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INTRODUCTION 

This thesis is concerned with problems which arise out of 

E. I\Eihler 1 s paper [ 7 ) published in 1953. In this paper, a con­

struction of a universal algebrtil complex over an algebra was first 

given. Since a universal algebra complex over an algebra is uniquely 

detennined by the algebra up to unique complex isomorphisms, it is 

natural to observe the relation between universal algebra complexes 

over two algebras. Some results are obtained in [ 9 ). In Chapter 

I, we show that an algebra homomorphism from an algebra A. into an 

algebra B determines a n~tural covariant functor from the category 

of complexes over A and A-complex hoinomorphism.s into the category 

of complexes over B and B-complex homomorphisms which sends a univer­

sal complex over A to a universal complex over B. Explicit constructions 

of this functor in some special cases are given and as a consequence 

of this, explicit relations between universal complexes over two al­

gebras in these cases can be obtained. 

Again, in [ 7 ] , K8...li.ler defines his differential fo::rms as 

elements of a certain submodule of his infinitesimal algebra. In 

Chapter II, we establish first that the module of Kahler's differen­

tial forins of degree k is isomorphic to the module of homogeneous 

differential forms of degree k as defined in Chapter 0, 'When the 

universal derivation module or the algebra is finitely generated and 

projective. We then introduce integral differential for.ns in a 

v. 



manner analagous to, but more general than Kahler's definition of 

integral differential for~s and show that the set of all homogeneous 

differential fonns of degree k is, in certain special cases, finitely 

generated over the ground ring. 

Chapter 0 is essentially a collection of all the basic 

definitions and results concerning modules and derivations which 

are used in the ensuing chapters. Some of the results we believe 

to be new. 

vi. 



CHAPTER 0 

Preliminaries 

This chapter is essentially a collection of all the basic 

definitions and results concerning modules and derivations which 

will be needed in the ensuing chapters. 

§ 1. Kronecke1• and Grassman algebras. 

Let R be a commutative ring with unit, Mand N R-modules, 

and M* and N* the dual modules of M and N respectively. For <3' f M*, 

·er f N*, 9>*'t' f (M®N)* is defined by 9>*Cr(a®b) = g>(a)Cf(b), 

a f A, b f B. The product ~ * ty is cs,lled the Kronecker Product 

of g> and Cy. 

Let T(M) be a tensor algeb:t'a over an R-module M, and 

Kzl(M) = t 9' f T(M)*I ~ ITk(M) = 0 for all k ~ n}, then clearly 
eo 

KJi(M) is a submodule of T(M)*. I.at K(M) = .·J:: Kn(M), then the sum 
n:O 


is a direct sum. Let 


be the cs.nonical isoniorphism defined by x y r.M.? x @ y, where x is 

an element of degree n, y an element of degree m, and 

i:,* :(T (M) @~(M))*~ Tn + m.(M)*n,'11 n 


be the dual homomorphism of v n,m • 


1. 
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For ~ f Kn(M), 't' f ~ (M). the product ~ • 't' is defined by 

S> •<+- ='tri,m((S>ojn)*(Crojm))o Pn + m' 

where jn : Tn(M) ----->- T(M), ~ : T m(M) ~ T(M) are the natural 

injections and pn + m : T(M) ~ Tn + m(M) is the (n + m)th~projection. 


Then S'. tt' f Kn + ntt since CJ o jn f Tn(M)*, <yo~ f Tm(M)*, hence 


(<Jo jn)*(~ o .\n) f (Tn(M) ® Tn1(M))*, thus 't~,m((S' o jn)*(lr Q jm)) f Tn + m(M)*, 


and finally Co·~= "tn* m( ( <j> o jn)*( <y o j ) ) o p f T(M)*.

J , m n+m 

Moreover, Co • 'r ·"-1 Tk(M) = 0 for k ./:. n + m, since p lTk(M) = 0 for
J - n + m 

k ./:. n + m. Thus we have seen that ~. C\' f Kn+ mCM). 

Now for arbitrary ~ , ~ f K(M), let 

CS •<t' = ~ n,m't:~,m((9' 
0 jn)*(o/o ~)o Pn + m; 

then it is known that K(M) with this law of composition is an associative, 

regularly graded algebra. 

Definition 1. K(M) is called the ~ronecker algebra over the mod­

ule M. 

Let E(M) be an exterior algebra over a module M. In [ 4 ] , 

the dual module E(M)* of E(M) with the Grassman product tt A 11 as its 

law of composition is called the Grassman algebra for the module M. 

But 1n this context, the following algebra G(M) will be called the Grass-

man algebra for M: 

Let Gn(M) = t '°ff E(M)*' ~· 1Ek(M) = 0 for all k ./:. n} , then 
00 

Gn(M) is a submodule of E(M)*. Let G(M) = E Gn(M), then the sum is 
n:O 

a direct sum, and it is proved in [ 4 ] that G(M) is a subalgebra of 
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E(M)* and is a regularly graded anti-collllllutative algebra.. It is 

worth noting that G(M) =E(M)* when M is a f'initely generated mod­

ule. 

Definition 2: G(M) is called the Grassman algeb.r!i over the 

module M. 

Let p : E(M) ----;. Ei(M) =M be the 1st projection, and 
1 

Pi : M* ~ E(M)* be the dual homomorphism of' Pr pi(M*) ~ G1 (:M), 
. 2 

since for any ~ t M*, Pi( <J> ) = fr o f Gi(M). Moreover (pi( CS )) =O,p1 

since G(M) is known to be an anticornmunicative algebra [ 4 ] • Hence 

Pi : Ml'----t a1 (M)( S G(M)) extends uniquely to a graded algebra 

homomorphism g : E(M*) ---:)- G(M). 

Similarly, let q1 : T(M) ~ T1(M) = M be the 1st projection, 

and qi : M* --+ T(M) * be the dual horttomorphism of q • q (M*) ~ K1(M),1 1 

since for any 'rt M*, ql( ~ ) = ~ q1 f K1(M). Hence0 

qi : M* ~ K1 0-1) ~ K(M) extends uniquely to a graded algebra 

homomorphism h : T(M*) ~ K(M). 

Remark 1. 1) Since M* ~ G1 (M) and g : E(M*) ~ G(M) is a 

graded algebra homomorphism, one trivial observation is that G(M) is 

generated by Gi(M) if and only if' g is onto. 

2) Similarly, K(M) is generated by K1(M) if and only if h is 

onto. 
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Proposition 1: g: EU1~) ~ G(M) and h : T(M*) ~ K(M) 

are isomorphismsii' M is a finitely generated projective module. 

For any x f M, let "x : T(M*) --4 R be the R-module homornor­
/\ /\

phism defined by xi Tk(M*) = 0 for k /: 1, x( CJ> ) = <3> (x) for ~ f T1 (M*) 

(in fact, T1(M*) =M*), then 
J\ 
x f Ki (M*). Define a mapping ~o 

·' 

: M ~ K(M*) 

by a. (x) ="'x, then clearly a.0 is an R..module homomorphism. Hence there
0 

exists a unique algebra homomorphism a. : T(.M) ~ K(M*) extending 

Similarly, for any x f M, let x : E(M*) --4 R be the R­

module homomorphism defined by xjEk(M*) = 0 fork/: 1, x( cy ) = Cy(x) 

for Cy f E:t (M*) (in fact Ei(M*) =1-1*), then x f Ki (M*). Define a 

mapping f3 : M ----,). G(M*) by f3 0 (x) =i, then /3 is an R-module
0 0 

homomorphism such that (/3 (x))2 =O. Hence there exists a unique al~
0 

gebra homomorphism /3 : E(M) ---? G(M*) extending j30 • • 

f!,Oposition 2: a. : T(M) ~ K(M*) and j3 : E(M) -->- G(M*) 

are isomorphisms if M is a finitely generated projective.module. 

The natural module monomorphism jk : Gk(M) ~ Kk(M) will 

be discussed. 

Let \J : T(M) ~ E(M) be the natural homomorphism. For 

~ f Gn(M), C$ 0 V f T(M)* obviously. Moreover, S> 0 )) (Tk(M)) = 
~ (Eic(M)) = 0 for k /: n. Hence S>o)l f Kn(M) for S> f Gn(M). 

Proposition..J.: Let jk Gk(M) ----> Kk(M) be the mapping 
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0defined by jk( ~ ) =~ )) for 9> f Gk(M), then jk is a module mcnomor­

phism. 

Proof: jk is obviously a module homomorphism. To show jk 

is one-to-one, suppose jk( S> ) = g 0 V =0 for S> f ~(M). Then 

~ = O, since \) is onto. Thus jk is a monomorphism. 

Remark 2: jl Gi(M) ~ K1(M) is an isomorphism. 

Remark 3: For 911 , .. ~ • ::fk f Gi(M), xl, ... , ~ f E1(M) 

<~1 A•••"~ kHx1...xk) =~£(TT) ~TT(l)(x1)····· ~TT(k)(xk) 

where TT is a pennutation of il, ... , kl and e(TT) = + 1 or - 1 

according to the pennutation TT is even or odd. 

Also, for Crl',. • • , cy k f Ki(M), Yl•, • • ~ , Yn f T1(M), 

( ~l • • • <y k)(Yr • • Yk) = <+'1(y1) .. •CV k(yk) • 

• 

Proposition 4: Let S> l', ••• , S> k f Gi (M) and G- l'." .. , Cy k f K1 (M) 

with the property that cy 1 = ~ 1°11 for i =1, 2, ••• ' k. Then 

jk(g>lA•••/\ 4'Pk) = *€(TT)G-rr(l)"' ..<rTT(k) 

where TT is a pennutation of t 1, ••• , k 1 and c(TT) = + l or - 1 

according as TT is even or odd. 

Proof: Both jk(S>1 " ••• A'f k) and~ e(TT) G-TT(l)•••• G- TT(k) are 

in Kk(M). This means that jk( <J> l" ... "<"8 k) ITzn(M) = 0 and 

~ t(TT) <t'TT(l)9 • • • <yTT(k) I'J!n (M) = 0 for ni ./: k. Hence it is sufficient 

to show that they coincide on Tk(M). We recall that any element in 

Tk(M) can be expressed as a sum of elements of the fonn x1 ••••xk where 
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jk( <a> l A••• A S> k)(xl• • .xk) 


= (~ 1 A •••A~k) lJ (x1•••xk) (by the definition of jk)
0 

= (9>111.•••"ffk) ( v(x1) ••• V(xk)) 


=*e:(TT)( & tr(l) 0 V (x1)) ••• ( S> n(k) 0 v (xk)) (by Remark 3) 


=*e:(TT) Cy n(l)(x1) ••• 41 n(k)(xk) 


=*e:(TT) <y n(l)••• Cr n(k) (xl9 ..xk) (by Remark 3) 


= (* e:(n) G> n(l)••• 'Yn(k))(x1•••xk). 


Thus, jk( g> l"• ••A <3> k) = ~ e:(n) {y n(l) • • • ~ n(k) • 

Corollary l: The natural monomorphism jk : Gk(M) ~ Kk(M) 

is entirely determined by the mapping ~ l A •• •/\Cs k 111+ *e: (n) <f'n(l) •.. Cytr(k) 

if G(M) is generated by G1 (M). 

Finally,· we will study the skewsynnnetric elements of Kk(M). 

Definition 5: An ela~ent '"t f Kk(M) is said to be skewsymmetric 

of degree k if there exist : ~ii,, •• , 1i ik f Ki(M) such that 

""'ti =I; I: e:(TTi) "l;..,. (i )••• '"(; (• )•
i TTi "i l TTi 1k 

to 
Proposition .5: Suppose M,...be a module such that G(M) is gener­

ated by Gi_(M). Let Sk(M) be the set of all skewsymi.~etric elements of 

degree k, then the natural injection jk maps Gk(M) onto Sk(M) or equie: 

valently jk : Gk(M) ~ Sk(M) is an isomorphism. 

Proof: Since G(M) is generated by Gi. (M), any elen1ent in ~(M) 

is of the form ~~1c. A •••A'"ai, where~1 f Gi(M) for each j = 1,2, ••• ,k.
1 l k j 

jk(Gk(M)) ~ Sk(M), since jk(l: <j>ilA•••ACJ'ik) =I: I: e:(tri) ~ ( )••• ~ ( )'
i i TTi TTi il lli ik 

0where "t 1 . = ~ 1 . lJ • Conversely, for any Cy f Sk(M), there exist 
J J 



4 1 , ••• , G- 1 f K1 (M) such that G--= ~~ £(rr1 ) 4n (i )•••Ci- (" )•
1 k i TTi i 1 TTi 1k 

Since jl : Gi_(M) ~ K1(M) is an isomorphism (Remark 2), there exist 

'91
1 

, ••• , Cg ik f G1 (M) such that giij" V = j 1 ('Y1j)= c+- 1 j for j = 1,2, •• ,k 

and for all ~· jk(~ q>il" ••.,..,.'if ik) = t w£(TT1) cyTTi(i ) • .. q..rr (ik) •
1 1 1 

Hence jk(Gk(M)) ;? Sk(M). 

Thus jk(Gk(M)) = Sk(M) •. 

• 
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§ 2. Derivations and Derivation modules. 

Let R be a commutative ring with unit, A a unitary commutative 

R-algebra, and M an A-module. 

Definition: An R-linear mapping d : A ~ M is called a 

derivation from A (as R-algebra) into M if and only if d(ab) = adb + 

bda for a,b f A, and a derivation d : A -----?- A is called a deriva1iion 

on A (as R-algebra). 

Definition: A couple (M,d) is ca.1.1.ed a derivation module 

of A (as R-algebra) if and only if M isan A-module and d is a derivation 

from A (as R-algebra) into M. 

Definition: Let (M,d) and (N, 6 ) be derivation modules of A, 

then a module homomorphism f : M ----+ N is called a derivation module 

homomorphism if and only if f" d = 6 • A derivation module homomorphism 

which is one-to-one and onto is ca.1.1.ed a derivation module isomorphis,w.. 

Definition: A derivation module (U,d) of A is said to be 

universal if and only if for any derivation module (M,l) ), there exists 

a unique derivation module homomorphism f: (U,d)----+ (M, 6 ). 

Theorem 1: For any unitary commutative R-algebra A, there 

http:ca.1.1.ed
http:ca.1.1.ed
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exists a universal derivation module of A and it is unique up to 

unique derivation module isomorphisms. 

Remark: A universal derivation module (U,d) of A can be 

constructed in the following way: Let U = A @ RA/J where J · is the 

A-submodule of A 0 RA generated by all 1 <29 ab - a ® J:> - b 0 a, a.,b f A, 

and define d : A --+ U by d(a) = v (f® a), a f A where )I : A® RA-+ U 

is the natural module homomorphism. Then (U,d) is a universal derivation 

module. 

Let A and B be unitary commutative R-algebras, Cf A -B 

unitary epimorphism. 

Definition: Let Mbe an A-module and N a B-module. A mapping 

f : M ~ N is called a 9> -homomorphism if' and only if f (x + y) = 
f(x) + f(y) and f(ax) = ~ (a)f(x) for a f A, x,y f M. 

Theorem 2. Let (U,d) be a universal derivation module of A 

as R-algebra and (V,6 ) a universal derivation module of B as R-

algebra, then there exists a unique S' -homomorphism f : (U ,d) ~ (V, 6 ) 

such that f 0 d = ~ <>:f , and ker r = ker 9> • dA + A·d ker Cf • 

Theorem ). Let S be a unitary subring of R. and (U(A/R), d), 

(U(A/S), o) universal derivation modules of A as R-algebra and as 

S-algebra respectively. Then 

(U(A/R),d) ~ (U(A/S)/A6R1 Yoo) 

where y : U(A/S) ~ U(A/S)/ A 6 R is the natural homomorphism. 
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Proof: The mapping Yoo : A ~ U(A/S)/A 6R is clearly 

S-linear. ).lo 6 is also R-linear, since )loo(:ra) = V ( roa + a or) = 

Y(roa) = r Y (oa),r f R, a f A. Product rule for V 0 o, 

holds trivially and hence (U(A/S)/A~ R, V 0 o ) is a derivation module 

of A as an R-algebra. Since S s; R, U(A/R) can be considered a.·s an 

S-algebra and d : A ~ U(A/R) as a derivation of A asan S-algebra, 

(U(A/R) ,d) is a derivation module of A as an S...algeb:ra. Hence there 

exists a unique A-module homomorphism f : U(A/S) -----+ U(A/R) such 

that f 0 o = d. On the other hand, f(A 6R) = A(f 0 6 )R = A dR = O. 

Hence there exists an A-module homomorphism f' : U(A/S)/Ao R ~ U(A/R) 

f 1such that flo}I = r. is a derivation module homomorphism, since 

0r1 ° ·c v o) = r., o = d. 

To show (U(A/S)/Ao R, V 0 o) is a universal derivation module 


of A as an R-algebra, let (M, 'a) be an arbitrary derivation module of 


A as an R-algebra. Then there exists a derivation module homomorphism 


g : U(A/R) ----;. (M, ~) and hen~e g 0 f1 : U(A/S )/A 6 R ~ (M, 'd ) is 


also a derivation module homomorphism. g 0 fl is unique, s~nce 


U(A/S)/Al> R is generated by A( V 0 o )A as an A-module. Thus 


(U(A/S)/A OR, '))o 6) is a universal derivation module of A as an R­


algebra and 


(U(A/R), d) ~ (U(A/S)/A 6 R, Y 0 o). 

Let D be the A-module of all derivations on A, D* the dual 


module of D. If we define 6 : A ---+ D* by 6 (a)( a) ='(;) a, 'a f D, 


a f A, then (D*, 6 ) is a derivation module of A. Let (U, d ) be a 


universal derivation module of A as an R-algebra. 
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Theorem 4. If U is a finitely generated projective A-module, 

(U, d) £:! (D*, o ) • 

Definition: The Kronecker algebra K(D) of D, essentially the 

algebra of multilinear fonns on D, is called the algebra of differential 

fonns on A, an element <3' f K(D) a differential form on A, and an 

element <a' f ~(D) a homogeneous differential form. of degree n. 

Similarly, 

Definition: The Grassman algebra G(D) of' D, essentially the 

algebra of alternating niultilinear forms on D, is called the algebra 

of alternating differential forms on A, an element C:Vf G(D) an 

alternating differential form on A, and an element G- f Gn(D) a 

pomogeneous alternating dif'ferent~al form of degree n. 

_!heorem 5. Let A be a unitary commutative R-algebra such that 

the universal derivation module (U,d) of A is finitely generated pro­

jective, then 

1) E(U) ~ G(D), where E(U) is an exterior algebra of U. More 

explicitly, let f : (U,d) ----+ (D*,o) be the unique derivation module 

homomorphism and f : E(U) ~ E(D*) be the unique extension algebra 

homomorphism of f to E(U), then the ~apping g' : E(U) ~ G(D) defined 

by g1 = go f(g : E(D*) --+ G(D) defined as in§ 1) is a graded algebra 

isomorphism. 

2) T(U) ~ K(D). More explicitly, let f 1 : T(U) T(D*) be the-----o). 
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unique extension algebra homomorphism of f to T(U), then the mapping 

h 1 : T(U) ~ K(D) defined by h' = h 0 f' (h • defined in §. 1) is a 

graded algebra isomorphism. 

Proof: Immediate consequence of Proposition 1, § 1 1 and 

Theorem 4, § 2. 

Let R be a commutative ring with unit. and A a unitary commut­

ative R-algebra. 

Definition: A pair (C,d) is called an A-complex or a compl~ 

over A if and only if C is an anti-commutative graded R-algebra such 

that the module C0 of homogeneous elements of degree zero is A and 

d: C ~ C is a homogeneous derivation of degree 1 with d 0 d = 0 [ 4) • 

•Definition: Let (C,d), (D,6) be A-complexes. A graded al­

gebra homomorphism S1 : C ~ D is called an A-complex homomorphism 

0if and only if <a> JA is the identity mapping on A and ~ d = 6 ° S> • 

It is denoted by S': (C,d) ----)- (D,6). An A-complex isomo:ryhism is 

a complex homomorphism which is one-to-one and onto. 

Definition: An A-complex (U,d) is said to be universal if 

and only if for any A-complex (C,6) there exists a unique A-complex 

homomorphism from (U,d) into (C,o). 

Notational Remark: When no confusion arises, both a universal 

A-complex and a universal derivation module of A are denoted by (U,d) or 
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(U(A/R),d). But in case it is necessary to distinguish them,(U1 ,d1 ) or 

(U1 (A/R),d1 ) will denote a universal derivation module of A as t1ll 

R-algebra. 

Definition An A-complex (C,d) is said to be simple if and 

only if C is generated by AU d(A) as an R-algebra. 

Theorem 6: For any unitary commutative R-algebra A, there 

exists a universal A-complex and it is unique up to unique complex 

isomorphisms. 

Remark: A universal complex is simple. 

Remark: .Any complex homomorphism from a simple complex over 

A into an arbitrary complex over A is unique. 

Let ((Xa.,da.))a. f I be a family of A-complexes,,_and each 

Xa. graded by Xa. = ~ Xa. n (direct). Consider the subalgebra 
n ~ O ' 

A + J; TT Xa, n of the cartesian product TT Xa. where A = l (aa>a.l aa. t 
n > ia. ' a. 

Xa.,o• ;a = a for all a f I}. Clearly Ais isomorphic to A. Define 

d : A + I: > TT Xa. n ---:> A + J; TT Xa. n by
n-10. ' n~la. ' 

Xa.,n f Xa.,n• then d is a homogeneous derivation of degree l with do d = o 

( 9 ] • Hence (A + I: TT xa. d) is an A-complex. 
n ~ l a. ,n 

t 

Definition: Let ((Xa., c\x.))a. ~ 1 be a f a.'llily of A-complexes. 



14. 


Then the complex (A+ l: n Xa. n,d) is called the product of the 
n 2::_ 1 a. ' 

A-complexes (Xa.•da.), a. f I. 

Consider Pa. : A + ~ ~ 1 'lJ. X a., n ~ Xa. defined by 

Pa.( (aa.) + I: n (xa. n)) :: aa. + >: xa. n' then 
a. n :::_ 1 a. •- n ~ 1 • 

Pa. : (A + 5-:: n Xa. n,d) ----+ (Xa.,da.) is a complex homomorphism. 
n ~ 1 a. ' 

Definition: Pa. is called the projection of the product of 

a family of A-complexes. ((X~,da,)) a. f I with respect to a. f I. 

Remark: Let ((Xa,,da,)) a. f I be a family of A-complexes. 

For any complex (C,6) and any family of A-complex homomorphism 

fa. : (C,6) ~ (Xa,1 da,) for a. f I, there exists a unique complex 

homomorphism r : (C,6) --+ (A+ l: n Xa. n,d) such that Pao r =fa. 
n,2=10. • 

for each a.. Hence in fact, (A+~ nXa. n,d) is a categorical 
n ~ 1 a. • 

product in the category of all A-complexes and A-complex homomor­

phisms. 



-3 J. Differents. 

Let R be a commutative ring with unit and suppose A to be a 

unitary commutative R-algebra such that a universal derivation mudule 

(U,d) of A as R-algebra is a finitely generated A-module, say U = Aw1 + 

••• +Awn• Let OL be the collection of all sequences (a1 , ••• ,an) of 

n elements in A satisfying a1w1 + ••• + anwn = O, and Y1'(, the collection 

of all n x n matrices 11 a1 j l) where each row (ail, ••• , ain) belongs 

to Ot. Clearly, Olis a submodule of An. 

It is known [ 7 ] that the ideal of A generated by the deter­

minants of all (n - v) x (n - Y) submatrices of all matrices in)"'( is 

uniquely determined by R and A, and will be denoted by .(~ (A/R) or 

simply -<:,'r. when no contusion arises. 
y 

Definition: o(Yy (A/R) is called the 1' th different of A over 

~. We will simply write.<)' for b and call.,O the different of A over
0 . 

Proposition 1: Let '6- be any set of generators of Ol as sub­

module of An and ft the collection of all n x n matrices 11bij11 where 

each sequence bil, ••• , bin belongs to J;. Then the ideal of A generated 

by the determinants of all (n - ),) ) x (n - }) ) subrnatrioes of all n x n 

matrices in Y't is q (A/R).v 

The following is a well known theore.111 concerning finitely gener­

ated modules over a Euclidian domain. 
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Theorem: Let A be a Euclidian domain, F a free A-module with a 

finite basis, Sa submodule of F. Then there exists a basis li:;i•••••-C.n} 

of F and elements c1 , ••• ,cn in A such that cilci + 1 (c1 divides c1 + 1 ) 

for i =1, 2, ••• n - 1 and l,c111 1 , ••• ,cn-CJgenerates s. 

Corollary: Let A be a Euclidian domain, M a finitely generated 

A-module, N a submodule of M. Then there exists a set of generators 

~w1 , ••• ,wnJ ·of M and elements c1 , .•• , en in A such that l c1w1 , ••• , enWnJ 

generB,tes N, c1 fci + 1 for i =1, 2, , •• , n .. l, and if a1w1 + •••+anwn f N 

there exist elements b1 , ••• ,bn f A such that ai = bici for each 

= 1, 2, ••• , n. 

Proof': M is finitely generated and hence a homomorphic image 

of a free module F with a finite basis. Let 9>: F ---+ M be an 

epimorphism and put S = <3' -1 (N), then S is a submodule of F and by 

the_ previous theorem, there exists a basis t "t 1 , ••• ,\..,0} of F and 

elements c1, ••• ,cn in A such that cilc1 + 1 for i =1, 2, ••• , n - 1 

and (c1 -c1 , ••• ,en "t nl generates s. Let us put w = <j ( "t1) for each i,1 


then clearly l w1 , ••• ,wn3 is a set of generators of M and 


lc1w1 , ••• ,cnwn} generates N. 

/••• + a ' S and hence 

\-C

n ""n ~ 


a1 '"t 1 + ••• + an-c.n = b1c1 "G 1 + ••• + bncn-Cn. Since Fis free with 


1, ••• ,-cn1as its basis,· each ai = bici for 1=1, 2, •••• n. 


Proposition 2: Let A be a Euclidian domain whose universal der­

ivation module as R-al.gebra is finitely generated over A. Let d : A --:). M 

be a derivation of A as R-algebra and B a unitary subalgebrB of A. 
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Then 

.(Y(A/B) dA :; .1) l (A/B) dB. 

Proof: Let (U,6) be a universal derivation module of A as 

R-algebra, then U = AoA and AoB is a submodule of u. By the previous 

Corollary, there exists a set of generators ~ w1 , ••• ,wn~ of U and 

elements c1, ••• ,cn in A such that c1lci + 1 fori=1, 2, ••• , n !"". 1, 

1c1w1, ••• ,cnwnJ generates AoB, and if a1w1 + ••• + anwn f A6B 

there exist elements bi•••••bn f A with a1 = bici for each i. Recall 

that tJ(Ji/B) ~ U/AOB where (U(A/B), 'd ) is a universal derivation module 

of A as B-algebra (cf. Theoren 3 ,§2 , Chapter 0) and let 

V : U ~ U(A/B) be the natural homomorphism and put a1 = )} (wi) 

for each i, then ~a1 , ••• ,an1 generates U(A/B). 

Let a1cr1 + ••• + anon= 0 in U(A/B), then a1w1 + ••• + anwn f AoB 

and hence ai = bici for each i =1, 2, ••• , n. 

On the.other hand, c1a = 0 for each i, since c1wi f A6B.1 

Leth= ~ (r11, ••• ,rin)lrii = ci, rij =0 for j .Ji, i =1, 2, ••• , n}, 

then for any (ap .. ••an) in 0\. = l (a1 , ••• ,an)ja1a 1 + ••• + anan = 01 

a1 f AJ, aj =I rij bj. Hence by Proposition 1, ~(A/B) =c1••• cn ·A 

and h 1 (A/B) = c1•••en _ 1 • A. Now let 'f· : U ~ M be the derivatitjn 

module homomorphism. Then ~(AoB) = AdB, and hence Ad.B = D\c. ~ (w.).
1 1 

Now, each ci divides en• i.e. en =biei with suitable bi• and hence 

en Cf (w1) = b1c1 ~ (wi) f AdB. It follows that cnAdA ~ AdB, and there­

fore i;{J(A/B)dA = c1••• cnA • dA £ c1... en _ 1AdB = o<J1 (A/B) dB. This : 

completes the proof. 

Proposition ~: Let A be a commutative ring with unit, AT 
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a ring of quotients of A with respect to a multiplicatively closed 

set T in A, S a unitary subring of A, and STn S =l t I s f S, t f Sn T1. 
Then 

b (A.r/f;') =r/J' (A/S) AT 

where S' is any subring of AT such that S ~ S 1 ~ ST(\ S. 

Proof: Available in ( 2 ] • 

Proposition 4: Let R be a commutative ring with unit, 

P = R[ x1, ••• ,xn] a polynomial ring over R with x1, ••• ,~ as -in9eter­

minates, A an R-algebra, ~: P ---+ A an R-algebra epimorphism, and ~ 

a set of polynomials which generates Ker ~ • Then /J(A/R) is the ideal 

e.nd 

Proof: Let (V,6) and (U,d) be universal derivation modules 

of P and A as R-algebras respectively, then (U,d) ~ (V/J, d 1 ) where 

J = Ker ff· 6P + f>!o Ker S> ( cf.§2 , Chapter 0 ] • Let )} : V ~ U be 

the natural 'if-homomorphism, then U is generated by wl' ••• ,wn' 

w = ')) (dx1) = d ~(x1) for each i ( cf.32 , Chapter 0 ) • 1 

Suppose g f Ker~, then v(og) = ')) (£ ~ ox1) = ~ <if ( g g )w • 
. 1:19~ i:l 'dx1 

1 

On the other hand, v(og) = d 0 ~(g) =O. 

Hence ~n ~ ( ~ ) = O.w1i:l ()xi 'c) 

Let J). be the collection of all sequences ( 5> ( '() ~ ) , •••, ~ ( ~ ~ ) ) , 
g f ~, and for any sequence (a1 , •• ,an) with a1w1 + ••• + anwn = O, 

let rl, ••• ,fn t p with 'd'(f1) :;: ai for each i. Then 
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Since V is known to be a free P-rnodule with l ox1, ••• ,dxn} as its basis, 

ll1 'dg·
each f i = hi + ~ fJ. ~ • 

j = 1 '()xi 

Acting S' o.n both hand sides, we get 

ai = t'1 S> (fj) $> ( ! xgij ) • 
j = 1 0 

Hence by Proposition 1,lJ(A/R) is the ideal of A generated by all 

• 

Proposition 5: Let A be an integrally closed domain, F a field 

of quotients of A, K a finitely generated separable algebraic extension 

field of F, A the integral closure of A in K, ard. x( {.A) separable 

algebraic over F such that K = F[ x ]. Then A..&(A[ x ]/A)~ A[ x ]. 

Proof: By [ P. 21 and P. 40, [ 2 ] J, .J(A[ x ]/A) is equal to 

the classical Dedekind different of A [ x ] over A defined by traces [ 11 ] • 

From this it follows that Ab(A[ x ]/A)~ A[ x] [ P. )04, [ 11) ]. 

Proposition 6: In addition to the assumptions in Proposition 5, 

assume that A be a Dedekind domain. Let f be the minimal polynomial of 

x over F, then f 1 (x) {. ~ (i./ P.). 
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Proof:. By [ P.P. 32 - 35, [ 2 ) ] , LJ (A/ A) is equal to the 

classical Dedekind different of A over A defined by traces [ 11 ] • It 

is known [ P. 303, ( 11 ) ] that f 1 (x) belongs to the classical 

Dedekind different of A over A, and hence r•(x) f 1j(A/A). 
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§" 4. Free joins of Algebras. 

Throughout this section, let R be a commutative ring with unit, 

M an R-module, ( Ma) a. f I a family of submodules of M such that 

M = .E Ma. (direct). All algebras are assumed to be unitary al­
a. t I 

gebras, subalgebras unitary subalgebras,and algebra'homomo:rphisms 

unitary algebra homomorphisms. 

This section is devoted to a partial answer to the following 

Question: Let A be an algebra containing M. When is the 

submodule :f.hl., .Mak(a1 1 ••• -.a.k all different) of A canonically isomor­

phic to M°1 @ • • • © 1'fak? 

Definition: An (a commutative) R-algebra A is called a 

free (commutative) .ioin of a family ( Aa. ) a. f I of its subalgebras 

if and only if for any (commutative) algebra C and any algebra homo­

morphism fa. : Aa. ~ C for each a. f I, there exists a unique algebra 

homomorphism f : A ----> C extending each fa.• 

Example of a free join: It is well kno~m that a tensor 

algebra of a direct summand of a module can be imbedded into a tensor 

algebra of the module, and hence without loss of generality we can 

assume T (Ma,) ~ T (M), where T(M) and T(.Ma,) are tensor algebras of M 
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and Ma respectively. It is well known that T(H) is a free join of a 

frunily (T(Ma_)} a f I of its subalgebras. 

Lemma 1: Let A be an algebra containing M, Aa the subalgebra 

of A generated by Ma. for each a f I. If A is the free join of the 

family (Aa) a f 1 then A is generated by M. 

Proof: Let A1 be the subalgebra of A generated by M, then 

Aa. ~A' for each a.. Since A is the free join of (Aa. )a. f 1 1 for the 

family of natural injections (fa. )a. f 1 , fa. : Aa. ---4- A 1 , there 

exists a unique algebra homomorphism extending each fa.• But f may 

be considered as an algebra homomorphism from A to A extending each 

fa• On the other hand, the identity mapping on A is also a homomor­

phism extending each fa, and by the uniqueness of such homomorphisms, 

f is the identity on A. Thus A1 = A or A is generated by Mas an 
•

algebra. 

A, B, C, ••• will denote algebras containing M, and sub-

algebras Aa,Ba,C a.•••• subalgebras generated by Ma. in A, B, C, ••• 

respectively,for each a f I. 

Proposition 1: Let A be a free join of ( Aa) a. f I , 

~ : A ~ B an algebra homomorphism such that <J' \M is the identity 

on M, and <31 a : Aa --4'- Ba. be defined by '3>a = S> IAa for each a. 

Then B is a free join of ( Ba ) a. f I if and only if S' is onto 

and Ker$> is the ideal of A generated by~ Ker <J>a.• 

Proof: Suppose B is a free join of (Ba.) a f I• By Lemma 
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1, B is generated by M, s.nd hence S' is onto. We will show Ker &= 

J, the ideal of A generated by~ Ker~ a• Ker~ =. J always, since 

Ker ~ ~ Ker <J> a for each a.. On the other hand, since Ker 9' a S. J, 

a - a' f Ker ff> a. for a, a• f Aa. implies a - a' f J. Hence we can 

consider the mapping fa. : Ba. ~ A/J defined by fa. (b) = a + J, 

b f Ba., a f ~ al (b). 

~a 
Aa. Ba 

r-e.t~~ l ~"*~1w.~J.:.c>t\M(J\,ei\ 

ffA ~ B fa. 

~ lf 

A/J 

fa. is an algebra homomorphism such that fa 0 S1 a = )/I Aa., where )} : 

A ~ A/J is the natural homomorphism. Since B is a free join of 

( Ba >a. f I• there exists a unique algebra homomorphism f : B --> .A/J 

extending each fa.. Here f 0 ~ = v , since f 0 '! and y are both algebra 

homomorphisms from A into A/ J extending fa. 0 ~a. for each a. Hence 

Ker <3' ~ Ker v = J. Thus Ker ff = J. Conversely, suppose B is 

generated by M as an algebra and Ker ~ = J. Let X be any algebra and 

~ : Ba ~ X any algebra homomorphism for each a t I. 'I'hen there 

exists a unique algebra homomorphism f : A ----..). X extending each 



24. 


Aa. Ba. 

lU1 Cf 1 
A B 

~1~ 
x 

Here f(Ker c.y) = O, since j1(Kerg>a.) = ~oS'a.(KerCSa.) = 0 and Ker~ 

is assumed to be the ideal generated by ~ Ker S> a.• <j is assumed to 

be onto, hence there exists an alg~bra homomorphism g : B ----; X 

such that g o <f = ))- • Now tor any b f Ba.• let a f g> ci1 (b), then 

g(b) = go<J> (a) = }A (a) = ESa.o S> a.(a) = E:,o,(b). Hence glBa. = ~ for 

each a.. g is a unique algebra homomorphism extending ~· since B 

is generated by ~· This completes the proof. 

Corollary 1. Let T(M) and T(Ma,) be tensor algebras of M 

an }1a, respectively. Let ~ : T(M) -----+ A be the algebra homomor­

phism determined by the identity mapping M ~ A, and ~a. : T(Ma.) 

~ Aa. the algebra homomorphism detennined by the identity map­

ping Ma. -~> Aa. on Ma. for each a.. Then A is a free join of ( Aa. ) q. t I 

if and only if Cf is onto and Ker <J is the ideal of T(M) generated 

by l: Ker g>a.• 

Proof: T(M) is a free join of ( T(Ma.)) a t I' and hence 

Corollary 1 is a trivial consequence of' Theorem 1. 
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Corollary 2: Let A be a free join of (Aa.) a f I • Then 

A = ~ An (direct), n = O, 1, ••• , is a graded algebra with Ai = M 

if and only if each Aa = ~ Aa,n (direct) is a graded algebra with 

Ao:,l =Ma. for each a.. 

Proof: Let <y : T(M) ~ A and 9 a : T(Ma) ----?- Ao: be the 

algebra homomorphisms detennined by the identity mappings on H and Ma. 

respectively. Then it is known that CJ IT(Mcx,) = '9 a• Hence 

Ker S' r'I T(Mcx.) = Ker ~a• 

If A is a graded algebra with A1 = M, '}' is a graded algebra 

homomorphism and hence Ker~ is a homogeneous two-sided ideal of T(M). 

Hence KertS' n T(Mo:) is a homogeneous two sided ideal of T(Mo:). Thus 

KerCfo: is a homogeneous two sided ideal of T(Mo:) and hence the grading 

of T(Ma.) detennines one on Ao: such that Au is a graded algebra with 

Au,1 = }1a.· 
Conversely, suppose Aa. is a graded algebra with Aa.,l =Ma, for 

each a.; then Ker ~a. is a homogeneous two sided ideal of T(Ma,) for 

each a.. Since Ker~ is the two sided ideal generated by~ Ker'£>~ 

(by Corollary 1), Ker~ is generated by homogeneous elements as an 

ideal and hence a homogeneous ideal. Thus ~ induces a grading on A 

such that A becomes a graded algebra with .A1 = M. 

Rema!'k: .As a consequence of Co.rollary 2, we can say the 

following: Let (Ao:) a. .f r be a family of graded algebras where each 

Aa, is graded by Aa. = J.: Aa. n and Aa. is generated by Aa. l• Then in 
n ~ 0 ' ' 

the catagory of all p;_raded algebras and graded algebra homomorphisms, 

there exists a free join A of ( .Aa. ) , given by the ordinary free join, 
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graded as described above, provided the latter exists. 

Le.'111'11a 2: Let Cf : T(M) ----> A, ~a. : T(Ma,) ---4- ft.a. be the 

same algebra homomorphisms as in Corollary 2. Then 

(1) Ker q> a.n R = Ker Cf f\ R for each a. 

(2) (Ker S> a,f\ R)M = 0 for each a.. 

Proof: (1) Trivial (2) It is sufficient to show (Ker '3> n R)M = o. 

For any r f Ker<;f f'\ R and x f M, rx f M(\Ker cg • Since CS IM is the 

identity mapping on M, rx = '8 (rx) :: o. Hence (Ker <J> f\ R)M = o. 

Theorem 1: Let A be a free join of a family ( Aa.} a. f I of 

graded algebras with Aa.,l =Ma. for each a.. Then for sny finite sequence 

a.1, ... ,ak (all different), the linearization f : Ma.l@ ... @l-1a,k · ) 

~ ••• ' (in A) of the multilinear mapping f0 : M°'l x ••• x 1'1a.k--+ 

••• • •• YU ' k 

Proof: Let (f : T(M) ~ A and Cia : T0·1a) ~ Ao. be the. 

same algebra homomorphisms as in Corollary 2. We first show that 

~ ••• Mak (in T(H)) n Ker Cj> =O. Put J =Kel"<,f and Jk =Tk(M) {") J, 

then it is sufficient to show M°'l ••• M°'k (in T(M)) () Jk = O. For any 

'9 a is a graded algebr-a homomorphism, <t5' a.C~) = 0 for all n, and hence 



Since J is the ideal of T(M) generated by .t: Ker <";Pa (by Corollary 1), and 

since Ker~ a~ ~ ~ Tn(Mu), (Ker'j' n R) M=0 (by Lemma 2.), J =~ Jn
1 

(direct) by J being homog~neous ideal, any element of Jk is expressed 

where f3i =t3 j for some 1 1 j with i ~ j. 

Suppose x f Ma ••• Mak (in T(M))nJk and assume x ~ O; then x 
1 

can be expressed in two different ways, namely, 

·where x. ,.., f MIY , xi .fj . f Mil • for each j and Pi = {3J. for some
l.j"'j .....j J J J 

i, j with i ~ j. Let ea. : T(M) -? T(M) be the endomorphism deter­
j 

mined by the mapping 1(a. : M --). T(M) defined by '<a. !Ma = identity
J j j 

Hence x = L. 
tl1 t •••I ilk 

Continuing this process for efL...•••••ea, we get
-~/(, . k 

x = L. xi f3 ••• xi.R ' a.1•••••ak f lf31, ... ,{3k~ • 
i1·····ik 11 K""k 

But this is impossible.since the aj are distinct but the sj are not. 



28. 


Thus x 	= O. This proves Ma; ••• Ma. (in T(M)) 11 J = o. Hence CS maps
1 k 

Ma ••• Ma.k (in T(.M)) one-to-one and onto Ma. ••• Mak (in A). Let 
1 	 1 

g : Mai®••• @l~-----> 1-'Iai ••. Ma.k (in T(H)) be the canonical injection, 

then f =~ o g is an isomorphism. It is obvious that f is the linear­

ization of f 0. 

Theorem 2: Let A be a .f-ree join of (Aa. >a. f 1, J the ideal 

of A generated by xy - yx for all x, y f M, and Ja. the ideal of Aa. 

generated by xy - yx for all x, y f Ma,, for each a.. If RenMa, = O, 

e the unit of A, for each a, then A/J is a free commutative join of 

(Aa/Ja. 	)a f I • 


Proof: Since M = J; Ma, (direct), J is the ideal of A generated 

a. 

by xy - yx for all x f Ma.• y f MJ3, for all a., j3. We will first show 

that Ja. = J {)Ao_. Suppose x ( f .P'Cl.) is in J, then 

x = 2:_ 2:_ • Xa.:i. • • • Xa,. (jta.. ya - :tt xa )Xcx ••• xcx.. , 
O.l•••••°'k 1 - 1 1 i.+-1 i+l i i,+-2 Kn 

Xa. ,ya. f Ha. • Consider the algebra homomorphisms fa. : Aa ~ A, 
j j j 

identity on Aa., fj3 : A~ ---4 A defined by fiJjR~ = identity on Re, 

f 13 jMJ3 = 0 for each J3 /: a.. Let f : A ~ A be the unique algebra 

homomorphism extending fa. and each f j3 and act f on x. Then 

x = I 	xi 1 ••• xi j -1 (xijYij - Yijxij)xij + 2...xik , where all
1 

~ f Ma• Hence x f Ja.• This implies Ja. :? J" Aa. and since Ja. £ J f'\ Aa. 


always' Ja. = Jn Aa.. 


Hence Aa/ Ja. can be irnbedded into A/J by aa. + Ja. fV"-..-> aa. + J, aa. f Aa.• 


Now we 	will show that A/J is a free join of (Aa/Ja.)a. f 1 • 



For any commutative algebra X, and any algebra homomorphism 

fa. : AafJa. ~ X 1 fa.0 Va. : Aa. ~ X is also an algebra homomor­

phism, for each a.. Hence there exists a unique algebra homomorphism 

f: A ~ X extending each fa. 0 V a.• }-<(J) = 0 1 since f {xy - yx) = 

f (x) f" {y) - p {y) f' (x) = 0, because X is commutative. Hence there 


exists an algebra homomorphism f : A/J ----4- X such that jJ. =f ~'¥. 


This algebra homomorphism f extends each fa., since f(a + J) = f 0 V {a) = 


}J-(a.) = fa. 0 Y a.Ca) = fa.(a + Ja.), a f Aa.• Finally f is unique, since 


A/J is generated by r.Aa/Ja.• This completes the proof. 


Corollary 3: Let A be a free join of ( Aa. ) a. f I, J the ideal 

of A generated by xy - yx for all x, y f M, and Ja. the ideal of Aa. 

generated by xy - yx for all x, y f MQ.., for each a.. If A is a graded 

algebra with M= Ai then A/J is also a graded algebra and is a tree 

poriunutative join of (Ao,/Ja.) a " p 

Proof: If A is a graded algebra, i.e. A= r.An (direct), then 

Re~ A0 , M = A1 , and hence Re()M = o. Moreover, Ren I-fa= O obviously. 

Thus Corollary 3 is a trivial consequence of Theorem 2. 

Corollary 4: Let S(M) and S(Ma,) be symmetric algebras of M 

and Mu respectively. Then S(M) is a free comrnutati~ join of 

( S (11a,) ) a. f I • 

Proof: Put A = T(M) in Corollary 3. 

Theorem ~. . Let C and D be commutative algebras containing M. 

Let C be a free commutative join of' (Ca.) a. t I 4': C --+ D an 1 
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algebra homomorphism. such that '+IM is the identity mapping on M, and 

Da. be defined by tv a. = CV ICa. for each a.. Then D is a 

free commutative join of ( Da.) a. f I if and only if <.y is onto and 

Ker c.y is the ideal of C generated by ~ Ker 4'a.• 

Proof: Similar to the proof of Proposition 1. 

Corollary 5: Let a commutative algebra C be a free commutative 

join of (Ca. )a. f I • Then C = ~ Cn (direct), n = O, 1, 2, ••• , is a 

graded algebra with c1 =M if and only if each Ca.:=~ Ca. n (direct), 
, n ' 

n =O, 1, 2, •••• is a graded algebra with Ca.,l •Ma. for each a.. 

Proof: Similar to the proof of Corollary 2. 

Theorem 4: Let a commutative algebra C be a free commutative 

join of a family (Ca. )a. ~ I of graded algebras with ca.,l = Ma. for each 

a.. Then for any finite sequence a.1 , ••• ,a.k (all different), Ma,
1

•••Ma.k 

(in S(M:)) ~ Mal• ••Ma.k (in C). 

Proof: Similar to the proof of Theorem 1. 

Theorem 5: Let a corrunutative algebra C be a free commutative 

join of a family (Ca. ) a. f I of graded algebras with Ca.,l = Ma, for 

each a.. Then for any a.1 1 ~ (CX:I. J ~), the linaarization · 

r : Ma.1 ®Metz-----:> Ma.1 ~ (inc,) of the bilinear mapping 

ro : Ma.1 x Ma.2 ~ ¥Jai_ Ma.z (in c )defined by fo (x1,x2) = xl Xz• 

xi f M~, is an isomorphism. 

f__roof.: Let T(.H) and S(H) be a tensor aleebra and a symmetric 

algebra of M respectively. We will show that for any a:r_, Oz(a.1 /; Oz), 
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Ma, Mo.z (in T(M)) ~ Ma. Ma. (in S(M)). Let J be the ideal of T(M) gen­
1 1 2 

erated by all xy - yx, x, y f M. Since M = J; Ma, (direct), J is the 
a 

ideal of T(M) generated by all xy - yx, x f Ma,, y f M~, for all a, f3. 

Our claim is }la Ma. (in T(I1) )n J = o. Since T(M) is a regularly graded
1 2 

algebra generated by M, it is sufficient to show 1"fa. Mo.znJ2 = 0 where
1 

J2 is the submodule of all homogeneous elements of degree 2 in J. 

Suppose x f Ma, ~ riJz, then
1 

x = I: Xa, xa.,.. = E E Y,f.l Yf3z - Yf3zY[3 • Consider the endomorphism 
x l -, f31,f32 y 1 1 

£ : T(M) ---7 T(M) determined by the module homomorphism. e : M ----':- M
0 

defined by e j?-fa. = the identity in~ for i = 1 1 2, and e = 0
0 1 0 

jM13 

for all j3 ~ { a.1 , ~ • If we act e on x, then i Xa.ixaz =a2 

On the other hand,~t is well known that in T(M), Ma,1Ma.znM°'2M°i = O, 

and hence ; Ya.zY°i = 0 and ~ Xo.ixaz = ~ Ya. Ya.z •1

It is also known that in T(M), Ma.
1

Ma.
2 
~ Malla.

1 
by the mapping 

Dca.1xaz NV'--? I: Xazxa ' and since ; y~y<Li. = O implies ; y°'lyClz = o.
1 

Hence x = Z Xa, xn.,... = Z Ya...Y = O, and thus Ma Ma ()J = O. 
x 1 -c:, y --J_ a.z 1 2 

This means that the natural homomorphism y : T(M) ~ S(M) maps 

Ma.
1

Maz (in T(M)) one-to-one and onto 1"fa.lMCI:2 (in S(M)) and hence 
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previous theorems and corollaries. This isomorphism is obviously 

given by the bilinear mapping f 0. 

Proposition 2: Let a commutative algebra C be a free commutative 

join of a fa~ily {Ca.) a. *I of graded algebras with Ca,l = Ma. for each 

a.. If each Ma. is a free module, then the linearization f : ~® •• ·®Ma.I< 

--~ Ma,
1
...Ma.k (in C) of the multilinear mapping f 0 : Ma x • • • x ?·fak

1 

~ M°'l. ••• :Ma.k (in C) defined by f 0 (al, ... ,ak) = al" .. ak,ai f Mai' 

is an isomorphism. 

Proof: Let Xa. be a basis of Ma. for each a. f I. Then it is well 

known that T(M) is a free algebra freely generated by the setLJ Xa. and 
a. 

S(M) is a free colllllmtative algebra freely generated by the set U Xa 
. a 


(or a polynomial ring with U Xa. as a set of indetenninates ) • Hence 
. a 
Ma... •••Ma. (in T(M)) is a free module as f Xai• ••xa. Ix f Xa. } as basis0i k k 1 i 

and Z.1a.i •••Ma_k (in S (M)) is also a free module as ~· Xai•••xa.k jx<Xi t X°i } 

as basis. Hence 1'fa •••, (in T(M)) ~ Ma. • ••Ma.k (in S(M)) where the
1 1 

M°'l. •••Ma_k (in C) by Theorem 4, M~@ ••• ®Mak ~ ~ •• ·Mak (in C) where 

the isomorphism f maps a°:l. ® ••• © a°'k ~ a°J.••• a'1c. Hence f is the 

linearization of the rnultilinear mapping f 
0 

: Ha. x •••x Ha,k--? M~•••MC\ 
1 
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Theorem 6: Let a commutative algebra C be a free commutative 

join of a family (Ca) a f I of graded algebras with Ca,1 = ~1a.• If 

each l-1a. is projective, then the linearization g : Ma, @ ••• ®Ma.k
1 

~···Mak (in C) of the multilinear mapping g0 : Ma. ••• x M~1 x 

Ma. •••Ma defined by g (an , ••• ,aa) = aa ••• an, aa. f Ma. , is an
l k 0 ~1 k l ~ i i 

isomorphisr11. 

Proof: If each Ma. is projective, then there ~xists a free 

module Fa. with Fa.[;: Ma. + Na. (direct) for some submodule Na. for each 

a. and F = J:: Fa. (direct). In fact, Ma. is projective, then ?1a, is a direct 
a. 

sullltlland of a .free module Ga., and if we consider F = <!' Ga., external sum 

of Ga., a. t I, and put Fa.= t x1x (- F, x(f3) = 0 for all i3 ~ a.}, then 

F =E Fa. (direct) and Fa ~ Ga for each a., and hence each Ma. can be 

illlbedded into Fa. and may be regarded as a direct summand of Fa.• 

By Proposition 2, the c~.nonical mapping f : Fa.
1 

® ••• ® Fa.k -­

(in S(F)) is an isomorphislll. Let 1 : Ma.
1 

@ ••• ®~1a.k·----t F°'J.@ ••• @Fa.k 

and j : Mui•••Ma.k (in S(M)) ·----? F°'J.••• Fak (in S(F)) be the canonical 

homomorphisms, then i and j are rnonornorphisms, since each Ma is a 
i 

direct summand of Fa [ cf; [ 4 ) , p. 78 and p. 216 ] • 
1 

Define a mapping g : M°'l.@ ••• ®Mak ----7 Meti •.·Mak by 

0g = (il£-1a.i·· ·Ma.kr10 r j, then g is an isomorphism and the linear­

ization of the multilinear mapping g •
0 
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RQ~ark: So far we have been discussing free joins in the 

category ¢ (R) of all unitary R-algebras and unitary algebra homo­

morphisms. Now let us consider the subcategory (i,' (R) of ~ (R) consist­

ing of all_ unitary R-algebras A such that a ~ ae, a f Rand e the 

unit of A, is a monomorphism, and all unitary algebra homomorphisms 

between these. Naturally, - in ~ PI (R), an R-algebra A is called a~ 

(commutative) join of a frunily ( Aa. )a f I of subalgebras if and only if 

for any (commutative) algebra C belonging to ~ 1 (R) and any family of 

unitary algebra homomorphisms fa. : Aa ----')- C, a. f I, there exists a 

unique algebra homomorphism f : A --4 C extending each fa.. Now suppose 

A belongs to e'(R); then it can be easily shown that A is a free join 

of (Ao.) a. f I in ~ (R) if and only if A is a free join of (Aa,) a f I 

in e'(R). 
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~ 5. Valuation rings and integral closure. 

Let K be a field. 

Definition 1: A place of K is a non-zero homomorphism p of 

a subring S of K into a field 6 with the property that x f K and 

k -i ( -i)x '\- S implies x f S and p x = O. The ring S is called the 

valuation ring of the place p. 

Propositi~n 1: Ker p (usually denoted by 'fi ) is the only 

maximal ideal of s. 

Proposition 2: Every valuation ring of a place of K is in­

tegrally closed. 

Proposition 3: If a1, ••• ,8m are el&~ents of K, not all zero, 

then for at least one integer j, 1 .S j ~ m, it is true that a1/'aj f S 

for i = 1, 2, ••• , m, aj t O. 

Theore.i'l 1: LetR be an integral dornain, Ka field containing 

R. The intersection of all the valuation rings S in K with S ~ R is 

the integral closure of R in K. 

Let K
0 

be a field and K be an overfield of K0 • We say that a 
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valuation ring S in K is an extension of a valuation ring S in K if
0 0 

Proposition 4: Let 1"t and Y"'t be the maximal ideals of S
0 

and S0 respectively. S is an extension of 50 or Sn K0 = S0 implies 

V"tn S0 = Y"'[ 0 and is equivalent to 11S ~ and Y't ~ )V'(0 11.S0 

Proposition 5: If S is an extension of S0 , then S + ¥1./i"i.
0 

is a subset of s/f'(. Moreover, if K is a finite algebraic extension 

of K0 , then S/V"C is also a finite algebraic extension of S + \""'(/wt
0 

and we have [ S/V"f. : S0 +'f1 /\""f_] S [ K : K0 ] • 

Proposition 6: The number of valuation rings in K which are 

extensions of S0 is not greater than the degree of' separability 

Proposition ?: Let R be a subring of a field K, 1? and g, 

two prime ideals in R such that C/]r:::, P,. Suppose Sis a valuation 

ring in K such that )"/'{C\ R = 'f , where 1"t is the maximal ideal of s. 

Then there exists a valuation ring S 1 in K such that S 1 ~ R, Y"t I n R = ~ 

and S 1 C::. S where 'V-C I is the maximal ideal of S'. 

Theore1n 2: Let K be an algebraic extension of a field K0 , S 

a valuation ring in K which is an extension of a valuation ring S0 

of K0 and 50 the integral closure of S0 in K. Then S is a ring of 

quotients of S with respect to the prime ideal ~" of· S0 , where0 S0 
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~ is the max~nal ideal of s. 

Theorem 3: Let R be an integrally closed domain, Q its 

~ield of quotients, K a finite separable algebraic extension of Q , 

and R the integral closure of R in K. 

1) There exists a basis lXl, ••• •Xn1 of K over Q such that R is 

contained in the R-module f Rxi. 

2) If R is noetherian, then R is a finite R-module and is a noether­

ian ring. 

J) If R is a principal ideal domain, then there exists a basis 

l Y1•••••Yn~ of Kover Q such that R= t Ryi. 

Proposition 8: Let R be an integrally closed domain, K a 

field of quotients of R, and c:}2 be a pr~e ideal in R. If an element 

x f K satisfies an equation 

n __n_l ­
a0 x + a1x- - + • • • + an = 0 

where the coefficients aj are in R but not all in~. then either x 

or x-1 belongs to the ring of quotients R~ of R with respect to ~. 



CHAPTER I 

Extensions of complexes 

S 1. Natural Functors given by algebra hom~orphisms. 

Let R be a commutative ring with unit, A and B unitary com­

mutative R-algebras, ~: A ~ B unitary algebra homomorphism , 

(C,d) an A-complex, and (X,o) a B-complex. 

Definition: A graded R-algebra homomorphism <j' : C X 

is called a ~ -complex homomorphi.er!! if and only if _<;p IA = i and 

S'~·d = 60 S, and will be denoted by ~ : (C,d) ----+ (X,o). In 
• 

this case, (X,6) is said to be &-sirnpl~ if and only if X is generated 

by Bu 6(E) U 8' (C) as an R-algebra. 

Lemma 1: Let (C,d) be an A-complex. Then for any B-complex 

(X,6) and any g_> - complex homomorphism ff: (C,d) ~ (X,6), there 

exists a ~*-simple B-comple:x: (X*, 6*) and a complex monomorphism 

j : (X*,6*) ~ (X,6) over B such the.t j o~* =g • 

Proof: Let X* be the R-subalgebra of X generated by Bu o(B) u <(f(C). 

C is a graded algebra and hence C is an algebra generated by its 

homogeneous elements, a?i.d since ~ is a graded algebra homomorphism, 

9' (C) is also generated by homogeneous elements of X. Hence X* is 

J3. 


http:homomorphi.er
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generated by Bu 6(B) u t ~ (c) I c f C homogeneous 1 and hence is a 

graded algebra and also obviously an anti-commutative graded algebra 

6(X*) ~ X*, since for an arbitrary elentent 
n 

u = 	.E b
1 

Cf (c1 )o(b1 ) •••6(b; ) 

i =1 1 -mi 


in X*, where bj,bi1••• ,b1m~ f B, c 1 f C, 

n 
o(-u) = ~ (o(b1 ) 9>(c1 )o(b1 ) ••• o(b; ) + b1oo <J-(c )o(b1 ) ••• o(bi ))1i = 	1 1 -mi 1 -.mi 

(since o2 = 0) 

f X*, 

·Let 6* = olX* and ~ * : (C,d) --- (X*,6*) be defined by <Jl = <ij>*, then 

6* : X* ~ X* is an R-derivation, homogeneous of qegree 1 with 

6*o 6* = O, and hence (X* ,6*) is a B-complex, <;§>* is a * -complex homomor­

phism and (X*,6*) is a g> *-simple. Let j : X*----+ X be the natural 

0injection, then j is a co:nplex monomorphisrn over B and satisfies j ~ * = <s • 

Theorem 1: For any A-complex (C,d), there exists a B-complex 

(C' ,d') and a ~ -complex homomorphism TTc :(C,d) ~ (C 1 ,d 1 ) such 

that for any B-complex (X,6) and any ~-complex homomorphism ~ : (C,d) --7 

(X,6), there exists a unique complex homomorphism Cj>' : (C',d') ___,.. (X,6) 

over A with ~'.,rrc =S'• Moreover, (C 1 ,d 1 ) and rrc are unique in the sense 

that if a B-co:nplex (C,d) and a I-complex homomorphism -cc: (C,d)-..:, (C,d) 

are another suoh, then there exists a co·1nplex isomorphism i : ( C •, d •) ) 

(C,d) over B such that 1°rrc = ~ c• 

Proof: . For any S>-s:iJllple B-complex (S, 'O) where ~: (C,d) ~ (S, 'a) 
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is any ~ -complex homomorphism, jXl S IB11 CI tZ holds. Hence there0 

exists a family ((Sa, aa.)) a. t I of 'Ji a.-s:i.mple B-complexes, indexed 

by a set I such that for any ~-simple B-complex (S, ';;) ) , there exists a 

complex isomorphism 1a. : (Sa.,() a.) -~ (S, 'd) over B with 1a.·o g> a. = S. 

Here I J '· since a trivial B-complex (B,o) is ~~simple where o =0 

and ~ : (C,d) --;,. (B, o ) is the ~ -complex homomorphism defined by 

<$')A =:f , <:P lcn = O for n ?! 1.• 

Let us take the product (B + ~ rr Sa. n• '<>) of a represent-
n > 1 a. , 

ative family ((Sa.• 'd a.)) a. t I of <J> a.-sil'r1;le B-complexes [ cf. § 2, 

Chapter O], and rr : (C,d) _ __,. (B + I: rr Sa. n• ~) be the i ­
n ~ 1 a. • 

Let er be the subalgebra of B + ~ rr Sa n generated 
n~la • 

• 

by Bu';) (B)U rr(C). Clearly ~(er) s; er and hence if we put dr = 'd \er, 

then (C 1 ,d1 ) is a B-complex. Let rrc : (C,d) ~ (cr,dr) be the 

i -complex homomorphism defined by TIC = TI, then (Ct ,d r) is a TI-simple 

B-complex. 

Now, for any B-complex (X,4) and any ~ -complex homomorphism 

~: (C,d) ----!). (X,6), ±hero exists CU' *-simple B-complex (x;o*) and 

a complex monomo1phism j : (X*,o*) ----:;- (X,6) over B such that 

j c S> * = <J> • Hence we can choose a & tl-simple B-coznplex (S~, ~ i:l), 

iJ t I, from the representative family ((Sa, '() 0)) a. t I such that there 

exists a complex isomorphism ip : (Sp• 'd tl) --~ (x*, 6 *) over B with 
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i13o<i~ =S'*· Let Pr; : (C 1 ,d 1 ) ~ (Sp, 'd ~) be the projection, then 


Pp"TTc = ~i:i clearly. Let us put ~ 1 = joipop~, then &'oTIC:::: jc1a,o Pa oTTC = ~. 

ti 0 0 

Thei-efore, there exists a complex homomorphism ~ 1 : (C• ,d•) ~ (X,6) 


over B such that S' I one = ~ • 


The uniqueness of «;r' is clear, since (C 1,d 1 ) is TTc-simple 


from the definition of (C 1 ,d 1 ). 


Finally, to show the uniqueness of (C 1 ,d 1 ) and TTC' let a B­


complex (C ..d) and a i. -complex homomo1"Phism "CC : (C,d) ----r (C,d) 


be another such, then there ex:lsts a unique complex homomorphisms 


-c.1 C : (C • ,d1) --:J>o (C,d) over B with -c' c"'TTc = -c C' and 


TT'c: (C,d) ~ (c•,d•) with rr'c""tc == 1T' c·. Now 


rr'c" -c'c: (C 1 ,d 1 ) -->- (C 1 ,d 1 ) is a complex homomorphism over B 

·such that (TT'c 0 t;c)"rrc = rrc• But the identity mapping ic, on c• is 

also such a complex homomorphism over B and hence by the uniqueness, 

rr'C" i:; 'c = 1c 1 • In the s_rune way, -c.•coTT' c = ic. Hence 1; •C : 

(C•,d 1 ) ~ (C,d) is a complex isomorphism over B such that 

-c I cQ nc = "'C c. This completes tho proof. 

Corollary 1: Let (C,d) and(D,6) be A-complexes and (C',d') 


and (D 1 ,6 1 ) be the corresponding B-complexes. Then for &ny A-complex 


homomorphism ~ : (C,d) - (D,6) 'there exists a unique B-cornp1ex 


homomorphism tt' : (C',d') -+ (D',6') such that <"t-'"rrc = rrn"<t-• 


Proof: Put CS = 11>" ~ in Theorem 1. 
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Let ~(A) be the category consisting of all A-complexes and 

all complex homomorphisms over A, and ~ (B) be the category of all 

B-complexes and all complex homomorphisms over B. Let T ~ : ~ (A) ~ 

t (B) be the mapping defined by T !£" ( ( C,d)) = (C 1 ,d 1 ) for all A-cop.iplexes 

(C,d) and Ti ( ~) = <-\"' ' for all complex homomorphisms over A. 

Let (C,d), (D,6) and (G,'d) be A-complexes and let 'j': (C,d)---7 (D,6) 

and <t: (D,o) --i>- (g., ~) be A-complex homomorphisms. Then 

TTGo(t-c<;f =Ti (q-)orrD" 'f =Ti (q,)oT~ (C\f)oTTc• Also, 

TTGoct o ';f = T ~ ( q. o ~)one• Hence by the uniqueness of a B-complex 

homomorphism f : T ~ ((C,d)) ----4 T ~ (( G, Cl ) ) such that TTG0 ( G- o ~) = 
fonC, T ~ (tt o 'J>) = T ~ ( 'r ) .. T ~ ( ~ ). It is clear that if 

~ : (C,d) ·--7 (C,d) is the identity mapping on C then T~(~)is also 

the identity mapping on T~ ((C,d)). This shows that T!t is a 

covariant functor.· We shall now investigate some properties of this 

functor T ~ • 

Lemma 2: Let (U,d) be a universal A-complex, (X,o) any 

B-complex. Then there exists a unique ~-complex homomorphism 

~ : (U,d) ______.,. (X,o). 

Proof: Let us put Y = A ED J.: Xn• and define (a,x)(b,y) = 
n :: 1 

(ab, ~(a)y + ~(b)x + xy), a, b t A, x,y f J.: Xn then Y =~ Yn (direct) 
· n>l n>O 

is an anti-commutative graded algebra whe;e Y = l (a,O)ja-f A! (in fact
0 

Yo ~ A) and Yn = l (O,~) I~ f Xn 1 for n :=: 1. Define a : y ____...,. y by 

'O (a,x) = (0,6°~(a) + o(x)), then a straight forward calculation shows 

that g is an R-derivative, homogeneous of 
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degree 1. Hence (Y, ~)is an A-complex. Hence there exists a unique 

A-complex homomorphism ~ : (U,d) ---+ (Y, C> ).0 

Let us define a mapping <9 1 : Y----? X by <;f1(a,x) ='!.(a)+ x, 

then<l'1od(a,x) = <i1(0,6o~(a) + 6(x)) = o(~(a) + x) = 60'!>1(a,x) and 

hence clearly CJ> 1 is a graded algebra homomorphism with qi 1 1A = ~ and 

'81o o = 60C£i 1 i.e. CJl 1 is a 'i -complex homomorphism. 

Define '3 = ~ 1o 9' 0 , then ~ is a ~-complex homomorphism from 

(U,d) to (X,6) and the uniqueness of such ~is clear. Hence Lemma 2. 

Theorem 2: The functor T ! sends a universal A-complex to 

a universal B-complex. 

Proof: Let (U,d) be a universal A-complex, (X,6) an arbitrary 

B-complex. By Lemma 2, there exists a unique !E-complex homomorphism 

~ : (U,d) __,,. (X,o). Hence by Theorem 1, there exists a complex 

homomorphism <":f': (U',d') ~ (X,6) (in fact, (U•,d') = T~((U,d))) 

such that 'i = <s 'onu. To show the uniqueness of ~ ', it is sufficient 

to show that (U',d') is simple. We know that (U 1 ,d 1 ) is ru-sim.ple 

i.e. U• is generated by Bud'(B)urrU(U). Since (U,d) is universal, 

U is simple, i. e U is generated by Au dA, and hence rrU(U) is generated 

by ~(A) and d'(~(A)). ~(A)<:; B, d 1 (~(A)) ~d'(B). Hence U• is 

generated by Band d'(B). Hence (U 1 ,d') is simple. 

Theorem 3: Let A, B, E be unitary commutative R-algebras, 

~ : A -----'> B, ~: B ~ Ebe unitary algebra homomorphisms, ~md 

T ~ : ¢:(A) - e, (B), T ~ : C(B) ______, (: (E), T ~ o ~ : ~(A) , C(E) 



- -
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are the covariant functors defined as previously, then T ~., ~ and 

Tf T ~ are naturally equaivalent. 

Proof: Let (C,d) be an A-complex, (X,6) an arbitrary E-complex, 

Cf : (C,cl) _,. (X,6) a ~o ~-complex homomorphism. Let Xiti = B ~I: Xn 
n~l 

and define (a,x) (b,y) = (ab, ~(a)y + ~ (b)x + xy), a, b t B, 

X* be the homogeneous derivation of 

degree 1 defined by 6*(b,x) = (0,6° :9,Z (b) + ox), b ~ B, x f 	i: Xn, then 
n~l 

as in the proof of Lemma 2, (X*-,.6*) is a B-complex. Define <j> 1 

(C,d) ---+ (X*,o*) by S'1( .n: On) = ( I<co)• ~ ( ~ en))• Cn f Cn, 
. n>O 	 n>l 

then ~ 1 is a i -complex homomorphism. Hence by Theorem 1, there exists 

a unique B-complex homomorphism.<;9 2 : T~((C,d)) ~ (X*,6*) such that 

<.v 2onc = <d>r Let j : (X*.~*) ___,. (X,6) be the mapping defined by 

j( (b,x)) = ± (b) + x, b f B, x f ~ Xn• then j is also ~-complex 
n~l 

homomorphism, Hence j 0 <? 2 : T~((C,d)) ~ (X,6) is a ~-complex 

homomorphism and hence again by Theorem 1 1 there exists a unique E-

complex homomorphism s- 3 : T1 °T 2 ((C,d)) ~ (X,6)_.:such that 

<s 3 °nC 1 :jo<J> 2• jo~i=S', sinceje~ 1(~cn)=j(1!(c0 ), CS(~ en))=
· 	 . n~l 

0~J (nc 1° TIC) = ~ • In fact, n3~nc 1"llc = j CJ' 2onc = jc~l = <d> • the 

uniqueness of <;yJ is clear, since T~ 0 T~ ((C,d)) is (nc °nc)-simple. On
1

the.Qther hand, let -r;C : (C,d) ~ T~ 0 ~ ((C,d)) be the 

nalural ~"32'.-cornplex homomorphism, then Tgz.,~(Cf): Ti.. ~ ((C,d))~(X,6) 

is a unique E-complex homomorphism such that T~o~ (<s )"'"Cc= ~. Hence 

by the uniqueness of such E-cornplexes and E-complex homomorphisms 



( cf. Theorem 1 ] , there exists an E-complex isomorphism i : T~ 0 ~ ((C,d)) 

T~ 0T~((C,d)) such that ;•nc,~'nc = -r;C. This shows that T~ ... ~ 

and T~ 0 T!. are naturally equivalent. 
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§ 2. Extensions of A by indeterminates. 

If B is an arbitrary unitary commutative R-algebra extension 

of A and ~ : A-,. B the natural injection, then for an A-complex (C,d) 

and a B-complex (X,o), a 2 -complex homomorphism 'f : (C,d) ~ (X,o) 

maps the elements of A identically, and hence ~-complex homomorphisms 

in this case will be called complex homomorphisms over A. Also, B ®AC 
co 

is an anit-commutative graded algebra, graded by B ®AC = k B ® ACn 
ll=O 

(direct). oc : C ----? B@ C will denote the canonical mapping defined 

by ac(c) = l@ c for c f c. 

Proposition 1: Let d0 = d!A and d0 : B ~ B ® Acl be an 

R-derivation such that °'<;0 d0 =d lA. Then there exists a unique
0• -homogeneous R-derivation d : B (1J AC ---4- B ®AC of degree 1 such that 

°'c~d =do°'c and <l\B =d0 • 

Moreover, d0 d0 = 0 if and only if (B ® AC,d) is a B-complex. 

Proof: Define c.g : B x C ~ B ®AC by 


'8 (f,c) =d f(l ® c) + f ®de, f f B, c f c.
0 

Then 'S 	 is clearly biadditive and 

<:s> (af ,c) 	=d0 (af)(l © c) + af ®de (a f A) 

= ((d0 a)f + a(d0 f) )(1@ c) + af@ de 

= ((1 ® da)f + a(d0 f) )(1 ® c) + af ®de 

= r@ da + ~f (a ® c) + f ® adc 

=d0 f(l@ ac) + f ® d(ac) 

= <J> ( f, ac) • 



Thus <j' is A-balanced. 

BxC B© CA 

-
Therefore there exists an additive group homomorphism d : B ®AC ---+ B@ AC 

such that d(f@ c) =d f(l ® c) + f ®de. Clearly -d is an R-linear 
0 

mapping, a.nd moreover, for f ® c, f 1 ® c' where f, f' f B, c,c' f C, 

c homogeneous of degree n, 

d((f ® c)(r• ® c•)) = d(ff'@ cc•) 

: d (ff I )(1 @ CC I ) + ff I @ d (CC I ) 
0 

= ((d f)f 1 + f(d0 f 
1 ))(1® cc•)+ ff'® ((dc)c' + (-l)nc(dc'))

0 

= (d0 f)(l® c)(f 1 ® c•) + (-l)n(f @c)(d0 f 
1 )(1 ® c') 

+ (f ® dc)(f'@ c 1 ) + (-l)n(f ® c)(f• @de') 

= (d f(l®c) + f@dc)(r• @c 1 ) + (-l)n(f®c)(d f 1 (l@c) + f 1 @dc')
0 .. 0
 

= (d(f ® c))(f• ® c 1 ) + (-l)n(f ® c)(d(f' ® c 1 )). 


By the definition of d, d(B ® ACn) ~ B~ Cn + l• and thus we proved 

that d is a homogeneous R-derivation of degree 1. For the uniqueness 

-
of d, let ·o : B ®AC ~ B ®AC be a homogeneous R-derivation of 

degree 1 such that C\;0 d = 6°ac and o!B =d0 , then 

o(f ® c) = 6(f(l ® c)) = of' (1 ® c) + f6(1 ® c) 

= d0 f(l ® c) + f(l ®de) 

-:d(f@c). 

-
Thus d is unique such that Cl.ccd = ocac and 

olB = d0 • 
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If ded0 	 =0, then 

dt1d(f ® c) = d(d f(l ® c) + f ©de)
0 

= (dcd	 f) (1 ® c) - (d0 f) d(l ® c) + d f(l@ de) + f@ ddc0	 0 

= (d0 d0 f)(l ® c) - (d0 f)(l ®de) + d0 f(l ®de) + f ® ddc. 

= o. 
Hence (B ® .AC,d) is a B-complex. 


Conversely, if (B ® AC,d) is a B-complex, d 0 d0 f = d<>df = O. This 


completes the proof of Proposition 1. 


From now on, let us consider the case when B = A [ X ] , a. 

polynomial ring with X as a set of indetenninates. 

Lemma 1: Let M be an A-module and d : A -- M be an R-

derivation. For an arbitrary element of A{ X ) • 

• )11 Vn L 	 Lf = l; a,, •• ·~ , a.1 ...1 ~ A, x1 , ••• Y"ll , Xx1~•·- ~· "1• • • "n 	 'l• • • "'n ..lj • "{n 

where Y1 , •• ,vn are positive integers, let 

Then 

(1) (rlf + r2g)d = rlfd + r29:J.• r.J{2 f R, f,g f .A('X ]. 

(2) (fg)d = fd g+ f gd. f,g f AI x ] 
(J) ad= l@da, a f A 

(4) xd 	= o. 

Proof: (1), (J) and (4) are immediate consequences of the 

definition. 



Since (f + g)d = fd + gd by (1), to show (2), it is sufficient 

V1 Yn , fl1 ?n L ( ]to show for f = ax1 •• ·~ , g = b x1 •••xn , A X , 

(fg)d = (abx1Y1 + p1 •• ·'Xnvn +rn) 

= ;_V1+JJ.1•••xnYn+fn @d(ab) 

=~yl+/Ai•••x: n+faln ® ((da)b + a(db)) 

"1 -Y n ) ( l-A1 JJ.n) Y1 Yn) ( ~~ Pn )= (x1 •••xn ® da bx1 •••xn + (ax1 •••xn ~ •••xn ®db 

= rd g + r £;!· 

Proposition 2: Let M be an A-module and d : A ~ M be an 

R-derivation. With every element x f X, associate any element 

Ux f A( X ] ®AM. Then there exists a unique R-derivation 

d : A[ X ] ~ A[ X ] @ l1 such that djA = °'Mod and d(x) = Ux• x f X. 

Proof: For any. element f f A[ X ]. define d : A[ X J-r A[ X 1®AM 

- 'dby d(f) = fd + ~ -;f-f Ux• Then 
X oX 

(1) 	 d(r1f +rig) r1 ,r2 f R, f,g f A[ x] 

= (rlf + r2g)d + i ( 'O'dx (rlf + r2g) Ux) 

= rlfd + r2gd + rl ~ ::xf Ux + r2 ~ ::xg Ux 

= rl (rd + ~ : xf Ux) + r2(gd + ~ 'O'axg Ux) 

(2) d(fg) f,gfA(XJ 
'd ' 


~- (f'g)d + ~ 'i)Xfg UX 


= f'd g + r ~ + i ( ( ; xf ) g + f( ;;xg ) )Ux 


= (fd + ~ ::xf Ux)g + f(gd + ~ 'O'dxg Yx) 


= C<lr) g + r (dg) 




(4) d(x) = xd + ..£!.x U~ = uxdx ,... 

Hence d : A [ X ) --~ A ( X J®ii so defined is an R-derivation such 

that dlA = a .J ed and d(x) = U , x f X. 
l"i x 

Finally to 'show the uniqueness of d, let 6 : A [ X ] A[ X } ®if 

be an R-de rivation such that ojA = °Mod and o(x) = Ux, x f X, . 

then 
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6( Y1 "n = .·~ (6a Y. Y x1 ••• x + 
'I ..... v l""" n n\) J ·7\ 

Hence d is unique. 

Propositi2!!, J: Let (C,d) be an A-complex. With every element 

x t X, associate any element Ux f A [ X ] @Ac1 • Then there exists a 

unique homogeneous R-dorivation d : A[ X J ®AC ----) A( X ] ®AC of 

degree 1 such that O.c0 d =d0 o.C and d(x) = Ux, x f X. Moreover, 

(A( X] ® .AC,d) is an .A[ X ]-complex if and only if dUx = 0 for all 

x ~ x. 

~: Let d0 =djA, then by Proposition 2, there exists a 

unique R-derivation d0 : A[ X ] ----). A[ X J® Acl such that 

d0 IA = CJ.c 0 d0 and d0 (x) = Ux, x f X. By Prroposition 1, there exists a 

unique homogeneous R-derivation d : A[ X) ®AC --7> A[ X ] @AC of 

MILLS Ml3Wl"ORIAL LIBRARY 
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degree 1 such that a.Cod = dca.C and djA[ X J= d0 • But under the 

condition C\;0 d = da.C' d!A[ X ] = d0 if and only if d(x) = Ux• 

cl.IA[ X ] =d0 implies d(x) =d0 (x) = Ux• Conversely, if d(x) = Ux, 
- ~ vl Yn 
d( L- av y •••xn )x1i••• n 


- ......1 ')) 

= L: d(av 'I xl • • .xn n)

l••• n 


- Vl Yn 

= 2= d(ay )I )x1 •• ·~ + L.

l••• n 


Vl \In 

= 2= xl ···~ ®da~ V +i••• n L 


L 
vl v 


= do( al-:' .xl • • .xn n). 
1° • • "'n 

Thus we have shown that d is a unique homogeneous R..derivation of degree 

1 such that ac0 d = d 0 ac ~nd d(x) = Ux, x t x. 


Now, if (A[ X ) ® AC,d) is an A( X ] ...complex, then dUx = d0 dx = O. 


Conversely, suppose dUx =O, x f X and show d0 d0 =O, then by Proposition

• 

1, we know that (A[ X] ® AC,d) is an A( X ]-complex. To show d0 d0 = 0, 

'\.11 Yn ( ) - ­it is sufficient to consider ax1 ···~ f A X , since d0 d0 is linear. 
- - 'S'l Yn
dcd0 (ax1 •••xn ) 

- vl Yn 'd 'Y1 Yn 


= d(x.. •••xn @ da + l: - ax.. •••x Ux )
J. . k'OXk J. n k 


- )11 Vn "1 \In 

= d0 (')_ •••xn )(1 ® da) + ')_ •• ·~ ® dda 

'd Vi \In '() Y1 Yn ­
+ l: ( d ( ~~ •••xn ) Ux + - ax1 •••xn dUxk ) 

k o Xk 'OXk 


- 'Yl Yn - 'd \/1 Yn 

= d0 (x1 •••xn )(1 ® da) + ~ d( ~ ax1 •• ·~ ) Uxk 
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'd lll )}n 'O 'd ).)1 Vn 
+ ;: 	(( - •••x ) ® da + I: - -- •••x U:x: )Ux

k oX x1 n k,m 'O Xm tJXk 
x1 ·-n m k 

';) Y1 Yn 'd Y1 Yn . 
= ( ~ - x.. ••• x Uxk ) (1@ d a ) + Ek~ (( ~- •••xn ) ® da)Ux.x1k Cl xk .L n K 


2

{since Ux = 0 and Ux Ux = - Uxkux__ in anti- commutative g:r.aded algebra). 

rn k ·m 

= 0 
(since Uxk (1@ da) = - (1@ da) Uxk). 

Hence (A[ X ] @ AC,d) is an A[ X ]-complex. 

Corollar.)': 1: Let (C,d) be an A-corr1plex, then there exists a 

unique homogeneous R- derivation d : A[ X ] ®AC --+ A[ X ) ® AC of 

degree 1 such that nc0 d = d 0 aC and d(x) = 0, x t X. Moreover, (A[ X "J ® AC,d) 

is an A[ X ]-complex. 

Proof: Take Ux = 0 for all x f X in Proposition 3, then 

dUx = dO = O. Thus it is just the special case of Proposition J. 

Now, we are in a position to give an explicit construction of 

the functor Ti in the present case. 

Let W =~ wxlx f X} such that wx =wy implies x = y. Let F 

be a free A[ X ] -module with W as its basis. Then the following is 

well known. 

(1) The exterior algebra E(F) of F is an anti-commutut :i.tive graded 

algebra. Let W be totally ordered by <, and put t ,.,, = '-rx· · • , . w for 
- v 1 xn 

with wx < w .. ( ••• <w • Then 
1 x2 xn 
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Hence the product rule holds. 


By the definition of d', it is clear that d' (C 'n) s; C'n + 1 


= 0 

Therefore d' is a homogeneous R-derivation of degree 1 with d'cd 1 = O. 

for the uniqueness of d', let o : C' ~ C' be a homogeneous R-

derivation of degree 1 with 6°6 = 0 such that o..rrc = rrc0 d and o(x) = wx ® 1, 

then 

vl Yn.= 6((~ •••xn t:a® l)(a@ c)) 

~ . >'1 Vn = !: ;r- •••x w t ® l)(a@ c)x1 0k oXk n xk 


m )11 Yn

+(-1) (x1 •••xn ta® 1)(1 ® d(ac)) 

"" 111 1'n m >-'1 "n= o (ax1 •••xn ta) ® c + (- 1) x1 •••xn ® d(ac) 

Yl )In=d t ( ax1 •••xn ta ® c) • 

Hence a= d 1 and thus d' is unique such that d~TTC = TTCod, and d'(x) = 

wx ® 1. Here we have proved that C1 is an anti-comnmta.tive graded 
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algebra with C~ = A[ X ] and d. 1 is a homogeneous R-derivation of 

degree l with d red 1 = O. Therefore (C 1 ,d 1 ) is an A( X ]-complex. 

Le!l1.111a 2: Let (Z,6) be an arbitrary A[ X ]-complex. Then 

there exists a unique graded algebra homomorphism ~ : E(F) ---r Z 

over A[ X ] (i.e. ct>lA[ X ] = identity) such that '1' (wx) = ox. More-­

Vi Yn Yl Yn 
over , 	 <vc'd (ax1 • ··~ t 0 ) = oo(x1 •• ·~ ) q.(t0 ). 

Proof: Define 't-0 : W --? Z by <tJ (wx) = ox, then there0 

exists a 	unique A[ X ]-homomorphism <v1 =. F --~ Z extending Cy •
0 

Moreover, ( 4'1 (l: f1wx )) 
2 = (k fiox > 

2 = O,
1	 1

since ox ox =0 when i = j, ox ox = - ox ox when i = j. Since 
1 j 	 i j j i 

E(F) is an exterior algebra of F, '+'i extends uniquely to an algebra 

homomorphism 't': E(F) ~ Z over A[ X ] • 

• 
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Proposition ,2: Let (C,d) be an A-complex. For any A[ X ]­

complex (Z,o) and any complex homomorphism '3': (C,d) ~ (Z,o) 
-

over A, there exists a unique complex homomorphism ~' : (C' ,d 1 ) ~ 

1(Z,o) such that 'i' = ~ o rrc• 

Proof: Define 9> : E(F) x C ·~ Z by <J> (l: fata,C) = 
0 0 

ct'(!: f 0 ta) 'J (c). 'f is A-bilinear, since 't', and "-! are A-linear.0 

Therefore, there exists an .A-linear mapping g> 1 : E(F) ®AC --). Z 

such that Cf' (1.: fata@ c) = CV (1.: fata) <,f(c). 

W~ will show that ~ ' is what we want• 

•1) ~·is an algebra homomorphism,since 

<J>'((ft0 @c)(f 1ti:®c')) = q>'((- l)pn(fta)(.f•ta) ® cpcq ) 

= (- l)pn ty(fta) ~ (f't"t) C;f (cp) \f (c<p 

= {y (fta) CJ (cp) 4' (f't11) ~ (c<p 

= <f 1 (.ft0 ©cp) c;p'(.f't-c® cq) 

2) <s' is graded by definition. 

J) c;p•\A[ X] =identity on A[ X ], since <g'(f) = '5-'(f@l) = 

Cr (f) <9(1) = lt' (f) = f. 
4) 



Also, 

>'1 'Yn 
ocC£>' (ax1 •• ·~ t 0 ® c) 


Y1 vn 

= o ( Cr' ( ax1 •••"n \ 

1
) <i (c) ) 

= o(xl	"1. • .xnYn Cy(ta) <J (ac)) . 


v1 \In m Y1 lln
= 6(x1 •••xn {y(tq)) '! (ac) + (- 1) x1 ••• xn 't'(ta)Oc<j> (ac) 

V1 )In ) ) m Vi Yn (=a6(x1 •••xn c.y(ta ) Cf (c + (- 1) •••xn ct-'(t0 )o ~ ac).x1 

Hence ~ '6 1 = 6 <f 1 

5) ~ = eg~rrc• since S' 1 orrc(c) = CJ 1 (l@c) = lp(l) Cj'(c):: <j> (c) 

From (1) to (5) it follows that ~ 1 : (C 1 ,d 1 ) ---7 (Z, 6) is a complex 

homomorphism such that ~ = <9 1o1Tc• 

6) For the uniqueness of (j> 1 , let Cf: (C 1 ,d 1 ) ~ (Z,o) be a 

complex homomorphism such that '9 = ~ o rrC, then 


§ (fwx •••w"n@ c) = ~ (f(wx1 ®l)(w~®1) ••• (w~ © 1)(1@ c))

1 

= ~(fd 1 (x1 )d 1 (x2 ) ••• d 1 ("n)(l ® c)) 

= Cf 1 (fwx •••w"n © c)
1 

Hence CJ>' is unique such that. '9 = c;j> 1c1Tc• 

This completes the proof. 
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Let U(A/B) denote a universal derivation module of A as a 

B-algebra. 

Corollary 2: U(A[ X ]/R) ~ U(A( X]/.A) ®A U(A/R). 

The above now prove: 

Theorei"11. 1: For the natural injection ~ : A ----?- A( X ] , the 

functor Ti is explicitly given by T*((C,d)) = (E(F) ® AC,d 1 ), d 1 as 

defined in Proposition 4, and Ti ( ~) = iE(F) ® c;y for any A-complex 

homomorphism <:s': (C,d) ~ (D,6). 
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!J. Fractional extensions of~· 

Let A be a commutative R-algebra with unit and E be a com­

mutative unitary extension R-algebra of A. 

Definition: An ideal Dof A is called E-dense if and only if 

ED::;:: E. 

Definition: E is a fractional extension of A if and only if 

for each q f E, there exists an E-dense ideal D such that Dq S A. 

Definition: A module M (over _A) is called E-tor.sion free if 

and only if for any E-dense ideal D and for any x f M, .Dx = 0 implies 

x =o. 

From now on, let E be a fractional extension of A, if not 

mentioned specially otherwise. 

The following are well known facts. 

(1) If D,D 1 are E-dense ideals, DnD' is also E-dense. 

(2) q-1A = (bf Ajqb f A) is E-dense for any q f E. 

(3) An injective hull of an E-torsi.on free module is again E-tors:i.on free. 

(4) Any E-module is E-torsi..on free. 

(5) Any E-torsi..on free module can be imbedded into an E-module i.e. if 

http:E-tors:i.on
http:E-torsi.on
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M is E~tors:ionfree, M ~ E ©AM by x ~ 1 ® x is one-to-one. 

Proposition 1: (1) If M, N are E-modules, any A-linear 

mapping '8 : M ----'!< N is automatically E-linear. 

(2) If' M is E-modute.. M ;;f E ® lJ.• 
Proof: (1) For any b f q-1A, b Cf (qx) = Ck (bqx) = b(qq.(x)), 

q t E, x t M. Hence (q-lA)( q~ (qx) - q Cf (x)) = o. But N is an E­

module and hence E-torsion.free, and thus ~(qx) = q ~ (x), i.e. Cf is 

E-linear. 

(2) .M is an E-module and hence E-torsi:m free, and thus the natural A­

hornomorphism 1M : M--7 E@ AM is one-to-one. By (1), lli"i is auto­

matically E-linear. Now, for any q ® x f E® AM, q ® x = i® qx, since 

b(q ® x) = l@l:xix =b(l ® qx) for all b f q-lA. Now, for any 

q @x f E ®AM, 1}1(qx) = l@qx = q@ x. Hence 1\i is onto and thus 

TIM is an isornorpntsm. 

Lemma 1: Let D be an E-dense ideal, M be any E-module, then 

any A-homomorphism 'J' : D ~ M has a unique extension to an A­

homornorphism (j : A M. 

Proof: Let H be an A-injective .hull of M, then Cf : D ~M ~ H 

has an extension 'f : A --- H. Here S is a unique extension, since if 

~ and <s * are extensions of S' , D~(l) = ¥ (D) =<J*(D) = D g*(l) 

implies ~ (1) =~ *(l), since H is E-torsion free.. (M is an E-module and 

hence E-torsionfree, and H is E-torsion free, H is an injective hull of 

an E-torsionfree module). If and 'f *are A-homomorphisms with <;(1) =cg*(l) 

and hence Cf=~*· Now, we will show that CS (A) ~ M. Cf (D) ~ M and 
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hence E ~(D) SM. Thus Cf (A) = A CJ>(l) S, E Cf (1) = ED¥ (1) = E CJ (D) £ M. 

This completes the proof. 

Lemma 2: Let E be a fractional extension and N be any E-

module. If two derivations d,d 1 : E ~ N coincide on A, then d = d' • 

Proof: For any q t E, q-lA ={b f Ajqb f A} is an E-dense ideal. 

(d - d')(qb) =q(d - d•)(b) + b(d - d 1 )(q), for each bf q-lA. 

(d - d')(qb) =0 and (d - d 1 )(b) =0 imply b(d - d 1 )(q) =0 for each 

b f q-lA, i.e. (q-lA)(d(q) - d'(q)) =o. N is an E-module and hence 

E torsin free. Thus d(q) = d 1 (q), i.e. d =d 1 •-

Let ~ : M --> E ®AM be the natural A-homomorphism defined 

by ~(x) =1 ® x, x f M. 

Proposition 2: Let M be an A-module and d A ~ M be an 

R-derivation, then d induces a unique derivation d E -- E ®AM 

such that d}A = TIM·d. 

Proof: For any q f E, q-lA ={b f Ajqb f A} is an E-dense 

ideal. Consider for each q f E, ~q : q-lA ___,. E ®AM by <s'q (b) = 
1 @d(qb) - q ®db. 

Then 

and 

'Sq(ab) 	=1 ® d(qab) - q @d(ab) a f A, _b f q-lA. 

= a ® d (qb) + qb@ da - qa@ db - q b ® da. 

= a(l@d(qb) - q@db) = q <fq(b). 



6.) •. 


Hence ~q is an A-homomorphism. 

By Lemma ·1, <fq : q-lA E ®if ~as a unique extension to an 

A-homomorphisn1 'fq : A E ®AM. 

Let us defined : E ____,. E® AM by d(q) = ~q(l), and we will show 

that d is an R-derivation. 

(1) 	 R-linearity of d : For any b f qil Anq21 A (q1 ,q2 t E), 

1r 1q1b + r 2q2b f A, <11..rz f R) implies b f (l]_ql + r 2q2)- A. 

Hence 

b q; (1) = b(XJ_9 (1) + r 2 ct (1)) for all b f q-1.A q - 1A. 
rlql + r2q2 . 	 1 n 2 

Since qil Anq21.A ·is E-dense and E@ AM is E-torsin free 

Cf r q + r q (1) = r 1 Cf (1) + r 2 ~ (1)
11 2 2 

<;fqll2 (b) = 1 ® d(qlq2b) - (qlq2) ®db 

=1 ® d(q
1

q b) - q @ d(q2b) + q1 ® a(q2b) - (q1q2 ) ®db2 1 

= <!ql{qzb) + q1CS>q2 (b). 

But 'fq (q2b) = q2 ~q1(b), since for each cf q21A,
1 
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and hence 

Therefore, 

Since (q q r 1Anq-1.A q
2
-1A is E-dense ideal and E ®AM is E-torsin free,

12 l () . . 

'iq q (1) =ql~ {l) + q2 ~q (1).
1 2 q2 1 

i.e. d{qlq2) =qld(q2) + q2d(ql). 

For any a f. A, d(a) = <fa(l) = <fa(l) = l®da - a@d(l) = l®da,: TTMc.d(a). 


Hence dIA =n.r.( d. 


Finally, the uniqueness of d follows from L~Tu~a 2 • 

• 

Corollary 1: Any R-de:rivation d : A ----? A can be uniquely 

extended to an R-derivation d : E -~ E where E is a fractional 

extension of A. 

Proof: E® AA~ E.by f ®a ~ af. Then this is a special 

case of Proposition _2. 

Proposition 3: Let (C,d) be an A-complex. Then there exists a 

unique homogeneous R-de1•ivation d : E ®AC ---? E ®AC of degree 1 such 

that TTC 0 d = Cf..rrc• Moreover (E ® AC,d) is an E-complex. 

Proof: Let d
0 

= dlA. By Proposition 2, d
0 

: A -~ C1. in­



65. 


duces a unique derivation d0 .: E --7 E ®ACl such that d 1A = TTc"d •
0 0 

By Proposition 1 1 ~ 21 there exists a unique homogeneous R-derivation 

<l1E = d • But the condition d\E = d0 can be omitted, since TTC~d =dcTTC0 

implies Ci.IE= d • .Actually, for any a f A, da = d(l®a) = dc.TTC(a) = 
0 

rrc 0 d{a) and hence d!A = ric" d,and by the uniqueness of' such der1.vation 

<llE = d0 • Finally, to show that (E® AC,d) is an E-complex, by 

Proposition 1, it is sufficient to show tha~d0 d0 = O. For any q ~ E 

and fol' any b f q·lk 

d(b(d0q)) = (db)(d0 q) + bd(d
0
q), 

hence 

but 

b(d0 q) = b (fq (1) = ~q (b) =1 ® d{qb) - q ®db. 

Thus 

b d(d
0 
q) = d(l ® d(qb) - q ®db) - (db) (d

0 
q) 

= 1 ® dd(qb) - (d0 q){l ®db) - q ® ddb - (db)(d
0
q) 

= o, 

This completes the proof• 

Let us write C1 = E ® AC and d ::: d 1 • 

Proposition 4: For any E-complex (X,o) and any complex homo­

morphism fj: (C,d) -~ (X,6) over A, thel"e exists a unique complex 

homomorphism CJ>• (C•,d•) ---- (X,6) such that <"f' o rrc = Cf. 
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Proof: Define <j>0 : E x C ~ X by Cf (q,c) = q <f (c), then 
0 

'S0 is A-bilinear, since '.f jA = identity. Hence there exists an A­

homor.io:rphism 'f' : E ®AC ---> E ®AC such that 'f '(q@ c) = q CS (c). 

We will show that CS' is what we want. 

1) ~ r is an algebra homomorphism, since 
. 

CS' ((ql ® cl)(q2@ c2)) = CS 1 (qlq2 ®clc2) 

= qlq2 er (cl0 2) = qlq2 Cf (cl) 'J (c2) = (ql 'f (cl)) (q2 cs (c2)) 

= cg'(ql ®c1) 'f '(q2 ® c2) 

2) <s' is graded, since ~ is graded. 


3) CS' IE:: identity, since '.f '(q) =<s'(q ® l)'= q <f(l) = q. 


4) Cj' '"d 1 = O"<J'', since 


cy•cd•(q@c) = Cf'(d0q(l®c) + q®dc) 


= CS 1 (d
0
q) 'J'' (1 ® c) + 'f' (q ®de) 


= ~·(d0q) ~ (c) + q Cj>(dc) 


= <'f ' (d0 q) ~ (c) + q 6 'f (c) • 


But d0q =~q(l) and hence for any bf q-lA, b(d0q) =b<j(l) = ~q(b) = 

1 @ d ( qb) - q @ db. 


Hence b ':\' '(d0 q) = t.f'd(qb) - q 'f<'db = o(qb) - qob = boq. 


Xis an E-module, and hence E-torsin free. Thus ~'(d0q) = oq. 


Cf'd'(q@c) = 6q ~ (c) + qo'f(c) = o(q<s(c)) = 6 cs'(q@c) 

5) <s= 'f'.,rrc, sil1ce 'f' .. rrc(c) = CS'(l@c) = S'(c). 

By (l)rv (5), qi': (C 1 ,d 1 )---+ (X,o) is a complex homomorphism such 

that Cf = ~ '0 rrc. 

6) For the uniqueness of <s ', let ~ : (C 1 ,d') ~ (X,o) be an 

arbitrary complex homomorphism such that CS= Cf c rrC' then 



'f (q ® c) =q ~ (1@ c) = q ci (c) = Cf' (q ® c) 

Hence Cf I is unique such that ~ = er I e;TTC. 

This completes the proof. 

Corollat:X 1: Let E be a fractional extension of A. Then 

U(E/R) ~ E ® A U(A/R) 

Corollar,y 2: Let E be a fractional extension of R. Then the 

universal E-complex (U(E/R),d) is trivial. 

Proof: By Corollary 1, U(E/R) ~ E@ RU( F/R). But U(R/R) ~ R 

and hence U(E/R) ~ E ® RR ;: E. Thus U(E/R) is trivial. 

Corollary 3. Let E be a fractional extension of-A. Then 

U(E/R) = U(E/A)@ AU(A/R). 

Proof: Since Eis a fractional extension of A, O(E/A) ~ E 

by Corollary 2. Then the proof is immediate from Corollary 1. 

The above now proves : 

Theorem 1: For the natural injection p : A ~ E, the 

functor T.i is explicitly given by T'! ((C,d)) = (E@ AC,d'), d' as 

defined in Proposition J (d 1 = d). and T 31 ( 'f) = iE ®CS for any A­

canplex homomorphism S': (C,d) (D,6). 

In case E = A [ X ] , it is very easy to see that the covariant 

functor T 'i'. : ~ (A) -~ C(A[ X ] ) where ! : A ---, A[ X ] the 
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natural injection is not onto. But when E is a fractional extension 

of A, we have 

Theorem 2: T ~ : C. (A) C(E) is onto. 


Proof: For any E-complex (X,o), let C =A+~ Xn and d = ojc.

n>l 

Then C is an anit- cor.miutative graded algebra with C0 = A, and d : C --'r C 

is a homogeneous R- derivation of degree 1 with d<>d = O. Hence (C,d) 

is an A- cor11plex. 

Now, consider (C 1 ,d') and show that (C',d') = (X,6). 

er = E@ AC = E ®AA + ~ E © AXn = E + l: Xn, since Xn are E­
n> l n>l 

modules and hence by Proposition 1, Xn ~ E ® AXn• Hence C' = X. 

d 1 IA= d = 6IA, and hence d~ = ojE by Proposj_tio~ 2, and d' = 6 by
0 

Proposition J. Thus, T ((C,d)) = (x,o). 

Finally, for any c:-.omplex homomorphism ~: (X, o) --- (Y, Cl ) where 

(Y, 'd) also is an E~complex. Then 't fc : A + t :! 1xn ~ A + nJ:.> Yn 
1 

is again a complex homomorphism and T ;Ii ( ct- IC) = <;.. • 

Therefore T~ is onto. 



1 CHAPTER II 

Integral differential Fonns 

In this cha.pter we establish that in the context considered 

here, the module of Kahler' s differential fonns of degree k [ 7 ] is 

isomorphic to the module of homogeneous differential forms of degree 

k as defined in Chapter o. We then introduce integral. differential 
. . 

forms in a manner analogous to, but more general than K~hler 1 s def­

inition of integral differential forms in [ 7 } and show that the set 

of all homogeneous integral differential forms of degree k is, in 

certs.in special cases, a finitely generated module over the ground 

ring. 

~ 1. Preliminaries. 

This section deals with the rather special results concerning 

valuation rings which are needed in section J. 

Proposition 1: If a valuation ring S in a field K is 

noetherian, then (1) the only maximal ideal ~ of S is a principal 

ideal, (2) any non-zero ideal of S is a power of l"'C. (Convention : 

¥'lo = S) • 

Proof: (1) Suppose ~L is not a principal ideal i.e. 

http:certs.in
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)t{: Sxl + ••• + sxm for X1•••••xm f Sand mis the smallest possible 

positive integer for which this holds.- Let us consider x1xz1 and 

x2 xi1, then by the definition of valuation rings, at least one of 

them belongs to s, say x1 x21 f S, and sx1 = S(x1xz1 )Xz S SXz· Hence 

't'L = Sx2 + ••• + Sxm which contradicts the choice of m. Thus ·f'l is a 

principal ideal. 

(2) Let 01. be a non-zero ideal of S different from s, then Cl.£- ~t. 
co 

It is well known that ("1 ""( n = O. And since Cl /: 0, there exists 
n:l 1a natural number a. such that Ol.f yta. but Cl$ "'la. + . Our cla.im is 

Ol = l""(a.. By (1), '\"'( =S x for some x f S and hence ~ =S -x!J-. Since 

£.!!..£'<"ta.= sxa., Ol..x-a. S. Sor more explicitly 01x~ is a.n ideal of s. 

But there exists a f Cl with a x-0. \ft, for otherwise Ol. £'fl a. + 1. 

Since ""'( is the only maximal ideal and · (J\. x..CX. is an ideal which is not 

contained in ¥1'(, at x-0. = s. Thus .01= sx..CX. =\~a.. This completes the 

proof. • 

Proposition 2: Let K be a field, K an overfield of K
0 

, S a0 0 

valuation ring in K0 and N be the set of all valuation rings S in K 

which are extensions of S0 , then the integral clos.ure S of S in K
0 0 

is n s. 
S f N 

Proof: () S is clear from Theorem l, ~ 2, Ch. O. 
5 f N 

Hence it is sufficient to show that every valuation ring V in K 

which contains S0 contains some member of N as a subset. Let ft be 

the maximal ideal in V, and let ~ = ltri S
0 

, then ~ S: Y"e.0 , since 

l't l l and ~ is an ideal of S • By Proposition 6, ! 5, Ch. 0, there
0 

exists a valuation ring Sin K such that S ~ S0 , ~nS = Y"l , and
0 



?l. 


S ~ V where -rt is the maximal ideal in S. Thus S is an extension of 

S0 , and hence a member of N contained in V. This completes the proof. 

Proposition 3: Let G be an integral domain. K its field of0 

quotients, K an algebraic extension of K0 , and S0 a valuation ring of 

K0 such that it is a ring of quotients of G. Then any valuation ring S 

of K which is an extension of S0 is a ring of quotients of the integral 

closure G of G in K with respect to ~(\G, where '"'( is the maximal ideal 

of s. 

Proof: It is clear that the ring of quotients in question is 

contained in S0 ~ Now let a. be any non-zero element of S and let 

a 0n + a1a.n - 1 + ••• + an = 0, a1 f K0 , a ~ 0, be the maximal
0 0 

~uation of o: over K0 • By Proposition 3, §- 5 Ch. 0, for at least one 

j, 1 S j Sm, a1 a31 f S for i =1, 2, ••• n. Pick one of these j•s,0 

and if we set bi ; a1 ajl for each i, then we have 

b0 o:n + bi_O:n - 1 + ••• + bn = 0, bj f S0 for i = 1, 2, ••• n. Since 

5
0 

is a ring of quotients of G, there exists an element b f G with 

b ~\~_such that b b1 f G for 1•11 2, •••• n. If we set ci = b b1 

Ci f G S -G. To apply 

Proposition 8, § .5, Ch. 0, we notice that G is an integrally closed 

domain, K a field of quotients of G, Y"\" G a prime ideal of -G and 

c1 f G for i = 1, 2, ..... ,n with cj = b ¢ 'c"\riG. By Proposition 8, 

§5, Ch. O, o: or a.-1 belongs to Q, the ring of quotients in question. 

To show Q~ S6 , suppose a. 'Q, then a.-1 f Q and is a non-unit in Q 

which implies a.·1 f 'flt and hence a. ~ s. This is impossible, since 

our assumption was a. f s. Thus a.~ Q. This completes the proof. 
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Let G be an integral domain, Kc its field of quotients, c>nd r+: a 

pri.'Tle ideal of G such that (1) all powers 'i;, 1:2, •.. are distinct, and 
<-0

J:1 ila. = 0, (2) if an element a is divisible exactly by ~a. i.e. 

a f +a but a ~ i2 a + 1, and similarly, if b is divisible exactly by 

'?f ~, then ab is divisible exactly by <:j( a. + ,:) • 

By the condition (1), for any mon- zero element a f G, there exists a 

non-negative integer a. such that a f 1'.[2 a. but a ' fa. + 1 (Convention : 

~0 = G). Let us define a mapping 'f : G ---;;> Z (the ring of integers) by 

~(O) = 0, ~(a) = a for non-zero a f G. Then for non-zero a,b ~ G, 

lj'(ab) = Cf(a) + ~(b) by the condition (2). 

Define a mapping <'.t: K0 - Z by lf(O) = 0, 't(a/b) = <-f (a) - ~(b) fo1' 

Don-zero element a/b f K
0 

, a,b f G, then 't is well defined, since 

a/b = c/d implies ad= be and hence Cf(a) + 'f(d) = <.f(b) + <f(c) or 

'i (a) - ~(b) = ~(c) - if(d), and thus '-r(a/b) = ~(c/d). It is clear that 

Lr is an extension of 'f to K
0

, since if (1) = O. 

Let S = 1x\ x f K0 , 't (x) ::_ 0 }• then S is a valuation ring in K", since 

for x f K0 ' S, x = a/b, a, b f G with 't(x) = <j (a) -'f(b) < O, and 't (x-1) = 

Lt(b/ a) = '! (b) - 'S (a) > 0, and hence x-1 f s. 

Proposition 4: If ~ is a principal ideal, then S = G~, the ring 

of quotients of G with respect to ~. Hence G1< is a valuation ring in K0 • 

Proof: Let x f ~!j( , then x = a/b, a, b f G, b ~ 'R (or If (b) = 0). 

Hence ~(x) =~(a) - ~(b) ;:: 0 or x f s. Thus S ~ G • 

Conversely, let x f S, then ~ = a./b with 'f(a) - 'f(b) ::_ O. Since 1is a 

p~incipal ideal, ~=Gp for some element pf G, and henca a= cpa., b =dp~ 

for c,d f G, with p ,t c, p,t d and a. - 13 ::_ O. Hence x = a/b = (c/d)pO.-P f G~, 

since c/d f G and pa. - ~ t G ~ G • Thus S ~G • 
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Corollary 1: Let G be a unique factorization domain or a 

noetherian domain, then each prime element p in G detennines a valuation 

ring Sp in K
0 
which is a ring of quotient of G and i'1= Sp·p. (By a prime 

element p, one means an element such that pjab implies pja or pjb, for 

elements a,b f G). 

Proof: Let~= Gp, then~ is a prime ideal. Clearly ~satisfies the 

conditions (1) and (2). Since i2 is a principal ideal, by Proposition 4, 

Gi? is a valuation ring in K0 • Put Sp = Gp, then obviously the only maximal 

ideal )~'t of Sp is Sp• p. 

Proposition 5: Let G be a unique factorization domain, K0 a field 

of quotients of G, and Sp the valuation ring in K0 such that Sp is the ring 

of quotients of G with respect to the prime ideal Gp of G, for each prime 

element p of G. Then G is the intersection of all Sp• 

Proof: For any x f Sp, let x = ~ where u,v f G and u,v are 
v 

relatively prime. Then p { v. Hence for any element x f (\ Sp, if x = 
p prime 

~where u,v f G and u,v are relatively prime, then there is no prime element 
V I 

of G which: divides v, i.e. v is an invertible element in G. This implies 

x f G and pence G~(\Sp• Since each Sp is a ring of quotients of G, 

G C ('\S0 • Thus G = n,._ Sp•
- • p pr.4Lr1e 

Corollax;r 2: (1) A unique factorization domain is integrally 

closed. (Well known fact). (2) Let G be a unique factorization domain, 

and Kea field of quotients of G. Then G is the intersection of all val­

uation rings in K0 containing G which are rings of quotients of G. 

Proof: (1) Immediate consequence of Theorem 1, §5, Chapter 0 and 

Proposition 5. (2) Immediate consequence of Theorem 1, $5, Chapter 0 

Proposition 5 and (1). 
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§ 2. Kahler' s Differential fo rms. 

This section is mainly to give the definition of Kahler's 

differential forms [ 7 ] and to explain the relation between these 

and the algebra of differontial fo:rms [ Ch. 0 1 in this context. 

Kahler's differential forms are defined to be a certain subset of 

his universal infinitesimal ring [ 7 ] , hence we will begin this 

section with the study of a slightly generalized fo:rm of K'ahler's 

infinitesimal rings, which will be called infinitesimal algebras. 

Let R be a commutative ring with unit, and A a unita.ry 

commutative R-nlgebra. 

Definition 1: A couple (I,a) is called an infinitesimal 

algebra over A if I is a commutative R-algebra containing A ns a 

unitary subalgebra and a = (a1 \ f 
11

., N = t 1, 2, ••• 1 , where 

each ai : A ---7 I is an R-algebra homomorphism such that 

(01(a) - a)(a1 (b) - b) = 0, a,b f A. 

The following remark tells exactly what a.re Kahler' s 

infinitesimal rings. 

Remark 1: KB.hler 1s infinitesimal ring is an infinitesimal 

algebra in the preceding sense if 1) R is the ring of integers, 

http:unita.ry
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2) each a1 : A --- I is an R-algebra !!!.2.!22.morphism such that 

(o1(a) - a)(o1(b) - b)~o,a,b f A, for each if N, and 3) I is 

generated by ~L a1(A) over A. 
i 't' N 

Proposition 1: Let (I,a) be an infinitesimal algebra over A. 

If we define a mapping di : A ~ I by di = ai -. iA, where iA is 

the identity mapping on A, then d1 is an R-derivation such that 

d1a d1b = 0, a,b f A, for each i f N. 

Proof: dia d1b = (a1(a) - a)(o1 (b) - b) = 0, a,b f A, from 

the definition of infinitesimal algebras. 

d1 is R-linear, since d1(ra + sb) = a 1(ra + sb) - (ra + sb) = 
r(a1(a) - a)+ s(a1(b) - b) = rd1a - sd1b, r,s f R, a,b t A. 

di satisfies the product rule, since d1 (ab) = ai(ab) - ab= 

ai(a) a1(b) - ab= a(o1(b) - b) + b(o1(a) - a) + (a1(a) - a)(ai(b) - b) = 

ad1(b) + bd1(a). 

Proposition 2: Suppose I is a unitary commutative R-algebra 

containing A as a unitary subalgebra such that there exists R-derivations 

di : A --'> I with d1a d1b =0 for each i f N. Let a1 : A ------'> I be 

the mapping defined by ai = di + iA, where iA is the identity on A. 

Then (I,a), a= (ai)i f N' is an infinitesimal 8.lgebra over A. 

Proof: Each a1 is an R-aJ:gebra homomorphism such that 

(ai(a) - a)(a1(b) - b) = O. For, ai is R-linear, since so is di and 

iA, and ai(ab) = d1(ab) + ab= adib + bd1a + ab= d1a d1b + ad1b + bd1a 

+ ab (dia d1b = 0) = (d1a + a)(d1b + b) = a1(a) ai(b), a,b f A, and 

hence a1 is an R-algebra homomorphism for each i f N. 
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(ai(a) - a)(oi(b) - b) = dia dib = O, a,b f A. 

Thus, (I,a) is an infinitesimal algebra ove1• 'Ji.. 

Examples of infinitesimal algebras over A. 

1) (A,a), a= (a1)i f N where a1 • iA for each i t N. 

2) Let M be an A-module, o, : A ~ M is a derivation, A as an 

R-algebra. Consider the exte1'l1al s.u1n A& M and define the multiplication 

by (a,x) (b,y) = (ab, ay + bx), a,b f A, x,y f M. The mapping A ~ A$ M 

defined by a ~ (a,o), a f A is an R-algebra monomorphism and 

hence we can put (a,o) = a, a f A. Then A<£!. M is an associative R-

algebra containing A. Let o1 : A ~A $M be a mapping defined by 

oi(a) = (o,o) for each 1, i ~ j, dj(a) = (o,oa) for a fixed j f N, 

then each oi• i f N is an R-derivation with 6ia d1b = O. Put 

= o1 + i.A, then (A© M,a), a = (a1) 1 f N is an infinitesimal algebraa1 

•over A. 

Definition 2: Let (I,o) and (J, '"C) be two infinitesimal 

algebras. .An R-algebra homomorphism f : I _____,, J is called an 

infinitesimal algebra homomorphism if f j.A is the identity on A and 

f ai ='Li for all i f N. An infinitesimal algebra homomorphism is 

denoted by f : (I,a) (J, "'i:). 

An infinitesimal algebra homomorphi5ll1 which is one-to-one and onto is 

called an infinitesimal algebra isomorphism. 

Definition 3: An infinitesimal algebra (W,~) over A is 

called a universal infinitesimal algebra if for any infinitesimal 
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(I,a) over A, there exists a unique infinitesimal algebra homomor­

phism f : (W, e) ~ (I,a). 

Remark 2: It can be shown in the usual way that universal 

infinitesimal alg§bras over A if they exist are uniquely determined 

up to infinitesimal algebra isomorphisms. 

Proposition ~: Let (I,o) be an infinitesimal algebra over A 

such that I is generated by i!:t Nai(A) over A. If there exists an 

infinitesimal algebra homomorphism of (I,a) into an arbitrary infinit­

esimal algebra over A, then it is unique. 

Proof: Let (J, -i:;) be an arbitrary infinitesimal algebra over 

A, and f,g: (I,o) ·---') (J,"t) be two infinitesimal algebra homo­

morphisms. fjA = identity on A= g!A, and f 0 cri = -ci = goa1• This 

means that f and g coincide on the algebra A and the set of generators 

of I, and hence f and g coincide on the whole I. 

proposition 4: Let (I,a) be an infinitesimal algebra over A, 

and di is the derivation defined by di =ai - iA for each i t A. Then 

[ A,a1(A),az(A), ••• ,J = [ A,dlA,dzA, ••• 1 
where the left hand side and the right hand side are the subalgebra of 

I generated by a1 (A),a2(A), ••• , and d1 (A),d2(A), ••• , over A. 

Proof: Trivial, since dia = a1(a) - a f ( A1a1 (A),o2(A), •••] 

and o1(a) = d1a + a f [ A,d1A,d2A, ••• ] , a t A. 

!'._roposition 5: Let (W,e) be a universal infinitesimal algebra 
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over A. 	 Then W is generated by k 9i(A) over A. 
i f N 

Proof: Let W• be the subalgebra of W generated by k 9-(A)
i f N 1 

over A, then (W 1 ,0) is also an infinitesimal algebra over A. Since 

(W,0) is universal, there exists a unique infinitesimal algebra 

homomorphism f : (W,9) ---- (W 1 , 0). We may consider f as an infinit­

esimal algebra homomorphism of (W,0) into itself. But the identity 

mapping of W into itself is also a such mapping, and hence by the 

uniqueness of the infinitesinal algebra homomorphism of a universal 

1infinitesimal algebra, (W 1 ,0) = (W,0). Thus W = W and Wis generated 

by LL ei(A) over A. 
i, N 

The following is an internal characterization of a universal 

infinitesimal algebra over A. 

Theorem 1: Suppose (W,0) is an infinitesimal algebra over A. 

For each if N, put di= e1 ~ iA and u1 = Ad1A. Then (W,0) is 

universal if and only if 

1) each (Ui,di) is a universal derivation module of A as an R­

algebra. 

2) for any commutative R-algebra C containing A as a unitary sub­

algebra and any family lt1 jr1 : u1 --4 C,i f N, with (f1(Ui))2 = 0 J 
of A-module homomorphisms, there exists a unique algebra homomorphism 

f : W----? C such that fjA is the identity on A and f extends each 

module 	homomorphism ri. 

Proof: Suppose (W, 0) is universal. To show each (Ui,di), 

f N is a 	universal derivation module of A as an R-algebra, let i 
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{M,6) be an arbitrary derivation t~odule of A. As in Example 2), 

.for a fixed j in N, construct an infinitesimal algebra {A$ M,a), 

a= {ai)i f N' = oi + iA, 6i{a) = 0 for all i ~ j and d/a) =a1 

{o,6a), a f A. Since (W, 0) is universal, there exists a unique .. 

algebra homomorphism f : W --') A@ M over A such that f .. 0i = ai 

for each i f N. Put f j = f!Uj, then f j is naturally an A-module 

homomorphism. Let p : A $ M ~ M be the 2nd projection, and put 

gj = pof j then gj : U j ~ M is clearly an A-module homomorphism. 

Moreover, gj•d. = pof ·"dj = pof~(0 - iA) = p..,f., 0j + p-.f 0 iA = p~a. +
J J . J 

p~iA = p(aj - iA) = pcoj =o. 
Hence gj : {Uj,dj) ·~ (M,6) is a derivation module homomorphism.. 

The uniqueness of g. can be easily checked. Thus (U1d1) is a uni­
. J 

versal derivation module of A as an R-algebra. Next, we will show 

2). Plit a 1 = f 1°d1 + iA for each i f N, then (a1 (a) - a)(a1(b) - b) = 
(f1°di(a))(f1°d1(b)) f (f1(Ui))2 = O. Hence (a1(a) - a)(a1 (b) - b) = O. 

Moreover, o
1
. : A --+ C is an algebra homomorphism, since 

" 
01(ab) = f 1cd1(ab) + ab= f1(ad1b + bdia) + ab= af1°d1(b) + bft d1 (a) + 

ab = f i" di(a) r 1° di(b) + afi" dib + bff' di (a) + ab 

(since fi di(a) fiodi(b) = o}= (fi.di(a) + a)(ri~di(b) + b) = ai(a)oi(b). 

Thus (C,a) is an infiniteseimal algebra over A. 

Since (W,0) is universal, there exists a unique algebra homomorphism 

f : W~ C such that f IA = iA and fo01 =a1 for each i f N. This 

f is an extension of each fi,i f N, since for an arbitrary element 

J; adib f u1 , f(.E adib) = l: af•di(b) = .E af(01 (b) - b) = !: a(ai(b) - b) = 
.E ati~ di (b) = f i (l: adib) for each i f N. 

f is unique, since W is generated by .E Ui over A. Conversely, suppose 
i f N 
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(W,e) is an infinitesimal algebra over Awith the properties 1) and 

2). To show the universality of (W,e), let (I,a) be an arbitrary 

infinitesimal algebra over A. Put for each i f N, 6i = ai - iA, then 

61 : A -----7 I is a derivation. Since (Ui,oi)• by l),is a universal 

derivation module of A, there exists a unique A-module homomorphism 

ti : Ui--+ I such that t 1od1 = o1 • Moreover, (f1(Ad1A))2 = 
2 2 ,

A(fj_"d1(A)) = A(o1A) =o. By 2), there exists a unique algebra 

homomorphism f : W ~ C such that f jA is the identity mapping on A 

and f extends each f 1 , i t N. The algebra homomorphism f : W ·~ C 

is an infinitie.simal algebra homomorphism, since fc e1 = fc-(di + iA) = 

61 + iA =ai. To show the uniqueness of f : (W,9) (I,a), we 

will first show that W is generated by il:f NU1over A • . For, let W1 

be the subalgebra of Wgenerated by ~ U1• Then considering the 
i 4 N 

identity mapping iu. : u1 ~ W1 for each i t N, by 2) we see that 
l. 

for the family (iu ) t N of A-module homomorphisms, there exists a
1 

unique algebra homomorphism g : W ·--Y W1 ~ W such that g IW = iA ·and 

g extends each iu , 1 t N. But the identity mapping on Wis also 

1

i 
such a mapping, hence by the uniqueness of such algebra homomorphism 

w=w•. Hence W is generated by J: U1 over A. f is a unique
if N 

infinitesimal algebra homomorphism by Propositions J and 4. This 

completes the proof. 

Corollary 1: Let Wbe a conuuutative R-algebra containing 

A as a unitary subalgebra such that 

1) there exists an R-derivation d1 A --+ Wfor each i f n with 

Ui = 0, where U1 =Ad1A. 
2 



81. 

2) each (Uidi) is a universal derivation module of A as an R-algebra, 


and 


3) for any commutative R-algebra C containing A as a unitary sub­


2algebra and any family tfilf1 : Ui ~ C, i f N with (r1(Ui)) = 0 1 
of A-module homomorphisms , there exists a unique algebra homomorphism 

f: W~ C such that fjA is the identity in A, and f extends each 


module homomorphism. fi. 


Then (W,0),e = (01)1 t N where each e1 =di+ iA• is a universal 


infinitesimal algebra over A. 


Proof: Immediate consequence of Proposition 2 and Theorem 1. 

Construction of a universal infinitesimal algebra over A: 

Suppose (U,d) is a universal derivation module of A as an 

R-algebra. Consider V =@ v1 , external sum of v1, where Vi= U
if N 

for all i f N. Put Ui = l vlv f V,v(j) = 0 for all j,j t i ~, then 

u1 ~Vi and V = J;Ui (direct). Let S(V) be a symmetric algebra of V 

and put W= S(V)/J where J is the ideal of S(V) generated by DJi. 
AnJ = 0 and Vf\ J = 0 clearly, and this implies that A and V can be 

imbedded into Wby the natural homomorphism Y : S(V) _____... W. Hence 

we may consider that Wcontains A and V by indentifying a =V(a), a f A, 

and v :l'(v ), v .f V. Each Ui is a submodule of V and by the above 

identification, W1 ~ Wfor each i ~ N. 

·Let us define di : A ----TU1(Ui S V~ W),for each i .f N, by 

~ da for j = 1 

l 0 for j t i 

then di is a derivation and (U1 1 d1) ~· (U,d) as a derivation module. 

/ 
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Theore1n 2: (W, 0), thus obtained, is a universal infinitesimal 

algebra over A. 

Proof: It is sufficient to prove those conditions 1), 2), 3) 

in Corollary 1. It is clear from the preceding construction that each 

(Ui,di) is a universal derivation module of A as an R-algebra and 

Ui = Ad1A. U~ =0 in W, since U~ considered to be in S(V) is contained 

in the ideal J. -Thus 1) and 2) are proved. To prove 3), let C be an 

arbitrary commutative R-algebra containing A as a unitary subalgebra 

2
and f i : ~ C be any A-module homomorphism such that (f1 (Ui) ) = 0,u1 

for each i f N. Since V = l:Ui (direct), there exists a unique homomor­

phism g : V ~ C whi~h is an _extension of each r1, i t N. By the , 

property of a symmetric algebra, there exists a unique algebra homoinor­
/ 

phism h : S(V) -----*-? C such that g = hjV. In this case h(J) = 0, since 
___2 2 2 

h(lfi) = (h(Ui)) = (f1(Ui)) = 0 for each i f N. This implies that 

there exists a ·unique algebra hoMomorphism. f : W ~ C such that 

fo JI = h. - The algebra homomorphism f : W ~ C is an extension oi' each 

ity on A. The uniqueness of such algebra homomorphisms ~s f is clear, 

since Wis generated by l:U1 as an algebra over A. Hence J). This 

completes the proof of the theorem. 

We now apply the results outained in this section, together with 

results of 841- in Chapter 0, to Kahler' s differential forms. 

Let (W, 9) be a universal infinitesimal algebra over A. Frorn 
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the construction of a universal infinitesimal algebra, we can easily 

see that W is an R-algebra generated by i ~ Nd1A over A, where d1 : A~ W 

is a derivation defined by di = ei - iA for each i f N. 

Consider the A-submodule Adv1.A •• •dv A, Yi ~ N, of W•.., 
k 

(Adv A•• •d
11 

A = U)I ••• U.Y trivially).
1 k i k ­

Definition 4: An element in Adv A•••d 
1
, A, is called a homo­

1 k 
geneous infinitesimal of tyPe ~ ( Vi, ••• , 11k). ~nd of degree k • 

.. 
Definitino 5: Kahler1s differential forms of degreJ(. k are the .... 

homogeneous infinitesimals of type (1, 2, ••• , k) and of degree-k, or 

equivalently, the elements of Ad1A•••dkA. 

Remark 3: • The preceding Definition 5 is also a generalized 

definition of KB.hler 1 s differential forms in [ ? ] • Kahler considered 

only the case when R is the ring of integers or a prime field of char­

acteristic p 't 0, and A is a finitely generated separable extension 

field of the field of quotients of R. 

Recall that (U,d) denotes a universal derivation module of A, 

Tk(U) the A-module of all homogeneous ela~ents of degree k of a tensor 

algebra T(U) of u. 

TheoreITI J: If U is a projective A-module, then Tk(U) ~ Ad1A•••dkA. 
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Proof: Put u1 = Ad1A and V = i~t Nu1•. then by the construction 

of a universal infinitesimal algebra, v =D.Ji (direct). Let wi be the 

subalgebra of W generated by Ui for each i, then for any commutative 

algebra C containing A, any algebra homomorphism gi : Wi --4 C over 
2 2 2 .

A has the property (gi(Ui)) =O, since (gi(U1)) = gi(Ui) =O. 

(recall U~ = 0 in W1). Let ( gi) i t N be a family of algebra homo­

morphisms over A where gi : w1 ·-___,,> C for each i, and put r1 = g1 ju1, 

then (fi) i t N is a family of A-module homomorphisms where t 1 : Ui -4 C, 

for each 1 such that (f1(Ui))
2 = (gi(u1))

2 =O. By Theorem 1, there 

exists a unique algebra homomorphism f : W----'r C over A extending 

each A-module homomorphism f 1. Moreover rjw1 = g1, since f and g1 

coincide on u1 and Ui generates w1• Hence Wis a free commutative join 

of the family ( W1) i f N of subalgebras. Since each Ui, i f N, is 

a projective A-module and V = m1 (direct), U1 ® ••• ©Uk = u1••• Uk(in W) 

= Ad1A ••• d~ (cf. Theore~ 6, 4, Chapter 0). By Theorem 1, we know that 

each u1 = U and hence Tk(U) = U1 x ••• x Uk• Thus Tk(U) = Ad1A•••dk1'• 

Theorem 4: If U is a finitely generated projective A-module, 

then the A-module of all homogeneous differential forms of degree k is 

isomorphic to the A-module of all K~hler's differential forms of degree k. 

Proof: Let K(D) be the algebra of differential fonns of A, and 

Kk(D) the A-module of all homogeneous differential forms of degree k 

( cf. § 2, Chapter 0 J. Since U is a finitely generated projective 

A-module, Kk(D) ~ Tk(U) ( cf. Theorem 5, ~ 2, Chapter 0 ] • Hence by the 

previous theorem, Kk(D) =Ad1A•••dkA• 



§'). Integral Differential Fonns. 

Let R be a commutative ring with unit, K a unitary comrrmtative 

R-algebra, D the K-module of all derivations of K, K(D) the algebra of 

all multilinear forms on D. K(:P) is a regularly graded algebra and 

hence K(D) =~ len(D) (direct). An element in K(D) is called a 
n 

differential form and an element in Kk(D) a homogeneous differential 

.!.2!!!!. of degree k. Let D* = Homk(D,K) and we can put D* =K1(D), since 

D* is naturally :hnbedded into K(D), onto K1(D). If we define 

d : K ~ D* by d(a)(o) = oa for all a f K, o f D, then d is also a 

derivation (cf. § 2, Chapter 0). 
/ 

Definition: If R is an integral domain, K a field containing 

R, an element x f K(D) is called an integral differential f onn if and 

only if x f ~ S(dS)n for all valuation rings S in K such that S 2 R, 

and an integral differential fonn in Kk(D) is called a homogeneous 

integral differential fonn of degree k. 

Remark 1: The homogeneous integral differential forms of 

degree zero are the elements of K integral over R. In fact, the set 

of all homogeneous differential forms of degree zero is the intersection 

of all valuation rings in K containing R by the preceding definition, 

and this is the integral closure of R in K (cf. Theorem 1, S 2, Chapter O). 

Thus the integral differential fonns are, in a sense, a generalization 

85. 
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or the integral elements in K over R. 

The purpose or this section is to show that the R-module of 

all homogeneous integral differential forms of degree k is finitely 

generated if R is a noetherian unique factorization domain and K a 

finitely generated separable extension field of a field of quotients 

of R. 

Convent.ion: Unless otherwise specified, 

(1) R will denote a noetherian domain, Q a field of quotients of R, 

K0 =Q(x1•••••xn) a purely transcendental extension of Q with trans­

cendence degree n over Q, and K =K (x ) a separable algebraic extension0 0 

of K with the minimal polynomial f = t!'1 + a1tm - 1 + • • • + 8ni {f f K0 [ t J , 
0 

polynomial ring over K0 with t as indetenninate) of x0 with respect to 

K0 • If r• is the usual derivative off in K0 [ t J, then f 1{x) 'O, 

since x is separable algebraic over K0 •0 

(2) Let us put G = R[ xl•••••x~ J, the subring of K generated by0 

x1 , ••• ,xn over R, dentoes a valuation?i.ng in K containing G, SaS0 0 

valuation ring in K which is an extension of S0 , and let G and S0 be the 

integral closures of G and S
0 

in K respectively. y/'( 0 and 1"'( will denote 

the maximal ideals of S
0 

and S respectively. 

(J) Finally {U(S/R,o), (U(G/G),a), ••• etc, denotesa universal derivation 

module of S as R-algebra, a universal derivation module of Gas G-

algebra, ••• etc. 

If (U,o} is a universal derivation module of K as R-algebra, 

http:valuation?i.ng


U = Kox1 + ••• + K6Xn (direct). Since U is a free K-rnodule with a 

finite basis 1. ox1 , ••• ,6Xn1 , the K-module Kk(D) of all homogeneous 

differential fozms of degree k is isomorphic to the K...module Tk(U) of 

all homogeneous elements of degree k in a tensor algebra T(U) of U 

(cf. Theorem 5, § 2, Chapter 0). Also, Tk(U) is a free K~dule with 

l 6xi •••• ox1kll :S i1••••ik :Sn~ as its basis ( 4 }. We know that 
1 

(U,6) ~ (D*,d) [cf. §2, Chapter 0 l• and since we put D* = K1 (D), any 

homogeneous differential fonn x of degree k is uniquely expressed in 

the following fonn: 

where a1 •••i f K, the multiplication carried out is the Kronecker 
1 k 

algebra of D. 

The followil'1g Lemmas are needed to prove Proposition 1. 

Lemma 1: Let S
0 

be a valuation ring in K
0 

such that S0 is a 

ring of quotients of G. Then the1.miversal derivation modules U(G/R), 

U(S/R), U(G/G) and U(S/S0 ) are all finitely generated modules. 

Proof: Since R is a noetherian domain and G a finitely 

generated ring over R, G is also a moetherian domain. The integral 

closure G of G in K is a finitely generated G-module (cf. Theorem J, 

3 5, Chapter 0), say G= Gw1 + ••• + Gwm• wi f G for i = l, 2, ••• , m. 

If (U(G/R),6) dentoes the universal derivation module of Gas R-algebra, 

-6G ~ 6G·w1 + ••• + 6G•wm + Gow1 + ••• + Gowm 
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S G6Xi + ••• • •• 

Hence G6G S G6x1 + ••• + G6Xn + Gow1 + ••• + Gownt. 

On the other hand, G6G contains the right hand side of the above inclusion, 

si11ce the right hand side is a Ci-module generated by elements in G6G. 

Thus 

U(G/R) = GoG 

-

••• + G6Xn + Gow1 + • •• 

Hence U(G/R) is a finitely generated G-module. 

Next, for U(S/R), since S is, by Proposition 3. ~l. Chapter II, a ring 

or quotients or 'G. 

U(S/R) =s ® G U(G/R) 

= s ® oxl + • • • + s @ 6~ + s ® owl + • • • + s ® owm. 

[cf. S 3. Chapter I. Notice rings of quotients are. fractional extensions]. 

Thus U(S/R) is finitely generated. 

Finally, U(G/G) and U(S/S0 ) are homomorphic images of U(G/R) and U(S/R) 

respectively [ cf. Theorem 2 1 .§ 2, Chapter 0 ] • Homomorphic images of 

finitely generated modules are finitely generated. 

Corollary 1: Let ~: S ~ M and 6 : G ----?' N be arbitrary 

derivations of S and Gas R-algebras respectively, where_ M and n are S-

module and G-module respectively. Then the submodules' SdS of M and G 6G 

of N are also f~nitely generated modules. 

Proof: S dS and G 6G are homomoryhic images of the universal der­

ivation modules U(S/R) and U(G/R) respectively. Since U(S/R) and U(G/R) 

are finitely generated by Lemma 1, S dS and G 6G are finitely generated. 



Loonna 2: Let S0 be a valuation ring in K such that S is0 0 

a ring of quotients of the subring G of K0 • If S is a valuation ring 

in K which is an extension of S0 , then 

~~· S(dS)k C 
-

2:. 
i1,····ik 

Sdxi •••dxi 
1 k 

where iJ is the different of S over S0 • 

(Notice 	that the differents exist, since U(S/S0 ) is finitely generated). 

Proof: We will first show that 

(a) SdS0 =s~ + • • • + s~. 

It is well known that 

U(G/R) = G6x1 ·+· ••• + Goxn 

where (U(G/R},6) is a universal derivation module of G as R-rnodule. Since 

S0 is a ring of quotients of G., 

U(S0 /R) =S0 @ GU(G/R) = S0 ';)Xi + ••• + S0 ';) ~ 

( cf. § 3, Chapter I ] where (U(S0 /R), 'd ) is a universal derivation
• 

module of S0 as R-algebra. The subset S0 dS0 of U is a derivation 

module 	homomorphic image of U(S0 /R) and hence 

S0 dS0 =S0 dxl + • • • + S0 cbcJi • 
Hence, SdS0 = Sdxl + ••• + Sclxn• 

Next, notice that S is a Euclidean domain [ cf. Proposition 1, .§ 1, 

Chapter II ] , and U(S/R) is finitely generated. [ LEm?lla 1 ] • 

~ dS S :C1dS0 [cf. Proposition 2, § J, Chapter 0 J 
Hence ,.6kS(dS)k = ~k(ds)k £- '°"1k(dSO)k £ S(dSO)k 

By (a), S(dS )k· = L S~ • • .dxi •0 
1i·····ik 1 k 

Thus, ..ok S(ds)k c "2:- Sdx1 •••dxi • 
- 11·····ik l k 
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Proposition 1: Let S0 be a valuation ring in K
0 

with the 

property that S0 is a ring of quotients of G and the coefficients of 

the minimal polynomial f of x0 over K0 all be contained in S0 • Then 

(fl Cxo) )k + 1cnu S(ds)k) s L. so[ Xo ]dx1 •••dxi ,
sf ..01 i1····•1k l k 

where ,,S1 is the set of all valuation ~ings S in K which are extensions 

of S0 • 

Proof: By Proposition 6, § J, Chapter 0, f 1(x0 ) f JJ <5c/s0 ). 

"' .However, we know that S is a ring of quotients of S0 and hence 

,(} (S/S0 ) = ,(J(S /S )· S [ Proposition 3, SJ, Chapter 0 ) •. Thus f 1(x ) f0 0 0 

,,f}(s/s ). Now for x t ·n S(ds)k, let x =Dl ••• 1 dx1 •••dx. ,
0 1s f ..S1 l k l 1 k 

a1 ••• i f K. Then by Lemma 2, (f1(x0 ))kx f I:Sdx1 •••d.x1 for all 
l k 1 k 

k k ­Sf ...81' hence r•(x0 ) a ••• \ f S for all S f..81 • Thus (f 1 (x0 )) a ••• 1k f S0 •
11 11 

On the other hand; f 1(x0 ) f Jl(S0 ( ]/S0 ), since U(S ( x )/50 ) isx0 0 0 

generated by dx0 and f(JCo) =0 irnplies f 1(x0 )dx0 =o. Hence 

(ri(xo))k + la11···1k = (r1(xo))ka1i•••ik. f'(xo) f so.V(so[ xo ]/so)• 

However, by Proposition 5. §3. Chapter o, 5c,,o-(so[ XO ]/so)£ so[ XO]. 

Thus (f 1 (xo))k + 1a1 ···1 f so[ Xo ]. This shows that 
l k 

1
(f'(x0 ))k + x f LS0 ( x )dxi • ••dxi for all X f n S(dS)k.

0 
1 k s f...81 

Proposition 2: Let R be a noetherian unique factorization 

aomain and the coefficients of the minirnal polynomial r of x
0 

over K0 

all be contained in G, then, 
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where Ik is the R..module of s.11 homogeneous integral differential forms 

of degree k and R[ x0 , x1, ••• , Xn] is the subring of K generated by 

x0 , Xi• ••• , Xn over R. 

Proof: Let..8
0 

be the set of all valuation rings in K0 which 

are rings of quotients of G and .7> the set of all valuation rings in K 

which are extensions of a member of ..S0 • Then 

(ft(x ))k + lik C: ('ft(x ))k + l () S(dS)k (by the definition 
00 ­ s t.S 

of homogeneous differential forms of degree k) 

c Z:. 0 S0 [ x ]dx1 .. ,dxi (by Proposition 1)011 , ••• , ik S0 ' 7>0 1 k 

= 
1 

L i G[ x
0 

]dxi •••dxi (since G 1saunique factorizationi····· k l k 

domain and hence G =S~ jJ S0 by Corollary 2, § 1, Chapter II). 

= L . R[ x0,~, ••• ,xk] dx1 •••dx1 • 
i1·····1k 1 k 

Proposition 3: Under the assumptions as in Proposition 2, in 

fact, there exists a natural number V such that 

(f' (x
0 

))k + 1rk ~ . L. Tdx1 •••dx1
11·····ik l k 

where T = I: 
k1 ~l' 

Rx
0 

ko x1kl:•..xnkn. 

Proof: Let (A) be the following statement: There exists a 

natural number V1 for each x1 , i =O, l, 2, ••• , n such that 

(f'(Jeo))k + lrk~ 2: T1dx1 ...dx1 , Ti= J:: R[ x ,xl' ... ,~1 , ... ,xn ]xi 
. 1i' ... ' ik 1 k . k1 ::: vi 

0 



n 
_..... T1 C T, and hence
t:'o ­

to show (A). 

(1) Proof of (A) for x 0 : Let x f (f1 (x0))k + 1Ik, then 

x = i 2: 1 Ci • • • i dxi • • .dxi ' 
l····· k 1 k 1 k 

Proposition 2. Moreover,· K =-K [ J is a ~imple algebraic extension
0 

x 0 

of K and the leading coefficient of the minim.al polynomial f of x00 

over Ko is 1 and all coefficients of f are in R[ x1 , ••• ,xn ] and 

hence ci •••1 = ~ cii ... i Xom -1 cii •••i f R[x1•••••xnJ•
1 k i::l 1 k ' 1 k 

Put Y
0 

= m - 1, then 

R[ x1• • • • •Xn Jxoko dxil• • .dxik• Thus (A) holds 
0 

for x •0 

(2) Proof of (A) for x1 : Let us consider the subring R[ x1- 1 ,~, •• ·~ J 
1 1of K0 • Then R[ xi ,~, ••• ·~ ] is also a polynomial ring in x - ,x2, ••• ,xn

1 

as indetenninates. Let 50 be the valuation ring in K0 determined by the 

irreducible element xi-1 f R[ ~- 1,~·····~) [cf. Corollary 1, §1, 

Chapter II]. Put x 0 x1- h = y for some positive integer h, 1 = y1 ,
0 

x1­

and x1 = y1 for i = 2, J, ••• , n. Then Q(y1 , ••• ,yn) = K and is a purely0 

transcendental extension of Q. Next, 

m m - 1
f(x0 ) = x + ••• + 8m0 + a1x0 

http:minim.al
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By replacing x x1- h by y and putting b1 = a1xi- hi for i = 1, 2, ••• , m,0 0 

r(xo) = xlhm(yom + biYom - 1 + •• • + bm)• 

Let us put g = tm + b1tm - 1 + • • • + 'huij_ this is a polynomial over K 
0 

with t as indeterminate, and g(y ) = O, K0 {y0 ) = K, and g is the polY'nomial0 

or y0 over K
0 

• Now we can put h sufficiently large so that 

bi 
-= aixl hi L 

~ So• 

Hence by applying Proposition 1, we have: 

(g•(y
0 

))k + 1 ( n 
s f ..S1 

S(dS)k) ~ :L­
i l • •••• i k 

S0 ( y 
0 

)dyL •••dy.; • 
-i. -k 

Since dy1 = (- Xi 2)dx1 and dyi = dx1 for i =2, ••• , n, 

·k i n k 2 q11 •• ·1k 
(g•(yo)) + (s L d S(dS) ) S L so[ Yo) (- xi ) ,dxi • • ,dxi 

~p i1····•ik 1 

where qi.. ••• 1 is the nurnber of Yi am.ong y1 , ••• ,yi. 
l k 1 k 

Now notice that f 1{x ) = ~h(m - l)g•(y ).
0 0 

Hence, 
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putting Y1 =h(m - l)(k + 1). 

On the other hand, by Proposition 2, 

k+1 ~ I . J(f' (x0 )) Ik ~ i L- i R x0 ,xl' ••• ·~ dx1 • , .dx1 ,
i····· k 1 k 

Hence 

r•(xo)k + 1
1ks 2:. T1dxi •••dxi t 

i1·····1k 1 k 

since xi1s0 [ x0 ](\Rf x0 ,x1 , ... ,xn] S: T1• 

(J) Proof of (A) for x1, i =2, 3, ••• , m, is exactly the same proof 


with 1 replaced by i. 


This completes the proof, 


Theorem 1: (Main theoran) Let R be a noetherian unique factor­

ization domain, and K a finitely generated separable extension field of 

a field of quotients of R. Then the R-module of all homogeneous integral 

differential fo~ns of degree k is finitely generated. 

Proof: It is known [ 11 ] that if K is finitely generated 

separable extension field of Q, then there exist elements 

z, Xi_, • .. , xn f K such that l x1 , • • • , xn3 is a set of algebraically 

independent elements and if we put K =Q(x1 , ••• , Xn)• K=K (z) and0 0 

K is a separable algebraic extension of K0 • Let g = tm + b1tm - 1 + ••• + 

l\n• bi f K0 for i =1, 2, ••• , lll be the minimal polynomial of z over 

K0 • From the fact that K0 is a field of quotients of R[ x1 , •• , , xn J, 
there exists an element bf Rf~· ••• , xn J such that bbi f R[ x1 , ••• ,xn ]. 

m )m m - 1 mThen b g{z) = (bz + bb1(bz) + ••• + b bm• 
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f = tm + 8"J.tm - l + ••• + am t K ( t ] ; then K = K (x ) and f is the0 0 0 

minimal polynomial of x
0 

over K
0 

• 


Moreover, we notice that all the coefficients a1 f R( x1 , ••• , xn]. 


Hence by Proposition 3, 

k+l ~r• (x ) Ik £ L- Tdx. • ••dxi0 i11••••ik 11 k 

where T = _-:.;E Rx koXik1•• ·~kn for some Y • 
0 

ki ~)I 

Hence Ik S. L. T 1 dx1 •••dx1 • 
i1•••••ik (r•(xo))k + 1 1 k 

Thus Ik is a submodule of a finitely generated R..module, and since R 
Jt 

isAnoetherian domain, Ik itself is a finitely generated R..module. 

As a special case we note: 

Corollary : It R is a noetherian unique factorization domain 

and K a finitely generated separable extension or the field of quotients 

Q of R then the integral closure of R in K is a finitely generated 

R- module. 

For the more general class of noetherian integrally closed R 

this is known [ 11 ] tor the case of finitely generated separable 

algebraic extensions K of Q, and hence we have a partial generalization 

of this latter result. 

Definition: Let R be an integral domain, K a field containing 

R. A homogeneous alternating differential fonn x t Gk(D) of degree k 

is called integral if and only if jk(x)( f Kk(D)) is a homogeneous 

integral differential form of degree k, where jk : Gk(D) -----7 Kk(D) is 



the natural monomorphism [cf. 4, Chapter 0 ] • 

Theorem 2: Let R be a noetherian unique factorization domain 

and K a finitely generated separable extension field of the field of 

quotients of R. Then the R-module of all homogeneous integral 

alternating differential forms of degree k is finitely generated. 

Proof: By the definition of the integral alternating differen­

tial form, the R-module of all homogeneous integral alternating differ-. 

ential forms of degree k can be imbedded into the R-module of all homo­

geneous integral differential forms of degree k. By Theorem 1, the 

latter is finitely generated, and since R is noetherian domain, the 

. former is also a finitely generated R~odule. 
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