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ABSTRACT

This thesis investigates the processing of emergency locator
transmitter (ELT) signals which are used in search and rescue sat-
ellite-aided tracking (SARSAT) systems. Essentially, the system
relies on the transmission of ELT signals from a distressed plat-
form being relayed through an orbiting satellite to an earth stat-
ion where signal processing can be performed.

The methods of signal processing investigated here include
both linear and nonlinear. The linear methods include the window
function, the autocorrelation function, the digital filtering and
the Fast Fourier Transform (FFT). The nonlinear processing is based
on the Maximum Entropy Method (MEM). In addition, additive white
Gaussian noise has been added to simulate the performance under
different carrier-to-noise density ratio conditions.

For a single ELT signal, it is shown in the thesis that the
MEM processor gives good spectral performance as compared to the
FFT when applied to all types of modulation. When multiple ELT
signals are present, the MEM also provides certain benefits in

improving the spectral performance as compared to the FFT.
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CHAPTER 1

INTRODUCTION

In the past decade, the number of private and commercial aircraft

has greatly increased. During this time, the problem of search and
rescue for aircraft in distress has also become a significant concern.
In the year 1977 alone, statistics [1] show that in the United States
there were 4,286 aircraft crashes and of these 1,440 required a search
to locate the crash site. The main difficulty facing a distressed
aircraft is survival. The United States Department of Transportation
studies [1] have shown that survival probability is less than a 10%
chance when the rescue extends beyond two days after an aircraft crash.
In contrast, if the rescue can be accomplished within eight hours, the
survival rate is over 50%. Thus, rapid detection and location of an
aircraft crash is of paramount importance in terms of survival.

Search and Rescue (SAR) operations in remote areas can be costly
and time consuming since location of a distressed platform may take a
month or more. In a country such as Canada with large areas in the
north which are sparsely populated, the SAR problem becomes even more
significant. Also, the harsh environment in these areas makes SAR
operation particularly difficult in winter. A blanket of snow can
easily hide a crash site. 'This leads to a reduction in the probability
of survival.

The wuse of emergency 1locator transmitter (ELT) sets became



mandatory for all general aviation aircraft in the United States and
Canada in the mid 1970's [1] - [4]. The ELT is a low-power radio
transmitter (100mW) which emits an amplitude modulated carrier signal
having a frequency of either 121.5 or 243 MHz. (A new band of frequency
at 406 MHz is in the experimental stages. This will not be discussed
here.) These signals can provide both an immediate alert and a homing
signal to assist rescue forces in locating the site of distress.
Originally, it was thought that this electronic device could solve the
problems of rescuing distressed aircraft. However, it was soon evident
that, due to the line-of-sight restriction, difficulties still remained
which caused 1long delays in SAR operation and sometimes the aircraft
would never be found. Also, the ELT battery has a life time of only
several days. Therefore for large areas, a search procedure' using
aircraft is not practical.

The time and potential cost required for a search and rescue
operation can be reduced by the use of a Search and Rescue Satellite-
Aided Tracking (SARSAT) system [1] - [4]. It was proposed that use of a
satellite in low-polar orbit, might greatly enhance the performance of
SAR facilities. The main advantage of this system is that the satellité
has a wide field of view and one pass covers many thousands of square
kilometers. Thus, rescue procedures can be promptly underway when an
ELT signal is detected. In concept, the system operates as shown in
Fige 1.1. When an aircraft is in distress, the ELT unit can .be
activated either on impact with the ground or by manually setting a

switch. It is required that both the ELT and earth station be within
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sight of the satellite simultaneously. The ELT signal is detected by an

orbiting satellite as it sweeps out a path over the SAR region of

interest. Because of the relative motion between the satellite and ELT
unit, the signal received at the spacecraft is Doppler shifted. A
repeater on board the satellite relays the signal to an earth station
where the received signal is analysed to extract an ELT position. The
zero Doppler or point of closest approach of satellite to ELT must be

determined with as much accuracy as possible. The slope of the Doppler
curve at this point is used to calculate the range from satellite to ELT
source. This estimate is passed to a Rescue Coordination Centre (RCC)

which speedily dispatches search aircraft to the emergency site.

1.1 SARSAT PROGRAM

During 1975 and 1976, experiments [3] were carried out by the
Communications Research Centre (CRC) in Ottawa, Ontario, Canada, using

the AMSAT OSCAR satellite to test the validity of the SARSAT system.

Encouraging results were obtained which led to the formation of an

international joint venture to fulfill the SARSAT project. The key

participants, hitherto, involve Department of Communications (DOC) for

Canada, the Centre National d'Etudes Spatiales (CNES) for France and

National Aeronautics and Space Administration (NASA) of the United

States. The Ministry of Merchant Marine (MORFLOT) of the Soviet Union

has also developed a parallel system called COSPAS, which is

interoperable with the SARSAT [1]1,[5]. It is anticipated that, in the

near future, other nations will participate in this project.



The National Oceanic and Atmospheric Administration (NOAA) of the
United States will provide three weather satellites to perform the
satellite-aided SAR missions. The first two spacecraft are scheduled to
be launched by mid 1982. These satellites are capable of receiving
emergency signals from distressed aircraft. The processing of these
signals will permit an estimate of the location of ELT sources.

In the event of emergency, the ELT transmits the distress signal
to an orbiting NOAA satellite, which relays the signal to the Local User
Terminal (LUT). For a system employing two spacecraft, average waiting
time for the United States and Canada is less than six hours. At any
one time, the SARSAT system must have the ability to handle a multiple
of emergency signals which emit from several different types of ELT
units in different 1locations. Therefore, at an LUT, the Doppler
processor is required to process up to ten simultaneously received ELT
signals on any one satellite pass and determine the origin of these
sources. Data from two such orbital paths and knowledge of the orbit of
the spacecraft itself enable an estimate of the position of the ELT to
be made. The accuracy of the estimated position is largely dependent on
the method employed for processing the ELT signals.

At present, a detailed study of methods of spectral estimation is
underway. To date, signal processing methods are based on the Fast
Fourier Transform (FFT) and the use of windowing. The main weakness of
Fourier analysis is the appearance of sidelobes in the spectrum. The
effect of windowing, however, is to broaden the main lobe, which is also

undesirable since this increases the ambiguity in the location of the



peak. A new program in operation for approximately two years has
considered the use of a non-linear processing method based on the
Maximum Entropy Method (MEM) with preprocessing provided by
autocorrelation function (ACF) and finite impulse response (FIR)

filtering. These techniques of signal processing methods as applied to

SARSAT operation are discussed in the subsequent chapters.

1.2 ELT SIGNALS
The received ELT signal is an amplitude modulated carrier signal
having a frequency of either 121.5 or 243 MHz. A mathematical

representation of;an amplitude modulated signal can be described as a

function of time t in the form

S(t) = A, [1+m(t)] sin(2rf t + ¢) 1.1
where Ac is the carrier amplitude, fc is the carrier frequency, ¢ is the
carrier phase angle, and m(t) defines the modulating signal. The

modulating term can be classified as either sine-wave or pulse-shaped.

1.2.1 Sine-Wave Modulation

To formulate a sinusoidal-modulated ELT signal, we define

m(t) = n sin(ei(t)) (1.2)
where p is the modulation factor which can be varied from 85% to 100%
and ei(t) is given by

ei(t) =2r [ fin(t) dt (1.3)

The instantaneous frequency, f. (t), is approximated in the least square

sense by a linear function and also by a quadratic function [7],[81.



The linear fit of instantaneous frequency is given by

t
fin(t) = 1400.0 - 700.0 T: : (1.4)

and the quadratic representation is

2
t t
£in(t) = 1930.8 - 1784.8 T~ + 870.82 3 (1.5)

r
where Tr is the repetition period (0.25 s) of the signal. Solving these
equations, the linear sweep sinusoidal-modulated ELT signal, SL(t). is
given by
S (t) = A [T+u $in(2n(1400t - 1400t% + 0.75))] sin(2nf t + )  (1.6)
and the quadratic sweep sinusoidal-modulated signal, sQ(t), is given by
So(t) = A [T+ sin(2n(u6un. 36> - 3569.6t°
+1930.8t + 0.75))] sin(anct + ) 1.7
Examples of these two waveforms, having 512 sample points, are given in
Figs. 1.2 and 1.3 with the parameters Ac and u equal to one. The
carrier frequency equals 9500 Hz and the sampling rate is fifty thousand

samples per second.

1.2.2 Pulse-Shaped Modulation (Continuous Phase)

The modulating signal, m(t), for a pulse-shaped ELT signal is

depicted in Fig. 1.4 [7]1,[8]. The duration of these pulses is varied

with time. It is, therefore, necessary to specify the rising and
falling edges of each pulse. These are denoted by ti and P

respectively where i indicates the i-th pulse. The equations [7] to
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solve for these time-indexes are
ti
fo fin(t) dt

i-1 (1.8)

Py
£Uf (8) dt
(o]

i-1+d (1.9)

where fin(t) is defined by Eq. (1.4) or (1.5). The duty cycle, d, is
within the 30% to 50% range. The values ti and P;, of the i-th pulse,

as applied to the choice of frequency sweeps are computed and formulated

in Appendix A. The waveforms of a 512 sample point linear sweep and

quadratic sweep pulse-modulated ELT signal are illustrated in Figs. 1.5

and 1.6. Both signals have carrier frequency 9500 Hz and a 36% duty

cycle. The length of these signals is 10.22 ms. Fig. 1.7(a) [5] shows

a schematic diagram for generating this type of ELT signal.

1.2.3 Pulse-shaped Modulation (Random Phase)

Another form of existing ELT signal is a slight variation of the

pulse-modulated continuous phase signal. Instead of having the

oscillator (Fig. 1.7(a)) always on, the switching pulses are used to

control the oscillator on and off. Therefore, the pulses at the output

of the oscillator will take on some arbitrary phase at each time ti

(Fig. 1.4) [8]. This is shown in Fig. 1.7(b).

1.3 THE DOPPLER CURVE

When a satellite in low polar orbit receives a distress signal

from an ELT source, a Doppler frequency drift occurs due to the relative
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motion of the spacecraft with respect to the transmitter. As the
satellite approaches the emergency site, the Doppler shift becomes less
until the minimum distance is reached where the Doppler shift is zero.
Beyond this point, a negative Doppler shift occurs and a plot of
frequency versus time produces the S-shaped curve of Fig. 1.8. This
curve leads to a measure of ELT position with respect to the known
position of the satellite. The measurement is carried out at an earth
station where the received ELT signal is processed and information is
extracted from the Doppler-time curve. The point of inflection repre-
sents the zero Doppler shift and a calculation based on the slope of the
curve at this point yields a measure of the range to the crash site.
Using a flat-earth model of Fig. 1.9, as an example, equations
are developed to derive a Doppler-time curve. The carrier frequency of

the ELT signal received at the satellite is given by

f=f +f (1.10)

where f received frequency at the satellite

=
"

carrier frequency of ELT unit

fd = Doppler shift of the signal along the flight path

X = distance along the flight path

h = altitude of the satellite

2, ¥ displacement of unknown magnitude.

A plot of the carrier frequency as function of time results in a graph
similar to Fig. 1.8. From Fig. 1.9, z, can be written as

zo = h cota
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Fige. 1.8: Carrier frequency versus time for an ELT signal.



17

v
S

@——  Satellite in orbit

Crash
site

Fig. 1.9: Flat-earth model of the SARSAT geometry.
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By substituting this relation into Eq. (1.10) and calculating the first

derivative with respect to time, we have

L= : - x° 2L f3.17)
dt d (x2+h2+h2cot2a)1/2 (x2+h2+h2cot2a)3/2 dt
But since the satellite travels at a velocity of ¥y & = g% , this yields
df _ v £ 1 B , x2
e S (X2+h2+h250t2a)1/2 (x2+hz+l'12cotzo:)3/2
2 .2 2
_ h +h cot o
=vVsfy D5 73 73— =37 (1.12}

(x"+h"+h“cota)

The satellite is closest to the crash site when x=0, this gives

= £1,13]

h /1+cotlq

x=0

: ; 2
By simple trigonometry identities, 1+cot o can be reduced to 1/sin2a,

and Eq. (1.13) becomes

ar  “Vsfq
a—t* = h sSin o
5 h
But sin q = R , thus
min
-v f
s d
Rmin = gFr T (1.14)
dt | R,
min

where Rmin is the shortest distance between the spacecraft and the ELT

source. The inflection point is determined by evaluating df/dt at Rmin'

The parameters Vo and fd are known for any satellite orbit. 1In order to



have an accurate estimation of the crash site, it is important to

measure the Doppler shift information on the ELT carrier frequency.
This measurement is strongly dependent on the efficiency of signal

processing methods.

1.4 SCOPE OF THESIS

This dissertation investigates advanced signal processing methods
as applied to SARSAT system. Fourier analysis in the form of Fast
Fourier Transform (FFT) and windowing techniques have been used to
determine the frequency spectral characteristics of ELT signals. The
frequency resolution, in the presence of multiple ELT signals, revezls
that these methods give results which are difficult to interpret. A
non-linear spectral analysis method called Maximum Entropy Method (MEM),
which is based on the concept of prediction error filtering (PEF), is
then employed in the thesis. Significant improvement, by using the MEM,
in the resolution is evident. It is found that with preprocessing
provided by autocorrelation function (ACF) and finite impulse response
(FIR) filtering, the spectral characteristics of these signals have
superior resolution.

The next chapter 1is devoted to review the theories of the
mentioned signal processing methods. ELT signals in the presence of
white Gaussian noise together with the definition of signal- to-noise
density ratio (db-Hz) are also discussed in the same chapter.

Chapter 3 begins with a discussion on the computer simulation

package of the ELT signals, digital filter and energy spectrum. This
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follows by a presentation of the results of single emergency signals and
the accuracy of the MEM resolutions across the frequency band.
Multiple signals are involved in Chapter 4. The final chapter

gives con@lusions of the investigation and suggestions for further

research in SARSAT project.



CHAPTER 2

SIGNAL PROCESSING METHODS

2.1 INTRODUCTORY REMARKS

The existing ELT units have several confining characteristics

which impede the detection of distressed signals. It has been mentioned
that the ELT signals can take on various forms of sweep frequency
modulations and the signal length varies considerably. Moreover, the

transmitters built by different manufacturers not only have a low
radiating power and poor spectral characteristics, but also many
equipments suffer frequency drift associated with the oscillators.

Thus, the carrier frequency is not constant across the signal. The aim

of this chapter is to discuss the theories of several signal processing

methods in estimating the spectral density of the ELT signals. The

power spectra of each spectral estimation method are also given for

comparison, but the discussion on the simulation process is given in the

next chapter.

2.2 THE FAST FOURIER TRANSFORM ALGORITHM

A paper on the fast method of computing the discrete Fourier
transform (DFT) of a series of data samples was published by Cooley-
Tukey [10] in 1965. This technique is known as the Fast Fourier
Transform (FFT) algorithm [10]-[17]. The advantage of FFT is that the

spectral density spectrum (or power spectrum) is obtained by performing

21
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the squared magnitude of the FFT of the given time series. This 1is
usually called the periodogram (or Cooley-Tukey) method. Since the FFT
is an efficient method for computing the DFT, it is appropriate to begin

by discussing the mathematical representation of the DFT. When a wave-

form is sampled on a digital computer, the finite version of the Fourier
transform is used. This finite duration sequence {x(n)} (0 < n < N-1),
has a DFT of the form

N-1

X = & x(n)exp [(-j 21)nk] K=0,1, ... N-1 2.1
n=0

’ 2
By putting wN = exp(-] ﬁl), Eq. (2.1) can be written as

N-1 ik
X(k) = I x(n)WN k=0,1,...,N=1 2.2)
n=0

If x(n) is a complex sequence, a direct evaluation using Eq. (2.2) of an
N-point DFT requires (N—1)2 complex multiplications and N(N-1) complex
additions [11]. Thus, for reasonably large values of N, a tremendous
amount of computation is needed.

However, the computing speed can be drastically accelerated if we
consider an N-point sequence {x(n)}, where N is assumed to be a power of

N .
25 Furthermore, x(n) in Eq. (2.2) is decomposed into two -5-p01nt

sequences

x1(n) x(2n)

n:0'1'-..,'g.-1 (2-3)

X2(n) = x(2n+1)
where x1(n) and x2(n) are the even and odd members of x(n) respectively.

The N-point DFT of {x(n)} is
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Nsh nk B nk
X(k) = : x(n)wN + z x(nmW
N
n=0 n=0
(n even) (n odd)
e 2-1
. x(2n)W§nK oz x(2n+1)w§2”*1)K (2.14)
n=0 n=0
Using the relationship [11]
2 s 2m _ 2T _
wN = exp [_J(ﬁ—)ZJ = exp [—Jﬁ7§] = WN/2
Eq. (2.4) becomes
X(K) = X, (K) + Wox
= X, + Wy 2(k) (2.5)
-1
nK
where X1(k) = I x1(n)WN/2
n=0
N4
& nK
X2(k) = n§o )(2(n)wN/2

Since X(k) is defined for 0 < k < N-1 and X1(k) and Xz(k) are defined

for 0 < k < g>1. [11] shows that for k Z,gy X(k) can be represented in

terms of XT(k) and X2(k) as

X (k) + WE X_(k) 0<k<N_4
1 N “2 =r23
X(k) = . " . . (2.6)
Ky (k=3) + Wy X, (k) > <k < N-T

In a manner similar to the above scheme, the g;point DFT's can be

further decomposed as a combination of two %&point DFT's, For X1(k)
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N
(0< k < 5-1), this can be expressed as

K

N/2B(k)

X1(k) = A(k) + W
where A(k) and B(k) are the two %—point DFT's of the even and odd
members of X1(k). This process can be continued until two points DFT's
are left to evaluate.

Algorithm in which the decomposition is based on successively
halving the size of the sequence x(n) is called Radix 2 decimation-in-
time FFT algorithm. (Another algorithm is called decimation-in-frequency

which is not discussed in this chapter can be referred to [11], [12] and

N
[151). The mechanics of the FFT algorithm requires only > 1082N complex

multiplications as compared with the (N—1)2 computations needed for
direct evaluation of Eq. (2.2). Fig. 2.1 [16] compares the number of
operations required for FFT and direct evaluation of DFT.

Very often the input sequence {x(n)} is very long. Therefore, in
order to achieve a finite duration sequence for Fourier analysis, a

finite portion of {x(n)} is obtained by multiplying the very long series

by a unity amplitude data window. This rectangular data window has a

sin x

continuous Fourier transform, which is the form of function. The
multiplication by the data window in the time domain is equivalent to

performing a convolution in the frequency domain. This results in a

sin x

function with an amplitude of the form., An abrupt change caused
by truncation at the endpoints of the data sequence introduces sidelobes
in the Fourier spectrum. These sidelobes are hazardous elements in the

detection operation. Fig. 2.2 shows the FFT power spectrum of the ELT

signal in Fig. 1.2. False alarms are likely to happen if the sidebands
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(and sidelobes) are of sufficient magnitude as compared to the main
peak. In this situation, the Doppler processor may give a wrong
estimate of distressed platform 1location. Moreover, in the case of
multiple distressed platforms, there is a possibility that these side-
lobes may contaminate the power spectrum of the different emergency

signals. Failure in detection is not surprising under this situation.

A tapered window function may be used to partially alleviate the problem

of high sidelobes. This results in a gradual reduction of amplitude at

the endpoints of the data samples rather than an abrupt transition.

Several window functions are discussed in the next section.

2.3 THE WINDOWING TECHNIQUES

This technique is often encountered in performing the FFT

spectral analysis and in designing digital filters. One way to convert

a very 1long sequence {s(n)} into a shorter sequence is to simply

truncate {s(n)}. This corresponds to multiplying the input time series

by a finite rectangular waveform, w(n) (0 < n < N-1), whose amplitude is

unity
s(n)w(n) 0 <n < N-1
x(n) = (2.7)
0 otherwise
where
1 0 <n < N-1
w(n) =
0 otherwise

This operation is called the windowing technique. The finite waveform

w(n) is called a data window.
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Direct truncation, in the above form, unfortunately leads to the
well known Gibbs phenomenon in the frequency domain with an unwanted

overshoot at the sharp transition of the input sequence [13]. This is

due to the fact that multiplication in the time domain is equivalent to
convolving the original frequency characteristics of Slexp(jw)] with the
Fourier transform of the window Wlexp(jw)]

Xlexp(jw)] = Slexp(ju)] *Wlexp(jw)] (2.8)
where * denotes convolution operation. The Fourier transform of

sin x

Wlexp(jw)] is a function with amplitude (this is usually written

as sine(x)) form. A design criterion for windows is to find a finite
window whose Fourier transform can smooth out the sharp transition or
discontinuities at the endpoints of the input time series. In other
words, we want a finite window with most of its energy in the main lobe
of its Fourier transform [19], [20]. The most frequently used windowing
functions are shown in Fig. 2.3 [12]. These windows are specified by
the following equations [12], [13], [22].

i) Rectangular window:
w(n) = 1.0

ii) Hamming window:

w(n)=0.54 + 0,46cos (=1

N-1

iii) Hanning window:

w(n)=0.5 + 0.5cos (%%%

iv) Blackman window:
w(n)=0.42 + 0.5cos (%%%) + 0.08cos (Si?)


http:w(n)=0.42
http:w(n)=0.54

Rectangular

Figs 2433

Window

functionse.

29
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v)  Triangular window:

_ [2n}
w(n)=1 - T

where n is defined in the interval - ﬁ%l_g n < E%l .

Kaiser [18], [20] has proposed a nearly optimum window with
characteristics which essentially satisfy the said design criterion.
This window function is called the Kaiser window. It is an approxi-
mation to the prolate spheroidal wave functions. The equation of the
Kaiser window is [11]

1,8/ 1 - %

_ o
w(n) = IO(B) (2.9)

where the parameter B is a constant which can be adjusted so as to trade
off the main lobe width for sidelobe amplitude. IO(-) is the modified
Bessel function of the first kind and order zero. This can be evaluated
to any desired degree of accuracy by using the rapidly converging series
[22]

K

2
[%T ) (2.10)

Io(x) — . 1

n o8

K

Description of the above window functions and their characteristics have

been mentioned in the references [11], [121, (131, [181, [19]1, [21],

[22]. By tapering the window smoothly to zero at each end of the input

time series, the height of the sidelobes can be reduced. This 1is
achieved at the expense of a wider main lobe. In the view of the SARSAT

system, this operation is undesirable because this increases the
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ambiguity in the location of the peak in detecting distress signals.
The signal used in the FFT power spectrum of Fig. 2.2 is windowed by a
Kaiser window with 8=8.0. The power spectrum, using the FFT technique,

of the windowed ELT signal is given in Fig. 2.4.

2.4 THE MAXIMUM ENTROPY METHOD SPECTRAL ANALYSIS

Spectral density estimation based on the Fourier transform
techniques are said to be 1linear. The shortcomings of these 1linear
estimators are well recognized. These involve the use of window
function which 1is independent of the data being analysed and the
assumption of a periodic extension of the data or that the data outside

of the available record 1length is zero [11], [24]. A non-linear

spectral estimation method which earns the merits of data-dependent and

'window-free' is called the Maximum Entropy Method (MEM). The principle

of the MEM is detailed extensively in the literature [23]1, [24]1, [25],

[26]. The primary aim of this section is concentrated on solving the

prediction error filter (PEF) equation which is the essence of the MEM

spectral analysis.

Suppose we are given a weakly stationary zero mean time series

{x(n)} (0 < n < N-1). For such a signal, the spectral estimate, S(f),

by employing the MEM is defined by [24]

S(f) = X P(M) {2.11)
[1 + £ a(n) exp(-j2nant)F
n=1
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where P(M)

prediction error power obtained with a prediction error
filter of order M.

a(n) = prediction error filter coefficients (n=1,2,...,M).

At

sampling time,
In order to calculate the spectrum of the input data from Eq. (2.11), we
obviously need to know the output power P(M) of the prediction error

filter and also the corresponding values of filter coefficients a(n).

These parameters are determined by the equation [24]

M P(M) m=0
b a(k)Rx(m—k) = (2.12)
K=0 0 m=1,25: %% ;M

where R (*) is the autocorrelation values of the time series {x(n)} with
lag (m-k). This equation represents a prediction error filter equation
of a PEF of order M. Appendix B discusses the design of a one step

ahead predictive filter which ultimately formulates Eq. (2.12). It is

convenient to expand Eq. (2.12) in matrix form

R (0) R -1 oo RG] Tat0) P (M)
R (1) R (0) e R QW) fa(1) 0
: i - ) N (2.13)

RX(M-1) RX(M—Z) r Rx(—1) a(M-1) 0

_RX(M) RX(M—1) P Rx(O) i 'a(M) g1 0 |
where the coefficient a(0) is equal to unity.
If the autocorrelation matrix can be estimated reliably from the

input data, then the solution to Eq. (2.13) will give us the parameter

values needed. However, this direct approach requires the assumption of

data extensions and the solving of M+1 simultaneous linear equations.



An efficient algorithm for solving Eq. (2.13) recursively is outlined by
Burg [23]. This computational technique is referred to as Burg's
algorithm.

We begin to discuss the algorithm by assuming we have obtained
the coefficients of a prediction error filter of order M-1 and the
corresponding prediction error power P(M-1). In order to calculate the
parameters for the next higher filter order (that is order M), the
output power P(M) is expressed as the average power resulting from

forward and backward filtering over the entire time interval [24], [31].

This is shown by [27], [29]

PO = 5 (P(M) + P, (M)
; N-M M " M 5
=smamy U 2 atMx(nek) | + | 2 a(M,k)x(neM—k) "]
n=1 k=0 k=0

(2.14)

wheré the subscripts f and b denote the forward and backward direction.
The parameter a(M,k) is interpreted as the kth coefficient for the PEF
of order M. The values of these coefficients can be determined by
employing the Levinson's recursion [24]

a(M,k) = a(M-1,k) + a(M,M) a*(M-1,M-k) (2.15)
The asterisk signifies a complex conjugate and k=0,1,...M. Note that
the set of equations which are represented by Eg. (2.15) have the
following properties

1.0 k=0
a(M,k) =

10.0 KOM

a(M,M) is an unknown quantity yet to be calculated. Putting Eq. (2.15)
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in Eq. (2.14) and minimizing the equation with respect to a(M,M)

3P(M)  _
sa(M,M) ~

The optimum value of a(M,M) (for which P(M) is a minimum) is [27], [28],

[29]
N-M M M % &
-2 I [(z aM-1,k)x(nM=k))( z a (M=-1,kK)x(n+k)) ]
a(M,M) = LA it (2.16)
- 2 Moox 2
: [z a(M=-1,K)x(n+eM=k)|" + | £ a (M=-1,k)x(n+k)| "]
n=1 k=0 k=0

The output power can readily be determined by solving Eq. (2.16), (2.15)
and (2.14)., However, as shown in [24], [27], P(M) is given by a simple
expression (rather than the form in Eq. (2.14))

P(M) = P(M=1) (1 - |a(M,M)|%) (2.17)
Making use of Eq. (2.16), (2.17) and (2.15) we have now calculated all
the quantities necessary for evaluating the Maximum Entropy power
spectral estimate given by Eq. (2.11). To initiate the Burg's
algorithm, we start with the PEF of zero-order (M=0). For this value of
M, we know that a(0) is equal to unity and Rx(O) is the zero-lag value
of the autocorrelation function of the input time series {x(n)}. Eq.
(2.12) becomes

P(0)

Rx(O)

*
x(n)x (n)

N
Z

i
B n=1

N. Anderson [29] discusses this algorithm for calculating the filter

coefficients for Maximum Entropy Spectral Analysis. Other papers [281,
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[301, [321, [33]1, [34] have been written describing algorithms for MEM

spectral estimation.

The signal in Fig. 1.5 is processed using the MEM of order 2
(M=2). The power spectrum is shown in Fig. 2.5. Comparing the FFT
spectrum (Fig. 2.2) and the MEM spectrum, it is evident that the latter
method yields a superior resolution [81, [351]. The advantage of
employing 1low order MEM spectral estimates in detecting emergency
signals is the complete lack of sidelobes in the power spectrum. This

feature is significant in the event of multiple distressed platforms.

We will discuss multiple ELT signals in Chapter 4.

2.5 USE OF THE AUTOCORRELATION FUNCTION AS A PREPROCESSOR

Two approaches of spectral estimation techniques are discussed in
the preceding sections. It has been demonstrated that the adverse
effects, which arisé from employing the FFT algorithm to estimate the

spectral density of a given signal, are reduced substantially by the

Maximum Entropy Method. Since the MEM is described as a 'data-adaptive'

method [25], it is beneficial to have some knowledge of the statistical
behaviour of the input time series used.

In dealing with power spectra, it has long been known that thé
correlation function of the signal is an extremely useful tool [11].
Assuming we are given a real-valued time series, x(t), over the entire

interval (—=o<{tl=), The autocorrelation function (ACF) 1is said to

reflect one aspect of the behaviour of a given input signal from which

the ACF provides a time-domain description of the second-order
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statisties [24], ([40]. If the given time series is a finite energy

signal, the ACF is defined by [6]

@©

RX(T) = J x(t+1)x(t)dt (2.18)

where 1 is the value of maximum time delay (or 1lag). Thus the ACF,
RX(T), reveals the similarity between a given signal and its own time-
shifted version. The properties of ACF are discussed extensively in
literature [39], [401]. An important property is that the ACF and
energy-density spectrum, |Sx(f)]2. form a Fourier transform pair. This
is given as [6]

I, ()17 = ‘ R (t)exp(-j2nfr)dt (2.19)
and

o

R(c) =5 |5,()|° exp(j2rfr)ds (2.20)

We can interpret Eq. (2.19) in this way: the available time series,
x(t), is first used to estimate the sample autocorrelation function for
a number of lags; next, the Fourier transform of this is determined to
obtain an estimate of the spectral density. However, windowing the ACF
is required in this method of spectral estimation. This 1is often
referred to as the Blackman-Tukey method [10], [11]. By taking the
inverse Fourier transform of a éiven spectral density spectrum, we

obtain the ACF of the input time series. This is exhibited in Eq.

(2.20})
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The ACF not only reveals the second-order statistics of a given
signal, but it also has a significant role in detecting a periodic
signal buried in additive noise. The definition of Eq. (2.18) applies
to a signal of finite energy. If the signal x(t) is periodic with
period T, we define the ACF as [39]

T

R () = ;—TI—TX(tn)x(t)dt (2.21)

It is evident that for a periodic signal, the ACF is also periodic with

the same period [6]. If the additive noise and signal are uncorrelated,

the autocorrelation of signal in the presence of noise is the individual

sum of the ACF of the signal and the ACF of the noise [6], [38]. For a

white noise process, w(t), the ACF is defined by [6]

=2

R (1) = 2—° §(t)

where §(t) is a delta function weighted by the factor_gg_at t=0; other-
wise, R (T) is zero for T#0. This equation indicates that the ACF tends
tb averaging out (or cancel) the noise component. This 1is wuseful
information in the analysis of signal corrupted by white noise.

We wish to investigate the statistics of a given ELT signal so as
to improve its spectral estimation characteristics. The Blackman-Tukey
method, (that is Eq. (2.19)), has a spectrum which is nearly identical
to the periodogram method (which is the squared magnitude of the FFT).
Thus, ACF does not improve the pérformance of linear spectral
estimation. However, we are interested in investigating the effect of
ACF on the non-linear spectral analysis. We are going to discuss this

modified Maximum Entropy Method in the following section.
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2.6 PREPROCESSING VIA THE AUTOCORRELATION FUNCTION

It is suggested in [8] that in estimating the power spectrum of a
given time series, by means of the Maximum Entropy Method, the frequency
resolution is improved significantly if the autocorrelation function is
used as a preprocessor. However, it is a difficult task to give an
explicit analysis of why the autocorrelation function favours the
performance of the MEM. We can postulate that the second-order
statistics (as given by the ACF) of a signal extracts useful information
from the original signal such that the ACF improves the data adaptive
method which, in this case, is the Maximum Entropy Method. We refer to
this operation as ACFMEM technique.

The definition of ACF given in Eq. (2.18) is in continuous form.

For a finite duration sequence, {x(m)} (0 < n < N-1), the ACF is

estimated by [11]

R(m) =

N-1-m
x(n) x(m+n) for 0 < m < N-1 (2.22)

b=

n=0

This is called a biased estimate [81, [27]. The ACF of the signal

(Fig. 1.5) is shown in Fig. 2.6. This is a 256-lag ACF. The ACFMEM

spectrum of MEM order 2 is given in Fig. 2.7. Comparing this result

with the one in Fig. 2.5, we observe that there is a dramatic

improvement in the frequency resolution.

2.7 DESIGN OF NONRECURSIVE DIGITAL FILTER

The objective of this section is to discuss the procedure which

leads to the design of a bandpass filter. Filtering is desirable since
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we wish to examine the power spectrum of the distressed signals limited
to certain specified band of frequencies. The bandpass filter is a
suitable choice because the ELT signal is a bandpass signal. Appendix C
gives the theoretical details of the design.

Based on this theory, we have designed a bandpass filter which
has the following specifications:

Number of samples is 171

Minimum stopband attenuation for 0 Hz < f < 7000 Hz is 60 dB

Passband ripple for 7000 Hz < f < 18000 Hz is 0.2 dB

Minimum stopband attenuation for 18000 Hz < f < 25000 Hz is 60 dB

Sampling rate is 50000 samples per second.

Figure 2.8 gives the frequency response characteristic. This filter

will be used widely, in the subsequent chapters, as a preprocessor to

study the power spectrum of the MEM and the ACFMEM of ELT signals.

2.8 NOISE CONSIDERATIONS

In this section, we present a brief account on the performance of
ELT signals in the presence of noise. A detailed discussion of this
subject is given in [8].

In a physical system, the received ELT signal (s(t)) at the earth
station is a composition of the Doppler shifted ELT signal (sd(t)) and
the noise component (n(t))

s(t) = sd(t) + n(t) (2.23)
The origin of n(t) comes from several sources. The most typical

examples are the uplink and downlink noise effects, the ionospheric
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effects and the receiver noise. 1In order to simulate s(t), we have to
know the statistical behaviour of n(t). The Gaussian random variable

(with zero mean) is a good approximation for n(t) used in this analysis.

The ratio of signal power to noise power (SNR) is

v

SNR = ﬁi (2.21)

=

where Py is the power of ELT signal and Py 1S the noise power. Usually
SNR is expressed in terms of the decibel (dB) unit
1010g10 (SNR) = SNRdB (2.25)
By taking the anti-logarithm of Eq. (2.25), we can express Eq. (2.24) as
(0.1 SNRdB) P

SNR = 10 (;i) (2.26)
N

Since n(t) is a random variable, PN can be estimated as the mean square

value of the noise component. Eq. (2.24) becomes

SNR = —-—§§——— 2.27)

EIN"(t)]

In [8], the power of different forms of ELT signals are

estimated. For square modulation the Ps of both linear and quadratic

frequency sweep is approximated by

~

o
"

O.SAi d (2.28)

where Ac is the signal amplitude and d is the duty cycle. The signal
power estimation for sinusoidal modulation with linear frequency sweep

is

P = 0.5A0 + 0.25u°A> + HuAZ(4.3056801x10™)+u2A2(5.8011508x1078) (2.29)
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and the quadratic frequency sweep is

- 2 2 2
PS = O.SAC + 0.25u Ac (2.30)

where u is the modulation factor.. For a given noise level (that is
SNR,p) we can measure the performance of the received signal by using
the above equations.

The required noise level is, sometimes, given in terms of the
noise density unit (dB-Hz) rather than the decibel unit. We can relate
SNRdB and the noise density unit according to Eq. (2.27)

P, = SNR-EIN?(t)] (2.31)
For narrow band noise n(t), E[N2(t)] can be estimated as NoB [6] where B
is the bandwidth of the signal. Thus, Eq. (2.3.1) gives

p
ﬁi = SNR°B (2.32)

o

Multiplying both sides of Eq. (2.32) by 10logqqg Yields

P
1010g, (=) = 1010g,(SNR) + 1010gy,(B) (2.33)
O

It is evident that this equation has dB-Hz units. Let the right-hand
side of Eq. (2.33) be

P
S

and substitute Eq. (2.25) into Eq. (2.33). We have

SNR =X - 101og10(B) (2.34)

dB dB-Hz
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The power spectra of the received ELT signals (Eq. (2.33)), using the

signal processing techniques that have been described, are given in the

next chapter.

2.9 SUMMARY

Chapter 2 deals with a detailed description of the signal
processing techniques which are used in this thesis for spectral
analysis of the ELT signals. These techniques involve:
i) the Fast Fourier Transform algorithm (FFT).
ii) the windowed FFT technique.
iii) the Maximum Entropy Method (MEM).
iv) the autocorrelation function with MEM (ACFMEM).
v) the finite impulse response bandpass filtering (FIR).
The FFT highlights two different undesirable features. First, the
sidebands due to the modulation of the signal are quite prominent and
can easily have amplitude approaching that of the carrier. Second, the
FFT generates its own sidelobe structure even when no modulation of the
signal is present. This can be controlled by using the 'windowing'
technique, however. The overall result of these two effects is that a
spectrum is created which combines the desired response at the carrier
frequency with an undesired structure which may be a combination of
signal sidebands and FFT sidelobes. This combination of sidebands and
sidelobes will henceforth be referred to as 'sidelobes'.

Reduction of the sidelobes is desirable when many ELT signals are
present since mutal interference can occur. Chapter 3 gives a detailed

account of this sidelobe reduction for one ELT signal.



CHAPTER 3

PROCESSING OF ONE ELT SIGNAL

The Fast Fourier Transform algorithm and the Maximum Entropy
Spectral Analysis are employed to study the spectral characteristics of
the emergency locator transmitter signals in this chapter. In addition
to these spectral estimation methods, we also introduce the auto-
correlation function (ACF) and the finite impulse response (FIR) band-
pass filtering as the preprocessing techniques. The theories of these
signal processing methods have been discussed in the previous chapter.

We begin, in this chapter, a discussion of the simulation of ELT
signals and the implementation of the above signal processing methods on
a digital computer. The spectra of different forms of single ELT
signals are used to examine and compare the performances of each
spectral estimation technique. In the analysis, signals with different

values of carrier-to-noise density ratio are also considered.

3.1 DISCUSSION ON THE SIMULATION PROCESS

It is assumed that the distress signal received at the earth
station has been converted to a frequency band between 0 and 25 KHz.
The expected value of any ELT signal is 121.5 MHz or 243 MHz and this is
mixed to fall at the bandcenter frequency of 12.5 KHz. In order to
satisfy the Nyquist criterion, the signal is sampled at fifty-thousand

samples per second. For a complete modulation sweep (a quarter of a

u8
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second), 12500 samples are required. Due to satellite motion, there is
a Doppler frequency shift in the signal of up to about +3 KHz for the
ELT signals and a further +3 KHz spread due to differences in crystal
operation between ELT units. Thus, the total band of interest lies
between about 6.5 KHz and 18.5 KHz, although there may be signals
outside this band.

A package of computer simulation programs has been developed to
study the spectral performances of ELT signals. The package includes
five separate programs which are discussed in the following paragraphs.
Listings of these programs are given in Appendix D. All simulations are
done on the HP-1000 computer system in conjunction with the array
processor (FPS-AP 120B). The main advantage of using the array
processor is the much faster program execution speed in performing the
algorithm repetitively on long sequences of data.

Different formats of a 512-point ELT signal are simulated from
the program ELTAP. The simulation includes computer-generated ELT
signals which can be processed assuming additive white Gaussian noise
thus allowing performance to be measured at different frequencies and at
different carrier-to-noise density ratio. Method of implementation is
based on sampling the signal at a rate of fifty-thousand samples per
second. The signal (512-point) has a record length of 10.22 ms, with
the first sample occurring at time equal to =zero. A sinusoidal-
modulated ELT signal is simulated according to Eq. (1.6) and (1.7). For
a pulse-modulated signal, the implementation employs the equations

developed in Appendix A. The phase components of a pulse-modulated
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random phase signal can be constructed by multiplying a set of uniformly
distributed random variables (between 0 and 1) by 2. These random
variables are generated by the array processor. Using Eq. (2.26),
(2.28), (2.29), (2.30) and (2.34), we can include noise components with
the signal. However, we need to generate a set of Gaussian random
variables. This can be achieved by converting a pair of uniformly
distributed random variables (x(n) and x(n+1)) between 0 and 1 to a pair
of Gaussian random variables (w(n) and w(n+1)) with zero mean and unit

variance (02) according to the equations [11], [38]

w(n) = y(n)cos(2r x(n+1)) (3.1)

w(n+1) = y(n)sin(2r x(n+1)) (3.2)

y(n) = 2021n 1 7 (3.3)
x(n)

A maximum of ten different ELT signals can be generated
simultaneously if multiple distress signals are necessary for the
analysis.

The program WFIR implements a finite impulse response bandpass
filter which has been discussed in Section 2.7. The simulation is based
on the Eq. (C.14) to construct the frequency response and Eg. (C.20) to
generate the windowed impulse responses.

Windowing, autocorrelation function (ACF) and convolution (due to
bandpass filtering) are implemented in the program PROAP. Five
different configurations can be selected as preprocessor. These are

(1) signal + windowing
(ii) signal + ACF + windowing

(iii) signal + ACF
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(iv) signal + FIR

(v) signal + ACF + FIR
An ELT signal can be windowed by any of the window functions (512-point)
described in Section 2.3. The ACF (Eq. (2.22)) is implemented by using
the array processor library subroutine. It is more efficient to perform
the digital filtering in the frequency domain (fast convolution tech-
nique) than by the direct form of convolution sum in Eq. (C.1). The
fast convolution technique makes use of the Fast Fourier Transform
algorithm. Assume we have a signal {s(n)} of length M which has to be
filtered by an FIR filter whose impulse response is {h(n)} of length N.
We extend the signal and impulse response to a length of L, which is the

maximum power of 2 greater than the sum M+N-1, such that

8(n) = s(n) n=0,..., M-1 (3.1)
8(n) = 0 n=M,..., L-1

and
A(n) = h(n) n=0,..., N-1 (3.5)
A(n) = O NzN, ey L=1

Next, we compute the forward FFT of these equations and obtain the
complex product of the two sequences. The operation is completed by
performing an inverse FFT on the complex products.

The program SPMAP uses array processor to calculate the spectral
estimations of the ELT signals (and the preprocessed signals) by means
of the Fast Fourier Transform algorithm and the Maximum Entropy Method.
The degree of complexity which involves in the computation of the

prediction error filter coefficients of the MEM can be reduced. Both
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the numerator and denominator, in Eq. (2.16), contain the forward and
backward direction filtering term. A point worthy of note is that the
forward filtering and the backward filtering terms have a structure
which combines the input signal sequence convolved with the previous
values of coefficient a(M-1,k). Taking the dot product operation of
these two arrays, we obtain the numerator. The demoninator is simply
the addition of the square of a vector sum of the two operations. This
method is conveniently programmed by using the library subroutines of
the array processor. For high filter order of MEM, for instance an
order of twenty, the computational time using this method is drastically
decreased. Employing Eq. (2.11), (2.15), (2.16) and (2.17), the MEM
spectrum is determined. The power spectra of the two spectral
estimation methods are normalized with respect to their maximum value
and are presented in decibel scale.

Simulated results obtained from these programs can be plotted by
utilizing the HP-1000 computer graphic package. The program CURVE is
able to plot the ELT signal, preprocessed signal and power spectrum of
each processing technique. In the following sections, we examine the

processing results of one ELT signal.

3.2 PROCESSING RESULTS USING THE FAST FOURIER TRANSFORM TECHNIQUE

At present, signal processing methods applied to the ELT signals
are based on the Fast Fourier Transform and the use of windowing tech-
nique. The theories related to these topics have been discussed in

Sections 2.2 and 2.3. This section is devoted to an examination of the
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results of one ELT signal, in the absence of additive noise, processed
by the FFT and FFT with windowing technique. Results of signal with
different modulations and frequency sweeps are detailed. The simulated
signal (512-point) is at a carrier frequency of 12832 Hz. First, we
discuss the pulse-modulated signal and then the sinusoidal-modulated
signal.

3.2.1 Pulse-Modulated, Continuous Phase

A pulse-modulated signal (12832 Hz) with continuous phase and
linear frequency sweep is shown in Fig. 3.1. The duty cycle of the
modulation is 36%. A 512-point Fast Fourier Transform is performed on
the signal. The spectral density is given in Fig. 3.2. Five peaks are
Qetected at a threshold 1level of =10 dB. In the diagram, an arrow
indicates the position of the carrier frequency. The main peak is at
12793 Hz. This introduces a frequency error of 39 Hz which is defined
by the equation

frequency error = carrier frequency - frequency resolution (3.6)
at 0 dB amplitude

The two major sidelobes are at 11426 Hz and 14260 Hz. These sidelobes
are likely to increase the possibility of false alarm in detecting
multiple signals. The same situation arises in the spectrum of the ELT
signal with quadratic frequency sweep. Fig. 3.3 shows that the two
major sidelobes, in this case, are at 10937 Hz and 14760 Hz with the
main peak at 12793 Hz.

In order to reduce the sidelobe amplitude, the signal is windowed
by an appropriate window function. A Kaiser window with parameter B=8.0

is used to window the signal depicted in Fig. 3.1. This is illustrated
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in Fig. 3.4. The spectrum of this signal, in Fig. 3.5, indicates that
at about -10 dB the minor sidelobes are decreased by 2 dB and the major
sidelobe at 11426 Hz is reduced by 1 dB in amplitude. There is no sig-
nificant improvement for the sidelobe at 14260 Hz. One drawback of
using the windowing technique is the relatively broad main peak. Kaiser
window has the ability to trade-off the main lobe width for sidelobe
amplitude by adjusting the parameter B. This property is illustrated in
Fig. 3.6 and Fig. 3.7 which are the power spectra of the same signal
widowed by Kaiser window with B=4.0 and B=10.0 respectively. The minor
sidelobes in Fig. 3.6 are reduced by only 1 dB and the major sidelobe
(11426 Hz) is down by less than 1 dB. However, the main peak is nar-
rower than the one used B=8.0. For B=10.0 there is no conspicuous
changes in comparing with Fig. 3.5. Hamming window and Blackman window
are also employed. The results are shown in Fig. 3.8 and Fig. 3.9. For
the rest of windowing technique, in the analysis, we choose the.Kaiser
window with B=8.0.

A great improvement in frequency resolution of the FFT spectrum
is obtained when the signal (Fig. 3.1) is passed through a finite
impulse response filter. The filter characteristics were discussed in
Section 2.7 and its frequency response was depicted in Fig. 2.8. Fig.
3.10 shows the FFT spectrum of this processing method. The Ssidelobes
are reduced by 2 dB and the main peak (12793 Hz) is distinctive. The
bandpass filter discards unnecessary information outside the frequency
band between 7 KHz and 18 KHz. This filter is an appropriate choice

since, at earth stations, the received ELT signals are likely to fall
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within 6.5 KHz and 18.5 KHz range.

The duration of the pulses in the pulse-modulated signhal are
varied with time. The effect of this parameter on the spectral analysis
is examined. We process the pulse-modulated signal (linear frequency -
sweep) with duty cycles 40% and 50%. The power spectra are shown in
Fig. 3.11 and 3.12. We observe that a higher value of duty cyecle
achieves better performance. This indicates that if an ELT signal (at a
complete modulation sweep) is processed on a per block basis, we expect
the frequency resolution to be more sPec{D&.\\\ﬂ as the pulse duration
gradually increases with time [8].

3.2.2 Pulse-Modulated, Random Phase

.

A pulse-moéulated random phase signal with linear frequency sweep
and 36% duty cycle is shown in Fig. 3.13. Fig. 3.14 illustrates the
spectruﬁ of this signal and Fig. 3.15 is the spectrum of the signal with
quadratic frequency sweep. The numbers of sidelobes at above -10 dB
level make detection difficult if not impossible. The windowed signal
of Fig. 3.13 is depicted in Fig. 3.16. The spectrum, in Fig. 3.17 shows
that line-splitting occurs on the main peak and the peak is lower in
amplitude than the adjacent sidelobes. The situation is unchanged when
digital filtering is employed. Fig. 3.18 shows this result. It is
obvious that phase randomization disrupts the FFT spectra considerably.

3.2.3 Sinusoidal-Modulated

The sinusoidal-modulated signal with linear frequency sweep 1is
given in Fig. 3.19. Fig. 3.20 and Fig. 3.21 show the spectra of the

signal with linear and quadratic frequency sweeps. A sharp contrast
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with the pulse-modulated signal is the reduced number of sidelobes.
This is due to the absence of nulls between pulses of the signal.
Unfortunately, this type of signal is not popular in the market. The
windowed signal (linear frequency sweep) is shown in Fig. 3.22 and the
spectrum is given in Fig. 3.23.

In the next section, a non-linear spectral estimation method is
employed to compare the spectral performances with the Fast Fourier

Transform technique which is a linear operation.

3.3 PROCESSING RESULTS USING THE MAXIMUM ENTROPY SPECTRAL ANALYSIS

We mentioned, in Chapter 2, that spectral ‘estimation employing
the Maximum Entropy Method yields superior resolution. Four configura-
tions are chosen to explore the spectral performance of the MEM tech-
nique. First, we operate the MEM analysis directly on a received ELT
signal. This is represented by 'ELT + MEM'. Second, we perform an N/2
- lag autocorrelation function of the signal prior to the MEM (ELT +
ACFMEM). Third, the signal is passed through a finite impulse response
bandpass filter (shown in Fig. 2.8) and the MEM is applied (ELT +
FIRMEM). Lastly, we process the ACF of the signal to this filter before
doing the MEM (ELT + ACF + FIRMEM). Since the autocorrelation function
and the convolution are linear processes, interchanging the operation of
these two preprocessors does not bring any significant differences.

One problem to be solved in evaluating a reasonable MEM spectrum
is to determine an optimum number of prediction error filter

coefficients. This number corresponds to the filter order of the MEM.



AHPLITUDE (VOLT.)

SPECTRAL DENSITY (dB)

2008 £ —

1.563 Il
= ;
1.8 %i
i
i ‘ | ! |
503 | LI it it
i S
] . b OO ! R i A‘ ! :
f. 228 r Jﬂﬁ.1JMM kau.lﬂﬁah i ‘ LhLﬂgrﬂLa i KA&W:‘n!ﬂA.ijﬁ.fuh i
L £ LA 11 HTE ST AR T A i ? AR IS i SR T
YTl O T YR gy
- i 0l T e e i
- §of Hig ! Bt 1} 41§ . .
. 529 ‘ 1l it B3 l; I
-1.228 .
-1.588
-2.028
7228 1.822 2. 044 3.£66 4,088 5.118 6.132 7.154 8.176 9,198 18,228
TIME (MSEC.)
Fig. 3.22: The signal shown in Fig. 3.19 windowed by a Kaiser window (@=8.0).
B‘ ! T T T T T T T T T T T T T T T T Y | 4! T 7T T T T T T T 1] T T T T T T T T T
-18. 0
onl
_3ﬁ_‘
-40. [
L
L
58, [ |
-8 L ,\
-78. L

a. 2908, g8, 7508, 12288 12568, 15028, 175€8. 20288, 22568, 25008,
FREGUENCY (Hz)

Fig. 3.23: The FFT spectrum of the dgnal shown in Fig. 3.22.

70



71

Three different objective criteria are suggested for selecting the
filter order, M [24]. These are the final prediction error criterion
(FPE), the information theoretic criterion (AIC) and the autoregressive
transfer function criterion (CAT). However, these criteria are based on
the assumption that the input signal is an autoregressive process.
Unfortunately, it does not apply to the ELT signal which we have
modelled. In order to determine a most suitable MEM filter order, for
each of the above configurations, we use different values of M.

3.3.1 Pulse-Modulated, Continuous Phase

The signal depicted in Fig. 3.1 is utilized to study the MEM
spectral performances which are compared with the results obtained from
the FFT technique. Filter orders of 2,3,4,6,8,10 and 20 are tested
individually in the analysis. The four curves on each graph represent
the MEM spectra of the different configurations described above.

Fig. 3.24 gives the MEM spectra at filter order 2. Results
indicate that both the 'ELT + MEM' and the 'ELT + ACFMEM' 1lie at
12842 Hz. This is 10 Hz away from the carrier frequency. The 'ELT +
FIRMEM' has a relatively broad peak at 12756 Hz. This introduces a
displacement of 76 Hz. According to Eq. (3.6), a frequency error of
only 2 Hz is measured by the 'ELT + ACF + FIRMEM' (peak at 12830 Hz).
The most noticeable feature is the sharpening of the spectra when the
ACF is employed. A third order MEM is applied to the same signal, the
MEM, ACFMEM and ACF + FIRMEM processes all have resolutions located at
the same frequencies as MEM order 2. This is shown in Fig. 3.25. 1In

the 'ELT + FIRMEM' case, the error is reduced to 39 Hz. Comparing these
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two diagrams with Fig. 3.2 and Fig. 3.5, we observe a remarkable
difference. The sidelobe problem does not exist in the second and third
order MEM.

We now attempt to use higher MEM filter orders in order to
investigate how the MEM spectra evolves. Fig. 3.26 to 3.28 show that
only the 'ELT + MEM' configruation yields reasonable resolution when
filter orders of 4, 6 and 8 are used. For a tenth order MEM, the
spectra are shown in Fig. 3.29. The 'ELT + MEM' and the 'ELT + ACFMEM'
give poor resolution. Although the 'ELT + FIRMEM' has descernible
peaks, it has an error of more than 200 Hz. The main peak of 'ELT + ACF
+ FIRMEM' is located at 12830 Hz. This corresponds to an error of 2 Hz.
The major sidelobes are at -4 dB 1level. The spectra of a filter of
order 20 are illustrated in Fig. 3.30. A direct application of MEM
analysis gives a very wide peak at 12891 Hz. This is a difference of 59
Hz from the carrier frequency. The signal with preprocessor functions,
at this filter order, gives good results. 1In the 'ELT + ACFMEM' cases,
it has an error of 39 Hz. Both the 'ELT + FIRMEM' and the 'ELT + ACF +
FIRMEM' indicate a peak at 12830 Hz for an error of 2 Hz. The major
sidelobes for the latter case are at -3 dB and -6 dB levels. Results
are also obtained for the same signal with quadratic frequency sweep.
These are shown in Fig. 3.31 (filter order 2) and Fig. 3.32 (filter
order 10).

From the above results, we need to elaborate four critical
points. First, the choice of the MEM filter order does have an

influence on the spectral performances. At a low filter order of the
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MEM, we can avoid the sidelobe problem. By using a higher filter order,
the width of the main peak can be reduced considerably (by the 'ELT + ACF
+ FIRMEM') but at the expense of giving rise to spurious peaks.
However, these interferences are 1less severe than the FFT spectra.
Second, the merit of employing autocorrelation function as a
preprocessor is that it averages the information of the received signal
over a large interval. As a result, it reduces the duration of nulls
between pulses in the pulse-modulated signal [8]. This benefits the
adaptive feature of the MEM spectral estimation. Third, digital
filtering helps to improve the performances by rejecting unnecessary
information outside the filter bandwidth. Fourth, in examining the
curves of Fig. 3.24 to Fig. 3.28, we note that the curve depicting the
MEM process indicates only one peak even though the order is increased
from 2 to 8. This is a valuable indicator of how many signals are
present and this result will be further exploited in Section 4, which
deals with multiple signals.

3.3.2 Pulse-Modulated, Random Phase

We proceed with our discussion to a pulse-modulated random phase
signal (Fig. 3.13). The MEM spectra at filter orders 2 and 3 are
plotted in Fig. 3.33 and Fig. 3.34. In both diagrams, the 'ELT + MEM!'
and the 'ELT + ACFMEM' have identical resolution at 12842 Hz. Whereas,
the configurations with digital filtering are found to peak at 12793 Hz.
The frequency error is calculated to be -10 Hz and 39 Hz respectively.
In this case, digital filtering does not offer any advantages.

Nevertheless, these results contrast greatly with the FFT spectra which
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were shown in Fig. 3.14 and 3.17. Phase randomization using the MEM
technique achieves better resolution than the FFT approach. Detection
is possible only for the 'ELT + MEM' configuration as the filter orders
are raised to 4,6 and 8. These are illustrated in Fig. 3.35 to 3.37.
At a filter order of 10, Fig. 3.38 indicates that only the preprocessor
with digital filtering is capable of giving accurate resolution. The
main peaks are relatively wider than those in Fig. 3.29. The 'ELT +
FIRMEM' has a peak at 12683 Hz which is 149 Hz in error. The frequency
resolution of 'ELT + ACF + FIRMEM' is 12720 Hz. This is 112 Hz less
than the carrier frequency. Fig. 3.39 is the spectra of a twentieth
order MEM. The resolutions for both digital filtering configurations
are shifted by 255 Hz from the carrier frequency. Therefore, a low
filter order of the MEM is preferred to combat the pulse-modulated
random phase ELT signal. Note that once again, the peak structure of
the MEM spectra gives an indication of the number of signals present.

We recall that processing the ELT signal on a per block basis
enhances the frequency resolution. In Appendix E we examine this
technique by using a modified Maximum Entropy Method which is based on
averaging the prediction error power and prediction error filter
coefficients.

3.3.3 Sinusoidal-Modulation

At filter orders of 2 and 3, the MEM spectra of a sinusoidal-
modulated signal shown in Fig. 3.19 gives excellent results. These are
illustrated in Fig. 3.40 and Fig. 3.41. The 'ELT + MEM' and the 'ELT +

FIRMEM' appear to have the same resolution, but the former 1lies at
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12842 Hz and the latter is at 12830 Hz. The sharp distinct peaks given
by the 'ELT + ACFMEM' and the 'ELT + ACF + FIRMEM' are located at 12842
Hz and 12830 Hz respectively. Figure 3.42 is the spectra of a fourth
order MEM. A direct MEM analysis can produce fine resolution (12842 Hz)
at filter orders of 6, 8, 10 and 20. Fig. 3.43 to 3.46 depict these
results. This signal does not create any difficulties for both spectral
estimation techniques.

In processing a single ELT signal, preprocessing provided by the
autocorrelation function and a low filter order of the MEM has an
immense effect on the non-linear spectral analysis. It is in the next
section that we explore the accuracy of frequency error which is

measured by the MEM and the ACFMEM approaches at filter order 2.

3.4 ACCURACY OF FREQUENCY RESOLUTION FOR THE MAXIMUM ENTROPY METHOD

This section concentrates on investigating the accuracy of
frequency resolution for the MEM spectral estimation. In this analysis,
we are concerned with studying the behaviour of frequency resolution
error generated by the MEM and the ACFMEM processors. We process ELT
signals in 25 Hz steps starting at carrier frequencies of 25 Hz and
proceed until 25 KHz is reached. The signal (512-point) is 10.22 ms in
length. At each of these frequencies, the MEM and the ACFMEM spectra
are evaluated at MEM filter order 2. The resolution errors are measured
according to Eq. (3.6). The relationship of resolution error as a
function of carrier frequency across the spectrum is plotted to identify

the accuracy of the processors.
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3.4.1 Pulse-Modulated, Continuous Phase

In Fig. 3.47(a) the error curve of pulse-modulated signals (with
continuous phase, linear frequency sweep and 36% duty cycle) is given.
The MEM analysis performs poorly from 0 Hz to 3500 Hz and from 21500 to
25000 Hz. An expanded plot from 5 KHz to 20 KHz of the curve is plotted
in Fig. 3.47(b). The frequency error varies from approximatély -500 Hz
to +500 Hz as the carrier varies from 5000 Hz to 20000 Hz. There are
large fldctuations along the curve; however, it 1is expected that
spectral averaging wiil significantly reduce these. ELT signals with
frequencies near the bandcenter value suffer less variation in frequency
error.,

An ACFMEM error curve is illustrated in Fig. 3.48(a). We notice
that this processor achieves an outstanding improvement in spectral
performance. The frequency error is significantly lower across the
entire frequency band. Fig. 3.48(b) shows an expanded plot of the curve
for the 5 KHz to 20 KHz range.

For the same ELT signals which carry quadratic frequency sweep,
we observe that the error curves produced by the MEM and the ACFMEM in
Fig. 3.49 and 3.50 have almost identical patterns as the previous cases.
The sole difference is the degree of increased variation along these
curves.

Several low values of carrier frequency are selected from Fig.
3.47(a) and 3.48(a) in order to inspect the actual MEM and ACFMEM
spectra. At 1500 Hz, the MEM yields an error of 1500 Hz and the ACFMEM

measures 215 Hz difference. The spectra, at this frequency, are plotted
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in Figs 3.51. The MEM analysis fails absolutely whereas the ACFMEM
provides peak at 1715 Hz. These results are used to compare with the
FFT spectrum which is shown in Fig. 3.52(a). The sidelobe problem,
again, dominates the analysis. Although one of the peaks is located at
1465 Hz (this is very close to the carrier frequency), the other one is
calculated at 98 Hz. Thus, a false alarm is likely to occur. Windowing
technique (using Kaiser window with B8=8.0) cannot overcome the
ambiquity. This is shown in Fig. 3.52(b). At carrier frequency 3250 Hz
the MEM and the ACFMEM spectra are given in Fig. 3.53. Again, the MEM
performs poorly. The peak measured by the ACFMEM is at 3428 Hz. The
FFT spectrum, in Fig. 3.54(a), gives resolutions at 1855 Hz and 3223 Hz.
Fig. 3.54(b) illustrates the effect of windowing. Fig. 3.55 and Fig.
3.56 compare the spectra of the non-linear and linear processors at
frequency 7500 Hz. The MEM yields a broad peak at 7946 Hz. The error
is reduced to 68 Hz when the ACFMEM produces a well defined peak at 7568
Hz. Nevertheless, the FFT analysis gives peaks at 7520 Hz and 8887 Hz.

3.4.2 Pulse-Modulated, Random Phase

Random phase signals (linear and quadratic frequency sweeps) have
error curves very similar to those produced by the continuous phase
signals. These results are presented in Fig. 3.57 to Fig. 3.60 for the
MEM and the ACFMEM,., At frequency 3250 Hz, the spectra of MEM, ACFMEM
and FFT are compared. Amongst the analyses, Fig. 3.61 and Fig. 3.62
prove that the ACFMEM has the greatest capability of resolving phase

randomized signals.



TRAL DEN

S

oh

_____,hLT#MEM’”'
______iEE*ACFMEM

""I LR T 1 TT T 1T T7 T 1 7 T TT 7T R B S ll¢l:lAlllI 1T
{

i

1
=
Xflllllll
!
H
i

B N
380 N -
i I \ s s i e = IO
: ~ |
|
L— \ . |
-40. | e o
L \\\\\~. - T TR
L T
L T—
i Tr—a
S8, : S, (SRR - ] e R K
-
L
-6, t_____ . O ST L
-78. N S RO | NSNSy | SURPUNLICTIEIY, INSUN | NS O SO, E—— i
B 2568, 5323 7588 16308, 12580, 5003, 17584, 2uuu i W2 0 A S S e 8

. FREGUENCY (i)
Fig. 3.51: The Mill spectra of the signal described in Fig.i13. L7 (&) (withicarrcier::

frequency at 1500 Hz and filter order 2.



SPECTRAL DENSITY ()

RAL DEXSITY (d3)

i

SPEC

g. 2508,

Fig. 3.52(a

o
= =
3 -

|
1

&2
1

1
o
=3

&
3

S6ae.

)s

7508.

10808, 12508, 15888, .

FREGUENCY (Hz)

frequency is at 1500 Hz.

J

A

- -
T T o LS UL S Bl S S B 6 T s o — |

-62,

- l
|

b
(

L

8. 2520,

Fig.

3.52(b):

!

oBea.

|

7588, i

i
i

LANE S Da

17787

i
|
|
i
|

og8. 12500,
FREGUENCY (H2)

1586

A

FTE I

175

17588,

R N e

02

26008,

T

2E008. 22508,

i
i
i H
! !
!

|
| .

The FI'T spectrum of the signal (at carrier frequency 1500 Hgz)

22528, 25528,

The FFT spectrum of the signal described in Fig. 3.47(a). Carrier

described in Fig. 3.47(a) and windowed by a Kaiser window (g: 8.0).



SPECTRAL DENSITY (dB)

96

LLTAMEM
— — BLT+ACFMEM
A0 J 707 T S e i (e i G S i (e ‘AR S " S S

N A
o
A
-30, ;
I,
-
o R

<n
=]

T 3 11 r-raet ]“l R B
! {
§ !
s

2

) I

g 2503,

Fig. 3.53:

R e v s —Plpweet

-
———— |

12503, 15888,

FREQUENCY (Hz)

17588, 20028, 22528, 25008,

The MEM spectra of the signal (at 3250 Hz) using MEM at filter order 2.



SITY (3)

noy
i

PECTRAL

QoF
it

(R

CEIT

el

inel

PRy

 Sywrary
i i

Fig.

~eil

=A

- §.

p I 7L A A A e e

Fig.

3.54(a):

2370,

ﬂ

[_!Illllll’!
& H'
l

S6E8.

A D 4

[ B B

R RN S A (e i et A e ¢

i Al Jusi ek B e

7328, 16220, 12503, R

PADYS

3.54(0) -

Se2.

rrtrr

7300,

16523,

FREQUENCY (Hz)®

PHETSETTT

i s e Hie i

|
i

12503,
FREQUENCY ()

17523,

15828,

R T

20200, 2e3tn.

175

TTrUr T

ga,

e

Annnn
28805

1t

i e I e ¢

TR )

20
i fﬁ.

The FFT spectrum of the signal (at 3250 Hz) described in Fig. 3.47(a).

TTIETTT f"}
!

'
i R A
{

Azara
Coudlda

22600
CClithe

The FIFT spectrum of the signal (at 3250 Hz).windowed by a Kaiser

window

(§=8.0)




{<5)

SIT

il

<
-

L

P
oEreTRA
il ol

)

3

neneayy ST
SSECRAL D281 (2

— — ELTyMEM
—  _—___ ELT+ACFMEM

R SR i i e S S TS O SN R T e (e g Ol e i (i /i e S (R I T T Sl

98

e S VRTINS WU, . W—

; o
L | ~— |
L——‘ ----- - e i L 8 A i,
fs
- o e e e e — S S
- |
o i
- i - . -
S A S B . i I _
& 2378, 3620, 7308, £ord. 12578, SE28. 17500, 20202, 22572, 2308,
FREQUENCY (Hz) o . i .
Fig. 3.55: The MEM spectra of the signal (at 7500 Hz) using MEM at filter order 2.
g ]
“{”‘I' 7 o (o | B B Ui aun B f i e i B e Dl il G T rir i T S GRS S
b
b
'f, |
1.8 S N —
% ! H
!
*.
t
L
~ L N _
i ]
» Ni
o Pkl :
AT
i
LV
i
1
i
e
vk d o - - - - o - g, S — e o c———
~f, T Y | IS —— —_— B IS —
"7ﬂ. ..... N . 1T s I R oy . SR TN | IRp———— by sems s i S e
2 2504, 5023, 7508, 10207 12380, 000, 17300, A 28502, P

FREQUENCY Clz)
Fig. 3.56: The FFT spectrum of the signal at 7500 Hz



FREQUENCY ERROR (Hz)

3008, =

:

£
S

z

—
8
T L L B

I~

d

g B =

T'YTT'IY i TTTI"$

1
g
=

;1

rr

y

%
=

22590, 25088,

FREQUENCY ERROR (Hz)

12508, 156ea, 17508, 2006,
FREGUENCY ()

The error curve of a pulse-modulated random phase signal (linear
frequency sweep and 36% duty cycle) using MEM at filter order 2.

'3 2;5%. ocea. 7588, 10820,

Fig. 3.57(a):

=

EHESEBE

IR R RN R R R R RO R R R R R RN R R RRREERE RN

-+
—-

8 =

288
r.ﬂlwlanigsgsernTnTlﬂ

8B

=

-828.
S0P@. 6828, 7200, 6024, OUPE. 10204, 11093, 12000, 13004, 14908, 15008, 16828, 17823, 1803, 19208, 22283,
FREQUENCY (Ho)
An expanded view of the curve in Fig. 3.57(a).

Fig. 3.57(b):



100

3008,

zsm.

m.f

1509,

1808, F

(ZH) YOYMT XONENOITUI

-3098. |

15608, 17523, 20078, 22588, 23088,

12598,

FREGUENCY (H)
The error curve of the signal described in Fig. 3.57(a) using

2500, Seea, 7528, 16028,
ACFMEM at filter order 2.

B

Fig. 3.58(a):

FREGUENCY (H2)

i — — o~

" (2H) ¥OWME XONINDTUI

S@gp. 6070. 700A. 6009, 90PA. 10208 11830 12070, 13099, 14298, 15083, 16073, 17029, 18028, 19008 26200

P 9

An expanded view of the curve in Fig. 3.58(a).

Fig. 3.58(b):



FREQUENCY ERROR (Hz)

FREQUENCY ERROR (Hz)

1568,

1083,

TTTTITTTTITUroITY S E RS BESEE EAE R

[

-+

TI171 TES S TEAEL NS ¥ TES IO TE

3088

2300

Fig. 3.59:

5g28. 7528, 12882, 12508, 15028,
FREQUENCY (H2)

1750 20028,

The error curve of the signal described in Fig.
quadratic frequency sweep and MEM order 2.

22568,

25508,

3.57(a) with

=

2090

1502,

1028,

&
&=

3
|
|

r“T't"r‘ri!TTT“rTll TTTTTIrT T I T TTrTTT

-2368

58 S BE I IR =t 6 i i R RUS

-3008.

T

B

PV .

Fig. 3.60:

5008 7523, o203, 1258 15882,
FREQUERCY (H)

17288,

20208,

2253

The error curve of the signal described in Flg 3559 with

ACFMEM at filter order 2.

23283,

101



T )

sl 2581

-l

foreluiabond
‘

e = BELT+MEN
—_— - —ELT+ACFMEM

S i G T G G A Ra | L S llll]!!l'f]
|
|
4

N i /B A

 pak L) I

]

| 102

)
——
s
ks

1
!
l
i
H
—

\
ot , !
2, TR = wne o - teatia - - » - . - 1
3 ; i | I’\‘\—_‘
- | | \\ : p i
+ ; i ~ } !
|
T ! i\ i
L W NE—_—— P SOUTE TSRS —
= | \\
. | i
L i ' T |
0] | : | ~L_ |
‘:L‘._L_- s I e H . s =i e ,\___, e NI S i
1 l ! ! S b !
1{ T ———— —
C | a
L !
s L o oo = — E—— I e e
|
b i
1 |
i‘ !
R R E B . R ——— A—
-7, t TS TN W S SO T W W S T
. AT 5279 7 122208, 2501 15{'2‘. 7538. 20822 2¢3ra, 23013,

FREGUENCY (i)
The MEM spectra at filter order 2 of the signal (at 3250 Hz) described

£3)

OT——
SPECTRAL ZENSITY (G

= |

.
R I e

PR
e
——
———

’)ﬁ
An ]

“Tate -
S
1 -
&
-

in Fig. 2.57(a).

3082, 735'3

IEM

e A O

1”"'5

FREGUE . .
The FFT spectrum of the signal (at 3250 Hz) described in Fig. 3:.57:68.) .

Sk s esb Dok 2o

ENCY (tz)

| R S s

e {atzl)
viles

17524,

> [k e Kt

<£203,

oiada e}
Loia e

22328,



103

3.4.3 Sinusoidal-Modulated

The absence of nulls between pulses of sinusoidal-modulated
signals plays an important role in the processing techniques. This is
evident by judging from the error curves included in Fig. 3.63 to Fig.
3.66. The ACFMEM yields an error of less than 50 Hz within the 5 KHz to
20 KHz band.

3.4.4 Overall Performance

A study of these sets of error curves provides an insight to the
understandipg of the spectral performances of the MEM and the ACFMEM on
ELT signals. The most interesting phenomenon is that for the above
cases there is no error detected at the 12.5 KHz frequency. Further-
more, the curves between 5 KHz to 20 KHz region reflect an odd function
symmetry about the bandcenter frequency. The actual causes that give
rise to these curves aré not yet determined. We anticipate that by
processing a complete duration (0.25 s) of the received ELT signals, the

spectral performance is likely to be improved.

3.5 THE SPECTRAL PERFORMANCE WITH VARIATIONS IN CARRIER-TO-NOISE DENSITY

RATIO

The ELT signals, which we have analysed so far, are assumed to
have an infinite value of carrier-to-noise ratio. In this section we
extend our discussion about the spectral peformances of ELT signals
(which have the same characteristics defined in Section 3.2) at various
carrier-to-noise density ratio (CNDR) 1levels. The relationship of

carrier-to-noise ratio (in dB unit) and carrier-to-noise density ratio
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(in dB-Hz unit) is expressed by Eq. (2.34). We consider the values of
29 dB-Hz (-15 dB), 34 dB-Hz (-10 dB), 39 dB-Hz (-5 dB), 44 dB-Hz (0 dB)
and 54 dB-Hz (10 dB) and two different carrier frequencies, namely 9237
Hz and 12832 Hz. Since the variation in spectral performance 1is
insignificant between the linear and quadratic frequency sweeps, in the

presentation we employ ELT signals with the former type only.

3.5.1 Pulse-Modulated, Continuous Phase

In order to provide a reference, Fig. 3.67 illustrates the
spectrum obtained using the FFT when only noise is present. Fig. 3.68
to Fig. 3.71 show the FFT performance of a pulse-modulated signal
(continuous phase) in the presence of different CNDR levels with carrier
frequency 12832 Hz. At 34 dB-Hz, there are numerous sidelobes at above
the -10 dB threshold level. The main peak, which is situated at 12793
Hz, is exceeded by the major sidelobes at 11426 Hz and 14260 Hz. The
number of sidelobes decreases as the CNDR increases. However, the main
peak is still dominated by the major sidelobes.

Changing the carrier frequency to 9237 Hz, the FFT spectrum
produces a peak near the correct frequency as shown by Fig. 3.72, for 34
dB-Hz. Reducing the CNDR to a 1level of 29 dB-Hz causes severe
degradation in signal detection, as shown in Fig. 3.73.

A Kaiser window (B=8.0) is applied to the noisy signal having
carrier frequency 12832 Hz. The spectra are given in Fig. 3.74 to Fig.
3.77. Windowing technique does not improve the frequency resolution at
low value of CNDR.

To compare the MEM process with the FFT process, we first plot
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the MEM spectra when only noise is present, as shown in Fig. 3.78. This
can be compared to the FFT process of Fig. 3.67 without the bandpass
filter and Fig. 3.79 with the bandpass filter. Using first a second
order MEM, we plot the spectra for the four configurations described in
Section 3.3, using CNDR increasing from 34 dB-Hz to 54 dB-Hz. Fig. 3.80
to Fig. 3.83 illustrate the curves for a signal frequency of 12832 Hz.

We now select a new carrier frequency of 9237 Hz and plot the
spectra for CNDR varying from 29 dB-Hz to 54 dB-Hz with MEM filter order
2. The results seen in Fig. 3.84 to Fig. 3.88 demonstrate a serious
problem at low CNDR since the frequency estimate is now affected by
signal strength. This problem with the low order MEM processor may be
resolved, however, by using a higher order MEM = 10 process, as shown in
Fig. 3.89. Note that all four processes give an indication of carrier
frequency with 34 dB-Hz CNDR. At 54 dB-Hz, the frequency estimate 1is
futher enhanced as illustrated in Fig. 3.90.

3.5.2 Pulse-Modulated, Random Phase

Fig. 3.91 to Fig. 3.94 illustrate the FFT spectral estimate as
the CNDR is increased from 34 dB-Hz to 54 dB-Hz with frequency 12832 Hz.
Note that measurement of the carrier frequency is difficult at all
values of CNDR since there are many peaks to choose from.

Changing the frequency to 9237 produces a peak near the correct
frequency, as shown in Fig. 3.95 for CNDR = 34 dB-Hz. However,
decreasing the CNDR to 29 dB-Hz essentially eliminates detection (Fig.
3.96).

Results for the second order MEM process are again plotted at
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Fig. 3.87: The MEM spectra (filter order 2) of a continuous phase
signal with carrier frequency=9237 Hz and CNLR=44 dB-Hz.
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