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A general formulation of the analysis of plane
coupled shear walls is presented. The "continuous method"
of analysis of coupled shear walls is reformulated in
terms of deflection variables. The assumption that mid-
points of the connecting beams are points of contraflexure
is relaxed so that the resulting theory is applicable to the
general case where the lateral loading on the piers can
be arbitrarily distributed. The governing equation of
the structural system under static loading with the
appropriate boundary conditions are given. The effect of
asymmetry of the structure is discussed. As an application
of the derived theory, the problem of shear walls subjected
to differential foundation settlement and rotation is
studied. Solutions to deflections and internal stresses,

under such conditions, are given. Evaluation of the
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internal stresses was per formed on a practical shear wall
structure and the results analysed. Through the use of
deflectior variables, the formulation is extended into

the regiﬁe of dynamics. The governing equation of motion
with appropriate boundary conditions are given. The free
vibration of coupled shear walls is studied and design
curves for the fundamental natural frequency are presented.
The use of substitutive symmetric systems and its effects
on the fundamental frequency of asymmetric systems are
examined. Theoretical natural frequencies were verified by
dynamic testing on two models to show that the proposed
theory is sufficiently accurate to provide information for

dynamic analysis in seismic design.
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CHAPTER 1

INTRODUCTION

In modern high-rise structures, commercial and
residential, shear wall construction has proven economic
value. The high in-plane stiffness of the walls, both
external and internal, provides the required stability
against lateral forces such as wind or earthquake loading,
These walls normally contain a band of regular openings
for doors, corridors and windows. Such a structural form
is referred to as a coupled shear wall. A planar coupled
shear wall may be defined as a structural system composed
of shear walls interconnected by a series of spandrel beams,
all in the same plane.

A review of previous research in shear wall structures
has been done by Coull and Stafford Smith (1). A compre-
hensive account of the methods of analysis of laterally
loaded shear walls is given by MacLeod (2). In this
study, discussion shall be confined to the-analysis of
planar coupled shear walls by the 'equivalent continuous
system of laminas' method (henceforth, it shall be referred
to as the 'cqntinuous' method) .

In +this approach, the discrete connecting beams
between the piers of the coupled shear wall is replaced by
an equivalent»continuous medium. This medium éan be taken

1



as consisting of a continuous distribution of small
laminas, of infinitesimal thickness dx, capable of indepen-
dent action and rigidly connected to the piers.. By
assuming_that the connecting beams have a point of contra-
flexure at midspan, and do not deflect axially, the
behaviour of the structure may be expréssed.in terms of
the shear forces at the points of contraflexure along the
height of the building.

This formulation was first applied to the analysis
of coupled shear walls by Chitty (3) in analysing a
cantilever composed of a number of parallel beams intercon-
nected by cross bars. Beck (4) extended the analysis to
take into account the pier deformations due to normal
forces. The case of coupled symmetric shear walls on
rigid fourdations, subjected to uniform lateral loading was
treated. Rosman (5) further extended the analysis to
arrive at solutions for a system with two symmetric bands
of openings and various foundation conditions. The case
of a concentrated load acting at the top of the wall was
studied. Burns (6) studied the case of a triangularly
distributed load (such as those specified in many seismic
codes) and provided charts for the determination of
stresses and maximum deflections. His results also include
the effects of parabolically varying pier and beam stiff-
nesses. Similar charts were also given by Beck (4)

(for the case of uniform lateral load). A coupled symmetric


http:distribur.ed

shear wall of variable cross-section, subjected to uniform
lateral load, was analysed by Traum (7). Experimental
verification of the 'continuous' method of analysis of
coupled shear walls was given by Barnard and Schwaighofer (8).
To reduce the amount of computations involved in the
solution of the governing second-order differential equation,
Barnard and Schwaighofer (8) have proposed a simplification
of Rosman's theory: using a combination of a straight

line and a parabola to approximate the true shear force
distribution in the connecting beams. Applyihg Rosman's
theory, Coull and Choudhury (9) (10) presentéd charts

for the evaluation of stresses and maximum deflections for
general coupled shear walls subjected to uniform lateral
load, triangularly distributed lateral load and a point load
at the top. Coull and Puri (11) further developed the
'continuous' method to include shear deformation of piers

in the analysis of coupled shear walls. The assumption

of constant ratio of shear forces in the piers throughout
the height of the building was made. The influence of
flexibility of wall-beam connection was also considered,
employing Michael's (12) suggestion of equivalent beam
length. Michael (12) has shown that the flexibility of

the joint may be taken into account of approximately by
assuming an effective length of beam to be the clear

span plus the depth of the beam. To investigate the

relative magnitudes of the influences of shear deformation



and joint flexibility, experiments were performed on models
with a single band and double symmetric bands of openings.
Coull and Puri have concluded that shear deformation of
piers has little effect on stresses and deflections;
whereas the flexibility of wall-beam connection has a more
significant effect. 1In his investigation of damaged
buildings in the Alaskan Earthquake, Jennings (13) has
shown that the damage pattern observed in the spandrel
beams is consistent with the dynamic response (approxi-
mated by the static response under uniform or triangular
loading) of a coupled shear wall vibratingvin the funda-
mental mecde.

In all the above analyses, only static loading is
considered and the assumption of points of cohtraflexure
at the midspan of connecting beams is spegified. In
Japan, researchers have carried out the dyqamic analysis
of core-wall buildings. They are concerned with the
vibration of the coupled frame and shear wall system.
Using the same 'continuous' method, Osawa (14) has
presented a dynamic analysis of this type of building,
neglecting the shear deformation of the core-wall and the
axial deformation of exterior columns. Tani et al (15)
continued the study by making no assumption'about the
contraflexure points of the exterior columns or beams
and by including the two types of deformation. A linear

ordinary second-order differential equation was derived



with the distributive moment of the beams as the redundant
function. Influences of the shear deformation of the core-

~wall and of the axial deformation of exterior columns were
discussed, Design charts for stresses and deflections

were prepared in the static analysis. Natural frequencies
and mode shapes were presented in the dynamic analysis by
means of examples.

Recently, Tso (16) dismissed the assumption of
contraflexure points at the midspan of the connecting
beams and analysed a symmetric coupled shear wall using
the deflections of the two piers as redundant functions.
Througn a linear transformation of the deflections, the
governing equation of the structural system can then be
expressed as a pair of linear ordinary fourth-order
uncoupled differential equations in terms of the symmetric
and antisymmetric modes of deformation. Analysing an
example of a symmetric coupled shear wall laterally loaded
at the top by two concentrated loads, Tso has concluded
that the previous work by Beck and Rosman essentially
neglected the symmetric mode of deformation which might be
significant near the top of the piers. His results also
show that in as far as the shear distribution along the
mid-points of the laminas is concerned, Rosman's expression
is valid even without the assumption of contraflexure
points. An extension of the analysis to shear walls of

unequal piers is given by Tso and Chan (17).



Mbst lateral loads a building is subjected to are
dynamic in nature. Wind loading and seismic loading are
typical examples. To investigate the response of a
coupled shear wall under such dynamic excitation, knowledge
about the dYnamic characteristics of the coupled shear
wall system becomes essential. Hence it will be useful
to derive a general formulation of the analysis of cdupled
shear walls: a formulation which will lend itself easily
to the study of dynamics. Such is the purpose of this
study. By adapting Tso's approach to general coupled
shear walls and subsequently formulating the problem
under dynamic loading conditions, this work also serves
to assess the accuracy of the previous analysis (with the
assumption of contrafléxure points) and to put the
'continuous' approach of analysing coupled shear walls in
a firm foundation.

The present work consists of three parts. The first
part deals with the formulation of general coupled shear
walls under static loading. It includes a discussion on
the effect of asymmetry, followed by an evaluation of
the stresses of a symmetric wall subjected to differential
foundation settlement and rotation. The secohd part
deals with the formulation of general coupled shear walls
under dynamic loading, followed by a study of the free
vibration aspect. Curves for the fundamental frequency,

with due consideration for practical dimensions of the
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structural system, are presented in terms oflnon-dimensional
quantities to facilitate design computations. The effect
on the fundamental frequency, by averaging the properties
of the two piers to arrive at a substitutive symmetric
system, is examined. Finally, dynamic tests were performed
on a symmetric and an asymmetric model to wverify the

theory.



CHAPTER 2

ANALYSIS OF PLANE COUPLED SHEAR WALLS UNDER STATIC LOADING

2.1 Introduction

In this chapter, the analysis of coupled shear walls
under static external loading is presented. The method of
replacing the discrete connecting beams by an'equivalent
continuous system of laminas is employed. Points of contra-
flexure at the mid-points of the laminas are not assumed
and the deflections of the piers are chosen as redundant
functions. The formulation of the governing differential
equation and bbundary conditions is given in Section 2.2.

The governing equation takes the form of a pair of linear
ordinary fourth-order coupled differential equations. In
Section 2.3, through a linear transformation, the formula-
tion is expressed in terms of the symmetric and antisymmetric
modes of deformation. It is shown that the pier deflections
are not identical even if the external loading on the piers
is proportional to the pier stiffness. 1In Section 2.4,

by reducing the general formulation to the case of a
symmetric wall, it is possible to assess the previous work

by Beck (4) and Rosman (5) and to establish the circumstances
under which the assumption of contraflexure points is
justified. The coupling action between the symmetric and

antisymmetric modes of deflection is studied in Section 2.5.



Finally, in Section 2.6, the formulation is applied to the
problem of differential foundation settlement and rotation

for the case of a symmetric coupled shear wall. The governing
differential equations remain unchanged but the boundary
conditions have to be reformulated. Using a shear wall

model without external loading, the internal forces in
non-dimensional form are evaluated and presented in graphical
form. It is shown that the symmetric mode is not a function
of foundation settlement. However, it is significant near

the bottom of the structure when rotation of the foundation

occurs.
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2.2 Derivation of Governing Equation

Ccnsider a general coupled shear wall consisting of
" two piers connected by béams as shown in figure la. It is
assumed that the properties of the walls and beams remain
constant throughout the height of the wall. The top and
bottom connecting beams are assumed to have a second moment
of area and cross-sectional area equal to half of those of
the intermediate beams.

The left and right piers are subjected to lateral
load distributions wl(x) and wz(x) respectively. The
bending moments caused by the lateral loadings wl(x) and
w2(x) are taken to be Ml(x) and Mz(x) respectively. The
piers are assumed to be rigidly connected to the foundation.

To analyse such a system, the physical model in
Figure la is replaced by its equivalent model in Figure 1lb.
In the equivalent model, the discrete connecting beams are
replaced by a continuous distribution of independently
acting laminas, rigidly attached to the piers. The laminas
have thickness dx, moment of inertia (Ibdx)/h and cross-—
sectional area‘(Abdx)/h, where Ib and Ab are the respective
properties for the connecting beam.

An imaginary cut is made along the mid-points of the
laminas. Unlike the previous analysis of coupled shear

walls, the mid-points are not considered as points of
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contraflexure. In making'the assumption that mid-points of
the connecting beams are points of contraflexure, it is
generally taken that the lateral loading on the two piers
be distributed in proportion to their respective stiffnesses.
Such loading conditions are rarely met in practice. For
example, in the case of wind loading, the pressure distri-
bution differs on the windward side and the leeward side.
For seismic loading considerations, the inertial loading
on the piers is proportional to the respective widths.
Since the stiffness of the pier is proportional to the
third power of its width, the assumption of lateral load
carried by the piers proportional to their fespective
stiffnesses.is not applicable for plane coupled asymmetric
shear walls. Even when such an assumption is made, the
de flections of the two piers need not be the same because
of their coupling action. While one may argue that the
difference of the deflections would be sufficiently small
to be negligible in many cases, one will not be able to
determine the magnitudes of the axial-force and moment in
the connecting beams which may be significant.

Therefore, along the cut, there is a distribution
of bending ﬁoment m(x) and axial force n(x) in addition
to the shear distribution g(x). This internal force
distribution is shown in Figure 2. Since the deflections
of the piers are in general different, there ;esults in

five unknowns in the problem; namely; (i) the deflection
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of the left pier yl(x), (ii) the deflection of the right
pier yz(x), (iii) the shear distribution g(x),

(iv) the moment distribution m(x) and (v) the axial
force distribution n(x).

The first equation relating the fiwve unknown variables
can be obtained from the displacement compatibility condi-
tion along the imaginary cut. Figure 3 shows the relative
vertical displacements at the section along the cut.

Due to bending of the piers, the relative displace-
ment Gl(x) is given by

dyl + a a0y

8, (x)= g P Pl
dx dx

(2.1)

where a; and a, are distances from the imaginary cut to
the centroidal axes of pier 1 and pier 2 respectively.
The shear gdx acting at the mid-point of each
lamina (having equivalent moment of inertia (Ibdx)/h and
equivalent cross-sectional area (Abdx)/h) will cause a

relative displacement 62(x)due to bending of the lamina

" 3
62(x) = ~ghc” (2.2)
lZEIb
where h denotes the storey height
o denotes the clear span of the connecting beam
E denotes the elastic modulus of the material

of the shear wall system



15

s T ﬁ % (a)
M M

= | | HA (b)
A Uk
A= M

. W o . -4*.4 ; (c)
L Ly
T

S I — | [ e (d)
| e

FIGURE 3

RELATIVE VERTICAL DISPLACEMENT AT THE
SECTION ALONG THE MID-POINTS OF LAMINAS

(a) DUE TO BENDING OF THE WALL

(b) DUE TO BENDING OF THE CONNECTING BEAM

(c) DUE TO SHEAR DEFORMATION OF THE CONNECTING
BEAM

(d) DUE TO AXIAL STRAIN OF THE WALL
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The shear deformation of the lamina due to shear gdx

gives a relative displacement 63(x) where

—-ghc

§3(x) = GA,_* (2.3)

where Ab* is the effective cross-sectional area of the
connecting beam to be considered for shear deformation and
G is the shear modulus of the beam material.

The relative displacement 64(x) as a result of

axial deformation of the piers is given by

1/1 1 \[* [®
§,(x) = - 35 (— + = )J J g(x)dadn (2.4)
4 E Al A2 o Jn

where Al and A2 are the cross-sectional areas of piers 1
and 2 respectively.

It should be noted that the moment m(x) and axial
force n(x) on a lamina do not cause any relative displace-
ment of thevlamina at the imaginary cut. The compatibility
condition requires that the sum of the above relative

displacements must be zero, giving

dy4 dy, hc3 hc /1 1 x (H
21 & T & '(121-31 * GAF )q N E(g * 52 g (A)dirdn
=0 (2.5)

Considering each pier separately, the moment -

curvature relationship gives
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a2y,
EI. —J = M. ji=1,2 .
where Ij is the moment of inertia of pier j. MEj’ the
total moment on pier j, is given by (Figure 2)
H H cH ‘

MEl = Ml = al J qgdxr - J mdx - n(A=-x) da (2+7)
X X Ix
H H rH

ME2 = M2 - a, J gdx + J mdx + n(x-x) da (2.8)
x X Jx

Substituting equations (2.7) and (2.8) into equation

(2.6) results

d2y rH - . i
EI Lom -a qdr -| mdx - | n(-x) ax
1 ax? & L Jx X X
(2.9)
" H H H
Y, ~
EI2 = M, - a, gdx +J mdx + J n(i-x) da
dx Jdx X X (2.10)

In this analysis, it is assumed that the connecting
beams are sufficiently stout or the axial forces in the
connecting beams are sufficiently low that the effect of
axial force on the bending deformation of the connecting
beams can e neglected. It is also assumed that the end
shortenings of the connecting beams, as a result of their
flexural deformation, are of secondary importance. With
these assumptions, the moment m(x) and the axial force

n(x) can be related to the pier deflections as
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E -

oo b (1 94, (2.11)
hc \dx dx
EA,

n=pe ¥yl e

Compression is taken as positive in setting up
the above equation. Thus, equations (2.5),(2.9),(2.10),
(2.11) and (2.12) form the five linear equations relating
the five unknown functions.

In order to procure a more meaningful and readily
soluble representation of the problem, gq(x), m(x) and n(x)
are eliminated as follows to result in a pair of equations
in terms of the deflections yl(x) and yz(x) of the piers.

Di fferentiating equations (2.9) and (2.10) twice
with respect to x and subsequent substitution of equations

(2.11) and (2.12), there is obtained

- d'y, _ @My Ly B ED, <cﬂyl i d2y2>_ By (y,-v,)
1 ax® - ax? ax  nc dx? dx*® hc

i . (2.13)
: 2 I a a EA

EI, : i’z B Djz + a, b ( Zl . 'Z2>+ 2 (y;-v,)
dx dax dx hc dx dax he

| (2.14)

dx
and y2(x).' Differentiating equations (2.5) with respect

The next step is to express 2 in terms of yl(x)

to x gives

+a - —_ - = -+ -

2
A AyYlg

a*y, d’y, he’g? dg 1,1 1
al ( ) qu =0
dx? 12EI, dx E

dx? b

(2.15)
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lZEIb

chAg

where 82 =1 + (2.16)
B2 is a measure of the relative flexural and shear stiff-
nesses of the connecting beams. For instance, g2 =1
implies that the shear deformation of the connecting beams

is neglecrted. Adding equations (2.9) and (2.10) results in
H

I k| I a7 M ( ) ax (2.17)
E + E =M, + M, - (a +a q .
1 ax? 2 gx? 1 2 12 x
- ag
From equations (2.15) and (2.17), 3 can be H
expressed in terms of yl(x) and yz(x) by eliminating gda
X
obtaining
hc®g?2 dqg d?%y I d?y I M
_= L (al + —l)+ 2 (a2 + —g)- _ (2.18)
12ET, &x dx? aA dx? aA’ EaA
where a=a,; + a, (2.19)
1 1 1
= == 4 = : (2.20)
A Al A2
M =M o+ M, (2.21)

Substituting equation (2.18) into equations (2.13)
and (2.14), and writing the resulting pair of equations in

matrix form yields

I, 0 | 4 EI )
1 d Yil- 2B [Py Pyl 4

N 2
0 12 dx Y, hc Py1 Poys dx Y,

]
H
+

E

EA 1 -1 vy f
-} 1= 1 (2.22)
hc -1 1 Y, f2


http:2)-(2.18
http:neglect:.ed
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2
where b - lzal v. + 1 (2.23)
1L 2,2 1
12a.a
P, =12 v, - 1 (2.24)
c2g?
l2a,a
192
P,y = ——2< . -1 (2.25)
21 c2g2 1 :
12a22
Pyg = —7%,— vt 1 (2.26)
c282 g
I.
= S -
Yj 1 + ajaA (3 1,2) (2.27)
d2Mm. 12a,I,
£, = l- J M (§=1,2) _ (2.28)
J dx? hci3g2aa

It is noted that yj is a measure of the axial
deformation of pier j. For instance, neglecting the axial

de formation of pier j means Yj = 1.

Equation (2.22) is the governing equation of the
structural system under static loading, expressed in terms
of pier deflections yl(x) and yz(x). The first term on
the left hand side of the equation is the bending term
involving the flexural stiffness of the individual pier.
The second term is a function of the pieﬁ curvatures; it

represents the effect of axial force on the lateral equili-
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brium of the shear wall. The third term is the elastic
foundation term since it is proportional to the deflection
vector. It should be noted that the properties of the
connecting beams are reflected in the latter two terms.

The right hand side of the equation represents the forcing
function due to external lateral loading. This forcing
function can be readily calculated once the external loading
is defined. Thus, the governing equation takes the form of a
pair of beams on elastic foundation and under ‘'axial' loading.

By using displacement variables rather than force
variables as unknowns, this formulation lends itself easily
to include the inertial effect of the piers, as is required
in the dynamic study of coupled shear walls. It also simpli-
fies the formulation of boundary conditions.

Equation (2.22) is a pair of linear, ordinary
fourth-order differential equations. To completely define
the behaviour of the shear wall system, eight boundary
conditions, four at the top and four at the base of the piers
are required to complement the governing equation. Assuming
that the piers are rigidly connected to the foundation,‘the

boundary conditions at the base are

atx =0 y. =0 (3 (2.29)

]
[
-
N
S

LJQ
<
[
o
G
[
=
N

(2.30)
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The boundary conditions at the top require more consideration.
From equations (2.9) and (2.10), putting x = H (where H
is the height of the shear wall) gives
d?y.
at x = H EI, —d =M, (5 = 1,2) (2.:31)
J dX2 J
Differentiating equations (2.9) and (2.10) with respect

to x gives

-H
d’y, Ay
EI; = +a;q +m+ ndi (2.32)
dx dx Jx
oH
d3y2 au,,
EI = + a,g - m - ndA\ (2:33)
2 gx? dx 2 Ix

To express g(x) in terms of functions of yl(x) and y2(x),

equation (2.18) is integrated with respect to x, resulting

in
X
hcip? dy I dy I 1 _
q = Ml (al+ ——l)+ ——2-(a2+ —3) e Mdx
12EI dx aA dx ahA EaA
b o
(2.34)

Substituting equations (2.34) and (2.11) into equations
(2.32) and (2.33) and evaluating at x = H yields the

final set of boundary conditions. In matrix form, they are

3 5
L; ©} 4" [y EL, P11 Py 9 .J¥1] |91

E S - — — =

0 I
2| dax? Yo he |p,; P,,| dx [y, 9,

(2+35)
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where
H

dM. 12a.Ib
g. = —1 - J Max (§ = 1,2) (2.36)
O

J dx hc®g 2aa

Equation (2.35) is the condition relating to the
shear forces at the top of the piers. Thus, the analysis
of an asyrmetric coupled shear wall subjected to arbitrary
distributed lateral loading on the piers reduces to the
solution of equation (2.22) stipulated by boundary conditions

(2.29),(2.30),(2.31) and (2.35).

2.3 Symmetric and Antisymmetric Deformation

To provide better physical insight of the problem,
it is convenient to recast equations (2.22),(2.29),(2.30)
(2.31) and (2.35) in terms of variables which represent
the antisymmetric and symmetric deformation of the piers.

This is achieved by using new variables z., and zZ, defined

1
by the linear transformation

y 1 1 z
. 1 (2.37)
y% 1 -1 z,
’z' 1 1 y
or [ % 1 (2.38)
: z, : 1 -1 Y,
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From the transformation, it is readily seen that if
both piers deflect equally, i.e. Y| = Yy then z, is
identically zero and 24 represents the antisymmetric mode
of deflection of the system. On the other hand, if the
piers deflect equally but in opposite directions,

i.e. Y1 = Yy then zq is identically zero and z, represents
the symmetric mode of deflection. Thus, the deflection of
the piers is represented by a linear combination of anti-
symmetric and symmetric modes of deformation zq and z,
respectively.

Substituting equation (2.37) into equation (2.22)
and premultiplying the subsequent equation by the transpose

of the transformation matrix, one obtains

~q _
. & Tid zq B 12E1, |alayyq+t ayY,) afa;y;= asy,) .
e 4 342 ~ ~ _ c“B
I I dx Z, hec’B a(alYl+ a2Y2) a(alYl a2Y2)+ g
a*M  12IpM
a2 z. | EA 0 0 z dx? = hc’B?A
1 b 1| _ ~ -
o == =1d*Mm 121, &M
dx? z, hc 0 4 z, _
4 dx®>  hc®B?aal (2.39)
where I = Il + 12 (2.40)
I = Il - 12 (2.41)
a=a; - a, (2.42)
M = Ml - M, (2.43)

Writing equation (2.39) in terms of the non-
dimensional spatial coordinate £ defined by

x = EH (2.44)
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the governing equation becomes

. H" 0o 0 H?
Ly {z1} + - [ J {z} =

hc

0 4 E
zl(a)
where {2} = 22(5)
12H21
02 = ke
hc3g? (2.47)

and [L] is an operator matrix with elements

Ly, = I0) - aalajy, +ayy,) () (2.48)
Ly, = i( ;" - aza(alYl - azYz)( )' (2.49)
Ly, = I0) = aZalajy, + ayy) () | (2.50)
Ly, = I() - a?lalayy, - ayy)+ S8 () (2.51)

It is noted that a2 has a dimension of [length?]
and that ¢ )I denotes differentiation with respect to
variable ¢£.

Applying the same procedure to equations (2.29),

(2.30),(2.31) and (2.35), the boundary conditions become

at £ =0 {2z} = {0} (2.52)
{z}'= {0} (2.53)
I I _ . H? (M

at £ =1 . z}'= = 1; A (2.54)
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y ‘ (2.55)

J

Thus, in terms of the antisymmetric and symmetric

modes of deflection,

the problem of coupled shear walls

subjected to arbitrarily distributed lateral loading on

the piers reduces to the solution of equation (2.45)

subjected to boundary conditions

(2.52) through (2.55).

Once zq and z, are solved, the other physical quantities

of interest in the problem can be obtained as follows:

deflections yl(g) 1 1 zq
= (2.37)
moment (from equations (2.11) and (2.38))
2EIb
m(g) = z2I (2.56)
Hhc
axial force (from equations (2.12) and (2.38))
2EAb
n(g) = z, (2.57)
hc

shear (from differentiating equation (2.17) and

using equation (2.38))

q (&)
aH

E Tt -
; [Izl + 122

T ne ﬁ_
E

(2.58)

]
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moment on pier 1 (from equations (2.6) and (2.37))

By |
— [ B § i
MEl () = EZ_ (zl + z, ) (2.59)

moment on pier 2 (from equations (2.6) and (2.37))

ME2 (¢) = (zl" = 22") (2.60)
For a coupled shear wall with unequal piers, the

antisymmetric deflection z, and the symmetric deflection

i3
z, are coupled. The coupling occurs in both equations
(2.45) and (2.55). It appears, at first glance, that
equation (2.54) is also coupled, but with some mathematical
manipulaticn, it can be uncoupled, reading as
at £ =1 gy = {12”"1+ I1""2] (2.61)
2EIlI2 IZMl- Ile
From equations (2.56) and (2.57), it can be seen
that so long as the deflections of the two piers are not
identical, the moment m(¢) and the axial force n(g) in the
connecting beams will not vanish. In the case that the
deflections are identical, the shear g(f£) and the total
moments on the piers MEl(g) and MEZ(E) are functions of the
antisymmetric deformation Zq. It is pointed out in
Section 2.1 that a proportional distribution of the lateral

load according to the pier stiffnesses does not necessarily

imply equal deflections of the piers. This fact can be
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seen by putting Ile = Ile into equations (2.45) and
(2.52) through (2.55). The resulting set of equations does

not admit a solution z., = 0.

2

2.4 Reduction to Wall of Equal Piers

In this section, the general formulation is reduced
to the particular case of a coupled shear wall with equal
piers.

Symmetry of the shear wall system implies that

a; = a, = %s/2 | (2.62)
A} = A, = Ag - (2.63)
Lh=1=1 (2.64)
Y1 7 Y2 =Yg (2.65)
d; =@, =d_ (2.66)

where the subscript s refers to the symmetric wall.
Substituting equations (2.62) through (2.66) in equation
(2.45), the governing differential equation takes the form

of a pair of uncoupled equations, namely,

. 6H?I a 2y H2 12HYI
2,1V - 3b25 S ozt - M" - ? — (2.67)
he’B*I 2EI_ EAhc’B2I
. 2H?I 2H"A H®
zzlv _ b z," + - z, = M" (2.68)
heI_ hcl 2EI
s s S
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By a similar substitution, the boundary conditions (from

equations (2.52) through (2.55)) become

at £ =0 zg =0 (2.69)
z, = 0 (2.73)
[}
zl = 0 (2.70)
[]
z, = 0 (2.74)
H2
at £ = 1 z," = M (2.71)
2ET
2 .
z," = H ™ (2.75)
2EI
6H2I a 2%y H? 12H"I 1
z," - bs s z,' = M' - b Mag
hc3BZIs 2EI EA _hcdpg?:
S S -8
N 2 o) (2.72)
T b - e
2 heI_ %2 2ET (2.76)

which are consistent with those given by Tso (16).
Theréfore, the analysis of a coupled symmetric shear

wall fixed at the base and subjected to static loading

reduces to the solution of equations (2.67) and (2.68)

with boundary conditions (2.69) through (2.72) and (2.73)

through (2.76) respectively. From equations (2.56) through

(2.60), the internal forces of the symmetric structure can

be expressed as
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2EI

= b '
moment m(g) = The 22 (2.77)
axial force 2EAb
n(g) = z, ‘ (2.78)
hc
t
2EIs vt M
shear qg(g) = zy - —_—
: a_H3 a_H (2.79)
s s
_ EI ' te
moment on pier 1 MEl(E) = E;_ (zl + 2, ) (2.80)
' EI 1 e
moment on pier 2 MEZ(E) = E;- (zl -z, ) (2.81)

Hence, in the case of a coupled shear wall with equal
piers) the antisymmetric and symmetric modes of deformation
are uncoupled. From equation (2.79), it is seen that the
unit shear is independent of the symmetric deflection and
of the lateral load distribution on individual piers.

It should he noted that equation (2.79) is obtained without
the assumption of points of contraflexure at the mid-points
of the connecting beams. Also, no assumption of equal

load distribution on the piers is made. Equation (2.79)
can be shown to be identical to the results‘obtained by
Beck (4), Rosman (5) and Traum (7) for the corresponding
external loadings. Thus, as far as the unit shear force

is concerned, the results by Beck, Rosman and Traum are

applicable to a more general situation than they indicate.
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If it is assumed that the lateral loading is equally shared
by the piers, i.e. Ml = M2’ then a solution zZ, = 0 will
satisfy the governing differential equation (2.68) and
associated boundary conditions (2.73) through (2.76).

In this case, n(g)= m(g)= 0 and the mid-points of the
connecting laminas are indeed the points of contraflexure.
Since Beck, Rosman and Traum are concerned with equal
proportioning of the lateral loading on the piers, their
solution is correct for the case of a coupled symmetric
shear wail fixed at the base and the assumption of points

of contraflexure at the mid-points of the laminas is fully

justified.
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2.5 Effect of Asymmetry

Structural designers tend to favour the concept of
symmetry because of simplicity in computations and sometimes
economy in construction. However, asymmetry may occur as a
result of architectural or functional requirements. In the
case of coupled shear walls, a study of the effect of
asymmetry on the formulation of the problem is useful.

From the design viewpoint, it may provide justification for
a simplification of the design procedure. From the
academic viewpoint, it may promote further insight into the
problem.‘

Mathematically, asymmetry is usually manifested in the
off-diagonal terms of a matrix formulation. It is seen from
equations (2.39) or (2.45) that the main coupling terms
(coupling between the antisymmetric and symmetric modes of
deflection) are the off-diagonal elements in the matrix
associated with the curvatures of the pier deflections.
Neglecting the common factor (EIb)/(thZ), the matrix [C],

with non-dimensional elements, can be written as

[c] = 12 [a(alYl +oayy,y) alayyy - azy,) ]
3

2 a a - 202
c ala;y; + ayy,) alajyy ‘ §2Y2)+ c?p?/

(2.82)
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The coupling terms C12 and 021 can be expanded to read as

Clp = Fy + F,  (2.83)
c2l = Fl - F2 (2.84)
where F,o= 12 (as%y, - a,2y,) | (2.85)
1 o2 1'1 2 '2 *
- 12 -
F2 = ;; aa, (Y1 Y2) (2.86)

Fl and Fz, which are non-dimensional, can further be

expressed in terms of the pier width (dj, i =1,2) to beam

d d d d c c
(= +1) (D2 -2+ D 3][3 + 32]

span ratios as follows

C C
d,

4 . .
F, = 3[(c_ +1) 2= (5= +1) 2|+ .
1, 9D )
a, 8, a, a, T+t 2 (2.87)
C C
»LE— + l)(a—)a' (= + 1)(5—)i It 3
» 1 %2
F =
2 d 4,
G+ *+2 (2.88)

In a similar manner, the diagonal elements Cll and

C22 can be expressed as

Cll = F3 + F4 _ (2.89)
. _ 2
Cyy = Fy F, + 4B (2.90)
where F, = 12 (a,? + a,?y.,) | (2.91)
37 21 Y1 2 Y2 .
_ 12
F4 —.c2 aa, (Yl + Yz) (2.92)
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In terms of the basic geometry of the shear wall, the

F, and 8% become

quantities F3, 4

d - a d d o] c
1 1 2 2
d]. 2 d2 2T [(E— ) (E")_3+('c'_ i (c_) %I[a-l+ a-Z]
i (E_ + e + . 2) (2.93)
d a d 4d c c
2 1 1l 2
q g (= +1) (7 3‘*'(c—- +1) (a—-)i[gl‘* d_z]
T+ + 2 (2.94)
: d
B2 = 1+ 1.2 (B (B2 (2.95)

where in the last expression, Ab* the effective cross-
sectional area of the connecting beam to be considered for
shear deformation is taken as Ab/l.z; and’db is the depth
of the connecting beam.

The variations of the coupling terms C12 and Chy
with the pier width ratio dl/dz, for various width of pier 1
to beam span.ratios dl/c, are shown in Figures 4 and 5
respectively. Without loss of generality, pier 1 is assumed
to be wider than or equal to pier 2, i.e. dl > d,.
width of pier 1 ranges from one-half to two times the

The

connecting beam span. It is seen that the coupling terms

are monotbnic increasing functions of the pier width ratio,
with the major increase occurring between ;l.= 1l and 2,
and that they both vanish at dl = d, which is to be expected
of a symmetric system. In a similar fashion, Figure 6 shows

the variation of C12/C11' the off-diagonal element to the



35

diagonal element. This is, indirectly, the influence on the
antisymmetric mode of deflection by the symmetric mode as
a result of coupling. The same comments as in Figures 4

and 5 apply here. However, there is one difference in the
d
trend. At a particular Ei ratio, the variation of C12
2
d

C21 with El has a positive curvature, whereas the corres-

or

ponding variation of C12/Cll has a negative curvature. This
implies that when the piers are sufficiently close, the

coupling action tends to approach a constant value. As
d

C21/C22 is a function of the depth to span of beam ratio —%:

Figures 7a-d show its variation with 59 =1 11 1
9 , c =71, 5 17, Is

respectively. This variation is, indirectly, the influence
on the symmetric mode‘of deflection by the antisymmetric -
mode. Withowt loss of generality, g is assumed to be

2.60 corresponding to a Poisson's ratio of 0.30. It is seen
that higher magnitudes are obtained in Figures 7a-d than in
Figure 6. One noticeable feature in Figures 7a-d is the
occurrence of pgaks for gi = 1.5 and 2.0 in the neighbourhood
of g% = 2. This implies that when the width og pier 1 is
sufficiently large compared to the beam span (EL > 1.5), the
coupling action is most prominent in the neighbourhood of a
pier width'ratio of 2. It is also noted that as the depth

to span of beam ratio decreases, i.e. as the connecting beams

become less stiff, there is more coupling action.



COUPLING TERM C,,

COUPLING TERM C,,

| 2 3 4 5
PIER WIDTH RATIO 94,

FIGURE 4. VARIATION OF COUPLING TERM C,
WITH PIER WIDTH RATIO

»H
O

(73
O

N
O

o

o

4
PIER WIDTH RaTIO Y/,

FIGURE 5. VARIATION OF COUPLING TERM C,,
WITH PIER WIDTH RATIO

36



37

olo

4 .05

o|

0 PO T WY SRR Y YU SRR WA SR SN R TN SHNNY G N T Y h 1
| : 2 3 , 4 5
PIER WIDTH RATIO d'/az
FIGURE 6. VARIATION OF OFF-DIAGONAL TO DIAGONAL

ELEMENT C2¢ WITH PIER WIDTH RATIO
(FOR ALL 9t)




1 - ' i J

FIGURE 7a.

PIER WIDTH RATIO Y44,

VARIATION OF OFF-DIAGONAL TO DIAGONAL
ELEMENT €24, WITH PIER WIDTH RATIO,
FOR %/ =Y

38



39

201

1.8

1.6
9 _

\ C -2

141 T 4o
[
d
2=
d
?'=0.5

o A A e ' l A A 4 s l L ' A 1 l

N [ N B |

5

i 2 3 4
PIER WIDTH RATIO d./d
2

FIGURE 7b. VARIATION OF OFF-DIAGONAL TO DIAGONAL
ELEMENT C2&,, WITH PIER WIDTH RATIO,
FOR %/ =Y



d
t=2
d
z=L5
d
ol
c
C.
4.
£=05

PIER WIDTH RATIO %4,

FIGURE 7c. VARIATION OF OFF-DIAGONAL TO DIAGONAL
~ ELEMENT C2¢ WITH PIER WIDTH RATIO,

FOR %= Y,

40



41

=2
d
LT
d-
2=
d
€05

(o) ANNINEVEEN TN U R U SR SR VS [N SH Y W T |

PR W S U |
| 2 3 4 5
d
PIER WIDTH RATIO 94

FIGURE 7d. VARIATION OF OFF-DIAGONAL TO DIAGONAL
ELEMENT C%&wm-i PIER WIDTH RATIO,
FOR 9% =Y,




42

2.6 Effect of Differential Foundation Settlement and

Rotation on Symmetric Coupled Shear Walls

As an application of the above formulation of
coupled shear walls under static loading, a problem of
practical interest is examined. The problem of differential
foundaticn settlement and rotation has been of concern,
particulafly in the case of apartment buildings situated

above an escarpment. The instability of the slope induces

differential settlement and rotation and the subsequent
stresses in the structure may be disastrous.

For convenience, the case of a symmetric coupled
shear wall where the foundation under the right pier has
undergone a settlement A and a clockwise rotation 0 is
considered (Figure 8). The left foundation is assumed
to remain fixed. It is convenient to divide the treatment
of this topic into two subsections. The first subsection
deals with the formulation of the problem. The second
subsection contains an evaluation of the effect of

foundation settlement and rotation on a shear wall model.
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2.6.1 Dexrivation

Since the coefficients of the governing differential
equations (2.67) and (2.68) depend only on thé geometrical
characteristics of the piefs, the connecting beams and on
the loadinc on the structure, the equations are valid for
different foundation conditions. Defining non-dimensional

constants o2 and p? as

6H2I, a_2y
32 = bs 's (2.96)
3n2
hc®8 Is
2H%1 .
n? = b (2.97)
ths ,

the differential equations can be written as

. _ 2 aly?
leV - 0'Zzlu = H - M" - 2_..a_§._.;._M (2.98)
2EIs EAsaS Yg
2172
) HH“A 2 =~
2,1V - gyt __ b z, = H _ m» (2.99)
Ib 2EIs

The boundary conditions, which are not independent

of foundation conditions, become

at £ =0 2, = XA = 0 (2.100)
2y = - ¥04 = 0 (2.104)
2,' = % HO (2.101)
z,' = -% H® ' , (2.105)
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where it .s noted that the exact zero displacement for the

right pier occurs at £ = - % + but neglecting the second-

order éffect, zl(O) and 22(0) can be taken to be zero;

2 ] .
at £ =1 2" = 3‘?:‘1“ M (2.102)
S
w _ HZ =~ ' (2.106)
2’ T ZET M

To obtain the other pair of boundary conditions at the top
of the piers, it is necessary to express the unit shear in
terms of the pier deflections. Integrating equation (2.18)

(in the reduced form) with respect to x, it is obtained

X _ '2 X _
M dx
le] Ea A
s’s

(2.108)

hc382

X _ 3% (dyl +de)
o 2 dx dx

q

12EIb

Unlike the case of a rigid foundation, the unit shear is not
zero at the base. At the imaginary cut along the mid-points
of the connecting laminas, the compatibility coadition of

zero relative vertical displacement is given by

: X
3n2
ag dyl dy2 hc®B 2 J

7 (&% ax )" T3ET. 9 EA_

g(A)dxdn - A = 0 (2.109)
b :

O Jn
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From equation (2.109), at x = 0, the unit shear g is given

by
. h,c.g.Bz

lZEIb.

- 84 _ -
| =0 = e (2.110)

Substituting equation (2.110) into equation (2.108) results

in the renquired expression for the unit shear:

3

' 1231 a a_y dy, dy 2 _

q(x) = bls (1-y ) e-a + == Ly 2. Mdx
heip? |2 2 dx dx Ea A_Jo

(2.111)

Proceeding in parallel with Section 2.2 while keeping
equation (2.111) in mind, one obtains the final set of

boundary conditions, namely,

-, H2 20.2H? 1 20%HI oZH
zllu_ azzl = M' - __._._2._._. MdE- -—-——-;-— 8- ~ A
2EIS EASaS YS o) ASaS YS i aSYS
(2.103)
2. - gzt = B (2.107)
2 2 2ET_ )

Thu:;, this analysis reduces to the solutions of
equations (2.98) and (2.99) subjected to boundary conditions
(2.100) through (2.103) and (2.104) through (2.107)
respectively. The internal forces of the symmetric structure
canvthen be obtained from equations (2.77) through (2.81).

Comparing the set of boundary condiﬁions in this
Section with that in Section 2.4, it can be seen that the

differential foundation settlement and rotation affect only
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the boundary conditions relating to the slope of the

de flection at the bottom and to the shear force at the tbp
of the piers. Furthermore, these effects are superimposed
on the original formulation without differential settlement
and rotation. Since the problem is strictly linear, it
follows that solutions to the differential settlement and
rotation problem can be obtained by superposition. From
equation (2.105), it is seen that the symmetric mode of
deflection is a function of the differential rotation. TIf
there is no differential rotation and if it is assumed that
the lateral loading is equally shared by the piers, i.e.

Ml = Mz,'then a solution z, = 0 will satisfy the governing
differential eqﬁation (2.99) with boundary conditions
(2.104) tarough (2.107). Since Rosman (5) is concerned
with foundation settlement and with equal proportioning of
the lateral loading for the case of a symmetric shear wall,
his solution.is valid and the assumption of contraflexure
points at the mid-points of the laminas is again justified.
It will be.éhown that when differential rotation does occur,
the symmetric mode of deformation is significant at the

lower floors of the structure.
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2.6.2 Evaluation of Internal Forces

Te study the effect of differential foundation
settlement and rotation on the internal fofces of the
symmetric structure, the external load is set to zero; the
governing differential equations become (from equations

(2.98) and (2.99))

iv _ ~2 -
zy a®zy 0 | (2.112)
_ 2¢72
. UH
z V- u?z." + ————52 z, = 0 (2.113)
2 2 I 2
b

The boundary conditions (2.100) through (2.107) are obtained

as
z, = 0 | (2.118)
z)' = % HO (2.115)
ZZ' = - % H8 (2.119)
at £ =1, zl" =0 (2.116)
"o

z, 0 (2.120)

_ 20%HI a?H
zlul_ azzl: = = ___2_ 6 - A (2.117)

ASaS YS asYs

ws _ ¢ 2 = ‘
z, g.zz' 0 (2.121)
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The antisymmetric mode of deformation is governed
by equation (2.112) subjected to boundary conditions (2.114)
through (2.117). Since the equation is linear with constant

coefficients, the solution can be readily obtained as

2, (§) = — - )[tanh& (cosh&&-l)-sinh&%]+[ H a
ay. -
s's
H 1.
tz 7;)9]5 (2.122)
The symmetric mode of deformation is governed by
equation (2.113) subjected to boundary conditions (2;118)
through (2.121). Seeking a solution to equation (2.113)

of the form

z,(£) = e5° (2.123)
the following characteristic equation is obtained
o - u?H?
s* - u?s? + ————EE = 0 (2.124)
Y
The roots of equation (2.124) can be written as
s = 1+ @ £ iy (2.125)
_ M |2H
where @ = 5 ﬁf;'+ 1 (2.126)
x=%3-H—-l T (2.127)
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(2.128)

and i2 = -1 (2.129)
For practical consideration, the non-dimensional quantity
HzAb/Ib is considerably larger than unity. Since

Hoss 1, it is possible to make the simplification that

urb
- ~|EE_ ' '
g =~y = zrb (2.130)

The general solution of equation (2.124) can then be expressed
as
22(6) = egg(Blsin¢£'+ Bzcosﬁg) + e_gg(B3sin¢E + B4cosﬁg)

(2.131)
where # is given in equation (2.130) and Bl’ B2, B3, B, are

arbitrary constants to be determined by boundary conditions
(2.118) through (2.121). To be consistent with the approxi-
mation made in equation (2.130), the boundary condition
(2.121) becoumes

at § = 1, "t=0 (2.132)

Solving for the arbitrary constants and back substituting into
equation (2.131) yields the complete solution for zz(g) as
o\ _ _ HO 1 .
22(5) = - — [ cosh@sin@Ecoshf (1-E)
29 {cos?®@+cosh?f)

+ (s:n@sin@f + cosf@ cos@E) cos@ sinhff ] (2.133)

It is noted that ZZ(E) is independent of A; that is,
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the foundation settlement does not affect the symmetric mode
of deformation.

Thé internal forces of a symmetric coupled shear
wall as a result of differential foundation settlement A and

rotation 6 can be obtained utilizing equations (2.122) and

(2.133) as
moment (from equation (2.77))
EI 0
m(g) = - b _ [ cosh@ cosPg coshf (1-§)

hc (cos?@g+cosh?f)
-coshf sin@& sinhf@ (1-£)

+sinf cos@f cosf@ sinhf@g
+sin@ sin@f cosf@ coshfg
-cosf sin@& cos@ sinhgg
+cosf@ cos@E cosfP cosh@f ] (2.134)
axial force (from equation (2.78))
EAbH 6

n(g) = - [ coshf@ sin@& coshf (1-&) +
hcg (cos?@+cosh?y)

(sinf sin@g + cosf@ cos@&)cosf sinhfi ] (2.135)

shear force (from equation (2.79))

2EI a2 , A 6 _ _ _
q(&) = ———EL——(——-— —) (tanha sinhoa§ - eoshaf) (2.136)
a_H?y_ \a 2
s s
Moment on pier i (from equation (2.80)
EI Hoa A 8 - _ _
MEl(E) = 2] — (— - - ) (tanha coshof - sinhaf)
H? ly_. a 2
s s
H@6
+ [cosh@ cos@& sinhf (1-£) - sinf@ cosf@f
(cos?@+cosh?f)

cosf cosh@i + cosf sinff cosf coshf@i]

(2.137)
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moment on rier 2 (from equation (2.81))

EI_ [Ha , A 8 _ _ -
MEZ(E) = — ——-(-—-- -) (tanho coshaf - sinhaf)
H? Y a 2
s s
_ HPO

[cosh@ cos@E sinh@ (1-£)- sin@ cos@& cosf

(cos2@+cosh?y)
cosh@& + cosfd sin@E cos@ cosh@g]

(2.138)
From the above expressions, it is noted that because
the symmetric mode is independent of settlément A, so are
the unit mbment m(£) and axial force n(£). They are
directly proportional to the differential rqtation 8.
Evaluation of the uhit moment, unit axial force, and
unit shear force along the centerline of the structure and
the total ioments on the piers were performed on a shear wall
system with the following geometrical characteristics and

material properties

number of storeys N = 22
storey height h =9
total height H = 198"
pier width ds = 22'
wall thickness t, = 1!
connecting beam span c =25
connecting beam depth db = 1/2'

elastic modulus

E =3 X 10°psi

In order to offer a meaningful presentation, the
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internal forces of the shear wall system are normalized with
respect to comparable quantities of the same system under
the influence of a uniform lateral load w only. To be
realistic, w is taken to be 1000 1lb. per linear foot. The
unit shear force q is normalized with reépect to 9,

where'qo is the maximum unit shear induced when the same
shear wall is subjected to uniform load w. Frbm Coull

and Choudhu:y 9), q, is given by |

wH

9, = 3 K (2.139)

3

<IH

S 's

where K3' is the shear stress factor and can be obtained
from Figure 4 of the same reference. The unit moment m
is normalired with respect to m where m, can be considered
as a design quantity at the pier to beam connection. It is
given by
m =q =
o~ 9% 2 (2.140)
The unit axial force n is normalized with respect

to no where no can be considered as the lateral load

transmitted to the connecting beam; specifically,

n o= Ly | (2.141)
2

The total moments on the piers MEl and ME2 are normalized

with respect to Mo where M, is the root moment of a

cantilever pier subjected to %-w; namely
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. . 1 2
Mo = 7 WH (2.142)

Thus, it can be seen that thé normalized internal
forces q/qo, m/mo, n/no, MEl/Mo' and MEz/Mo'can be
expressed in.terms of a non-dimensional lateral load factor
EH/w which, in this case, works out to be 9.9 X 107.
Computations were done using the CDC 6400 electronic
computer a&nd the results are shown in Figures 9 through 15.

Figures 9 and 10 show the variation of the unit
shear ratio q/qo along the height of the structure for
A = 0.5" at 2ero differential rotation and for 6 = 0.2°
at zero differential settlement respectiveiy. The variation
is maximum at the base and decreasés steadily tending to the
ratiq of 1 at the top in both cases. This implies that,
the unit shear produced by a differential settlement of
0.5" or a differential rotation of 0.2° can be as much as
one (at the top) to more than two times (at the base) the
maximum unit shear when the same shear wall stiucture is
subjected to a lateral load w of 1000 plf or a lateral load
factor EH/w of 9.9 X 107. Since the unit shear is a linear
combination of rotation and settlement, combining Figures
9 and 10 will yield the unit shear ratio at any other values
of differential settlement and rotation.

Figure 11 shows the variation of the unit moment ratio
m/mo along the height of the structure for a differential

rotation of 9.2°. The variation is primarily noticeable at
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the boftom third of the structure with a positive maximum
of about 0.03 at £ = 0.2 and a negative-mﬁximum of about
0.16 at th2 base. This implies that a differential
rotation of 0.2° induces a maximum unit moment of about
16% of the cantilever moment produced by the maximum unit
shear when the same structure is subjected to a lateral
load factor of 9.9 X 107. Since it is established that,
at the base for 6 = 0.20, g is about twice d,r the unit
moment is thus insignificant in the design of the pier to
beam conncction.

Figure 12 shows the variation of the unit axial
force ratio n/no along the height of the structure for a
differential rotation of 0.2°. It can be seen from the
exceedingly large ratios at the bottom third of the structure
that the unit axial force as a result of a differential
rotation of 0.2° cannot be teasonably estimated, because
of the interaction of the piers, by the transmission gf
the lateral load when the same structure is subjected to
a load factor of 9.9 X 107. It should be noted that
since the unit moment and the unit axial force are indepen-
dent of A and directly proportional to 6, their respective
ratios can e readily obtained for other values of differ-
ential rotation.

Figure 13 shows the variation of the total moment
ratios MEl/MO and ME2/M0 along the height of the structure

for a differential settlement of 0.5" at zero.differential
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rotation. It can be seen from equations (2.137) and (2.138)
that MEl = ME2 when 6 = 0. The ratio decreases steadily

from a maximum of about 0.4 at the base to zero at the top.
Figures 14 and 15 show the variation of the total moment
ratios MEl/Mo and MEZ/Mo respectively along the height of

the structure for a differential rotation of 0.2° at zero
differential settlement. The variation is significant at

the bottom fifth of the structure where the total moment
produced by a differential rotation of 0.2° is as much

as eight times (at the base) the root moment of a cantilever
pier when the same structure is subjected to a load factor

of 9.9 X 107. Although it is necessary to combine Figures

13 and 14 or Figures 13 and 15 to arrive at the total

moment ratio (linear relationship as in unit shear) for other
values of differential settlement and rotation, Figures 14
and 15 nevertheless reflects the significance of the symmetric

mode of deformation at the bottom floors of the structure.
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CHAPTER 3

ANALYSIS OF PLANE COUPLED SHEAR WALLS UNDER DYNAMIC LOADING

3.1 Introduction

In this chapter, the analysis of coupled shear walls
under dyniémic external loading is presented. The 'continuous'
method of coupled shear wall analysis is extended into the
regime of dynamics. Since the formulation given in Chapter
2 is in terms of the deflection variables of the piers, it
is readily adaptable for dynamic analysis by taking into
account the inertia effect of the piers. The derivation
of the governing equation of motion and boundary conditions
is given in Section 3.2. The governing equation takes the
form of a pair of linear partial fourth-order coupled
differential equations. In Section 3.3, the study is
restricted to the aspect of free vibration of the structural
system. Since the knowledge of the fundamental natural
frequency is essential in seismic design by the spectrum
technique, effort has been directed through normalizing and
non-dimensionalizing procedures to arrive at a formulation
for the normalized natural frequency which is readily soluble
with the aid of a computer. In Section 3.4, this treatment
is repeated for the case of a symmetric wall. Computerized
results for the normalized natural frequency are presented
in Section 3.5 in the form of design curwves, fcllowed by

a discussion of the curves and of the non-dimensional

62
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variables involved. The effect on the fundamental frequency
by anraging the pier widths and the pier stiffnesses
respectively to arrive at a substitutive symmetric system

is examined in Section 3.6. It is shown that in the particular
case considered, averaging the pier stiffnesses gives a better
estimate of the fundamental frequency than averaging the
widths of the piers. Finally, dynamic tests on a symmetric
and an asymmetric model are described in Section 3.7. The
experimentally determined frequencies are compared with the
theoretical prediction; the agreement is found to be within

5%'
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3.2 Derivation of Equation of Motion

In this derivation, the assumptions as giwven in
Section 2.2 remain valid. If the external loading is time
dependent: wl(x,t), w2(x,t), the de flections of the piers
and the internal force distributions are also functions of
time. Taking into account the inertial effect of the piers,
the external moment expressions are

H
M] (x,t) = Jx (WJ - Pjyj) (x-x)dx (J =1,2) (3.1)

where dots denote differentiation with respect to time t
and pj is taken as the mass of pier j plus half the mass.
of the connecting beams, per unit height of the shear wall.
Substitutine equation (3.1) into eqguation (2.45) and
expressing the deflections in terms of zl(E,t) and zz(g,t)

as in Section 2.3, the eguation of motion can be written

as
H"Ab 0 0 H* {p 3| -
(L] {z}* +_—H_C-:- 0 4 {z} + 7 3 o {z}
' “ZJI (% - £)ax
GZH" o 5 - - - Hl, W-A— w(ix - X
-~ “Bn 3 3. {2} (x gldx = B g
& L3° af . 1
w-%zi w(x-£)dx
£
(3.2)
where P =py + oy (3.3)
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w = Wl + w2 (3.5)
wo=w -, (3.6)

The corresponding boundary conditions can be obtained in a

similar minner from equations (2.52) through (2.55) as

at £ =0 {2} = {0} {3.7)
(z}'= {0} (3.8)
at £ = 1 {z}* = {0} (3.9)
2 L 1L P [ - -
(L] {z}- a’H' 3 s {2} (x - &) dxdg
FA 1o £ afPakP
1 1 '

w2t |1 - -

=22 H 43 J J w(X-£) dxdE (3.10)
EA a O JE& :

Thus, the study of dynamics of coupled shear walls
subjected to time dependent lateral loading reduces to the

solution cof equation (3.2) subjected to boundary conditions

(3.7) throcugh (3.10).
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3.3 Free Vibration

One of the parameters that is essential to the
response analysis of any elastic structure is the natural
frequency of that system. 1In particular, the fundamental
natural frequency is of importance because of its role
in seismic design by the spectrum technique. In the follow-
ing, the fundamental frequency of coupled shear walls is
studied in detail.

For free vibration, there are no external loadings,

- w. =0 \ (3.11)

Seeking a solution of the form

{z(E,£)} = {n(g)retst (3.12)
where w is the natural frequency of the coupled shear wall
and substituting equation (3.12) into equation (3.2), the

equation ior free vibration takes the form

. ' H“Ab 0 0 PR PP 2 2.4 |1
: w°H w H
SN Y L R L {n}+-§%——-J
3

{(n} (x-¢) d&x = {0} (3.13)

Pl o
wiwe o

p =P
Equation (3.13) is a pair of linear coupled homo-

geneous integfo-differential equations. For case of.solu-

tion, it is convenient to reduce equation (3.13) into a

pair of sixth-order differential equations. Differentiating

equation (3.13) twice with respect to £, it is obtained
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"y HuAb 0 0 241k p 5
" w°H
(Ll {n}  + 4= [0 4] {n}"- L [5 p]{n

}"
3
o ga{n} = {0}

+
@[ O

(3.14)

The boundary conditions to be satisfied can be obtained

from equations (3.7) through (3.10):

at £ =0 {n} = {0} (3.15)
{n}'= {0} ' (3.16)
at £ =1 {n}" {0} (3.17)
2 2.4 |1 p 0
[L] {n} + 9—“——*‘—[ Jl [a 3 ~] {n} (R-£)axat = {0}
EA odJe LaPa®

(3.18)

Since equation (3.14) is of the sixth order, two additional
pairs of boundary conditions are required to determine its
solution. The additional boundary conditions can be
obtained from equation (3.13) and its derivative,

evaluating at £ = 1, namely,

,H"Aboo w?H* |p D
at £ =1 (LI{n} + —— {n} - ~ {n} = {0}

hc 0 4 E P P v
(3.19)
1} H" 0 0 1 2k P 5 '
[Ll {n} + h:b [0 4] tn} - &X [5 ;] {n} = {0}
(3.20)

Thus, the determination of the natural frequency
w reduces *o the solution of equation (3.14) subjected to

boundary conditions (3.15) through (3.20).
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To reduce the equations to non-dimensional form, the

geometry of the coupled shear wall is normalized with respect

to the length of the connecting beam ¢ as follows

d; =Dje (3 = 1,2) (3.21)
db'= D,.C (3.22)
h = He (3.23)

where Dj’ Db and H are the normalized width of pier j,

depth of connecting beam and floor height respectively.

The natural frequency of the coupled shear wall is normalized

with respect to the first frequency of lateral vibration of
a cantilever beam having the stiffnesé of a pier and the
mass equal to the mass of the pier plus half of the mass of
attached connecting beams. Mathematically, this can be

written as

w=Q, o, (3 = 1,2) (3.24)

where Qj is the normalized frequency, and

(3.25)

The relationship between Ql and Qz can be expressed in
terms of the previously defined non-dimensional parameters

as
1

’ 3
D,

R -
o 2 K D (Db + 2HD2
)0 =

D, + 2HD; (3.26)
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From the seven basic non-dimensional parameters:
N, Dl’ Dz, Db’ H, Ql and Qz, the following parameters are

defined as

n, = D13 + D23 (3.27)
= 3 o 3
n. Dl D2 (3.28)
n, = NzﬁDb3 (3.29)
n, =1+ 1.2 Dbz(g) (3.30)
n, = N“ﬁ3ob (3.31)
ng = (Dl + 02 + 2) (3.32)
1 1
no.o= <L 1 (3.34)
8 Dl D2
ng = 912D13 + 922D23 (3.35)
Ny, = 912D13 - 922023 (3.36)

The differential equation (3.14) and boundary conditions
(3.15) through (3.20) can then be written in terms of nj

(j =1,2,...,10) as

(] (VY & (o1 (1YY 4 [R] (n}" + [S] {n} = {0}  (3.37)
at £ =0 {n} = {0} (3.38)
{n}'= {0} (3.39)

at £ =1 {n}"= {0} . (3.40)
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1¢l
[PI1{n}"' + [Q}{n}"' + [s][ [ {n}t(x - £)ax d¢ = {0} (3.41)
0d g

(P1{n}*Y + [0l{n}" + [RI{n} = {0} (3.42)
[pl{nt¥Y + [QI{n}"" + [RI{n}' = {0} (3.43)
_In n
where [P] = 1 2 (3.44)
By By
_ --n3 3n6 + n ng 3n6n7 + n2n8
[Q} = — n, ; n.
n4 3n6n7 + nln8 HZ 3n7 + n2n8 HE + 4n4
(3.45)
12.4 n 12.4 n
[R] = - 9 10
12.4 nio 12.4 n9-48n5 (3.46)
12.4 n.n n n
[s] = ——3228 | 9 Lo (3.47)
n4 7 7

n — n
ne 9 neg 10

Thus, in non-dimensional form, the problem reduces
to the solution of equation (3.37) subjected to boundary
conditions (3.38) through (3.43). The solution to equation
(3.37) can be obtained by seeking a solution of the form

{n} = {o}er® (3.48)

Substituting equation (3.48) into equation (3.37) leads to

[AS[P] + A*[Q) + A2%2[R] + [S]] {¢} = {0} (3.49)


http:n-48n(3.46
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where, for non-trivial solutions, the determinant of the
matrix [A\®[P] + A*[Q] + A%[R] + [S] ] must be zero yielding
a twelve degree characteristic equation in X as

12

o 10
A iRy PeaPyaPey i AT IF

P O. - 8
11922%911P227P 2191 57Q51P1 ) #A7 (P Ry,
- = . 6 .
1071Q72%Ry 1P 59 Py R1 2705791 537 Ry Py p) + A7 (P11855401 1 Ry5

- - - L
+R11Q55%511P97P 5318715701 Ry 3 R51Q7 5755 Py o)+ A7 (Q4555

+Rq R, ,+5

- = o 2
11R22%911952795151 2Ry Ry 375579750+ A7 (Ry4S

22%511R22
0 _
“Ry18757 S R )+ AT (57155587,5,1) =0 (3.50)

where Pij (i,3 = 1,2) represents element ij in matrix [P]

Let the roots of the characteristic equation be
Ai(i =1,2,...,12) and the associated vector corresponding
t°~ki be denoted by {¢}i. From equation (3.49), {Q}i
can be determined up to an arbitrary constant Ki‘ It
should be noted from equations (3.47) and (3.50) that
since the dz2terminant of matrix [S] is always zero, a
double root of A = 0 results. Let kll and A, = 0, then
1
{o};; = (e}, = 1ng {3.51)
f1g

Hence, the general solution of equation (3.37) can be

written as
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tn} = & K {0}, e + (K, + Kj,E) {9 (3.52)

i=1 11
Substituting equation (3.52) into the boundary conditions
(3.38) through (3.43) gives twelve homogeneous linear
algebraic equations for the constants K.l (i = 1,2,...,12)

as follows

11

y K., {9}, = {0} . (3.53)

i=1 + ?
10
i£1 KA, {0} + Kp,{ehy; = {0} (3.54)
10 A

= 3.55)

i£1 Kixiz{é}ie {o} (
30 . 1 1 1 _ 1
I Ki[A13[P1+ plo] + [8] (= - o+ =0 - 3exi)}
i=1 ¥ i M i i

A
(o}; e ¥ + % xy (810} + Ry ftol+ g 18] {o}y; = (o]
10 v (3.56)
Ik [x;fe1eag 2 tai+ R ] 000 jo Re (kg 4Ky, [RI (0} = (0)
i=1
10 v (3.57)

5 3 1 =
'z Ki[xi [P]+Ai [Q]+Ai[Ri]{¢}ie +K12[R]{<I>}ll {0}
i=1
(3.58)
The condition for determining the natural frequency
is to require the determinant of the coefficients of

Ki(i = 1,2,...}12) to be zero. The actual numerical evalua-

tion of the natural frequency makes use of the trial and

error technique. A value of Qi(i 1l or 2) is assumed in

equation (3.50) and the roots Ai(i =1,2,...,10) are determined.
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The determinant of the coefficients of Ki(i =1,2,...,12) is
then evaluated. 1In general, the determinant is not zero.

The procedure is then repeated by assuming another value of

until the determinant vanishes. An indication for this
condition is when the value of the determinant changes sign
between two successive trial frequencies. Knowing

Qi(i = 1 cr 2), the actual natural frequency can be obtairned

from equation (3.24).

3.4 Reduction to Wall of Equal Piers

In this section, the general formulation is reduced
to the particular case of a coupled symmetric shear wall.
In addition to equations (2.62) through (2.66),

symmetry also implies that

Py, = Pg (3.59)

P1
Substituting equations (2.62) through (2.66) and (3.59) in
equation (3.2), the equation of motion takes the form of a

pair of uncoupled equations, namely,

1
. 6H2I, a 2y H*p_ .  24H°I p_ .- -
zllv _ b™s 's 21" + s 2, - "b"s zl(x—E) ax
3,2 3np2
he®B?I EI EA_hc’B%I £
; 1 .
B : & ' 12H‘Ib _ _
= w - o w(x-§) dx (3.60)
2EI_ EA_hc’B*I_ £
. 2H2I 2H"A H*p . H*
2,V - b z," + b 2, + —= 2, = W (3.61)
hel hcl EI 2EI

S =3 S S
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By a similar substitution, the boundary conditions (from

equations (3.7) through (3.10)) become

at £ =0 zy = 0 (3.62)
2, = 0 ‘ ' (3.66)
.
z2'= 0 (3.67)
at £ =1 zl“= 0 (3.64)
22"= 0 (3.68)
2 2 6 1pl
. 6H“I, a_°y 24H°I. p . . _ _
zy - ; ? =S z' - E f z; (x-g)dxdg
heB Is EAshc B Is_ oJ §
12H1, i )
= - — w(x-£) dxdg (3.65)
EAShc B IS ol
2H2'1b
2" - z,' =0 (3.69)
ths

Eguation (3.60) with boundary conditions (3.62)
through (3.65) defines the antisymmetric mode response
problem of a coupled symmetric shear wall under'dynamic
lateral loading. Equation (3.61l) with boundary conditions
(3.66) throﬁgh (3.69) defines the symmetric mode response.
From the practical point of view, the symmetric mode is
seldom excited. It is the antisymmetric mode response
that is being excited when the coupled symmetfic shear wall
is subjected to loadings such as wind and earthquake

excitation.
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In a.similar pattern as in Section 3.3, the funda-
mental natural frequency of a symmetric coupled shear wall
in its antisymmetric mode of vibration is considered.
Setting the external loadings Wy and w, to zero and seeking

a solution of the form,
z) (E,8) = n_(£)e*®" (3.70)

equations (3.60) and (3.62) through (3.65) become

. w?H'p 24w2H®I, p 1
nslv_&‘znslv_____s_ns+ 3?5 ns(i—g)d}E:O
EIs EAshC B IS g
(3.71)
at £ =0 ng =0 (3.72)
ns'= 0 (3.73)
at £ =1 ns"=0 (3.74)
A 240w*H T p 1 - -
nslll'_ (12 n. ‘4 S ns(x—E)dXdE = 0 (3.75)
EAshc B Is 0dE

Differentiating equation (3.71) twice with respect to &,
it is obtained

vi - iv wzH“ps 24w2HGIbpS
ng  —afn T - ——=n "+ =0  (3.76)

n
S 3,52 S
EIs EAshc B IS

The additional boundary conditions can be obtained from
equation (3.71) and its derivative, evaluating at & = l;
namely,

at £ =1 ntV-atn_ " -—2=n_=0 (3.77)
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vV _ T2 e _ S = ’
Ng " ng ot ng' =0 (3.78)
S

Thus, the determination of the natural frequency w

reduces tc the solution of equation (3.76) subjected to

boundary conditions (3.72) through (3.75), (3.77) and (3.78)

To reduce the equations to non-dimensional form, the

geometry of the coupled shear wall is normalized with respect

to the length of the connecting beam c as

d,6 =D, (3.79)
d, = D¢ | (3.22)
h = He (3.23)

where DS is the normalized width of the pier. Normalizing

the natural frequency as in Section 3.3, the expression

becones

w=0_w (3.80)

S O

where Qs is the normalized frequency of the symmetric wall

and

H? 0 (3.81)

From the five basic non-dimensional parameters: Nl’ Ds, Dy

H and 2 s vy and a? can be written as

1
Yg =1+ ——¥—
3(l+5)
2fip 3 (L+k ) 241
s _ 6N2FID ° [ (145 ) *+3]

E
Ds[l+1.2Db2(a)l

(3.82)

(3.83)

The differential equation (3.76) and boundary conditions

(3.72) through (3.75), (3.77) and (3.78) can be expressed as

vi - =2 iv - 2 " =2 _l 2 =
ng o’ ng 12.49s Ng + 12.4 a° (1 YS)QS Us 0
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at £ =0 ng = 0 (3.85)
ng'= 0 (3.86)
at £ =1 ns“= 0 (3.87)
1

n_"-atn, ' + 12.43%(1-39)0 %| | n,(X-£)daxdg = 0 (3.88)

s s Yg odE
iv_=2. w _ 2 = | 3.89
ns a ns. 12.49s ns 0 ( )
: v_2 "y _, 2 - 3.90
ng a’ng 12.49s Ng 0 (3.90)

The solution to equation (3.84) can be obtained by

seeking a solution of the form

ng = e (3.91)

Substituting equation (3.91l) into equation (3.84) yields

a sixth decgree characteristic equation in A given by

1 : .
A® - At - 12.40 %)% + 12.40%(1- 7 R 2 =0 (3.92)
S

Let the roots of the characteristic equation be

Ai(i =1,2,...,6). Then the general solution of equation
(3.84) can be written as
6 A& |
ng = ¥ Ke (3.93)
i=1
where Ki(i =1,2,...,6) are arbitrary constants.
Substituting equation (3.93) into the boundary conditions
(3.85) through (3.90) gives six homogeneous linear
algebraic equations for the constants Ki(i = 1,2,44.+6)

as follows'
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6
I K, =0 (3.94)
. 1
i=1
6
I KA, =0 ~ (3.95)
i=1
: 2 & ( )
I K. %e =0 3.96
i=1 t 1

6
- 1,,1 1 1 1
T K.lI2x.3%3= a2x, + 12.402(1-=—) ( + - )
j=1 1iY7d i Yo 2A AL C A C Aisell
AL
2 l_

o ]e =0 (3.97)
6 . A _
z K [A.“ - a?x,?2 - 12.4Q 2] e T 0 (3.98)
i=1 it’1i i M -] *
6 AL

5 _ T2y 8 _ 2 1_

§=1 Ki[xi a®xy 12.40 Ai]e 0 (3.99)

The condition for determining the natural frequency
is to require the determinant of the coefficients of
Ki(i=1,2,...,6) to be zero. The procedure is the same as

that in Section 3.3.



79

3.5 Desicn Curves

To obtain the fundamental natural frequency as
described in Sections 3.3 and 3.4 is often laborious. In
this Section, sets of design curves are presented so that
the fundamental frequency of coupled shear walls of a wide
variety of configurations can be obtained with relative
ease.

To arrive at the fundamental frequency of coupled
shear walls in the normalized form, six independent non-
dimensional variables are invloved: the number of storeys
N, the floor height to beam length ratio H, the pier width

to beam length ratio D, and D2, the depth of beam to length

1
of beam ratio Db and the normalized frequency of one of the
piers Ql or QZ. For a symmetric wall, only five quantities

are involved, namely, N, H, Ds’ Pb' and Qs. To cover the
most practical configurations of coupled shear walls, N
varies from 10 to 40 storeys:; H ranges from 0.2 to 3.0;

D, ranges from 0.50 to 2.0 while keeping D, at unity and

2
L, ranges from 1/16 to 1/4. Computer programs in Fortran

D
IV language are written for the procedures described in
Sections 3.5 and 3.4, and Appendix 1 gives the program for
the asymmetric coupled shear wall. Computations were done
on the CDC Model 6400 electronic computer and the results
are presented in Figures 16 through 31, which represent

sixteen sets of curves, four for each value of N where

N =10, 20, 30, and 40. For each N, sets of curves are
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given for D, = 1/4, 1/8, 1/12 and 1/16. Since D

b is kept

2

at unity, ., is plotted against H to show the effect on the

2
fundamental frequency for various Dl's from 0.50 to 2.0.

The bending to shear stiffness ratio g is taken to be 2.60
corresponding to a Poisson ratio of 0.30. This choice is
only for the sake of convenience, and it can be showh that
the choice of Poisson ratio has little effect on the outcome
of the normalized frequency.

For each set of curves, the general trend is logical.
The normalized frequency is a monotonic increasing function
with the floor height to length of beam ratio. This may
be explained by the fact that as H decreases, the length
of the connecting beam can be considered to increase
‘(compared to the floor height), thereby resulting in a less
stiff structure. On examining the frequency variation with
Dl’ a higher pier width to beam length ratio would imply a
stiffer structure and therefore a higher frequency. The
frequency variation with Dy can be explained in a similar
manner.

Thus, knowing the normalized frequency, the actual
fundamental frequency for a given coupled shear wall can be
obtained from equations (3.24) or (3.80). It should be noted
that a higher normalized frequency does not necessarily imply
a higher actual frequency. This is especially true when

comparing structures of different number of storeys, because

of the normalizing procedure.
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3.6 Effect on Fundamental Frequency by Averaging

While frequency design curves can be established with
the aid of the computer as in Section 3,5; it is meaningful
to study the effect on the fundamental frequency of an asym-
metric coupled shear wall by considering a substitutive
symmetric model. A considerable amount of labour may be
saved as the symmetric case is more easily soluble.

The most direct way to attain a substitutive
symmetric model is by averaging the pier widths of the
asymmetric system. This has the merit of keeping the total
seismic loading constant and will be studied in detail in
Subsection 3.€.1. Another way is by averaging the second
moments of area of the piers of the asymmetric system.

This has the merit of keeping the total bending stiffness
constant and will be studied in detail in Subsection 3.6.2.

For convenience, a particular case is considered where
the asymmetric shear wall is 20 storeys high and the floor
height to beam length ratio is 1.6. To utilize some of the
results obtained in Section 3.5, Db ranges from 1/8 to 1/16;
D2 is takeh to be unity and % is kept at 2.60. With the
above limitations, the ratio of the frequency of the
substitutive symmetric model to that of the asymmetric
system is expressed as a function of the pier.Width ratio

and the results are represented graphically.
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3.6.1 Averaging Pier Widths

Figure 32a represents the asymmetric shear wall
system and the substitutive symmetric model by averaging
the pier widths is shown in Figure 32b. The average pier

width, designated by dav is simply

d,y. = %(dl+d2) (3.100)

The fundamental frequency of the asymmetric system Wy is

given by equations (3.24) and (3.25),

A 3 52
a ” (3.101)

The corresponding expression for the symmetric model is

given by equations (3.80) and (3.81),

_ 352 |
wg = Iy (3.102)

Dividing equation (3.102) by equation (3.101) results

(3.103)
dy
terms of I as follows
2
Is dav ’ 1 dl
— = —— =350+ ) ° (3.104)
I d,? 2
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Assuming the attached mass of the connecting beams is small,

it is obtained

©
3%

L = = ‘ (3.105)
av. 1+——

n

Substituting equations (3.104) and (3.105) into equation

(3.103) , . the frequency ratio becomes

wg g g d) ( )
s _Ll7s 4 4 3.106
5, -7, 3

For the particular case of D, = 1, the frequency ratio is

also given by

W Q
S = 55 D (3.107)
w4 5 8
d
_ ~av.
where D, = —— (3.108)
Wg
Figure 33 shows the variation of the frequency ratio o
a
as a monotcnic decreasing function of the pier width
- d
ratio Ei for Db =1/8, 1/12, and 1/16. It is observed
2

that a better estimate of the actual frequency is obtained
for a stiffer system (higher Db) although the estimate in
this case by averaging the pier widths is in general not
very accurate. For example, for D = 1/16, when pier 1 is

b
twice as wide as pier 2, the symmetric model yields a
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.8

frequency 90% of the actual value; and when 3, the

estimate drops to 80%.

3.6.2 Averaging Pier Stiffnesses

Figure 34a represents the asymmetric shear wall
system and the substitutive symmetric model by averaging
the pier stiffnesses is shown in Figure 34b. The average

, 1s

pier stiffness, designated by Iav

(3.109)

The correSpohding pier width of the symmetric model is

hence

d, =‘4 5(d,°+d, ) (3.110)

The frequency ratio, in this case, from equation (3.103) is

given by
w Q I o)
== 2| A 2 (3.111)
a 2 2 Ps
dl Iav
In terms of I T is expressed as
"2 2
a’? 4,3
R %(1 + 13) (3.112)
2 d2 d2

Assuming the attached mass of the connecting beam is small,

it is obtained
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P2 _ Yy _

(3.113)
d 3' (1 + d‘

2

Substituting equations (3.112) and (3.113) into equation

(3.111), the frequency ratio becomes

w Q d,? :
=2 |la. ) (3.114)
Ya Q2
For the particular case of D2 = 1, the frequency ratio is
also given by
w 9:
W, Qz s (3.115)
ds
where D, = == (3.116)
Figure 35 shows the variation of the frequency ratio o
a
again as a monotonic decreasing function of the pier
d
width ratio al for D =1/ 1/12, and 1/16. It is observed
2

that a much better estimate is obtained in general by
averaging the pier stiffnesses than by averaging the pier
widths. The estimate can be obtained to within 10% of the
actual frequency for a pier width ratio up to 4 when

Db = 1/16.
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3.7 Experimental Work

Two model tests were carried out under dynamic
conditions to verify the accuracy of the analysis. The
symmetric modsl was designated as Model I and the asymmetric
as Model II. The models were cut from cast acrylics sheets,
Johnston Type 1010-0-32, of 0.50"t 0.044" thickness. Their
overall dimensions were 36" high and 7" wide. Figures 36
and 37 show the actual Models I and II respectively. Model
I was painted just for photographic purposes.

Model I was 20 storeys high with a floor height of
1.8". The 3" wide piers were separated by a series of 1"
wide openings. ‘Model II was 15 storeys high with a floor
height of 2.4". Pier 1 was 4.2" wide while both pier 2
and the openings were 1.4". A step by etep enlargement of
the openings (height-wise) and the corresponding determina-
tion of the fundamental frequency of the model provided the
necessary frequency variation for comparison with theore-
tical values.

The cast acrylics has a specific gravitonf 1.19
with a Poisson ratio of 0.49. The more important physical
property is the modulus of elasticity which was found to be
605,000 psi. A cantilever beam of the same material and
overall dimensions as the test models was subjected to vibra-
tion under actual experimental conditions to determine its
fundamental frequency, from which the elastic modulus of

the material was readily calculated. The cantilever model
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was then cut in half (longitudinally) and the test was
repeated for the half-cantilever. This served as a check

against any errors in the resulting elastic modulus that
might arise from the "deep beam" effect of the full canti-

lever.

3.7.1 Experimental Set-Up

The dynamic loading was generated by means of a loading
system designed by LTV Ling Altec Electronics Inc. which
consists mainly of the CP-5/6 Power Amplifier, the SD 105A
Amplitude Servo/Monitor, the SD 104A-5D Sweep Oscillator
(the latter two being equipments of the Structural Dynamics
Corporation of San Diego) and the ANA-101 Accelerometer
Normalizing Amplifier, all grouped in the Control Console
Assembly (Figure 38). The loading thus generated was
transmitted to the model through the B290 Shaker with
a rated force (sine vector) of 1500 lbs., a rated displace-
ment of 1" and a frequency range of 5 to 4000 cps. Figure
39 shows the head of the shaker and the glide-table on
which the model was mounted by means of steel angles to
similate a fixed end condition. Budd C40-141B Type strain
gauges with 2.05% 1/2% gauge factor and 120+ 0.2 ohms
resistance were used to detect the strain response of the
model. The locations of the two strain gauges, one on
each side of the model, were not critical so long as they

were close to the ground floor level where maximum response
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occurred. The strain response signals were amplified by
the Ellis Bridge, Model BA-4 before going through the KH
Filter Model 335 which screened off undesirable frequencies
and noises. The relative magnitudes of the response could
then be viewed on the Packard-Bell Oscilloscope. The
frequency of applied excitation was read on a Hewlett
Packard Frequency Counter #5223L which was connected to the
Control Cohsole Assembly. All these instruments can be
observed in Figure 38.

3.7.2 Experimental Procedure

Once the model was mounted on the glide-table, the
procedure to determine its fundamental frequency was quite
straight forward.‘ The model was subjected to excitation
frequencies from 30 cps to 120 cps and the corresponding
response as read on the oscilloscope was recorded. Figure
40 shows a typical experimental frequency-response plot.

Where the highest peak occurred was the fundamental frequency.
The second, much smaller peak indicated the second natural
frequency which was approximately 20 cps higher. The model
was then dismounted and milled to the next opening size before
the test was repeated. In sequence, the heights of the
openings of the symmetric model were 3/8", 3/4", 1 1/8",
11/4", 1 3/8", 1 1/2", and 1 5/8" while those for the
asymmetric model were 3/8", 3/4", 1‘1/8", 13/8", 1L 5/8",

1 7/8", 2" and 2 1/8".
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FIGURE 36. EXPERIMENTAL SYMMETRIC
MODEL

FIGURE 37. EXPERIMENTAL ASYMMETRIC
MODEL
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3.7.3 Experimental Results and Observations

The experimental results plotted as a function of
db are shown in Figure 41 for Model I and Figure 42 for
Model II. Additional curves shown in the two figures are
calculations based on the "equivalent" connecting beam
concept. As pointed out by Michael (12), there are local
wall deformations where the connecting beams join the piers.
The condition of built-in ends for the connecting beams
is not. satisfied in general. One method of correction is to
regard the connecting beam as having a span longer than the
actual length c¢. The equivalent length c* is taken to be

c* = c + 26 (3.117)

Also, the stiffnesses of the piers are reduced such that the
equivalent pier widths are taken to be dj* where

d* = a5 - ¢ (5 = 1,2) (3.118)

The corrective measure § is then taken to be proportional

to the depth of the connecting beam as follows
(3.119)

Shown in Figure 41, in addition to the idealized theoretical
curve where K = 0 are curves with the equivalent beam length
equal to the actual length plus 50% (K = 0.50)‘and 90%

(K = 0.90) of the depth of the connecting beam respectively.
Shown in Figure 42, in addition to the K = 0 curVe, are

the three K = 0.50 curves. The first one (3/1 curve) has

the end of the beam connecting to pier 1 accounted for 75%
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of the total correction. The second one (l1/1 curve)
represents an equal sharing of the correction by the two
ends (as shown in Equation (3.118)) and the last curve
(1/3 curve) has the end connecting to pier 2 accounted for
75% of the total correction.

It can be seen that the comparison between theore-
tical predication and the experimental points is reasonable.
For K = 0, theoretiéal calculation gives a higher value of
fundamental frequency than that obtained experimentally.
However, the maximum difference for both models is less
than 5%. This order of accuracy is sufficient in the
application of spectrum technique for seismic design.

For the other values of K, which are impirical, the theore-
tical prediction is more accurate (than for K = 0) for low
values of beam depth; but when the beam is sufficiently
thick, hence stiff, the prediction becomes an academic exer-
cise. This is particularly shown in Figure 42.

Theoretically, the fundamental frequency of the
coupled shear wall increases with the increase of the depth
of the connecting beams up to a point. Further increase
of the depth of the connecting beams then leads to a
slight decrease in fundamental frequency. The explanation
for this trend is that an increase of the depth of connect-
ing beams increases both the stiffness and the mass of the
coupled shear walls. The gain in stiffness outweighs the

gain in mass when the depth of connecting beams is small.



115

After the "optimal" depth is reached, further increase

of db only increases the stiffness of the coupled shear
wall slightly. Thus, the gain in mass outweighs the gain
in stiffness, in this range, resulting in a slight decrease
in natural frequency. However, this slight decrease in
frequency was not observed experimentally. |

An important observation from Figures 41 and 42 is
that by increasing the depth of connecting beams, a rapid
increase in natural frequency results if the depth of the
connecting beam is less than approximately a quarter of the
storey height. By increasing the depth of connecting beams
over a quarter of the storey height does not effectively
increase the stiffness of the coupled walls to any great
extent. This fact is illustrated from both the theoretical
calculations and the experimental results.

Although damping is not treated in the present analysis,
it is of interest, whenever possible, to determine the mag-
nitude of this dynamic characteristic, not only for the
realization of its existence but also for future research
purposes. Figure 43 lists the values of the percentage
of critical damping for the various sizes of wall openings
for the symmetric and asymmetric models respectively.

The percentage of critical damping is obtained by the "half-
power point" method applied to the experimental frequency-
response plots. An average of 5.1% is obtained for the

symmetric models and 4.4% for the asymmetric models,
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giving an overall average of about 5%, which is not unusual

for most mechanical and structural systems.
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SYMMETRIC MODEL ASYMMETRIC MODEL
D -
ngggcgfn ¥ Of Crltl Eegnecgln 3 OflCrltl
Beam, Inc Damplng Beam, Inc Damping
0.175 4.8 0.275 4.3
0.30 6.0 0.40 4.2
0.425 4.7 0.525 4.0
0.55 5.0 0.775 4.4
0.675 4.6 1.025 4.3
J.05 6.2 1.275 3.8
1.425 4.8 1.65 4.3
2.025 5.7
Average 5.1 Average 4.4

Figure 43. Experimentally Determined

Percentage

of Critical Damping:




CHAPTER 4

Conclusions and Suggestions

In this study, the problem of the statics and dynamics
of a plane coupled shear wall is considered. The "continuous"
method of coupled shear wall analysis is used. However, no
assumption is made in the formulation that the mid-points
of the connecting beams are points of contréflexure.

Removal of this assumption implies that the two piers may

have different deflections. In this respect, the present

formulatioﬁ is a generalization of the "continuous" method
of coupled shear wall analysis. The problem is formulated
in terms of the deflection variables of the piers. Such a
formulation has the advantage that it is readily adaptable
for dynamic analysis by taking into account the inertia

of the piers.

The conditions under which the mid-points of the
connecting beams are points of contraflexure are established.
For a symmetric wall, the pier deflections are equal only if
there is an equal proportioning of the lateral load on the
piers. For an asymmetric wall, even if the lateral loads
on the piers are proportional to their respective stiffnesses,
the pier deflections need not be the same. From a practical
point of view, the assumption of contraflexure points is

usually admissible since it is the antisymmetric mode of

120
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deformation zq of the shear wall that is of interest.
However, there exists practical instances where the symmetric
mode of deformation z, may be of interest. A case in point
is the problem of differential foundation settlement and
rotation. It is shown that the symmetric mode of deformation
is independent of differential foundation settlement, but
directly proportional to the differential rbtation of the
pier foundations. When differential rotation does occur,

the symmetric deflection not only is necesséry in the calcu-
lation of internal stresses in the strugturé but has signi-
ficant effect on the total moment of the piers at the bottom
fifth of the coupled shear wall.

The dynamic equations of motion of the system sub-
jected to arbitrary distributed dynamic loading are given.
The case of free vibrations is studied. The governing equa-
tions are reduced to a set of sixth order coupled linear
equations subjected to homogeneous boundary conditions. The
natural fregquency can be found via a trial and error tech-
nique. Through a series of non-dimensionalizing procedures,
it is shown that the fundamental natural frequency of the
coupled shear walls in its normalized form can be related
to non-dimensional properties of the structure; The
fundamental frequency is normalized with respect to that of
lateral vibration of a cantilever beam having the stiffness
of a pier and the mass equal to the mass of the pier plus half

of the mass of attached connecting beams. The yeometry of
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the structure is normalized with respect to the length of
the connecting beam. Instead of restricting to specific
examples, design curves are presented in the form of
normalized frequency versus normalized floor height for a
wide variety of vonfiguration of couple shear walls with the
aid of electronic computation.

The effect on the fundamental frequency by averaging
the pier widths and the pier stiffnesses respectively to
arrive at a sﬁbstitutive symmetric system is examined. It
is found that in the particular case considered, averaging
the pier stiffnesses gives a better estimate of the funda-
mental frequency..

The actual fundamental natural frequencies were com-
puted for two doupled shear wall models. By decreasing the
depth of the connecting beams in a systematic‘manner, the
variation of the fundamental frequency as a function of the
depth of connecting beams is shown. It is found that an
increase in depth of connecting beams beyond a quarter of
the storey height does not provide significant increase in
stiffness in the coupled shear wall system. This observation
should be uéeful in design considerations.

Finally, dynamic testing of two coupled shear wall
models made of acrylic sheets were carried out. The
experimentally determined frequencies were compared with the
theoretical results. The agreement between theory and

experiment is within 5%. This leads to the conclusion that
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the natural frequencies as determined by the proposed theory
should be of sufficient accuracy to be used as input in the
response spectrum technique of seismic design of coupled shear
walls.

It should be pointed out that for future experiments
of this nature, because of the size of the experimental models,
control is the key to consistent results: control not only
in the overall dimensions of the model but particularly
those of the openings; control in the manner of attaching
the model to the shake table; control in the frequency range
of applied excitation and the last but not least, control in

the sensitivity of the frequency counter.
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APPENDIX 1

COMPUTER PROGRAM FOR THE FUNDAMENTAL NATURAL

FREQUENCY OF PLANE COUPLEDL SHEAR wALLS

H B CHAN
DEPT OF CIVIL ENGINELRING AND ENOGINEERING MECHANICS

MCMAGTER UNIVERSITY

RESEARCH PROGRAM TO FIND THE NORMALfLED NATURAL

FREQUENCY OF A PLANE COUPLED ALYMMETRICAL SHEAK ~ALL

DIMENSTON AACL11)sXX(1U)sYY(1U)
COMPLEX B(1w)sD(10)eG(1u)sC(12912)sAC(12912)
COMPLEX SUMSVALDEIT s VALDET1

COMPLEX GG
SPECIFYING VALUES FOR THE VARIABLES

XM=3. 52
127
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XM2=XM#%2

INPUT THE NUMBER OF GTOREYLs S5 AND THE RATIu OF
LENGTH OF CONNECTING BEAM TO WIDTH OF PIER 1s CDL
THE CORRESPONDING RATIO FOR PILR 29 D2 IS KEPI AT

UNITY

5=40 a6 U
CD1=1e0/1alv
CD2=10

WRITE {6s60L) SeCD1sCD2

00 FORMATI(//1H +*NO OF STOREYS = %4F1l0e2/1H #¥RATIO CF C TO

D1 = %sF10e2/1H s*RATIO OF C TO D2 =%sF106e2)

THEXX WHERE XX IS 192eeeeeelt ARL NON-DIMENSTONAL

VARIABLES

THEI=4(1eU/CD1)#*%3 + (14U/CD2)*¥3
THE2=(1eU/COII%%3 = (leu/CD2) %33
THEG6=(140/CUT) + (1eu/CD2) + 24
THE7=(140/CD1) = (14U/CD2)
THF8=CN1 + (N2
THE11=CD1#CD1*(1e0U+CD1)
THE12=CD2#CD2%(1eU+CU2)

THE13=(CD1#%3}) + (CD2#%#3)


http:CDl=l.O/l.lv
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THE15=(CD1%*%#3) -~ (CD2%*%3)

INPUT THE RATIO OF DEPTH TO LENGTH OF CONNECTING

BEAMs DBC

DO 70U I11=4s4
DBC=1+0/FLOAT(III)
WRITE (6s6Ul) DBC

601 FORMAT{1H »*RATIO OF DEPTH TO LENGTH OF BEAM = #*sF1Ue3)

INPUT THE RANGE OF FLOOR HEIGHT TO LENGTH OF BEAM

RATIOs HC

DO 70U JJJ=2s3us2
HC=FLOAT(JJJ)/10,.U
WRITE (656U2) HC
602 FORMAT(1HUs*RATIO OF FLOOR HEIGHT TU LENGTH OF BEA~ = %9
1F1043)

THE3=5#5%HC* (DBC*%3)
ASHUME F/G = 246U
E IS THE ELASTIC MODULUS

G IS THE SHFAR MODULUS

THE4=1 U+ 102*2.6%(DHC**&)
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THES=(S##4 ) % (HC*%#3 ) #DBC

THE14=(DBCH+2 e UHCH* (1e0/CD2) ) /LDBCH2e URHIH (1 4,0/CD1D)

THEL16=(1eU+THEL14)/(1eU-THEL14)

GG=CMPLX(THE16sU40)

DESIGNATION OF MATRICES

P

IS THE MATRIX ALGSOCIATEL WITH THb SIXTH DLRIVAILVE
OF THE DEFLECTION VECTOR IN THe eQUATIOUN ub =l TTUN
OR WITH THE FOURTH DERIVAITIVE OF Thbk oOeFLECTION

VECTGR IN THE FIFTH PAIK OF LOUNUARY CONDITIONG un
WITH THE FIFTH DERIVAIIVE OF THE DEFLECTIUN vECTURN

IN THE SIXTH PAIR CF BOUNDARY CONDITIONS

IS THE MATRIX ASSOCIATED wlTH THE FOURTH DERIVATIVE
OF THE DEFLECTION VECTOR IN THit EQUATION OF wGTTON
OR wITH THE SECOND DERIVATIVL OF THE DEFLECTION
VECTOR IN THE FIFTH PAIR OF DBOUNDARY CUNDITIONS UK
WITH THE THIRD DERIVAIIVE OF ik DEFLECTIUN VECTURN

IN THE SIXTH PAIR OF BOUNDARY CONDITIUONS

IS5 THE MATRIX ASSOCTATED wilihi THE oECOND DERIVATIVL
OF THE DEFLECTION VECTOR IN THL EQUATION UF MUOTION
OR WITH THE ZERO DuRIVATIVL OF THE DEFLECTIUN vVelTur

IN THE FIFTH PAIR UF BOUNDARY CONDITIONS UR wliH
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THE FIRST DERIVATIVE OF THe utFLtCTiON VECTOR IN

THE SIXTH PAIR OF BOUNDARY CONDITIONS

S IS THE MATRIX ASSOCTATEL wWITH THE ZERO DERIVATIVE

OF THE DEFLECTION VECTOR IN THE EQUATION CF »~CTION

U IS THE MATRIX ASSOCIATEDL wWlTH THE FIRST DERIVATIVE
OF THE DEFLECTION VECTOR IN THE THIRD PAIR OF

BOUNDARY CONDITIONOS

V IS THE MATRIX ASSOCIATEDL wilTH THE DOUBLE INIEGRAL
OF THE DEFLECTION VECTOR IN THt THIRD PAIR OF

BCUNDARY CONDITIONS

FORMING THE COMPONENTS OF COEFFICIENT MATRICES Peldsv

P11=THE1 -

P12=THE?2

P21=THE?

P22=THE]

A11== (3 U%THEG* THEG6+THEL® THEB ) 1 HL 3/ Ti4F &
Q12=~(3eUNTHEG*THE 7T+ THE2 % THES ) # THL 3/ THE 4
021=-(3.u*THEé*TH57+THﬁ1*THE8*THh//thﬁ)*THEB/TH£4

Q22=-(3.U*THE7*THE7+THE2*fHE8*THt7/lHt6+4;U*THE4)*THtJ/
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1THE4

Ull==3eU* (THEL11+THEL1Z2) % (U eS5¥THEO+THL1I*#THES/ (6eU¥THLOE) ) *
1THE3/THE4
U12=—(3.U*(THE11+THE12)*(u.5*THE7+THt2*fHE8/(6.U*lHtG))+
T{THE4*THE15) ) #*THE3/THE4 ’
UZl=;3.U*(IHEll—THElZi*(u.S*THE6+THtI*THtB/(G.U*THEG))*
1THE3/THES

U22==(3e0% (THET1LI-THEI2 ) ¥ (U S*¥THE7+THE2*THEB/ (6o U*THES) ) +

1(THE4*THEL3) ) #THE3/THES

INPUT THE TRIAL RANGE OF EEWM
FEM IS THE NORMALIZED NATURAL FREQUENCY OF PIER 2

EM IS5 THE NORMALIZED NATURAL FREQUENCY OF PIER 1

DO 70U MMM=30uUUs380Us10
EEM=FLOAT (MMM) /1UUU,
EM=BEENM/SQRTUTHEL4* ((CD2/CD1)#%3))
EM2=EM#x*2
THEG=EM2% (1 e +THEL14)/(CD1#%3)

THETU=EM2# (1 oU=THE14) / (CD1¥%3)
FORMING THE COMPONENTS OF COLFFICIENT MATRICES Rsbsv

R11l==-XM2#¥THE9

R12==XM2%¥THE1U
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R21==XMy*THL 1U
R22==(XM2%¥THF9 =48 (U*THF5)

S11=THE9* THE 3% XM2* THES/THE4
S12=THE1O*¥XM2*¥THE3*THE8/THE 4
S21=THE7*(THESQ/THE6) #XM2%* THE3* THE 8/ THE 4
522=THE7#(THE1IV/THEG ) ¥ XM2# THE3* THES/ THE4
V11=(THEIL+THE12) ¥ XM2¥ THEO¥ THE 3% THES/ (2 U% THE4* THEG )
V12=(THE11+THE12)*XMZ*THEIU*TH&B*THtB/(Z.L*THEQ*THEé)
V21=(THE11=THE12) ¥XM2% THE 9% THE 3% THES/ (2 o C* THE 4% THE® )

V22=(THEI1-THE12)#¥XV2# THE LU¥THE3*# ThE8/ (2e vk THEL4#THES)

FORMING THE COEFFICIENTS OF THE TwELVE DEGREE

CHARACTERISTIC EQUATION

AA(1)=P11%P22=-P12%P>]

AA(2)=040

AA(3)=P11%#Q22+Q11%#P22-P21%Q12-021%P12

AA(4)=040
AA(B)=PTI#R224Q11%#Q22+R11#P22-P21#R12-N12*Q21-R21%F 12
AA(6)=040
AACT)=P11%#S522+Q11%¥R22+RT11#Q22+511%#P22=P21%512-Q21%R12=R?
11#012-521%P17

AA(B)=0eU
AA(S)I=0NTT1%522+4RTIH¥R22+S511XQ22=-021%512-R21¥R12=-521%4 12

AALTUY=UaU
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AATTIT1)=R1ITI*#522+S11#R22-R21%#512-521%R12

.SOLVING THE POLYNOMIAL BY SUBROUTINE BAIRST

AA 15 THE COEFFICI&NT OF THE PthRb.ARRANG[D AL
AA(1) o e oo Y®¥N

XX 15 THE REAL PART UF ITHL ROCGI

YY 1S THE IMMAGINARY PART OF IHE ROCI

N IS THE HIGHEST POWER OF Tht PCLYNOMIAL

CALL BAIRéT(AA;XX;YY9lU)

DO 160 TI=1.10

X=XX(1)

Y=YY(I)

BOI)=CMPLX(XsY)

DEIy=CEXP(B(T))
GOI)==(((PI1*B(I)¥%D>+Q1 1) ¥R (1) ¥*¥2+R11)*BT)#*24511) /7 (P
T12#B (T ) %%24012 ) #B (1) #%x2+R12I*¥B([ ) ¥*x2+512)

100 CONTINUE
POPULATING ThHE MATRIX OF ITHE BOUNDARY CONDITIUND

DO 200 J=1s1u
CllsJ)=(1aUst eu)
Cl2+0)=G(J)

C(3sd)=B(J)



135

Clhs))=P(J)%GLY)
C(5sJ)=D(J)*(BIy**2)
Clbed)=DISI*(BIJY*¥%2) %G ()
ClTsU)=D (U ¥ (B(J)¥%3) 4 (U1 1+U12%G () ) *#B (J)*¥D () +(Vil+V12¥
1G(J) )% (UeS*¥D (I *BIINXB(I)=DIJI)V¥BIII+D(J)—1e )/ {1 (J)5¥%3)
CUBrU)=D(UIHGIIN#(B(JI*%3)+(U21+U22%G(J)I*B(JI*D () +(v21
1+V22%G(J) ) ¥ (UeB5*D (JIRB(J)*B(J)=D(JI¥B(II+D(J)=1e0)/(5(J)*%3)
C(95J)=(PII+P12%¥G(J) ) *¥D(JI*¥ (BIJ)*%4)+(Q11+U12¥G(J))*0 ()
TH(R(J) %% )+ (R11+R12%G(J))*¥D(J)
Cl1UsII=(P2I+P22%G U IV #D(J) ¥ (B IJ) #%4)+ (W2 1+Q22%G () )#D(J
1Y*(BUJ)#%2)+(R21+R22%G(J) ) *D(J)
Cl11sJ)1=R(J)*C(9sJ)
Cl129J)=B(J)*C(1usd)

200 CONTINUE
DO 205 11=1s12
DO 205 -UJ=11s12
ClITedJ)=(UatisUal)

205 CONTINUE
Clls11)=(leuvsUav)
C(25111=G6
C(3512)1=(1euslael)
C(Hhs12)=6G6
C(T7+s11)=(V1I+VI2*#GG) /6 el
C(T9121=(UTT+UTIP%GEI+(VIT1+V12%GG) /860

C(Bs11)=(V21+VD22*#GG)/Hali
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C(8912)=(U21+U22%GG)+(V21+4V22%GG)/8eU
C(G911)=R11+R12%GG

C(9912)=R11+R12%GG
Cl1Us11)=R21+R22*GG
C(lusel2)=R21+R22*G06
C(1l1+12)=R11+R12%*GG

C(12+12)=R21+R22%GG

C

C EVALUATING THE DETERMINANT OF THE BOUNDARY COACTTIONG
G MATRIX BY SUBROUIINE DETER

C CUTPUT THE NORNMALIZEU NATURAL FxEQUENCIES OF PItiks 1
G AND 20 AND THE VAcUb CUF THL DLITERMINANI

s

CALL DFTER(Ce129VALDET)

WRITE (A91700) EMesEEMeVALDET
1700 FORMAT(1UX92F1Veb91UXsE2Ue891UXsE2Ue8)
700 CONTINUE

S5TOP

END

SURROUTINE DETER(CAsMMsVALDET)

C

C THE OHUBROUTINF CALCULATES THE VALUL OF THE
c DETERMINANT 8Y GAUSS FLIMINATION PROCESS

c

COMPLEX A(1/7912)
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COMPLEX VALDET
COMPLEX SIGsT1sT25DIV
NN=MM—1

DO 220 J=1sNN

Jl=J+1

RIGA=CABS (A(JsJ))
SIG=({ies00)

K=J

DO 230 UMAG=J1sMM
IF(CABS(ALUMAGSsJ))=BIGA) 23Us23Us22%
526 AIGA=CAPS(A(IMAGsJ))
K=JMAG
S1G=(-1esUs)

230 CONTINUE

DO 240 N=JsMM
Tl=A(k oN)
T2=A(JsN)
ALJsN)Y=T1%S516
ALK sN)=T?

240 CONTINUF

DO 250 N=J1slM

DIV=A(NsJ)



250

220

DO 25U MULT=JsMM
ACNsMULT)Y=A(NsMULT)I=ACJsMILT)I/ACIsJ)XDIV
CONTINMNUE

VALDFT = (1esUs)

DO 260U J=1eMM
VALDET=VALDET*A(Ts1)
CONTINUE

RETURN

END
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APPENDIX 2

LIST OF SYMBOLS

distance from the mid-points of laminas to the
centroidal axis of the left and right pier
respectively

a, + a

1
a

2
81 7 %2
distance between the centroidal axes of the piers

of a symmetric coupled shear wall

length of the connecting beam

‘¢ + 28 equivalent length of the connecting beam

‘width of the left and right :pier respectively

dj - 8§ (3 = 1,2) equivalent width of the pier j
!g(dl + d2)

depth of the connecting beam

width of a pier of a symmetric coupled shear wall
storey height (spacing between centerlines of
connecting beams)

-1

bending moment distribution along the mid-points
of laminas

3

axial force distribution along the mid-points of

laminas
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w

2
shear force distribution along the mid-points

of laminas.

Z_H..];Ka'
s f 4

maximum unit shear induced when the
symmetric coupled shear wall is sﬁb—
jected to uniform lateral load w
D:1® + D,?
D;® - D,°?
NZHD °®
b
1+ 1.2 Dbz(g)
N“ﬁanb
D; + D + 2

D; - D,
1 1
B:" B,

Q12D,% - Q,%D,°®

Q1?D;% - Q,%D,°

Ip/2p

time variable

thickness of the coupled shear wall

lateral load distribution on the left and right
pier respectively

Wy o+ W,

1
Wy ¥ V3
coordinate along the height of the shear wall
deflection of the left and right pier respectively

%(y1 + y2) antisymmetric mode of deflection
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%(yl - y2) symmetric mode of deflection
cross-sectional area of the left and right pier

respectively

AlAZ

A1+A2

cross-sectional area of the connecting beam
effective cross-sectional area of the connecting
béam to be considered for shear deformation
cross-sectional area of a pier of a symmetric
coupled shear wall

(3 = 1,2)  normalized width of the pier j.

normalized depth of the connecting beam

OlmQ-a OlcpaOLQ:

normalized width of a pier of a symmetric
coupled shear wall

Young's modulus |

shear modulus

height of the coupled shear wall

% normalized storey height

second moment of area of the left and right pier

respectively

+ I

%(Il + 12)

second moment of area of the connecting beam

second moment of area of a pier of a symmetric

coupled shear wall



shear stress factor from Figure 4, Reference (9)
bending moment due to external lateral loading
on the left and right pier respectively

Ml o M2

My = 3y

total bending moment of the left and right pier

respectively

LwH?

number of storeys

12H%1

hc382

112 2

6H Ibas Y
32

hc*B Is
12EI

A G-
chAg

I

[ (3 = 1,2)

ajaA

4Is

S

1 +
a_*A
s s

%de correction applied to the length of the
| connecting beam to account for local
wall deformations where the connecting
beams join the piers.
relative displacement at the mid-points of
laminas due to bending of the piers
relative displacement at the mideoints of

laminas due to bending of the laminas
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realtive displacement at the mid-points of
laminas due to shear deformation of the laminas
relative displacement at the mid-points of

laminas due to axial deformation of the piers

X . . s
= normalized spatial coordinate

H

mass of the left and right pier respectively
plus half the mass of the connecting beams,

per unit height of the shear wall

mass of a pier of a symmetric coupled shear wall
plus half the mass of the connecting beams, per

unit height of the shear wall
2H21b

ths

natural frequency of the coupled shear wall
natural frequency of an asymmetric and a

substitutive symmetric shear wall respectively
3.52 |Els
H? 0

fundamental frequency of lateral
= vibration of a cantilever beam
having the stiffness of a pier of
a symmetric coupled shear wall and
the mass equal to the mass of the

pier plus half the mass of attached

connecting beams
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1.52 |®ts

H? p.
J of lateral vibration of a cantilever

(73 = 1,2) fundamental frequency

beam having the stiffness of the

pier j and the mass equal to the

mass of the pier plus half the

mass of attached connecting beams
differential foundation rotation

differential foundation settlement

o2,

2 .\urb

TR )

2 /\}er

- normalized natural frequency of the pier j
0J

g.. normalized natural frequency of a pier of
w

a symmetric coupled shear wall
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