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 ABSTRACT

The problem of coherent carxier recovery and the effects of
phase error on the performance of an offset quadraturé—phase—shift—
keying (QPSK) duobinary system have been investigated in tﬁe thesis.
The system of interest is similar to RD -3 digital system that is
being developed and installed as an efficient high data-rate digital

~ radio camwnication system by Bell .Northem Research Laboratory- (BNR) .

Four carrier regeneration loop structures are inwvestigated and
analysed in the thesis. These are:

(i) estimate-aided suppressed carrier loop

(ii) decision-directed feedback loop

(iii) shj.fted decision—directed feedback loop

(iv) half-shifted decision-directed feedback loop
All of these loop structures employ the technique of dataraided carrier -
synchronization. The estimate-aided loop structure exhibits steady-

state.behavior similar to that of a conventional Costas loop. The
remaining three loop structures differ from the estimate-aided loop
in the sense that they require decisions‘ to make on the noisy received
signal. These are then fedback to the carrier recoverv circuit in
such a way as to -c.:reate a svectral line at carrier frequency. The
loop behavior in the presence of additive noise has been investigated
in some detail. For each loop, analytical expressions for the phase
detector characteristic (S-curve) and the steady—-s{;,ate phase error .

nrobability density "function (ndf) are derived, and provide a means
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of comparing the performance of the different recovery schemes.

iv



' ACKNOWLEDGEMENTS

It is a pleasure to acknowledge ny gratitude to my research.
sepervisor, Dr. D.P.Taylor of the Demartment of Electrical Engineering.
Dr. Taylor suggested the problem, and his encouragerent -and friendly ‘
quidance in the way of research made the work a rare educational ex-
perience.

I would also like to express my appreciation to other'svwho
helped: |

To the National Research Couhcil of Canada which provided
financial swport in the form of scholarships and research grants;
| To Dr. Chan of Commmnication Research Laboratory who gave
discussions in computer simulation; |
To Mr. P.Hetrakel who gave useful discussions in this work:

To Mr. C.W.Law for proof-reading the thesis.



TABLE OF CONTENTS

Page

CHAPTER 1 -  INTRODUCTION . 1
1.1 Introduction 1

1.2 The Canadian Digital Radio System 3

1.3 Soore of the Thesis 6

CHAPTER 2 - DIGITAL RADIO SYSTEM ; 8
2.1 .Intmduction : 8

2.2 System Model . } 11

2.2.1 Duobinary Concept : 11

2.2.2 Basic Analysis . 15

2.2.3 System Modulation Type - 28

2.3 Performance Evaluation 30

2.3.1 Ideal Coherent Detection with Zero Phase -~ =30

Error

2.3.2 Effect of Phase Error on Demodulation and 36
Error Rate

2.4 Simulation of the System Performance in the 47
Presence of a Steady-state Phase Error and
Additive Gaussian Noise

2.4.1 Description of the Simulation : 147
2.4.2 Reéults and Conclusions 51
CHAPTER 3 ~ ESTIMATE-AIDED CARRIER TRACKING LOOP 60
3.1 Introduction | 60
3.2 Loop Analysis 6L
3.3 DNonlinear Analysis of the First Order Estimate- 69
aided Loop

3.4 Results and Conclusions - 71



CHAPTER 4 -

4.1

4.2

4.3

4.4

4.5

4.6

CHAPTER 5 -

5.1

DECISION-DIRECTED FEEDBACK LOOP

Introductibn

Development of the Stochastic Integro-'ic -

differential Equation of Operation of a
Decision-directed Feedback Loop

Evaluation of the Loop Phase Detector
Characteristic(S—curve) — G(¢)

Evaluation of the Noise Function H(g)

The Probability Density Function of the
Phase Error Process

Discussion

SHIFTED AND HALF-SHIFTED DECISIQN DIRECTED
FEEDBACK CARRIER TRACKING IOOP STRUCTURES _

Shifted Decision Directed Feedback Loop

5.1.1 Introduction

5.1.2 Loop Analysis

5.1.3 Evaluation of the Loop Phase Detector

5.1.4

~ Characteristic (S-curve)-—-G(¢)

Phase Error Process ‘

'5.1.5 Discussions

5.2

Half-shifted Decision Directed Feedback
Carrier Tracking Loop

5.2.1 Introduction

5.2.2 Loop Analysis

5.2.3 Evaluation of the Loop Phase Detector

Characteristic (S-curve)-- G(¢)

5.2.4 Probability Density Function of the

Phase Error Process

5.2.5 Discussions and Conclusions

vii

The Probability Density Function of the

Page
75

75

79
83
86

88

89

89
90
94

100

100

103

103

103

106

109

109



CHAPTER 6 ~ CQONCLUSIONS AND FUTURE STUDILS

. 6.1 Conclusions
6.2  Future Studies
REFERENCES

APPENDIX

viii

Page
1nz2

112
113
1114

117



Pigure
1.
J.Ea.
b.
2
3
4
5
6
7
8
9
10
1
12
13
14
15
d.
b.
C.
d.
e

LIST OF ILLUSTRATIONS

Title

Offset QPSK Duobinary System Model
Transmitter and Channel
Receiver

Partial-response System Models

Duobinary Filter Transfer Function and
Impulse Response

s(t), sl(t) , and sz(t) Input Neésages

Transfer Function D{w)

The Duobinary Shaping Pulses.

Page

10
12

14
16

21
24

Power Spectral Density for Ducbinary Precoded 27

Signals and Uncoded Binary Digital Signals
Modulation Process

Conditional Error Probability vs A2
( Upper Bound Case)

Conditional Error Probability vs A2
( 3~-Symbol-Average Case )

Conditional Error Probability vs ¢
Simulation Block Diagram

Eye—diagram for Duobinary Signal
Conditional Error Probability vs A2
( Simulation Result )

Conditional Error Ptobability vs A2
Phase Error ¢=O°
Phase Error ¢=3°
Phase Error ¢=6°
Phase Error ¢=9°

Phase Error ¢=9° and 1 d8 Simulation Error
Assume Removed Case

ix

29

44
46

48
50
52

53

54
55
=56
57
58



Figure

16

17
18

19
20
21

22
23

24

25

26

27

28

29

Title

Estimate-aided Carrier Tracking Loop (EAFL)

S-curve-G(¢) for Estimate-aided Carrier
Tracking Loop

PDE of the Phase Error ¢ vs ¢ for Various
Valwes of a ( EAFL) :

Decision Dlrected Feedback Loop(DDFL)
S—-curve—G(9) for DDFL
Noise Function H(¢) for DDFL

PDF of the ghase Error ¢ vs ¢ for Various
Valwes of A™ ( DDFL )

Shi fted Decision Directed Feedback Carrier

' Tracking Loop ( SDDFL )

G(¢) for SDDFL
PDF of the Phase Error ¢ vs ¢ ( SDDFL )

for Various Values of A2

for Various Values of o

Half~shifted Decision Directed Feedback
Carrier Tracking Loop ( HSDDFL )

G(¢) for HSDDFL

PDF of the Phase Error ¢ vs ¢ for Various
Values of A% ( HSDDFL )

PDF Oof the Phase Error ¢ vs ¢ for Various
Values of o«  ( HSDDFL )

62

72
73

76
84
85
87
91

99

lo1
102

104

108

110

111



diAP‘IER 1
INTRODUCTION

1.1 Introduction

Since the 1950's, microwave radio has proven to be a very econamical
system for long distance signal transmission. As a result:it has become the
most widely used means of long distance point-to point commmnication. At the
present time, microwave radio is primarily operated in the analog mode where
the baseband communications signals are modulated in analog form onto a radio-
frequency carrier wave for transmission. In North America, such systems operate
at carrier frequencies near 4 and 6 GHz. In the ﬁodul_ation process, the amp—.
litude, frequency or phase angle of the carrier is continuously varied as a
function of the instantaneous value of the modulating signal. At the receiving
end this signal is recovered by the reverse process of demodulation. In this
continuous or analog mode the receiver output signal may be regarded as an-
estimate of the original transmitted signal. |

Today, however, there is a trend toward the use of digital microwave
radio transmission [12]. Two of the main reasons for this trend are the cost
advantages realizable using digital hardware and multiplexing, and the ease
with which dlgltal systems can be exmanded to accomodate future camunications
traffic growth. In digital transmission discrete valued digital signals are
used to modulate the high-frequency carrier, and at the receiver, after ée—
modulation the output may be regarded as a sequence of decisions.

In addltlon there are several other réasons why digital radio com-
munication is attractive. First, we can regenefate noiseless digital signals

at every repeater site along the route thus avading cumulative performance
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degradation due to a large nunber of amplifiers, each of which contributes
noise and distortion. Second, digital multiplexing allows same electronic
circuits to be shared by several channels, and thus cost less than equivalent
analog multiplexing arrangements. Third, baseband digital transmissicn systems
are seeing increasing usage in short haul connection between telephone cént.ral
offices. Digital radio offers a great advantage in facilitating the inter-
| ocomnection of these digital systems with the long haul (trans-Canada) trans-
mission network. Because the baseband digital signals can be transmitted with-
out conversion to analog form, they do not need to be demultiplexed and con-
verted to analog signalifirst and then multiplexed again for transmission on
the analog microwave network, but can be modulated directly onto the digital
radio carrier. |
A further advantage is that signals from different origins, e.g. tele-
vision signals, data signals and audio signals, can be mixed using the digital
facilities [23][26]. The interface between the digital system and the analog
system is made by digital terminals which convert the incaming analog signals
to a digital form suitable for use on a digital transmission facility. Digital
multiplexers then formm the interface between digital transmission facilities
of different rates. They combine signals from many digital lines by the process
of interleaving, or time-division multiplexing and bring all signals to a
synchronous rate. The advantage is ithat it is relatively easy to have a hier-
achical multiplexing structure. The receiving portion of thg terminal just
performs the inverse of the transmitting portion functions, and in many respects

is a duplicate of the transmitter portion.



1.2 The Canadian Digital Radio System

The digital radio system we are investigating here is the one that
will éperate in Canada starting in 1978. The system will, for econamic reasms, he
overbﬁilt on the analog radio network in order to utilize the existing repeater
sites which are spaced about every 30 miles and cover most-i of the country. The
digital system will operate in a 500 MHz band at a carrier frequency of approx-
imately 8 GHz. The choosing of this frequency range is dictated by the fact
that the radio frequency bands from 7.725 to 7.975 GHz and from 8.025 to 8.275 -
Gliz are available and the existing microwave antennas (horn reflector attennas
with circular waveguide which are usable from 3.5 to over 1l GHz) can be used
to decrease the requirement on new equipment. The complete planned digital
system will carry six two-way radio channels, each using about 41Miz of band-
width. | |

In order to maximize the available channel capacity and to be economic-
ally cmpetttlve with existing analog systems, the digital system is designed
to transmit two DS3 carrier grouwps in a 45 MHz bandwidth. A DS3 carrier group
is a 44.7 Mbit/sec digital signal. The transmission will be achieved using a
technique which is called ducbinary coding. In this code each transmitted data
symbol is made cdependent not only on the present data bit but on the previous
one as well. This deliberate correlation of symbols has the effect of concent-~
rating the signal power in a narrower frequency range closer to the carrier
frequency. It has been shown that the use of duobinary coding approximately |
doubles the efficiency of use of the available frequencv spectrum [24]. This

allows one 44.7 Mbit/sec DS3signal to be accomodated in less than a 45 MHz



bandwidth. By combining the duobinary encoding which can be done at baseband
with the use of 4 phase ooherent phase-fshift-keying (CPSK) modulatian it is
then possible to put 2DS3  signals or apéroximately 90 Mbits/sec into a 45 MhHz
bandwidth., The resulting system thus has an available capacity of 1344 voice
circuits corresponding to an overall bit rate of 91.040 Mb;its/sec.

The partiéular conbination of duobinary encoding and 4-phase CPSK
modulation results in a transmitted signal which is partially amplitude and
partially phase modulated. This is due to the fact that the duobinary encoder
produces 3-level symbols (nominally +2,0,-2) with a nonrectangular pulse shape.
To accomplish the 4-phase modulation the input data is split into two streams, .
each.at approximately 45 Moits/sec. These two streams are separately differentj- _
ally -encoded, duobinary encoded and finally used to a@litude modulate two
carrier signals which are in phase quadrature with each other. In addition the
signals in the two streams are offset by 1/2 bit (at 45 Mbits/sec) with respect
to each other. The resulting system is thus an offset quai:ernaxy, phase-shift~
keying, duobinary (Offset QPSK dubbinary) system.

At the receiver the signal is,as with virtually all high speed data
signals ,coherently detected. To successfully transmit information through a
phase-coherent commmication system, the receiver nust be cépable of determin- -
ing and tracking the instantaneous phase of the received signal with as little
error as possible. The transmitted data-bearing signal can be modulated onto
a carrier in such a way that a residual carrier camponent exists in the over-
all signal power spectrum. This component can be tracked at the receiver with

a narrowband phase-locked loop (PLL) and used to provide the desired reférence



signal for ocoherent demodulation. This siﬁuation has been analyzed in séme
detail (e.g. Viterbi [22], Stiffler [21]}, and Lindsey [19] ). However, the
power contained in this residual carrier component contains only information
about the phase and frequency of the carrier, and thus represents transmitter
power which is not available for the transmission of data, In order to maximize
the data power and therefore minimize the receiver probability of error, the
data are often modulated onto a carrier in such a wal.r that the transmitted
signal has zero average power at the carrier frequency. Coherent demodulation
of such a signal then requires some type of suppressed-carrier recovery circuit
or tracking loop for establishing a coherent carrier reference for use in
demodulating the data.

A nuwber of methods [19-21] have been proposed for generatlng a refer-
ence carrier from a suppressed carrier received signal. One of these methods
involves the principle of a decision-directed feedback loop [28]. Recently, a
tracking loop utilizing this principle for establishing an accurate phase
reference at the receiver has been developed and analyzed by Lindsey and Simon
(9], and is known as a data-aided carrier tracking loop. In their loop structure,
the outputs of data detectors are fed back and used to remove the data mod-
ulation from the reoceived signal in such a way as to leave a carrier camponent
which can be tracked by a phase-locked loop.structure.

The offset QPSK ducbinary system being considered in this thesis util-
izes suppressed carrier modulation. In order to recover a coherent carrier
component .from this signal, a number of suppressed-carrier tracking loop sﬁruct—-

ures which utilize the principle of data(estimate or decision) feedback are



suggested for use in generating ooherent quadrature reference signals for
use in data éemodulati_on. The data-aided carrier tracking loop proposed by
Lindsey and Simon has been considered without including the effects of inter-
‘symbol interference (ISI) (caused by bandlimiting and /or data correlation) in
the analysis of its operation. In [5], ISI is included in the analysis of loop
operation, but a residual carrier component is assumed to be present, so the
carrier ocould also be tracked with a conventional phase-locked loop. Following
these applicatibns which consider only binary vhase modulated carriers, Lindsey
and Simon have proposed decision-feedback loops which reconstruct coherent
carrier references for the detection of polyphase signals {[10]. Later, the
decision—feedback loop which tracks a quaﬁemary~phasé-shift—keying (QPSK) signal
was modified to accomodate a quaternary-amplitude-shift—keying (QASK) signall6]
and offset OPSK signal [7]. In this thesis, we will investigate the problem of
carrier synchronization for the offset QPSK dwobinary system proposed for use
in digital microwave radio. Specifically, we will consider the design of data
(estimate or decision) feedback loop structures to recover a coherent carrier
from the offset QPSK dwwbinary signal.
1.3 Scope of the Thesis

The outline of the thesis is as follows. In chapter 2, we perform a
basic performance analysis of the offset QPSK dwbinary system. An expression
for the average prdoability of system error conditioned on a fixed carrier
phase error, namely Pe(cb) , 1s cerived. An upper bound on Pe(cb) and an approxim-
ation technique are also developed. Simulation results for the system per-
~ formance ask a function of steady state pﬁase error are presented and cmxg;arisms

are made. In chapter 3, we propose an estimated data feedback loon structure



for carrier recovery and investigate its steady-state loop phase detector
characteristic. In chapter 4, we investigate a decision-directed feedback
loop. In chapter 5, we investigate two modified decision-directed feedback
structures which yield improved performance campared to the basic structure
described in chapter 4. In chapter 6, we draw conclusions ;frcm the study, and

make same suggestions for further work.



CHAPTER 2

DIGITAL RADIO SYSTEM

2.1 Introduction

The system under study is an offset dudbinary quatemary-phase-
shift-keying (QPSK) system which may be used for d.lgltal radio ccrmLm:Lcat-
ion [23]. A blbckdiagram of this system m a radio commmication environ-
rment is shown in Fig 1. The transmitter consists of a precoder which
differentially encodes the data, a balanced quadrature modulator and a
duobinary:-ee filter. The receiver consists essentially of a coherent
demodulator and decoder. The advantages of choosing a ducbinary filter
are s#ylied in this chapter. Two vossible system mocdels, which svecify
how the dwbinary pulse-shaping filters are apporticned between the trans-—
mitter and the receiver are considered. Mocdel 1 is arranged so. that the
shaping is optimally [1] distributed between the transmitter and the recei-
ver for a wideband additive noise channel. Model 2 is a more realistic
arrangement where the transmitter filter completely determines the duo—
biﬁaxy pulse shape and hence the shape of the overall frequehcy response
and the receiver filter merely bandlimits the noise, and has no ‘effect on
the signal camponent. The two system rodels are shown in Fig 2. The
differential encoder used in this system is for precoding purposes. It
allows the error pronagation phenomenon cammen to all partial respanse
- systems to be avoidad and hence leads to a éi:rplification of the decoder

structure. -
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Because of the frequency instabilities in nich-frequency radio,
it is sometimes difficult to obtain carrier synchronization with suffic—'
iently low jitter to preclude significant detection loss. This problem
‘ has‘been investigated by Rhodes [4] for offset quatemary-phase-shift-
keying (offset QPSK) signals. Gitlin and Ho [11] later ;inveétigated the
same problem for staggered quadrature amplitude modulation (SQAM) system.
The degradation due to carrier phase error for the offset QPSK duobinary
system is studied in the last part of this chapter. A general expression
for an upper bound on the average probability of symbol error is obtained.
also system performance in the presence of a steady-state rhase error

- and additive Gaussian noise is simulated on the camuter.

2.2 Systen Model
2.2.1 Duchinary concept |

The ducbinary technique is an encoding technique which permits
signalling at twice the Nyquist rate. "Dub" indicates that the bit cap-
acity of a straight-binary system can be doubled. This concept was first
introduced by Lender [24]. |

The coding technique is illustrated by the follcwingvexample. Can-
sider two sequences of digits. The first sequence a can be +1 or -1 with
P(+1)=p(~1)=1/2 where p denotes probability. The second sequence bh can
be +2, 0, or -2. To“ transform the & into the brl sequence, we form each

bk by adding each a to the previous digit 3 4 as shown below
a (-D-1-1-111-1-111

bn -2 -2-2 020-2 02
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We note that in two successive time sloté, it is impossibie for the bn
sequence to transit from +2 to -2, or vice versa. This coding technique
ocampresses the bandwidth of the sequence a, by a factor of 2. This trans—
formation or encoding can also he ‘ac‘:canplished by a kind of ‘filter, known
as a duobinary filter. The ducbinary pulse-shaping fiiter has the impulse

respose

% ( cos (wt/T) ) ' (2.1a)

h(t) =
1 - 4t/
with the corresponding transfer function

. _ { 2Tcos (wT/2) lo| < =/T
H(w) ={ § . elsewhere  (2.1b)

as illustrated in Fig 3, where T_l.is the signalling rate. It may observed

that if this impulse response is sampled at time t=-T/2, then

_ _ 1 =0,1
hn = h(tnT) = | 0 otherwise

and thus intersymbol interfenence can arise only from the préceding symbol,

that is in the absence of noise

b =atan , (2.2)
If 3, can assure the two possible values +1 as stated previously, then bk
has the three values + 2 and 0. Thus the binary input to the system has
been oonverted to a three level output. Equation (2.2) can also be used
to decode the data. Once 31 is dec:Lded its effect on bk can be ellm.nated
by subtraction, and a can be dec1ded. The details and advantages
of this encoding technique have been discussed in [18] [24]. In the next

section, we will perform the basic system analysis, and the coding process
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using a duobinary pulse shaping filter will be discussed in more detail.

2.2.2 Basic analysis

The ccxrtalete svstem is shown in Fig 1. The input message s(t) is
periodic and consists of a random sequence of binary bits. Each bit is
spaced T seconds apart, corresponding to a signalling speed of 1/T baud.
The 90 Moit signal, which is the signalling speed we are interested in, is
. fed into the siqnal splitter (cf Fig.l) and is divided into two separate
pit streams or signals, Sy (t) and sz(t) . This séparation is done by assign-~
ing the "odd" and "even" bits to senarate channels, as shown in Fig 4. We
can denote the even bit stream as a sequeﬁce of binary data bits {an} and
the odd bit stream as sequence of bjnarj data bits {bn} n=0,1,2,3,"°""".
The sequence {bn} is delayed by T sec with respect to the sequence {an}.
The signals sl(t) and sz(t) henoe may be represented by a train of armp-—
litude modulated pulses,

s, (t) = Y a g(t-2nT) "~ (even bit stream)
n

s,(t) = } b g(t-(n+1)T) (odd bit stream) (2.3)
n

where an=-_l_'l, bn:-tl depending on the input message and g(t) is a rectangular
pulse of width 2T centered at t=0. The data pairs anbn are transmitted
alternately in time as aobo, albl’ a2b g Tttt . The precoding operation
is performed, using-a differential encocder, on both sequences of binary
input digits {an} and {bn} in the I-channel (in-phase channel) and the Q-
channel (quadrature—rhase channel) respectively. The sequences { an} and
{bn} are converted by the differential encoding to the binary sequences

{cn} and. {dn} using the following rule:


http:charm.el
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% =% ® G
d =b & d
n n n-1

where the symbol & represents modulo-2 summation of the binary digits

and is defined in this case by

The output of the differential encoders si(t) and sé(t) may be written as

sj{t) =] c g(t-2nT) (even bit stream)
n

sy(t) = } d g(t-(2n+1)T) (0dd bit stream) (2.4)
n

The staggered sequences {cn} and {dn‘} amplitude modulate their respective
carriers vZ2cos w_t and -/2sin w t and the results are summed to produce
the bandpaés signal Xl(t) which may be written as
%, (t) = /f[s]'_(t) cosw_t - s, (t) sinw_t]
= V3Re{ [s, (D+3s, (0 1e7%"
= VZRe[y, ()&l (2.5)
where yl(t)=si(t)+jsé(t) , and Re indicates real part of . To represént

xl(t) in the frequency domain, we note that since xl(t) can be rewritten

as
. * o
x, (t) = V2/2[ yl(t)ejwct+yl(t)e Ju t (2.6)
we ‘cbtain
— * '
X (£) = V221 T (E-£)+T (-E£) ] (2.7
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where fc is the carrier freguencv.

The ducbinary pulse-shaping filter has the impulse respmse
given in equation (2.1la) as |
cos (t/T) ) _ (2.8)
1- 4y
with the corresponding transfer function in equation ;(2.1b) as

_{ 2Tcos (uT/2) | w]<w/T
Hiw) = { 0 elsewhere (2.9)

h(t) = = (

4
T

If we oconsider the duwobinary filtering as a baseband process, as we
may in this particular application, then since the signals si(t) and
sé(t) are at the rate 1/2T bits/sec, and the pulses g(t) have width 2T,
we must replace T by 2T in the duobinary filter équations to dbtain

( cos (wt/27T) )
1 - P (2'10),

The corresponding transfer function is then

h(t) =

4
1r

_ ¢ 4TcosuT | |w] <n/2T :
Hew = { g elsawhere (2.11)

It may be easily shown that the equivalent bandpass filter has the impulse
respmse |
z(t)= h(t)cosu t
= rRelh(t)ed’ch (2.12)
with ocorresponding transfer function
. *
Z(£)= Y2 [ H(f-f£ )+ H (-f—£) ]
c c
= 2T [cos 21r(f—fC)T+oos 21r(f+fc)T] (2.13)
This, haowever does not represent the filter which we wish to use. Rather

it represents the response which we wish the filter to have to the rect-
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angular pulse signals of duration 2T. Therefore let us define the so
called ducbinary filter shown in Fig 3. by the transfer finction
F(E) = ¥2 [D(E£) + D (--£) ] (2.14)
or equivalently the bandpass inpulse response |
£(t) = Alt)cosu t : (2.15)
We may then write the transmitted signal xz(t) in the frequency domain as
X, (£) = F(E)X, (£) | -
_/?4[ D(f-£ )T, (f—f J+ D' (~£-f )r (-£-£)1
ﬁ‘i—r(ff)w(-f—f)]} (2.16)
where r, (f)'{-"D (£)r (f) or v |
Yz(t)/—zyl(t) ® d(t) where.@ is the convolution operation symbol. |
In the time domain,
X0 = [ "% (DE(e-1) dr
<] “Rely, (nelcIrela(t-r) TV jar

=72re < [ “y (ndle-ndr ] (2.17)

Since yl(t)=si(t)+jsé(t) and g(t) is real, therefore we can write
X, (t) =/ 2 [ eI [ "(s](x)+is}(n)ale-n)dr ] (2.18)

which may readily be written in the form:
X, (0) = V2 [ ] ¢ [ glr-2nma(t-1)dr] cosw_t

- N -0

-3 | Ja, [ 9le-n+)T) d(t-t)dr ] sinw_t (2.19)
n —oo ’

We note that excent for different delay factors, the two integrais in

the above expression are identical.
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To find the form of the impulse response d(t) of Fig 1, we
note that we want the transmitted signal xl(t) to have duobinary pulse

shaping imrosed on it. This implies

Lgtnatt-t)dr = h(t)

_where h(t) is tne cudbinary impulse response defined 1.1’1 equation (2.1a).
This equation is best solved in the frequency domain where it may be
written as

G(w)D(w)=i1(w)

Since
A _ T cos T |w]<m/2T
ﬂ(‘_") = { 0 elsewhere
and
Glw = [0 gtre ™t
- ij‘ e-ijdt
- —ETsian
wT
which has zeros at wl=kw (or w=kw/T )} k=1,2,3,°°°*°" , so that G(w) is

not zero anywhere in the range -m/2T<w<w/2T. It is therefore possible to

find the transfer function D(w) by simple division as

D(w) = H(w)/G(w)
= ATcosuT | |w] <n/2T (2.20)
s SinwT .
21(~———-————~wT )
Thus
Do) = | 2uwTootwT |w] <m/2T ‘ (2.21)

0 elsewhere
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D(w) is plotted in Fig 5. By using the filter D{w) we may write xz(t)

in the desired duwbinaryv shaped form as

X, (t) = /2 r21 c h(t-2nT) cose t - v2 ) a h(t=(2n+1)T) sing t

n
(2.22)

. where h(t) is the duobinary pulse shape for a rate of i/ZT baud as defined
in equation (2.10). In this chapter we consider that X, (t) is transmitted
over a purely additive noise channel, where the noise may be represented

in narrowband form as
n(t) = v2 [ n, (t) cosu_t - nz(t)si_nwct ] ; (2.23)

vhere nl(t) is the in-phase noise camonent and n2(t) is the quadrature-
vhase noise component. We assure it to be white over the bandwidth of
interest, namely 1/2T Hz with two-sided power spectrai density NO/2 watts/Hz.
We also assure it to be Gaussian with mean zero and variance

2 2 2 2o _ No e
on—onzon; 2T ST (bandwidth=1/2T)

which is equal to the total noise power. The received ‘signal y(t) may

then be written as

y{t)y= V21 § G h(t-2nT)+n, (t) Joosw t
n

=/2[ ] d h(t-(2n+1)T) +n,(t) ]sine_t (2.24)

n .
The receiver consists of a demodulator and decoder as shown in Fig 1.
For the moment, we assure that an ideal coherent demodulator is used.

The signal y(t) is then multiplied by the two locally generated quad-
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rature reference signals

m(t) = V2 cosw _t

mQ(t) = - V2 sinw_t (2.25)
The results of these multiplications (neglecting double frequency terms)
are A

r, (t) =r§l ¢, h(t-2nT) +ril(t)
and

rQ(t) = g d h(t—-v(2n+l)T) +n, (t) (2.26)

from which we wish to decode the binary symbols {cn}’ and {dn}. and
ultimately the original data {an} and {bn}.

Apart from a relative delay of T sec the signals rI(t) and rQ(t)
are identical and their behavior will be statistically the same. There-
fore if we compute the error probability in decoding say {cn}, it will
‘be the same as in decoding {dn}. Additionally, because of the wide s_ense'
stationary nature of the noise the average probability of error will be
the same regardless of which symbol is detected. .

Thus let us consider the signal rI(t) and the detection process

at time t=2kT. First consider anly the signal component

L ¢, h(t-2nT)
n

For illustrative purposes we have assumed c0=cl=c2=c_l=c3=l and plotted
the signals in Fig 6. Examination of the figure reveals that if the signal

is sampled at t=2T to detect c,, there is then intersymbol interference

ll



Fig. 6 The dwbinary shaping pulses .

(signaling speed = 1/27 bauﬂ)

ve
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de toc,, ¢ However, if the signal issampled at t=T,

0" 2 2°
there is then ISI only from the preceding symbol S, and the sample has

r C_qr and c_

the valwe

G

"It is not hard to see that this is the best tJ.me to sanmple in -
order to detecf Cqe Moreover, this is genefally true. In order to
cdetect . at t=2kT for any k the optimum time to sample is at t=2kT-T
at which point the sample will have the value

%" %-1
This sample can have only the 3 values +2 and 0 or more generally +2d
and 0 where d is the actual lewvel separation in volts. Because Qf the

differential encoding which has been applied to the original data the

decoding turns out to be very simple and is illustrated in the following

table
Table 1

Original data Received Sample
3 -1 Ty ® Gy Ot 17P ok

-1 -1 -1 -2

+1 ~1 -+l - 0

- (&=1)

-1 +1 +1 +2

+1 ¥ -1 0

We therefore see that if the received sample gty has value +2d, then



the original transmitted bit a was a 1. Hence the decoder for these
preooded signals is quite sinple and cansists of a 3 level slicer only.
The outputs of the decoders in the two» channels can now be combined to
recover the original data stream by alternately gating the even and odd
channels at the original bit rate such that the proper phase relation
between the gate signal and the data timing in each channel is maintained.

It is worthwhile to examine the possibie symbol values, +2d and 0. .
We can see that a direct transition between +2d and -24 is impossible.
These three levels signéls are highly correlated {24]. 1In fact the dw-
binary coding technique has the effect of changing the uncorrelated binary
symbol sequence into a correlated 3—l_ével sequence. The consequence of
this process is the redistribution of the spectral density of the ofiqinal
binary sequence into a highly concentrated spectral Galsity near zero
frequency (equivalently the carrier frequency) [23]1([24]. Fig 7 illustrates
the 2:1 bandwidth compression property of the dudbinary seqdende cawared
to the original binary symbol spectrum. Note that the large concentration
of energy in the vicinity of zero frequency has no significance in high
speed data transmission since a carrier must be employed due to the band-
pass characteristics of most transmission media. Thus we can see that
the available channel capacity is doubled by employing the duobinary
ocoding technique. On the other hand, if we wish to déuble the capacity
per radio channel using the multilevel phase modulation technique, we

have to go to 16 level phase modulation. This greatly increases the equip-
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ment comlexity and causes a fairly heavy verformance penalty in teﬁns

of error-rate versus signal‘ to noise ratio. Using duobinary coding, the
capacity per radio channel is doubled with only a moderate performance
penalty. More inportant is that .the equipment complexity is. much simpler,
and hence the cost is lower.

Most systems are quite intolerant of timing perturbations in the
receiver sampler when the transmission rate is close to the channel Ny-
quist rate [29]. For the ducbinary system, it has been shown that the
speed tolerance, which measures the sensitivity of a system to changes
in the signalling rate, is 42.5% [1]. This figure indicates the in- |
sensitivity of the ducdbinary system to receiver sampler timing perturb-
ations._ Also, another performance index<zeyewidth as indicated by Kabal [1],
shows that the system is quite insensitive to changes in the sampler phase.
We may, therefore conclude that bit timing in the ducbinary system is
- not critical, provided coherent demodulation has been achieved. In the
rémajning of this chapter, we shall consider the degradation dve to the ‘
unavoidable frequency instabilities in the high frequency radio channel.
These instabilities lead to errors in the demodulating carrier phase and

the effect of this phase error must be examined.

2.2.3 System modulation type
Since duobinary coding is used in the system, the tvpe of modul- .
ation is no longer simply a 4-level PSK svstem. The ducbinary coding is

carbined with the four level phase modulation and results in a complex
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1 0 0 1 1

(@) Binary signal

0 0 -2 0 2

(b)  Partial response coding

ZeYO Zero
. Zero 0° o
amplitude amplitude amplitude 180
© Carrier wave vhase modulated by

partial response signal .

Fig. 8 Modulation nrocess
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modulation nrocess which is partly phase and partly arrplltude rodulation.
The process is illustrated in Fig. 8 where Fig, 8a is simply a binary symbol_
sequence (differentially encoded) or series of pulses with amplituﬂe -1
(logical 0) or +1. The ducbinary coded signal will then be a serie‘s .can~
sisting of -2,0 and +2 as shown in Fig 8b. Once the s:.gnal has undergone
ducbinary ooding, it is used to modulate the carrier wave by representing
the levels -2 and +2 by phases 0 .and 180 degree respectively, and the |
level 0 by zero amplitude. As four level phase modulation is used with
ducbinary coding, we can corbine two similar signals in quadrature, that
is, differing in phase by 90 degrees. Fig 8c illustrates the carrier wave
phase modulated by a ducbinary baseband signal, and two of these are added

in quadrature to produce the resultant mocdulated wave.

2.3 Pérformance Evaluation
2.3.1 Ideal coherent detection with zero‘phase erlfor
To evaluate the performance of the ducbinary systern, we assume
that the transmitted binary data {ak} and {bk} have equal probability of
having the values +1. Referring to table 1 in section 2.2.2, it may be
shown that
P(p 2k=2d) =P(p 2k=—2d) =1/4
and ~
P(p2k=0) = 1/2
where o, = ¢ + ¢ _; is the 3-level ducbinary data and {c } is the differ-

entially encoded binary signal sequence. Let us consider the noisy de-
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modulated received signal

o(t) = ] ¢ h(t-2nT) + n, (t) (2.27)

n

If the signal is sampled at t=2kT-T we have

Pok T %t %-1* "k
where Ck+ck—l=2'o or -2 and n2k
sarple is threshold detected using the decision scheme

is a Gaussian random variable. This

-d <P < a => a. = 1l
s "4 T oy =1

Pz 4 T F =-1

as described above. The average probability of error for this detectioﬁ

process mav be written as

Pe = [ Pp, <-dla =1) + P(p, >d|a=1) ]*P(g=1)

+ [ ?(p2k>—d|ak=—l) + P(92k<dlak=—l) 1*P(a =-1) (2.28)
or equivalently on defining L=q*q 4

Pe = [ p(pz}{f-dlr}fo) + p(kazd[rk=0) 1*P(r, =0)

+ P(p2k>—dlrk=—2) *P(rk=—2) + P(p2k<d|rk=2) *P(r, =2)
: : (2.29)

Because n.,, is a zero-frean Gaussian random variable, the above conditimmal

2k
probabilities all tum out to be equal and we may write
Pe = 3/2 P(p, >d|xr, =0)

=3/2 P( nZkZd)
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In duobinary systems, there are 3 system models wh:l_cn must be
considered in calculating the prooability of error:
(1) duwobinary pu]se shaping is equally 'split between the trans-—
mitter and receiver
(ii) dudbinary pulse shaping is entixely performed at the
transmitter |
(iii) dwbinary pulse shaping is entirely performed at the
receiver
We shall neglect the third rodel since the intent of duwobinary encoding
is to restrict the required channel bandwidth and hence miy the first
and second models are of interest. |
(i) Mocel 1 : shared pulse shaping

The transmitter filter in this case has transfer function

1/2
_ 12 _ {(4TcosuT) lw]<n/2T
Hplw) = H7(w) = { 0 elsewhere
and the .receiving filter has transfer function
M) = 12y = | U cosuT) /2 lw| <n/2T
R 0 elsewhere

The baseband system may be modelled as shown in Fig 2a.

For binary input cata with values +d, we may calculate the average

symbol power as

PS = d2/2T “where 1/2T ié the data rate

The transmitted signal power may then be written as

1/2]2 dw

5 (2.30)

p, =(a*/2m) {727 (47 cosum)

2 -1/2T
2T ™ S

BN
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At point A in Fig 2a, the noise power in the Nyquist band is

Py = NO/ZT . (2.31)

and thus tne SNR at this point is

v |
= 4 2P /N ) =4_5 (2.32)
N m 0 LR S Y . :

At the output of the receiver filter, the noise power is given by

P! = ¥, [:ﬁg [ (4TcoswT)

N
4No

™

1/2,2 dw

]21r

(2.33)
and we note that Pn' is the variance of the decision variable.

The probability of error at the detector (rectifier/thresheold

detector) is
3 3 2, 2
Pe = 5P, d = Z— [ exp(-x“/20“)ax
=2 M e g |
= 2 o( d/o) o (2.34)

where 02 is the noise variance at the output of the receiver filter.
For the mocel in Fig 2a, °2=PL\'I’ this yields

d 3 |
v ﬂ) 7 QU/a/N_ d) (2.35)

Pe=—§-Q(

The decision distance d can be expressed in terms of the transmitted

signal power PT as

a= (vrey/2) 172

(2.36)
and this allows us to write

_ 3
Pe = 5 Q(—v/4 ZTPT/NO) (2.37)
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but NO/ZT = Py is the noise power in the Nyquist band at the input to

the receiver filter ancd therefore

3 ‘
= ‘Q‘Q( LY PT/P’\I ) (2.38)
2 B, _
The effective SNR is therefore ——1"—6—5-—- , whereas with ideal binary
P
signalling it would be———- There is therefore a degradation of 2.1 d3_
N

over icdeal blnar.y signalling neglecting the multiplying factor of 3/2.
The actual receiver SNR is found as

i |
u=1—,§= B oo taeern 1P 2.3

w
(ii) Model 2: transmitter pulse shaping

The transmitting filter in thhis case has transfer function

. ATcosuT w|<n/2T
fp(e) = B = {3 Wele
and the receiving filter is ideally
N1 1 |w| <m/2T
HR(“’) = { 0 elsewhere

The received noise power at the decoder input is

cz—P No/2t = —--—. (4 /n) = B}/8T (2.40)

The transmitted signal power in this case is

a [T/ 2 2 G

Pl=— 16T cos™ uT
T 2T “n/2T 2%
.. A
= 4T 2T /2 +(1/2)cos 26T )du
T -u5/2T
= 2d%
=-(aT) Py, (2.41)



The probability of error is now given as

Pe= 3 Q(d/0) = 3 O /2T, d)

= E'Q( a/ f%;)
Since dz = P,]':/Z , thus

35

(2.42)

The effective SNR is Py/2P where P, is the transmitted signal power

T

and Py is the noise power in the Nyquist band. Therefore in this case

there is a degradation of 3.01 dB from ideal binary signalling neglect-

ing the factor of 3/2. The actual SNR is found as

w=DBYR =2 [ Q7 (2re/3) 1

The required SNR for' ideal binary signalling is readily found to be

=0 L(pe) |
4

Consider an error rate of 10 ', then

oYpe) => sgaam

0l 2e/3) == 8.7®B

Table 2
Model " ' Degradation |
|PAM(ideal binary) | 8.4 B 0 B
Model 1 10.79 B 2.39 dB
Model 2 11.71 dB 3.31 dB

(2.43)
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At Pe = 10'5, then .

oY pe ) == 9.5 a3
ol 2pe/3) = 9.7 a3

Table 3
Mocdel u Dagradation
PAM(ideal binary) 9.5 dB 0d
Model 1 11.79 dB $2.29 aB
Model 2 12.71 a8 3.21 a8

2.3.2 Effect of phase error on cemodulation and error rate
As in the previous analysis let us consider the transmitted

signal to be

x, (t) = rzl ¢, n(t-2nT) cosu_t - rzl dn'h(t—(?.n-i-l)T) sinu_t

. | (2.44)
where {c_} and {dn}’ar.e the differentially encoded binary data and
h(t) is the ducbinary pulse shape

h(t) = 4 cos(mt/2T)

Ty - T
for a rate of 1/2T baud with

_ 4T coswT [mliﬂ/ZT
Hw) = { 0 elsewhere

In the previous analysis we considered system performance for
the case of perfectly ccherent demodulation with the only disturbance
being the additive Gaussian noise.

In this analvsis, we consider that a random phase shift is
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introduced by the channel, so that denodulation is not verfectly
coherent, but cantains distortion due to vhase error. We will, however,
continue to assure that sv»l timing is maintained.

Nor the signal at the front end of the receiver can be written as

y'(t) = vZ [ ] ¢ h(t-2nD) + n (£) leos (u t + 8(t) )
n
~/2 [ ] 4 h(t=(2n+D)T) + ny(t) Isin(e t + 8(t))
n (2.45)
where 8(t) is the random rhase shift and n, (t) and n2(t) are the in-

rhase and cuadrature rhase noise cormonents resrectively. This signal

is demodulated lw the quadrature carriers fz_cx)s(wc‘&e) and -v2sin(w o)
) 14

where 8 is a local estimate of the carrier phase 8, to produce the quad-~
rature baseband comonents
rp(t) = ] ¢ h(t-2nT)cose(t) - ] d h(t-(2n+1)T)sing(t)
n n '

+ nl(t)cos¢(t) - n2(t) siné (t) (2.464a)

and

i

(8 = § d h(t-(nr)T)cose(t) + § o h(t-2nT) sing(t)
n n .

+nl(t) sing(t) + n, (t) cosd (t) (2.46b)

where ¢(t) is the phase error defined as the difference between 06(t) and
its local estimate 6(t) . e note that the effect of the vhase error ¢(t)
is to .introduce wctatum distortion terms (osing¢) into rI(t) and rQ(t)
and this rmust inevitably degrade the performance of the system.

The sicnal rI(t) is sampled for detection purposes at the times

t=(2k-1)T (k integer). Consider the pulse h(t-2nT) at this sampling time
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n((2k-1)T-2nT) = h(2(k-n)T-T)
cos g— (2 (x-n) ~1)

4
"1 - (2(k-n)-1)°
{ 1 n=k k-1 '

0 n#k k-1 (2.47)
Similarly consider the pulse shape h(t—-(2n+1)T) in the quadrature dis-

tortion term at t=(2k-1)T (k integer)

n((2x-1)T-(2n+1)T) = h(2(k-n-1)T)

™
571'; [2 (k-n—l) T]

1 - [2(k-n-1)T]%/T?

Ccos

4 cosrm(k-n-1)
1 - 4(k-n-1)°

4 __pF

1 - 4(k—n-1) 2

3

(2.48)
In a similar manner, the signal rQ(t) is sarpled for detection purposes
at the times t=2kT (k integer).
Consicder the pulse shape in the in-phase component h(t-(2n+1)T)
A which may be written as |

h(2kT-(2n+1)T) = h(2(k-n)T-T)
- { 1 1’1=k,k-'l
0 ' n#k,k-1 , (2.49)
Next consider the pulse shape h(t-2nT) in the quadrature distort-

ion term

h(2kT-2nT) = h(2(k-n)T)
4 cos [ 2 T(k=n)/2T ]
"1 - 2(k-n)TIS/T
4 oos (k-n)

m 1 - 4(k-n)>




4 (_1)]{-—n

r 1 - 4(k-n)>

(2.50)
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Using these results we mav now write the sampled received sequences as

rp(2k-1) = qcos¢(t) + ck_lcos¢(t)

(-1)

4 a
14,
n

and

rQ(Zk) = dkcns¢(t) + dk_lcosq:(t)

1 - 4(k—n-1)

(_l)k-n

4
+'1720n

n 1 - 4(k-n)

The effect of a demodulation nhase error ¢ is thus to
(1) degracde the amplitude of the desired signal component
by an amount proportional to cos¢

(ii) cause quadrature distortion terms to appear.

siné (t) + 0, (2K)

By defining o
' A= 4 ) 4 (_l)k—n—l
" a ® 1= 4(kn-1?>
and |
k—n
B = % ) % = 2
n 1»— 4 (k-n)

We may write

5 sing(t) + nI(Zk—-l)

(2.51)

(2.52)

r(2k-1) = (g + G_3) ©0s$(t) = Asiné(t) + n (2k-1)

and

rQ(2k) = (q + q_,)cose(t) + Bsing(t) + nQ(2k)

anAd we note that these 2 samole sequenoes have tne sare form. In

(2.53)

addition,if we for convenience set the detection or decision distance
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d=1, we can then define the following error events

Table 4
Bvent | g ld) | q_y(& ) %1 G d) | BETOr reglon
_ _ or r
1 +1 -1 0 1 1 or r<-1
2 -1 +1 0 - r>1 or r<-1
3 +1 +1 +2 r<l
L4 -1 -1 -2 r>-1
s et e b e o ae s e it b s i e e e - At

and each possible event has probability 1/4.

To find the average probability of error conditioned on both the
p"ia.-:@ error ¢ and the quadrature distortion svrbols, we have to find the
probability due to esach error event and then sum thé resulting probabilit-
ies. 3ecause of the simil_a::ity in form the analysis for 'rQ and rr will
be icdentical.

Event tvoe 1 : I’x thls case cknlh_, ck_1.=—l, ck+%\__ =0 and rI=-—Asz.n¢+nI

and the corresronding error nrobapility is

Pel = 1/4{ Pr(rl>1) + Pr(rl<-l) ]

vhere we irmplicitly assure through out this analysis conditioning on Asing,
the quadrature distortion. Now nI=rI+Asinq’> is a Gaussian random variable

. v . . 2 ; .
with oconditional mean = Asing and variance ¢ (derendent on the receiver

filter ). Therefore

Pel = —i—{ 1 fw exn [~ (xtAsing) 2/202]6.:{
v V2o 1
- 2
+ = [} exp(- (xtasine) 2/20” ) ax |

v21g
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and hence
1 . 1+Asing _ -1 +Asiné
Pel—Z[Q( 5 ) +1 - o ) ) ]
_1 ) . l4Asing , _ -1+Asiné
=gty lo——— ~o—— 1 (2.54)
where
2r

Event type 2: Here, ck=-l, Ck--l=l’ Ck+ck—l=0 and‘rI=“ASin¢ + ..

This event type produces identical results to event type 1 and thus

Lasing \ _ , -l+Asing | ]

1 .
tg lel——= 5 (2.55)

il

&

it
]

Event type 3: In this case ck=l, cﬂ_l‘—‘l, ck+ck—-l=2 and rI=2005¢—Asm¢+nI.

The probapbility of error in this case is

= 1 ~1_1..
Pe3 = 7 P(rl<l) =7 7 P\rl>l)
. . 2 ,
_ _i_{ 1 - 1 [m exp [~ (x chs¢+Asm¢) Jax } 2.56)
Y270 1 26" R

2 . . . : .
- where as before ¢~ is the noise variance at the outnut of the receiver
filter. Therefore

_ 1 - 1-2cosé+Asing,
pe3 - 4 { 1 Q( o 7

] (2.57)

Bvent tyme 4: Here, ck=—l, ck_l=~l, ck+ck_l=—2,and rI=¥2005¢—Asin¢+nI.

The error probability in this case is then

= 1 -
Pe4 = Z P(rl> l)
. 2
1 +2c0s o+
- fo expl - (x ooch Asing) léx
42w -1 . 2¢6”
- 1 o( —l+2oos¢+Asm_¢_) (2.58)

4 o
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The total probability of error is then easily found as

Pe = Pe_+ Pe. + Pe + Pe4

1 2 =3
_ 3.1 1+Asing, _ 1+Asm¢
+ 211_ [ Of -l+200§¢+Asm¢ ) -l l—2mz¢+Asm¢ )]
| (2.59)
As a check let us oonsnier the value of Pe when the phase error

$=0. Then
C pe= 3+ 00/ - Q1) 1+ [0(1/e) - a(-1a) ]

= 2 0(1/0)

which is the sawe as our previcusly derived results. The property that
Q(1l/o)= 1 - Q(-1/0) is proven in Appendix 2A.

Similar results are readilv found for the quadrature channel samples

as
_ _31 1 l+Bs:Ln¢ _ ~1+3sing
+ % [ o( —l+20<c::sQ+Bsm¢) - of 1-2oo§¢'+Bsm¢)]

(2.60)

So far the error rate we have chtained is conditioned on both the phase
error ¢ and the quadrature distortion temms (A or B). To obﬁain the aver-
age symbol error probability conditioned an the phase error oly, we

have to take the awverage over the guadrature distortion symbols in A(or B)
~ .

Pe(s) =) Pe(¢,A)P(A) | (2.61)
A

But in general A contains an infinite number of syrbols, and equation

(2.61) is thus very difficult to evaluate. This leads us to search for
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sare fom of uprer bound on the error rate Pe(s). In order to do this,
we can evaluate, for a fixed phase error ¢, the largest possible distort-
ion dve to the quadrature distortion term A in (2.61). As shown in the

previous section, the quadrature distortion term A is expressed as

A= 2 £ dn (_l)k—n—l
n "1 -4(kn-1)2 (2.62)
The worst case of this series can be written as
A= 24+2.3 s | (2.63)
T n#-1 4(k-n-1)° - 1 .
Therefore
A= 4 + 2{ 4 ) (2 --——-}-~-————-) where m=k-n-1
'rr w 2
m=1 4dm -1
_4,4 (aw1m - 8 | (2.64)
—n+n(2 1/2)—“ »

Thus the upper bound of average probability of error conditicned on

the phase error is readily found as

o 8 . . 8 . .
Pe($) < 0.5+0.5[ Q(—}j’—f“ci@i) + Q(_l_:;éin_‘l’.)]
1-2cos p+osing ) + a( ;L-Zcosd:—gsimp_)]
o o

-0.25[ Qf
; (2.65)

For the case of syétem mbdel 2 where the transmitter filter determines

the share of the freq'uency response, we have plotted in Fig 9 the

error rate upper bound conditioned on the phase error against the signal '

to noise ratio as given in equation (2.65). bThe curves show that even a

small phase error can degracde the system performance quite seriously, and

as phase error increases, the degradation increases rapidly. For example

there is a degradation of aprroximate 2.5 dB for a 6 degree phase error
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while there is a ‘degradatim of approximate 6.5 d3 for 12 cdegree phase
error at Pe(¢) equal 10—5.

Another way to evaluate Pe(¢), at least approximately, is to
approximate the guadrature term A using a finite number of symbols. For

example, consider the case where only three symbols are used to evaluate

(2.61). T‘ne(quadrature‘ distortion term A is now expressed as

4 1 1
=l g +3d4 339,

where dk=c'lk__l=dk +l'—jl.
There are eight possible cambinations for A and each cambination
has probability 1/8. We can construct a table to show these combinations

as follows:

Table 5
Lol & Gy G | By | P
1 +1 +1 +1 20/3% | 1/8
2 +1 +1 -1 a/n | 1/8
3 +1 -1 +1 ~4/3x% | 1/8
4 +1 -1 -1 -4/7 | 1/8
5 -1 +1 +1 4/% 1/8
6 -1 +1 -1 4/3n | 1/8
7 1 -1 +1 ~4/r | 1/8
8 -1 -1 -1 ~20/3n| 1/8
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Thus we can write

8

Y Pe(s,A;)

i=1 *

8 A, . 1-A.3in¢

= %‘,Z { 0.5+0.5[ Q(—1* L sine - Sindy 4 Q—i—1
=1 l-Zoos¢-Aisin¢ l—2cos¢+Aisin¢
-0.25[ ) + )1}

g g

el ]

Pe(¢)

, (2.66)
The approximate error rate conditioned on the phase error ¢ as given

by (2.66) 1is nlotted against the signal to noise ratio in Fig 10,
and nlotted against the phase error ¢ withA, where Aéd/o, as a para-

metar in Fig 11.

2.4 Sirulation of the systen performence in the presence of a steady -

state vhase error and additive Gaussian noise

In this section, we snall evaluate the systen pérformanoe in the
presence of a steady stote phase error and additive noise via simulatians
on the CDC 1700 digital computer. The sirmulation procedure will he
briefly described and the results are discussed, and ccmpared»wi‘dl the

foregoing theory .

2.4.1 Description of the sirmulation

A block diagram of the simulation prégram is illustrated in Fig 12.
'i‘he simulation proc2dure is rore or less the save as in [31], where in
the noise-free sional is simulated and effects of noise are computed.
A pseudorandom binary sedquence of 127 signal symbols was processed in the
simulation. The sigqnal arc Fast Fourier transfomed into the frequency

domain, and rultinlied with the transmit filter transfer function, which
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is defined by

, _{ AT cosuT el /2T
HT(m) = { 0 elsewhere

The result is then inverse Fast Fourier transformed to obtain the
time-domain filter output. ,The' continuous signal stream is constructed
and passed to the simulated receiver. At the same time, the eve diagram
for the duobinary signals was generated on the Tetranix camutex 4 dis-
play unit. Fig 13 shows the resulting three level eve mattem of the
signal.

After the decision making nrocess, the number of incorrectly
received bits was comted and a conditional probabpility of error of each
received bit is computed. A computed noise aprroach [31] was used, them
the noise is roved to the output of the receiver filter. In this system,
the receiver filter has a transfer function

7 _ 1 : lwlf_ﬂ’/ZT
lIR(m) = { 0 _ elsevhere

The equivalent noise power at the output of this filter is computed
according to theory. The sional is simulated in the absence of noise.
The purpose of using this computed noise approach is to reduce camuting .
time. The prababilities of error camuted for indivicual bits at each
value of SiR are summed and then cﬁvided by the total nurﬁber of bits
processed to obtain an average probability of error for each A2 vhere

20 2,2

A"=d"/c” with 4 the level separation and 02 the noise variance at the

output Qf the receiver filter.
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2.4.2 Results and conclusims

The average probability of error is plotted against Az in Fig 14
where the degradatioﬁ in performance for fixed probability of error as
the steady state phase error increases is shown. Again we can see tﬁat
as rhase error increases, the deqradation increases raridly.

In the simulation, rectangular pulses are used as input to the
ducbinary pulse-shaping filter instead of impulses. The pulse response
of this filter introduces some small adéiﬁmal intersymbol interference
(ISI) and causes a small performance degradation of the simulation from
the theoretical results. When we comware the simulation curves with the
curves cbtained theoretically ( u*aper bound and 3-symbol-average cases )
for 0° phaSe. error, the curve obtained by simulation shows worse per-
formance than the tneoretlcal curva. We can see that the simulated curves
are approximately 1 dS worse than the theoretical curves. This 1:dB
difference is, as mentioned previously ., mainly cdue to the spreading éf
the pulse response we used in simulation. Some other possibilities which
may cause this difference are the limited number of samples per pulse
used in the simulation, the truncation and window errors of the FFT, etc.
In chapter 2, we have designed a filtef D(w) which can produce the duobin-
ary pulse shape when a pulse is used as its input. When this filter D(w)
is used in the simulation, the 1 dB degradation fram théoretical should
be eliminated. However, this has not as yet been dme.

Assuming that the 1 dB difference is removed, and we compare the
sinulated cur\}e for 9° phase error case witn the 3-symbol-average and

uner bound theoretical curves as shown in Fig 15e, they essentially
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agree with each other. | Also, we ‘can‘ see that the simulated curve is
appmﬁnmtely the same as the 3-symbol-average curve when the 1 ds
difference is removec. Thus we can conclude that the 3-symbol-average
curve may be the better one for using to calculate the average symbol

error probability.


http:c1ifferet1.ce

CHAPTER 3
ESTIMATE-AIDED CARRIER TRACKING LOOP
3.1 Introduction »

In the previoﬁs chapter, the effect of imperfect carrier synchroniz-
ation on coherent detection of offset QPSK ducbinary signals was studied
and was seen to cause a significant loss of performance. To reduce the
phase error and thus to achieve more coherent derodulation, various carrier
synchronizers [25] and suppressed carrier tracking loops [19-21] have been
suggested for use with M—-ary PSK signals. The offset ducbinary-coded QPSK
signal is a sunpressed carrier signal, and a successful carrier recovery |
ané phase tracking system must generate highly ocoherent quadrature reference
carrier signals with ideally no penalty in signal to noise. ratio and with-
out the need for transmission of a pilot carrier. Furthermore, the reference
signal coherence must be independent of the data modulating the carrier. |
There are several potential candidate techniques for reconstructing the
carrier signals. The one proposed in this chapter is an estimate-aided sup-
pressed carrier recovery loop which is illustrated in block diagram form in
Fig 16.

In this structure the in-phase channel (I-channel) “and quadrature chan-
nel (Q-channel) baseband signals ry(t) and rQ(t) (cf. Fig.16) are sampled at
the times t=2kT and £=(2k+l)T (k integer) respectively and, without being
passed to a threshold detector, are direétly fed back as shown to cross-

. multiply the baseband analog signal in the quadrature channél. The purpose
of the estimates being fed to the carrier recovery circuit in this way is
to create a spectral line at the carrier frequency which may be extracted

60



by conventional phase-locked loop methods. Iﬁ the absence of these feed-
back signals the upper loop output Z; (t) and the 1owe1; loop oufput ZQ(t) are
small. This is due to the fact that the modulation bandwidth greatly ex-
ceeds that of the carrier phase variations and as this latter bandwidth
determinés the laower and upper loop bandwidth, the filter F(p) would average
the modulation to a negligible valuve. The concept of feeding the estimates
back, without being passed to the threshold detector, is suggested in [5].
If we use the detector outputs in the I-channel and Q-channel (i.e. decisions
have been made) for feedback purposes, it would complicate the derivation

of the loop equatiori as the nonlinear operation of quantization makes find-
ing the statistics of the detector outputs difficult. But the statistics ofv
the unquantized estimate are easily obtained by using this technique.

The principal theorectical result obtained in this chapter is the
solution of the Fokker-Planck equation for the steady-state probability
density function of the tracking loon phase error. The study is based on the
use of a first order loop in order to cbtain a tractable analysis;

3.2 ILoop analysis

The loop we propose here is illustrated in Fig 16. The recej.ved signal
- is as in (2.45): |

y* (£)=/2{] G h(t-2nT)cos (u t +6)=] @ h(t-(2n+1)T)sin(u_t+6)

2 nl(t) oos(wct-&-e) - nz(tl;sin(wct +0) } (3.1)
where {cn} and {dn} are the differentially encoded binary data bits, with
valwes #1; h(t) is the dmbinaiy pulse shape defined in ( 2.10 ) and W 1s

the carrier frequency. The carrier vhase 6 is considered to be a slowly vary-
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ing random variable and is taken to be uniformly distributed on [-w,7]. This
randam phase shift 6(t) is defined equal to 6.+ ot with 6, a uniformly
distributed random phase and Qo the Donpler shift in the input freqtﬁ!icy from
its nominal valuve of w e nl(t) and n2(t) are the in-phase and quadrature-
rhase noise components respectively. Here we assume that the noise is char-
acterized as a narrowband Gaussian process, so that nl(t) and ‘nz(t) are
identically distributed baseband Gaussian processes.

The signal y'(t) is multiplied by the two locally generated quadrature
reference signals |

X () = /2 Kjcos( u_t + o(t) )

X, (8) = Y2 K;sin( wt + 6(8) )
vhere K, is the voltage-controlled oscillator (VCO) rms amplitude, and 6(t)

is the local estimate of 6(t). The two products of the multiplication (neg-

lecting dowble frequency terms) are

rr(t) = K v' (£)X (t) |
= KK { rzl c h(t-2nT)cos ¢(t) - rzl d h(t-(2n+1)T)sing(t) + Ny (t,9) }
and | ( 3.2a)
o) =

Kmy' (t)XQ(t)

il

KK er d h(t-(2n+1)T) cose(t) + rzl c h(t-2nT)sing(t) + NQ(t,cb) '}
' ( 3.2b )
where Km is the phase detector gain and ¢(t) is defined as the loop phase
error and is equal e(t)—é(t) . Also the noise terms NI(t,e) and NQ(t,a) are

given by
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Np(t,4) = n, (D)cose(t) - n2(t)sin¢(£) - (3.33)

NQ(t:fb)

n, (£)sing(t) + n,(t)cose (t) : (3.3b)

In each signal the second term is known as the quadrature distortion term

and is proportional to

sin¢. The baseband signals rI(t) and rQ(t) are then

sampled at the times t=2kT and t=(2k+1)T (k integer) respectively for

feedback purposes.

Now consider the pulse h(t-2nT) at the sampling times t=2kT. It may

be written as

h(t-2nT)

h (2kT-2nT) |
cos | 5% (2k—2n)T ]

4
m

_a -k
T -4 (k-n) >

(2k-2n) 2'1‘2

T2

1 -

(3.43a)

Similarly, the pulse shape h(t—(2n+1)T) in the quadrature distortion term

at the same time t=2kT

h(t-(2n+l1)T) =

is given by

h (2kT-2nT~T)
v
cos | 57 (2k=2n-1)T ]

RN

(2k-2n-1) °1°

2 |
4 _cos [ (k-n-1/2)w ]
1 - (2k-2n-1)°

1-

|

{ 1 n=k k-1
0 - n#k k-1 (3.4b)

In the same manner, the signal rQ(t) is sampled at the times t=(2k+1)T.

The pulse h(t-(2n+1)T) at these sampling instants is



h(t-(2n+1)T)

il

h{ (2k+1)T - (2n+1)T )

h( (2k-2n)T )

4 _(-pkm

" 3-4(kn)> (3.52)
Similarly, the pulse shape in the quadrature distortion term at t=(2k+1)T
is given by

h(t-2nT)

I

h( (2x+1)T - 2nT )
4 ocos [ (kntl/2)7 ]
T 1 - (2k-2n+1)°

0 n#k k+1

(3.5b)

Using these results we may write the sampled sequences rI(Zk) “and .

rQ(2k+l) as
4 (_l)k—n _
rp(2k) = KK { —;}j Sy —— 30056 (t) = (d+q _,)sing(t) + Np(2K) ]
n 1-4 (k~n)
» (3.6a)
r (2k+1) = K.K_ { -4—2 d 1 ™ cos¢ (t)+(c, +c,_, ) sing (t) + (2k+1) }
Q Vot 77 072 K%K+ o)

(3.6b)

where NI(Zk) and NQ (2k+1) are Gaussian randaom variables.

The sampled signal rI(Zk) is then cross-multiplied with the cont- _
inuous low pass signal rQ(t) as shown in Fig 16 and produces the signal
_ ZQ(t) . Similarly, the sampled signal rQ(2k+l) is crosthiplied with the
signal rI(t) and produces the signal ZI(t)A. These two signals are then sub-—:
‘tracted and their difference foxms an error signal at the input to ‘the loop
filter F(p). This error signal, denoted by e(t), is given by

e(t) = 21 (t) - ZQ(t).

= rI(t)rQ(2k+l) - rQ(t) rI(Z}:)
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Therefore e(t) can be written as
e(t) = KK {1} rQ(2k+l) cnh(t—ZnT)cps¢(t) —rzl‘rQ(2k+1)anh(t-(2n+l)Tsin¢(t)
+rQ(2k+l)NI(t,¢) ] - [I};rI(Zk)dnh(t—(2n+l)T)oos¢(t)
+ ] rp(2k)c h(t-2nT)sing () + rp (KN, (£,0) ] }
i (3.7)
The instantaneous frequency of the WO output is proportional ﬁo the filtered
error signal via the relation |
6:3 (t) = KVF(p)e(t) |
where KV is the WO gain in rad/V/sec and the dot denotes differentiation w.i.t.

time. Recalling that 6(t)=6(t)-¢(t), we can write

e = a(t) - 8(v)

6(t) -~ K F(p)e(t) | ' (3.8)
which is a stochastic integro-differential equation. Since e(t)é Bo+ Qot
where eois a wniformly distributed random phase and 2 is the Doppler shift
in the input frequency from its norminal value of w, we obtain |

o(t) = Qo
Thus equation (3.8) can be rewritten as

() = e, - KVF(p)e(t) - | (3.9)

The analysis of the loop to find the phase detector characteristic

including the effect of noise rests on the assumption [20] that

1
Wy <33 (3.10)

where W is the two-sided loop bandwidth. This assumption indicates that
the phase process varies much more slowly than the signal (moduiation)

process. Since we assumed previouslv that the noise is characterized as a
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narrowhand process, its correlation time [19] is much less than the length
2T of the signaling interval, and thus the s.ignal sees the noise as essent- _
ially white. Also the assumption in (3.10) implies that we can take the
statistical average of the stochastic differential equation in (3.9) over
the data. Thus we can evaluate statistical averaées as follow;

E [ rQ(2k+l) <, ]

k-n
=B{kK [ 2] cd N cosg) + ¢ (gre,,)sine (t)+ o N, (2k+ 1)1}
n 1-4(k-n) :

_ { K.K sin¢(t) n=k,k+1 -

={glm n#k k+1
and

E [ry(2k+1) 4] .

£ (KK [ 2] ad — 2 cosp(t)+ d (gt , ) sing (6)+ d N, (21 1}

1-4 (k-n) ' :
k-n
4 (-1)
= KK — cosé(t)
Imr . 4(k-n)?

Similarly, we obtain

E [ rr (2x) dn ]

_{ “K.K sing(t) n=k ,k~1

={ otw ik k=1
and

E [ rI(Zk) <, ]

-kkK 42 Dl cosé (t)

1m = 1 - 4(k-n)2

Hence we can write under the above assumptions the stochastic integrodifferent-

ial equation of the loop as
. o kil 1 }2k+2)T
¢(t) =q - KV{ (KK )L ;{ sing (t) (5 z,i’;l(t—zn'r) dt) cos¢ (t)
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4 (_l)k-n ' 1 (2k+2)T
-1 (= 5 0s¢(t) ) (55 /| h(t-(2n+1)T)dt)sing (t)
n 1 - 4(k-n) 2kT
+ A B (N (6,002 (2k+]) ) - 2 E ( No(t,6)r. (2K) )
Kle It~ Q Kle (o R I
4 (pkm p (ZHDT
-1z cos¢(t)) ( 5= [ h(t-2nT)dt ) sing(t)
n 1- 4(k-n) (2k-1)T
. 1 2k+1)T
_rzl (-sing(t)) ( 5% {Zklzgc;(znﬂ)fr)dt ) cosé(t) ]} (3.11)

where we have assumed, for the sake of simplicity, a first order loop

( F(p)=1 in (3.9) ). Also, we have vtaken a time average of the stochastic
differential equation in (3.9) over the signal as‘ implied in the assumpticon
in (3.10). In the appendix (33), these corresponding numerical tire average

values are evaluated where we can see that the values from the term

2 1 f(2k+2)T
= ( 5% / h(t-(2k+7)T)dt )
35 2T KT

are so small that they can be neglected, and only 3 terms needed to be in-
cluded ' in subsequent work. Substituting these values into equation (3.11),
we obtain |
$(t) = a_ - K (KK)?[Ksin 2(8) +n'(t) ] (3.12)
where K = 2 * 1.95 - 2 [ 1.174+ £(0.45) +72(0.055) ]

= 1.9 ( a finite constant term ) |
The noise term n'(t) 1s essentially Gaussian white noise with spectral
height

(_l)k—n

N=n[] (2 200576 (t) + 2 sin®4(t) + o]

n " 1- 4(k-n)



69

where 02 is the variance of NI(Zk) and NQ(2k+l) , and both are zero
mean Gaussian random variables defined in (3.2). The form of n'(t)
arises because NI(t,¢») and NQ(t,¢) in the  last term of (3.11) is
aprroximated as Gaussian white noise term as discussed above. The
assumption of n'(t) Gaussianv is necessary because the problem cannot.
be solved by Fokker-Planck techniques otherwise.

k-n
Let 02 =) ( 4 ——-(——]-')——-—————2 )2. This series converges to a

m ™
n 1- 4(k-n)" .
oconstant value of 2 (Appendix 3B). Thus
N = 2No(2cosz¢ + 28in%e + o) = N (4 26% )
Ecuation (3.12) can then be rewritten as

Bt =0 - KV(Kle)ZKsin 26(t) - KV(Kle)zn'(t)‘

= @ - K Ksin 24(t) - K n'(t)
o o o
= Qo - KoKsinZd:(t) - n"(t) E : (3.13)
Where Koé KijzLKil is the oven loop gain and n"(t) is a white noise
process with spectral density
N
St) = KN (4+26°) = 5°[ K (4207 ] (3.14)

3.3 Nonlinear analysis of the first order data-aided loop

For the zero detuning situation _(i.e. Qo=0) ,the loop equation may
be written as

$(t) = KK sin 24(t)-n"(t) | (3.15)
The odf of ¢ may be obtained by invoking the Fokker-Planck equation
[22,p86] . For the stochasfic differential equaticxi

$(t) = P(¢) +/G(e) nlt) (3.16)
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where n(t) is Gaussian white noise, the Fokker-Planck equation is

N

2
3 ot I +—9 I G(8)p(e)

3 ¢2
where p(+) is the probability density function of ¢ and NO/Z is the

(3.17)

two-sided spectral height of n(t). The steady state modulo 2w soluticn

is of principle interest (i.e.—g-*z—-—
state system behavior. Therefore equation (3.17) becomes

= 0) since it characterizes 'steady

4
d¢

G(¢)ple) - %P(cb)p(cb) =C (C-constant) - (3.18)
o . _
Comparing equations (3.15) and (3.16), we can see that
P(¢) = ~ KKosin 24

G(48) Ko(4+202)

Using these results in equation (3.18), integrating and mvokmg the
boundary condition p(n) = p(-w), yields the probability denszity functioﬁ
(ndf) of the looe phase error as

- plg) = N, exp[U(¢) ] (3.19).
where NC is a normalization constant and the potential function U(¢) is

given by

-U(9) acos 2¢
where o é ———-—K——-—z—
N°(2+o )

An explanation of the pdf derivation is given in Appendix 3C and

v(¢) is plotted against ¢ in Fig 18.
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3.4 Results and Conclusions

The loop phase detector characteristic (S-curve)-G(¢) is a
sinusoidal function. In‘equation (3.12) _,‘it is seen that G(¢)=sin 2¢
and this is plotted in Fig 17. This S-curve is independent of the
signal to noise ratio. Also, the loop integral-differential equaticn
in (3.12) shows that this estimate-aided loop structure is similar to
the conventional Costas loop [30]. We note that the loop exhibits the
desired stable lock points at q>=0° and q>=180° . This shows that only
two phase ambiguities exist for offset QPSK system which is &ue since
the bit transitiohs for one binary channel occur at the middle of the
bit intervals for the other channel. Thus a 180° phase ambiquity cannot
exist. A detailed discussion of the vhase ambiquity in an offset QPSK
system is given in [3]{4] and [7].

In chapter 2, we established expressions for the average pfobabil—
ity of syrmbol error conditioned on a given loop phase error. Fram these
expressions and the pdf p(¢) of the carrier vhase error in (3.19) associat—
~ed with the carrier tracking loop, we can assuming that a "genie" correctly
resolves the quadrant phase ambigquitv, compute the averagé svrbol error

probability as
/2 .
Pp=2[ P (4)p(e)ds (3.20)
-n/2
where p(é) is given by (3.19) and P_(¢) is given by (2.65) or (2.66).

This estimate-aided loon requires exact multiplication of the

analog signals rI(t) and rQ(2k+l) , and, ro(t) and rI(2k) . In practice,
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precise analog wideband multiplier are both difficult to implement and
exvensive. Thus the loop described in bthis chapter may be difficult to
implement. Also the time delays required may be a problem for this loop
structure since no decision has been made before any feedoack cperation, |
and analog delav lines must be used. In the next cfnaptef, we will in-
vestigate decision-directed feedback carrier tracking loop structures
which tend to avoid the problems mentioned above Decision feedback has
the advantage that the quantities beihg fed back are clean decisions which

even though they mav be in error are noise free.



CIAPTER 4

DECISION DIRECTED FEEDBACK LOOP

4.1 Introduction

Due to the implementation and time delay problems for tne estinmate
data—aided loop, a suppressed carrier quadriphase decision feedback loop |
which has been modified to accomodate the offset QPSK duobinaxy signal
is investigated in this chapter. Simon and Smith also modified a similar
decision feedback loop structure to accomodate QASK signals [6] and off- |
set QASK signals [7]. In our system, the modification of the basic
structure is the inclusion of sarple and hold circuit elements in the in-
phase and quadrature ams, and scre cdelay elerents. The three-level
deocoder output is thenfed back for tracking purposes.
4.2 Develomment of the Stochastic Integro-differential Equation of

Operation for a decision-feedback Loop. |

The looo structure is illustrated in Fig 19. The received signal
y'(t) is demodulated to obtain baseband signals, rI(t) and rQ(t) ’ in the
I-channel and Q-channel respectively. Similar to the development in
chapter 2, the samled sequences of rI(t) and rQ(t) at the times E(Zk—l)T_

and t=2kT (k integer) are given as

r (2k-1) = KK_[c, cosé +o, .cosé — T d G NI (2k-1) |
I 1 G OOSe G _O0S¢ L G 57Sing Wy
1-4 (k-n-1)
and | K (4.1a)
- — v . . 4 (—l) 3
rQ(zk) = K/K [d cos¢ +d _ cosp + — ) ¢, ————3 sin¢ + NQ(Zk)]
n 1-4(k-n)

(4.1b)
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vinere Kl is the voltage—controlled oscillator (VOO) rms amplitudé, Km is
the phase detector gain and ¢(t) is the loop phase error as defined pre-
viously.

The sampled sequences are then nassed through the threshold
detector to obtain the outputs fiI and I‘{Q'having the ﬂuree valwes #2 or 0.
At the same time the signals rI(Zk-l) and rQ(Zk) are passed through the
hold circuits . - having a hold time of 2T sec. Thus the'

outputs of the hold circuits for the I~ and Q—-channels ‘can be written

as
ri(t) = ) ry(2k-1) g (t-iT) i=2k-1
i
and (4.2a)
ré(t) = 2 rQ(Zk)g(t—jT) ' =2k
J . ¢4.2b)

assuming that g(t) is a rectangular pulse shape (g(t)=1 for.0<t<27T), ri(t)

and ré(t) can be rewritten as

-rI'(t) = Kle[_RLCOS¢ - DQsin¢ + Ni] iT. <t < (i+2)T
and - (4.3a)
ré(t) = KK [ RQcos¢ + D;sing + Né ] JT. <t < (§+2)T
where (4.3b)
¢ 4
RI ck Ck;'l
A
Ry = & 4
b & 474 (-pkmt
0 7w n 2
: 1 - 4{k-n-1)
k-n
A (-1)
Dr = ;,‘Z S

n 1 - 4(k-n)? (4.4)


http:t:!:1e.11
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The low mass signal ri(t) is then delayed by T sec and cross—
multiflied by the current data decision g’r)‘ At the same tire, the
current data decision EAQI is cdelayad by T sec and cross-tultiplied by the
signal ré(t) . The difference is ‘then fed as an error signal to the

loop filter F(p). This error signal,cdenoted by e(t),is given by

= - . ! hand S - ! $
e(t) [ exp( PT)RI] [rQ(t)] [ exp( pT)rI(t) ][RQ] (4.5)
iT < t < (41T
Now, as rreviously the instantaneous frequency of the WO autput is

nrorortional to the filtered error signal via the ralation

o) =K Flole(t) . (4.6)
whare Kv is the VCO gain in rad/V/sec and the dot denotes differentiatim
w.r.t. time. Recalling that 5(t)=e(t) -4 (t), we can vwritc ‘
$(t) = 8(t) - a(b)
=5(t) ~ K F(o)e(t) | (4.7)

Substituting (4.5) into (4.7), we obtain

B(t) = 8(b) - KK X [exn(-pI)F(p) ] [PI(R oS ¢HD s ingH )
RQ o8 ¢-Dy3ingt W )] o o (4.9)
Therefore,
() = 8(t) K F(p)exp(-pT) “RIRQ'RQRI)"OS“”’(RID +RQD )sing
+ };INQ —RQNI 1 : (4.9)
where KO= KleKv- : (4.10)

Under the same assurmtions as made in chanter 3, we can take the

statistical averaae of the stochastic equation over the data.


http:RQcoscp+D1smcp+2.JQ
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Thus let

G(9) & ELRDHRD) [6(t)Ising + ELRR-RR)) |o(t) Jooss.
and '.

A L n2 ) .

H(¢) = EIR[o(0)] + EIR | 6(1)] (4.11)

Assuming fhat the loop is first orcer (i.e. F(p)=l), then the stochastic
integro~differential equation describing looo overation can be rewritten
as

B0) = (e - Kylale) + B2 (9N, (0] (4.12)

Since we assured WL« 1/2T as in(3.10), exp(-juT) is approximately
unity for all w within the loop bandwidth, and frorﬁ a steady state
performance standmoint, it can be neglected. However, the delay elements
are important in assuring that the ri(t) _. and ré(t) signal commeants are
nmltiplied by the 131 and R decisians corresponding to the sarme symbdl

Q
interval.

4.3 Evaluation of the loop phase detector characteristic (S-curve)-—G(4).

The loop S-curve G(¢) of equation (4.11) can be written as

G(¢) = Gl(¢)sin¢ + G2(¢)cosq> (4.13)
where ‘ |

Gy (9) = EL(RD*RP,) |6 (£) Ising a8

Gy(9) = E[(RRy-R.R) |$(t)Jcoss ~ (4.15)

Determination of the S-curve G(¢) requires evaluation of E(%Dﬂ'qb)
and E(fzIRQ|¢) only, since E(f;QDQM):E(fzIDIM) and B(vaRIch):—E(fzI%M)

{(Appendix 4A).
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sefore evaluating G(¢), we rnake the approximation in order to

permit straicht forward evaluation that

1. .1
[d 1 +3&+39.,]

1 1 .
[ G+ 3 Gy + 5 ! (4.16)

The worst case for taking only three syrbols can be evaluated as

D, =
Dr

ERENETRN

20

3

i

1, .
t3+3l=

vhere we have assured dk’ d]-:—l and dk_zequal 1.
The corresponding situaticn for taking an infinite number of syrbols
into account for D, and DI is equal 2/m as in equation (2.64).

0
' The rercentage error in this case is

1(2-5/3) -
"4 - 100 % = 16.67 % (4.17)
'1;(2)
Bearing this in mind, we can evaluate G(¢) . Now we note that
fzI =2, 0 or -2
4 1 1
Do = 7l d}:—l 3 q 34,

=~_[Ck+_§ 23 %!

R d}’ + d he—1
and define the sets
{ r:-l' “r d}' -2 } v
Lo Srr G | | (4.18)

D

C

I
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fle can now evalvate E[ RRy|¢] as ‘
Ll RyR,| 0]
=£[ B( RR,|C,D, 8]
=E[ 2R IRI—Z 1Pr{ RI=°[¢ C,D] + E[ -2R IRI——ZJPr[RI~-2|¢,C D]

Il

2 2R [ Pr(RI—2[¢ C,D) - Pr(RI—-2|¢ C,D) 1Pr(D)Pr(C)

é
= 2 2 R Z [ Pr(P =2|4,C,D) - Pr(RQ“ 2|4,C,D) 1Pr(C) } Pr(D)
p 2
(4.19)
Similarly
E[ RR;|¢]
=25 R {7V [Pr(R=2|s,c,D) - Pr(R=-2|4,C,D)1Pr(D) }Pr(C)
] n ] et e
) (4.20)
E[ RD7|6] |
=2 CZ: D, { I'L; [ Pr(fileqs.c,o) - pr(R=-2|4,C,D) 1Pr(D) } Pr(C)
(4.21)
E[ RP,|¢]
=2 § 0, { [ [Pr(R2]6,C,D) - Pr(R;-2|6,C,D)1Pr(C) } Pr(D)
D Q C Q
_ (4.22)
' From equation (4.3), it can be snown that '
N, = 1 (2k-1) - Ricoss + Dsing | (4.23)
N_ = rQ(Zk) - RQcos¢ - DIsimb ' (4.24)

Conditioned on the phase error ¢, and the symbols ck'ck—l'dk'c}k—l and
%_2, NI is Gaussian distributed and thus the conditional probability
density function (pdf) for rI(2k—l) is

p(r;(2k-1) | RIcos¢—DQsinq>)

1 . 2 2 =
= expl - (r.(2k)-R.cosé-D.sind) " /207] (425)
V210 Q RQ I
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Similarly, the conditicnal pdf for o 2k) is
pl rQ(Zk) IRQoos¢ + Dysing’ |

L. 2, 2 ’
exp{ ~(r.(2k)-R.cos¢ - D_sing)“/207] (4.26)
V210 ‘ Q RQ I _

Hence

Pr(§I=2[ $,C,D)

= fm A exp[ - (ri.('%k—l) —RIcos¢+D sin¢)2/202]dr1(2k—l)

1 /270 Q
_ 1-Rpcos¢#Dysing (4.27)
= 9 S )
where Q(x) & L I exp(-y2/2)dy
21 X
 Similarly,

pr( R=-2|4,C,D)

= f:i /j‘i} exp[- (rI(Zk—l)‘RI"OS'¢+DQSin¢)2/ 2°2]dr1(2k'1)
L l+RIcoscb-DQSin¢ ‘ :
o ) | (4.28)

g

Therefore

Pr(R:=2]¢,C,D) - Pr(R~2|¢,C,D)
1—RIoos¢+DoSin¢ 1+RIcos¢—D sing
2 Y L)

B} 0
=0( - )= Q- 5 ) (4.29)

In a similar manner, we obtain

Pr(R=2|4,C,D) - Pr(R=-2|¢,C,D)
1-R cos¢-D.sing 1+R cos¢+D_sing
0 L - -2 I (4.30)

g g

=0(
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The detailed evaluation of the lbop phase detector characterist_:_ic
G(¢) is shown in Appendix 48 where G(¢) is given by equation (4B.6).

The function G(¢) we obtained for this loop structure is plotted:
versus ¢ in Fig 20 over the interval (-n/2,n/2) for different values of A
vhere A is defined as d/o. 'e note that when A is small, besides the
Gesired stable lock point at ¢=0°, G(¢) exhibits another stable but
undesirable lock point at ¢=90°. As A increases, the number of wndesir-
able lock points increases. The loop exhiibits as many as 10 undesirable
lock points wihtin this interval. These undesirable lock points cannot
be resolved by differential coding of any of the data bits in the trans-
mitted symbols and rust be resolwvad by an anprépriate prefix sequence.
This creates a major prdblem in operation of this loop, particuiarly
during initial acquisition. |

We note that the fundamental period of these S-curves is from -n/2
to n/2. This shows that to obtain carrier synchronization using the
décision—directed feedback loop for the offset QPSK ducbinary signal,
only a two-fold phase ambiguity needs to be resolved.  Various metnods
to resolve the phase ambiguity problem have been suggested and dlscussed

- in {20} [21] . This prdblem is not discussed further here.

4.4 Evaluation of the noise function H(¢)
From equation (4.11) the noise function H(¢) is gi@ by
H) = BLRJ6(®) 1+ EL Rylo(8) )
Following the same procedure as shown in the previous section, H(¢) is

evaluated and shosn in Appendix 4C. The noise function in equation (4c.5)
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is plotted versus ¢ for various values of A in Fig 21.
4.5 The probability density function of the phase error proocess

The Fokker-Planck technique can be applied to obtain the steady

state probability density function o(¢) of the modulo-2m reduced phase
error. '

The stochastic integro-differential equation of equation (4.12)

is written as
b0 =8t K6 + 1Y% (g)ve(t)]

=2, - K,G9) - K72 (p)Ne(t) (4.29)
where Q 0 is the Doppler shift in the input frequency from its nominal
value of wy and Ky is the open loop gain defined as KKK

as ovreviously that the loop is a first order loop with zero detuning

(i.e. 2y = 0) . Therefore p(¢) satisfies the equation

. We.assune

a 2

_ 1 4a ‘
& [AO(¢)P(¢) ]l = '2-54)—2[ BO(¢)P(¢) ] (4.30)
where

A0(¢)
Bo(¢)

1

- K G(3)

2
NKoH(9)/2 (4.31)

The solution to (4.30) is well known [19] and is given by

s 2B (x)7B, (%)
p($)= C; exp [(f) : 5 ax ]

{4.32)
Swbstituting equation (4.31) into (4.32) gives

= _ 9 oG(x)+H' (x)

p(¢) = Cy exp [ é ey x|l (4.33)
where
o= -’L/NOKO is the loop signal-to

-noise ratio and K .=K,.K K
0 1Inv
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The pdf of the phase error as given by equation (4.33) is evaluated

nurerically and plotted versus ¢ for various values of A in Fig 22.

4.6 Discussions

In this chapter, we have evaluated a suppressed-carrier dicision
feedback carrier synchronization loop for offset QPSK duobinary signal
and analyzeci its tracking ability. Unfortmaﬁely, there are nurerous
false lock points present in the S—curve and these will cause a major

acquisition nroblem. It thus appears that‘ the loop structure proposed

in this chapter oould not be used without the use of special prefix data
sequences both during initial acquisition and during recovery of lock
after some form of loss such as a pover failure or a ceep fadef.'t

To avoid this problem, we will in the next dxépter mvésﬁgam

modified decision directed loop structures.



CHAPTER 5
SHIFTEED AND HALF-SHIFTED DeCISION-DIRECTED
FELDBACK CARRIER TRACKING LOOP STRUCTURES.
5.1 Shifted decision-directed feedoack loop

5.1,1 Introducticn

In the precedine chapter, a loop strﬁcturé was develored in
which the basebanc sicnals in I-channzl and Q-channel were sarpled
at the tires t=(2k-1)T and =2kT respectively. These two sampled
signal sequences viere then nassed into a quantizer where decisions
were nace as 2,0 or -2. Before decoding into binary values +1 or -1,
these threec level c'"zacisions were used for feec'&)ack purposeé in the
carrier recoverv system. In this section, we propose another loop
structure which is a modification of the one described in chbapter 4.
In this loon design, the three-level estimated data is used mainly to
recover the originel data sequences. For feedpack murposes, the I- |
chamnel and Q-channel baseband analog signal are sampled at t‘ne. tiﬂés
t=2kT and t=(2k+1)T resrectively. This shifted sampling instant
design makes the sampling instant at the peak of the symbol pulsé we
wish to cdetect. These sarpled sequences are then passed to a quantizer
where the decision is made to 1 when the samled value is greater than
zero and the decision is made to -1 when the sampled value is less than
zexo. These binary decisions areb then used for feedback purposes. The
oreration of this loon is quite similar to the previous loop ané we shall
be - . brief in the presentation of the develomment of its equation of

operation.
89
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5.1.2 Loop analysis

The loop structure is illustrated in Fig 23. Since the demodulat-
ed baseband signals rI(t) and rQ(t) are, resrectively, sarpled at the
times t=2kT and t=(2k+1)T, we can write down the sampled sequences rI(Zk)

and rQ(t) as in (3.6)

e (4 (-p*™ e
rp(2k) = KK { ;rjl c, m ws$ ~ (dk+dk.__l)‘sm¢ + W (2K) }
and _ (5.1a)
. (A (-p*T .
r,(2k+l) = Kli(m { -{g a T:~4-(-k:;172 cosy +(gtq ) sing W (2k+1) }

(5.1b)
where Ky is the VOO ms armlitude, K. is the phase detector gain and

NI(2k) and NQ(2k+l) are Gaussian randaom variable. 'fhe samples are then
passed through quantizers where the decision +1 is made when rI(Zk) or
rQ(2k+l) is greater than zero and the decision ~1 is made when rI(Zk)
or rQ(2k+l) is less than zero. We note that, from equatlon (5.1), these
decisions are affected by infinite nurber of intersymbol interference terms
(ISI) dve to the adjacent pulses. Also, the reduced signal amplitude,

the quadrature distortion term and additive Gaussian noise affect the
correctness of this decision making. But this tirme only two symbols are in the
quadrature term instead of an infinite nuwber of syrbols. These sarmpled seqg-
vences r;(2k) and rQ(2k+l) are then passed to the hold circuits which

hold the signal for a 2T sec time interval. Thus the outputé r]':(t) and
ré(t) of the hold circuit in I-channel and Q-channel, respectively, can

1

be expressed by |
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.ri(t) = }%‘rI(Z}Ac)g(t-»-ZkT) ‘ | (5.2a)
r' () = § r. (2k+l)g(t-(2k+1)T) (5.2b)
Q x @ 4 _

Again, we assume that g(t) is a rectangqular pulse which is equal 1
for 0 < t < 2T. Thus we can write

(D" - (d+d,_)sing + N (2K}
T s - L qAG )sing

2kT < t < (2k+2)T

4
ri(t) =KK{ =) c
I "h 1 - 4(k-n)

and
(l)
n l—4(k )

!
~
=~

.
E RN
QJ

;ré(t) = zcoscb + ( q+q , )sing + N (2k+l)}‘
(2k+1) < t < (2k+3)T

(5.3)
ri(t) is then cdelayed by T sec and cross-multiplied by the current data
estimate dk which is the output of the Q-channel quantizer; Sihilarly
o

sec). The difference is then fed as an error sicnal to the lobp filter

(t) is cross-multiplied by the current data estimate ck(éelayed by T

F(p) . Thus the error signal e(t) is given by

e(t) = [eXp(—pT)ck] [ré(t)] - dk[exp(—pT)ri(t)] (5.4)
Therefore, corresponding to the kth transmission syrbol, the error sig-

nal e(t) can be rewritten as

45 (—1>k‘“ .
e(t) = KK exp(-pn) [ = | 4T o) 08¢ + G (qtG ) sing
~ 4 ( l)fn A .
+ N (2k+l) g - = Z cos¢ + 4 (4 +d__,)sing.
Q IN ‘n’n 1_4(}’_1_1)2 | K R-1
= N (2K)d, ] Co2xT t (2k+D)T

(5.5)
Recalling that e(t)—h F(p)e(t) and e(t) 8(t)- ¢(t) , Wwe obtain
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30 =8(6) - K Flo)e(t)

= 8(t) - KFDem - { (G (g0, ) (Gd ) Ising

k..._ ]x -
(-1~ 4 v - (-1)
[__z C.._...__-_..—--~2c1 locos¢
I TSR 1 -4 (k= n)
+ NQ(Zk+l)ck - N (2K) A, } (5.6)

where 1\0 ‘(lh 1\ is the oren loon gain.

Again making the same assumtions as in the previous analyses
where the loop bandwidta is assured to be very much small with respect
to the data rate, we can take the statistical average of the stdchastic

integro~differential ecuation in (5.6) over the data to obtain

f,b(t) = 8(t) - I(OF(p)e:m(-—pT) {E[(ék(ck+ck+l)+ak(dk+c7]{_lj [cb]sinq)

k-n k-n
Aot (-1) 4 -1)
+Ll(2) od =Ydc 5) | ¢]oosd
Ta KT 1(cn) ﬂnd}\ 1—4(1—-n)
+ LB o) (&4 (1) ]l/“N°(*) b
¢ 5.7)

vhare Ne(t) is approximately white Gaussian noise of single-sided
smectral density Ny Watt/iiz .
Now let G(¢) =» E [(ck(c'x{+cl<+l)+dk(dk+dk—l) | 8]sing :
(-pk™m
2

‘ R k-n
—_— q{.;. 7-c _._._______.(-l)
Dy ek ™ % 1-4(kn)

)  loosé
and

ii(9) = B(ch]o) + B ] | (5.8)

Sinoce the statistical average over. ;]2{ and 512( conditioned on ¢

ar= equal 1, we find that i (4) is equal 2.
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Assuming the loop is a first order loop and expronential factor»

exp(-pT) =1 - as before, equation (5.7) can be written as

5() - K, [G(9) + 2Ne(t) ]

il

(1)

8(t) - 2K, [G(9) /2 + Ne(t)] | (5.9)
5.1.3 Evaluation of the loop phase detector characteristic(S—curve}—G(¢)

The S curve G(¢) can be written as

G(¢) = Gl(¢)<sin¢ + G2(¢) coséd (5.19)
where
G (9)= Elle (q+q  1)+d (q+4 1)) |¢]
k-n o k-n
4 (-1) 4 ¢ 7 (-1)
G, (#)= E{[ 2 ) - = 1 4, ———]1|¢}
2 14 (- n? "n %n 1-4(k-n) |
. (5.11)
Determination of the S—-curve requires evaluation of ;_.[Ck(c};i- +l) | ¢1
R __l)k—n - _
and E { [ -—Z ckd e M ,11¢} only sinceElc (g e, ) |d]=
1 -4(k n) - _ .
0409, 19 ma 51§ G0, B lohon( ] 3D
E + ¢] and E{[= d o}=-{ = D ¢
%% %1 % 1 -4(k-n)? | “ndk 1 -4 (k-n)?

(Appendix 5B) .

Again, we make the approximation that only the adjacent two symbols
affect the detection of ¢, in I-chanmel. Thus E[;kckw] and E[ékc'kd'_lltj,l
can be written as

Ele.q |41 = B[ E(c.q|4,¢,D) | 4]

and

Gl = B EG 5 leC0 |



where we define the sets
¢ ={qr guyr %l
D= {d-' dk—l }

Similarly to equation (4.19), we can show that

E[ 6.6 ¢]

=2 Ck { 2 [Pr(ék=l[c_b,C,D) - Pr(a}{’—“—ll‘blch)]Pr(D) }Pr(C)
C D

(5.12)
From ecquation (5.1), we can write
N_(2K) = r_(2K) - e+ ic | + ic  )coser(G +d .)sine
I 1T 1% 3% 3% K1

1) = _4., 01 1 _ .
NQ(2k+l)‘ rQ(2k+l) n(ck+ ﬁ+l+§dk__l)cos¢ (ck+c'k+l)sm¢
Conditioned on the phase error ¢ and the symbols ck' ck+l’ ck—l’ dk
and dk—l' NI(Z}:) is Gaussian distributed, and the conditicned pdf of

rI {2k) is

4, 1 1 L
p[rl(zk)l TG T T oSt — (qidy ;) sing]

1 1 o 2
- 1 exol- [I'I(Zk)-4(c]\+ et -§c}(_l)cos¢/n+(dk+dk_l)sm¢]

- 3

.

(5.13)
Similarly, the conditicned pdf of rQ(2k+l) is

A 1 1 .
Pl ry(2k+D) | ~(dp+ 54 4+ 34 _j)cose +( gt )sing ]

4 1 1 e a2

_ 1 [rg(2ktl) = 20 At 3G 0% 3Gy) oS¢ (g, )simel

= exp{- 2 !
Y210 20

(5.14)
Hence

Pr(c,=1{4,C,D)

-

4 1 1 3 ~ 1 I
! olr(2k) [;(ck+ Fer1t ) cos¢-(d +d ) singldr, (2k)
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]
(5.15)

4 1 1 ' A .
= 1- n_[F(ck HERTN §'Ck_l)c05¢- (dk+ dk_l)51n¢
. o G :
Similarly,
Pr(éﬁ-ll $,C,D)

4 1 1 ] .

o
(5.16)

From equations (5.15) and (5.16),

Pr(c;k=l[ $,C,D) —pr(&f—l} 4,C,D)

4 1 1 .
7% 3 St 3 G} 0S¢~ (G g)sing
o . :

=1 -20]
(5.17)
In the same manner, E.[dkdkl 6] and E[ dkdk_llcb] can be expressed as
(B[4 ]

=1 af) (Pr(a=1}s,c' D) - Pr(dq=-1|¢,C’,D")]Pr(C") }Pr(D")

Pt : . (5.18)
and :
El 44, ;6]
=14a_, {1 Pr(g=1|¢,c’',D") - Pr(d=-1]4,Cc',D")]Pr(c") }Pr(D’)
D' c ,
(5.19)

vhere we define the sets
J -
¢ {ck' S+l }

D' = {4, &y, dy |

‘Thus we can evalute

~

Pr(ék':ll (b ,C' "D') .
4 1 1. — s : "
= [ ol | 50 Shan® $he cos+ (G hey ) Sineldrg {2kl
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4 1 J’j ’ .l - ol . i
7O 3%t 30-1) 0080 Hlode ) sing
(e}

—

and
Pr(d, =-1|¢,C',D')

.
- 10 plr, (2k+1) | Sar a0t 34 )oosergre,) sin¢]dr, (2c1)

(d1+ xe1t ‘% ) o050 +ote 4 )sing. (5.21)

G .l

Hence from equations (5.20) and (5.21)we can write that
P,r(<}k=l|¢,c‘,D')~Pr(dk=—l|¢,c',D')

a1 1
: 7T 3t Ty OS¢t rg ) sing

o J

(5.22)

Gl(¢) is evaluated in Arnendix 5C.1 .

To evaluate G2(¢) , we simply need to evaluate the following

" conditional exrectations:

dreca o+ EGd  0- B lo- Ed g, 19 1

(5.23)
Because the decision ck is depencant only o dl‘. and d}\ l(5 la) in

the O~channel and the cecision dk is depencant only on S and et (5. lb)
in the I-channel,  other uncorrelated symbols will result in zero when
taking the statiétical average.

Similar to eguation (4.19), the four oconditional expectations in

equation (5.23) can be written as follows:

E(q,d |4) =] a_{} [Pr(c,=1|4,C,D) - Pr(c,=-1]¢,C,D)IPr(C) }Pr(D)
D * C

(5.24)
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E(qd |9
= % dk-i {(2: [Pr_(ék=1|¢,c,o) - pr(ék=—1|¢,c,n)]pr(c) }Pr (D)
) (5.25)
E(qd.le)
= gck {g' [Pr(ék=ll¢.c',D') - Pr(5k=-1|¢,C',D'.)]Pr(D')}Pr(C')

(5.26)

E(dyGyq | @) |
=7 ¢, {1 [Pr@=1]s,c',0")- Pr(@=-1|4,c',0") 1Pr(d") }Pr(c")
Cc' D'

(5.27)
where we cdefine the sets C={Ck' 1’ c],_l} ‘ D={dk' dk_l} ’

C'= {gr quq b @d D= {4, q g, g4}
| In Aprendix 58, it can be showm that
E(qd [4) = - E(gd |e)
and '
B(Ge |9 = = Blgd ]9
G2(¢) .is evaluated in Appendix 5C.2 and G(¢) is evaluated in
Appendix 5C.3 . - |
The function G(4) is plotted wersus ¢ for various values of A
in Fig 24. We note that false_lock points are still exhibited in the .
S-curve. For A=~, four undesirable lock points exist in the fundamental
period (-n/2,n/2) of this G(¢) curve. As mentioned previously, we
thus need a prefix sequence to lock at the desired point (¢=0°) . Thus
the performance of this loop structure is still not satisfactory in the

same sense as the loop of chapter 4.
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Fig.24 Phase detector characteristic (S-curwve) for

shifted decision directed feecdback carrier tracking loop
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5.1.4 The probability density function of the phase error process

Parallel to the development in section 4.5 we can obtain the
steady state probability density function p(¢) of the modulo-2rn
reduced phase error by using the Fokker-Planck technique.

The stochastic integro-differential equatioh of the loop omerat-
ion is given as in equation(5.9) |

3(t) =0y - K,G(6)~ 2K Ne(t) | (5.29)

where K0=K1KmKV is the open loop gain.

Assuing 0 =0 as before, we obtain the solution for the steady~

0
state pdf p(¢) in the form

p(e) = Ciexol- ffaGax 1 | (5.30)
where a=2/NOK0 is the loop signal-to—noise ratio and c, is a normalizat-
ion constant.

The pdf of the rhase error as given by equation (5.30) is plotted

versus ¢ for various values of A in Fig 25 a and for various values of ain
Fig 25b.

5.1.5 Discussions

Although this loon performs the carrier s;mdmrmization function,
the performance is not satisfactory due to the appearance of as many as
four undesirable lock roints in the G(¢) curve. Taus another loo
structure is investigated in the search for better merformance in the

following sections.



101

n( ¢

o=50

Fig.25a Probability density function of the phase error
for the shifted decision directed feedback carrier tracking

loop
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p(¢)

25

Fig25h Probability density Sunction of the vhase error

for shifted decisjon directed feedback carrier tracking loop



5.2 Half-shifted decision directed feedback carrier tracking loop

5.2.1 Introduction

The loop we are going to investigate here is a modification of |

the previous loop structures. The only difference is that the demodﬁl—-
ated baseband signals in the I-channel and Q-channels, before being
passed to the hold cifcuits, are sampled at the times t=2kT and t=(2k+1)T
(k integer) instead of t=(2k-1)T and t=2kT respectively. lHowever, in
the decision arms, the samwoling time for I-channel and Q-chamnel are
still, resrpectively, keeping sampling at t=(2k-1)T 'and =2kT. In tais
structure,‘ celay elerents are not necessary, ohly two sample-and-hold
circuits are required. Since the loop is similar to the previous loops,

the analysis for this loon is presented rather concisely.
5.2.2 Loop analysis

The loop structure is illustrated in Fig 26. The democdulated -
baseband signals rI(t) and rQ(t) in the I-channel and Q-channel daci-
sion arms are sampled at the times t=(2k-1)T and t=2kT. The sampled
sequence are defined in eqﬁations (4.3) and (4.4).

Similarly to the analysis in section 5.1, the outputs r]':(t)
and r('g(t) of ﬂm samle-and-hold circuits in I-chael ané Q-channel -
can be represented by eguations (5.3a) and (5.3h) respéctively. Thus

we can revrite ri(t) and 'ré(t) as

rp(t) = Ky [Dyoosy ~ Rsing + N (2k) ]

and . 2kT < t < (2k+2)7T

' R 3 14
I'Q(t) I\lz\m[ DQCOS‘t’ + Rl_gm‘;) + “Q(Z}""].) ]

(2k-1)T < t < (2k+1)T



y' (t)

(k integer)

Fig,.26 lalf-shifted decision directed feedback carrier tracking loop

t=(2k-1)T 4y [3Tevel " T or {a}
) rI(2’< ]i slicer Ry -1 ‘ b0
v mapper
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@ Y 1 or o=
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where P‘I' RQ' DI’ DQ are defined in equation (4.4).

The lowrass signal ri(t) is cross-multiplied by the current

-~

data decision RQ and the low pass signql ré(t) is cross-multiplied by
the current data cdecisim 1‘21 The difference is fed as an error signal
to the vloop filter P(p). This error signal, denoted by e(t), is thus
given by .

e(t) = | rQ(t)RI - rI(t)RQ 1 o - (5.20)

Recall that 6(t) = K Flpe(t) and 8(t)=6(t)-4(t), We can write

$(B)=8(t) - K F(pe(t) ~ | - (5.21)

Therefore substituting (5.20) into (5.21), we obtain

&(t)=6(t) -—I\’OF(p){ R [D,c0s¢ +R;sing + N (2k-1)]

- RQ[ DIcosqa - RQsmcp + NI_(Zk) ] | (5.22).
where K0=K1KmKV is the. oren loon gain.

The analysis which follows is based on the same assumption as
made in chapter 3, that we can take the statistical average of the

stochastic equation in (5.22) over the data to obtain

(1) = B(6) - KFE [ (o) + B 2 (e)Ne() 1 (5.23)
where Ne(t) is approximately white Gaussian noise of single-sided

spectral density“N Watt/iiz and

0

G(e) = ELRGR, + R ) |elsing(t) + EL(RD, - RPp) |$lcose(t)

and

it

H(9) = EIR| 6] + EIR| o] » (5.24)
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In equation (5.24), the operation E{-} denotes the stétistical average.
The separation of . the noise term into a white noise tem multiplied by
a phase-dependent term follows the previouély stated assumptions in
chapter 3.

5.2.3 Evaluation of the loon phase detector characteristic(S—curve)—G(¢)

The loopn S-curve of equation (5.23) can be written as

G(¢) = Gl(cp) sing + G2(¢) cosé -~ (5.25)
where

G (¢) =E[ ( RiR;+ RQRQ)|¢(t) ] (5.26)

Gy(¢) = E[ (' RDy~ -RQDI)H)(t) ] | (5.27)

Since E(szROI $) = E(E{IRIM) and E(I;QDIM) = - E(f’IDQ]¢) (Appendix
5 D)., Getermination of the S-curve G(¢) requires evaluation of‘ E(IAQIRIN)'

and E(E(IDQ] $) only.

We make the same approximation as before where 3 symbols in the
quadrature distortion terms are taken into account instead of an infinite
nuaber of symbols for taking statistical averages..

Referring to tﬁe cefinitions in equat'ion (4.18) and, similar
to the evaluation in (4.19), we obtain the conditional expectations as

follows:

ERR |6

=2 § R{] [ Pr(R;=26,C,D) - Pr(R=-2|4,C,D) 1Pr(D} }Pr(C)
C D -
(5.28)
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E(RR,| )

=2 ] R {} [ Px( R=24,C,D) - Pr(R=-2|4,C,D)1Pr(C) }Pr(D)
D m, 1] (e iy

. (5.29) .
E(R;D,| )
=2 g D, {é [ Pr(r=2|$,C,D) - Pr(R=-2|¢,C,D)]Pr(C) }Px (D)
. (5.30)
E(R,Dr|¢) '
=27 b {] [ Pr(R=2|¢,C,D) - Pr(R=-2|0,C,D)IPr(D)}Pr(C)
&P g Py % |
(5.31)

Similar to the aﬁalysis in section 4.3, G, (¢) and G,(¢) are evaluated
in Aprendix 5 E and 5 F respectively and the loop phase detector char-
acteristic G(¢) is presented in Appendix 5G.

The function G(¢) is plotted versus ¢ for various. values of A
in Fig 27. We note that the fundamental period is from -u/2 to =/2.
As stated previoxis‘ly, there is here only a two-foid phase ’ambiguity
when we obtain carrier synchronization from this decision feedback _
looo for offset’ QPSK. This result is in agreerent with Simon and Smith's
paper in [ 7]. In our analysis, we implicitly assume that the resolut-
ion of phase ambiquities can be accomplished perfectly.

The S-curve G(¢) for this loop shows the iﬁwpmved performance.
There are no undesirable lock noints, besides the desirable lock point
at ¢=0°, for_AZless than 50 d3 (or A= 7). Another lock point até =990°
is presented when Azincreases bevond this value and up to infinit

The noise function n(¢) is exactly the same as in section 4.4.

As we can see the noise function is an even function about ¢=90?



G(¢)

~0.4

108

Fig.27 Phase detector characteristic (S-curve) for half-shifted decision directed feedback
carrier tracking loom.
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5.2.4 Probability censity function of tie phase error process

Following closely the evaluation as in section 4.5, p(¢) can

be evaluated as

Ll

r(¢) =C

_ord aG(R)HH () . : -
g T éx ] (5.32)

where o = 4/ 0o is the loop signal-to-noise ratio and C, is a norm~

3
alization constant. The plf of the rhase error as given by equation
(5.32) is plotted versus ¢ for various values of A in Fig 23 and plottad

versus ¢ for various values of looo sigqnal-to-noise ratio o in Fig 29.
5.2.5 Discussions and oconclusions

The G(¢) curve we ohtained for this loop structure shows better
rerformance than the previous two loons suggested in chapter 4 and sect-
ion 5.1. For Az approximately less than 5033 (or A= 7), anly e
desirable lock noint at 0° is exhibited in the lcop rhase detector char-
acteristic curve. For Azgmater than SOc’B (apprroximately) , two undesir-
able lock points at -90° and +90° within the interval (-m/2,m/2) appeared.
The greatest possible phase error range for the loop lockinﬁ; at -90° is
from -97° to -83° and the greatest possible phase error range for the loop
locking at 90° is from 83° to 97°. .

If the intial phase error is known, or a prefix data sequence
is used as mentioned previously, the abéve problem can be resolved and

the loop will be locked at the desired lock point (¢=0°).



4-—1

p(¢)

2 .
AT=20dB

A2=lOdB

225 @

2= 0 @

15°

a= 100

11p

Fig.28 Probability density function of the prhase error

for half-shifted decision directed feedback carrier tracking

loop
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for half-shifted decision directed feedback carrier tracking loop



CHAPILR 6
CONCLUSIONS AND FUTURE STUDIES

6.1 CONCLUSIONS

A highly efficient digital radio commmication system, the
so~-called offset QPSK Idmbj_nary system has lbeen investigated. The
performance as a finction of steady-state phase error has been in-
vestigated analytically ‘and by simulation.

Carrier recovervy and its effects on the performance of this
- system have also been investigated in detail in this thesis. We
have investigated four possible carrier regeneration loops, all based
on the remnpdulation principle, and analysed their steady-state operat-
ing behavior. For each loop, analytical expressions for the loop .~ -
detector characteristic (S-curve) and the steady-state phase error |
probability density function (pdf) have been derived.

- The performance of the communication system in the presence of
phase jitter can be easily determined once the paf of the steady—sta{:e
phase error has been obtained. |

The estimate-aided loop suggested in Chapter 3 requires hidhly
accurate analog wideband multiplier and delay lines which are’both
difficult to implement and expensive. However, it exhibits excellent
steady-state behéﬁor very similar to that of a conventional Costas l®p.

Three other loop structures have been proposed in chapters 4

and 5. They essentially employ data-aided carrier synchronization winich

112
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is well known in the literature ([9]. 'Iheée loop structures avoid the
implementation problems of the estimate data aided loop The loop
suggested in section 5.2 shows better performance than the other two
loops in Chapter 4 and in section 5.1. Therefore this loop structure
is recommended for possible implementation of an acfual carrier recov-

ery circuit.’

6.2 Future Studies

Since the estimates (;;l;) we obtained are not the maxirmm
likelihood estimates, a further investigation for the implementation
of the data detector to obtain maximum Llikelihood estimates is
suggested. The best decision directed loop we obtained in our study
still exhibits 2 undesirable lock points at + 90° within the interval

2 (Az-é-dz/cz) . 'These undesirable lock

(-n/2,7/2) for higher values of A
points may be due to the 3-symbol-average approximation we made in the
derivation of the loop detector chai'acteristic (S—cwrve). To demonstr-
- ate the theoretical results reported in this thesis, the feasibility
evaluation via simulations on a digital camputer and the experimental

verification of the results are suggested.
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Aprendix 27

This Aopendix is to show that Q(1/¢)=1-Q(~1/0) .

Let I = 1-0(~1/0)
Therefore

1=/ 1

Y2mo

exo(~x2/20%) dx

- {‘” /‘:—_l——e}@(—xz/Zoz)dx
- 2ng
-1
= f/:__}—-ve:;p(—xz/zoz)dx
~o Y270

Then let y=-x , thus dy=-dx and we obtain
1
I=-_[ L e (v /209 ey
2no
= [0 e 20y
1 VZno

=0(1/0)
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Appendix 3A

This Appendix is to evaluate the time averages of the ducbinary signal

The ducbinary filter irmulse resoonse is given as

h(t) = ﬁ:r.[ _‘l‘@_s_(_gt_Z%F_).] : (3n.1)

t /T
Consider the pulse stream in the I-channel where h(t-2nT) (n integer)

can be written as

‘ 1r(t—2nT).
4, o7 :
h{t-2nT) = -TF[ = > 1 {3A.2)
] - (t-2nT) ’
2
T
and is illustrated below:
n=0 n=1 n=2

h(t-2nT)

The time average of h(t-2nT)over an interval (tl, t2) can be written

in a general exnression as

t,
&
L o= 55— { h(t-2nT)dt
I N
= = { si ~<1+:-:,§5‘?—) )+ si( HEZL _g)y)] 2
; tl
wnere .
si(x) = S8i(x) - 1t ¢ -_;’_ GA.3)

LA
>
O"*.
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For exammle , consicer the integral I\= 2Tf 1(t-2nT) ¢t From ecxuatlon
(3a.3) I' can be evaluated as

I =

o {3i[m(1-n)1+ Si[n(Ll+n)] }

2|

(3a.4)
Carefully examined the duobinary simmal as illustrated in Fig 3A, and

from equation (3.11) we can see that
(2Kk+2)7

I! = 5= [ A(t-(2k+1)T)Gt = [ Si(n)+5i(m)]=1.174
0 27 \ w
2kT
1 (2k+2)T 1
I == [ h(t-(2k+3)T)dt = =[S1(0)+5i(2n) }1=0.45
1 2T 2KT T |
1 (2k+2)T 1
I = == f - h(£-(2k+5)T) dt = =[Si(-m)+3i(3m) ]=-0.055
2 2T Sk T

Similarly IS, Iz'; « .can be evaluated from equation (3A.4), but their

results are so small that we are not going to present here.
11 . b9 12e}
Consicer the integral In =§—% f z*h(t—-ZnT) dt. From equation
0

(3n.3) I;; can be evaluated as

w _ L sy - Gif Xon- -
I' = = {Si[5(3-2n)] - Si[ 5(-2n-1)] (37.5)

Again we can see that ‘
(2k+2) T

I, = fh(t—-Z;{T)dt = 5% [ h(t-(2k+2)T)dt
* kT 2kT

- .3[;[ Si(31/2) - Si(~1/2) ]

= .%[ 1.608 +1.371 |

=0.95
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"Appendix 38

This appendix is to evaluate the infinite series S where
k-n '

8

(-1 2

]
1l - 4(k—n)2

B o~
a—
E TN

The infinite series S can be written as

s=§ 2 [(—a—?
n=—» T 4n"-1

Thus the infinite series S can be evaluated as

«x

S = lé.[ 1+27% ___l;____]
2 2 ,.2
L n=1(4n"-1)
2 1

_ 15 n 1
= oll*2gg - 30 ]

ki
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Appendix 3C

This Apnendix is to derive the phasel error PDF.

In section 3.3, it was shown that p(¢) could be obtained by

solving

T G - §09<¢>p(¢)= c (3c.1)

 with ‘

P(¢) = - KK, sin 2 ¢

G($) = &Ky 2 + o))
where K is found to be approximately equal 2 and I(O = KV( Kle)‘?
Substituting P(¢) and G(¢) in equation (3C.1) we cbtain
' a 4 K KO sin 2¢ C

HP(M +NO(8:t<0+41<0c12) 2le) = Ky (2 + 02) (3_C‘2)
Equation (3C.2) is of the form

gY;{. + R(X)Y = C) (x.3)
'I"he solution of equation (3C.3) is »

v = 017 fuls)cyds + ¢, | (3C.4)
where '

[ux 170 = expl -fFR(D)AE ]
Let

u(e) = -{*R(b)at

Camparing the equations (3C.2) and (3C.3) we can evaluate U(¢) as
U(¢) = - ——— [*sin2tdt = acos 24
NO(2+0 )

where o = ————s— is the loop signal-to-noise ratio.
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Using the equation (3C.4), the phase error pdf can be cbtained as

exp[U(8) ][ [esp(-U(s))Cyds + C, ]

-7

Nexp[U($)1[ Df%exp(-U(s))ds + 1 ]
) T
Using the boundary condition p(m)=p(-7) and noting that U(w)=U(-7) gives

li

pr{¢)

p(¢) = N exp[U(¢)]

where N is a normalization constant.
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Arrendix 4A
4.1 Evaluation of E(ﬁlnllq;) and E( szDQ|¢) .
The conditional expectation E(f{IDI|¢) is given by the equation -

(4.21) where
E( R |4)

=2} D { 2{9r(131=2|¢,c,n) —Pr(ﬁf—zlcp,c,DHPr(D)} Pr(C)
c.~bp S (4A.1)
where Ry, Dy, C, D are defined in ecuation (4.18).
Ecquation (4A.1) canbbe written as
E( RD;[¢)
8 _ .
= 1 ~
4jzlol(cj)1§cj) (4a.2)
. A 8 R R .
where I(Cj) =mz-1[ Pr(RI=2|¢,Cj D) - Ifr(Pf—zlqs,cj D) 1Pr(D ) -

Substitute equation (4.29) into equation (4A.3), I(Cj) can then be

written as l - RIjOOS¢ +D%Sm¢ 1+RI ms%ansm¢
[ of — ) —O(—1 ) ]

= L

HMOO

+ 1
(4A.4)

' The evaluation of the conditional expectation E(E{IDP ) in equation

(4A.2) result in the exrression : 20 20
R 2 1-2cosd+ g—sj_nd) l+2005¢-§;sin¢
E(RD;[¢) = 3= [ Of = ) -0( =
1-200s¢+ %—.;inq; - 1+2cosé- %sincp l—2cos¢—-3i1-rsin¢

+ 2 0 ) — 20 )+

g g ag
4 . 4 . 4 .
1+2cos¢+ 3,519 1 Zoos¢,+3;sm¢ 1+2c0osé Esn_mp‘

-0( . )+0( — )= . ,

A
7

A
4
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l-2cos¢—1“rsin¢ l+2cos¢+%sin¢ l—2oos¢—~§%sin¢
+ 20( o ) = 20( p ) + of p —)
1+2c0s4+ %—%simp
-0 G )] (4a.5)

The conditional expectation E(};‘ODQN) is given bv equation (4.22)
where
E ~
(RQDQI )

=2 % Dy {y [Pr(R,=2|¢,C/,D) - Pr(R;=-2|¢,C,D)1Pr(C) }Pr(D)

c

(41.6)

-~

where R),D,,C,D are defined in equation (4.18).

Again, the equation (4A.6) can be written as
E(RQDQ!¢)
3

1 .
= =) D (D.)I(D, 7
4 %:.-]_Q( 3) (DJ) : . (4A‘ )
A8 - - '
where 1(D,) =le [Pr(R=2]¢,C /D) = Pr(Ry=-2]4,C,D,) IPr(Cy)

v _ (4A.8)
Substituting the equation (4.30) into equation (4A.8), I(Dj) can

be written as

L 8 l—RQjoos¢ - DImsin¢ 1+RQicos¢+DImsin¢
1Dy = ‘§m-z=l[ a( = ) 0 = )]
(4A.9)

Evaluation of the equation (4A.7) vields the same result as in (4A.5).

Thus it is shown in this Appendix that

E( RD_|4) = E f’nDQM)



4A.2 Evaluation of E( RR,[¢) and E( RyRy|9) -
The conditional expectation E( ﬁIRQ‘ ¢) is givehA by the
equation (4.19) where
E( RR,|4)
=23 R { } [Pr(R=2|6,C,D) = Pr(R=-2|4,C,D)IPr(C) }Pr (D)
D C | | :

- (4A.10)
where RQ, RI,C,D are defined in equation (4.18).

Similar +to the evaluation in section 4A.1l, the oconditional

‘expectation E( ftIRQ|¢) can be written as

. 8 '
E(RR|6) = 7 ) Ry (P 1(0y) (4A.11)
J:
l--RI cos¢+DQ'sin¢ | 1+RI cos¢+DQ_sin¢
where I(Dj) & % P o] L = ] ) - mc. 1 )1

Equation (4A.11) can be evaluated as: (4Af12)

20 . 20 .
1-2cosé+ —3;-51mp 1+2c0sé -:,;rsn.mp‘

E(RR |) = Flo( - ) - Q(—— )
1+ %-Qsincp v 1- %—Qsincb 1+2c0s¢+ %—O-sinq,
+ 20(——="——) - 20( T—) + 0 )
a (o) ag
1-2cos¢~ -‘?;—Osinqs 1-2cos¢- 2sinq; 1+Zcés¢+ ésimp
- A ) n N o \
Q( P 7 = of p 4 +Q( p 7
4 . 4 . 4 .
1- ;smq; 1+ ;rsmqa : 1+2cos¢- ;smzb
- - L Y
20( - ) + 20( c“;_Q( = )
1-2cos4+ -?;sinrb
+ 0 - ) ) ' _ (4a.13)

o
The evaluation of E(f{QRI l$) is similar to E(I;IRQH;) where

E(ﬁQRllcp) is given by the equation (4.20) as


http:expectat-J.on
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E(R,Ry| )

=2 { } [Pr(r.=2|4,C,D)-Pr(R.=-2|¢,C,D) IPr(D) }Pr(C)
LR { ] [er(sy D) Pr (g2

where RQ R, C, D are defined in equation (4.18). Thus E( RR;|¢)

can be written as

o _ v
-~ _ l‘ .
E( RR;|0) = 7 jzl Rp(C,)1(C,) (4A.15)
where 1-R_. cosé~ D_ sing 1+R . cos¢+D, sing
; 3 I. Q I.
I(c, & =100 o ) - 0( -t

=1 ‘
Evaluation of equation (4A.15) shows that the result is the neg-

ative of the expression shown in (4A.13), thus we have shown that'

E( ﬁQRIm = - B(RR |0
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Apoendix 4B

'This Appendix is to evaluate the S-curve G(¢).

The loop phase detector characteristic S—curve G(¢) is defined

in equation (4.13) as

G(¢) = G, (¢)sing + G, (4)cos - (4B.1)
where N A‘

Gy (9) = EL (RD+RD)[6(t) ] - s
and N N

G,(9) = EL (RiRy-RyRp) |6 (1) ] (48.3)

It was shown that E( §IDI|¢)=E(§QDQ|¢) and E( R,R;|$)=-E(R}R,|4)
in Appendix 4A, thus we can write

i

G, (¢) = 2E(RD | 6(t) ) o (43.4)

G, (4) 2E(§IRQ1 $(t) ) - (4B.5)

Substituting the equations (4A.5) and (4A.13) into equatiéns (48.4)
and (4B.5) respectivelv, and then the results are substituted intb

the equation (4B.1), G(¢) can be obtained as

4 1-2cosé+ %%sin¢ 1+2cos¢—%%sin¢
= i ' A N \
G(¢) 3‘11’,3111({) [ o ] ol - )
1-2cos¢+ ésin¢ 1+2cosé— ésin¢ 1-2cosé~ §%sin¢
+ 20( ) - 20( " ) +0( )
- g o .
1+2cosé+ §£sin¢ 1-2cosé- %sin¢ 1+2cosd+ %sin¢
-0 T—) +20( ) - 20( )
o o g A
4 . 4, 20 .
1-2cosé+ 5-51n¢ 1+2cos¢- 3;51n¢. 1-2cosé- —§;sln¢
+ 0 —) - O )+ O )
ag ag ag
1420056+ 295ing 1-2cos¢+  sing
- 0f . 3 )] 4+.505¢ [ of 3w \
4 o [4 2 2 ) 0 ‘ ]
1+2coséd- %%sin¢ l+%%sin¢ 1~ %%sin¢
~0( = )+ 20(————) -20(—— )
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l+20054$+ —g—?;sinq’ 1-2cosé- %%sim
+ Q( ) - of

A
o g !

4 . 4 . 4 .
1+2cos¢+ =sing 1-2c0s¢- —sing 1+ -sind

+ 0 ;. ) - ol ) 20—

1- ésin«,b_ 1-2cos¢+ %sin¢ 1+2c0s¢- %sincb
Y

= 20(———"—) + O . ) = Qs )

(43.6)
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Avmendix 4C

This Aprendix is to evaluate the noise function H($)
. ~2 2 |
4C.1 Evaluation of E(Rf|¢) and E(RQ|¢)
The conditional expectation E(‘ﬁg $) is given by the equation
(4.23) as |
r2
E(R{]4)
=4 7§ {] er(r=2l¢,c,0) + Pr(r=-2]¢,c0)IPr(C)} Pr(D)
D C

R (4C.1)
where R_[, C and D are defined in equation (4.13).

Similar . to the section 4A.2, equation (4C.1) can be written as

8 |
E(R¢), = %— Y 1D (4C.2)

.)
j=1 ) . ' rD
where I(Dj) is defined in equation (4A.12) Similarly, E( 0 $) can be

written as
8
~2 _ }_
E(RQH’)»—- 21_le(cj) | | (4C.3)
where I(Cj) is defined in equation (4A.16) . '
5
ThusF(‘f{Elﬁb) can be evaluated from equation (4C.2) as
A2
E(R|9)
20 . 20 .
1 1-2cosd+ —3-T-r-sm¢ 1+2cosy+ 3.8in¢

.20 . 4 .
3 \ 1+2cos¢t+ -:,)-Esme \ 1-2cosd —3—5sm¢

1-2cos¢~ ~2-?;sin¢
+ O G )+ Q( G ) +O( G

)
7

1+2cos¢t+ 3-f;sin¢ 1-2cos¢+ —ﬁ-sin¢ 1+2cosé—~ -:,’—?;sincp
+ O = )+ Q( . ) + Ql———g )

1-2cos¢- %sin‘b 1+2cos ¢+ ésimb 1-2cos¢— .%sin¢,
+ 20 - ) + 0 - )+ Q( )
H+2cos ¢t %sin(b 1+ %Qsing‘) ‘ l--————e.":’;‘?r ing

sing 1- 2 sing 1+ dgine 1- Zsing

) + 3T+ 20(— )+ 20 () ]

1+

Q 'w!
M

+ Qf

a

(4C.4)
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A . : _
The conditional expectation L(Ré! $) can be evaluated in the
same manner, and the result is the same as the expression shown in

equation (4C.4). Thus we have shown in this Arme.ndlx that
oY) A2
E(R7|4) = E(R,|e)

4C.2 Evaluation of H(¢)

H(¢) is defined in equation (4.1l1l) as

i) = 2|0 + B 0) - (4c.5)
Since we have shown that E(ﬁ%l ) =E (ﬁél ), therefore |

ii(8) = 2B(R2] 9)

. A ' :
where E(Rilcb) is defined in equation (4C.4)
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Appendix SA

This Appendix is to evaluate the conditional expectations E(ékck[ ¢) and

E(ékckﬂ‘ 4
The conditional expectation E(.::kckh) is given by equation(5.12)
as ' '
E(E:kckl(b)
=) G { [Z)[Pr(::kﬁ.l¢.C,D)—Pr(ék=—1'|¢,c,m)1Pr(D) }Pr(C)

C

_ (5a.1)
where we defined the sets

D= {dy, Gy | and €= {ogr G Gl
in section 5.1.3 . Using the result in ecuation (5.17) for Pr(gzk=l|¢,C,D)-'
Pr(cA:,’_=—l! $,C,D), and similar to the evaluation procedure as shown in

Arvendix 4A, E(C},Cklfb) is found as

CEAD
1. %%oosnga— 2sing ) —2?;%00% %2 so+2sing
gl 8 —af > ) Q (= = )
%coscp- 2sing %cos@ %cos¢+25in¢
- 20( . )~ $Q( S ) =20( = )
§%cos¢—2sin¢ —3% cosd —3-?; cosé+2sing
- 0f = )~ 20— - O S ) ]
: - (5A.2)
Similarly, we can evlauvate the conditional expectation E(q.q ,|¢)as
ACTWIL)

=¥ Gp { I [Pr(c.=1]¢,C,0)-Pr(c, =-14,C,D) 1Px(D) }Pr(C)
C D


http:equation(S.12
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1 —%%)r—cos¢—23'1n¢ ‘ %%oos‘«b _ %pros¢+Zsi,ﬂ¢
—8“[ -Q( —) = 20— = Q( )
a o _ g
4 . 4 ’ 4 o
—3-1—Ta)s¢—2sn_n¢ 3 oosé —51;005¢+(_sm¢
+ (=T ) + (=) + O — )]

(5A.3)

Therefore the surmation of equations(5A.2) and (5A.3) can be shown as

B(G | 9148(6 G |9

2—Qcos¢—25in¢ g9—0034; @-oos¢+25in¢
=1 - -‘-LQ( 3 \___]_._Q( 37 .y - _]___0( 3n \
4 o 2 g 4 - a !
4 . 4 4 .
—C0S$-251nd ~COS¢ —Ccosé+2sing
- Tor T ) - oty - 1o )
4 o ! 2 o 4 o !
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Appendix 58

53.1 Show that E[G, g+, 1) [e] = B[4 (d+d 1) [4].

The conditional exvectation E(E:kck] ¢), similar to the

evaluation in Appendix 4A, can be expressed as ’

Ecékckm = zc,,(g)xu) . (58.1)
where I(3) & Z[ Pr(ck-llqs,c D) - Pr(ck-bl{(p C..D )1 (38.2)
Simlarly, we obtain

E(G G |® = 3 '_g_lckﬂ(j)uj) (58.3)
where I(j) is defined in ecJIuation (58.2) , and the sets C and D are

defined in section 5.1.3.

From equation (5.18) V, E(ékd}.lé) can be evaluated as

8
- 1 e favnga
E(@d e = -S—jilok(g)l (3) (5B.4)

N

where I'(j) 4 %—2 [Pr(ék=l,¢’cr;1’Dj'j) - Pr(ék=—l|¢,CI;1,DJ!)] (58.5)

Similarly, we obtain
8 .
- _ 1 g
BG4l = § Lo (53.6)

where I'(j) is defined in equation (5B.5) and the sets C' and D' are
~ defined in section 5.1.3.

Conpaﬁng the results as evaluated from equations (53.1),
(58.3), (5B.4), and (58.6), we can see that

E(cq o) = E(Ea |

and

E(QS, |0 = E@4 |0

Thus we have shown in this Apvendix that E'[ck(c",«'fcl&l) |¢1 = E[d]<(dk+dk—l) |81
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58.2 This section is to show that E [(;lqdk+él<dl<—l) ]¢]=—E[(Ck<§k+¢k+lék) |61

From equation (5.24), the conditional expectation E(ckdk[¢)

can be obtained as

- 2
E(%dk"b) = dk(])M(]) (5B8.7)
‘ 8
where M(j) é_ }8' N [Pr(c]\—l]cb,c ,D ) - Pr(ck—-l]¢ Cn ,D )1 (58.8)
=1

Similarly, the conditional expectation E(qd _;|¢) can be obtained

from equation (5.25) as
13 . '
E(c}d}, 18 = ;2--2_ L (M) (53.9)
where M(j) is defined in equation (53.8).
From equations (5.26) and (5.27), the conditional expectations

B(ckdk] &) and E(ck+ld};l¢) can be expressed as follows:

B( ¢, |0 = —2-_2 S ) (53.10)
and 5
Bl 1G] e) =%' 2 Ck+l(jm' G (58.11) -

8
[ ] L) l L} | : L} 1 s
where M'(j) = Z Z[Pr(dk=l|¢,Cj,Dm) - Pr( ,=‘ll“"cj'Dm” (53.12)
Again, the results show that ‘
B(g | = - Blo, a0 ad E( g _ M - E(Gd, 9
Thus we have shown in this section that

EHGrody ) 9] = - Bligdag ,d0 e
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Appendix 5C

This Appendix is to evaluate G, (¢), G2(¢) and G(¢) .

5C.1 Evaluation of Gl(¢) .

From equation (5.11), Gl(q;) is defined as

G {9) = EL o (oFq ) + & () [4]
Since we have shovm that E{ék (ck+c!, +1) | ¢ is equal to E[ék(dk+dk_1) lol,

thus Gl(¢) can be evaluated as

Gy () = 2 E[(c c}+ cHl)]«b] |

20 cos¢—-2sing 22(:054‘) zp-cos¢+23m¢
=2 - %o ) - (24 E ("
2 o 7 o 2 o )
4 . 4 4
1 -ECOS¢ —231n¢‘ —cos¢ —oos¢+2sm¢ .
—2-0.( p ) - (- -—-—)——-Q( o )
(5C.1)

5C.2 Evaluation of G2(¢) .

From equation (5.13), G (¢) is defined as

C,(8) = 2{E(c,d, o)+ %(ckd} l0EGd [0- 2@, 0]
Since E(ckdkm):—xa(ck |¢) and E(c,c o= E(c}d_li |6), which have

been shown in Avpendix 5B.2, thus G,(¢) can be evaluated as

- 8 oo . (-
Gy(0) = Tl Elq G o)+ %E(%dk_ll¢)
20 4 4 : |
4 —3—cos¢+2q1_n¢ —cos¢+251n¢ X —3—1;cos¢+251n¢‘ |
= —~3—“[ ol p 3+ 20(-Z p ) +Q( p ) ‘
%—Qcosq> 28m¢ %cos¢—25in¢ -:ﬁooswzsinq) ‘
- 0f ) - 20( ) = Qf G' ,]

g [e]
' (5C.2)
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5C.3 Ewvaluation of G(¢).

From equation (5.10), G(¢) is defined as

G(¢) = Gl(¢)sin¢+G2(¢) cosé (5C.3)

Substituting the equations (5C.1) and (SC.2) into (5C.4), we oObtain

G(¢) |
1 %%cos¢—23in¢ %?r-cos(a ' 1 %cos¢+25in¢
- <3 - = ) . N \
= sing[ 2 5 o] ¢ 5 ) O p ) EQ( > )
4 . 4 . ’ 4
1 —;cos¢+25m¢ 1 poy cosd=2sind = cosé
- - y - z - PSR
5 o] = ) =5 Q( - ) Q‘( S )]
20 . 4 . 4 .
4 §—ﬁcos¢+251n¢ ;T-cos¢+251n¢ -3?cos¢+2sm¢
+ 53— cos fo( ) +20Q( ) +Q( )
%% cosé~-2siné g— cos$-2siné ’ §§-cosd>-25in¢ A
- Q(—= S ) - 20( p ) - Qf = } 1

(5C.4)
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Appendix 5D

This Appendix is to evaluate the conditional expectation E(ﬁIRI]¢)

and to show that E(RR;|6) = E(RR,|¢) .

5p.1 Evaluation of E(RR_|¢)
From equation (5.28), the conditional expectation E(f?IRIM) is
given as
E(RR |¢) |
=2 ] B, { JIPr(R=2|¢,C,D)-Pr(R=-2s,C,D) IPr(D) }Pr(C)
C D

R . - (S‘D.l)
where C,D,RI and RI are defined in equation (4.18).

Equation (5D.1) can be written as
8
~ _ 1 i
E(RiR [¢) = T jElRI(Cj)I(Cj) | (5D.2)
where I(Cj) is defined in equation (4A.3).

Evaluation of the equation ( 5D.2) yields

E(RR;|0) |
RIRI 1-2cosé+ -z—o-sin¢ +2c0s6p- -z—p-simp 1-2coss+ ‘—;simp j
— 1 [ 3" \ 3'" \ . ™ Y “
= Z Q( p 7 "‘Q( p ) + Q( p 7
1+2cos¢- -‘-l-sin¢ l—Zoos¢+~3—4sin¢ 1+2cosé—- 3—ésin¢
- 20( —T—) + QI ——) - ——)
-2cosy- %—T(—:sim 1+2cos¢+ %Q sing 1-2oos¢—£sin¢
+ Ol ——r ) - of —= ) +20( )
4 . 4 . 4 .
1+2cosé+ ~sing 1-2c0s¢- 3.51n¢ 1+2cos¢+ 3, S1ng
- 20(—— ) +0( - )= . )]

(5D.3)
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50.2 Show that E(RR |6) = E( szROM)

From equation (5.29), the oconditional expectation E(R RQM) is

given as _
E(RR,|0) |
= 2 [Pr(R.=2|¢,C,D)-Pxr( “—2 C,D) 1Px(C) }Pr(D)
LRy Z Ry2| RQ o) }
) (5D.4)
where C,D,RQ, “and RQ are defined in equation (4.13).
Again, Equation (5D.4) can be written as
8 .
E(RQRON) =7 RQ(D JIO) (5D.5)

where I(Dj) is éefined in equation (4A.9). The evaluation of (5D.5)

thus shows that

E(RR |4 = E(R RQ]¢)
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Arpendix 5E.

This Appendix is to evaluate E(l;IDQM) and to show that E(%Dll‘b):

—E(RIDQ]¢)
5E.1 Evaluation of E( RIDQ|¢)

From equation (5.30), The conditional expectation E(ﬁIDQia',)

can he writtén‘ .as
- 8 ,
E( RD,[8) = 2 Y Dn(pj)I(Dj) (oE.l}

=1 -
where I(Dj) is cdefined in equation (4A.9).

Thus, from equation (5E.1), E(ﬁIDO|¢) can be evaluated as

E(RD.|¢)
’ -‘ZEDQ 20 1-2cos¢t+ %Qsin¢ 1+200s6— —23—Qsin¢
== { Flol— —) -0( )
32 v ¢ . .0 g :
20 . ' 20 . 4 .
H+2cosd+ 3-5ing 1-2cos¢- 3-5ing 8 1-2cos¢+=sing
+ 0 T—) - Q( )1 + =0 —
a . a g :
1+2cosé~ ésin¢ 1+2cos¢+ -“Aisjnq, 1-2cosy- ésin(;s
- o T —) + 0of T—) - ]
ag g . g
4 . 4 .
4 1-2cos¢t+ 53— sing 1+Zcos¢—§—-sm¢
+ 5= [ Q( T 0] T )
L g
4 . 4 .
1+2cos¢t+ 3~ Sing 1-2c0s9~ 3,510¢
+ Q( = . ) Qo 5 i )]

(5E.2)
E.2 Show that E(EZQDI[(;,) = —E(}iIDQM)
The conditional expectation E(ﬁQDII ¢) given in equation (5.31)

can be written as

R 8 .
E = JI(C. 5.3
(RyDr0) 2j£lDI(cj) () (5E.3)
where T (CT") is cdefined in eguation (4A.3). The result of evaluating the

ecquation (5E.3) shows that E(RQDIM) is equal to ~E(RIDQ}¢)
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“Anpendix S5F

This Apnendix is to evaluate G(¢) for the half-shifted loon structure.

From Equation (5.25), G(¢) is given as

G(9) & G, (¢)singt+ G, (g)cosy (5F.1)
where , . R '

G, (¢) & EL(RR+ RR) |4 (5F.2)
and

G, (¢) A E[ (PD-ROD)|¢] | (5F.3)

Since we have shown that D(RI |¢) = E( RQ|¢.) as in Appendix 5D,

thus Gl(¢) can be evaluated as

G, (¢) = 2E( l4)
1 RIRI 1-2cos¢+ %—Qsm¢ 14+200s4- %—Qsincp
= 0.5 [ Qf ) ~ Q( —)
g
1-2cosg+ 4—sir1¢ - 1+2cos¢- ilsinq; 1-2cos¢+ éilsincp ]
+20( F——) -20( 3 +0( : —)
g g a |
14+2cog4t+ 23%51'11.1, 1-2cosgy- —zgg-sin¢
- Ol )+ Q( . )
- g v o
1+2cos¢+ go—sm¢ 1-2cos¢~ ésj.nq‘,
-( . ) + 20( —
S 4 .
It+cosp+ —sing 1-2cos¢~ 3= Sing
- 20( o ) + Qf s )
g o
4
1+2cos¢t 3 sm¢
- o — ) ] (5F.4)

In Appendix 5E, we have shown that E(ﬁIDQI $) = -E(fiQDIM) ,therefore

Gz(¢) can be evaluated as
6,9 = 22Dl 9
1-2cosé+ 2 sing 1+2cos¢~ %gsingb

0.25 { * 2 [q G




20

1+200sé+ —ﬂsin«) 1-2cos$~ %—gsin¢
+ Q( ) - of )]
g - g
4 . ' 4 .
1-2c0s¢+ —sing 1-2cos¢- — sin¢g
+ 2o u ) - Qf u )
1r o ! - c !
1+2cos¢+ 4 sing 1-2cosd- gsimp
+ Q( = ) - O )1
o o
: 1-2cosé+ ——sing 1+2cos¢- i siné
+ 4 [ O( 3n y - 0f 3n \
3w o ! g :
1+2cosé+ 3‘% sing¢ 1-2cosé- 33- sing
+O ( = ) - - )1}
(5F.5)

Therefore
G(¢) = Gl(¢)sin¢+ G2(¢)cos¢
where Gl(¢) is @efined in equation (5F.4) and G2(¢) is defined in

equation (5F.5).
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