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ABSTRACT

Production planning is a critical component in supply chain management. The goal
of production planning is to meet market demand while minimizing operational costs.
There is inherent uncertainty in manufacturing systems due to unscheduled shutdowns
and variable production rates. Additionally, actual demand levels cannot be predicted
accurately. As a result, there is value in creating a production plan that considers
these uncertainties.

Scheduling is also a critical component in supply chain management, but at a smaller
level of time granularity. Industrially sized scheduling problems are often on such a
large scale that the problem is computationally difficult to solve. Consequently, there
is value in creating a mathematical model and selecting a solution algorithm that
minimizes this burden.

This work aims to determine the benefit of a stochastic production planning model
over its deterministic counterpart. The problem utilizes a multi-period, multi-product
aggregated planning model with a finite horizon in a steel manufacturing environment.
The production and demand uncertainty is modelled as a two-stage stochastic mixed
integer linear program. The problem utilizes a Monte Carlo simulation technique to
create the scenarios used in the optimization. The objective of the optimization is
to determine the production volume and inventory levels for each discrete time inter-
val while minimizing the weighted cost of production and surplus. The production
decisions must be non-anticipative, immediately implementable, and are subjected
to production capacity and inventory holding constraints. This work also investi-
gates the advantages a cost-based model has over its goal-programming counterpart.
Finally, this thesis develops several mathematical batch scheduling models that use
different modelling paradigms in an effort to compare their computational complexity.
With the selection of an appropriate model, model extensions are added to replicate
an industrially relevant steel mill scheduling problem for a finishing line using data
from a facility located in Ontario, Canada.
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Chapter 1

Introduction

1.1 Motivation and Research Objectives

A supply chain is an interconnected network of business functions involved in procur-

ing, producing, distributing and selling a product or service. A supply chain also

consists of multiple stakeholders including suppliers, manufacturers, warehouses, re-

tailers and customers. Each individual business function requires extensive planning

in order to meet the stakeholders demands while remaining competitive in today’s

environment. Figure 1.1 shows the network between the business functions and stake-

holders, and the level of planning required to successfully navigate this problem. This

becomes particularly complex due to horizontal and vertically integrated processes

that require cross-functional co-ordination. Decisions made by one stakeholder often

affect the upstream and downstream functions. Additionally, decisions made at longer

term time horizons often affect shorter time horizon decisions. Steel manufacturers

are a classic example of companies with a complex supply chain. In particular, In-

1
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Figure 1.1: Supply chain planning matrix (Meyr et al., 2002)

tegrated Steel Production (ISP) includes all aspects of steel making required to turn

raw ingredients into value-added steel. An ISP facility directly connects the steel

making furnace, continuous caster, hot rolling mill, cold rolling mill and finishing

mill into a synchronized production flow. These processing units will be discussed in

detail in the following chapter. The important concept is that this type of integrated

production scheme has many advantages when compared to a traditional segregated

process including improved productivity, reduced energy consumption, and enhanced

product quality (Tang et al., 2001). As a consequence, this large-scale facility relies

heavily on a well developed production plan and schedule in order to realize these

benefits of integration.

Mathematical optimization is one method for solving the complex supply chain plan-

ning problem found in industrial applications like steel making. An area of focus in

supply chain optimization includes the development of models for strategic planning

of large-scale multi-period optimization problems and their integration with schedul-

ing problems (Grossmann, 2004). Grossmann (2004) has also stated that an efficient

solution of these models and their extensions is still lacking when considering prob-

lems of industrial proportions. Finally, Grossmann (2004) has identified that the area

of incorporating uncertainty through the use of stochastic optimization models is an

2
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area that is ripe for advances.

The problems and opportunities outlined above have motivated a number of research

objectives investigated in this thesis. The first objective is to develop a deterministic

and stochastic production planning optimization model suitable for use in an ISP

facility. This will allow for a quantification of the benefits of including uncertainty

in a medium term planning model. The second objective is to investigate several

different deterministic ISP scheduling models in an effort to produce a solution to an

industrially sized problem in a computationally tractable way.

1.2 Main Contributions

The objectives discussed above have led to a number of contributions to the research

literature which are outlined in the following:

1. Stochastic aggregate production planning formulation. A two-stage

stochastic aggregate production planning model is developed for the inclusion

of demand uncertainty. A case study is presented to outline the benefits of in-

cluding uncertainty in the optimization model in a non-anticipative formulation

rather than a reactionary deterministic formulation.

2. Cost savings by objective function selection in stochastic production

planning. The effect on the profitability of an ISP in regards to the selection of

different objective functions is investigated. In particular, the tradeoffs between

a goal-programming objective function, a strictly cost-based objective function,

and a compromise between the two is explored in a case study.

3
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3. Analysis of mathematical programming formulations for use in schedul-

ing problems. Modelling decisions and their impact in regards to computa-

tional efficiency is investigated. Several modelling paradigms of varying time

representation are developed and compared.

4. Constraint programming formulation for steel finishing line schedul-

ing. Constraint programming is an alternative to mathematical programming

for solving combinatorial optimization problems. This paradigm is contrasted

against the traditional mathematical programming models and introduced to

the process systems community. This formulation is extended to be imple-

mentable at an ISP facility. Direction for future research areas is provided.

1.3 Thesis Overview

Chapter 2 – Literature Review

An overview of relevant research areas is provided. This includes a survey of current

literature and outlines key terms and motivations for the research area. The areas

include integrated steel production, aggregate production planning, short term batch

scheduling including constraint programming, and optimization under uncertainty.

Chapter 3 – Aggregate Production Planning Optimization

This section first provides context to the industrial application problem. A determin-

istic aggregate production planning model is developed as the control. Incremental

improvements on this model are made in the form of including uncertainty, and mov-

ing the entire model to cost basis. The benefits of these incremental improvements

are quantified in two case studies using industrially relevant data.

4
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Chapter 4 – Scheduling Using Mathematical and Constraint Programming

A series of mathematical optimization models are introduced in an effort to solve

an industrially sized batch scheduling problem. These models are compared with a

constraint programming model in terms of computational complexity in a case study.

The constraint programming model is extended to solve a scheduling problem using

industrial constraints and data.

Chapter 5 – Conclusions and Recommendations

Concluding remarks on the benefits of stochastic production planning and the proper

selection of scheduling models are given. Key results of the industrial case studies

are presented and the main conclusions are highlighted. Recommendations for future

areas of research are proposed.

5



Chapter 2

Literature Review

The intent of this chapter is to provide a review of relevant concepts in the research

literature. The main topics under consideration include current work in integrated

steel production, aggregate production planning, short term batch scheduling, and

optimization under uncertainty. Each section will provide direction, context and

motivation to key reviews and important papers.

2.1 Integrated Steel Production

The reader is directed towards a review of the planning and scheduling systems for

integrated steel production by Tang et al. (2001). In this paper, Tang discusses

the emergence of a single integrated facility that incorporates primary and finishing

operations. Primary operations include processing elements such as steel making,

continuous casting, and hot rolling. Finishing operations include processing elements

such as cold rolling, pickling, annealing, galvanizing and tinning. The steel mill used

6
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in the case studies of this thesis is highly integrated and as such, this research paper

is particularly relevant. The reason for the emergence of this integrated facility is

due to the benefits of improved productivity, reduced energy consumption, enhanced

product quality and shortened wait times between stages (Tang et al., 2001). As

a consequence, the procedure of planning and scheduling a facility like this becomes

increasingly difficult due its large scale and interconnectedness. This problem becomes

additionally complex since the objectives of the different production stages are often

conflicting. In order to handle this large scale problem, most researchers break down

the problem into its individual processing elements. Following suit, this literature

review will start with the processing element titled Primary Operations.

2.1.1 Primary Operations

Steel making involves selecting and processing material in large blast or electric arc

furnaces where iron ore is reduced into molten metal and combined with specific in-

gredients to produce a certain grade of steel. Steel making is an energy-intensive and

time-critical process with highly complex and constrained environments (Harjunkoski

et al., 2003). Additionally, the decisions made are still often performed manually. As

a result, extensive research has been conducted that attempts to create a mathemat-

ical model of the process environment from which to optimize. Continuous casting

is one particular processing element that has received most of the research attention,

specifically in the operations research literature community. The reason for its attrac-

tion is that it is typically the bottleneck in steel making (Bellabdaoui and Teghem,

2006). Continuous casting is the process of drawing molten steel from a tundish into

a solid steel band. The typical casting problem aims to determine the sequencing,

7
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timing, and allocation of steel to a specific processing unit. There are strict con-

straints on material balances and timing (Atighehchian et al., 2009). The hot mill

consists of a series of rollers which exert extreme pressures on the steel as it passes

along a conveyor. The sum of these forces of individual rollers reduces the steel slab

into a coil with specific dimensions of length, width and thickness. The metallurgical

properties are controlled by the temperature and rate of temperature change during

the process. The reader is directed towards the work of Bellabdaoui and Teghem

(2006), Harjunkoski et al. (2003), Tang et al. (2000) for more information.

2.1.2 Finishing Operations

Finishing operations planning and scheduling in a steel mill is a relatively unexplored

area of research compared to primary operations. However, it behaves largely like

a flow-shop scheduling problem, which has received much attention. The subunits

included in finishing operations include all units after the hot mill such as picking,

annealing/tempering, and various coating operations. Pickling removes the surface

oxidation created by the extreme heat used in primary operations. One of the exact

pickling processing units used in the case studies of this thesis is explored in Sekiguchi

et al. (1996). However, this particular paper was focused on advanced control of the

unit and not planning or scheduling optimization. Annealing and tempering is the

application of heat to change the ductility of the steel. Coating includes galvanization

and tinning that are used to prevent future rusting.

The leading introduction to finishing operations in the steel industry is provided by

Okano et al. (2004). This author also concluded that there are no papers in the liter-

ature that currently address the finishing line scheduling problem. In this paper, the

8
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Figure 2.1: Steel mill allocation problem (Okano et al., 2004)

authors replace a scheduling process currently solved manually with an optimization

algorithm that creates campaigns (specific production runs) for steel coils on four

continuous processing lines for one month of operation. The authors explored two

subproblems: campaign allocation and campaign sequencing. The former involves

creating campaigns for each unit and partitioning coils into these campaigns. A di-

agram of this process can be found in Figure 2.1. The latter problem involves the

ordering of coils inside a campaign which is a problem with a complex list of con-

straints. Each coil has specific properties including width, thickness, length, type,

due date, priority, and grade. Certain coils may not be allowed to be linked together

if their temperature, width, or thickness are sufficiently different. Additionally, the

edges of the steel coil cause marring of the rollers which in turn transfers blemishes

onto the subsequent steel products. As a result, the sequencing of the slabs effects

the product quality. Finally, any significant change in the type of subsequent steel

coils may require downtime in order to repair or replace the rollers. The number of

coils assigned to each campaign is between 50 and 500, making this a particularly

9
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Figure 2.2: Steel mill sequencing problem (Okano et al., 2004)

difficult problem to solve. A diagram of this problem can be found in Figure 2.2.

The authors solved this problem using a four tiered methodology. First, to reduce

the complexity of the problem, clustering was used, which groups together coils with

similar parameters. Second, each cluster is constrained to a time window, which is

localized around the release dates and due dates. Third, the allocation problem and

scheduling problems are removed from each other. Allocation of coils to campaigns

is determined first, followed by a sequencing of the coils. The solution method used

is similar to a traveling salesperson search heuristic. The authors were able to solve

20 to 25 thousand coils within a one-hour time limit on solution time.

The steel making, continuous casting, hot/cold rolling, and finishing mill planning and

scheduling problems discussed above are all combinatorial in nature. The solution

methodologies currently employed to solve these problem are outlined in the following

section.

10



Patrick Carter - M.A.Sc. Thesis - Chemical Engineering 2.1

2.1.3 Solution Methodologies

A number of different solution methodologies have been proposed to solve planning

and scheduling problems in the research literature. These methodologies can be

broken down into several categories including:

1. Mathematical Optimization: This method establishes a mathematical model of

the planning or scheduling problem and passes the model to a solution algorithm

that solves the problem to a specified solution tolerance.

2. Intelligent Search: This method uses random search or heuristic methods such

as genetic algorithms or simulated annealing in order to find a feasible solution

to the problem in a comparatively shorter amount of time when considering

Mathematical Optimization.

3. Constraint Programming: This method also uses a mathematical model of the

problem but the solution algorithm searches only the feasible region. Addition-

ally, the model allows for logical constraints and uses the constraints to direct

the solution algorithm.

4. Manual Heuristics: This method uses a scheduler’s expertise and experience to

follow a series of steps that form a near-optimal solution.

5. Human-Machine Coordination: This method combines the previous ideas and

allows a human scheduler to interact with a computerized scheduling system.

There are positives and negatives to all of these methods. However, the solution

methodologies used in this thesis focus on mathematical optimization and constraint

11
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programming. As such, these topics will be discussed in detail in the following sec-

tions.

Mathematical Optimization

Mathematical Optimization is the science of determining the best solution to mathe-

matically defined problems. The problems are defined using models of reality in some

form or another that include an objective or goal, and optionally include a series of

equalities and inequalities that restrict the feasible region. Formally, this is defined

in Equations 2.1 through 2.3

Minimize f(x), x = [x1, x2, ..., xn]T ∈ Rn (2.1)

gj(x) ≤ 0, j = 1, 2, ...,m (2.2)

hj(x) = 0, j = 1, 2, ..., r (2.3)

The components of xi are considered the variables and the optimum of vector x that

solves the set of equations is denoted by x∗ with an objective function value f(x∗)

(Snyman, 2005). Practically, the number of variables in engineering problems is often

very high and analytical solutions are not possible. As a result, numerous solution

algorithms that are tailored to a specific type of problem have emerged. Optimization

involves the development of a mathematically accurate model and its use within an

appropriate solution algorithm in an effort to find the optimum x∗.

The problem structure often found in planning and scheduling problems is a Mixed

Integer Linear Program (MILP). A MILP conforms to the structure introduced in

Equation 2.1 thorough 2.3 with the addition of the constraint 2.4 that states that

12
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some variables are restricted to be integer-valued.

xi ∈ Z j = 1, 2, ..., n (2.4)

This is often due to the binary variables introduced for assigning production to a

unit or worker, or deciding the temporal order of jobs, referred to as sequencing. The

Branch and Bound algorithm is often used in the solution of MILPs. To explain this

algorithm, an example problem is introduced in Equations 2.5 through 2.8.

Min f = x+ 0.8y + 1.3z (2.5)

s.t. x < y − 1.1 (2.6)

z < x− 2.7 (2.7)

x, y, z ∈ {0, 1, 2, 3, 4, 5} (2.8)

A commercial solver, such as CPLEX, would perform a branch and bound based

search that is outlined in Figure 2.3. The first step is to relax the integer constraints

and obtain a continuous solution. This solution may be non-integer and forms the

root node of the solution tree. The algorithm proceeds by creating two nodes that

bound one of the variables with a non-integer solution to its closest integer value,

with the x-variable chosen here. Using this method, one infeasible solution and one

non-integer solution is found. This method is repeated for the z variable that remains

non-integer. The final solution has an objective function value of 7 and all variables

remain integer. The solution of a node problem provides a lower bound for all the

branch subproblems that emanate from it. If this lower bound exceeds a valid upper

bound obtained by an integer solution to a node problem, then the node can be

13
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Figure 2.3: Branch and bound algorithm

eliminated. This pruning process or fathoming procedure can substantially reduce

the branch and bound search space. In the next section, a solution algorithm that is

fundamentally different is explored and compared to the standard MILP branch and

bound procedure.

An early attempt at mathematical optimization in a steel mill was performed by

Redwine and Wismer (1974) who created a deterministic MILP to minimize lateness

when considering sequencing and resource availability constraints. This problem was

solved for 102 orders using a Benders partitioning approach. Petersen et al. (1992)

developed a strategy to synchronize the reheat furnace and the rolling mill while solv-

ing the sequencing problem using a heuristic based on a modified greedy algorithm.

Jacobs et al. (1988) created a multi-objective model using a goal programming ap-

proach for the hot mill section of a steel plant that optimized the sequence of coils

14
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based on their inventory cost, profit, and marring of rollers. This model was solved

using a heuristic. Wright et al. (1984) developed a mathematical programming model

for the hot strip mill that was found to be too cumbersome to solve with conventional

resources.

Fabian (1958) proposed a steel planning model that determined the economical usage

of materials in an integrated steel mill and connected the various stages of production

to form a master model. Fabian (1967) then went on to develop a production plan-

ning model for the blast furnace. Sasidhar (1991) formulated the production planning

of a steel mill as a maximal flow problem in a Multiple Arc Network as well as the

algorithm used to solve it while considering the prioritization of certain customer

orders. Chen and Wang (1997) created a linear programming model for a Canadian

steel mill that integrated steel production and distribution for one plant and sev-

eral finishing factories taking into consideration raw materials, capacity allocation,

customer demands, material supply, and distribution. Harjunkoski and Grossmann

(2001) presented a decomposition strategy for the scheduling of a steel plant. The

authors proposed to break the large original problem into subproblems using special

features of steel making to avoid the need for complex constraints. The special fea-

tures include breaking customer orders into groups of similar orders called heats and

solving these heats separately. This method was found to work for problems up to

100 orders in size to within 3% of the global optimum.

Constraint Programming

Constraint Programming (CP) is a relatively new solution methodology to optimiza-

tion problems that has emerged from constraint satisfaction research that has histor-

15
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Figure 2.4: Constraint programming propagation algorithm

ically been used to solve feasibility problems. CP is described by a set of variables

with a set of possible values, and a set of constraints that restricts the set of possible

values of the variable called a domain (Baptiste et al., 2001). The key behind CP is

that constraints can be used for more than simply testing the validity of a solution.

Rather, they can be actively used to direct the search and reduce the computation

effort used, called constraint propagation. An example of constraint propagation is

provided for the same example introduced in the previous section. This can be seen

in Figure 2.4. This methodology works by systematically reducing the domains of the

variables according to the constraints. Equation 2.6 is applied to the initial domain to

reduce the feasible search space. With this new domain, Equation 2.7 can be applied

to further reduce the variables domains. Finally, Equation 2.6 can be reintroduced

until the only remaining feasible solution is found. The objective function can be eval-

uated and the solution can be found to be identical to that generated by the Branch

and Bound method. If the remaining search space was not one single solution, branch

and bound or complete enumeration can be applied. The purpose of the constraint

propagation step is to reduce the search space to a point where traditional complete

enumeration or branch and bound is not computationally inefficient.
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To solve optimization problems rather than feasibility problems, the previously found

best objective function becomes a constraint in the next iteration, until all feasible

combinations have been exploited. One of the many benefits of constraint program-

ming include its expressive language, that allows boolean variables and variables that

can be indexed by variables. Another key benefit of CP is the development of global

constraints. This allows modelling to be relatively easy, and directs the solution al-

gorithm on the most efficient route for the particular set of constraints being used.

There are a number of tools that allow for CP modeling and packaged solution al-

gorithms. Current commercial tools include ILOG SOLVER, CHIP, PROLOG IV,

ECLIPSE, CLAIRE and CHOCO (Baptiste et al., 2001).

Constraint programming has successfully been used in the literature. Bisdorff and

Laurent (1995) used constraint logic to model the selection of coils as a mixed goal-

program. The model included capacity constraints of the mill, due dates and sequenc-

ing. The CP solution performed comparably to traditional mathematical program-

ming solvers. Suh et al. (1998) used a constraint satisfaction heuristic in the reactive

scheduling of a hot rolling mill. However, the quantity of constraint programming

models in the process systems research literature is notably small.

2.2 Aggregate Production Planning

A survey of the models and methodologies used in aggregate production planning

is provided in Nam and Logendran (1992). Production planning involves deciding

the quantity and mix of products, inventory levels, and staffing levels over a fixed

time horizon in an effort to meet anticipated consumer demand using a finite set

of resources. The objective is typically a minimization of relevant costs, or a maxi-
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mization of profit. Aggregation is systematically grouping production decisions into

quantifiable and manageable units. Aggregate production planning as a whole falls

into the mid-term planning level when viewing the hierarchy presented in Figure 1.1.

Production planning begins with an aggregation of products into broader categories.

Hax and Meal (1975) have broken down aggregation into three categories: Items,

Families and Types. Items are the final products and are commonly referred to as

SKU’s or stock keeping units. Families are items that contain a common manufac-

turing setup. Types are composed of similar families. The level of aggregation is not

always obvious and is problem dependent. With the appropriate aggregation in place,

the plan moves to a forecast of demand. The forecasts may be based on currently

booked customer orders, or may be an estimate based on historical trends. The fore-

casts are inherently uncertain and a key assumption must be made. An average value

may be assumed, or a more rigorous process such as stochastic optimization may be

used. This will be discussed in the following section.

Next, an assumption must be made with regard to the finite planning horizon under

consideration. An appropriate length of this horizon must be chosen to ensure that

the production decisions incorporate future demand fluctuations. The end-of-horizon

must also be accounted for to ensure that inventory levels are not reduced to zero

due to the minimization of holding costs. Additionally, the aggregate plan typically

uses a rolling horizon implementation. This means that as new information becomes

available, the plan is revised and production levels may vary from the previous solu-

tion.

Finally, a number of assumptions with regard to planning costs must be made. There

are well defined costs in the production planning problem. These costs include (1)
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smoothing, (2) bottlenecking, (3) holding, (4) shortage, (5) production, (6) idle time

and (7) subcontracting costs. Smoothing refers to the costs incurred from changing

production levels. Bottlenecking refers to the inability of the plant to accommodate

rapid fluctuations in demand. Holding costs are a result of the opportunity cost to

hold capital in the form of inventory. Shortage costs result when insufficient inventory

is available to meet demand. Production costs are the cost to produce one unit of

material during regular operation. Idle time arises when production lines or personnel

are being under-utilized. Finally, subcontracting costs are a result of using an outside

manufacturer to produce product. There are also intangible costs that are linked to

management preferences or tactics. These arise when management prefers to keep

hiring and firing to a minimum or to prevent disgruntling customers by meeting

shipping dates even when not cost-optimal.

There are a number of articles that have investigated aggregate production plan-

ning models. Chen and Wang (1997) developed a linear programming model for a

Canadian steel company while considering production costs, throughput rates, raw

materials, purchasing costs, transportation costs, and distribution for multiple plants

in different locations. The resulting model was used on location and found to im-

prove efficiency and reduce information redundancy. Balakrishnan and Geunes (2003)

developed a profit maximization MIP for a steel mill whose customers have flexibil-

ity in their product specifications. Their model provided solutions within 0.59%

optimality and contributed to 7% additional profits for the case study company. Mo-

hanty and Singh (1992) proposed a two level system where the higher level solves a

multi-objective production planning model at in integrated steel plant. The model

considered raw materials, intermediate and finished production. Finally, Zanoni and

Zavanella (2005) investigated an optimal planning model for production of steel bil-
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lets in a make-to-order manufacturing facility. The linear program minimizes holding

costs, production costs and delayed orders while using CPLEX as the solution algo-

rithm. The focus of the research was on the consequence of a billet cooling warehouse

in the production line.

The goal of production planning is to create a plant that is able to respond faster

to demand changes and exploit the flexibility of the production plant without losing

overall productivity (Pochet and Wolsey). The benefits of an aggregate model are

three-fold. First, it provides a means of absorbing demand fluctuations via smooth-

ing. Second, it does not require a costly estimation of input parameters. Third, the

standard deviation of the aggregate forecast error is less than the sum of its corre-

sponding individual error resulting in a more accurate demand forecast (Nahmias and

Olsen).

2.3 Short Term Batch Scheduling

This section is based on the excellent review found in Mendez et al. (2006). The

author describes 13 classifications of batch scheduling problems. Any one particular

problem can have any combination of these thirteen classifications. As a result, it

is difficult to provide a unified solution methodology that applies to all problems.

The classifications include the process topology, equipment assignment, equipment

connectivity, inventory storage policy, material transfer, batch size, batch processing

time, demand patterns, changeovers, resource constraints, time constraints, costs, and

degree of uncertainty. The classifications are reproduced in Figure 2.5. The author

also classifies the types of scheduling models that are available. This road map is

reproduced in 2.6.
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Figure 2.5: Characterization of scheduling problem features (Mendez et al., 2006)
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Figure 2.6: Classification of scheduling problem models (Mendez et al., 2006)

As seen in this figure, a fundamental decision in scheduling concerns the represen-

tation of time. The simplest method involves time slots with an equal and fixed

duration known as the discrete time representation. Conversely, the time slots can

have variable length where the slots are defined for each unit, or for the entire process

as a whole. Thus is known as a continuous time representation. The former is known

as a unit-based or sequential approach and the latter is known as global event based

approach. Floudas and Lin (2004) provide a review on the limitations and benefits of

two main classifications of scheduling problems: discrete-time and continuous-time.

A summary is provided in the subsequent paragraphs.

The discrete method involves a division of the time horizon into a fixed number of

uniform intervals where the events are associated with the boundaries of these time

intervals. All scheduling models contain the allocation of tasks to units through

the use of binary variables that determine whether a task starts in the unit at the

beginning of the time interval. Mass balances are typically accounted for through the

use of a state-task network which uses continuous variables to represent the amount

of material undergoing a particular task at a particular time while also tracking the

amount of material in each state with an additional variable. The time intervals used

must be sufficiently small to achieve a suitable approximation which typically results
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in very large problems as the number of binary variables required scales with the

number of discrete intervals.

As a result of this limitation, the continuous-time approach was developed, which

allows events to occur at any time point in the time horizon. These events can either

be defined globally or for each unit. As a trade-off, continuous time models are often

more difficult to model due to the variable nature of the timing events. There are

three subcategories of continuous time models:

1) Sequential Process: The sequential process is based on the concept of time slots.

This model contains a binary variable that determines whether or not a stage of an

order is assigned to a time slot of a unit. The three time variables are continuous

and represent the starting and completion times of a stage of an order as well as

the starting time of the slot for the unit. This model typically has a large number

of binary variables due to the dimensionality needed. The modeler must select a

predefined number of time slots which may be suboptimal. An iterative procedure

to reduce the number of slots is required to achieve optimality. Another modelling

option is to abandon the use of slots, and instead include binary variables that dictate

the precedence of individual jobs or orders. Both slot based and precedence models

will be investigated in this thesis.

2) Global Event Based Models: These models use continuous variables to determine

event timing and variable time slots in addition to binary variables which assign the

start and end of a task. Most of these models are also based on the State-Task

Network concept. This is a unique method of modelling the production process as a

series of state nodes that correspond to product forms, and task nodes that correspond

to processing steps. These models typically lead to large MINLP formulations that
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can be linearized under the appropriate assumptions. An important issue with these

models is the appropriate estimation of the number of events; an underestimation

leads to suboptimal or infeasible solutions while an overestimation results in large

problems. This makes an iterative procedure helpful.

3) Unit-Specific Event Based Models: These models use event points that are a se-

quence of time instances representing the beginning of a task for each unit. Because

the ending points of the tasks are not tracked, the number of binary variables required

is reduced. This model also has the issue of estimating the number of events. Com-

pared to discrete time models, this formulation typically has fewer binary variables.

In addition to time representation, Mendez et al. (2006) discuss the treatment of mass

balances. Scheduling problems can be represented as either a sequential process or a

network-represented process. In a sequential process, batches are used to represent

production and different products follow the same sequence divided into stages (which

can be single, multiple or parallel units). This model is relatively simple as mass

balances do not need to be explicitly accounted for. Conversely, network-represented

processes are typically more complex because batches can mix and split. As such, the

network is divided into state nodes which represents a material and task nodes which

represent an operation. The mass balance is conserved by depicting the percentage

of state consumed per task.

The event representations that are investigated in this thesis include time slots, unit-

specific immediate precedence and general precedence models. The characteristics of

these models are provided in Table 2.1
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Time Slot Unit-Specific Imme-
diate Precedence

General Precedence

Key discrete
variable

Xijk defines if unit j
starts task i at slot k

Xijm defines if task
i starts right before
task i on unit m

Xij defines if task i
starts before task i

Critical model-
ing issue

Number of estimated
time slots

lot-sizing and units lot sizing

Table 2.1: Characteristics of continuous time optimization models (Mendez et al.,
2006)

2.3.1 Campaign Scheduling

A campaign can be defined as, “a production run with specific start and end times in

which coils of a particular type are processed continuously on a process line” Okano

et al. (2004). Essentially, if a manufacturing facility has a flexible production line

that is capable of producing more than one family of products, the manufacture of

each family is classified as a campaign. Campaign scheduling is then the decision of

the length of time allocated to producing each product family while taking into con-

sideration the costs associated with switching between families, and the due dates of

the orders allocated into each campaign. Other notable contributions in the research

literature can be found in Wellons and Reklaitis (1998). The author developed a

mixed integer nonlinear program (MINLP) for a multipurpose batch chemical plant.

At the end of the campaign, the production line is cleaned and set up for a new

product. Another example can be found in Papageorgiou (1996). In this paper,

the authors developed a mathematical model that encompassed both planning and

scheduling considerations including the determination and allocation of campaigns,

task timing, and material flow. The authors also provide benefits of campaign op-

eration for multipurpose plants including lower inventory costs, fewer changeovers

and improved operability. Campaign operation is appropriate for plants with stable
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demand patterns over long term planning horizons.

2.3.2 Real-world scheduling examples

Scheduling problems found in industry are typically large and difficult to solve due to

the computation complexity of combinatorial optimization problems (Mendez et al.,

2006). As a result, most industrially sized problems are currently solved with al-

ternative methods to classical MILP solution algorithms. These methods include

meta-heuristics, artificial intelligence, constraint programming and forms of hybrid

methodologies which combine some of these methods. Meta-heuristics employ an it-

erative procedure that starts with a known feasible solution and attempts to improve

this solution. Many well known solution algorithms include simulated annealing,

tabu search and genetic algorithms. Artificial intelligence aims to reproduce human

thought. For example, one method would involve finding a previous solution to a

similar problem, and modifying the solution to fit the new problem. Finally, hybrid

solutions attempt to exploit the pros of one method to mitigate the cons of another.

Some researchers have combined exact MILP methods with constraint programming.

The MILP portion is used to solve a relaxed problem and passes this solution to CP

to which quickly exploits the remaining search space.

A polymerization problem was investigated by Schulz et al. (1998). This problem

included 36 batches and 360 tasks. Polymerization is non-linear which resulted in a

MINLP. The authors had to use a specialized scheduling algorithm that generated a

good, but suboptimal solution in a reasonable amount of time. Continuous-casting

in a steel mill has also be investigated by Harjunkoski et al. (2003). The full problem

size included 74,000 equations and 33,000 discrete variables. This problem was tacked
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with a three stage decomposition strategy and solved to within 3% optimality.

2.4 Optimization Under Uncertainty

Risk management has become an increasing focus in supply chain optimization. Pro-

cess industries have turned their attention towards incorporating uncertainty into

mathematical models in an effort to reduce risk (Shah, 2005). Production plan-

ning within supply chain optimization contains many areas of uncertainty. The most

common forms of uncertainty occur in demand, supply and production. Demand

uncertainty is a result of the inability to properly forecast customer needs. Supply

uncertainty arises from disruptions in the vendors’ supply of raw materials. Produc-

tion uncertainty is a result of unscheduled equipment failures. All forms of uncertainty

are important to consider as they affect both feasibility and optimality.

Three methods are commonly employed in industry to handle uncertainty. These

methods include (1) Expected Values, (2) Wait-and-See, and (3) Stochastic program-

ming. The Expected Value approach is minimalist in nature. It provides the opti-

mization model with the expected average value of the uncertain parameter. This

results in a computationally inexpensive model that provides acceptable results, but

may also become infeasible or suboptimal when the true value of the uncertain pa-

rameters is realized. The Wait-and-See method solves an optimization program for

all possible outcomes of the random parameter. This results in a set of decision

vectors for each outcome. The drawback of this method is that it assumes the de-

cision can be made after the uncertainty is realized. This is often not the case. For

example, manufacturing companies with long production lead times must select pro-

duction quantities well in advance of demand realization. Stochastic programming
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uses scenarios to represent each occurrence of uncertainty. The objective is to obtain

a solution that is optimal and feasible no matter what scenario actually occurs.

Stochastic programming is broken down into two main approaches called recourse and

chance constrained problems. Chance constraint programming uses a distribution of

the uncertain parameter to ensure that the solution complies with the constraints

within a specified confidence level. This effectively allows for the quantification of the

relationship between profitability and reliability (Li et al., 2008). This work will focus

on recourse problems; particularly the type known as two-staged stochastic program-

ming with recourse. A stochastic program with recourse separates the problem into

two distinct stages with separate variables according to their decision either before or

after the outcome of an uncertain parameter. These are known as first-stage (x1) and

second-stage (x2) decisions. First stage decisions are typically proactive and attempt

to hedge against potential infeasibilities in the second stage. Conversely, second stage

decisions react to the realized value of the uncertain parameter under each scenario.

This is included in the model by the set S indexed on the x2s variable. It is impor-

tant to note that x1 does not include this scenario index. This brings rise to a term

used in stochastic programming called non-anticipativity. This term describes the

concept that all first stage decisions are made independently of the true outcome of

the random variable. The general model for a stochastic linear program with recourse

is provided in 2.9.

min c1x1+
∑
s∈S

psc2sx2s (2.9)

s.t. h(x1) ≤ 0

g(x1) = 0
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hs(x1, x2s) ≤ 0 ∀s ∈ S

gs(x1, x2s) = 0 ∀s ∈ S

In this model, the first stage decision and second stage scenario dependent decisions

are given a weighting factor c1 and c2s respectively to account for the probability

of each scenario occurring. The probability of each scenario occurring is commonly

created by a probability distribution. This distribution can be uniform, Poisson,

Gaussian, etc. but is often chosen to be normal in the case of demand. The distribu-

tion is defined by the mean, µ and standard deviation, σ. This distribution is then

sampled to create the scenarios. Sampling methods include Monte Carlo, Descriptive,

Latin Hypercube and Hammersley Sequence Sampling (Kim and Diwekar, 2002).

To quantify the stochastic models improvement over the deterministic model, the

Value of Stochastic Solution (VSS) can be used. This is defined as the difference be-

tween the objective function value of the stochastic model and the objective function

value when using an expected value model. Another measure is the Expected Value

of Perfect Information (EVPI). This is the value of the objective function when the

demand forecasts are known precisely. It provides an upper bound on the stochastic

models’ usefulness.
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Chapter 3

Aggregate Production Planning

Optimization

The main objective of this chapter is to present aggregate production planning models

of increasing complexity for a typical steel mill. Each additional layer of complexity

intends to add value to the supply chain. The first part of this chapter explains

the current planning method employed at a typical steel mill. The first method ex-

plained is considered a manual heuristic. The following section develops a quadratic

goal programming model that attempts to replicate the methodology performed by

the heuristic. This model aims to meet targets set by the upper level in the plan-

ning hierarchy. The next section incorporates uncertainty in the form of a two-stage

stochastic model. This attempts to improve the result by hedging against fluctuations

in demand. With the framework built to include uncertainty, it is possible to replace

the objective function with one that aims to minimize overall cost. This is accom-

plished by driving inventory levels as close to null as possible, while hedging against
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the possibility of stock-outs. Finally, the last section uses multi-objective optimiza-

tion as a compromise between the inventory target and cost minimization models. A

comparison between the deterministic and stochastic models is presented in the first

case study. An investigation into the operability and cost saving potential of the steel

mill is presented in the second case study. Each section begins with an introduction

to the methodology used, develops the mathematical model, and concludes with a

table of nomenclature.

3.1 Application Context: Medium Term Planning

Process

This thesis uses case studies and data provided by a ISP located in Hamilton, Ontario.

The Medium Term Planning Process is the title given in this work to the methodology

for developing the weekly production plan. This integrated steel mill consists of a

large number of unit operations in series and parallel. The Medium Term Planning

Process in concerned with only a subset of the full production flow. Additionally, this

steel mill has thousands of stock-keeping units (SKU). A SKU is an identifier for a

unique product. At the Medium Term Planning level, each SKU is aggregated into

one of a dozen product families. A visual representation of the production flow with

the granularity consistent at the Medium Term Planning level is provided in Figure

3.1. The unit operations under consideration in this planning process include the hot

mill, two cold mills, and a number finishing lines. Before the models are introduced,

it is important to understand the planning structure at the steel mill. The planning

structure dictates what parameters and variables are available to the optimization
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Figure 3.1: Simplified process flow diagram of a typical integrated steel mill

Figure 3.2: Planning hierarchy used at a typical steel mill

models. Figure 3.2 provides a visual representation of this structure. In the top-most

layer lies the Long Term Planning group. This group performs strategic network

design decisions. This includes a 5 year horizon of demand projects and steel industry

trends. This group provides inventory level targets for the steel mill. It also keeps

records of the available production capacity of the mills and the current number of

customer orders procured by the Sales and Marketing group. The difference between

these two numbers is called open quota. This information is used as an input to the

Medium Term Planning Process. This process attempts to set high level production

targets for the primary planning and campaign planning groups. This is accomplished

by simultaneously considering the amount of open quota, current production levels,
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expected downtime, and current inventory levels. Primary planning is responsible

for production at the casters and hot mill. Production is defined as the tonnage

of steel stabs to be converted into steel coils. Campaign planning is responsible for

production at the cold mills and finishing lines. This production is defined as the

tonnage of steel coils to be further worked into the final product.

This chapter is focused on the Medium Term Planning level. The disjunctive nature

between primary and campaign planning calls for the creation of the Medium Term

Planning Process. This planning process resides one level higher than primary and

campaign planning. At this level, a coarser time scale is used in an attempt to view

primary and finishing operations simultaneously. The subsequent chapter will focus

on the shorter time scaled Campaign Planning process.

Model Enhancements using Linear Programming Approaches

A number of enhancements to the Medium Term Planning Model have been identified

and are listed below:

1. Deterministic Model Identification: The Medium Term Planning Process is

solved using manual heuristics. This is a common practice in the steel industry,

as the problem sizes are often prohibitively large, and there exist complicated

chemistry, logistical, and scheduling constraints (Harjunkoski and Grossmann,

2001). The first enhancement is to develop a deterministic Mixed Integer Linear

Program that performs similarly to the manual heuristics.

2. Stochastic Model Improvement: The time scale of the model includes a five

week demand period that is predominately deterministic, followed by a 5 week
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demand period that is predominately uncertain. Due to the amount of operator

time required to perform one iteration of the manual heuristic, it is impossible

to consider more than an average, high, and low scenario of demand. A two-

stage stochastic model is built to consider hundreds of scenarios simultaneously

and make the best possible choice to hedge against future uncertainty.

3. Cost-Based Integration: The Long Term Planning group provides inventory

targets to the Medium Term Planning team which they believe best suit the

current market conditions. The planning teams goal is to minimize the distance

between these targets and the projected inventory levels at the end of the week.

An enhancement made here is to move to a cost-based objective function that

minimizes the total cost of production including a variable for the optimal level

of inventory.

Each of these enhancements will be addressed in the following sections with the

development of mathematical optimization models.

3.2 Deterministic Aggregate Production Planning

Model

The Deterministic Aggregate Production Planning (DAPP) model is a conversion of

the manual process employed by experienced operators into a mathematical model

that is solvable using optimization algorithms. It is considered deterministic due

to the assumptions made. The first assumption is that the demand is known and

that exactly one half of the open quota will be filled. For example, if 1,000 tons of
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Figure 3.3: Information flow required to make production decisions

product A was currently booked in week 9, and the plant has a capacity of 2,000

tons of product A in week 9, than the assumed demand for that week is equal to

1,500 tons. The other main assumption in this model is that the hot/cold mills and

finishing lines produce exactly as much material as outlined in the plan. The plan

is considered an aggregation since the inventory levels and production amounts are

divided into weekly time periods when in actuality, these levels fluctuate minute-to-

minute. A visual representation of the key variables is shown in Figure 3.3. The

Hot Mill produces Hot Band of amount Pp,t which is stored in inventory as variable

HBp,t. The Hot Band product is then launched through the cold mills and product

lines designated by the variable Lp,t. The product line is a general term to represent

some sort of finishing operation used to create value-added steel. This can include

annealing furnaces, galvanization coatings, slitting, tubing, etc. No matter the route,

all products end up in the WIPp,t inventory. Since this is an aggregate production

plan with a medium term horizon, this sort of granularity is acceptable. Substrate

Sp,t is material that is purchased from another facility and is stored in the WIPp,t

inventory. The actual mill has other production units following this inventory storage

that prepares the material for shipping, however they are not included in the model.

As such, demand Dp,t is drawn directly from the WIPp,t inventory. A table of the

additional nomenclature is available at the end of this section.
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3.2.1 Constraints

The first equation used as the basis for all production planning models is a mass

balance for the inventory. Since there are two inventory storage locations, this model

requires balances on the WIP material and the Hot Band Material. Equation 3.1

represents the balance on the former for a majority of the products.

WIPp,t = WIPp,t−1 + Lp,t + Sp,t −Dp,t ∀p ∈ P\Type1, t ∈ T (3.1)

This equation states that the current WIP inventory level (WIPp,t) is equal to the

previous time periods inventory level (WIPp,t−1), plus all material produced (Lp,t)

or bought (Sp,t), minus all material consumed as demand (Dp,t). The domain of in

inventory WIP inventory levels is restricted to be strictly positive in Equation 3.2.

WIPp,t ≥ 0 ∀p ∈ P, t ∈ T (3.2)

However, this creates infeasibilities in the model when the consumer demand is greater

than what is available to be produced and stored in inventory. For this reason, the

WIPp,t variable can be broken down into its positive and negative components as

shown in Equation 3.3.

WIPp,t = WIP+
p,t −WIP−p,t ∀p ∈ P, t ∈ T (3.3)

WIP+
p,t,WIP−p,t ≥ 0 ∀p ∈ P, t ∈ T (3.4)

The WIP−p,t term is commonly referred to in the operations research community as

back order. For simplicity, the WIP−p,t term can be called Bp,t and WIP+
p,t can simply
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become WIPp,t. This concept can be included in Equation 3.1 to become the first

inventory constraint in the model as shown in Equation 3.5.

(WIPp,t −Bp,t) = (WIPp,t−1 −Bp,t−1) + Lp,t + Sp,t −Dp,t ∀p ∈ P\Type1, t ∈ T

(3.5)

It is important to note that the set P is in reference to both the product and pro-

duction line. For example, production line B creates product B. For the previous

constraint, there is a single production line for every product. For the following con-

straint in Equation 3.6, three production lines produce one product called “Type1”.

∑
p:p∈PG

WIPp,t−
∑
p

Bp,t =
∑

p:p∈PG

WIPp,t−1−
∑
p

Bp,t−1+
∑

p:p∈PG

Lp,t−DType1,t ∀t ∈ T

(3.6)

For this product, the only consideration is the inventory balance on the sum of these

three lines.

Equation 3.7 is the inventory balance for the Hot Band inventory. There is no back

order or product purchased from outside producers.

HBp,t = HBp,t−1 + Pp,t − Lp,t ∀p ∈ P, t ∈ T (3.7)

Equation 3.8 and 3.9 are capacity restrictions on the amount of WIP and Hot Band

material produced respectively.

∑
p

Lp,t ≤ CRCt ∀t ∈ T (3.8)

∑
p

Pp,t ≤ HBCt ∀t ∈ T (3.9)
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Equation 3.10 and 3.11 are capacity restrictions on the amount of WIP and Hot Band

material stored in inventory.

∑
p

HBp,t ≤ HBIC ∀t ∈ T (3.10)

∑
p

WIPp,t ≤ WIPIC ∀t ∈ T (3.11)

Equation 3.12 is a unique constraint consistent with the steel mill operation which

restricts the amount of material launched through the finishing lines based on the

amount of downtime scheduled to occur during the week. The parameter DRf
p is the

maximum daily rate that each production line p is capable of with units of tons. This

number is divided by 24 to turn the daily rate into an hourly rate. The term inside

the parenthesis represents how many of the 168 hours in a week are available to be

allocated to production. If there are any maintenance hours scheduled for the week,

they reduce this number by MDp,t. Similarly, if the crew is not fully staffed, the

number of hours is reduced in the form of crewing downtime (CDp,t). If the number

of remaining hours at the full production rate will put the inventory levels above

target, additional downtime can be taken in the form of inventory downtime (IDp,t).

This is a continuous variable with units in hours.

Lp,t = (
DRf

p

24
)(168−MDp,t − CDp,t − IDp,t) ∀p ∈ P, t ∈ T (3.12)

The set of products p ∈ P must travel through the cold mill before being sent to

their respective production line. Equation 3.13 serves the same purpose as above but
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instead for the two cold mills in set m.

∑
p:p∈CM

Lp,t =
∑
m

(
DRc

m

24
)(168−MDc

t − CDc
t − IDc

t ) ∀t ∈ T (3.13)

Equation 3.14 serves the same purpose for the production of steel through the hot

mill. ∑
p

Pp,t = (
DRh

24
)(168−MDh

t − CDh
t − IDh

t ) ∀t ∈ T (3.14)

Equation 3.15 initializes the back order of the products to zero.

Bp,0 = 0 ∀p ∈ P (3.15)

The remaining equation restricts the domain of the continuous variables.

Bp,t,WIPp,t, HBp,t, Lp,t, Pp,t, IDp,t ≥ 0 ∀p ∈ P, ∀t ∈ T (3.16)

3.2.2 Objective Function

The main objective used in this model is minimizing the distance from the inventory

set point, or target provided by the long term planning group. This group provides

a target for the Work-In-Progress material (WIP tar
p,t ) for all products and all time

periods as well as a similar parameter for the Hot Band material (HBtar
p,t ). The

inventory level variables for the Work-In-Progress material and Hot Band material

are WIPp,t and HBp,t, respectively. This follows the definition of a goal program and
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is shown in Equation 3.17.

Min
∑
p

∑
t

[(WIPp,t −WIP tar
p,t )2 + (HBp,t −HBtar

p,t )2] (3.17)

+X(L, P ) + Y (ID) +
∑
p

∑
t

1010Bp,t (3.18)

In order to penalize deviations that are both above and below target, a squared

objective function is used. This also has the intended consequence of penalizing

large deviations from target more heavily than small ones. This objective function

additionally includes a term for the prioritization of multiple production lines that are

capable of producing identical product (X(L, P )) and a prioritization of the inventory

downtime taken at the cold mills (Y (ID)). Finally the objective function minimizes

the back order variable Bp,t with a sufficiently large coefficient to constraint it to zero

when feasible.

Equation 3.19 is a prioritization of product lines that are capable of producing the

same product. Line C is the most cost efficient, so its use is prioritized by a smaller

penalty coefficient when compared to Lines A and B.

X(L, P ) =
∑
t

100LLineA,t+10LLineB,t+1LLineC,t+
∑
t

100PLineA,t+10PLineB,t+1PLineC,t

(3.19)

Equation 3.20 is a prioritization of the cold mill usage. It is preferred that the first

cold mill receives as much load as possible before the second cold mill is active. This

is accomplished by minimizing the amount of downtime that is taken at the first cold

mill.

Y (ID) =
∑
t

[1000IDCM1,t + 1IDCM2,t] (3.20)

40



Patrick Carter - M.A.Sc. Thesis - Chemical Engineering 3.2

Section Nomenclature

Indicies

p ∈ P all products and production lines

p ∈ Type1 A certain type of products (sub-set of P)

p ∈ CM cold mill products (sub-set of P)

m ∈M cold mills

t ∈ T time period

Parameters

CRCT cold rolling mill throughput limit

HBCT hot mill throughput limit

HBIC hot band strict inventory holding limit

DRf
P daily production rate at finishing mill

DRc
C daily production rate at cold mill

DRh
P daily production rate at hot mill

MDP,T maintenance down hours

CDP,T crewing down hours

WIP tar
P,T work in progress inventory level target

HBtar
P,T hot band inventory level target

SP,T substrate relief
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Variables

WIPP,T work in progress inventory

HBP,T hot band inventory

PP,T hot band production

LP,T WIP production (launch)

IDP,T inventory down hours per product

IDc/hP,T inventory down hours per mill

BP,T backorder amount

DP,T demand

3.3 Stochastic Aggregate Production Planning Model

The Stochastic Aggregate Production Planning (SAPP) model aims to enhance the

deterministic Medium Term Production Planning Model. A procedure that recalcu-

lates the Medium Term Planning model manually for different independent scenarios

is is susceptible to suboptimality and infeasibility when the actual realized demand

is far from average. It is the goal of this section to implement a mathematical model

that will use historical demand data to create a distribution that is either uniform or

normally distributed. This demand distribution will then be sampled via Monte Carlo

methods to create a number of scenarios. These scenarios will then be incorporated

into the model shown below which creates a solution that hedges against demand

uncertainty.
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3.3.1 Objective Function

The objective function remains the same with the exception of the additional subscript

s to indicate that the variables are different under each scenario. Additionally, This

is shown in Equation 3.21.

Min(1/N)
∑
p

∑
t

∑
s

(WIPp,t,s −WIP tar
p,t )2 + (HBp,t,s −HBtar

p,t )2 (3.21)

+ (1/N)
∑
t

∑
s

100LLineA,t,s + 10LLineB,t,s + 1LLineC,t,s (3.22)

+ (1/N)
∑
t

∑
s

100PLineA,t,s + 10PLineB,t,s + 1PLineC,t,s (3.23)

+ (1/N)
∑
t

∑
s

1000IDCM1,t,s + 1IDCM2,t,s (3.24)

+ (1/N)
∑
p

∑
t

∑
s

1010Bp,t,s (3.25)

Each equation is multiplied by (1/N) to indicate that each scenario is equally weighted.

3.3.2 Constraints

The constraints remain identical to the previous model with the exception of the set

s for the appropriate variables.

WIPp,t,s−Bp,t,s = WIPp,t−1−Bp,t−1,s+Lp,t,s−Dp,t,s+Sp,t ∀p ∈ P\Type1, t ∈ T, s ∈ S

(3.26)

∑
p:p∈PG

WIPp,t,s −
∑
p

Bp,t,s =
∑

p:p∈PG

WIPp,t−1,s −
∑
p

Bp,t−1,s +
∑

p:p∈PG

Lp,t,s

−DType1,t,s ∀t ∈ T, s ∈ S (3.27)
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HBp,t,s = HBp,t−1,s + Pp,t,s − Lp,t,s ∀p ∈ P, t ∈ T, s ∈ S (3.28)

∑
p

Lp,t,s ≤ CRCt ∀t ∈ T, s ∈ S (3.29)

∑
p

Pp,t,s ≤ HBCt ∀t ∈ T, s ∈ S (3.30)

∑
p

HBp,t,s ≤ HBIC ∀t ∈ T, s ∈ S (3.31)

∑
p

WIPp,t,s ≤ WIPIC ∀t ∈ T, s ∈ S (3.32)

Lp,t,s = (
DRf

p

24
)(168−MDp,t − CDp,t − IDp,t,s) ∀p ∈ P, t ∈ T, s ∈ S (3.33)

∑
p:p∈CM

Lp,t,s =
∑
m

(
DRc

24
)(168−MDc

t − CDc
t − IDc

t,s) ∀t ∈ T, s ∈ S (3.34)

∑
p

Pp,t,s = (
DRh

24
)(168−MDh

t − CDh
t − IDh

t,s) ∀t ∈ T, s ∈ S (3.35)

Bp,0,s = 0 ∀p ∈ P, s ∈ S (3.36)

Bp,t,s,WIPp,t,s, HBp,t,s, Lp,t,s, Pp,t,s, IDp,t,s ≥ 0 ∀p ∈ P, ∀t ∈ T,∀s ∈ S (3.37)

Depending on the product being made, it can take up to three weeks for the material

to move from the planning stage to the point when it is ready to be shipped. This

is defined as the lead time for each product. As a result of this lead time, cold mill

production decisions for this product must be made one week ahead of time, and hot

band production decisions must be made three weeks ahead of time. These decisions

are locked in and cannot change in light of new demand information being provided

by the sales and marketing team. As such, these variable values become the first-stage

decisions of the two-stage model. The remaining uncertain weeks production deci-

sions are the second-stage. Mathematically, this is incorperated through additional
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constraints known as non-anticipativity. This is the key feature that states that all

scenarios must use the same cold mill production numbers during the first week and

is shown in Equation 3.38. Similarly, 3.39 is for the first three weeks at the Hot Mill.

Lp,1,s = Lp,1,1 ∀p ∈ P, s ∈ S (3.38)

Pp,1,s = Pp,n,s ∀p ∈ P, s ∈ S, n ∈ 1, 2, 3 (3.39)

3.3.3 Scenario Generation

The possible scenarios of demand are based on the difference between the current

level of booked orders and the maximum capacity that can be allocated. For the

SAPP model, a normal distribution is fit with mean equal to the center of the open

quota. The full width of the open quota is equal to three standard deviations from

the norm which represents 99.7% of all values. Figure 3.4 is a visual representation

of this process. As can be seen, the size of the distribution is small in the initial

weeks, and grows in general during later weeks. If a sample is taken that falls outside

of this range, it will be replaced with the closest bounded value. For open quotas

that are zero or smaller (occasionally sales overbooks the plant capacity by a small

margin), the sampled value will be exactly equal to the mean. For the products

under consideration, and ten week time frame, there are 110 unique distributions

that need to be sampled. Figure 3.5 shows a histogram of the resulting scenarios of

the distributions sampled when only 10 samples are used. From this figure it can be

seen that 10 scenarios is not large enough to replicate the true normal distribution.

However, when 100 scenarios are used, the distribution is replicated with reasonable

accuracy as shown in Figure 3.6. The computation time required to solve the SAPP
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Figure 3.4: Demand uncertainty distribution for product G

Figure 3.5: Histogram of sampled demand profile for n=10 scenarios
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Figure 3.6: Histogram of sampled demand profile for n=100 scenarios

model is a function of the number of scenarios used. Using more than 100 scenarios

does not provide any large margin of improvement in the distribution and significantly

increases the solution time required. As such, 100 scenarios is the basis used for the

first case study. A graph of the solution times is provided in the case study.

3.4 Cost-Based Stochastic Aggregate Production

Planning Model

The purpose of this section is to develop a mathematical model that attempts to

minimize the cost of producing steel as opposed to meeting inventory targets reffered

to here as the Cost-Based Stochastic Aggregate Production Planning (CBSAPP)

model. This modelling ideology stems from the fact that the steel mill only needs
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to keep as much inventory available to handle the maximum value of uncertainty.

It is hypothesized that more inventory is being held than necessary to absorb this

uncertainty. With a cost-based stochastic model, inventory levels can be reduced

while still meeting customer delivery dates.

In order to create this model, a number of parameters must be estimated, and assump-

tions made. The results of the optimization are largely dependent on the quality of

these estimations and assumptions. The parameters that require estimation include

holding costs, back order costs and production costs. With the necessary inclusion of

production costs, additional variables to track the modes of production at the plant

are also required. Due to limitations at some unit operations and the sequential nature

of the mills, the plant may only be operated at full, half, or null capacity. Changing

between modes has a fixed switching cost. Additionally, each of these production

modes has a unique marginal cost of production that must be considered.

Holding costs are defined as the money required to store a unit of inventory, typically

for one year. The factors that contribute towards holding cost are numerous including

the cost of money, taxes, insurance, warehousing, physical handling, inventory control,

obsolescence, and deterioration. Table 3.1 shows the estimated range of contribution

of each of these categories as a percentage of the selling cost. Textbooks use the range

between 12% and 34% of the selling price of the product (Berling, 2008). The model

used in this thesis will assume a value of 30% of the selling price. The back order

cost has units of dollars per week per ton ( $
wk·ton).

It is well known in the literature that it is difficult to estimate back order costs

due to intangible factors like the loss of goodwill. The tangible components include

administration fees when the customer is retained, and the cost of a lost sale when the
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Cost of Money 6%-12%
Taxes 2%-6%

Insurance 1%-3%
Warehouse 2%-5%

Physical handling 2%-5%
Inventory Control 3%-6%

Obsolescence 6%-12%
Deterioration 3%-6%

Total Cost (per year) 25%-55%

Table 3.1: Estimated category contribution towards holding cost (Richardson, 1995)

customer is not. It is reasonable to assume that the back order cost must be larger

than the holding cost or else no company would hold inventory at all. Additionally, it

is relatively difficult for a steel consumer to switch steel suppliers without incurring

significant costs and changes in product quality and consistency. For this reason,

back order is assumed to be 50% of the selling price of the product for every week

that the product is late. The units on the back order cost coefficient are identical to

holding cost coefficient.

The production cost is of the linear form y = mx + b. This allows for a fixed cost

to start up each production line, as well as a marginal cost of production per ton

of steel. The production facility is assumed to have 3 operation modes, at full, half

and zero capacity. Each of these modes has its own linear cost function. Specifically,

each production line has its own start up costs dependent on the unit operations

involved. However, this information is not available for the steel mill under question.

The assumptions made regarding the linear production costs are provided in Table

3.2. The marginal cost of production is assumed to be 15% of the overall selling price

of the steel when the plant is at full capacity. At half capacity, the y-intercept value

is $60,000. This is more than half of the full capacity value as there is fixed costs

49



Patrick Carter - M.A.Sc. Thesis - Chemical Engineering 3.4

Capacity m b
Zero - $10,000
Half 16.5% $60,000
Full 15% $100,000

Table 3.2: Linear cost coefficient for different plant capacities of the form y = mx+ b

that cannot be avoided. The marginal cost of production is set at 16.5%. At zero

capacity, the y-intercept value is $10,000.

The final assumption is made with regard to production uncertainty. Since this model

is taking into consideration production costs, it is logical to also include the possibil-

ity that the amount of material requested to be produced may not match the actual

production values. This situation may arise due to unexpected maintenance shut-

downs or the batch nature of the casting process. In order to handle this uncertainty,

an additional parameter is added that is normally distributed with a mean of zero

and a standard deviation that allows the actual production to be within ±10% of the

full plant capacity 99.7% (three standard deviations) of the time. This is allowable

as the capacity constraints can often be violated if required. A sample of the created

normal distributions for one data set is provided in Figure 3.7. The distributions are

sampled in the scenario generation phase and this value is incorporated into the mass

balance for both the hot mill and finishing lines as will be shown in the next section.

50



Patrick Carter - M.A.Sc. Thesis - Chemical Engineering 3.4

Figure 3.7: Noise distributions in production for a sample data set

3.4.1 Objective Function

The objective function of the SAPP model was the deviation between the current

inventory levels and the inventory targets provided by the Long Term Planning group

that was to be minimized. Under the new CBSAPP model, the objective function

becomes a weighted minimization of costs based on the individual contribution of

holding costs, back order costs, startup costs and marginal production costs.

Min
∑
p

∑
t

∑
s

hcp(WIPp,t,s +HBp,t,s) (3.40)

+
∑
p

∑
t

∑
s

bcp(Bp,t,s)

+
∑
p

∑
t

∑
s

100000F f
p,t,s + 60000F h

p,t,s + 10000F n
p,t,s

+
∑
p

∑
t

∑
s

100000Hf
p,t,s + 60000Hh

p,t,s + 10000Hn
p,t,s
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+
∑
p

∑
t

∑
s

spp
DRp

24
(0.15Fhfp,t,s + 0.165Fhhp,t,s)

+
∑
p

∑
t

∑
s

spp
DRp

24
(0.15Hhfp,t,s + 0.165Hhhp,t,s)

Equation 3.40 starts with a minimization of the holding costs for work in progress

and hot band inventory storage. The second line minimizes the back order costs. The

third line represents a minimization of the start up costs. The variable F f
p,t,s, F

h
p,t,s,

and F n
p,t,s represent binary variables for starting up the Finishing line p at full, half,

and no capacity respectively. The fourth line performs a similar function for the hot

mill. The fifth line represents the marginal cost of production. The spp parameter

represents the selling cost of each of the products. The variables Fhfp,t,s and Fhhp,t,s

represent the number of hours of production that the mills operate at full and half

capacity respectively. This number is multiplied by the hourly rate to give units in

tons rather than hours. The final line performs a similar function for the hot mill

production.

3.4.2 Constraints

There are a number of constraints that remain the same when compared to that of

the previous models. Equations 3.41 and 3.42 represent the mass balances for the

system. These equations now include nf
p,t,s and nh

p,t,s to represent the uncertainty in

production. These parameters have units of tons and are allowed to be both negative

and positive.

WIPp,t,s−Bp,t,s = WIPp,t−1,s−Bp,t−1,s +Lp,t,s +nf
p,t,s−Dp,t,s ∀p ∈ P, t ∈ T, s ∈ S

(3.41)
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HBp,t,s = HBp,t−1,s + Pp,t,s + nh
p,t,s − Lp,t,s − nf

p,t,s ∀p ∈ P, t ∈ T, s ∈ S (3.42)

Equations 3.43 through 3.45 are limitations in inventory and production levels. They

remain unchanged from previous models.

∑
p

Lp,t,s ≤ CRCt ∀t ∈ T, s ∈ S (3.43)

∑
p

Pp,t,s ≤ HBCt ∀t ∈ T, s ∈ S (3.44)

∑
p

HBp,t ≤ HBIC ∀t ∈ T, s ∈ S (3.45)

Equations 3.46 and 3.47 replace 3.33 from the SAPP model. This addition was

necessary to account for the splitting of hours at full and half production.

Lp,t,s =
DRp

24
(Fhfp,t,s +

Fhhp,t,s
2

) ∀p ∈ P, t ∈ T, s ∈ S (3.46)

Fhfp,t,s + Fhhp,t,s + Fhnp,t,s = 168−MDp,t − CDp,t ∀p ∈ P, t ∈ T, s ∈ S (3.47)

Equation 3.47 no longer contains the variable IDp,t,s. This function has been replaced

by the variable Fhnp,t,s which is functionally equivalent. Taking an inventory downtime

is equivalent to an hour of production at no capacity. Equation 3.48 and 3.49 perform

a similar function for the cold mills.

∑
p∈CM

Lp,t,s =
DRc

24
(Chft,s +

Chht,s
2

) ∀t ∈ T, s ∈ S (3.48)

Chfp,t,s + Chhp,t,s + Chnp,t,s = 168−MDc
t − CDc

t ∀t ∈ T, s ∈ S (3.49)

53



Patrick Carter - M.A.Sc. Thesis - Chemical Engineering 3.4

Equation 3.50 and 3.51 perform a similar function for the hot mills.

∑
p

Pp,t,s =
DRh

24
(Hhft,s +

Hhht,s
2

) ∀t ∈ T, s ∈ S (3.50)

Hhfp,t,s +Hhhp,t,s +Hhnp,t,s = 168−MDh
t − CDh

t ∀t ∈ T, s ∈ S (3.51)

Equations 3.52, 3.53, and 3.54 restrict the number of hours at full production to zero

when the production line has not been set up.

Fhfp,t,s ≤ 168F f
p,t,s ∀t ∈ T, s ∈ S (3.52)

Chfp,t,s ≤ 168Cf
p,t,s ∀t ∈ T, s ∈ S (3.53)

Hhfp,t,s ≤ 168Hf
p,t,s ∀t ∈ T, s ∈ S (3.54)

Equations 3.55, 3.56, and 3.57 perform a similar function at half capacity.

Fhhp,t,s ≤ 168F h
p,t,s ∀t ∈ T, s ∈ S (3.55)

Chhp,t,s ≤ 168Ch
p,t,s ∀t ∈ T, s ∈ S (3.56)

Hhhp,t,s ≤ 168Hh
p,t,s ∀t ∈ T, s ∈ S (3.57)

Equation 3.58 set the initial back order to zero.

Bp,0,s = 0 ∀p ∈ P, s ∈ S (3.58)

Equations 3.59 and 3.60 set the non-anticipativity for the first one and three weeks

respectively.

Lp,1,s = Lp,n,s ∀p ∈ P, s ∈ S, n ∈ 1 (3.59)
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Pp,1,s = Pp,n,s ∀p ∈ P, s ∈ S, n ∈ 1, 2, 3 (3.60)

Section Nomenclature

The cost-based model uses the following additional parameters and variables:

Parameters

nF
p,t,s production uncertainty at the finishing lines

nH
p,t,s production uncertainty at the hot mill

hcp holding cost

bcp backorder cost

scp start-up cost

pcp production cost

Variables

Finishing Lines

F f
p,t,s, F

h
p,t,s, F

n
p,t,s Production at full, half or no capacity{0, 1}

Fhfp,t,s, Fh
h
p,t,s, Fh

n
p,t,s Hours of production at full, half, or no capacity

Cold Mill

Cf
t,s, C

h
t,s, C

n
t,s Production at full, half or no capacity{0, 1}

Chft,s, Ch
h
t,s, Ch

n
t,s Hours of production at full, half, or no capacity

Hot Mill

Hf
t,s, H

h
t,s, H

n
t,s Production at full, half or no capacity{0, 1}

Hhft,s, Hh
h
t,s, Hh

n
t,s Hours of production at full, half, or no capacity
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3.5 Production Planning Model Comparison Case

Studies

In this section, two case studies are presented to quantify the improvement each

modelling technique developed in the preceding sections has when applied to an in-

dustrially relevant problem. The first case study will demonstrate the improvement

made when including uncertainty in a two-stage stochastic model compares to its

deterministic counterpart. The performance of the models will be quantified using

Equation 3.61. This equation is the distance from the inventory targets summed over

all products for all weeks.

√∑
p

∑
t

(WIPp,t,s −WIP tar
p,t )2 + (HBp,t,s −HBtar

p,t )2 (3.61)

The second case study compares the SAPP and the CBSAPP by quantifying the

production costs associated with the two models. A third model that is a compromise

between the two extremes is introduced as well. The objective of this case study is

to compare each models ability to reduce operating costs and maintain operability in

the plant. The models in this section will be quantified by the total cost to operate

the plant over a ten week horizon when considering holding costs, backorder costs

and production costs which is the objective function of the CBSAPP model in the

previous section.

Both of the case studies use actual production data from a steel mill located in

Hamilton, Ontario, extracted on February 13, 2013. All models used in this section

are modelled with AMPL version 2006.06.26 and CPLEX 12.5.0.0 using up to 8

threads. The simulations were performed on an Dell Vostro 430 computer (Intel Core
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i7-870, 8GB DDR3 RAM, Nvidia GeForce GT240, Windows 7 x64).

3.5.1 Case Study 1 - Benefits of Stochastic Modelling

The purpose of this case study is to evaluate the ability of a deterministic model and

a stochastic model to reach the objective provided in Equation 3.61 in each of the 100

scenarios. This case study begins with a generation of 100 demand scenarios which

are populated randomly from the normal distributions created from historical data

developed in Section 3.3.3. It is important to note that the models are not privy

to these demand scenarios. In particular, the 100 scenarios used in the stochastic

model are different from the 100 scenarios used to test the models ability to meet the

objective.

The plant data that is available upon data extraction includes the Long Term Plan-

ning inventory target trajectories, the upcoming 10 weeks of demand forecasts, an

estimate of the maximum amount of production capacity of each mill and line, an

estimate of the current levels of inventory, limitations on the amount of inventory the

warehouses can hold, projected maintenance downtime in the upcoming 10 weeks,

and the number of scheduled employee hours.

To begin, the deterministic model is evaluated. The model is given only the average

value of demand from the order books. This is equivalent to the mean of the normal

distributions provided in Section 3.3.3. The model is required to make production

decisions for the non-anticipative period (week 1 at the finishing lines and weeks 1-3

at the hot mill) based on this most likely value of demand. The true value of demand

(based on the randomly generated scenario) is then provided to the model, and it is

allowed to make its production selection for the remaining weeks. When using this
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optimization approach, the DAPP is able to achieve a total distance from inventory

target per week of 2,297. Additionally, this method does not become infeasible under

any scenario.

Finally, the stochastic model is evaluated. This model is provided with 100 randomly

generated scenarios of demand and its production values for the non-anticipative

weeks are locked in. Subsequently, the model is provided with one of the randomly

generated scenarios, and the remaining weeks are optimized until all scenarios are

considered. When considering the SAPP, it is found to have a total average weekly

distance of 2,299 which represents a negligible difference over its deterministic coun-

terpart. This is due to the fact that the large majority of the uncertainty occurs

outside of the non-anticipative 1-3 week period. This can be very clearly seen in Fig-

ure 3.4. The width of the distribution is very small when compared to the absolute

value of the demand. This means a sample from anywhere inside the 3 standard devi-

ation window is essentially equivalent to taking the average. As such, the stochastic

model and the deterministic model are provided with nearly identical demand data

sets. It is expected that there would be little improvement in the stochastic model,

as there is essentially no uncertainty. In fact, when considering the data set provided,

98.7% of the uncertainty (open quota) occurs in weeks 4 through 10. Another rea-

son for the lack of improvement is that the model does not run near its constraints.

One of the main benefits of a stochastic model is the ability to predict infeasibilities

under certain scenarios and hedge against them in the first stage. If there is no risk

of infeasibility, then there is no hedging, and no benefit to a stochastic model. The

following section will develop a model that pushes the boundaries of feasibility in an

effort to reduce costs. It is expected that a stochastic model will be able to provide

value in this situation.
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Figure 3.8: Stochastic solution time

An additional expected result of the stochastic case study is the increase in solution

time as a function of the number of scenarios. This can be seen in Figure 3.8. This

figure shows an exponential relationship. This is expected as the number of variables

doubles with each additional scenario.

3.5.2 Case Study 2 - Cost Reductions and Operability

The purpose of this case study is to quantify the benefit of the CBSAPP over the

inventory targeted SAPP. This is accomplished by first calculating the total produc-

tion costs under the SAPP model. The holding cost and back order cost per 100

tons of production under the SAPP model was found to be $6,833 which comprises

2.2% of the total cost of production. With this base line set, the total production

costs are calculated under the CBSAPP model. This was found to be $526.16 per

100 tons. The breakdown of the individual relative costs for these models are pre-

sented in Figure 3.9. The main takeaway from this Figure is the reduction from the

Work-In-Progress and Hot Band holding costs from a marginal value, to a negligible

59



Patrick Carter - M.A.Sc. Thesis - Chemical Engineering 3.5

Figure 3.9: Cost break down and comparison for the inventory target SAPP (a) and
CBSAPP (b)

one. In total, this represents a 2.1% reduction in operating costs under the CBSAPP.

Another result of this change in modelling techniques is the introduction of oscillatory

behaviour into the production profile when using the CBSAPP model. Figure 3.10

shows the oscillatory behaviour at the Hot Mill. This behaviour is a result of the

different linear cost coefficients for each mode of production. Essentially, it is cost

optimal to turn a production line on to full capacity to stock up inventory, and then

shut the line down completely while meeting orders with the inventory stock. This

mode of operation may be cost optimal, but is undesirable from a plant operability

stand point. The plant managers must constantly reallocate staff to meet fluctuat-

ing production levels. A solution to this problem is presented by reintroducing the

concept of inventory targets, but allowing it to be a variable in the CBSAPP model

rather than a parameter. This is shown in Equation 3.62 and is referred to here as
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Figure 3.10: Baseline(a) and oscillatory behaviour introduced at the Hot Mill due to
the CBSAPP(b)

the Cost Optimal Inventory Target (COIT) model.

Min
∑
p

∑
t

∑
s

hcp(WIPp,t,s +HBp,t,s) + bcp(Bp,t,s +Bh
p,t,s)

+ scp(F
f
p,t,s + 0.6scpF

h
p,t,s + 0.1scpF

n
p,t,s)

+ scp(H
f
p,t,s + 0.6scpH

h
p,t,s + 0.1scpH

n
p,t,s)

+ (WIPp,t,s −WIP tar
p )2 + (HBp,t,s −HBtar

p )2

(3.62)

Note that HBtar
p and WIP tar

p are no longer functions of the time period. This re-

quires the model to select one optimal level of inventory to attempt to meet while

simultaneously minimizing holding costs. The square nature of this variable in the

objective function means meeting this target is of high importance when the distance

from the target is large, but becomes insignificant when the actual inventory level is

close to the target. At this point, minimizing costs become the priority. Figure 3.11a

shows the oscillatory nature in the CBSAPP and the reduction after reintroducing the

inventory targets in Figure 3.11b. There is a small cost to return operability to the

plant. This comes in the form of additional holding and back order costs to a total of

$1,048 per 100 tons. The inventory levels shown for the three models discussed in this
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Figure 3.11: Oscillation reduction at the Hot Mill shown in (b) when compared to
the CBSAPP(a)

case study for a sample product are presented in Figure 3.12. Graph 3.12(a) shows

the initial high levels of inventory introduced by the Long Term Planning target. The

inventory storages are sufficiently high enough to meet all uncertainty introduced by

demand and production with additional unnecessary inventory. The opposite of this

is shown in 3.12(b). The fictitious inventory target is at zero, and the amount of

inventory held is strictly sufficient enough to meet the maximum uncertainty pro-

vided in the worst scenario generated. A compromise between these two extremes is

seen in 3.12(c) when the inventory targeted SAPP and CBSAPP modeling paradigms

are merged. The optimization model chooses an inventory level that is large enough

to meet all uncertainty while returning operability to the plant. A summary of the

holding and back order costs per 100 tons, the percentage reduction in operating cost,

and pros/cons of all three models discussed in this case study are presented in Table

3.3. A comparison of the problem size is shown in Table 3.4. Finally, a table of the

solution time and optimality gap is presented in Table 3.5.
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Figure 3.12: Comparison of the selected inventory targets under the SAPP(a), CB-
SAPP(b) and COIT(c)

SAPP CBSAPP COIT
Holding Cost and Backo-
rder Cost per 100 tons

$6,833.36 $526.15 $1048.44

Percent Reduction in Op-
erating Cost

- 2.1% 1.9%

Pros Small chance of
missing shipping
dates

Significant cost
savings

Significant
cost savings,
Non-oscillatory
production

Cons Significant hold-
ing costs

Oscillatory pro-
duction behavior

Loss of 0.2% in
savings

Table 3.3: Summary of stochastic production planning models
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SAPP CBSAPP COIT
Type QP MILP MIQP
Percent Reduction in
Operating Cost

- 2.1% 1.9%

Scenarios 100 20 10
Binary Variables 0 10200 5100
Continuous Variables 138000 27600 16600
Constraints 125860 25060 15232

Table 3.4: Comparison of stochastic production planning models problem size

SAPP CBSAPP COIT
Percent Optimality 0.0001% 2% 2%
Solution Time 21.72 seconds 10 minutes (cap) 30 minutes (cap)

Table 3.5: Comparison of stochastic production planning models solution time
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Chapter 4

Scheduling Using Mathematical

and Constraint Programming

The previous chapter addressed the medium term planning problem. This chapter

addresses the scheduling problem that resides one temporal level below Medium Term

Planning. A visual representation this problems location in the planning hierarchy

can be seen in Figure 3.2. The objective of this chapter is to develop a mathematical

optimization model for the scheduling of groups of orders at a typical integrated steel

mill. Scheduling at a steel mill involves allocating orders to one of many parallel

production lines, and sequencing the orders so they are optimal with respect to order

due dates and cost. Allocation and sequencing problems are combinatorial in nature

and are difficult to solve computationally. As a result, many literature sources have

investigated methodologies for reducing the solution time required for these problems.

An important factor in computation time is the choice of the mathematical model.

The mathematical model dictates the number of variables, the number of constraints,
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and the solution algorithm used to solve the problem. The selection of an appro-

priate mathematical model is not always clear. As a result, the first section of this

chapter develops several models, including one MINLP, three distinct MILP models

and a constraint programming model that uses a significantly different solution al-

gorithm. The purpose of creating these models is for a comparison of their ability

and computation time to reach an optimal solution. The results of this comparison

are presented in the first case study. Once the most efficient model is selected, it is

extended to include constraints that are unique to the integrated steel mill scheduling

problem. The second case study investigates this model’s ability to solve a problem

of industrial scale. Finally, the chapter concludes with a verification of optimality.

4.1 Application Context: Campaign Scheduling

Although the steel mill formally calls this campaign planning, it is truly a scheduling

problem. A scheduling problem involves selecting the precedence between activities

given a finite amount of resources with an objective that usually involves minimizing

duration, lateness or cost. The “activity” in a steel mill can be a customer order, a

steel coil, or in this situation, a campaign. A campaign is defined as a block of time

that the production line uses to process steel with specific coil characteristics. A visual

reference for the following description can be found in Figure 4.1. Campaigns typi-

cally consist of a series of steel coils welded end-to-end. The coils have been allocated

customer orders that are grouped together to be sent through the production line in

one continuous batch. Campaigns are further classified into campaign types. Each

campaign type typically has its own unique combination of rollers, annealing specifi-

cations, galvanizing liquid, thickness/width range, etc. Switching between campaign
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Figure 4.1: Classification of customer orders into campaigns and campaign types

types involves shutting down the line for a set amount of time in order to change

rollers and liquid. A product line can have between 6 and 15 campaign types. The

campaign types are sequenced and repeated, forming a campaign cycle. If a customer

order is not allocated within a campaign it might be weeks before the cycle is repeated

and the order can be allocated again.

The objectives of the campaign scheduling problem are three-fold. The main objective

is to maximize on-time delivery, or minimize lateness. The secondary objective is to

minimize operational costs by maximizing throughput. The tradeoffs are clear when

considering all factors in the above paragraph. In order to maximize throughput,

all campaigns of one type would be grouped together in continuous operation. This

would minimize the amount of time that the line would have to be shutdown for

changeover activities. However, this would typically result in a large number of late

orders since one campaign cycle can last for several weeks. Conversely, ordering the

campaigns based strictly on due date would result in a large number of changeovers.

There exists some optimum in the middle.

Concerning the classifications of scheduling problems introduced by Mendez et al.

(2006) and replicated in the literature review, the campaign scheduling presented

here has a sequential process topology with single stage and sometimes parallel units.

This means each batch must be processed following a sequence of stages defined by a
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recipe. The inventory storage policies are finite and consist of dedicated and shared

storage units. Inventory storage is ignored in this case. The material transfer is

considered instantaneous, that is, the transport of material between processing units

is neglected. The batch size of each campaign is fixed and the processing time is fixed,

but unit dependent. The demand patterns are based on due dates and each order has

its own date. The changeovers are product and sequence dependent. There exists a

continuous constraint in the form of roller usage. Maintenance time constraints are

ignored in this problem. There are costs associated with changeovers and inventory

holding. There is uncertainty in demand and unscheduled shutdowns, however for

simplicity this problem is considered deterministic. The problem under consideration

is a simplified version of an actual problem solved at a steel mill located in Hamilton,

Ontario. The ultimate goal of the work described in this chapter to replace the

manually intensive heuristic with a mathematical optimization model that is capable

of producing optimal decisions in a shorter amount of time. In order to simplify the

problem to a tractable size, only one product line is considered. This negates the

need to consider line switching and significantly reduces the number of variables and

constraints in the problem. The product line under consideration involves galvanized

steel production.

Galvanized steel is steel that has been immersed in molten zinc at approximately

850 degrees Fahrenheit to provide protection against corrosive environments. Gal-

vannealed steel goes through a similar process to Galvanized steel, with the addition

of a heat treatment. This additional heat brings iron to the surface making it harder.

The additional iron on the surface prevents scratching, increases the bonding with

paint products, and makes the steel better for welding applications. In order to switch

between production of galvanized and galvannealed steel, as period of shutdown time
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is required at the production line.

The data set used is 1227 actual customer orders divided amongst 33 campaigns which

represents approximately 6 weeks of production. The information provided includes

the size in tons of each order, the due date of each order, the prepossessing time

required per order, and the type of campaign; either galvanneal (type 1) or galvanize

(type 2). As discussed in the literature review, an optimization model that chooses

the precedence of all 1227 orders is likely to be computationally intractable. Instead,

this model will focus on the precedence of the 33 campaigns. An advanced production

planning program is used to allocate customer orders into campaigns. An algorithm

is run over-night that considers all customer due-dates in the system as well the

available capacity of each of the product lines. The system takes into consideration

the allowable sequence of orders and fits each customer order into a campaign slot.

The algorithm is run for customer orders in the time horizon from 6 weeks to 6

months. Once an order is within a 5 week time horizon, the algorithm is removed

and the campaign planning is manually sequenced by an experienced operator. This

is done to prevent the planning program from constantly adjusting the campaign

plan as manufacturing and shipping need a fixed plan to properly allocate resources.

This manual allocation of orders into a campaign is performed weekly with daily

adjustments to account for any unplanned manufacturing disturbances or new orders

that can satisfy remaining open quota. As such, the precedence of the customer orders

is considered fixed and is an input to the model. The due date of the campaign is

determined by an average of the due dates of the orders inside the campaign. The

due dates and processing times are rounded to the nearest hour. It is assumed that

there are no storage constraints at the end of the production line.

This problem falls under the category of ”single machine scheduling” which has been
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researched extensively by the operations research community, and to a lesser degree,

the chemical engineering community.

4.2 Comparison and Selection of Modelling Type

The purpose of this section is to introduce and compare various mathematical opti-

mization and constraint programming models in an effort to determine which model

best suits the steel mill campaign planning problem discussed above. The models

will be compared on their ability to reach optimality in the shortest amount of time.

Each subsection will begin with a classification of the modeling type introduced in

Figure 2.6. An explanation of the model’s objective and constraints follows.

4.2.1 Continuous Time Models

Analyzing the data provided, the summation of all 33 campaigns processing times

equates to 41.89 days worth of orders in the system. The campaign duration and

due date parameters are accurate to within the hour. As such, in order to properly

represent the system within a discrete time frame, the model would need 1,006 in-

dividual discrete time intervals. The discrete time models key variable would have

one subscript for the campaign and one for the time interval. This would result in

33∗1006 = 33, 198 binary variables. Since the solution time of a discrete model scales

with the degree of discretization, it is presumed that this would make the problem too

large to be solved within a reasonable amount of time. Additionally, if any additional

production lines were to be added to the model at a later date, this problem would

magnify. For this reason, a discrete time model is not investigated.
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A continuous time representation is therefore used for all the following models. A

discrete time model employs a single set of binary variables that handles the sequenc-

ing and timing decisions. Conversely, a continuous model uses a completely separate

set of continuous variables to handle the timing decisions. In general, this provides a

significant reduction in the number of variables and provides more accurate solutions

(Mendez et al., 2006). As a consequence, continuous time models also require the

addition of big-M constraints which tend to increase the complexity in the form of

a large integrality gap. The formal name given to the four continuous time models

in this section are: Slot-Based, Linearized Slot-Based, Immediate Precedence, and

General Precedence. These names are in reference to the type of key binary variable

used.

Slot-Based Model

This model assumes there exists a time “slot” for every member in the set of predefined

time intervals with an unknown duration, which becomes the key variable of the

model. Each unit or processing line has its own set of time slots. However, for the

sequential case with one product line, this becomes relatively simple as the number

of time slots is fixed and equal to the number of campaigns. The key discrete variable

is Xi,k which is equal to 1 if campaign i exists in time slot k. The basis for this model

can be found in Pinto and Grossmann (1998). Note that the nomenclature used in

this model can be found at the end of the subsection.

The objective function is presented in Equation 4.1. This simply shows the main

objective as a minimization of lateness and earliness using variable Li and Ei respec-

tively. It is important to recognize that this is different from a minimization of the
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number of late jobs, which will be used in later models. This objective uses continuous

variables which negates the need for additional binary variables.

Min
∑
i

[Li + Ei] (4.1)

Equation 4.2 states that exactly one campaign must be assigned to every time slot.

s.t.
∑
i

Xik = 1 ∀k ∈ K (4.2)

Similarly, Equation 4.3 enforces that every campaign is assigned to one time slot.

∑
k

Xik = 1 ∀i ∈ I (4.3)

This model has separate equations for the timing constraints, which is a feature of

continuous time formulations. Extra continuous variables are required to model the

timing associated with each campaign. These are Tsk and Tek which represent the

start and end time of each campaign respectively. Equation 4.4 ensures that there

is no overlap between time slots. It also includes a component for the sequence

dependent changeovers. The size (in hours) of the changeover is equal to τii′ . This

multiplication of binary variables introduces a bilinear term meaning this model is

nonlinear.

Tek = Tsk +
∑
i∈I

XikTi +
∑
i

∑
i′

Xik−1Xi′kτii′ ∀k ∈ K (4.4)

Equation 4.5 ensures that there is no dead time between campaigns which is required

as the steel coils are physically welded together for continuous operation of the pro-
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duction line.

Tek = Tsk+1 ∀k ∈ K (4.5)

The continuous lateness variable is defined in Equation 4.6. The necessary multipli-

cation of the binary variable with its timing variable also adds nonlinearity to this

model.

Li − Ei =
∑
k

Xik(Tek −Di) ∀i ∈ I (4.6)

Equation 4.7 ensures that the continuous variables are greater than zero.

Li, Ei, T sk, T ek ≥ 0 ∀i ∈ I, k ∈ K (4.7)

Finally, Equation 4.8 simply states that the timing should start at zero.

Ts1 = 0 (4.8)

This model is relatively simple to comprehend but suffers from nonlinearity due to the

selection of the objective function and the fact that sequence dependent changeovers

are necessary for this problem. Fortunately, there exist linearization techniques which

will be addressed in the following subsection.
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Nomenclature
Sets
I All Campaigns
K Time Slots

Parameters
Ti Processing Time
τi,i′ Changeover Time
Di Campaign Due Date

Variables
Xi,k Binary: Assignment
Tsk Campaign start time
Tek Campaign end time
Li Lateness
Ei Earliness
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Linearized Slot-Based Model

The techniques used to linearize the slot-based model were originally proposed by

Sahinidis and Grossmann (1990). For the sequence dependent changeovers, an ad-

ditional binary variable can be defined. Let Zii′k be a binary variable that is equal

to 1 when the processing of campaign i occurs immediately before the processing of

campaign i′ at slot k. Equation 4.9 is added to the model to ensure that Zii′k is

activated when Xik and Xi′,k+1 are equal to one.

Zii′k ≥ Xik +Xi′,k+1 − 1 ∀i ∈ I, i′ ∈ I, k ∈ K (4.9)

This new variable can now be substituted anywhere the bilinear multiplication of

Xik−1Xi′k is found. Particularly, constraint 4.4 is modified to create the new Equation

4.10.

Tek = Tsk +
∑
i∈I

∑
i′∈I

Zii′k(Ti + τii′) ∀k ∈ K (4.10)

To deal with the bilinear term involving a multiplication of the Xik and Tek variables

in Equation 4.6, the method shown in Xpress (2009) can be followed. A new contin-

uous variable yik is created of the form yik = XikTek. This new continuous variable

is then substituted into Equation 4.6 to create Equation 4.11.

Li − Ei =
∑
k

yik −Di ∀i inI (4.11)

In order to make the new yik behave like the bilinear term, an additional two con-

straints are necessary and shown in Equation 4.12 and Equation 4.13 where M is a

large number.

yik ≤MXik ∀i ∈ I, k ∈ K (4.12)
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Tek −M(1−Xik) ≤ yik ≤ Tek ∀i ∈ I, k ∈ K (4.13)

The first of these constraints ensures that the new variable is equal to zero when the

binary term is equal to zero, and is unbounded otherwise. The size of the big-M does

not need to be any larger than the sum of all the processing times plus changeovers.

To make this as tight as possible without being restrictive, it is set to the sum of

all the processing times of the campaigns plus 33 changeover periods which would

be the maximum number possible. The second constraint ensures that yik is equal

to Tek when the binary is equal to one. As can be seen, all of these constraints

are linear. As such, the nonlinearities have been removed from this formulation at

the expense of an increase in the number of variables and constraints. Since the

number of campaigns is equal to the number of time slots in the single-unit case, this

problem has increased by n2 continuous variables and n3 binary variables where n

is the number of campaigns. This is a significant increase. However, the benefit to

a linear program when compared to its nonlinear counterpart is that there exists a

guarantee of optimality. Additionally, superior solution algorithms are available for

linear programs. It is unclear whether the increase in the number of variables will

offset these positives. The first case study will investigate this concept.

Immediate Precedence Model

The mathematical model used in this subsection is largely based on the one available

in Radhakrishnan and Ventura (2000). The key decision variable is Zijm which is equal

to one if job i is immediately followed by job j on machine m. This is fundamentally

similar to the variable introduced in the linearized slot-based model. However, the

immediate precedence model is completely based on this variable. Additionally, the
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slot-based models’ third subscript is k, representing the number of time slots of which

there is 33. Conversely, the precedence models’ third subscript is m, representing the

machine or production line. Since the reduced steel mill problem only considers one

product line, the m subscript takes on only one value. This results in a significantly

smaller amount of variables when compared to the slot-based models. The precedence

model will be extended to multiple production lines in the future, so it is helpful to

include the m subscript in this formulation.

The objective function in 4.14 is unchanged from the first model.

Min
∑
i

[Li + Ei] (4.14)

The slot-based models used the Xik variable to assign a campaign to a slot. The

precedence models use instead use the variable yim to assign a campaign to a pro-

duction line. Constraint sets in Equation 4.15 and 4.16 combine to affirm that all

campaigns are assigned to a production line. They also ensure that if campaign i

precedes campaign j, then they both must be assigned to the same machine. They

also ensure that a campaign can only be followed by one campaign with the exception

of the last campaign which is followed by nothing.

s.t.
∑

i∈I,i 6=j

Zijm = yjm ∀j ∈ I,m ∈M (4.15)

∑
j∈I,i 6=j

Zijm ≤ yim ∀i ∈ I,m ∈M (4.16)

Constraint 4.17 ensures that every job is assigned to exactly one machine.

∑
m

yim = 1 ∀i ∈ I (4.17)

77



Patrick Carter - M.A.Sc. Thesis - Chemical Engineering 4.2

The timing constraints begin with Equation 4.18. This equation ensures that the

completion time of campaign j will occur after campaign i plus any setup time and

processing time.

Tej +W (1− Zijm) ≥ Tei + τij + Tj ∀i ∈ I, j ∈ I,m ∈M : j 6= i (4.18)

The definition for lateness is in Equation 4.19.

Li − Ei = Tei −Di ∀i ∈ I (4.19)

By the definition of Zijm, all campaigns must follow a previously sequenced campaign.

Therefore, in order to facilitate the start of the sequence, a dummy campaign is

introduced called campaign ’0’. Equation 4.20 initializes this first fictitious campaign.

∑
i

Z0im = 1 ∀m ∈M (4.20)

Equation 4.21 ensures that the continuous variables are greater than zero.

Li, Ei, T ei ≥ 0 ∀i ∈ I (4.21)
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Nomenclature
Sets
I All Campaigns
M Machines (Product lines)

Parameters
Ti Processing Time
τii′ Changeover Time
Di Campaign Due Date
W Large Number

Variables
Zii′m Binary seq: = 1 if campaign i′ scheduled after campaign i
yim Binary assigning campaign i to product line m
Tei Processing end time
Li Lateness
Ei Earliness
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General Precedence Model

The mathematical model used in this subsection is based on the model given in

Zhu and Heady (2000). This model separates the sequencing of the campaigns from

the assignment of campaigns to machines. The key decision variable is Zij which is

equal to one if campaign i is followed by campaign j. This definition is functionally

different from the immediate precedence model in that campaign i does not need to

immediately precede j. The same variable yim is used for assigning campaigns to

production lines.

The objective function in 4.22 is unchanged from the previous models.

Min
∑
i

[Li + Ei] (4.22)

The sequencing constraints in 4.15 and 4.16, as well as the timing constraint in 4.18

are replaced with two complex constraints shown in 4.23 and 4.24.

Tej ≥ Tei + Tj + τij +B(Zij + yim + yjm − 3) ∀i ∈ I, j ∈ i+ 1..N,m ∈M, j 6= i

(4.23)

Tej ≥ Tei +Tj + τji−B(Zji−yim−yjm + 2) ∀i ∈ 0..N, j ∈ i+ 1..N,m ∈M, j 6= i

(4.24)

The first of which ensures that the end of campaign j is greater than the end of

campaign i plus the processing and changeover time if and only if campaign i precedes

j and both are assigned to the same production line. The latter utilizes the concept

that if Zij is equal to 0, than Zji must be equal to 1. It performs the same function

as 4.23, but for when Zji is active. Constraint 4.25 through 4.27 remain unchanged
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from the previous model. ∑
m

yim = 1 ∀i ∈ I (4.25)

Li − Ei = Tei −Di ∀i ∈ I (4.26)

Tei, Li, Ei ≥ 0 ∀i ∈ I (4.27)

Using this slight change in notation, Zhu and Heady (2000) have seen on average a

reduction by a factor of five for many problems. The authors also provided additional

constraints to help tighten the search space based on the triangle inequality which did

not prove to make a significant difference in this application. The reduction in the

number of binary variables from the immediate precedence model is given by 4.28,

where N is the number of campaigns and M is the number of machines.

Reduction = N(N + 1)M − N(N − 1)

2
(4.28)

This concept is further discussed in the first case study.
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Nomenclature
Sets
I All Campaigns
IGI Galvanize Campaigns
IGA Galvaneal Campaigns
m Machines (Product lines)

Parameters
Ti Processing Time
τii′ Changeover Time
Di Campaign Due Date
W Large Number

Variables
Zii′m Binary seq: = 1 if campaign i′ scheduled after campaign i
yim Binary assigning campaign i to product line m
Tek Processing end time
Li Lateness
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4.2.2 Constraint Programming Model

The constraint programming model uses IBM’s optimization programming language

(OPL) to create a mathematical model that is solvable with their constraint pro-

gramming solver. The constraint programming solver is unique in that it divides the

search space into interval variables and only performs calculations for solutions inside

the feasible domain. The OPL itself is unique and behaves partly like a traditional

optimization language and partly like a programming language. Logical constraints

can be used to restrict the feasible domain in addition to mathematical constraints.

The variables that are required to replicate a mathematical optimization model in-

clude a set of interval variables and one sequencing variable. An interval variable

behaves much like a slot. It has a unique start time, end time, size and type. Its

position in time is the variable. The “type” characteristic allows the distinguishing

between campaigns without the need to introduce a binary changeover variable. The

sequence variable represents the position of campaigns in relation to each other. The

values that the sequence take on are the order of the intervals within the sequence.

For more information regarding the types of variables that IBM uses, the reader is

directed towards the IBM OPL Reference Manual (2009). The interval variable Ci

representing campaign i with size Ti representing the tonnage of steel in the campaign

is shown in Equation 4.29.

Ci size Ti (4.29)

The sequencing variable is entered into OPL as shown in Equation 4.30. This says

that sequence S represents the relative position in time of campaigns Ci. Each of the

campaigns are given a type Ji. If the types of back-to-back campaigns are different,
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the sequence adds in changeover time between the campaigns.

S in Ci types Ji (4.30)

The objective function used in this model is the same as in all the previous models.

Min
∑
i

[Li + Ei] (4.31)

The constraints required in the OPL are compact due to the built in function noOver-

lap shown in Equation 4.32. This equation states that the intervals inside of the

sequence S may not overlap. Additionally, since we provided an interval type to

the sequence, the built in function will add the changeover time τii′ if two intervals

sequenced together are of different type.

s.t. noOverlap (S, τii′) ∀i ∈ I, i′ ∈ I (4.32)

The OPL uses built in functions to access values “inside” an interval. In Equation

4.33, we require the end of the interval to determine its lateness or earliness. This

value is simply accessed by the endOf function.

endOf (Ci)−Di = Li − Ei (4.33)

The benefits of this modelling paradigm are obvious. It is extremely compact due to

the use of the built in functions and its unique definition of variables. It is unclear

whether the constraint programming solver will outperform CPLEX. This will be

investigated in the first case study.
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Nomenclature
Sets
I All Campaigns
J Campaign type
Parameters
Ti Processing Time
τii′ Changeover Time
Di Campaign Due Date
N Number of campaigns

Variables
Li Lateness
Ei Earlienss
I All Campaigns
Ci size Ti Interval variable: One interval per Campaign
S in Ci types Ji Sequence variable: Represents the sequence of campaigns C
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4.2.3 Case Study 3 - Model Solution Time

The purpose of this case study is to investigate the preceding models in their ability

to solve an industrially relevant problem. The mathematical models are compared

by incrementally increasing the problem size until the full problem size is reached. A

time limit is set at 5 minutes of computation time. The MINLP model is solved using

the Knitro solver, version 9.0.1 with multi-start enabled. The MILP slot-based, im-

mediate precedence, and general precedence models are solved using CPLEX 12.5.0.0.

All of these model are coded in Ampl version 2006.06.26. The constraint program-

ming model uses the OPL and CP solver. All models are solved to an optimality gap

of 0.01%.

The data set used for this case study is provided by an integrated steel maker in

Hamilton, Ontario. The data provided includes 33 campaigns, 1227 customer orders,

steel tonnage per order, processing time and product type. The data represents 6

weeks of production.

Before beginning the experiment, the size of the problems can be viewed and a hy-

pothesis made. The problem size in terms of number of variables and constraints for

the full 33 campaigns is given in Table 4.1. Note that variables and constraints are not

considered in the same way in Constraint Programming. From this table, we can see

that the MILP slot-based model is large in both variables and constraints. The large

number of binary variables is due to the presence of the Zii′k to handle changeovers.

The increase in constraints over the MINLP slot-based model is due to the bilinear

relaxation. This model is not expected to perform well for this reason. The Imme-

diate Precedence model has the same number of variables as the MINLP slot model,

but has additional constraints. It is unclear whether the additional constraints will
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Model Binary Variables Continuous Variables Constraints
MINLP Slot 1089 99 164
MILP Slot 37026 1188 38312

Immediate Precedence 1089 (1089) 99 1189
General Precedence 1056 (528) 164 2145

Constraint Programming∗ 100 - 34
∗ Variables not comparable

Table 4.1: Problem sizes and specifications for different models

slow down or speed up solution time. CPLEX has the feature of presolving the set

of equations and reducing the size of the MILP. The reduced size of the MILP is dis-

played in parentheses in Table 4.1. As can be seen, the General Precedence model can

be reduced to 528 binaries which is consistent with substituting N = 33 and M = 1

into Equation 4.28 as expected. The Constraint Programming software provided by

IBM does not calculate variables and constraints in a similar manner to mathematical

optimization. It is not practical to compare them. However, it is presented in the

table for completeness.

The results for the solution times as a function of problem size are presented in Figure

4.2. The Knitro solver used for the MINLP slot model uses a mutli-start feature

which occasionally stops at a local and infeasible solution. The MILP slot model and

constraint programming models reach the maximum solution time at 12 campaigns.

The immediate precedence model performs significantly better, but is not able to solve

the entire problem within the allotted time. The constraint programming model does

not perform well in this case study. It is assumed that the lack of constraints in

this model create a search space that is too large to be efficient under the constraint

programming paradigm that benefits from tight problems. The most efficient model

used is the general precedence model. It is able to solve the full problem size in 127

seconds.
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Figure 4.2: Solution time as a function of problem size for different model types

Model Best Feasible So-
lution

Time to Best
Feasible Solution

Optimality
Guaranteed?

MINLP Slot 30289 300 N
MILP Slot N/A No Sol’n Found N
Immediate Precedence 3101.48 300 N
General Precedence 3094.62 127 Y
Constraint Programming 3119 1.76 N

Table 4.2: Time taken to reach the best feasible solution for different models

Another interesting result can be seen in Table 4.2 which shows the time taken to

reach the best feasible solution when each model is solving for the full 33 campaigns.

From this table it can be seen that the true optimum exists at a combined earli-

ness and lateness minimum of 3094.62 hours. However, the Constraint Programming

model is able to find a solution that is only 0.78% away from the true optimum in

under two seconds. This shows that there is promise in the Constraint Programming

formulation.
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4.3 Complete ISP Mathematical and Constraint

Programming Models

The purpose of this section is to develop a mathematical and constraint programming

model that more closely replicates the efforts that are performed by the expert system

at a steel mill. This is accomplished by adding constraints that are specific to a

steel making process. Although the constraint programming model did not perform

particularly well in the previous section, it is believed that it will perform significantly

better under this paradigm. The reason for this belief is that the solution algorithm

finds the true optimum (as determined by the general precedence model) in under

two seconds, but cannot prove optimality until the entire remaining feasible search

space is enumerated. This is one of the drawbacks of the constraint programming

methodology. Since the above model is very loosely constrained, the remaining search

space is very large. By adding complex and restrictive constraints, it is hypothesized

that the search space will be significantly smaller, and the solution time will decrease.

This model is compared to that of the immediate precedence model that performed

well in the previous case study.

The additional constraints that are necessary are depicted in Figure 4.3. This shows

the cyclical nature of the manufacturing process. The previous model makes a dis-

tinction between two types of product, type 1 and type 2. In actuality, there are

seven subcategories of type 1 (type 1a, b, c, d, e, f, g) and four subcategories of type

2 (type 2a, b, c, d). The highest value product is the “exposed” product. This is the

product that is used for automotive exterior purposes. It is required to have the least

amount of defects. As such, a certain type of material is run for a specified number

of tons to prepare the production line for this exposed product. Then, the high value

89



Patrick Carter - M.A.Sc. Thesis - Chemical Engineering 4.3

Figure 4.3: Cycle of campaigns and specific steel mill constraints
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exposed material can be run for a specified maximum. From a cost efficiency point,

manufacturing stipulates that this material should be run at specific minimum ca-

pacity. Any less would waste roller usage. At this point, the rollers used to move the

material are considered to be sub-par for this application. Then the remaining type

1 material can be run. A similar situation occurs for type 2 material. Once this is

completed, the type 1 product can be sequenced again and a cycle is created.

4.3.1 ISP Immediate Precedence Model

In order to handle the cycling of the campaigns, we use the subscript m in the yim

variable to allocate a campaign to a cycle instead of a production line. This is possible

since only one production line is being considered. The set k represents the campaign

cycles (i.e. cycle 1, cycle 2, etc.) and the assignment variable becomes yik.

The objective function of this model is changed to a minimization of the number of

late campaigns in 4.34. Ni is a binary variable that takes on the value of 1 if an order

is late, and 0 otherwise. In reality, a customers goodwill is lost only if an order is

late. Producing a product early is not valuable to a consumer.

Min
∑
i

Ni (4.34)

Constraint 4.19 is modified to reflect this change in objective function as shown in

4.35 where B is a sufficiently large number.

Tei ≤ Di +BNi ∀i ∈ I (4.35)

The only additional constraint needed keeps track of the timing of the campaigns
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within the cycles. This is shown in Equation 4.36

Tej +B(2−yik−yik′) ≥ Tei+τij +Tj ∀i ∈ I, j ∈ I, k ∈ K, k′ ∈ K : k′ 6= k (4.36)

This equation states that the ending time of campaign j is greater than the ending

time of campaign i plus its processing and changeover time if and only if campaign j

occurs at a later cycle than campaign i

These relatively simple modifications are all that is necessary to convert the immediate

precedence model into one that also considers cycling. The number of cycles however

is an input to the model and must be estimated. An estimation that is too small can

result in additional late campaigns. Conversely, overestimating the number of cycles

increases the number of variables resulting in slower solution speed as a key variable

yik scales with the number of cycles. An iterative procedure is necessary to narrow

in on the optimal number of cycles. For this problem, it has been determined that 6

cycles is ideal for 33 campaigns.

4.3.2 ISP Constraint Programming Model

In order to model the cyclical nature in the IBM Optimization Programming Lan-

guage, new functions, variables and sets must be defined. First, it is necessary to

explain that the set i of campaigns is in fact a tuple. A tuple is a data structure

that stores an identifier and a list of elements that are linked with that identifier.

In programming, a classic example of a tuple is to store contact information. The

identifier would be the contacts name, and the elements linked with that identifier

would be their phone number and address. This allowable set notation is one of the
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benefits of constraint programming. The tuple created for this problem stores the

campaign processing time, due date, weight, and type. An example of the tuple is

provided below:

< C1, 5 hours, 144 hours, 2592 tons, type 1b >

< C2, 28 hours, 321 hours, 391 tons, type 2c >

< C3, 7 hours, 168 hours, 1473 tons, type 1a >

In words, Campaign 1 takes 5 hours to be processed, it is due in 144 hours, the steel

has a weight of 2592 tons, and the product type dictates it is to be used for automotive

exposed purposes. With this definition of a tuple, individual elements of campaign i

can be accessed with the dot nomenclature. For example, entering “C1.type” would

return “type 1b”.

An additional added set k represents the campaign cycles (i.e. cycle 1, cycle 2, etc.)

and the set j represents the campaign types (type 1a, type 2b, etc.). A new interval

variable that uses this set is defined in OPL as

Ca
ik optional, size i.pt (4.37)

This variable states that the interval representing campaign i exists in every cycle k

with processing time pt. However, the campaign’s existence is optional. Figure 4.4

explains this concept. This figure shows a small problem including five campaigns

and two cycles. Each campaign must be allocated to a cycle. The program begins by

allocating all five campaigns to each cycle as shown in part (a). A constraint shown

later will restrict Ca
ik to exist in only one cycle. The solution algorithm will then test

different locations for each campaign until the sample solution shown in part (b) is
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Figure 4.4: Selection of sequenced campaigns from the list of alternates

found. This becomes the final location of campaign Ci.

Finally, the OPL allows us to use built-in functions, or define functions of our own.

The first built-in function used is called cumulFunction and is shown in Equation

4.38.

cumulFunction RollerUsagejk =
∑
i

stepAtStart(Ca
ik, i.tons) (4.38)

This function behaves similarly to a step function in the process control literature.

It tracks the value that the step is currently at. This works in conjunction with the

stepAtStart function. This adds a step change to the cumulFunction at the start of

the interval Ca
ik. The size of the step that is made is equal to the weight (in tons) of

the campaign using parameter i.tons. This function will be used in constraint 4.44.

The objective function of this model is identical to that of the ISP Immediate Prece-

dence model and is shown in 4.39.

Min
∑
i

Ni (4.39)
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Equation 4.40 remains the same as the previous CP model. This ensures the sequence

of campaigns do not overlap and includes changeover time if a type 1 product is

sequenced next to a type 2 product or visa versa.

s.t. noOverlap(S, τii′) ∀i ∈ I, i′ ∈ I (4.40)

The alternative function in Equation 4.41 is boolean in nature and states that if

interval Ci is present, then one and only one of the optional intervals Ca
ik must be

present as well.

alternative (Ci, C
a
i,k) ∀i ∈ I, k ∈ K (4.41)

Practically, this constraint allocates interval Ci to one and only one of the cycles k.

For example, if campaign 3 is allocated to cycle 4, then the alternative function would

read

alternative (C3, C
a
3,4) = TRUE

Equation 4.42 uses the built in function endBeforeStart. This function states that the

first term in the parenthesis must end before the second term in the parenthesis. In

this instance, this function is used for the restrict the timing of the cycles. It ensures

that all campaigns allocated to cycle k are completed before all campaigns in cycle

k′ start, where k′ > k.

endBeforeStart (Ca
i,k, C

a
i′,k′) ∀i ∈ I, k ∈ K, i′ ∈ I, k′ ∈ K : k′ > k (4.42)

Similarly, Equation 4.43 restricts the timing of campaigns inside a cycle. This ensures

that all type 1a material occurs before type 1b material, which occurs before all type
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1c, 1d, etc. Here, the dot operator is used again to accesses the type of the campaign.

endBeforeStart (Ca
i,k, C

a
i′,k) ∀i ∈ I, k ∈ K, i′ ∈ I, i′.type ≥ i.type (4.43)

The constraint in Equation 4.44 is used in conjunction with the cumulFunction defined

previously. This ensures that the quality restriction on the capacity of each roller is

not violated.

RollerUsagejk ≤Mj ∀j ∈ J, k ∈ K (4.44)

Finally, Equation 4.45 defines the lateness binary variable (Ni) where B is a suffi-

ciently large number. Intuitively, the endOf function returns the ending time of the

campaign interval i.

endof (Ci) ≤ Di +BNi ∀i ∈ I (4.45)

The following case study will investigate these models’ performance at solving the
industrial campaign planning problem.

Nomenclature
Sets
I Campaigns
J Campaign type
K Campaign cycles
Parameters
Ti Processing Time
τii′ Changeover Time
Di Campaign Due Date
Wi Weight in tons of each campaign
Mj Capacity limit on each type per cycle
B Large Number

Variables
Ci Int var: One interval per Campaign
Ca

ik optional, size Ti Int var: Campaign C can optionally exist in alt cycle locations
S in C types J Seq var: Represents the sequence of campaigns C with type J
Ni Binary variable: equal to 1 if campaign i is late
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4.3.3 Case Study 4 - Industrial Solutions

The same data set that is used in Case Study 3, is used here. The immediate prece-

dence model contains 3644 constraints, 2349 binary variables, and 35 continuous

variables. This is a significant increase in the number of binaries compared to origi-

nal immediate precedence model. The constraint programming model contains 18753

constraints and 265 variables as dictated by the IBM OPL. The important factor

is that the number of constraints is significantly larger than the previous problem,

thereby reducing the search space. The progression towards the optimum for both

of these models can be seen in Figure 4.5. This figure reports a data point for every

feasible solution found. From this figure it can be seen that the constraint program-

ming formulation outperforms the mathematical programming model. After a similar

amount of time, CPLEX is able to return a best solution of 10 late campaigns. The

optimality gap at this point in time is 60%. Conversely, the constraint programming

model is able to reach the true optimum in 8 seconds, and only takes 60 seconds to

prove optimality.

The solution to the full ISP model as reported by the IBM Suite can be seen in Figure

4.6. There are six late campaigns in this solution and 5 changeovers.
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Figure 4.5: Reduction in objective function value as a function of solution time for
the number of late campaigns
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Figure 4.6: Gantt chart of OPL solution for 33 campaigns
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

The main conclusions to be drawn from this thesis are as follows:

1. Stochastic aggregate production planning formulation. After intro-

ducing a deterministic aggregate production planning formulation, a two-stage

stochastic model was developed in an effort to include uncertainty in demand.

It was found that the stochastic model does not provide any improvement when

the objective is to meet inventory targets set out by the long term planning

group. The is due to the fact that 98.7% of the demand uncertainty occurs

outside of the non-anticipative window. Additionally, the inventory target ob-

jective does not push the model to its feasibility limits. The benefits of the

stochastic models ability to predict and hedge against infeasibility are nullified.

2. Cost savings by objective function selection in stochastic production
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planning. It was hypothesized that the inventory targets proposed by the long

term planning group are causing an excessive amount of inventory to be held.

The two-stage stochastic production planning model developed is extended to

include a cost minimization through the development of a cost objective and its

corresponding constraints. It was found that this modelling technique was able

to reduce operation costs by 2.1%. However, this aggressive cost minimization

introduced oscillations in the production profile. A compromise was reached

by reintroducing the idea of inventory targets by making them a variable of

the optimization model. This removed production oscillations with only a 0.2%

reduction in cost savings.

3. Analysis of mathematical programming formulations for use in schedul-

ing problems. Solving scheduling problems for industrially sized problems is

computationally difficult to solve. The computational efficiency is largely depen-

dent on the choice of the mathematical model used. As such, several continuous

time mathematical programming formulations were introduced and tested using

data from the steel industry. The problem under consideration is a sequencing

problem with 33 campaigns and sequence dependent changeovers. The objec-

tive function used is a minimization of lateness. There are no constraints on the

allowed precedence of the jobs. It was found that a general precedence model is

the most efficient model available for this particular problem. The model is able

to solve 6 weeks of campaigns for one product line in approximately 2 minutes

of computation time.

4. Constraint programming formulation alternative. A constraint program-

ming formulation was developed as an alternative model to the mathemati-

cal programming formulations. This formulation was selected as it had been
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shown to perform well for combinatorial optimization problems, particularly

when considering scheduling problems. The model considered 33 campaigns

with sequence dependent changeovers. Additional constraints were added to

restrict the feasible precedence of jobs. The allowable sequence forms a cycli-

cal structure that is type and family dependent. Additional constraints were

added to this problem that include the quality of steel produced dependent

on its sequence. The constraint programming model was able to computation-

ally outperform the mathematical formulations when considering an industrially

sized steel making problem.

5.2 Recommendations for Further Work

Further avenues to explore are summarized in the following list:

1. Rolling Horizon Planning. The stochastic production planning models in-

vestigated in this thesis assume that an initial first stage decision must be made,

and then one final second stage reactionary decision can be implemented after

the uncertainty is realized. In actuality, demand forecasts are updated every

week and the operators are allowed to reevaluate their planning decisions. This

is commonly referred to in the research literature as a rolling horizon. A mod-

elling extension that can replicate this is multi-period, multi-stage stochastic

formulation.

2. Reactive Scheduling. An extension that would benefit from additional re-

search is in the area of reactive scheduling. The steel mill planners are often

faced with scenarios where unexpected occurrences necessitate the immediate
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change of the current schedule. This may be a result of an unexpected shut-

down or a last-minute customer order. A useful modelling extension would be

to re-optimize the previously solved schedule to include the new variables while

deviating from the previous plan as minimally as possible.

3. Campaign Planning for Multiple Production Lines. Currently, the model

is able to provide a solution for one production line. In reality, there are 10 pro-

duction lines running in parallel at the steel mill. Additionally, some campaigns

are able to be produced on multiple production lines. This adds a significant

amount of complexity and room for optimality that is not currently included in

the model. However, adding multiple production lines will increase the number

of variables of the optimization model substantially. This work will need to

investigate other methods of speeding up solution times such as disaggregation

and decomposition.

4. Integration of Planning and Scheduling. The planning problem in the first

portion of this thesis and the scheduling portion in the second are currently in-

dependently solved. In reality, the decisions made in each of these respective

layers affect decisions of the other layers. The first step in integrating the multi-

ple layers should be to include important constraints used in primary planning

into the campaign planning model. The next step towards integration would be

passing the results of the scheduling model to the planning model and iterating

until a plant-wide feasible solution is found.
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