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INTRODUCTION

This thesis is concerned with problems which arise ou§ of
E. Kﬁhler'é paper [ 7 ] published in 1953. In this paper, a con-
struction of a universal algebra complex.over an algebra was first
given, Since a universal algebra complex over an algebra is uniquely
determined by the algebra up to unique complex isomorphisms, it is
natural to cbserve the relation between universal algebra complexes
over two algebras., Somé results are obtained in [ 9 ]. In Chapter
I, we show that an algebra homomorphism from an algebra A. into an
algebra B determines a ﬁatural covafiant functor from the category
of complexes over A and A-complex homomorphisms into the category
of complexes over B and B-complex homomorphisms which sends a univer-
sal complex over A to a universal complex over B, Expliecit constructions
of this functor in some special cases are given and as a consequence
of this, explicit relations between universal complexes over two al-
gebras in these cases can be obtained,

Again, in ['7 ], Kahler defines his differential forms as
elementsof a certain submodule of his infinitesimal algebra. In
Chapter II, we establish first that the module of Kahler's differen-
tial forms of degree k is isomorphic to the module of homogeneous
differential forms of degree k as defined in Chapter 0, when the
universal derivation module of the algebra is finitely generated and

projective., We then introduce integral differential forms in a

Ve



manner analagous to, but more general than Kahler's definition of
integral differential forms and show that the set of all homogeneous
differential forms of degree k is, in certain special cases, finitely
generated over the ground ring.

Chapter 0 is essentially a collection of all the basic
definitions and results cbncerning modules and derivations which
are used in the ensuing chapters., Some of the results we believe

to be new.
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CHAPTER O

Preliminaries

This chapter is essentially a collection of all the basic
definitions and results concerning modules and derivations which

will be needed in the ensuing chapters.

§1. Kronecker and Grassman algebras.

Let R be a commﬁtative ring with unit, M and N R-modules,
and M* and N* the dual modules of M and N respectively. For @ ¢ M*,
P e N*, P € (M N)* is defined by 9*xG(a @ b) = § (a) Y (b),
a €A, b¢B. The.product G+ is called the Kronecker Product
of & and (4, ”

Let T(M) be a tensor algebra over an R-module M, and

K,M) = § € T)*| @|Te(M) = 0 for a1l k £ n}, then clearly
K;(M) is a submodule of T(M)*, Let K(M) = :'Z JEn(i), then the sun
ns=
is 8 direct sum, Let
T nm ¢ Tnoim (M) — T, (M) @ Tm(M)
be the canonical isomorphism defined by x y m> x @y, where x is
an element of degree n, y an element of degreem, and
Th T @0 — 1, ()

be the dual homomorphism of Th n®

y

1.



For & ¢ K (M), % ¢ K, (M), the product $.& is defined by
@ o4 =TF ((F0) (%ol Nopy

where Jj @ Tn(M) — TQM), Jy ¢ T m(M) —> T(M) are the natural

+ m’

injections and Ppym® ™M) — T (1) is the (n 4+ m)th_projection.

n+m
Then § .4 ¢ Ky 4 mv Since o, € T,(0)%, ¢o3 € T,00*, hence
(Po3)* (Yo gy) € (T,00) @ T,(D)*, thus TF | ((F e J)* (G 2 5)) € Ty, (0%,
and finally @.q=TF (P J)*¥ (& e §)ep € TOD*.
Moreover, § « & -|T(M) = O for k £ n + m, since p, . |Ty(M) = 0 for
k £ n+ m, Thus we have seen that ¢ .4 € Ky , n(M).
Now for arbitrary ¢, « € K(M), let
Q.G = ﬁ’n:c;;,m((? o I Yo ddep,
then it is known that K(M) with this law of composition is an associative,

regularly graded algebra,

Definition 1. K(M) is called the Kronecker algebra over the mod-
ule M, ’
Lot E(M) be an exterior algebra over a module M. In [ 47,
the dual module E(M)* of E(M) with the Grassman product "A Y as its
law of composition is called the Grassman algebra for the module M,
But in this context, the following algebra G(M) will be called the Grass-

man algebra for M:

Lot G,(M) = § ¢ E@*| @ 1EM) = 0 for a1 k 4 n} » then
G,(i) 1s a submodule of E(M)*. Let G(M) = £ _ Gn(M), then the sun is

a direct sum,and it is proved in [ & ] that G(M) is a subalgebra of
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E(M)* and is a regularly graded anti-commutative algebra.‘ It is
worth noting that G(M) = E(M)* when M is a finitely generated mod-
ule,

s

Definition 2: G(M) is called the Grassman algebra over the

module M,

Let Py E(M) —— El(ﬁ) = M be the 1lst projection, and
pi : M* — E(M)* be the dual homomorphism of Py . pi(M*) < Gy (M),
since for any @ ¢ M*, p{(S’ )=¢o Py ¢ Gl(M). Moreover (p:"".( < ))2 = 0,
since G(M) is known to be an anticommunicative algebra [4 ]. Hence
pi : M —— Gl(M)( C G(M)) extends uniquely to a graded algebra
homomorphism g : E(M*) ——> G(M).

Similarly, let qq : T(M) —— T3(M) = M be the 1st projection,
and qi : M¥* ——> T(M)* be the qual homomorphism of q;. ql(M*) C Kl(M),
since for any G € M*, qi( ¥ )=¢go a9 € XK3(M). Hence
qi : M* —p Kl(M) < K(M) extends uniquely to a graded algebra

homomorphism h s T(M*) — K(M).

Remark 1. 1) Since M* T Gy (M) and g : E(M*) — G(M) 1s a
graded algebra homomorphism, one trivial observation is that G(M) is
generated by G1<M)v if and only if g is onto,

2) Similarly, K(M) is generated by Ky(M) if and only if h is
onto,



Proposition 1: g: E(M*) — G(M) and h : T(M*) — K(M) \‘
are isomorphismsif M is a finitely generated projective module. '

For any x € M, let X T(M*) — R be the R-module homomor-
phism defined by X|T,(M*) = 0 for k £ 1, X(¥ ) = ¢ (x) for © ¢ Ty(*)
(in fact, T(M*) = M*), theﬁ § € K3 (M*). Define a mapping a, ': M — K(M*)
by ao(x) = ?c, then clearly 0, is an R-module homomorphism., Hence thére
exists a unique algebra homomorphism o : T(M) —> K(M*) extending
Oge

Similarly, for any x € M, let x : E(M*) —> R be the R-

module homomorphism defined by x|E (M%) = 0 for k£ 1, X(¥ ) = ¢ (x)
for & ¢ Ej(M*) (in fact Ej(M*) = M*), then X € Kj(M*). Define a
mapping B, : M — G(M*) by B,(x) = x, then B is an R-module
homomorphism such that (Bo(x))z = 0. Hence there exists a unique ala ’

gebra homomorphism B : E(M) — G(M*) extending B,.

Proposition 2: a : T(M) —— K(M*) and 8 : E(M) —> G(M‘;)

are isomorphisms if M is a finitely generated projective module.
The natural module monomorphism J ¢ Gk(M) —_ Kk(M) will
be discussed,

Let V: T(M) ——> E(M) be the natural homomorphism., For
$ € G, (M), SV € T(M)* obviously, Moreover, PoV (T, (1) =

¥ (E (M) = 0 for k 4 n. Hence Qv ¢ K (M) for @ € G,(M).

Proposition 3: Let jy : Gp(M) —— Ky (M) be the mapping
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defined by j, (¢ ) = §ov for & € G (M), then J is a module monomor-

phism.
Proof: J, is obviously a module homomorphism, To show jy

is one-to-one, suppose Ji (P ) = @V = 0 for P € G(M). Then
¢ =0, since Vv is onto, Thus jy is a monomorphism,

Remark 2: Jj; : Gy (M) —> K;(M) is an isomorphism.

Remark 3: For ¢, cee Fr €M), x,.00., x, € Eq (M)

(gl A on-A(f k)(xlaooxk) = % G('lT) @ﬂ(l)(xl)'“‘ Qn(k)(xk)
where 1T is a permutation of §1, ... , k} and &(m) =4+ L or = 1
according to the permutation 1 is even or odd.

Also, for Cvi,’.. . (Vk € K3 (M), Yisoees ¥y € T,

(q/l oo.q’k)(ylto'o Yk) = cPl(yl) --.q"k(yk)’

-

PrOPOSition h’: Let ?1)’0'0 N 9 k 6 Gl(M) and q‘l,’.oo ’ (Vk 6 Kl(M)

with the property that Gy = $4°V fori=1, 2, «es, ko Then
jk(gl/\'.'/\ gk) = ﬁe(")q’n(l)l ..cf.n,(k)
vhere 1 is a permutation of {1, eee, k3 and (M) = 4+ 1 or = 1
according as 1 is even or odd,
Proof: Both jk(?ll\... /\? k) and ﬁ S(TT) q’ﬂ(l)""q’ﬁ(k) are
in K (M). This means that 5, (¥ \eeo A ¥ ) {Tp(M) = 0 and
.;Jr e(m) 9'“(1)-.... W“(k)mﬂ.(m) = 0 forn £ k. Hence it is sufficient
to show that they coincide on Ty (M). We recall that any element in
Tk(M) can be expressed as a sum of elements of the fom X]eeesX, Where

- Xl,‘..., Xk 6 M.



jk(gll\"' A @ k)(xl"'xk)

it

(F9 peeepdy )V (X000%)  (by the definition of ji)

il

(P9 peen®)) (VX)) oeuv(x))
Z e(M(F 1) Y (d)eee(P ey ¥ (x))  (by Remark 3)

?l’ S(TT) 1<% n(l)(xl)... ‘Yn(k)(xk)

‘ZT e(m) & m(1)e e & (k) (xl...xk) (by Remark 3)

]

(% e(‘l’l‘) <P “(l)obo q’n(k))(xlonuxk)c
ThuS, jk(wleooA? k) = % E(TT)(Y _n,(l)ooo ‘-Y .n.(k)o

Corollary 1: The natural monomorphism j, : Gy(M) —— Kp(M)
is entirely determined by the mapping §, PRIIN k™ Z e(m) q’n(l)”’ Cvn(k)
if G(M) is generated by Gl(M).

Finally, we will study the skewsymmetric elements of Kk(M).

Definition 5: An element T ¢ Ki (M) is said to be skewsymmetric

of degree k if there exist .| 5_1.....'5 iy € K1(M) such that
= 2 i1} '_B oo e s L]
| Y Y ﬁi C( i) ﬂi(il) -Bﬂi(lk)

to
Proposition 5: Suppose M be a module such that G(M) is generw

ated by Gl(M). Let 5, (M) be the set of all skewsymmetric elements of
degree k, then the natural injection j, maps Gy(M) onto Sy (M) or equi=
valently jj @ Gk(M) —>  Sp(M) is an isomorphism,

Proof: Since G(M) is generated by Gy(M), any element in Gy (M)
is of the form Z¥. oo ¥y vhere @ij € Gy (M) for each j = 1,2,...,k.

jk(Gk(M)) S Sk(M), since Jk(§ 911/\.../\?1}() = § %:I’i €(Tfi) T;.nl(il)o-o —n,i(ik)o

~ where T’i‘ = (‘?i oV, Conversely, for any &¢ Si (M), there exist
J J
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& ‘ _
1geeess ¥ € KyQO) such that G- §T271 e(my) q"i(il)... Cr"i(ik)'

Since j; : Gl(M) ——> Kj(M) is an isomorphism (Remark 2), there exist

@4

1.0.., Qik (‘ G1<M> such that gij" V = jl(@ij)z' Ckij for j = 1,2,..,1(

and for all i. jk(z (‘Pill\..'/\? ik) = ){‘TzTiE("i) q/ni(il)oooq'ni(ik)o

Hence ji (G (M)) =2 Sp(M).

Thus jk(Gk(M)) = Sk(M)-.



§ 2. Derivations and Derivation modules,

Let R be a commutative ring with unit, A a unitary commutative

R-algebra, and M an A-module,

Definition: An R-linear mapping d : A ~——> M is called a

derivation from A (as R-algebra) into M if and only if d(ab) = adb +

bda for a,b € A, end a derivationd : A — A is called a derivation
on A (as R-algebra). '

Definition: A couple (M,d) is called a derivation module

of A (as R-algebra) if and only if M isan A-module and d is a derivation

from A (a2s R-algebra) into M.

Definition: Let gM,d) and (N, 6 ) be derivation modules of A,

then a module homomorphism £ : M —— N'is called a derivation module

homomorphism if and only if fod = 6§ . A derivation module homomorphism

which is one-to-one and onto is called a derivation module isomoxphism.

Definition: A derivation module (U,d) of A is said to be
universal if and only if for any derivation module (I,d ), there exists

a unique derivation module homomorphism f: (U,d) ——> (M, 6).

Theorem i: For any unitary commutative R.algebra A, therse


http:ca.1.1.ed
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exists a universal derivation module of A and it is unique up to

unique derivation module isomorphisms,

Remark: A universal derivation module (U,d) of A can be
constructed in the following way: lLet U= A ® RA/ J where J is the
A-submodule of A @ pA generated by a1l 1@ ab - a2 @b - b @ a, a,b € 4,
and define d : A — U by d(a) =y (I®a), a ¢ A whers V: A@ gA—U
is the natural module homomorphism. Then (U,d) is a universal derivation
module,

Let A and B be unitary commutative R-algebras, ¢ : A —B

unitary epimorphism,

Definition: Let M be an A-module and N a B-module. A mapping
£f ¢: M ——> N is called a @ -homomorphism if and only if f(x + y) =

£(x) + £(y) and £(ax) = P(a)f(x) for a ¢ A, x,y € M.

Theorem 2. Let (U,d) be a universal derivation module of A
as R-algebra and (V,5 ) a universal derivation module of B as R-
algebra, then thers exists a unigue § -homomorphism f : (U,d) —> (V,5)

such that f°od =89 , and ker £ = ker $°- dA + A-d ker 9 .

Theorem 3. Let S be a unitary subring of R, and (U(A/R), d),
(U(A/S), 6 ) universal derivation modules of A as R-algebra and as
S-algebra respectively. Then

(U(A/R),d) £ (U(A/S)/AGR, Vveb)

where y : U(A/S) —— U(A/S)/AOR is the natural homomorphism,
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Proof: The mapping Veod : A —> U(A/S)/A 6R is clearly

S-linear. Yo § is also R-linear, since yoa(ré) = v{( réa+ asdr)=
W(rda) = r ¥ (6a),r € R, =2 € A. Product rule for Ved
holds trivially and hence (U(A/S)/ASR, Y5 ) is a derivation module
of A as an R-algebra. Since S C R, U(A/R) can be considered as an
S-algebra and d + A —> U(A/R) as a derivation of A asan S-algebra,
(U(A/R),d) is a derivation module of A asan S~algebra, Hence thers
exists a unique A.module homomorphism £ : U(4/S) — U(A/R) such
that £o6 = d. On the other hand, £(A 8R) = A(fo3 )R = AdR = 0.
Hence there exists an A-module homomorphism f£' : U(4/S)/A6R —— U(4/R)
such that ftoy = f, f!' is a derivation module hémomorphism, since
fre (Ve 8)=1f°06 = d. | |
To show (U(A/S)/A8R, V°38) is a universal derivation module

of A as an R-algebra, let (4,9 ) be an arbitrary derivation module of
A as an R-algebra. Then there exists a derivation module homomorphism
g : U(A/R) — (M,9) and hence gof' : U(A/S)/A6R —> (i,9) is
also a derivation module homomorphism., go f! is unique, since
U(A/S)/A 6R is generated by A(V°d )A as an A.module. Thus
(U(A/S)/A6R, V°&) is a universal derivation module of A as an R-
algebra and

(U(a/R), d) ¥ (U(a/s)/aoR, ;5 )e

Let D be the A-module of all derivations on A, D* the dual
module of D, If we define &6: A ——> D* by 6(a)(9d) =da, 9¢D,
a € A, then (D*, 0 ) is a derivation module of A, Let (U,d) be a

_ universal derivation module of A as an R-algebra.



. 11.

Theorem 4, If U is a finitely generated projective A-module,

(u,d) 2 (D*, s ).

Definition: The Kronecker algebra K(D) of D, essentially the

algebra of multilinear forms on D, is called the algebra of differential

forms on A, an element & ¢ K(D) a differential form on A, and an

element ¥ ¢ K (D) a homogeneous differential form of degree n.
Similarly,
Definition: The Grassman algebra G(D) of D, essentially the

algebra of alternating multilinear forms on D, is called the algebra

of alternating differential formus on A, an element % ¢ G(D) an

alternating differential form on A, and an element % € G,(D) a

homogeneous alternating differential form of degree n,

Theorem 5. Let A be a unitary commutative R-algebra such that
the universal derivation module (U,d) of A is finitely generated pro-
Jective, then
1) E(U) T G(D), where E(U) is an exterior algebra of U, More
explicitly, let £ : (U,d) — (D*,8) be the unique derivation module
homomorphism and T . E(U) —— E(D*) be the unique extension algebra
homomorphism of f to E(U), then the mapping g' : E(U) —— G(D) defined
by g' = go £(g : E(D*) —> G(D) defined as iﬁ§l) is a graded élgebra
isomorphism.

2) T(U) ¥ K(D). More explicitly, let £1 : T(U) —> T(D*) be the
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unique extension algebra homomorphism of f to T(U), then the mapping
ht : T(U) ——> K(D) defined by h' = heo £! (h' defined in §1) is a
graded algebra isomorphism,

Proof: Immediate consequence of Proposition 1, € 1, and

Theorem &4, § 2,

Let R be a cormutative ring with unit, and A a unitary commut-

ative R-algebra.

Definition: A pair (C,d) is called an A-complex or a complex
over A if and only if C is an anti.commutative graded R-algebra such
that the module C, of homogeneous elements of degree zero is A and

d: C —> C is a homogeneous derivation of degree ) with ded = 0 [ 4 ].

Definition: Let (C,d), (D,5) be Aocomplexes, A graded ala

gebra homomorphism $®: C —— D is called an A-complex homomorphism

if and only if ‘&‘A is the identity mapping on 4 and ¥°d = 6°% .

It is denoted by ¢ : (C,d) —— (D,8). An A-complex isomorphism is

a complex homomorphism which is one-to-one and onto.
Definition: An A-complex (U,d) is said to be universal if
and only if for any A-complex (C,5) there exists a unique A-complex

homomorphism from (U,d) into (C,5).

Notational Remark: When no confusion arises, both a universal

A~complex and a universal derivation module of A are denoted by (U,d) or
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(U(4/R),d). But in case it is necessary to distinguish thenm, (Ul.dl) or
(U1 (4/R),d3) will denote a universal derivation module of A as an

R-algebra,

Definition : An A-complex (C,d) is said to be simple if and

only if C is generated by AY d(A) as an Ralgebra.

Theorem 6: For any unitary commutative R-algebra A, there
exists a universal A~complex and it is unique up to unique complex

isomorphisms,
Remark: A universal complex is simple.

Remark: Any complex homomorphism from a simple complex over

A into an arbitrary complex over A is unique,

Let ((xa'da))a €I be a family of A-complexes,.and each
Xy graded by X, = % 5 OXa’n (direct). Consider the subalgebra
A4 §.> lg Xy, n of the cartesian product g Xy where A= %_(aa)a]aa ¢
Xy,00 8y = & for all o € I}, Clearly A is isomorphic to A, Define

77X —> A & m
T Xg,n L 18 Xo,n bY

d:A+ 3
n3l

d((aa)a + E Z l(xa'n)a) = (daaa)(x + § _>_ l(da(xa'n))aa &y (' X(I,O'

xa.n ¢ xa.n' then d is a homogeneous derivation of degree 1 with ded = o

[ 9 ]. Hence (A + T d) is an A-complex.
n ,

mX
_)_l a ‘a,n’

Definition: Let ((Xa,da))a ‘1 be a family of A-complexes.



Then the complex (A + & mX_ . ,d) is called the product of the
n>l¢a a0
A-complexes (Xy,dy), @ € I.

Consider py : A + E >1 1y X an X, defined by
Pl (ay ), + E?.. 1 T (%)) = 25 + %‘2 1 ¥a,n’ then

Definition: Py is called the projection of the product of

a family of A-complexes ((Xa.da)) a ¢ T With respect to a ¢ 1.

Remark: Let ((Xq,dy)) o ¢ 1 be a family of A-complexes.
For any complex (C,8) and any family of A-complex homomorphism
fq ¢ (C,8) —> (Xa'da) for a ¢ I, there exists a unique complex
homomorphism £ : (€,8) — (& + 121 -1 g Xa.n,d) such that Py° f=

for each 0., Hence in fact, (2 + § > w d) is a categorical

1 a XCL,n’
product in the catagory of all A-complexes and Aw-complex homomor-

phisnms,

fa

14,
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$ 3. Differents.

Let R be a commutative ring with unit and suppose A to be 2
unitary commutative R-algebra such that a universal derivation mudule
(U,d) of A as R-algebra is a finitely generated A-module, say U = Awy +
eee + Aw,, Let OL be the-collection of all sequences (al....,an) of

n elements in A satisfying aywy +... + aw = 0, and Y"( the collection

n
of all n x n matrices “aij” vhere each row (ail,“" ain) belongs
to OL, Clearly, (L is a submodule of A",

It is known | 7 ] that the ideal of A generated by the deter-
minants of all (n =¥) x (n =) ) submatrices of all matrices in Y(is
uniquely determined by R and A, and will be denoted by 4?;, (&/R) or

simply -C‘Z» when no confusion arises,

Definition: 0(7;/ (A/R) is called the V th different of A over

R. We will simply write <) for ﬁo and call ( the different of A over

R,

[y

Proposition 1: Let oé,be any set of generators of (L as sub-

module of A" and ¥{ the collection of all n x n matrices Hbi;j” where
each sequence bil."" b, belongs to o@. Then the ideal of A generated
by the determinants of a1l (n =Y ) x (n - ¥ ) submatrices of all nx n
natrices in Y{ is a(/‘;(A/R).

The following is a well known theorem concerning finitelj gener-

~ ated modules over a Euclidian domain,
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Theorem: Let A be a Euclidian domain, F a free A-module with a
finite basis, S a submodule of F, Then there existé a basis zti'”"tn }
of F and elements CyreeerCy in A such that eilc:,L +1 (ci divides ey 4 1)

for 1 =1, 2, «oon~1and 3¢)Ty,.0040,T Jgenerates S,

Corollary: " Let A be a Buclidian domain, M a finitely generated

A-module, N a submodule of M. Then there exists a set of generators
%wl,....wn} of M and elements ¢y,.4.,¢, in A such that {clwl,....cnwn}
generates N, cilci 41 for i=1, 2, yeey n =1, and if ajwy 4 ,'.....anwn €N
‘there exist elements by,...,b, € A such that 2y = bici for each

i=1, 2, seey, N,

Proof: M is finitely generated and hence a homomorphic image
of a free module F with a finite basis, Let ¢: F —> M be an
epimorphism and put S = ¢ =1(N), then S is a submodule of F and by
the previous theorem, there exists a basis i_'D 1.....'(@-9,} of F and
elements ¢ ,e4e,C, in A such that c,|c, L1fori=12 .ymn-1
and {°1‘1'""°nr'n§ generates S, Let us put W = S°("Ci) for each i,
then clearly %wl.....wng is a set of generators of M and
{clwl,... oW, } generates N,

If agwy + ooe 4 2, W) €N, thenay Uy + coo v 8 T € S5 and hence
89705 + oo + a T,= blcl-cl + eee + bncn‘cn. Since F is free with

i'ﬁl,...,’cn}as its basis, each a; = bici fori=1 2, +¢s, n.

Proposition 2: Let A be a Fuclidian domain whose universal der-

ivation module as R-algebra is finitely generated over A, Let d : A — M

be a derivation of A as R-algebra and B a unitary subalgebrs of A.



Then

< (4/B) dA S & 4(4/B) dB.

Proof: Let (U,8) be a universal derivation module of A as
R-algebra, then U = ASA and ASB is a submodule of U. By the previous
Corollary, there exists a set of generators {wl,...,wn'& of U and
elements o::]_,...,crr1 in A ?such that csley L 3 fori =1, 2,.0sy n =1,

% clwl....,cnwn} generates ASB, and if 23w + «ee + & v € ASB

n
there exist elements by,...,b, € A with a; = bye; for each i. Recall
that U/B) = U/ASB where (U(A/B), D) is a universal derivation module
of A as B.algebra (cf. Theorem 3 .32 , Chapter 0) and let

V : U —> U(4/B) be the natural homomorphism and put o5 = ¥ (wi)
for each i, then %cl,...,on} generates U(A/B). |

Lot 2307 + «ev + 8,0 = 0 in U(A/B), theﬁ a¥y + eee 4 B W € ASB

and hence ay = bici for each i = 1, 2,444, N

On the. other hand, cioi = 0 for each i, since cw; € A6B,

17.

Let (B-: %(rﬂ.....rin)lrii = ci, rij = 0 for j é i, iz 1’ 2..0.. n},

then for any (aj,ee.,2,) in Ol = i(al,...,an)lalol + ees + 80 =0,
a; € A} v 8y = .;t‘ Ty bj' Hence by Proposition 1, «(A/B) = Clesec A
and £ (A/B) = cjesec 77 A, Nowlet ¢ : U-—> M be the derivation
module homomorphism. Then {(A8B) = AdB, and hence AdB = ZAcy & (wy).
Now, each cy divides Cpye i.e, e, = bici with suitable bi' and hence
cn@(wi) = bse; @ (wi) € AdB., It follows that ¢, AdA € AdB, and there-
fore o (A/B)dA = ¢qecuc At dA € cqurve,  1AdB = «}I(A/B) dB. This:

completes the proof.

Proposition 3: Let A be a commutative ring with unit, A’l‘
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a ring of quotients of A with respect to a multiplicatively closed
set T in A, S a unitary subring of A, and STns =Sl% | sé€s, t¢ SnT}.
Then

oF (Apf$1) = T (4]8) Ap
where S' is any subring of Ap such that S € St C 8§,

ThS*®
Proof: Available in [ 2 ].

Proposition 4: Let R be a commutative ring with unit,

= R[ Xyseeas Xy ] a polynomial ring over R with XyseessX, a8 idndeler
minates, A an Realgebra, (\?: P —— A an R-algebra epimorphism, and '9'
a set of polynomials which generates Ker $ . ThendJ(A/R) is the ideal

o (glo -‘-09gn)
? (Xl, case ,Xn)

of A generated by all §( ) where EyreeerBy (-'3 , and

9 (Blseees gn) is the usual Jacobian determinant.
9 (xlg es e ’x

n L)

Proof: Let (V,5) and (U,d) be universal derivation modules
of P and A as R.zlgebras respectively, then (U,d) Y (v/J, a') where
J=Ker § 6P + PdKer § [ ef.§2, Chapter O ]. Let Y: V—— U be
the natural ¢ -homomorphism, then U is generated by Wirese W,
v, =V (dx3) = d $(x;) for each i [ cf.§2 , Chapter 0 ]

n 2 n g

Suppose g € Ker®, then y(dg) = ¥V (Z ZE ox:) =3 ( 85 )w,.

FP ¥ - P E R U TP A i
On the other hand, Y (8g) = d°%(g) =
Henc Z‘n ( 0

ence = .

i= 19 9xi i g

Let cﬁ- be the collection of all seguences (3’( ),...,@( )),

g (-@ , and for any sequence (al,..,an) with alwl + oeee AW = 0,

let fl.ogc.fn é P With (\?(fi) = ai fOI‘ each i. Th.en
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£18X) + oo +1,0%, € Ker $ - &P + P Kexr ¢ . Hence
, n m
£10x) + eou + £ 0% = i}s lhiéxi + §= lfjégj (for some hy € Ker &,

n n m . ’
= § _hox, + I (2 £ 9-54)5xi.
=172 1=1'3=1J 2%

Since V is known to be a free P-module with {dxg,...,dx,} as its basis,

m .
eachfi=h1+5‘.. f .?..g..)

j=1 J 0 Xy *
Acting ¢ on both hand sides, we get

' CEX
ay = §“=l i) ¢ (53,

Hence by Proposition 1, J(A/R) is the ideal of A generated by all

9 (81reeer8p)
8’ ( N (xl""'xn) )

Proposition 5: Let A be an integrally closed domain, F a field
of quotients of A‘, K a finitely 'generated separable algebraic extension
field of F, A the integral closure of A in K, ard x( ¢ &) separable
algebraic over F such that K = F[ x ]. Then A4(A[ x ]/2) c a] x ].

Proof: By [ P. 21 and P. %0, [ 2] ], (A x ]/4) is equal to
the classical Dedekind different of A[ x ] over A defined by traces [ 11 ].

From this it follows that A9(a[ x ]/a) ¢ A[ x] [ P. 304, [ 11) ].

Proposition 6: In addition to the assumptions in Proposition 5,

assume that A be a Dedekind domain, Let # be the minimal polynomial of
x over F, then $'(x) & <J(a/8).
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Proof:. By [ P.P. 32 = 35, [ 2] ], 6(2/4) is equal to the
classical Dedekind different of A over A defined by traces [11]. 1t
is known [ P. 303, [ 11 ] ] that £1(x) belongs to the classical

Dedekind different of A over A, and hence f!'(x) ¢ A (3/4).
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3 4, Free joins of Algebras,

Throughout this section, let R be a commutative ring with unit,
M an R-module, ( My) €1 @ family of submodules of M such that

M= IMa (direct). A1l algebras are assumed to be unitary al-

G ¢

gebras, subalgebras unitary subalgebras,and algebra-homomorphisms

unitary algebra homomorphisms,
This section is devoted to a partial answer to the following
Question: Let A be an algebra containing M. When is the
submodule M'l...Mak(al....zak all different) of A canonically isomor-

phic tO biaj.® XX ®l‘iak?

Definition: 4An (a commutative) R-algebra A is called a

free (commutative) join of a family (4, )a ¢ 1 of its subalgebras
if and only if for any (commutative) algebra C and any algebra homo-
morphism fy : Ay ——> C for each abé I, there exists a unique algebra

homomorphism f : A —» C extending each f.

Example of a free join: It is well known that a tensor
algebra of a direct summand of a module can be imbedded into a tensor
algebra of the module, and hence without loss of generality we can

assume T (My) € T (4), where T(M) and T(My) are tensor algebras of M



and My respectively. It is well known that T(M) is a free join of a

family (T(My)} «é I of its subalgebras,

Lemma 1: Let A be an algebra contalining M, A, the subalgebra
of A generafed by M, for each a € I. If A is the free join of the
family (4g) o ¢ 1 then A is generated by M,

Proof: Let A' be the subalgebra of A generated by M, then
Ag € A' for each 0, Since A is the free join of (Ay )g ¢ I, for the
family of natural injections (fy ), €1 fo ¢ Ay —> A?', there
exists a unique slgebra homomorphism extending eech f,. DBut f may
be considered as an algebra homomorphism from A to A extending each
fy. On the othér hand, the identity mapping on A is also a homomor-
phism extending each f,, and by the uniciue‘ness of such homomorphisms,
f is the identity on A. Thus A!' = A or A is generated by M as an

algebra,
A, B, C, ... will denote algebras containing M, and sub=
algebras A,,By,C ,+.. subalgebras generated by ¥, in 4, B, C,...

respectively, for each a ¢ I.

Proposition 1: Let A be a free join of (Ay)q €1

$ : A —— B an algebra homomorphism such that ¢ |M is the identity
on M, and ¥, : Ay —> By be defined by P = F|A, for each a.
Then B is a free join of (By )q ¢ T if and only if ¢ is onto

end Ker ¥ is the ideal of A generated by & Ker ?0.'

Proof: Suppose B is a fres join of (By) a ¢ I+ By Lemma

22,
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1, B is generated by M, and hence § is onto. We will show Ker § =
J, the ideal of A generated by & Ker ¢ 4. Ker § 2 J always, since
Ker § 2 Ker ¢, for each a, On the other hand, since Ker & C J,
a - a' ¢ Ker §, for a, a! € Ay implies a - a' ¢ J. Hence we can
consider the mapping fy : By — 4/J defined by fy(b) = a + J,

béBy, at 951 (b).

Ya
A(x. —_— Ba
Y wuvt ~modure
S
A > B | %y
lf
Vv

fy is an elgebra homomorphism such that f4° @, = v |Aa, vhere VY :

A —— AJ/J is the natural homomorphism, S:'mce B is a free join of

( By g ¢ I» there exists a unique algebra horﬁomorphism £f: B—> Afd
extending each fy. Here f°¥P =y , since foF and ¥ are both algebra
homomorphisms from A into A/J extending £ °®, for each a. Hence

Ker § C Ker v = J. Thus Ker ¢ = J. Conversely, suppose B is
generated by M as an algebra and Ker ¢ = J, Let X be any algebra and
gy ¢ By —> X any algebra homomorphism for each a € I. Then there

exists a unique algebra honiomorphism /1 s A —> X extending each

gao?a'



Here M(Ker ¢ ) = 0, since M(Ker®y) = gyo @ o(Ker S’a) = 0 and Ker @
is assumed to be the ideal gensrated by & Ker S’a. $ is assumed to
be onto, hence there exists an algebra homomorphism g : B —— X
such that gog = 4 « Now for any b € By, let a ¢ ¢ al(b), then
g(d) = gog(a) = M (a) = gyo P (a) = gy(b). Hence g|By = g, for
each a, g is a unique algebra homomorphism extending g,, since B

is generated by ZBy. This completed the proof,

Corollary 1. Let T(M) and T(Mg) be tensor algebras of M
an My respectively. Let ¥ : T(M) —> A be the algebra homomor-
phism determined by the identity mapping M — 4, and $ 4 3 T(My)
———> Ay the algebra homomorphism determined by the identity map-
ping My —> A, on M, for each a, Then A is a free join of (4Ay )Q» €1
if and only if & is onto and Ker @ 1s the ideal of T(M) generated
by X Ker @ 4.

Proof: T(M) is a free join of (T(My)) @ é I and hence

Corollary 1 is a trivial consequence of Theorem 1,
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Corollaxy 2: Let A be a free join of (Ay) @I Then
A= .E A, (direct), n=0, 1, ..., is a graded algebra with AI =M
if and only if each A, = g Ay (direct) is a graded algebra with
Aa,l = M, for each a.

Proof: Let ¢ : T(M) —> A and ¥y : T(Mg) —> Aq be the
algebra homomorphisms det:ennined by the identity mappings on M and M,
respectively. Then it is known that C,j’lT(Ma) = @ 4. Hence
Ker @ ~ T(Mg) = Ker @ .

If A is & graded algebra with Ay = M, ¢ is a graded algebra
homomorphism and hence Ker & is a homogeneous two-sided ideal of T(M).
Hence Kexx® m~ T(M,) is a homogeneous two sided ideal of T(My). Thus
Ker @, is a homogeneous two sided ideal of T(Ma) and hénce the grading
of T(M,) determines one on A, such that A, is a graded algebra with
Ao,y = Mg

Conversely, suppose A, is a graded algebra with Aa,'l = M, for
each a; then Ker &, is a homogeneous two sided ideal of T(My) for
each a. Since Ker @ is the two sided ideal generated by I Ker §,

(by Corollary 1), Ker @ is generated by homogenecus elements as an
ideal and hence a homogeneous ideal., Thus & induces a grading on A

such that A becomes a graded algebra with A} = M.

Remark: As a consequence of Corollary 2, we can say the
following: Let (Ay)q ¢ I be a family of graded algebras where each
Ay is graded by Ay = .E S OAo"n and Ay is generated by Aa,l' Theh in
the catagory of all graded algebras and graded algebra homomorphisms,

there exists a free join A of (Aa) » given by the ordinary free join,
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graded as described above, provided the latter exists,

Lemma 2: Let & : T(M) —> 4, 94 ¢ T(My) —> Ay be the
same algebra homomorphisms as in Corollary 2. Then
(1) Ker P ynR=Ker?n R for each a.
(2) (Ker ¢ an R)M = ¢ for each a.
Proof: (1) Trivial (2) It is sufficient to show (Ker$ n R)M = O.
For any r € Ker® n Rand x ¢ M, rx € MnKer® . Since QM is the

identity mapping on M, rx = @ (rx) = 0. Hence (Ker ¥ A R)M = O,

Theorem 1: Let A be a free join of a family (4,) aéI of
graded algebras with Aa,l = M, for each a. Then for any finite sequence

01seee,0p (all different), the linearization f : Mal R oo ®M“k —_—

MQ1 coe Mak (in A) of the multilinear mapping fy : Mg’l X eee X Mak-———_).

Mal coe Mak (in A) defined by fo(xal,...,x%) = x“l vee xuk,

Xy € Mai' is an isomorphism,

Proof: Let ¢ : T(M) —— A and ¥y : T(Myg) —> A, be the
same algebra homomorphisms as in Corollary 2., We first show that
Mg, oo Mg (0 T0D) o Ker g = 0. Put J = Ker§ and Jy = T (M) J,
then it is sufficient to show Mc'l cee Mu'k (in T(M)) n Jx = 0. For any
u ¢ Ker @ o U = E w, w ¢ Tn(Ma), '{ya(u) = Z‘J’a(un) = 0., Since

(‘?a is a graded algebra homomorphism, C\S’a(un) = 0 for all n, and hence
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9a(u1) = 0. Since Ker $ onMy = 0, vy = 0, Thus Ker 9, ¢ E >0 T (My).
' nf{1l
Since J is the ideal of T(M) gsnerated by & Ker?¥, (by Corollary 1), and

since Ker & , C %3,1_ 1 T,(My), (Ker$ A R) M = 0 (by Lemma 2.), J = ;‘i Iy

(direct) by J being homogeneous ideal, any element of J) is expressed

as T S x sen y X t Mg, for each J,
Bl’ see 9Bk il'.! . oik ilBl XikBk ijsj , BJ

where f3, = 53 for some 1, j with i £ j.

Suppose % € Mal veo Mak (in T(M)) AJk and assume x £ O; then x

can be expressed in two different ways, namely,

X = Z- veee X, = Z Z

X X X
ia Q. iB eee i [
iln'tcoik 171 lkk BlsooosBk il:--ooik 171 kBk

vhere xijaj ¢ M“j . xiij ¢ MBj for each j and By = Bj for some

i, Jwith i £ j. Let €y, ¢ T(M) —> T(M) be the endomorphism deter~
J
mined by the mapping W, : M —— T(M) defined by “ajma. = identity
J J
on Mg, Mo Iy = 0 for all a f oy If we act a) On %, then
N

0= z Z— Xi oee X ] _' {B 'oco'Bkk.
Bl,coogBk A il'.."ik lBl 1kBk G1¢ 1

Hence x= o > Xs cee Xs o0 s € $Br,enniBrl .
Bl""‘Bk il""’ik 1181 ikBk 041 { 1 k}

Continuing this process for eaz....,g:ak. we get

x:t Z X ese X » Q. .o'0|a B OOCOQB 14
ilu-uogik‘ 1131 ikBk 1 k é { 1 ki

But this is impossible, since the (xj are distinct but the S,j are not,
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Thus x = 0, This proves M“l ces Mak (in T(M))nJ = 0, Hence ¥ maps

M

o0 e M
0

Q
k
g Mq1® ces @I'qu-——) Mql vee My (:m T(M)) be the canonical injection,

(in T(M)) one-to~one and onto Mal ceo Ma (in 4), Let

then £ = ¢ o g is an isomorphism. It is obvlous that f is the linear-

ization of fo'

Theorem 2: Let A be a free join of (4q4 )a €I J the ideal
of A generated by xy - yx for all x, y ¢ M, and J; the ideal of Ay
generated by xy - yx for all x, y € My, for each a, If Renly = 0,

e the unit of A, for each &, then A/J is a free commutative join of
(bafd0 o ¢ T »

Proof: Since M = ‘EMa (direct), J is the ideal of A generated
by xy - yx for all x € My, y ¢ Mg, for all a,B. We will first show
that Jg = Jﬂ Ag. Suppose x (€ Ay) is in J, then

X = Xy . (x ) "‘x )
al,o..'ok :(0‘1 0-1 ai"’"l i+1 al xa akn

xa'j,ya:j ¢ Maj. Consider the algebra homomorphisms f, : Aa-——> A,

identity on Ay, fg : A3 —> A defined by fg|Re = identity on Re,
fglMg = O for each B £ a. Let £ : A —> A be the unique algebra
homomorphism extending f, and each fB and act f on x. Then

X = Z xll coe Zl J -l (xlale yijxij)xij + 2oocxiki » where all

x5 € My. Hence x € Jy. This implies Jy D Jn Ay and since Ju € In 4y
always, Jg = Jnhg.
Hence Ay/J, can be imbedded into A/J by ay + Jy cnm>ay + J, ag € Ag.

Now we will show that A/J is a free join of (Aa/Ja)a, ¢ 1



For any commutative algebra X, and any algebra homomorphism

fo ¢ AyfIq— X, £q°Vq ¢ Ay ——> X is also an algebra homomor.
phism, for each &, Hence there exists a unique algebra homomorphism
M A ——> X extending each fg° V¥ 4. H(J) = 0, since H(xy - ¥x) =
/-‘(x)/‘(y) -4 (y) p(x) = 0, because X is commutative. Hence there
exists an algebra homomorphism f : A/J —— X such that M= f£ov,
This algebra homomorphism f extends each f,, since f(a + J) = fo) (a)
P(a) = £5°9 q(a) = fola + Jy), & € Ayge Finally f is unique, since

A/J is generated by £A,f/Jy. This completes the proof.

Corollary 3: Let A be a fres join of (Aa)a ¢ I J the ideal
of A generated by xy - yx for all x, y ¢ M, and Jg the ideal of Ay
generated by xy - yx for all x, ¥y {- My, for each a, If A is a graded
algebra with M = Ay then A/J is also a graded algebra and is a free
goimutdtive join of (Ayfdy) g ¢ 10 |

Proof: If A is a graded algebra, i.e. A = ZA, (direct), then
Re C A,y M = Ay, and hence RenM = 0. Moreover, RenlMy = 0 obviously.

Thus Corollary 3 is a trivial consejuence of Theorem 2,

Corollary 4: Let S(M) and S(My) be symmetric algebras of M
and M, respectively. Then S(M) is a free commutative join of

(s(ty)) o €I
Proof: Put A = T(M) in Corollary 3.

Theorem 3., Let C and D be commutative algebras containing M.

Let C be a free commutative join of (Cg ) €I g: C——> Dan



algebra homomorphism such that GlM is ‘the identity mapping on M, and
%q 3 Cq, —> D, be defined by &g = ¢|c, for each @, Then D is a
free commutative join of ( Dy) o ¢ 1 if and only if & is onto and
Kery 1is the ideal of C generated by T Ker ¢.

Proof: Similar to the proof of Proposition 1.

Corollary 5: Let a commutative algebra C be a free commutative
Join of (Cy )q ¢ T+ ThenC = .E C, (direct), n= 0, 1, 2,000y i5 2
graded algebra with[Cl = M if and only if each C, = § Ca,n (direct),
n=0,1, 2, .o., is a graded algebra with Cy 3 = M, for each a,

Proof: Similar to the proof of Corollary 2,

Theorem 4: Let a commutative algebra C be a free commutative
join of a family (Cqy )gq ¢ 1 of graded algebras with Cq,1 = Mg for each
a. Then for any finite sequence 0j,..e,0) (a1l different), Mal'"Mak
(in S(0) & My o0 uly (inc).

Proof: Similar to the proof of Theorem 1,

Theorem 5: Let a commutative algebra C be a free commutative
Join of & family (Cq )4 ¢ 1 of graded algebras with Cy j = My for |
each a, Then for any aj, 02 (g # 05), the linaarization .o -
£ Ma1®M(12 —_— Mal Ma2 (in C) of the bilinear mapping
£, s M“l x Maz —_— Mal Maz (in ¢ )defined by £,(x1,%p) = X] Xp,
Xy €M, , is an isomorphism,
Proof: Let T(M) and S(}M) be a tensor elgebra and a symmetric

algeﬁra of M respectively. We will show that for any al,cz(al 4 02),

30.
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Mal M02 (in T(M)) = M“l Mo.z (in S(M)). Let J be the ideal of T(M) gen-
erated by all xy - yx, X, y € M. Since M = § M, (direct), J is the
ideal of T(M) generated by all xy - yx, x € My, ¥y € Mg, for all a, 8.
Our claim is Mal Ma2 (in T(M))nJ = 0. Since T(M) is a regularly grgded
algebra generated by M, it is sufficient to show Mal Maszz = 0 where

J2 is the submodule of all homogeneous elements of degree 2 in J.

Suppose x € Mal Maszz, then

X = }52‘ xalxa_2 = 8 }:B § yBlyB > = Y8 2B, ° Consider the endomorphism
1:P2
e ¢+ T(M) ——> T(M) determined by the module homomorphism gy t M — M

defined by e, |My, = the identity in Mg, for 1 =1, 2, and ¢ |45 =

for all 8 é {al, azzg « If we act € on x, then § xalxa2 =

z - . Hencezxx -z =-% ¢ .
5 (yalyaz 02ya1) 0y ap yalyo;z yazya‘l M(X-l (¢ ﬂ G. (11

On the other hand, it is well known that in T(M), Ma agﬂMazMal =
and hence X = 0 and % X, = % .
y T2’y x ey = 5 YoyYay

It is also known that in T(M) MalMa 5 MaZMa by the mapping
X, X A X x and since & v, = 0 implies X = 0,
) oy * y Y7oy P v Jo 7o,

Hencex:ixalxaz_z = 0, andthusM MaﬂJ*o

Y,
Y,
This means that the natural homomorphism y : T(M) —> S(M) maps

MalMU’z (in T(M)) one-to-one and onto MalMaz (in S(M)) and hence
1\4&1140,2 (in T(M)) ¥ Malfviaz (in S(M)) as module,

M%®I402 allfa (in T(M)) = MG.J_MGQ (in S()) ¥ M, Ma2 (in C) by the
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previous theorems and corollaries, This isomorphism is obviously

given by the bilinear mapping f .

Proposition 2: Let a commutative algebra C be a free commutative

Join of a family (Cy) ¢1 of graded algebras with Con,l = My for each

o, If each My is a free module, then the linearization f : M01® ese ®MCLK

—_— Mal..'.Mdk (in C) of the multilinear mapping f, : Mal X ees X M“k

—_— Mu'l ces Mak (in C) definéd by fo(al,...,ak) = 8jeee8,ay .é Mai,

is an isomorphism,

Proof: Let X, be a basis of My for each & € I. Then it is well
known that T(M) is a free algebra freely generated by fhe set ‘&J X, and
S(M) is a free commutative algebra freely generated by the set L&J Xy
{or a polynomial ring with % Xa as a set of indeteminates ). Hence

Mc‘l'“Mak (in T(M)) is a free module as {xa:'....xakbccri ¢ Xai} as basis

and Mal...Mak (in S(¥)) is also a free module as §'qu...xakixqi ¢ Xci }

as basis, Hence Mal...Mak'(in (M) = Mai”'Mak (in. S(M)) where the
isomorphisnm is given by the identity mapping on ixa,l...x.:lk‘xa:'L ¢ XO‘:’L?S .
Sinee Moy @ wre @y ¥ Mo ool (in T(4)) and oy -+ ol (in 5G0) ¥
Mal...Mak (in C) by Theorem 4, M“l@ coe @Mak 4 1‘10.,1...1‘1(1k (in C) where

the isomorphism f maps a, @ ... ®a, nv> a, ..,.a, . Hence f‘is the
» | " %

“x

linearization of the multilinsar mapping £, 3 l‘ial X eseX Mak—> M, «osl

N %
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):a es s

defined by fo(aal, vesd o a’k

O
Theorem 6: Let a commutative algebra C be a free cormutative
Join of a family (Cq) ¢ 1 of graded algebras with Cq 7 = Mg. If
each My is projective, then the linearization g : Mal® ces @M —_—
Mal...Mak (in C) of the multilinear mapping g, : Mdl X eoe XM, —

Malc . or{ak defined by go(aalo see .aak) = 8. oc oa-ak ai (’ Mai' is an

isomorphisun,

Proof: If each My is projective, then there exists a free
module Fy with Fg & M, + Ny (direct) for some submodule Ny for each
a and F = g Fy (direct). In fact, My is projective, then My is a direct
summand of a free module G,, and if we consider F = % Gys external sum
of Gy, a € I, and put Fy = {x{x ¢ F, x(B) = 0 for a11 B £ a3, then
F=XF,y (direct) and Fg, it Gy for each a, and hence each M; can be
imbedded into Fy and may be regarded as a direct summand of Fg.

By Proposition 2, the canonical mapping f : Fa1® cee ®Fak — Fal'“Fak

@in S(F)) is an isomorphism, Let i : MO‘1® cee ®Mak-~——~) Fa1®‘..'.®Fak

and j Mal...Mak (in S(M)) ——> Fal.”Fak (in S(F)) be the canonical
homomorphisms, then i and j are monomorphisms, since each Mai is a

direct summand of Fai [ef. [ 4], p. 78 and p. 216 ].

Define a mapping g : Ma’l® ces ®Mak————> MC"L"'MG‘k by

g = (ilMdl"'Mak)-l" f <3, then g is an isomorphism and the linear-

ization of the multilinear mapping o



Remark: So far we have been discussing free joins in the
category C:(R) of all unitary R-algebras and unitary algebra homo-
morphisms. Now let us consider the subcategory'G'(R) of (2(R) consiste
ing of all unitary Realgebras A such that a > ae, a € R and e fhe
unit of A, is a monomorphism, and all unitary algebra homomorphisus

between these. Naturally; in G’(R), an R~algebra A is called a free

(commutative) join of a family ( Ay ), ¢ 1 of subalgebras if and only if
for any (commutative) algebra C belonging to c’(R) and any family of
unitary algebra homomorphisms £y : A, ——> C, o € I, there exists a
unique algebra homomorphism f : A —> C extending each f;. Now suppose
A belongs to @’(R); then it can be easily shown that A is a free join
of (Ag) g ¢ 1 1in G (R) if and only if A is a free join of (Ay) 4 ¢TI
in C?R). |

Loy



$ 5. Valuation rings and integral closure.

Let K be a field.

Definition 1: A place of K is a non~zero homomorphism p of

a subring S of K into a field & with the property that x € X and
x Q;S implies x?ié S and p(x‘i) = 0. The ring S is called the

valuation ring of the place p.

Proposition 1: Ker p (usually denoted by Y'{ ) is the only

maximal ideal of S.

Proposition 2: Every valuation ring of a place of K is in.

tegrally closed.

Proposition 3: Iflal,....am are elements of K, not all zero,

then for at least one integer j, 1 < j <m, it is true that a4,/ €s

for i = 1, 2. eeesy My, aj £ 0.
Theorem 1: Let R be an integral domain, K a field containing
R. The intersection of all the valuation rings S in K with S2 R is

the integral closure of R in K,

Let K, be a field and K be an overfield of K,, We say that a

35.



valuation ring S in K is an extension of a valuation ring So in Ko if

SnKO = Soo

Proposition 4: Let Y{ and Y( o De the maximal ideals of S

and S, respectively. S is an extension of S, or Sn Ko = S, implies

YL Se = Y1, and is equivalent to "S 2 S, and V"{?_‘"T ",

Proposition 5: If S is an extension of 5, then S_ + Y{/YY

is a subset of S/t\. Moreover, if K is a finite algebraic extension
of K., then $/¥X is also a finite algebraic extension of So + Y/ W
and we have [S/W‘{ : S, +Y/e] < [ k: o ].

Proposition 6: The number of valuation rings in K which are

extensions of S, is not greater than the degree of separability

[K:KO]S.

Proposition 7: Let R be a subring of a field K, ¥ and &

two prime ideals in R such that ? < 9. Suppose S is a valuation

ring in K such that W{an R = ¥, where V{ is the maximal ideal of S.

36.

Then there exists a valuation ring S' in K such that S' 2 R, WMnR= 2

and S' C S where W('is the maximal ideal of S!,

Theorem 2: Let K be an algebraic extension of a field K,, S
a valuation ring in K which is an extension of a valuation ring S,
of K, and —S-o the integral closure of S, in K. Then S is a ring of

quotients of -S-o with respect to the prime ideal \N‘('n S, of '5,, where
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W{ is the maximal ideal of S.

Theorem 3: Let R be an integrally closed domain, Q its
field of quotients, K a finite separable algebraic extension of Q ,
and R the integral closure of R in K, 7
1) There exists a basis §Xy,s.e,X,% of K over Q such that R is
contained in the R-module § Rxs.
2) If R is noetherian, then R is a finite R-module and is 2 noether-
ian ring.

3) If R is a principal ideal domain, then there exists a basis

3 yl.....yn} of K over Q such that R = § Rys.

Proposition 8: Let R be an integrally closed domain, K a

field of quotients of R, and P be a prime ideal in R. If an element
x € K satisfies an equation

a X" + alxn'l + esst 2 =0
where the coefficients aj are in R but not all in ?3 s then either x

~or x-1 belongs to the ring of quotients R@ of R with respect to Q.



CHAPTER I

Extensions of complexes

§ 1. Natural Functors given by algebra homomorphisms.

Let R be a commutative ring with unit, A and B unitary com-
mutative R-algebras, § : A ~——> B unitary algebra-homomorphism ,

(C,d) an A-complex, and (X,8) a B-complex.

Definition: A graded R-algebra homomorphism $ : C— X

is called a & ~complex homomorphism if and only if _‘E?!A = ¢ and

Fod = 80§, and will be denoted by ¢ : (C,d) — (X,8)., In
this case, (X,5) is said to be & =simple if and only if X is generated
by BY5(E)Y $ (C) as an R-algeb;~a.

Lemma 1: Let (C.d) be an A-complex, Then for any B-complex
(X,8) and any $ - complex homomorphism ¢: (C,d) —— (X,8), there
exists a @*-simple B-complex (X*,$*) and a complex monomorphism
J ¢ (X¥,6%) —— (X,8) over B such that jep* =9 .

Proof: Let X* be the R-subalgebra of X generated by BY3(B) Y ¢(C).
C is a graded algebra and hence C is an algebra generated by its
homogeneous elements,and since § 1is a graded algebra homomorphism,
¥ (C) is also generated by homogeneous elements of X, Hence X* is

38.
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generated by BYs(B)Y % g(c) ctc homogeneous} and hence is a
graded algebra and also obvicusly an anti-commutative graded algebra

6(X*) € X*, since for an arbitrary element

n
u = ;-‘: b19 (ci)é(bil)oc .6(bimi)

in X*, where b;j’bil’“'b ¢B, cy €C,

i
n
B(u) =2 (a(by) g><ci)a<bil)...a(bimi) IR ICRLICHPRRICHS

(since 8% = 0)
€ X*,

since 84 (c;) = d(ey) € X*.

‘Let &* = 8|X* and g * : (C,d) — (X*,56*) be defined by ¢ = ®*, then

0% ; X* —— X* is an R-derivation, homogeneous of degree 1 with “

8% 8% = 0, and hence (X*,6*) is a B-complex, ¢* is a g ~complex homomor-
phism and (X*,5%) is a @ *-simple, Let j : X* —— X be the natural

injection, then j is a complex monomorphism over B and satisfies jeg* =g.

Theorem 1: For any A-complex (C,d), there exists a Bwcomplex
(cr,d') and a § ~complex homomorphism m; :(C,d) —— (C',d') such
that for any B-complex (X,8) and any & -complex homomorphism ¥ : (C,d) —s '
(X,8), there exists a unigue complex homomorphism g ' : (C!',d!) — (X,5)
over A with $'eT =% . Moreover, (C',d!') and T are unique in the sense
that if a B-complex (C,d) and a § -complex homomorphism Te ¢ (c,d) — (E,E)
are another such, then there exists a complex iscmorphism i : (Ct!,d!) ——>

(C,d) over B such that 1o, = T co

i

))

Proof: For any § -simple B-complex (S,? ) where $: (C,d) — (5,9 )
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is any § -complex homomorphism, |X| < |Bl{c|X o holds. Hence there |
exists a family ((Sg, 9(1)3 o éI of ¢ ,-simple B-complexes, indexed

by a set I such that for any $-simple B-complex (S,9 ), there exists a
complex isomorphism i, { (84,9 q) —— (5,9) over B with 1Py =%,

Here I £ #, since a trivial B-complex (B,8) is & =simple where 6 = O

and g : (C,d) > (B,6 ) 1s the § -complex homomorphism defined by

¢la=%, gplCn:Ofornil.

Let us take the product (B + L‘ 51 Y Sa n? ?) of a represent-
ative family ((Sgq, a)) a¢1 of (:Pa-simple B-complexes | cf. §2,

Chapter 0 ], and 1 : (C,d) —> (B + D ?) be the 3 -

>1 G.n'

complex homomorphism defined by m( ;".:) 0 epy) = (<-7’0‘(co))(1 + i: S 1‘( S’a(cn) )0.

where ¢, € C;,. Let C! be the subalgebra of B+Z

] (Txr Sa,n generated

by BYI(E)Y n(C). Clearly 9(C!') CC! and hence if we put d! = 3 |c*,
then (C*,d') is a B-complex. Let m; : (C,d) —— (C',d!) be the
& -complex homomorphism defined by Mz = 7, then (Ct,d') is a T-simple

B-complex.

Now, for any B-complex (X,8) and any ¢ -complex homomorphism
$: (c,d) — (X,8), there exists ¢ *~simple B-complex (X’gé*) and
a complex monomorphism j : (X*,6*%) —— (X,8) over B such that
je¥* = ¢ . Hence we can choose a § g-simple B-complex (Sg, 38),
B € I, from the representative family ((Sg, 'Ba)) a ¢ T Such that there

exists a complex isomorphism ij : (s, 93) —> (x*,6 *) over B with
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iBo@B =§*. Let pg : (Cr,d8') — (53,93) be the projection, then

e -— ' o .D <) ! -— C-. o = Y
Pg s '?B' clearly. Let us put ¢! = j iB Pgs then ¢ o = 3 1% paooTTC =¢

Therefore, there exists a complex homomorphism ¢! : (cr,4r) — (X,8)

over B such that § 'oTTC =G . .

-

The uniqueness of §! is clear, since (C!,d!) is n‘c-sjmple

from the definition of (C!',dt),

Finally, to show the uniqueness of (C!,d!) and Moo let 2 B-
complex (C,d) and a & ~complex homomorphism T * (c,d) —— (C,d)
be another such, then there exists a unique complex homomorphisms
T, s (Crar) — (C,d) over B with T'geTl, = T, and

m, (C,d) — (Ct,d') with Mo T =T e Now

Moo Tl s (C,dY) > (C',d') is a complex homomorphism over B

~such that (mgeTo)er = M. But the identity mapping i,

also such a complex homomorphism over B and hence by the uniqueness,

on C! is

TT'C° Tle = ic,. In the same way, 'c'CoTr'c = ia. Hence -t'c :
(cr,da') —— (c,d) is a complex isomorphism over B such that

-ctcenc = Tgce This completes the proof.

Corollary 1: Let (C,d) and(D,5) be A-complexes and (C?,d')
and (D',5') be the corresponding B-complexes, Then for eny A-complex
homomorphism % : (C,d) —— (D,8) there exists a unique B-complex
homomorphism «t' : (Ct,d') — (D',6!) such that GleTp = ey,

Proof: Put ¢ = e & in Theorem 1,
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Let § (A) be the category consisting of all A-complexes and
alJ. complex homomorphisms over 4, and @ (B) be the category of all
B-complexes and all complex homomorphisms over B, Let T 3 ! G (4) —
§ (B) be the mapping defined by T 3 ((c,a)) = (C1,d') for all A-complexes

(C,d) and T 3 (¢) = ¢! for all complex homomorphisms over A,

Let (C,d), (D,8) and (G, ) be A-complexes and let ¢: (C,d) — (D,5)

and %: (D,d) > (G, ) be A-complex homomorphisms, Then

Mo ke = T§ (cr)anv 9 = T§ (q»)aT§ (¢)eice  Also,

no4og =Tz (%o ‘f)orrc. Hence by the uniqueness of a B-complex
homomorphism £ : T 5 ((C.d)) —s T 3 ((G,?)) such that Ter(Q»o ) =
£o 70, Tg (§09) = Tg (<r)cT§ (®). It is clear that if

% : (C,d) — (C,d) is the identity mapping on C then Té(gi)is also
the identity mapping on T4 ((c,d)). This shows that Tg is a

covariant functor.” We shall now investigate some properties of this

functor.T T -

Lemma 2: Let (U,d) be a universal A-complex, (X,5) any
B~complex. Then there exists a unique $ ~-complex homomorphism
(3 : (U,d) B (xs6)~
Proof: letus put Y= Ag@ E) lxn. and define (a,x)(b,y) =
(ab, £(a)y + E(b)x + xy), a,b € A,x,y € Z X, then Y =Z Y, (direct)
‘ n>1 n>0
is an anti-commutative graded algebra where Y, = i(a.o)la € A} (in fact

Y,

e

A) and Y, =§_(O,xn)lxn €X,% forn>1, Define 9 : Y — Y by
? (a,x) = (0,8°3(a) 4+ 6(x)), then a straight forward calculation shows

~ that 9 is an R-derivative, homogeneous of
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degree 1. Hence (Y, 3) is an A-complex., Hence there exists a unique

A-complex homomorphism ¢, : (U,d) —— (Y, 9).

Let us define a mapping $; : ¥ — X by ®1(a,x) = $(2) + x,
then @loa(a,x) = 9’1(0,50§(a) + 0(x)) = 8(2(a) + x) = 50@1(a,x) and
hence clearly (Pl is a gz:aded algebra homomorphism with C\Pl‘A =% and
9109 = 609y i.e. $; is a T -complex homomorphism,

Define § = 3’10 ¥ , then § is a $ ~complex homomorphism from

o'

(U,d) to (X,8) and the uniqueness of such ¢ is clear. Hence Lemma 2.

Theorem 2: The funétor TE sends a universal A-fcomplex to
a universal B-complex.

Proof: Let (U,d) be a universal A-complex, (X,5) an arbitrary
B.complex. By Lemma 2, there exists a unique % -complex homomorphism
¢ : (U,d) — (X,5). Hence by Theorem 1, there exists a complex
homomorphism ¢t : (U',d?) — (X,8) (in fact, (U!,d') = T;E((U,d)))
such that ¢ = ¢ 'OWU. To show the uniqueness of <!, it is sufficient
to show that (U',d!) is simple. We know that (U',d!') is r[U-simple
i.e. U' is generated by ‘Bu_d'(B)UTrU(U). Since (U,d) is universal,

U is simple, i,e U is generated by A“dA, and hence ‘ITU(U) is generated
by £(A) and d*(E(4)). S(A) € B, d*(F(a)) Sd'(B). Hence U! is

generated by B and d'(B). Hence (Ut,d') is simple.

Theorem 3: Let A, B, E be unitary commutative R-algebraé,
$:A——> B, ¥: B—— E be unitary algebra homomorphisms, and

Tz :£(A)— §(B), Tg :Q(B) — C(E). Tg.g :E(A) > G(E)




are the covariant functors defined as previously, then Tgﬁ—‘> ry and

T§ o T 3 are naturally equaivalent,
Proof: Let (C,d) be an A-complex, (X,5) an arbitrary E-complex,

: (C,d) —— (X,8) a TeoF ~complex homomorphism, Let X% = Beg I z lxn

and define (a,x)(b,y) = (ab, T(a)y + ¥ (b)x + ?CY). 2,b ¢ B,

X,y €2 S lxn, and 8* : X* —— X* be the homogeneous derivation of
n

degree 1 defined by 6*(b,x) = (0,6°¥ (b) + 6x), b € B, x ¢ §> 1xn. then
as in the proof of Lemma 2, (X%,5*) is a Bcomplex, Define ¢4 :

(c.d) —— (X*,5%) by ?1( izz Sn) = (&leg) ¥( Eé?_ ién)). én € Cn,

then %’1 is a € -complex homomorphism., Hence by Theorem 1, there exists
a unique B-complex homomorphism. ¢ , : T§((C,d)) —> (X*,5*) such that
@ 20T -_-CJ’l. Let j : (X*,6*%*) —— (X,6) be the mepping defined by
j((b,X)).z ¥(b)+x, b »(- B, x ¢ ;‘;‘) lxn, then j is also ¥ -complex
homomorphism, Hence jo ¢, : T§((C,<-i-)) —> (X,8) is a § -complex
homomorphism and hence again by Theorem 1, there exists a unique E-

complex homomorphism 333 T—°T ((C d)) —— (X,d).such that
‘5 BO"C' = j °© (‘?2° 30.91 =S>i. since jcs?l(z cn) = J(§_(CO)’ (\? (‘E > 1°n)) =

FTeTley) + ¢ ( ﬁ?; 1cn) = ¢ (nxi lcn). ¢, € Cp. Now we show that

?3 (“C|° C) =9 . In fact 1T3°TTC' TT j ‘\'?20" j %)l = ? . the
uniqueness of %3 is clear, since Ty° Ty ((c,d)) is ("C'D TTC)-simple. On

the qther hard, let T : (c,d) — T§,§((C,d)) be the

natural ¥¢¥ -complex homomorphism, then T ToE (¢) : T§Q§ ((c,d)) — (X,8)
is a unique E-complex homomorphism such that Tg.gp (<« )°‘CC = 9. Hence

by the uniqueness of such E-complexes and E-complex homomorphisms
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[ ef. Theorem 1 ], there exists an E-complex isomorphism i : T, g ((c,d))
— T§°T§((C,d)) such that j.enc'orrc = Toe This shows that T3 ¢

and T§° T§ are naturally equivalent.
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§ 2. Extensions of A by indeterminates.

If B is an arbitrary unitary commutative R-algebra extension
of A and & : A—B the natural injection, then fér an A-compiex (c,d)
and a B-complex (X,8), a F -complex homomorphism < : (C,d) — (X,8)
maps the elements of A identically, and hence % ~complex homomorphisms

in this case will be called complex homomorphisms over A. Also, B® A

[

is an anit-commutative graded algebra, graded by B AC = § B® ACn
= 0
(direct). Og ¢ C —— B®C will denote the canonical mapping defined

by ac(c) =1®¢c forc ¢C.

Proposition 1: Let d, = d[A and 4y : B—— B® ,Cp be an

R-derivation such .tha.t 0 d, = EO!A. Then there exists a unique

homogeneous R-~derivation d:B @ AC — B® AC of degree 1 such that

Gerd = deag and d|B = d,.

Moreover, de Eo = 0 if and only if (B ® AC,E) is a B-complex.
Proof: Define ¢ : BxC — B®ACbe
9 (f,¢) = d,f(1®c) + £@de, £ ¢ B, ¢ € C,

Then ¢ is clear).y biadditive and

$ (af,e) = 3, (af)(A®c) + af ®@de  (a € A)

((dga)f + a(df))(1®e) + af @ de

((1®da)f + a(d £))(1@c) + af @ de

f@da+ df(a®ec) + f@ade

d,f(1® ac) + £ ® d(ac)

P(f,ac).
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Thus @ is A-balanced,.

Therefore there exists an additive group homomorphism d: B@ AC —> B® AC
such that d(f@e¢) = 4 f(1 @ ¢) + f®de. Clearly d is an R-linear
mapping, and moreover, for f ® ¢, ' ® c' where f, f' ¢ B, c,c! € C,

¢ homogeneous of degree n,

d((£ @ e)(f' @ c')) = A1 @ ce?)

d_(££1)(1 @ ce!) + ££1 @ d(ce')

((d£)f + £(3,f1)) (A ® cet) + £f' @ ((de)e! + (-1)%c(de?))
(o) (1@ )£ @) + (1)L @e)(df A @ ct)
+ (f® L)' @c') + (L)L ® c)(f' @ dc?)
@ 1 ®e) + f@dc)gf' @c') + (LD )@ (1 @) + £1 @ de')
@@ @ch) + (DML e)(alfr @et)).
By the definition of d, d(B® ,Cp) SB@Cy , 1, and thus we proved

n

it

that d is a homogeneous R-derivation of degree 1. For the uniqueness
of E. let & : B ® AC —> B® AC be a homogeneous R-derivation of

degree 1 such that a,°d = 8o, and 8B = d,, then

o1
(f@c) =8(f(1®c)) = 8f (1®ec) + 5(L @)
=3 f(1®ec) + £(1 @ de)
= E(f@ c).
Thus d is unique such that aged = §eqt, and

5|B = d,.



If dedy = 0, then

ded(f @ ¢) = d(d (1 ®c) + £ Dde)

(dedof)(L @ ¢) - (d,f) dA @ e) + 4 f(1 @ de) + £ @ dde
(d°d,£) (A ® ) = (Af)(1 ® de) + dof(1 @ de) + £ @ dde.
= 0. . ‘

{1

Hence (B® AC,-dw) is a B-complex.
Conversely, if (B® AC,a) is a B-complex, -ao:lof = dedf = 0. This

completes the proof of Proposition 1,

From now on, let us consider the case when B= Al X ], a

polynomial ring with X as a set of indeteminates,

Lemma 1: Let M be an A-module and d : A — M be an R-

derivation, For an arbitrary element of A] X 1,

v Vv ,
f: z .a X 1...A n' a GA X '..-y éx
Vigegn 10tVn L Tt By T e

where )’1, esyY, are positive integers, let

48,

fg= = "1, n d ¢2a[x)l@ M
a= vl...vnxl ocoxn ® a.vl...vn [ ® A
3 J
Then .
(1) (ryf + rzg)d‘ - ryfg + g ., ¢R, f,géalx].

(2) (f@g=fqe+fegp figéalx]

(3) a;=1®da, a¢a4

(%) xgq=0.

Proof: (1), (3) and (4) are immediate consequences of the

definition,
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Since (f + g)g = f4 + & by (1), to show (2), it is sufficient

M
to show for f = axlvl...xnvn, g=bx l...xl:*n € A[X].

(fg)gq = (abxy V1 Pl...xn\)n +Pny

=X 1*“1...ann*}‘n @ d(ab)
ylﬂll.. VoM @ (@b + a(@)) ‘

(xl ...x @da)(bxlM ...xpn) + (axly ...xvn)(xl‘l...x n & db)

.

fdg+fgd.

Proposition 2: Let M be an A-module and d : A —— M be an

R-derivation. With every element x € X, associate any element
U, ¢ A[x ] ® . Then there exists a unique R-derivation

d:A[X]— A[X] @ M such that d|A = qPd and d(x) = Uy, x € X,

-X
Proof: For any element £ ¢ Al X |, define d : A X J— A[ X lo

e 9
by 4(f) = fq + §-,-5-£f Uy. Then

(l) . d(rlf + rz‘g) rllrz 3 R, f,g € A[ X]

(rlf + rzg)d + 2 ( ";a;" (r £+ rzg) Ux)

: ’3 2
rlfd+ rygq + rlE-,-a-;fU +r22,ang

2
= rl(fd + ,S'E ’-a_x-f Ux) + rz(gd + ;Z‘( 75—x'g Ux)

rlaf + rzag.

(2)  d(fe) f,g € 4L X ]

c= (fg)g + ,;a ==fg U
£4 g+ fgd+§((;§3?f Je + £ %g ))Uy
(£ + £ ig® Ude + £(gg + £ g 1)

(af) g + £ (dg)

]

'Q)

Q
]
X
n

(3) da) = ag + & = 1®da = qed(a) iee. dld=apd,
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y d(x) = dx U, =U
(&) (x) = x5 + == Uy

-~

X

Hence d : A[ X J > A[ X ] ®AM so defined is an R-derivetion such
that d]4 = a,ed and d(x) = U, x ¢ X,
Finally to show the uniqueness of d, let & : Al X | —— A[X 1® M

be an R-derivation such that 8|4 = qed and 6(x) = Uy, x ¢ X,

then
y \ v
o( >_ ay iy ¥ 1...xvn)= = (6ay, Xy l...x !
LT 1°**'n B 1y "3Vn ¢ Uk ™ *
2 Y1 Vn
X1 TeeeX U
avl...v zx-f()xl n X)
Yy n A Yy Vn
= y]JZ"‘)v'E xl b ®da"3’l...3)n + JZC"-‘-D.—)E ayloonynxl ‘..xn Ux )
Y Y y
n 1 n
=( 2 avl...vnxl ook, N+ Inz( T c"lvl...\,!nxl veXy 7D Uy
- v Vv
= d( Z xl l.ooxn n)o
vu...wjvn

Hence g is unique.

Proposition 3: Let (C,d) be an A-complex. With every element
x € X, associate any element U ¢ A[ X ] ®AC1‘ Then there exists a
unique homogeneous R-derivation d : A[ X ] ®AC —_— A[ X ] ®AC of
degree 1 such that acad = EOCLC and E(X) = Uy, x € X, Moreover,
(al x ] ®AC,<.i-) is an A[ X ]-complex if and only if .c-lUx = 0 for 211
x € X,

Proof: Let do = dlA, then by Proposition 2, there exists a

unique R-derivation d, : A[ X ] —> A[X ]® 4Cq such that

EolA = oged, and .cio(x) £ Ux' X € X. By Prroposition 1, there exists a

unique homogeneous R-derivation d : A[ X ] ®AC —-> A X ] ® AC of

MILLS MEMDRIAL LIBRARY
McMASTER UNIVERSITY,
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degree 1 such that Ged = deay and d{A[ X ] = d,. But under the

condition aed = dag, dlA[ X ] = 4 if and only if d(x) =

2'!\{ X ] = Eé implies d(x) = do(x) = U,. Conversely, if a(x) =

a > | a»l“.ynxlvl....xnyn)

= 2 E(avl-..)’nxlv:L"'xnvn)

= 2 | ?i(avl“.,,n)xlv]"...xnyn + = § % a,;l”‘),nxlv-l...xnvn Exk)
= 2 xlyl' . "%Vn@ davl. ey, ¥ DI P ’;k RPN vnxl)Jl' g 'xnvn ka)
"Eo( Z aVlo..y lel"‘xnvn)'

Thus we have shown that dis a unique homogeneous R-derivation of degree
1 such that ared = ?1°ac :fmd a(x) = Uy, x € X,
Now, if (A[:X ] @Ac,é) is an A[ X ]gcomplex, then EUX = dedx = 0.
Conversely, suppose EUX = 0, x ¢ X and show -c.logo = 0, then by Proposition
1, we know that (A[ X ] ®AC,3) is an A[ X ]-complex. To show Ea&o = 0,
Y Voo - -
it is sufficient to consider axy T...x, » ¢ A[ X ], since d-d, is linear.
—_— ‘)1 Vn
d"do(B.XI ...Xn )

@ Vi vy
axy Teeux " Uy, )

e L.x 0 @da s £
= xl oowxn ® a <+ k@xk

- vy Yy y
do(xl l...xnvn)(l®da) + X 1"'xn n®dda

Y Yy -
1 Yn ) 1 Yn
d o .o U —— ces du
+2( ('axkaxl x, ) X+3xkaxl X, k)

-— Y
do(xl ...x )(l®da)+f2;d(-——-—--atxl 1., Vn)Uk

(since dda = 0, dek = 0)

V Y, -
(E 5 xk ...:gl_“ ka )(1 ® da)



52,

¥ Y Y
A 1 n ? d 1 Y4
o e s o0 d Z T (e s e U U
+§(( sams By x, )® il E ATy X *no Vx )xk
Y V y
- D i n - 2 1 Yn
= ( %{J"é-;—xl nooxn ka )(1®da) + %{' (( ’()X_xl O'OXn )@da)ka

(since Ux2 = 0 end Up ka = - in anti- commutative graded algebra).
i

kaUxm

=0 )
(since Uy (1®da) = - (L@ da) Uy ).
k k

Hence (A[ X ]@Ac,a) is an A[ X ]-complex.

Corollary 1: Let (C,d) be an A-complex, then thers exists a
unique homogeneous R-derivation d : A[ X 1®AC — Al X } @ 4C of
degree 1 such that ased = -c_ic'cxc and d(x) = 0, x ¢ X. Moreover, (A] X ] ®AC,d)

is an A[ X ]-complex.

Proof: Take Uy = O for all x & X in Proposition 3, then

dUy = d0 = 0. Thus it is just the special case of Proposition 3.

Now, we are in a position to give an explicit construction of

the functor T§ in the present case,

Let W =% welx € X T such that w, = vy implies x = y. Let F
be a free A[ X ]-module with W as its basis. Then the following is

well known.,

(1) The exterior algebra E(F) of F is an anti-commututative graded

algebra, Let W be totally ordered by <, and put t; = %}xl...#x for
n
= any finite 0 E w' ag = % le' L ’V‘Ixn} With WX1< wx2< e 00 <wxDo Then
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= A" (ftg®e) (Frty@et) + (- )P+ (e @) dr (£t @ c').
Hence the product rule holds,
By the definition of d', it is clear that d'(C%) CC'y | 3
Moreover,

drod(ary Lerx Y™ t @) (o] = m)

v mo Y o
= d'(9(axy 1...xnvn t3) ®c + (- fl)mxl 1...xnyn t, @ad(ac))
Yy Y
= 903(8}(1 loooxnvn to,) ® C + (- 1)m + 1 (Xl loo.xnvn to.) ® d(aC)

v o v
# (=000 e, @ dtee) + (- 1Py e x e, @ dd(ac)

=0
Therefore d' is a homogeneous R-derivation of degree 1 with dted! = 0.
for the uniqueness of d!, let &6 : C* —— C! be a homogeneous R

derivation of degree 1 with 6°8 = 0 such that 5onc = M.ed and §(x) = Wy ® 1,

e
then

6(ax1v1. . .xnvntq ® ¢)

y
8((x, 1...xnvn1ia® 1)(a®ec))

' y
? 1 Vn A
‘E '73-—,51:3(1 "'xn katG'@l)(a@ c)

(10 Lux, ™, @ 1) (A @ d(ac))

4 v ¥ V.
a(axl 1...xn nto) ®c+ (= l)mxl 1...xn " ® d(ac)
% v
1 n
coeX, Tty ®ec).
Hence & = d'and thus d! is unique such that d'crrc = TTCod, and d'(x) =

w, @ 1., Here we have proved that C' is an anti.commutative graded

d'(axl



algebra with C! = A[ X ] and d' is a homogeneous R-derivation of

degree 1 with d'-d!' = O, Pherefore (C',d!) is an A{ X ]-complex.

Lemma 2: Let (2,8) be an arbitrary A[ X ]-complex. Then
there exists a unique graded algebra homomorphism ¢ : E(F) —— 2
over Al X ] (i.e. ¥)A[ X ] = identity) such that Y (wy) = 0x, More-
‘over , (\’C'B(axlvl...xnvnta) = o&(xlyl...xnyn). CP(tq).

Proof: Define &, : W — Z by ‘Vo(Wx) = &x, then there
exists a unique A X] -homomoyphisn %y : F —> Z extending (rq.
Mbreover, (% (z fiwxi))z = (2 £35,)° = 0,
since 6xiﬁxj = 0 when 1 = J, 6xi 6xj = - 6x;j 6xi when 1 = j. Since
E(F) is an exterior algeb;'a of F, ¥y extends uniquely to an algebra

homomorphism %: E(F) — Z over A[ X ].

W E(F)

|
i
G
W\
Z

Thus & is a unique algebra homomorphism over A[ X ] such that ‘{’(wx) = 0%,

n

Y:
¢ is graded by definition. Now, ¥e9 (axlyl...xnvn_to) = a%°o(x l...x ¢

3 "1 Vn
- Yo m— es s
= 9.‘{/(IE axk 1 X, kata)

n
tg)
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9 1 Y

= a()l.;.' GXk xl .ooxn nq"(ka)q/(tq))
C

= a(E CE X 1"'xn néxkl)‘\’(to)

= aé(xlyloooxnvn)q/<ta)0

g

Proposition 5: Let (C,d) be an A-complex. For any Al X ]-

complex (Z,8) and any complex homomorphism ¢ : (C,d) —— (Z,58)
over A, there exists a unique complex homomorphism ¢! ’: (cryd') ——
(Z,é) such that (fz ‘S 'oTTCo

ato'c) =

Proof: Define @, : E(F) x C — Z by C.PO(SJ £
Y (T fotg) 9 (e). (fo is A-bilinear, since Y.and § are A-linear.

> Z

Therefore, there exists an A-linear mapping @' : E(F) ® AC

such that G' (X fatg®c) = Q(T £ t,) ¥(c).

We will show that @ is what we want.

1) @' is an alge.bra homomorphism,since |

¢ ((Ttg@ ) (=@M = 9" (- DTrt)(115) @ ol )
(- DPPw(tto) & (£rtg) @ (ep) ¢ (cd)

§(£tg) @(ep) ¥ (f't7) @ (eg)

@' (g B ey) ¢H(ET L ® o)

2) @' is graded by definition.

3)  o']a[ X ] = identity on A[ X ], since ¢'(f) = gn(f®1)'=
()P = w(£) = £

4) ¢tdt = 8¢, since
¢ 'd'(axl‘/l;..xnvnta@c) y

= Cg’(’a(a.xl l...J':nyni‘,‘:,) ®ec+ (- l)mxl l...xnvnta®d(ac)

= ¢ed(ax Leuax M) 9 (o) + (- 1)”‘<y<xl”1...xn""tomcd(ae)



a6y Leex "™ ¥ (tg) 90D + (= W Luwix Y Pe(t,)60Cac)

Also,

6°‘9'(3X1y1...xnvnta®c) |

5( q,iaxl"l, vx, P ) 9 ()

8(xy Luvux MG (ty) G (ac)) |

5("1"3""‘11%("(%)) 9 (ac) + (- 1)mxlv1...xnynq»(ta)&g(ac)
ad(x) 1.._xn1’n Y(tg)) F(ec) + (- 1)mxlyl.,,xn”n @(t5)6 $(ac).

Hence ¢ 158" = 6!

5) §= @l since gleamg(e) = 91(1@e) = ¥ (1) ¥(e) = ¢ (e)
From (1) to (5) it follows that %' : (Ct*,d') —— (2, 6) is a complex

homomorphism such that ¢ = ¢ 'cT..

6) For the uniqueness of @', let E} : (Ct,d') —— (2,8) be a
complex homomorphism such that @ =¢ ° s then

-@(fwxl...wxn ®c) = C\T)(f(wxl ® 1)(Wx2 ® 1)...(wxn ®L(1Rc))

@A (x7)d" (x,)00.dt (x, ) (1 @ )

£55(x1)8 $(x,) 0008 (x,) & my(e)

f&(xl)b(xz) .o .6(xn) @ (e)

n

£ Y(wxl. . .wxn) ®(c)

@ '(fwxl. . .wxn ®ec)

Hence ¢ ' is unique such that ¢ = @'cnc.

This completes the proof,



Let U(A/B) denote a universal derivation module of A as a

B-.algebra,

Corollary 2: U(A[ X J/R) ¥ u(a[ x 7/4) ® , U(A/R).

-

The above now prove:

Theorem 1: For the natural injection & : A — A[ X ], the
functor T§ is explicitly given by T§((C,d)) = (E(F) ®AC,d'),d' as
defined in Proposition 4, and T§( ®) = iE(F) ® ¢ for any A-complex
homomorphism %: (C,d) —— (D,d).

59.
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§ 3. Fractional extensions of A.

Let A be a commutative R-algebra with unit and E be a com~

mutative unitary extension Rwalgebra of A,

Definition: An ideal Dof A is called E-dense if and only if
ED = E,

Definition: E is a fractional extension of A if and only if

for each q ¢ E, there exists an E-dense ideal D such that Dg C A,

Definition: A module M (over A) is called E~torsion free if
and only if for any E-dense ideal D and for any x € M, Dx = 0 implies

x=00

From now on, let E be a fractional extension of A, if not

mentioned specially otherwise,

The following are well known facts,
(1) If D,D' are E-dense ideals, D D' is also E~dense.
(2) q‘lA = (b€ Algb € A) is E-dense for any q ¢ E.
(3) An injective hull of an E-torsion free module is again E-torsion free,
(4) Any E-module is E-torsion free,

(5) Any E-torsion free module can be imbedded into an E-module i.e. if


http:E-tors:i.on
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M is Estorsionfree, M —— E @AM by x ~mw-—2> 1 @ x 1s one-to-one,

Proposition 1: (1) If M, N are E-modules, any A-linear

mapping @: M —— N is automatically E-lineai‘.
(2) If Mis E-module, M = E®AM' ‘

Proof: (1) For any b € a~14, b (ax) = % (bgx) = blag (x)),
q € E, x € M. Hence (q=1A)(% (gx) - qé(x)) = 0, ﬁut N is an E-
module and hence E-torsionfree, and thus %(gx) = q §(x), i—.eb. & is
E-linear,
(2) M is an E-module and hence E-torsin free, and thus the natural A-
hﬁmomorphism ot M—> E@ ,M is one-to-one. By (1), ™, is auto-
matically E-linear. Now, for any q ®x ¢ E@ M q@®x= 1 ® gx, since
blg®@x) = 1@ bax = b(1 @ qx) for all b ¢ q~tA, Now, for any
ag®x € E@ M, rrM(qx) = 1®gx = q@ x. Hence Uy is onto and thus

Ty is an isomorphism,

Lemma 1l: Let D be an E-dense ideal, M be any E-module, then
any A-homomorphism ¢ : D ——> M has a unique extension to an A-
homomorphism § A —> M,

Proof: Let H be an A-injective hull of M, then $: D —sM C H
has an extension 2} A——> H., Here § is a unique extension, since if
% and §* are extensions of ¢, D%(1) = (D) =¢*(D) = Do*(1)
implies ¢ (1) = ¢*(1), since H is E-torsion free. (M is an E-module and
hence E-torsionfree, and H is E-torsion free, H is an injective hull of
an E-torsion free module). & and ¢* are A-homomorphisms with G(1) = ¢*(1)

and hence % =%*. Now, we will show that % (4) f_—_ M., (D) C M and



hence EG(D) € M. Thus $(A) = AZ(1) < E$(1) =EDS(1) = ES(D) < M,

This completes the proof.

| Lemma 2: Let E be a fra‘ctional extension and N be any Ea
module., If two derivations d,d' : E ~——— N coincide on A, then d = df,
Proof: For any q ¢ E, a=14 = {b ¢ Alqb ¢ L) is an E-dense ideal.
(d - d*)(gb) = q(d = d')(b) + b(d - d')(q), for each b ¢ g~la,
(d «d*)(gb) = 0 and (d = d')(b) = O imply b{(d - d?')(q) = O for each |
b ¢ q'lA, iee. (q=1A)(d(q) - d'(q)) = 0. N is an E-module and hence
E torsin free, Thus d{q) = d'(qa), i.e. d = dt.

Let Ty M — E® AM be the natural A-homomorphism defined
by ﬂM(x) =1®x, x ¢ M,

Proposition 2: Let M be an A-module and d : A — M be an

R-derivation, then d induces a unique derivation d:E — E® AM
such that d|A = m-d.

Proof: For any q € E, g~1a = {b ¢ Algb € A) is an E-dense
ideal, Consider for each q ¢ E, CPq : q=l4 —— E@ M by ?q(0) =
1®d(gb) - q ®db,

Then

G oy + B) = S (1) + G (by),  bybp € q7lA,
and
1®d{qab) - q®d(ab) a ¢ A, b € g~1a,
a®d(gb) + qp@Pda = ga@ db - gb®@ da.
a(1@d(qb) - 9@ db) = q ¥, (b).

‘S’q(ab)
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Hence @q is an A-homomorphism,

By Lemma 1, qu : q"lA — E® AM yas a unique extension to an
A=homomorphism E’q t A —— E& AM‘

Lot us define d : E —— E® ,M by d(q) = _‘s_’q(l), and we will show
that d is an R-derivation,

(1) R-linearity of d : For any b ¢ qil Anqé'l A (ql,qz ¢ E),

r1a;b + rpazb € A, (ryxp € R) implies b € (ryey + rzqg)"lA.

D may + rpap (P = 1@A((rya; + 1a,)0) - (ryhp+ rap) @ db

#,( 1®d(ayb) = q) ®db) + mp(1 ®d(azb) = g, @ db)

B, ()% 72 G (0.
Hence

- - = g -1 -l
(frlql . r2q2(1) = b(rl‘i" (1) + r, ¢ (1)) for all b € ql Amq2 A,

Since qil A nqé‘lA *is E-dense and E® M is E-torsin free

(frlql + rqu2(1) = rlci’(l) + ry ¥ (1)

i.e. E(rlql + Tya,) = rlaql + rzaqz.
. -1 -1 -1
(2) Pruduct rule of d : For b ¢ (qlqz) Anal Ana5 A

1@ d(q,9,b) = q) @ d(agb) + q) @ d(agb) - (g59,) D db

@ql(qzb) + ql-:_§>q2(b) .

@ i -1
But ql(qu) a, {i’ql(b), since for each ¢ ¢ a4,



c c3>ql(qzb) = ‘fql(cqzb) = eq, qul(b)

and hence

, -1 -1 -1
Therefore, (,quqz(b) =q quz(b) + 4y %’ql(b) for each b ¢ (qlqz) Anq1 An A,

Hence b "i" (l) = b(ql (1) + qz (1))

Since (qqu) nq"‘lA zlA is E-dense ideal and E® ,M is E-torsin free,

¢ 1) = ql

qlq 1) + qZ q (1).

a2

i.e, E(qlqz) = qlzi_(qz) + QZE(ql)°

For any a € A, d(a) = ‘?a(l) = ¢,(1) = 1@da - a®d(1) = 1@da = Med(a).
Hence d]A = mede /

Finally, the uniquenesé of d follows from Lemma 2,

Corollary 1: Any Rederivationd : A —— A can be uniquely
extended to an R-derivation E : E—— E vhere E is a fractional
extension of A,

Proof': E®AA Z Eby f® a ~~— af. Then this is a special

case of Proposition 2,

Proposition 3: Let (C,d) be an A-complex. Then there exists a

unique homogeneous R-derivation d : E® AC —> E® AC of degree 1 such
that Tyed = a‘mc. Moreover (E® ,C,d) is an E-complex.

Proof: Let d, = d|A. By Proposition 2, d, : A —>C, in-
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duces a unique derivation Eo_: E — E® Acl such that d o‘A = Trcod 0
By Proposition 1, §2, there exists a '_unique homogeneous R-derivation
d E@AC ~————-——> E®AC of degree 1 such that TrCad = aonc, and

E‘E = Eo. But the condition d|E = Eo can be omitted, since Teed = Eeﬂc
implies E‘E = 30. Actually, for any & ¢ A, da = d(1® a) = de C(at) =
'rrcod(a) and hence d|4A = ﬁce d.and b& the uniqueness of such derivation
d|E = d,. Finally, to show that (E® ,C,d) is an Eecomplex, by |
Proposition 1, it is Sufficient to show that ded, = 0. For any q £ E
and for any b € .q“le

d(b(8,a)) = (db)(dga) + bd(d,a),
hence ‘

b d(d a) = d(b(3a)) - (db)(dea) »
but

b(dea) = b % (1) = §,(b) = 1® d(gb) - q @ db.
Thus _

b d(dyq) = A1 @ d(gb) ~ q ® db) - (db)(d.q)
1 ® dd(gb) - (d,a)(1® db) -~ q@ ddb ~ (db)(d )

= 0,

since (qu)(i® db) = (c—loq)(ab) = = (db) (aoq).

This completes the proof,
Let us write C! = E® ,C and d=ar.

Proposition 4: For any E-complex (X,5) and any cormplex homo-

morphism §: (C,d) — (X,8) over A, there exists a unique complex

homomorphism ¢! ¢ (C',d') —— (X,6) such that ¢! o =%,



66.

Proof: Define § 5 : Ex C — X by ‘Po(q,c) = q%(c), then
%, is A-bilinear, sincé % |A = identity. Hénce there exists an Aw
homororphisn ¢! : E@® ,0 — E®AC such that '(q®¢) = g% (e).
We will show that ¢! is what we want,
1) q' is an algebra homomorphism, since
§'((a; ® ey)(a, ® ) = g'(a9, D ee,
= 49, ¥(eqe,) = 979, §(eq) §ley) = (a, $(eq))(ap §(ey))

g'(a) ®cq) ¢'(ap; ®@cy)
2) ¢! is graded, since § 1s graded.
3) @'|E = identity, since ¢'(q) = §'(q® 1)'= ¢ (1) = q.
B) @tdl = begl, since |
Ly'=d'(q®c) = ¢'(da(l®c) + q®@de)
¢'da) g'A®ec) + g'(a®de)
¢'(d5a) §(e) + q §(de)
$1(dga) ¥(c) + g6 (e).
But dq = §,(1) and hence for any b ¢ q=14, b(dsa) = bF(1) = §-7q(b) =
1® d(gb) - q@db.
Hence b ¢'(d,q) =4d(gb) ~ qgedb = 8(qb) - géb = béq.

n

X is an E-module, and hence E-torsin free, Thus ¢'(d,q) = 8q.

¢td' (@@ c) = & g (c) + e8¢ (c) = 8(q%(e)) = 6 ¢ (q® )
f.e. GIdY = bogt, |
5) = qlemy, since glmg(e) = ¢'1@c) = (o).
By (1) ~ (5), @' : (C',d") —— (X,8) is a complex homomorphism such
that &= «'om.. |
6) For the uniqueness of ¢!, let ¢ : (C',d') — (X,5) be an

arbitrary complex homomorphism such that ¢ = %e 1, then



F@®c)=a31®@c) =a3(e) = ¢'(a®e)
Hence ¢' is unique such that ¢ = cf'g.rrc.

This completes the proof.

Corollary 1: Let E be a fractional extension of A, Then
U(E/R) 2 E® AU(A/R) .

Corollary 2: Let E be a fractional extension of R. Then the
universsl E-complex (U(E/R),d) is trivial,

Proof: By Corollary 1, U(E/R) ¥ E®RU(R/R). But U(R/R) £ R

and hence U(E/R) € E® R £ E. Thus U(E/R) is trivial.

Corollary 3. Le'ty E be a fractional extension of.A., Then
U(E/R) = U(E/A)@AU(A/R).
Proof: Since E is a fractional extension of A, U(E/A) ¥ E

by Corollary 2. Then the proof is immediate from Corollary l.
The above now proveS:

Theorem 1: For the natural injection 3 : A —> E, the
functor Tz is explicitly given by T§ ((c,d)) = (E@AC,d'), dt as
defined in Proposition 3 (d! = d),and T3 (%) = i@ g for any A-

canplex homomorphism ¢: (C,d) —— (D,3).

In case E = A[ X ], it is very easy to see that the covariant

functorTE:Q(A)-——) C(A[X]) where &: A — A[X] the

67.
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natural injection is not onto. But when E is a fractional extension

of A, we have

Theorem 2: T g : (. (4) —— £ (E) is onto.
Proof: For any Eecomplex (X,8), let C = A + Z X, and d = slc.
e _ n=>1
Then C is an anit-cormutztive graded algebra with Cj = A, andd : C —> C
is a homogeneous R-derivation of degree 1 with ded = 0., Hence (c,d)
is an A-conplex.
Now, consider (C*,d!) and show that (C',d') = (X,98).

C'=E®AC=E®AA+§>1E®AXn=E+§

e

> 1Xnv since X, are E-

modules and hence by Proposition 1, X, YE® AXn. Hence Ct' = X,
dtjA =d, = 5|A, end hence df = 8|E by Proposition 2, and d! = & by
Proposition 3. Thus, T ((c,d)) = (x,98).

Finally, for any complex homomorphism «: (X,8) —— (Y, ?) where

(Y, 3) also is an E-complex. Then LrIC : A4 %I?- lxn wedy & n$> 1Yn

is again a complex homomorphism and Tz (4 Ic) =4

Therefore T§ is onto,




v CHAPTER ‘II

Integral differential Forms

In this chapter we establish that in the context considered
here, the module of Kahler's differential fomms of degree k [ 7 ] is
isomorphic to tﬁe ﬁodule.of homogeneous differential forms of degree
k as defined in Chaptgr 0. We then introduce integral differential
forms in a manner analoéous ﬁo, but more general than Kahler's def-
inition of integral differential forms in [_? ] and show that the set
of all homogeneous integral differential forms of degree k is, in |
certain special cases, a finitely generated module over the ground

ring,

§ 1. Preliminaries.

This section deals with the rather special results concerning

valuation rings which are needed in section 3.

Proposition 1l: If a valuation ring S in a field K is

noetherian, then (1) the only maximal ideal ™ of S is a principal
ideal, (2) any non-zerc ideal of S is a power of *{. (Convention :
™o = S).

Proof: (1) Suppose ¥Y{ is not a principal ideal i.e.

69.
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Y= SXp 4 evs + 5%, for Xy,.ei,x, € S and m is the smallest possible
positive integer for which this holds. Let us consider xlx‘2'1 and

X5 xil. then by the definition of valuation rings, at least one of
them belongs to S, say x; xé’l €5, and 5x3 = S(xlxél)xz C Sx,. Hence
YT = 5X, + .us + SX which contradicts the choice of m, Thus ™ is a
principal ideal.

(2) Let OU be a non-zero ideal of S different from S, then Q < Y{.
It is well known that ;,'\ 1\“’“( n_ 0.7 And since M £ 0, there exists
a natural number a suchnt;at ac W ® but 0L$ ®*+ 1 our claim is
oL=xt% By (1), W=5x for some X ¢ S and hence W& = S x%, Since
QLT W= sx% Ox™®C S or more explicitly Ox=% is an ideal of S,
But there exists a ¢ Ol with a x~® {V"( , for otherwise Q CW¥(*+ 1,
Since ¥Y{ is the only maximal ideal and (Ul x~® is an ideal which is not
contained in ¥, QA x~® = S, Thus Ol= Sx-® =M%, This completes the
proof, .

Proposition 2: Let K, be a field, K an overfield of Ko' S. a

o

valuation ring in K, and N be the set of all valuation rings S in K

vwhich are extensions of S,, then the integral closure —S-O of So in K
is { Y s,
S €N _
Proof: S,< ( '\ S is clear from Theorem 1, § 2, Ch, 0.

Hence. it is sufficientstj Isflrxow that every valuation ring V in K
which contains S, contains some member of N as a subset. Let X be
the maximal ideal in V, and let % ='«nS°, then ¥ < Wo' since

Tt} 1 end 9 is an ideal of So- By Proposition 6, § 5, Ch. 0, there

exists a valuation ring S in K such that S 2 5,, {5 = W, and

o
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S € V where Y{ is the maximal ideal in S, Thus S is an extension of

S,,» and hence a member of N contained in V., This completes the proof,

Proposition 3: Let G be an integral domain, X, its field of

quotients, K an algebraic extension of K,, and S, a valuation ring of
K, such that it is aring of quotients of G. Then any valuation ring S
of K which is an extension of S(; is a ring of quotients of the integral
closure G of G in K with respeét to ‘“‘((\.(‘;, where W is the maximal ideal
of S, |

Proof: It is clear that the ring of quotients in question is
contained in S,. Now let « be anj non-zero element of S and let
8oy + alc.“-.-, 1, ...+ én =0, 29 € X, aoﬂf 0, be the maximal
oquation of o over K,. By Proposition 3,%5 Ch, 0, for at least one
Jb1<3j<m, ay asl 4 So for i =1, 2,,.. n. Pick one vof these j's,
and if wo set by < a; a3l for each 1, then we have
boa™ + bja” =14 .4 b =0, by €5, for1=1, 2, ... n. Since
S, is a ring of quotients of G, there exists an element b € G with
b § ™ such that bby ¢ G forim 1, 2, «o0y n. If we set ¢y = b by
then we have c o + cjoft = 1 eis e, =0, ¢4 (- G <G, To apply
Proposition 8, €5, Ch, 0, we notice that G is an integrally closed
domain, K a field of quotients of G, YI~G a prime ideal of G and
3= b & W’(na. By Proposition 8,
§5, Ch, 0, a or a-1 belongs to Q, the ring of quotients in question.

ey €Gfori=1, 2, ...,n with c,

To show Q 2 Ses Suppose Q. {Q, then o1 € Q and is a non-unit in Q
which implies o1 € YU and hence @ QS. This is impossible, since

~ our assumption was @ € S. Thus o £ Q. This completes the proof.
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Let G be an integral domain, Ko its field of quotients, and Y >
pri‘ine ideal of G such that (1) all powers %, ";‘22, ... are distinet, and
ag%&“ = 0, (2) if an element a is divisible exactly by %, i.e.

a ¢ E}za but a 6 f}za + 1, and similarly, if b is divisible exactly by
"l{ﬁﬁ, then ab is divisible exactly by E’{{a + ‘3.

By the condition (1), for any mon- zero element a ¢ G, there exists a
non-negative integer a such that a ¢ L% but a { 2%+ 1 (Convention :
220 = G). Let us define a mapping ¢ : G —s Z (the ring of integers) by
©(0) = 0, ¢(a) = a for non-zero a ¢ G. Then for non-zero a,b ¢ G,
¥(ab) = ¢(a) + $(b) by the condition (2).

Define a mapping G: K —— 2 by 4(0) = 0, %(a/b) = ¢ (a) - ¢(b) for
non-zero element a/b ¢ K, a,b € G, then & is well defined, since

a/b = ¢/d implies ad = bc and hence ¥(a) + ¢(d) = ¢(b) + ¢(c) or

g (a) =9(b) =¢(e) = ¥(d), and thus ¥(afb) = ¢(c/d). It is clear that
“ is an extension of ¥ to Ko' since ¥(1) = O.

Let S = ixﬁx ¢ K, 4(x)> O}, then S is a valuation ring in K,, since
for x € KNS, x = a/b, a,b € G with 4(x) = ¢ (a) -4(b) < 0, and 4 (x~1) =

%(b/a) = ¢ (b) -4 (a) > 0, and hence x~1 ¢ S,

Proposition &: If ¥ is a principal ideal, then S = Gag' the ring

of quotients of G with respect to . Hence Gep is a valuation ring in K,.
Proof: Let x ¢ Gy, then x = a/b, a,b ¢ G, b § R (or ¢ (b) = 0).

Hence 4(x) = #(a) = ¥(b) >0 orx ¢S, Thus S2G .

4

Conversely, let x ¢ S, then X = a/b with ¥(a) - ¢(b) > 0. Since?is
principal ideal, ¥ = Gp for some element p € G, and hence a = ¢cp%, b = dp‘3
for ¢,d ¢ G, with p}e, pyd and @ ~ B > 0. Hence x = a/b = (e/d)pa~P ¢ Gy,

since ¢f/d ¢ G and p* =P ¢ acG ., Thus S €G .
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Corollary 1: Let G be a unique factorization domain or a
nostherian domain, then each prime element p in G determmines a valuation
ring S; in K which is a ring of quotient of G and (= S;-p. (By a prime
olement p, one moeans an element such that p|ab implies p{a or p|b, for
elements a,b ¢ G).

Proof: Let P= Gp, then ¥is a prime ideal, Clearly Rsatisfies the
conditions (1) and (2)., Since 9 is a principal ideal, by Proposition 4,

G? is a valuation ring in K,. Put Sp = Gp, then cbviously the only maximal
ideal Y| of Sp 1s Sp°p.

Proposition 5: Let G be a unique factorization domain, K,a field

of quotients of G, and Sp the valuation ring in K such that S_ is the ring

P
of quotients of G with respect to the prime ideal Gp of G, for each prime
element p of G. 'Then G is the interssction of all Sg.

Proof: For any x ¢ Sps let x = % where u,v € G and u,v ars
relatively prime. Then p}v. Hence for any element x ¢ (1 Spy if x =

p prime
u where u,v ¢ G and u,v are relatively prime, then there is no prime element

Zf G whichidivides v, i.e. v is an invertible element in G. This implies
X € G and ?ence G gf\sp. Since each Sy 1s a ring of quotients of G,
G €Sy, Thus G = p(;;imesp'

Corollary 2: (1) A unique factorization domain is integrally
closed. (Well known fact)., (2) Let G be a unique factorization domain,
and K, a figld of quotients of G, Then G is the intersection of all val-
u;tion rings in K containing G which are rings of quotients of G,

Proof: (1) Immediate consequence of Theorem 1, §5, Chapter 0 and
Proposition 5. (2) Immediate consequence of Theorem 1, §5, Chapter 0

Proposition 5 and (1).
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&2, Kshler's Differential forms.

This section is mainly to give the definition of Kiahler's
differential forms [ 7 ] and to explain the relation between these
end the algebra of differential fomms [ Ch. 0 ] in this context.
Kéhlerts differential forms are defined to be a certain subset of
his universsl infinitesimal ring [ 7 ], hence we will begin this
section with the study of a slightly generalized form of Kahler!s
infinitesimal rings, which will be called infinitesimal algebras,

Let R be a commutative ring with unit, and A a unitary

commutative R-algebra.

Definition l: A couple (I,0) is called an infinitesimal

alpebra over A if I is a commutative R-algebra containing A &s a

unitary subalgebra and ¢ = (Gi)i ¢ e N = % L 25 oas } , Where
each gy : A — I is an R-algebra homomorphism such that

(03(a) - a)(ci(b) -b) =0, a,b ¢ A,

The following remark tells exactly what zre Kzhler's

infinitesimal rings.

Remark 1: Kahler's infinitesimal ring is an infinitesimal

algebra in the preceding sense if 1) R is the ring of integers,
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2) each gy ¢ A —— I is an R-algebra monomorphism such that
(oi(a) ~ a)(03(b) - b)=0,a,b ¢ A, for each 1 ¢ N, and 3) I is

enerated by 2 o;(A) over A,
g yiéNi()

Proposition 1: Let (I,g) be an infinitesimal algebra over A.
If we define a mapping di t A—— I by di =04 = iA, wheré iA is
the identity mapping on A, then dj is an R-derivation such that
dja dsb = 0, a,b € A, for each i ¢ N, |
Proof: dja d;b= (oi(a) - a)(o3(b) = b) = 0, a,b ¢ A, from
the definition of infinitesimal algebras, '
dj is R-linear, since d;(ra + sb) = g;(ra + sb) -« (ra 4+ sb) =
r(os(a) ~ a) + s(o4(b) - b) = rdja - sd;b, 1,5 € R, é;b ¢ A,
d; satisfies the product rule, since d4(ab) = oi(ab) - ab =
o5(a) g3(b) - ab = a(g;(b) - b) + b(os(a) - &) + (o5(a) - 2)(o;5(b) - b) =

ady(b) + bd;(a).

Proposition 2: Suppose I is a unitary commutative R-algebra

containing A as a unitary subalgebra such that there exists R-derivations
dj : A — I with dja d;b = 0 for each 1 ¢N, Let 05 : A ——> I be
the mapping defined by 03 = d4 + i), where i, is the identity on A,
Then (I,0), O = (oi)i ¢ N is an infinitesimal algebra over A.

Proof: Each oy is an R-algebra homomorphism such that
(oi(a) - a)(o3(b) - b) = 0. For, 03 is R-linear, since so is d; and
ip, and ai(ab) = di(ab) + ab = adjb + bdja + ab = dsa d;b + adib'+ bdsa
+ ab (dja dsb = 0) = (dia + a)(dib + b) = g5(a) g3(b), a,b € A, and

hence 0; is an R-algebra homomorphism for each i & N.
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(05(a) - a)(ai(b) - b) = dja dsb = 0, a,b ¢ A,

Thus, (I,9) is an infinitesimal algebra over A,

Examples of infinitesimal algebras over A.
1) (A,0), = (Gi)i éx where 0y = 1, for each 1 ¢ N, :
2) Let M be an A-module, &.: A ——» M is a derivation, A as an
R-algebra. Consider the external sum A@ M and define the multiplication
by (a,x)(b,y) = (ab,ay + bx), a,b € 4, x,y ¢ M, The mapping A — AQ@H
défined by a ~w—> (a,0), a € A is an R-algebra monomorphism and
hence we can put (a,0) = a, a € A, Then A@ M is an associative R~
‘algebra containing A, Let 83 : A —— A @ M be a mapping defined by
65(a) = (0,0) for each 1, i £ j, dj(‘a) = (0,02) for a fixed j € N, .
then each 65, 1 ¢ N is an R-derivation with 65a d;b = 0. Put T
O3 = &3 + 1, then (A@ M,6), 0= (Gi)i ¢y isan infinitesimal algebra

over A,

Definition 2: Let (I,0) and (J, T) be two infinitesimal

algebras., An R-algebra homomorphism f : I —— J is called an

infinitesimal algebra homomorphism if flA is the identity on A and

f o3 =Tg for all 1 € N, An infinitesimal algebra homomorphism is
denoted by £ : (I,6) —— (J,T).
An infinitesimal algebra homomorphism which is one-to-one and onto is

called an infinitesimal algebra isomorphism.

Definition 3: An infinitesimal algebra (W,9) over A is

- called a universal infinitesimal algebra if for any infinitesimal




(I,0) over A, there exists a unique infinitesimal algebra homomorw

phism £ : (W,8) —> (I,0).
Remark 2: It can be shown in the usual way that universal
infinitesimal algebras over A if they exist are uniquely determined

up to infinitesimal algebra isomorphisms.

Proposition 3: Let (I,0) be an infinitesimal algebra over A

such that I is generated by i(A) over A, If there exists an

izé W
infinitesimal algebra homomorphism of (I,d) into an arbitrary infinit-
esimal algebra over A, then it is unique,

Proof: Let (J, T) be an arbitrary infinitesimal algebra over

A, and f,g : (I,0) - »> (J, T) be two infinitesimal algebra homo-
morphisms, fIA = identity on A = g|A, and f04 = T4 = geg3. This
means that f and ¢ coincide on the algebra A and the set of generators

of I, and hence f and g coincide on the whole I,

Proposition 4: Let (I,0) be an infinitesimal algebra over A, -

and d; is the derivation defined by d; = 0y ~ 1, for each i ¢ A, Then
[ 4,00(8),05(8),....] = [ 4,4;8,d08,... ]
where the left hand side and the right hand side are the subalgebra of

I generated by 0;(4),09,(A),.¢., and dl(A).dZ(A),.... over A,

Proof: Trivial, since d;a = oi(a) -a € [ Alol(A),oz(A).... ]

and 0,(a) = dja + a € [ AdgA,dpA,.en ], a €A,

Proposition 5: Let (W,0) be a universal infinitesimal algebra

77,
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over A, Then W'is generated by ixé Nei(A) over A,

Proof: Let Wf be the subalgebra of W generated by izé Nei(A)
over A, then (W!,0) is also an infinitesimal algebra over A, Since
(W,0) is universal, there exists a unique infinitesimal algebra ,
homomorphisn £ : (W,0) — (W!,0), We may consider f as an infinit-
esimal algebra homomorphism of (W,6) into itself. But the identity
mapping of W into itself is also a such mapping, and hence by the
uniqueness of the infinitesinal algebra homomorphism of a universal
infinitesimal algebra, (W',0) = (W,0). Thus W= W' and W is generated
by izé Nei(A)\over A, | |

The following is an internal characterization of a universal

infinitesimal algebra over A,

Theorem J: Suppose (W,0) is an infinitesimal algebra over A.
For each i € N, put dy = 05 =~ 1, and Uy = AdjA. Then W,8) is
universal if and oniy if
1) each (Ui’di) is a universal derivation module of A as an R~
algebra,
2) for any commutative R-algebra C containing A as a unitary sub-
algebra and any family {£3]fy : Uy —> C,i ¢ N, with (£;(U:))? = 0}
of A-module homomorphisms, there exists a unique algebra homomorphism
f : W ——> C such that f|A is the identity on A and f extends each
module homomorphism fj.

Proof: Suppose (W,8) is universal. To show each (Ui'di)'

i € N is a universal derivation module of A as an R-algebra, let
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(M,5) be an arbitrary derivation module of A, As in Example 2),

for a fixed j in N, construct an infinitesimal algebra (4 @ M,0),

o= (93)5 ¢y O3 = 83 + 1y, 83(a) = 0 for all 1 # j and dy(a) =
(0,6a), a € A. Since (W,0) is universal, there exists a unique
algebra homomorphism £ : W —> A@® M over A such that £-0; = oy
for each 1 ¢ N, Put fj =
homomorphism, Let p : A @M — M be the 2nd projection, and put

rl|u j» then f 3 is naturally an A-module

g j= pij then gj : U. ——3> M is clearly an A-module homomorphism,

Moreover, gjod pvf j = pefe(0 = A) pvfcej + pefeiy = peos +

J
i, = p(oj -1) = pedy = b,

Hence gj s (U-,d.) —> (M,8) is a derivation module homomorphism,

The unlqueness of g‘_J can be eas:xly checked, Thus (Uidi) is 2 uni-

versal derivat:.on module of A as an R-algebra. Next, we will show

2). Pt gy = fiod; + 1, for each 1 € N, then (05(a) - a)(03(b) = b) =
(£3ds(a))(£2d;(b)) € (£3(U3))° = 0. Hence (g3(a) - a)(a;(b) - b) =

Mqreover, g,
r

4 ¢ A —> C is an algebra homomorphism, since

03(ab) = ficdi(ab) + ab = f3(adsb + bdya) + ab = afods(b) + bfye di(a) +
ab = fy di(a) fiedy (b) + afjed;b + bf e di(a) + ab

(since fj d;(a) fyedy(b) = Q= (£3¢d;(a) + a)(f5¢d (b) + b) = o;(a)oy(b).
Thus (C,g) is an infiniteseimal algebra over A,

Since (W,6) is universal, there exists a unique algebra homomorphism

f : W~——> C such that f|A =1, and fo8, = 05 for each 1 ¢ N. This

f is an extension of each fy,i € N, since for an arbitrary element

£ adsb € Uy, £ ad;b) = I afedy(b) = T af(05(b) = b) = T a(ay(b) - b) =
3 afye di(b) = £4(£ ad;b) for each i € N.

f is unique, since W is generated byi}3<‘ NUi over A, Conversely, suppose



(W,8) is an infinitesimal algebra over A with the properties 1) and
2). To show the universality of (W,6), let (I,0) be an arbitrary

infinitesimal algebra over A. Put for each i ¢ N, é; =0 then

i~ iA'
85 + A —> I is a derivation. Since (Uj,64), by 1),is a universal
derivation module of A, there exists a unique A-module homomorphism

f.

3 ¢ Uy~ I such that fyed; = 64, Moreover, (f_,.'.(.lsdz-LA))‘2 =

A(fic di(A))z = A(G:,LA);2 = 0. By 2), there exists a unique algebra
homomorphism £ : W —— C such that f|A is the identity mapping on A
and f extends each fy,1 ¢ N, The algebra homomorphism £ : W —— C
is an iﬁfinitie;imal algebra homomorphism, since fo @, = fv(d:.L + iA) =
6 + 1) = 05, To show the uniqueness of £ : (W,8) —> (I,0), we
will first show that W is generated by 12(‘ NUiover A, ’E.‘or. let W?

be the subalgebra of W generated by iZ ¢ NUj_. Then considering the
identity mapping iUi : Uy — W' for each i € N, by 2) we see that
for the family (iUi)i ¢ N of A-module homqmorphisms, there exists a
unique algebra homomorphi‘sm g : W —— W!'CW such that g{W = 1 5 and
g.-extend/s each iUi, i ¢ N, But the identity mapping on W is glso
such a mapping, hence by the uniqueness of such algebra homombrphism
W= W', Hence W 1s generated by 5:26 NUi over A. f is a unique
infinitesimal algebra homomorphism by Propositions 3 and 4. This

completes the proof.

Corollary 1: Let W be a commutative R-algebra containing
A as a unitary subalgebra such that
1) there exists an R-derivation di : A —> W for each 1 ¢ N with

2
Ui =0, where Ui = AdiAo
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2) each (Uidi) is a universal def-ivation module of A as an R-aigebra,
and |

3) for any commutative R-algebra C containing A as a unitary éub-
algebra and any family {filfi : Uy — C,i € N with (f:‘_(Ui))2 =0}
of A-module homomorphisms , there exists a unique algebra homombrphism
f : W——> C such that f|A is the identity in A, and f extends eéch
module homomorphism f£4. |

Then (W,0),0 = (ei)i N where each 03 = d; + i), is a universal
infinitesimal algebra over A.

Proof: Immediate consequence of Proposition 2 and Theorem 1.

Construction of a universal infinitesimal algebra over A:

Suppose (U‘,d)» is a universal derivation module of A as an
R-algebra. Consider V = i@(- . Vi, external sum of V4, where V3 =1U
for a1l i ¢ N. Put U3 = {viv € V,v(j) = 0 for all j,j £ i}, then
ﬁi ¥V, and V = ZUy (direct). Let S(V) be a symmetric algebra of V
and put W = S(V)/J where J is the ideal of S(V) generated by IU.
And = 0 and VA J = 0 clearly, and this implies that A and V can be

imbedded into W by the natural homomorphism ¥ : S(V) —— W, Hence
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we may consider that W contains A and V by indentifying a = y(a), a ¢ 4,

and v =¥(v ), v & V. Each Uj is a submodule of V and by the above
‘identification, W; € W for each i ¢ N,
Lot us define d; : A -———-—)Ui(Ui < V CW),for each i ¢ N, by

da for j=1
di(a)(j) =

0 for j£1i

then d; is a derivation and (Ui'di) u (U,d) as a derivation module.
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Let 83 = dg + i, for each i &€ N and 0 = (ei)i N -

Theoren é: (W,8), thus obtained, is a universal infinitesimal
algebra over A,

Proof: It is sufficient to prove those conditions l),‘2), 3)
in Corollary 1. It is clear from‘the preceding construction that each
(Ui,di) is a universal derivation module of A as an R-algébra and
Us = Ad44A. Ui =

in the ideal J. Thus 1) and 2) are proved. To prove 3), let C be an

0 in W, since Ui considered to be in S(V) is contained

arbitrary commutative R-algebra containing A as a unitary subalgebra

and f5 : U3y — C be any A-module homomorphism such that (fi(Ui))2 = 0,
for each i € N, Since V = ZU; (direct), there exists a unique homomor-
phism g : V —— C which is an extension of each fi; i € N. By the
property of a symmetric'algebra, there exists a unique algebra homomdr-
phism h : S(V) =—=*> C such that g = h|V. 1In this case h(J) = 0, since
R(12) = (h(U3))% = (£5(03))° = O for each 4 € N. This implies that
there exists a unique algebra homomorphism £ : W —— C such that

foy = h, The algebra homomorphism £ : W ——7 C is an extension of each
f3, since £{U; = fov|U; = h|U; = g|U; = £3. Similarly, f|A is the ident-
ity on A, The uniqueness of such algebra homomorphisms as f is clear,
since W is generated by ZUj as an algebra over A. Hénce 3). This

'completes the proof of the theorem.

We now apply the results obtained in this section, together with
results of §4in Chapter 0, to Kahler's differential forms.

Let (W,0) be a universal infinitesimal algebra over A, From
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the construction of a universal infinitesimal algebra, we can easily

see that W is an R-algebra generated by iL# NdiA over A, where di : A—> W
is a derivation defined by d; = 65 ~ 1, for each i ¢ N,

Consider the A-submodule AduiA..;dV A, vy £N, of W.
k

(AdviAo 3 odykA - ino . .Uy

trivially).
k

Definition 4: An element in Ady A...dy A, is called a homo~
1 k ‘

geneous infinitesimal of type (V;s...,%, ) and of degree k.

Definitino 5: Kahler's differential forms of degreg k are the
homogeneous infinitesimals of type (1, 2, ... , k) and of degree k, or

equivalently, the elements of AdiA...dkA.

Remark 3:° The preceding Definition 5 is also a generalized
definition of Kahler's differential forms in [ 7 ]. Kihler considered
only the case when R is the ring of integers or a prime field of char-
acteristic p + 0, end A is a finitely generated separable extension

field of the field of gquotients of R,

Recall that (U,d) denotes a universal derivation module of 4,
T, (U) the A-module of all homogeneous elements of degree k of a tensor
algebra T(U) of U. '

Theorsm 3: If U is a projective A-module, then T, (U) ¥ AdA...d A,

k
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Proof': Put Ui = Ad.Aand V= %
- 1 i €N
of a universal infinitesimal algebra, V = ZUi (direct). Let W; be the

Ui, then by the construction

subalgebra of W generated by Uj for each i, then for any commutative
algebra C containing A, any algebra homomorphism g; ¢ wi ———> C over

A has the property (gi(Ui))2 = 0, since (g;i(Ui))2 = gi(Ug) = 0.

(recall Ui = 0inW). Let (gy) 4 ¢y be a fanily of algebra homo-
morphisms"over A where g4 : W; —> C for each i, and put fj = gi]Ui,
then (f;) i €N is a family of A-module homomorphisms whe;t'e £y @ Ui—-—> C,
for each i such that (fi(Ui))z = (gi(Ui))2 = 0. By Theorem 1, there
exists a unique algebra homomorphism £ : W —> C over A extending

each A-module homomorphism f3. Moreover f{W; = g;, since f and g
-coincide on Uy and Ui génerates Wi. Hence W is a free commutative join
of the family (W,) 4 ¢ n of subalgebras, Since each Uy, 1 €N, is '
a projective A-module and V = ZU; (direct), U3 ® ... @ U = Ul...Uk(in W)
= Adih...dkA (ef. Theorem 6, 4, Chapter 0). By Theorem 1, we know that

each Uy = U and hence Ty (U) = Ul X soe X Upe Thus T (U) = AdjA...dyA.

Theoren 4: If U is a finitely’generated projec.t:’we A-module,
then the A-module of all homogeneous differential forms of degree k is
isomorphic to the A-module of all Kahler's differential forms of degree k.
Proof: Let K(D) be the algebr;\ of differential forms of A, and
Kk(D) the A-module of all homogeneous differential forms of degree k V
[cf. 52, Chapter 0 ]. Since U is a finitely generated projective
A-module, Kp(D) T T} (U) [ cf. Theorem 5, §2, Chapter 0 ). Hence by the

previous theorem, K (D) = AdgA...dgA.



§ 3. Integral Differential Fomms.

Let R be a commutative ring with unit, K a unitary commutative
R-algebra, D the K-module of 21l derivations of K, K(D) the aligebra of
all multilinear forms on D, K(D) is a regularly graded algebra and
hence-K(D) = § K,(D) (direct). An element in K(D) is called a

differential fomm and an element in Kk(D) a-homogeneous differential

form of degree k. Let D* = Homy(D,K) and we can put D* = Kl(D), since
D* is naturally imbedded into K(D), onto Kj(D). If we define

d : K—> D* by d(a)(8) = 6a for a1l a ¢ K, & ¢ D, then d is also a
derivation (cf. $2, Chapter 0).

Definition: If R is an integral domain, K a field containing

R, an element x € K(D) is called an integral differential form if and

only if x € %‘ 5(ds)® for all valuation rings S in K such that S 2 R,

and an integral differential formm in Ky (D) is called a homogeneous

integral differential fom of degree k.

Remark 1: The homogeneous integral differential fomms of
degree zero are the elements of K integral over R, In fact, the set
of all homogeneous different;ial forms of degree zero is the intersection
of all valuation rings in K containing R by the preceding definition,
and this is the integrai closure of R in K (e¢f. Theorem 1, §2, Chapter.o).

Thus the integral differential forms are, in a sense, a generalization

8s.



of the integral elements in K over R,

The purpose of this section is to show that the R-module of
2l) homogeneous integral differential fomms of degree k is - finitely
generated if R is a noetherian unique factorization domain and X a
finitely generated separable extension field of a field of qudfients

of R,

Convention: Unless otherwise specified,
(1) R will denote a noetherian domain, Q a field of quotients of R,
Ko = Q(xl,;...xn) a purely transcendental extension of Q with trans-
cendence degree n over Q, and K = Ko(xo) a separable algebraic extension
of K, with the minimal polynomial f = t" 4+ a;t" = 1, ;.. + a, (f ¢ Ko[ t ],
polynomial ring over K, with t as indeterminate) of x, with respect to
Koe If f1 is the usual derivative of f in K,J t ], then £1(x) £ 0,
since x, is separable algebraic over K,.
(2) Let us put G = R[ xl.....xg ], the subring of K, generated by
X]1eeesXpn OVEr R, S, dentoes a valuation ing in K, containing G, S a
valuation ring in K which is an extension of S,, and let G and S, be the
integral closures of G and S, in K reépectively. T, and Y will denote
the maximal ideaksbf So and S respectively. |
(3) Finally (U(S/R,8), (U(G/G),3),... etc, denotesa universal derivation
nodule of S as R;algebra, a universal derivation module of G as G-

algebra,.,.otc.

If (U,5) is a universal derivation module of K as R-algebra,
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U= KoXj + oo + Koxp (direct). Since U is a free K-module with a
finite basis § 06Xj,e44,8%,] , the K-module Ki (D) of all homogeneous
differential forms of degree k is isomorphic to the K-module T} (U) of
all homogeneous elements of degree k in a tensor algebra T(U) of U
(ef. Theorem 5, §2, Chapter 0). Also, ,Tk(ﬁ) is a free K-module with

% 6xi.,...6xik!1 < il....ik < n‘ﬁ as its basis [Ll- ]. We know that
1 .

(u,8) 2 (D*,d) [ cf, $2, Chapter 0 ]. and since we put D* = Kl(D), any
homogeneous differential foxm x of degree k is uniquely expressed in
the following fom:

X = s eeeg OXs5 oaedx
PP I R R

where ail...ik ¢ K, the mﬁltiplication carried out is the Kronecker
algebra of D,

The following Lemmas are needed to prove Proposition 1.

Lemma 1: Let S, be a valuation ring in K, such that S, is a
ring of quotients of G, Then theuniversal derivation modules U(E/R),
U(s/R), U(G/G) and U(S/S,) are all finitely generated modules.

Proof: Since R is a noetherian domain and G a finitely
generated ring over R, G is also a moetherian domain. The integral
closure G of G in K is a finitely generated G-module (cf. Theorem 3,

§ 5, Chapter 0), say G = Gwy + eee 4 Gy, Wy € G fori=1, 2, ceo, m,
If (U(G/R),5) dentoes the universal derivation module of G as R-algebra,

6G S 6G'Wy + wee + 0G W, + GOWy + oeu + GOW,
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E’Eéxl 4 ees + E&xn + Eéwl + e +..(§6wn.
Hence GOG T G6x1 4 eoe + G<_?>xn + Géwl 4 oss + Géwm.
On the other hand, G5G contains the right hand side of the above inclusion,
since the right hand side is a Gamodule generated by elements in G&G.
Thus

U(G/R) = GG

n

55X1;+ cee + E5xn + Eéwl + oo + GOW.
Hence U(G/R) is a finitely generated G-module.
Next, for U(S/R), since s is, by Proposition 3, §1, Chapter II, a ring
of quotients of G,

U(S/R) = S®% U(G/R) |

= S@OX) 4 ses + S® K, + SD WY + v0u + 5@ buy,

[_cf. §3, Chapter I, Notice rings of quotients are. fractional extensions ].
Thus U(S/R) is finitely generated.
Finally, U(G/G) and U(S/S,) are homomorphic images of U(G/R) and U(S/R)
respectively | cf. Theorem 2, 2, Chapter 0 ]. Homomorphic ﬂJnagés of

finitely generated modules are finitely generated.

Corollary 1: Let @: S —> M and 6 : G —> N be arbitrary
derivations of S and G as Ralgebras respectively, whéfeﬁ M a'nd.H_, Aare» S~
module and G-module respectively. Then the submodules SdS of M and G 4G
of N are also finitely generate& .modules. S

' Proof: 5 dS and G 6G are homomorphic images of the universal der-
jvation modules U(S/R) and U(G/R) réspectively. Since U(S/R) and U(G/R)

are finitely generated by Lemma 1, S dS and G 4G are finiteiy generated,
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Lemma 2: Let S, be a valuation ring in K, such that S, is
a ring of quotiénts of the subring G'of K,. If S is a valuation ring
in K which is an extension of Sy, then

'G‘k’S(dS)k E N z SdXi se odXi
] ll_poot.ik 1 k

vhere A is the different of S over S,.
(Notice that the differents exist, since U(S/ So) is finitely generated).
Proof: We will first show that
(2)  SdS, = Sdxg + s + Sdxp.
It is well known that
U(G/R) = Gbxlﬂ-;-;... + GOx
where (U(G/R)’é) is a universal derivation module of G as R-module, Since
S, is a ring of quotients of G,
U(S,/R) = S°®GU(G/R) = so.'ax1 + eee + 59X
[ ef, §3, Chapter.I] where (U(SO/R),?) is a universal derivation
module of S, as R-algebra. The subset Sy dS, of U is a derivation
module homomorphic image of U(S,/R) and hence
5005, = S,dX + eee + Spdx,
Hence, SdS, = del 4 eoe + den.
Next, notice that S is a Euclidean domain [ ¢f. Proposition 1, §1,
Chapter II ], and U(S/R) is finitely generated, [ Lemma 1 ].
4 ds ¢ D945, [ ef. Proposition 2, §3, Chapter 0 ]
Hence .Ks(ds)k = ak(as)k ¢ OyK(ds )k ¢ s(as,)k

k.
By (a), 5(d5)"= .E:—Wik Sdxy 4eadxy

Thus, OXs@@s)¥<c = sdxg ...dxg .
il’..‘.ik l k
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Proposition 1: Let S, be a valuation ring in Ko with the

property that S, is a ring of quotients of G and the coefficients of
the mininel polynomial f of x, over K, all be contained in So+ Then

k .
(21 (o)) + l(S(D,ng(dS)k) s, =, kso_{ o Joxy o outny

whereABl is the set of all valuation pings S in K which are extensions
of Sg.

Proof: By Proposition 6, §3, Chapter 0, f'(x,) ¢ ﬁ(s‘o/so).
However, we know that S is a ring of quotients of S and hence
A (5/50) = «(S4/5,)S [ Proposition 3, §3, Chapter 0 ]. Thus £1(x, ) ¢

£(s/5,). Now for x € { \ 5(as)X, let x = Za
S €53

ee 0l dx' ...dx-
3Ty i’

1
ail...ik ¢ K, Then by Lemma 2, (f (xo)) € Zdell...dxik for all

S G,Sl, hence f'(xo)kail...ik

On the other hand, f£1(x,) ¢ A?(So[ X, ]/So), since U(So[ X, ]/So) is

€5 for all S €8), Thus (f'(xo))kail...ik ¢ So.

generated by dx, and f(x,) = 0 implies f'(xy)dx, = O. Hence
k+ 1 k -
(f' (xo)) + ailouoik = (f'(xo)) ailcooik' f'(xo) 6 Soﬂ(so[ xo ]/So).

However, by Proposition 5, §3, Chapter 0, So&-(S,[ x, 1/5,) € 5,[ x, ].

Thus (fl(xo))k + lail"'ik ¢ S,[ x, ]. This shows that

k+1

(£1(x,)) x € ZSo[ x, ]dxil...dxik for &1l x € ;r;\ s(as)k,

2

Proposition 2: Let R be a noetherian unique factorization

domain and the coefficients of the minimal polynomial f of X, over K,
all be contained in G, then,
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(f'(xo))k + lIk S Z R[ xo'XI,oooyxn ]dxi ooodxi 9
il’ooo.ik l k

vhere I is the R-module of &ll homogeneous integral differential forms
of degree k and R[ Xos X9 ees s xnl is the subring of K generated by
X Xys eee s X, over R. )

Proof: Let.3, be the set of all valuation rings in K, which
are rings of quotients of G and 8 the set of all valuation rings in K

which are extensions of a member of Bo. Then

(ft(xo))k +1p ¢ ('f:(xo))k + 13?.3 5(das)®  (by the deﬁgitibn

of homogeneous differential fomms of degree k)

< Sol. X5 Jdxj ee.dx by Proposition 1

= 11'2:-:-" 1, 6l X, ]dxil...dxik (since G isaunique factorization

domain and hence G = sr?ﬂ S, by Corollary 2, §1, Chapter II).
o

'—"-. Z‘ R se e dx- se d s
ililcc,ik [xolxli ’xk] ll * Axlk.

Proposition 3: Under the assumptions as in Proposition 2, in

fact, there exists a natural number ¥ such that

(el e X Tdx, oo.dx

il,.oo,ik ik

k ki k
Where T = z h o X ,.ooox n'
ki S_V ¢ 1 n

Proof: Let (A) be the following statement: There exists a
natural number Vi for each x4, 1 =0, 1, 2, ..., n such that

k41 X A
(f'(xo)) Ik-c_ ’tLi_.’ikTidxilooodxik,-Ti =kiz< ViR[ xo,ll,....xi,....xn]xi
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/N
vhere Xy denotes the omission of Xje

k+1 m
If (A) holds, (£*(x )" ¥ "I < il“Zmik( ) Ti)dxil...dxik.

Put ¥ = max {¥g,eees¥,} s then f"’o T; C T, and hence

(erx N+ e X Taxs
il.ooo;ik

...dxik. Hence it is sufficient
to show (4).
(1) Proof of (4) for x, : Let x ¢ (£1(x,))¥ * 11,, then

*= ilgc:o ,ikcil...ikdx 1.‘.dxik' cil.'.ik 6 R[ xo’xl"":xn] by’

Proposition 2, Mgreover, K -.-.»Ko'[ xo_] is a simple algebraic extension
of K, and the leading coefficient of the minimal polynomial f of x,

over K, is 1 and all coefficients of f are in R[ x3,...,x, ] and

n me-1

hence ¢ XXX = X C: sees X
il lk i‘:l lil lk o

, ciiltooik 6 R[ xl’.’l-)xn].

Put Vo =m - 1, then

. .
xé¢ > > R XjseeesXy X 0 dx; ...dx; . Thus (A) holds
il’.""ik kO _<- ° [ 1 ] ° 11 lk ( )

for Xoe
(2) Proof of (A) for x3 : Let us consider the subring R[ x" l.xz,...an

-1 . -
of K,. Then R[ Xy ,xz,....ng] is also a polynomial ring in xl :".:cz.....xn

as indeterminates. Let 5, be the valuation ring in K, detemmined by the
irreducible element x3~ ¢ R[ x,~ 1,x5,.00,%, ] [ ef. Corollary 1, §1,
Chapter II ]. Put xoxl' h_ Yo for some positive integer h, x” 1_ y1»
ard x; = y; for 1 =2, 3,.¢s, n, Then Q(yl....,yn): K, and is a purely
transcendental extension of Q, Next,

mn
f(xo) = xo
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hm - '
= xl ((xoxl ) + alx (x xl h)m l + oee + amxl- hm) .

By replacing x %" h by ¥y, and putting by = a;x3~ hi for i = i, 2y eee 4 m,

hm -
f(xo) = xl (yom + blyom 1 + eee + bm)o

Let us put g = t" 4+ byt" = 1, s by; this is a polynomial over K,
with t as indeterminate, and g(yb) =0, Ko(yb) = K, and g is the polynomial
of y, over K,. Now we can put h sufficiently large so that

- hi ‘
bi = aixl 6 Soo
Hence by applying Proposition 1, we have:

N CY s@fye = So[ ¥g Jdyy +»edys -

Sé}l 11,000,1}: 1]. «k

Since dy) = (- X 2)dx; and dy; = dx; for i =2, ... , 1,

. - qil"'ik
(e (yo))* * 1(!& s@) e T sy, 1-x3 2 faxy oo udx

i
l.-oo,ik

where e is the mumber of y, amon e 2 T
1 i 1 8 Yy reeer¥y

h
Now notice that £1(x;) = xh{" l)g'(yo)
Hence, =
(e (e )+ 11, S (e ) 1<S(Dl 5(as))

h(m - 1)(k + 1)( 'y ))k+ 1( M\ s(as) )
5¢2

¢ x = D+ 1) 5”?21([ Yo }(= %~ )° Heeany oy

¢ xhlm - 1)k + l)ilj{_uiksO[ X, ]dxil...dxik

(since 5.l v, J(- x~ Al e s [« 1)

V.
- Z ls x dx o..dx- ’
ilyooo,ikxl O[ ° ] 11 lk



putting >i = h(m - 1)(k + 1).
On the other hand, by Proposition 2,

(f'(xo))k + l;[k c, 2 & XooX)seeesXy ]dxil.. .dxik,

- ilgooo,ik

Hence

k+1
! (xo) + Ik E Z. TldXil. . odxik,
l’ seey ik

V-
Since xl lso[ xo ]ﬂR[ xo’xl""’xn ] S Tlc

(3) Proof of (A) for X3, 122, 35 000 m, is exactly the same proof
with 1 replaced by i.

This completes the proof,

Theorem 1: (Main theorem) Let R be a noetherian unique factor-
ization domain, and K a finitely generated separable extension field éf
a field of quotients of R. Then the R-module of all homogeneous integral
differential forms of degree k is finitely generated.

Proof: It is known | 11 ] that if K is finitely generated
separable extension field of Q, then there exist elements |
2, Xy ees s X ¢ K such that {xl, coe s xn73 is a set of algebraically
independent elements and if we put K, = Q(xl, ves o xn), K = K,(z) and
K is a separable algebraic extension of K,. Let g = t" + b t" - 1, ...+
bys by ¢ K, for 1 =1, 2, ... , m be the minimal polynomial of z over
K,» From the fact that Ké is a field of cuotients of R[:xl, ces » X ],
there exists an element b € R[ x;, ... , X ] such that bb; € R[ x),e00ux ]o

1l

Then b g(z) = (bz)m + bbl(bz)m Tk vee + BT bye

~ Let us put bz = x, bibi = ai( ¢ R[_Xl. vee s X ]). and
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£t altp =l 4 a, ¢ Ko[ t]; then K = Ko(xo) and f is the
minimal polynomial of x, over K. v

Moreover, we notice that all the coefficients a; € R['xl, cos s xn'].
Hence by Proposition 3,

k+ 1
£f1(x.) I, C 2 TAX, «¢.dX,
( ° k—ilyonoyik 11 ’ 1k

vhere T = .2 Rx k°x1kl...xnkn for some V.
°
ki <y
Hence Ik g Z T 1 dx. ooodxi .

k+1 +
et (o) T K
Thus I, is a submodule of a finitely generated R-module, and since R

a ‘
is, noetherian domain, Ik itself is a finitely generated R.module,
3 As a special case we note:

Corollary : If R is a noetherian unique factorization domain
and K a finitely generated separable extension of the field of quotients
Q of R then the integral closure of R in K is a finitely generated
Re module,

For the more general class of noetherian integrally closed R
this is known [ 11 ] for the case of finitely generated separable

algebraic extensions K of Q, and hence we have a partial generalization
of this latter result.

Definition: Let R be an integral domain, K a field containing
R. A homogeneous alternating differential form x ¢ Gk(D) of degree k

is called integral if and only if j (x)( € K (D)) is & homogeneous

integral differential form of degree k, where jj : Gk(D) —> K. (D) is
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the natural monomorphism [ cf., U4, Chapter O ].

Theorem 2: Let R be a noetherian unique factorization domain
and K a finitely generated separable extension field of the field of
quotients of R, Then the R-module of all homogeneous integral
alternating differential formms of degree k is finitely generated.

Proof: By the definition of the integral alternating differen-
tlal form, the R.module of all homogeneous integral alternating differ-
ential forms;of degree k can be imbedded into the R-module of ali homo-
geneous integral differential forms of dégree k. By Theorem 1, the
latter is finitely generated, and since R is noetherian domain, the

. former is also a finitely generated R-module,
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