggy program after a bug-free encrypted

table graph passes the verification.

Consequently, what we need to require from an honest developer is that it does

35

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

not do anything to change the outcome of the verification process. If the verifica-

tion is done by the verifier alone, then the developer cannot influence the verification

outcome. However, due to the encryption of the table graph, interaction between

the developer and the verifier is necessary. Essentially, the developer helps the veri-

fier to finish the verification process via communicating with the verifier by running

V S.Encode to answer the verifier’s questions. Therefore, this is the place where the

developer can influence the verification process. If we require the developer to use

V S.Encode, and not any other algorithms to answer the verifier’s questions, then the

developer has to honestly answer the questions of the verifier. Here, we assume that

by using V S.Encode to answer the verifier’s questions, the verifier can finish the ver-

ification process with the outcome not influenced by the developer. This assumption

is quite legitimate, because if V S.Encode itself allows the developer to influence the

outcome of the verification process, then anyone can figure this out from analysing

V S.Encode which is public to everyone.

3.2 Our construction

3.2.1 Problem description

In this section, we introduce a specific kind of secure verification scheme satisfying

Definition 16. In our construction, we focus on protecting the content of a program.

The content of a program is a broad notion, which in our setting includes the modules

of a program and also the values of the intermediate results generated by evaluating

the modules during the verification. In terms of an initial table graph, we aim at

hiding the rows of the tables and the intermediate output values of the rows. When

36

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

we are evaluating an initial table graph, only one row of a table can output values at

the same time (due to disjointness property of tabular expressions) while the other

rows will not output anything, and this piece of information is easily observed by the

evaluator. Therefore, when evaluating a table graph G in Section 2.2.2, we only focus

on hiding the content of the tables in G and the values of the intermediate outputs of

these tables which are not (⊥,⊥). The intermediate outputs that are (⊥,⊥) can be

exposed to the evaluator because these values only indicate that the corresponding

rows in the initial table graph output nothing.

The reason to include the intermediate outputs as non-disclosed information is

the following: The intermediate output of a table may reveal non-trivial information

about the table itself. For example, a verifier may figure out that an intermediate

table contains a constant function and even the constant itself, by observing the

intermediate outputs of this table.

On the other hand, we consider the relations between different modules and the

external input and output of the whole implementation as public knowledge which

the verifier can have access to. In terms of the table graph G of the implementation,

it is the structure graph Gstruc of G and the external input/output X/Y of G. If we

hide the graph structure as well as the table contents and the intermediate outputs,

then what we can provide to the verifier is at most black box verification. On the

contrary, in many occasions, knowing the graph structure alone facilitates verification

process to a great extent. The verifier is able to select a path of G that it may want

to check. Then it sends the path to the developer which returns an external input

to G. The external input is chosen by the developer, but we do not specify how this

input is chosen. The verifier when evaluating G with this external input, will evaluate

37

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

the path it picks. Without exposing the graph structure Gstruc to the verifier, this

cannot be achieved.

3.2.2 Technique outline

According to Definition 16, the verification scheme consists of three algorithms VS.Encrypt,

VS.Encode and VS.Eval. Below we are going to give our construction of the veri-

fication scheme which includes the above three algorithms and another algorithm

VS.Path.

VS.Encrypt

First, we focus on developing a way to hide the content of every table in the table

graph G while still allowing the verifier to somewhat evaluate the tables. We have

already mentioned in Section 1.3 that we use fully homomorphic encryption to achieve

this. We already know by the definition of FHE introduced in Section 2.5 that FHE

enables evaluation of any computable function which takes fully homomorphically

encrypted data as input. The encrypted data will not leak to the evaluator during

evaluation. Hence, by using FHE, we achieve computing sensitive data while still

protecting them from leaking to anyone who computes them. However, our goal is

to hide tables, which are functions and not mere data. Thus simply applying FHE is

not an option. Instead, we borrow the idea of computing encrypted functions with

universal circuits (Sander et al., 1999). We briefly illustrate this idea bellow.

If we can build a universal circuit U that takes a circuit C and the circuit’s

input x as its input, and outputs the circuits’ output C(x), then we can apply certain

encryption scheme (which supports evaluation over encrypted data) to encrypt C and

38

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

x and get the ciphertext C ′, x′. Then we evaluate U with C ′, x′ as its input and output

an encryption of C(x). Finally we decrypt it and get C(x). The prerequisite of this

idea is that the universal circuit actually exists. From (Sander et al., 1999) (Valiant,

1976) we know that there is a universal circuit U for any circuit C of depth d and size

s such that U takes as input a string SC (which can be efficiently computed from C)

and a value x (which is an input of C) and outputs C(x). Namely, U(SC , x) = C(x)

(U is parameterized by d, s).

The idea above by Sanders et al. successfully evaluates C(x) with its input x

while nothing about C is leaked to the evaluator other than C(x). Meanwhile, FHE

perfectly fits into the idea which supports evaluation of arbitrary function over en-

crypted data. (This idea of using FHE to encrypt a program and treat it as an input

to a universal input is also briefly mentioned in (Goldwasser et al., 2013).)

Therefore, what we do in our construction is to convert the rhs function Fi of a

table PTi to a circuit Ci and build a universal circuit U as well as the string SCi
of Ci.

For an input x to PTi, we fully homomorphically encrypt SCi
and x with FHE’s pub-

lic key hpk and get ECi
, x′. Consequently we can construct an encrypted version of

PTi, which is PT ′i = (True, ECi
). If a verifier wants to evaluate PT ′i with fully homo-

morphically encrypted input x′, it just runs FHE.Eval(hpk, U,ECi
, x′) and gets the

output PT ′i (x
′) = FHE.Eval(hpk, U,ECi

, x′). Because FHE.Eval(hpk, U,ECi
, x′) =

FHE.Enc(hpk, C(x)), we know PT ′i (x
′) = FHE.Enc(hpk, C(x)). In conclusion, by

using the above idea, for a table PTi with an input x chosen by the verifier, the

verifier can correspondingly evaluate the FHE encrypted version PT ′i with x′ (which

is the FHE encryption of input x) and get an output which is the FHE encryption of

PTi(x).

39

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Second, suppose for every table PTi in table graph G, we have the corresponding

secure version table PT ′i . Then we have a new table set TS ′ = {PT ′1, ..., PT ′n} from

TS = {PT1, ..., PTn}, which is the table set of G. As mentioned before, because our

construction focuses on hiding the content of the tables in TS, we do not mind giving

out the structure graph Gstruc of G to the verifier. Thus for the new secure version

table graph G′ that the verifier will finally verify, G′struc = Gstruc.

VS.Encode

Having V S.Encrypt, is not enough for our verifications scheme to work. The reason is

as follows. Suppose the verifier is evaluating a table PT ′i whose output is an external

output. From the construction of PT ′i we know that the output of PT ′i is actually

an FHE encrypted ciphertext. But the verifier needs to know the plaintext of this

ciphertext in order for verification to work. Moreover, we certainly cannot allow the

verifier itself to decrypt this ciphertext, because otherwise the verifier would be able

to decrypt the encrypted circuit inside PT ′i as well, and the security of the scheme

is compromised. Consequently, the verifier needs to ask the developer who calls an

algorithm V S.Encode to decrypt this ciphertext for the verifier.

On the other hand, simply asking the developer to decrypt the encrypted output

does not work for intermediate outputs. Suppose the verifier is working on G and gets

an intermediate output yi of a table PTi in G. If yi is not (⊥,⊥), then this yi will be

the input of another table PTj in G. (Assume there is a corresponding edge pointing

from PTi to PTj.) If yi is (⊥,⊥), then this yi should not be the input to any other

table in G. Knowing whether yi is (⊥,⊥) is crucial to a correct evaluation, and thus

important to the verifier. Now consider the case where PTi is converted into a secure

40

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

version table PT ′i and the intermediate output y′i of PT ′i hides all the information

about yi. Then the verifier certainly cannot figure out whether yi is (⊥,⊥) or not

from y′i. Hence we need V S.Encode to be able to indicate whether the corresponding

yi of y′i is (⊥,⊥) or not.

Moreover, consider the case where the verifier wants to evaluate a table PT ′i =

(True, ECi
) which has an external input x. Suppose the verifier chooses the external

input x to be (>, a). Then the verifier is required to provide an FHE encryption x′

of x to evaluate PT ′i , because the evaluation of PT ′i is essentially running FHE.Eval

with hpk,ECi
, U as well as an FHE encrypted input x′. Therefore, a simple way here

is to let the verifier do the FHE encryption of (>, a) and get FHE.Enc(hpk, (>, a)).

Then the verifier can evaluate PT ′i as follows:

PT ′i (FHE.Enc(hpk, (>, a)))← FHE.Eval(hpk, U,ECi
, FHE.Enc(hpk, (>, a))).

However, this simple solution has security problems which can be exploited by a

malicious verifier. The verifier can choose an intermediate output and claim this

intermediate output to be the encryption of an external input that it has chosen.

Then, through the interaction with V S.Encode, the verifier may figure out partial

information about this intermediate output. Therefore, in order to prevent the verifier

from doing this, we employ V S.Encode: For any external input the verifier chooses,

the verifier cannot fully homomorphically encrypt the input by itself; It must send

the input to the developer who by calling V S.Encode, generates the FHE encryption

of this value.

41

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

VS.Eval

V S.Eval is a publicly accessible algorithm that allows anyone to check if the verifier

has done the evaluation of the enrypted table graph G′ correctly. In order to achieve

this, the interaction between the verifier and the developer has to be public. In our

construction we have a public file QAE that records the questions asked by the verifier

and the corresponding answers generated by the developer by calling V S.Encode. By

reading QAE, V S.Eval can know what input the verifier evaluates with a particular

table and what output the verifier gets. Then V S.Eval can evaluate the table again

with the same input and check whether the output is the same.

VS.Path

As mentioned in subsection 3.2.1, our construction is expected to provide the ability to

allow the verifier to evaluate paths that itself chooses. This ability is not necessarily

included in Definition 16 due to the generality of the definition. In our construc-

tion, when the verifier wants to evaluate a path of a table graph, the developer runs

V S.Path with the path chosen by the verifier and generates an external input such

that when used, it will cause the evaluation of the tables on the path chosen by the

verifier.

Conversion of functions to circuits

We have mentioned above that in our construction the rhs functions in the tables

of a table graph will be converted into boolean circuits in order for our construction

to work properly. But we did not say how the conversion is done or whether this

conversion is practical. Essentially what our construction requires is an automatic

42

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

way to transform higher level description of a function into a boolean circuit. Trans-

formation of a higher level description of a function into a lower level description like

a circuit was done in the work of (Malkhi et al., 2004) and (Huang et al., 2011).

(Malkhi et al., 2004) introduces a system called FAIRPLAY which includes a high

level language SFDL that is similar to C and Pascal. FAIRPLAY allows the developer

to describe the function in SFDL, and automatically compiles it into a description

of a boolean circuit. A similar system is described in (Huang et al., 2011), which

is faster and more practical than FAIRPLAY. This system allows the developer to

design a function directly in Java, and automatically compiles it into a description of

a boolean circuit.

3.2.3 Construction

In this section we give our construction of a secure and trusted verification scheme.

VS.Encrypt (see Algorithm 1) takes as input the security parameter 1K and the

table graph G, and outputs a secure version table graph G′ (also called an encrypted

table graph), an FHE public key hpk and a universal circuit set U .

VS.Encode (see Algorithm 2) answers two kinds of questions:

(1) The first kind of question q1 : V S.Encode takes (i, xij, null, q1) as input and

outputs V S.Encode(i, xij, null, q1). The index i indicates the ith table PT ′i ∈ G′

and xij denotes an external input to PT ′i .

(2) The second kind of question q2 : V S.Encode takes (i, xi, PT ′i (x
i), q2) as input

and outputs V S.Encode(i, xi, PT ′i (x
i), q2). The index i indicates the ith table

PT ′i ∈ G′ and xi denotes the input to PT ′i .

43

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Algorithm 1 VS.Encrypt(1K , G)

1: (hpk, hsk)← FHE.KeyGen(1K)
2: Construct a universal circuit U such that for any circuit C of size s and depth d

and a corresponding string SC (which can be efficiently computed from knowing
C), U(SC , x) = C(x).

3: Suppose C outputs m bits. Construct m circuit U1, ..., Um such that for any
i ∈ [m], U(x, SC) outputs the ith bit of U(x, SC).

4: for all PTi ∈ TS, i ∈ {1, ..., n} do
5: construct Ci such that Ci(x

i) = PTi(x
i)

6: construct a string SCi
from Ci

7: ECi
← FHE.Encrypt(hpk, SCi

)
8: PT ′i ← (True, ECi

)
9: end for
10: TS ′ ← {PT ′1, ..., PT ′n}
11: G′struc ← Gstruc

12: return G′ = [TS ′, G′struc], hpk, U = (U1, ..., Um)

V S.Encode has a memory S.

VS.Eval (see Algorithm 3) takes as input (1K ,QAE,G′,hpk,U) and outputs 1 or

0. QAE = {(Q1, A1), ..., (Qn, An)}. For any pair (Qi, Ai) ∈ QAE, Qi is a ques-

tion asked by the verifier and Ai is the answer generated by the developer running

V S.Encode(Qi). QAE is generated during V ’s verification ofG′ (V V S.Encode(1K , G′, Fspec, CP)).

VS.Path (see Algorithm 4) takes as input (PT ′i1 , ..., PT
′
ip), and outputs an exter-

nal input X to the table graph G.

If the verifier wants to evaluate a path P = ui1 → ui2 → ... → uip , it asks the

developer to run V S.Path(PT ′i1 , ..., PT
′
ip) and V S.Path outputs an external input X

which will be returned by the developer to the verifier. X will allow the verifier to

evaluate P . According to the construction of V S.Path, we know that evaluating G

with X will also include evaluation of P .

44

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Remark 6. For V S.Path we make the following assumption: If the verifier chooses

a path P when verifying G′ and V S.Path(P) = X, then when the verifier chooses the

same path P to evaluate when verifying G, it will use the same external input X.

The protocol of VS (see Figure 3.2) describes what the developer and the

verifier should do in V S.

45

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Figure 3.2: The protocol of V S in our implementation

Remark 7. In our implementation, the evaluation of a table PT ′i (x
i) where PT ′i ∈ G′

46

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

is done as follows:

PT ′i (x
i)← FHE.Eval(hpk, U,ECi

, xi),

where hpk, U,ECi
belong to the output of V S.Encrypt in Algorithm 1.

Remark 8. The evaluation of an encrypted table graph G′ is a little bit different

than evaluation of a normal table graph G which is described in section 2.3. The

evaluation of G′ with an external input to G′ (denoted as G′(X)) is described below

in Algorithm 5.

3.2.4 An example of applying condition/decision coverage

verification to our construction

In this subsection we use an example in Figure 3.3 to show how to apply our verifica-

tion scheme to actually verify a specific table graph. In Figure 3.3 there is an initial

table graph that is to be verified by the verifier V .

Figure 3.3: An initial table graph G of an implementation

47

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

First the developer transforms this initial table graph into a table graph G intro-

duced in Section 2.2 (see Figure 2.3). Then

F1(a) =

 (>, a− 20) , if a > 45

(⊥,⊥) , otherwise
F2(a) =

 (>, a− 5) , if 35 <= a <= 45

(⊥,⊥) , otherwise

F3(a) =

 (>, a) , if 25 <= a < 35

(⊥,⊥) , otherwise
F4(a) =

 (>, 20) , if a < 25

(⊥,⊥) , otherwise

F5(z) =

 (>, T rue) , if z > 30

(⊥,⊥) , otherwise
F6(z) =

 (>, False) , if z <= 30

(⊥,⊥) , otherwise

F7(b) =

 (>, 2) , if b = True

(⊥,⊥) , otherwise
F8(b) =

 (>, 3) , if b = False

(⊥,⊥) , otherwise

The developer applies our content-secure verification scheme V S to G. It runs

V S.Encrypt as follows. (G′, hpk, U) ← V S.Encrypt(1K , G). Figure 3.4 is the en-

crypted table graph G′.

48

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Figure 3.4: An encrypted table graph G′ after applying V S to G

According to Figure 3.2, the verifier V receives G′ and does the verification on

G′. We show how V can do MC/DC verification (Hayhurst et al., 2001) on G′.

MC/DC performs structural coverage analysis. First it gets test cases generated from

analysing a given program’s requirements. Then it checks whether these test cases

actually covers the given program’s structure and finds out the part of the program’s

structure which is not covered. First we assume the V GA that V uses will do MC/DC

verification after it generates the test cases. Suppose V runs V GA to generate the test

cases, based on requirements-based tests (by analysing Fspec), and these test cases are

stored in EI. Then V picks an external input X to G′ from EI and starts evaluating

G′ with X.

For X = (a = 26, b = True), and according to Figure 3.2, V sends the fol-

lowing queries to the developer DL (The queries are in the format of the input

of V S.Encode): Q1 = (1, 46, null, q1), Q2 = (2, 46, null, q1), Q3 = (3, 46, null, q1),

Q4 = (4, 46, null, q1), Q5 = (7, T rue, null, q1), Q6 = (8, T rue, null, q1), because it

49

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

needs to evaluate PT ′1, PT
′
2, PT

′
3, PT

′
4, PT

′
7, PT

′
8 as well as an encoding for the

external inputs of each table. We take the evaluation of the path (Input → PT ′1 →

PT ′5 → Output) as an example. For query Q1, DL evaluates V S.Encode(Q1) and

returns FHE.Enc(hpk, 46)(FHE.Enc(hpk, 46) is the output of V S.Encode(Q1)),

which is the input x1 to PT ′1. Then V runs FHE.Eval(hpk, U, x1, EC1) and out-

puts PT ′1(x
1). After this V sends (1, x1, PT ′1(x

1), q2) to DL. Because we know that

for PT1 ∈ G, if 46 is the input to PT1, then the output will be (>, 26). Thus for the

query (1, x1, PT ′1(x
1), q2), DL evaluates V S.Encode(1, x1, PT ′1(x

1), q2) and returns >.

Hence V knows that for a=46 as an external input, the lhs predicate (a decision and

condition) of PT1 ∈ G is satisfied, and the rhs function of PT1 ∈ G is covered.

After finishing evaluating PT ′1, V starts evaluating PT ′5 and PT ′6 with PT ′1(x
1)

as their input. x5 = PT ′1(x
1) is PT ′5’s input. After finishing evaluating PT ′5, V

gets PT ′5(x
5) as the output. Then V sends (5, x5, PT ′5(x

5, q2) to DL. DL evaluates

V S.Encode(5, x5, PT ′5(x
5, q2) and V S.Encode’s output is True (Because (46 > 30),

PT5’s output is (>, T rue). We also know that the output of PT ′5 is an external

output. Accordingly, V S.Encode outputs True). Therefore, DL returns True to V .

Then V knows that y1 = True as well as the fact that the lhs predicate (a decision

and condition) of PT5 ∈ G is satisfied and the rhs function of PT5 ∈ G is covered.

After evaluating G′ with X = (a = 26, b = True) by similar steps as described

above and getting the external output Y = (True,⊥,⊥, 2,⊥), V knows that for

X, the lhs predicates of PT1, PT5 and PT7 are satisfied while the rest tables’ lhs

predicates are not satisfied. Hence, V knows that the predicates of PT1, PT5 and

PT7 are True while the predicates in the rest tables of G are False and the statements

(the rhs functions of the tables in G) of PT1, PT5 and PT7 are covered. Moreover,

50

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

V compares Y with Fspec(X) to see if G behaves as expected with X as an external

input.

V will keep evaluating G′ with the rest external inputs in EI, and by interacting

with DL in the way as described above, it does the structural coverage analysis of the

requirements-based test cases. He will be able to know whether the external inputs

in EI covers every predicates in G. Additionally, it will be able to know whether G

behaves as expected in the requirements specification described by Fspec.

3.2.5 Proof of the implementation correctness and security

For our implementation of V S in subsection 3.2.3, V S.Encrypt, V S.Encode, S1 and

S2 are the implementation of V S.Encrypt, V S.Encode, S1 and S2 of Definition 18.

In our implementation CP ′ = CP ′′ = CP . The input Cerificate of V S.Eval in

Definition 20 in our implementation is QAE, G
′, hpk, U .

In Definition 18 we have two simulators S1 and S2 simulating V S.Encrypt and

V S.Encode. S1 takes any public information it needs. In our implementation we add

another algorithm V S.Path, so we add another simulator S3 to simulate V S.Path.

The input to simulator S1 consists of the circuit size s and depth d of all the circuits

resulting from rhs functions in the tables in G, as well as the structure graph Gstruc

of G (The construction of the simulators S1, S2 and S3 can be found in the proof

of Theorem 2). S2’s simulator oracle O1 in our implementation is the oracle O in

Definition 18. We add one oracle O2 for S3, which is not in Definition 18.

In our proof below, FHE is the fully homomorphic encryption scheme introduced

in Section 2.5.

51

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Proof of the implementation correctness

First we prove that our implementation satisfies Definition 17.

Theorem 1. The verification scheme VS introduced in section 3.2 satisfies Definition

17.

Proof. We will need the following lemmas:

Lemma 1. When V S.Eval outputs 1, for any table PT ′r ∈ TS ′ and xr, the output y

claimed by V as PT ′r(x
r) must be equal to PT ′r(x

r). That is, V evaluates every table

correctly.

Proof. V S.Eval(1K , QAE, G
′, hpk, U) checks whether y is equal to PT ′r(x

r) in line 3

of Algorithm 3. (For any (Qi, Ai) ∈ QAE where Qi = (r, xr, y, q2), V S.Eval evaluates

PT ′r(x
r) and checks whether y is equal to PT ′r(x

r).)

From now on we concentrate on the subset of QAE that is consistent (see Defi-

nition 5). For non-consistent QAE’s, Algorithm 2 (lines 13,14,16) will return null

evaluations, and, therefore, security and correctness are not an issue.

Lemma 2. Given the external input set X to both G′ and G, for any table PTi ∈

TS with input xi and output PTi(x
i), table PT ′i ∈ TS ′ and its input wi satisfy the

following:

wi = FHE.Enc(hpk, xi), PT ′i (w
i) = FHE.Enc(hpk, PTi(x

i)), (3.3)

where hpk is the public key of FHE that is generated as follows:

(G′, hpk, U)← V S.Encrypt(1K , G)

52

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Proof. We prove this lemma by induction on the level k of a table.

(1) Base case: k = 1. For any level 1 table PTi ∈ TS where xi is its input, PT ′i ∈ TS ′

and its input wi satisfy the following:

wi = FHE.Enc(hpk, xi), PT ′i (w
i) = FHE.Enc(hpk, PTi(x

i)).

According to the construction of V S.Encrypt, G′struc = Gstruc and PT ′i (w
i) =

FHE.Eval(hpk, U,ECi
, wi), where ECi

is the rhs function of PT ′i (see Algorithm

1). Also, according to the construction of V S.Encode, wi = FHE.Enc(hpk, xi).

Hence

PT ′i (w
i) =FHE.Eval(hpk, U,ECi

, FHE.Enc(hpk, xi))

=FHE.Enc(hpk, PTi(x
i))

(The second equation is valid because, according to (2.1),

PTi(x
i) = Ci(x

i) = U(SCi
, xi)

= FHE.Dec(hsk, FHE.Eval(hpk, U,ECi
, FHE.Enc(hpk, xi))),

where Ci, U, SCi
are in Algorithm 1.

Hence,

FHE.Enc(hpk, PTi(x
i)) = FHE.Enc(hpk,

FHE.Dec(hsk, FHE.Eval(hpk, U,ECi
, FHE.Enc(hpk, xi))))

= FHE.Eval(hpk, U,ECi
, FHE.Enc(hpk, xi)).

)

53

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

(2) Inductive step: Suppose that for any table PTi ∈ TS whose level is smaller than

k + 1 and xi is its input, the level k table PT ′i ∈ TS ′ and its input wi satisfy the

following:

wi = FHE.Enc(hpk, xi), PT ′i (w
i) = FHE.Enc(hpk, PTi(x

i)).

Then we show that for any level k + 1 table PTj ∈ TS where xj is its input, the

level k + 1 table PT ′j ∈ TS ′ and its encoded input wj satisfy the following:

wj = FHE.Enc(hpk, xj), PT ′j(w
j) = FHE.Enc(hpk, PTj(x

j))

For PTj, its table input xj = [xj1, x
j
2, ..., x

j
s] satisfies the following: For any xjp ∈ xj,

either xjp = PTip(xip), or xjp ∈ X. In case xjp ∈ X, according to Definition 3, we

can treat it as a product of a virtual level 0 table.

Since PTj is a level k + 1 table, for any xjp ∈ xj, xjp = PTip(xip), where PTip

is a table whose level is smaller than k + 1. Then according to the inductive

hypothesis, for wj which is the table input of PT ′j ,

wj
p = PT ′ip(wip) = FHE.Enc(hpk, PTip(xip)) = FHE.Enc(hpk, xjp).

For any xjp ∈ X, the corresponding wj
p = FHE.Enc(hpk, xjp). Hence,

wj =[wj
1, ..., w

j
s]

=[FHE.Enc(hpk, xj1), ..., FHE.Enc(hpk, x
j
s)]

=FHE.Enc(hpk, xj)

54

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

(The last equation is valid because FHE.Enc encrypts a string bit by bit.

FHE.Enc(hpk, xj) =FHE.Enc(hpk, [xj1, x
j
2, ..., x

j
s])

=[FHE.Enc(hpk, xj1), ..., FHE.Enc(hpk, x
j
s)]

)

Since we already know that wj = FHE.Enc(hpk, xj), we have

PT ′j(w
j) =FHE.Eval(hpk, U,ECj

, FHE.Enc(hpk, xj))

=FHE.Enc(hpk, PTj(x
j))

similarly to the base case.

Lemma 3. The input-output functionality of G′ is the same as the input-output

functionality of G.

Proof. Given the external input set X to both G′ and G, suppose PTi1 , ..., PTis ∈ TS

are the output level tables that are actually evaluated. Suppose their corresponding

outputs are y1, ..., ys. Then from Lemma 2 we know that PT ′i1 , ..., PT
′
is ∈ TS

′ satisfy

the following:

PT ′i1(w
i1) = FHE.Enc(hpk, y1), ..., PT

′
is(w

is) = FHE.Enc(hpk, ys).

Accordingly, for every j ∈ [s], by asking the developer to call

V S.Encode(ij, w
ij , PT ′ij(w

ij), q2),

55

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

V gets y1, ..., ys as a reply (see line 29 in Algorithm 2). Hence the input-output func-

tionality of (T ′des, G
′
des) is the same as the input-output functionality of (Tdes, Gdes).

The following lemma applies to paths of G′, but can be easily extended to any

consistent subgraph of G′ (e.g. in topological order).

Lemma 4. For an encrypted table graph G′, V asks the developer to call V S.Path(PT ′i1 ,

..., PT ′ip). V S.Path outputs an external input X such that evaluating G′ with X as

the external input will include a successful evaluation of path P = PT ′i1 → PT ′i2 →

...→ PT ′ip.

Proof. According to the construction of V S.Path (see Algorithm 4), we know that

the evaluation of G with X as input includes the evaluation of tables PTi1 , ..., PTip .

The inputs to PTi1 , ..., PTip are xi1 , ..., xip . Since V evaluates these tables, xi1 , ..., xip

cannot contain a null or (⊥,⊥). Therefore, wik cannot contain null or the FHE

encryption of (⊥,⊥). According to Lemma 2, if V evaluates G′ with X, then for

the corresponding tables PT ′i1 , ..., PT
′
ip , the inputs wi1 , ..., wip to these tables will

satisfy (3.3), and PT ′i1 , ..., PT
′
ip can be evaluated, because of (3.3). Since during

the evaluation of G′ with X, V evaluates all the tables that can be evaluated, path

P = PT ′i1 → PT ′i2 → ...→ PT ′ip will also be evaluated.

Lemma 2 and hence Lemma 3 are based on the assumption that the verifier eval-

uates every table correctly and also follows the consistency requirement in Definition

5. When V S.Eval outputs 1, V satisfies Lemma 1. Hence, when V evaluates G′, the

output of G′ is the same as the output of evaluating G with the same inputs.

56

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

From the assumption in Remark 6, we know that all external inputs generated

during V (1K , G′, Fspec, CP, V GA) and V (1K , G, Fspec, CP, V GA) must be the same.

Hence, we know that (3.1) in Definition 17 is true.

Moreover, V S.Eval knows the V GA V uses as well as the random bits of the

V GA, so from reading QAE, V S.Eval can check whether V satisfies (3.2) in Definition

17 (see Definitions 16 and 17). If V S.Eval(1K , QAE, G
′, hpk, U) outputs 1, (3.2) is

satisified (see lines 9 - 18 in Algorithm 3).

Thus, Theorem 1 is proved.

Proof of the implementation security

Theorem 2. The verification scheme VS introduced in section 3.2 satisfies Definition

18.

Proof. We construct a tuple of simulators (S1, S2, S3) which satisfies Definition 16 as

follows:

(1) Let s be the common circuit size and d the common depth of all the circuits

converted from rhs functions in the tables in G. S1(1
K , s, d,Gstruc) will generate

a table graph G̃ = (T̃ S,Gstruc) such that ∀P̃ T i ∈ T̃ S, P̃ T i = (True, F̃i), where

F̃i is a function that can be converted into a size s, depth d circuit that outputs

m bits. S1 runs V S.Encrypt(1K , G̃) (Algorithm 1) and obtains G′′, hpk, U .

(2) S2 receives queries from A2 in Definition 18 and queries oracle O1 which is de-

scribed in Algorithm 6. (SO1
2 simulates V S.Encode. The queries from A2 are

inputs to V S.Encode.) O1 has a state [S,H, id] which contains two initially

empty sets S and H and a global variable id initially set to 0. S2 returns the

output of O1 as answers to the queries of A2.

57

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

(3) S3 receives queries from A2, and queries oracle O2 which is described in Algorithm

7. S2 then returns the output of O2 to A2. (SO2
3 simulates V S.Path. The queries

from A2 are inputs to V S.Path.)

First, we construct an experiment Exp which will be used in the following. Exp is

slightly different from Expreal in Definition 18. The only difference is that in Exp,

the queries of A2 are not answered by calls to V S.Encode and V S.Path as in Expreal.

Instead, they are answered by oracles O′1 and O′2 which work the same way as SO1
2

and SO2
3 . (SO1

2 is in the simulated experiment Expideal of Definition 18 and SO2
3 is

added to Expideal to be an oracle for A2.) The details are shown below:

Exp(1K) with any p.p.t. A1, A2:

1. (G,CP, stateA)← A1(1
K)

2. (G′, hpk, U)← V S.Encrypt(1K , G)

3. a← A
O′1,O

′
2

2 (1K , G′, G, CP, hpk, U, stateA)

4. Output a

Lemma 5. Expreal and Exp are computationally indistinguishable.

Proof. We know that if V S.Encode and O′1 have the same input-output functional-

ity, and V S.Path and O′2 have the same input-output functionality, then Lemma 5

must be true. First we prove that V S.Encode and O′1 have the same input-output

functionality.

O′1 works the same as SO1
2 . From the construction of V S.Encode (see lines 1 - 9

in Algorithm 2) and O′1 (see lines 1 - 11 in Algorithm 6), we know that for a query

58

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

(i, u, v, q1), both algorithms will output the FHE encryption of u. Therefore they

have the same input-output functionality.

For a query (i, u, v, q2), there are two cases.

Case 1: V S.Encode(i, u, v, q2) outputs null. It is easy to see that O′1(i, u, v, q2)

will also output null. To see this, note that the following situations in Algorithm 2

will cause V S.Encode(i, u, v, q2) to output null:

(1) For an intermediate input xij ∈ u which should be the output of PT ′k, xij is not

PT ′k’s output (see line 13).

(2) For an intermediate input xij ∈ u which should be the output of PT ′k, xij is PT ′k’s

output, but PT ′k’s output is (⊥,⊥) (see line 14).

(3) For an external input xij ∈ u, xij is not an FHE encryption generated by V S.Encode

(see line 16).

(4) PT ′i (u) 6= v (see line 25).

These four situations in Algorithm 6 will also cause O′1(i, u, v, q2) to output null: lines

14 - 17 match situation (1); lines 19 - 24 match situations (2) and (3); line 29 matches

situation (4).

Case 2: V S.Encode(i, u, v, q2) does not output null. Suppose X is the external

input to G′ and xi is the input to PT ′i . For V S.Encode(i,

xi, PT ′i (x
i), q2), there are three cases (see lines 28 - 33 in Algorithm 2):

(1) If PT ′i ’s output is an intermediate output and PT ′i (x
i) is an FHE encryption of

(⊥,⊥), then V S.Encode decrypts PT ′i (x
i), and outputs ⊥.

(2) If PT ′i ’s output is an intermediate output and PT ′i (x
i) is not an FHE encryption

of (⊥,⊥), then V S.Encode decrypts PT ′i (x
i), and outputs >.

59

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

(3) If PT ′i ’s output is an external output, then V S.Encode decrypts PT ′i (x
i), and gets

FHE.Dec(PT ′i (x
i)). V S.Encode outputs the second half of FHE.Dec(PT ′i (x

i)).

Similarly, suppose A2 queries O′1 with (i, xi, PT ′i (x
i), q2). Then O′1 calculates

PTi(u
i) where ui is the corresponding input to PTi when X is set of external in-

puts to G (see lines 12 - 32 in Algorithm 6). For O′1(i, x
i, PT ′i (x

i), q2), there are three

cases (see lines 36 - 38 in Algorithm 6):

(1) If PT ′i ’s output is an intermediate output and PTi(u
i) is (⊥,⊥), O′1 outputs ⊥.

(2) If PT ′i ’s output is an intermediate output and PT ′i (x
i) is not (⊥,⊥), then O′1

outputs >.

(3) If PT ′i ’s output is an external output, then O′1 outputs the second half of PTi(u
i).

Cases 1 and 2 of V S.Encode(i, xi, PT ′i (x
i), q2) and O′1(i, x

i, PT ′i (x
i), q2) are the

same. For Case 3, V S.Encode outputs the second half of FHE.Dec(PT ′i (x
i)), while

O′1 outputs the second half of PTi(u
i). According to Lemma 2, PT ′i (x

i) = FHE.Enc(PTi(u
i)),

hence V S.Encode and O′1 have the same output.

Therefore, we know that V S.Encode and O′1 have the same input-output func-

tionality.

Now we are going to prove that V S.Path and O′2 have the same input-output

functionality.

In steps 1 and 2 of Expreal, A1 first chooses a table graph G and then V S.Encrypt

encrypts G and outputs an encrypted table graph G′. If PT ′i1 , ..., PT
′
ip chosen by A2

form a path P = PT ′i1 → PT ′i2 → ... → PT ′ip , then V S.Path(PT ′i1 , ..., PT
′
ip) returns

with an external input X to G′ such that the evaluation of G′ with X as input

60

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

includes the evaluation of tables PT ′i1 , ..., PT
′
ip . If (PT ′i1 , ..., PT

′
ip) does not form a

path P = PT ′i1 → PT ′i2 → ...→ PT ′ip , then V S.Path returns null.

Similarly, in step 1 and 2 of Exp, A1 first chooses a table graph G and then

V S.Encrypt encrypts G and outputs an encrypted table graph G′. If PT ′i1 , ..., PT
′
ip

chosen by A2 form a path P = PT ′i1 → PT ′i2 → ... → PT ′ip , then O′2(PT
′
i1
, ..., PT ′ip)

returns with an external input X to G′ such that the evaluation of G′ with X as input

includes the evaluation of tables PT ′i1 , ..., PT
′
ip . If (PT ′i1 , ..., PT

′
ip) does not form a path

P = PT ′i1 → PT ′i2 → ...→ PT ′ip , then O′2 returns null.

Thus V S.Path and O′2 have the same input-output functionality.

In order to prove Theorem 2, we first prove a lemma which focuses on the security

of a single table:

Lemma 6. For every p.p.t. adversary A = (A1, A2), and table PTi ∈ G, consider

the following two experiments:

SingleT real(1K):

(1) (G,C, stateA) ← A1(1
K). C is of size s and depth d, and the length of the

output is m bits. C computes PTi’s rhs function.

(2) (hpk, hsk)← FHE.KeyGen(1K)

(3) generate a universal circuit Us,d (for circuits of size s and depth d), and a

string SC for C, such that Us,d(SC , x) = Ci(x).

(4) Let U = (U1, ..., Um) where Ui is the circuit that outputs the ith bit of Us,d.

(5) EC ← FHE.Encrypt(hpk, SC)

61

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

(6) a← A2(1
K , (True, EC), U, hpk, stateA)

(7) Output a

SingleT ideal(1K):

(1) (G,C, stateA) ← A1(1
K). C is of size s and depth d, and the length of the

output is m bits. C computes PTi’s rhs function.

(2) (hpk, hsk)← FHE.KeyGen(1K)

(3) G̃← S1(1
K , s, d,Gstruc). F̃i is the rhs function of ˜PTi ∈ G̃.

(4) generate a universal circuit Us,d (for circuits of size s and depth d). Convert

F̃i to a circuit C ′ such that C ′ is of size s and depth d. Generate a string SC′

for C ′, such that U(SC′ , x) = C ′(x)

(5) Let U = (U1, ..., Um) where Ui is the circuit that outputs the ith bit of Us,d.

(6) EC′ ← FHE.Encrypt(hpk, SC′)

(7) a′ ← A2(1
K , (True, EC′), U, hpk, stateA)

(8) Output a′

Then the outputs of the two experiments are computationally indistinguishable.

Proof. A2’s input in SingleT real is {1K , (True, EC), U, hpk, stateA}, while its input

in SingleT ideal is {(True, EC′), U, hpk, stateA}. If A2’s inputs in SingleT real and

62

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

SingleT ideal are computationally indistinguishable, then A2’s output a and a′ in

SingleT real and SingleT ideal are computationally indistinguishable. Because EC and

EC′ are two fully homomorphic encrypted ciphertexts, they are computationally indis-

tinguishable under the IND-CPA security of FHE. Hence {1K , (True, EC), U, hpk, stateA}

and {1K , (True, EC′), U, hpk, stateA} are computationally indistinguishable. There-

fore a′ is computationally indistinguishable from a, which proves the lemma.

We extend the single table property to the whole system. Assuming there are n

tables in G′′ = [TS ′′, Gstruc], we replace the tables in G′′ one by one with the tables

in G′ = [TS ′, Gstruc] and generate a sequence of n + 1 different table graphs which

differ only at one table:

TS0 : (PT ′′1 , PT
′′
2 , PT

′′
3 , ..., PT

′′
n)

TS1 : (PT ′1, PT
′′
2 , PT

′′
3 ..., PT

′′
n)

TS2 : (PT ′1, PT
′
2, PT

′′
3 , ..., PT

′′
n)

...
...

TSn : (PT ′1, PT
′
2, PT

′
3..., PT

′
n)

All the above table sets have the same graph structure Gstruc. For TSi, i ∈

{0, , , n}, the experiment Expi for a p.p.t. adversary pair A = (A1, A2) is as follows:

Expi(1K) :

1. (G,CP, stateA)← A1(1
K)

2. (hpk, hsk)← FHE.KeyGen(1K)

63

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

3. generate a universal circuit Us,d (for circuits of size s and depth d)

4. Let U = (U1, ..., Um) where Ui is the circuit that outputs the ith bit of Us,d.

5. For j = 1, ..., i,

(a) construct a circuit Cj of size s and depth d which has the same function-

ality as PTj ∈ G and outputs m bits.

(b) generate a string SCj
such that U(SCj

, x) = Cj(x).

(c) ECj
← FHE.Encrypt(hpk, SCj

)

(d) set (True, ECj
) as table PT i

j

6. G̃← S1(1
K , s, d,Gstruc)

7. For j = i+ 1, ..., n,

(a) F̃j is the rhs function of ˜PTj ∈ G̃. Convert F̃j to circuit C ′j. Generate a

string SC′j
such that U(SC′j

, x) = C ′j(x).

(b) EC′j
← FHE.Encrypt(hpk, SC′j

)

(c) set (True, EC′j
) as table PT i

j

(The tables (True, EC1), ..., (True, ECi
) constructed in step 5 and

(True, EC′i+1
), ..., (True, EC′n) constructed in step 7 form Gi.)

8. a← A
O′1,O

′
2

2 (1K , Gi, G, hpk, CP, U, stateA)

O′1, O
′
2 do the following: O′1 works the same way as SO1

2 (see S1’s construction

and Algorithm 6). O′2 works the same way as SO2
3 (see S2’s construction and

Algorithm 7).

64

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

9. Output a

Note that Exp0 is the same experiment as Expideal, while Expn is the same as

Exp in Lemma 5.

The reason that Exp0 is the same experiment as Expideal is as follows. In S1’s

construction, S1 does the same as in Step 6 of Expi and generates G̃. Then it runs

V S.Encrypt and gets an encrypted version of G̃, which is G′′. In Exp0, Step 5

will not be executed and steps 2,3,4,6,7 do what Algorithm 1 does with G̃ as the

algorithm’s input. Hence, what steps 2,3,4,6,7 do is running V S.Encrypt to encrypt

G̃. Therefore, G0 = G′′. Moreover, O′1 works the same way as SO1
2 and O′2 works the

same way as SO2
3 .

The reason that Expn is the same experiment as Exp is as follows. In Expn, Step

7 will not be executed and steps 2,3,4,5 do what Algorithm 1 does with G as the

algorithm’s input. Hence, what steps 2,3,4,5 do is running V S.Encrypt to encrypt

G. Therefore, Gn = G′, where G′ is in Exp.

We prove that Expreal is computationally indistinguishable from Expideal by con-

tradiction. Assuming that Expreal and Expideal are computationally distinguishable,

Lemma 5 implies that Exp0 is computationally distinguishable from Exp. Since Exp

is the same experiment as Expn, Exp0 is computationally distinguishable from Expn.

Namely, there exists a p.p.t. algorithm D such that

|Pr[D(Exp0(1K)) = 1]− Pr[D(Expn(1K)) = 1]| > negl(K)

65

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

On the other hand,

|Pr[D(Exp0(1K)) = 1]− Pr[D(Expn(1K)) = 1]|

≤ |Pr[D(Exp0(1K)) = 1]− Pr[D(Exp1(1K)) = 1]|

+ |Pr[D(Exp1(1K)) = 1]− Pr[D(Exp2(1K)) = 1]|

......

+ |Pr[D(Expn−1(1K)) = 1]− Pr[D(Expn(1K)) = 1]|

Hence,

|Pr[D(Exp0(1K)) = 1]− Pr[D(Exp1(1K)) = 1]|

+ |Pr[D(Exp1(1K)) = 1]− Pr[D(Exp2(1K)) = 1]|+ ...

+ |Pr[D(Expn−1(1K)) = 1]− Pr[D(Expn(1K)) = 1]| > negl(K)

Hence, for at least an i ∈ {0, ..., n− 1},

|Pr[D(Expi(1K)) = 1]− Pr[D(Expi+1(1K)) = 1]| > negl(K)/n = negl(K),

where the last equality holds because by the definition of the negligible function

negl(K), for all c > 0, there exists N such that for all K > N , negl(K) < K−c.

Therefore, for all c > 0, there exists N such that for all K > N , negl(K)/n =

K−c/n < K−c, which means negl(K)/n is also a negligible function. Therefore,

there are two experiments Expi and Expi+1 that are computationally distinguishable.

Namely, there exists a pair of p.p.t. adversaries A = (A1, A2) and a p.p.t. algorithm

66

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

D that can computationally distinguish Expi and Expi+1, i.e.,

|Pr[D(Expi(1K)) = 1]− Pr[D(Expi+1(1K)) = 1]| > negl(K)

We know that in Expi and Expi+1 the difference between TSi and TSi+1 is only

at the i + 1th table. We use A = (A1, A2) to construct a pair of p.p.t. adversaries

A′ = (A′1, A
′
2) with a p.p.t. algorithm D′ that contradicts Lemma 6. A′ is the pair

of adversary in SingleT real or SingleT ideal in Lemma 6 and A′ runs the experiments

Expi and Expi+1 with the pair of p.p.t. adversaries A = (A1, A2) to distinguish

SingleT real or SingleT ideal. A′ does the following:

A′1:

1. (G,CP, stateA)← A1(1
K)

2. A′1 constructs a circuit Ci+1 of size s and depth d which has the same func-

tionality as PTi+1 ∈ G that outputs m bits.

3. output (G,Ci+1, stateA′)

A′2:

0. A′1 outputs (G,Ci+1, stateA′) as in Step 1 of either SingleT real or

SingleT ideal in Lemma 6.

1. A′2 gets either

((True, ECi+1
), U, hpk, stateA′)

67

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

or

((True, EC′i+1
), U, hpk, stateA′)

as in step 5 of SingleT real or SingleT ideal in Lemma 6.

2. For j = 1, ..., i, A′2 does the following:

(a) constructs a circuit Cj of size s and depth d which has the same func-

tionality as PTj ∈ G that outputs m bits. (G comes from Line 1 of

A′1)

(b) generates a string SCj
for Cj such that Us,d(SCj

, x) = Cj(x).

(c) ECj
← FHE.Enc(hpk, SCj

)

(d) constructs (True, ECj
)

3. constructs G̃ = [T̃ S,Gstruc] the same way as S1 would construct. ∀P̃ T i ∈

T̃ S, P̃ T i = (True, F̃i), where F̃i is a function that can be converted into a

size s, depth d circuit that outputs m bits.

4. For j = i+ 2, ..., n, A′2 does the following:

(a) Converts F̃j to circuit C ′j. Generates a string SC′j
such that U(SC′j

, x) =

C ′j(x).

(b) EC′j
← FHE.Enc(hpk, SC′j

)

(c) constructs (True, EC′j
)

(The tables (True, EC1), ..., (True, ECi
) constructed in step 2 and

(True, EC′i+2
), ..., (True, EC′n) constructed in step 3 with the table A′2 gets

68

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

in step 1 (which is either (True, ECi+1
) or (True, EC′i+1

)) will form either Gi

or Gi+1 in Expi or Expi+1.)

5. A′2 runs A2 as follows:

a← AOA1,OA2

2 (Gi, G, hpk, UC, stateA) or

a← AOA1,OA2

2 (Gi+1, G, hpk, UC, stateA)

(A2’s oracle queries are answered by OA1 and OA2, which are constructed by

A′2 as follows: OA1 is the same as SO1
2 . OA2 is the same as SO2

3 . Moreover,

OA1 and OA2 know the public key hpk and the table graph Gi or Gi+1 A′2

constructs at step 4. Hence OA1, OA2 play the role of O′1, O
′
2 in experiments

Expi and Expi+1). Namely,

a← A
O′1,O

′
2

2 (Gi, G, hpk, U, stateA)

or

a← A
O′1,O

′
2

2 (Gi+1, G, hpk, U, stateA)

If in step 1 of A′2, A
′
2 gets

((True, ECi+1
), U, hpk, stateA′)

from SingleT real, then after step 4, A′2 constructs Gi+1, and A′2 is essentially simu-

lating Expi+1.

If in step 1 of A′2, A
′
2 gets

((True, EC′i+1
), U, hpk, stateA′)

69

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

from SingleT ideal, then after step 4, A′2 constructs Gi, and A′2 is essentially simulating

Expi.

Hence, we know from the above construction that

Pr[D′(SingleT real(1K)) = 1] = Pr[D(Expi+1(1K)) = 1],

Pr[D′(SingleT ideal(1K)) = 1] = Pr[D(Expi(1K)) = 1].

which implies that

|Pr[D′(SingleT real(1K)) = 1]− Pr[D′(SingleT ideal(1K)) = 1] > negl(K)

Consequently A′ contradicts Lemma 6. and Theorem 2 is proved.

Theorem 3. The verification scheme VS in Subsection 3.2.3 satisfies Definition 16.

Proof. Theorems 1 and 2 imply Theorem 3.

70

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Algorithm 2 VS.Encode(i, u, v, q)

1: if q is of the kind q1 then
2: if |u| 6= m or the first half of u is not > then /* m is defined in line 3 in

Algorithm 1*/
3: return null
4: else
5: w ← FHE.Enc(hpk, u)
6: add (i, w, null) to S
7: end if
8: return u
9: end if
10: if q is of the kind q2 then
11: for all xij ∈ u do
12: if according to G′, xij should be an output of PT ′k then
13: if @(k, xk, PT ′k(xk)) ∈ S such that xij = PT ′k(xk) then return null
14: else if ∃(k, xk, PT ′k(xk)) ∈ S such that xij = PT ′k(xk) and PT ′k(xk) is

an FHE encryption of (⊥,⊥) then return null
15: end if
16: else if according to G′, xij should be an external input then
17: if @(i, w, null) ∈ S such that xij = w then return null
18: end if
19: end if
20: end for
21: for all k ∈ {1, ...,m} do
22: sk = FHE.Eval(hpk, Uk, u, ECi

)
23: end for
24: s← s1s2...sm
25: if s 6= v then return null
26: else
27: add (i, u, v) to S
28: for all i ∈ {1, ...,m} do
29: bi ← FHE.Dec(hsk, si)
30: end for
31: if v is not an external output and b1b2...bm/2 6= ⊥ then return >
32: else return bm/2+1b2...bm
33: end if
34: end if
35: end if

71

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Algorithm 3 VS.Eval(1K ,QAE,G′,hpk,U)

1: for all (Qi, Ai) ∈ QAE do
2: if Qi is (r, u, v, q2) then
3: PT ′r(u)← FHE.Eval(hpk, U,ECr , u) /* PT ′r = (True, ECr)*/
4: if PT ′r(u) 6= v then
5: return 0
6: end if
7: end if
8: end for
9: runs V ′(1K , G′, Fspec, V GAr, CP) as follows.
10: for all table PT ′i (x

i) V ′ chooses to evaluate do
11: if @(Qj, Aj) ∈ QAE where Qj = (i, xi, PT ′i (x

i), q2) then
12: return 0
13: end if
14: end for
15: if V ′’s output is not equal to V ’s output then
16: return 0
17: end if
18: return 1

Algorithm 4 VS.Path(PT ′i1 , ..., PT
′
ip)

1: if (PT ′i1 , ..., PT
′
ip) form a path P such that P = PT ′i1 → PT ′i2 → ...→ PT ′ip then

2: generate an external input X to the table graph G such that the evaluation of
G includes the evaluation of tables PTi1 , ..., PTip .

3: return X
4: else return null
5: end if

72

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Algorithm 5 Evaluation of G′ with an external input X

1: For PT ′i chosen by V in the consistent manner /* see Definition 5*/
2: for all xij ∈ xi do
3: if xij is an external input that is not null then
4: the verifier asks the developer to call V S.Encode(i, xij, null, q1)
5: Encxi

j
← V S.Encode(i, xij, null, q1). x

i
j ← Encxi

j

6: else if xij is an external input that is null then
7: the verifier skips evaluating PT ′i and regards the output of PT ′i as null
8: break
9: else if xij is an intermediate input that corresponds to an incoming edge from

another table PT ′p then
10: if PT ′p’s output is null then
11: the verifier skips evaluating PT ′i and regards the output of PT ′i as null
12: break
13: else if V S.Encode(p, xp, PT ′p(x

p)) is ⊥ then
14: the verifier skips evaluating PT ′i and regards the output of PT ′i as null
15: break
16: else xij ← PT ′p(x

p)
17: end if
18: end if
19: end for
20: if the evaluation of PT ′i is skipped then continue
21: else
22: The verifier evaluates PT ′i (x

i) /* see Remark 7*/
23: The verifier then sends (i, xi, PT ′i (x

i), q2) to the developer
24: The developer returns V S.Encode(i, xi, PT ′i (x

i), q2) to the verifier
25: end if
26: Find the tables PT ′i1 , ..., PT

′
is that have external outputs according to G′ Let

Y = {yi1 , ..., yis} be their outputs
27: return Y

73

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Algorithm 6 O1(i, u, v, q)[id, S,H]

1: if q is of the kind q1 then
2: if |u| 6= m or the first half of u is not > then /* m is defined in line 3 in

Algorithm 1*/
3: return null
4: else
5: p← FHE.Enc(hpk, u)
6: add (i, p, null, id) to S
7: add (i, u, null, id) to H
8: id← id+ 1
9: return p
10: end if
11: end if
12: if q is of the kind q2 then
13: for all xij ∈ u do
14: if according to G′′, xij should be an external input then
15: if ∃(i, xij, null, id) ∈ S then
16: get (i, xij, null, id) ∈ H and let eij ← xij
17: else return null
18: end if
19: else if according to G′′, xij should be an output of PT ′k then
20: if ∃(k, xk, PT ′′k (xk), id) ∈ S where xij = PT ′′k (xk) then
21: get (k, xk, PTk(xk), id) ∈ H and let eij ← PTk(xk)
22: if PTk(xk) = (⊥,⊥) then return null
23: end if
24: else return null
25: end if
26: end if
27: end for
28: s = FHE.Eval(hpk, U, u, EC′i

)
29: if s 6= v then return null
30: else
31: ei ← ei1e

i
2...e

i
m

32: add (i, ei, PTi(e
i), id) to H

33: add (i, u, v, id) to S
34: id← id+ 1
35: end if
36: if PTi(e

i) 6= (⊥,⊥) and is not an external output then return >
37: else return the second half of PTi(e

i)
38: end if
39: end if

74

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Algorithm 7 O2(PT
′′
i1
, ..., PT ′′ip)

if PT ′′i1 , ..., PT
′′
ip form a path P such that P = PT ′′i1 → PT ′′i2 → ...→ PT ′′ip then

generate an external input X to the table graph G such that the evaluation of
G with X as input includes the evaluation of tables PTi1 , ..., PTip . The method to
generate this X is the same as the method used in Algorithm 4.

return X
else return null
end if

75

Chapter 4

Secure and Trusted Verification for

Malicious Developers

The structure of this chapter is similar to Chapter 3. In Section 4.1 we will discuss

the general case of secure and trusted verification in the context of a malicious de-

veloper, and in Section 4.2, we will discuss our implementation of secure and trusted

verification.

4.1 Secure and trusted verification for malicious

developers

In Chapter 3 we discussed what a general secure and trusted verification scheme

should be like in the context of an honest developer, and also gave the definition of

an honest developer in Definition 19. But we did not give a definition of a mali-

cious developer, or what potential problems a malicious developer could bring to the

76

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

scheme. We are going to discuss them in this section.

In Figure 3.1 the verifier asks the developer to run V S.Encode. Thus, if the

developer is malicious, then the developer can actually replace V S.Encode with some

other malicious algorithm V S.Encode′ and return an output of V S.Encode′. If we

do not provide a method to prevent this scenario from happening, then a buggy

implementation could pass the verifier’s verification when it actually should not.

Bearing this in mind, we define a new verification scheme V S below in Def-

inition 20, based on the verification scheme in Definition 16, by adding an algo-

rithm V S.Checker to prevent the developer from being malicious. In the definition,

V S.Encrypt and V S.Encode remain the same. In the context of a malicious devel-

oper, the developer may call some other algorithm V S.Encode′ instead of V S.Encode.

By asking the developer to run V S.Checker, the verifier can determine whether the

developer actually runs V S.Encode. Moreover, because V S.Checker itself is also run

by the developer, it can also be replaced by some other algorithm V S.Checker′. As

a result, V S.Checker is designed such that even if it is replaced with some other

algorithm, the verifier can still figure out that the answers from the developer by

running V S.Checker′ or V S.Encode′ are not honest replies.

V S.Eval is an algorithm similar to the V S.Eval in Definition 16. By running

V S.Eval with a publicly known Certificate, any third party can check whether the

developer is malicious and whether the verifier does the correct verification. Figure

4.1 is the description of the protocol between the developer and the verifier.

Definition 20 (Extension of definition 16).

A secure and trusted verification scheme V S is a tuple of p.p.t. algorithms (V S.Encrypt,

V S.Encode, V S.Checker, V S.Eval) such that

77

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

(1) V S.Encrypt is a p.p.t. algorithm that takes the security parameter 1K and the

table graph G as inputs and outputs an encrypted table graph G′.

(2) V S.Encode is a p.p.t. algorithm that takes an input x and returns an encoding

Encx.

(3) V S.Checker is a p.p.t. algorithm with a memory stateC that takes as input Q

and outputs A.

(4) V S.Eval is a p.p.t. algorithm that takes as input (1k, Certificate) and outputs 1

or 0, where Certificate is a piece of public information. V S.Eval has a verifier

V ′ hardcoded in it. V ′ is an honest verifier that satisfies Definition 7.

V S satisfies Definition 21 and 22 below.

Definition 21 (Correctness).

If V S.Eval(1k, Certificate) = 1, then the following must be satisfied:

(1)

Prr[V (1K , G′, Fspec, V GAr, CP)(r) =

V ′(1K , G′, Fspec, V GAr, CP))(r)] ≥ 1− negl(K), (4.1)

where the probabilities are over the random bits r of V .

(2) For any input x1 of V S.Encode and any input x2 of V S.Checker,

Pr[V S.Encode(x1) = V S.Encode′(x1),

V S.Checker(x2) = V S.Checker′(x2)] ≥ 1− negl(K) (4.2)

78

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

(3)

Prr[V (1K , G, Fspec, V GAr, CP)(r) =

V (1K , G′, Fspec, V GAr, CP)(r)] ≥ 1− negl(K), (4.3)

Definition 22 (Security). For A = (A1, A2) and S = (S1, S2, S3) which are p.p.t

algorithms, let

1. SI consist of any piece of information that the scheme V S wants to hide and all

the information that can be known from it.

2. AI is the input of the oracle O2 in Expideal below. AI consist of any piece of secret

information from A.

3. The oracle O1 in Expideal below output O1(x) /∈ SI for any input x that S2 chooses.

4. The oracle O2 in Expideal below output O2(x) /∈ SI for any input x that S2 chooses.

Consider the following two experiments,

Expreal(1K):

1. (G,CP, stateA)← A1(1
K)

2. (G′, CP ′)← V S.Encrypt(1K , G, CP)

3. a← AV S.Encode,V S.Checker
2 (1K , V S.Eval, G′, G, CP,CP ′, stateA)

4. Output a

79

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Expideal(1K):

1. (G,CP, stateA)← A1(1
K)

2. (G′′, CP ′′)← S1(1
K)

3. a← A
S
O1
2 ,S

O2(AI)
3

2 (1K , V S.Eval,G′′, G, CP,CP ′′, stateA)

4. Output a

V S is secure if there exist a tuple of p.p.t. simulators S = (S1, S2, S3) and two

oracles O1, O2 such that for all pairs of p.p.t. adversaries A = (A1, A2), the following

is true:

∀ p.p.t. algorithm D,

|Pr[D(Expideal(1K)K∈N, 1
K) = 1]− Pr[D(Expreal(1K)K∈N, 1

K) = 1]| ≤ negl(K)

Figure 4.1 below describes the protocol between the developer and the verifier

when the scheme V S is applied.

80

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Figure 4.1: The protocol of V S in Definition 20

Definition 23. A malicious developer is a developer that in Figure 4.1 runs V S.Encode′

with the verifier’s question x and V S.Checker′ with the verifier’s question Q, so that

at least one of the following is true:

1. V S.Encode′ does not have the same input-output functionality as V S.Encode.

2. V S.Checker′ does not have the same input-output functionality as V S.Checker.

Definition 24. An honest developer in this chapter is a developer that runs V S.Encode

with the verifier’s question x and runs V S.Checker with the verifier’s question Q in

Figure 4.1.

81

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Remark 9. In Step 3 of Expreal in Definition 22, V S.Encode and V S.Checker are

not oracles of A2. A2 plays the role of a malicious verifier and A2 interacts with

the developer just like in Figure 4.1. A2 asks the developer to run V S.Encode or

V S.Checker with an input it chooses. Similarly, in Step 3 of Expideal in Defini-

tion 22, SO1
2 and SO2

3 are also not oracles of A2. A2 plays the role of a malicious

verifier and A2 interacts with the developer, who unlike in Expreal, runs SO1
2 in-

stead of V S.Encode and SO2
3 instead of V S.Checker . Whenever we say A2 queries

V S.Encode or V S.Checker, we mean A2 asks the developer to run V S.Encode or

V S.Checker. Similarly, whenever we say A2 queries SO1
2 or SO2

3 , we mean A2 asks

the developer to run SO1
2 or SO2

3 .

Remark 10. The developer in Expreal and Expideal of Definition 18 is an honest

developer.

4.2 Our implementation with malicious developers

4.2.1 Technique outline

Our implementation in this section is an extension of our implementation in Sec-

tion 3.2. The non-disclosed information of both schemes is the same. V S.Encrypt,

V S.Encode and V S.Path are the same as V S.Encrypt, V S.Encode and V S.Path

in Section 3.2.3. The difference is that our implementation in this section is in the

context of a malicious developer. As mentioned in Section 4.1, V S needs to provide

an algorithm V S.Checker to allow the verifier to check whether the replies generated

from the developer by running V S.Encode′ are the honest replies which V S.Encode

would output.

82

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

VS.Checker

We use Figure 4.2 to illustrate the general idea of implementing V S.Checker. Figure

4.2 is an example of the evaluation of a table graph G on the left and its encrypted

version G′ on the right. At this point, no V S.Checker is added to the scheme, and

we explain below what kind of V S.Checker we need in order to prevent the developer

from being malicious.

Figure 4.2: An example of the evaluation of table graph G and G′

83

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

According to V S.Encode’s construction in Algorithm 2, there are three cases

which we are going to study below.

Case 1: First, suppose V evaluates a table whose output is an external output.

Then V asks the developer to run V S.Encode to decrypt the external output. In Fig-

ure 4.2’s rhs table graph G′, the external output of table PT ′2 is FHE.Enc(>, c), and

the correct output of V S.Encode regarding FHE.Enc(>, c) should be c. However, if

the developer is malicious, it can replace V S.Encode with V S.Encode′ which outputs

c′. This c′ can be a corrected output according to Fspec, while c is a wrong output that

does not match the expected output of Fspec. (Given Fspec and the external input X

to G′, this is easy to know.) Consequently, the developer can deceive the verifier into

believing that the table graph is bug-free when, in fact, it has a bug (the output c is

not a correct output).

For the output FHE.Enc(>, c) of table PT ′2 in Figure 4.2, V wants to know the

value c. But it wants to make sure that the developer returns c, and not another

value c′. V can use the following method:

Step 1 V chooses a secret key sk of a deterministic private key encryption scheme

SE (see Definition 8) predetermined by the verification scheme V S. (SE’s

encryption algorithm is SE.Enc.)

Step 2 V first extracts the second half of FHE.Enc(>, c), which is FHE.Enc(c).

Then V runs FHE.Eval:

y ← FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), FHE.Enc(c))

Step 3 V sends y to the developer and asks it to run V S.Checker (V S.Checker’s job

is to fully homomorphically decrypt y), and the developer returns V S.Checker’s

84

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

output FHE.Dec(y), which we denote as d.

Step 4 V uses SE’s decryption algorithm SE.Dec to decrypt d and gets SE.Dec(sk, d).

Step 5 V compares SE.Dec(sk, d) with c. If they are the same, we know that the

developer indeed runs V S.Encode, which means that the developer is honest,

otherwise we know the developer is malicious.

According to Definition 11, y = FHE.Enc(SE.Enc(sk, c)). Then, if V sends y

to the developer and asks it to run V S.Checker, the developer has no choice but

to honestly run V S.Checker with y as input. The reason is as follows. First

assume that the developer evaluates V S.Checker(y). Then V S.Checker outputs

FHE.Dec(y) and the developer returns this output to V . As mentioned above,

y = FHE.Enc(SE.Enc(sk, c)), and therefore d = FHE.Dec(y) = SE.Enc(sk, c).

After V gets d, V obtains c by evaluating SE.Dec(sk, d). Then V compares c with

the answer from the developer who is expected to run V S.Encode. If they are the

same, we know that the developer indeed runs V S.Encode, which means that the

developer is honest, otherwise we know that the developer is malicious.

Now suppose that the developer runs some other algorithm V S.Checker′ instead

of V S.Checker and replies V with another value d′. Then V uses SE.Dec with the

secret key sk to decrypt d′ and gets SE.Dec(sk, d′) (which is not c). Also we assume

that the developer runs V S.Encode′ and returns a c′. If V S.Checker′ can generate

SE.Enc(sk, c′), then after the developer returns d′ = SE.Enc(sk, c′) to V , V will

decrypt SE.Enc(sk, c′) and get c′, which is also the output of V S.Encode′. If this

is the case, then V will not be able to know whether the developer is malicious or

not. However, we need to point out that SE.Dec(sk, d′) has little chance to be c′,

because V S.Checker′ outputs d′ without knowing the secret key sk of the private key

85

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

encryption scheme SE. So even if V S.Checker′ intends to output SE.Enc(sk, c′),

it has a very small probability to actually generate SE.Enc(sk, c′). Hence, with

a small negligible error, by comparing c′ and SE.Dec(sk, d′), V can find out that

V S.Encode′’s output is not correct, even if the developer runs V S.Checker′ instead

of V S.Checker.

Case 2: Now consider the case in Figure 4.2, where V gets the intermediate output

FHE.Enc(>, b) and asks the developer to run V S.Encode with a question regarding

this intermediate output. This is different from Case 1 because FHE.Enc(>, b) is an

intermediate output. What V is allowed to know from the developer is whether this

intermediate output is meaningful or not. Namely, whether FHE.Enc(>, b) contains

> or ⊥. (In Section 2.2.2 we have explained the transformation of an initial table

graph to a table graph G in our construction. If a table PTi in G outputs a symbol

⊥, then it means that the corresponding row’s predicate in the initial table graph

is not satisfied. Thus PTi’s output is not ”meaningful”. That is why V needs to

know whether the output of the encrypted version of PTi is meaningful or not.) A

malicious developer can run V S.Encode′ instead of V S.Encode and return ⊥ for the

query regarding FHE.Enc(>, b) instead of >.

For this case V can use Case 1 with the following change: In Step 2, V first extracts

the first half of FHE.Enc(>, c), which is FHE.Enc(>). Then V runs FHE.Eval

y ← FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), FHE.Enc(>))

Here we explain why we require the tables in standard table graph G in Section

2.2.2 to output values in the format (flag, x), where flag = > or ⊥ is a symbol to

indicate whether x is a meaningful or meaningless output (denoted as ⊥). We still

86

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

use the example in Figure 4.2. Suppose (True, F1) outputs only b instead of (>, b)

and correspondingly PT ′1 outputs only FHE.Enc(b) instead of FHE.Enc((>, b)).

Then we are not able to apply the method in Case 1 to this intermediate output. The

reason is as follows. If V only gets FHE.Enc(b) as the intermediate output, then in

Step 2 of Case 1, V runs FHE.Eval to get:

y ← FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), FHE.Enc(b))

Then in Step 3 of Case 1, V sends y to the developer and asks the developer to run

V S.Checker. V S.Checker outputs FHE.Dec(y) which in Step 4 of Case 1, will be

decrypted by V using SE.Dec, and as a result V will know the value of b. The reason

that V can obtain b can be explained by the following equations:

y = FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), FHE.Enc(b)

= FHE.Enc(hpk, SE.Enc(sk, b))

SE.Dec(FHE.Dec(y)) = SE.Dec(SE.Enc(sk, b)) = b

However, for an intermediate output, b should not be revealed to V (this value is

secret). Therefore, by expanding the output of PT1 from b to (>, b) and correspond-

ingly expanding the output of PT ′1 from FHE.Enc(b) to FHE.Enc(>, b), we can

apply the method in Case 1 to this case as well.

Case 3: In this case, V sends a question regarding the external input (>, a) of

table PT ′1 in Figure 4.2 to the developer. The developer runs V S.Encode, which

returns FHE.Enc(>, a). Here the verifier can also use Case 1 (asking the developer

to run V S.Checker) to confirm that the answer FHE.Enc(>, a) is actually a fully

homomorphic encryption of (>, a).

87

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

The method in Case 1 does prevent the developer from deceiving V , but by allow-

ing V to ask the developer to run V S.Checker actually makes V far more powerful.

There is a risk that V abuses this power to do something malicious. For example, the

verifier can use this method to decrypt intermediate outputs, like FHE.Enc(>, b)

in Figure 4.2. What’s more, V can even figure out the table contents (e.g., C1, C2

and consequently F1, F2) by hacking the method as follows. V generates fully ho-

momorphically encrypted ciphertexts maliciously (e.g., extracting certain bits from

encrypted circuits such as EC1 and EC2) and interact with the developer as described

in the method of Case 1 to get the secret plaintexts.

Thus we must restrict what kind of question V can ask. For example, in Case 1

Step 3, when V sends y to the developer and asks it to run V S.Checker, V S.Checker

must include a procedure to check whether y = FHE.Enc(SE.Enc(sk, c)) before it

decrypts y. But in order to do that, V S.Checker needs to know the secret key sk,

which makes the method in Case 1 pointless.

Our solution to this problem is to use bit commitment protocols during the interac-

tion between the verifier V and the developer. The idea of a bit commitment protocol

is similar to hiding information in an envelope (The analogy between the envelope and

bit commitment protocols is from (Kilian, 1989)). The developer runs V S.Checker

which is doing the following: First, given an input Qi = (i, p, y), V S.Checker fully

homomorphically decrypts y and gets a value d. The developer puts d in a sealed

envelope and gives it to V . V cannot open the envelope at this stage. After that,

V S.Checker needs V to provide a proof that y is indeed FHE.Enc(SE.Enc(sk, c)).

The proof contains the secret key sk, but revealing sk to V S.Checker does not mat-

ter, because V S.Checker’s output is already given to V and cannot change at this

88

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

point. If V S.Checker confirms that y is indeed FHE.Enc(SE.Enc(sk, c)), then it

generates a key to the sealed envelope and the developer will give this key to V . Then

V can know d, using the key to open the envelope. If V S.Checker figures out that y

is not FHE.Enc(SE.Enc(sk, c)), it simply refuses to generate the key to the enve-

lope. Such an envelope solves the problem of mutual distrust and potential malicious

activities by both entities. A bit commitment protocol can play the role of such an

envelope.

VS.Eval

V S.Eval is an extension of V S.Eval in Section 3.2.3. It not only needs to check

whether the verifier V evaluates the table graph correctly, but it also needs to check

whether the developer replies honestly. In order to check whether the verifier V

evaluates the table graph correctly, V S.Eval in Algorithm 9 includes Algorithm 3.

On the other hand, in order to check whether the developer replies honestly,

V S.Eval reads a log file which records the interaction between the verifier and the

developer. By reading this log file, V S.Eval can check whether the verifier actually

asks the developer to run V S.Checker for every answer it gets from V S.Encode.

Moreover, by reading this log file, VS.Eval can check whether the developer is

malicious. Actually, V S.Eval can repeat the whole interaction between the verifier

and the developer from the log file.

4.2.2 Construction

We give our implementation of V S = (V S.Encrypt, V S.Encode, V S.Checker, V S.Eval,

V S.Path) below. V S.Encrypt, V S.Encode and V S.Path are the same as V S.Encrypt,

89

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

V S.Encode and V S.Path in Section 3.2.3. QAE is the same as in Section 3.2.3.

(Qi, Ai, Si) ∈ QAC , is a tuple of the question Qi asked by V , the information Si

generated by both the developer and the verifier during the bit commitment protocol

and the answer Ai returned by the developer by running V S.Checker.

The relation of QAE and QAC is as follows: For any (Qei, Aei) ∈ QAE, the verifier

will generate a corresponding question Qci (see Figure 4.3) and send this question to

the developer. The developer, after running V S.Checker, will return an answer Aci.

V S.Checker (see Algorithm 8) takes an input Qi = (i, p, y) from the verifier

about a particular table PT ′i , and the developer launches a bit commitment protocol

with the verifier during running V S.Checker. The information exchange during the

protocol is stored in Si. In the end it outputs an answer Ai. The Fsecret in Algorithm

8 contains FHE.Enc(sk) and SE.Enc, where sk and SE.Enc are the secret key

sk and the encryption algorithm SE.Enc mentioned in Case 1 of the V S.Checker

subsection in Section 4.2.1.

V S.Eval (see Algorithm 9) takes as input (1K , QAE, QAC , G
′, hpk, U) whereG′, hpk, U

are from the output of V S.Encrypt.

The protocol of V S (see Figure 4.3) describes what the developer and the verifier

should do in V S.

90

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Figure 4.3: The protocol of V S in our implementation
91

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

4.2.3 Proof of the implementation correctness and security

In our implementation CP ′ = CP ′′ = CP . The input Cerificate of V S.Eval in

Definition 20 in our implementation is (QAE, QAC , G
′, hpk, U).

In Definition 22, we have three simulators S1, S2 and S3 simulating V S.Encrypt,

V S.Encode and V S.Checker. The input to simulator S1 consists of the circuit size

s and depth d of all the circuits resulting from the rhs functions in the tables in G

as well as the structure graph Gstruc of G. In our implementation we add another

algorithm V S.Path, so we add another simulator S4 to simulate V S.Path. We add

an oracle O3 for S4, which is not in Definition 18.

Proof of the implementation security

First we prove that the verification scheme VS in Subsection 4.2.2 satisfies Definition

22. Besides, we need to point out that the developer in Expreal and Expideal of

Definition 18 is an honest developer (see Remark 10).

Theorem 4. The verification scheme VS introduced in Subsection 4.2.2 satisfies Def-

inition 22.

Proof. We construct a tuple of simulators (S1, S2, S3, S4) such that S1,S
O1
2 and SO2

3

are the same S1,S
O1
2 and SO2

3 in the proof of Theorem 2. S4 receives queries from

A2 and queries oracle O3, which is described in Algorithm 10. S4 then returns the

output of O3 to A2.

First we add an extra experiment Expextra(1K) as follows:

92

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Expextra(1K):

1. (G,CP, stateA)← A1(1
K)

2. (G′, hpk, U)← V S.Encrypt(1K , G)

3. a← A
V S.Encode,V S.Path, S

O3
4

2 (V S.Eval,G′, G, V GA,CP, hpk, stateA)

4. Output a

Expreal(1K) and Expextra(1K) only differ at step 3 where A2 queries V S.Checker

in Expreal(1K) and SO3
4 in Expextra(1K). If V S.Checker and SO3

4 have the same input-

output functionality, then Expreal(1K) and Expextra(1K) cannot be distinguished com-

putationally. Therefore we prove below that V S.Checker and SO3
4 have the same

input-output functionality.

For an input (i, p, y) to V S.Checker and O3, there are two cases.

Case 1: When V S.Checker(i, p, y) outputs null, it is easy to see that O3(i, p, y)

will also output null. To see this, note that the following situations in Algorithm 8

will cause V S.Checker(i, p, y) to output null:

(1) The size of p or y is not correct. (see line 1).

(2) p is not generated by the evaluation of a table or V S.Encode. (see line 2).

(3) Fsecret is wrong. (see line 13 and Section 4.2.2).

(4) y cannot be generated by V S.Checker from knowing p and Fsecret (see lines 15-

28).

93

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

These four situations will also cause O3(i, p, y) in Algorithm 10 to output null: line

1 matches situation (1); line 3 matches situation (2); line 17 matches situation (3);

lines 19-31 match situation (4).

Case 2: We examine the case where V S.Checker(i, p, y) does not output null.

Then the developer launches a bit commitment protocol with V . During the commit

stage, the developer generates Cert and in the end V S.Checker outputs d, Cert (see

lines 8-10 and line 29 of Algorithm 8).

In the case where O3(i, p, y) does not output null, it first generates the same d

as V S.Checker(i, p, y) (see lines 6-11 of Algorithm 10). Then the bit commitment

protocol is launched with the verifier. During the commit stage, Cert is generated

and in the end O3(i, p, y) outputs d, Cert (see lines 12-16 and line 32).

Therefore V S.Checker and SO3
4 have the same input-output functionality. Hence

Expreal(1K) and Expextra(1K) are computationally indistinguishable:

|Pr[D(Expreal(1K), 1K) = 1]− Pr[D(Expextra(1K), 1K) = 1]| ≤ negl(K) (4.4)

Besides, we can construct two new experiments Exprtest(1K) and Expitest(1K) as

follows:

Exprtest(1K):

1. (G,CP, stateA)← A1(1
K)

2. (G′, hpk, U)← V S.Encrypt(1K , G)

3. a← AV S.Encode,V S.Path
2 (G′, G, CP, hpk, U, stateA)

94

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

4. Output a

Expitest(1K):

1. (G,CP, stateA)← A1(1
K)

2. (G′′, hpk, U)← S1(1
K , s, d,Gstruc)

3. a← A
S
O1
2 ,S

O2
3

2 (G′′, G, CP, hpk, U, stateA)

4. Output a

In fact, Exprtest(1K) andExpitest(1K) are the experiments Expreal(1K) and Expideal(1K)

in Definition 18 with V S.Path added to Expreal(1K) and SO2
3 added to Expideal(1K))

(see the first three paragraphs of Section 3.2.5). Thus from Theorem 2 we know that

Exprtest(1K) and Expitest(1K) are computationally indistinguishable. Namely, for all

pairs of p.p.t. adversaries A = (A1, A2) and p.p.t. distinguisher D,

|Pr[D(Exprtest(1K), 1K) = 1]− Pr[D(Expitest(1K), 1K) = 1]| ≤ negl(K) (4.5)

Now we prove that Expideal(1K) and Expextra(1K) are computationally indis-

tinguishable by contradiction. First we assume that Expreal(1K) and Expideal(1K)

are computationally distinguishable. Then from (4.4) we know that Expextra(1K)

and Expideal(1K) are computationally distinguishable. In other words we know that

Expideal(1K) and Expextra(1K) must be computationally distinguishable by a p.p.t.

95

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

algorithm D̃ and p.p.t. adversary Ã = (Ã1, Ã2) such that

|Pr[D̃(Expideal(1K), 1K) = 1]− Pr[D̃(Expextra(1K), 1K) = 1]| > negl(K) (4.6)

Now we show that for any p.p.t. adversary A = (A1, A2) who wants to distinguish

Exprtest(1K) and Expitest(1K) by using a p.p.t. algorithm D, A can use Ã and D̃ to

achieve its goal. What A does is as follows:

1. A1 runs Ã1: (G,CP, stateÃ)← Ã1(1
K)

2. A1 outputs Ã1’s output: (G,CP, stateÃ)← A1(1
K)

3. A2 either gets (G′, hpk, U) from (G′, hpk, U) ← V S.Encrypt(1K , G) and has

oracle access to V S.Encode.

Or it gets (G′′, hpk, U) from (G′′, hpk, U)← S1(1
K , s, d,Gstruc) and has oracle

access to SO1
2 , SO2

3

Which one A2 gets depends on which one of the two experiments (Exprtest(1K)

and Expitest(1K)) A = (A1, A2) is doing.

4. A2 constructs SO3
4 and V S.Eval which are also in Expideal(1K) and

Expextra(1K).

5. A2 runs Ã2 and provides it with oracle access to SO3
4 :

(1) a← Ã
V S.Encode,V S.Path,S

O3
4

2 (V S.Eval,G′, G, CP, hpk, U, stateÃ)

(2) a← Ã
S
O1
2 ,S

O2
3 ,S

O3
4

2 (V S.Eval,G′′, G, CP, hpk, U, stateÃ)

96

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Which one of the two above is actually executed depends on which one of

the two experiments (Exprtest(1K) and Expitest(1K)) A = (A1, A2) is trying to

distinguish.

If A is trying to distinguish Exprtest(1K), then A will do step 1, 2, 3(1), 4, 5(1).

We can easily see that

Pr[D(Exprtes(1K)) = 1] = Pr[D̃(Expextra(1K)) = 1.

If A is trying to distinguish Expitest(1K), then A will do steps 1, 2, 3(2), 4, 5(2). We

can easily see that

Pr[D(Expitest(1K)) = 1] = Pr[D̃(Expideal(1K)) = 1.

With (4.6), we know that

|Pr[D(Exprtest(1K)) = 1]− Pr[D(Expitest(1K)) = 1]| > negl(K).

However, this contradicts (4.5). Hence we know that the assumption that Expreal(1K)

and Expideal(1K) are computationally distinguishable is wrong. Therefore, Expreal(1K)

and Expideal(1K) are computationally indistinguishable. Thus we prove Theorem

4.

Proof of the implementation correctness

Now we are going to prove that the verification scheme V S in subsection 4.2.2 satisfies

Definition 21.

97

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Theorem 5. The verification scheme V S introduced in subsection 4.2.2 satisfies Def-

inition 21.

Proof. We prove that if

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

then (4.1)-(4.3) are correct.

Now we first prove (4.2) is correct. We know that Qci is formatted as (k, p, y) and

Aci is formatted as (d, Cert). Similarly, Qei is formatted as (k, xk, PT ′k(xk), q2). (For

simplicity, we only discuss the situation where Qei is formatted as (k, xk, PT ′k(xk), q2)

and PT ′k(xk) is an external output. The other situations, where Qei is formatted as

(k, xkj , null, q1) or PT ′k(xk) is not an external output, are similar to the situation we

discuss below.)

There are three cases for the situation we discuss below.

Case 1: Case 1 discusses the situation where V S.Encode and V S.Encode′ have

the same input-output functionality. In this case, if

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

we can be sure that for any input x of V S.Checker,

Pr[V S.Checker(x) = V S.Checker′(x)] ≥ 1− negl(K)

The reason is as follows: According to the construction of V S.Eval, it reads the ques-

tion and answer set QAC to check for any (Qci, Aci, Sci) ∈ QAC , whether the verifier

V has successfully launched and completed the bit commitment protocol described in

Section 2.6 with the developer that runs V S.Checker′. We can model the interaction

98

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

between V and the developer by running V S.Checker′ as follows:

(1) V sends Qci to the developer (Qci = (k, p, y) and is the input to V S.Checker′).

(2) V S.Checker′ generates d′ and the developer commits d′ to V and it launches

a bit commitment protocol with V . Sci is all the information both entities

send to each other during the protocol. Sci includes the random vector ~R and

FHE.Enc(sk) (the secret key of the private key encryption scheme SE in the

form of an FHE encryption). Sci also includes a random seed Cert and Encd

generated by V S.Checker′.

(3) Finally V gets the value that the developer wants to commit in the reveal stage of

the bit commitment protocol, which is d. (V gets the output Aci of V S.Checker′.

Aci = (d, Cert).)

We know from Definition 2.6 that if the developer tries to reveal value other than the

value it wants to commit in the commit stage, the probability it is going to succeed

is negligible:

Pr[d = d′] ≥ 1− negl(K).

Now we discuss another subcase of Case 1, where for (Qci, Aci, Sci) ∈ QAC , the value

d that V S.Checker′ outputs is different than the value d∗ which V S.Checker would

output. The interaction between V and the developer that runs V S.Checker is as

follows:

(1) V sends Qci to the developer (Qci = (k, p, y) and is the input to V S.Checker).

(2) V S.Checker generates d∗ and the developer decides to commit d∗ to V . It

launches a bit commitment protocol with V and generates Sc′i. Sc′i includes

99

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

the random vector ~R, SE.Enc,FHE.Enc(sk), Cert as the same ~R, SE.Enc,

FHE.Enc(sk), and Cert in Sci. Encd∗ is also included in Sc′i.

(3) Finally V gets the value that the developer wants to commit in the reveal stage of

the bit commitment protocol, which is d∗. (V gets the output Ac∗i of V S.Checker,

Ac∗i = (d∗, Cert).)

We know that according to V S.Eval’s construction (see line 24 in Algorithm 9), it

will decrypt d with SE’s corresponding decryption algorithm SE.Dec which outputs

a new value SE.Dec(sk, d). Then V S.Eval will compare SE.Dec(sk, d) with Aei

from (Qei, Aei) ∈ QAE, and if

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

then we know (see line 24 in Algorithm 9)

SE.Dec(sk, d) = Aei (4.7)

Below we prove

SE.Dec(sk, d∗) = Aei (4.8)

According to V S.Checker’s construction (see lines 5-8 in Algorithm 8),

d∗ = FHE.Dec(hsk, y), (4.9)

where y is the third parameter of Qci.

Since V S.Encode and V S.Encode′ have the same input-output functionality (which

is mentioned at the beginning of Case 1), given Qei = (k, xk, PT ′k(xk), q2) as input

to both V S.Encode and V S.Encode′, the output of V S.Encode and V S.Encode′ are

the same. Namely, Ae∗i = Aei, where Ae∗i is the output of V S.Encode and Aei is the

100

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

output of V S.Encode′.

According to the construction of V S.Encode (see lines 28-33 in Algorithm 2) ,

Ae∗i = FHE.Dec(hsk, PT ′k(xk)[mλ/2 + 1 : mλ]). (4.10)

Therefore,

Aei = FHE.Dec(hsk, PT ′k(xk)[mλ/2 + 1 : mλ]). (4.11)

On the other hand, the relation between PT ′k(xk) and y is as the following (see Figure

4.3):

y =FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), PT ′k(xk)[mλ/2 + 1 : mλ])

=FHE.Enc(hpk, SE.Enc(sk, FHE.Dec(hsk, PT ′k(xk)[mλ/2 + 1 : mλ])) (4.12)

((4.12) is valid according to Definition 11.)

Hence, by combining (4.9) and (4.12)

d∗ = SE.Enc(sk, FHE.Dec(hsk, PT ′k(xk)[mλ/2 + 1 : mλ]))) (4.13)

Moreover, because of (4.13)

SE.Dec(sk, d∗) =SE.Dec(sk, SE.Enc(sk, FHE.Dec(hsk, PT ′k(xk)[mλ/2 + 1 : mλ]))))

=FHE.Dec(hsk, PT ′k(xk)[mλ/2 + 1 : mλ]) (4.14)

Then, by combining (4.11) and (4.14), (4.8) is proved.

By combining (4.7) and (4.8), we know d = d∗ according to Definition 8. Thus,

we proved that given input Qci to V S.Checker and V S.Checker′, the output Ac∗i =

(d∗, Cert) of V S.Checker′ and the output Ac′i = (d, Cert) of V S.Checker are the

same.

101

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Therefore, we know that when V S.Encode and V S.Encode′ have the same input-

output functionality, if

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

then for any input x of V S.Checker,

Pr[V S.Checker(x) = V S.Checker′(x)] ≥ 1− negl(K).

(The negligible error negl(K) is caused by the FHE scheme (see Definition 11) and

the bit commitment protocol (see Definition 15).) Hence, when V S.Encode and

V S.Encode′ have the same input-output functionality, (4.2) is proved.

Case 2: Case 2 discusses the situation where V S.Checker and V S.Checker′ have

the same input-output functionality. In this case, if

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

we can be sure that for any input x of V S.Encode,

Pr[V S.Encode(x) = V S.Encode′(x)] ≥ 1− negl(K)

The reason is as follows: For (Qei, Aei) ∈ QAE, the corresponding pair in QAC is

(Qci, Aci). Qei = (k, xk, PT ′k(xk), q2) is the input of V S.Encode′ and Aei is the output

of V S.Encode′. Qci = (i, p, y) is the input of V S.Checker′ and Aci = (d, Cert) is the

output of V S.Checker′. The relation of Qci and Qei is shown by (4.12). Because

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

we also know (4.7) is true (see line 24 in Algorithm 9).

102

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

On the other hand, because Ae∗i is the output of V S.Encode, given Qei as the

input to V S.Encode, (4.10) is true.

Moreover, according to V S.Checker’s construction (see lines 5-8 in Algorithm 8),

given Qci as input, (4.9) is true.

In this case, V S.Checker and V S.Checker′ have the same input-output function-

ality. We also just proved that (4.9) is true. Then we have

d = FHE.Dec(hsk, y) (4.15)

Hence, by combining (4.7),(4.15),(4.12) we have

Aei =SE.Dec(sk, d)

=SE.Dec(sk, FHE.Dec(hsk, y))

=SE.Dec(sk, SE.Enc(sk, FHE.Dec(hsk, PT ′k(xk)[mλ/2 + 1 : mλ]))

=FHE.Dec(hsk, PT ′k(xk)[mλ/2 + 1 : mλ])

Namely, we prove (4.11) is true. Then, by combining (4.11) and (4.10), we prove Aei =

Ae∗i . Namely, we proved that given Qei as input to V S.Encode and V S.Encode′, their

outputs are the same.

Therefore, we know that when V S.Checker and V S.Checker′ have the same

input-output functionality, if

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

then for any input x of V S.Encode,

Pr[V S.Encode(x) = V S.Encode′(x)] ≥ 1− negl(K).

103

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

(The negligible error negl(K) is caused by the FHE scheme (see Definition 11).)

Hence, when V S.Checker and V S.Checker′ have the same input-output functionality,

(4.2) is proved .

Case 3: Finally we consider the case where there exists at least an input Qci

such that V S.Checker(Qci) 6= V S.Checker′(Qci) and there exists at least an input

Qej such that V S.Encode(Qej) 6= V S.Encode′(Qej)
′. We are going to prove below

that when

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

(4.2) is true. First suppose i 6= j.

Given (Qej, Aej) and (Qcj, Acj, Scj), if V S.Checker(Qcj) = V S.Checker′(Qcj),

then this subcase falls into Case 2. From Case 2 we know that for (Qej, Aej) and

(Qcj, Acj, Scj), if

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

P r[V S.Encode(Qej) = V S.Encode′(Qej),

V S.Checker(Qcj) = V S.Checker′(Qcj)] ≥ 1− negl(K) (4.16)

Similarly, given (Qci, Aci, Scj) and (Qei, Aei), if V S.Encode(Qei) = V S.Encode′(Qei),

then this subcase falls into Case 1. From Case 1 we know that for (Qei, Aei) and

(Qci, Aci, Sci), if

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

P r[V S.Encode(Qei) = V S.Encode′(Qei),

V S.Checker(Qci) = V S.Checker′(Qci)] ≥ 1− negl(K) (4.17)

104

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Hence, the subcase we discuss below is i = j. Namely, the case where there

exist at least an input Qci and the corresponding Qei such that V S.Checker(Qci) 6=

V S.Checker′(Qci) and V S.Encode(Qei) 6= V S.Encode(Qei)
′.

On the other hand, we know from the construction of V S.Encode (see lines 28-33

in Algorithm 2) that (4.10) is true.

Moreover, (4.12) is also proved in Case 1.

Therefore, by combining (4.9), (4.10) and (4.12), we have

SE.Dec(sk, d∗) =SE.Dec(sk, FHE.Dec(hsk, y))

=SE.Dec(sk, SE.Enc(sk, FHE.Dec(hsk, PT ′k(xk)[mλ/2 + 1 : mλ])))

=FHE.Dec(hsk, PT ′k(xk)[mλ/2 + 1 : mλ])

=Ae∗i (4.18)

Because d∗ 6= d and Ae∗i 6= Aei, d and Aei do not necessarily satisfy (4.7). Accord-

ing to the interaction between V and the developer that runs V S.Checker′ in Case 1,

V S.Checker′ only knows the secret key sk of SE generated by V after V S.Checker′

generates d. Therefore, according to Definition 8, the probability of correctly creating

a ciphertext of Aei (which is d) without knowing the secret key sk is negligible.

Pr[SE.Dec(sk, d) = Aei] = Pr[SE.Enc(sk,Aei) = d] ≤ negl(K) (4.19)

However, according to V S.Eval’s construction (see line 24 in Algorithm 9), when

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

(4.7) is true. Thus, (4.7) contradicts with (4.19). Therefore we know that there does

105

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

not exist an input Qci and the corresponding Qei such that

Pr[V S.Checker(Qci) 6= V S.Checker′(Qci),

V S.Encode(Qei) 6= V S.Encode(Qei)
′] ≥ negl(K).

In other words, for any Qci and the corresponding Qei we have

Pr[V S.Checker(Qci) = V S.Checker′(Qci) or

V S.Encode(Qei) = V S.Encode(Qei)
′] ≥ 1− negl(K). (4.20)

Therefore, by combining (4.16), (4.17) and (4.20), we know that when

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

(4.2) is correct.

Now we are going to prove that when

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

(4.3) is correct.

Because according to V S.Eval’s construction in Algorithm 9 (see line 1 in Al-

gorithm 9), V S.Eval of Algorithm 9 outputting 1 implies V S.Eval of Algorithm 3

outputting 1. Thus, we know (3.1) is true. (In (3.1), V can only ask the developer

to run V S.Encode and V S.Path.) We use V V S.Checker to denote that V can ask the

developer to run V S.Checker. If V can ask the developer to run V S.Checker, (3.1)

106

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

still holds. (3.1) will become the following:

Prr[V (1K , G, Fspec, V GAr, CP)(r) =

V V S.Checker(1K , G′, Fspec, V GAr, CP)(r)] ≥ 1− negl(K), (4.21)

The reason that (4.21) holds is as follows: V S.Checker’s job is to check whether

the developer runs V S.Encode (see Case 2 of the proof of Theorem 5) and when

V S.Eval of Algorithm 9 outputting 1, V follows the protocol of Figure 4.3 and

knows that the developer runs V S.Encode. The rest part of what V does in the

protocol of Figure 4.3 is the same as what V does in the protocol of Figure 3.2.

Therefore, V V S.Checker(1K , G′, Fspec, V GAr, CP)(r) in (4.21) outputs the same as what

V (1K , G′, Fspec, V GAr, CP)(r) outputs in (3.1).

We have already proved that when

V S.Eval(1k, QAE, QAC , G
′, hpk, U) = 1,

(4.2) is correct. Thus with (4.21), we know that the following is true:

Prr[V (1K , G, Fspec, V GAr, CP)(r) =

V V S.Checker′(1K , G′, Fspec, V GAr, CP)(r)] ≥ 1− negl(K), (4.22)

where in the above equation the developer runs V S.Checker′ and V S.Encode′. Be-

cause (4.22) is (4.3), thus (4.3) is true.

Similarly, we can prove that (4.1) is true.

Thus, we proved Definition 21.

107

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Theorem 6. The verification scheme VS in subsection 4.2.1 and 4.2.2 satisfies Def-

inition 20.

Proof. Theorem 5 and Theorem 4 imply Theorem 6.

108

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Algorithm 8 V S.Checker(i, p, y)

1: if |y| 6= mλ or |p| 6= mλ then return null
2: else if (@(Qk, Ak) ∈ QAE such that Qk = (i, xi, PT ′i (x

i), q2) and p = PT ′i (x
i) or

@(Qek, Aek) ∈ QAE such that (Qek, Aek) = ((i, uij, null, q1), w
i
j) and p = wi

j then
3: return null
4: else
5: for all i ∈ {0, ...,m− 1} do
6: bi+1 ← FHE.Dec(hsk, y[i ∗ λ+ 1 : (i+ 1) ∗ λ])
7: end for
8: The developer starts the bit commitment protocol described in Section 2.6.

The developer wants to commit to the verifier d = b1, ..., bm. The developer asks
V to provide R as specified in commit stage (1)

9: V sends R to the developer
10: The developer does its part in commit stage (2) and sends to V Encd
11: The developer asks for V to send Fsecret

12: V sends Fsecret to the developer
13: if Fsecret 6= (SE.Enc, FHE.Enc(hpk, sk)) where sk is a secret key of SE

then return null
14: end if
15: if ∃(Qek, Aek) ∈ QAE such that Qek = (i, xi, PT ′i (x

i), q2), p = PT ′i (x
i) and

PT ′i ’s output is an intermediate output according to Gstruc then
16: if FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), p[1 : m/2 ∗ λ]) 6= y then
17: return null
18: end if
19: else if ∃(Qek, Aek) ∈ QAE such that Qek = (i, uij, null, q1), Aek = p and

PT ′i ’s input is an external input according to Gstruc then
20: if FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), p) 6= y then
21: return null
22: end if
23: else
24: if FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), p[m/2 ∗ λ + 1 : m ∗ λ]) 6= y

then
25: return null
26: end if
27: end if
28: end if
29: return d, Cert

109

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Algorithm 9 V S.Eval(1K , QAE, QAC , G
′, hpk, U)

1: if V S.Eval(1K , QAE, G
′, hpk, U)=0 then /* V S.Eval in this line refers to Algo-

rithm 3 */
2: return 0
3: end if
4: for all (Qei, Aei) ∈ QAE do
5: if @(Qci, Aci, Sci) ∈ QAC then return 0
6: else find the corresponding (Qci, Aci, Sci) ∈ QAC where Qci = (i, p, y), Aci =

(d′, Cert), Sci = (SE.Enc, FHE.Enc(hpk, sk), Encd, R)
7: end if
8: V does Bob’s part in the revealing stage in Definition 2.6, taking
Cert, Encd, R, d

′ as input and checks whether d′ is the value d committed to
V in the commit stage

9: if V S.Checker tries to reveal a different sequence of bits d′ other than d then
return 0

10: end if
11: if Qei is (i, vij, null, q1) then
12: if FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), p) 6= y then return 0
13: end if
14: if SE.Dec(sk, d) 6= vij then return 0
15: else return 1
16: end if
17: else if Qei is (i, xi, PT ′i (x

i), q2) and PT ′i (x
i) is an external output then

18: if FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), p[mλ/2 + 1 : mλ]) 6= y then
return 0

19: else if SE.Dec(sk, d) 6= Aei then return 0
20: else return 1
21: end if
22: else if Qei is (i, xi, PT ′i (x

i), q2) and PT ′i (x
i) is an intermediate output then

23: if FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), p[1 : mλ/2]) 6= y then re-
turn 0

24: else if SE.Dec(sk, d) 6= Aei then return 0
25: else return 1
26: end if
27: end if
28: end for

110

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Algorithm 10 O3(i, p, y)

1: if |y| 6= mλ or |p| 6= mλ then
2: return null
3: else if @(Qek, Aek) ∈ QAE such that Qek = (i, xi, PT ′i (x

i), q2) and p = PT ′i (x
i)

or @(Qek, Aek) ∈ QAE such that (Qek, Aek) = ((i, uij, null, q1), w
i
j) and p = wi

j

then
4: return null
5: else
6: O3 finds out the pair (Qek, Aek) from QAE that matches the input (i, p, y).
7: if Qek is (i, uij, null, q1) then
8: a← uij.
9: else a← Aek.
10: end if
11: Because O3 knows the secret of the adversary A, it knows the secret key sk

and SE.Enc. Thus, b1b2...bm ← SE.Enc(sk, a)
12: The developer starts bit commitment protocol described in Section 2.6. The

developer wants to commit to V d = b1, ..., bm and asks V to provide R as specified
in commit stage (1)

13: V sends R to the developer
14: The developer does its part in commit stage (2) and generates Cert. It sends

Encd to V
15: The developer asks for V to send Fsecret

16: V sends Fsecret to the developer
17: if Fsecret 6= (SE.Enc, FHE.Enc(hpk, sk)) then return null
18: end if
19: if ∃(Qek, Aek) ∈ QAE such that Qet = (i, xi, PT ′i (x

i), q2), p = PT ′i (x
i) and

PT ′i ’s output is an intermediate output according to Gstruc then
20: if FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), p[1 : m/2 ∗ λ]) 6= y then
21: return null
22: end if
23: else if ∃(Qek, Aek) ∈ QAE such that Qek = (i, uij, null, q1), Aek = p and

PT ′i ’s input is an external input according to Gstruc then
24: if FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), p) 6= y then
25: return null
26: end if
27: else
28: if FHE.Eval(hpk, SE.Enc, FHE.Enc(sk), p[m/2 ∗ λ + 1 : m ∗ λ]) 6= y

then
29: return null
30: end if
31: end if
32: return d, Cert
33: end if

111

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this work we studied the problem of protecting non-disclosed information of a pro-

gram during the verification of the program. We proposed the concept of Secure and

Trusted Verification (STV). The scheme provides protection of non-disclosed infor-

mation about the program from the verifier and prevents malicious activities on both

the developer and the verifier’s side. Moreover, we came up with an implementation

of STV and showed the security of this implementation. Nevertheless, there are still

some open problems which we should review in the following section.

112

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

5.2 Future work

5.2.1 Improving efficiency

Yao’s garbled circuits

In this thesis, we came up with an implementation of STV by using fully homo-

morphic encryption (FHE) to encrypt the tables. Applying our implementation to

a large table graph may involve many times of FHE. Although FHE is a very pow-

erful tool, its efficiency is a problem. Hence efficiency will be a big problem for our

implementation in practical applications. Thus, in order to improve the efficiency

of our implementation, there are two research directions: Either we come up with

faster FHE schemes, or replace FHE with some other cryptographic primitives that

are more efficient (and probably the security of the scheme is weakened). In this

section, we mainly discuss the possibility of replacing FHE with other cryptographic

primitives in our implementation.

As mentioned in Section 1.2, Yao’s garbled circuit (Yao, 1982) is a way to hide a

circuit, while allowing anyone to evaluate the garbled circuit. Given a circuit C with

an input x, it generates a garbled circuit C ′ and an encoded input x′. Evaluation

of C ′(x′) will generate C(x) without leaking any information about C or x other

than C(x). An intuition to apply Yao’s garbled circuit to our implementation is for

the developer to construct a circuit C for every rhs function f of the tables in the

table graph G and then garble these circuits. In this way the developer constructs

a new table graph G′. Then the developer gives G′ with the garbled circuits to the

verifier and let the verifier evaluate. Whenever the verifier chooses an input x to a

table (whose rhs garbled circuit is C and the original rhs function is f), it asks the

113

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

developer for an encoded input Enc(x) of this input x. Then the verifier can evaluate

the table with the encoded input Enc(x) and get the output, which will be C(x). In

this way we hide the rhs functions of every table. But there are still two unsolved

problems: First, the intermediate outputs of G′ leak the intermediate outputs of G,

which makes this implementation less secure. Second, evaluating the same garbled

circuit with more than one encoded input would compromise the security of the

garbled circuit, hence the verifier is only allowed to evaluate a garbled circuit with

only one encoded input, which is a huge restriction.

Goldwasser et al. in (Goldwasser et al., 2013) came up with a construction

of reusable garbled circuit that allows many time evaluation of the garbled circuit.

Though this does solve the one-time usage problem above, the construction itself

includes FHE. Therefore applying this technique to our implementation will end up

with the same efficiency problem.

On the other hand, the advantage of garbled circuits is that it is usually consid-

ered to be more efficient than FHE schemes. In (Huang et al., 2011) the efficiency

of garbled circuits and a homomorphic encryption scheme were compared in Ham-

ming distance computation where garbled circuit technique won by a great margin.

Therefore, using garbled circuits to hide information is a future problem worth study-

ing. Though we may come up with a garbled circuits construction with less security,

achieving better efficiency is worth the effort.

Verifiable computing

In Section 1.2 we mentioned verifiable computing. A series of work ((Cormode et al.,

2012), (Thaler et al., 2012), (Vu et al., 2013), (Setty et al., 2012a), (Setty et al.,

114

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

2012b), (Parno et al., 2013), (Ben-Sasson et al., 2013)) implemented verifiable com-

puting and achieved ”near practical performance” (Walfish and Blumberg, 2015).

In our current implementation in Chapter 3 and 4, in order to check the correctness

of the verifier’s evaluation of the program, repeating the whole evaluation is needed,

which in some occasion is impractical. If we can somehow come up with a method

to hide the computation in verifiable computing, then it can be applied to our im-

plementation of secure and trusted verification and probably we can achieve better

efficiency, because it generates verifiable computation results whose correctness can

be verified without repeating the whole computation.

5.2.2 Hiding the graph structure

In our implementation of Trustworthy Verification of Non-disclosed Information in

Section 3.2 and 4.2, the graph structure of the original table graph G is completely

revealed in the encrypted table graph G′. As stated in Section 3.2, revealing the graph

structure is necessary in order to do more than just black box verification. However,

making that compromise does make our implementation less secure than encrypting

the whole implementation into one table. The verifier may figure out the content

of the table graph G by merely observing the graph structure of G. For example,

suppose G uses a widely-used algorithm A whose table graph is a subgraph of G and

the verifier knows this subgraph. Then if the verifier finds out that this subgraph of

G highly resembles the table graph of A, it may figure out that G includes algorithm

A, which however, should be kept secret. Thus, hiding the graph structure of G is

not a trivial problem.

On the other hand, as already mentioned, the idea of condensing the table graph

115

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

G into one big table is not a good solution to hiding G’s graph structure. The verifier

needs G’s graph structure to do non-black box verification.

We propose the idea of creating a larger table graph LG such that the table graph

G becomes its subgraph or will become its subgraph after certain transformation. The

encrypted version of LG, which we denote as LG′, will reveal the graph structure of

LG. And by using LG′ to do the verification, the verifier does the verification of

G′, which is the encrypted version of G. Moreover, though LG includes information

about G’s graph structure, there may be ways to hide G inside LG such that it is

very hard to figure out G’s graph structure from LG’s graph structure.

A similar problem exists in social network systems and databases. It is the problem

of identity anonymization on graphs. For example, a database of social connections

in a social network may need to be released for research. The connections can be

modelled as a graph, and, before the release, the identities of the nodes of the social

network graph need to be anonymized. However, merely deleting information about

the nodes themselves may not be secure enough, because the graph structure may

reveal information about the identity of the node.

There are already some papers on how to hide the graph structure in order to

anonymize the identity of the nodes, e.g. (Zhou and Pei, 2008) and (Cheng et al.,

2010). We believe methods proposed in these papers may be useful to us.

116

Bibliography

Alspaugh, T. A., Faulk, S. R., Britton, K. H., Parker, R. A., and Parnas, D. L. (1992).

Software requirements for the a-7e aircraft. Technical report, DTIC Document.

Arora, S. and Safra, S. (1998). Probabilistic checking of proofs: A new characteriza-

tion of np. Journal of the ACM (JACM), 45(1), 70–122.

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., and

Yang, K. (2001). On the (im) possibility of obfuscating programs. In Advances in

cryptologyCRYPTO 2001, pages 1–18. Springer.

Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., and Virza, M. (2013). Snarks

for c: Verifying program executions succinctly and in zero knowledge. In Advances

in Cryptology–CRYPTO 2013, pages 90–108. Springer.

Cheng, J., Fu, A. W.-c., and Liu, J. (2010). K-isomorphism: privacy preserving

network publication against structural attacks. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of data, pages 459–470. ACM.

Collberg, C., Thomborson, C., and Low, D. (1997). A taxonomy of obfuscating trans-

formations. Technical report, Department of Computer Science, The University of

Auckland, New Zealand.

117

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Cormode, G., Mitzenmacher, M., and Thaler, J. (2012). Practical verified compu-

tation with streaming interactive proofs. In Proceedings of the 3rd Innovations in

Theoretical Computer Science Conference, pages 90–112. ACM.

Gentry, C. (2009). A fully homomorphic encryption scheme. Ph.D. thesis, Stanford

University.

Gentry, C., Halevi, S., and Vaikuntanathan, V. (2010). i-hop homomorphic encryption

and rerandomizable yao circuits. In Advances in Cryptology–CRYPTO 2010, pages

155–172. Springer.

Goldwasser, S., Kalai, Y. T., and Rothblum, G. N. (2008). One-time programs. In

Advances in Cryptology–CRYPTO 2008, pages 39–56. Springer.

Goldwasser, S., Kalai, Y., Popa, R. A., Vaikuntanathan, V., and Zeldovich, N. (2013).

Reusable garbled circuits and succinct functional encryption. In Proceedings of the

forty-fifth annual ACM symposium on Theory of computing, pages 555–564. ACM.

Hayhurst, K. J., Veerhusen, D. S., Chilenski, J. J., and Rierson, L. K. (2001). A

practical tutorial on modified condition/decision coverage.

Huang, Y., Evans, D., Katz, J., and Malka, L. (2011). Faster secure two-party

computation using garbled circuits. In USENIX Security Symposium, volume 201.

Katz, J. and Lindell, Y. (2014). Introduction to modern cryptography. CRC Press.

Kilian, J. (1989). Uses of randomness in algorithms and protocols. Ph.D. thesis,

Massachusetts Institute of Technology.

118

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Lynn, B., Prabhakaran, M., and Sahai, A. (2004). Positive results and techniques for

obfuscation. In Advances in Cryptology-EUROCRYPT 2004, pages 20–39. Springer.

Malkhi, D., Nisan, N., Pinkas, B., Sella, Y., et al. (2004). Fairplay-secure two-party

computation system. In USENIX Security Symposium, volume 4. San Diego, CA,

USA.

Naor, M. (1991). Bit commitment using pseudorandomness. Journal of cryptology,

4(2), 151–158.

Parno, B., Howell, J., Gentry, C., and Raykova, M. (2013). Pinocchio: Nearly practi-

cal verifiable computation. In Security and Privacy (SP), 2013 IEEE Symposium

on, pages 238–252. IEEE.

Sander, T., Young, A., and Yung, M. (1999). Non-interactive cryptocomputing for nc

1. In Foundations of Computer Science, 1999. 40th Annual Symposium on, pages

554–566. IEEE.

Setty, S. T., McPherson, R., Blumberg, A. J., and Walfish, M. (2012a). Making

argument systems for outsourced computation practical (sometimes). In NDSS.

Setty, S. T., Vu, V., Panpalia, N., Braun, B., Blumberg, A. J., and Walfish, M.

(2012b). Taking proof-based verified computation a few steps closer to practicality.

In USENIX Security Symposium, pages 253–268.

Standard, D. E. (1977). Fips 46. NBS (Jan. 77).

Thaler, J., Roberts, M., Mitzenmacher, M., and Pfister, H. (2012). Verifiable compu-

tation with massively parallel interactive proofs. In USENIX HotCloud Workshop.

119

M.Sc. Thesis - Yixian Cai McMaster - Computing and Software

Vaikuntanathan, V. (2011). Computing blindfolded: New developments in fully ho-

momorphic encryption. In Foundations of Computer Science (FOCS), 2011 IEEE

52nd Annual Symposium on, pages 5–16. IEEE.

Valiant, L. G. (1976). Universal circuits (preliminary report). In Proceedings of the

eighth annual ACM symposium on Theory of computing, pages 196–203. ACM.

Vu, V., Setty, S., Blumberg, A. J., and Walfish, M. (2013). A hybrid architecture

for interactive verifiable computation. In Security and Privacy (SP), 2013 IEEE

Symposium on, pages 223–237. IEEE.

Walfish, M. and Blumberg, A. J. (2015). Verifying computations without reexecuting

them. Communications of the ACM, 58(2), 74–84.

Wang, C., Hill, J., Knight, J., and Davidson, J. (2000). Software tamper resistance:

Obstructing static analysis of programs. Technical report, Technical Report CS-

2000-12, University of Virginia, 12 2000.

Wassyng, A. and Janicki, R. (2003). Tabular expressions in software engineering. In

Proceedings of ICSSEA, volume 3, pages 1–46.

Yao, A. C. (1982). Protocols for secure computations. In 2013 IEEE 54th Annual

Symposium on Foundations of Computer Science, pages 160–164. IEEE.

Zhou, B. and Pei, J. (2008). Preserving privacy in social networks against neighbor-

hood attacks. In Data Engineering, 2008. ICDE 2008. IEEE 24th International

Conference on, pages 506–515. IEEE.

120

