By
BEVERLEY HOWARD CHRISTIAN, B.Sc.

A Thesis
Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy

McMaster University
July, 1982
(C) B.H. Christian, 1981

SULPHIDES AND SELENIDES OF PHOSPHORUS AND ARSENIC

TO MY WIFE

AND PARENTS

Structure and Reactions of Some Sulphides and Selenides of Phosphorus and Arsenic
 AUTHOR: Beverley Howard Christian, B.Sc. (University of New Brunswick)

SUPERVISOR: Professor R. J. Gillespie
NUMBER OF PAGES: xxi, 244

ABSTRACT

A continuation of studies of main group compounds carried out in this laboratory has led to the investigation of the structural and oxidative chemistry of several compounds and mixtures of the elements phosphorus, arsenic, sulfur and selenium. A number of questions and a lack of data regarding known compounds of these elements lead to an examination of the series $P_{4-X} X_{X} S_{3-Y} S_{Y}, X=0-4$, $Y=0-3$. Raman spectra of several members of the series have been recorded. The ${ }^{31} P$ and natural abundance ${ }^{77}$ Se nmr spectra of these compounds were also recorded, including a reinvestigation and complete assignment of the ${ }^{3 l} \mathrm{P} n \mathrm{~nm}$ spectrum of $\mathrm{P}_{4} \mathrm{Se}_{3}$. Several trends in the coupling constants and chemical shifts were noted and an empirical equation was devised for the ${ }^{3 l_{P}} n m r$ spectral assignments for quaternary members of the series. The compound formerly believed to be $P_{2} A s_{2} S_{3}$ was shown to be $\mathrm{PAS}_{3} S_{3}$. The crystal structure of an occupationally disordered crystal of stoichiometry $P_{2} A s_{2} S_{3}$ is also reported in this thesis. The compound $\mathrm{As}_{4} \mathrm{~S}_{4}$ and $1: 1$ As:Se fused mixtures were separately oxidized with the Lewis acids $A s F_{5}$ and SbF_{5} to produce the new cations $\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}$and $\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}$. The cations were characterized as the salts $\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF} \mathrm{F}_{6}\right)$, $\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right), \mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{AsF}_{6}\right)$ and $\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)$ by Raman spectroscopy and infrared spectroscopy. The determination
of the crystal structures of the first three salts is also reported.

Reactions of $\mathrm{As}_{4} \mathrm{~S}_{4}$ with $\mathrm{PF}_{5}, \mathrm{PCl}_{5}, \mathrm{BCl}_{3}, \mathrm{SO}_{3}, \mathrm{NbF}_{5}$, TaF_{5} and WF_{6} were shown to not proceed or, in the case of PF_{5}, to not produce a stable adduct. The action of AsF_{5} on compounds and mixtures of heavy main group elements (e.g., $\mathrm{Sb}_{2} \mathrm{Te}_{3}$) of groups V and VI produced no new compounds that were identified and generally just gave known homopolyatomic cations of the chalcogens.

Oxidation of $\mathrm{As}_{4} \mathrm{~S}_{4}$ with the halogens (X) chlorine and bromine produced $A s X_{3}$ and $S_{2} X_{2}$ while the reaction of SbCl_{5} with $\mathrm{As}_{4} \mathrm{~S}_{4}$ or $\mathrm{l}: 1 \mathrm{l}$ As:Se fused mixtures produced $\mathrm{SbCl}_{3}, \mathrm{AsCl}_{3}$ and the salts $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ and $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$, respectively. The crystal structure of $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ is reported here along with unit cell data for $\operatorname{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ and $\left.\mathrm{SBr}_{1.2} \mathrm{Cl}_{1.8} \mathrm{SbCl}_{6}\right)$ and the Raman data for all three compounds. Only AsSI was produced by the oxidation of $\mathrm{As}_{4} \mathrm{~S}_{4}$ by I_{2} in SO_{2} while a reaction between molten $\mathrm{P}_{4} \mathrm{Se}_{3}$ and I_{2} gave the new compound $\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$. Raman spectra for both AsSI and $\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ were recorded as well as the ${ }^{31_{P}}$ nmr spectrum for the latter.

ACKNOWLEDGEMENTS

The author wishes to thank all those who contributed toward this thesis, in particular:

Professor R.J. Gillespie for this very interesting project and his aid and supervision during the course of this work;

Dr. J.F. Sawyer for the X-ray structural analysis of $\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right), \mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right), \mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right), \mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ and $\mathrm{SBr}_{1.2} \mathrm{Cl}_{1.8}\left(\mathrm{SbCl}_{6}\right)$, for his time and patience in helping with other structures and for many enjoyable chemistry discussions;

Dr. G.J. Schrobilgen for collaboration in the NMR work, instruction in the use of the spectrometer and many helpful discussions;

Mrs. J. Jorgensen for her patience and care in typing this thesis;

Mr. D. Hodgson for care in doing many of the illustrations in this thesis;

Mr. J. Warwick for preparing the photographic plates of spectra and tables used in this thesis;

The chemistry department technicians Mr. I. Thompson, Mr. B. Sayer and Ms. L. Gowers for helping in various aspects of the spectral work;

Dr. J.E. Vekris and Dr. G.J. Schrobilgen for allowing me to quote unpublished ${ }^{3 l_{P}}$ NMR data for the $P_{4} S_{3} / A s F_{5}$ system;

Mr. M. Collins for allowing me to include unpublished Raman data for $\mathrm{TeCl}_{3}\left(\mathrm{AlCl}_{4}\right)$;

Dr. T. Birchall and Mr. R. Myers for recording some Mössbauer spectra; and

Mrs. L. Soderholm for recording a few X-ray powder patterns.

High field NMR spectra were kindly run by Dr. C. Rogers of Bruker Spectrospin Canada Ltd., Dr. R. Lenkinski of the University of Guelph and Mr. G. Bigam of the University of Alberta.

Finally, I would like to especially thank Dr. R. G. Cavell for helpful discussions.

TABLE OF CONTENTS

Page
ABSTRACT V
ACKNOWLEDGEMENTS vii
TABLE OF CONTENTS ix
LIST OF FIGURES xiv
LIST OF TABLES xviii
CHAPTER I - INTRODUCTION 1I-1 Inorganic Chemistry of Group VB Chalconidesand Related Species2
(i) Preparation of Group VB/VIB Compounds 2
(ii) Reactions of the Elements of Group VB and VIB and $\mathrm{S}_{4} \mathrm{~N}_{4}$ with Lewis Acids and Oxidizing Agents 6
(iii) Lewis Acid Chemistry of the Phosphorus
Chalconides 9
(iv) Halogen Chemistry of Group VB Chalconides 10I-2 Structure and Bonding in Group VB Chalconidesand Related Species12
(i) Structures of the Elements and Ions of Groups VB and VIB 14
(ii) Structures of the Group VB/VIB Compounds 17
a) $\mathrm{S}_{4} \mathrm{~N}_{4}$ Structure 17
b) Birdcage Structure 20
c) Adamantane Structure 21
d) Polymeric Structures and Poorly Defined Species 22
(iii) Observations on the Structure and Bond- ing of Group VB-Group VIB Compounds 23
I-3 Aims of the Present Work 25
CHAPTER II - EXPERIMENTAL 26
II-1 Preparation and Purification of Materials 26
(i) Group VB-VIB Compounds 26
(ii) Other Materials 28
II-2 General Experimental Techniques 34
(i) Dry Box 34
(ii) Handling of Chemicals 34
(iii) Reaction Vessels 35
(iv) Crystal Mounting 35
II-3 Instrumentation 35
(i) Infrared Spectroscopy 35
(ii) Laser Raman Spectroscopy 37
(iii) Nuclear Magnetic Resonance Spectroscopy 38
a) ${ }^{19} \mathrm{~F}$ NMR Spectra 39
b) ${ }^{31_{P}}$ NMR Spectra 40
c) ${ }^{77} \mathrm{Se}$ NMR Spectra 40
(iv) UV-Visible Absorption Spectroscopy 41
(v) X-Ray Crystallography 41
(vi) Analyses 44
Page
CHAPTER III - CAGE MOLECULES CONTAINING PHOSPHORUS 45
III-1 Introduction 45
III-2 ${ }^{31}$ P and ${ }^{77}$ Se NMR Spectroscopy of the
$\mathrm{P}_{4} \mathrm{~S}_{3-X^{S e}} \mathrm{X}^{\prime} \quad(\mathrm{X}=0-3)$ System 46
(i) $\mathrm{P}_{4} \mathrm{~S}_{3}$ and $\mathrm{P}_{4} \mathrm{Se}_{3}$ 46
(ii) $\mathrm{P}_{4} \mathrm{~S}_{2} \mathrm{Se}$ and $\mathrm{P}_{4} \mathrm{SSe}_{2}$ 47
III-3 ${ }^{3 l^{\prime}}$ and ${ }^{77}$ Se NMR Spectroscopy of $P_{4-X} A_{X} S_{3}$ and $\mathrm{P}_{4-X} \mathrm{Xs}_{X} \mathrm{Se}_{3}(\mathrm{X}=0-3)$ Systems 60
III-4 Chemical Shifts, Coupling Constants and Empirical Correlations 67
III-5 The Quaternary System $P_{4-X}{ }^{A s} X_{3-Y} ; X, Y=0-3$ 76
III-6 Crystal Structure of the Occupationally Disordered Crystal $\mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$ 86
III-7 Vibrational Spectra of $\mathrm{P}_{4} \mathrm{~S}_{3}, \mathrm{P}_{4} \mathrm{Se}_{3}$ and Similar Compounds 91
III-8 ${ }^{31} P_{\text {P }}$ NMR Spectroscopy of $\alpha \mathrm{P}_{4} \mathrm{~S}_{5}$ and Other
Phosphorus Sulfides 98
CHAPTER IV - REACTIONS OF GROUP VB CHALCONIDES WITH HALOGENATING AGENTS 109
IV-1 Introduction 109
IV-2 Reactions of $\mathrm{As}_{4} \mathrm{~S}_{4}$ with $\mathrm{Cl}_{2}, \mathrm{Br}_{2}$ and I_{2} 110
IV-3 Preparation and Characterization of$\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$111
IV-4 The $\mathrm{As}_{4} \mathrm{~S}_{4} / \mathrm{SbCl}_{5}$ and l:1 As: $\mathrm{Se} / \mathrm{SbCl}_{5}$ Systems and Related Reactions 115

IV-5 Crystal Structure of $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ and Cell
 Data for $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ and $\mathrm{SBr}_{1.2} \mathrm{Cl}_{1.8}\left(\mathrm{SbCl}_{6}\right) 118$

IV-6 Raman Spectra of the $\mathrm{MX}_{3}\left(\mathrm{SbCl}_{6}\right)$ Salts $(M=S, S e, T e)$ and $S_{1.2}{ }^{C l} l_{1.8}\left(\mathrm{SbCl}_{6}\right)$

IV-7 Experimental Section

 137(i) Preparation of $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ from $\mathrm{As}_{4} \mathrm{~S}_{4}$ and SbCl_{5}
(ii) Preparation of $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ from a fused 1:1 As:Se melt and SbCl_{5} 137
(iii) Preparation of $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ from SeCl_{4} and SbCl_{5}
138
(iv) Preparation of $\left(\mathrm{SBr}_{3}\right)_{0.4}\left(\mathrm{SCl}_{3}\right)_{0.6} \mathrm{SbCl}_{6}-$
Attempted Preparation of $\mathrm{SBr}_{3}\left(\mathrm{SbCl}_{6}\right)$

CHAPTER V - REACTIONS OF $\mathrm{AS}_{4} \mathrm{~S}_{4}$, ARSENIC-SELENIUM MELTS AND OTHER GROUP VB CHALCONIDES WITH LEWIS ACIDS 140

V-1 Introduction 140
V-2 Investigation of the Solubility and Adduct Formation of $\mathrm{AS}_{4} \mathrm{~S}_{4}$140
V-3 The $\mathrm{As}_{4} \mathrm{~S}_{4} / \mathrm{AsF}_{5}\left(\mathrm{SbF}_{5}\right)$ and Arsenic-Selenium Melt/AsF ${ }_{5}\left(\mathrm{SbF}_{5}\right)$ Systems 142

V-4 Structures of the Birdcage Cations $\mathrm{As}_{3} \mathrm{~S}_{4}^{+}$and $\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}$in $\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right), \mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right)$ and $\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)$
(i) Crystal Data 146Paye
(ii) Discussion of Crystal Structures of $A s_{3} S_{4}\left(\mathrm{AsF}_{6}\right), \mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right)$ and $\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right) \quad 148$
a) The Cations $\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}$and $\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}$ 148
b) Interionic Contacts and the Anions 164
V-5 Infrared and Raman Spectra of the $\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}$ and $\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}$Salts and Related Compounds 172
V-6 Electronic Absorption and NMR Studies ofthe Oxidation of Various Group VBChalconides194
V-7 Experimental Section 197
(i) The Reaction of $\mathrm{As}_{4} \mathrm{~S}_{4}$ with AsF_{5} in a l:3 Mole Ratio; The Preparation of $\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right)$ 197
(ii) The Reaction of $\mathrm{As}_{4} \mathrm{~S}_{4}$ with $\mathrm{S}_{8}\left(\mathrm{AsF}_{6}\right)$ in
a 1:2 Mole Ratio198
(iii) The Reaction of $\mathrm{As}_{4} \mathrm{~S}_{4}$ with SbF_{5} in al:3 Mole Ratio; The Preparation of $\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right)$ 198
(iv) The Reaction of $1: 1$ and $4: 3$ As:Se Melts with Three Moles of AsF_{5}; The Preparation of $\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{AsF}_{6}\right)$ 199
(v) The Reaction of a l:l As:Se Melt withThree Moles of SbF_{5}; The Preparation of$\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)$200
CHAPTER VI - SUMMARY AND CONCLUSIONS 202
VI-1 Summary and Conclusions 202
VI-2 Suggestions for Future Work 208
APPFIIDIX 232

LIST OF FIGURES

Figure Page

I-1 Structures of Group VB and VIB Elements and		
	Ions	15

I-2 Structures of $\mathrm{S}_{4} \mathrm{~N}_{4}$ and $\alpha \mathrm{As}_{4} \mathrm{~S}_{4} \quad 18$
I-3 Molecular Structures of Some Group VB-Group VIB Compounds 19

I-4 Spiral Structure Common to VB/VIB Compounds 23
II-I Typical Reaction Vessels 36
II-2 High Pressure UV Cell 42
III-1 Natural Abundance ${ }^{77}$ Se NMR Spectrum of $\mathrm{P}_{4} \mathrm{Se}_{3}$ and the Simulated Spectrum49

III-2 ${ }^{3 l_{P}}$ NMR Spectrum of the Apical Region of $\mathrm{P}_{4} \mathrm{Se}_{3}$ and the simulated spectrum of the ${ }^{77}$ Se

Satellites
III-3 $\quad{ }^{3 l_{P}}$ NMR Spectrum of the Basal Region of $\mathrm{P}_{4} \mathrm{Se}_{3}$ and the simulated spectrum of the ${ }^{77}$ se Satellites

III-4 Observed and Calculated ${ }^{31}$ P NMR Spectra of the Apical Region of the P/S/Se System 53
III-5 Observed and Calculated ${ }^{3 l_{P}}$ NMR Spectra of the Basal Region of the $P / S /$ Se System

III-6 $\quad 3 l_{P}$ NMR Spectrum of the Apical Region of $\mathrm{P}_{4} \mathrm{SSe}_{2}$ and the Simulated Spectrum of the ${ }^{77} \mathrm{Se}$ Satellites

III-7 ${ }^{31} \mathrm{P}$ NMR Spectrum of the High Frequency Portion of the Basal Region of $\mathrm{P}_{4} \mathrm{SSe}_{2}$ and the
Simulated Spectrum of the ${ }^{77}$ Se Satellites
III-8 $\quad 3 l_{P}$ NMR Spectrum of the Low Frequency Portion of the Basal Region of $\mathrm{P}_{4} \mathrm{SSe}_{2}$ and the Simulated spectrum of the ${ }^{77}$ Se Satellites
III-9 Natural Abundance ${ }^{77}$ Se NMR Spectrum of

$$
\mathrm{P}_{4} \mathrm{SSe}_{2} \text { and the Simulated Spectrum } 58
$$

III-10 Natural Abundance ${ }^{77}$ Se NMR Spectrum of $\mathrm{P}_{4} \mathrm{~S}_{2}$ Se 59 III-ll Tertiary Members of the Series $P_{4-X} A S_{X} S_{3}$ and

$$
\begin{aligned}
& \mathrm{P}_{4}-\mathrm{X}^{\mathrm{As}} \mathrm{X}_{3}, \mathrm{X}=0-4 \\
& 31_{P} \text { NMR Spectrum of the } \mathrm{P}_{4}-X^{A s} X_{3}, X=0-3
\end{aligned}
$$System62III-13 ${ }^{3 I_{P}}$ NMR Spectrum of the $P_{4-X} X_{X} S_{3}, X=0-3$System66

III-14 Possible Orbital Geometries in the Basal Triangles $P_{3-} X^{A s} X^{\prime}, X=0-3$71

III-15 Chemical Shift of the Apical Phosphorus Atom vs. Number of Fourth Row Atoms in the Molecule for the $P_{4-X} X_{X} S_{3-Y} S_{Y} ; X, Y=0-3$ system

III-16 Phosphorus-phosphorus Coupling Constants $\left(\left.\right|^{1} J_{P P} \mid\right.$ and $\left.\left.\right|^{2} J_{P P} \mid\right)$ of the Binary and Tertiary Birdcage Molecules

[^0]Page
III-17 ${ }^{31}$ P NMR Spectrum of the Apical Region of the $P_{4-X}{ }^{A s_{X}} S_{3-Y} \mathrm{Se}_{Y} ; X, Y=0-3$ system 78
III-18 ${ }^{31_{P}}$ NMR Spectrum of the Basal Region of the $P_{4-X}{ }^{A s} X_{X} S_{3-Y} e_{Y} ; ~ X, Y=0-3$ system 79

III-19 Some Quaternary Members of the Series

$$
\mathrm{P}_{4-X} \mathrm{As}_{X} \mathrm{~S}_{3-Y} \mathrm{Se}_{Y} ; X, Y=0-3
$$

III-20 Raman Spectrum of $\mathrm{P}_{4} \mathrm{~S}_{3}$ Recorded at $-196^{\circ} \mathrm{C}$ 93
III-21 Raman Spectrum of $\mathrm{P}_{4} \mathrm{Se}_{3}$ Recorded at $-196^{\circ} \mathrm{C}$ 96
III-22 3_{P} NMR Spectrum of $\alpha P_{4} S_{5}$ 100III-23 ${ }^{31}$ P NMR Spectrum of the Mother Liquor froman $\alpha P_{4} S_{5}$ Preparation104

III-24 Possible Structures for the Unidentified Compound Formed in $\alpha \mathrm{P}_{4} \mathrm{~S}_{5}$ Preparation 107
IV-1 Calculated and Observed ${ }^{31}$ P NMR Spectrum of $\alpha \mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$ and $\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ 113

IV-2 Raman Spectrum of $\mathrm{BP}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}, \alpha \mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$ and $\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2} 116$
IV-3 Stereoscopic View of the Unit Cell of

$$
\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right) \quad 123
$$

IV-4 Inter-Molecular Contacts to $\mathrm{SCl}_{3}{ }^{+}$ 123
IV-5 Raman Spectrum of $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ 131
IV-6 Correlation Diagram for $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ 132
IV-7 Raman Spectrum of $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ 135
$\mathrm{V}-1 \quad$ The Cations $\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}$and $\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}$ 149

page
I-1 Preparation of Group VB Chalconides 3
I-2 Sulfur-Nitrogen Compounds and Ions 4
I-3 Polyatomic Cations of Group VB and the Chalcogens

7
I-4 Examples of Preparations of Polyatomic Cations of Groups VB and VIB 8

I-5 Phosphorus-Chalcogen-Halide Chemistry ll
I-6 Binary VB-VIB Compounds 13
I-7 Bond Lengths in $\mathrm{S}_{4} \mathrm{~N}_{4}$-shaped Molecules 18
III-1 $\quad{ }^{3 I_{P}}$ and ${ }^{77}$ Se Chemical Shifts and Coupling
Constants for $\mathrm{P}_{4} \mathrm{~S}_{3-\mathrm{X}} \mathrm{Se}_{\mathrm{X}}, \mathrm{X}=0-3 \quad 48$
III-2 ${ }^{31_{P}}$ NMR Chemical Shifts and Assignments for the Apical Phosphorus Atoms of the Binary, Tertiary and Quaternary Systems
$P_{4-X} X_{X} S_{3-Y} S_{Y} ; \quad X, Y=0-3$
III-3 Phosphorus-Phosphorus Coupling Constants for the Birdcage Molecules82

III-4 Experimental and Empirically Calculated ${ }^{31}{ }_{P}$
NMR Chemical Shifts and Assignments for the
Basal Phosphorus Atoms of the Binary, Tertiary and Quaternary Systems $P_{4-X} X_{X} S_{3-Y} e_{Y}$; $X, Y=0-3$

III-5 Positional Parameters with e.s.d. in
Parentheses and Site Populations (\% \% \%As)
of Group VB Atom Sites for $\mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$
III-6 Bond Lengths and Bond Angles of $\mathrm{P}_{4} \mathrm{~S}_{3}$,
Disordered $\mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$ and $B A S_{4} \mathrm{~S}_{3}$
III-7 Raman and IR Spectral Data of $\mathrm{P}_{4} \mathrm{~S}_{3}, \mathrm{P}_{4} \mathrm{Se}_{3}$ and $\alpha^{P A S S_{3}}$

III-8 Chemical Shifts and Coupling Constants of the Phosphorus Sulfides 101

IV-1 Chemical Shifts (ppm) and Coupling Constants (Hz) of $\alpha \mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$ and $\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$
IV-2 Raman Spectra of $\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}, \alpha_{4} \mathrm{~S}_{3} \mathrm{I}_{2}, \beta_{4} \mathrm{~S}_{3} \mathrm{I}_{2} \quad 117$
IV-3 Unit Cell Data for $\mathrm{MX}_{3}\left(\mathrm{SbCl}_{6}\right) \quad(M=S$, Se;
$\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$
120
IV-4 Final Atomic Positional Parameters ($\mathrm{x} 10^{4}$) of $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ with Standard Deviations ($\mathrm{x} 10^{4}$) in Parentheses

IV-5 Bond Lengths (A) and Bond Angles (${ }^{\circ}$) for $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ and $\mathrm{SCl}_{3}\left(\mathrm{ICl}_{4}\right) \quad \mathrm{I} \quad 124$

IV-6a Raman Spectra of $E C l_{3}\left(\mathrm{SbCl}_{6}\right),(E=S, \mathrm{Se}, \mathrm{Te})$ and $\mathrm{SBr}_{1.2} \mathrm{Cl}_{1.8} \mathrm{SbCl}_{6}$)
IV-7 Vibrational Frequencies of Isoelectronic Group VB Halides 128

IV-8 Raman Bands of the Cations $E X_{3}{ }^{+}(E=S$, Se; $\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and $\mathrm{TeCl}_{3}{ }^{+}$

V-1 Arsenic-Arsenic, Arsenic-Sulfur and Arsenic-		
	Selenium Bond Lengths in Various Cluster	
	Compounds	151

V-2 Final Atomic Positional ($\mathrm{x} 10^{4}$) and Thermal Parameters (x 10^{3}) with Standard Deviation in Parentheses
V-3 Bond Distances $(\stackrel{\circ}{A})$ and Bond Angles (${ }^{\circ}$) with Standard Deviations in Parentheses
V-4 Selected Intra- and Inter-ionic Contacts (\AA) and Some Related Angles (${ }^{\circ}$)166
V-5 Infrared and Raman Spectra of Some Arsenic- Sulfur Compounds 175
V-6 Infrared and Raman Data for the $\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}$Salts 178V-7 Characteristic Vibrational Data for (i) As-s,(ii) As-As, (iii) As-Se, (iv) Se-Se and(v) s-s Bonds190
V-8 Electronic Absorption Spectra for Reactions ofVB/VIB Compounds with AsF_{5} in $\mathrm{SO}_{2} \quad 196$VI-1 Summary of Lewis Acid/Oxidation Reactions ofthe Group VB-Chalconides Studied203VI-2 ${ }^{31}$ P NMR Patterns for Possible Phosphorus-Sulfur Cages209

Appendix I Final Structure Factors for Disordered
$\mathrm{F}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$ Columns are $\ell, 10 * \mathrm{~F}_{\mathrm{o}}, 10 * \mathrm{~F}_{\mathrm{c}}$, 10*の(F) 565 Reflections with F/OF>6 232
$\mathrm{R}_{1}=0.028, \mathrm{R}_{2}=0.035$
Appendix II Final Structure Factors for $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ Columns are $\ell, 10 * F_{0}, 10 * F_{C}, 10 * \sigma(F)$ Reflections with $\mathrm{F} / \sigma \mathrm{F}>2 \mathrm{R}_{1}=0.038$, $\mathrm{R}_{2}=0.042$. 237

CHAPTER I

INTRODUCTION

The chemistry of the sulfides and selenides of phosphorus and arsenic has received little attention, ${ }^{1,2}$ although there has been considerable interest in recent years in the chemistry of sulfur-nitrogen compounds. ${ }^{3-6}$ An interesting development in $S-N$ chemistry has been the preparation of cationic species e.g., $S_{4} N_{4}^{+2}$ by the oxidation of $\mathrm{S}_{4} \mathrm{~N}_{4}$ and related compounds with oxidizing agents such as $\mathrm{SbCl}_{5}, \mathrm{SbF}_{5}$ and $\mathrm{HSO}_{3} \mathrm{~F} .{ }^{7-9}$ A related development in the chemistry of the non-metals of Group VI has been the preparation of cations of these elements, such as $\mathrm{S}_{8}{ }^{+2}$, by the oxidation of the elements with $\mathrm{AsF}_{5}, \mathrm{SbF}_{5}$ or $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot{ }^{10}$ Both the $\mathrm{S}-\mathrm{N}$ cations and the Group VI non-metal cations have been found to have interesting and often unexpected structures that exhibit unusual types of bonding. It was of interest and importance therefore to investigate the possibility of cation formation by the oxidation of the sulfides and selenides of phosphorus and arsenic. Any new cations so obtained would add to our knowledge of these compounds and main group cluster atom formation. Also, in view of our meagre knowledge of the P-S and P-Se compounds themselves, some investigations were carried out on the preparation of these compounds.

I-1 Inorganic Chemistry of Group VB Chalconides and Related Species

I-1(i) Preparation of Group VB/VIB Compounds ${ }{ }$

Set out in Tables $I-1$ and I-2 are the preparations of many of the group VB chalconides. Many are either naturally occurring or are made by heating the elements or another modification of the compound under appropriate conditions. The preparations, which appear to be as varied as the products, include examples of oxidations under extreme conditions, disproportionations, removal and/or removal-replacement of exocyclic atoms and some very complex rearrangements involving potentially interesting intermediates.

There have been few reports of ternary or quaternary VB/VIB compounds. The series $\mathrm{Bi}_{2} \mathrm{Se}_{\mathrm{X}} \mathrm{Te}_{3-X}(\mathrm{X}=0-3)^{11}$ and $P_{4} O_{6} E_{X}(E=O, S$, Se or some combination of these and $x=0-2,3$ or 4 depending on the series) ${ }^{12}$ have been reported. The compounds $\mathrm{Sb}_{2} \mathrm{SeTe}_{2}{ }^{13} \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}, 14$ and $\mathrm{P}_{4} \mathrm{O}_{6} \mathrm{SSe}^{12}$ are also known. It has been stated ${ }^{15}$ that no compounds of the type $P_{4} S_{3-X} \mathrm{Se}_{\mathrm{X}}(\mathrm{X}=1,2)$ could be detected by X -ray powder diffraction or differential thermal analysis in a phase diagram study of mixtures of $\mathrm{P}_{4} \mathrm{~S}_{3}$ and $\mathrm{P}_{4} \mathrm{Se}_{3}$.

[^1]TABLE I-1. Preparation of Group VB Chalconides
ref.
$(P S)_{n} \quad 2 n E P X_{3}+3 n M g \frac{d r y}{\text { solvent }} 3 n M g X_{2}+2(P E)_{n} \quad I$
$\left(\mathrm{PS}_{\mathrm{X}}\right)_{n} \quad 2 \mathrm{nH}_{3} \mathrm{PS}_{4}+3 \mathrm{nS}_{\mathrm{Y}} \mathrm{Cl}_{2} \rightarrow 2\left(\mathrm{PS}_{\mathrm{X}}\right)_{\mathrm{n}}+6 \mathrm{nHCl} \quad 1$
$\mathrm{P}_{4} \mathrm{~S}_{2}$
$\mathrm{P}_{4} \mathrm{~S}_{3}+\frac{1}{2} \mathrm{P}_{4} \xrightarrow{\Delta} \mathrm{P}_{4} \mathrm{~S}_{2} \quad 16$
$\mathrm{P}_{4} \mathrm{~S}_{4}(\mathrm{II})$
$\mathrm{P}_{4} \mathrm{~S}_{3}+\alpha \mathrm{P}_{4} \mathrm{~S}_{5} \xrightarrow{350^{\circ}} \mathrm{P}_{4} \mathrm{~S}_{4}$
$\mathrm{P}_{4} \mathrm{~S}_{3}+\frac{z_{4}}{} \mathrm{~S}_{8} \xrightarrow[\mathrm{I}_{2} \mathrm{cat}]{\mathrm{h} \nu} \alpha \mathrm{P}_{4} \mathrm{~S}_{5}$
2
$\alpha P_{4} S_{5}$
$\alpha \mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}+\left(\mathrm{Me}_{3} \mathrm{Sn}\right)_{2} \mathrm{~S} \xrightarrow{\mathrm{CS}_{2}} \alpha \mathrm{P}_{4} \mathrm{~S}_{4}+2 \mathrm{Me}_{3} \mathrm{SnI} 18$
$\mathrm{P}_{4} \mathrm{~S}_{10}+\mathrm{P}_{3} \xrightarrow{\mathrm{CS}_{2}} \mathrm{P}_{4} \mathrm{~S}_{9}+\mathrm{SP} \phi_{3}$
$\mathrm{P}_{4} \mathrm{~S}_{9}$
$\mathrm{As}_{4} \mathrm{~S}_{3} \xrightarrow[\mathrm{CS}_{2}]{\mathrm{h} \nu}$ small amount of $\mathrm{As}_{4} \mathrm{~S}_{5}$
$2 \mathrm{H}_{3} \mathrm{AsO}_{4}+5 \mathrm{H}_{2} \mathrm{~S} \xrightarrow{\mathrm{O}^{\circ} \mathrm{C}} \mathrm{As}_{2} \mathrm{~S}_{5}+8 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{As}_{2} \mathrm{~S}_{5}$
$\mathrm{N}_{4} \mathrm{Se}_{4}$
SeBr_{4} +excess $\mathrm{NH}_{3} \xrightarrow{\mathrm{CS}_{2}} \mathrm{~N}_{4} \mathrm{Se}_{4}+\mathrm{NH}_{4} \mathrm{Br}$ 3
$\mathrm{N}_{4} \mathrm{Te}_{4}$
$\mathrm{TeBr}_{4}+\mathrm{NH}_{3} \xrightarrow{-15 \text { to }-70^{\circ}} \mathrm{N}_{4} \mathrm{Te}_{4}+\mathrm{NH}_{4} \mathrm{Br}$
3

General Method for Most $M_{X} E_{Y}$ Compounds, $M=V B, E=V I B$;
$X=2$ or $4, Y=3-10$.
$\mathrm{XM}+\mathrm{YE} \longrightarrow \mathrm{P}_{4} \mathrm{~S}_{3}, \mathrm{P}_{4} \mathrm{~S}_{7}, \mathrm{P}_{4} \mathrm{~S}_{10}$

$$
\begin{aligned}
& \mathrm{P}_{4} \mathrm{Se}_{3}, \mathrm{P}_{4} \mathrm{Se}_{10} \\
& \mathrm{As}_{4} \mathrm{~S}_{3}, \mathrm{As}_{4} \mathrm{~S}_{4}, \mathrm{As}_{2} \mathrm{~S}_{3}, \mathrm{As}_{2} \mathrm{~S}_{5}, \\
& \mathrm{As}_{4} \mathrm{Se}_{3}, \mathrm{As}_{4} \mathrm{Se}_{4}, \mathrm{As}_{2} \mathrm{Se}_{3} \\
& \mathrm{Sb}_{2} \mathrm{~S}_{3}, \mathrm{Sb}_{2} \mathrm{Se}_{3}, \text { etc. }
\end{aligned}
$$

Table I-2. Sulfur-Nitrogen Compounds and Ions

Species	Shape	S-N Bond Lengths	Preparation ${ }^{+}$
(SN) X	∞ chains	1.593(3)-1.628(7)	$\mathrm{S}_{2} \mathrm{~N}_{2} \xrightarrow[48 \mathrm{hr}]{\mathrm{RT}}$ (SN) X
$\mathrm{N}_{2} \mathrm{~S}_{2}$	ring	1.651(1)-1.657(1)	$\mathrm{S}_{4} \mathrm{~N}_{4} \xrightarrow[\text { Ag wool }]{80^{\circ} \mathrm{Vac}} 2 \mathrm{~S}_{2} \mathrm{~N}_{2}$
$\mathrm{N}_{2} \mathrm{~S}_{4}$	ring?		$\mathrm{Hg}_{5}(\mathrm{NS}){ }_{8}+4 \mathrm{~S}_{2} \mathrm{Cl}_{2} \xrightarrow{\mathrm{CS}_{2}} 4 \mathrm{~N}_{2} \mathrm{~S}_{4}(\ell)+3 \mathrm{HgCl}_{2}+\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
$\mathrm{N}_{2} \mathrm{~S}_{11}$	2 fused rings	1.68-1.70	$\mathrm{S}_{6}(\mathrm{NH})_{2}+\mathrm{S}_{3} \mathrm{Cl}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{~S}_{11}+2 \mathrm{HCl}$
$\underset{X=1-5}{\left(\mathrm{NS}_{7}\right)_{2} S_{X}}$	ring-chainring	1.70-1.71	$2 \mathrm{~S}_{7} \mathrm{NH}+\mathrm{S}_{\mathrm{X}} \mathrm{Cl}_{2} \longrightarrow\left(\mathrm{~S}_{7} \mathrm{~N}_{2}\right) \mathrm{S}_{X}+2 \mathrm{HCl}, \mathrm{X}=1-5$
$\mathrm{N}_{4} \mathrm{~S}_{4}$	$\mathrm{S}_{4} \mathrm{~N}_{4}$	1.619(2)-1.633(2)	$\mathrm{S}_{2} \mathrm{Cl}_{2}+\mathrm{Cl}_{2}+\mathrm{NH}_{3} \xrightarrow{\mathrm{CCl}_{4}} \mathrm{~S}_{4} \mathrm{~N}_{4}+$ other products
$\mathrm{N}_{6} \mathrm{~S}_{5}$	capped $\mathrm{S}_{4} \mathrm{~N}_{4}$	1.536(3)-1.702(3)	$2 \mathrm{Br}_{2}+3 \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{S}_{4} \mathrm{~N}_{5}^{-} \xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}]{0^{\circ}} \mathrm{N}_{6} \mathrm{~S}_{5}+$?
NS ${ }^{+}$	chain		$\mathrm{S}_{3} \mathrm{~N}_{3} \mathrm{~F}_{2}\left(\mathrm{AsF}_{6}\right) \xrightarrow{\triangle} \mathrm{SN}\left(\mathrm{AsF}_{6}\right)+2 \mathrm{NSF}$
$\mathrm{NS}_{2}{ }^{+}$	chain	1.464 (3)	$2 \mathrm{SbCl}_{5}+\mathrm{S}_{7} \mathrm{NH} \xrightarrow{\mathrm{SO}_{2}} \mathrm{~S}_{2} \mathrm{~N}\left(\mathrm{SbCl}_{6}\right)+\mathrm{S}_{8}+\mathrm{HCl}+\mathrm{SbCl}_{3}$
$\mathrm{N}_{2} \mathrm{~S}_{3}{ }^{+}$	ring	1.564(7)-1.610(3)	$3 \mathrm{AsF}_{5}+\mathrm{S}_{4} \mathrm{~N}_{4} \xrightarrow{\mathrm{SO}_{2}} \mathrm{~S}_{3} \mathrm{~N}_{2}\left(\mathrm{AsF}_{6}\right)+\mathrm{AsF}_{3}+$?
$\mathrm{N}_{3} \mathrm{~S}_{4}{ }^{+}$	ring	1.548-1.566	$2 \mathrm{~S}_{2} \mathrm{Cl}_{2}+3 \mathrm{~S}_{4} \mathrm{~N}_{4} \longrightarrow 4\left(\mathrm{~S}_{4} \mathrm{~N}_{3}\right) \mathrm{Cl}$
$\mathrm{N}_{4} \mathrm{~S}_{4}^{+2}$	ring	1.419(5)-1.778(5)	$3 \mathrm{SbCl}_{5}+\mathrm{S}_{4} \mathrm{~N}_{4} \xrightarrow{\mathrm{SO}_{2}} \mathrm{~S}_{4} \mathrm{~N}_{4}\left(\mathrm{SbCl}_{6}\right)_{2}+\mathrm{SbCl}_{3}$
$\mathrm{N}_{4} \mathrm{~S}_{6}{ }^{+2}$	2 rings	1.545(7)-1.610(6)	$\mathrm{S}_{4} \mathrm{~N}_{4}+\frac{\mathrm{l}}{8} \mathrm{~S}_{8}+3 \mathrm{AsF}_{5} \xrightarrow{\mathrm{SO}_{2}} \mathrm{~S}_{6} \mathrm{~N}_{4}\left(\mathrm{AsF}_{6}\right)_{2}+\mathrm{AsF}_{3}$
$\mathrm{N}_{5} \mathrm{~S}_{4}{ }^{+}$	2 fused rings	1.545(4)-1.674(4)	$\mathrm{Me}_{3} \mathrm{SiNSNSiMe}_{3}+\mathrm{S}_{3} \mathrm{~N}_{3} \mathrm{Cl}_{3} \xrightarrow{\mathrm{CCl}_{4}}\left(\mathrm{~S}_{4} \mathrm{~N}_{5}\right) \mathrm{Cl}+2 \mathrm{Me}_{3} \mathrm{SiCl}$

TABLE I-2 (continued).

$\mathrm{N}_{5} \mathrm{~S}_{5}^{+}$	ring	1.465-1.590	$3 \mathrm{SbCl}_{5}+\mathrm{S}_{3} \mathrm{~N}_{3} \mathrm{Cl}_{2} \xrightarrow{\mathrm{SOCl}_{2}, \mathrm{~S}_{4} \mathrm{~N}_{4}} \mathrm{~S}_{5} \mathrm{~N}_{4}\left(\mathrm{SbCl}_{6}\right)$
$\mathrm{NS}_{4}{ }^{-}$	$\begin{aligned} & \text { branched } \\ & \text { ring } \end{aligned}$	1.521(5)-1.667(5)	$\left(\phi_{3} \mathrm{P}_{2} \mathrm{~N}\right)\left(\mathrm{S}_{4} \mathrm{~N}_{5}\right) \xrightarrow[\mathrm{CH}_{3} \mathrm{CN}]{\Delta}\left(\phi_{3} \mathrm{P}_{2} \mathrm{~N}\right)\left(\mathrm{NS}_{4}\right)+\mathrm{S}_{8}+\mathrm{N}_{2} \uparrow$
$\mathrm{N}_{3} \mathrm{~S}_{3}{ }^{-}$	ring	1.580(2)-1.626(12)	$3 \mathrm{CsN}_{3}+4 \mathrm{~S}_{4} \mathrm{~N}_{4} \xrightarrow{\mathrm{MeOH}} 3 \mathrm{Cs}\left(\mathrm{S}_{3} \mathrm{~N}_{3}\right)+\mathrm{S}_{8}+\mathrm{N}_{2} \uparrow$
$\mathrm{N}_{5} \mathrm{~S}_{4}{ }^{-}$	capped $S_{4}{ }^{N} 4$	1.57(2)-1.68(2)	$3 \mathrm{NaN}_{3}+4 \mathrm{~S}_{4} \mathrm{~N}_{4} \xrightarrow{\mathrm{MeOH}} 3 \mathrm{Na}\left(\mathrm{S}_{4} \mathrm{~N}_{5}\right)+\frac{3}{2} \mathrm{~S}_{8}+5 \mathrm{~N}_{2} \uparrow$

${ }^{\dagger}$ Most equations not balanced, ref. 3-6,9,21-36.

I-1 (ii) Reactions of the Elements of Groups VB and VIB and $\mathrm{S}_{4} \mathrm{~N}_{4}$ with Lewis Acids and Oxidizing Agents

No adducts of Lewis acids and main group elements of Group VI have been formed. There have, however, been rather extensive investigations in recent years of the oxidation of the chalcogens with oxidizing Lewis acids and other acidic oxidizing agents. ${ }^{10}$ This has lead to the production of a number of interesting cationic species. Most of the cations are stable only in highly acidic media such as $\mathrm{HSO}_{3} \mathrm{~F}-\mathrm{SbF}_{5}, \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{SO}_{3}, \mathrm{AlCl} 3$ melts or in very weakly basic and rather unreactive solvents like SO_{2}. Stable solids usually contain the very weakly basic, singly charged anions of very strong acids, e.g., $\mathrm{SO}_{3} \mathrm{~F}^{-}$, $\mathrm{SbF}_{6}{ }^{-}, \mathrm{HS}_{2} \mathrm{O}_{7}{ }^{-}$, or $\mathrm{AlCl}_{4}{ }^{-}$.

Many of the products and reactions are shown in
Tables I-3 and I-4. These preparations include oxidation of an element by oleum or by $\mathrm{S}_{2} \mathrm{O}_{6} \mathrm{~F}_{2}$ in $\mathrm{HSO}_{3} \mathrm{~F}$; reaction of an element with a chloride of the element in a Lewis acid melt; oxidation of an element, mixture or alloy by AsF_{5} or SbF_{5} in SO_{2}; reaction of an element with a polyatomic cation of a different element in SO_{2} and reaction between polyatomic cations of two different elements in SO_{2}. Crystalline salts have most easily been obtained from the melts and SO_{2} solutions.

TABLE I-3. Polyatomic Cations of Group VB and the Chalcogens

$\mathrm{M}_{19}{ }^{+2}$	$\mathrm{M}_{10}{ }^{+2}$	M_{8}^{+2}	$M_{6}{ }^{+2}$	$\mathrm{M}_{4}{ }^{+2}$	$\mathrm{M}_{9}{ }^{+5}$	$\mathrm{M}_{5}+3$	M_{6}^{+4}	Other
$\mathrm{S}_{19}{ }^{+2}$		$\mathrm{Bi}_{8}{ }^{+2}$			Bi_{9}^{+5}	$\mathrm{Bi}_{5}{ }^{+3}$	Te_{6}^{+4}	$\mathrm{Sb}_{\mathrm{n}}^{+\mathrm{n}}$
		$\mathrm{S}_{8}{ }^{+2}$		$\mathrm{S}_{4}{ }^{+2}$				
	$\mathrm{Se}_{10}+2$	Se_{8}^{+2}		Se_{4}^{+2}				
				$\mathrm{Te}_{4}{ }^{+2}$				
	$\mathrm{Se}_{8} \mathrm{Te}_{2}{ }^{+2}$		$\mathrm{S}_{3} \mathrm{Te}_{3}{ }^{+2}$	$\mathrm{Se}_{3} \mathrm{Te}+2$				
			$\mathrm{Se}_{3} \mathrm{Te}_{3}{ }^{+2}$	$\mathrm{Se}_{2} \mathrm{Te}_{2}^{+2 *}$				
			$\mathrm{Se}_{4} \mathrm{Te}_{2}{ }^{+2}$	SeTe_{3}^{+2}				

[^2]TABLE I-4. Examples of Preparations of Polyatomic Cations of Groups VB and VIB

```
\(2 \mathrm{nSb}+3 \mathrm{nAsF}_{5} \xrightarrow{\mathrm{SO}_{2}} 2 \mathrm{Sb}_{\mathrm{n}}\left(\mathrm{AsF}_{6}\right)_{\mathrm{n}}+\mathrm{nASF} 3\)
\(4 \mathrm{Bi}+\mathrm{BiCl}_{3}+3 \mathrm{AlCl}_{3} \xrightarrow{350^{\circ} \mathrm{C}} \mathrm{Bi}_{5}\left(\mathrm{AlCl}_{4}\right)_{3}\)
\(8 \mathrm{Bi}+2 \mathrm{BiCl}_{3}+3 \mathrm{HfCl}_{4} \xrightarrow{450^{\circ} \mathrm{C}} \mathrm{Bi}^{+} \mathrm{Bi}_{9}\left(\mathrm{HfCl}_{6}\right)_{3}\)
\(22 \mathrm{Bi}+2 \mathrm{BiCl}_{3}+6 \mathrm{AlCl}_{3} \xrightarrow[\mathrm{AlCl}_{3}]{270^{\circ}-320^{\circ} \mathrm{C}} 3 \mathrm{Bi}_{8}\left(\mathrm{AlCl}_{4}\right)_{2}\)
\(19 \mathrm{~S}_{8}+24 \mathrm{AsF}_{5} \xrightarrow{\mathrm{SO}_{2} / \mathrm{SO}_{2} \mathrm{ClF}} 8 \mathrm{~S}_{19}\left(\mathrm{AsF}_{6}\right)_{2}+\mathrm{AsF}_{3}^{\mathrm{a}}\)
\(\mathrm{S}_{8}+3 \mathrm{SbF}_{5} \xrightarrow{\mathrm{SO}_{2}} \mathrm{~S}_{8}\left(\mathrm{ASF}_{6}\right)_{2}+\mathrm{AsF}_{3}\)
\(15 \mathrm{Se}+\mathrm{SeCl}_{4}+4 \mathrm{AlCl}_{3} \xrightarrow{\Delta} 2 \mathrm{Se}_{8}\left(\mathrm{AlCl}_{4}\right)_{2}\)
\(4 \mathrm{Se}+\mathrm{S}_{2} \mathrm{O}_{6} \mathrm{~F}_{2} \xrightarrow{\mathrm{HSO}_{3} \mathrm{~F}} \mathrm{Se}_{4}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}\)
\(\mathrm{Te}_{4}\left(\mathrm{AsF}_{6}\right)_{2}+\mathrm{S}_{8}\left(\mathrm{AsF}_{6}\right)_{2} \xrightarrow{\mathrm{SO}_{2}} \mathrm{Te}_{3} \mathrm{~S}_{3}\left(\mathrm{AsF}_{6}\right)_{2}^{\mathrm{a}}\)
\(2 \mathrm{Te}+\mathrm{Se}_{8}\left(\mathrm{ASF}_{6}\right)_{2} \xrightarrow{\mathrm{SO}_{2}} \mathrm{Se}_{8} \mathrm{Te}_{2}\left(\mathrm{AsF}_{6}\right)_{2}^{\mathrm{a}}\)
\(1: 1 \mathrm{Se}: \mathrm{Te}+\mathrm{AsF}_{5} \xrightarrow{\mathrm{SO}_{2}} \mathrm{Te}_{2} \mathrm{Se}_{4}\left(\mathrm{AsF}_{6}\right)_{2}+\mathrm{Te}_{3} \mathrm{Se}_{3}\left(\mathrm{AsF}_{6}\right)_{2}+\mathrm{AsF}_{3}^{\mathrm{a}}\)
alloy or mixture
```

[^3]Reaction of antimony metal with large amounts of SbF_{5} in SO_{2} gives what was first thought to be $\mathrm{SbF}_{3} \cdot \mathrm{SbF}_{5}{ }^{37}$ but was later characterized as $\mathrm{Sb}_{6} \mathrm{~F}_{13}\left(\mathrm{SbF}_{6}\right)_{5}$ by ${ }^{38}$ x-ray crystallography.

The reactions of $\mathrm{S}_{4} \mathrm{~N}_{4}$ with Lewis acids leading to the formation of $\mathrm{S}_{4} \mathrm{~N}_{4}$ adducts and several new $S-N$ cations have been extensively studied. There are over forty known adducts ${ }^{39}$ of $\mathrm{S}_{4} \mathrm{~N}_{4}$ involving Lewis acids of either transition metals or main group elements and several sulfur-nitrogen cations, most of the latter having been made with a variety of counterions. As noted in Table I-2 most of the cations can be made by the action of Lewis acids on $\mathrm{S}_{4} \mathrm{~N}_{4}$ or related species.

I-l(iii) Lewis Acid Chemistry of Phosphorus Chalconides

The Lewis acid chemistry of phosphorus chalconides has been little studied. It has been demonstrated that transition metal complexes containing $P_{4} S_{3}$ as a ligand can be produced by ligand exchange in solution. Examples of these are: $\operatorname{Mo}(\mathrm{CO})_{5} \mathrm{P}_{4} \mathrm{~S}_{3}, \operatorname{cis}-\left(\mathrm{P}_{4} \mathrm{~S}_{3}\right)_{2} \mathrm{M}(\mathrm{CO})_{4} \quad[\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$, W] and $\mathrm{Ni}\left(\mathrm{P}_{4} \mathrm{~S}_{3}\right)_{4} 4^{40}$ Lewis acid complexes of $\mathrm{P}_{4} \mathrm{~S}_{3}$ with CuCl, CuBr and CuCl_{2} have also been reported. ${ }^{41}$ The decasulfide, $\mathrm{P}_{4} \mathrm{~S}_{10}$, reacts with FeCl_{3} to give $\mathrm{SPCl}_{3}, \mathrm{FeCl}_{2}$ and $\mathrm{FeS}_{2} .42$ There appears to be no information on
reactions of any of the heavier group VB chalconides with Lewis acids. No reports have been made of any VB/VIB cations being produced by reaction with Lewis acids or by any other reactions.

I-l(iv) Halogen Chemistry of Group VB Chalconides

A large number of halide derivatives of $\mathrm{S}-\mathrm{N}$ compounds have been prepared, some of which have been known for some time, e.g., NSF, NSCl, $\mathrm{NSF}_{3}, \mathrm{~N}_{3} \mathrm{~S}_{3} \mathrm{Cl}_{3}, \mathrm{~N}_{3} \mathrm{~S}_{3} \mathrm{~F}_{3}$, $\mathrm{N}_{4} \mathrm{~S}_{4} \mathrm{~F}_{4}$ and $\mathrm{N}_{2} \mathrm{~S}_{3} \mathrm{Cl}_{2} \cdot^{3}$ Recently the compounds $\mathrm{S}_{4} \mathrm{~N}_{4} \mathrm{Cl}_{2}$, $\mathrm{S}_{4} \mathrm{~N}_{4} \mathrm{~F}_{2}{ }^{43}$ and $\left(\mathrm{S}_{4} \mathrm{~N}_{4} \mathrm{X}_{0.4}\right)_{\mathrm{n}}(\mathrm{X}=\mathrm{Br}, \mathrm{ICl}, \mathrm{IBr})^{44}$ have been made.

The preparative chemistry of the phosphorus chalcogen halides is summarized in Table I-5. Excluding the well known thiophosphoryl halides $\mathrm{SPF}_{3}, \mathrm{SPCl}_{3}$ and SPBr_{3}, which will not be discussed here, this table summarizes essentially all the known chemistry of the phosphorus chalcogen halides.

The arsenic-chalcogen-halides usually form glasses. However, the polymeric compounds AsSI, AsSeI, $\mathrm{As}_{4} \mathrm{Te}_{5} \mathrm{I}_{2}$ and $\mathrm{As}_{8} \mathrm{Te}_{7} \mathrm{I}_{5}$ have been partially characterized by Russian workers by Mössbauer spectroscopy and X-ray powder diffraction. 45,46 Recently it has been reported that the reaction systems $\mathrm{As}_{2} \mathrm{~S}_{3} / \mathrm{AsI}_{3}$ and $\mathrm{As}_{4} \mathrm{~S}_{4} / \mathrm{S} / \mathrm{I}_{2}$ also give AsSI. ${ }^{47}$ No molecular compounds have been reported.

TABLE I-5. Phosphorous-Chalcogen-Halide Chemistry
*Not balanced. Ref. 1-3, 40-55.

$$
\begin{aligned}
& \mathrm{P}_{4} \mathrm{~S}_{3}\left(\mathrm{P}_{4} \mathrm{Se}_{3}\right)+\mathrm{I}_{2} \xrightarrow[\mathrm{CS}_{2} \text { (days) }]{0^{\circ} \mathrm{C}} \mathrm{BP}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}\left(\mathrm{BP}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}\right) \stackrel{\mathrm{CS}_{2}}{\rightleftarrows} \mathrm{P}_{4} \mathrm{~S}_{3}+\mathrm{PI}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{4}+\frac{1}{2} \mathrm{~S}_{8}+6 \mathrm{I}_{2} \xrightarrow[\mathrm{CS}_{2} \text { (days) }]{0^{\circ} \mathrm{C}} 4 \mathrm{SPI}_{3}\left(4 \mathrm{SePI}_{3}\right) \stackrel{10-15^{\circ} \mathrm{C}\left(40^{\circ} \mathrm{C}\right)}{\stackrel{\mathrm{CS}_{2}, \mathrm{~h} \mathrm{\nu}}{\longrightarrow}} 4 \mathrm{PI}_{3}+\frac{1}{2} \mathrm{~S}_{8}\left(\frac{1}{2} \mathrm{Se}_{8}\right) \\
& \mathrm{P}_{4} \mathrm{~S}_{3}+\frac{1}{4} \mathrm{~S}_{8} \xrightarrow[\mathrm{CS}_{2} \text { (days) }]{\mathrm{h} \nu, \mathrm{I}_{2} \text { cat. }} \alpha \mathrm{P}_{4} \mathrm{~S}_{5}+\text { other products } \\
& 5 \mathrm{P}_{4} \mathrm{~S}_{3}\left(\mathrm{P}_{4} \mathrm{Se}_{3}\right)+12 \mathrm{Br}_{2} \xrightarrow[\mathrm{CS}_{2}]{0^{\circ} \rightarrow \mathrm{RT}} 3 \mathrm{P}_{4} \mathrm{~S}_{7}\left(\mathrm{P}_{4} \mathrm{Se}_{5}\right)+8 \mathrm{PBr}_{3}+\text { other products* } \\
& \mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}+\text { excess } \mathrm{I}_{2} \longrightarrow \mathrm{CS}_{2} \mathrm{P}_{4} \mathrm{~S}_{7}+\mathrm{PI}_{3} \text { * } \\
& 7 \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{I}_{4} \xrightarrow{\mathrm{~h} \nu} 2 \mathrm{P}_{4} \mathrm{~S}_{7}+6 \mathrm{PI}_{3}+5 \mathrm{I}_{2} \\
& \mathrm{P}_{4} \mathrm{~S}_{3}+\mathrm{Br}_{2} \xrightarrow[\mathrm{CS}_{2}]{0^{\circ} \mathrm{C}} \mathrm{P}_{2} \mathrm{~S}_{6} \mathrm{Br}_{2}+\mathrm{P}_{2} \mathrm{~S}_{5} \mathrm{Br}_{4}{ }^{*} \\
& \mathrm{P}_{4} \mathrm{~S}_{10}+\mathrm{Cl}_{2} \xrightarrow[\mathrm{CCl}_{4}]{ } \mathrm{PCl}_{5}+\mathrm{S}_{2} \mathrm{Cl}_{2}+\mathrm{SCl}_{2}{ }^{*} \\
& \mathrm{P}_{4} \mathrm{~S}_{10}+\mathrm{SF}_{4} \xrightarrow{\Delta} \mathrm{PF}_{5}+\mathrm{S}_{8} \text { * } \\
& \mathrm{P}_{4} \mathrm{~S}_{10}+\mathrm{NF}_{3} \xrightarrow{\Delta}\left(\mathrm{NPF}_{2}\right)_{\mathrm{n}}, \mathrm{n}=3-9+\mathrm{PF}_{3}+\mathrm{PF}_{5}+\mathrm{SPF}_{3}+\mathrm{SF}_{4}+\mathrm{SF}_{6}{ }^{*} \\
& \mathrm{P}_{4} \mathrm{~S}_{10}+3 \mathrm{PCl}_{5}\left(\mathrm{PBr}_{5}\right) \xrightarrow{\triangle} 5 \mathrm{SPCl}_{3}\left(\mathrm{SPBr}_{3}\right)+\mathrm{KSO}_{2} \mathrm{~F}\left(\mathrm{SbF}_{5}\right) \rightarrow \mathrm{SPF}_{3}
\end{aligned}
$$

By fusing the compounds $\mathrm{M}_{2} \mathrm{E}_{3}$ with the halides $\mathrm{MX}_{3}(\mathrm{M}=\mathrm{Sb}, \mathrm{Bi} ; \mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ the air stable, unreactive compounds MEX are produced. ${ }^{3}$ They are all polymeric with the sulfides and selenides having structures consisting of two interconnected infinite chains $(M E)_{n}$. The chains are crosslinked by $M-E$ bonds such that each group V atom has three chalcogen neighbours as well as two bromine neighbours outside the chain. A layer structure related to $\mathrm{Bi}_{2} \mathrm{Te}_{3}$ is noted for BiTeBr and BiTeI. 56

I-2 Structure and Bonding in Group VB Chalconides and Related Species

Structurally group VB/VIB compounds have been fairly well studied. Listed in Table I-6 are all the known binary Group VA-Group VIA compounds. Most have been characterized by electron diffraction or X-ray crystallography. Generally they can be subdivided into three main structural groups: small molecules with one or two central atoms, molecular rings and cages, and two or three dimensional polymers. These groups correspond roughly to (1) the nitrogen oxides; (2) the nitrogen chalconides, sulfur-nitrogen ions and phosphorus and arsenic-group VIB compounds and (3) the compounds of

TABLE I-6 Binary VB-VIB Compounds

$a_{M}=$ Group VB, $E=$ Group VIB
$\mathrm{b}_{\text {Two or }}$ or more crystallographic forms
$C_{\text {As }}$ a mixed crystal with $P_{4} S_{7}$ - known as $\beta P_{4} S_{7}$
$d_{\text {Not }}$ molecular
antimony and bismuth. Recent discussions ${ }^{57-58}$ on the basic structural relationships of main group rings, cages and clusters have helped to increase interest in the second broad group mentioned above as well as the previously discussed investigations of group VIB cations.

I-2(i) Structures of the Elements and Ions of
 Groups VB and VIB

Before discussion of the basic structures of VB/VIB compounds, it is appropriate to briefly review the structures of the individual elements ${ }^{3}$ and their ions to lay a foundation for comparison (Figure I-1). Nitrogen and oxygen molecules and chalconide ions are simple unbranched chains while elemental sulfur and $\operatorname{Se}_{3} S_{5} 59$ exist as eight membered crown-shaped rings (A), although smaller and larger rings are known for sulfur. There is also a thermodynamically unstable eight-membered selenium ring. Catenasulfur, a metastable polymer; grey selenium and tellurium all consist of helical chains with weak interchain bonding.

The chalcogen cations $\mathrm{S}_{4}{ }^{+2}, \mathrm{Se}_{4}^{2+}, \mathrm{Te}_{4}^{+2}, \mathrm{Te}_{4-\mathrm{n}} \mathrm{Se}_{\mathrm{n}}{ }^{+2}$ $(n=0-4)^{57}$ and the isoelectronic anion Bi_{4}^{-260} have square planar structures with some multiple bond character. The cations S_{8}^{+2} and Se_{8}^{+2} are eight membered rings like the elements but with an exo-endo conformation (B). ${ }^{37,38} \mathrm{~A}$ six
A)

$$
\mathrm{s}_{8}, \mathrm{Se}_{8}, \mathrm{Se}_{3} \mathrm{~S}_{5}
$$

D)

- $=\mathrm{Te}$

0) $=S$
$0=S$
(c) $=$ Te

Te
Se
Se
Se
B)

$\mathrm{S}_{8}^{+2}, \mathrm{Se}_{8}^{+2}$
C)

$$
\begin{gathered}
\mathrm{Se}_{10}^{+2}, \mathrm{Te}_{2} \mathrm{Se}_{8}^{+2} \\
\mathrm{O}=\mathrm{Se} \quad=\mathrm{Se}_{8} \mathrm{Te}
\end{gathered}
$$

F)

G)
H)

Hittorf's Phosphorus

As, Sb, Bi
I)

e.g., $\mathrm{P}_{7}{ }^{-3}$
J)

FIGURE I-1. Structures of Group VB and Group VIB Elements and Ions.
membered boat-shaped ring can be discerned in the 57 structures of $\mathrm{Se}_{10} 0^{+2}, \mathrm{Te}_{2} \mathrm{~S}_{8}^{+2}, \mathrm{Te}_{3} \mathrm{~S}_{3}{ }^{+2}, \mathrm{Te}_{2} \mathrm{Se}_{4}^{+2}$ and $T e_{6}^{+4}$ (C) \& (D). The first two have the ring bridged by a four atom chain to produce an eight membered ring while the last ion has a bond between the upturned ends of the ring to form a trigonal prism (E). Finally, $S_{19}{ }^{+2}$ consists of two seven membered rings joined by a five atom chain. 57 Condensation of the vapours of phosphorus, arsenic and antimony produce tetrahedral molecules (F) of decreasing stability. Hittorf's phosphorus, a form of red phosphorus, consists of infinite chains of P_{8} cuneane units with two phosphorus bridges between each unit and every other unit having an additional phosphorus atom spanning it (G). ${ }^{61}$ Black phosphorus and the common forms of arsenic, antimony and bismuth consist of layers of fused six atom rings (H) such that each atom has three directly bonded neighbours and three farther away. The cations and anions of Group VB have not been as extensively characterized with only $P_{7}{ }^{-3}, 62$ $\mathrm{As}_{7}{ }^{-3}, 63 \mathrm{Sb}_{7}{ }^{-3}, 64 \mathrm{P}_{6}{ }^{-4}, 65 \mathrm{P}_{11}{ }^{-3}, 66$ and $\mathrm{Bi}_{9}{ }^{+5} 67$ having been structurally determined by X-ray crystallography. However, others are known to exist on the basis of solution studies, analysis and spectroscopic measurements. The first three anions can be considered as either end-capped trigonal prisms with the capped face expanded or tetrahedra with all the edges of a common apex bridged (I). The
anion P_{6}^{-4} is a flat, regular ring. The structure of $\mathrm{P}_{11}{ }^{-3}$ can be derived by bridging three non-adjacent edges of a cube so as to maintain three-fold symmetry around a body diagonal (J). The cation $\mathrm{Bi}_{9}{ }^{+5}$ is a slightly distorted tricapped trigonal prism (K).

I-2 (ii) Structures of the Group VB/VIB Compounds
a) $\underline{S}_{4} \mathrm{~N}_{4}$ Structure

The molecular structure of realgar $\left(\mathrm{As}_{4} \mathrm{~S}_{4}\right)$ was first determined by electron diffraction studies of the vapour by Lu and Donahue in 1944. ${ }^{68}$ Realgar is a cage of point group symmetry $D_{2 d}$ with the sulfur atoms occupying the corners of a square and the arsenic atoms forming an intermeshing tetrahedron. It can also be considered to be a saddle-shaped 8 -membered ring of alternating elements with transannular bonds (Figure I-2). This is known as the $\mathrm{S}_{4} \mathrm{~N}_{4}$ structure. X-ray structural determinations have shown that the molecular unit is 69,70 maintained in both the α and β forms of the solid. Figure I-2 shows the similarity in structure of $\mathrm{As}_{4} \mathrm{~S}_{4}$ with $\mathrm{S}_{4} \mathrm{~N}_{4} \cdot{ }^{24}$ The compounds ${\alpha \mathrm{P}_{4} \mathrm{~S}_{4}, 71 \mathrm{As}_{4} \mathrm{Se}_{4}, 72-75}_{\mathrm{N}_{4} \mathrm{Se}_{4} 76}$ $\mathrm{As}_{4} \mathrm{~S}_{4}(\mathrm{II})^{77}$ and $\mathrm{BP}_{4} \mathrm{~S}_{4}{ }^{71}$ also have this same basic shape (Figure I-3). Usually the most electronegative element is in the square but for $\mathrm{As}_{4} \mathrm{~S}_{4}(\mathrm{II})$ and $\mathrm{BP}_{4} \mathrm{~S}_{4}$ this is not strictly followed.

TABLE I-7 Bond Lengths in $\mathrm{S}_{4} \mathrm{~N}_{4}$-shaped Molecules

Molecule	M-E Bonds	Σ Single Covalent Radii	M-M or E-E Bonds	Σ Single Covalent Radii
$\mathrm{S}_{4} \mathrm{~N}_{4}$	1.619(2)-1.633(2)	1.73	$\begin{aligned} & 2.590(1) \\ & 2.595(1) \end{aligned}$	2.06
$\mathrm{Se}_{4} \mathrm{~N}_{4}$	1.77(3)-1.80(2)	1.87	2.748 (9)	2.34
$\alpha \mathrm{P}_{4} \mathrm{~S}_{4}$	2.106(1)-2.112(1)	2.23	2.350(1)	2.20
$\alpha A S_{4} S_{4}$	2.228(2)-2.247(2)	2.24	$\begin{aligned} & 2.566(1) \\ & 2.571(1) \end{aligned}$	2.42
$\mathrm{BAS}_{4} \mathrm{~S}_{4}$	2.238(9)-2.252(9)	2.24	2.593(6)	2.42
$\mathrm{As}_{4} \mathrm{~S}_{4}$ (II)	2.199(4)-2.269(4)	2.24	$\begin{aligned} & 2.510(3) \\ & 2.550(3) \end{aligned}$	2.42

$M=V B$ atom, $E=V I B$ atom.

FIGURE I-2. Structures of $\mathrm{S}_{4} \mathrm{~N}_{4}$ and $\alpha \mathrm{As}{ }_{4} \mathrm{~S}_{4}$.
A)

	$\mathrm{As}_{4} \mathrm{~S}_{4}(\mathrm{II}), \mathrm{BP}_{4} \mathrm{~S}_{4}$
$0=$	AS
$0=$	S
$\odot=$	S
$0=$	S
$0=$	P

$0=\mathrm{As}$
P
B)

$\mathrm{As}_{4} \mathrm{~S}_{5}, \mathrm{BP}_{4} \mathrm{~S}_{5}, \mathrm{~S}_{4} \mathrm{~N}_{5}{ }^{-}$

- As $\quad \mathrm{P} \quad \mathrm{S}$
$0=S$
S N
C)

$\mathrm{P}_{4} \mathrm{~S}_{4}(\mathrm{II}), \mathrm{P}_{4} \mathrm{Se}_{4}$
D)

$\alpha P_{4} S_{5}$
E)

$$
\text { e.g., } \mathrm{P}_{4} \mathrm{O}_{6}
$$

FIGURE I-3. Molecular Structures of Some Group VB-Group VIB Compounds.

In Table I-7 are listed the bond lengths of the molecules exhibiting the structure of $\mathrm{S}_{4} \mathrm{~N}_{4}$. It appears that $\mathrm{N}_{4} \mathrm{Se}_{4}$ may also have some multiple bond character like $S_{4} \mathrm{~N}_{4}$ (Table I-2). On comparison with other phosphorussulfur molecules the $P-S$ bonds of $\alpha P_{4} S_{4}$ appear to be quite normal. Note the relative length of the transannular chalcogen linkages in $\mathrm{S}_{4} \mathrm{~N}_{4}$ and $\mathrm{Se}_{4} \mathrm{~N}_{4}$ compared to the corresponding bonds between two arsenic atoms in $A_{S_{4}} S_{4}$. The trivalent atoms are generally in the three coordinate positions in the isomers of $\mathrm{As}_{4} \mathrm{~S}_{4}$ while this is not the case for $\mathrm{S}_{4} \mathrm{~N}_{4}$. This results in some considerable differences in reaction chemistry.

The compounds $\mathrm{MPbP}_{14}(\mathrm{M}=\mathrm{Zn}, \mathrm{Cd}$ and Hg$), \mathrm{KP}_{15} 78,79$ and Hittorf's phosphorus as mentioned previously have networks based on the $\mathrm{S}_{4} \mathrm{~N}_{4}$ structure. Beta $\mathrm{P}_{4} \mathrm{~S}_{5}{ }^{80}$ and $\mathrm{As}_{4} S_{5}{ }^{19}$ have one $M-M$ linkage of the $S_{\Delta} N_{\Delta}$ structure bridged by a sulfur atom. The molecule $N_{6} S_{5}$ and the anion $N_{5} S_{4}{ }^{-}$ have the $\mathrm{S}_{4} \mathrm{~N}_{4}$ structure with bridges of NSN and N^{-}, respectively.
b) Birdcage Structure

Another structural type found in VB/VIB compounds is the "bird-cage" formed by the bridging of all the edges of a common apex of the parent tetrahedron (Fig. I-3). Examples of this "bird-cage" structure are quite limited, and usually involve group VB elements. Besides the
previously mentioned homopolyatomic anions $\mathrm{P}_{7}{ }^{-3}, \mathrm{As}_{7}{ }^{-3}$ and $\mathrm{Sb}_{7}{ }^{-3}$, isostructural molecules are $\mathrm{P}_{4} \mathrm{~S}_{3},{ }^{81} \quad \mathrm{P}_{4} \mathrm{Se}_{3}, 82$ α^{83} and $B^{84} \mathrm{As}_{4} \mathrm{~S}_{3}, \alpha$ and $\mathrm{BAs}_{4} \mathrm{Se}_{3},{ }^{85} \mathrm{P}_{7} \mathrm{R}_{3}, 86 \mathrm{As}_{7} \mathrm{R}_{3}{ }^{87}$ $\left(\mathrm{R}=\mathrm{SiMe}_{3}\right), \mathrm{P}_{4}\left(\mathrm{SiMe}_{2}\right)_{3}{ }^{86}$ and $\left.\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{As}\right)\right)_{3}{ }^{88}$ The structures of the related compounds $\mathrm{P}_{4} \mathrm{~S}_{4} \mathrm{II}, \mathrm{P}_{4} \mathrm{Se}_{4}{ }^{89}$ and $\alpha \mathrm{P}_{4} \mathrm{~S}_{5}$ are shown in Figure I-3.
c) Adamantane Structure

The last main basic molecular shape is that of $\mathrm{P}_{4} \mathrm{O}_{6}$. In this molecule all phosphorus-phosphorus bonds of the P_{4} tetrahedron have been replaced by oxygen bridges (Fig. I-3). All the structures of more highly oxidized, chalcogen-rich, polymeric molecules have the exocyclic double bonds mentioned earlier. The molecule $\mathrm{P}_{4} \mathrm{O}_{11}$ is believed ${ }^{90}$ to have one intramolecular peroxide linkage. The $P_{4} O_{6}$, adamantane or, the urotropinic structure is more widespread than the others previously mentioned with examples either proven or suggested for molecules involving Groups IIIB and IVB elements as well as Group VB. Some of these are: (BSH$)_{4} \mathrm{~S}_{3}\left(\mathrm{NR}_{2}\right)_{3}, \quad(\mathrm{AlCl})_{4}\left(\mathrm{NMe}_{2}\right)_{6}, \mathrm{C}_{10} \mathrm{H}_{16}$, $(\mathrm{SiR})_{4}(\mathrm{NH})_{6}, \quad(\mathrm{Si} \mathrm{\phi})_{4}{ }^{(\mathrm{P} \phi)_{6}} \mathrm{O}^{(\mathrm{SiR})_{4} \mathrm{O}_{6}, \quad(\mathrm{SiR})_{4} \mathrm{~S}_{6}, \quad(\mathrm{SiR})_{4} \mathrm{Se}_{6},}$ $(\mathrm{Ge} \phi)_{4}(\mathrm{P} \phi)_{6}, \quad(\mathrm{GeR})_{4} \mathrm{~S}_{6}, \quad(\mathrm{SnR})_{4} \mathrm{~S}_{6}, \mathrm{~N}_{4}\left(\mathrm{CR}_{2}\right)_{6}, \mathrm{P}_{4}(\mathrm{NR})_{6}$, $(\mathrm{PS})_{4}(\mathrm{NR})_{6}, \mathrm{As}_{4}(\mathrm{NR})_{6}, \mathrm{As}_{4} \mathrm{O}_{6}, \mathrm{Sb}_{4} \mathrm{O}_{6}$, and $\mathrm{Sb}_{4}(\mathrm{NR}){ }_{6} ; \quad(\mathrm{R}=$ organic moiety). ${ }^{91}$
d) Polymeric Structures and Poorly Defined Species

The compounds Claudetite I^{92} and II; ${ }^{93}$ (forms of $\mathrm{As}_{2} \mathrm{O}_{3}$), $\mathrm{As}_{2} \mathrm{~S}_{3},{ }^{69} \mathrm{As}_{2} \mathrm{Se}_{3}{ }^{94,95}$ and orthorhombic $\mathrm{Sb}_{2} \mathrm{O}_{3}{ }^{96}$ (valentinite) consist of MX_{3} pyramids sharing the group VIB atoms at the corners to form infinite spirals linked into pairs. In arsenic telluride, although there are linked spirals,half the arsenic atoms are octahedrally coordinated by tellurium. ${ }^{97}$ Alternating group VB/VIB spirals are also seen in $\mathrm{Sb}_{2} \mathrm{~S}_{3},{ }^{98} \mathrm{Sb}_{2} \mathrm{Se}_{3}{ }^{99}$ and $\mathrm{Bi}_{2} \mathrm{~S}_{3} \cdot^{3}$ These short spirals VIB-VB-VIB-VB-VIB have a coordination number for the group VBatoms ranging from three to five and two or three for the chalcogen. The exact nature of the coordination depends on the orientation of the spiral units with respect to each other. The structures of $\mathrm{Sb}_{2} \mathrm{Te}_{3}, 100$ $\mathrm{Bi}_{2} \mathrm{Se}_{3}, \mathrm{ll}$ and $\mathrm{Bi}_{2} \mathrm{Te}_{3}{ }^{\mathrm{ll}}$ consist of infinite sheets having five distinct layers each of one element such that the sequence of layers in the sheet is, again, VIB-VB-VIB-VBVIB. All atoms have coordination number six.

It has been suggested ${ }^{101}$ that AsTe has an NaCl type structure. There is also mention in the literature of $\mathrm{P}_{2} \mathrm{Te}_{3}{ }^{102}$ and $\mathrm{As}_{2} \mathrm{~S}_{5}{ }^{20}$ but there is no evidence for these compounds other than analytical data. For $\mathrm{P}_{4} \mathrm{Se}_{10}$ Russian workers ${ }^{103}$ have inferred on the basis of solid state ${ }^{3 l_{P}}$ NMR that phosphorus is in the +5 oxidation state.

Mössbauer spectroscopy has shown that $\mathrm{Sb}_{2} \mathrm{~S}_{5}$ contains no $\mathrm{Sb}(\mathrm{V}) .{ }^{104}$ A close scrutiny of a paper ${ }^{105}$ claiming the formation of $\mathrm{As}_{3} \mathrm{~S}_{2}$ shows that the formula is better written as As $4 \mathrm{~S}_{2.7^{-}}$All the major X -ray powder pattern lines can be indexed to $\mathrm{As}_{4} \mathrm{~S}_{3}$.

$$
\begin{gathered}
\text { I-2 (iii) Observations on the Structure and Bonding } \\
\text { of Group VB-Group VIB Compounds }
\end{gathered}
$$

The important structural features of the elements that appear fairly regularly in the structures of the VB/VIB compounds are the tetrahedron of the group $V B$ elements and the spiral chain of group VIB elements. Short spiral lengths can even be seen in the structure of the molecule $\mathrm{As}_{4} \mathrm{~S}_{4}$ (Figure I-4). It would appear that high chalcogen content in conjunction with the greater tendency of the heavier elements to establish metal-like close packing structures results in the diagonal division between molecular and polymeric species seen in Table $I-6$. Few of any of the compounds have dichalcogen bonds.

$\mathrm{As}_{4} \mathrm{~S}_{4}$

$\mathrm{As}_{2} \mathrm{~S}_{3}$
$O=A s$
$\because \therefore=s$

FIGURE I-4. Sprial Structure Common to VB/VIB Compounds.

Nitrogen readily forms multiple bonds in contrast to its heavier congeners. This multiple bonding is prevalent with its near neighbours carbon and oxygen because of their similar size and therefore good orbital overlap. Tabulated ${ }^{106}$ values of $N-O$ single and double bonds show the latter to have a bond energy three times that of an NO single bond. It is therefore not surprising to find the nitrogen oxides to be small molecules showing a great deal of multiple bond character. There is also ample evidence for multiple bonding in sulfur-nitrogen compounds as evidenced by the data in Table I-2. This table also shows that many $S-N$ species are flat rings which allow for better π overlap.

For the rest of the $V B / V I B$ compounds multiple bonds are limited to the formation of exocyclic double bonds $(P=O, P=S, P=S e)$. Sulfur is observed to form exocyclic double bonds more readily than oxygen. These exocyclic double bonds are not observed until at least three edges of a common apex of the "parent" group VB tetrahedron are bridged first. No double bonds have been found in the binary arsenic oxides or heavier VB/VIB compounds although double bonds are found in the alkyl and aryl arsine oxides ${ }^{107}$ and sulfides. 108,109

I-3 Aims of the Present Work

This introduction has been a review of various aspects of the chemistry of the VB/VIB compounds. The sections dealing with the chemistry and structure of the VB and VIB elements and $S-N$ compounds illustrate many possible parallel areas of investigation for the chalconides of phosphorus and arsenic. The primary aim of the present work was to study the oxidation of the sulfides and selenides of phosphorus and arsenic with the hope of producing new cationic forms of these compounds and also new halides. As it became apparent that there were a number of unanswered problems relating to the various sulfides and selenides binary, ternary and quarternary systems of the elements phosphorus, arsenic, sulfur and selenium were also studied. In studying systems containing phosphorus considerable use was made of ${ }^{3 l}{ }_{P} n m r$.

It was hoped in this work to extend our knowledge of cage and cluster systems and to contribute to an understanding of the factors determining the formation and stability of such compounds.

CHAPTER II

EXPERIMENTAL

II-1 Preparation and Purification of Materials

II-1 (i) Group VB-VIB Compounds

Tetraphosphorus Trisulfide ($\mathrm{P}_{4} \mathrm{~S}_{3}$)

Tetraphosphorus trisulfide (Research Organic/ Inorganic Corp.) was dried under vacuum and dissolved in air-free dry carbon disulfide. The solution was filtered, the solvent distilled off and the solid sublimed under vacuum. Its purity was checked by N.M.R. and Raman spectroscopy. α Tetraphosphorus Pentasulfide $\left(\alpha \mathrm{P}_{4} \mathrm{~S}_{5}\right)$

Tetraphosphorus pentasulfide was made by leaving a dry, air-free carbon disulfide solution of $\mathrm{P}_{4} \mathrm{~S}_{3}$ and sulfur (1:2 ratio) and a catalytic amount of iodine in sunlight for a week. The product was washed several times with dry carbon disulfide.
a Tetraphosphorus Trisulfur Diiodide $\left(\alpha P_{4} S_{3} I_{2}\right)$

Stoichiometric amounts of the elements heated in an evacuated tube or equimolar amounts of $\mathrm{P}_{4} \mathrm{~S}_{3}$ and iodine
added to dry, air-free carbon disulfide at room temperature produced $\alpha \mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$. The products from both reactions were recrystallized from dry, air-free carbon disulfide. Tetraphosphorus Triselenide ($\mathrm{P}_{4} \mathrm{Se}_{3}$)

Tetraphosphorus triselenide was prepared by heating the stoichiometric amounts of red phosphorus and grey selenium in an evacuated tube to about $420^{\circ} \mathrm{C}$ for several days with occasional shaking. The solidified melt was then crushed and extracted with dry carbon disulfide in a Soxhlet apparatus fitted with a drying tube. After a vacuum distillation to remove the solvent the crystals were vacuum sublimed and their identity confirmed by NMR and Raman spectroscopy.
α Realgar $\left(\alpha_{A S} S_{4}\right)$

Alpha realgar resulted from the vacuum sublimation of the beta modification.
α Tetraarsenic Trisulfide $\left(\alpha A S_{4} S_{3}\right)$

A few crystals of α tetraarsenic trisulfide were obtained from carbon disulfide extractions of quickly quenched arsenic-sulfur melts.
β Tetraarsenic Trisulfide ($\mathrm{BAS}_{4} \underline{S}_{3} 2$

Beta tetraarsenic trisulfide was obtained by the vacuum sublimation of amorphous $\mathrm{As}_{4} \mathrm{~S}_{3}$.
β Realgar $\left(\mathrm{BAS}_{4} \mathrm{~S}_{4}\right)$

Beta realgar was simply made by adding the dry weighed elements to Pyrex tubes which were evacuated, sealed and heated to $360-450^{\circ} \mathrm{C}$ for at least four days. Arsenic-Selenium and Other Melts

Arsenic-selenium and other melts were prepared in the same fashion as $\mathrm{BAs}_{4} \mathrm{~S}_{4}$.

II-1 (ii) Other Materials

Arsenic

Arsenic metal powder (Alfa Inorganics, 99.5\%) was heated at $200^{\circ} \mathrm{C}$ under vacuum to remove As (III) oxide by sublimation.

Fluorine

Fluorine (Matheson, 98\%) was passed through sodium fluoride before use.

Chlorine

Chlorine (Canadian Liquid Air, 99.5\%) was purified by passage through calcium oxide, two sulfuric acid (95\%) traps and a $\mathrm{P}_{4} \mathrm{O}_{10}$ trap before being distilled through traps at $-78.5,-96.7,-130$ and $-196^{\circ} \mathrm{C}$. The fraction in the trap at $-130^{\circ} \mathrm{C}$ was used.

Niobium Pentafluoride

Niobium pentafluoride (Alfa Inorganics) was purified by vacuum sublimation at $220^{\circ} \mathrm{C}$.

Tantalum Pentafluoride

Tantalum pentafluoride (Alfa Inorganics) was purified by vacuum sublimation onto a water-cooled cold finger in an evacuated glass apparatus.

Arsenic Trifluoride

> Arsenic trifluoride (City Chemical Co.) was vacuum distilled onto dried sodium fluoride. It was also prepared by an alternative method ${ }^{110}$ given in Inorganic Synthesis. Large scale preparations were done by direct fluorination of the metal at $-196^{\circ} \mathrm{C}$ in a nickel can.

Arsenic Pentafluoride

Arsenic pentafluoride was also directly prepared from the elements by the addition of excess fluorine to powdered arsenic at $-196^{\circ} \mathrm{C}$ in a nickel can, followed by heating to $150^{\circ} \mathrm{C}$ for 12 hours and subsequent removal of excess fluorine at $-196^{\circ} \mathrm{C}$ by pumping under vacuum.

Antimony Pentafluoride

Antimony pentafluoride (Ozark Mahoning Co.) was doubly distilled in a Pyrex still in an atmosphere of dry nitrogen. It was then distilled under vacuum and stored in an F.E.P. bottle in a dry box. Subsequent batches were of better quality and the first step was omitted.

Fluorosulfuric Acid

Fluorosulfuric acid (J.T. Baker Co.) which had been purified by standard procedures ${ }^{l l 1}$ was kindly donated by Dr. J.E. Vekris.

Sulfuryl Chlorofluoride

Sulfuryl chlorofluoride (Research Inorganics)
which had been purified by standard procedures, ${ }^{112}$ was kindly donated by Dr. G.J. Schrobilgen.

Anhydrous hydrogen fluoride (Harshaw Chemicals). was kindly provided by Dr. Schrobilgen. It had been subjected to a pressure of $100 \mathrm{lb} / \mathrm{sq}$. in. of fluorine to react with any traces of water followed by removal of the fluorine and any resulting OF_{2} by exposing the frozen acid to a high vaccum.
$\left.\underline{S}_{8} \underline{(A S F}_{6}\right)-2$

The compound $\mathrm{S}_{8}\left(\mathrm{AsF}_{6}\right)_{2}$ was prepared according to the method of Dean, Gillespie and Ummat. ${ }^{113}$

Aluminium Trichloride

Aluminium trichloride (McArthur Chemical Co.)
was vacuum sublimed through a layer of aluminium pellets and/or foil to remove any iron chlorides.

Sulfur Dioxide

Anhydrous sulfur dioxide (Canadian Liquid Air, 99.98\%) was stored as a liquid over $\mathrm{P}_{4} \mathrm{O}_{10}$ prior to use. Sulfur Trioxide

Sulfur trioxide (Baker and Adamson) was distilled under vacuum into a dry glass storage vessel.

Phosphorus Pentachloride

Phosphorus pentachloride (B.D.H., 99\%) was vacuum sublimed at $160^{\circ} \mathrm{C}$ prior to use.

Acetonitrile

Acetonitrile (Fisher Scientific Co., ACS reagent) was vacuum distilled onto dried molecular sieves for storage.

Several materials were stored over anhydrous calcium chloride and then distilled onto and stored over $\mathrm{P}_{4} \mathrm{O}_{10}$. These substances included:
bromine (Fisher Scientific Co., ACS reagent)
carbon disulfide (J.T. Baker Co., 100\%)
methylene chloride (Fisher Scientific Co.)

The following were vacuum distilled and then cooled and exposed to vacuum to remove any HCl :
phosphorus trichloride (J.T. Baker Co.)
arsenic trichloride (B.D.H.)
boron trichloride (Matheson)
phosphorus oxychloride (J.T. Baker Co.)
thionyl chloride (J.T. Baker Co.)
antimony pentachloride (J.T. Baker, analyzed)

Many materials were exposed to vacuum and heated where appropriate before use:

```
antimony (Fischer Scientific Co., 99.8%)
antimony selenide (K & K Laboratories Inc.)
antimony telluride (K & K Laboratories Inc.)
bismuth Selenide (K & K Laboratories Inc.)
bismuth telluride (K & K Laboratories Inc.)
iodine (B.D.H., 99.9%)
phosphorus, red (B.D.H.)
phosphorus, white (Source unknown)
phosphorus pentoxide (Fisher Scientific Co.)
selenium (Alfa Inorganic, 99.9%)
sulfur (B.D.H. sublimed)
tellurium (Alfa Inorganic, 99.5%)
triphenyl phosphine (B.D.H.)
```

The following were used as received:

```
sulfuric acid (Fisher, ACS reagent)
```

hydrochloric acid (Fisher, ACS reagent)
nitric acid (Fisher, ACS reagent)
phosphorus pentafluoride (Ozark Mahoning)
selenium tetrachloride (Alfa Inorganics)
tungsten hexafluoride (Ozark Mahoning)

Several common organic solvents usually of analytical grade from a variety of sources, e.g., methanol, acetone, 1,4-dioxane, formaldehyde, petroleum ether, dimethyl sulfoxide,
nitrobenzene, pyridine, N, N-dimethylformamide and carbon tetrachloride.

II-2 General Experimental Techniques

II-2 (i) Dry Box
For all the moisture sensitive compounds studied manual operations were carried out in a very good dry box (S. Blickman) constantly flushed with nitrogen passed through an electrodryer. The nitrogen initially came from the boil off of a large liquid nitrogen tank. The box was equipped with an evacuable ante-chamber and an analytical balance.

II-2 (ii) Handling of Chemicals

Most gases were transferred in a calibrated Pyrex vacuum line fitted with Rotoflow valves and a mercury manometer. Gas cylinders were connected to the line via Swagelok Teflon unions and Teflon tubing. Reactions involving fluorine were done in nickel cans fitted with high pressure Autoclave Engineering valves. In this case the vacuum line was constructed of Monel with the fluorine cylinder attached by seasoned copper tubing. Transfers of HF were also done in metal vacuum lines. The Kel-F and F.E.P. plastic equipment is described elsewhere. 114 Liquids with a reasonable vapour pressure were distilled on the vacuum line. Other organic and inorganic liquids were transferred in a glove bag and
the dry box, respectively. Antimony pentafluoride required the use of an all-glass syringe. Almost all solids were transferred in the dry box.

II-2 (iii) Reaction Vessels
Typical reaction vessels are shown in Figure II-1. The two arms of the vessels were separated by a medium glass frit. The vessels were attached to the vacuum line by means of Teflon valves. Reactants and/or products that were moisture sensitive required the vessels be flame-dried under vacuum before use. If desired the vessels could be flame sealed. II-2 (iv) Crystal Mounting
Air-sensitive crystals for X-ray crystallography were handled in a dry box equipped with a microscope. Each crystal was transferred to a thin-walled quartz capillary tube which was sealed with Halocarbon grease. The capillary was flame sealed with a micro-burner outside the dry box. Crystals stable in air and moisture were glued to the end of a pyrex filament.

II-3 Instrumentation
II-3 (i) Infrared Spectroscopy
Routine preliminary spectra were recorded on a Perkin Elmer Grating Infrared spectrometer Model 283. Final spectra were recorded with a Nicolet 7199 FT-IR system fitted with the appropriate beam splitter for the

nom.r.tube

FIGURE II-1. Typical Reaction Vessels.
region of interest. The entire spectrometer was constantly flushed with dry nitrogen for far IR spectra. Solid samples were prepared as Nujol mulls in the dry box using sodium dried Nujol. For the $4000 \mathrm{~cm}^{-1}$ to $200 \mathrm{~cm}^{-1}$ range CsI windows were used and polyethylene packets for the $400 \mathrm{~cm}^{-1}$ to $60 \mathrm{~cm}^{-1}$ region. Solution spectra were run using molded polyethylene cells (Barnes Engineering Co.) of varying path length.

II-3 (ii) Laser Raman Spectroscopy

A Spectra Physics Model 164 argon ion laser giving up to 900 mW at $5145 \AA$ or a Spectra Physics Model 125 Helium-Neon gas laser giving up to 65 mW at 5328 A were used to excite the Raman spectra. The spectrometer was a Spex Industries Model 14018 double monochromator equipped with 1800 grooves/mm Holographic gratings. An RCA C3l034 phototube detector in conjunction with a pulse count system consisting of pulse amplifier, analyzer and ratemeter (Hamner NA-11, NC-11 and N-780A, respectively) and a Texas Instruments FSOZWBA strip character recorder were used to record the spectra. The spectrometer was periodically calibrated by recording the discharge lines from an argon lamp over the spectral range of interest; the Raman shifts quoted are estimated to be accurate to $\pm 1 \mathrm{~cm}^{-1}$. Slit widths depended on the scattering
efficiency of the sample, laser power, etc., with 100 μ being typical.

Cylindrical sample tubes were mounted vertically. The angle between the incident laser beam and the sample tube was 45° and Raman scattered radiation was observed at 45° to the laser beam or 90° to the sample tube direction. Samples were capable of being spun up to 1000 rpm by means of a variac-controlled electric motor.

Low temperature spectra were recorded at -196° by mounting the sample vertically in an unsilvered Pyrex glass Dewar filled with liquid nitrogen. High temperature spectra were recorded up to $250^{\circ} \mathrm{C}$ by mounting the sample vertically in a similar Dewar fitted with an inlet near the bottom for introducing heated air. The air was heated by passing it through a resistance heater, the temperature being controlled by flow rate, a Varian power source and judicious insulating of the heater and Dewar. The temperature was monitored with a copperconstantan thermocouple connected to a Leeds and Northrup temperature potentiometer.

II-3(iii) Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance spectra were obtained with the following spectrometers: Bruker WH-90, Bruker WH-200 (University of Alberta, Edmonton, Alberta),

Bruker WH-250 (Bruker Spectrospin Ltd., Mississauga, Ontario) and a Bruker WH-400 (University of Guelph, Guelph, Ontario). The $\mathrm{WH}-90$ was equipped with a Nicolet 1080 computer while the rest were equipped with Aspect 2000 computers.

Sulfur dioxide, $\mathrm{SO}_{2} \mathrm{ClF}$ or a mixture of these were used for all ${ }^{19}$ F NMR samples. Unless noted otherwise all ${ }^{31} \mathrm{P}$ and ${ }^{77}$ Se samples were dissolved in dry, air-free CS_{2}. Spectral simulations were carried out using the Nicolet program ITRCAL ${ }^{l 15}$ or the program NUMARIT. ${ }^{116}$ Low temperature ${ }^{19} \mathrm{~F}$ and ${ }^{31_{P}}$ NMR spectra were obtained using a Bruker temperature controller. Temperatures were measured using a copper-constantan thermocouple inserted directly into the sample region of the probe and were accurate to $\pm 1^{\circ} \mathrm{C}$. The IUPAC conventions were used for reporting chemical shifts, positive shifts being to low field.
a) ${ }^{19} \mathrm{~F}$ NMR Spectra

Spectra were recorded on the WH-90 spectrometer using a fixed frequency transmitter and probe operating at 84.66 MHz . Spectral widths of $20,000-50,000 \mathrm{~Hz}$ were employed with resulting software resolution of 2.4-6.1 $\mathrm{Hz} /$ point. All samples were in sealed 5 mm o.d. medium wall NMR tubes locked to an external $D_{2} O$ capillary in the probe-head housing. The reference compound was external $\mathrm{CFCl}_{3}{ }^{-}$
b) ${ }^{31_{P}}$ NMR Spectra

A WH-90 spectrometer equipped with a fixed frequency transmitter and probe (36.43 MHz) or with a broad band multinuclear NMR probe set at 36.44 MHz was used to record several spectra. Spectra were accumulated with a spectral width of 5,000 to $20,000 \mathrm{~Hz}$ giving a software resolution of $0.6-2.4 \mathrm{~Hz} /$ point. All samples were in sealed 8 mm o.d. precision round bottom NMR tubes placed inside similar unsealed 10 mm o.d. tubes. The annular space contained the external ${ }^{2} \mathrm{H}$ lock substance. At ambient temperature $\mathrm{D}_{2} \mathrm{O}$ was used and d_{6}-acetone for low temperatures.

All other ${ }^{31}{ }_{P}$ NMR samples were run unlocked in 10 mm o.d. NMR tubes using the $\mathrm{WH}-200$, WH-250 or $W H-400$ spectrometers with software resolutions of 0.5-0.9, 0.l-2.5 and l-3 $\mathrm{Hz} /$ point, respectively.
c) ${ }^{77}$ Se NMR Spectra

Some preliminary spectra were recorded using the Bruker wH-90 spectrometer equipped with a broad band multinuclear NMR probe set at 17.19 MHz . Spectra were accumulated with a spectral width of $30,000-50,000 \mathrm{~Hz}$ giving a software resolution of $3.7-6.1 \mathrm{~Hz} / \mathrm{point}$ All other spectra were recorded on the $W H-250$ and wH-400 with software resolution of $\leqslant l \mathrm{~Hz} /$ point. Samples were in sealed 10 mm o.d. tubes. The IUPAC sign convention was
again used and the reference compound was external saturated selenous acid.

> II-3(iv) UV-Visible Absorption Spectroscopy

Absorption spectra were recorded from 320 to 1500 mm on a Cary 14 spectrometer. Spectra of solutions of compounds dissolved in SO_{2} were obtained in one centimeter path length cells (Hellma Ltd.) with a graded seal to a rotoflow valve and a Pyrex reaction vessel equipped with a magnetic stirrer (Figure II-2).
II-3 (v) X-ray Crystallography

The mounted crystals were attached to standard goniometer heads. Usually preliminary crystal alignment was achieved with a Beurger precession camera using a low precession angle ($\mu=10^{\circ}$) and unfiltered Mo radiation. The space group was normally determined from the systematic absences characteristic of the space group by examination of the zero and first layer precession photographs obtained using Mo $K_{\alpha}(\lambda=0.71069 \AA)$ radiation and the appropriate screen.

Intensity data were collected on a Syntex P2 1 four-circle diffractometer using graphite monochromated Mo K_{α} radiation. Unit cell parameters were found by least

FIGURE II-2. High Pressure UV Cell
squares refinement of the Bragg angle and crystal orientation for 15 reflections with θ in the range $23-33^{\circ}$. The $\theta-2 \theta$ scan technique was used with scan rates varying from 2 to $24^{\circ} / \mathrm{min}($ in 2θ) so that the weaker reflections were counted more slowly to minimize counting errors. The scan ranges were in the order of $K \alpha_{1}-(0.60$ to l.1) to $K \alpha_{2}+(0.6$ to 1.1). Stationary background counts with a time equal to one quarter of the scan time for each reflection were made at each end of the scan range. Three standard reflections were recorded at least every 100 measurements to monitor crystal stability and orientation. The recorded intensities were corrected for background, Lorentz and polarization factors. The atomic scattering factors were taken from International Tables. 117 Specific details of absorption corrections and other conditions for the crystal structures done by this researcher are included in the discussion of the individual crystal structures. All calculations were done on a CDC 6400 computer using SHELX ${ }^{118}$ and the X-ray 76 system. 119

X-ray powder patterns were recorded by Mrs. Lynne Soderholm using a Phillips automatic X-ray powder diffractometer equipped with a copper radiation source and a graphite monochromator.

II-3(vi) Analyses

Analyses were done by Butterworths, 41 High Street, Teddington, Middlesex TWll 8ET, England. The results of these analyses are presented at the end of Chapter V.

CHAPTER III

CAGE MOLECULES CONTAINING PHOSPHORUS

III-1 Introduction

It was necessary to prepare and study several phosphorus containing cages to provide background data before oxidative studies could be undertaken. These studies included investigating the previously recorded ${ }^{3 l_{P}}$ NMR spectra of $\mathrm{P}_{4} \mathrm{Se}_{3}{ }^{120}$ and $\alpha_{4} \mathrm{~S}_{5}{ }^{79}$ and the Raman spectra of $\mathrm{P}_{4} \mathrm{~S}_{3}$ and $\mathrm{P}_{4} \mathrm{Se}_{3}$.

Ternary and quaternary mixtures of the Group VB and Group VIB elements were also investigated in an attempt to produce novel cage compounds and extend our knowledge of such cages. Ternary mixtures of the Group VB and Group VIB elements were studied in the early part of this century ${ }^{122}$ but no further work was done until the early seventies. Recently what was believed to be $\mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}^{14}$ was extracted from a $P_{4} S_{3} / \mathrm{As}_{2} S_{3}$ melt. The investigation of a $P_{4} S_{3} / P_{4} \mathrm{Se}_{3}$ melt ${ }^{15}$ by X-ray powder photography and thermal analysis, however, revealed no new species. Existence of the phos-phorus-arsenic-sulfur compound as well as, for example, $\mathrm{Se}_{3} \mathrm{~S}_{5}{ }^{5 \mathrm{~S}}$ and $\mathrm{As}_{2} \mathrm{Se}_{2} \mathrm{~S}^{95}$ suggested that other VB/VIB compounds of tertiary and quaternary elemental combinations might be produced under the appropriate conditions.

III-2 ${ }^{31_{P}}$ and ${ }^{77}$ Se NMR Spectroscopy of the $P_{4} \underline{S}_{3}-x-$ Se $_{X}$ ($\mathrm{X}=0-3$) System

III-2(i) $\underline{P}_{4} \underline{S}_{3}$ and $\mathrm{P}_{4} \underline{S e}_{3}$
The ${ }^{31} P_{P}$ NMR spectrum of $P_{4} S_{3}{ }^{120}$ consists of a highfrequency quartet for the apical phosphorus and a lowfrequency doublet for the three basal phosphorus atoms. The ${ }^{31} 1_{P}$ NMR spectrum of $P_{4} \mathrm{Se}_{3}$ shows the same basic AX_{3} pattern with additional ${ }^{77}$ Se satellites (${ }^{77}$ Se, $I=1 / 2,7.5 \%$ natural abundance). The chemical shifts of the basal atoms occur at rather low frequency compared to the resonances of most tricoordinated phosphorus compounds. ${ }^{123}$ The values recorded for the phosphorus chemical shifts and ${ }^{2} J_{P P}$ are in agreement with previously reported values. Chemical shifts for the apical and basal phosphorus atoms of $\mathrm{P}_{4} \mathrm{~S}_{3}$ are 67.8 ppm and -119.4 ppm while those of $\mathrm{P}_{4} \mathrm{Se}_{3}$ are 38.3 ppm and -103.8 ppm , respectively. The phosphorus-phosphorus coupling constants in these two molecules are essentially the same $\left(P_{4} S_{3}:{ }^{2} J_{P P}\right.$ $=70.3 \mathrm{~Hz}$ and $\mathrm{P}_{4} \mathrm{Se}_{3}:{ }^{2} \mathrm{~J}_{\mathrm{PP}}=70.8 \mathrm{~Hz}$).

The natural abundance ${ }^{77}$ Se NMR spectrum and the ${ }^{77}$ Se satellites observed in the ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathrm{P}_{4} \mathrm{Se}_{3}$ were both recorded in the present study. These spectra could not be fitted using the previously ${ }^{120}$ reported $P-S e$ coupling constants and the associated P-P coupling constants and chemical shifts. The P-Se coupling constants
were calculated from the ${ }^{77}$ Se satellites seen in a nuclear electron Overhauser enhanced ${ }^{31} P$ NMR spectrum. The previous workers were probably limited in their observation of the ${ }^{77}$ se satellites by the signal-to-noise capabilities of their available continuous wave instruments. The natural abundance ${ }^{77}$ Se NMR spectrum of $\mathrm{P}_{4} \mathrm{Se}_{3}$ (Figure III-l) appears to exhibit a first order pattern due to splitting by the apical phosphorus atom (256.6 Hz), by the directly bonded basal phosphorus atom (316 Hz) and by what appears to be a long range coupling of 116 Hz to the two remaining basal phosphorus atoms. However, the spectrum actually arises from a $A M_{2} M^{\prime X}$ spin system (Fig. III-l) with the coupling constants listed in Table III-I. The ${ }^{31} P$ NMR spectrum of the apical region of $P_{4} \mathrm{Se}_{3}$ is shown in Figure III-2. Superimposed on the quartet arising from coupling with the basal phosphorus atoms are the satellite doublets due to ${ }^{31} \mathrm{P}-{ }^{77}$ Se coupling (256.6 Hz). The four very weak satellites are due to the isotopic isomer containing two ${ }^{77}$ Se atoms (1.56\%). The recorded and calculated ${ }^{77}$ se satellite spectra for the basal phosphorus atoms of $\mathrm{P}_{4} \mathrm{Se}_{3}$ are illustrated in Figure III-3.

$$
\text { III-2(ii) } \underline{P}_{4} \underline{S}_{2}{\underline{S e} \text { and } \mathrm{P}_{4} \underline{S S e}_{2}}^{2}
$$

The ${ }^{31_{P}}$ NMR spectra of $C S_{2}$ extractions of $4: 2: 1$ and 4:l:2 P:S:Se melts are quite complex. In both spectra

$\left\{\begin{array}{r}61.4^{\mathrm{a}} \\ 75.4 \\ 143.9 \\ 265.2 \\ 331.1 \\ 7.3 \\ 7.3\end{array}\right.$

-93.8
-591.0

50.9	
-116.0	38.3
-93.8	-103.8

$$
-534.9
$$

$$
\int_{70.8}^{b}
$$

$$
\}-150.0
$$

256.6
316.5
0.8
0.8
a) From spectra. b) From calculations. No exhaustive study made of possible sign combinations that would produce the expt. spectra.

FIGURE III-1. Natural Abundance ${ }^{77}$ Se NMR Spectrum of $\mathrm{P}_{4} \mathrm{Se}_{3}$ and the Simulated Spectrum.

FIGURE III-2. $\begin{aligned} & \begin{array}{l}3 l_{p} \text { NMR Spectrum } o f ~ t h e ~ A p i c a l ~ R e g i o n ~ o f ~ \\ P_{4} \\ \text { Se } \\ \text { Spectrum of the }\end{array} 7_{3} \text { and the Satellites. }\end{aligned}$

FIGURE III-3. ${ }^{31}$ P NMR Spectrum of the Basal Region of $\mathrm{P}_{4} \mathrm{Se}_{3}$ and the Simulated Spectrum of the ${ }^{77}$ se Satellites.
peaks for $\mathrm{P}_{4} \mathrm{~S}_{3}$ and $\mathrm{P}_{4} \mathrm{Se}_{3}$ were present as well as peaks due to two new species. The peaks for the new species are assigned to $\mathrm{P}_{4} \mathrm{~S}_{2} \mathrm{Se}$ and $\mathrm{P}_{4} \mathrm{SSe}_{2}$. The phosphorus NMR spectra for the ternary compounds arise from $A Y_{2} Y$ and $A X Y_{2}$ spin systems in contrast to the binary chalconides which arise from the AX_{3} spin system. The observed and calculated ${ }^{3 l_{P}} \operatorname{NMR}$ spectra for $P_{4} S_{2}$ Se and $P_{4} S S e_{2}$ obtained at 36.44 MHz for a 4:2:l P:S:Se sample are illustrated in Figures III-4 and III-5. Relative intensities of the peaks in the spectra of samples of different sulfur-selenium ratios were used to make the assignments for the phosphorus atoms. Considering the similarity of ${ }^{2} J_{P P}$ in $P_{4} S_{3}$ and $\mathrm{P}_{4} \mathrm{Se}_{3}$ it is somewhat surprising that the corresponding coupling constants for the ternary compounds vary from 61.4 to 81.6 Hz (see later discussion). The ${ }^{77}$ Se satellites observed in a phosphorus NMR spectrum of $\mathrm{P}_{4} \mathrm{SSe}_{2}$ recorded at 81.015 MHz are illustrated in Figures

III 6-8 along with the calculated spectra. The observed and calculated ${ }^{77}$ Se spectra of $\mathrm{P}_{4} \mathrm{SSe}_{2}$ are shown in
Figure III-9. The corresponding selenium NMR spectrum for $\mathrm{P}_{4} \mathrm{~S}_{2} \mathrm{Se}$ is given in Figure III-10.

The ${ }^{3 l_{P}}$ NMR spectrum of a $C S_{2}$ solution of $P_{4} S_{3}$ and $\mathrm{P}_{4} \mathrm{Se}_{3}$ stirred for one hour showed no other species present. In addition a ${ }^{3 l_{P}}$ NMR spectrum for a solution

FIGURE III-4. Observed and Calculated ${ }^{31}$ P NMR Spectra of the Apical Region of the $\mathrm{P} / \mathrm{S} /$ Se System.

100 Hz

FIGURE III-5. Observed and Calculated ${ }^{31}$ P NMR Spectra of the Basal Region of the $\mathrm{P} / \mathrm{S} / \mathrm{Se}$ System.

FIGURE III-6. ${ }^{31}$ P NMR spectrum of the Apical Region of $\mathrm{P}_{4} \mathrm{SSe}_{2}$ and the Simulated Spectrum of the ${ }^{77}$ se Satellites.

FIGURE III-8. ${ }^{31} \mathrm{P}$ NMR Spectrum of the Low Frequency Portion of the Basal Region of $\mathrm{P}_{4} \mathrm{SSe}_{2}$ and the Simulated Spectrum of the ${ }^{77}$ Se Satellites.

FIGURE III-9. Natural Abundance ${ }^{77}$ Se NMR Spectrum of $\mathrm{P}_{4} \mathrm{SSe}_{2}$ and the Simulated spectrum.

H_{0} (ppmfrom aqueous sat'd $\mathrm{H}_{2} \mathrm{SeO}_{3}$) -

FIGURE III-10. Natural Abundance ${ }^{77}$ Se NMR Spectrum of $\mathrm{P}_{4} \mathrm{~S}_{2} \mathrm{Se}$.
formed by the CS_{2} extraction of a l:l $\mathrm{P}_{4} \mathrm{~S}_{3}: \mathrm{P}_{4} \mathrm{Se}_{3}$ melt also showed peaks only due to the $\mathrm{P}_{4} \mathrm{~S}_{3}$ and $\mathrm{P}_{4} \mathrm{Se}_{3}$. This is the same conclusion obtained from X-ray powder photography ${ }^{15}$ of the products in solidified $P_{4} S_{3} / P_{4} S e n_{3}$ melts. The compounds must have high thermal stability with respect to molecular rearrangements.

III-3 ${ }^{3 l_{P}}$ and ${ }^{77}$ Se NMR Spectroscopy of $P_{4}-X-x-S_{3}$ and

$$
\underline{P}_{4}-X \underline{A s}_{x} \underline{S e}_{3}(X=0-3) \text { Systems }
$$

In an attempt to obtain crystals of $\mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$ a melt having the stoichiometric ratio of elements was extracted with dry, air-free CS_{2}. $A{ }^{31} \mathrm{P}$ NMR spectrum of the sample showed many more peaks than the two doublets expected for the two non-equivalent phosphorus atoms in $\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}{ }^{\neq}$(Figure III-11,12). The detection of $\mathrm{P}_{4} \mathrm{~S}_{3}$ and

[^4]

FIGUPE III-11. Tertiary Members of the Series

$$
P_{4-x}^{A S_{x}} S_{3}, x=0-3
$$

FIGURE III-12. ${ }^{31} \mathrm{P}$ NMR Spectrum of the $\mathrm{P}_{4-\mathrm{x}}{ }^{A s_{X} S_{3}}$, $\mathrm{X}=0-3$ system.
signals with similar shifts and coupling constants leads to the conclusion that the series of birdcage molecules $P_{4-X}{ }^{A s} X_{3}, X=0-4$ is formed. Any $\mathrm{As}_{4} S_{3}$ produced would of course not be detected by ${ }^{3 l_{P}}$ NMR.

The high frequency region is assigned to those phosphorus atoms in apical environments and the low frequency region to the basal phosphorus atoms. The apical region clearly displays a singlet, a doublet, a triplet and a quartet ranging from high to low frequency. These resonances may be assigned to $\alpha P_{\text {As }}^{3} S_{3}, \alpha P_{2} A_{2} S_{3}$, $\alpha \mathrm{P}_{3} \mathrm{AsS}_{3}$ and $\mathrm{P}_{4} \mathrm{~S}_{3}$, respectively.

The basal region consists of doublets and singlets; each doublet splitting is due to an apical phosphorus. A total of three singlets and three doublets is observed. As already mentioned for $\mathrm{P}_{4} \mathrm{~S}_{3}$ tricoordinated phosphorus signals usually occur at higher frequencies than recorded here for these basal phosphorus atoms. The doublets, in order of decreasing frequency, are assigned to $\alpha P_{2} A_{2} S_{3}$, $\alpha P_{3} A s S_{3}$ and $P_{4} S_{3}$ on the basis of the coupling constants measured in the apical region and the apical-basal integrated intensity ratios. The singlets, again in order of decreasing frequency are assigned to $B P A S_{3} S_{3}$, $B P_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$ and $B P_{3} A s S_{3}$.

Integration of the spectrum of a saturated solution for the 2:2:3 P:As:S melt gave a ratio of 1:2:2:1 for $\alpha P A s_{3} S_{3}: \alpha P_{2} A_{2} S_{3}: \alpha P_{3} A s S_{3}: \mathrm{P}_{4} \mathrm{~S}_{3}$. This does not necessarily reflect the constitution of the solid because of the expected different solubilities. The product ratio for a 3:1:3 P:As:S sample slightly favoured the phosphorus-rich compounds.

Interestingly, the ${ }^{31} P$ NMR spectra for $C S_{2}$ extractions from l:3:3 melts show only the apical singlet due to $\alpha P A S_{3} S_{3}$. This would indicate a definite preference of the phosphorus for the apical position. This could account for the large percentage of the α compounds present in the solutions of the mixtures, if solubility differences are not the major factor. The positioning of the phosphorus may be due to a greater stability of a homonuclear basal triangle.

Crystals grown by vacuum sublimation from P:As:S melts of composition 1:3:3, 2:2:3 or 1:3:4 gave a Raman spectrum essentially the same as that recorded for what was believed to be $\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3} .{ }^{14}$ However, a ${ }^{31} \mathrm{P}$ NMR spectrum of $a \mathrm{CS}_{2}$ solution of the cxystals again showed only an apical singlet assignable to $\alpha \mathrm{PAs}_{3} \mathrm{~S}_{3}$. A Raman spectrum of the solid recovered from the solution was similar to that recorded previously but also contained several
additional peaks as well as small shifts of the others. This can be explained by the formation of different crystal forms for aPAs $_{3} S_{3}$. This has been observed for $\mathrm{P}_{4} \mathrm{~S}_{3},{ }^{17} \mathrm{P}_{4} \mathrm{Se}_{3}, 15 \mathrm{As}_{4} \mathrm{~S}_{3} 83,84$ and $\mathrm{As}_{4} \mathrm{Se}_{3} .85$ Redissolution of the solid and repetition of the ${ }^{31}$ P NMR spectrum showed only the apical singlet.

The ${ }^{31}{ }_{P}$ NMR spectrum obtained for a $_{\text {CS }}^{2}$ solution of an extract from a 3:1:3 P:As:Se melt exhibits the same pattern as for the $P / A s / S$ system (Figure III-13). The peaks for the compounds $\alpha \mathrm{PAs}_{3} \mathrm{Se}_{3}$ and $\beta P A s_{3} \mathrm{Se}_{3}$ could not be detected for the $3: 1: 3 \mathrm{P}:$ As:Se sample but were easily seen in the ${ }^{31} P$ NMR spectrum of a $1: 3: 3 \mathrm{P}:$ As: Se sample. In fact, signals for $\alpha \mathrm{PAs}_{3} \mathrm{Se}_{3}$ and the B compounds were dominant for the latter sample. This greater proportion of β compounds in the selenium system may be related to the expected decrease in strain for a phosphorus atom in a basal ring attached to selenium $\left(^{L} E P P=103^{\circ}\right.$ in $P_{4} S_{3}, 105^{\circ}$ in $P_{4} S e_{3}, E=$ chalcogen).

A ${ }^{77}$ Se NMR spectrum for the $3: 1: 3$ P:As:Se sample clearly indicates the presence of $\mathrm{P}_{4} \mathrm{Se}_{3}$ in the sample. Signals due to two and possibly more species could be detected after 100,000 scans. On the basis of peak ratios in the ${ }^{3 l_{P}}$ NMR spectrum one would expect that the sets of peaks at -614 and -523 ppm could be due to two of the following three molecules: $B P_{3} A^{\prime S S e} 3$ and the isotopic

FIGURE III-13. ${ }^{31}{ }_{P}$ NMR Spectrum of the $P_{4-X} A_{X} S_{3}, X=0-3$ system.
isomers of ${\alpha P_{3}}^{A s S E_{3}}$. The isomers would be present in equal amounts. One isomer would have the ${ }^{77}$ Se atom attached to a basal phosphorus atom while in the other isomer it would be bonded to arsenic.

At -614 ppm there appears to be a triplet (216 $\mathrm{Hz})$ of doublets $(99 \mathrm{~Hz})$. If this is due to a birdcage molecule this would require the indirect coupling to be the larger of the two. At -523 ppm a doublet of doublet of doublets may be discerned with coupling constants of 88,212 and 396 Hz . This might correspond to the unsymmetrical form of $\alpha_{3} \mathrm{AsSe}_{3}$.

III-4 Chemical Shifts, Coupling Constants and Empirical Correlations

The magnitude and direction of the ${ }^{31} P$ NMR shift differences between $\mathrm{P}_{4} \mathrm{~S}_{3}$ and $\mathrm{P}_{4} \mathrm{Se}_{3}$ are not consistent with the similarity of the electronegativities of sulfur (2.58) and selenium 2.55). This indicates that other factors must also be considered. The chemical shifts of tri- and tetracoordinated phosphorus environments have been accounted for ${ }^{123}$ in terms of bond angle changes, π-bonding effects and electronegativity effects. Rotameric equilibrium and changes in oxidation state are also important but are not relevant here.

It is commonly believed that the large negative shift of the basal atoms in $\mathrm{P}_{4} \mathrm{~S}_{3}(-119.4 \mathrm{ppm})$ and $\mathrm{P}_{4} \mathrm{Se}_{3}$ (-103.8 ppm) is related to the strain present in the basal plane. As well as the birdcage molecules studied here similar shifts have been observed (-45 to -169 ppm) in the homo and heterocyclic three-membered phosphorus ring compounds studied extensively by Baudler and co-workers. 124 An examination of the data for the homocyclic phosphorus ring compounds generally shows deshielding of the phosphorus atoms with an increase in the RPP angle on addition of larger organic moieties (R) of similar electronegativity with no π-bonding capability. It is believed that RPP angles less than 109.5° together with the small PPP angles produce lone pair orbitals of greater s character and electron density on the phosphorus atoms and this in turn leads to more shielding of these atoms. This would seem to apply for the basal chemical shift ordering for $P_{4} S_{3}$ and $\mathrm{P}_{4} \mathrm{Se}_{3}$ where the corresponding $\operatorname{EPP}(\mathrm{E}=\mathrm{S}$, Se) angles are $103.0(5)^{\circ}$ and $105.3(1.0)^{\circ}$, respectively. 81,82 However, this does not explain why the basal phosphorus atom attached to selenium in $P_{4} S_{2}$ Se has a chemical shift of -129.0 ppm which is more negative than that of the basal phosphorus atoms of $\mathrm{P}_{4} \mathrm{~S}_{3}$.

Lack of theoretical data precludes any quantitative analysis of π-bonding effects. However, Van Wazer and

Letcher ${ }^{123}$ have calculated values for the σ bonding contribution to the chemical shifts of $P(I I I)$ homotricoordinated molecules PX_{3} using the XPX bond angles and the electronegativities of the substituents as variables. Plotting these σ bonding values against experimental chemical shifts a straight line was obtained for molecules exhibiting no π bonding. Both $\mathrm{P}_{4} \mathrm{~S}_{3}$ and $\mathrm{P}_{4} \mathrm{Se}_{3}$ lie off this line indicating a π bonding effect on the chemical shift. The point for $P_{4} S_{3}$ is farther from the line than that for $P_{4} S e_{3}$ indicating more π bonding which is not unreasonable considering greater possibility of good overlap in $\mathrm{P}_{4} \mathrm{~S}_{3}$ because valence orbitals of the same principle quantum number are involved.

Their data also show that the π bonding has a deshielding effect. Therefore, the chemical shift decrease for $\mathrm{P}_{4} \mathrm{~S}_{2}$ Se mentioned above may be due to a combination of the very slight difference in electronegativity of sulfur and selenium and the decrease in π bonding in $\mathrm{P}_{4} \mathrm{~S}_{2}$ Se compared to $\mathrm{P}_{4} \mathrm{~S}_{3}$ because of the third row atom bonded to the basal phosphorus atom in question. Further replacement of sulfur atoms by selenium atoms results in a deshielding effect (Table III-I). The reason for this remains unclear at this time.

The atoms attached to the basal triangle for the $P / A s / S$ and $P / A s /$ se systems do not change within each
series and the EPP angle should not change very much. On the basis of electronegativity one would expect with more arsenic in the basal triangle there would be greater shielding of the basal phosphorus but this is not the case. One possible explanation is that in the $P_{2} A s$ and $P A s_{2}$ basal triangles the larger size of the arsenic bonding orbitals allow the phosphorus bonding orbitals to extend out from the basal triangle, alleviating the angle strain, and still maintain sufficient overlap. However, the orbitals must be closer to the basal triangle to allow bonding in $P_{4} S_{3}$. This gives the lone pair orbitals of $P_{4} S_{3}$ more s character and thus more shielding ability (Figure III-l4). An empirical equation for the prediction of basal chemical shifts could be formulated from the chemical shift data for the binary and tertiary systems: Basal Chemical Shifts $=-119-10 a+12 b+16 c+d, a=0,1$ number of Se atoms attached to the P atom), $\mathrm{b}=0,1,2$ (number of other Se atoms), $\mathrm{c}=0,1$ (number of apical As atoms), $\mathrm{d}=0,18,31$ (for 0,1 or 2 basal As atoms). This equation was subsequently used for assignment of ${ }^{3 l^{\prime}}$ NMR peaks of the quaternary members of the series. The third row atoms not directly bonded to the basal phosphorus atom in question have a deshielding effect.

The chemical shifts of the apical phosphorus atoms (Tables III-1 and 2 and Figure III-l5) also cannot be

The larger bonding orbitals of arsenic compared to those of phosphorus perhaps result in $L_{B}>L_{A}$ and therefore less angle strain at the phosphorus atoms attached to arsenic atoms in the basal plane resulting in less s character of each phosphorus lone pair and therefore less shielding.

FIGURE III-14. Possible Orbital Geometries in the Basal Triangles $P_{3-X} X^{A}{ }_{x}, X=0-3$.

FIGURE III-15. Chemical Shift of the Apical Phosphorus vs. the Number of Fourth Row Atoms in the Molecule for the $P_{4-x}{ }^{A s_{X}} S_{3-y} S_{y} ; X, Y=0-3$ system.
explained in terms of bond angles. With increasing selenium content, and presumably bigger apical angles, the chemical shifts become less positive showing that there is more shielding not less. Like the basal atoms the slight electronegativity difference between sufur and selenium and π bonding effects may be considered possible reasons for the trend observed for sulfur-selenium content. Why increasing arsenic content results in deshielding is not clear but is typical of heavy atom paramagnetic effects. Finer and Harris ${ }^{125}$ have observed that, assuming that the Fermi contact term is dominant for $P-P$ coupling, more s character in $\mathrm{P}-\mathrm{P}$ bonds leads to more positive values. The following trends may then be discerned:

1) The larger the electronegativity of the substituents on the phosphorus atoms the more phosphorus s character in the $P-P$ bond and the more positive the coupling constants and
2) The bigger the substituents on phosphorus the less s character in the $P-P$ bond and the more negative the coupling constant.

Only four ${ }^{l} J_{P P}$ values were determined so little can be said. Usually ${ }^{1} J_{P P}$ values are negative where the sign has been determined. The two bond $P-P$ couplings reported here also fit the observations if they are
negative. This can be seen by examining the columns in Figure III-16. No attempt has been made to experimentally determine the absolute values of coupling constants here. The chemical shifts and coupling constants have been satisfactorily discussed in terms of the s and p orbital character of the bonds and lone pairs. It should be noted, however, that $X \alpha$ molecular orbital calculations for $\mathrm{P}_{4} \mathrm{~S}_{3}{ }^{126}$ show that the molecular orbitals composed mainly of $3 s$ atomic orbitals are dominant in the multi-center bonding principally responsible for holding the molecule together. The molecular orbital consisting of mostly $3 p$ orbitals are more directed and are involved in the bent bonds and have a high electron density in the conventional lone pair directions. In addition, the molecular orbital about the apical phosphorus atom with the greatest "lone pair character" has more calculated s character than comparable molecular orbitals situated about the basal phosphorus atoms. This is born out experimentally in the phosphorus electron Overhauser effect experiments. This s and p orbital distribution is opposite to that used as a basis for the previous discussion of chemical shifts and coupling constants. A more detailed

FIGURE III-16. Phosphorus-Phosphorus Coupling Constants $\left(\left.\right|^{l} J_{P P} \mid\right.$ and $\left.\left.\right|^{2} J_{P P} \mid\right)$ of the Binary and Ternary Birdcage Molecules.
examination of this area is needed.
The theoretical calculations also show two other important facts. Both CNDO and $X \alpha$ calculations show that d orbitals contribute only a small amount to the bonding (CNDO ~11\%, X α 2-5\%). Finally, $X \alpha$ calculations indicate that the highest occupied orbitals of $\mathrm{P}_{4} \mathrm{~S}_{3}$ protrude into the solvent. Perturbations caused by different solvents would appreciably affect the charge distribution of these orbitals and thus affect the chemical shifts, as observed for P_{4} and $\mathrm{P}_{4} \mathrm{~S}_{3}$ by Fluck and Heckmann. 127,128 Charge distribution changes might also account for the small variations in the chemical shifts of compounds in different solutions noted in the present work. All ${ }^{31} \mathrm{P}$ NMR spectra were recorded using CS_{2} as solvent but differing proportions of compounds in the solid samples resulted in varying solute ratios which might result in different charge distributions.

III-5 The Quarternary System $P_{4}-x \underline{A s}_{X} S_{3-Y} \underline{S e}_{Y} ; X, Y=0-3$
Of the total of forty possible isomorphous molecules of the birdcage series $P_{4-X} X_{X} X_{3} S_{Y} S_{Y}(X=0-4$, $Y=0-3)$ there are twenty phosphorus-containing cages that have not been discussed. The empirical correlations noted above can be used to make probable assignments for the quarternary members of the series that can be observed.

The molecules that are most likely to be observed, on the basis of data in previous sections, are those that contain an apical phosphorus and/or are sulfur rich. The ${ }^{31}$ P NMR spectrum obtained at high field (161.95 MHz) for a solution formed from a 4:4:3:3 P:As:S:Se melt extracted with CS_{2} is shown in Figures III-17 and III-18. Chemical shifts, assignments and coupling constants are given in Tables III-2 to III-4.

In the apical region of the ${ }^{31} P$ NMR spectrum new singlets are seen at 101.2 and 96.0 ppm . As shown in Figure III-15 these are assigned to $\alpha \mathrm{PAS}_{3} \mathrm{~S}_{2} \mathrm{Se}$ and $\alpha \mathrm{PAs}_{3} \mathrm{SSe}_{2}$, respectively. There are also four new apical doublets at $94.3,89.4,87.8$ and 83.4 ppm which are due to the two forms of $\alpha P_{2} A_{2} S_{2}$ Se and the two forms of $\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{SSe}_{2}$. Definite assignments are more difficult for these. However, keeping in mind the dominance of the sulfur rich compounds, the apparent affinity of arsenic for selenium and phosphorus for sulfur and using Figures III-I5 and III-16 the new doublets are tentatively assigned, in order of decreasing frequency, to $\alpha P_{2} \mathrm{As}_{2} \mathrm{~S}_{2} \mathrm{Se}(\mathrm{I})^{\neq}$(with a $\mathrm{P}-\mathrm{S}-\mathrm{P}$ linkage), $\alpha P_{2} \mathrm{As}_{2} \mathrm{SSe}_{2}(\mathrm{I})$ (with a $\mathrm{P}-\mathrm{S}-\mathrm{P}$ linkage), $\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{2} \mathrm{Se}$ (II) (with a P-Se-P linkage) and $\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{SSe}_{2}$ (II) (with a P-Se-P linkage) (see Figuré III-19).

For the six α compounds with a 3:1 P:As ratio one expects apical signals for four triplets and two

[^5]

FIGURE III-17. ${ }^{31}$ P NMR Spectrum of the Apical Region of the $P_{4-X^{A S}} X_{3}{ }_{3}-Y^{S e}{ }_{Y}$; $\mathrm{X}, \mathrm{y}=0-3$ System.

$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{2} \mathrm{Se}(\mathrm{I})$

$\alpha \mathrm{P}_{3} \mathrm{AsSSe}_{2}(I)$

$\alpha \mathrm{P}_{3} \mathrm{AsS}_{2} \mathrm{Se}(\mathrm{I})$

$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{SSe}_{2}$ (II)

$\alpha P_{2}{ }^{A s}{ }_{2} S_{2} \operatorname{Se}(I I)$

$\alpha \mathrm{P}_{3} \mathrm{AsSSe}_{2}(I I)$

$\alpha \mathrm{P}_{3} \mathrm{AsS}_{2} \mathrm{Se}(\mathrm{II})$

$\alpha \mathrm{PAS}_{3} \mathrm{SSe}_{2}$

$\mathrm{aPAS}_{3} \mathrm{~S}_{2} \mathrm{Se}$

$\mathrm{BP}_{3} \mathrm{AsS}_{2} \mathrm{Se}$

$\mathrm{BP}_{2} \mathrm{As}_{2} \mathrm{~S}_{2} \mathrm{Se}(\mathrm{I})$

FIGURE III-19. Some Quaternary Members of the Series

$$
\mathrm{P}_{4-x} \mathrm{As}_{x} \mathrm{~S}_{3-y} \mathrm{Se}_{y} ; \mathrm{X}, \mathrm{Y}=0-3 .
$$

TABLE III-2 ${ }^{31} P$ NMR Chemical Shifts and Assignments for the Apical Phosphorus Atoms of the Binary, Tertiary and Quarternary Systems $P_{4-X} X_{X} S_{3-Y} S_{Y} ; X, Y=0-3$.

Chemical Shifts
Assignments
Binary/Tertiary
Quaternary
systems
Systems

104.3	104.7	$\alpha \mathrm{PAs}_{3} \mathrm{~S}_{3}$
	101.2	$\alpha \mathrm{PAs}_{3} \mathrm{~S}_{2} \mathrm{Se}$
	96.0	$\alpha \mathrm{PAs}_{3} \mathrm{SSe}_{2}$
88.4	87.4	$\alpha \mathrm{PAs} 3 \mathrm{Se}_{3}$
96.8	97.2	$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$
	94.3	$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{2} \mathrm{Se}$ (II)
	89.4	$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{SSe}_{2}(\mathrm{I})$
	87.8	$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{2} \mathrm{Se}(\mathrm{I})$
	83.2	$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{SSe}_{2}$ (II)
75.8	74.7	$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{Se}_{3}$
84.2	84.6	$\alpha \mathrm{P}_{3} \mathrm{AsS}_{3}$
	81.6	$\alpha \mathrm{P}_{3} \mathrm{AsS}_{2} \mathrm{Se}(\mathrm{I})$
	76.4	$\alpha \mathrm{P}_{3} \mathrm{AsS}_{2} \mathrm{Se}$ (II)
	71.3	$\alpha \mathrm{P}_{3} \mathrm{AsSSe}_{2}$ (II)
	65.6	$\alpha \mathrm{P}_{3} \mathrm{AsSSe}_{2}$ (I)
58.3	57.3	$\alpha \mathrm{P}_{3} \mathrm{AsSe}_{3}$
67.8	68.0	$\mathrm{P}_{4} \mathrm{~S}_{3}$
60.8	60.2	$\mathrm{P}_{4} \mathrm{~S}_{2} \mathrm{Se}$
50.9	50.2	$\mathrm{P}_{4} \mathrm{SSe}_{2}$
38.3	36.2	$\mathrm{P}_{4} \mathrm{Se}_{3}$

TABLE III-3 Phosphorus-Phosphorus Coupling Constants for the Birdcage Molecules

Compound	$2^{J_{P S P}}$	$2_{J_{\text {PSeP }}}$	$1_{J_{P P}}$
$\mathrm{P}_{2} \mathrm{As}_{2} \mathrm{SSe}_{2}(\mathrm{I})$	110.6		
$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{2} \mathrm{Se}$ (II)	104.4		
$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$	100.7		
$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{Se}_{3}$		96.6	
$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{SSe}_{2}$ (II)		95.0	
$\mathrm{PP}_{2} \mathrm{As}_{2} \mathrm{~S}_{2} \mathrm{Se}(\mathrm{I})$		76.3	
$\alpha_{3} \mathrm{AsSe}_{3}$		81.4	
$\alpha \mathrm{P}_{3} \mathrm{AsSSe}_{2}$ (II)	94.4	74.4	166.8
$\alpha \mathrm{P}_{3} \mathrm{AsS}_{2} \mathrm{Se}(\mathrm{II})$	87.7	72.5	163.0
$\alpha \mathrm{P}_{3} \mathrm{AsS}_{2} \mathrm{Se}(\mathrm{I})$	84.2		
$\alpha \mathrm{P}_{3} \mathrm{AsS}_{3}$	83.0		
$\mathrm{P}_{4} \mathrm{Se}_{3}$		70.8	
$\mathrm{P}_{4} \mathrm{~S}_{2} \mathrm{Se}$	81.6	65.7	150.0
$\mathrm{P}_{4} \mathrm{SSe}_{2}$	75.6	61.4	143.9
$\mathrm{P}_{4} \mathrm{~S}_{3}$	70.3		

TABLE III-4 Experimental and Empirically Calculated ${ }^{31}{ }_{P}$ NMR Chemical Shifts and Assignments for the Basal Phosphorus Atoms of the Binary, Tertiary and Quaternary Systems $P_{4-X}{ }^{A s_{X}} S_{3-Y} ; X, Y=0-3$

Peak Numbers Figures III-17\&18	Binary/ Tertiary Systems	Chemical Shifts Quaternary System	Empirically Calculated	Assignments
1		-55.0	-47	$\mathrm{BPAs}_{3} \mathrm{SSe}_{2}$ (I)
2	-57.5	-56.9	-59(-57)	$\mathrm{BPAs}_{3} \mathrm{~S}_{2} \mathrm{Se}$ (II)
				(or $\mathrm{BPAs}_{3} \mathrm{Se}_{3}$)
3,4		-60.7	-64	$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{SSe}_{2}(\mathrm{I})$
5,6		-63.9,-64.7		?
7		-69.1	-69	$\mathrm{BPAs}_{3} \mathrm{SSe}_{2}$ (II)
8	-66.7	-70.0	-72	$\mathrm{BPAs}_{3} \mathrm{~S}_{3}$
9	-71.0	-70.5	-70	$\mathrm{BP}_{2} \mathrm{As}_{2} \mathrm{Se}_{3}$
10,11	-73.6	-73.0	-74	$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{Se}_{3}$
12,14		-74.6	-76	$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{2} \mathrm{Se}$ (II)
13,15,16,17		-75.4	-77	$\alpha \mathrm{P}_{3} \mathrm{AsSSe}_{2}$ (II)
18		-76.5	-76	$\mathrm{BP}_{2} \mathrm{As}_{2} \mathrm{~S}_{2} \mathrm{Se}(\mathrm{I})$
19-22		-76.7 to -77.9		?
23	-84.4	-83.8	-85	$\mathrm{BP}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$
24		-84.7	-81	$\mathrm{BPAs}_{3} \mathrm{~S}_{2} \mathrm{Se}$
25-29	\therefore	-85.9 to -87.0	-86	$\int \mathrm{CP}_{2} \mathrm{As}_{2} \mathrm{SSe}_{2}$, (II)
	-86.8		-86	$\alpha \mathrm{P}_{3} \mathrm{AsSe}_{3}, ?$
				(continued...)

TABLE III-4 (continued)

30,32,35,39		-88.0	-89	$\alpha_{3} \mathrm{AsS}_{2} \mathrm{Se}(\mathrm{II})$
31,34	-88.5	-87.8	-88	$\alpha \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$
33	-88.6	-87.9	-88	$\mathrm{BP}_{3} \mathrm{AsSe}_{3}$
36,40		-88.7	-89	$\alpha \mathrm{P}_{3} \mathrm{AsS}_{2} \mathrm{Se}(\mathrm{I})$
37,38,41		-88.6,-88.7,-89.1		?
$\left.\begin{array}{l} 42-44,48 \\ 49,53 \end{array}\right\}$	-93.8	-94.2	-95	$\mathrm{P}_{4} \mathrm{SSe}_{2}$
$\left.\begin{array}{l} 45-48 \\ 50-52 \end{array}\right\}$		-94.3 to -94.4 -95.2 to -95.3	-95	$\mathrm{BP}_{2} \mathrm{As}_{2} \mathrm{SSe}_{2}(\mathrm{I})+$?
$\left.\begin{array}{l} 55,57 \\ 59,60 \end{array}\right\}$		-99.2	-98	$\alpha \mathrm{P}_{3} \mathrm{AsSSe}_{2}(\mathrm{II})$
54,56		-98.4	-97	$\mathrm{PP}_{2} \mathrm{As}_{2} \mathrm{~S}_{2} \mathrm{Se}(\mathrm{I})$
61,62	-101.8	-101.1	-101	$\mathrm{ar}_{3} \mathrm{AsS}_{3}$
58,63,64		-99.0,-101.6,-101.7		?
65	-102.5	-101.8	-103	$\mathrm{BP}_{3} \mathrm{AsS}_{3}$
66		-102.5		?
67,68	-103.6	-105.9	-105	$\mathrm{P}_{4} \mathrm{Se}_{3}$
69-72	-106.2	-107.0	-107	$\mathrm{P}_{4} \mathrm{~S}_{2} \mathrm{Se}$
73-76		-110.9	-111	$\mathrm{AP}_{3} \mathrm{AsS}_{2} \mathrm{Se}$ (II)
77-80	-116.0	-116.8	-117	$\mathrm{P}_{4} \mathrm{SSe}_{2}$
81,85	-119.4	-119.5	-119	$\mathrm{P}_{4} \mathrm{~S}_{3}$
82,86		-119.18		$P_{4}{ }^{32} S_{2}{ }^{34} \mathrm{~S}$
83,84,87		-119.9,-120.0,-120.4		?
88-97	-128.5	-129.0	-129	$\mathrm{P}_{4} \mathrm{~S}_{2} \mathrm{Se}$

doublets of doublets, assuming no second order effects. No signals due to $\alpha \mathrm{P}_{3} \mathrm{AsSe}_{3}$ are present but there are two triplets, the first due to $\alpha \mathrm{P}_{3} \mathrm{AsS}_{3}$, two doublets of doublets and possibly a fifth signal at 65.6 ppm . Assignments for the quarternary species with a 3:l P:As ratio, in order of increasing field strength, are $\alpha P_{3} A s S_{2} S e$ (I) (P-Se-As linkage), $\alpha \mathrm{P}_{3} \mathrm{AsS}_{2} \mathrm{Se}$ (II) (P-S-As linkage), $\alpha \mathrm{P}_{3} \mathrm{AsSSe}_{2}$ (II) (P-Se-As linkage) and $\alpha \mathrm{P}_{3} \mathrm{AsSSe}_{2}$ (I) (P-S-As linkage). All apical peaks to higher field are due to the P/S/Se system.

The assignment of the second triplet to the symmetrical $\alpha \mathrm{P}_{3} \mathrm{AsS}_{2} \mathrm{Se}$ is further strengthened by noting the coupling constant trends in Figure III-l6 They indicate that the $\alpha P_{3} A s S_{2}$ Se in question should have an indirect coupling constant for the phosphorus atoms joined by sulfur atoms greater than 83.0 Hz while the symmetrical $\alpha \mathrm{P}_{3} \mathrm{AsSSe}_{2}$ should have the corresponding indirect coupling constant for the phosphorus atoms joined by selenium less than 81.4 Hz . The triplet has a coupling constant of 85.4 Hz . The assignments for the unsymmetrical αP_{3} AsS $_{2} \mathrm{Se}$ and $\alpha \mathrm{P}_{3} \mathrm{AsSSe}_{2}$ molecules are also consistent with the data in Figure III-l6 which show that an increase in selenium content results in larger corresponding coupling constants (Table III-3). An example is the increase in the indirect coupling constants associated with the sulfur atoms for the series $\mathrm{P}_{4} \mathrm{~S}_{3}, \mathrm{P}_{4} \mathrm{~S}_{2} \mathrm{Se}$ and
$\mathrm{P}_{4} \mathrm{SSe}_{2}$.
Assignments for the basal portion of the spectrum were based on apical:basal intensity ratios, coupling constants found in the apical portion of the spectrum and the empirical equation derived in the previous section. Assignments for the basal phosphorus atoms are given in Table III-3. Some peaks have not been assigned. These plus other obscured peaks may be due to the unsymmetical molecules $B P_{2} \mathrm{As}_{2} \mathrm{~S}_{2} \mathrm{Se}, \mathrm{BP}_{2} \mathrm{As}_{2} \mathrm{SSe}_{2}, B P_{3} \mathrm{AsS} \mathrm{S}_{2} \mathrm{Se}$ and $\beta \mathrm{P}_{3} \mathrm{AsSSe}_{2}$ and the symmetrical molecule $\alpha \mathrm{P}_{3}$ AsSSe $_{2}$.

Peaks 82 and 86 have been assigned to the $11.43 \% 129$ of the $P_{4} S_{3}$ molecules that have the isotopic formula $\mathrm{P}_{4}{ }^{32} \mathrm{~S}_{2}{ }^{34} \mathrm{~S}$. This is a primary isotopic shift of 0.3 ppm to low frequency of $\mathrm{P}_{4}{ }^{32} \mathrm{~S}_{3}$. No observable chemical shift difference for the apical phosphorus was detected.

III-6 Crystal Structure of the Occupationally Disordered Crystal $\mathrm{P}_{2} \underline{A s}_{2} \mathrm{~S}_{3}$

Yellow needle-shaped crystals grown during a high temperature $\left(\sim 400^{\circ} \mathrm{C}\right)$ vacuum sublimation of a 2:2:3 P:As:S melt gave a Raman spectrum similar to that previously reported for what was thought to be $\alpha P_{2} A_{2} S_{3}$. Precession photographs of most of these crystals showed that they were twinned. For a small pentagonal plate, however, the cell parameters were found to be $a=10.98, b=9.93$ and
$c=6.58(\AA)$. Systematic absences of $h+\ell=2 n+1$ for $0 k$? and $h=2 n+1$ for $h 0 l$ were consistent with the space groups Pnma and Pn2 ${ }_{1}$ a (a non-standard setting of Pna2 ${ }_{1}$). Comparison with the cell parameters of other group VB chalconides indicated that the crystals were probably isomorphous with $\mathrm{BAS}_{4} \mathrm{~S}_{3}$ and the volume of the cell was consistent with the formulation $\mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$.

Intensities were measured as described in Chapter II. The unit cell dimensions were obtained from a least-squares refinement of $2 \theta, W$ and X for 15 high angle $\left(27^{\circ}<2 \theta<33^{\circ}\right)$ reflections. Data were collected for $\theta-2 \theta$ scans over a scan range $\left(K \alpha_{1}-0.90^{\circ}\right)$ to $\left(K \alpha_{2}+0.90^{\circ}\right)$ with variable scan rates of $3-29.3^{\circ} / \mathrm{min}$ depending on the intensity of a preliminary 2 second count. Stationary background counts were recorded at each end of the scan, each for one quarter of the scan time. The intensities of three standard reflections monitored after every 67 reflections showed no significant changes over the period of the data collection. A total of 3102 reflections (including standards) in the quadrants $h, \pm k, \pm 1$ with $2 \theta<55^{\circ}$ were collected. Lorentz and polarization corrections were applied to all data.

The initial positions of the atoms of $\alpha P_{2} A s_{2} S_{3}$ were assumed to be those of the atoms of $B A s_{4} S_{3}$. The program

SHELX ${ }^{118}$ two cycles of least-squares gave an R factor of 0.1953 for 6σ data consisting of 2966 reflections. Scrutiny of the isotropic temperature factors indicated that a formulation $\alpha_{P A s} S_{3}$ might be more reasonable because of the very small isotropic temperature factor of the basal phosphorus situated on the crystallographic mirror plane. Two further cycles of least squares then gave an R factor of 0.1423. With anisotropic temperature factors R dropped to 0.0754 and the temperature factors of the remaining phosphorus atoms dropped significantly. The population parameters of all the group VB atoms were then allowed to refine and R conveyed to 0.0370 after 4 cycles of least squares. The composition calculated from the population parameters was $\mathrm{P}_{2} .0^{\mathrm{As}} \mathrm{A}_{2} .0^{S_{3}}$. A single crystal Raman spectrum recorded at this point confirmed that the crystal chosen contained other members of the series $P_{4-X}{ }^{A s_{X}} S_{3}, X=0-4$.

The crystal was a pentagonal plate bound by the plane \{100\} and the faces (00-1), (-101), (101), (0-10) and (05-1). The latter two were 0.00875 cm from an origin in the crystal while all other faces and planes were 0.01125 cm from the origin. The linear absorption coefficient was calculated to be $110 \mathrm{~cm}^{-1}$. The absorption correction was calculated by the program ABSORB from the X-ray 76 system. 119 After averaging equivalent
reflections, excluding reflections which were systematically absent or have zero structure amplitudes, a final data set of 864 reflections was obtained.

Dispersion correction factors and scattering curves were then constructed using the population parameters obtained at the point of the convergence of R in the SHELX program. Two cycles of least squares using the X-ray 76 program CRYLSQ gave R_{1} and R_{2} values for 2σ data of 0.060 and 0.061 , respectively. With a weighting scheme of $W=1.0 /\left(4.0 \sigma F_{O}^{2}+3.5 \times 10^{-3} \mathrm{~F}_{\mathrm{O}}{ }^{2}\right.$) for the 565 reflections with $F / \sigma F>6$ two further cycles of least squares converged to final agreement indices $R_{1}=0.028$ and $R_{2}=0.035$ (40 parameters refined). In the final cycle of least squares no parameters shifted by more than 10% of its standard error. A final difference Fourier map showed some residual electron density ($0.59 \mathrm{e} / \AA^{3}$) at the position of the two basal atoms related by the mirror plane. The maximum trough was $0.76 \mathrm{e} / \AA^{3}$.

The final population parameters for the composite Group VB atom positions showed that there was no significant change in the cell composition during the calculations involving the hybrid scattering curves. The final composition was $P_{2.0} 0^{A s}{ }_{2}, 0_{3}$. A definite preference for phosphorus occupying the apical position is evident (Table III-5). This is consistent with the

TABLE III-5 Unit Cell Data and Final Atomic Positional (x 10^{4}), Site Population and Thermal Parameters $\left(x 10^{3}\right)$ for $P_{2} A_{2} S_{3}$ with e.s.d.'s in Parentheses.
$\mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$, orthorhombic, Pnma, $\mathrm{a}=10.976(2), \mathrm{b}=9.930(3)$,

$$
\begin{aligned}
& c=6.582(2), U=717.4 \AA^{3}, \\
& z=4, D_{C}=2.85 \mathrm{gm} / \mathrm{cc} .
\end{aligned}
$$

ATOM	M_{A}	$M_{B} \quad M_{C}$	S (1)	S (2)
x	6796(1)	4144.8(8) 5689.1(7)	4880 (2)	6994(1)
Y	2500	2500 1278.5(7)	2500	865 (1)
z	1699(2)	-1026(2) -2802.1(10)	2072(3)	- 355(2)
\%As	11	5966	-	-
\%P	89	4134	-	-
UII	25.6(9)	27.1(5) 58.3(5)	31.3(9)	44.9(8)
U22	73.4(13)	$57.6(7) \quad 39.0(4)$	72.9(14)	51.8(9)
U33	32.4(9)	$38.3(6) \quad 33.4(4)$	28.4(9)	50.6 (9)
Ul2	0.0	$0.0 \quad 1.9(3)$	0.0	15.8(7)
U13	-4.6(6)	-7.2(4) -2.6(3)	3.6 (8)	4.5(6)
U23	0.0	$0.0-6.6(3)$	0.0	10.5 (7)

observation that the ${ }^{3 l} P$ NMR spectrum of the $P / A s / S$ melt extracts show a greater proportion of molecules in solution have an apical phosphorus atom. The bond lengths calculated are as expected for composite values of As-S/P-S and As-As/P-P bond lengths (Table III-6). The bond angles in the apex are slightly bigger than expected and those in the base are generally smaller than expected. The final structure factors are listed in Appendix I.

III-7 Vibrational Spectra of $P_{4} S_{3}, P_{4} S_{3}$ and Similar Compounds

The composition and purity of various materials were checked by Raman spectroscopy in the course of this work. The vibrational spectra of $\mathrm{P}_{4} \mathrm{~S}_{3}$ have been extensively studied ${ }^{121,130-133}$ but there are some questions regarding certain weak peaks and some assignments. The room temperature Raman spectrum of $\mathrm{P}_{4} \mathrm{Se}_{3}$ has also been recorded. 121,134

The expected fifteen modes for a seven atom molecule of $C_{3 v}$ symmetry transform as $4 A_{1}+A_{2}+5 E$ with the A_{1} and E modes being both Raman and IR active. 135 The A_{2} mode is totally inactive. The splittings recorded here in a low temperature ($-196^{\circ} \mathrm{C}$) Raman spectrum for $\mathrm{P}_{4} \mathrm{~S}_{3}$ (Figure III-20) can be explained by factor group analysis. With a space group Pnmb, site symmetry C_{s} and eight molecules per unit cell each A_{1} band could split into four

TABLE III-6 Bond Lengths and Bond Angles of $P_{4} S_{3}$, a Disordered $\mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}$ and $\mathrm{BAS}_{4} \mathrm{~S}_{3} \cdot{ }^{\mathrm{b}}$

Bond Lengths

$$
\mathrm{P}_{4} \mathrm{~S}_{3} \quad \mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3} \quad \% \mathrm{P} \text { in bond } \quad \mathrm{BAs}_{4} \mathrm{~S}_{3}
$$

$M_{A} S_{1}$	$2.080(10)$	$2.117(2)$	89	$2.234(16)$
$M_{A} S_{2}$	$2.091(10)$	$2.124(2)$	89	$2.230(8)$
$M_{B} S_{1}$	$2.094(10)$	$2.193(2)$	41	$2.221(12)$
$M_{C} S_{2}$	$2.092(10)$	$2.194(2)$	34	$2.218(10)$
$M_{B} M_{C}$	$2.236(10)$	$2.390(1)$	38	$2.460(7)$
$M_{C} M_{C}$	$2.334(10)$	$2.426(1)$	34	$2.480(7)$

Bond Angles

$S_{2} M_{A} S_{2}$	$99.1(5)$	$99.73(9)$	$98.3(5)$
$S_{2} M_{A} S_{1}$	$99.6(5)$	$100.11(7)$	$98.8(4)$
$M_{A} S_{1} M_{B}$	$102.8(5)$	$104.92(9)$	$105.4(5)$
$M_{A} S_{2} M_{C}$	$103.0(5)$	$104.90(9)$	$105.0(4)$
$S_{1} M_{B} M_{C}$	$103.0(5)$	$101.48(5)$	$102.8(3)$
$S_{2} M_{C} M_{C}$	$103.1(5)$	$100.80(5)$	$101.6(2)$
$S_{2} M_{C} M_{B}$	$103.2(5)$	$101.48(6)$	$101.4(4)$
$M_{C} M_{B} M_{C}$	$60.0(5)$	$61.01(4)$	$60.5(2)$
$M_{B} M_{C} M_{C}$	$60.0(5)$	$59.50(3)$	$59.7(1)$
$a_{\text {Reference }} 81$	$b_{\text {Reference }} 84$		

FIGURE III-20. Raman Spectrum of $\mathrm{P}_{4} \mathrm{~S}_{3}$ Recorded at $-196^{\circ} \mathrm{C}$.

Raman-active bands and four IR-active bands. The E mode bands can give six IR-active and eight Raman-active bands. The A_{2} mode, if split, could give four Raman-active and four bands in the IR. Even if the A_{2} bands are assumed to be too weak to be observed nine band envelopes are expected but only eight are found for $\mathrm{P}_{4} \mathrm{~S}_{3}$ and six for $\mathrm{P}_{4} \mathrm{Se}_{3}$.

The number of splittings of several band envelopes in the Raman spectrum of $\mathrm{P}_{4} \mathrm{~S}_{3}$ is consistent with but does not necessarily confirm the assignment of the band envelopes at 487,442 and $420 \mathrm{~cm}^{-1}$ to A_{1} modes and those at 340,283 and $223 \mathrm{~cm}^{-1}$ to E modes. A weak band at $187 \mathrm{~cm}^{-1}$ and a new weak band found in the Raman spectrum at $450 \mathrm{~cm}^{-1}$ cannot be resolved into separate bands. The weak band reported at $145 \mathrm{~cm}^{-1}$ was not found even using high receiver gain and high laser power. There has been some question as to whether the band envelope at $487 \mathrm{~cm}^{-1}$ also contains another mode. The solution polarization measurements show some residual intensity for this peak, which considering its initial weak intensity, might indicate the presence of another mode. This is certainly not definite.

There are sixteen molecules in the unit cell of $\mathrm{P}_{4} \mathrm{Se}_{3}$ so little can be said regarding the splittings seen in the solid state Raman spectrum. Comparison with the Raman spectrum of $\mathrm{P}_{4} \mathrm{~S}_{3}$ suggests that the band envelope centered at $360 \mathrm{~cm}^{-1}$ probably is due to two A_{1} stretching
modes. Depolarization measurements for a CS_{2} solution of $\mathrm{P}_{4} \mathrm{Se}_{3}$ allow the bands at 487,384 and $217 \mathrm{~cm}^{-1}$ to all be assigned as A_{1} vibrations. Note the band shift from 360 to $384 \mathrm{~cm}^{-1}$ on dissolution. The other bands seen in the Raman spectrum of the solid were not detected in the solution Raman spectrum. The spectrum of the solid at $-196^{\circ} \mathrm{C}$ is illustrated in Figure III-2l.

The large number of noncoincidences in the Raman and infrared spectra for the compound now known to be $\alpha P A s_{3} S_{3}$ rather than $\alpha P_{2} A s_{2} S_{3}$ can be attributed to the weakness of A_{1} and E modes in the infrared and Raman spectra, respectively. A molecule of C_{S} symmetry $\left(\alpha P_{2} A s_{2} S_{3}\right)$ has A^{\prime} and $A^{\prime \prime}$ modes which should be active in both types of spectra and few noncoincidences should be expected. The Raman spectra for what are probably different crystal
 strong band at $276 \mathrm{~cm}^{-1}$ differs little in position from the strong band in the Raman spectrum of $\alpha A S_{4} S_{3}\left(272 \mathrm{~cm}^{-1}\right)$ that is assigned to the symmetric stretch involving the $A s_{3}$ triangle. If the molecule had been $\alpha P_{2} A s_{2} S_{3}$ a greater difference would have been expected in probably both the number and position of the normal modes involving stretching of the basal triangle. A Raman spectrum of a crystal known to contain several members of the $P / A s / S$ series has several bands in this region.

FIGURE III-21. Raman Spectrum of $\mathrm{P}_{4} \mathrm{Se}_{3}$ Recorded at $-196^{\circ} \mathrm{C}$.

TABLE III-7 Raman and IR Spectral Data of $\mathrm{P}_{4} \mathrm{~S}_{3}, \mathrm{P}_{4} \mathrm{Se}_{3}$ and $\alpha \mathrm{PAs}_{3} \mathrm{~S}_{3}$

$\mathrm{a}_{\text {Both }}$ recorded at $-196^{\circ} \mathrm{C}$. $\quad \mathrm{b}_{\text {From sublimation. }}$ $\mathrm{C}_{\text {From }} \mathrm{CS}_{2}$ solution.

Raman spectra of the mixed crystals of the $\mathrm{P} / \mathrm{S} / \mathrm{Se}$ system are quite complex. An examination of relative intensities for extracts of the melts 4:2:1 and 4:1:2 (P:S:Se) reveals that the peak at $378 \mathrm{~cm}^{-1}$ is due to $\mathrm{P}_{4} \mathrm{Se}_{2} \mathrm{~S}$ and one at $392 \mathrm{~cm}^{-1}$ is due to $\mathrm{P}_{4} \mathrm{~S}_{2} \mathrm{Se}$. For the other peaks intensity differences did not vary enough to allow assignment to $\mathrm{P}_{4} \mathrm{~S}_{2} \mathrm{Se}$ or $\mathrm{P}_{4} \mathrm{SSe}_{2}$. The rather intense band at $485 \mathrm{~cm}^{-1}$ is the result of the superposition of all the peaks due to the P_{3} stretching modes of all the molecules of the series. This clearly illustrates how little the mode is coupled to others in the molecules. No attempt was made to separate the individual compounds.

III-8 ${ }^{3 l_{P}}$ NMR Spectroscopy of $\alpha P_{4} \underline{S}_{5}$ and Other Phosphorus Sulfides

The compound $\alpha \mathrm{P}_{4} \mathrm{~S}_{5}$ is prepared by the reaction: $P_{4} S_{3}+\frac{1}{4} S_{8} \xrightarrow[\text { diffuse sunlight, } 3 \text { days }]{\text { CS } S_{2}, \text { catalytic } I_{2}} \alpha P_{4} S_{5}+$ other products. It has been reported that a CS_{2} solution of $\alpha \mathrm{P}_{4} \mathrm{~S}_{5}$ gives an $\mathrm{ABCX}{ }^{31} \mathrm{P}$ NMR spectrum ${ }^{79}$ but the ${ }^{31} \mathrm{P}$ solid state NMR spectrum ${ }^{137}$ only has three signals with chemical shifts of 200,20 and -120 ppm . In light of this the solution spectrum was investigated.

A thoroughly washed solid sample of $\alpha \mathrm{P}_{4} \mathrm{~S}_{5}$ gave a Raman spectrum in good agreement with published data. 132 A saturated solution in $C S_{2}$ gave an AMNX ${ }^{3 l_{P}}$ NMR spectrum with chemical shifts of $233.3,126.4,123.6$ and 91.8 ppm (see also Table III-8). The central portion of the spectrum contains two overlapping doublets of doublets of doublets which exhibit some second order effects in peak intensities (Figure III-22).

The coupling constants (Table III-8) readily reveal
that the low frequency envelope is due to the basal phosphorus atom that is directly bonded to two other magnetically nonequivalent phosphorus atoms. A high field position is expected considering the small basal bond angle of $66^{\circ} 138$ subtended by two other phosphorus atoms. The other two basal atoms have their signals (126.4, $123.6 \mathrm{ppm})$ rather close together although one has an exocyclic sulfur attached to it. This has also been observed in $\mathrm{P}_{4} \mathrm{~S}_{9}{ }^{139}$ where the tricoordinated and

TABLE III-8. Chemical Shifts and Coupling Constants of the Phosphorus Sulfides

tetracoordinated atoms have similar environments and have chemical shifts of 57.3 and 62.9 ppm , respectively. Usually phosphines are to high frequency from the related thiophosphoranes. ${ }^{123}$ In the case of the two phosphorus atoms of $\alpha \mathrm{P}_{4} \mathrm{~S}_{5}$ in question it is not possible to positively distinguish which one is to high frequency of the other. Examination of the coupling constants of molecules like $\alpha P_{4} S_{5}$ and $P_{4} S_{9}$ would tend to indicate that coupling constants between a tricoordinated atom and a tetracoordinated atom are larger than those between two tricoordinated atoms. If this is generally true then the peaks centered at 126.4 ppm may be assigned to the tetracoordinated atom.

The signal due to the apical phosphorus is found at 233.3 ppm and is identified by the lack of any large couplings due to directly bonded phosphorus. This is the most deshielded phosphorus yet found for phosphorus sulfides.

The singlets at 110.8 and 84.4 ppm have been assigned to $\alpha \mathrm{P}_{4} \mathrm{~S}_{7}{ }^{140}$ However, as the authors state, the absence of the expected splitting of the peaks is unusual. In addition, the ${ }^{31} P$ NMR spectra of $C S_{2}$ solutions of melts of different $P: S$ ratios (2:1, l:1, 4:5, 4:7) all show these singlets. Their peak intensity ratios vary as well although the peak at 110.8 ppm is always the
larger. These singlets are also of significant intensity in the spectrum recorded for the products of the reaction of $\alpha \mathrm{P}_{4} \mathrm{~S}_{7}$ with two moles of triphenyl phosphine. This would indicate, but does not prove, that the compound (s) probably does not have exocyclic sulfur atoms. If the singlets arise from two separate compound one may be due to the isomer of $\mathrm{P}_{4} \mathrm{~S}_{6}$ that is isostructural with $\mathrm{P}_{4} \mathrm{O}_{6}$.

The CS_{2} mother liquor initially removed from the sample gave a very complex ${ }^{31} \mathrm{P}$ NMR spectrum (Figure III-23). Except for the high field doublet due to unreacted $\mathrm{P}_{4} \mathrm{~S}_{3}$ all other peaks are in the vicinity of the $P_{4} S_{3}$ quartet or are to low field of it. It is not unreasonable to expect to find intermediate(s) formed in the production of $\alpha_{4} S_{5}$. None of the signals can be assigned to $B P_{4} S_{3} I_{2}, \alpha P_{4} S_{4}$ or $B P_{4} S_{4}$. The former compound could be expected to be present if the initial step was oxidation by iodine. However, only a catalytic amount of iodine was added to a large volume of solvent of which only a small portion was put into the NMR tube. The latter mentioned compound could be expected if the next step in the production of $\alpha \mathrm{P}_{4} \mathrm{~S}_{5}$ was the replacement of the iodine atoms by a sulfur insertion.

The other reasonable alternative is that the first step in the production of $\alpha \mathrm{P}_{4} \mathrm{~S}_{5}$ is the addition of an exocyclic sulfur. An $A X_{3}$ pattern would be expected

if the sulfur atom was added to the apical phosphorus whereas an $A M_{2} X$ patiern would be seen if sulfur added to a basal phosphorus atom. The latter structure corresponds to that reported for $P_{4} S_{4}$ II. ${ }^{141}$ It has been produced from 1:l P:S melts ${ }^{141}$ and by slowly heating a $1: 1 P_{4} S_{3}: \alpha P_{4} S_{5}$ mixture. ${ }^{17}$

Large band envelopes at 198.7 and 178.3 ppm display the splittings consistent with the A and M parts of an $\mathrm{AM}_{2} \mathrm{X}$ spectrum. Peaks due to the X portion of the spectrum can be discerned in the complex part of the spectrum to low frequency of the $\mathrm{P}_{4} \mathrm{~S}_{3}$ quartet. This doublet of triplets is not obscured by other peaks in the ${ }^{31} P$ NMR spectrum recorded for the reaction of $\alpha \mathrm{P}_{4} \mathrm{~S}_{7}$ with two moles of triphenyl phosphine $\left(P \phi_{3}\right)$ or for a fresh $C S_{2}$ extraction of a $2: 1$ P:S melt.

The coupling constants for this new compound are 112, 46 and 10 Hz . Therefore, it is likely that there is at most only one ${ }^{1} J_{P P}$. If so it is small compared to most directly bonded P-P couplings. 125 Models of all the phosphorus-sulfur cages based on the P_{4} tetrahedron containing no dithio linkages show that there are 39 possible molecules in the compositional range $\mathrm{P}_{4} \mathrm{~S}_{2}$ to $\mathrm{P}_{4} \mathrm{~S}_{8}$ for which an $\mathrm{AM}_{2} \mathrm{X}$ pattern is possible. Excluding $\mathrm{BP}_{4} S_{4}$ only 14 of these have one ${ }^{1} J_{P P}$ while only two molecules have no direct $P-P$ couplings.

The six molecules having three exocyclic sulfurs are excluded from consideration as this same $\mathrm{AM}_{2} \mathrm{X}$ pattern is also seen for CS_{2} solutions of a phosphorus-rich sample (2:1 P:S) and for the reaction of $\alpha \mathrm{P}_{4} \mathrm{~S}_{7}$ with two moles of $P \phi_{3}$. In fact, those with even two exocyclic sulfur atoms (Figure III-24, a-d) are not
likely candidates. Structures c-e can also be excluded from consideration because one would expect these to have 31_{P} NMR spectral peaks for the basal tricoordinated phosphorus atoms upfield of at least $-40 \mathrm{ppm} .^{124} \mathrm{As}$ already stated, no unassigned peaks above 53.3 ppm were observed for the mother liquor of the $\alpha \mathrm{P}_{4} \mathrm{~S}_{5}$ reaction. Structures $a-g$ also require that ${ }^{l} J_{\text {PP }}$ be either 10 or 46 Hz but these are usually above $120 \mathrm{~Hz} .^{125}$ This leaves structures h-j as the most likely possibilities Considering that the largest coupling constant is only 110 Hz and that the compound is present in the $\alpha \mathrm{P}_{4} \mathrm{~S}_{7} / \mathrm{P}_{3}$ reaction as a major product structure j seems the most likely although no certain conclusion can be reached on the basis of present evidence. Note that this is the same product as that produced by reacting $P_{4} S_{7}$ with one mole of triphenyl phosphine and is the same isomer of $\mathrm{P}_{4} \mathrm{~S}_{6}$ present in the structure of $\mathrm{BP}_{4} \mathrm{~S}_{7}$. This is really a mixed crystal containing $\mathrm{P}_{4} \mathrm{~S}_{7}$ molecules and the $\mathrm{P}_{4} \mathrm{~S}_{6}$ isomer believed to be formed in the $\alpha \mathrm{P}_{4} \mathrm{~S}_{5}$ preparation. 142,143

b)

C)

e)

f)

g)

h)

i)

j)

FIGURE III-24. Possible Structures for the Unidentified compound Formed in $\alpha P_{4} S_{5}$ Preparation.

The small triplets observed at 130.0 and 80.0 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum for the $\alpha \mathrm{P}_{4} \mathrm{~S}_{5}$ preparation are present as major signals along with that for triphenylphosphinesulfide in the ${ }^{31}$ P NMR spectrum of the above mentioned $\alpha \mathrm{P}_{4} \mathrm{~S}_{7} / \mathrm{P} \phi_{3}$ reaction. The crystal structure ${ }^{79}$ of this product has shown the compound to be $B P_{4} S_{5}$. The triplet at 133.1 ppm , the doublet of doublets of doublets at 91.7 ppm and the complex series of peaks around 55 ppm are left unassigned at this time.

All the chemical shifts and coupling constants for the phosphorus chalconides are listed in Table III-9. No clearly discernible trends in chemical shifts can be identified. The coupling constants for directly bonded phosphorus atoms are of the expected magnitude. The indirect couplings involving a tetracoordinated phosphorus atom are generally greater than 50 Hz while those involving only tricoordinated phosphorus show a wider range (10-72 Hz).

REACTIONS OF GROUP VB CHALCONIDES WITH HALOGENATING AGENTS

IV-1 Introduction

In general the reactions of VB/VIB compounds with halogens are poorly understood. For example, although $\mathrm{S}_{3} \mathrm{~N}_{3} \mathrm{Cl}_{3}$ was first prepared from $\mathrm{S}_{4} \mathrm{~N}_{4}$ and chlorine in chloroform in 1835^{144} only recently has the intermediate $\mathrm{S}_{4} \mathrm{~N}_{4} \mathrm{Cl}_{2}{ }^{43}$ been characterized. Both of these compounds are monocyclic with exocyclic chlorine atoms bonded to sulfur. The crystal structure of $\mathrm{S}_{3} \mathrm{~N}_{3} \mathrm{Cl}_{3}$ has been determined ${ }^{145}$ while the structure of $\mathrm{S}_{4} \mathrm{~N}_{4} \mathrm{Cl}_{2}$ has been deduced from the production of $\mathrm{N}_{6} \mathrm{~S}_{5}$ from the reaction of $\mathrm{S}_{4} \mathrm{~N}_{4} \mathrm{Cl}_{2}$ with $\left(\mathrm{CH}_{3}\right)_{3}$ SiNSNSi $\left(\mathrm{CH}_{3}\right)_{3}{ }^{146}$ Reactions of $\mathrm{S}_{4} \mathrm{~N}_{4}$ with solutions or vapours of the heavier halogens and interhalogens have generally produced sulfur-nitrogenhalogen polymers. 44 The heavier group VB (M) chalogen (E) halides (X), MEX, are also polymeric compounds, often existing as glasses. They are usually produced by fusing the appropriate chalconide and a halide of a group VB element. 147 Reactions of $S_{4} N_{4}$ with SbCl_{5} gave the adducts $\mathrm{S}_{4} \mathrm{~N}_{4} \cdot \mathrm{SbCl}_{5}{ }^{148}$ and $\mathrm{S}_{4} \mathrm{~N}_{4} \cdot 2 \mathrm{SbCl}_{5}{ }^{149}$ while three or more moles of SbCl_{5} gave $\left(\mathrm{S}_{4} \mathrm{~N}_{4}\right)\left(\mathrm{SbCl}_{6}\right)_{2} .^{150}$ No comparable reactions had been carried out with $\mathrm{As}_{4} \mathrm{~S}_{4}$.

In view of the above it was appropriate to
study the halogen oxidations of $\mathrm{As}_{4} \mathrm{~S}_{4}$ under mild conditions in an attempt to produce halogenated rings rather than polymeric species. The Raman spectra of the solid material and solutions produced from the reaction of $\mathrm{As}_{4} \mathrm{~S}_{4}$ with two moles of chlorine, bromine or iodine in SO_{2} were recorded. From the reactions with chlorine or bromine the solutions were found to contain the liquids $A s X_{3}$ and $S_{2} X_{2}$ ($\mathrm{X}=$ chlorine or bromine) while the only solid present was unreacted $\mathrm{As}_{4} \mathrm{~S}_{4}$. As arsenic is much easier to oxidize than nitrogen this type of degradation of $\mathrm{As}_{4} \mathrm{~S}_{4}$ is not totally unexpected.

Iodine and $\mathrm{As}_{4} \mathrm{~S}_{4}$ in SO_{2} produced a yellow powder indistinguishable in colour from $\mathrm{As}_{4} \mathrm{~S}_{4}$ itself. There were no soluble products. The X-ray powder pattern of the solid was identical to that of AsSI. ${ }^{151}$ The solid, stable in air for several months, gave a Raman spectrum which confirmed that no previously known arsenic sulfide or arsenic iodide or sulfur or iodine were present. Clearly defined peaks were present at $354(18), 303(8), 203(100)$, 179(8), 169(50), 134(14), 131(14), 85(20), 74(15), 63(4), 50(24), 44(4) and $29(4) \mathrm{cm}^{-1}$. The lack of any peaks between 450 and $550 \mathrm{~cm}^{-1}$ indicates that no arsenic-sulfur
double bonds are present. The peaks between 300 and 360 cm^{-1} are characteristic of arsenic-sulfur single bonds while the strong band at $203 \mathrm{~cm}^{-1}$ is most likely due to an arsenic-iodine stretch. The two most intense vibrations of AsI_{3} are at 208 and $187 \mathrm{~cm}^{-1}$. 152

Attempts to repeat the reaction in dry methylene chloride led to the production of large amounts of AsI_{3}. The role of the solvent is not understood at this time. No further work was done on the system but it should be noted that the preparation of ASSI in SO_{2} is the first room temperature preparation of this compound, albeit in a micro-crystalline state. Its structure is probably similar to that of the antimony analogue. 153

IV-3 Preparation and Characterization of $\alpha P_{4} \underline{S e}_{3} \underline{I}_{2}$

A number of phosphorus-sulfur halides have been
 I), ${ }^{48,51} \mathrm{BP}_{4} \mathrm{~S}_{3} \mathrm{I}_{2},{ }^{50} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{I}_{4}, 53 \mathrm{P}_{2} \mathrm{SI}_{4}, 4{ }^{49} \mathrm{P}_{2} \mathrm{~S}_{5} \mathrm{Br}_{4}$ and $P_{2} S_{6}{ }^{B r} 2^{55}$ The few selenium analogues reported are SePX_{3} $(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})^{3,54} \mathrm{P}_{4} \mathrm{Se}_{2} \mathrm{I}_{2}, 52 \mathrm{P}_{2} \mathrm{Se}_{2} \mathrm{I}_{4}$ and $\mathrm{P}_{2} \mathrm{SeI}_{4} .54$ Generally the selenium compounds appear to be more unstable and are not as well characterized. They are, however, interesting because of the presence of the additional nucleus of
spin $1 / 2$ and as a source of more phosphorus-phosphorus coupling constant data.

For $\alpha P_{4} S_{3} I_{2}$ originally only a broad single line at -127 ppm was reported for its ${ }^{31}$ P NMR spectrum ${ }^{120}$ but with the advent of better instrumentation the spectrum was identified as that due to an $A A^{\prime} B B^{\prime}$ system with a very small chemical shift difference of only 3.68 ppm. 155 The chemical shift difference for $P_{4} S_{3} X_{2}(X=C l, B r)$ halides are not reported but it is stated ${ }^{51}$ that their 3^{31} NMR spectra are more typical of $A A^{\prime} B B^{\prime}$ peak patterns. The similarity of the coupling constants for $\mathrm{P}_{4} \mathrm{~S}_{3}$ and $\mathrm{P}_{4} \mathrm{Se}_{3}$ leads to the question of whether the spectrum of $\alpha P_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ would be like that of $\alpha \mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$ or whether it would be a more typical $A A^{\prime} B B^{\prime}$ pattern. Both $B P_{4} S_{3} I_{2}$ and $B P_{4} S e_{3} I_{2}$ were prepared by the slow addition of iodine to cold solutions of the phosphorus sesquichalconide. Since $\alpha P_{4} S_{3} I_{2}$ can be prepared from the appropriate elemental melt, it seemed reasonable to try to prepare $\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ from the appropriate melt. Figure IV-l, whicn illustrates the observed and calculated spectra for $\alpha P_{4} S e_{3} I_{2}$ prepared by this method, shows a recognizable AA'BB' pattern. The chemical shift and coupling constants calculated for $\alpha P_{4} S_{3} I_{2}$ and $\alpha P_{4} S_{3} I_{2}$ using NUMARIT ${ }^{1 l 6}$ are listed in Table IV-1. The magnitude of the ${ }^{1} J_{P P}$ coupling is larger than

FIGURE IV-1. Calculated and Observed ${ }^{31}$ P NMR Spectra of $\alpha P_{4} S_{3} I_{2}$ (top) and $\alpha P_{4} S e_{3} I_{2}$ (bottom).

TABLE IV-I Chemical Shifts (ppm) and Coupling Constants (Hz) of $\alpha \mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$ and $\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$

$\mathrm{a}_{\text {First calculated in reference } 155 \text {. Values listed here were independently calculated }}$ for this work. Agreement is 0.5 Hz or better.
those seen in the birdcage molecules or ${\beta P_{4}}^{S_{4}}$ and more like J_{34} of $\alpha P_{4} S_{5}$ (refer to Table III-22). This may again be due to the effect of an exocyclic moderately electronegative atom on a $P-P$ single bond. It may also be related to the opening up of the structure. It is quite probable that the absolute sign of the direct coupling constant is negative, 125 and the others are positive. The phosphorus atoms attached to the iodine atoms are probably those whose signals are to low field.

The identity of $\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ is further supported by the fact that the Raman spectrum of $\alpha P_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ shows that the stretching and bending modes involving mainly the $P-I$ bond have similar frequencies to those of $\alpha P_{4} S_{3} I_{2}$ (Table IV-2, Figure IV-2).

IV-4 The As $4 \mathrm{~S}_{4} \underline{\mathrm{SbCl}}_{5}$ and $1: 1$ As: $\mathrm{Se} / \mathrm{SbCl}_{5}$ Systems and

Related Reactions

When $\mathrm{As}_{4} \mathrm{~S}_{4}$ or powder from a l:l As:Se melt were mixed with excess SbCl_{5} at low temperature or at room temperature no reaction took place. However, on addition of SO_{2} an immediate reaction occurred giving a transitory red solution and then a clear solution from which an easily sublimable white material could be isolated. The red colouration was probably due to $E C l 2$ or $E_{2} \mathrm{Cl}_{2}(\mathrm{E}=\mathrm{S}$, Se).

FIGURE IV-2. Raman Spectra of ${\beta P_{4}} S_{3} I_{2}, \quad \alpha P_{4} S_{3} I_{2}, \quad \alpha P_{4} S e_{3} I_{2}$

TABLE IV-2 Raman Spectra of $\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}, \quad \alpha \mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}, \quad B \mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$

$\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$	$\alpha P_{4} S_{3} I_{2}^{a}$	$\mathrm{BP}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}{ }^{\mathrm{a}}$
9(12)	8 (17)	
26.(37)	18 (40)	
$29 \mathrm{sh}^{\text {b }}$	33(24)	
	43(36)	
46(39)		
55 sh	57 (30)	
73(9)	71 (7)	
	89 (7)	109 (4)
89(75)	100(76)	120(73)
107(8)		
114(14)		124 sh
147(16)	150(16)	
181(21)	$157(6)$	183 (6)
		198 (6)
		204 (8)
223 (6)	225(7)	226 (4)
233 (6)	257(6)	230 (6)
	306 sh	300 (18)
		312 (31)
		325 (15)
$303(100)$	$319(100)$	335 (100)
		339 sh
318 (8)	402 (5)	400(32)
330 (21)	413(15)	408 (19)
354(34)	423 (6)	425 (4)
359 sh	449(2)	
395(4)	464(2)	456 (9)
438 (2)	484(3)	480(10)

aspectra first reported in ref 50 . Values from present work. $\mathrm{s}_{\mathrm{sh}}=$ shoulder. Recorded in cm^{-1}.

Identification of AsCl_{3} and excess SbCl_{5} in the reaction solutions of both the sulfur and selenium systems was made by Raman spectroscopy. Raman spectra of the soluble white products from both reactions showed the presence of SbCl_{3} and an $\mathrm{SbCl}_{6}{ }^{-}$salt. The remaining bands in the Raman spectra were due to either $\mathrm{SCl}_{3}{ }^{+}$or $\mathrm{SeCl}_{3}{ }^{+}$which have been previously identified as products of the reactions of SCl_{4} and SeCl_{4} with $\mathrm{SbCl}_{5} .156$ Reaction of $\mathrm{As}_{4} \mathrm{~S}_{4}$ with two moles of bromine and
excess SbCl_{5} in liquid SO_{2} gave a red solution which quickly went to a light yellow coloured solution with no insoluble products. Slow removal of the solvent left light yellow crystals. A Raman spectrum of the bulk sample showed peaks due to $\mathrm{SbCl}_{6}{ }^{-}$and others that could be attributed to $\mathrm{SBr}_{3}{ }^{+}$. There were also small peaks due to $\mathrm{SCl}_{3}{ }^{+}$but none attributable to mixed ions such as $\mathrm{SBrCl}_{2}{ }^{+}$.

IV-5 Crystal Structure of $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ and Cell Data for

Although $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ and $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ are not new compounds, X-ray crystallographic data was collected because of recent interest 157 in secondary bonding in $\mathrm{MX}_{3}{ }^{+}$salts. Block-like, light yellow single crystals of $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ were mounted as described in Chapter II.

Preliminary precession photographs were then made to check crystal quality. Further work was done using the diffractometer described previously. The unit cell dimensions (Table IV-3) were obtained from a least-squares refinement of 2θ, ω and α for 15 high angle ($29^{\circ}<2 \theta<32^{\circ}$) reflections. Data were collected using $\theta-2 \theta$ scans over a scan range $\left(K \alpha_{1}-0.85^{\circ}\right)$ to $\left(K \alpha_{2}+0.85^{\circ}\right)$ with variable scan rates of $2-29.3^{\circ} / \mathrm{min}$ depending on the intensity of a preliminary 2 second count. Stationary background counts were recorded at each end of the scan, each for one quarter of the scan time. The intensities of the three standard reflections that were monitored after every 67 reflections showed no significant changes over the period of the data collection. A total of 2313 reflections (including standards) in the quadrants $\mathrm{h}, \mathrm{k}, \pm \ell$ with $2 \theta<55^{\circ}$ and $h,-k, \pm \hat{l}$ with $2 \theta<35^{\circ}$ were measured. Lorentz and polarization corrections were applied to all data.

Systematic absences revealed C centering but no glide planes. This and unit cell data indicated that C2, Cm or $\mathrm{C} 2 / \mathrm{m}$ was the proper space group. The structure was successfully solved in $\mathrm{C} 2 / \mathrm{m}$. Two independent antimony atoms and two chlorine atoms were located from the Patterson map using sHELX. ${ }^{118}$ In subsequent Fourier maps the other atoms were located. With all atoms anisotropic R converged

TABLE IV-3. Unit Cell Data for $\mathrm{MX}_{3}\left(\mathrm{SbCl}_{6}\right)(\mathrm{M}=\mathrm{S}$, Se;

$$
X=C l, B r)
$$

Compound	$\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$	$\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$	$\begin{gathered} \mathrm{SBr}_{1.2} \mathrm{Cl}_{1.8} \\ \left(\mathrm{SbCl}_{6}\right) \end{gathered}$
System	monoclinic	trigonal	trigonal
Space Group	$\mathrm{C} 2 / \mathrm{m}$	$\mathrm{R}_{3} \mathrm{~m}$	$\mathrm{R}_{3} \mathrm{~m}$
$a\left({ }_{\text {A }}\right)$	12.385(2)	10.750(8)	10.691(2)
$b(\AA)$	7.774(1)	10.750(8)	10.691(2)
$c(\dot{\circ})$	13.959(3)	18.885(8)	19.114 (4)
$\alpha\left({ }^{\circ}\right)$	90	90	90
$B\left({ }^{\circ}\right)$	108.06(1)	90	90
$\gamma\left({ }^{\circ}\right)$	90	120	120
U (\AA^{3})	1277.8(4)	1890(2)	1892.1(7)
$D_{C}\left(\mathrm{gcm}^{-3}\right)$	2.46	2.74	2.77
Z	4	6	6
Number of Reflections used in cell determina tion	15	15	15

to 0.0331 for $F / \sigma F>6$. No absorption correction was made. The linear absorption coefficient was $38.82 \mathrm{~cm}^{-1}$. After removing systematically absent and zero structure amplitude reflections, an average data set of 1493 reflections was obtained. Of these 1400 were considered observed for $F / \sigma F>2$. Using the X-ray system with the weighting scheme $w=1.0 /\left(1.7 \sigma \mathrm{~F}_{0}^{2}+7.0 \times 10^{-4} \mathrm{x} \mathrm{F}_{\mathrm{o}}{ }^{2}\right.$) two further cycles of least-squares converged to final agreement indices $R_{1}=0.038$ and $R_{2}=0.044$ (62 parameters refined). In the final cycle of least-squares no parameters shifted by more than 9\% of its standard error. A final difference Fourier map showed some residual electron density ($<3.2 \mathrm{e} / \AA^{3}$) at the antimony positions. Neutral atom scattering curves were used throughout. The minimum trough in the map was $-0.88 \mathrm{e} / \AA^{3}$.

Final atomic coordinates are given in Table IV-4 while the unit cell diagram of $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ is shown in Figure IV-3. The basic shape of both constituent ions is as expected on the basis of VSEPR theory. ${ }^{158}$ Bond lengths and bond angles are given in Table IV-5. Final structure factors are listed in Appendix II.

A comparison of the data in Table IV-5 for $\mathrm{SCl}_{3}\left(\mathrm{ICl}_{4}\right)^{159}$ and $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ show that there is a significant decrease in the $\mathrm{S}-\mathrm{Cl}$ bond length on going from the $\mathrm{ICl}_{4}{ }^{-}$

TABLE IV-4. Final Atomic Positional Parameters ($\mathrm{x} 10^{4}$) of $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ with Standard Deviations ($\mathrm{x} 10^{4}$) in Parentheses.

Atom	X	Y	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Sb}(1)$	$0(0)$	$0(0)$	$0(0)$	$395(4)$	$259(4)$	$387(4)$	0	$63(3)$	0
$\mathrm{Sb}(2)$	\cdots	$0(0)$	$5000(0)$	$5000(0)$	$309(4)$	$355(4)$	$365(4)$	0	$108(3)$
$\mathrm{S}(1)$	$8448(2)$	$0(0)$	$2801(2)$	$416(11)$	$422(11)$	$383(11)$	0	$89(9)$	0
$\mathrm{Cl}(1)$	$7910(2)$	$0(0)$	$3977(2)$	$652(15)$	$853(20)$	$680(16)$	0	$400(14)$	0
$\mathrm{C} 1(2)$	$7680(2)$	$1949(3)$	$2001(1)$	$982(15)$	$575(12)$	$651(11)$	$75(9)$	$-96(10)$	$239(11)$
$\mathrm{C} 1(3)$	$0(0)$	$2979(3)$	$0(0)$	$862(20)$	$262(12)$	$1514(32)$	0	$-245(20)$	0
$\mathrm{C} 1(4)$	$389(2)$	$0(0)$	$1767(2)$	$561(15)$	$1368(29)$	$421(13)$	0	$121(11)$	0
$\mathrm{C} 1(5)$	$1972(2)$	$0(0)$	$274(2)$	$421(12)$	$770(17)$	$572(14)$	0	$121(10)$	0
$\mathrm{C} 1(6)$	$330(1)$	$2851(2)$	$3928(1)$	$497(8)$	$555(9)$	$622(9)$	$-208(8)$	$228(7)$	$-38(8)$
$\mathrm{C} 1(7)$	$3052(2)$	$0(0)$	$4101(2)$	$335(10)$	$601(14)$	$509(12)$	0	$76(9)$	0

FIGURE IV-3. Stereoscopic View of the Unit Cell

$$
\text { of } \mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)
$$

FIGURE IV-4. Intermolecular Contacts to $\mathrm{SCl}_{3}{ }^{+}$.

TABLE IV-5. Bond Lengths $(\stackrel{\circ}{A})$ and Bond Angles $\left({ }^{\circ}\right)$ for $\operatorname{SCl}_{3}\left(S b C l_{6}\right)$ and $S C l_{3}\left(I C l_{4}\right)(I){ }^{\text {a }}$

Bond Lengths (${ }^{\circ}$)	$\mathrm{SbC1}_{6}{ }^{-}$salt	$\mathrm{IC1}_{4}{ }^{-}$salt	Bond Angles (${ }^{\circ}$)	$\mathrm{SbC1}_{6}{ }^{-} \mathrm{salt}$	$\mathrm{IC1}_{4}{ }^{-} \mathrm{salt}$
$\mathrm{S}(1)-\mathrm{Cl}(1)$	1.956 (3)	2.002 (3)	$\mathrm{C} 1(1)-\mathrm{S}(1)-\mathrm{C} 1(2)$	104.4 (1)	101.9(1)
S(1)-C1 (2)	1.948 (2)	1.981 (2)ave.	$\mathrm{C} 1(2)-\mathrm{S}(1)-\mathrm{C} 1(2)$	102.2(1)	100.7 (1)
Sb (1)-C1 (3)	2.313(2)		Cl (3)-Sb(1)-C1(4)	90.0(0)	
$\mathrm{Sb}(1)-\mathrm{Cl}$ (4)	2.363 (2)		C 1 (3)- Sb (1)- C 1 (5)	90.0(0)	
Sb (1)-C1(5)	2.355 (2)		C 1 (4) - Sb (1)-C1 (5)	87.99(8)	
Sb (2)-C1 (6)	2.363 (2)				
Sb(2)-C1(7)	2.352 (2)				
$S(1)-C 1(4)$	3.162 (3)	3.097 (3)	C1 (4)-S (1) - Cl (1)	152.62 (9)	154.9(1)
S (1) - Cl (6)	3.249(2)	3.129 (3)	C 1 (6)-S (1) - Cl (2)	163.4 (1)	156.4 (1)
$S(1)-\mathrm{C} 1(6)^{\prime}$	3.249 (2)	3.119(3)	$\mathrm{Cl}(6)-\mathrm{S}(1)-\mathrm{Cl}(2)$	163.4(1)	167.2(1)

[^6]salt (1.986(3) \AA ave) to the $\mathrm{SbCl}_{6}{ }^{-}$salt (1.951(3) \AA ave) with a corresponding lengthening of the secondary SCl contacts; from $3.115(3) \AA$ ave to $3.220(4) \AA$ ave for the respective salts. The $\mathrm{S}-\mathrm{Cl}$ and $\mathrm{P}-\mathrm{Cl}$ distances in $\mathrm{S}_{2} \mathrm{Cl}_{2}$ and PCl_{3} are $2.07 \stackrel{\circ}{\AA}$ and $2.04 \AA$, respectively. 160,161 The structure determination shows that $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ is definitely ionic and in relation to $\mathrm{SCl}_{3}{ }^{+}$the anion $\mathrm{SbCl}_{6}{ }^{-}$is a weaker Lewis base than $\mathrm{ICl}_{4}{ }^{-}$. This is consistent with the formation of $\mathrm{ICl}_{2}\left(\mathrm{SbCl}_{6}\right)^{162}$ from ICl_{3} and SbCl_{5} which shows that SbCl_{5} is a weaker base than ICl_{3} and thus one would probably expect $\mathrm{SbCl}_{6}{ }^{-}$to be a weaker base than $\mathrm{ICl}_{4}{ }^{-}$, as is shown here.

Donation of electron density into antibonding orbitals on the sulfur atoms would lengthen the intramolecular $\mathrm{S}-\mathrm{Cl}$ bonds in $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ compared to those in $\mathrm{SCl}_{3}\left(\mathrm{ICl}_{4}\right)$ if an existing antibonding interaction decreased. One might expect chlorine atoms of $\mathrm{SbCl}_{6}{ }^{-}$ and the $s-C l$ bonds to be colinear for proper orbital overlap. Figure IV-4 shows that the sulfur atoms are surrounded by a distorted octahedron of chlorines. The observed $\mathrm{Cl}--\mathrm{S}-\mathrm{Cl}$ angles are between 150 and 165°. A decrease in the interionic bonding mentioned above should increase the intramolecular $\mathrm{Cl}-\mathrm{S}-\mathrm{Cl}$ angles.

An increase from 100-102 to $102-105^{\circ}$ is observed on comparing these intramolecular angles in $\mathrm{SCl}_{3}\left(\mathrm{ICl}_{4}\right)$ and $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$, respectively.

Colourless single crystals of $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ were mounted and the data collected and analysed by Dr. F. Sawyer. The unit cell parameters are given in Table IV-3 An attempt to solve the structure showed the compound to be ionic and consist of $\mathrm{SeCl}_{3}{ }^{+}$and $\mathrm{SbCl}_{6}{ }^{-}$ ions. However, the cations were found to be disordered and the structural analysis was therefore not completed. This was also found to be the case for the crystals containing $\mathrm{SBr}_{3}{ }^{+}$.

IV-6 Raman Spectra of the $\left.\mathrm{MX}_{3} \underline{(S b C l}_{6}\right)$ Salts ($M=S$, Se, Te)

The Raman spectral data for $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ are given in Figure IV-5, Tables IV-6,8. The Raman spectrum of SCl_{3} (SbCl) 6 shows from the number of bands that the ions must be distorted from the free ion symmetries of $C_{3 v}$ and O_{h} for the cation and anion, respectively. The site symmetries of $\mathrm{SCl}_{3}{ }^{+}$and $\mathrm{SbCl}_{6}{ }^{-}$in the crystal are C_{S} and C_{i}, respectively. Figure IV-6 gives the appropriate correlation diagrams. A complete factor group analysis is not necessary here. Using the correlation diagram and polarization and

TABLE IV-6 . Raman Spectra of $\mathrm{ECl}_{3}\left(\mathrm{SbCl}_{6}\right)(\mathrm{E}=\mathrm{S}$, $\mathrm{Se}, \mathrm{Te})$ and $\mathrm{SBr}_{1.2} \mathrm{Cl}_{1.8}\left(\mathrm{SbCl}_{6}\right)$
$\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)^{\mathrm{a}}$ assignments $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)^{\mathrm{a}}$ assignments $\mathrm{TeCl}_{3}\left(\mathrm{SbCl}_{6}\right)^{\mathrm{b}}$ assignments $\underset{\left(\mathrm{SbCl}_{6}\right) \mathrm{C}}{\mathrm{SBr}_{1.2} \mathrm{Cl}_{1}}{ }^{-}$assignments

$\left.\begin{array}{l} 535(63) \\ 521(48) \end{array}\right\}$	$\mathrm{Sc}_{3}{ }^{+}, \nu_{3}(\mathrm{E})$	396 (sh)	$\mathrm{SeCl}_{3}{ }^{+}, \nu_{3}(\mathrm{E})$	381 (47)	$\mathrm{TeCl}_{3}^{+}{ }^{+} \nu_{3}(\mathrm{E})$	$\left.\begin{array}{c} 411(21) \\ 389(31) \end{array}\right\}$	$\mathrm{SBr}_{3}{ }^{+}, \nu_{3}(\mathrm{E})$
500(99)	$\mathrm{SCl}_{3}^{+}, \nu_{1}(\mathrm{~A})$	407 (100)	$\mathrm{SeCl}_{3}{ }^{+}, v_{1}(\mathrm{~A})$	395 (100)	$\mathrm{TeCl}_{3}{ }^{+}, \nu_{1}(\mathrm{~A})$	371 (33)	$\mathrm{SBr}_{3}{ }^{+}, \nu_{1}(\mathrm{~A})$
336(79)		353(20)		355 (28)			
$328(100)\}$	$\mathrm{SbCl}_{6}, \nu_{1}\left(\mathrm{~A}_{1 g}\right)$	318(43)	$\mathrm{SbCl}_{6}{ }^{-}, \nu_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right)$	309 (84)	$\mathrm{SbCl}_{6}{ }^{-}, \nu_{1}\left(\mathrm{~A}_{1 g}\right)$	333 (100)	$\mathrm{SbCl}_{6}{ }^{-}, \nu_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right)$
$\left.\begin{array}{l}294(21) \\ 286(33)\end{array}\right\}$	$\mathrm{SbCl}_{6}{ }^{-}, \nu_{2}\left(\mathrm{E}_{\mathrm{g}}\right)$	277(16)	$\mathrm{SbCl}_{6}{ }^{-}, \nu_{2}\left(\mathrm{E}_{\mathrm{g}}\right)$	254(25)	$\mathrm{SbCl}_{6}{ }^{-}, \nu_{2}\left(\mathrm{E}_{\mathrm{g}}\right)$	286(28)	$\mathrm{SbCl}_{6}{ }^{-}, \nu_{2}\left(\mathrm{E}_{\mathrm{g}}\right)$
275(27)	$\mathrm{SCl}_{3}{ }^{+}, \nu_{2}(\mathrm{~A})$	198(21)	$\mathrm{SeCl}_{3}{ }^{+}, \nu_{2}(\mathrm{~A})$			242 (10)	?
266(5)	?			186(18)	$\begin{gathered} \mathrm{TeCl}_{3}+, \nu_{2}(\mathrm{~A}) \\ \mathrm{TeCl}_{3}+, \nu_{4}(\mathrm{E}) \\ \text { and } \end{gathered}$	209 (30)	?
$\left.\begin{array}{l}216(11) \\ 208(23)\end{array}\right\}$	$\mathrm{SC1}_{3}{ }^{+}, \nu_{4}(\mathrm{E})$	$\begin{aligned} & 184(36) \\ & 169(17) \end{aligned}$	$\mathrm{SeCl}_{3}{ }^{+}, \nu_{4}(\mathrm{E})$	$\begin{aligned} & 176(28) \\ & 169(39) \end{aligned}$		$\begin{aligned} & 182(54) \\ & 176(75) \end{aligned}$	$\underset{\text { and }}{\mathrm{SBr}_{3}^{+}, \nu_{2}(E)}$
175(72)		$162(26)$	and	163(37)		163(23)	$\mathrm{SbCl}_{6}{ }^{-}, \nu_{5}\left(\mathrm{~T}_{2 g}\right)$
166(9)	$\mathrm{SbCl}_{6}{ }^{-}, \nu_{5}(\mathrm{~T} 2 \mathrm{~g})$	$130(16)$	$\mathrm{SbC1}_{6}{ }^{-}, \nu_{5}\left(\mathrm{~T}_{2 \mathrm{~g}}\right)$	146(25)	$\mathrm{SbCl}_{6}^{-}, v_{5}\left(\mathrm{~T}_{2 \mathrm{~g}}\right)$	133(23)	
						123(41)	$\mathrm{SBr}_{3}{ }^{+}, \nu_{4}(\mathrm{E})$

a) This work. b) Unpublished work of M. Collins. c) $\mathrm{SCl}_{3}{ }^{+}$peaks not listed.

TABLE IV-7. Vibrational Frequencies of Isoelectronic Group VB Halides ${ }^{\text {a }}$

PCl_{3}	AsCl_{3}	SbCl_{3}	PBr_{3}	Assignments for MX_{3}
507	412	377	392	$\nu_{1}\left(\mathrm{~A}_{1}\right)$
260	194	164	161	$\nu_{2}\left(\mathrm{~A}_{1}\right)$
494	387	356	392	$\nu_{3}(\mathrm{E})$
187	155	128		$\nu_{4}(\mathrm{E})$

a) Reference 152 .

TABLE IV-8. Raman Bands of the Cations $E X_{3}{ }^{+}(\mathrm{E}=\mathrm{S}, \mathrm{Se} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and $\mathrm{TeCl}_{3}{ }^{+}$

$\mathrm{SCl}_{3}{ }^{+}$	$\mathrm{AsF}_{6}{ }^{-\mathrm{a}}$	$\mathrm{SO}_{3} \mathrm{Cl}{ }^{\text {b }}$	$\mathrm{AlCl}_{4}^{-\mathrm{b}, \mathrm{c}}$		NbCl_{6}^{-}	$\mathrm{TaCl}_{6}^{-\mathrm{d}}$	$\mathrm{SbCl}_{6}^{-\mathrm{e}, \mathrm{~b}, \mathrm{f}}$			$\mathrm{ICl}_{4}^{-\mathrm{g}}$		$\mathrm{SnCl}_{6}^{-2 \mathrm{~b}}$
$\nu_{1}\left(A_{1}\right)$	$519^{\text {h }}$	509	494	498	496	497	500	501	500	$485{ }^{\text {i }}$	$482{ }^{\text {j }}$	484
$\nu_{2}\left(A_{1}\right)$	284	284	271	276	275	265	$\sim 280^{\mathrm{k}}$	280	274	279	282	269
		526	530	533	519	532	532	535	535	512	510	
$\nu_{3}(E)$	543	519	516	521	516	518	521	524	522	498	496	
		228		215	215				216			
$v_{4}(\mathrm{E})$	214	221	206	208	210	215		210	208	212	205	207
$\mathrm{SeCl}_{3}+$												
	$\mathrm{AsF}_{6}^{-\mathrm{a}}$	$\mathrm{So}_{3} \mathrm{Cl}^{-\mathrm{b}}$		$\mathrm{AlCl}_{4}^{-\mathrm{b}}$		$\mathrm{GaCl}_{4}^{-\mathrm{b}}$		$\mathrm{NbCl}_{6}^{-\mathrm{d}}$	TaCl_{6}^{-}		1_{6}^{-e}	
$v_{1}\left(A_{1}\right)$	437	416		416		418		405	405	412	406	407
$\nu_{2}\left(\mathrm{~A}_{1}\right)$	200	207		-		204		195	198		197	198
$\nu_{3}(\mathrm{E})$	390	392		395		394		-	391	$395{ }^{\text {k }}$		396
$\nu_{4}(E)$	168	181		186		169		160	159		184	184-130 ${ }^{\text {l }}$

FIGURE IV-5. Raman spectrum of $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$.

Isolated ions | Site |
| :---: |
| symmetry |

Factor Group Symmetry

$$
\mathrm{SCl}_{3}{ }^{+}
$$

$$
c_{3 v}
$$

C_{s}
$C_{2 h}^{3}(z=2)$
(R+IR)

$$
\mathrm{SbCl}_{6}^{-}
$$

O_{h}

$$
C_{i}
$$

$c_{2 h}^{3}(z=2)$

FIGURE IV-6. Correlation Diagram for $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$.
assignment data for $\mathrm{SCl}_{3}\left(\mathrm{AlCl}_{4}\right)^{164}$ the bands at 500 and $275 \mathrm{~cm}^{-1}$ were respectively assigned to the nondegenerate symmetric stretch and bend of $\mathrm{SCl}_{3}{ }^{+}$. The third and fourth Raman active modes of a $\mathrm{C}_{3 \mathrm{v}} \mathrm{MX}_{3}{ }^{+}$ion are degenerate E vibrations split here into A^{\prime} and $A^{\prime \prime}$ components, both Raman active. The pair of peaks at $535,521 \mathrm{~cm}^{-1}$ are assigned to the asymmetric stretch while the peaks at 216 and $208 \mathrm{~cm}^{-1}$ are assigned to the asymmetric bend.

Comparing the data here to that in Table IV-8 the intense band at $328 \mathrm{~cm}^{-1}$ is assigned to the totally symmetric breathing mode of the $\mathrm{SbCl}_{6}{ }^{-}$ion. The v_{2} vibration, doubly degenerate in O_{h} symmetry, is here split into two A_{g} components appearing at 294 and $286 \mathrm{~cm}^{-1}$. A third vibration normally seen in the Raman spectrum of octahedral species is the triply degenerate in-plane bend. Two of the three A_{g} components are seen at 175 and $169 \mathrm{~cm}^{-1}$. The very weak shoulder at $266 \mathrm{~cm}^{-1}$ is unassigned.

The last unassigned peak in the Raman spectrum of $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ is the strong band at $336 \mathrm{~cm}^{-1}$, in the region of an $\mathrm{Sb}-\mathrm{Cl}$ stretch. This peak cannot be assigned to $v_{3}\left(T_{l u}\right)$ which only appears in infrared spectra. 169 Splitting of the degeneracy of v_{3} by C_{i} site symmetry or even using the factor group symmetry of the crystal results in components which are only infrared allowed.

A peak in the same region of the Raman spectrum of 165 $\mathrm{SCl}_{3}\left(\mathrm{NbCl}_{6}\right)$ is also evident. For $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ and $\mathrm{SCl}_{3}\left(\mathrm{NbCl}_{6}\right)$ the difference between the peak in question and v_{1} is 8 and $6 \mathrm{~cm}^{-1}$, respectively. It seems reasonable to attribute them to factor group splitting.

The assignments for $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right), \mathrm{TeCl}_{3}\left(\mathrm{SbCl}_{3}\right)$
and $\mathrm{SBr}_{3}\left(\mathrm{SbCl}_{6}\right)$ were made with reference to the above, the information listed in Table IV-8, and the assignments for the isoelectronic group V halides (Table IV-7). The Raman spectra of $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)\left(\right.$ Figure IV-7) and $\mathrm{TeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ each show a peak just above $350 \mathrm{~cm}^{-1}$ which can tentatively be assigned to v_{1} of SbCl_{5}. Generally, where assignments are known, the corresponding vibrations appear at higher wavenumber for the salts than for the neutral group VB halides with the exception of ν_{1} in $\operatorname{SCl}_{3}\left(\mathrm{SbCl}_{6}\right), \operatorname{SBr}_{3}\left(\mathrm{SbCl}_{6}\right)$ and $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$. In the first two ν_{1} is weaker than ν_{3}. Other notable exceptions are $\mathrm{NCl}_{3}, \mathrm{PI}_{3}, \mathrm{ClO}_{3}{ }^{-}, \mathrm{XeO}_{3}$ and group VB hydrides. ${ }^{152}$ An examination of the data in Table IV-6 shows that v_{1} and v_{2} of the $\mathrm{MX}_{3}{ }^{+}$ions usually decrease with an increase in the Lewis basicity of the anion. A decrease in ν_{1} and v_{2} of $\operatorname{SbCl}_{6}{ }^{-}$is snown by the series $\mathrm{SCl}_{3}{ }^{+}, \mathrm{SeCl}_{3}{ }^{+}$and $\mathrm{TeCl}_{3}{ }^{+}$.

It has been suggested that there are no "free" $\mathrm{SeCl}_{3}{ }^{+}$ions in $\mathrm{SeCl}_{3}\left(\mathrm{NbCl}_{6}\right)$ and $\mathrm{SeCl}_{3}\left(\mathrm{TaCl}_{6}\right)$ because the

FIGURE IV-7. Raman Spectrum of $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$.

Se-Cl stretch occurs at $405 \mathrm{~cm}^{-1}$ which is considered to be too low. 165 A $\mathrm{Tl}_{2} \mathrm{Cl}_{9}{ }^{-2}$ type structure or an edge-bridging model $\left(\mathrm{Cl}_{3} \mathrm{SbCl}_{2} \mathrm{MCl}_{4}, \mathrm{M}=\mathrm{Nb}, \mathrm{Ta}\right)$ were favoured. The $\mathrm{Tl}_{2} \mathrm{Cl}_{9}{ }^{-2}$ ion has three parallel triangles of chlorine atoms, each pair of triangles being separated by a thallium atom. 170 However, the X-ray crystallographic data for $\operatorname{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ definitely shows the presence of $\mathrm{Secl}_{3}{ }^{+}$ions, although there appear to be significant cation-anion interactions. In this compound v_{1} is found in the Raman spectrum at $407 \mathrm{~cm}^{-1}$. In addition, the similar sizes of the elements niobium, tantalum and antimony in the +5 oxidation state (effective ionic radii: $0.65 \AA, 0.65 \AA, 0.61 \AA$, respectively), ${ }^{106}$ and the existence of the dimer $\operatorname{SbNbCl}_{10} 171$ rather than a salt like $\mathrm{NbCl}_{4}\left(\mathrm{SbCl}_{6}\right)$ all suggest a similar basicity for the three hexachloro anions. One would therefore expect $\mathrm{SeCl}_{3}\left(\mathrm{NbCl}_{6}\right)$ and $\mathrm{Secl}_{3}\left(\mathrm{TaCl}_{6}\right)$ to contain the $\mathrm{SeCl}_{3}{ }^{+}$ion. There may however be slightly stronger interionic interactions in the latter compounds.

IV-7 Experimental Section

$$
\begin{array}{ll}
\text { IV-7 (i) } & {\text { Preparation of } \mathrm{SCl}_{3}}^{\left(\mathrm{SbCl}_{6}\right) \text { from } \mathrm{As}_{4} \mathrm{~S}_{4} \text { and }} \\
\underline{\mathrm{SbCl}}_{5}-
\end{array}
$$

Powdered, dried $\mathrm{As}_{4} \mathrm{~S}_{4}(0.2719 \mathrm{gm}, 0.6353 \mathrm{mmole})$ was put into a dry double arm ampoule vessel in the dry box. Antimony pentachloride ($\sim 1.50 \mathrm{cc}, \geqslant 11.4 \mathrm{mmoles}$) was syringed into the other arm of the vessel. The arm containing the $\mathrm{As}_{4} \mathrm{~S}_{4}$ was cooled in liquid nitrogen and the SbCl_{5} poured through the first. No reaction on contact of the SbCl_{5} with the $\mathrm{As}_{4} \mathrm{~S}_{4}$ at low temperature or room temperature was observed. On addition of SO_{2} the mixture heated up and a deep red color formed which quickly disappeared on stirring to give a solution with a light yellow color. The next day the SO_{2} was pumped out and the SbCl_{3} and $\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)$ separated by vacuum sublimation.

$$
\text { IV-7(ii) Preparation of } \mathrm{SeCl}_{3} \mathrm{SbCl}_{6} \text {) from a fused }
$$ 1:1 As:Se melt and $\mathrm{SbCl}_{5}-$

Dried powder from a l:l As:Se melt (0.3637 gm, 0.5909 mmoles, assuming $\mathrm{As}_{4} \mathrm{Se}_{4}$) was put into a pre-dried double arm ampoule vessel in the dry box. Antimony pentachloride ($\sim 1.40 \mathrm{cc}, \geqslant 10.6 \mathrm{mmoles}$) was syringed into the other arm of the vessel. Pouring the SbCl_{5} through the frit onto
the As/Se powder cooled to $-196^{\circ} \mathrm{C}$ produced no immediate reaction. After some warming the mixture suddenly heated up to about $60^{\circ} \mathrm{C}$ and went blood-red in color. This quickly disappeared and was replaced by a light green-yellow color. The next day anhydrous SO_{2} was added and all the SbCl_{3} was washed into the other arm of the ampoule leaving behind $\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)$.

```
IV-7(iii) Preparation of SeCl}3\mp@subsup{\}{(SbCl}{6}\mp@subsup{)}{(\mathrm{ ) from SeCl}}{4 and \(\mathrm{SbCl}_{5-}\)
Crystals of \(\mathrm{SeCl}_{4}(0.1093 \mathrm{gm}, 0.4951\) mmoles) were
``` added in the dry box to a double arm ampoule vessel equipped with teflon valves. The vessel had been rigorously dried on the vacuum line prior to use. Antimony pentachloride ( \(0.06 \mathrm{cc}, \sim 0.5 \mathrm{mmoles})\) was syringed into the vessel onto the \(\mathrm{SeCl}_{4}\). No apparent reaction took place over the next hour. Sulfur dioxide was then distilled into the vessel and stirred overnight by means of a magnetic stir-bar in the vessel. The next day the clear solution was poured through the frit and then the sulfur dioxide was slowly removed by cooling the other arm of the vessel leaving crystals of \(\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)\).

\section*{IV-7 (iv) Preparation of \(\left.\left(\mathrm{SBr}_{3}\right)_{0.6} \underline{(S C l}_{3}\right)_{0} .4 \underline{\mathrm{SbCl}}_{6}-\) \(\xrightarrow{\text { Attempted Preparation of } \mathrm{SBr}_{3}\left(\mathrm{SbCl}_{6}\right) \text {. }}\)}

Dry sulfur (\(0.2056 \mathrm{gm}, 6.412 \mathrm{mmoles}\)) was put into one arm of a pre-dried double arm ampoule vessel and \(\mathrm{SbCl}_{5}\) (\(\sim 0.80 \mathrm{cc}, \sim 6.4 \mathrm{mmoles})\) was syringed into the other arm of the vessel. The vessel, equipped with teflon valves, was then removed from the dry box and \(\mathrm{Br}_{2}(62.4 \mathrm{~mm} \mathrm{Hg}, 12.83\) mmoles) was distilled onto the sulfur at \(-196^{\circ} \mathrm{C}\). The vessel was then allowed to warm and the bromine reacted with the sulfur and then the \(\mathrm{SbCl}_{5}\) was poured through the frit onto the mixture resulting in a reddish solution. The reaction was left stirring overnight. Any excess \(\mathrm{SbCl}_{5}, \mathrm{Br}_{2}\) and the \(\mathrm{SbCl}_{3}\) produced were removed by washing with small portions of \(\mathrm{SO}_{2}\). Yellow, translucent crystals of what was later shown to be \(\left(\mathrm{SBr}_{3}\right)_{0.4}\left(\mathrm{SCl}_{3}\right)_{0.6} \mathrm{SbCl}_{6}\) were left behind.

\section*{CHAPTER V}

REACTIONS OF \(\mathrm{AS}_{4} \mathrm{~S}_{4}\), ARSENIC-SELENIUM MELTS AND OTHER GROUP VB CHALCONIDES WITH LEWIS ACIDS

V-1 Introduction

The reactions of compounds such as \(\mathrm{As}_{4} \mathrm{~S}_{4}\) with oxidizing agents and Lewis acids have not previously been studied although the reactions of \(\mathrm{S}_{4} \mathrm{~N}_{4}\) with oxidizing agents have been observed to give a number of new compounds. In fact the only ionic derivative of \(\mathrm{As}_{4} \mathrm{~S}_{4}\) that has been definitely characterised is the \(\mathrm{As}_{4} \mathrm{~S}_{6}{ }^{2-}\) anion which has been studied as a piperidinium salt. 172

V-2 Investigation of the Solubility and Adduct Formation of \(\mathrm{As}_{4} \mathrm{~S}_{4}\)

In an attempt to obtain solution spectra for \(\mathrm{As}_{4} \mathrm{~S}_{4}\) to aid in the vibrational assignments for \(\mathrm{As}_{4} \mathrm{~S}_{4}\) and any subsequent complexes produced, many solvents were tried. It was found that \(\mathrm{As}_{4} \mathrm{~S}_{4}\) is insoluble at room temperature in \(\mathrm{H}_{2} \mathrm{O}\), dilute HCl , dilute \(\mathrm{HNO}_{3}\), \(98 \% \mathrm{H}_{2} \mathrm{SO}_{4}\), methanol, acetone, dioxane, formaldehyde, petroleum ether, acetonitrile, DMSO, nitrobenzene, pyridine, \(\mathrm{N}, \mathrm{N}\)-dimethylformamide, \(\mathrm{CCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{PCl}_{3}, \mathrm{OPCl}_{3}, \mathrm{SOCl}_{2}\), \(\mathrm{SO}_{2}, \mathrm{AsF}_{3}, \mathrm{HSO}_{3} \mathrm{~F}\) and anhydrous HF . It decomposes in
aqua regia giving copious amounts of sulfur initially while in \(30 \%\) oleum there is immediate reaction to produce what appears to be \(\mathrm{S}_{8}{ }^{+2}\). The decompositions were not investigated further. Extremely small amounts of \(\mathrm{As}_{4} \mathrm{~S}_{4}\) can be recrystallized from hot carbon disulfide or benzene but the solution concentration are such that solution Raman spectra could not be obtained for polarization measurements.

The intermolecular forces in realgar,
\(\mathrm{As}_{4} \mathrm{~S}_{4}\), are greater than those in \(\mathrm{S}_{4} \mathrm{~N}_{4}\) as indicated by its higher melting point \(307^{\circ} \mathrm{C}\) (vs. \(178.2^{\circ} \mathrm{C}\) for \(\mathrm{S}_{4} \mathrm{~N}_{4}\)). A comparison of intermolecular contacts show all three forms of \(\mathrm{As}_{4} \mathrm{~S}_{4}\) have arsenic-sulfur contacts that are relatively shorter than the sum of the van der Waals radii than the corresponding contacts in \(\mathrm{S}_{4} \mathrm{~N}_{4}\). The three arsenic compounds also have intermolecular arsenic-arsenic contacts (e.g., in \(\alpha \mathrm{As}_{4} \mathrm{~S}_{4}\), As....As 3.51-3.62, \(\Sigma\) van de Waals radii= 4.00) while \(S_{4} N_{4}\) has no significant contacts other than the sulfur-nitrogen contacts already mentioned.

As mentioned earlier the number of adducts of \(S_{4} N_{4}\) is quite large and covers a wide range of acceptor strengths. 39 The \(\mathrm{As}_{4} \mathrm{~S}_{4}\) molecule has lone pairs on both arsenic and sulfur atoms and one might expect that it would be possible to form adducts with Lewis acids. To
this end the reactions of \(\mathrm{As}_{4} \mathrm{~S}_{4}\) with \(\mathrm{TaF}_{5}, \mathrm{NbF}_{5}, \mathrm{BCl}_{3}\), \(\mathrm{PF}_{5}, \mathrm{SO}_{3}, \mathrm{WF}_{6}\) and \(\mathrm{PCl}_{5}\) were investigated. For \(\mathrm{S}_{4} \mathrm{~N}_{4} \mathrm{l}: \mathrm{l}\) adducts have been prepared with the first five of these Lewis acids while \(\mathrm{PCl}_{5}\) oxidizes \(\mathrm{S}_{4} \mathrm{~N}_{4}\) to give a complex mixture that may include \(\mathrm{P}_{3} \mathrm{~N}_{3} \mathrm{Cl}_{3}\) and \(\mathrm{SCl}_{2} .^{173}\)

Raman spectra of the solutions resulting from stirring methylene chloride suspensions of \(\beta A S_{4} S_{4}\) with methylene chloride solutions of \(\mathrm{TaF}_{5}, \mathrm{NbF}_{5}, \mathrm{WF}_{6}\), or \(\mathrm{PCl}_{5}\) or mixtures of \(\mathrm{BAS}_{4} \mathrm{~S}_{4}\) with \(\mathrm{BCl}_{3}\) or \(\mathrm{SO}_{3}\) in \(\mathrm{SC}_{2}\) showed no new species. The Raman spectra of the solids could also be assigned to the reactants. The reaction of \(\mathrm{PF}_{5}\) with \(\mathrm{BAS}_{4} \mathrm{~S}_{4}\) over a period of days gave only \(\alpha_{A s} S_{4}\) which suggests that a very weak donor-acceptor complex may have formed which was an intermediate in the rearrangement of the \(\mathrm{As}_{4} \mathrm{~S}_{4}\) molecules. It would appear that the strength of intermolecular forces in \(\mathrm{As}_{4} \mathrm{~S}_{4}\) mentioned above is such that adduct formation is not competitive.

V-3 The As \(4 \mathrm{~S}_{4} / \mathrm{AsF}_{5} \underline{(S b F}_{5}\)) and Arsenic-Selenium Melt \(\underline{A s F}_{5}{\left.\underline{\left(\mathrm{SbF}_{5}\right.}\right) \text { Systems }}^{\text {Sy }}\)

Reactions of \(\mathrm{S}_{4} \mathrm{~N}_{4}\) with \(\mathrm{AsF}_{5}\) and \(\mathrm{SbF}_{5}\) have led to the production of the interesting salts \(S_{3} N_{2}\left(A s F_{6}\right), 28\) \(\mathrm{S}_{6} \mathrm{~N}_{4}\left(\mathrm{AsF}_{6}\right)_{2}, \mathrm{~S}_{4} \mathrm{~N}_{4}\left(\mathrm{SbF}_{6}\right)_{2}\) and \(\mathrm{S}_{4} \mathrm{~N}_{4}\left(\mathrm{Sb}_{3} \mathrm{~F}_{14}\right)\left(\mathrm{SbF}_{6}\right) .8,31,174\)

The adduct \(S_{4} N_{4} \cdot\) AsF \(_{5}\) has also been prepared in this laboratory and characterized by X-ray crystallography. 175 It would apppear that the formation of this adduct is the first step in the oxidation of \(\mathrm{S}_{4} \mathrm{NH}_{4}\) to produce the cations mentioned above.

In every case, independent of the stoichiometry used, the \(\mathrm{As}_{4} \mathrm{~S}_{4} / \mathrm{AsF}_{5}\) and \(\mathrm{As}_{4} \mathrm{~S}_{4} / \mathrm{SbF}_{5}\) reactions in \(\mathrm{SO}_{2}\) initially gave a transient bright yellow solution. The color may be due to the formation of an intermediate adduct or ion. However, this could not be identified as a Raman spectrum of the solid obtained after the rapid removal of the \(\mathrm{SO}_{2}\) showed that only \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right)\) (described below), \(\mathrm{As}_{4} \mathrm{~S}_{4}\) and sulfur were present. The UV spectrum of a l:3 \(\mathrm{As}_{4} \mathrm{~S}_{4} / \mathrm{AsF}_{5}\) mixture in \(\mathrm{SO}_{2}\) recorded immediately after warming to room temperature showed only the characteristic absorption curve of the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)cation above the \(\mathrm{SO}_{2}\) absorption cut-off. Low temperature \({ }^{19}\) F NMR spectra were recorded for \(1: 3 \mathrm{As}_{4} \mathrm{~S}_{4}: \mathrm{AsF}_{5}\) reactions in \(\mathrm{SO}_{2}\left(-74^{\circ} \mathrm{C}\right)\), \(\mathrm{SO}_{2} \mathrm{ClF}\left(-78^{\circ} \mathrm{C}\right)\) and \(\mathrm{SO}_{2} / \mathrm{SO}_{2} \mathrm{ClF}\left(-78^{\circ} \mathrm{C}\right)\) but only a signal due to \(\mathrm{AsF}_{3}\) was observed.

For \(\mathrm{As}_{4} \mathrm{~S}_{4}: \mathrm{AsF}_{5}\left(\mathrm{SbF}_{5}\right)\) ratios of up to \(1: 3\), the bright yellow solutions fade to a very light yellow from which a light yellow powder precipitates. Raman
spectroscopy indicated that the powder contained varying amounts of sulfur and an \(\mathrm{AsF}_{6}{ }^{-}\left(\mathrm{SbF}_{6}{ }^{-}\right)\)salt. Elemental analysis (pp. 209-210) and X-ray crystallography proved that salts of the ions \(\mathrm{As}_{3} \mathrm{~S}_{4}^{+}\)and \(\mathrm{As}_{3} \mathrm{Se}_{4}^{+}\)were produced. Formation of these compounds is consistent with the stoichiometry
\[
\mathrm{As}_{4} \mathrm{~S}_{4}+3 \mathrm{MF}_{5}(\mathrm{M}=\mathrm{As}, \mathrm{Sb}) \xrightarrow{\mathrm{SO}_{2}} \mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{MF}_{6}\right)+2 \mathrm{MF}_{3}
\]

However, the presence of some unreacted \(\mathrm{As}_{4} \mathrm{~S}_{4}\) and varying amounts of sulfur indicate that the overall reaction is not as simple as the above equation suggests. It seems that there is a competing reaction involving degradation of the \(\mathrm{As}_{4} \mathrm{~S}_{4}\) molecule to \(\mathrm{AsF}_{3}\) and sulfur. The Raman spectrum of the unreacted \(\beta_{A S_{4}} S_{4}\) from a \(1: 3\) \(\mathrm{As}_{3} \mathrm{~S}_{4}: \mathrm{AsF}_{5}\) reaction shows an additional band at \(232 \mathrm{~cm}^{-1}\) and a few other weaker bands. The peak at \(232 \mathrm{~cm}^{-1}\) has been seen before by some workers \({ }^{176,177}\) in the Raman spectrum of \(\alpha \mathrm{As}_{4} \mathrm{~S}_{4}\) and could possibly be due to some \(\mathrm{As}_{4} \mathrm{~S}_{4}\) (II) formed by rearrangement during the reaction.

Sulfur dioxide suspensions of the \(1: 1\) As:Se powdered melt (probably consisting mainly, if not entirely, of \(\mathrm{As}_{4} \mathrm{Se}_{4}\)) were reacted with \(\mathrm{AsF}_{5}\) or \(\mathrm{SbF}_{5}\) in \(1: 3\) mole ratios. Quickly warming the frozen solutions to room temperature produces an orange solution from which an orange powder readily precipitates. Infrared data 178,179 indicated that hexafluoroarsenate or hexafluoroantimonate salts were formed and Raman
spectra showed the cations of both salts to be the same. X-ray crystallography and elemental analysis proved that the hexafluoroantimonate salt was \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\).

The insoluble solid remaining after complete removal of the soluble \(\mathrm{SbF}_{6}{ }^{-}\)salt was yellow with flecks of black in it. The latter was probably starting material. The arsenic-selenium melt itself is black. The compounds \(\mathrm{SbF}_{3}, \mathrm{SbF}_{5} \cdot \mathrm{SO}_{2}\) and \(\mathrm{Sb}_{6} \mathrm{~F}_{13}\left(\mathrm{SbF}_{6}\right)_{5}\) are all white. A Raman spectrum of the yellow solid gave the peaks listed in Table \(V-5\). No peaks were observed in the region of \(\mathrm{Sb}-\mathrm{F}\) stretches, however a Mössbauer spectrum kindly recorded by Dr. T. Birchall and Mr. R. Myers showed absorptions at \(-14.5 \pm 0.2\) and \(2.2 \pm 0.1 \mathrm{mms}^{-1}\) which may be assigned, respectively, to \(\mathrm{SbF}_{3}^{180}\) and a compound containing antimony (V) bonded to fluorine. The latter is probably a compound containing \(\operatorname{Sb}_{\mathrm{x}} \mathrm{F}_{5 \mathrm{x}+1}{ }^{-}(\mathrm{x}=1,2,3)\). The similarity of the Raman spectrum with those of the \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)salts and its insolubility suggests that it is a salt of \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)with a polymeric antimony-fluorine anion. Attempts to sublime the material led to decomposition. The insoluble material was not analyzed as it was intimately mixed with \(\mathrm{SbF}_{3}\) and a small amount of what appeared to be starting material.

V-4 Structures of the Birdcage Cations \(\mathrm{As}_{3} \underline{S}_{4}^{+}{ }^{+}\)and \(\mathrm{As}_{3} \underline{S e}_{4}^{+}{ }^{+}\)
 V-4 (i) Crystal Data

The X-ray crystallography was performed by Dr. J. F. Sawyer of this department. Crystals of (\(\mathrm{As}_{3} \mathrm{~S}_{4}\)) \(\left(\mathrm{SbF}_{6}\right)\) were obtained as clear yellow platelets while those of the isomorphous \(\left(\mathrm{As}_{3} \mathrm{~S}_{4}\right)\left(\mathrm{AsF}_{6}\right)\) were darker yellow in appearance and were irregular prisms and rhombs. The major crystal form found for \(\left(\mathrm{As}_{3} \mathrm{Se}_{4}\right)\left(\mathrm{SbF}_{6}\right)\) was orange diamondshaped plates. These were mostly too small for the X-ray studies, but a few larger, slightly more irregular crystals were also present and the structure was eventually solved using one of these larger crystals. All crystals used in the structure determinations were sealed in Lindemann capillaries under a dry-air atmosphere. Crystals of \(\left(\mathrm{As}_{3} \mathrm{Se}_{4}\right)\left(\mathrm{SbF}_{6}\right)\) sealed in capillaries tended to darken in color from orange to dark red. This appears to be a surface effect as the diffraction patterns are unaffected by these color changes, and is presumably due to traces of moisture/oxygen in the atmosphere of the dry-box in which the crystals were sealed. Crystals that are left in the reaction vessel do not exhibit any color changes. Similar marked changes of color of salts of \(S-N\) cations have also been observed. 30,31
\(\left(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\right)\left(\mathrm{SbF}_{6}^{-}\right)\)is orthorhombic with \(\underline{a}=20.453\) (4), \(\underline{b}=5.990(1), \underline{c}=9.609(2) \AA, \underline{U}=1177.3(4) \AA^{3}, z=4\), \(D_{C}=3.32 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{fw}=588.8, \mathrm{~F}(000)=1072\). MoK \(\bar{\alpha}\) radiation \(\left(\lambda=0.71069 \AA, \mu(\operatorname{MoK} \bar{\alpha})=120.5 \mathrm{~cm}^{-1}\right.\). Systematic absences, \(\underline{h} 0 \underline{\ell}, \underline{h}=2 \mathrm{n}\) and \(0 \underline{k \ell}, \underline{\ell}=2 \mathrm{n}\) indicated space groups pcam (a non-standard setting [bā̄] of No. \(57 \underline{\mathrm{Pbcm})}\) or Pca2 \({ }^{2}\) (No. 29). The distribution of the normalised structure factors and the satisfactory structure solution showed that the correct space group is Pcam.

The isomorphous \(\left(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\right)\left(\mathrm{AsF}_{6}{ }^{-}\right.\)) is orthorhombic with \(\underline{a}=19.962(4), \underline{b}=5.930(1), \underline{c}=9.441(3) \stackrel{\circ}{\mathrm{A}}, \underline{\mathrm{U}}=\) \(1115.8(5) \stackrel{\circ}{A}^{3}, \mathrm{Z}=4, \mathrm{D}_{\mathrm{C}}=3.22 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{fw}=541.9, \mathrm{~F}(000)=\) 1000. MOK \(\bar{\alpha}\) radiation \(\left(\lambda=0.71069 \AA\right.\)) , \(\mu(\operatorname{MoK} \bar{\alpha})=132.6 \mathrm{~cm}^{-1}\). Space group Pcam. \(\left(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\right)\left(\mathrm{SbF}_{6}^{-}\right)\)is monoclinic with \(\underline{a}=6.224(3)\), \(\underline{\mathrm{b}}=9.564(5), \underline{\mathrm{c}}=10.643(5) \AA, \mathrm{B}, \mathrm{B}=92.65(4)^{\circ}, \underline{\mathrm{U}}=632.9(5)\) \(\AA^{3}, \mathrm{Z}=2, \mathrm{D}_{\mathrm{C}}=4.07 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{fw}=776.4, \mathrm{~F}(000)=680\). \(\operatorname{MoK} \bar{\alpha}\) radiation \((\lambda=0.71069 \AA), \mu(\operatorname{MoK} \bar{\alpha})=226.8 \mathrm{~cm}^{-1}\). The systematic absence, \(0 \underline{k} 0, \underline{k}=2 n\), indicated space groups \(\underline{P} 21 / \underline{m}\) or \(\underline{P}^{2} 1\). The distribution of the normalised structure factors and the satisfactory structure solution showed that the space group is \(\underline{\mathrm{P}}^{2} 1 / \underline{\mathrm{m}}\).
```

V-4 (ii) Discussion of the Crystal Structures of

```

V-4 (iia) The Cations \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)and \(\mathrm{As}_{3} \underline{S e}_{4-}^{+}\)

The structure determinations show that \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right)\) and \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right)\) consist of \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)cations and hexafluoroantimonate (arsenate) anions while the \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\) contains the isostructural \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)cation along with hexafluoroantiomonate anions. The \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)and \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\) cations both have crystallographic mirror symmetry and overall symmetry \(C_{s}\). The bond distances and angles of the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)ion in the \(\mathrm{AsF}_{6}{ }^{-}\)and \(\mathrm{SbF}_{6}{ }^{-}\)salts show only very small differences. The structure of this cation can be considered to be derived from a tetrahedron of three arsenic and one sulfur (formally \(\mathrm{S}^{+}\)) atoms with the three edges to a common arsenic bridged by sulfur atoms. Similarly, the \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)cation consists of a tetrahedron of three arsenic and one selenium (as \(\mathrm{Se}^{+}\)) atoms with three edges to a common arsenic bridged by selenium atoms (Figure \(V-1\)). This structural type is found for a number of other cage compounds of the non-metals. Some examples of this are the two forms of \(\mathrm{As}_{4} \mathrm{~S}_{3}, 83,84\) and \(\mathrm{As}_{4} \mathrm{Se}_{3}, 85\) those of \(\mathrm{P}_{4} \mathrm{~S}_{3}{ }^{81}\) and \(\mathrm{P}_{4} \mathrm{Se}_{3}, 82\) the ions \(\mathrm{Sb}_{7}^{-3}, 64 \mathrm{As}_{7}^{-3}, 63, \mathrm{P}_{7}^{-3} 62\) and in the

FIGURE V-1. The Cations \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)and \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\).
organocyclo triarsane, 4-methyl-1,2,6-triarsatricyclo\(\left[2,2,1,0^{2,6}\right.\)]heptane \({ }^{88}\) and in the compounds discussed in Chapter III. However, this is the first time that the triangular base of this structural type has been found containing a group VIB atom.

The arsenic-arsenic bond length in this base is \(2.461(2) \AA\) for the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)cation and \(2.473(5) \AA\) for the \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)cation. This is comparable to the arsenic-arsenic bond lengths in the base of the \(A s_{7}^{3-63}\) and \(\alpha\) and \(B\) \(\mathrm{As}_{4} \mathrm{~S}_{3}\) structures \({ }^{83,84}\) (Table V-l). Table V-2 gives final atomic positions and thermal parameters. Complete bond distance and bond angle listings for the salts are given in Table V-3. In the organo cyclotriarsane structure the As-As bonds in the base are noticeably shorter at 2.41\(2.42 \stackrel{\circ}{\AA}\) and it has been suggested that these bonds have some multiple bond character. \({ }^{88}\) It should also be noted in this context that this compound has been found to form a complex with \(\mathrm{Cr}(\mathrm{CO})_{5}\) in which one of the basal arsenic atoms is coordinated to the chromium with As-As distances in this structure of \(2.406(2), 2.408(2)\) and \(2.462(2) \AA\). It is interesting to note that the longest distance is between the two As atoms not coordinated to the chromium. 181 The As-As distances in the structures of \(\mathrm{As}_{4} \mathrm{~S}_{4}, \mathrm{As}_{4} \mathrm{~S}_{5}\) and the anion \(\mathrm{As}_{4} \mathrm{~S}_{6}{ }^{2-}\), which have structures based on the cuneane polyhedron, are however significantly longer at

TABLE V-1 Arsenic-Arsenic, Arsenic-Sulfur and Arsenic-Selenium Bond Lengths in Various Cluster Compounds

As-As

\(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+\mathrm{f}}\)

As-S(Se)

A: \(2.444(2)\)
B: 2.427(2)
C: 2.407(1)
\(\mathrm{As}_{7}\left(\mathrm{SiHe}_{3}\right)_{3}\)

As(1) - As(2) \(2.546(11)\)
(continued...)

TABLE V-1 (continued)

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{As-S(Sc)} \\
\hline As(1) - \(s(1)\) & \(2.292(5)\) & As(2) - S(1) & \(2.243(5)\) \\
\hline As(1) - \(5(2)\) & \(2.270(5)\) & As(2) - \(\mathrm{s}^{(2)}\) & \(2.293(5)\) \\
\hline \(n s(1)-5(3)\) & \(2.289(5)\) & As(2) - \(5\left(3^{\prime}\right)\) & \(2.303(5)\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(A s(1)-S(1)\) & \(2.302(11)\) \\
\(A s(1)-S(2)\) & \(2.183(10)\) \\
\(A s(2)-S(2)\) & \(2.231(8)\)
\end{tabular}
\begin{tabular}{llll}
\(\operatorname{As}(1)-\operatorname{Se}(1)\) & 2.37 & \(\operatorname{As}(2)-\operatorname{Se}(1)\) & 2.32 \\
\(\operatorname{As}(1)-\operatorname{Se}(?)\) & 2.14 & \(\operatorname{As}(2)-\operatorname{Se}(2)\) & 2.37 \\
\(\operatorname{As}(1)-\operatorname{Se}(3)\) & 2.56 & \(\operatorname{As}(2)-\operatorname{Se}(3)\) & 2.36 \\
\(\operatorname{As}(1)-\operatorname{Se}(1)\) & \(2.354(4)\) & & \\
\(\operatorname{As}(1)-\operatorname{Se}(3)\) & \(2.362(5)\) & & \\
\(\operatorname{As}(2)-\operatorname{Se}(1)\) & \(2.320(4)\) & & \\
\(\operatorname{As}(2)-\operatorname{Se}(2)\) & \(2.464(5)\) &
\end{tabular}
contd.....
(continued...)

TABLE \(\mathrm{V}-1\) (continued)

\[
\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{AsS}_{3}{ }^{\mathrm{t}}\right.
\]

As(1) - S(2) \(2.237(3)\)
- \(\mathrm{S}(3) \quad 2.242(3)\)

As(2) - S(3) 2.250(3)
\(-S(1) \quad 2.243(3)\)
As(3) - S(1) 2.242(3)
- \(\mathrm{S}(2) \quad 2.239(3)\)

\({ }^{\mathrm{i}}\) Ref. 72. \(\mathrm{j}_{\text {Ref. 73. }}{ }^{\mathrm{k}}\) Ref. 74. \({ }^{\mathrm{l}}\) Ref. 75. \(\mathrm{m}_{\text {Ref. 77. }} \mathrm{n}_{\text {Ref. 19. }}{ }^{\mathrm{o}}\) Ref. 69. \(\mathrm{p}_{\text {Ref. 172. }} \mathrm{q}_{\text {Ref. }} 95\).
\(r_{\text {Ref. this work. }}{ }^{s}\) Ref. 181. \({ }^{t}{ }_{\text {Ref. }} 88\).

TABLE V-2. Final Atomic Positional (\(\mathrm{x} 10^{4}\)) and Thermal Parameters (\(\mathrm{x} 10^{3}\))* with Standard Derivations in Parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Atom & x & Y & z & \(\mathrm{U}_{11}\) & \(\mathrm{U}_{22}\) & \(\mathrm{U}_{33}\) & \(\mathrm{U}_{12}\) & \(\mathrm{U}_{13}\) & \(\mathrm{U}_{23}\) \\
\hline \multicolumn{10}{|l|}{(a) \(\left[\mathrm{As}_{3} \mathrm{~S}_{4}\right]\left[\mathrm{MF}_{6}-\right], \mathrm{M}=\mathrm{Sb}\), As.} \\
\hline Sb & \(3357.0(4)\) & 5119(2) & 2500(0) & 30.2 (5) & 41.2(5) & 45.6(6) & 1.7 (4) & 0 & 0 \\
\hline As & 3354.4 (9) & 5154 (3) & 2500(0) & 32.1 (10) & \(39.5(11)\) & 46.0(11) & 4.6(11) & 0 & 0 \\
\hline \multirow[t]{2}{*}{As (1)} & 98.6(6) & 543(2) & 2500(0) & 32.7 (7) & 37.8 (8) & 55.3(9) & 5.6(6) & 0 & 0 \\
\hline & 85.5(9) & 519(3) & 2500(0) & 29.7(10) & 33.1 (10) & 50.0(11) & 6.4(8) & 0 & 0 \\
\hline \multirow[t]{2}{*}{As (2)} & 1700.0(5) & 55(2) & 1219(1) & 43.3 (6) & 54.7 (7) & 54.4 (7) & -1.5(4) & 12.8(5) & -2.4(6) \\
\hline & 1728.7(7) & 9(3) & 1197 (2) & 41.0 (8) & 54.3 (10) & 58.0(10) & -3.3(6) & 12.5(7) & -3.3(8) \\
\hline \multirow[t]{2}{*}{S(1)} & 750(1) & 1486(5) & 743 (3) & 58 (1) & 50(1) & \(38(1)\) & 2(1) & -4(1) & 6(1) \\
\hline & \(758(2)\) & 1473(6) & 713 (4) & 54 (2) & 47 (2) & 36 (2) & -1(2) & -2(2) & 5 (2) \\
\hline \multirow[t]{2}{*}{S (2)} & 1353(2) & -3150(7) & 2500(0) & 30 (2) & 28(2) & \(79(3)\) & 4(1) & 0 & 0 \\
\hline & 1377 (2) & -3255(7) & 2500(0) & 17 (3) & 25 (2) & 74 (3) & 2(2) & 0 & 0 \\
\hline \multirow[t]{2}{*}{S (3)} & 361 (2) & -3103(6) & 2500(0) & 40(2) & 34 (2) & 101(3) & -3(2) & 0 & 0 \\
\hline & 350 (2) & -3149(8) & 2500(0) & 35 (2) & 27 (2) & 102(5) & -3(2) & 0 & 0 \\
\hline \multirow[t]{2}{*}{F (1)} & 3858 (6) & 6482(16) & 1142(10) & 152(8) & 90(6) & 87 (6) & -13(6) & 46(6) & 22(5) \\
\hline & 3850(5) & 6285(18) & 1235(11) & 93 (6) & 81 (7) & 71 (6) & -13(6) & 19(6) & 20(6) \\
\hline \multirow[t]{2}{*}{F (2)} & 2880(7) & 3722(20) & 1143(15) & 186(11) & 107(8) & 193(12) & -13(8) & -135(10) & -25(9) \\
\hline & 2875(7) & 4015(23) & 1235(16) & 129(10) & 103(9) & 131(11) & -16(8) & -71(9) & -8(9) \\
\hline \multirow[t]{2}{*}{F(3)} & 3915(6) & 2695(19) & 2500(0) & 99 (8) & 64 (7) & 104(9) & 41 (6) & 0 & 0 \\
\hline & 3833 (7) & 2778(22) & 2500(0) & 82(9) & 52 (8) & 87 (10) & 22 (7) & 0 & 0 \\
\hline \multirow[t]{2}{*}{F (4)} & 2791(7) & 7517 (23) & 2500(0) & 85(8) & 73 (8) & 215(18) & 43 (7) & 0 & 0 \\
\hline & 2879 (8) & 7517 (24) & 2500(0) & 80(10) & 45 (8) & 218(22) & \(39(7)\) & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sb (1) & 4978 (4) & 2500 & 8324(2) & 53(2) & 63(2) & 34 (1) & 0 & 1(1) & 0 \\
\hline \(\mathrm{Se}(1)\) & -3495 (6) & 2500 & 2228(4) & 44 (2) & \(102(4)\) & 31 (2) & 0 & -3(2) & 0 \\
\hline \(\mathrm{Se}(2)\) & 1461 (4) & 647 (3) & 3484(3) & 55(2) & 44 (2) & 63 (2) & 8 (1) & \(3(1)\) & 4(1) \\
\hline Se (3) & -3195(6) & 2500 & 4399 (3) & 37 (2) & 99(3) & \(30(2)\) & 0 & \(5(1)\) & 0 \\
\hline As (1) & 564 (6) & 2500 & 4819(4) & 45(2) & 59(3) & 36 (2) & 0 & -9(2) & 0 \\
\hline As (2) & -305(5) & 1207 (4) & 1583(3) & 68 (2) & 65(2) & 40(1) & -2(2) & 7 (1) & -15(1) \\
\hline Atom & X & Y & Z & U & Atom & X & Y & 2 & U \\
\hline F(1) & 3645 (4) & 3863(27) & 7352(23) & 115 (8) & F(3) & -3612(47) & 1203(32) & 9261(27) & 143(10) \\
\hline F (2) & 7283(49) & 2500 & 7233(29) & 92 (9) & F(4) & 2849(70) & 2500 & 9513 (42) & 149(15) \\
\hline
\end{tabular}
*Anisotropic temperature factors \(U_{i j}\) are expressed in the form exp \(\left[-2 \pi^{2}\left(h^{2} a \star^{2} U_{11}+\ldots+2 k b * c * U_{23}\right)\right]\).

TABLE V-3. Bond Distances \(\left({ }^{\circ}\right)\) and Bond Angles \(\left({ }^{\circ}\right)\) with Standard Deviations in Parentheses \({ }^{\text {a }}\)

TABLE V-3. (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Antons} \\
\hline \multicolumn{5}{|l|}{Bond lengths (\({ }^{\circ}\))} \\
\hline M - F (1) & 1.849 (10) & 1.689(11) & \(\mathrm{Sb}-\mathrm{F}(1)\) & 1.84 (3) \\
\hline - F(2) & 1.831 (14) & 1.673(14) & - F(2) & 1.89 (3) \\
\hline - F(3) & 1.847 (12) & 1.702 (14) & - F(3) & 1.80 (3) \\
\hline - F(4) & 1.845(14) & 1.693(15) & - F(4) & 1.87 (5) \\
\hline \multicolumn{5}{|l|}{Bond angles (\({ }^{\circ}\))} \\
\hline F(1) - M - F \({ }^{\text {(2) }}\) & 89.7 (5) & 89.5 (6) & \(F(1)-S b-F(2)\) & 89(1) \\
\hline - F(3) & 90.3 (4) & 90.0(5) & - F(3) & 178(1) \\
\hline -F(4) & 90.3 (4) & 90.0 (5) & - F(4) & 94 (1) \\
\hline - F(1') & 89.7 (5) & 90.0(5) & - F(1') & 90 (1) \\
\hline - F(2') & 178.5(5) & 179.1(6) & - F(3') & 91 (1) \\
\hline \(F(2)-M-F(3)\) & 88.3(5) & 89.3(6) & \(F(2)-S b-F(3)\) & 89 (1) \\
\hline -F(4) & 91.2 (5) & 90.8(6) & - F(4) & 175(2) \\
\hline - F(2') & 90.8(6) & 91.1 (7) & \(F(3)-S b-F(4)\) & 88 (1) \\
\hline \(F(3)-M-F(4)\) & 179.3(6) & 180.0(7) & - F(3') & 87 (1) \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Primed atoms are related to the corresponding unprimed atoms by reflection through the mirror plane.
2.55-2. 59 ㅇ.

In addition to the compounds in Table \(V-1\), several other examples of arsenic-arsenic bonds have been characterised crystallographically. Of particular note is the very short As-As bond of \(2.343(7) \AA\) in the complex \((\mathrm{CO})_{4} \mathrm{Mo}\left(\mathrm{Me}_{2} \mathrm{P}-\mathrm{As}(\mathrm{Me})-\mathrm{As}(\mathrm{Me})-\mathrm{PMe}_{2}\right) .{ }^{183}\) Comparable short As-As bonds of \(2.372,2.273\) have been observed in the 184 complexes \(\mathrm{As}_{3} \mathrm{CO}(\mathrm{CO})_{3}\) and \(\mathrm{As}_{2} \mathrm{CO}_{2}(\mathrm{CO})_{6}\), respectively. However, these structures are based on tetrahedra of arsenic and cobalt atoms so that the actual bonds in these structures are expected to be 'bent' and therfore shorter than a normal single bond. Finally, the arsenic-arsenic bond lengths in pentameric arsenomethane, arsenobenzene (PhAs) \({ }^{\prime}\), tetrameric \(\left(\mathrm{AsCF}_{3}\right)_{4}\) and the complex cyclohexa-l-4-(tetracarbonylchromium) 2,3,5,6(dimethylarsenic) are 2.428, \(2.456,2.454\) and \(2.442 \AA\), respectively. \({ }^{185,186}\) All these distances are shorter than the As-As distances of \(2.51 \AA\) in metallic arsenic. \({ }^{187}\) It appears therefore, that the As-As bond in the triangular base of the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)and \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\) cations is somewhat longer than most As-As bonds. This is somewhat surprising in view of the fact that these bonds are usually regarded as 'bent' bonds.

There are three independent arsenic-sulfur bonds in the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)cation (Figure V-1). The As-S bond in the
base of the cation is longest at \(2.388(3) ~ \AA\) in the hexafluoroantimonate salt and \(2.398(4) \AA\) in the hexafluoroarsenate salt. Intermediate in length are the two As-S bonds to As(1) which have an average length of \(2.235 \AA\) although it may be noted that in the hexafluoroantimonate salt the two bonds As(1)-S(1) [2.223(3) \(\AA\)] and As(1)-S (3) [2.249(4) A \(]\) have significantly different lengths. Finally the distance As(2)-S(1) is the shortest at \(2.173(3) \AA\). The ordering of the arsenic sulfur distances in the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)cation is the same as that found for the distances in the homopolyatomic analogues \(\mathrm{P}_{7}{ }^{3-}, \mathrm{As}_{7}{ }^{3-}\) and \(\mathrm{Sb}_{7}{ }^{3-}\). A good compilation of arsenic-sulfur bond lengths in a variety of compounds has been given by Draeger. \({ }^{188}\) For three-coordinate arsenic, As-S distances range from 2.18 \(2.35 \AA\) so that the distances As(2)-S(1) and As(2)-S(2) in the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)cation are significantly shorter and longer respectively than most As-S distances. In \(\alpha\) and \(B \mathrm{As}_{4} \mathrm{~S}_{4}\) and its isomeric form II the As-S bonds have essentially "normal" lengths in the range 2.199-2.269 A. 69,70,77

The lengths of the arsenic-sulfur bonds can be
accounted for if it is assumed that there is a tendency for the positive charge on the basal \(s\) atom in \(I\) of Figure V-2 to be delocalised onto the other non-adjacent \(S\) atoms. This can be represented by the inclusion of the
two resonance structures II which would cause a lengthening of the As-S bonds in the triangular base and a shortening of the type \(\underline{b}\) As-S bonds. Delocalisation of charge onto the adjacent \(S\) atom can only occur as in III with the generation of a 4-valent \(S\) atom and it is not unreasonable to assume that this structure is not of great importance. This is consistent with the average \(\mathrm{s}-\mathrm{S}\) bond length of \(2.041(1) \AA\), that is very similar to the bond lengths of \(2.048 \AA\) and \(2.04 \AA\) in \(S_{8}\) and \(S_{8}{ }^{2+}, 189,190\) respectively. The bonds in these latter molecules are always regarded as "normal" single bonds although it should be emphasised that there is no conclusive evidence that this is the case. For comparison the bond length in \(\mathrm{S}_{4}{ }^{2+}\), which nominally has a bond order of 1.25 , is 2.014 (3) A. 191 Indeed the relationships between bond length and bond order for bonds between heavy atoms such as sulfur and arsenic are very uncertain. Even in the neutral molecule, \(\mathrm{As}_{4} \mathrm{~S}_{3}\), the As-As bonds in the triangular base are longer than "normal" and no satisfactory explanation for this has been given. It would seem that a given bond, e.g., an As-As single bond, can vary considerably in length with the nature and arrangement of the attached atoms.

(I)

(II)

(III)

FIGURE V-2. Resonance Structures of \(\mathrm{As}_{3} \mathrm{E}_{4}{ }^{+}\)Ions, \(\mathrm{E}=\mathrm{S}, \mathrm{Se}\).
Similarly, in the \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)cation there are again three different arsenic-selenium bond lengths; that in the base is longest at \(2.464(5) \stackrel{\circ}{A}\), the two bonds to As (1) are intermediate in length (2.358(5) \(\AA\), ave.) and finally As (2)-Se(1) is shortest at \(2.320(4) \AA\). The ordering of the lengths of these bonds in terms of position in the structure is the same as in the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)cation, although the differences between the three As-Se bond lengths in \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)is less than those between the analogous As-S bond lengths in the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)cation.

The lengths of these As-Se bonds may be
compared to the sum of the covalent radii for \(A s\) and \(S e\) of \(2.38 \stackrel{\circ}{\AA}\) and the average As-Se distances of 2.384(5) in
\(\mathrm{As}_{4} \mathrm{Se}_{4}^{72-75}\) and As-Se distances of \(2.32-2.56 \AA\) A calculated for polycrystalline \(\mathrm{As}_{2} \mathrm{Se}_{3}\) by a Monte Carlo fitting technique. 72 Apart from these values the few other As-Se distances that have been reported in the literature are for compounds containing \(\mathrm{AsSe}_{3}{ }^{3-}\) and related ions; for
 The unique Se-Se bond in the \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)cation, of length \(2.310(5) \stackrel{\circ}{\AA}\), is slightly shorter than the se-se bonds in several forms of cyclooctaselenium (2.335 A) 193 and the bonds in dimorpholinodiselane (2.346(1) \(\AA\)) and dimorpholinotriselane \((2.352(1) \AA)^{194}\) which may be regarded as "normal" single bonds. However, this bond length is still considerably larger than the se-Se bonds of \(2.283(4)\) and \(2.236(8) \AA\) observed for the \(\mathrm{Se}_{4}{ }^{+2}\) cation which, on the basis of simple valence bond and MO treatments, have bond orders of 1.25. \({ }^{195,196}\) Furthermore, it has been noted elsewhere \({ }^{197}\) that, in compounds containing chains of sulfur and selenium atoms, adjacent bonds can interact to produce alternations in bond lengths along the chain. This effect is more pronounced when one of the \(s\) or \(S e\) atoms is positively charged as in the Se \(_{10}{ }^{2+}\) cation. \({ }^{197}\) The bond adjacent to the positive charge is always observed to be long, and then the bonds are alternately short and long, the effect diminishing with increasing distance from the positive charge. A similar
effect is noted in the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)and \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)cations.
The \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)ion has a more regular structure than that of \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\). The angles in the triangular base are all equal to \(60^{\circ}\) in \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)whereas in \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)there are two angles of \(59^{\circ}\) and one of \(62^{\circ}\). All the other bond angles are slightly smaller than \(109.5^{\circ}\) and those at \(S\) are slightly larger than those at Se . That the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\) cation is more distorted than the \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)cation can be readily seen by comparing some internal contact distances. Thus, in \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)the contacts As(1)...As(2) and As(1)...Se(2) are very similar at \(3.676(5)\) and \(3.653(5) \AA\), respectively, while in the two \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)cations the As(1)...As(2) and As(1)...s(2) contacts are respectively 3.511(2) and 3.389(3) \(\AA\) for the hexafluoroantimonate salt and \(3.517(2)\) and 3.415(4) \(\AA\) for the hexafluoroarsenate salt. The significant difference in the two As(1)...S(2) contacts in these two salts may be related to the different strengths of several short interionic contacts which are significantly less than the neutral atom van der Waals distances (As...F \(<3.335 \AA\), S...F \(<3.20 \AA\)).

V-4 (iib) Interionic Contacts and the Anions

There are three contacts of note (Figure V-3, Table \(\mathrm{V}-4)\) in the structures of \(\left(\mathrm{AS}_{3} \mathrm{~S}_{4}\right)\left(\mathrm{ASF}_{6}\right)\) and \(\left(\mathrm{As}_{3} \mathrm{~S}_{4}\right)\left(\mathrm{SbF}_{6}\right)\).

FIGURE V-3. Interionic Contacts in \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right)\) and \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\).

TABLE V-4. Selected Intra- and Inter-ionic Contacts \((\AA)\) and Some Related Angles (\({ }^{\circ}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\[
\begin{gathered}
\mathrm{As}_{3} \mathrm{~S}_{4}^{+} \\
\text {Intra-ionic }
\end{gathered}
\]} \\
\hline As(1)...As(2) & \[
\begin{gathered}
\mathrm{SbF}_{6} \\
3.511(2)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{AsF}_{6} \\
3.517(2)
\end{gathered}
\] & S(1)...S(1) & \[
\begin{gathered}
\mathrm{SbF}_{6} \\
3.817(4)
\end{gathered}
\] & \[
\begin{gathered}
\text { AsF }_{6} \\
3.745(5)
\end{gathered}
\] \\
\hline As (1)... S (2) & 3.389 (3) & 3.415 (4) & S(1)...S (3) & 3.320 (4) & 3.321 (5) \\
\hline As(2)...S (3) & 3.550(4) & 3.549 (5) & S(1)...S(2) & 3.475 (4) & 3.498(5) \\
\hline As(2)...S(1') & 3.610(3) & 3.609 (4) & & & \\
\hline \multicolumn{6}{|c|}{Inter-ionic (As...F < 3.35, S...F < 3.20 A \({ }^{\circ}\))} \\
\hline As(1) . . F \(3^{\text {I }}\)) & \(3.107(12)\) & 3.174 (14) & \(\mathrm{S}(1)-\mathrm{As}(1) \ldots \mathrm{F}\left(3^{\mathrm{I}}\right)\) & 128.7(1) \({ }^{\circ}\) & 129.1(1) \({ }^{\circ}\) \\
\hline & & & \(\mathrm{S}(3)-\mathrm{As}(1) \ldots \mathrm{F}\left(3^{\mathrm{I}}\right)\) & \(65.0(2)^{\circ}\) & 65.6(3) \({ }^{\circ}\) \\
\hline \multirow[t]{3}{*}{S(3) ...F(\(3^{\mathrm{I}}\))} & 2.968(13) & 3.036 (15) & \(\mathrm{As}(1)-\mathrm{S}(3) \ldots \mathrm{F}\left(3^{\mathrm{I}}\right)\) & \(71.6(2)^{\circ}\) & 72.7 (3) \({ }^{\circ}\) \\
\hline & & & \(S(2)-S(3) \ldots F\left(3^{\text {I }}\right.\)) & 176.1(3) \({ }^{\circ}\) & 177.6(4) \({ }^{\circ}\) \\
\hline & & & As (1) . . F \(\left(3^{\text {I }}\right.\)) \(\ldots . S(3)\) & 43.4(2) \({ }^{\circ}\) & \(42.2(2)^{\circ}\) \\
\hline \multirow[t]{3}{*}{As(2) . . F (\(\left.4^{\mathrm{II}}\right)\)} & 2.970(12) & 2.994 (14) & \(\mathrm{S}(1)-\mathrm{As}(2) \ldots \mathrm{F}\left(4^{\mathrm{II}}\right)\) & 164.1(2) \({ }^{\circ}\) & 165.4(2) \({ }^{\circ}\) \\
\hline & & & As (2') - \(\mathrm{As}(2) \ldots \mathrm{F}\left(4^{\mathrm{II}}\right)\) & \(65.5(1)^{\circ}\) & \(65.7(1)^{\circ}\) \\
\hline & & & As (2) ...F(\(\left.4^{\text {II }}\right) \ldots \ldots \mathrm{As}\left(2^{\prime}\right)\) & 48.9(2) \({ }^{\circ}\) & \(48.5(2)^{\circ}\) \\
\hline
\end{tabular}

TABLE V-4 (continued)

TABLE V-4 (continued)

The fluorine atom \(F(4)\) forms short contacts of approximately the same length to all three atoms in the base of the cation. In the hexafluoroantiomonate structure the contacts, of lengths \(2.940(12)\) [As(2)...F(4') x 2] and \(2.965(13) \AA\) [S(2)...F(4')], are 0.41 and \(0.23 \AA\) less than van der waals limits. In the hexafluoroarsenate structure the corresonding contacts are of lengths \(2.994(14)(x 2)\) and \(3.032(16) \AA\), or 0.36 and \(0.17 \AA\) less than van der Waals limits.

The remaining short inter-ionic contacts in the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)structure involve atom \(\mathrm{F}(3)\) of a second \(\mathrm{SbF}_{6}{ }^{-}\) anion which appears to be bridging the As(1)-S(3) bond of the cation. These contacts in the hexafluoroantiomonate structure are of lengths 3.107(12) [As(1)...F(3")] and \(2.968(13) \AA\) [S(3)...F(3")] ca. \(0.24 \AA\) less than the respective van der Waals limits. [In the \(A s F_{6}{ }^{-}\)structure the analogous contacts are of lengths 3.174(14) and 3.036(15) \(\stackrel{\circ}{\mathrm{A}}\)].

In \(\left(\mathrm{As}_{3} \mathrm{~S}_{4}\right)\left(\mathrm{SbF}_{6}\right)\) the average SbF and AsF bond lengths in the anions are \(1.843(13) \AA\) and \(1.689(13) \AA\), respectively, and are close to the distances of 1.844 (7) and 1.719(3) \(\AA\) i observed in the crystal structures of \(K\left(\mathrm{SbF}_{6}\right)^{198}\) and \(\mathrm{K}\left(\mathrm{AsF}_{6}\right)^{199}\) respectively. Cis and trans angles in the \(\mathrm{AsF}_{6}{ }^{-}\)and the \(\mathrm{SbF}_{6}{ }^{-}\)anions of the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\) structures do not deviate significantly from \(90^{\circ}\) and \(180^{\circ}\). As a result of the interactions of fluorine atoms in the
anions with the apex and base of the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)cations the packing of these compounds consists of rows of alternating anions and cations along \(c\) (Figure \(V-4\)).

In the \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\) structure the positions of the fluorine atoms in the hexafluoroantimonate anion are not as well defined as those in the anions of the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\) salts so that some of the contact distances in the former structure are not as reliable. The atoms in the base of the cation are involved in three unsymmetrical fluorine bridges to the fluorine atoms in two anions related by a cell translation along a. These contacts are weaker than those to the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)cations and are close to the van der Waals limits \([\mathrm{As}(2) \ldots \mathrm{F}(3)=3.14 \AA\), \(\operatorname{Se}(2) \ldots \mathrm{F}(3)=3.39 \AA\), and As(2)...F(4) \(=3.26 \AA(x 2)]\). The shortest interionic contact in the \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\) structure of length \(3.02 \AA\) is to the bridging selenium atom \(\operatorname{se}(3)\). A similar contact to the other bridging selenium atom \(\operatorname{Se}(1)\) is poorly defined [Se(1)...F(2) \(=3.21(11) \AA\)]. Another feature of the contacts to the \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)cation is absence of any short contacts to the apical arsenic atom As(1).

The short anion-cation contacts observed in the present structures are analogous to those observed in the sulfur-nitrogen cations \(\mathrm{S}_{3} \mathrm{~N}_{2}{ }^{+}, \mathrm{S}_{6} \mathrm{~N}_{4}{ }^{2+}\) and \(\mathrm{S}_{4} \mathrm{~N}_{3}{ }^{+}\) (all of which principally involve the \(S-S\) bond in each

\(T \angle T\)

FIGURE V-4. Stereoscopic View of the Unit Cell Diagram of \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right)\).
ring), the mixed \(\mathrm{S}-\mathrm{Se}-\mathrm{N}\) cation \(\mathrm{Se}_{4} \mathrm{~S}_{2} \mathrm{~N}_{4}{ }^{2+}\) (involving the diselenide bond) 200 and the homo- and hetero-polyatomic cations of the Group VI elements.

The average antimony-fluorine bond length in the anion of \(\left(\mathrm{As}_{3} \mathrm{Se}_{4}\right)\left(\mathrm{SbF}_{6}\right)\) is \(1.85(4) \AA\) similar to the bond length observed in \(K\left(S B F_{6}\right) .198\) Cis and trans angles in this anion deviate by up to \(5^{\circ}\) from \(90^{\circ}\) and \(180^{\circ}\). A view of packing of \(\left(\mathrm{As}_{3} \mathrm{Se}_{4}\right)\left(\mathrm{SbF}_{6}\right)\) is given in Figure V-5. V-5 Infrared and Raman Spectra of the \(\mathrm{As}_{3} \underline{S}_{4}{ }^{+}\)and \(\mathrm{As}_{3} \mathrm{Se}_{4-}^{+}\) Salts and Related Compounds

X-ray crystallography has shown that both the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)and \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)cations have \(\mathrm{C}_{5}\) symmetry. The representations of the Raman and infrared active normal vibrations for both ions are 「vib \(\left(C_{S}\right)=9 A^{\prime}+6 A^{\prime \prime}\). Both \(A^{\prime}\) and A" vibrations are Raman and infrared active so fifteen bands are expected for each cation in both spectra.

Raman and infrared band frequencies, intensities and assignments for \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right), \mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right), \mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{AsF} \mathrm{F}_{6}\right)\), \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right), \alpha \mathrm{As} \mathrm{S}_{3}, \mathrm{BAs}_{4} \mathrm{~S}_{3}, \alpha \mathrm{As} \mathrm{S}_{4}\) and \(B A s_{4} S_{4}\) are listed in Tables \(V-5\) and \(V-6\) and the Raman and infrared spectra for the compounds studied here are reproduced in Figures V6-15 except for the IR spectrum of \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right)\) which was of poor quality.

FIGURE V-5. Stereoscopic View of the Unit Cell of \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\).

As noted earlier, \(\mathrm{As}_{4} \mathrm{~S}_{4}\) is insoluble in all solvents studied. Similarly, \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right)\) was found to be insoluble in \(\mathrm{CS}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SO}_{2} \mathrm{ClF}, 98 \% \mathrm{H}_{2} \mathrm{SO}_{4}\), \(\mathrm{AsF}_{3}, \mathrm{BCl}_{3}\) and \(\mathrm{SbF}_{5}, \mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\) was insoluble in \(\mathrm{CS}_{2}\) and \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\); slightly soluble in HF and was found to decompose in \(\mathrm{CH}_{3} \mathrm{CN}\) and \(\mathrm{HSO}_{3} \mathrm{~F}\). Although these salts were soluble in \(\mathrm{SO}_{2}\) their solubility, ca. \(10^{-3} \mathrm{M}\) for \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\), was not sufficient for a solution Raman spectrum. This was also the case for \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right)\) in \(\mathrm{AsF}_{3}\). Assignments were therefore limited to the anion vibrations.

A comparison of some As-S, As-As, As-Se, Se-Se
and \(s-s\) stretching frequencies (Table \(V-7\)) shows that As-As stretches range from \(200-300 \mathrm{~cm}^{-1}\), sulfur-sulfur stretches are usually above \(450 \mathrm{~cm}^{-1}\) and \(A s-S\) stretches are generally above \(300 \mathrm{~cm}^{-1}\). Hence, the gap from \(250 \mathrm{~cm}^{-1}\) to about \(330 \mathrm{~cm}^{-1}\) in the Raman spectra of the \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\) salts probably separates the arsenic-sulfur stretches from the bends. Any weak bands within this region are due to the \(\mathrm{SbF}_{6}{ }^{-}\)anion. Considering the length of the \(\mathrm{S}-\mathrm{S}\) bond in \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)one would have expected an \(\mathrm{S}-\mathrm{S}\) vibration in the usual region above \(450 \mathrm{~cm}^{-1}\). However, the bands in the range \(388-407 \mathrm{~cm}^{-1}\) probably represent the stretching modes involving this bond in \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\). From

TABLE V-5 Infrared and Raman Spectra of Some Arsenic-Sulfur Compounds
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right)\)} & \multicolumn{2}{|l|}{\(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right)\)} & \(\alpha \mathrm{As}_{4} \mathrm{~S}_{3}\) & \multicolumn{2}{|c|}{\(\mathrm{BAs}_{4} \mathrm{~S}_{3}\)} & \multicolumn{2}{|l|}{\(\mathrm{aAs}_{4} \mathrm{~S}_{4}\)} \\
\hline Raman & IR & Raman & IR & Assignments Raman \({ }^{\text {a }}\) & IR \({ }^{201}\) & Raman \({ }^{\text {a }}\) & Raman \({ }^{\text {a }}\) & IR \({ }^{177}\) \\
\hline 682(9) & 684 s & 648(20) & 653 s & \[
\nu_{1}, \mathrm{AsF}_{6}^{-}, \mathrm{SbF}_{6}^{-}
\] & & & & \\
\hline 670(7) & 671 s & 637 (7) & 633 s & \(\nu_{3}, \mathrm{AsF}_{6}{ }^{-}, \mathrm{SbF}_{6}{ }^{-}\) & & & & \\
\hline & & 520(2) & & & & & & \\
\hline 561 (2) & 561m & 561(3) & 560w & \(\nu_{2}, \mathrm{AsF}_{6}{ }^{-}, \mathrm{SbF}_{6}{ }^{-}\) & & & & \\
\hline & & 407 (6) & 407sh & & & & & \\
\hline \multicolumn{9}{|l|}{406(10)} \\
\hline & & 402(21) & 398vs & & & & & \\
\hline & & & 388sh & & & & & \\
\hline 368 (26) & & & & & & 375(5) & 375(5) & 375s \\
\hline 364(27) & 372sh & 369 (54) & 370 m & 368 (10) & 370vs & 367 (5) & 368 (8) & 369s \\
\hline - & 351m & - & 355s & 348 (26) & & 353 (18) & 355 (100) & 361m \\
\hline \multirow[t]{2}{*}{340(16)} & 341sh & 344 (19) & 342 m & 340 (8) & 340vs & 336(7) & 344 (30) & 341s \\
\hline & & & & & & & 340(21) & \\
\hline \multirow[t]{2}{*}{329 (71)} & 329 m & 329(74) & 328s & & & & 328 (4) & 329sh \\
\hline & & & & & & & tinued... & \\
\hline
\end{tabular}

TABLE V-5 (continued)

\footnotetext{
\({ }^{\mathrm{a}}\) Previously recorded (ref. 121) but additional splittings reported here.
}

TABLE V-6 Infrared and Raman Data for the \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)Salts. \({ }^{\mathrm{a}}\)

TABLE V-6 (continued)
\begin{tabular}{lllll}
\hline \(148(11)\) & 146 vw & \(144(11)\) & & \(1405(6)\) \\
\(115(100)\) & 118 m & \(115(100)\) & 117 m & \(115(15)\) \\
\(109(16)\) & 111 m & \(109(32)\) & 110 m & \(106(18)\) \\
& & & & \(100(14)\) \\
\(93(15)\) & 96 w & \(93(13)\) & 92 w & \(91(68)\) \\
\(59(9)\) & & \(60(60)\) & 63 & \(76(22)\) \\
40 sh & & & &
\end{tabular}
\(\mathrm{a}_{\text {All }}\) spectra were run at R.T. and the Raman spectra were obtained using a He-Ne laser \((6328 \AA)\). The Raman of the \(\mathrm{SbF}_{6}{ }^{-}\)salt is a time average spectrum of 38 scans.
\(\mathrm{b}_{\text {Anion }}\) not determined.

FIGURE V-7. Raman Spectrum of \(\alpha A S_{4} S_{3}\).

FIGURE V-8. Raman Spectrum of \(\mathrm{BAS}_{4} \mathrm{~S}_{3}\).

FIGURE V-9. Raman Spectrum of \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right)\) (* \(=\) sulfur).

FIGURE V-10. Raman Spectrum of \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right)\).

FIGURE V-11. Infrared Spectrum of \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right) \quad(\mathrm{X}=\) polyethylene \()\).

FIGURE V-12. Raman Spectrum of \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\).

FIGURE V-13. Infrared Spectrum of \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\).

FIGURE V-14. Raman Spectrum of \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{AsF}_{6}\right)\).

FIGURE V-15. Infrared Spectrum of \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{AsF}_{6}\right)\) (\(\mathrm{X}=\) polyethylene).

TABLE V-7 Characteristic Vibrational Data of (i) As-S, (ii) As-As, (iii) As-Se, (iv) Se-Se and (v) \(\mathrm{S}-\mathrm{S}\) Bonds.

TABLE V-7 (continued)
\begin{tabular}{lll}
\hline\({\mathrm{As}\left(\mathrm{S}_{2} \mathrm{PFMe}\right)_{3}{ }^{207}}^{207}\) & 360 & \(\mathrm{As}_{4} \mathrm{~S}_{3}(\alpha \text { or } \beta)^{121,201,9} 272\) \\
\(\mathrm{As}\left(\mathrm{S}_{2} \mathrm{PFEt}\right)_{3}\) & 368,350 &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{(iii) As-Se} & \multicolumn{2}{|l|}{(iv) \(\mathrm{Se}-\mathrm{Se}\)} \\
\hline Compound & & Compound & \\
\hline \[
\mathrm{As}_{2} \mathrm{Se}_{3}{ }^{201}
\] & 279,273,254,230,222,206 & \[
\mathrm{Se}_{4}^{+2} 215
\] & 327 \\
\hline \(\mathrm{As}_{4} \mathrm{Se}_{4}{ }^{73}\) & 253-205 & \(\left[\left(\mathrm{Se}\left(\mathrm{C}_{2} \mathrm{~F}_{5}\right)\right)_{4 n}\right]^{2 \mathrm{n}+216}\) & 347 \\
\hline \(\phi_{2} \mathrm{AsSeMe}^{213}\) & 301 & \(\alpha S{ }^{217}\) & 254,249,239 \\
\hline \(\phi \mathrm{As}\) (SeMe) \({ }_{2}{ }^{213}\) & 295,268 & trigonal \(\mathrm{Se}^{217}\) & 237,233 \\
\hline As (SeMe) \({ }_{3}{ }^{213}\) & 270,256 & \(\mathrm{CF}_{3} \mathrm{Se}-\mathrm{SeCF}_{3}{ }^{216}\) & 289 \\
\hline \((\mathrm{AsSeMe})_{3}{ }^{214}\) & 300,274,246,225 & \(\mathrm{Se}_{2} \mathrm{Cl}_{2}{ }^{218}\) & 292 \\
\hline & & \[
\mathrm{Se}_{2} \mathrm{Br}_{2}{ }^{218}
\] & 286 \\
\hline & & & (continued...) \\
\hline
\end{tabular}

TABLE V-7 (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline (v) S-S & & (v) S-S (continued) & & \\
\hline Compound & & Compound & & \\
\hline \(\mathrm{S}_{8} 220\) & 475,471,437 & \(\phi_{2} S_{2}{ }^{228}\) & 542 & \\
\hline \(\mathrm{S}_{4}{ }^{2+221}\) & 584 & \(\mathrm{S}_{2} \mathrm{C1}_{2}{ }^{219}\) & 540 & \\
\hline \[
\mathrm{S}_{2} \mathrm{Br}_{2}{ }^{218}
\] & 531 & \(\phi\) & & \\
\hline \[
{\mathrm{S}-\mathrm{SO}_{3}}^{2-222}
\] & 435 & \[
\mathrm{s}-\mathrm{A}
\] & & \\
\hline \[
\mathrm{F}_{3} \mathrm{CSSCF}_{3}{ }^{223}
\] & 535 & & 490 & \(\stackrel{\sim}{\bullet}\) \\
\hline \[
\mathrm{s}_{2}{ }^{224}
\] & 590 & & & \\
\hline \[
\mathrm{s}_{3}{ }^{2-224}
\] & 580,548 & \(\phi\) & & \\
\hline \[
\mathrm{H}_{2} \mathrm{~S}_{2} 225,226
\] & 510 & & & \\
\hline \[
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}_{2}^{227}
\] & 524 & & & \\
\hline
\end{tabular}
the values in Table \(V-7\) (ii) and Gordy's Rule 229 it is probable that the bands at \(250 \mathrm{~cm}^{-1}\) and \(230 \mathrm{~cm}^{-1}\)
are due to As-As stretches. One can also tentatively assign the symmetry of the vibrations at 197 and 136 \(\mathrm{cm}^{-1}\) as \(A^{\prime}\) and those at 355 and \(214 \mathrm{~cm}^{-1}\) as \(A^{\prime \prime}\) on the basis of their respective absences in the infrared and Raman spectra.

Spectroscopic data for compounds containing both arsenic and selenium are limited. Table V-7 (iii and iv) show that As-Se and Se-Se stretches usually occur between 220 and \(300 \mathrm{~cm}^{-1}\). The number of bands in the Raman spectra of \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{AsF}_{6}\right)\) and \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\) at least shows that the cation does not have pseudo \(C_{3 v}\) symmetry due to the similar masses of arsenic and selenium and similar bond strengths of As-As and Se-Se bonds. The band in the spectra at \(260 \mathrm{~cm}^{-1}\) may be due to the As-As stretch.

Solid state effects allow \(v_{1}-v_{5}\) of the anions to be seen in both the infrared and Raman spectra. Also, \(\nu_{3}\) of the \(\mathrm{AsF}_{6}{ }^{-}\)anion appears to come at a lower frequency than \(v_{1}\), which is unusual.

The Raman spectra of \(\mathrm{As}_{4} \mathrm{~S}_{3}\) agree well with the previously recorded Raman spectra. \({ }^{121}\) They are reported here because of additional splittings seen in
the spectra. Two previous reports \({ }^{176,177}\) of a band at \(235 \mathrm{~cm}^{-1}\) in the Raman spectrum of \(\alpha A s_{4} S_{4}\) have not been confirmed in this work or by some other workers. \({ }^{70}\) The bands previously reported at 222 and \(345 \mathrm{~cm}^{-1}\) were found to be doublets at 221,224 and \(340,344 \mathrm{~cm}^{-1}\), respectively. Unless crystal field splitting is occuring this requires the reassignment of the latter doublet as an \(E\) type stretch with further reassignments for the 328, 368 and \(375 \mathrm{~cm}^{-1}\) bands from \(\mathrm{B}_{1}, \mathrm{E}\) and E to some new arrangement of \(B_{1}, B_{2}\) and \(E\).

V-6 Electronic Absorption and NMR Studies of the Oxidation of Various Group VB Chalconides

A cursory examination of the oxidation of some \(\mathrm{VB} / \mathrm{VIB}\) compounds and melts in \(\mathrm{SO}_{2}\) was made by means of electronic absorption spectroscopy and \({ }^{31} P_{P}\) NMR spectroscopy. The former cannot lead to any definitive conclusions since any cationic species that might be produced could be 1) insoluble in \(\mathrm{SO}_{2} ; 2\)) have no absorption in the region studied or 3) have all the spectral bands obscured by those of known species. However, as the group VIB cations, which are probable products of these reactions, have previously been studied by this technique quick identification of their presence was possible. The group VIB cations were considered
likely products because of the ease of oxidation by \(\mathrm{AsF}_{5}\) of the group VIB elements compared to the VB elements. Table V-8 presents the experimental results as well as the assignments for the electronic absorption spectra. All absorption peaks were assignable to Group VIB cations. The ultraviolet region could not be studied because of solvent absorption below 330 nm . In all cases, except for \(\mathrm{As}_{4} \mathrm{~S}_{4}\) and \(1: 1\) As:Se melts, what appeared to be unreacted material remained in the reaction bulb after the reaction was completed. It should be noted here that significantly larger amounts of \(\mathrm{AsF}_{5}\) were used in the oxidation of \(\mathrm{As}_{4} \mathrm{~S}_{4}\) and \(1: 1\) As:Se melts than were used to produce the cations \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)and \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\). A large excess of \(\mathrm{AsF}_{5}\) with a l:l Sb:S melt oxidized all the material present giving \(\mathrm{S}_{8}\left(\mathrm{AsF}_{6}\right)_{2}\) and \(\left(\mathrm{Sb}_{6} \mathrm{~F}_{13}\right)\left(\mathrm{SbF}_{6}\right)_{5}{ }^{38}\) The latter was identified by Raman spectroscopy. The reaction \(\mathrm{As}_{4} \mathrm{~S}_{4}\) with \(\mathrm{S}_{8}\left(\mathrm{AsF}_{6}\right)\) in a \(\mathrm{l}: 2\) ratio in \(\mathrm{SO}_{2}\) could not be studied using a conventional electronic absorption spectrometer because of the speed of the reaction. However, sulfur \(\left(a s S_{8}\right)\) and \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{4}\right)\) could be identified by Raman spectroscopy. It was found that reactions of \(\mathrm{AsF}_{5}\) with \(\mathrm{P}_{4} \mathrm{Se}_{3}\) in \(\mathrm{SO}_{2}\) give only \(\mathrm{PF}_{5}, \mathrm{PF}_{3}\) and \(\mathrm{AsF}_{3}\) as soluble products as shown by \({ }^{3 l_{P}}\) and \({ }^{19}{ }_{F}\) NMR spectroscopy. The reaction of \(\mathrm{P}_{4} \mathrm{Se}_{3}\) with 3 moles

TABLE V-8 Electronic Absorption Spectra for Reaction of VB/VIB Compounds with AsF 5 in \(\mathrm{SO}_{2}\)
\begin{tabular}{|c|c|c|}
\hline Reaction & Absorption Bands & Assignment \\
\hline \(\mathrm{P}_{4} \mathrm{Se}_{3}+3 \mathrm{ASF}_{5}\) & 680,470 & \(\mathrm{Se}_{8}^{+2}\) \\
\hline \(\mathrm{As}_{4} \mathrm{~S}_{4}+>3 \mathrm{AsF}_{5}\) & 936,714,429;575 & \(\mathrm{R}_{2}{ }^{\text {; }} \mathrm{S}_{5}{ }^{+}\) \\
\hline 1:1 As:Se \(+>3 \mathrm{AsF}_{5}\) & 680,470 & \(\mathrm{Se}_{8}^{+2}\) \\
\hline \(1: 1 \mathrm{As}: \mathrm{Te}+3 \mathrm{AsF}_{5}\) & \(\sim 510, \sim 410\) & \(\mathrm{Te}_{4}{ }^{+2}\) \\
\hline \(\mathrm{As}_{2} \mathrm{Te}_{3}+3 \mathrm{AsF}_{5}\) & 513,428,358 & \(\mathrm{Te}_{4}{ }^{+2}\) and \(\mathrm{Te}_{6}{ }^{+4}\) \\
\hline \(1: 1 \mathrm{Sb}: \mathrm{S}+3 \mathrm{AsF}_{5}\) & 940,710,425;570 & \(\mathrm{R}_{2} ; \mathrm{S}_{5}{ }^{+}\) \\
\hline \(\mathrm{Sb}_{2} \mathrm{Se}_{3}+\mathrm{AsF}_{5}\) & 680,460 & \(\mathrm{Se}_{8}{ }^{+2}\) and/or \(\mathrm{Se}_{10}{ }^{+2}\) \\
\hline \(\mathrm{Sb}_{2} \mathrm{Te}_{3}+\mathrm{AsF}_{5}\) & 510, 420 (sh) & Te \(4^{+2}\) \\
\hline \(\mathrm{Bi}_{2} \mathrm{Se}_{3}+\mathrm{AsF}_{5}\) & 680,460 & \(\mathrm{Se}_{8}{ }^{+2}\) and/or \(\mathrm{Se}_{10}{ }^{+2}\) \\
\hline \(\mathrm{Bi}_{2} \mathrm{Te}_{3}+\mathrm{AsF}_{5}\) & 530,430,360 & \(\mathrm{Te}_{4}{ }^{+2}\) and \(\mathrm{Te}_{6}{ }^{+4}\) \\
\hline
\end{tabular}
a Unidentified radical. Ref. 231.
of \(\mathrm{AsF}_{5}\) at room temperature only momentarily produces \(\mathrm{Se}_{8}^{+2}\) as identified by visible absorption spectroscopy of the \(\mathrm{SO}_{2}\) solutions. Presumably it is consumed as it also acts as an oxidant for \(\mathrm{P}_{4} \mathrm{Se}_{3}\). Reactions left up to three days gave no products soluble in \(\mathrm{SO}_{2}\) while X-ray powder photography and Raman spectroscopy show \(\mathrm{P}_{4} \mathrm{Se}_{3}\) to be the only insoluble product. The reaction of \(\mathrm{P}_{4} \mathrm{~S}_{3}\) with three moles of \(\mathrm{AsF}_{5}\) or \(\mathrm{SbF}_{5}\) in \(\mathrm{SO}_{2}{ }^{230}\) produces several species of which \(\mathrm{PF}_{5}\) and \(\mathrm{PF}_{3}\) are the main phosphorus-containing compounds as shown by \({ }^{31}{ }^{P}\) NMR spectroscopy. None of the other products have been characterized as yet. More work is necessary to satisfactorily characterize these reactions.

\section*{V-7 Experimental Section}

> V-7 (i) The Reaction of As \(4 S_{4}\) with AsF 5 in a \(1: 3\) Mole Ratio; The Preparation of \(A_{3} S_{4}\left(A F_{6}\right)\)

In a typical experiment arsenic pentafluoride (0.699 mmol) was condensed into a vessel containing powdered \(\mathrm{As}_{4} \mathrm{~S}_{4}\) (\(\alpha\) or \(\beta\)) (0.233 mmol) under about \(14 \mathrm{~cm}^{3}\) of frozen \(\mathrm{SO}_{2}\) at \(-196^{\circ} \mathrm{C}\). As the reaction mixture was warmed to room temperature a bright yellow solution immediately formed which lightened in colour in about five minutes. After \(1 / 2 \mathrm{~h}\)
the formation of a light yellow precipitate was observed. The reaction was left stirring for at least 12 h . After the precipitate had been allowed to settle the solution was carefully poured through the frit at the same time as the other side was cooled. The \(\mathrm{SO}_{2}\) was then distilled back and the extraction repeated many times because of the low solubility of the product. Varying amounts of sulfur were mixed with the final crystalline product. In addition the reaction with \(\mathrm{BAs}_{4} \mathrm{~S}_{4}\) also gave an unidentified insoluble yellow powder mixed with unreacted \(\beta A S_{4} S_{4}\).
\[
\begin{aligned}
\text { V-7 (ii) } & \frac{\text { The Reaction of } \mathrm{As}_{4}}{} 4 \mathrm{~S}_{4} \text { with } \mathrm{S}_{8}\left(\mathrm{AsF}_{6}\right) \text { in a } \\
& \underline{1: 2 \text { Mole Ratio }}
\end{aligned}
\]

The compound \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right)\) can also be made using \(\mathrm{S}_{8}\left(\mathrm{AsF}_{6}\right)_{2}\) as oxidant. An \(\mathrm{SO}_{2}\) solution of 0.336 mmol of \(S_{8}\left(\mathrm{AsF}_{6}\right)_{2}\) poured onto 0.671 mmol of \(\mathrm{BAs}_{4} \mathrm{~S}_{4}\) immediately gave a pale yellow solution and precipitate. The Raman spectrum of the solid showed the presence of the compound \(\left(\mathrm{As}_{3} \mathrm{~S}_{4}\right)\left(\mathrm{AsF}_{6}\right)\), a large amount of sulfur and unreacted \(\mathrm{BAS}_{4} \mathrm{~S}_{4}\).

> V-7(iii) The Reaction of \(\mathrm{As}_{4} \mathrm{~S}_{4}\) with \(\mathrm{SbF}_{5}\) in a \(1: 3\) Mole Ratio; The Preparation of \(\left.\mathrm{As}_{3} \mathrm{~S}_{4} \underline{(S b F}_{6}\right)\)

For \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right) \quad 0.3727\) mmol of \(\mathrm{As}_{4} \mathrm{~S}_{4}\) powder and 1.1181 mmol of \(\mathrm{SbF}_{5}\) were added to different sides of the
double ampoule vessel. This was followed by condensation of \(\mathrm{SO}_{2}\) onto the \(\mathrm{SbF}_{5}\), warming and dissolution of the \(\mathrm{SbF}_{5}\). On pouring the solution through the frit the reaction proceeded in the same manner as for the reaction with \(\mathrm{AsF}_{5}\).

Analysis of the soluble solid product gave:
\begin{tabular}{lcc}
& Found & \begin{tabular}{c}
Calculated for \\
\(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{SbF}_{6}\right)\)
\end{tabular} \\
As & 39.94 & 38.18 \\
S & 20.88 & 21.78 \\
Sb & 18.20 & 20.68 \\
F & 18.64 & 19.36
\end{tabular}

V-7 (iv) The Reaction of \(1: 1\) and \(4: 3\) As:Se Melts with Three Moles of \(A s F_{5}\); The Preparation

Using similar amounts and conditions as described above, the reaction of a l:l or 4:3 As:Se melt and AsF 5 turned to light green-yellow solution that quickly gave a bright yellow-orange solution. After a few minutes a bright orange precipitate formed. This precipitate was extracted with \(\mathrm{SO}_{2}\) and crystals were grown as described above. This air-sensitive solid compound was not very stable, darkening in colour usually in less than two days
even when stored in a dry box. A black insoluble unidentified product was also present in the reaction chamber.

> V-7 (v) The Reaction of a l:l As:Se Melt with Three
> Moles of \(\mathrm{SbF}_{5}\); The Preparation of \(\mathrm{AS}_{3} \underline{\mathrm{Se}}_{4} \underline{(S b F}_{6}\))

The reaction was carried out by putting 2.369 mmol of powder from a l:l As:Se melt and 7.106 mmol of \(\mathrm{SbF}_{5}\) in separate arms of a double ampoule vessel. Sulfur dioxide was condensed onto the \(\mathrm{SbF}_{5}\) which dissolved on warming to room temperature. This solution was then poured through the frit onto the powder and immediately stirred. As with the preparation of the \(\mathrm{AsF}_{6}{ }^{-}\)salt, a light yellow-green then bright yellow-orange solution was formed with subsequent precipitation of a bright orange precipitate. Multiple extractions removed the soluble product leaving behind a mixture of yellow and black powders.

Analysis of the soluble material yielded the following results:

Found
Calculated for \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\)

As
27.22
40.50
40.68

Sb
17.94
15.68

F
13.92
14.68

Crystals of \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right)\) were formed by slowly distilling \(\mathrm{SO}_{2}\) from a solution of the compound.

CHAPTER VI

\section*{SUMMARY AND CONCLUSIONS}

VI-1 Summary and Conclusions

This thesis has dealt mainly with several aspects of the chemistry of the chalconides of phosphorus and arsenic. In almost every case it was found that the sulfides and selenides of phosphorus and arsenic are not converted to cationic species by either oxidizing Lewis acids or by the halogens. This behaviour is in contrast to that of many \(S-N\) compounds which give cations such as \(\mathrm{S}_{4} \mathrm{~N}_{4}^{+2}\) and \(\mathrm{S}_{3} \mathrm{~N}_{2} \mathrm{Cl}{ }^{+} \cdot 30,3\) The only exceptions to this generalization were found to be the reactions of \(\mathrm{As}_{4} \mathrm{~S}_{4}\) and \(\mathrm{As}_{4} \mathrm{Se}_{4}\) with \(\mathrm{AsF}_{5}\) and \(\mathrm{SbF}_{5}\) which gave the new cations \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)and \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\). A summary of the Lewis acid and oxidation reactions of group \(V\) chalconides are given in Table VI-l.

Interest in the structure and oxidation of P-As-S-Se compounds led to the preparation of several new ternary and quaternary compounds containing phosphorus. It is significant that all these compounds have the birdcage structure - a tetrahedron with three edges of a common apex bridged. A number of interesting trends in the \({ }^{31} \mathrm{P}\) chemical shifts and coupling constants were observed.

TABLE VI-1. Summary of Lewis Acid/Oxidation Reactions of the Group VB-Chalconides Studied
\begin{tabular}{|c|c|c|c|}
\hline Compound & Lewis Acid/0xidant & Molar Ratio with respect to Chalconide & Product(s) Identifted \\
\hline \multirow[t]{2}{*}{\(\mathrm{P}_{4} \mathrm{~S}_{3}\)} & \(\mathrm{AsF}_{5}{ }^{\text {a }}\) & 1:3 & \(\mathrm{PF}_{3}, \mathrm{PF}_{5}, \mathrm{AsF}_{3}\), other products \\
\hline & \(\mathrm{S}_{8} /\left(\mathrm{I}_{2}\right.\) catalytic amount) & 1:0.25 & \(\mathrm{aP}_{4} \mathrm{~S}_{5}, \mathrm{BP}_{4} \mathrm{~S}_{5}, \mathrm{P}_{4} \mathrm{~S}_{6}\), other products \\
\hline \multirow[t]{2}{*}{\(\mathrm{P}_{4} \mathrm{Se}_{3}\)} & \(\mathrm{AsF}_{5}\) & 1:3 & \(\mathrm{PF}_{3}, \mathrm{PF}_{5}, \mathrm{AsF}_{3}\) \\
\hline & \(\mathrm{I}_{2}\) & 1:1 & \(\mathrm{aP}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}\) \\
\hline \multirow[t]{5}{*}{\(\alpha(\beta) \mathrm{As}_{4} \mathrm{~S}_{4}\)} & \(\mathrm{X}_{2},(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})\) & 1:2 & \(\mathrm{AsX}_{3}, \mathrm{~S}_{2} \mathrm{X}_{2}\) \\
\hline & \[
\left.\begin{array}{l}
\mathrm{Br}_{2} \\
\mathrm{SbCl}_{5}
\end{array}\right\}
\] & \[
\left.\begin{array}{c}
1: 2 \\
1:>10
\end{array}\right\}
\] & \[
\left.\mathrm{SbCl}_{3}\right)_{1.8}\left(\mathrm{SBr}_{3}\right)_{1.2}\left(\mathrm{SbCl}_{6}\right)
\] \\
\hline & \(\mathrm{I}_{2}\) & 1:2 & AsSI \\
\hline & \[
\left.\begin{array}{l}
\mathrm{TaF}_{5}, \mathrm{NbF}_{5}, \mathrm{BCl}_{3}, \\
\mathrm{SO}_{3}, \mathrm{WF}_{6}, \mathrm{PCl}_{5}
\end{array}\right\}
\] & 1:3 & no reaction \\
\hline & \(\mathrm{MF}_{5}(\mathrm{M}=\mathrm{As}, \mathrm{Sb})\) & \(1: \leqslant 3\) (>3) & \[
\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{MF}_{6}\right), \mathrm{AsF}_{3} \underset{\text { cations }}{(\text { sulfur }} \text { cat }
\] \\
\hline
\end{tabular}

TABLE VI-1 (continued)
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{BAs}_{4} \mathrm{~S}_{4}\) & \(\mathrm{PF}_{5}\) & 1:3 & \(\mathrm{\alpha As}_{4} \mathrm{~S}_{4}\) \\
\hline \multirow[t]{3}{*}{1:1 As:Se} & \(\mathrm{AsF}_{5}\) & \(1: \leqslant 3(>3)\) & \[
\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{AsF}_{6}\right), \mathrm{AsF}_{3} \underset{\text { cations })}{(\text { sulfur }}
\] \\
\hline & \(\mathrm{SbF}_{5}\) & \(1: \leqslant 3(>3)\) & \[
\begin{aligned}
& \mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{SbF}_{6}\right), \mathrm{AsF}_{3}, \mathrm{As}_{3} \mathrm{Se}_{4} \\
& \left(\mathrm{Sb}_{\mathrm{n}} \mathrm{~F}_{5 \mathrm{n}+1}\right) ? \text { (selenium cations) }
\end{aligned}
\] \\
\hline & \(\mathrm{SbCl}_{3}\) & 1:3 & \(\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right), \mathrm{AsCl}_{3}, \mathrm{SbCl}_{3}\) \\
\hline 4:3 As: Se & \(\mathrm{AsF}_{5}\) & 1:3 & \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{AsF}_{6}\right), \mathrm{AsF}_{3}\) \\
\hline 1:1 As:Te & & & \\
\hline \[
\left.\begin{array}{c}
\mathrm{As}_{2} \mathrm{Te}_{3} \\
1: 1 \mathrm{Sb}: \mathrm{S}
\end{array}\right\}
\] & \(\mathrm{AsF}_{5}\) & 1:3 & Chalcogen cations \\
\hline \(\mathrm{Sb}_{2} \mathrm{Se}_{3}\) & & & \\
\hline \[
\left.\begin{array}{l}
\mathrm{Sb}_{2} \mathrm{Te}_{3} \\
\mathrm{Bi}_{2} \mathrm{Se}_{3} \\
\mathrm{Bi}_{2} \mathrm{Te}_{3}
\end{array}\right\}
\] & \(\mathrm{AsF}_{5}\) & 1:1 & Chalcogen cations \\
\hline
\end{tabular}

The \({ }^{3 I_{P}}\) NMR spectra of \(\alpha P_{4} S_{5}, B P_{4} S_{5}\) and what is thought to be a form of \(\mathrm{P}_{4} \mathrm{~S}_{6}\) have been recorded. The reinvestigation of the \({ }^{31} P\) NMR spectrum of \(P_{4} S e_{3}\) and the recording of its \({ }^{77}\) Se NMR spectrum have led to the calculation of a new set of coupling constants. The \({ }^{31}{ }_{P}\) NMR data for the binary phosphorus chalconides do not show any clear trends.

A few reactions of some binary compounds and mixtures of \(\mathrm{Sb}, \mathrm{Bi}, \mathrm{Se}\) and Te with \(\mathrm{AsF}_{5}\) were also investigated. Cations such as \(\mathrm{Bi}_{9}{ }^{+5}\) and \(\mathrm{Te}_{4}{ }^{+2}\) have been studied previously and it therefore seemed reasonable to expect that cations containing two or more of these elements might be produced in oxidizing systems. The structure of such cations would be of considerable interest for comparison with those of the known polyatomic cations. However, for the particular reactions studied (see Table VI-1) no new compounds could be detected by the methods used.

The reactions involving bromine, various chlorinating agents or chlorine as oxidizing agents usually produced the familiar halides of the elements. No neutral or cationic cages were produced but the compounds \(\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)\) and \(\mathrm{SeCl}_{3}\left(\mathrm{SbCl}_{6}\right)\) were formed. These along with \(\left.\mathrm{SCl}_{1.8} \mathrm{Br}_{1.2} \mathrm{SbCl}_{6}\right)\) were examined because of the continuing
interest \({ }^{157}\) in the secondary bonding in this type of compound. Structural and spectroscopic data were interpreted to show that the products of the reactions of \(\mathrm{NbCl}_{5}\) and \(\mathrm{TaCl}_{5}\) with \(\mathrm{SeCl}_{4}\) are the ionic compounds \(\operatorname{SeCl}_{3}\left(\mathrm{NbCl}_{6}\right)\) and \(\mathrm{SeCl}_{3}\left(\mathrm{TaCl}_{6}\right)\), respectively. Iodine, a much weaker oxidant, has been employed to prepare the new molecular cage compound \(\alpha_{4} \mathrm{Se}_{3} \mathrm{I}_{2}\). Crystalline AsSI can be obtained, by reaction of iodine and \(\mathrm{As}_{4} \mathrm{~S}_{4}\), at room temperature rather than by the usual high temperature method. 147 The compound AsSI is polymeric. No cations have been produced using iodine as an oxidant for the VB/VIB compounds.

One conclusion that can be drawn from the present work is that the \(M_{7}\) birdcage structure is favoured by the \(P\) and As chalconides. This is evidenced by the large number of molecules produced as well as the production of the ions \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)and \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\). In addition, the attempted oxidative reactions involving compounds already exhibiting this structure \(\left(P_{4} S_{3}, P_{4} \mathrm{Se}_{3}, \mathrm{As} S_{4}\right)\) have generally led to no reactions, polymerization or complete degradation of the molecule rather than formation of other possible cages and clusters such as: a cage \(\left(\mathrm{P}_{3} \mathrm{~S}_{3}{ }^{+}\right)\), a simple ring \(\left(\mathrm{AsS}_{3}{ }^{+}\right)\)or a tetrahedron \(\left(\mathrm{As}_{3} \mathrm{~S}^{+}\right)\).

The action of the oxidizing agents \(\mathrm{Cl}_{2}, \mathrm{Br}_{2}\) and
\(\mathrm{SbCl}_{5}\) on the \(\mathrm{VB} / \mathrm{VIB}\) compounds did not produce any novel
compounds. This is probably due to the relative ease of oxidation of phosphorus and arsenic compounds compared to nitrogen in \(S-N\) compounds. The lower electronegativities of phosphorus and arsenic compared to nitrogen also results in the chalcogen atoms attached to phosphorus or arsenic being more susceptible to oxidative attack. The production of the molecular compounds \(\alpha \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}\) and AsSI rather than ionic species is also not too surprising considering the polarizability of iodine.

\section*{VI-2 Suggestions for Future Work}

Much remains to be done in the area of Group VB chalconide chemistry. More specifically, substantial work is necessary to determine: l) structural parameters for many of the compounds prepared; 2) possible formation of other molecules having the \(S_{4} N_{4}\) molecular structure and 3) which structural forms are produced by oxidation.

Separation of the ternary and quaternary Group VB chalconides could be undertaken. This might be achieved by chromatography or by zone refining. Crystal structures could then be determined for individual compounds allowing the NMR data to be more fully evaluated. Complete leaching of the melts should be carried out with examination of the remaining solids. It is quite possible that insoluble compounds with, for example, the \(S_{4} N_{4}\) structure have been produced.

Table VI-2 gives the first order \({ }^{31} \mathrm{P}\) NMR spectral types and the number of each for cage compounds of phosphorus and sulfur based on the \(P_{4}\) tetrahedron, excluding all those with dithio linkages. Some of the geometrical possibilities are probably too highly strained to exist but considering the wide range of known phosphorus sulfides it is not unreasonable to expect that at least one isomer of \(\mathrm{P}_{4} \mathrm{~S}_{8}\) might be produced.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Number of Exocyclic Sulfurs} \\
\hline Elemental & 0 & 1 & 2 & 3 & 4 \\
\hline Composition & \multicolumn{5}{|c|}{Spectral Patterns and Number of Each ()} \\
\hline \(\mathrm{P}_{4}\) & \(\mathrm{A}_{4}{ }^{(1)}\) & & & & \\
\hline \(\mathrm{P}_{4} \mathrm{~S}\) & \(\mathrm{A}_{2} \mathrm{~B}_{2}(1)\) & \(\mathrm{AB}_{3}^{\mathrm{a}}(1)\) & & & \\
\hline \(\mathrm{P}_{4} \mathrm{~S} 2\) & \(\mathrm{A}_{4}(1), \mathrm{A}_{2} \mathrm{BC}(1)\) & \(\mathrm{A}_{2} \mathrm{BC}\) (2) & \(\mathrm{A}_{2} \mathrm{~B}_{2}(1)\) & & \\
\hline \(\mathrm{P}_{4} \mathrm{~S}_{3}\) & \[
\begin{aligned}
& \mathrm{AB}_{3}(2), \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}(1), \\
& \mathrm{A}_{2} \mathrm{BC}(1)
\end{aligned}
\] & \(\mathrm{A}_{2} \mathrm{BC}(3), \mathrm{ABCD}(1)\) & \(\mathrm{A}_{2} \mathrm{~B}_{2}(2), \mathrm{ABCD}(1)\) & \(\mathrm{AB}_{3}(1)\) & \\
\hline \(\mathrm{P}_{4} \mathrm{~S}_{4}\) & \(\mathrm{A}_{4}(1), \mathrm{A}_{2} \mathrm{BC}(1)\) & \[
\begin{aligned}
& \mathrm{AB}_{3}(2), \mathrm{A}_{2} \mathrm{BC}(3), \\
& \mathrm{ABCD}(3)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A}_{2} \mathrm{~B}_{2}(1), \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}(1), \\
& \mathrm{A}_{2} \mathrm{BC}(2), \mathrm{ABCD}(2)
\end{aligned}
\] & \(\mathrm{A}_{2} \mathrm{BC}(2)\) & \(A_{4}(1)\) \\
\hline \(\mathrm{P}_{4} \mathrm{~S}_{5}\) & \(\mathrm{A}_{2} \mathrm{~B}_{2}(1)\) & \(\mathrm{A}_{2} \mathrm{BC}(3), \mathrm{ABCD}(1)\) & \[
\begin{aligned}
& \mathrm{AA}^{\prime} \mathrm{BB} B^{\prime}(2), \mathrm{A}_{2} \mathrm{BC}(3) \\
& \mathrm{ABCD}(3)
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{A}_{2} \mathrm{BC}(3), \\
\mathrm{ABCD}(1)
\end{gathered}
\] & \(\mathrm{A}_{2} \mathrm{~B}_{2}{ }^{(1)}\) \\
\hline \(\mathrm{P}_{4} \mathrm{~S}_{6}\) & \(A_{4}(1)\) & \(\mathrm{A}_{2} \mathrm{BC}(2)\) & \[
\begin{gathered}
\mathrm{A}_{2} \mathrm{~B}_{2}(1), \mathrm{AA}^{\prime} \mathrm{BB} \mathrm{~B}^{\prime}(1) \\
\mathrm{A}_{2} \mathrm{BC}(2), \mathrm{ABCD}(2)
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{AB}_{3}(2), \mathrm{A}_{2} \mathrm{BC}(3) \\
& \mathrm{ABCD}(3)
\end{aligned}
\] & \(A_{4}(1), A_{2} \mathrm{BC}(1)\) \\
\hline \(\mathrm{P}_{4} \mathrm{~S}_{7}\) & & \(\mathrm{AB}_{3}(1)\) & \(\mathrm{A}_{2} \mathrm{~B}_{2}(2), \mathrm{ABCD}(1)\) & \(\mathrm{A}_{2} \mathrm{BC}(3), \mathrm{ABCD}(1)\) & \[
\begin{aligned}
& \mathrm{AB}_{3}(2), \mathrm{AA} \mathrm{AB}^{\prime}(1), \\
& \mathrm{A}_{2} \mathrm{BC}(1)
\end{aligned}
\] \\
\hline \(\mathrm{P}_{4} \mathrm{~S}_{8}\) & & & \(\mathrm{A}_{2} \mathrm{~B}_{2}(1)\) & \(\mathrm{A}_{2} \mathrm{BC}(2)\) & \(\mathrm{A}_{4}(1), \mathrm{A}_{2} \mathrm{BC}(1)\) \\
\hline \(\mathrm{P}_{4} \mathrm{~S}_{9}\) & & & & \(\mathrm{AB}_{3}(1)\) & \(\mathrm{A}_{2} \mathrm{~B}_{2}(1)\) \\
\hline \(\mathrm{P}_{4} \mathrm{~S}_{10}\) & & & & & \(\mathrm{A}_{4}(1)\) \\
\hline
\end{tabular}
\(a_{\text {Does not }}\) necessarily imply second order. Spectrum could also be \(A_{3} B\).

It should be possible to study the phosphorus-sulfur system completely with the present accessibility of high field NMR spectrometers. These additional studies would be of interest because, as was noted earlier, no trends can be detected in the NMR data of the phosphorus sulfides studied to date. Individual compounds should also be separated and their crystal structures determined. The very low solubility of most of the Group VB chalconides resulting from strong intermolecular forces in the crystals has been a problem for the formation of adducts. Adduct formation might be facilitated by refluxing the chalconides and Lewis acids in solvents for long periods of time. Fusion reactions could be investigated with certain solid Lewis acids like \(\mathrm{AlCl}_{3}\). It was observed during the course of this work that a \(2: 1: 1\) As:S:Se fused mixture oxidized by \(\mathrm{AsF}_{5}\) gave an orange powder the Raman spectrum of which did not appear to be the sum of those of \(\mathrm{As}_{3} \mathrm{~S}_{4}\left(\mathrm{AsF}_{6}\right)\) and \(\mathrm{As}_{3} \mathrm{Se}_{4}\left(\mathrm{AsF}_{6}\right)\). It is possible that cations such as \(\mathrm{As}_{3} \mathrm{~S}_{3} \mathrm{Se}^{+}\)were produced in this reaction. Seleniumcontaining cations could be studied by recording the \({ }^{77}\) Se NMR spectra of isotopically enriched samples.

The \(\mathrm{P}_{4} \mathrm{~S}_{3} / \mathrm{AsF}_{5}\) and \(\mathrm{P}_{4} \mathrm{Se}_{3} / \mathrm{AsF}_{5}\) systems will have to be studied further but in the light of the present work, oxidation of \(\mathrm{S}_{4} \mathrm{~N}_{4}\)-shaped molecules would
probably be more fruitful for attempts to produce cationic species. The compounds \(\alpha\) and \(\beta P_{4} S_{4}\) are examples of compounds that could be oxidized. Further characterization of \(\mathrm{P}_{4} \mathrm{Se}_{4}\) must be undertaken before it is used in oxidative studies because this compound \({ }^{89}\) may be a birdcage-shaped molecule with an exocyclic selenium. The selenium analogues of \(\alpha\) and \(B P_{4} S_{4}\) could probably be made using a synthesis analogous to Sheldrick's synthesis for the sulfur compounds:
\[
\begin{aligned}
& \mathrm{P}_{4} \mathrm{Se}_{3}+\mathrm{I}_{2} \frac{\mathrm{RT}\left(\mathrm{O}^{\circ} \mathrm{C}\right)}{\mathrm{CS}}{ }_{2} \alpha(\beta) \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2} \\
& \alpha(\beta) \mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}+\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{M}\right)_{2} \mathrm{Se} \longrightarrow \alpha(\beta) \mathrm{P}_{4} \mathrm{Se}_{4}+2\left(\mathrm{CH}_{3}\right)_{3} \mathrm{MI} \\
& M=\mathrm{Si}, \mathrm{Ge}
\end{aligned}
\]

If \(\left(\left(\mathrm{CH}_{3}\right)_{3}^{\mathrm{M})} 2^{\mathrm{S}}\right.\) was employed several new ternary compounds might be prepared.

The only cage anions of the Group-VB-
chalconides excluding those of the sulfur-nitrogen system that have been well characterized are \(\mathrm{P}_{2} \mathrm{~S}_{8}^{-2}, 232\) \(\mathrm{P}_{4} \mathrm{~S}_{8}{ }^{-4233}\) and \(\mathrm{As}_{4} \mathrm{~S}_{6}^{-2} .172\) The latter two ions, for example, are structurally interesting in relation to the neutral molecules and cations discussed in this thesis. The ion \(\mathrm{P}_{4} \mathrm{~S}_{8}^{-2}\) contains a square of phosphorus atoms while all the cations and molecules prepared for this
thesis have a triangle of group VB atoms. Studies to determine whether both structural skeletons can occur in cationic, anionic and neutral species could be undertaken. Oxidation of \(\mathrm{As}_{4} \mathrm{~S}_{6}^{-2}\) may only produce \(\mathrm{As}_{4} \mathrm{~S}_{4}\) or \(\mathrm{As}_{4} \mathrm{~S}_{3}\) or alternately an arsenic atom might be removed as in the oxidation of \(\mathrm{As}_{4} \mathrm{~S}_{4}\) by \(\mathrm{AsF}_{5}\). It must be noted that complications might also arise because of reactions with the cations of the salts of \(\mathrm{P}_{4} \mathrm{~S}_{8}^{-4}\) and \(\mathrm{As}_{4} \mathrm{~S}_{6}^{-2}\) ions. Some aspects of the chemistry of the VB/VIB compounds have been explored. Investigations of the chemistry of sulfur-nitrogen compounds by other workers have generally led to the syntheses of products containing rings with varying degrees of multiple bond character. However, the reactions of VB/VIB compounds of the heavier group VB elements have generally led to the production of polymeric species \(\left(\mathrm{As}_{2} \mathrm{~S}_{3}\right)\) or molecular species exhibiting the \(S_{4} N_{4}\) or birdcage structures possessing essentially single bonds. Oxidation of these compounds has usually led to total degradation of the molecular cage resulting in the formation of polymers (ASSI) or simple halide-containing ions and molecules \(\left(\mathrm{SCl}_{3}{ }^{+}\right.\)and \(\left.\mathrm{AsCl}_{3}\right)\). Whether additional studies of VB/VIB compounds will produce further analogues of the cages \(\mathrm{As}_{3} \mathrm{~S}_{4}{ }^{+}\)and \(\mathrm{As}_{3} \mathrm{Se}_{4}{ }^{+}\)or other new structural types remains to be determined.

\section*{BIBLIOGRAPHY}
1. Cowley, A.H.; J. Chem. Educ., (1964), 41, 530.
2. Hoffman, H.; Becke-Goehring, M.; "Phosphorus Sulfides"; in Topics in Phosphorus Chemistry, Vol 8; Ed. Griffith, E.J.; Grayson, M.; Interscience; N.Y.; 1976.
3. Trotman-Dickenson, A.F., Exec. Ed.; Comprehensive Inorganic Chemistry, Pergamon Press; Oxford; 1973.
4. Cotton, F.A.; Wilkinson, G.; Advanced Inorganic Chemistry, 4th ed.; Wiley-Interscience, Toronto, 1980.
5. Roesky, H.W.; Angew. Chem., Int. Ed. Engl., (1979), 18. 91.
6. Banister, A.J.; Phosphorus and Sulfur, (1979), 6, 421.
7. Banister, A.J.; Dainty, P.J.; J. Chem. Soc. Dalton Trans., (1972), 2658.
8. Gillespie, R.J.; Slim, D.R.; Tyrer, J.D.; J. Chem. Soc. Chem. Comm., (1977), 253.
9. Gillespie, R.J.; Kent, J.P.; Sawyer, J.F.; Inorg. Chem., to be published.
10. Gillespie, R.J.; Passmore, J.; Adv. in Inorg. Chem. and Radiochem., (1975), 17, 49.
11. Nakajima, S.; J. Phys. Chem. Solids, (1963), 24, 479.
12. Walker, M.L.; Peckenpaugh, D.E.; Mills, J.L.; Inorg. Chem., (1979), 18, 2792.
13. Anderson, T.L.; Krause, H.B.; Acta Cryst., (1974), B30, 1307.
14. Leiva, V.A.M.; Fluck, E.; Müller, H.; Wallenwein, G.; Z. Anorg. Allg. Chem., (1974), 409, 215.
15. Monteil, Y.; Vincent, H.; Can. J. Chem., (1974), 52, 2190.
16. Vincent, H.; Bull. Soc. Chim. Fr., (1972), 4517.
17. Blachnik, V.R.; Hoppe, A.; Z. Anorg. Allg. Chem., (1979), 457, 91.
18. Griffin, A.M.; Minshall, P.C.; Sheldrick, G.M.;
J. Chem. Soc. Chem. Comm., (1976), 809.
19. Whitfield, H.J.; J. Chem. Soc. Dalton Trans., (1973), 1740.
20. Bauer, G., ed.; Handbook of Preparative Inorganic Chemistry, 2nd ed.; Academic Press; N.Y.; 1963.
21. Mikulski, C.M.; Russo, P.J.; Saran, M.S.; MacDiarmid, A.G.; Garito, A.F.; Heeger, A.J.; J. Am. Chem. Soc., (1975), 97, 6358.
22. Becke-Goehring, M.; Jenne, H.; Rekalic, V.; Chem. Ber. (1959), 92, 855, 1237.
23. Garcia-Fernandez, H.; Heal, H.G.; Teste de Sagey, G.; C.R. Acad. Sci. Paris, Ser. C, (1972), 275, 323.
24. Garcia-Fernandez, H.; Heal, H.G.; Teste de Sagey, G.; C.R. Acad. Sci. Paris, Ser. C, (1976), 282, 241.
25. Delucia, M.L.; Coppens, P.; Inorg. Chem., (1978), 17, 2336.
26. Chivers, T.; Proctor, J.; J. Chem. Soc. Chem. Comm., (1978), 642.
27. Glemser, O.; Kock, W.; Angew. Chem., (1971), 83, 145. 28. Fagginni, R.; Gillespie, R.J.; Lock, C.J.L.; Tyrer, J.P.; Inorg. Chem., (1978), 17, 2975.
29. Gillespie, R.J.; Ireland, P.R.; Vekris, J.E.; Can. J. Chem., (1975), 53, 3147.
30. Kruh, R.F.; Cordes, A.W.; Lawrence, R.M.; Goforth, R.G.; Acta Cryst., (1961), 14, 1306.
31. Gillespie, R.J.; Kent, J.P.; Slim, D.R.: Sawyer, J.F.; Inorg. Chem., to be published.
32. Chivers, T.; Fielding, L.; Chem. Comm., (1978), 212.
33. Banister, A.J.; Clacke, H.G.; J. Chem. Soc. Dalton Trans., (1972), 2661.
34. Chivers, T.; Oakley, R.; J. Chem. Soc. Chem. Comm., (1979), 752.
35. Bojes, J.; Chivers, T.; J. Chem. Soc. Chem. Comm., (1978) 391.
36. Flues, W.; Scherrer, O.J.; Weiss, J.; Welmershaüser, G. ; Angew. Chem. Int. Ed. Engl., (1976), 15, 379.
37. Birchall, T.; Dean, P.A.W.; Valle, B.D.; Gillespie, R.J.; Can. J. Chem., (1973), 51, 667.
38. Edward, A.J.; Slim, D.R.; J. Chem. Soc. Chem. Comm., (1974), 178.
39. Alange, G.G.; Banister, A.J.; J. Inorg. Nucl. Chem., (1978), 40, 203.
40. Jefferson, R.; Klein, H.F.; Nixon, J.F.; J. Chem. Soc. Chem. Comm. (1969), 536.
41. Ibanez, W.F.; Gonzalez, M.G.; Clavijo, C.E.; Z. Anorg. Allg. Chem., (1977), 432, 253.
42. Glatzel, E.; Chem. Ber., (1891), 24, 3886.
43. Zborilova, L.; Gebauer, P.; Z. Anorg. Allg. Chem. (1979), 448, 5.
44. Aktar, M.; Chiang, C.K.; Heeger, A.J.; Milliken, J.; MacDiarmid, A.G.; Inorg. Chem., (1977), 17, 1539.
45. Chernov, A.P.; Kanishcheva, A.S.; Dembovskii, S.A.; Inorg. Mater., (1969), 5, 320.
46. Chernov, A.P.; Dembovskii, S.A.; Chubirka, L.A.; Inorg. Mater., (1970), 6, 411.
47. Blachnik, V.R.; Rabe, V.; Z. Anorg. Allg. Chem., (1980), 461, 87.
48. Topsom, R.D.; Wilkins, C.J.; J. Inorg. Nucl. Chem., (1956), 3, 187.
49. Baudler, M.; Fricke, J.; Fichtner, K.; Wetter, G.; Naturwissenschaften, (1962), 50, 548.
50. Penney, G.J.; Sheldrick, G.M.; J. Chem. Soc. A, (1971), 1100.
51. Fluck, V.E.; Yutronic, N.; Hawbold, W.; Z. Anorg. Allg. Chem., (1976), 420, 247.
52. Penney, G.J.; Sheldrick, G.M.; Acta Cryst., (1970), B26, 2092.
53. Cowley, A.H.; Cohen, S.T.; Inorg. Chem., (1964), 3, 780.
54. Baudler, M; Volland, B.; Valpertz, H.W.; Chem. Ber., (1973), 106, 1049.
55. Andrews, J.M.; Fergusson, J.E.; Wilkins, C.J.; J. Inorg. Nucl. Chem., (1963), 25, 829.
56. Christofferson, G.D.; McCullough, J.D.; Acta Cryst., (1959) 12,14 and references therein.
57. Gillespie, R.J.; Chem. Soc. Rev., (1979), 8, 315.
58. v. Schnering, H.G.; Angew. Chem. Int. Ed. Eng., (1981), 20, 33.
59. Calvo, C.; Gillespie, R.J.; Vekris, J.E.; Ng, H.N., Acta Cryst., (1978), B34, 911.
60. Cisar, A.; Corbett, J.D.; Inorg. Chem., (1977), 16, 2482.
61. Thurn, H.; Krebs, H.; Angew. Chem. Int. Ed. Eng., (1966), 5, 1047.
62. Dahlmann W.; von Schnering, H.G.; Naturwissenschaften, (1972), 59, 420.
63. Schmettow, \(W\); von Schnering, H.G.; Angew. Chem. Int. Ed. Engl., (1977), 16, 857.
64. Adolphson, D.G.; Corbett, J.D.; Merryman, D.J.; J. Am. Chem. Soc., (1976), 98, 7234.
65. Schmettow, W.; Lipka, A.; von Schnering, H.G.; Angew. Chem. Int. Ed. Engl., (1974), 13, 5.
66. Wichelhaus, W.; von Schnering, H.G.; Natursissenschaften, (1973), 60, 104.
67. Herschaft, A.; Corbett, J.D.; Inorg. Chem., (1973), 2, 979.
68. Lu, C.S.; Donahue, J.; J. Am. Chem. Soc., (1944), 66, 818 .
69. Mullen, D.J.E.; Nowacki, W.; Z. Kristallog., (1972), 136, 48 .
70. Porter, E.J.; Sheldrick, G.M.; J. Chem. Soc. Dalton Trans., (1972), 1347.
71. Minshall, P.C.; Sheldrick, G.M.; Acta Cryst., (1978), B34, 1326.
72. Renninger, A.L.; Averbach, B.L.; Acta Cryst., (1973), B29, 1583.
73. Bastow, T.J.; Whitfield, H.J.; J. Chem. Soc., Dalton Trans., (1973), 1739.
74. Smail, E.J.; Sheldrick, G.M.; Acta Cryst., (1973), B29, 2014.
75. Goldstein, P.; Paton, A.; Acta Cryst., (1974), B30, 915.
76. Barnighausen, V.H.; Volkmann, T.V.; Acta Cryst., (1966), 21. 571.
77. Kutoglu, A.; Z. Anorg. Allg. Chem., (1976), 419, 176. 78. Gatehouse, B.M.; J. Chem. Soc. Chem. Comm., (1969), 948.
79. Elmes, P.S.; West, B.O.; Aust. J. Chem., (1970), 23, 2247.
80. Griffin, A.M.; Sheldrick, G.M.; Acta Cryst., (1975), B31, 2738.
81. Leung, Y.C.; Waser, J; van Houten, S.; Vos, A.; Wiegers, G.A.; Wiebenga, E.H.; Acta Cryst., (1957), 10, 574.
82. Keulen, E.; Vos, A.; Acta Cryst., (1959), 12, 323.
83. Whitfield, H.J.; J. Chem. Soc. (A), (1970), 1800.
84. Whitfield, H.J.; J. Chem. Soc. Dalton Trans., (1973), 1737.
85. Bastow, T.J.; Whitfield, H.J.; J. Chem. Soc. Dalton Trans., (1977), 959.
86. Hönle, W.; von Schnering, H.G.; Z. Anorg. Allg. Chem., (1978), 440, 171.
87. von Schnering, H.G.; Fenske, D.; Hönle, W.; Binnewies, M.; Peters, K.; Angew Chem. Int. Ed. Engl., (1979), 18, 679.
88. Ellerman, J.; Schussner, H.; Angew Chem. Int. Ed. Engl., (1974), 13, 601.
89. Monteil, Y.; Vincent, H.; Z. Anorg. Allg. Chem., (1975), 416, 181.
90. Schenk, P.W.; Vietzke, H.; Angew. Chem., (1962), 74, 75.
91. Haiduc, I.; The Chemistry of Inorganic Ring Systems; Interscience, London, 1970.
92. Pertlik, F.; Monatsh Chem., (1978), 109, 277.
93. Pertlik, F.; Monatsh Chem., (1975), 106, 755.
94. Vaipolin, A.A.; Societ Phys. Crystallogr., (1966), 10, 509.
95. Smith, B.A.; Cowlan, N.; Shumah, A.M.; Philos. Magazine B, (1979), 39, 111.
96. Svensson, C.; Acta Cryst., (1974), B30, 458.
97. Carron, G.J.; Acta Cryst., (1963), 16, 338.
98. Bayliss, P.; Nowacki, W.; Z. Kristallog., (1972), 135, 308.
99. Tideswell, N.W.; Kruse, F.H.; McCullough, J.D.; Acta Cryst., (1957), 10, 99.
100. Semiletov, S.A.; Soviet Physics Cryst., (1956), 1 , 317.
101. Quinn, R.K.; Mat. Res. Bull., (1974), 9, 803.
102. Van Wazer, J.R., ed.; Phosphorus and Its Compounds, Vol I; Interscience; N.Y.; 1961.
103. Baidakov, L.A.; Scherbakov, V.A.; Izv. Akad. Nauk. SSSR, (1969), 5, 1882.
104. Birchall, T., Della Valle, B.; J. Chem. Soc. Chem. Comm., (1970), 675.
105. Matsuda, A.; Kikuchi; Solid State Commun., (1973), 12, 359.
106. Huheey, J.E.; Inorganic Chemistry: Principles of Structure and Reactivity, 2nd ed.; Harper \& Row Publ.; N.Y.; 1972.
107. Wilkins, C.J.; Hagen, K.; Hedberg, L.; Shen, A.; Hedberg, K.; J. Am. Chem. Soc., (1975), 97, 6352.
108. Boorman, P.M.; Codding, P.W.; Kerr, K.A.; J. Chem. Soc. Dalton Trans.; (1979), 1482.
109. Codding, P.W.; Kerr, K.A.; Acta Cryst., (1978), B24, 3785.
110. Hoffman, C.J.; Lutton, J.M.; Parry, R.W.; Inorg. Synth., (1953), 4, 150.
111. Barr, J.; Ph.D. Thesis, McMaster University, 1959.
112. Schack, C.L.; Wilson, R.D.; Inorg. Chem., (1970), 9, 311.
113. Gillespie, R.J.; Ummat, P.K.; Jean, P.W.; Inorganic Syntheses, Vol XV, McGraw-Hill, 1974, p 213.
114. Schrobilgen, G.J.; Ph.D. Thesis, McMaster University, Hamilton, Ontario, 1973.
115. Nicolet Instrument Corp.; ITRCAL-Iteration of Calculated NMR Spectra Using Least Square Criteria; Madison, Wisconsin; 1974.
116. Martin, J.S.; Worvill, K.J.; Numarit, Version 771, 1977.
117. Henry, N.F.M.; Lonsdale, K.; ed.; International Tables for X-ray Crystallography, Vol I-III; Kynoch Press; Birmingham, England; 1965.

Cromer, D.T.; Waber, J.T.; ed; International Tables for X-ray Crystallography, Vol IV; Kynoch Press; Birmingham, England; 1974.
118. Sheldrick, G.M.; SHELX, Program for Crystal Structure Determination; Univ. of Cambridge; 1976.
119. Steward, J.M., ed.; X-ray (1976) System of Crystallographic Programs Technical Report TR-446 of the Computer Science Center, University of Maryland; College Park, Marland; 1976.
120. Dwek, R.A.; Richards, R.E.; Taylor, D.; Penney, G.J.; Sheldrick, G.M.; J. Chem. Soc. A, (1969), 935.
121. Bues, W.; Somer, M.; Brockner, w.; Z. Naturforsch., (1980), 35b, 1063.
122. Glatzel, E.; Z. Anorg. Chem., (1893), 14, 186.
123. Grayson, M., ed.; Griffith, E.S., ed.; Topics in Phosphorus Chemistry, Vol 5; Interscience, N.Y.; 1967.
124. Baudler, M.; Pure and Appl. Chem., (1980), 52, 755.
125. Finer, E.G.; Harris, R.K.; "Spin-Spin Coupling Between Phosphorus Nuclei", in Progress in NMR Spectroscopy, Vol 6, p 61; ed., Emsley, J.W.; Feeney, J.; Sutcliffe, L.H.; Pergamon Press, Oxford, 1970.
126. Head, J.D.; Mitchell, K.A.R.; Noodleman, L.; Paddock, N.L.; Can. J. Chem., (1977), 55, 669.
127. Heckmann, G.; Fluck, E.; Z. Naturforsch., (1969), 24b, 1092.
128. Heckmann, G.; Fluck, E.; Z. Naturforsch., (1971), 26b, 982.
129. Weast, R.C.; ed.; CRC Handbook of Chemistry and Physics, 54th ed.; CRC Press, Cleveland, 1973.
130. Gerding, H.; Marsen, I.W.; Nobel, P.C.; Rec. Trav. Chim. PAYS-BAS, (1957), 76, 757.
131. Steger, E.; Blechschmidt, H.D.; Spectrochim. Acta, (1968), 24A, 92.
132. Gardner, M.; J. Chem. Soc. Dalton Trans., (1973), 691.
133. Cyvin, S.J.; Brunvoll, J.; Cyvin, B.N.; Somer, M.; Brockner, W.; Z. Naturforsch, (1980), 35a, 1062.
134. Maroni, V.A.; Schablaske, R.V.; J. Inorg. Chem., (1971), 33, 3182.
135. Cotton, F.A.; Chemical Applications of Group Theory, 2nd ed.; Wiley-Interscience; New York; 1971.
136. Fateley, W.G.; Dollish, F.R.; McDevitt, N.T.; Bentley, F.F.; Infrared and Raman Selection Rules for Molecular Lattice Vibrations: The Correlation Method;

Wiley-Interscience, New York, 1972.
137. Andrew, E.R.; Wynn, V.T.; Proc. Roy. Soc. Ser. A, (London), (1966), 291, 257.

13E. Houten, S.; Wiebenga, E.H.; Acta Cryst., (1957), 10, 156.
139. Bonnard, G.; Croiset, R.M.; Demarcq, M.; Mathieu, E.; Chem. Phys. Lett., (1976), 43, 317.
140. Demarcq, M.; Brevard, C.; private communication.
141. Vincent, H.; Vincent-Forat, C.; Bull. Soc. Chim. France, (1973), 499.
142. Vos, A.; Wiebenga, E.H.; Acta Cryst., (1955), 8 , 217.
143. Dixon, D.T.; Einstein, F.W.B.; Penfold, B.R., Acta Cryst., (1965), 18, 221.
144. Gregory, A.; J. Pharm., (1835), 21, 315.
145. Wiegers, G.; Vos, A.; Acta Cryst., (1966), 20, 192.
146. Sheldrick, W.S.; Rao, S.M.N.; Roesky, H.W.; Inorg. Chem., (1980), 19, 538.
147. Krebs, H.; Angew. Chem. Int. Ed. Engl., (1966), 5. 544.
148. Chan, C.H.; Olsen, F.P.; Inorg. Chem., (1972), 11, 2836.
149. Paul, R.C.; Arora, C.L.; Kishore, J.; Malhotra, K.C.; Aust. J. Chem., (1971), 24, 1637.
150. Tyrer, D.; Ph.D. Thesis, McMaster University, Hamilton, Ontario, 1978.
151. Chernov, A.P.; Dembovskii, S.A.; Kirilenko, I.A.; Inorg. Mater., (1970), 6, 228.
152. Nakamoto, K.; Infra-red Spectra of Inorganic and Coordination Compounds, 2nd Ed., Wiley-Interscience, New York, 1970, and references therein.
153. Atherton, M.J.; Holloway, J.H.; Adv. in Inorg. Chem. and Radiochem., (1979), 22, 171.
154. Baudler, M.; Fricke, G.; Frichtner, K.; Z. Anorg. Allg. Chem., (1964), 327, 124.
155. Baudler, M.; Kloth, B.; Koch, D.; Tolls, E.; Z. Naturforsch., (1975), 30b, 340 .
156. Gerding, H.; Stufkens, D.J.; Rev. Chim. Min., (1969), 6, 795.
157. Passmore, J.; Richardson, E.K.; Whidden, T.K.; White, P.S.; to be published.
158. Gillespie, R.J.; Molecular Geometry, van Nostrand Reinhold, London, 1972.
159. Edwarãs, A.J.; J. Chem. Soc. Dalton Trans., (1978), 1723.
160. Hirota, E.; Bull. Chem. Soc. Japan, (1958), 31, 138.
161. Gazzoli, G.J.; Mol. Spect., (1974), 53, 37.
162. Vonk, C.G.; Wiebenga, Acta Cryst., (1959), 12, 859.
163. Sawodny, W.; Dehnicke, K.; Z. Anorg. Allg. Chem., (1967), 349, 169.
164. Doorenbos, H.E.; Evans, J.C.; Kagel, R.O.; J. Phys. Chem., (1970), 74, 3385.
165. Poulsen, F.W.; Berg, R.W.; J. Inorg. Nucl. Chem., (1978), 40, 471.
166. Beattie, I.R.; Chudzynska, H.; J. Chem. Soc. (A), (1967), 984.
167. Finch, A.; Gates, P.N.; Page, T.H.; Inorg. Chim. Acta, (1977), 25, L49.
168. Passmore, J.; Richardson, E.K.; Taylor, P.; Inorg. Chem., (1978), 17, 1681.
169. Beattie, I.R.; Gilson, T.; Livingston, K.; Fawcett, V.; Ozin, G.A.; J. Chem. Soc. A, (1967), 712.
170. Schenk, P.W.; Muller, W.; Chem. Ber., (1964), 97, 2404.
171. Bues, W.; Demiray, F.; Brockner, W.; Spectrochim. Acta, (1976), A32, 1623.
172. Porter, E.J.; Sheldrick, G.M.; J. Chem. Soc. (A), (1971), 3130.
173. Street, G.B.; Munir, Z.A.; J. Inorg. Nucl. Chem., (1970), 32, 3769 .
174. Gillespie, R.J.; Kent, J.P.; Sawyer, J.F.; Inorg. Chem., submitted for publication.
175. Gillespie, R.J.; Kent, J.P.; Acta Cryst., (1980), B36, 655.
176. Scheuermann, W.; Ritter, G.J.; Z. Naturforsch, (1969), 24a, 408 .
177. Forneris, R.; Amer. Min., (1969), 54, 1062.
178. Weidlein, J.; Dehnicke, K.; Z. Anorg. Allg. Chem.: (1965), 337, 113.
179. Begun, G.M.; Rutenberg, A.C.; Inorg. Chem., (1967), 6, 2212 .
180. Stevens, J.F.; Bowen, C.H.; Mössbauer Effect Methodol., (1969), 5, 27.
181. Ellerman, J.; Lindner, H.A.; Schossner, H.; Thiele, G.; Zoubeck, G.; Z. Naturforsch, (1978), 33b, 1386.
182. Ellerman, J.; Leitz, M.; Merbach, P.; Thiele, G.; Zoubek, G.; Z. Naturforsch. B (1979), 34B, 975.
183. Sheldrick, W.S.; Acta Cryst., (1975), B31, 1789.
184. Foust, A.S.; Foster, M.S.; Dahl, L.F.; J. Am. Chem. Soc., (1969), 91, 5631.
185. Mandel, N.; Donohue, J.; Acta Cryst., (1971), B27, 476, and references therein.
186. Cotton, F.A.; Webb, T.R.; Inorg. Chim. Acta, (1974), 10, 127.
187. Taylor, J.B.; Bennett, S.L.; Heyding, R.D.; J. Phys. Chem. Solids, (1965), 26, 69.
188. Draeger, M.; Chem. Ber., (1974), 107, 2601.
189. Coppens, P.; Yang, Y.W.; Blessing, R.H.; Cooper, W.F.; Larsen, F.K.; J. Am. Chem. Soc., (1977), 99, 760.
190. Davies, C.G.; Gillespie, R.J.; Park, J.J.; Passmore, J.; Inorg. Chem., (1971), 10, 2781.
191. Passmore, J.; Sutherland, G.; White, P.S.; private communication.
192. Sakai, K.; Koide, T.; Matsumoto, T.; Acta Cryst., (1978), B34, 3326.
193. Foss, O.; Janickis, V.; J. Chem. Soc. Chem. Comm., (1977), 834.
194. Foss, O.; Janickis, V.; J. Chem. Soc. Chem. Comm., (1977), 833.
195. Brown, I.D.; Crump, D.B.; Gillespie, R.J.; Inorg. Chem., (1971), 10, 2319.
196. Brown, I.D., Crump, D.B.; Gillespie, R.J.; Santry, D.P.; J. Chem. Soc. Chem. Comm., (1968), 853.
197. Burns, R.C.; Chan, W-L.; Gillespie, R.J.; Luk, W-C.; Sawyer, J.F.; Slim, D.R.; Inorg. Chem., (1980), 19, 1432.
198. Kruger, G.J.; Pistorius, C.W.F.T.; Heyns, A.M.; Acta Cryst., (1976), B32, 2916.
199. Gafner, G.; Kruger, G.J.; Acta Cryst., (1974), B30, 250.
200. Kent, J.P.; Gillespie, R.J.; Sawyer, J.F.; Inorg. Chem., (1981), to be published.
201. Whitfield, H.J.; Aust. J. Chem., (1971), 24, 697.
202. Mathieu, J.P.; Poulet, H. Bull. Soc. Fr. Mineral Cristallogr., (1970), 93, 532.
203. Zallen, R.; Slade, M.L.; Ward, A.T.; Phys. Rev. B., (1971), 3, 4257.
204. Kobliska, R.J.; Solin, S.A.; Phys. Rev. B., (1973), 8, 756.
205. Cordes, A.W.; Gwinup, P.D.; Malmstrom, M.C.; Inorg. Chem., (1972), 11, 836.
206. Gates, P.N.; Powell, P.; Steel, D.; J. Mol. Structure, (1971), 8, 477.
207. Roesky, H.W.; Dietl, Z.; Z. Anorg. Chem., (1970), 376, 230.
208. Durig, J.R.; Casper, J.M.; J. Chem. Phys., (1971), 55, 198.
209. Anderson, W.; Drake, J.E.; Chem. Comm., (1971), 1372.
210. Thompson, J.W.; Witt, J.D.; Durig, J.R.; Inorg. Chem., (1973), 12, 2124.
211. Ozin, G.A.; J. Chem. Soc. (A), (1970), 2307.
212. Beattie, I.R.; Ozin, G.A.; Perry, R.; J. Chem. Soc. (A), (1970), 2071.
213. Anderson, J.W.; Drake, J.E.; Hemmings, R.T.; Nelson, D.L.; Inorg. Nucl. Chem. Lett., (1975), 11, 233.
214. Herrman, D.; Z. Anorg. Chem., (1975), 416, 50.
215. Gillespie, R.J.; Pez, G.P.; Inorg. Chem., (1969), 8 , 1229.
216. Passmore, J.; Richardson, E.K.; Taylor, P.; J. Chem. Soc. Dalton Trans., (1976), 1007.
217. Lucovsky, G.; Mooradian, A.; Taylor, W.; Wright, G.B.; Keezer, R.C.; Solid State Comm., (1967), 5, 113.
218. Stammreich, H.; Forneris, R.; Spectrochim. Acta; (1956), 8, 46.
219. Ketelaar, J.A.A.; Hooge, F.N.; Blasse, G.; Rec. Trav. Chim. Pays-Bas; (1956), 75, 220.
220. Scott, D.W.; McCullough, J.P.; Kruse, F.H.; J. Mol. Spect., (1964), 13, 313.
221. Gillespie, R.J.; Passmore, J.; Ummat, P.K.; Viadya, O.C.; Inorg. Chem., (1971), 10, 1327.
222. Thode, H.G.; Agarwala, U; Rees, C.E.; Can. J. Chem., (1967) 45, 181.
223. Carter, H.A.; Wange, C., S-C.; Shreeve, J.M.; Spectrochim. Acta, (1973), 29A, 1479.
224. Schwarz, K.H.; Hofmann, V.; Z. Anorg. Chem., (1970), 378, 152 .
225. Zengin, N.; Giguere, P.A.; Can. J. Chem., (1959), 37, 632 .
226. Feher, F.; Lane, W.; Winkhaus, G.; Z. Anorg. Chem., (1956), 288, 113.
227. Van Wart, H.E.; Cardinauz, F.; Scheraga, H.A.;
J. Phys. Chem., (1976), 80, 625.
228. Van Wart, H.E.; Scheraga, A.A.; J. Phys. Chem., (1976), 80, 1812 .
229. Gordy, w.J.; J. Chem. Phys., (1946), 14, 305.
230. Schrobilgen, G.J.; Vekris, J.E. ; private communication.
231. Burns, R.C.; Gillespie, R.J.; Sawyer, J.F.; Inorg. Chem., (1980), 19, 1423.
232. Minshall, P.C.; Sheldrick, G.M.; Acta Cryst., (1978), B34, 1378.
233. Falius, H.; Krause, W.; Sheldrick, W.S.; Angew. Chem. Int. Ed. Engl., (1981), 20, 103.

APPENDIX I Final Structure Factors for Disordered \(\mathrm{P}_{2} \mathrm{As}_{2} \mathrm{~S}_{3}\) Columns are \(\ell\), \(10{ }^{*} \mathrm{~F}_{\mathrm{o}}\), \(10 * F_{c}\), \(10 * \sigma(F) 565\) Reflections with \(F / \sigma F>6 R_{1}=0.028, R_{2}=0.035\).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{4，7．L} & \multicolumn{4}{|c|}{5．3．2} & 5 & 314 & －76 & 9 & & & & \\
\hline 1 & 237 & 3 34 & 9 & & 47 ？ & －477 & 5 & \multicolumn{4}{|c|}{} & 7 & 174 & 175 & 13 \\
\hline 2 & 448 & \(\begin{array}{r}\text {－} \\ -395 \\ \hline 45\end{array}\) & 5 & 3
4 & & & 「 & & & －14．1 & 19 & ＊ & 179 & -297
-447 & \％ \\
\hline 5 & 155 & －162 & 17 & 5 & 4.9 & \({ }_{5}, 114\) & \(\stackrel{ }{5}\) & 2 & 215 & \(7 \%\) & 17 & 4 & 1 ¢7 & 177 & 111 \\
\hline & & & & ¢ & 1.1 & 153 & 15 & 1 & \(\cdots \mathrm{Cl}\) & \(\cdots\) & 11 & ； & 779 & ？ 71 & \({ }_{3}^{11}\) \\
\hline \multicolumn{4}{|c|}{4，R．L} & \multicolumn{4}{|c|}{5，3，L} & 5 & 144 & －14\％ & 13 & \multicolumn{4}{|c|}{F，Fol} \\
\hline & 137 & －134 & 13 & & & & & & & & & & & & \\
\hline \(\frac{1}{3}\) & 529 & 432
-417 & 7 & \(\frac{1}{2}\) & 191 & 207 & \({ }^{6}\) & & & & & ？ & 171 & －156 & 9 \\
\hline & 230 & － 2125 & 12 & 2 & \(\begin{array}{r}1072 \\ 237 \\ \hline 17\end{array}\) & －1117 & 10 & & & & & \(?\) & 12 14 & 231
-145 & 1.9 \\
\hline & & & & 6 & 335 & & \({ }^{9}\) & \(\frac{1}{3}\) & 159 & -145
-155 & 15 & 4 & ？ \(14 \%\) & -146
-239 & \(1{ }^{1}\) \\
\hline \multicolumn{4}{|c|}{4．3．1} & 7 & 175 & 170 & 11. & & & & & 5 & ？ 11 & － 215 & \(1 ?\) \\
\hline 0 & 348 & －342 & ค & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{5，4．l}} & \multicolumn{4}{|c|}{6．n．l} & 5 & 197 & －135 & 14 \\
\hline 1 & 205 & － 200 & 11 & & & & & 0 & 112 & －67） & 9 & \multicolumn{4}{|c|}{6．\({ }^{\text {a }}\) ，} \\
\hline 2 & \({ }_{3}^{13} 48\) & 140
-382 & 15 & 1 & 552 & 563 & 5 & 1 & 673 & 541 & 8 & & & & \\
\hline \multicolumn{4}{|l|}{4 3n7－3B2 \({ }^{\text {a }}\)} & \(\frac{1}{3}\) & 242
152 & \(\begin{array}{r}-243 \\ -149 \\ \hline 1\end{array}\) & \(1{ }^{7}\) & 2 & \begin{tabular}{l}
387 \\
157 \\
\hline 17
\end{tabular} & 395
-159 & \(\stackrel{5}{5}\) & \({ }^{0}\) & 475 & 414
558 & 6 \\
\hline & & & & 4 & 613 & 1611
-174 & ？ & 5 & S？ 2 & \(5 \cdot 6\) & \(?\) & 4 & 144 & 15 R & 16 \\
\hline 0 & 135 & 122 & 15 & 5 & 174 & -174
-474 & 17 & 5 & 440 & 448 & 7 & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{5，9，2}} \\
\hline \multicolumn{4}{|c|}{\multirow[b]{2}{*}{4.11 .1}} & & 152 & －135 & 17 & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{6．1．L}} & & & & \\
\hline & & & & \multicolumn{4}{|c|}{5，「．l} & & & & & 1 & 528 & －519 & \(?\) \\
\hline 0 & 391 & －372 & 8 & & & & & 0 & 313
504 & -757
1494 & \(1{ }_{1}^{8}\) & \(\frac{1}{3}\) & ？ 324 & － 217 & 10 \\
\hline 2 & 133 & \(1 \geq 7\) & 19 & & 187 & －192 & 9 & 3 & P14 & P15 & 9 & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{h，\({ }^{\text {a，}}\)}} \\
\hline \multicolumn{4}{|c|}{4．12．L} & 4 & 40 & －4114 & 7 & 4 & & & 9 & & & & \\
\hline 1 & 267 & －259 & 11 & 5 & 239
147 & \(\begin{array}{r}\text { ？} \\ -193 \\ \hline 18\end{array}\) & 10
16 & \multicolumn{4}{|c|}{6．？．L} & \(\frac{1}{2}\) & 505 & 50
\(75 \%\) & 7 \\
\hline \multicolumn{4}{|c|}{5．0．1} & \multicolumn{4}{|c|}{S．fiol} & 0 & 139 & 1.1 & & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{7．n．l}} \\
\hline & & & & & & & & 2 & 139 & 13\％ & 11 & & & & \\
\hline \(\frac{1}{2}\) & 597 & \(\begin{array}{r}-563 \\ -355 \\ \hline 157\end{array}\) & 5 & \(\frac{1}{3}\) & 195
131 & \(? 19\)
\(1 ? 8\) & 13 & \({ }_{5}^{4}\) & ？\({ }^{\text {P\％}}\) & － 278 & 9 & 1 & 505
175 & － 477 & 6 \\
\hline 3 & 226 & ？27 & 7 & 4 & 231 & －？\({ }^{\text {a }}\) & 10 & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{6，3，L}} & 3 & 5in & － 594 & 7 \\
\hline 4
5 & 971 & -127
-490 & 10
10 & 5 & & & я & & & & & \({ }_{5}^{4}\) & 473 & －426 & \({ }_{6}\) \\
\hline 5 & 192 & & & \multicolumn{4}{|c|}{5， 7,1} & 0 & 719 & －731 & 7 & 7 & 14\％ & － 354 & 9 \\
\hline 7 & 216 & － 22 & 12 & & & & & 1 & 297 & ？ 7 & 5 & & & & \\
\hline A & 273 & －269 & 12 & 1 & 25月 & － 162 & 11 & 3 & 51，4 & － 545 & 7 & \multicolumn{4}{|c|}{7．1．l} \\
\hline \multicolumn{4}{|c|}{5，1．1} & 3 & 304 & － 376 & 4 & \({ }_{5}\) ， & 717 & －217 & 10 & 1 & 594 & 495 & 5 \\
\hline \multirow{7}{*}{\[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 5 \\
& 5 \\
& 7
\end{aligned}
\]} & \multirow[t]{7}{*}{\[
\begin{aligned}
& 512 \\
& 515 \\
& 695 \\
& 315 \\
& 263 \\
& 747
\end{aligned}
\]} & \multicolumn{2}{|l|}{} & 5 & 123 & \(1 ?\) & 13 & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{6．4．l}} & \(?\) & 117 & 318 & 4 \\
\hline & & \[
\begin{array}{r}
-494 \\
599
\end{array}
\] & 6
7
7 & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{5，4．L}} & & & & & 4 & & － 14.7 & \(1 ?\) \\
\hline & & \[
585
\] & 7 & & & & & 0 & & 6．95 & & 5 & 17\％ & －125 & \(1{ }^{1}\) \\
\hline & & －313 & & & & & & & 461
7 & － 1074 & 19 & 5 & \(17 \%\) & －177 & 14 \\
\hline & & －267 & 11 & \(\frac{1}{2}\) & 125
143 & 121
141
1 & 15 & 3 & 330
190 & & 17 & & & & \\
\hline & & & & 3 & 759 & ？\({ }^{\text {P }}\) & \％ & 4 & 548 & & 7 & & & & \\
\hline & & & & 4 & \(1: 7\) & \(-1^{\text {x }}\) ， & 1 h & ， & 16.4 & －1，5 & 15 & & & & \\
\hline
\end{tabular}

\section*{APPENDIX I (continued)}

APPENDIX II Final Structure Factors for \(\mathrm{SCl}_{3}\left(\mathrm{SbCl}_{6}\right)\) Columns are \(\ell, 10 * \mathrm{~F}_{0}, 10 * \mathrm{~F}_{\mathrm{C}}{ }^{\prime}\) \(10{ }^{*} \sigma(\mathrm{~F})\) Reflections with \(\mathrm{F} / \sigma \mathrm{F}>2 \mathrm{R}_{1}=0.038, \mathrm{R}_{2}=0.042\).

\[
\begin{array}{ll}
3.17 .1 \\
319 & 372 \\
457 & 451 \\
7,1, L
\end{array}
\]
\[
\begin{aligned}
& 1 ? \\
& 1 ?
\end{aligned}
\]
T, 3,L
\begin{tabular}{|c|c|c|}
\hline 427 & 497 & 5 \\
\hline 1471 & 1431 & 13 \\
\hline 931 & 947 & 9 \\
\hline 714 & 677 & 7 \\
\hline 117, & -.317 & 5 \\
\hline 475 & 476 & 5 \\
\hline 1491 & 1478 & 15 \\
\hline 545 & -5.35 & 6 \\
\hline 499 & -475 & r \\
\hline 2050 & 2 712 & 17 \\
\hline 151? & 1579 & 17 \\
\hline ? 75 & 799 & 7 \\
\hline n76 & 9ヶ9 & 1 n \\
\hline 411 & JHE & F \\
\hline
\end{tabular}
(continued...)

\begin{tabular}{|c|c|c|}
\hline \[
\therefore \approx=x=\operatorname{coseg}
\] & & anctorecnas \\
\hline & & ML \\
\hline & & \\
\hline ¢tanctan & & urinancra \\
\hline \(\cdots\) & & \\
\hline － & & \\
\hline －rageringroza g & & MロッヒMu゙ロon \\
\hline & & \\
\hline －inmar．－Jo & & \\
\hline & & \\
\hline ニーニーコニニ゙ニ」 & 11：1 ！！ & 11 \\
\hline 111111 & 11111 & \\
\hline
\end{tabular}
5
-5
5
-5
7
-7
9
-7
-7
-7
17
-19
-11
-11
17
-17
13
-13
-14

\begin{tabular}{|c|c|}
\hline A 7 ？ & 895 \\
\hline 402 & \(40 ?\) \\
\hline 014 & 977 \\
\hline 4？ & GOT \\
\hline 697 & 699 \\
\hline \(54 \pi\) & 514 \\
\hline \(3 \cdot 5\) & 338 \\
\hline 295 & 2 fr \\
\hline 741 & 7 fi \\
\hline \(7 \%\) & 6.35 \\
\hline 2R1 & －312 \\
\hline 3917 & 277 \\
\hline 5ち9 & \(6 ? 1\) \\
\hline \(24 F\) & 20.3 \\
\hline 497 & 507 \\
\hline 3， 8 & 317 \\
\hline 377 & 353 \\
\hline 157 & \(-10\) \\
\hline
\end{tabular}

(continued...)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{10,4.L}} & -11 & 36.7 & 374 & 7 & -5 & 14 F & 17 & 13 & - 4 & r.? 7 & 649 & R \\
\hline & & & & -1? & 00 & \(\cdots 1\) & \(\because 4\) & -7 & 174 & ! 11 & 15 & ; & 29\% & -? 37 & 14 \\
\hline -3 & 177 & 154 & 13 & -13 & 3-1 & \(3 \cdot 1\) & 10 & & & & & - 5 & 241 & -333 & 17 \\
\hline 4 & 4.37 & 413 & 1 & -15 & ?1\% & \(3 \cdot 1\) & 11 & & \(1 ?\) & & & - 5 & 475 & ¢ 90 & \({ }^{1}\) \\
\hline -4 & 440 & 432 & 4 & -1h & 119 & \(-1 \Gamma 1\) & 24 & & & & & -7 & 71 & \(-94\) & ? \({ }^{\text {a }}\) \\
\hline 5 & 219 & \(\bigcirc 15\) & 11 & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{11.3.L}} & \(\pi\) & 143 & 135 & 15 & -4 & \(4 \div 4\) & 4.4 & 7 \\
\hline -5 & 229 & 231 & 11 & & & & & -1 & 387 & ? \({ }^{\prime}\) & 4 & - 7 & 141 & 144 & 17 \\
\hline 6 & 330 & ? ¢ 6 & 11 & & & & & ? & ? 09 & 'c. & 17 & \(-10\) & \(11 \%\) & 37 & 19 \\
\hline -6 & 443 & \(4{ }_{4} 1\) & \({ }_{1}\) & 0 & 140 & - 140 & 15 & -2 & 514 & 313 & 4 & -11 & 172 & 277 & 17 \\
\hline -7 & 158 & -149 & 15 & 1 & 9.15 & 527 & 9 & -3 & 157 & -143 & 15 & -1? & \(\bigcirc 50\) & 237 & 17 \\
\hline 9 & 173 & 183 & 19 & -1 & 977 & 784 & 9 & 4 & 576 & 559 & 9 & -13 & 74 & - 47 & 3? \\
\hline -9 & 625 & 652 & \({ }^{9}\) & ? & 153 & \(1 ヶ 1\) & 17 & -4 & 94.3 & \(17 \%\) & 4 & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{1?,f,L}} \\
\hline \(-9\) & 66 & -2? & 27 & -? & 124 & -120 & 19 & 5 & 327 & - ? 17 & 11 & & & & \\
\hline -10 & 391 & 3 B 1 & 9 & 3 & 345 & 5'9 & 17 & -r; & 613 & -57\% & 7 & & & & \\
\hline -11 & 258 & -325 & 11 & - 3 & 5,97 & 5140 & 9 & 6 & 2月0 & 745 & \(1 ?\) & J & 275 & 29.3 & 13 \\
\hline -12 & 349 & 354 & 19 & 4 & 135 & 1 ? 6 & 19 & -6 & 8? 0 & 713 & 8 & -? & 397 & 275 & 12 \\
\hline -14 & 164 & \(1 \in 3\) & \(\cdot 7\) & -4 & 246 & 295 & 17 & - 8 & 592 & 547 & 9 & - \({ }^{-1}\) & 9 \({ }^{\text {a }}\) & -127 & Pa \\
\hline \multicolumn{4}{|c|}{\multirow{3}{*}{10,5,L}} & 5 & 271 & 210 & 11 & -9 & 243 & 315 & 11 & - 4 & 44? & 451 & 17 \\
\hline & & & & - 5 & 529 & \(\bigcirc 34\) & 9 & -11 & 340 & 34, & 17 & - 51 & 235 & 750 & 14 \\
\hline & & & & 6 & 107 & 197 & ? 3 & -1? & 35.7 & 7 T & 17 & \(-7\) & \(3 ?\) & 59 & 25 \\
\hline & 430 & 442 & 10 & - 5 & 16.9 & 124 & 14 & -13 & 165 & \(-157\) & 15 & -9 & 275, & 254 & 13 \\
\hline 1 & 113 & - ¢ 2 & 21 & 7 & 265 & 277 & 14 & -14 & 599 & 5.75 & 9 & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{13,1,L}} \\
\hline -1 & 97 & -49 & 25 & -7 & ? 4 ? & 403 & - & -15 & 7 F 1 & \(-157\) & 15 & & & & \\
\hline 2 & 583 & 5 95 & 9 & -8 & 159 & 119 & 15 & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{12.2.L}} & & & & \\
\hline -2 & 563 & 576 & \({ }^{8}\) & \(-3\) & 146 & 714 & 9 & & & & & 1 & 147 & 151 & 17 \\
\hline 3 & 1.35 & 131 & 20 & -10 & 227 & -2, \({ }^{\text {a }}\) & 12 & & & & & -1 & 151 & 135 & 15 \\
\hline -3 & 87 & 34 & 25 & -11 & 473 & 478 & 7 & 0 & 351 & 345 & 9 & ? & 137 & -17\% & 17 \\
\hline -4 & 209 & 202 & 15 & \(-12\) & 73 & -3 & 29 & 1 & 959 & -17 7 & 23 & -3 & 171 & \(-132\) & 15 \\
\hline -4 & 344 & \(3{ }^{3} 2\) & 33 & -13 & 255
241 & \(\begin{array}{ll}2 & 51 \\ 2 & 40\end{array}\) & 17 & -1 & 395 & -19\% & 10 & 3
-3 & 401 & \(57 ?\) & 10 \\
\hline -5 & 210 & 195 & 13 & \multicolumn{4}{|l|}{} & -2 & 137
509 & & 19 & -3 & 571 & \(51 ?\) & - \\
\hline -5 & 246 & 232 & 1 ? & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{11.5.L}} & 3 & 150 & 174 & 17 & -4 & 1514 & -14i & 19 \\
\hline -7 & 92 & 61 & \(2{ }^{2}\) & & & & & -3 & 215 & - \(\rightarrow 74\) & 17 & -5 & \(\bigcirc 74\) & -279 & 13 \\
\hline -R & 377 & 3 ¢ 8 & 10 & 0 & 189 & -144 & 14 & -4 & 755 & 7.7 & 7 & - 5 & & 375 & 1 \\
\hline \(-10\) & 374 & 314 & 11 & 1 & 249 & 244 & 12 & 5 & \(\bigcirc 10\) & -71 ? & 14 & - & \(\rightarrow 1\) & - 23 & 11 \\
\hline - 11 & 224 & -324 & 15 & -1 & \$25 & 427 & 10 & - 5 & 136 & \(-157\) & 16 & - 7 & 441 & 43.3 & 3 \\
\hline -12 & 350 & 385 & 12 & -2 & 134 & 159 & 18 & h & 270 & 271 & 13 & \(-7\) & 316 & 237 & 13 \\
\hline \multicolumn{4}{|c|}{\multirow[b]{2}{*}{11.1.1}} & 3 & 473 & 4.4 ? & 19 & -6 & ? 14 & 115 & 12 & -11 & \(\bigcirc 1\) & 3 y 1 & 11 \\
\hline & & & & -3 & 3R9 & 37\% & 9 & -7 & 143 & 141 & 15 & -13 & 147 & \(-171\) & 19 \\
\hline & & & & 4 & 163 & -117 & 17 & - 4 & 571 & 519 & 9 & -13 & ?9? & 275 & 1 ? \\
\hline 0 & 247 & -2. 51 & 11 & -5 & 504 & 524 & 19 & -9 & 88 & 73 & 24 & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{13,3.1}} \\
\hline 1 & 430 & 414 & 4 & - 6 & 135 & -195 & 13 & -17 & 374 & \(3 \%\) & 3 & & & & \\
\hline -1 & 998 & 9 \{ 4 & ' & -7 & 510 & 516 & 1 & \(-12\) & 35.4 & 317 & 17 & & & & \\
\hline & & & 13 & - 8 & & 14.4 & & & 417 & 315 & 11 & 1 & 174 & -58 & 37 \\
\hline & 633 & 635 & 8 & -9 & 3.35 & 324 & 15 & -15 & H' & 4, & \(?\) & 1 & 371 & 194 & 14 \\
\hline -3 & 575 & ¢F5 & 7 & -11 & 20 0 & 275 & 15 & \multicolumn{4}{|l|}{} & -1 & ? 7 A & 233 & 11 \\
\hline -4 & 114 & 133 & 13 & -12 & 109 & 75 & ? 4 & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{12,4.L}} & 7 & \({ }^{2} 4\) & 5 & 27 \\
\hline 5 & 157 & 155 & 15 & -1.3 & 2h7 & 26.2 & 14 & & & & & -? & 154 & -15.3 & 17 \\
\hline -5 & 670 & 676
-179 & 17 & \multicolumn{4}{|c|}{11.7 .1} & - & 151
409 & 157 & 17 & 3
-8 & 157
497 & \(34 ?\) & 11 \\
\hline -5 & 126
213 & -179
711 & 16
15 & & 11 & & & - \(?\) & 103
229 & 14? & 12 & - 3 & 497 & 485
50 & 9
27 \\
\hline -7 & 790 & \% 09 & 7 & -1 & 535 & 555 & 17 & -2 & 376 & 319 & 10 & - 5 & 107 & 139 & \(2 ?\) \\
\hline -8 & 293 & ? ¢ 4 & 9 & - 3 & 297 & र15 & \(1 ?\) & 3 & \(11 ?\) & 11 & \(? ?\) & \(-5\) & 135 & -13? & 1 R \\
\hline -4 & 647 & 546 & 7 & -4 & 137 & 113 & 7? & - 1 & 191 & -17\% & \(? ?\) & -7 & 150 & \(34 \%\) & 10 \\
\hline \(-10\) & 113 & -134 & 20 & -5 & 281 & 240 & 13 & 4 & 3:6 & 73? & 11 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{13，3，L} & \multicolumn{5}{|c|}{14， 0.1} & -2
-3 & \[
\begin{aligned}
& 300 \\
& 3.71
\end{aligned}
\] & \[
\begin{aligned}
& 399 \\
& 174
\end{aligned}
\] & 118 & \multicolumn{4}{|c|}{15．1．1} \\
\hline －9 & 30 & \(-52\) & 25 & 0 & 285 & 246 & \(1 ?\) & －6 & 127 & 174 & 14 & 0 & 94 & －9¢ & 31 \\
\hline －3 & 315 & 313 & 11 & 1 & 45 & 41 & 27 & －7 & 110 & \(-133\) & \(2 ?\) & － 1 & 374 & 244 & 15 \\
\hline \(-11\) & 123 & －121 & 20 & 2 & \(44 ?\) & 463 & 17 & － 4 & \(4 ? 1\) & \(47 \%\) & \(1]\) & －？ & 177 & 119 & 25 \\
\hline －11 & 3 3 & ． 144 & 11 & － 2 & 151 & 174 & \(14_{1}\) & －4 & 971 & － 354 & 11 & ＊ & 744 & 350 & 11 \\
\hline \(-12\) & 155 & －113 & 16 & 3 & 14．4 & －123 & 18 & －17 & 445 & \(57 \%\) & 17 & －4 & 75 & 3 & 20 \\
\hline －1．3 & 197 & 106 & 15 & －3 & 193 & 277 & 16 & － 11 & 277 & －23） & 15 & \(-5\) & ？ 74 & 79．3 & \(1 ?\) \\
\hline \multicolumn{4}{|c|}{\multirow{3}{*}{13．5．L}} & －4 & ？ 20 & 36.2 & 10 & \(-12\) & 9.3 & 74 & P5 & \(-5\) & \％ 71 & － 29 & ？ 1 \\
\hline & & & & － 5 & 274 & \(-107\) & 12 & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{14．4．L}} & － 7 & 245 & ？ 45 & 17 \\
\hline & & & & －6 & 415 & 4178 & 3 & & & & & －9 & 173 & － \(11^{1}\) & 24 \\
\hline 1 & 97 & 116 & 29 & － 7 & ご75， & \(-243\) & 11 & & & & & － 7 & & 350 & 11 \\
\hline －1 & 87 & 185 & 28 & － 8 & 304 & 3.32 & 11 & 0 & 254 & 257 & 14 & －17 & 94 & \(-18\) & 25 \\
\hline －2 & 110 & －05 & 23 & \(-7\) & 91 & －19 & 24 & －1 & 87 & －13 & \(? 7\) & －11 & 143 & 129 & 13 \\
\hline －3 & 295 & 311 & 12 & － 10 & \(23 \%\) & 874 & 11 & －3 & 125 & 153 & \(\cdots 3\) & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{15，3．L}} \\
\hline －4 & 14.3 & \(-150\) & 20 & －11 & \(11 \%\) & －103 & ， 2 & － 3 & 173 & 113 & 35 & & & & \\
\hline － 5 & 354 & 347 & 11 & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{14．2．L}} & －4 & 2310 & 235 & 14 & \multicolumn{4}{|c|}{15，} \\
\hline －5 & 223 & －24 \({ }^{\text {a }}\) & 14 & & & & & － 5 & \(15 \%\) & －154 & 13 & －\({ }^{\text {a }}\) & 131 & 67 & 27 \\
\hline －7 & 313 & 331 & 12 & & & & & －6 & 347 & 325 & 13 & － 3 & 276 & 275 & 13 \\
\hline －3 & 125 & 109 & 20 & ก & 397 & 416 & 11 & －7 & 14.3 & －157 & 17 & － 7 & 194 & 195 & 17 \\
\hline \multirow[t]{3}{*}{－ 10} & A9 & 95 & 74 & 1 & 180 & －14R & 15 & \(-9\) & \(? 4\). & 355
-119 & & \multirow[t]{3}{*}{-7
-9} & \multirow[t]{3}{*}{19月} & \multirow[t]{3}{*}{25R
-178} & \multirow[t]{3}{*}{12} \\
\hline & & & & －1 & 214
364 & － 214 & 14 & －10 & 1？ & －119 & ？ 14 & & & & \\
\hline & & & & \(?\) & 364 & ． 356 & \(1 ?\) & －10 & 256 & ？？？ & 14 & & & & \\
\hline
\end{tabular}```

[^0]: 75

[^1]: ${ }^{\mp}$ Group VB-group VIB compounds will often be abbreviated VB/VIB. Within this thesis the letter B will refer to main group elements.

[^2]: *Both cis and trans.

[^3]: ${ }^{a}$ Not balanced.

[^4]: All ternary and quaternary species with a phosphorus atom in the apex will be referred to as the alpha (α) form while those with an apical arsenic as the beta (β) form.

[^5]: ${ }^{\mp}$ I, mirror plane in molecule, $I I$, no mirror plane.

[^6]: $a_{\text {Reference }} 159$.

