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A general formulation of the analysis of plane 

coupled shear walls is presented. The "continuous method" 

of analysis of coupled shear walls is reformulated in 

terms of deflection variables. The assumption that mid­

points of the connecting beams are points of contraflexure 

is relaxed so that the resulting theory is applicable to the 

general case where the lateral loading on the piers can 

be arbitrarily distributed. The governing equation of 

the structural system under static loading with the 

appropriate boundary conditions are given. The effect of 

asymmetry of the structure is discussed. As an application 

of the derived theory, the problem of shear walls subjected 

to differential fo'1Ildation settlement and rotation is 

studied. Solutions to deflections and internal stresses, 

under such conditions, are given. Evaluation of the 
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internal stresses was performed on a practical shear wall 

structure a.nd the results analysed. Through the use of 

deflectior~ variables, the formulation is extended into 

the regime of dynamics. The governing equation of motion 

with appropriate boundary conditions are given. The free 

vibration of coupled shear walls is studied and design 

curves for the fundamental natural frequency are presented. 

The use of substitutive symmetric systems and its effects 

on the fundamental frequency of asymmetric systems are 

examined. Theoretical natural frequencies were verified by 

dynamic testing on two models to show that the proposed 

theory is sufficiently accurate to provide information for 

dynamic analysis in seismic design. 

iii 



ACKNOWLEDGEMENTS 


I am most grateful to Dr. W.K. Tso, my research 

supervisor, for the inspirations and assistance he rendered 

in guiding me at every stage of the present work. 

I am obliged to Dr. A.C. Heidebrecht, Chairman, 

for making· available to me the departmental teaching 

assistantship, summer scholarship and the Ontario Graduate 

Fellowship. 

I am very grateful to the National Research Council 

of Canada for the financial assistance of the present work. 

I thankfully acknowledge the use of the Applied 

Dynamics Laboratory for the experimental work and the 

assistance offered to me by the technical staff of the 

laboratory for the same. 

I also thank the Computer Centre of McMaster 

University for making possible the computations involved in 

this work. 

My thanks are due to Mrs. Julie Jarrett who made 

this thesis presentable. 

iv 



TABLE OF CONTENTS 


CHAPTER TITLE PAGE 


1 INTRODUCTION 1 


· WALLS UNDER STATIC LOADING 


2 ANALYSIS OF PLANE COUPLED SHEAR 


8 

2.1 	 Introduction 8 


2.2 	 Derivation of Governing Equation 10 


2.3 	 Symmetric and Antisymmetric 


De formation 23 


2.4 	 Reduction to Wall of Equal Piers 28 


2.5 	 Effect of Asymmetry 32 


2. 6 Effect of Differential 

Foundation Settlement and 

Rotation on Symmetric Coupled 

42Shear 	Walls 

2.6.1 Derivation 	 44 


2.6.2 Evaluation of Internal 

48Forces 


3 ANALYSIS OF PLANE COUPLED SHEAR WALLS 


UNDER DYNAMIC LOADING 
 62 

3.1 	 Introduction 62 


3.2 	 Derivation of Equation of Motion 64 


3.3 	 Free Vibration 66 


3.4 	 Reduction to Wall of Equal Piers 73 


v 



CHAPTER TITLE 	 PAGE" 

3.5 	 Design Curves 79 


3.6 	 Effect on Fundamental Frequency 


by Averaging 97 


3.6.l 	 Averaging Pier Widths 98 


3.6.2 	 Averaging Pier Stiffnesses 102 


3.7 	 Experimental Work 106 


3.7.1 	 Experimental Set-Up 107 


3.7.2 	 Experimental Procedure 108 


3.7.3 	 Experimental Results and 


Observations 113 


4 	 CONCLUSIONS & SUGGESTIONS 


REFERENCES 124 


APPENDICES 


120 


1. 	 Computer Program for the Fundamental 

Natural Frequency of Plane Coupled 

127Shear Walls 

2. 	 List of Symbols 139 


vi 



LIST OF FIGURES 

FIGURE TITLE PAGE 

1 a) Configuration of Coupled Shear Wall 11 

b) Configuration of Equivalent System 11 

2 Internal Force Distribution Along Mid-

Points of Laminas 13 

3 Relative Vertical Displacement at the 

Section Along the Mid-Points of Laminas 

a) Due to Bending of the Wall 15 

b) Due to Bending of the Connecting Beam 15 

c) Due to Shear Deformat1on of the 

Connecting Beam 15 

d) Due to Axial Strain of the Wall 15 

4 Variation of Coupling Term c12 with 

Pier Width Ratio 36 

5 Variation of Coupling Term c21 with 

Pier Width Ratio 36 

6 Variation of Off-Diagonal to Diagonal 

Element c12;c11 with Pier Width Ratio 

(for all db/c) 37 

7 Variation of Off-Diagonal to Diagonal 

Element c21;c22 with Pier Width Ratio 

a) For db/c = 1/4 38 

b) For db/c = 1/8 39 

c) For db/c = 1/12 40 

vii 



FIGURE TITLE PAGE 


d) d
For b/c = 1/16 41 

8 Shear Wall Subjected to Differential 

Foundation Settlement and Rotation 43 

9 Variation of Unit Shear Ratio along the 

Height for Differential Foundation 

Rotation e = o0 and Differential 

Foundation Settlement 6 = 0.5" 57 

10 Variation of Unit Shear Ratio along the 

Height for Differential Foundation 

Rotation e = 0.2° and Differential 

Foundation Settlement 6 = O" 57 

11 Variation of Unit Moment Ratio along the 

Height for Differential Foundation 

0Rotation e = 0.2 58 

12 Variation of Unit Axial Force Ratio 

along the Height for Differential 

Foundation Rotation 6 = 0.2° 59 

13 Variation of the Total Moment Ratio 

along the Height for Differential 

Foundation Rotation e = o0 and Differ­

ential Foundation Settlement 6 = 0.5" 60 

14 Variation of the Total Moment Ratio of 

Pier 1 along the Height for Differ­

ential Foundation Rotation 6 = 0.2° 

viii 



FIGURE TITLE; PAGE 

14 (cont.) · and Differential Foundation 

Settlement 6. = O" 60 

15 Variation of the Total Moment Ratio 

of Pier 2 along the Height for 

Differential Foundation Rotation 

e = O. 20 and Differential Founda­

tion Settlement f!. = 0 11 61 

16 Fundamental Frequency Design Curves 

for Coupled Shear Walls with N = 10, 

D2 = 1, Db= 1/4 81 

17 Fundamental Frequency Design Curves 

for Coupled Shear Walls with N = 10, 

D2 = 1, Db= 1/8 82 

18 Fundamental Frequency Design Curves 

for Coupled Shear Walls with N = 10, 

D2 = 1, Db = 1/12 83 

19 Fundamental Frequency Design Curves 

for Coupled Shear Walls with N = 10, 

D2 = 1, Db = 1/16 84 

20 Fundamental Frequency Design Cruves 

for Coupled Shear Walls with N = 20, 

D2 = 1, Db = 1/4 85 

21 Fundamental Frequency Design Curves 

for Coupled Shear Walls with N = 20, 

ix 



FIGURE 

22 

23 

24 

25 

26 

27 

28 

29 

TITLE PAGE 

86 

Fundamental Frequency Design Curves for 

Coupled Shear Walls with N = 20, D
2 
= 1, 

Db= 1/12 87 

Fundamental Frequency Design Curves for 

Coupled Shear Walls with N = 20, D2 = 1, 

Db= 1/16 88 

Fundamental Frequency Design Curves for 

Coupled Shear Walls with N = 30, D2 = 1, 

Db= 1/4 89 

Fundamental Frequency Design Curves for 

Coupled Shear Walls with N = 30, o2 = 1, 

Db = 1/8 90 

Fundamental Frequency Design Curves for 

Coupled Shear Walls with N = 30, D2 = 1, 

Db = 1/12 91 

Fundamental Frequency Design Curves for 

Coupled Shear Walls with N = 30, D2 = 1, 

Db = 1/16 92 

Fundamental Frequency Design Curves for 

Coupled Shear Walls with N = 40, D2 = 1, 

Db = 1/4 93 

Fundamental Frequency Design Curves for 

Coupled Shear Walls with N = 40, D2 = 1, 

x 



FIGURE TITLE PAGE 

9429 (cont.) Db= 1/8 

30 Fundamental Frequency Design Curves for 

Coupled Shear Walls with N = 40, D
2

= 1, 

95Db= 1/12 

31 Fundamental Frequency Design Curves for 

Coupled Shear Walls with N = 40, D2= 1, 

Db= 1/16 96 

32 a) Configuration of Asymmetric Coupled 

100Shear Wall 

b) Configuration of Substitutive Symmetric 

System by Averaging Pier Widths 100 

33 Variation of Estimated Frequency with 

Pier Width Ratio (By Averaging Pier 

101Widths) 

34 a) Configuration of Asymmetric Coupled Shear 

Wall 104 

b) Configuration of Substitutive Symmetric 

System by Averaging Pier Stiffnesses 104 

35 Variation of Estimated Frequency with 

Pier Width Ratio (By Averaging Pier 

105Stiffnesses) 

36 Experimental Symmetric Model 109 

37 Experimental Asymmetric Model 109 

38 Control Console Assembly 110 

xi 



FIGURE 

39 

40 

41 

42 

43 

TITLE PAGE 

Shaker and Glide-Table 111 

Typical Experimental Frequency 

Plot 

- Response 

112 

Fundamental Frequency of Symmetric 

Coupled Shear Wall 117 

Fundamental Frequency of Asymmetric 

Coupled Shear Wall 

Experimentally Determined Percentage 

of Critical Damping 

118 

119 

xii 



CHAPTER l 

INTRODUCTION 

In modern high-rise structures, commercial and 

residential, shear wall construction has proven economic 

value. The high in-plane stiffness of the walls, both 

external and internal, provides the required stability 

against lateral forces such as wind or earthquake loading. 

These walls normally contain a band of regular openings 

for dqors, corridors and windows. Such a structural form 

is re fe'rred to as a coupled shear wall. A planar coupled 

shear wall may be defined as a structural system composed 

of shear walls interconnected by a series of spandrel beams, 

all in the same plane. 

A review of previous research in shear wall structures 

has been done by Coull and Stafford Smith (1). A compre­

hensive account of the methods of analysis of laterally 

loaded shear walls is given by MacLeod (2). In this 

study, discussion shall be confined to the analysis of 

planar coupled shear walls by the 'equivalent continuous 

system of laminas' method (henceforth, it shall be referred 

to as the 'continuous' method). 

In ~his approach, the discrete connecting beams 

between the piers of the coupled shear wall is replaced by 

an equivalent continuous medium. This medium can be taken 

1 
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as consisting of a continuous distribution of small 

laminas, of infinitesimal thickness dx,. capable of indepen­

dent action and rigidly connected to the piers. By 

assuming that the connecting beams have a point of contra­

flexure at midspan, and do not deflect axially, the 

behaviour of the structure may be expressed in terms of 

the shear forces at the points of contraflexure along the 

height of the building. 

Tl~is formulation was first applied to the analysis 

of coupled shear walls by Chitty (3) in analysing a 

cantilever composed of a nmnber of par<illlel beams intercon­

nected by cross bars. Beck (4) extended the analysis to 

take into account the pier deformations due to normal 

forces. The case of coupled symmetric shear walls on 

rigid four.dations, subjected to uniform lateral loading was 

treated. Rosman (5) further extended the analysis to 

arrive at solutions for a system with two symmetric bands 

of openings and various foundation conditions. The case 

of a concentrated load acting at the top of the wall was 

studied. Burns (6) studied the case of a triangularly 

distribur.ed load (such as those specified in many seismic 

codes) and provided charts for the determination of 

stresses and maximum deflections. His results also include 

the effects of parabolically varying pier and beam stiff­

nesses. Similar charts were also given by Beck (4) 

(for the case of uniform lateral load). A coupled symmetric 

http:distribur.ed
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shear wall of variable cross-section, subjected to uniform 

lateral load, was analysed by Traum (7). Experimental 

verification of the 'continuous' method of analysis of 

coupled shear walls was given by Barnard arid Schwaighofer (8). 

To reduce the amount of computations involved in the 

solution of the governing second-order differential equation, 

Barnard and Schwaighofer (8) have proposed a simplification 

of Rosman's theory: using a combination of a straight 

line and a parabola to approximate the true shear force 

distribution in the connecting beams. Applying Rosman's 

theory, Coull and Choudhury (9) (10) presented charts 

for the evaluation of stresses and maximum deflections for 

general coupled shear walls subjected to uniform lateral 

load, triangularly distributed lateral load and a point load 

at the top. Coull and Puri (11) further developed the 

'continuous' method to include shear deformation of piers 

in the analysis of coupled shear walls. The assumption 

of cons ta1.1. t ratio of shear forces in the piers throughout 

the height of the building was made. The influence of 

flexibility of wall-beam connection was also considered, 

employing Michael's (12) suggestion of equivalent beam 

length. Michael (12) has shown that the flexibility of 

the joint may be taken into account of approximately by 

assuming an effective length of beam to be the clear 

span plus the depth of the beam. To investigate the 

relative magnitudes of the influences of shear deformation 
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and join~ flexibility, experiments were performed on models 

with a single band and double symmetric bands of openings. 

Coull and Puri have concluded that shear deformation of 

piers has little effect on stresses and deflections; 

whereas the flexibility of wall-beam connection has a more 

significant effect. In his investigation of damaged 

buildings in the Alaskan Earthquake, Jennings (13) has 

shown that the damage pattern observed in the spandrel 

beams is consistent with the dynamic response (approxi­

mated by the static response under uniform or triangular 

loading) of a coupled shear wall vibrating in the funda­

mental mode. 

In all the above analyses, only static loading is 

considered and the assumption of points of contraflexure 

at the midspan of connecting beams is specified. In 

Japan, researchers have carried out the dynamic analysis 

of core-wall buildings. They are concerned with the 

vibration of the coupled frame and shear wall system. 

Using the same 'continuous' method, Osawa (14) has 

presented a dynamic analysis of this type of building, 

neglecting the shear deformation of the core-wall and the 

axial deformation of exterior columns. Tani et al (15) 

continued the study by making no assumption about the 

contraflexure points of the exterior columns or beams 

and by including the two types of deformation. A linear 

ordinary second-order differential equation was derived 
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with the distributive moment of the beams as the redundant 

function. Influences of the shear deformation of the core­

wall and of the axial deformation of exterior columns were 

discussed~ Design charts for stresses and deflections 

were prepared in the static analysis. Natural frequencies 

and mode shapes were presented in the dynamic analysis by 

means of examples. 

Recently, Tso (16) dismissed the assumption of 

contraflexure points at the midspan of the connecting 

beams and analysed a symmetric coupled shear wall using 

the deflections of the two piers as redundant functions. 

Through a linear transformation of the defle~tions, the 

governing equation of the structural system can then be 

expressed as a pair of linear ordinary fourth-order 

uncoupled differential equations in terms of the symmetric 

and antisymmetric modes of deformation. Analysing an 

example of a symmetric coupled shear wall laterally loaded 

at the top by two concentrated loads, Tso has concluded 

that the previous work by Beck and Rosman essentially 

neglected the symmetric mode of deformation which might be 

significant near the top of the piers. His results also 

show that in as far as the shear distribution along the 

mid-points of the laminas is concerned, Rosman's expression 

is valid even without the assumption of contraflexure 

points. An extension of the analysis to shear walls of 

unequal piers is given by Tso and Chan (17). 
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Most lateral loads a building is subjected to are 

dynamic in nature. Wind loading and seismic loading are 

typical examples. To investigate the response of a 

coupled shear wall under such dynamic excitation, knowledge 

about th~ dynamic characteristics of the coupled shear 

wall system becomes essential. Hence it will be useful 

to derive a general formulation of the analysis of coupled 

shear walls: a formulation which will lend itself easily 

to the study of dynamics. Such is the purpose of this 

study. By adapting Tso's approach to general coupled 

shear walls and subsequently formulating the problem 

under dynamic loading conditions, this work also serves 

to assess the accuracy of the previous analysis (with the 

assumption of contraflexure points) and to put the 

'continuous' approach of analysing coupled shear walls in 

a firm foundation. 

Th~ present work consists of three parts. The first 

part deals with the formulation of general coupled shear 

walls under static loading. It includes a discussion on 

the effect of .asymmetry, followed by an evaluation of 

the stresses of a symmetric wall subjected to differential 

foundation settlement and rotation. The second part 

deals with the formulation of general coupled shear walls 

under dynaraic loading, followed by a study of the free 

vibration aspect. Curves for the fundamental frequency, 

with due consideration for practical dimensio.ns of the 

http:dimensio.ns
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structural system, are presented in terms of non-dimensional 

quantities to facilitate design computations. The effect 

on the fundamental frequency, by averaging the properties 

of the two piers to arrive at a substitutive symmetric 

system, is examined. Finally, dynamic tests were performed 

on a symmetric and an asymmetric model to verify the 

theory. 



CHAPTER 2 


ANALYSIS OF PLANE COUPLED SHEAR WALLS UNDER STATIC LOADING 

2 .1 Introd.uction 

In this chapter, the analysis of coupled shear walls 

under static external loading is presented. The method of 

replacing the discrete connecting beams by an equivalent 

continuous system of laminas is employed. Points of contra­

flexure at the mid-points of the laminas are not assumed 

and the deflections of the piers are chosen as redundant 

functions. The formulation of the governing differential 

equation and boundary conditions is given in Section 2.2. 

The governing equation takes the form of a pair of linear 

ordinary fourth-order coupled differential equations. In 

Section 2.~, through a linear transformation, the formula­

tion is expressed in terms of the symmetric and antisymmetric 

modes of de.formation. It is shown that the pier deflections 

are not identical even if the external loading on the piers 

is proportional to the pier stiffness. In Section 2.4, 

by reducing the general formulation to the case of a 

symmetric wall, it is possible to assess the previous work 

by Beck (4) and Rosman (5) and to establish the circumstances 

under which the assumption of contraflexure points is 

justified. The coupling action between the symmetric and 

antisymmetric modes of deflection is studied in Section 2.5. 

8 
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Finally, in Section 2.6, the formulation is applied to the 

problem of differential foundation settlement and rotation 

for the ca8e of a symmetric coupled shear wall. The governing 

differential equations remain unchanged but the boundary 

conditions have to be reformulated. Using a shear wall 

model without external loading, the internal forces in 

non-dimensional form are evaluated and presented in graphical 

form. It is shown that the symmetric mode is not a function 

of foundation settlement. However, it is significant near 

the bottom of the structure when rotation of the foundation 

occurs. 



10 

2.2 Derivation of Governing Equation 

Ccnsider a general coupled shear wall consisting of 

two piers connected by beams as shown in Figure la. It is 

assumed that the properties of the walls and beams remain 

constant throughout the height of the wall. The top and 

bottom connecting beams are assumed to have a second moment 

of area anc cross-sectional area equal to half of those of 

the intermediate beams. 

The left and right piers are subjected to lateral 

load distributions w1 (x) and w (x) respectively. The2 

bending moments caused by the lateral loadings w (x) and
1 

w2 (x) are taken to be M1 (x) and M2 (x) respectively. The 

piers are assumed to be rigidly connected to the foundation. 

To analyse such a system, the physical model in 

Figure la is replaced by its equivalent model in Figure lb. 

In the equivalent model, the discrete connecting beams are 

replaced by a continuous distribution of independently 

acting laminas, rigidly attached to the piers. The laminas 

have thickness dx, moment of inertia (Ibdx)/h and cross­

sectional area (Abdx)/h, where Ib and Ab are the respective 

properties for the connecting beam. 

An imaginary cut is made along the mid-points of the 

laminas. Unlike the previous analysis of coupled shear 

walls, the mid-points are not considered as points of 
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contraflexure. In making the assumption that mid-points of 

the connecting beams are points of contraflexure, it is 

generally taken that the lateral loading on the two piers 

be distributed in proportion to their respective stiffnesses. 

Such loading conditions are rarely met in prdctice. For 

example, in the case of wind loading, the pr~ssure distri­

bution differs on the windward side and the leeward side. 

For seismic loading considerations, the inertial loading 

on the piers is proportional to the respective widths. 

Since the stiffness of the pier is proportional to the 

third power of its width, the assumption of lateral load 

carried by the piers proportional to their respective 

stiffnesses is not applicable for plane coupled asymmetric 

shear walls, Even when such an assumption is made, the 

deflections of the two piers need not be the same because 

of their coupling action. While one may argue that the 

difference of the deflections would be suffici~ntly small 

to be negligible in many cases, one will not be able to 

determine the magnitudes of the axial force and moment in 

the connecting beams which may be significant. 

Therefore, along the cut, there is a distribution 

of bending moment m (x) and axial force n (x) in addition 

to the shear distribution q (x) • This internal force 

distribution is shown in Figure 2. Since the de flee tions 

of the piers are in general different, there results in 

five unknowns in the problem; namely; (i) the deflection 
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of the left pier y 1 (x), (ii) the deflection of the right 

pier y 2 (x), (iii) the shear distribution q(x), 

(iv) the moment distribution m(x) and (v) the axial 

force distribution n(x). 

The first equation relating the five unknown variables 

can be obtained from the displacement compatibility condi­

tion along the imaginary cut. Figure 3 shows the relative 

vertical displacements at the section along the cut. 

Due to bending of the piers, the relative displace­

ment o (x) is given by1 

dva dyl + a ... 2 	 ( 2 .1)o (x)= 	 1- 2­
1 dx dx 

where and are distances from the imaginary cut toa 1 a 2 

the centroidal axes of pier 1 and pier 2 respectively. 

The shear qdx acting at the mid-point of each 

lamina (having equivalent moment of inertia (Ibdx)/h and 

equivalent cross-sectional area (~dx)/h) will cause a 

relative displacement o2 (x)due to bending of the lamina 

= -qhc 3 
o (x) 	 (2.2)2 

12Eib 

where 	 h denotes the storey height 

c denotes the clear span of the connecting beam 

E denotes the elastic modulus of the material 

of the shear wall system 
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(a ) 

(b ) 

(c) 

( d) 

FIGURE 3 

RELATIVE VERTICAL DISPLACEMENT AT THE 
SECTION ALONG THE MID-POINTS OF LAMINAS 

{a) DUE TO BENDING OF THE WALL 
(b) DUE TO BENDING OF THE CONNECTING BEAM 
(c) 	 DUE TO SHEAR DEFORMATION OF THE CONNECTING 

BEAM 
(d) DUE TO AXIAL STRAIN OF THE WALL 
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The shear deformation of the lamina due to shear qdx 

gives a relative displacement o (x) where3 

= -qhco (x)3 GAb* ( 2. 3) 

where Ab* is the effective cross-sectional area of the 

connecting beam to be considered for shear deformation and 

G is the shear modulus of the beam material. 

The relative displacement o (x) as a result of4 

axial deformation of the piers is given by 

o4 (x) + ! )Jx JH qp.)dA.dn (2.4)
A2 o n 

where A and A are the cross-sectional areas of piers 11 2 

and 2 respectively. 

It should be noted that the moment m(x) and axial 

force n(x) on a lamina do not cause any relative displace­

ment of the lamina at the imaginary cut. The compatibility 

condition requires that the sum of the above relative 

displacements must be zero, giving 

= 0 (2.5) 

Considering each pier separately, the moment ­

curvature relationship gives 

http:qp.)dA.dn
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d2y. 
EI. __.:]_ = (j=l,2) (2.6)

J dx 2 

where Ij is the moment of inertia of pier j. MEj' the 

total moment on pier j, is given by (Figure 2) 

al J: qd). - I: md). - I: n().-x) dA (2.7)MEl = Ml ­

n().-x) dA (2.8)ME2 = M2 ­ a2 I: qdA+ I: mdA+ J: 
Substituting equations (2.7) and ( 2. 8) in to equation 

( 2. 6) results 

d2y1 
al J: -J:EI = qd). md). rn().-x) d).Ml ­1 dx 2 

(2.9) 

d2y 
EI

2 
2 = li2 - a2 Ix 

H 

qd). { md). + Jx 

H 

n ( A-x) dA 
dx 2 

(2.10) 

In this analysis, it is assumed that the connecting 

beams are sufficiently stout or the axial forces in the 

connecting beams are sufficiently low that the effect of 

axial force on the bending deformation of the connecting 

beams can 0e neglected. It is also assumed that the end 

shortenings of the connecting beams, as a result of their 

flexural dP.formation, are of secondary importance. With 

these assumptions, the moment m(x) and the axial force 

n(x) can be related to the pier deflections as 
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m 
Eib (dyl - dy2) (2.11)= he \dx dx 

EAb 
n (yl - Y2) (2.12)= he 

Compression is taken as positive in setting up 

the above equation. Thus, equations (2.5), (2.9), (2.10), 

(2.11) and (2.12) form the five linear equations relating 

the five unknown functions. 

In order to procure a more meaningful and readily 

soluble representation of the problem, q(x), m(x) and n(x) 

are eliminated as follows to result in a pair of equations 

in terms of the deflections y (x) and y (x) of the piers.1 2 

Differentiating equations (2.9) and (2.10) twice 

with respect to x and subsequent substitution of equations 

(2.11) and (2.12), there is obtained 

d4yl d 2M dq Eib1 ( d'y1 d'y2)- EAb (yl-y2)
Eil = + al -+ 

dx 4 dx 2 dx he dx 2 dx 2 he 

(2.13) 
d4y d 2M dq Eib ( d 2 y 1 - d 2 y 2 )+ EAb 

EI 2 
2 = 2 

+ a2 (yl-y2) 
dx 4 dx 2 dx he dx 2 dx 2 he 

(2.14) 

The next step is to express~ in terms of y 1 (x) 

and y (x). Differentiating equations (2.5) with respect2 

to x gives 

d2y d2y hc3$2 dq
1 2 + qd>. 0al + a2 --- - =;( 

1 :)r
dx 2dx 2 12Eib dx Al A2 x 

(2 .15) 
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12Eib 
e2where = 1 + (2.16) 

c 2G~ 

e2 is a measure of the relative flexural anc shear stiff­

nesses of the connecting beams. For instance, e2 = 1 

implies that the shear deformation of the connecting beams 

is neglect:.ed. Adding equations (2.9) and (2.10) results in 

d2yl d2y 
Ell + EI 2 = M + M - (al+a2) qd).. (2.17)2 1 2dx 2 dx 2 I: 

From equations (2.15) and (2.17), ~-can be H 

expressed in terms of y1 (x) and y2 (x) by eliminating Ix qdA 

obtaining 

hc 3 6 2 dq d2y
1 I d2y2 M 

= 
dx 2 (al + __!.)+ 

dx 2 (a 2 + 2)- (2.18) 
12Eib Cl.x aA aA EaA 

where a + a2 (2.19)= al 


1 
 1 
A = + 1 (2.20)

Al A2 

M = Ml + M2 (2.21) 

Substituting equation (2.18) into equations (2.13) 

and (2.14), and writing the resulting pair of equations in 

matrix form yields 

:2] ::. {~~}-
(2.22) 

http:2)-(2.18
http:neglect:.ed
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212a 
(2.23)where 1 

y - 1 	 (2.24)2 

y - 1 	 (2.25)1 

212a2 1= Y2 +P22 	 (2. 26)c2132 

I. 
__J__y. = 1 + (j = 1,2) 	 (2.27)a.aAJ 

J 

d 2M. 12a.Ib 
f. 	= __]_ - J M (j = 1,2) (2.28) 

J dx 2 hc 3 8 2 aA 

It is noted that y. is a measure of the axial 
J 

deformation of pier j. For instance, neglecting the axial 

deformation of pier j means y. = 1. 
J 

Equation (2.22) is the governing equation of the 

structural system under static loading, expressed in terms 

of pier def.lections y (x) and y (x). The first term on1 2 

the left hand side of the equation is the bending term 

involving the flexural stiffness of the individual pier. 

The second r.erm is a function of the pie~ curvatures; it 

represents the effect of axial force on the lateral equili­
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brium of t.rie shear wall. The third term is the elastic 

foundation term since it is proportional to the deflection 

vector. It should be noted that the properties of the 

connecting beams are reflected in the latter two terms. 

The right hand side of the equation represents the forcing 

function due to external lateral loading. This forcing 

function can be readily calculated once the external loading 

is defined. Thus, the governing equation takes the form of a 

pair of beams on elastic foundation and under 'axial' loading. 

By using displacement variables rather than force 

variables as unknowns, this formulation lends itself easily 

to include the inertial effect of the piers, as is required 

in the dynamic study of coupled shear walls. It also simpli­

fies the formulation of boundary conditions. 

Equation (2.22) is a pair of linear, ordinary 

fourth-order differential equations. To completely define 

the behaviour of the shear wall system, eight boundary 

conditions, four at the top and four at the base of the piers 

are required to complement the governing equation. Assuming 

that the piers are rigidly connected to the foundation, the 

boundary conditions at the base are 

at x = 0 y. = 0 (j = 1,2) (2. 29)
J 

dy.
_:i = 0 (j = 1,2) (2.30)
dx 
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The boundary conditions at the top require more consideration. 

From equations (2.9) and (2.10), putting x = H (where H 

is the height of the shear wall) gives 

d2y. 
at x = H EI . ___:]_ = M . (j = 1,2) (2.31)

J dx 2 J 

Differentiating equations (2.9) and (2.10) with respect 

to x gives 

Ell 

d3y
1 

dx 3 

dMl 
. - -­

dx 
+a q1 

+ m + I: (2.32) 

EI
2 

d3y
2 

dx 3 
-

dM2 

dx 
+ a2q - m - J: ndA. (2.33) 

To express q(x) in terms of functions of y (x) and y 2 (x),1 

equation (2.18) is integrated with respect to x, resulting 

in 

(2.34) 

Substituting equations (2.34) and (2.11) into equations 

(2.32) and (2.33) and evaluating at x = H yields the 

final set of boundary conditions. In matrix form, they are 

q = 
1 [ Mdx 

hc 3 8 2 

EaA 

E 

(2. 35) 
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where 

I
H 

d.M. 12a.Ib 
g. 	= -1. - J Mdx (j = 1,2) (2.36) 

J dx hc 3 S2 aA o 

Equation (2.35) is the condition relating to the 

shear forces at the top of the piers. Thus, the analysis 

of an asymmetric coupled shear wall subjected to arbitrary 

distributed lateral loading on the piers reduces to the 

solution of equation (2.22) stipulated by boundary conditions 

(2.29}, (2.30}, (2.31) and (2.35). 

2.3 Symmetric and Antisynunetric Deformation 

To provide better physical insight of the problem, 

it is convenient to recast equations (2.22), (2.29), (2.30) 

(2.31) and (2.35) in terms of variables which represent 

the antisymmetric and symmetric deformation of the piers. 

This is achieved by using new variables z and z2 defined1 

by the linear transformation 

(2.37)f: ~} :] { :~}= [: ­

or 	 (2.38) 
{ :~} = ~ [: -~ {:~} 
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From the transformation, it is readily seen that if 

both piers de fleet equally, i.e. y = y 
2 

, then z is
1 2 

identically zero and z represents the antisymmetric mode1 

of deflection of the system. On the other hand, if the 

piers deflect equally but in opposite directions, 

i.e. y = -y2 , then z is identically zero and z represents1 1 2 

the symmetric mode of deflection. Thus, the deflection of 

the piers is represented by a linear combination of anti­

symmetric and symmetric modes of deformation z and z
1 2 

respectively. 

Substituting equation (2.37) into equation (2.22) 

and premultiplying the subsequent equation by the transpose 

of the trdnsformation matrix, one obtains 

a (alY 1 + a2Y2) a{alyl- a2y2) 
E [~ :J ::. {::} hc3S2 [ a(alyl+ a2y2) c;s 2 

]a(alyl- a2y2)+ 

::~ - ~~!~~A l 
d 2 M 12Iba.M{::}<:b [: : ] { ::}= 
dx 2 hc 3 S2 aA, (2.39) 

(2.40)where 

(2.41)I = 

(2.42)a = 

(2.43) 

Writing equation (2.39) in terms of the non-

dimensional spatial coordinate ~ defined by 

x = ~H (2.44) 
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the governing equation becomes 
H2 

[L] { z } + 
Hi.~ 

{ z } = hC [~ ~] Erl (<)}where {Z} = z2 ( ~} 

12H2Ib 
a2 = 

hc 3 s 2 

and [L] i~ an opera tor ma trix with elements 
I I I 

= I ( } - a2a(alyl + a2y2} ( }Lll 

I I I 

Ll2 = I ( } - a2a(alyl - a2y2} ( 

I I I 

L21 = I { } - a2a(alyl + a2 Y 2) { 

-

M"- a 2M 
-,::­

(2.45)- a 2aMM"­
aA 

(2.46} 

{2.47) 

(2.48) 

(2.49) 

{2.50) 

I I I 

= I ( ) - a 2 [a(a y 
c2s2 

(2.51)L22 - a2y2)+ -3-l1 1 

It is noted that a 2 has a dimension of [length2] 

and that { ) denotes differentiation with respect to 

variable ~. 

Applying the same procedure to equations {2.29}, 

(2.30), (2.31) and {2.35), the boundary conditions become 

at. ~ = 0 {z} = {O} (2.52) 

{ Z} I= {O} (2.53) 

H2 
{Z} II=at ~ = (2.54}l [ ~ :J E {~} 
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2 
M'- ~ Md~A[L] {Z} = (2.55}-
- 2
M'-~ Md~ 

aA 

Thus, in tenns of the antisymmetric and symmetric 

modes of deflection, the problem of coupled shear walls 

subjected to arbitrarily distributed lateral loading on 

the piers reduces to the solution of equation (2.45} 

subjected to boundary conditions (2.52} through (2.55). 

Once and are solved, the other physical quantitiesz1 z 2 

of interest in the problem can be obtained as follows: 

deflections 
(2.37) 

moment (from equations (2.11} and (2.39}) 

2Eib 
m(O = z 2 ' 

(2.56} 
Hhc 

axial force (from equations (2.12} and (2.38)} 

(2.57)n(O = 

shear (from differentiating equation (2.17) and 

using equation (2.38)} 

+ iz2 "' (2.58} 
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moment on pier 1 (from equations (2.6) and (2.37)) 

EI 1
M (t,;) = -- (z " + z i ' 1) (2.59)

El H2 1 2 

moment on pier 2 (from equations (2.6) and (2.37)) 

(z II - Z II)~2 (t,;) = (2.60)1 2 

For a coupled shear wall with unequal piers, the 

antisymmetric deflection z and the symmetric deflection
1 

are coupled. The coupling occurs in both equationsz2 

(2.45) and (2.55). It appears, at first glance, that 

equation (2.54) is also coupled, but with some mathematical 

manipulation, it can be uncoupled, reading as 

at t,; = 1 (2.61) 

From equations (2.56) and (2.57), it can be seen 

that so long as the deflections of the two piers are not 

identical, the moment m(t,;) and the axial force n(t,;) in the 

connecting beams will not vanish. In the case that the 

deflections are identical, the shear q(~) and the total 

moments on the piers ME1 (c,:) and ME (c,:) are functions of the2 

antisymmetric . deformation z1 • It is pointed out in 

Section 2.1 that a proportional distribution of the lateral 

load according to the pier stiffnesses does not necessarily 

imply equal deflections of the piers. This fact can be 
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seen by putting r = r M into equations (2.45) and2M1 1 2 

(2.52) through (2.55). The resulting set of equations does 

not admit a solution z = 0.2 

2.4 Reduction to Wall of Equal Piers 

In this section, the general formulation is reduced 

to the particular case of a coupled shear wall with equal 

piers. 

Symmetry of the shear wall system implies that 

al = a2 = as/2 (2.62) 

= As (2.63)Al = A2 


= I
Il = !2 s (2.64) 

yl = y2 = Ys (2.65) 

dl = d2 = d s (2.66) 

where the subscript s refers to the symmetric wall. 

Substituting equations (2.62) through (2.66) in equation 

(2.45), the governing differential equation takes the form 

of a pair of uncoupled equations, namely, 

6HiI a 2y H2 12Hi+Ibb s s II = --M" - M (2.67) 
hc 3 f3 2I 

zl 
2EI EA hc 3 f3 2I s s s . s 

2H 2I 2Hi+A H2 
z iv b b 

z2 
II + z2 = --M" (2.68)2 hcI hcI 2EI

5 s s 
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By a similar substitution, the boundary conditions (from 

equations (2.52) through (2.55)) become 

at 	t,; = 0 zl = 0 (2.69) 

(2. 73).z2 	= 0 

= 0 (2.70)zl 

I 

z2 	= 0 (2.74) 

II 
H2 

at f,; = 1 zl = 	 --M (2. 71) 
2EI s 

II H2 ­
z2 = 	 --M (2.75) 

2EIS 

6H 2I a 	 2y H2 12H1tib 
II I b s s

zl - zl 
I = M' - Md~ 

hc 3 S2I 2EI EA hc 3 S2I [s 	 s . ss 
(2.72)

2H 2 I H2 
b- I

z2 
111 

z2 = 2EI M'hcis 	 (2.76)s 

which are consistent with those given by Tso (16). 

Therefore, the analysis of a coupled synunetric shear 

wall fixed at the base and subjected to static loading 

reduces to the solution of equations (2.67) and (2.68) 

with boundary conditions (2.69) through (2.72) and (2.73) 

through (2.76) respectively. From equations (2.56) through 

(2.60), the internal forces of the synunetric structure can 

be expressed as 
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moment m(E;} = (2.77) 

axial force 
2E~ 

n ( E;} = (2.78)z2 
he 

I 

2Eis MI I I 

shear q ( E;} = zl - -­
a H3 a H (2.79)s s 

EI I I I Ismoment on pier 1 MEl ( E;} = (zl + z2 } (2.80) 
H2 

EI I II Ismoment on pier 2 ME2 (E;} = (z - z2 } (2.81)1H2 

Hence, in the case of a coupled shear wall with equal 

piers, the antisymmetric and symmetric modes of deformation 

are uncoupled. From equation (2.79), it is seen that the 

unit shear is independent of the symmetric deflection and 

of the lateral load distribution on individual piers. 

It should he noted that equation (2.79) is obtained without 

the assumption of points of contraflexure at the mid-points 

of the connecting beams. Also, no assumption of equal 

load distribution on the piers is made. Equation (2.79) 

can be shown to be identical to the results obtained by 

Beck (4), Rosman (5) and Traum (7) for the corresponding 

external loadings. Thus, as far as the unit shear force 

is concerned, the results by Beck, Rosman and Traum are 

applicable to a more general situation than they indicate. 
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If it is assumed that the lateral loading is equally shared 

by the piers, i.e. M1 = M2 , then a soll,ltion z = O will2 

satisfy the governing differential equation (2.68) and 

associated boundary conditions (2.73) through (2.76). 

In this case, n(~)= m(~)= 0 and the mid-points of the 

connecting laminas are indeed the points of contraflexure. 

Since Beck, Rosman and Traum are concerned with equal 

proportioning of the lateral loading on the piers, their 

solution is correct for the case of a coupled symmetric 

shear wall fixed at the base and the a~sumption of points 

of contraflexure at the mid-points of the laminas is fully 

justified. 
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2.5 Effect of Asymmetry 

Structural designers tend to favour the concept of 

symmetry because of simplicity in computations and sometimes 

economy in construction. However, asymmetry may occur as a 

result of architectural or functional requirements. In the 

case of coupled shear walls, a study of the effect of 

asymmetry on the formulation of the problem is useful. 

From the design viewpoint, it may provide justification for 

a simplification of the design procedure. From the 

academic viewpoint, it may promote further insight into the 

problem. 

Mathematically, asymmetry is usually manifested in the 

off-diagonal terms of a matrix formulation. It is seen from 

equations (2.39) or (2.45) that the mai~ coupling terms 

(coupling between the antisymmetric and symmetric modes of 

deflection) are the off-diagonal elements in the matrix 

associated with the curvatures of the pier deflections. 

Neglecting the common factor (Eib)/(hcS 2), the matrix [C], 

with non-dimensional elements, can be written as 

12[CJ = [:(alyl + a2y2) a(alyl - a2y2) ] 
c2 a(alyi + a2y2) a(alyl - a2y2)+ c2S2/3 

(2.82) 
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The coupling terms e 12 and e can be expanded to read as21 

e12 = Fl + F2 (2.83) 

e21 = F1 - F2 (2.84) 

where E1 = 12 
c2 

( 2al Y1 - 2 )a2 Y2 (2.85) 

F 
2 

12 = 
c2 

ala2 (yl - Y2) (2.86) 

and F2 , which are non-dimensional, can further beF1 

expressed in terms of the pier width (d., j = 1,2) to beam 
J 

(2.87) 

(2.88) 

In a similar manner, the diagonal elements e 11 and 

can be expressed ase22 

e11 = F3 + F4 (2.89) 

- - + 48 2 (2 .90)e22 F3 F 4 

where F3 = 12 
(a12Y1 + a22Y2) (2.91)

c2 

F4 = 12 
ala2 (yl + Y2> (2.92)

c2 
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In terms of the basic geometry of the shear wall, the 


quantities F
3 

, and S 2 become
F4 

c. d ~ r(:l +l) (:1> 3+ (:2 +l) (:2> J[~ + ~J 
F3 = 3 c-1. +1>2+c~ +1>2 + L . J 1[ c c 	 dl d2 . 

(- + - + 2) (2.93) 

~d2 +l) (dl):+(dlc+l) (d2>J[c + =J 
d d c c c c dl d2 

= 6 1 +l) (~ +l) +F4 (C- c dl d

<c- + c-2 

+ 2) (2.94) 

d 


S2 = 1+1.2 {E){_£)2 (2.95)
G c 

where in the last expression, Ab* the effective cross­


sectional area of the connecting beam to be considered for 


shear deformation is taken as ~/1.2; and db is the depth 


of the connecting beam. 


The variations of the coupling terms c12 and c21 

with the pier width ratio dl/d2 , for various width of pier 1 

dto beam span ratios l/c, are shown in Figures 4 and 5 

respectivaly. Without loss of generality, pier 1 is assumed 

to be wider than or equal to pier 2, i.e. d~ > d 2 • The 
.L ­

width of pier 1 ranges from one-half to two times the 

connecting beam span. It is seen that the coupling terms 

are monotonic increasing functions of the pier width ratio, 
d 

with the major increase occurring between 	~ = 1 and 2 1 
a2 . 

and that they both vanish at d = d~ which is to be expected1 ~ 

of a synunetric system. In a similar fashion, Figure 6 shows 

the variation of c ;c the off-diagonal element to the11 ,12
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diagonal element. This is, indirectly, the influence on the 

antisymmetric mode of deflection by the symmetric mode as 

a result of coupling. The same conunents as in Figures 4 

and 5 apply here. However, there is one difference in the 
dl 

trend. At a particular a- ratio, the variation of c or122 

dl 


c21 with C- has a positive curvature, whereas the corres­

ponding variation of c12;c11 has a negative curvature. This 

implies that when the piers are sufficiently close, the 

coupling a~tion tends to approach a constant value. As 
db 

is a function of the depth to span of beam ratioC21/C22 c, 
d 1 1 1 1Figures 7a-d show its variation with ~ = 4, lr, IT, rr 

respectively. This variation is, indirectly, the influence 

on the symmetric mode of deflection by the antisynunetric 
E 

mode. Witho1:.t loss of generality, G is assumed to be 

2.60 corresponding to a Poisson's ratio of 0.30. It is seen 

that higher magnitudes are obtained in Figures 7a-d than in 

Figure 6. One noticeable feature in Figures 7a-d is the 
dl 

occurrence of peaks for C- = 1.5 and 2.0 in the neighbourhood 
dl 

of a- = 2. This implies that when the width of pier 1 is 
2 dl 

sufficiently large compared to the beam span <c- ~ 1. 5) , the 

coupling action is most prominent in the neighbourhood of a 

pier width ratio of 2. It is also noted that as the depth 

to span of beam ratio decreases, i.e. as the connecting beams 

become less stiff, there is more coupling action. 
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2.6 	 Effect of Differential Foundation Settlement and 

Rotf.. tion on Symmetric Coupled Shear Walls 

As an application of the above formulation of 

coupled shear walls under static loading, a problem of 

practical interest is examined. The problem of differential 

foundation settlenent and rotation has been of concern, 

particularly in the case of apartment buildings situated 

above an escarpment. The instability of the slope induces 

differential settlement and rotation and the subsequent 

stresses in the structure may be disastrous. 

For convenience, the case of a symmetric coupled 

shear wall where the foundation under the right pier has 

undergone a settlement 6 and a clockwise rotation e is 

considered (Figure 8). The left foundation is assumed 

to remain fixed. It is convenient to divide the treatment 

of this topic into two subsections. The first subsection 

deals with the formulation of the problem. The second 

subsection contains an evaluation of the effect of 

foundation settlement and rotation on a shear wall model. 
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FIGURE 8 

SHEAR WALL SUBJECTED TO DIFFERENTIAL 

FOUNDATION SETTLEMENT AND ROTATION 
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2.6.l De=ivation 

Since the coefficients of the governing differential 

equations (2.67) and (2.68) depend only on the geometrical 

characterist.ics of the piers, the connecting beams and on 

the loading on the structure, the equations are valid for 

different foundation conditions. Defining non-dimensional 

constants a 2 and µ 2 as 

6H 2 I a 2 yb s s (2.96) 

µ2 = (2.97) 

the differential equations can be written as 

2a2 H2 
II

iv a2z 	 -1:!.:_ M" M (2.98)zl - 1 	 = 
2Eis EAsas2Ys 

µ2H2A 2 ­iv 	 b _H__ M"µ2z "·+ 	 (2.99)z2 - 2 	 z2 = 
2EIIb s 

The boundary conditions, which are not independent 

of foundation conditions, become 

~at ~ = 0 	 zl = ~et. 0 (2.100) 

z2 = - ~e& ~ 0 (2.104) 

= ~ H0 (2.101)zl 
I 

-~ H6 (2.105)z2 
I = 
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where it ~s noted that the exact zero displacement for the 

right pier. occurs at ~ = - ~ , but neglecting the second­

order effect, z1 (0) and z2 (0) can be taken to be zero; 

H2 
at ( = 1 zl ti = (2.102)2EI M 

s 

H2 ­ (2.106)=z2 " 2EI M 
s 

To obtain the other pair of boundary conditions at the top 

of the piers, it is necessary to express the unit shear in 

terms of the pier deflections. Integrating equation (2.18) 

(in t;:he reduced form) with respect to x, it is obtained 

hc 3 8 2 dyl 
x 2+ dy2)= (

2 dx dx o Ea A s s 

(2.108) 

Unlike the case of a rigid foundation, the unit shear is not 

zero at the base. At the imaginary cut along the mid-points 

of the connecting laminas, the compatibility condition of 

zero relative vertical displacement is given by 

E! Jx ['1 q(A)dxdn - 6 = 0 (2.109) 
s o Jn 
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From equ~tion (2.109), at x = 0, the unit shear q is given 

by 

hc 3 S2 as 
q lx=O = e - ~ (2.110) 

12Eib 2 

Substituting equation (2.110) into equation (2.108) results 

in the re1uired expression for the unit shear: 

dyl dy2 2 
(- + )- Jx Mdxl 

dx dx EaSAS o J 
(2.111) 

Proceeding in parallel with Section 2.2 while keeping 

equation (2.111) in mind, one obtains the final set of 

boundary ~onditions, namely, 

H2 2a2H22 2a 2 HIJl z1 "' - o.-2 zl t = 	-- M' - Mdt;;- s 8­
2Eis EAsas ys o A a 2 ys s s 

(2.103) 

H2 -, 
(2.107)= 2EI M 

s 

Thu:; r this analysis reduces to the solutions of 

equations (2.98) and (2.99) subjected to boundary conditions 

(2.100) through (2.103) and (2.104) through (2.107) 

respectively. The internal forces of the symmetric structure 

can then be obt.ained from equations (2.77) through (2.81). 

Comparing the set of boundary conditions in this 

Section witl1 that in Section 2.4, it can be seen that the 

differential foundation settlement and rotation affect only 
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the boundary conditions relating to the slope of the 

de flecti·:>n at the bottom and to the shear force at the top 

of the piers. Furthermore, these effects are superimposed 

on the original formulation without differential settlement 

and rotation. Since the problem is strictly linear, it 

follows that solutions to the differential settlement and 

rotation problem can be obtained by superposition. From 

equation (2.105), it is seen that the symmetric mode of 

deflection is a function of the differential rotation. If 

there is no differential rotation and if it is assumed that 

the lateral loading is equally shared by the piers, i.e. 

M = M2 , then a solution = O will satisfy the governing1 z2 

different~.al equation (2.99) with boundary conditions 

(2.104) t~rough (2.107). Since Rosman (5) is concerned 

with foundation settlement and with equal proportioning of 

the lateral loading for the case of a sy~etric shear wall, 

his solution is valid and the assumption of contraflexure 

points at t1:1e mid-points of the laminas is again justified. 

It will be shown that when differential rotation does occur, 

the symmetric mode of deformation is significant at the 

lower floors of the structure. 

http:different~.al
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2.6.2 EvaJ.uation of Internal Forces 

To study the effect of differential foundation 

settlement and rotation on the internal forces of the 

symmetric structure, the external load is set to zero: the 

governing differential equations become (from equations 

( 2 • 9 8 ) and (2·. 9 9 ) ) 

(2 .112) 

(2.113) 


The boundary conditions (2.100) through (2.107) are obtained 

as 

at 	~ = o, (2.114)zl 	= 0 

= 0 (2.118)z2 

= Ja H8 (2.115)zl 
I 

z2 I = - ~ He (2.119) 

at ~ = 1, zl
II = 0 (2.116) 

z2
II = 0 (2.120) 

2a 2HI (i2H
11 I _ (i 2 z I s e - 6. 	 (2.117)zl 	 = 1 A 2 sas Ys asys 

Z "'-'µ2z = 0 (2 .121)2 . 2 I 
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The antisymmetric mode of deformation is governed 

by equation (2.112) subjected to boundary conditions (2.114) 

through (2.117). Since the equation is linear with constant 

coefficients, the solution can be readily obtained as 

: ) [tanha (cosha~-1) -sinh&;] +[-;--- ~ 
sys 

+ H c1-L)al ~ 
2 Ys J (2.122) 

The symmetric mode of deformation is governed by 

equation (2.113) subjected to boundary conditions (2.118) 

through (2.121). Seeking a solution to equation (2.113) 

of the form 

s.;= e (2.123) 

the follow.~ng characteristic equation is obtained 

µ2H2]\,
4 2 2 +s - µ s = 0 (2.124) 

Ib 

The roots of equation (2.124) can be written as 

s = ± g ± ix (2.125) 

where g = !!. J2H + l (2.126)
2 µrb 

= !!. J2H _ l (2.127)x 2 µrb 



so 


Ib2 = 	 (2.128)rb 
~ 

and i2 = -1 (2.129) 

For practi~al consideration, the non-dimensional quantity 

H2~/Ib is considerably larger than unity. Since 

H 
>> 1, it is possible to make the simplification that

µrb 

(2.130) 

The general solution of equation (2.124) can then be expressed 

as 

z2 C~) = e~~(B1sin,~ + B2cosg~) + e-~~(B3sing~ + B4 cos9~) 
(2.131) 

where ~ is given in equation (2.130) and B
1 

, B
2 

, B3 , B are4 

arbitrary constants to be determined by boundary conditions 

(2.118) through (2.121). To be consistent with the approxi­

mation made in equation (2.130), the boundary condition 

(2.121) 	becomes 

at f. = 1, z Ill - 0 (2.132)2 ­

Solving for the arbitrary constants and back substituting into 

equation (2.131) yields the complete solution for z 2 C~) as 

z 2 (~) = _ H8 1 [cosh~sing~cosh~(l-~) 
2~ {cos 2,+cosh29) 

(2.133) 

It is noted that z 2 (~) is independent of~; that is, 
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the foundation settlement does not affect the symmetric mode 

of deformation. 

The internal forces of a symmetric coupled shear 

wall as a result of differential foundation settlement ~ and 

rotation e can be obtained utilizing equations (2.122) and 

(2.°133) as 


moment (from equation (2.77)) 

Eib e 


m(f;) = [ coshf1 cosflf; coshf1 ( 1-E;) 

-coshf1 sinf1E sinhf1(1-E) 

+sinJ cosf1E; cos fl sinhfls 

+sinf1 sinf1E cosJ· coshfls 

-cos fl sinJE cos fl sinhJE 

+cos fl cosf1E; cosJ coshJE ] (2.134) 

axial force (from equation (2.78)) 

EAi,H e 
n ( f;) = - -- [ coshJ sinJE coshJ (1-E;) + 

hcJ (cos 2 J+cosh 2 f1) 

(sinl sinf1t + cosf1 cosflt)cosJ sinhJt 1 (2.135) 

shear fore~ (from equation (2.79)} 

2EI a2 ~ e 
q ( f;) = s (- - - ) (tanha sinha~ - eoshat) (2.136) 

a H2 y a 2 s s s 

Moment on pier l (from equation (2.80) 

EI 5 {··Ha (-~ _= 	 e ) (tanha coshas - sinhat) 
H~ y s a 2

8 

+ 	 [coshJ cosJE sinhJ(l-E) - sinJ cosJE 

cosJ coshJE + coiJ sinJE cosJ oosbgE;]} 

(2.137) 
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moment on ~ier 2 (from equation (2.81)) 

eEIS { Ha ( 6. 
~2 ( E;) =- - - - - ) (tanha cosha~ - sinha~) 

H 2 y a 2 s s 

[coshg cosg~ sinh9(1-~)- sin9 cos9~ cos9 

(cos 2 g+cosh 2 9) 
coshg' + cosg sing• cosg coshg•J} 

. (2.138) 

Fr0rr. the above expressions, it is noted that because 

the symmetric mode is independent of settlement 6., so are 

the unit moment m ( ~) .and axial force n ( ~) • They are 

directly proportional to the differential rotation e. 

Evaluation of the unit moment, unit axial force, and 

unit shear force along the centerline of the structure and 

the total rnoments on the piers were performed on a shear wall 

system with the following geometrical characteristics and 

material properties 

number of storeys N = 22 


storey height h = 9 I 


total height H = 198' 


pier width d = 22' 
s 

wall thickness = l'
tw 


connecting beam span c = 5 I 


connecting beam depth db = 1/2' 


elastic modulus E = 3 x 10 6 psi 


In order to offer a meaningful presentation, the 
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internal forces of the shear wall system are normalized with 

respect to comparable quantities of the same system under 

the influ9nce of a uniform lateral load w only. To be 

realistic, w is taken to be 1000 lb. per linear foot. The 

unit shear force q is normalized with respect to q
0 

where q is the maximum unit shear induced when the same
0 

shear wall ~-s subjected to uniform load w. From Coull 

and Choudhury (9), q is given by
0 

(2.139) 

where K3 
1 is the shear stress factor and can be obtained 

from Figure 4 of the same reference. The unit moment m 

is normali~ed with respect to m where m can be considered 
0 0 

as a desig;'l quantity at the pier to beam connection. It is 

given by 

(2.140) 

The unit axial force n is normalized with respect 

to n where n can be considered as the lateral load
0 0 

transmitted to the connecting beam; specifically, 

1n - w (2.141)
0 - 2 

The total moments on the piers ~l and ~ are normalized2 
with respect to M

0 
where Mo is the root moment of a 

cantilever pier subjected to 21 w· , namely 
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M 1 H2 (2.142)0 - 4 w 

Thus, it can be seen that the normalized internal 

forces q/q , m/m , n/n , ~1/M0 , and ~ can be
0 0 0 2/M0 

expressed in terms of a non-dimensional lateral load factor 

EH/w which, jn this case, works out to be 9.9 X 10 7 • 

Computations were done using the CDC 6400 electronic 

computer ~nd the results are shown in Figures 9 through 15. 

Figures 9 and 10 show the variation of the unit 

shear ratio q/q along the height of the structure for 
0 

~ = 0.5" at zero differential rotation and for e = 0.2° 

at zero differential settlement respectively. The variation 

is maximum at the base and decreases steadily tending to the 

ratio of 1 at the top in both cases. This implies that, 

the unit shear produced by a differential settlement of 

0.5" or a differential rotation of 0.2° can be as much as 

one (at the top) to more than two times (at the base) the 

maximum unit shear when the same shear wall structure is 

subjected t.o a lateral load w of 1000 plf or a lateral load 

factor EH/~ of 9.9 X 10 7 • Since the unit shear is a linear 

combination of rotation and settlement, combining Figures 

9 and 10 will yield the unit shear ratio at any other values 

of differential settlement and rotation. 

Figure 11 shows the variation of the unit moment ratio 

m/m along the. height of the structure for a differential
0 

rotation of 0.2°. The variation is primarily noticeable at 
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the bottom third of the structure with a positive maximum 

of about 0.03 at ~ = 0.2 and a negative maximum of about 

0.16 at th3 base. This implies that a differential 

rotation of 0.2° induces a maximum unit moment of about 

16% of the cantilever moment produced by the maximum unit 

shear when the same structure is subjected to a lateral 

load factor of 9.9 X 10 7 • Since it is established that, 

at the base for e = 0.20 , q is about twice q , the unit
0 

moment is thus insignificant in the design of the pier to 

beam connoction. 

Figure 12 shows the variation of the unit axial 

force ratio n/n along the height of the structure for a 
0 

differential rotation of 0.2°. It can be seen from the 

exceedingly large ratios at the bottom third of the structure 

that the unlt axial force as a result of a differential 

rotation of 0.2° cannot be reasonably estimated, because 

of the interaction of the piers, by the transmission of 

the lateral load when the same structure is subjected to 

a load factor of 9.9 X 10 7 
• It should be noted that 

since the unit moment and the unit axial force are indepen­

dent of ~ and directly proportional to a, their respective 

ratios can be readily obtained for other values of differ­

ential rotation. 

Figure 13 shows the variation of the total moment 

ratios ~1/M0 and ~2/M0 along the height of the structure 

for a differential settlement of 0.5" at zero differential 
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rotation. It can be seen from equations (2.137) and (2.138) 

that ~l = ~2 when a = O. The ratio decreases steadily 

from a maximum of about 0.4 at the base to zero at the top. 

Figures 14 and 15 show the variation of the total moment 

ratios ~2/M0 and ~2/M0 respectively along the height of 

the structure for a differential rotation of 0.2° at zero 

differential settlement. The variation is significant at 

the bottom fifth of the structure where the total moment 

produced by a differential rotation of 0.2° is as much 

as eight times {at the base) the root moment of a cantilever 

pier when the same structure is subjected to a load factor 

of 9. 9 X 10 7 
• Al though it is necessary to combine Figures 

13 and 14 or Figures 13 and 15 to arrive at the total 

moment ratio {linear relationship as in unit shear) for other 

values of differential settlement and rotation, Figures 14 

and 15 nevertheless reflects the significance of the symmetric 

mode of deformation at the bottom floors of the structure. 
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CHAPTER 3 


ANALYSIS OF PLANE COUPLED SHEAR WALLS UNDER DYNAMIC LOADING 

3 .1 Introduction 

In this chapter, the analysis of coupled shear walls 

under dyn,mic external loading is presented. The 'continuous' 

method of coupled shear wall analysis is extended into the 

regime of dynamics. Since the formulation given in Chapter 

2 is in terms of the deflection variables of the piers, it 

is readily adaptable for dynamic analysis by taking into 

account th~ inertia effect of the piers. The derivation 

of the governing equation of motion and boundary conditions 

is given in Section 3. 2. The governing equation takes the 

form of a pair of linear partial fourth-order coupled 

differential equations. In Section 3.3, the study is 

restricted to the aspect of free vibration of the structural 

system. Since the knowledge of the fundamental natural 

frequency is essential in seismic design by the spectrum 

technique, effort has been directed through normalizing and 

non-dimensionalizing procedures to arrive at a formulation 

for the normalized natural frequency which is readily soluble 

with the aid of a computer. In Section 3.4, this treatment 

is repeated for the case of a symmetric wall. Computerized 

results fo·c the normalized natural frequency are presented 

in Section 3. 5 in the form of design curves, followed by 

a discussion of the curves and of the non-dimensional 

62 
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variables involved. The effect on the fundamental frequency 

by averaging the pier widths and the pier stiffnesses 

respectively to arrive at a substitutive symmetric system 

is examined in Section 3.6. It is shown that in the particular 

case considered, averaging the pier stiffnesses gives a better 

estimate of the fundamental frequency than averaging the 

widths of the piers. Finally, dynamic tests on a synunetric 

and an asymmetric model are described in Section 3.7. The 

experimentally determined frequencies are compared with the 

theoretical prediction; the agreement is found to be within 

5%. 
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3. 2 Deri vation of Equation of Mo tion 

In this derivation, the assumptions as given in 

Section 2,2 remain valid. If the external loading is time 

dependent: w1 (x, t) , w2 (x, t) , the deflections of the piers 

and the internal force distributions are also functions of 

time. Taking into account the inertial effect of the piers, 

the external moment expressions are 

( 3 .1) 

where dots denote differentiation with respect to time t 

and pj is taken as the mass of pier j plus half the mass 

of the connecting beams', per unit height of the shear wall. 

Substitutinq equation (3.1) into equation (2.45) and 

expressing the deflections in terms of z1 u,:, t) and z2 ( t,;, t) 

as in Section 2. 3 I the equation of motion can be written 

as 
HI+HI+~ 

[L] {Z} I + {Z}[~ ~] +r [~ ~] lZi---no 

2H4 ~>dx a r-~ ~ w(X ­[~ e ] !Zi (x - t,;> dx = ~, 'f-EA a E 
A 

a­-p -p 
~ . a 

2- a a 
J: 

w---r w(x-~)dx
aA ~ 

(3. 2) 

where (3. 3) 
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p = pl - P2 (3.4) 

w = wl + w2 (3.5 ) 

w = wl - w (3.6)2 

The corresponding boundary conditions can be obtained in a 

similar mi.nner from equations (2.52) through (2.55) as 

at ~ = 0 {Z} = {O} (3. 7) 


{z}'= {O} (3.8) 


at ~ = 1 . {Z}" = {O} (3.9) 


p 

[L) { Z }- { Z}
a•H' rr [i ex - ~) dxd~ap}-:A o ~ a PJ 

= w ex-~> dxd~ (3.10)
··a 2 H4 {!}J: J:EA 

Thus, the study of dynamics of coupled shear walls 

subjected to time dependent lateral loading reduces to the 

solution cf equation (3.2) subjected to boundary conditions 

(3. 7) thrcugh (3 .10) • 
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3.3 Free Vibration 

One of the parameters that is essential to the 

response analysis of any elastic structure is the natural 

frequency of that system. In particular, the fundamental 

natural "frequency is of importance because of its role 

in seismic design by the spectrum technique. In the follow­

ing, the fundamental frequency of coupled shear walls is 

studied in detail. 

For free vibration, there are no external loadings, 

i.e. 

(3.11) 

Seeking a solution of the form 

{Z (~,t)} = {n (~) }eiwt (3.12) 

where w is the natural frequency of the coupled shear wall 

and substituting equation (3.12) into equation (3.2), the 

equation :i:or free vibration takes the form 

H
4
1), [ 0 w2H4 2 2 4 

[L] { n} + H~] {n l - [~ !Jrnl + w a rhe O E EA 
~ q{n} ex-~> ax {0} (3.13}[; p -p = 

a 

Equation (3.13) is a pair of linear coupled homo­

geneous integro-differential equations. For case of solu­

tion, it ii; convenient to reduce equation (3.13) into a 

pair of sixth~order differential equations. Differentiating 

equation (3.13) twice with respect to ~, it is obtained 
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II I H4~ 
(L] {n} +-- OJ {n}"- "~[~ [; :Jn}"he 4 E 

00 2a.2H4 
+ = {O}~ !~{nlEA -p -pa a 

(3.14) 

The boundary conditions to be satisfied can be obtained 

from equ~tions (3.7) through (3.10): 

at t;; = O {n} = {O} (3.15) 

{n}'= {O} (3.16) 

at t,; = 1 {n}" {O} (3.17) 

2 2 4
[L] {n} + w ~AH Jl

oJt;;
r ~ ~ -] {n} <x-t;;>dxdt,; = {O}[ - p - pa a ( 3 .18) 

Since equation (3.14) is of the sixth order, two additional 

pairs of boundary conditions are required to determine its 

solution. The additional boundary conditions can be 

obtained from equation (3.13) and its derivative, 

evaluating at t,; = 1, namely, 

H 4 2 4 
, ~ [o ol w H [~

at t,; = 1 [L]{n} + he o 4J {n} - E P PPlJ {n} = {O} 

(3.19) 

H 4~ [O 0] , w2H4 [P p]
[L] {n} 

11 

+ hC 0 {n} - ·-E- p P {n} 
1 

= {O}4
(3.20) 

Thu~, the determination of the natural frequency 

w reduces r.o the solution of equation (3.14) subjected to 

boundary conditions (3.15) through (3.20). 
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To reduce the equations to non-dimensional form, the 

geometry of the coupled shear wall is normalized with respect 

to the length of the connecting beam c as follows 

d. = D.c (j = 1,2) (3.21)
J J 

db -= Dbc (3.22) 

h = He (3.23) 

where Dj, Db and Hare the normalized width of pier j, 

depth of connecting beam and floor height respectively. 

The natural frequency of the coupled shear wall is normalized 

with respect to the first frequency of lateral vibration of 

a cantilever beam having the stiffness of a pier and the 

mass equal to the mass of the pier plus half of the mass of 

attached connecting beams. Mathematically, this can be 

written as 

w = n. w . (j = 1,2) (3. 24)
J OJ 

where n. is the normalized frequency, and 
J 

().) . = ~~3.52 ~I.__]_ (3. 25) 
o J H2 p , 

J 

The relationship between n1 and n2 can be expressed in 

terms of the previously defined non-dimensional parameters 

as 

n 2 n 2 
2 1 

(3.26) 
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From the seven basic non-dimensional parameters: 

N, Dl, D2, Db' H, nl and n 2 , the following parameters are 

defined as 

nl 	= Dl 
3 

+ D2 3 (3.27) 

3n_ = Dl - D2 
3 (3.28)

"" 
n_ 

.; 	 = N2HD
b 

3 (3.29) 

n4 	= 1 + 1.2 D 2 (E) (3.30)b G 

= N4 H3Db (3.31)ns 

n6 	= (Dl + D2 + 2) (3.32) 

(3.33)n7 	= Dl - D2 

= __!. + 1 (3.34)n8 Dl D2 

" 	 2 0 3 + " 2 0 3 (3.35)ng 	= ~ r. l 1 a2 2 

nlo = n12D13 - n22023 (3.36) 

The diffe~ential equation (3.14) and boundary conditions 

(3.15) through (3.20) can then be written i .n terms of n. 
J 

( j = 1, 2, ••. , 10) as 

[P] 	 {n}vi + [Q] {n}iv + [R] {n}" + [S] {n} = {O} (3.37) 

at ~ = 0 {n} = {O} (3.38) 

· {n}'={O} (3.39) 

at 	~ = 1 {n}"= {O} (3.40) 
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[PJ{n}'" + [QJ{nl' + [SJ J:r: {n}(ii - l;)dii d~ = {O) (3.41) 

[P]{n}iv + [Q]{n}" + [R]{n} = {O} (3.42) 

[pl {n}v + [Q] {n}"' + [R]{n}' = {O} (3.43) 

where [Pl = [ nl n2] (3.44) 
n2 nl 

-n +3 [3n ' + nln8 3n6n 7 n 2n 8
[QJ = n7 n7 

3nn4 3n:n7 + nln8 
2 + n2n8 -+ 4nJ7n6 n6 

(3.45) 

[12.4 n9 12.4 nlO[R] = ] 
12.4 n 12.4 n -48n (3.46)10 9 5 

12.4 n n9 nlO3n 8 (3.47)[S] = 
n7 n7n4 -n9 n n10n 6 6 

Thus, in non-dimensional form, the problem reduces 

to the solution of equation (3.37) subjected to boundary 

conditions (3.38) through (3.43). The solution to equation 

(3.37) can be obtained by seeking a solution of the form 

{n } = {<I>} eAE,; (3.48) 

Substituting equation (3.48) into equation (3.37) leads to 

(3.49) 

http:n-48n(3.46
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where, for non-trivial solutions, the determinant of the 

matrix [\ 6 [Pl + 1..'+[Q] + A. 2 [R] + [SJ ] 11\USt be zero yielding 

a twelve degree characteristic equation in A as 

1 2 
. l 0 . 8 

A (Pllp22-Pl2p21)+ l (PllQ22+Qllp22-P21Ql2-Q2lpl2)+A (PllR22 

6
+QllQ22+Rllp22-P21Rl2-Q21Ql2-R2lpl2)+ A (Pll8 22+QllR22 

+R11022+811P22-P218 12-021R12-R21°12-8 21P12>+ A.. (0 118 22 

2 
+R11R22+S11022-0218 12-R21R12-8 21°12>+ A (R118 22+8 11R22 

(3.50) 

where P .. (i,j = 1,2) represents element ij in matrix [P]
l. J 

Let the roots of the characteristic equation be 

A. (i = 1,2, ••• ,12) and the associated vector corresponding
l. 

to A.i be denoted by {¢}i. From equation (3.49), {4>}i 

can be determined up to an arbitrary constant K.• It 
l. 

should be noted from equations (3.47) and (3.50) that 

since the d~terminant of matrix [S] is always zero, a 

double root of A = 0 results. Let and = O, thenA11 A12 

{~ (3.51){ ¢}11 = { ¢}12 = ] 

n:o 

Hence, the general solution of equation (3.37) can be 

written as 
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10 

{n} 	= ~ K. 

1 
{ ~}.

1 
(3.52) 

i=l 

Substituting equation (3.52) into the boundary conditions 

(3.38) through (3.43) gives twelve homogeneous linear 


algebraic equations for the constants Ki (i = 1,2, ••• ,12) 


as follows 

11 
l K. {~}. = - { O} 	 (3.53) 

1 1i=l 
10 

(3.54)l K.A. {~}i + Kl2{4>}11 = {O} 
1 1

i=l 


10 A·
1 	 (3.55)K.A. 2 {4>}.e 	 = {O}l 1 1 	 1
i=l 

I0 K . [A. 3 [ p] + A . [ Q] + [s ] (-1- - _L + 1 
1 1 1 	 2A. A.2 A.3 

i=l 	 1 i i 

{4>}i eAi + ~ Kll[S]{4>}11+ K12~Q]+ ~ [S~ {~}11 = {O} 

10 A. (3.56) 

l Ki[Ail+[P]+Ai2[Q]+(R]J{~}ie i+(K11+K12> [R){~}11= {o} 

i=l 
(3.57) 

~o Ki[Ai5[P]+Ai3[Q)+Ai[R8 {~}ieAi+K12[R]{~}ll = {O} 
i=l 

(3.58) 

The condition for determining the natural frequency 


is to require the determinant of the coefficients of 


Ki(i = 1,2, ••• ,12) to be zero. The actual ntll't'lerical evalua­


tion of the natural frequency makes use of the trial and 


error technique. A value of O. (i = 1 or 2) is assumed in 

i 

equation (3.50) and the roots A. (i = 1,2, ••• ,10) are determined. 
1 
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The determinant of the coefficients of K. (i = 1,2, ••• ,12) is 
l. 

then evaluate<l. In general, the determinant is not zero. 

The procedure is then repeated by assuming another value of 

O., until the determinant vanishes. An indication for this
1 

condition is when the value of the determinant changes sign 

between two successive trial frequencies. Knowing 

ni (i = 1 or 2), the actual natural frequency can be obtained 

from equation (3.24). 

3. 4 Reduction. to Wall of Equal Piers 

In this section, the general formulation is reduced 

to the particular case of a coupled symmetric shear wall. 

In addition to equations (2.62) through (2.66), 

symmetry also implies that 

(3.59) 

Substituting equations (2.62) through (2.66) and (3.59) in 

equation (3. 2), the equation of motion takes the form of a 

pair of unco,upled equations, namely, 

26H 2 I a y H4 p ·· 24H 6 Ibp Jl .. z iv b s s s sZ II + -- z - zl (x-cJ a.x1 13hc ~ 2 I EI l EA hc 3S2 Is ss 5 5 

H" 12H 6 Ib 
= -w- w(x-~) dx (3.60) 

2EI EA hc 3 S2 I
5 s s J: 

H"p .. 
s (3.61)z " +2 
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By a simi~ar substitution, the boundary conditions (from 

equations (3.7) through (3.10)) become 

at E,; = 0 (3.62) 

= 0 (3.66)z2 

zli= 0 (3.63) 

z 2 '= 0 (3.67) 

at E,; = 1 z1"= O (3.64) 

"= 0 (3.68)z2 


6H2Ibas2Ys 24H 6 Ibps 

z1 

HI z I - cx-E.:> dxdE.:1hc 3 f3 2 I EA hc 3 f3 2 I s s s 

= w(x-E,;) dxdE,; (3.65) 

(3.69) 

Equation (3.60) with boundary conditions (3.62) 

through (3.65) defines the antisymmetric mode response 

problem of a coupled synunetric shear wall under dynamic 

lateral loading. Equation (3.61) with boundary conditions 

(3.66) through (3.69) defines the symmetric mode response. 

From the practical point of view, the symmetric mode is 

seldom excited. It is the antisymmetric mode response 

that is being excited when the coupled symmetric shear wall 

is subjected to loadings such as wind and earthquake 

excitation. 
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In a similar pattern as in Section 3.3, the funda­

mental natural frequency of a symmetric coupled shear wall 

in its ar.tisynunetric mode of vibration is considered. 

Setting the external loadings w1 and w2 to zero and seeking 

a solution of the form, 

(3.70) 


equations (3.60) and (3.62) through (3.65) become 

iv -2 w2H4 Ps _2_4_w_2_H_6_I_b_P_s_ J1~· 
Tl s - a Tl s" - Tl s + n <x-odx = o 

EI EA hc 3 S2 I s 
s s s 

(3.71) 

at ~ = 0 Tl s = 0 (3.72) 

n s 
,_ 
-

0 (3.73) 

at ~ = 1 n "= os (3.74) 

fl 111 

s 
_ (i2 fl. 

s 
I+ 

24w 2 H6 I p
b S 

EA hc 3 S2 I s s Jolil~ n s ex-~> dxd~ = o (3.75) 

Differentiating equation (3.71) twice with respect to ~' 

it is obtained 

w2H4p
vi iv S 11 + = 0 (3.76)---nsTl s Tl s 

EI s 

The additional boundary conditions can be obtained from 

equation (3.71) and its derivative, evaluating at~= 1, 

namely, 
w2H4p

sn iv (i2 n IIat ~ = 1 ---ns = o (3.77)s s 
EIS 

Tl s 
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(3.78) 


Thus, the determination of the natural frequency w 

reduces to the solution of equation (3.76} subjected to 

boundary conditions ( 3 • 7 2} through ( 3 • 7 5} , ( 3 • 7 7 } and ( 3 • 7 8 ) 

To reduce the equations to non-dimensional form, the 

geometry of the coupled shear wall is normalized with respect 

to the length of the connecting beam c as 

(3.79) 

(3.22) 

(3.23} 

where D is the normalized width of the pier. Normalizings 

the natural frequency as in Section 3.3, the expression 

becomes 

(3.80) 

where Q is the normalized frequency of the symmetric wall s 

and 
w = 3.52 JEis 

o H2 p (3. 81)s 

From the five basic non-dimensional parameters: N1 , D , Db'
5 

Hand Q y and a2 can be written ass, s 

y = 1 + 1 (3.82} 
s 3(1+1 )2

D s 

(X2 = 6N2iiob 3 [ (l+~) 2+-i] 


(3.83)
D5 [1+1.2Db 2 (~)} 

The differential equation (3.76) and boundary conditions 

(3.72) thr0ugh (3.75), (3.77) and (3.78} can be expressed as 

vi - a2n iv - 12.4Q 2 n" + 12.4 a2 (1-1 
}Q 2n = o (3.84)ns s 5 s y s s 

5 
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(3.85)at t = 0 n = os 

ns 
,_ 
-

0 (3.86) 

at t = 1 ns"= O (3.87) 
1 

111n -Ci 2n I + 12.4a 2 (1-L)n 2J rn (x-F;)dxdf,; = 0 (3. 88) 
s s Ys s oJF; s 

12. 4n 2 n = o (3. 89) 
s s 

(3. 90)n v -a2n '" - 12. 4ns2n s' = O s s 

The solution to equation (3.84) can be obtained by 

seeking a solution of the form 

ns = eA.t (3. 91) 

Substituting equation (3.91) into equation (3.84) yields 

a sixth degree characteristic equation in A. given by 

1 
>.. 6 - 0: 2 >..'+ - i2.4ns 2>.. 2 + 12.4a2 (1- y- >ns 2 = o (3.92) 

s 

Let the roots of the characteristic equation be 

A..
l. 

(i = 1, 2, ••• , 6) • Then the general solution of equation 

(3.84) can be written as 

A..f;6 l. 
L K.e (3.93)

l.i=l 

where Ki(i = 1,2, ••• ,6) are arbitrary constants. 

Substituting equation (3.93) into the boundary conditions 

(3.85) through (3.90) gives six homogeneous linear 

algebraic equations for the constants Ki(i = 1,2, ••• ,6) 

as follows 
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6 


L: K. = 0 (3.94)
l.i=l 

6 
L: K.).. = 0 (3.95)

l. l.i=l 

)..6 l. 
L: K.).. 2 e = 0 (3.96)

l. l.i=l 

6 
-2 1 1 1 1 1L: K. (A. 3_ Ci 2 ).. + 12. 4a (1-:y) (·rr:- - ~- )

l. l. l. r.-z- + ).. ). 3 Aii=l s l. l. l. . e 
l. 

)..
l. 

ns 2] e = 0 (3.97) 

6 A. 
l. 

L: K. [).. =+ - c;:2)..2 - 12.4Qs 2 ] e = 0 (3.98)
l. l. l.i=l 

6 )..
1L: K. ().. 5 - a2).. s - 12.4n 2 )..]e = 0 (3.99)

l. l. l. s l.i=l 

The ~ondition for determining the natural frequency 

is to require the determinant of the coefficients of 

K. (i=l,2, •.. ,6) to be zero. The procedure is the same as 
l. 

that in Section 3.3. 
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3.5 Desi~n Curves 

To obtain the fundamental natural frequency as 

described in Sections 3.3 and 3.4 is often laborious. In 

this Section, sets of design curves are presented so that 

the fundamental frequency of coupled shear walls of a wide 

variety of configurations can be obtained with relative 

ease. 

To arrive at the fundamental frequency of coupled 

shear walls in the normalized form, six independent non-

dimensional variables are invloved: the number of storeys 

N, the floor height to beam length ratio H, the pier width 

to beam length ratio D and D2 , the depth of beam to length1 

of beam ratio ~ and the normalized frequency of one of the 

piers n or n2 . For a symmetric wall, only five quantities1 

are involved, namely, N, H, D , D , and n . To cover the 
s b s 

most practical configurations of coupled shear walls, N 

varies from 10 to 40 storeys; Hranges from 0.2 to 3.0; 

ranges from 0.50 to 2.0 while keeping o at unity ando1 2 

Db ranges from 1/16 to 1/4. Computer programs in Fortran 

IV language are written for the procedures described in 

Sections 3.3 and 3.4, and Appendix 1 gives the program for 

the asymmetric coupled shear wall. Computations were done 

on the CDC Model 6400 electronic computer and the results 

are presented in Figures 16 through 31, which represent 

sixteen se~s of curves, four for each value of N where 

N = 10, 20, 30, and 40. For each N, sets of curves are 
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given for Db= 1/4, 1/8, 1/12 and 1/16. Since is kepto2 

at unity, n2 is plotted against ii to show the effect on the 

fundamental frequency for various D 1 s from 0.50 to 2.0.1 

The bending to shear stiffness ratio ~is taken to be 2.60 

corresponding to a Poisson ratio of 0.30. This choice is 

only for the sake of convenience, and it can be shown that 

the choice of Poisson ratio has little effect on the outcome 

of the normalized frequency. 

For each set of curves, the general trend is logical. 

The normalized frequency is a monotonic increasing function 

with the floor height to length of beam ratio. This may 

be explained by the fact that as H decreases, the length 

of the connecting beam can be considered to increase 

(compared to the floor height), thereby resulting in a less 

stiff structure. On examining the frequency variation with 

n1 , a higher pier width to beam length ratio would imply a 

stiffer structure and therefore a higher frequency. The 

frequency variation with Db can be explained in a similar 

manner. 

Thus, knowing the normalized frequency, the actual 

fundamental frequency for a given coupled shear wall can be 

obtained from equations (3.24) or (3.80). It should be noted 

that a higher normalized frequency does not necessarily imply 

a higher actual frequency. This is especially true when 

comparing structures of different number of storeys, because 

of the normalizing procedure. 
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3.6 Effect on Fundamental Frequency by Averaging 

Whi~e frequency design curves can be established with 

the aid of the computer as in Section 3.5, it is meaningful 

to study the effect on the fundamental frequency of an asym­

metric coupled shear wall by considering a substitutive 

symmetric mod~l. A considerable amount of labour may be 

saved as the symmetric case is more easily soluble. 

The most direct way to attain a substitutive 

symmetric model is by averaging the pier widths of the 

asymmetric system~ This has the merit of keeping the total 

seismic loading constant and will be studied in detail in 

Subsection 3.6.1. Another way is by averaging the second 

moments of area of the piers of the asymmetric system. 

This has the merit of keeping the total bending stiffness 

constant and will be studied in detail in Subsection 3.6.2. 

For convenience, a particular case is considered where 

the asymmetric shear wall is 20 storeys high and the floor 

height to beam length ratio is 1.6. To utilize some of the 

results obtained in Section 3.5, Db ranges from 1/8 to 1/16; 

is taken to be unity and~ is kept at 2.60. With theo2 

above limitations, the ratio of the frequency of the 

substitutive symmetric model to that of the asymmetric 

system is expressed as a function of the pier width ratio 

and the results are represented graphically. 
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3.6.1 Averaging Pier Widths 

Figure 32a represents the asymmetric shear wall 

system and the substitutive symmetric model by averaging 

the pier widths is shown in Figure 32b. The average pier 

width, designated by d is simplyav. 

d = ~(dl+d2) (3.100)av. 

The fundamental frequency of the asymmetric system wa is 

given by equations (3.24) and (3.25), 

w ~ Q ~ ~EI2 
a 2 H p (3.101)

2 

The corresponding expression for the symmetric model is 

given by equations (3.80) and (3.81), 

- !] 3.52 
ws - "s ~ s (3.102) 

Dividing equation (3.102) by equation (3.101) results 

(3.103) 

dl 
Is/r 2 can be expressed in terms of d as follows 

2 

3I d s av. = (3.104)
d 3 

2 
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Assuming the attached mass of the connecting beams is small, 

it is obtD.ined 

P2 d2 2= = (3.105)
d1 


PS dav. l+­
d2 

Substituting equations (3.104) and (3.105) into equation 

(3.103) 1 .ti1e frequency ratio becomes 

(3.106) 


For the particular case of n = 1, the frequency ratio is2 

also given by 

ws ns 
= D (3.107)

swa n2 

d av.
where D = s c (3.108) 

ws 
Figure 33 sh~ws the variation of the frequency ratio w a 

as a monotonic decreasing function of the pier width 
dl 

ratio a- for Db = 1/8, 1/12, and 1/16. It is observed 
2 

that a better estimate of the actual frequency is obtained 

for a stiffer system (higher Db) although the estimate in 

this case by averaging the pier widths is in general not 

very accurate. For example, for Db = 1/16, when pier 1 is 

twice as wide as pier 2, the symmetric model yiAlds a 
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dl 
frequency 90% of the actual value; and when ~ = 3, the 

d2 
estimate drops to 80%. 

3.6.2 Averaging Pier Stiffnesses 

Figure 34a represents the asymmetric shear wall 

system and the substitutive symmetric model by averaging 

the pier stiffnesses is shown in Figure 34b. The average 

pier stiffness, designated by I , is av. 

I av. 
(3.109) 


The corresponding pier width of the symmetric model is 

hence 

(3.110) 


The frequency ratio, in this case, from equation (3.103) is 

given by 

w s 
w a 

= 
n s 
02 

I av. 
r;-­

P2 

Ps 
(3.111) 

In terms of 
dl I av. 
d' r;-­2 

is expressed as 

I av. 
r;-- = 

d s 

d2 

3 

3 
= lei +2 

a1 3 

-) 

d2 
3 

(3.112) 

Assuming the attached mass of the connecting beam is small, 

it is obtained 
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P2 d2 1 = (3.113)
PS 

= 
d s j ~(l + d1 3 

) 

d2 3 

Substituting equations (3.112) and (3.113) into equation 

(3.111), the frequency ratio becomes 

3d 1 
1(1 + (3.114)= 2. ~ 

For the particular case of n = 1, the frequency ratio is2 

also given by 

w n s 
w a 

- s 
n2 D 

s (3.115) 

d 
where D s = s 

c (3.116) 

ws 
Figure 35 shows the variation of the frequency ratio 

wa 
again as a monotonic decreasing function of the pier 

a1 
width ratio ~ for D = 1/8, 1/12, and 1/16. It is observed 

d2 b 
that a much better estimate is obtained in general by 

averaging the pier stiffnesses than by averaging the pier 

widths. The estimate can be obtained to within 10% of the 

actual frequency for a pier width ratio up to 4 when 

Db= 1/16. 
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3.7 Expe::r.irnental Work 

Two model tests were carried out under dynamic 

conditions to verify the accuracy of the analysis. The 

symmetric model was designated as Model I and the asymmetric 

as Model II. The models were cut from cast acrylics sheets, 

Johnston 'l'ype 1010-0-32, of 0. 50 11 ± 0. 0 44 11 thickness. Their 

36 11 7 11overall dimensions were high and wide. Figures 36 

and 37 show the actual Models I and II respectively. Model 

I was painted just for photographic purposes. 

Model I was 20 storeys high with a floor height of 

3 111.8 11 The wide piers were separated by a series of 1 11 
• 

wide openin~s. Model II was 15 storeys high with a floor 

height of 2.4 11 Pier 1 was 4.2" wide while both pier 2• 

and the openings were 1.4". A step by step enlargement of 

the openings (height-wise) and the corresponding determina­

tion of the fundamental frequency of the model provided the 

necessary frequency variation for comparison with theore- · 

tical values. 

The cast acrylics has a specific gravity of 1.19 

with a Poisson ratio of 0.49. The more important physical 

property is the modulus of elasticity which was found to be 

605,000 psi. A cantilever beam of the same material and 

overall dimensions as the test models was subjected to vibra­

tion under actual experimental conditions to determine its 

fundamental frequency, from which the elastic modulus of 

the material was readily calculated. The cantilever model 
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was then cut in half (longitudinally) and the test was 

repeated for the half-cantilever. This served as a check 

against ar.y errors in the resulting elastic modulus that 

might arise from the "deep beam" effect of the full canti­

lever. 

3.7.1 Experimental Set-Up 

The dynamic loading was generated by means of a loading 

system designed by LTV Ling Altec Electronics Inc. which 

consists mainly of the CP-5/6 Power Amplifier, the SD lOSA 

Amplitude Servo/Monitor, the SD 104A-5D Sweep Oscillator 

(the latter two being equipments of the Structural Dynamics 

Corporation of San Diego) and the ANA-101 Accelerometer 

Normalizing Amplifier, all grouped in the Control Console 

Assembly (Figure 38) . The loading thus generated was 

transmitted to the model through the B290 Shaker with 

a rated force (sine vector) of 1500 lbs., a rated displace­

ment of l" and a frequency range of 5 to 4000 cps. Figure 

39 shows the head of the shaker and the glide-table on 

which the model was mounted by means of steel angles to 

similate a fixed end condition. Budd C40-141B Type strain 

gauges with 2.05± 1/2% gauge factor and 120± O.?. ohms 

resistance were used to detect the strain response of the 

model. The locations of the two strain gauges, one on 

each side of ~he model, were not critical so long as they 

were close to the ground floor level where maximum response 
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occurred. The strain response signals were amplified by 

the Ellis Bridge, Model BA-4 before going through the KH 

Filter Model 335 which screened off undesirable frequencies 

and noises. The relative magnitudes of the response could 

then be viewed on the Packard-Bell Oscilloscope. The 

frequency of applied excitation was read on a Hewlett 

Packard Frequency Counter #5223L which was connected to the 

Control Console Assembly. All these instruments can be 

observed in Figure 38. 

3.7.2 Exparimental Procedure 

Once the model was mounted on the glide-table, the 

procedure to determine its fundamental frequency was quite 

straight forward. The model was subjected to excitation 

frequencies from 30 cps to 120 cps and the corresponding 

response as read on the oscilloscope was recorded. Figure 

40 shows a typical experimental frequency-response plot. 

Where the highest peak occurred was the fundamental frequency. 

The second, much smaller peak indicated the second natural 

frequency which was approximately 20 cps higher. The model 

was then dismounted and milled to the next opening size before 

the test was repeated. In sequence, the heights of the 

openings of the symmetric model were 3/8", 3/4", 1 1/8 11 
, 

1 1/4", 1 3/8", 1 1/2", and 1 5/8" while those for the 

asymmetric model were 3/8", 3/4", 1 1/8", 1 3/8", 1 5/8", 

1 7/8 11 
, 2" and 2 1/8". 
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3.7.3 Experimental .Results .and Observations 

Tte experimental results plotted as a function of 

db are shown in Figure 41 for Model I and Figure 42 for 

Model II. Additional curves shown in the two figures are 

calculations b.ased on the "equivalent" connecting beam 

concept. As pointed out by Michael (12), there are local 

wall deformations where the connecting beams join the piers. 

The condition of built-in ends for the connecting beams 

is not. satisfied in general. One method of correction is to 

regard the connecting beam as having a span longer than the 

actual length c. The equivalent length c* is taken to be 

C* = C + 2~ (3.117) 

Also, the stiffnesses of the piers are reduced such that the 

equivalent pier widths are taken to be d.* where 
J 

d.* = d. - cS (j = 1,2) (3.118)
J J 

The corrective measure c5 is then taken to be proportional 

to the depth of the connecting beam as follows 

(3.119) 

Shown in Figure 41, in addition to the idealized theoretical 

curve where K = O are curves with the equivalent beam length 

equal to the actual length plus 50% (K = 0.50) and 90% 

(K = 0.90) of the depth of the connecting beam respectively. 

Shown in Figure 42, in addition to the K = o curve, are 

the three K ~ a.so curves. The first one (3/1 curve) has 

the end of the beam connecting to pier 1 accounted for 75% 
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of the total correction. The second one (1/1 curve) 

represents an equal sharing of the correction by the two 

ends (as shown in Equation (3.118)) and the last curve 

(1/3 curve) has the end connecting to pier 2 accounted for 

75% of the total correction. 

It can be seen that the comparison between theore­

tical predication and the experimental points is reasonable. 

For K = 0, theoretical calculation gives a higher value of 

fundamental frequency than that obtained experimentally. 

However, the maximum difference for both models is less 

than 5%. This order of accuracy is sufficient in the 

application of spectrum technique for seismic design. 

For the other values of K., which are impirical, the theore­

tical prediction is more accurate (than for K = 0) for low 

values of beam depth; but when the beam is sufficiently 

thick, hence stiff, the prediction becomes an academic exer­

cise. This is particularly shown in Figure 42. 

Theoretically, the fundamental frequency of the 

coupled shear wall increases with the increase of the depth 

of the connecting beams up to a point. Further increase 

of the depth of the connecting beams then leads to a 

slight decrease in fundamental frequency. The explanation 

for this trend is that an increase of the depth of connect­

ing beams increases both the stiffness and the mass of the 

coupled shear walls. The gain in stiffness outweighs the 

gain in mass when the depth of connecting beams is small. 
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After the "optimal" depth is reached, further increase 

of db only increases the stiffness of the coupled shear 

wall slightly. Thus, the gain in mass outweighs the gain 

in stiffness, in this range, resulting in a slight decrease 

in natural frequency. However, this slight decrease in 

frequency was not observed experimentally. 

An important observation from Figures 41 and 42 is 

that by increasing the depth of connecting beams, a rapid 

increase in natural frequency results if the depth of the 

connecting beam is less than approximately a quarter of the 

storey height. By increasing the depth of connecting beams 

over a quarter of the storey height does not effectively 

increase the stiffness of the coupled walls to any great 

extent. This fact is illustrated from both the theoretical 

calculations and the experimental results. 

Although damping is not treated in the present analysis, 

it is of i .nterest, whenever possible, to determine the mag­

nitude of this dynamic characteristic, not only for the 

realization of its existence but also for future research 

purposes. Figure 43 lists the values of the percentage 

of critical damping for the various sizes of wall openings 

for the symmetric and asymmetric models respectively. 

The percentage of critical damping is obtained by the "half­

power point" method applied to the experimental frequency­

response plots. An average of 5.1% is obtained for the 

symmetric models and 4.4% for the asymmetric models, 
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giving an overall average of about 5%, which is not unusual 

for most mechanical and structural systems. 
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CHAPTER 4 


Conclusions and Suggestions 

In this study, the problem of the statics and dynamics 

of a plane coupled shear wall is considered. The "continuous" 

method of coupled shear wall analysis is used. However, no 

assumption is made in the formulation that the mid-points 

of the connecting beams are points of contraflexure. 

Removal of this assumption implies that the two piers may 

have different deflections. In this respect, the .present 

formulation is a generalization of the "continuous" method 

of coupled shear wall analysis. The problem is formulated 

in terms of the deflection variables of the piers. Such a 

formulation has the advantage that it is readily adaptable 

for dynamic analysis by taking into account the inertia 

of the piers. 

The conditions under which the mid-points of the 

connecting beams are points of contraflexure are established. 

For a symmetric wall, the pier deflections are equal only if 

there is an equal proportioning of the lateral load on the 

piers. For an asymmetric wall, even if the lateral loads 

on the piers are proportional to their respective stiffnesses, 

the pier deflections need not be the same. From a practical 

point of view, the assumption of contraflexure points is 

usually admissible since it is the antisymmetric mode of 

120 
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deformation z of the shear wall that is of interest.1 

However, there exists practical instances where the symmetric 

mode of deformation z 2 may be of interest. A case in point 

is the problem of differential foundation settlement and 

rotation. It is shown that the symmetric mode of deformation 

is independen.t of qifferential foundation settlement, but 

directly proportional to the differential rotation of the 

pier foundations. When differential rotation does occur, 

the symmetric deflection not only is necessary in the calcu­

lation of internal stresses in the stru9ture but has signi­

ficant effect on the total moment of the piers at the bottom 

fifth of the coupled shear wall. 

The dynamic equations of motion of the system sub­

jected to arbitrary distributed dynamic loading are given. 

The case of free vibrations is studied. The governing equa­

tions are reduced to a set of sixth order coupled linear 

equations subjected to homogeneous boundary conditions. The 

natural frequency can be found via a trial and error tech­

nique. Through a series of non-dimensionalizing procedures, 

it is shown that the fundamental natural frequency of the 

coupled shear walls in its normalized form can be related 

to non-dimensional properties of the structure. The 

fundamental frequency is normalized with respect to that of 

lateral vibration of a cantilever beam having the stiffness 

of a pier and the mass equal to the mass of the pier plus half 

of the mass of attached connecting beams. The geometry of 
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the structure is normalized with respect to the length of 

the connecting beam. Instead of restricting to specific 

examples, design curves are presented in the form of 

normalized frequency versus normalized floor height for a 

wide variety of configuration of couple shear walls with the 

aid of electronic computation. 

The effect on the fundamental frequency by averaging 

the pier widths and the pier stiffnesses respectively to 

arrive at a substitutive symmetric system is examined. It 

is found that in the particular case considered, averaging 

the pier stiffnesses gives a better estimate of the funda­

mental frequency. 

The actual fundamental natural frequencies were com­

puted for two coupled shear wall models. By decreasing the 

depth of the connecting beams in a systematic manner, the 

variation of the fundamental frequency as a function of the 

depth of connecting beams is shown. It is found that an 

increase in depth of connecting beams beyond a quarter of 

the storey height does not provide significant increase in 

stiffness in the coupled shear wall system. This observation 

should be useful in design considerations. 

Finally, dynamic testing of two coupled shear wall 

models made of acrylic sheets were carried out. The 

experimentally determined frequencies were compared with the 

theoretical results. The agreement between theory and 

experiment is within 5%. This leads to the conclusion that 
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the natural frequencies as determined by the proposed theory 

should be of sufficient accuracy to be used as input in t h e 

response spectrum technique of seismic design of coupled shear 

walls. 

It should be pointed out that for future experiments 

of this nature, because of the size of the experimental models, 

control is the key to consistent results: control not only 

in the overall dimensions of the model but particularly 

those of the openings; control in the manner of attaching 

the model to the shake table; control in the frequency range 

of applied excitation and the last but not least, control in 

the sensitivity of the frequency counter. 
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UNIVER.'.JI TY 

PROGRAM TO FIND THE NOkMALILED NAJURAL 

OF A PLANE COUPLED A~YMMETklCAL ~HtAk ~ALL 

DIMfNSION AA(llJ,XX<luJ,YY(lul 

c()Mp u~x n ( ] ,, ) '[) ( 11.., ) 'G ( 1 ·..., ) 'c (1 2 ' 1 2 ) 'Ac ( 1 2 ' 1 2 ) 

COMPLEX :..iuiv,,'vl\LDEI ,VALDl:::Tl 

COM PL l:.X GG 

c 

( ~PEC I FY I NG VAL UL~> F 0 I-< 1HE VA I~ I A L1 LE~ 

c 

XM=3.52 
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XM2=XM**2 

c 

c I~PUT THE NUMBER UF ~TOREY~, ~ AND THE RATIU O~ 

c LENGTH OF CONNECTING BEAM TO WIDTH OF PIER 1, CG! 

c THE CORf~E SPOND I /\JG l~.f\ TI 0 Fuf-.< p I Li~ 2' C.D2 Is "-.f:P I /-\ r 

c UNITY 

c 

S=4U.u 


CDl=l.O/l.lv 


CD2=l.O 


WRITE '.6,6JL.) s,co1,co2 

600 FORi1~AT!//lH '*NO OF SlOl~EYS = -J<,Fl0.2/lH 9-l(·RATIO OF c ru 

1 DI = *'FIO.?/JH '*RATIO OF C TO 02 =*,Fl0~2l 

c 

c THEXX wHERE XX IS 1'2••••••16 .f\Rl NON-DIMENSIONAL 

c VARIAIJLES 

c 

THEJ=1J.U/(Ul)*-l(-3 + (l.u/C.D2l**3 

THE'?=(l.l,/Cli1l**3 - (l.v/lD2l*-l<3 

1HE6=(1.U/CUI l + ll.0/CD?l + 2. 

THt7=11.0/C[)l) - 11.U/([)?J 

T~ F H =CfJ 1 + ( I) 2 

THFll=CDl*CDl*(l.U+CDll 


THE12=CD2*CU2*(1.u+CiJ2l 


THE13=(CD1**3l + (CD2**3l 

http:CDl=l.O/l.lv
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THE15=<CD1**3l - (CD2**3l 

c 

c iNPUT THE RATIO OF DEPTH TO LENGTH OF CONNECTING 

c BEAM' DBC 

c 

DO 7Ui.J III=4'4 

DBC=l.O/FLOAT( III l 

WRITE (6,6011 DBC 

601 FORMAT(lH '*RATIO OF DEPTH TO LENGTH OF BEAM = *'FlU.3) 

c 

c INPUT THE RANGE OF FLOOI~ HEIGHT TO U:.NG TH OF HEA1•; 

c RATIO, HC 

( 

DO 7UU JJJ=z,30,z 

HC=FLOAT(JJJ)/10.U 

WRITE (6,602) HC 

6U2 FOR1'v1AT(lHv,*RATIO OF FLOOI~ HEllJHT TU LENGTH Or' l.3t.A,., = *' 

lFl0.3) 

THE3=S*S*HC*(DBC**3l 

c 

( AS:iUMF. FIG = 2 • 6"J 

( E I~ THE ELASTIC MOlh.JLU~) 

( G IS THF SHFAR MODULU~ 

c 
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THE5= ( s-i~*4 l * ( HC*i~3) *DcK 

THE14=CUHC+2.U*HC*Cl.O/CU~l l/(UbC+2.u*H(*ll.0/CUll I 

THE16=Cl.u+THE14J/Cl.O-THtl41 

GG=Cfv:PLXCTHE16•veUI 

c 

( DESIGNATION OF ~ATRICES 

c 

c p I s T H [ M A Tr~ I x /\ ss() L I A T t lJ 1·J I r 1·1 r H L ::_, I x T H L) U\ j v'" i l vt 

c OF THt DEF LE.CT I ON VEC !01~ I i\l fHt u ...'Uf\T h.J1"< '-'I­ ,.. \..; r I U•\J 

c 0 r~ 'tJ I T H T H E F 0U1.;: T H IJ E I.( I V /\ I I V L. U F Tt-1 L uL F U. C I I u '~ 

c VEClOF~ IN THE FIFfrt PiUk i.Jf LiOi..J.'\JiJAi-<Y (Uf\JIJlTIU/,;:, u.-, 

c W I T H T H E F I F T H DU~ l V A I I V E Uf TI I t L> U- L t:. I.. T l uN v ti... I v ;, 

c IN THE SIXTH PAIR CF t->OuNU/\l~Y C01'lUITIU1\::, 

c 

c CJ I S THE /Vi AT R I X ASS 0 C. I AT E 1..1 1<1 I TH i HE F 0 UR TH UL 1.( I v/I T I V ..:": 

c OF THE DEFLECTION VECTUi~ IN Hk l:.lJLiATIUN UF 1·1i.HIQ,\j 

c OR wITH THE Sl:COND DtRIVATIVL OF THE OLFLLCT!U~ 

c V[CTOI-< IN THE FIFTrl PAii-< OF bOUNLJAi\Y CuNIJITii..Ji\J.J u1' 

c wI TH TH I: TH I FW [) ll-< I v ,I\ I I v l:. u f- I II f: u t.1- u. (. r l v i\J v t l r ~j" 

c IN !Ht .'.:>IXlH PAii~ UF tWuNUAl\Y lQ1\jlJlflvl\l.J 

( 

c r~ I:'.i THE ;'lllArnrx /\J~)lKIA!Et) 1\l 111 IHL ..Jt~Cuf\li.) Ut-_l\lVAl lVL 

c OF THE DEFLECTION VECTOR IN IHL I \JUATlUN UF 1"1lHIOf'l 

c OR WITH THE ZEl-<O IJLRIVAlIVL UI­ THL UEFLE.Cflvi\ Vi::.(.Tui\ 

c IN THI:. FIFTH PAIR uF tJOUNDAl.(Y CvNDIT.l01\IS 01~ .~1 iH 
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c THE Fif~ST Utl~IVATI\/E OF THt. u.tFLtCTlON Vl<.. TOI~ Ii\I 

c THE SIXTH PAIR OF bOUNUARY CUNDITIUNS 

c 

c ~ IS ThE MATRIX ASSOtIATELJ ~ITH !Ht LE.R0 DERI~AfI\/E 

c OF THE DEFLECTION VECT.QI~ IN THL tLlGATivt\l l)F .- .._::rr...:'i\ 

c 

c u IS THE MATRIX ASSOCIATEU ~ITH THE FIRST DEkIV~TIVt 

c OF THE DEFLECTION VECTOR IN lHt THIRD PAIR OF 

c HOUNUARY CONDITION~ 

( 

c II I'.J IHE MATl-UX ~'\S.'.JOi...IAIEtJ 1d TH fHt l)OUl)LE 11\1! t.G1..:AL 

c 0 F TH E D E F L E. C T I 0 N VEC T01-\ I N T H L TH Ir-\ D f.' A I I\ uF 

c bOUNDARY CONDITIONS 

c 

c 

c FORMING THE COMPONENTS OF COt.FFICIE/\JT f\lATkICE~ i),J,v 

( 

Pll=TIEl 

Pl?=THE2 

P?l=THE? 

P??=THFl 

0 1 l = ­ ( ~; • U*THE 6 * T HF 6 + TI fF. 1 * I H !:. H l * l H1. -~I l i 11 · 4 

012=-( 3eU*TlfE6*THE7+THE2·* fHEB l*THL ">ITHf- 4 

CJ21=-( 3eL-*THE6*THE7+THEl*fHE8*lHf:: II Ull6 l*THE3/THL4 

CJ 2 2 = - ( 3 • U 'k Ti- i E 7 *TH [ 7 + l HE 2 * I HE 8 *TH L 7 I l Hi:: 6 +4 • CJ* TH t 4 l * I Ht. .5 I 
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1THE4 

U 11==-3 • U* (THE 11 +THl:.12 l -:i- ( ,j • 5* THC:6+ r Ht. l *TH l:. 8 I ( 6 • U* THl bl l >,i­

J THE '3 / THE4 

u 1 2 ::: ­ ( 3 • 0 * ( T t-: E l 1 +TH [ l 2 ) * ( v • 5 * HH: -i + T HI: 2 * rHI:: 8 I ( 6 • LF" I rl u) ) ) + 

1 ( THE4*THE15 l l*THE3/THE4 

u2 1 =- '3 • U-1~ ( r HE 1 l -THE l 2 ) * ( '"' •5 * r h E 6 + TH l: l -:t TH L 8 I ( 6. u* THE 6 ) ) * 

1THE3/THE4 

U 2?. =- ( 3 • U -r.­ ( T h E 1 1-T HE 1 2 l * < u • 5 *THE 7 +TI H: 2 ~H HE. 8 I ( 6 • u * Trl L 6 l l + 

1 ( THE4*-THE13 l l*THE3/THE4 

c 

c INPUT THE TRI/\L R/\NGl:. OF t::E1\i 

c EE~ 15 THE NOR~ALIL~~ NATURAL FRl:.QUl~CY OF ~ltR 2 

c EM .IS fHE NORMALIZED NATURAL Fkl:.WUl:.NtY OF Pll:.R l 

c 

DO 7UU ~MM==3uuu,3au0,10 

EEM=FLOAf(MMMl/l0uu. 

EM=EE~/~ORf<THE14*(((D2/tUll**3l l 

EM2=EM**2 

THEq=EM2*<l.~+THE14l/((81**3l 

THF1U=EM2*1l.0-THfl4l/(CD1**3l 

( 

c FOl~MING fHE CUMPONEf\il~ OF COLH·!Clt.NT MAl.~lCL.:.i !\'-''''-' 

c 

Rl l=-XM2K-THl:9 


Rl?=--XM2*THE1U 
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R?l=-XM?*IHLJu 

R2?=-IX~2*THF9-48eU*THF5l 

Sll=THE9•THF3*XM2*THE8/THE4 

S12=THE10*XM2*THE3*THEH/THE4 

S2l=THE7•1THE9/THE6l*XM2*fHE3*lHEB/fH[4 

522=fHE7*(fHflv/lHE6l*XM2*THE3*1HE8/lHE4 

Vll=(THEll+THE12l*XM2*TH~Y*THE3*THE8/(2e0*lHE4*THE6l 

v l 2 = ( THE 1 ] + THE 12 )*xrv. 2·*THE 1J * r Hf: 3 * T HI:. 8 I ( 2 • ·~*THE 4* THE 6 ) 

V21=(THEll-THE12l*XM2*THE9*THE3*THEb/(2•U*fHE4*rl-H:6l 

v?. 2 = ( THE 1 1- THE 12 l *Xi'/ 2;i TH[ 1v* THl 3 ~q hl::. 8 / ( 2. _,;i- THl4* rHE6) 

c: 

( rORMING THE COEFFICIENTS OF THt f\d:.LVl lJlGl~t[ 

c CHARACTERISTIC EQUATION 

c 

AA(] l=Pll*P??-Pl?*P?l 

AA(.?}=O.O 

AAl3l=Pll*Q22+Qll*P22-P2l*Ql2-U2l*Pl2 

A A ( lt } == Cl • 0 

/I. ,t-, ( "i l = P l 1 * 'V ? + 0 l 1*0? ? + R 1 1 ~< P?? - P? 1 ~< r~ J 2-0 1? *O ?l -I< 2 l *F·' l ? 

AA(6)=J~O 

AA(7)=Pl1*S2?+011*R??+Rll*022+Sll*r??-n?1•S1?-Q?l*~l?-R? 

11*01?-S?l*rl? 

AA(Hl=O.u 

AA(GJ=Q11*~?2+Rll*R??+SlJ=Q2?-Ll21*S12-R21*R12-~21*ull 

fl.A(1vl=l,.v 
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AAl11l=Rll*S?2+Sll*R??-R?l*Sl?-S?l*Rl2 

c 

c SOLVING THE POLYNOMIAL LiY SUBROUTINE BAIR~f 

c AA IS THF COEFFICIENT OF THE PUWlRS ARRANGED A~ 

c AA ( l ) •••• Y·IH(-N 

c XX IS IHE REAL PARI UF IHL ROOI 

c YY IS THE U'iMAGI\JAl~Y PAl:.:T OF IHL l~OCI 

c N IS THE HIGHEST PO,\ill~ OF Thl POLYN01\ilAL 

c 

CALL BAIRSTIAA.xx,yy,1u> 


DO JOO J=l.10 


X=XX I I ) 


Y=YY(l) 


RI Il=CMPLX(X,Yl 


DI I >=CEXPll:l! I l > 

G ( I l =- I ( ( Pl l *R ( I l **? + l.J l 1 >~~ f1 I I l ** 2 +I~ 1 l l *[1 ( I >**2 +.:., l l >I ( ( ! P 

11 ?H~( I l**?+r,1? >•RI I )l-<*?+l~l? >*l"5( I l **2+'.:)12 l 

100 CONTINUE 

( 

c POPUL/\l ING ThE :'1•\Lnx OF IHI: LlULNOAl~Y (01\iDITil.J.'~:_:, 

( 

DO ?UO J=J,1u 

c ( 1 'j ) = ( l • u ' \, • I.I ) 

C(?,Jl=G<Jl 

((3,J)=fl(J) 
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( ( '' 'J ) =I" ( ,J ) ·ll- Ci ( J ) 


C(S,Jl=D(Jl*lnlJl**?l 


C ( 6 'J l =D ( J J* ( f1 ( J J ** 2 ) *C ( J l 


((7,JJ=DIJl*(6(J)**3)+(01l+Ul2*G(J))*~(J)*()(J)+(V]l+Vl2* 

1G ( J J J * ( '' • 5 * U ( J l * F3 ( J J >,1 13 ( J l - [) ( J l ~~ H ( J J + D ( J l - l • C J I ( I ) ( J l :< * J l 

((8,Jl=D(J)*G(J)*(A(Jl**3)+(U2l+U22*GIJ) l*Li(J)*U(J)+(V21 

1 + V 2 2 * G ( J J l * ( u • 5 * D ( J l * [~ ( J l -:< Cl < J l - D ( J l -J<- L3 ( J J + I) ( J l - 1 • J J I ( d < J l -:i- * 3 l 

C ( 9 'J l = ( P 11+P1 ?*G ( J l l *D ( J l * ( B ( J l *·*4 l + ( Q 11+-.ll2*G ( J l l *U ( J l 

J*(R(J)**?)+IR1l+Rl2*G(J) l*D(J) 

C(l~,J)=(P?l+P?2*G(Jl l*D(Jl*(H(Jl**4l+l~2l+Q22*G(Jl l*D(J 

I l*IB(Jl**2l+<R?l+f-\22l-~G<Jl H~D(J) 

Clll,Jl=G(JJ*C(9,Jl 


(( l?,Jl=H(J)·*C( lv,J) 


200 cornrNuE 

DO ? 0 5 I I= 1 , 12 

f)() 205 JJ=ll'12 

(( If,JJ)=(U.u,u.0) 

2 0 5 C0 N T I f\! U E 

Cl?dll=GC1 


((~,l?l=( J.v,U.U) 


C ( t1 , l ? J =G G 


((7,11 )=(Vll+Vl?i1CJG)/{1eU 


C(7,12l=(Ull+U12*G~l+(V1l+V12*GGl/A.U 

((8,11 l=IV?.1+\/??*GG)/(,.l.i 
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C(R,12l=(U?l+U?2*GGl+(V2l+V22*GGl/6 . 0 


((9,lll=Rll+Rl2*GG 


((9,12l=RJl+Rl2*GG 


C ( J \; ' l 1 l = I~ 2 l + f~ 2 2 *G G 


C ( l ,, ' 1 2 l = 1'1 2 1 +I~ 2 2 *Ci Ci 


C!ll,12l=Rll+Rl2*GG 


((12,12l=R2l+R22*GG 


c 


c EVALUAIING IHE DE TF IUilN/,NI OF iHL UUl1.'~DAl\Y Cu f\0I I I-J i\--' 


c rv;r1 TR IX fH Sl.Jf:H~0U1 I Nl DETEF~ 

c OUTPuT THE f~ORf.iALILt.:u 1\lATu i~AL F :,tQulNCit..:.:i OF Plli<~ i 

c AND 2 Ai~[) THE Vll ..... ul uF IHL lJLlt:.1~iv1f1'l1\1\ I 

CALL DFTFl.> ( ( ,J/,VAL Dt.T l 


1~1 R I T E ( 6 , l 7 l, .1 l FM ' f F fV\ ' VAL U F T 


] 7 U l; F OR I· . A T ( l U X , 7 F l 1.; • 4 , 1 u X , E 2 J • 8 ' 1 u X , t 2 0 • 8 l 


7 U 0 C 0 N T I "! U F 


STOP 

END 

~UHIWuT JN[ DE:.lFf~ (A, M1v; , vt,L1)E 1 l 

c 

TrH :, Ui\IWU TINr: (/\LCULATF.:J IH~- \//\LLH: uF THE 

COMP L L X A ( l? , 1 ? l 
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COMPLlX VALlJEl 


COMPLEX SIG,T1,r2,orv 


NN=MM-1 


f)O 2?0 J=l,NN 


Jl=J+l 


RIGA=CAHS(A(J,Jl l 


.SIG=(l.,O.l 


K=J 


c 

DO 23U JMAG=Jl,MM 

IF(CARS<AIJ~AG,Jll-RIGAl 230,~3~,22~ 

??~ 8TGl\=CAr51AIJ~AG,Jl l 

K=Jl'AG 


.SIG=(-J.,u.J 


? ":30 CONT I i'lUE 


c 

DO 24u N=J,r-1;v1 

T 1 =I\ ( ~- , N l 

T?=A(J,Nl 

A(J,Nl=Tl*5IG 

f\{V,MJ=T? 

( 

DO ?5U l\J=Jl ,f•lM 

DIV=/\(!\h,Jl 
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D 0 2 5 U r..Hj L T= J , ivi M 

?~0 A!N,MULTJ=A(N, MULTl-A(J,MULTJ/A!J,Jl*DIV 

220 CONTIHJE 

V/\LflFT = IJ.,U.l 

( 

DO ?6 U I= l , p.1fvi 

VALrJEl =VALDE I 0~A (I' I l 

26U CONTINUC. 

RETUf~N 

END 
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APPENDIX 2 


LIST OF SYMBOLS 

distance from the mid-points of laminas to the 

centroidal axis of the left and right pier 

respectively 

a = 	 al + a2 

a = 	 al - a2 

as 	 distance between the centroidal axes of the piers 

of a symmetric coupled shear wall 

length of the connecting beam 

c* = 	 c + 2o equivalent length of the connecting beam 

width of the left and right :·pier respectivelydl,d2 

d.* = d. - o (j = 1,2) equivalent width of the pier j
J J 

d av. = ~(dl + d2) 

depth of the connecting beam 

width of a pier of a symmetric coupled shear wall 

storey height (spacing between centerlines of 

connecting beams) 

i 2 = -1 

m 	 bending moment distribution along the mid-points 

of laminas 

= 

n 	 axial force distribution along the mid-points of 

laminas 
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= 


q 

= 

nl = 

n2 = 

n3 = 

n4 = 

ns = 

n6 = 

n7 ­

na = 

ng = 

nlO = 

rb 
z = 

t 

tw 

wl ,w2 

w 	 = 

= 

= 
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w 
2 
shear force distribution along the mid-points 

of laminas. 

1 K ' maximum unit shear induced when the 
y s 3 . 

symmetric coupled shear wall is sub­

jected to uniform lateral load w 

3NzHD 
b 

1 + 1.2 D z(E)
b G 

Di -	 Dz 

! + ! 
Di Dz 

S11zD1 3 - SGz zD2 3 

time variable 

thickness of the coupled shear wall 

lateral load distribution on the left and right 

pier respectively 

- w2 

coordinate along the height of the shear wall 

deflection of the left and right pier respectively 

~Cy1 + y ) antisymmetric mode 0f deflection
2

x 
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= 	 ~(y 1 - y 2 ) symmetric mode of deflection 

cross-sectional area of the left and right pier 

respectively 
AlA2 

A = 
Al+A2 

Ab 	 cross-sectional area of the connecting beam 

Ab* 	 effective cross-sectional area of the connecting 

beam to be considered for shear deformation 

cross-sectional area of a pier of a symmetric 

coupled shear wall 
d . 

= ....J.. (j = 1,2) . normalized width of the pier j.c 

= 	 db normalized depth of the connecting beam 
c 
ds 

= normalized width of a pier of a symmetricc 

coupled shear wall 

E Young's modulus 

G shear modulus 

H height of the coupled shear wall 
h-

H c normalized storey height 

second moment of area of the left and right pier 

respectively 

I Il + I2 

I Il - I2 

I = ~(Il + I2)av. 

Ib second moment of area of the connecting beam 

I second moment of area of a pier of a symmetrics 

coupled shear wall 
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shear stress factor from Figure 4, Reference (9) 

bending moment due to external lateral loading 

on the left and right pier respectively 

M = 

M = 

MEl' ME 2 - total bending moment of the left and right pier 

re spec ti vely 

= l.;i:wH 2 

number of storeys 
12H 2 Ib 

= 
hc3S2 


6H 2I a 2y
b s s = 
hc 3(3 2I s 


12Eib 

= 1 + 


c 2GA{, 

I . 

_J_y. = 	 1 + (j = 1, 2)
J a.aA 

J 
41 s = 1 + 

a 2A s s 

= 	 correction applied to the length of the 

connecting beam to account for local 

wall deformations where the connecting 

beams join the piers. 

relative d i splacement at the mid-points of 

laminas due 	 to bending of the piers 

relative displacement at the mid-points of 

laminas due 	 to bending of the laminas 
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realtive displacement at the mid-points of 

laminas due to shear deformation of the laminas 

relative displacement at the mid-points of 

laminas due to axial deformation of the piers 

x = normalized spatial coordinate
H 

mass of the left and right pier respectively 

plus half the mass of the connecting beams, 

per unit height of the shear wall 

p = 

p = 

mass of a pier of a 

plus half the mass 

unit height of the 
2H 2 Ib 

µ2 = 
hcI s 

symmetric coupled shear wall 

of the connecting beams, per 

shear wall 

w natural frequency of the coupled shear wall 

natural frequency of an asymmetric and a 

substitutive 

w = 3~~2 ~ 0 

symmetric shear wall respectively 

fundamental frequency of lateral 

vibration of a cantilever beam 

having the stiffness of a pier of 

a symmetric coupled shear wall and 

the mass equal to the mass of the 

pier plus half the mass of attached 

connecting beams 
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3.52w . = Fs (j = 1,2) fundamental frequencyOJ H2 ~~ . J of lateral vibration of a cantilever 

beam having the stiffness of the 

pier j and the mass equal to the 

mass of the pier plus half the 

mass of attached connecting beams 

e differential foundation rotation 

differential foundation settlement 

= I~~+ 1 

= 1I ~~~b ­

st . = w normalized natural frequency of the pier j
J w .

OJ 

wst = normalized natural frequency of a pier of s w 
0 a symmetric coupled shear wall 
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