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Abstract 


In this thesis we systematically reexamine the classical problem of image interpola­

tion with an aim to better preserve the structural information, such as edges and 

textures, in the interpolated image. We take on the technical challenge of faithfully 

reconstructing high frequency components because this is critical to the perceptual 

quality. To achieve the above goal we develop three new adaptive image interpolation 

methods: 1) a classification-based method that is driven by contextual information of 

the low resolution image and the prior knowledge extracted from a training set of high 

resolution images; 2) An adaptive soft-decision block estimation method that learns 

and adapts to varying scene structures, guided by a two-dimension piecewise autore­

gressive model; 3) A model-based non-linear image restoration scheme in which the 

model parameters and high resolution pixels are jointly estimated through non-linear 

least squares estimation. 

The latter part of this thesis is devoted to the research of interpolation-based image 

compression, which is a relatively new topic. Our research is motivated by two im­

portant applications of visual communication: low bit-rate image coding and multiple 

description coding. We succeed in developing standard-compliant interpolation-based 

compression techniques for the above two applications. In their respective categories, 

these techniques exceed the best rate-distortion performance reported so far in the 

literature. 
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Chapter 1 

Introduction 

1.1 The Problem and Motivation 

Digital images have, in both still and moving forms, become a main medium of 

information, knowledge, and communication in our modern technology era. People 

in all walks of life now truly appreciate the connotation of the old saying "a picture is 

worth a thousand words". Many may find digital images/videos too informative, too 

convenient, too timely and too rich to do without. Compared to their counterparts 

on paper and film, digital images are vastly more convenient and inexpensive to 

generate, communicate, process, store and retrieve. With intensive research and 

heavy investment in sensor technologies, the spatial resolution and color fidelity of 

digital images are steadily improving and now can match those of traditional film. 

One of the most important quality metrics of digital images is and will continue to 

be the spatial resolution. High spatial resolution is necessary to reveal fine structural 

information on the imaged objects and scenes. High resolution directly translates 

to high precision in computerized image analysis, which is paramount in medical, 

scientific and military applications. Even in consumer electronics, entertainment in­

dustry, and other commercial applications, users desire high image resolution because 

resolution is in general proportional to perceived image quality. To appreciate this 
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the reader is invited to compare two images of the same scene but of different spatial 

resolutions in Fig. 1.1. 

In an ideal world, one can always increase the sensor resolution of image acquisition 

devices to obtain a desired spatial resolution. However, several limiting factors nullify 

this approach. First, the cost of image sensors increases drastically in resolution. For 

instance, in today's consumer market, digital cameras of ten million pixels typically 

cost more than twice as much as those of seven million pixels. Second, there exist 

hard physical limits on how high a spatial resolution that an imaging device can 

achieve. Most digital images are acquired by an array of semiconductor sensors such as 

charged couple device (CCD) or complementary metal-oxide-semiconductor (CMOS). 

Ultra-high spatial resolution means that the size of pixel (i.e., the cross section of a 

sensor area) diminishes. However, the signal-to-noise ratio (SNR) of the acquired 

image is proportional to its size [5]. Too small a pixel will render an image useless 

due to insufficient SNR. Moreover, electronic interferences are inevitable between 

neighboring sensors. The closer the neighboring sensors are, the larger the interference 

become. Therefore, given an SNR requirement, either the size of the sensor or the 

distance between neighboring sensors can not be below a hard threshold. Third, in 

some cases the imaging process itself incurs a penalty to the imaged object, which 

limits the number of samples (pixels) to be acquired. For example, for certain medical 

imaging technologies, high resolution is associated with large dosage of radiation that 

is harmful to the patient. Finally, no matter how high the native sensor resolution 

of an imaging device is, new, more exciting or more exotic applications will always 

present themselves that demand even higher spatial resolution. As one can imagine, 

researchers in medicine, space, and sciences all have insatiable appetite for imaging 

ever more minuscule details. This is even the case for more mundane application of 

digital photo finishing. Nowadays the resolution of photo printers can be 2400 dot 

per inch (dpi) or higher. Even for inexpensive home printers of a resolution of 1200 

dpi, a photo print of size 4 inch by 6 inch contains 4 x 1200 x 6 x 1200 = 34 million 

2 
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(a) Low resolution 

(b) High resolution 

Figure 1.1: Images with different resolutions 
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pixels, which far exceeds the resolution of even most expensive professional digital 

cameras. 

Image interpolation, or image resolution upconversion, is a technology to improve 

the native sensor resolution by reconstructing an image of higher resolution from a 

lower resolution version. Interpolation of a discrete signal is a classic problem in 

applied mathematics and signal processing. The goal is to reconstruct a continuous 

function from a set of discrete data (samples). A digital signal is typically generated 

by sampling the corresponding continuous signal in space or time. A digital image of 

different resolutions corresponds to different sampling schemes of the same continuous 

signal. To increase the resolution, the interpolation is performed to estimate the 

continuous image signal from the observed low resolution image. The high resolution 

image can then be obtained by re-sampling the continuous image signal. In this 

thesis, we focus on the interpolation problem of recovering a high resolution (HR) 

image from its associated low resolution (LR) image. 

The challenge to image interpolation is the reconstruction of high frequency com­

ponents of an image, such as edges and fine textures. Low frequency components of an 

HR image can be recovered from a corresponding LR image more easily than the high 

frequency components. According to Nyquist sampling theory [6], only those compo­

nents that have frequency below the Nyquist frequency can be exactly reconstructed. 

All interpolation methods can do a comparable good job in reconstructing smooth 

two-dimension (2D) waveforms. It is the interpolation accuracy on spatial structures 

of high frequency that differentiates the good image interpolation methods from the 

poor ones. Inferior interpolation methods are prone to artifacts in the areas of edges 

and fine textures. The common visual defects due to interpolation errors are blurred 

or/and jaggy edges and aliasing. To aggravate the difficulty of reconstructing edges, 

the human vision system is highly sensitive to noises accompanying edges. This is 

because edges convey much of the image semantics. Edges signify vital attributes of 

an object such as shape, size, and surface characteristics, as well as spatial relation­

4 
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ship between the objects. As a result, small amount of errors in reconstructing edges 

can disproportionably degrade the visual quality of the entire image. Fig. 1.2 shows 

such an example. The two images in the figure are the interpolation results of two 

different methods: Bicubic interpolation [7] and soft-decision adaptive interpolation 

[8] . Fig. 1.2(b) is visually far more pleasing than Fig. 1.2(a) with edges faithfully 

reconstructed without jaggies. Therefore, the key and determining factor for interpo­

lation performance is how well edges and other high frequency image constructs can 

be preserved. 

Image interpolation technology has a wide range of applications spanning from 

consumer electronics to visual arts and to cutting edge medical and scientific re­

search. Familiar examples can be found in our surroundings: the reproduction of 

images captured by digital cameras for high quality prints (e.g., those in magazines, 

catalogs, posters, or office/home decorations), and the upconversion of standard­

definition video frames for playback on high-definition television receivers and com­

puter monitors. In addition to its role in image enhancement to please our eyes, image 

interpolation is an indispensable enabling technology in computer vision, surveillance, 

medical imaging, remote sensing, and other fields, whenever the desired measurement 

precision exceeds the sensor resolution. 

In this thesis we also investigate a relatively new and important application of 

image interpolation: low bit-rate image and video compression. In some modern 

information technology areas, such as wireless multimedia communication and sensor 

networks, the communication bandwidth is at a premium. The image/video signals 

have to be coded and transmitted at low bit rates. However, the existing image/video 

compression standards can cause severe image quality degradation, such as blurring, 

jaggies, or/and blocking artifacts when the bit budget is too low. Such an example is 

shown in Fig. 1.3, where Fig. 1.3(b) is the compressed version of Fig. 1.3(a) by JPEG 

2000 standard [2] at 0.2 bpp. One technique to alleviate the compression artifacts is to 

down sample an image before compression at the encoder. The decoder employs image 

5 
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(a) Bicubic interpolation 

(b) Soft-decision adaptive interpolation 

Figure 1.2: Images interpolated by different methods. 
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(a) Original image 

(b) Compressed by JPEG 2000 


Figure 1.3: Original image and the compressed version at 0.2 bpp. 
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interpolation to upconvert the decompressed image back to the original resolution. 

Image interpolation can also be used as a technique for multiple description cod­

ing (MDC) of images. MDC is an effective methodology for signal communication 

over unreliable diversity channels, to which a great deal of research efforts have been 

devoted in the past decade. In image MDC an input image is encoded into several bit 

streams or multiple descriptions and transmitted through independent lossy channels. 

The decoder can reconstruct the original image if any subset of the transmitted de­

scriptions can be received. The more descriptions arrive at the decoder, the higher the 

reconstruction quality. A straightforward way of generating multiple descriptions of 

an image is to spatially partition the image into two or more subimages. An example 

of this spatial multiplexing scheme is shown in Fig. 1.4. In the figure, four descrip­

tions are generated by uniformly down-sampling the original image. Each description 

is a LR version of the original image. When any descriptions are lost, the decoder has 

to reconstruct the original image from the received descriptions (LR images), which 

is exactly an interpolation problem. 

1.2 Contributions 

In this thesis, we developed three new adaptive interpolation methods with a main 

design objective of preserving the spatial structures of edges and textures. Our design 

principle is motivated by the importance of edges and textures in image semantics and 

perceptual visual quality, as mentioned above. We have implemented these methods 

and carried out extensive experiments to evaluate their merits and limits in compar­

ison with the existing techniques. We present convincing evidence that the proposed 

new techniques outperform their predecessors in both perceptual quality and objective 

measure. We also investigate the use of image interpolation techniques in low bit-rate 

image compression and in multiple description image coding, and obtain promising 

results for these two applications of visual communication. The original contributions 

8 
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(a) Original Image 

• • • • • • • • 
• • • • • • • • 
• • • • • • • • 
• • • • • • • • 

(b) Description 1 (c) Description 2 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

(d) Description 3 (e) Description 4 

Figure 1.4: Generating four descriptions by spatially multiplexing. 
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of this thesis are summarized as follows. 

• 	 A new adaptive non-linear image interpolation approach is proposed that chooses 

an interpolation direction based on contextual information of the LR image. 

The selection of the best interpolation direction among all possible candidate 

directions is converted to a classification problem. The classifier is designed us­

ing a training set of HR images. This new classification-based method achieves 

higher peak signal-to-noise ratio (PSNR) and better visual quality than previ­

ous methods. It can correctly solve some of the very difficult cases for which 

the traditional methods fail. 

• 	 Our second new image interpolation technique is called soft-decision adaptive 

interpolation (SAI). The SAI technique learns and adapts to varying scene struc­

tures using a 2D piecewise autoregressive model. The model parameters are 

estimated in a moving window in the input low resolution image. And the pixel 

structure dictated by the learnt model is enforced by the soft-decision estima­

tion process onto a block of HR pixels, including both observed and estimated. 

This new image interpolation technique produces some of the best results so far 

by preserving spatial coherence of interpolated images better than the existing 

methods. 

• 	 Our third new, the most sophisticated image interpolation technique is a model­

based non-linear image restoration scheme. The task of image resolution upcon­

version is formulated as a problem of adaptive piecewise autoregressive modeling 

and estimation, where the model parameters and the HR pixels are jointly es­

timated through non-linear least squares estimation. The new method offers 

a unified general framework for image upsampling and deconvolution, and the 

upsampling can be carried out at an arbitrary scale. The method outperforms 

convincingly the current methods in both PSNR and subjective visual quality, 

and its advantage becomes greater for larger scaling factors. 
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• 	 We investigate the use of image interpolation as a technique for low bit-rate 

image compression, and propose a collaborative adaptive down-sampling and 

upconversion ( CADU) approach to image compression. In this approach, the 

input images are adaptively prefiltered, uniformly down sampled, and com­

pressed at the encoder. The decoder upconverts the decoded LR images to the 

original resolution in a constrained least squares restoration process, using a 

2D piecewise autoregressive model and the knowledge of directional low-pass 

prefiltering. The CADU approach achieves the highest PSNR and best visual 

quality up to now for low bit rates, and it is completely compatible with any 

existing compression standards. 

• 	 We are among the first to study the application of image interpolation in multi­

ple description image coding. Our contribution to this new subject is a spatial 

multiplexing multiple description (SMMD) scheme. Multiple descriptions of an 

image are generated in the spatial domain by an adaptive prefiltering and uni­

form down sampling process. The resulting side descriptions are conventional 

square sample grids and can be coded by any of the existing image compression 

methods. The side decoder and central decoder reconstruct the input image by 

first decompressing the down-sampled image and then solving a least-squares 

inverse problem, guided by a 2D piecewise autoregressive model. Compared 

with the existing image MDC methods in the literatures, the proposed SMMD 

technique offers the lowest encoder complexity, complete standard compliance, 

competitive rate-distortion performance, and superior subjective quality. 

These contributions are contained in the remaining chapters of this thesis as well as 

four conference and three journal papers. Our first new adaptive interpolation method 

was presented in IEEE !GIP 2005 [9]. The second method, SAI, was published in 

IEEE Transactions on Image Processing [8] . An earlier exposition of this method was 

presented in IEEE !GIP 2007 [10]. Our third interpolation method, the model-based 

nonlinear image restoration scheme, was submitted to IEEE Transactions on Image 
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Processing for review [11]. The CADU technique for low-rate image compression 

was presented in IEEE DCC 2008 [12], and a journal paper will appear in IEEE 

Transactions on Image Processing [13]. The SMMD scheme was presented in IEEE 

MMSP 2008 [14]. 

1.3 Organization 

The remaining of this thesis is organized as follows. Chapter 2 reviews existing 

works on image interpolation and the interpolation based low-rate image compression 

methods. Our first adaptive non-linear image interpolation method is described in 

Chapter 3. Chapter 4 presents the new soft-decision adaptive image interpolation 

method. Our most sophisticated interpolation technique, the model-based nonlinear 

image restoration scheme, is proposed in Chapter 5. Chapter 6 develops the CADU 

approach for low bit-rate image compression, and the SMMD scheme is studied in 

Chapter 7. The thesis closes with conclusions and suggested future works in Chapter 

8. 
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Chapter 2 

Review of Existing Works 

Interpolation as a topic of mathematics has a very long history. A chronological 

overview of the developments in interpolation theory since ancient time was presented 

in [15]. The first application of interpolation in image processing was reported in 

early 1970s. From then, many image interpolation techniques have been developed. 

Depending on whether they are adaptive to the image signals, these techniques can 

be classified in two groups: non-adaptive methods and adaptive methods. The non­

adaptive image interpolation methods have the advantages of low complexity and 

low cost of hardware implementation. Their common drawback is the inability to 

adapt to varying pixel structures in a scene, due to the use of scene-independent 

interpolators. As a result, they are all susceptible to defects such as jaggies, blurring, 

and ringing. The adaptive interpolation methods generally have higher interpolation 

accuracy or/and better visual quality in the expense of higher computation complexity 

than the non-adaptive methods. In this chapter, we will review some representative 

and popular image interpolation algorithms in both groups, as well as some existing 

interpolation based low-rate image compression methods. 
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2.1 Non-adaptive Interpolation Methods 

The simplest interpolation methods are nearest neighbor interpolation and bilinear 

interpolation [16] . Nearest neighbor interpolation simply duplicates the nearest pixel 

for each missing pixel in the high resolution image. Bilinear interpolation is also very 

simple. It reconstructs a missing pixel as an average of its neighboring low resolution 

pixels. These two methods are very fast, but their performance leaves much to be 

desired. Nearest neighbor interpolation produces objectionable checkerboard effect, 

particularly for large scaling factors; and bilinear interpolation severely blurs edges 

and textures. 

More complicated methods were developed to improve the interpolation accuracy. 

One popular technique is cubic convolution. It uses a sine-like kernel composed of 

piecewise cubic polynomials and significantly improves the interpolation accuracy of 

the nearest neighbor and bilinear interpolation methods. Cubic convolution tech­

nique was first mentioned in the early 1970s and was analyzed in detail by Keys [7] 

in 1981 for digital image interpolation. The technique was also examined by Park 

and Schowengerdt in frequency domain [17]. The cubic convolution interpolation is 

also known as bicubic interpolation when applied to images since it interpolates pix­

els in two separate directions: horizontal and vertical. Motivated by the statistical 

nonseparable property of real natural images, nonseparable 2D interpolation filters 

were designed [18, 19, 20]. In [19], Reichenbach and Geng derived a 2D nonseparable 

cubic convolution kernel with two parameters and showed that it produced higher 

interpolation accuracy than separable cubic convolution. Later, Shi and Reichenbach 

relaxed the constraints in [19] and derived another two nonseparable cubic convolu­

tion kernels with three and five parameters respectively, and improved somewhat on 

the interpolation accuracy [20]. The improvements made by the non-separable 2D 

interpolation kernels were obtained at the expense of higher complexity. 

Splines were also used in image interpolation. The earliest and popular method 

was developed by Hou and Andrews in 1978 [21] . The method is known as B-spline 

14 




Ph.D. Thesis - X. Zhang McMaster - Electrical & Computer Engineering 

interpolation or cubic spline interpolation. Maeland compared the cubic spline in­

terpolation with cubic convolution interpolation, and concluded that cubic spline 

interpolation had superior performance but higher complexity [22]. Unser et al. de­

signed an optimal spline algorithm and claimed that the method could achieve the 

closest approximation of the original signal in the Lrnorm [23]. The splines were 

also thoroughly studied as an effective tool for signal and image processing in [24]. 

To reduce the complexity, Vrcelj and Vaidyanathan replaced the B-Spline filter with 

a short finite impulse response (FIR) filter and proposed a simplified implementation 

of the B-splines based image interpolation methods [25]. 

Besides cubic convolution and cubic splines, many other kernels were proposed for 

image interpolation. Some of these kernels were described and compared by Lehmann 

and Spizter in [26]. In particular, they analyzed B-spline interpolation techniques of 

degree 2, 4, and 5 in [27]. They concluded that high-degree B-splines had higher 

interpolation accuracy and comparable complexity compared with lower degree B­

splines. 

2.2 Adaptive Interpolation Methods 

With ever increasing computation power in image and video processing, more so­

phisticated adaptive image interpolation methods were proposed to improve the non­

adaptive interpolation methods. 

To adapt interpolators to local properties of images, many researchers proposed 

modifications on conventional cubic convolution interpolation and cubic spline inter­

polation methods [28, 29, 30, 31]. In [28], Ramponi proposed a warped distance-based 

adaptive image interpolation method. The main idea of this method is to modify the 

Euclidean distances to reflect some local property of the image signal. This method 

can be easily combined with conventional image interpolation methods such as bilin­

ear, bicubic, or cubic spline interpolation. Han and Baek [29] adaptively modified the 
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parametes of the parametric cubic convolution kernel and reported better results than 

traditional bicubic method. In [30], Shi and Ward proposed a postprocessing method 

to improve the visual quality of the interpolated images. The values of pixels near 

edges were modified to reduce jaggies caused by non-adaptive interpolation methods. 

Hwang and Lee applied an inverse gradient to the structure of conventional bilinear 

and bicubic interpolation to sharpen edges[31]. In [32], the authors applied splines 

as image model to interpolate the high resolution images from nonuniformly sampled 

images. The interpolation problem was formulated in spline domain and an adaptive 

smoothness prior was used as regularization term. 

As discussed in the previous chapter, edges play important role in human vision 

system. Non-adaptive interpolation methods tend to blur edges and/or introduce 

artifacts in edge area due to their isotropic interpolation kernels. In fact, edges have 

asymmetric spectrum since the frequency is low along edges and high perpendicular 

to edges. To exploit this property, many researchers advocated the approach of edge­

guided interpolation. Jensen and Anastassiou published a scheme that detects edges 

and fits them with some templates to improve the visual perception of interpolated 

images [33]. Allebach and Wong detected the edges of the original image first and then 

used the generated edge map to emphasize the visual integrity of the detected edges 

[34]. Method in [35] first estimated the local characteristics of the image by performing 

block classification and then applied different filters to reconstruct the high resolution 

images. Carrato and Tenze used some predetermined edge patterns to optimize the 

parameters in the interpolation operator [36]. Malgouyres and Guichard theoretically 

and experimentally analyzed some edge-guided image enlargement methods in [37]. 

In [38], an edge-directed interpolation method was proposed with emphasizing on the 

fidelity and sharpness of edges in the interpolated images. In [39], Muresan proposed 

a fast edge-directed polynomial interpolation method. Edge pixels were interpolated 

along the edge direction, and non-edge pixels were interpolated by fusing the multi­

directional estimates. Wang and Ward [40] detected step edges or ridges, and then 
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applied bilinear method with an orientation-adaptive parallelogram to reconstruct 

the missing high resolution pixels on those edges or ridges. 

Instead of explicitly detecting edges prior to interpolation, many edge-guided in­

terpolation methods rely on implicit edge information. Li and Orchard proposed to 

estimate the covariance of high resolution image from the covariance of the low resolu­

tion image, and then interpolate the missing pixels based on the estimated covariance 

[3]. Since the edge information is built into the algorithm, the method preserves 

edge structures well. This edge-directed interpolation work was cast by Muresan and 

Parks into the framework of adaptive optimal recovery [41]. Alternatively, Zhang and 

Wu proposed to interpolate a missing pixel in multiple directions, and then fuse the 

directional interpolation results by minimum mean square error (MMSE) estimation 

[42]. Also, Cha and Kim proposed a postprocessing method to estimate the high 

resolution image based on a system of nonconvex nonlinear partial differential equa­

tions [43]. They reported that clear edges were formed after 2 to 3 iterations. They 

further extended the method to interpolate color images where the three channels 

were jointly interpolated [44]. Another edge-guided method was proposed in [45]. 

In this method, the edge directions were implicitly estimated and were indicated by 

length-16 weighting vectors, and these weighting vectors were implicitly used to for­

mulate geometric regularity constraint which was imposed on the interpolated image 

through a Markov random field model. 

Wavelets were also used in image interpolation. The interpolation is done by pre­

dicting the high-resolution details from the low resolution observations [46, 47, 48, 

49, 50]. Carey et al. proposed a method that estimated the regularity of edges by 

measuring the decay of wavelet transform coefficients across scales and preserved the 

underlying regularity by extrapolating a new subband to be used in image resynthesis 

[46]. In [47], an MMSE estimator was constructed to synthesize the detailed wavelet 

coefficients as well as to minimize the mean squared error for high-resolution signal 

recovery. Based on the behavior of edges across scales in the scale-space domain, 
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Muresan and Parks estimated the coefficients of the fine scale from a set of known 

coefficients at the coarser scales [48]. Chang and Cvetkovic used the wavelet trans­

form to extract information about sharp variations in the low resolution images, and 

then implicitly applied interpolation that adapts to the image local characteristics 

[49]. In [50], Temizel and Vlachos exploited wavelet coefficient correlation in a local 

neighborhood and employed linear least-squares regression to estimate the unknown 

detail coefficients. 

The problem of image interpolation has been also studied in the field of the com­

puter vision [51, 52, 53, 54, 55]. In [51], a set of deformable contours were used to 

define the boundaries between regions in an image and were evolved by a gradient 

flow. The goal of the interpolation in this method is to smooth the boundaries while 

maintain sharp transitions across region boundaries. Freeman et al. [52] selected 

high-resolution patches from training set according to local low-frequency details and 

adjacent, previously determined high-frequency patches. Similar method was further 

developed in [53] and [54]. In [53], Baker and Kanada focused on the reconstruction 

of high-resolution face images from training set. Sun et al. [54] first detected the 

contours of the objects and then reconstructed high resolution image primitives along 

contours from the training set. In this method, contour smoothness constraints were 

also enforced by a Markov chain based inference algorithm. In [55], Lin et al. classi­

fied the image into human perception nonsensitive class and sensitive class according 

to the characteristics of the human vision system. A trained neural network was used 

to interpolate the sensitive region along the edge directions. 

Other techniques were also developed for image interpolation. In [56], the image 

was modeled as a Markov random field, and the high resolution image was estimated 

by maximum a posterior estimation. Iterative methods, such as projection onto 

convex sets (POCS) schemes [57, 58], were also proposed for image interpolation. 

Fekri et al. applied vector quantization method to the interpolation of text images 

[59]. Woods et al. [60] proposed algorithms for reconstructing high resolution image 
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from multiple low resolution images. The authors developed two algorithms based 

on the expectation maximization and maximum a posteriori respectively. In [61], a 

kernel function was added in the regression to give the nearby samples higher weight 

than samples farther away when estimating parameters in the regression function. In 

[62] , Kopf et al. used bilateral filters to reconstruct a better high resolution image 

from the available high resolution image and the associated low resolution image. 

2.3 	 Interpolation Based Low-Rate Image Compres­

sion Methods 

In this section, we will review interpolation based low-rate image compression meth­

ods. In these methods, the input image is downsampled before compression, and the 

decoder applies image interpolation methods to upconvert the LR image to original 

resolution. Such a scheme first appeared in literature in 1993 [63], and was further 

studied by some researchers in recent years [64, 65, 66, 67, 68]. In [64] Bruckstein et al. 

explained analytically why it is advantageous to downsample an image prior to JPEG 

compression and then upsample the JPEG-decoded image. The authors developed a 

model for expected distortion of discrete cosine transform (DCT) based JPEG codec 

and gave an expression to determine the rate-distortion optimal downsampling factor. 

Segall et al. extended the interpolation based compression scheme to low-rate video 

coding [65]. Following up on [64], Tsaig et al. proposed an image-dependent algorithm 

to find optimal filters for decimation and interpolation [66] . Lin and Dong studied 

the so-called critical bit rate, below which it pays to downsample an image prior to 

DCT-based JPEG compression [67]. In addition they proposed a downsampling tech­

nique that adapts downsampling factor, direction and DCT quantization step size to 

local image characteristics. Gan et al. also proposed undersampled boundary pre­

and post-filters to subdue blocking artifacts of DCT-based block codecs at low bit 

rates [68]. 
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Chapter 3 

Method of Texture Orientation 

Map and Kernel Fisher 

Discriminant 

In this chapter we present our first new adaptive non-linear image interpolation 

method. In this method, a texture orientation map (TOM) of the LR image is 

generated by directional Gabor filters to estimate the edge directions. The interpo­

lation direction for each missing HR pixel is determined initially by TOM in a local 

window, and is then refined by a kernel Fisher discriminant. This allows the interpo­

lator to exploit prior knowledge gained from a training set. After the interpolation 

direction is determined, the missing HR pixels are estimated by interpolating along 

that direction. 

3 .1 Overview 

As in the exiting literature, we model a LR image as a down-sampled version of the 

associated HR image, as illustrated in Fig. 3.1. The task of image interpolation is to 

estimate the values of those pixels that are missing in the HR image based on the 
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available neighboring pixels of the LR image. The interpolation can be done fairly 

easily in smooth regions, which constitute the most part of a natural continuous-tone 

image for it has an exponentially decay power spectrum. However, the interpolation 

becomes error prone in regions of edges and textures where the HR image signal may 

exceed the Nyquist limit of the LR image. Although these errors may be statistical 

outliers, their adverse effects on the visual quality of the reconstructed HR image 

can be disproportionally large to their small population. Therefore, the most critical 

issue in image interpolation is how to handle these worst cases, i.e., reconstructing 

edges and textures as accurately as possible. 

• 0 • 0 • 0 • 
0 0 0 0 0 0 0 

• 0 • 0 • 0 • 
0 0 0 0 0 0 0 

• 0 • 0 • 0 • 
0 0 0 0 0 0 0 

• 0 • 0 • 0 • 
Figure 3.1 : Formation of a LR image from a HR image by down-sampling. The black 

dots are the LR image pixels and the white dots are the missing HR pixels. 

To reconstruct a two-dimensional image signal that is insufficiently sampled, we 

have two venues to explore. Firstly, if the HR signal does not exceed the Nyquist 

limit of the LR image in all directions, then an interpolation in a low-pass direction 

can succeed in reconstructing the original. To determine the interpolation direction 

the key is the estimation of the orientation of edges and textures at the missing pixels. 

We take a new approach of high order context to solving this estimation problem. 

An input LR image is first analyzed by a bank of directional Gabor filters, and 

the filter responses at LR pixels are used to generate a so-called texture orientation 

map of the LR image. In the context of TOM each missing HR pixel is classified 
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either as smooth or textural. In smooth regions the interpolation can be done by 

any existing method. For the textural pixels the interpolation direction is carefully 

chosen by examining TOM in local windows of different orientations and measuring 

the directional variations. 

Secondly, even if the HR signal is beyond the Nyquist limit in all directions, we 

can still hope for good estimate of the missing samples by using some suitable prior 

knowledge. One possibility is to use training data to learn edge/ texture orientation 

hence the correct interpolation direction in a context of TOM of the LR image. We 

cast the determination of correct interpolation direction into an optimal classifica­

tion problem, in which the observable features fed to the classifier are drawn from 

TOM. The technique of kernel Fisher discriminant (KFD) is used to design the classi­

fier. This classification-driven interpolation technique is able to resolve some of very 

difficult cases for which the existing methods fail. 

This chapter is organized as follows. The texture orientation map is defined in 

Sec. 3.2, followed by discussions on how to use TOM to estimate interpolation direc­

tions in Sec. 3.3. Sec. 3.4 develops the kernel Fisher discriminant technique to refine 

the interpolation directions using prior knowledge of a training set. Sec. 3.5 reports 

experimental results. This chapter closes with a summary in Sec. 3.6. 

3.2 Texture Orientation Map 

Adaptive directional interpolation in reconstructing a HR image needs to be anchored 

on contextual information from the observed LR image. To this end we build a so­

called texture orientation map that presents the texture orientation of each pixel in 

the LR image. A bank of Gabor filters is applied to detect the presence or lack of 

an edge at each LR pixel, and determine the direction of the edge, if it exists. We 
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choose the following bank of Gabor filters: 

im = icos(Om) + jsin(Om); 
(3.1) 

jm = -isin(Om) + jcos(Om); 

(m - l)7r
Om= ; m=l,2, ... ,8

8 

where <Ji and <7j are standard deviations of the Gaussian envelope, and f is the fre­

quency of the sinusoid. Although filters of arbitrary orientations are analytically 

possible, we use only eight uniformly quantized discrete orientations for ease of im­

plementation and because such an angular resolution is sufficient for an expansion 

factor of two from LR image to HR image (see Fig. 3.1). The scale parameters <Ji 

and <7j should be properly chosen to make the detected texture orientation more ro­

bust to noises. In fact, this is the main reason for choosing Gabor filters instead 

of conventional gradient operator. For the application of image interpolation, we 

are mainly concerned about the direction of high frequency signal, and hence choose 

f = ../2/4cycles/pixel, which is the highest frequency suggested in [69]. In order to 

have low redundancy, the filters are normalized to have zero de response. 

Given an LR image 11, we define its TOM T(i,j) by the magnitudes 9m(i,j) of 

the responses of Gabor filters Gm(i,j), 1 ~ m ~ 8, as the follows: 

</>, if maxgm(i,j) - mingm(i,j) < c 
T(i,j) = m m (3.2)

{ 1-0j, j =max;;/ 9m(i,j) 

where c is a threshold for smoothness, and 1-0 stands for the angle perpendicular to 

e. Namely, for the pixel position (i,j), if the responses of all eight directional filters 

are close to each other in magnitude, then T(i,j) = </>, indicating that the image 

waveform is smooth at (i,j); otherwise, the pixel is deemed textural and the texture 

orientation T( i, j) is set to be perpendicular to the direction in which the Gabor filter 

has the maximum response. 
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3.3 TOM-based Decision Discrimination 

In adaptive image interpolation the key issue is the choice of interpolation direction. 

In this section we develop a procedure to determine the interpolation direction in the 

context of TOM. We treat two different geometric configurations of the LR and HR 

pixels separately in the following two subsections. 

3.3.1 Case of 4-connected LR neighbors 

First, let us consider the situations that the HR pixel x(i,j) to be interpolated has 

two 4-connected neighboring LR pixels, as illustrated in Fig. 3.2. Since the discrete 

geometries of Fig. 3.2(a) and Fig. 3.2(b) are symmetric to each other, it suffices for 

us to only examine the horizontal case. 

Tnw Tne Tnw Tn Tne 

Tw x(i,j) Te x(i,j) 
0• 0 •Tsw Tse Tsw Ts Tse 

(a) (b) 

Figure 3.2: A missing pixel with 4-connected LR neighbors: (a) horizontal case; (b) 

vertical case. 

For convenient denotation in further discussions, let the eight different orientations 

of TOM be signed angles (see Fig. 3.3): 

T(·,·) E {0,±7r/8,±7r/4,±37r/8,7r/2}. (3.3) 

Referring to Fig. 3.2(a) for notations, if Tw = Te = ¢, then x(i,j) is classified as 

smooth, and the cubical interpolation is used to interpolate x(i, j) horizontally. In 

fact, interpolation direction in a smooth area is not critical. Also, for the sake of uni­

fication we can treat T(·, ·)=<Pas though T(·, ·) = 0 since in this case we interpolate 
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rr/2 3rr/8 

Figure 3.3: Illustration of TOM value as signed angles. 

horizontally anyways in smooth areas. 

If ITwl :::; 7r/8 and ITel:::; 7r/8, then x(i,j) is classified as having horizontal orien­

tation, and it will be cubically interpolated in horizontal direction. 

For all other possible combinations of Tw and Te, we first determine if the inter­

polation direction e(i, j) should be positive or negative. To make this decision let us 

examine the two directional contexts of x(i, j): 

(3.4) 

where Tne, T8w, Tnw, Tse are the TOM values of the LR pixels in the northeast, south­

west, northwest, and southeast directions (see Fig. 3.2). If all TOM values in C+ are 

non-negative, or if all TOM values in C_ are non-positive, written as C+ ~ 0 and 

C_:::; 0, then we set (J(i,j) > 0 or (J(i,j) < 0 respectively. 

If none of the above tests passes, then we compute the variances of the two sets 

C+ and C_, denoted by O"+ and(}_, and set e(i,j) > 0 if O"+ < O"_, or e(i,j) < 0 if 

O"+ > (}_. 

The above procedure, whose flowchart is given in Fig. 3.4, decides whether e(i, j) = 

0, (J(i,j) > 0, or (J(i,j) < 0 in interpolating x(i,j). For the latter two cases, a more 

elaborated classification process is needed, which will be the subject of Sec. 3.4. 
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y 

smooth 

Cubic 
interpolation 

along horizontal 

N 

y 

8(iJ)=O 

8(i,j)>O 8(ij)<O 

Figure 3.4: Decision of interpolation direction. 

3.3.2 Case of 8-connected LR neighbors 

Next we proceed to the case where the HR pixel x(i,j) has four 8-connected neigh­

boring LR pixels as depicted by Fig. 3.5. Similarly to the 4-connected case, a stepwise 

decision process is carried out to determine ifB( i, j) = ±7r/4, B(i, j) > 0, or B(i, j) < 0, 

which is depicted by the flow chart in Fig. 3.6. In the flow chart, 

the two directional contexts of x( i, j) are defined as: 

(3.5) 
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Tnnw Tnne 


Tnww Tnw Tne Tnee


• •x81 • 

Tsww Tsw Tse Tsee 


Tssw Tsse 


Figure 3.5: A missing pixel with 8-connected LR neighbors. 

Bicubic 
interpolation 

interpolation 
along 7t/4 
direction 

N 

Cubic 
interpolatio 
n along-7t/4 

direction 

0(ij)>O 	 0(ij)<O 

Figure 3.6: Decision of interpolation direction for a missing pixel with 8-connected 

LR neighbors. 

3.4 	 Direction Refinement via Kernel Fisher Dis­

criminant 

In the previous section we see how the interpolation direction can be chosen by the 

technique of variation analysis of TOM. However, the discrimination power of TOM 

is theoretically restricted by the Nyquist limit of the LR image. For any hope of 

exceeding this limit, one has to bring in additional information. In this section we 

propose an approach of using prior knowledge learnt from a training set to refine 

interpolation direction. Specifically, we cast the problem into one of optimal classifier 
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design and solve it using KFD. 

Different geometric configurations of LR and HR pixels need to be treated sepa­

rately. Without loss of generality, we sketch our main idea for a concrete configuration 

as illustrated in Fig. 3. 7. Other configurations can follow easily via symmetry. Re­

ferring to Fig. 3. 7 for the geometry and notations, if a TOM-based analysis yields 

()(i,j) > 0, we come to assess two estimates of x(i,j): 

I1 = L aiLi, 
i=l,2,3,4 

(3.6) 
I2 = biLiL 


i=l,2,5,6 

where ai and bi are interpolation coefficients that can be obtained by the least-square 

method from a training set. In pursue of a better angular resolution we now face 

a decision problem of choosing between Ii and 12 . Let the decision whether 11 or 

12 is a better estimate of x( i, j) be a binary random variable Y. Consider f = 

(L1 , L 2 , · · · , L 6 ) as a vector of features that Y exhibits. If P(Ylf) is known, then 

the optimal decision corresponds to the value of Y that maximizes the posterior 

probability P(Ylf). But P(Ylf) is generally unknown, we alternatively convert the 

decision problem to one of binary classification in the feature space of f. Given a 

suitable training set Z, the value of Y partitions the set Z into two subsets Z0 and 

Z1 . Set Zi consists of all the training feature vectors associated with Y = i, i = 0, 1. 

Our task is to design a classifier to separate Z0 from Z1 with the minimum number 

of misclassifications. We applied both linear Fisher discriminant and KFD [70][71] to 

this classification problem, and found that the former is ineffective but the latter is. 

Ls 

Figure 3.7: Two competing interpolation directions when ()(i,j) > 0. 
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KFD first maps the feature vectors into some new feature space F in which dif­

ferent classes are better separable. A linear discriminant is computed to separate 

input classes in F. Implicitly, this process constructs a non-linear classifier of high 

discriminating power in the original feature space. Let <I>(f) be the nonlinear mapping 

from original feature space to some high-dimensional Hilbert space F. The goal is to 

find the projection line pin F such that the F-ratio validity index J(p) 

PTS<I?p
J(p) = B (3.7)

pTStp 

is maximized, where si and st are the between-class and within-class covariance ma­

trices. Since the space Fis of very high dimensions, the function <I>(f) is infeasible. A 

technique to overcome this difficulty is the Mercer kernel function k( i, j) = <I>(i) ·<I>(j), 

the dot product in Hilbert feature space F. A popular choice for the kernel function 

k that has been proved useful(e.g. in support vector machines) is the Gaussian 

RBF(radio base function), k(i,j) = exp(-lli - jJl 2 /20"2 ). Under some mild assump­

tions on si and st, any solution p E F maximizing (3.7) can be written as the 

linear span of all N mapped samples 

N 

p =I: /3j<I>(rj) (3.8) 
j=l 

As a result, the F-ratio J(p) can be reformulated as: 

PTsip /3T A/3 
(3.9)J(p) = pTStp = f3TBJ3 

where A and B are N x N matrices: 

A= L
M 

ni(µ- µi)(µ - µif, 
j=l 

(3.10) 

B = KKT - L
M 

niµiµf 
j=l 

where K is the kernel matrix, Kij =<I>(fi) · <I>(fj), µj =K · lj/nj, µ =K · l/N, lj E 

(0, l)N are membership vectors corresponding to class labels, and 1 is the vector of 
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all ones. The projection of a test image feature sample f onto the discriminant is 

given by the inner product 

N 

(p,<I>(r)) = I:,ejk(r,rj) (3.11) 
j=l 

In practise, maximizing (3.9) requires to solve the N x N matrix eigenvalue prob­

lem, which is intractable for large N. As in [70], instead of using (3.8), we express p 

in the subspace: 
l 

p = 2= ,ej<I>(rj) (3.12) 
j=l 

where l « N, and samples fj are selected from all raw training vectors. 

Given the dimension l of the subspace of F, the partial expansion (3.12) presents 

an approximation of the optimal KFD solution. This approximation can be incremen­

tally improved by adding a new sample vector one at a time to the existing expansion. 

The projection value of a vector f is given by the inner product 

l 

(p,<I>(r)) = I:,ejk(r,rj) (3.13) 
j=l 

We build the KFD classifier in two steps: First, given a training set of feature vec­

tors, we find the projection direction pas above. Second, we compute the projection 

values of all training feature vectors and find the threshold~ between the two classes 

to minimize the classification error. Although the KFD design process is computa­

tionally expensive, it is done off line once for all, given a training set. Applying KFD 

to interpolation is simple: the feature vector f of the pixel in question is projected by 

(3.11). Then the projected value is threshold by~ to decide the optimal interpolation 

direction (i.e., Y = 1 or Y = 0) . 

3.5 Experimental Results and Remarks 

The proposed image interpolation method based on TOM and KFD is implemented 

and compared with three other methods: bilinear interpolation, bicubic interpolation 
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[7] and subpixel edge localization [33]. The first two methods are representatives of 

linear interpolation methods. The last one is relevant to this work in that the subpixel 

edge localization technique also guides interpolation along estimated edge direction. 

Fig. 3.8 shows a part of the original Baboon image and the reconstructed that 

part by the above mentioned interpolation methods. The Baboon image presents a 

challenge to interpolation algorithms due to its fine edge/texture details. Our informal 

human subject study seemed to indicate that the viewers prefer the proposed method 

by a significant margin. The edges reconstructed by the new method are sharper and 

have less ringing effect . The comparison of the PSNR results for other well-known 

test images between these methods is presented in Table 3.1, which shows that our 

method also obtains the highest PSNR. 

Table 3.1: The PSNR(dB) results 

Image Lena Airplane Baboon 

Bilinear Interpolation 33.37 28.95 22.52 

Bicubic Interpolation 33.92 29.67 22.58 

Method in [33] 33.09 28.39 22.48 

Proposed Method 34.28 29.95 23.41 

The performance of KFD-based image interpolation naturally depends on the 

match of statistics of the input image and the training set. The reported experimental 

results were obtained using a general training set that consists of ten natural images. 

All images used to generate the reported experimental results are outside of the 

training set . 

3.6 Summary 

A new adaptive nonlinear image interpolation method was proposed in this chapter. 

The interpolation direction of missing HR pixels was estimated with the guidance of a 
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(a) Original (b) Bicubic 

(c) Method in [33] ( d) Proposed 

Figure 3.8: Reconstructed Baboon images by different methods. 

TOM generated from known LR image. The refinement of the estimated direction was 

converted to a classification problem. The classifier was designed using kernel Fisher 

discriminant technique with a training set of HR images. This new classification-based 

method achieves higher PSNR and better visual quality than previous methods. It 

can correctly solve some of very difficult cases for which the traditional methods fail. 
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Chapter 4 

Soft-decision Adaptive 

Interpolation 

In previous chapter, we described an adaptive nonlinear interpolation method that 

assumes and uses some prior knowledge learnt from a training set of HR images. But 

the performance of the learning approach degrades if there is a statistical mismatch 

between the input image and the training set. Unless the input images are confined 

to a narrow known class (e.g., faces), it is prudent to estimate the HR image using 

primarily the statistics available in the input LR image. In this and subsequent 

chapters we develop adaptive image interpolation methods without the use of training 

HR images. Instead we boost the performance of these methods by introducing a 

class of versatile parametric image models: 2D piecewise autoregressive process. The 

model parameters are estimated in a moving window in the input LR image. The 

pixel structure dictated by the learnt model is enforced by a soft-decision estimation 

process onto a block of pixels, including both observed and estimated. 
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4.1 Overview 

The reproduction quality of any image interpolation algorithm primarily depends on 

its adaptability to varying pixel structures across an image. In fact , modeling of non­

stationarity of image signals is a common challenge facing many image processing 

tasks, such as compression, restoration, denoising, and enhancement. Wu et al. [72] 

had a measured success in this regard in a research on predictive lossless image com­

pression. In that work a natural image is modeled as a piecewise 2D autoregressive 

process. The model parameters are estimated on the fly for each pixel using sample 

statistics of a local window, assuming that the image is piecewise stationary. In this 

work we extend this approach to image interpolation. An obvious difference is in 

that the sample set for parameter estimation has to be causal to the current pixel 

for predictive coding, but does not need to be so for interpolation, which is to the 

advantage of the latter task. On the other hand, for image interpolation the fit of 

the model to the true high-resolution image signal is made more difficult by the fact 

that only a low-resolution version of the original can be observed. 

All image interpolation methods involve fitting missing pixels to some sample 

structure learnt from the low resolution image. This is best accomplished by esti­

mating a block of missing pixels in relation to the nearby known pixels rather than 

estimating the individual missing pixels in isolation as done in the literature up to 

now. The main result of this chapter is a new image interpolation technique, called 

soft-decision adaptive interpolation (SAI) . The SAI technique, via a natural inte­

gration of piecewise two-dimensional autoregressive modeling and block estimation, 

achieves superior image interpolation results to those reported in the literature. It is 

shown that the new SAI technique is equivalent to interpolation using an adaptive 

non-separable 2D filter of high order. 

The rest of the chapter is structured as follows. Section 4.2 defines a two­

dimensional piecewise autoregressive (PAR) image model to facilitate the subsequent 

development. Section 4.3 presents the most important result of this work: a soft­
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decision estimation technique for adaptive image interpolation. Section 4.4 discusses 

how to estimate the PAR model parameters in the low-resolution image. Implemen­

tation details of the SAi algorithm are presented in Section 4.5, where the reader can 

also gain an insight into the inner work of the SAi technique. Experimental results 

and a comparison study with some existing popular image interpolation techniques 

are presented in Section 4.6. Section 4. 7 concludes. 

4.2 Piecewise Stationary Autoregressive Model 

For the purpose of adaptive image interpolation, we model the image as a piecewise 

autoregressive process: 

X(i,j) = L au,vX(i - u,j - v) + Vi,j ( 4.1) 
(u,v)ET 

where T is a spatial template for the regression operation. The term vi,j is a random 

perturbation independent of spatial location ( i, j) and the image signal, and it ac­

counts for both fractal-like fine details of image signal and measurement noise. The 

validity of the PAR model hinges on a mechanism that adjusts the model parameters 

au,v to local pixel structures. The fact that semantically meaningful image constructs, 

such as edges and surface textures, are formed by spatially coherent contiguous pixels, 

suggests piecewise statistical stationarity of the image signal. In other words, in the 

setting of the PAR model, the parameters au,v remain constant or near constant in a 

small locality, although they may and often do vary significantly in different segments 

of a scene. The piecewise stationarity makes it possible to learn pixel structures such 

as edges and textures by fitting samples of a local window to the PAR model. 

The validity of the PAR model with locally adaptive parameters is corroborated 

by the success of this modeling technique in lossless image compression. Among 

all known lossless image coding methods, including CALIC (context-based adaptive 

lossless codec) [1], TMW [4], and invertible integer wavelets [73], those that employ 
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the PAR model with adjusted parameters on a pixel-by-pixel basis have delivered 

the lowest lossless bit rates [72, 74] . In the principle of Kolmogorov complexity, the 

true model of a stochastic process is the one that yields the minimum description 

length. Thus we have strong empirical evidence to support the appropriateness and 

usefulness of the PAR model for natural images. 

In the next section, we will integrate the PAR model into a soft-decision estimation 

framework for the purpose of image interpolation, and develop the SAI algorithm. 

4.3 Adaptive Interpolation with Soft Decision 

First we introduce some notations that are necessary for the description of the SAI 

algorithm. Let h be the HR image to be estimated by interpolating the observed 

LR image h Same as in the previous chapter, the LR image 11 is a down sampled 

version of the HR image h by a factor of two. Let Yi E 11 and Xi E h be the pixels 

of images 11 and h respectively. We write the neighbors of pixel location i in the HR 

image as Xiot, t = 1, 2, · · ·. Since Yi E 11 implies Yi E h, we also write an HR pixel 

xi E h as Yi (likewise, Xiot as Yiot) when it is in the LR image, xi E /z, as well. 

The SAI algorithm interpolates the missing pixels in h in two passes in a coarse 

to fine progression. The work of the two passes is shown by Fig. 4.1, in which 

the solid dots are known LR pixels, the shaded dots are those missing pixels to be 

interpolated in the first pass, and the empty dots are the remaining missing pixels 

to be interpolated in the second pass. The pixels generated by the first pass and 

the known LR pixels form a quincunx sublattice of the HR image (the union of solid 

and shaded dots) . The second pass completes the reconstruction of the HR image by 

interpolating the other quincunx sublattice of empty dots. 

Fig. 4.2(a) illustrates the spatial configuration of known and missing pixels in­

volved in the first pass. To avoid intricate notations, from now on we use a single 

position index to denote a pixel location instead of two dimensional coordinates. For 
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• 0 • 0 • 0 • 
0 0 0 0 0 0 0 

• 0 • 0 • 0 • 
0 0 0 0 0 0 0 

• 0 • 0 • 0 • 
0 0 0 0 0 0 0 

• 0 • 0 • 0 • 
Figure 4.1: Formation of a low resolution image from a high resolution image by 

down-sampling. The solid black dots are the LR image pixels and the circles are the 

missing HR pixels. Interpolation is done in two passes: The first pass interpolates 

the missing pixels marked by shaded circles, and the second pass interpolates the 

remaining missing pixels marked by empty circles. 

a missing pixel Xi E h, its four 8-connected neighbors are available LR pixels, de­

noted by y~£ E 11, and its four 4-connected neighbors are missing HR pixels, denoted 

by x~!i E h, t = 1, 2, 3, 4. Here the relative subscript t is a generic notation to index 

a two-dimensional neighbor with respect to position i. Similarly, for a pixel Yi E 11, 

its four 8-connected neighbors are missing HR pixels, written as x~!i E h, and its 

four 4-connected neighbors are available LR pixels written as y}!£ E Ii, t = 1, 2, 3, 4. 

To interpolate a missing pixel Xi E h in the first pass, we use a PAR model of 

parameters X = (x1 , x2 , x3 , x4 ) to characterize the diagonal correlations of the image 

signal in a local window W (see Fig. 4.2(b)). Using the simplified notations to replace 

a. ,., we rewrite (4.1) as 

- ~ (8)
Xi - ~ XtYiot +'Vi· (4.2) 

19'.'::4 

With the PAR model we interpolate n missing pixels x = (x1 , x2 , · · · , xn) in window 

W by a least-squares block estimation: 
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• 't4 • 

(4) 
xio2 

0 0 0 0 0 0(8) (8) (4) 
Yiol Yio2 Y;o2 

(4) (4) (8) (8) 
xi<>I Xj xi<>3 xi<> I xi<>2 
0 0 0 0 0 0(8) (8) (4) (4) 

Yi<>4 Y;o3 Yiol Yi Y;o3 
(4) (8) (8) 

xi<>4 X;<>4 xi<>3 
0 0 0 0 0 0(4) 

Y;<>4 

(a) 

0 0 0 0 0 

0 

• • 

0 

(b) 

Figure 4.2: (a) Spatial configuration in the first pass. (b) The PAR model parameters 

X = (x1, X2, X3 , X4) and 't = (T1 ,T2 , T3,T4) in relationship to spatial correlations of 

pixels. 

The above image interpolation approach has an important distinction from its pre­

decessors (e.g., [21 , 3]). Existing image interpolation methods estimate each missing 

pixel independently from others, which we characterize as hard-decision estimation. 

In contrast, we adopt a strategy of soft-decision estimation in resemblance to block 

decoding of error correction codes. Rather than estimating one sample at a time in 

isolation, the objective function of ( 4.3) requires all missing pixels in a local window 

W to be estimated jointly. Moreover, the soft-decision estimation approach brings 

in a new feedback mechanism that is the second term in (4.3) . This additional term 

requires the estimates of the missing HR pixels x E h to fit the known LR pixels 
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y E 11 with the very same PAR model that fits y E 11 to x E h. Aided by the 

feedback mechanism that accounts for mutual influences between the estimates of 

the missing pixels in a local window W, the SAi algorithm can mitigate errors of 

hard-decision estimation by preventing the PAR model, when applied to estimated 

HR pixels x Eh, from being violated on neighboring known LR pixels y E ]z. 

To include horizontal and vertical correlations into the SAi algorithm, we intro­

duce four more parameters 't = (T1, T2 , T3 , T4 ) whose geometric meanings are shown in 

Fig. 4.2(b) . These parameters 'tare used to impose the same directional correlation 

between LR pixels Yi and y~f on between HR pixels Xi and x~!i, namely 

Xi= L llTtX~;; II+ Vi · (4.4) 
19:-::;4 

The soft-decision estimation technique can incorporate (4.4) into (4.3) . But one 

should practise caution since the pixels Xi and x~!l in ( 4.4) are all unknown. By using 

a Lagrangian multiplier A to regulate the contribution of (4.4), we extend (4.3) to the 

following constrained optimal block estimation problem: 

l(A) = m~n{I:llxi - L XtY~ill 
iEW 199 

+ I:llYi - L XtX~!lll +A I:llxi - L Ttx~!lll}
iEW 1:-=;t9 iEW 199 (4.5) 

subject to 

In minimizing l(A) the value of A is chosen such that .l:::w llxi - 2::::1:-::;t:-:;4 Ttx~;i II ~ 
.l:::w II Yi - 2::::199 TtY~i II· The SAi algorithm iterates on A until the constraint is 

satisfactorily met, by decreasing A if the left side of the constraint is less than the 

right side and vise versa. This constraint holds if the sample statistics is shift invariant 

in the window W. We observe that the value of A is in the range of 0.2 rv 0.7 when 

meeting the constraint. For most natural images, one can simply choose A = 0.5 with 

no material loss of performance compared with the iteratively computed A. 
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Compared to existing autoregressive methods that use parameters X only [3, 42], 

the SAI algorithm expands the model parameter space by using two sets of parame­

ters 't and X· The expanded PAR model has the potential of representing the high­

resolution image more accurately than in [3, 42]. However, to circumvent the risk 

of data overfitting, we do not directly use an autoregressive model of order 8, but 

rather split model parameters X and 'tin two separate terms of the objective function 

(4.5). In fact, in separation from x, the parameters 't can be better estimated than 

parameters X using samples in the LR image, as we will see in the next section. 

With the block-based soft-decision estimation and the increased order in piecewise 

autoregressive modeling, the new SAI algorithm achieves unprecedented interpolation 

accuracy. More importantly it performs consistently well over a wide range of images, 

and the performance is far less sensitive to feature scales than existing techniques. We 

will return to these points in Section 4.6 when the experimental results are presented 

and discussed. 

Up to now we have only described the interpolation process of the first pass. Once 

the missing HR pixels in the first pass are interpolated as described above, half of 

the HR pixels are obtained. The remaining half of the missing HR pixels are to be 

interpolated in the second pass. The interpolation problem in the second pass is 

essentially the same as in the first pass. The only difference is that the SAI algorithm 

now interpolates the missing HR pixels xi E h using their four 4-connected neighbors, 

which are either known in 11 or estimated in the first pass. The problem has the same 

formulation as in (4.5), if we simply rotate the spatial configuration of Fig. 4.2(a) by 

45 degrees (see Fig. 4.3). 

4.4 Model Parameter Estimation 

A key to the success of the SAI algorithm is how well the model parameters X and 't 

in ( 4.5) can be estimated using LR image samples. Referring to the spatial relation 
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0 0 

0 0 0 
(8) (4) (8) 

Xio l Y;oz Xio2 

0 0 
(4) (4) 

Y;o1 x; Y;o3 

0 0 0 
(8) (4) (8) 

X;o4 Y;o4 X;o3 

0 0 

0 0 0 

Figure 4.3: Spatial configuration in the second pass of interpolation. 

between the samples in Fig. 4.4(b), one gets a linear least-square estimator of the 

model parameter vector 't: 

i = argmJn L(Yi - L TtY~lr (4.6) 
iEW l::;t:S:4 

where y;;; are the four 4-connected neighbors of the location i in 11 as labeled in 

Fig. 4.4(b) . Note that the estimates of 't in (4.6) are made using the LR pixels 

Yi E 11 that have the same spatial orientation and the same scale as the way the HR 

pixels xi E h are related by 'tin (4.5) (this is also clear in Fig. 4.2(b)). Hence the 

resulting estimates i are optimal in the least-square sense under the assumption that 

the sample covariances do not change in the local window W, which is generally true 

for natural images. 

(8) (4) 
Yiol Yio2 

't2• • 
(4) 0 0 (4) 

Yio3 Yiol Yi 

't1 
0 

• (4) 't4 •Yio4 

(a) Parameter X (b) Parameter 't 

Figure 4.4: Sample relations in estimating model parameters. 
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However, the estimation of the model parameters X is more problematic. One 

can simply, as proposed by Li and Orchard [3], compute X via the following linear 

least-square estimation 

A - o (8)
X - argmm L ( Yi - L XtYiot ) 

2 
(4.7) 

X iEW 19::04 

where y~l are the four 8-connected neighbors of the location i in !1 as labeled in 

Fig. 4.4(a) . The accuracy of (4.7) relies on a stronger assumption that the correlation 

between pixels is unchanged in different scales. This is because the distance between 

Yi and Yi~l in (4.7) is twice the distance between xi and Yi~l in (4.5). 

As argued in [3], the above assumption holds if the window in question has edge(s) 

of a fixed orientation and of sufficiently large scale. But experiments show (see results 

in Section 4.6) that previous edge-based interpolation methods are prone to artifacts 

on small-scale spatial features of high curvature, for which the second order statistics 

may differ from LR to HR images. In such cases the soft-decision estimation strategy 

of (4.5) can moderate the effects of estimation errors of (4.7), making the proposed 

SAi approach considerably more robust. 

4.5 Algorithm Details 

To perform soft-decision estimation the SAi algorithm needs to operate on blocks of 

pixels. The neighboring blocks should have some overlaps to prevent possible block 

visual artifacts. Many spatial configurations of the overlapped blocks can be used. 

To be concrete let us consider a particular configuration as illustrated in Fig. 4.5. 

As shown in the figure, a block of 12 unknown pixels x1, x2 , · · · , x12 , arranged in 

an octagonal window (bounded by the solid line in Fig. 4.5), are jointly estimated, 

constrained by the 21 available LR pixels y1 , y2 , • • · , y21 . Solving the least-squares 

problem of ( 4.5) in the octagonal window will yield a group of 12 estimated missing 

pixels. However, the SAi algorithm will only output the interpolated values of the 4 

42 




• • • • • • • • • 

• • • 

• • • 

• • • • • • • • • 

Ph.D. Thesis - X. Zhang McMaster - Electrical & Computer Engineering 

innermost unknown pixels x1 , x2 , x3 , X4 . In other words, the estimation is done in a 

moving octagonal window with one layer of perimeter pixels being overlapped with 

neighboring windows. 

0 0 0 0 0 0 0 0 
Yll Y12 YB 

-------~------• • , .. • •' ' X7 Xg/ 
0 0 0 

• 
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Y6 YL' Y7 

I 
IXI x2 X9I 
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Figure 4.5: A possible configuration used in the soft-decision interpolation algorithm 

The choice of window size and the degree of spatial overlap are design details 

related to implementation complexity and viewer preference on image appearance. 

Since the algorithm interpolates one block of missing pixels at a time by solving 

(4.5) , the larger the block and the smaller the overlap, the faster the algorithm runs. 

But the large block size may reduce the adaptability of the PAR model if there are 

varying features of small scale in a locality. Although higher degree of spatial overlap 

of neighboring windows means less likelihood of block artifacts, particularly near the 

boundaries of different features , it may cause some blurring of sharp edges. 

If £ 2 norm is used, the SAI algorithm involves solving three least-squares prob­

lems, namely the determination of model parameters 't, the determination of model 
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parameters x, and the minimization problem of (4.5). For each block we can compute 

't and X in the closed form solutions of (4.6) and (4.7). Namely, 

(4.8) 


where the column vector b is composed of all LR pixels Yi inside the block. The ith 

row of matrix B consists of the four 4-connected neighbors y~£ of Yi, t = 1, 2, 3, 4. 

And, 

(4.9) 


where the ith row of matrix A consists of the four 8-connected neighbors y~£ of Yi, 

t = 1, 2,3,4. 

We rewrite (4.5) in matrix form: 

(4.10) 


where x = (x1, x2 , • · · , x12 ) is the vector of the 12 unknown pixels in the current 

octagon window as labeled in Fig. 4.5, y = (y1 , y2 , · • · , y21 ) is the vector of the 21 

available LR pixels inside and on the boundary of the octagon window in Fig. 4.5, 

and 

(4.11)D=C= 

where I is the identity matrix with the subscript being its dimension, 0 is the zero 

matrix whose dimension is indicated by the subscript, >. is the Lagrangian factor in 

(4.5) , and 
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1 -T4 0 -T1 

X3 x1 x2 0 0 

X4 0 x1 X2 0 

-T2 1 -T1 0 

0 X4 X3 0 X2 0 -T3 1 -f2 

0 0 X4 X3 X1 -T3 0 -f4 1 

0 0 0 X4 0 0 0 0 -T4 

0 0 0 X1 0 -T4 0 0 0 
Cf= Ci= 

0 0 0 0 -f1 0 0 0X1 

x2 0 0 0 0 0 -T1 0 0 

0 x2 0 0 0 0 -T2 0 0 (4.12) 
0 X3 0 0 0 0 0 -T2 0 

0 0 0 0 X3 0 0 -T3 0 

0 0 0 0 X4 0 0 0 -T3 

D2 = [15 Os xl6] 

D1 = {d1(i,j)}, i = 1, 2, ... , 12, j = 1, 2, .. . , 21; 

where 

{ x. if y1 is the neighbor y~l of xi, t = 1, 2, 3, 4. 
d1(i , J ) -­

0, Otherwise 

Therefore , the estimated block of pixels are , as the solution of (4.10): 

(4.13) 


As can be seen from ( 4.13) , each missing pixel xi is estimated as a linear combi­

nation of all the available LR pixels y in the block, where the weights are specified 

by the ith row of the matrix F which is constructed by matrices C and D . Although 

the autoregression model parameters X and 't appear to relate xi to its immediate 

8-connected or 4-connected neighbors only, the net effect of soft-decision block es­

timation is to interpolate xi using all known pixels y in a local window. This is 
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equivalent to an adaptive non-separable two dimensional interpolation filter whose 

order is the same as the block size of soft-decision estimation, which distinguishes the 

SAi technique from the existing adaptive image interpolation methods. 

Clearly, the computation bottleneck of the SAi algorithm is in solving (4.13). 

Inverting the 12 x 12 matrix ( 4.13) is expensive. Instead, we use the conjugate 

gradient method, which ensures global minimum for the objective function (4.10) is 

convex. In particular, by exploiting the overlaps of moving windows, we can launch 

the conjugate gradient algorithm from a good initial point to achieve fast convergence. 

Referring to Fig. 4.5, we see that eight of the twelve unknown pixels in the current 

octagonal window have at least one estimate obtained when the adjacent windows to 

the north, northwest, northeast and west were processed. Due to spatial coherence of 

the HR image, these estimates are statistically good initial values of the corresponding 

variables in the objective function. For the other four unknown pixels which have 

no estimates yet, we use results of a traditional interpolation method (e.g., bicubic 

interpolation) as the initial estimates. With this initialization the steepest descent 

algorithm can converge in three iterations on average in our experiments. Also note 

matrix C is quite sparse with only 49 out of 252 elements being nonzero. This sparsity 

of C can be exploited to save computations. 

Another way of reducing computation complexity is to perform soft-decision es­

timation only in areas of high activities, because simple methods, such as bicubic 

interpolation, suffice to interpolate smooth two-dimensional waveforms. We classify 

the high activity areas based on the local variances estimated from LR pixels. If the 

local variance is above a threshold, the pixel is declared in the area of high activities. 

We empirically find that the variance threshold value of 100 realizes a good trade-off 

between complexity and performance. Fortunately, since most natural images have 

an exponentially decaying power spectrum, only a small fraction of pixels (10% to 

25% under the above threshold) need to be interpolated by the soft-decision method 

to ensure good visual quality. 
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4.6 Experimental Results and Remarks 

Extensive experiments were conducted to evaluate the proposed new image interpo­

lation technique in comparison with its predecessors. For thoroughness and fairness 

of our comparison study, we selected a large set of test images, including some of 

more difficult cases for image interpolation. Fig. 4.6 lists eight example images in our 

test set, some of which were also used as test images in existing literatures of image 

interpolation. 

(a) Lena (b) Baboon (c) Bike (d) Flower 

(e) Parrot (f) Bush (g) Leaves (h) Necklace 

Figure 4.6: Eight sample images in the test set. 

The comparison group includes four other image interpolation methods: bicu­

bic interpolation [7], subpixel edge localization [33], new edge directed interpolation 

(NEDI) [3], and fused bidirectional interpolation [42] . Table 4.1 tabulates the PSNR 

results of the five different methods when applied to the eight test images of Fig. 4.6. 

On all instances, the proposed SAI algorithm consistently ranks the first among all 

methods in terms of PSNR performance. On images of rich high frequency compo­

nents, such as Leaves and Bikes, the SAI algorithm exceeds the PSNR values of the 
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Table 4.1: PSNR (dB) results of the reconstructed HR images by different methods. 

The number in parentheses is the rank of the method. For the SAi algorithm, its 

gain in dB over the second best method is also given. 

Image Bicubic Method in [33] NEDI [3] Method in [42] SAI 

Lena 33.92 (3) 33.09 (5) 33.76 (4) 33.92 (2) 34.74 (1; 0.8ldB) 

Flower 32.30 (2) 30.18 (5) 30.47 ( 4) 31.89 (3) 32.51 (1; 0.2ldB) 

Leaves 30.52 (4) 30.25 (5) 30.68 (3) 30.73 (2) 32.16 (1; l.43dB) 

Baboon 22.92 (3) 22.84 (4) 23.10 (2) 22.79 (5) 23.28 (1; 0.18dB) 

Bush 26.34 (2) 25.79 (3) 25.53 (5) 25 .79 (4) 26.56 (1; 0.22dB) 

Necklace 31.63 (2) 30.75 (5) 30.84 (4) 31.35 (3) 31.89 (1; 0.36dB) 

Bike 25.53 (3) 25.39 (4) 25.35 (5) 25.64 (2) 26.53 (1; 0.89dB) 

Parrot 35.80 (2) 35.26 (5) 35.61 (3) 35.46 (4) 36.32 (1; 0.52dB) 

Average 29.87 (2) 29.19 (5) 29.42 (4) 29.70 (3) 30.51 (1; 0.64dB) 

second best method by ldB or more. Since PSNR is an average quality measure, 

we plot in Fig. 4.7 the spatial locations where the SAi algorithm produces signifi­

cantly smaller interpolation errors than the competing methods for more localized 

image quality assessment. The intensity level of the plots represents the magnitude 

of reduction in interpolation error by the new method from the competing method. 

Fig. 4.7 clearly demonstrates the advantage of the SAi algorithm in reproducing the 

high frequency image constructs (edges and textures) over the other methods. 

Given the fact that the human visual system is sensitive to errors near edges which 

signify object shapes and inter-object relationship, one can expect from the spatial 

patterns of Fig. 4.7 that the SAi algorithm should achieve superior visual quality. 

Figs. 4.8 through 4.11 compare the results of the five different image interpolation 

methods on test images Bike, Lena, Bush, and Flower, respectively. Different visual 

characteristics of the evaluated methods are exhibited near edges and fine textures in 
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(a) Bicubic (b) Method [33] (c) Method [42] (d) NEDI [3] 

(e) Bicubic (f) Method [33] (g) Method [42] (h) NEDI [3] 

Figure 4.7: Pixel locations where the SAI algorithm has smaller interpolation errors 

than the competing methods (only those of difference 3 or greater are plotted) on 

Bike and Lena images. The intensity level represents the magnitude of reduction in 

interpolation error by the proposed method from the competing method. 

the test images. 

The bicubic interpolation method tends to blur the image details more than other 

methods, and it also generates prominent jaggies along sharp edges. This method 

is in general inferior to the others in visual quality despite its PSNR measure is the 

second highest on average, next only to the proposed new method. 

The method of subpixel edge localization [33] reproduces sharp edges, but the 

reconstructed edges are somewhat contrived and at times unnatural. This problem is 

exemplified by the reconstructed flower petals in Fig. 4.ll(c), and by the rim of hat 

in test image Lena Fig. 4.9( c). This method consistently ranks lower than others in 

terms of PSNR. 

The NEDI method [3] is very competitive in terms of visual quality. This is 
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primarily because it preserves long edges well. But in high activity areas where 

features have small curvatures or multiple edges intersect, this method sometimes 

generates speckle interpolation noises and ringing artifacts, as shown in Fig. 4.8( e) 

and Fig. 4.ll(e), and more clearly in close-up parts of the reconstructed images in 

Fig. 4.12. Such flaws are the reason that this method only ranks the forth in PSNR 

in the comparison group of five methods, although it achieves pleasant visual effects 

on large edge structures. 

The fused bidirectional interpolation method [42] takes a middle ground between 

the direction-less bicubic interpolation and edge-directed interpolation. It reproduces 

sharper large scale edges than the bicubic method, but the reconstruction is not as 

good as the method of [3] when the LR image contains enough information to correctly 

learn the edge direction. However, on small scale features where the edge direction 

learnt from the LR image is not reliable, this method can reduce speckle interpolation 

noises via the MMSE fusion process. It is interesting to note that the fusion method 

ranks in between the bicubic method and the method of [3] in PSNR. 

As being evident in Figs. 4.8 through 4.11, the SAi algorithm eliminates most of 

the visual defects associated with the other methods. It reproduces visually more 

pleasant HR images than NEDI method that is considered as one of the best so far. 

Please refer to Fig. 4.12 for a side-by-side comparison between the two methods. Of 

particular significance is the fact that the SAi algorithm obtains superior visual qual­

ity on image features of large and small scales alike. This robustness is attributed to 

the soft-decision estimation technique that enforces the spatial coherence of estimated 

pixels according to the PAR model. 

Although the proposed SAi algorithm is presented to double the horizontal and 

vertical resolutions, it can be readily generalized to scaling factor a = 2z with z being 

a positive integer. One can simply apply the proposed SAi algorithm z times to scale 

the input image by a times. For an arbitrary scaling factor a (not an integer power 

of two), the interpolation can be done by first using the SAi algorithm to expand the 
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input image by 2z times such that 2z < a < 2z+1
, and then applying a conventional 

image interpolation algorithm, such as bicubic or bilinear interpolation, to scale up 

the output image of the new method bys times such that 2zs =a. Fig. 4.13 is an 

example for scaling factor of 3, and it shows that the image interpolated by the SAi 

algorithm followed by bicubic interpolation has better visual quality than the image 

by bicubic interpolation only. 

As described in section 4.4, the estimation of model parameters assumes that the 

spatial correlation between the HR pixels is approximately the same as between LR 

pixels. When this assumption is violated, the SAi algorithm may introduce some false 

edges or textures due to over-fitting of LR data. This over-fitting problem can be seen 

in Fig. 4.14. For this particular test image the spatial correlation changes after down 

sampling, which causes the SAi algorithm to produce erroneous textures. There is 

a way to detect where the over-fitting problem will likely occur. If the value of the 

cost function ( 4.5) at the convergence of the SAi algorithm is above a threshold, then 

chances are that the PAR model is not valid in the locality. As a recourse one can 

switch to a more conservative method such as bicubic interpolation to prevent the 

generation of false pixel structures. But this also tends to blur some sharp edges. 

4.7 Conclusion 

A novel soft-decision approach is proposed for adaptive image interpolation. When 

coupled with a PAR image model, the soft-decision approach estimates a block of 

missing pixels jointly by imposing an adaptively learnt spatial sample relation not only 

between known pixels and missing pixels but also between missing pixels themselves. 

This new image interpolation technique outperforms the existing methods in both 

PSNR measure and subjective visual quality over a wide range of scenes, by preserving 

the spacial coherence of the reconstructed high-resolution image on features of large 

and small scales alike. 
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(a) Original HR image (b) Bi cubic interpolation 

(c) Method in [33] (d) Method in [42] 

Figure 4.8: Comparison of different methods on Bike image (to be continued). 
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(e) NEDI (f) SAI 


Figure 4.8: Comparison of different methods on Bike image (Cont'd.). 


(a) Original HR image (b) Bi cubic interpolation 

Figure 4.9: Comparison of different methods on Lena image (to be continued). 
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(c) Method in [33] (d) Method in [42] 

(e) NEDI (f) SAI 


Figure 4.9: Comparison of different methods on Lena image (Cont'd.). 


54 




Ph.D. Thesis - X. Zhang McMaster - Electrical & Computer Engineering 

(a) Original HR image (b) Bicubic interpolation 

(c) Method in [33] (d) Method in [42] 


Figure 4.10: Comparison of different methods on Bush image (to be continued) . 
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(e) NEDI (f) SAi 


Figure 4.10: Comparison of different methods on Bush image (Cont'd.). 


(a) Original HR image (b) Bicubic interpolation 

Figure 4.11: Comparison of different methods on Flower image (to be continued). 
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(c) Method in [33] (d) Method in [42] 

(e) NEDI (f) SAI 


Figure 4.11 : Comparison of different methods on Flower image (Cont'd.). 
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(a) NEDI 

(b) SAi 

Figure 4.12: Reconstructed images enlarged to compare the edge-directed interpola­

tion method and the SAi algorithm (to be continued). 
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(c) NEDI (d) SAI 

(e) NEDI (f) SAI 

Figure 4.12: Reconstructed images enlarged to compare the edge-directed interpola­

tion method and the SAI algorithm (Cont'd.). 
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(a) (b) 

Figure 4.13: Images scaled up by 3 times using different methods: (a) the bicubic 

method; (b) the SAI algorithm followed by the bicubic interpolation (i.e., first scaling 

by a factor of 2 and then by a factor of 1.5) . 
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(a) 

(b) 

Figure 4.14: Visual effects of over-fitting of LR data. (a) Original image; (b) The 

output image of the SAi algorithm without safe guard against over-fitting. 
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Chapter 5 

Model-based Non-linear 

Restoration 

This chapter presents the most sophisticated image interpolation method developed 

in this thesis research. This method improves its predecessors, including the previous 

two methods, in two aspects. Firstly, a realistic model of LR image formation from 

the corresponding HR image is integrated into the interpolation process. As such, 

upsampling and deconvolution can be performed jointly rather than separately as 

in existing methods, which improves interpolation performance by factoring in the 

effect of the point spread function (PSF). Secondly, the new method can work with 

an arbitrary scaling factor while the previous methods are restricted to scaling factors 

that are power of two. 

5 .1 Overview 

As discussed in the previous chapter, the adaptability of the SAI algorithm comes 

from a 2D PAR image model that can adapt to varying two-dimensional image signal 

waveform. However, the SAI algorithm still suffers from a serious deficiency of mod­

eling like its predecessors [3, 41]: the image model is learnt from the LR image but 

62 




Ph.D. Thesis - X. Zhang McMaster - Electrical & Computer Engineering 

applied to reconstruct the HR image. The issue here is one of chicken and egg. On 

one hand, correct interpolation of missing pixels relies on a good model of HR image; 

on the other hand, the model can be built only if the missing pixels are known. To 

resolve this dilemma, we propose a new image interpolation technique that jointly 

estimates the parameters of the PAR model and the pixels of the HR image. We cast 

the joint estimation task as a constrained nonlinear least square problem having PAR 

model parameters and HR pixels both as unknown variables. The new technique of 

non-linear estimation for adaptive resolution upconversion (NEARU) aims to achieve 

the best possible statistical agreement between the estimated PAR model and the 

estimated HR image, constrained by the known LR image. For typical applications 

of image resolution upconversion, the constraint of NEARU is given by the PSF that 

produces the LR image from the HR image. Algorithmically, the problem of NEARU 

can be solved by the structured total least-square method. 

The NEARU technique has two distinct advantages over its predecessors. Firstly, 

NEARU provides a unified platform for adaptive interpolation (upsampling) and de­

convolution (sharpening). Up to now almost all published image interpolation al­

gorithms ignored the effect of PSF. Previous authors presumably meant to perform 

deconvolution in a separate step after interpolation. However, this separation ap­

proach is problematic because image deconvolution is highly susceptible to noises. 

The problem is made even worse by the fact that the interpolation noises are signal 

dependent. We fix the flaw of the separation approach by performing interpolation 

and deconvolution joint in a single non-linear estimation framework, in which the 

impact of PSF on the PAR image model is directly factored in the objective function. 

Further, the unified framework is capable of pixel-level adaptation. As a result, the 

HR images reconstructed by NEARU are sharper, cleaner, and have far less artifacts 

than the existing methods. Secondly, the NEARU technique can resize the LR image 

by an arbitrary factor with ease in a single pass of the LR image, whereas other adap­

tive image interpolation techniques, such as the NEDI method in [3] and our previous 
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two methods, need to make two passes of the LR image and perform interpolation in 

different orientations, and they do not lend themselves conveniently to scaling factors 

other than power of two. The performance gap in visual quality between NEARU and 

other methods increases as the scaling factor gets larger. This is an important prop­

erty in applications involving very large images, such as the printing of big posters 

for advertisement or homes, and cover pages in prepress. 

The rest of the chapter is structured as follows. Section 5.2 formulates the problem 

of joint image interpolation-deconvolution as a model-based non-linear estimation 

problem. The selection of the image models is discussed. Section 5.3 develops a 

structured total least squares (STLS) solution for the formulated NEARU problem. 

Section 5.4 introduces a technique to estimate the PAR model parameters from the 

observed LR image. This technique is based on a property of 2D autoregressive 

process degraded by PSF. Section 5.5 reports experimental results and a comparison 

study on some existing popular image interpolation methods. Section 5.6 concludes. 

5.2 Model-based nonlinear block estimation 

In this chapter, we assume that the observed LR image is generated from a HR image 

by filtering with a known PSF and downsampling. Let h be the HR image to be 

reconstructed, and 11 be the observed LR image. We register the pixels in h and I1 

in the same coordinate system. For convenience of notation, let the sampling center 

of each pixel be the location of this pixel. We denote the pixel of h located at (i, j) 

as x(i,j) , and the pixel of 11 located at (i,J) as y(i,J). The pixels of h have integer 

coordinates, i.e., i = 1, 2, .. ., M and j = 1, 2, .. ., N, where M and N are the number 

of rows and columns of the HR image; the locations of LR pixels with an arbitrary 

scaling factor a are indexed by (i, J) such that i = 1 + ka, k = 0, 1, 2, ... , lMaJ - 1 

and J = 1 + ka, k = 0, 1, 2, .. ., lNaJ - 1. An example of this sampling relationship 

between the HR and LR images is illustrated in Fig. 5.1. The scaling factor a in this 
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example is 1.5. In the figure, the circles identify the positions of the HR pixels and 

the crosses show the sampling locations of the LR pixels. Each LR pixel covers a 

block of its neighboring HR pixels via PSF. 

0 x 0 0 x 0 

0 0 0 0 0 0 
x x x x 

0 0 0 0 0 0 

0 x 0 0 x 0 

0 0 0 0 0 0 
x x x x 

0 0 0 0 0 0 

Figure 5.1: Sampling relationship between the HR and LR. The scaling factor shown 

here is 1.5. The circles are locations of HR pixels and the crosses are locations of 

LR pixels. Each LR pixel corresponds to a block of HR pixels through the filtering 

operation with a known PSF. 

The premise of the NEARU method is that image signal is a 2D PAR process. As 

such, we take an approach of block or windowed estimation for image interpolation, 

which is the same as the previous SAi method. In a local window W, our task is 

to jointly estimate the parameters of the autoregressive process and the block of HR 

pixels x E W such that the estimated PAR model can optimally fit the estimated x. 

One can expect a good fit of x E W to an autoregressive process because common 

image constructs, such as edges and surface textures, have consistent second order 

statistics in a locality. For the minimum mean squares criterion, the problem of joint 

image interpolation-deconvolution can be formulated as the following constrained 

65 




Ph.D. Thesis - X. Zhang McMaster - Electrical & Computer Engineering 

optimization problem: 

2 

min L (x(i,j) - Lau,vx(i - u,j ­
:c,a 

v)) 
(i ,j)EW u,v (5.1) 

subject to x * h = y 

where a is the vector of parameters of a 2D autoregressive model defined in local 

window W. The constraints x * h =yin (5.1) correspond to the physical formation 

of the LR image via a still camera, where * is the convolution operator, and vector 

x consists of all the HR pixels and vector y of all the LR pixels inside window W. 

Since the operator* is linear, x * h = y generates L equality constraints, L being the 

number of the LR pixels inside W (i.e., the length of vector y). 

However, at onset the objective function (5.1) presents a problem of data overfit­

ting, or curse of dimensionality. If a PAR model of order t (i.e., the length of vector 

a is t) is used, then the number of variables in (5 .1) is JWJ + t, whereas the number 

of equations between these variables is only IWI + L. From the spatial configuration 

of LR pixels y in relation to HR pixels x, we have L :S l;W. The ratio of the number 

of equations versus the number of unknown variables is bounded from above by 

IWl(l+-\) 1+-\ 1 
---~°'~= Q <1+- (5.2) 

a 2IWI + t 1+ it, ­
1 1 

Since the scaling factor a > 1 for image resolution upconversion, the number of 

equations (i.e., the number of samples in the underlying estimation problem) is very 

close to the number of unknown variables, almost independent of t. This exposes an 

acute data overfitting problem facing NEARU, which cannot be prevented merely by 

lowering the order of the PAR model t. 

On a second reflection, fortunately, the two dimensions of the image signal afford 

us ways to circumvent the problem of data overfitting. One way to increase the 

number of equations or constraints on pixels x E W is the use of multiple PAR 

models that associate pixels in different directions. Specifically, we introduce two 

PAR models of order 4, called the diagonal model ARx and the axial model AR+. 
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The models ARx and AR+ act on two disjoint neighborhoods of x(i,j): 

s+(i,j) = [x(i,j - 1), x(i - 1,j), x(i, j + 1), x(i + 1, j)f 
(5.3) 

sx(i,j) = [x(i - 1,j - 1), x(i - 1,j + 1), x(i + 1,j + 1), x(i + 1,j - l)f. 

Vectors Sx (i, j) and s+(i, j) consist of four 8-connected neighbors and four 4-connected 

neighbors of x(i, j) in the HR image, respectively, explaining our terminology of diago­

nal and axial models. Incorporating these two PAR models into the original nonlinear 

estimation framework, we modify the objective function (5.1) to the following: 

min{ L (x(i,j) -xrsx(i,j))2 + L (x(i,j) - 'trs+(i,j)) 2 
} 

:z:,x;t 
(i,j)EW (i,j)EW ( 5.4) 

subject to x * h = y 

where X = (x1, X2, X3, X4) and 't = (r1, T2, T3, T4) are parameters of the two PAR models 

ARx and AR+, respectively. From (5.1) to (5.4) the number of equations increases 

from IWI + L to 2IWI + L. While the number of equations is almost doubled, the 

number of unknown variables increases only by t = 4. Consequently, the ratio of the 

number of equations versus the number of unknown variables is increased to 

IWl(2 + -\) 2+-\ 
----°'~- °' (5.5)

IWI + 8 - 1 + l~I 

For example, if the above ratio is required to be 2 for robust estimation, we need to 

select a window size IWI ~ 16o:2 
. To prevent the overfitting problem, we prefer a 

large window W in block estimation of NEARU. However, a large window W has a 

higher chance of violating the assumption that the image signal is a stationary AR 

process in W . In balance, we choose the window size that makes the above ratio in 

the range of 1.5 to 2. 

The NEARU framework is general and the regularization term h in (5.4) can be 

any degradation function (e.g., PSF compounded by camera motion). To keep this 

chapter focused on resolution upconversion we consider only the effect of PSF via 

h. The incorporation of PSF in the framework of NEARU unifies the operations of 
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image upconversion and deconvolution, which were otherwise performed in two sepa­

rate steps in current practice. Unlike many existing image interpolation techniques, 

NEARU does not treat the pixels of the LR image as ground truth and will change 

these LR pixel values as a result of the non-linear least-squares estimation. Also, since 

the constraint x *h = y can accommodate any ratio between the HR and LR image 

sizes, NEARU offers a solution of joint upconversion-deconvolution for an arbitrary 

scaling factor. 

To adapt to possible drifting statistics in image space, the NEARU technique 

solves the optimization problem (5.4) in blocks. Adjacent blocks may overlap one the 

other to avoid blocking effects. In each local window W, as stipulated by the objective 

function (5.4), the parameters of models ARx and AR+ are jointly estimated with 

HR pixels x. This is a strategy to circumvent the chicken-and-egg dilemma of having 

to use the second order statistics of the LR image to interpolate the HR image, as 

proposed in [3]. Since NEARU estimates, in least-squares sense, a whole block of HR 

pixels x E W, rather than pixel by pixel in isolation, it is an alternative to Markov 

field approach for image interpolation. 

Although we adopt two PAR models ARx and AR+ of order 4 only for the sake of 

preventing model overfit, the block estimation process of NEARU has the net effect 

of an adaptive non-separable two dimensional interpolation filter that has as many 

as L taps. Namely, each HR pixel is interpolated using all LR pixels y E W . 

5.3 Structured total least-squares solution 

By applying a Lagrangian multiplier >., we convert the above constrained nonlinear 

least square problem to the following unconstrained nonlinear least square problem: 

min{ L (x(i,j)-xTsx(i,j)) 2+ L (x(i,j)--r:I's+(i,j)) 2 

:c,x,'t 
(i,j)EW (i ,j)EW (5.6) 

2+ >-1 IY - x *hi 1 } 
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The value of A is chosen according to the certainty about the underlying PSF h. In 

the case that h is exactly known, A can be set to a large value, such as 100. 

For convenient representation we rewrite (5.6) in matrix form: 

(5.7) 

where C 1 and C 2 are two matrices with dimension of jWj x jWj, jWj being the number 

of HR pixels in W. Specifically, 

Xt, if Xm is the tth element of s x ( i, j) where ( i, j) is the coordinate 

C1(m, n) = of pixel Xn, t = 1, 2, 3, 4. 

0, otherwise 

Tt, if Xm is the tth element of s+(i,j) where (i,j) is the coordinate 

C2(m, n) = of pixel Xn, t = 1, 2, 3, 4. 

0, otherwise 

(5.8) 

Matrix C 3 in (5.7) corresponds to the convolution operation. Since the convolution is 

linear operation, we can construct a matrix C 3 where C3x = x *h. Specifically, the 

matrix C 3 has the dimension of L x jWj and is constructed as following: C 3 (m, n) = 

h(i - i,j - J), where (i,j) is the coordinate of pixel Xn and (i,J) is the coordinate of 

pixel Ym· 

Define the residue vector r(x, x, -r) as 

r1(x,x)l 
r(x, X, -r) = r2(x, -r) (5.9) 

[ 
r3(x) 

where 

r1 (x, X) = (I - C1) *x 

r2(x, -r) = (I - C2) * x (5.10) 

r3(x) = v'>.(y - C3 * x) 
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and present the inverse problem (5. 7) in the following quadratic form: 

min r(x, X, 'tfr(x, X, 't) (5.11)
:ll,X;t 

The least-squares problem (5.11) is nonlinear, because HR pixels x and model 

parameters X and 't are all unknown and there are product terms between x and 

X and between x and 't. A general nonlinear least squares algorithm can be found 

in [75]. However, the problem (5.11) has some structures. Note that the residue 

vector r(x, X, 't) is linear in x and the matrices C 1 and C 2 are functions of X and 

't only. These properties make (5.11) to be of the type of separable nonlinear least 

squares [76]. To exploit these structures, we develop an iterative algorithm based 

on the methodology of structured total least squares [77]. First, we linearize the 

residue vector r(x, x, 't). Let ~x, ~X, and ~'t represent small changes in x, X and 't 

respectively, the residue vector r(x, x, 't) can be linearized as following: 

r1(x + ~x, X+ ~X) 
r(x + ~x, X+ ~X, 't + ~'t) = r 2(x + ~x, 't + ~'t) 

T3(X + ~x) 
(5.12) 

r1 (x, X) +(I - C1)~x - E1~Xl 
r2(x, 't) +(I - C2)~x - E2~'t 

[ 
T3(x) - JXC3~X) 

where E 1 and E 2 are two matrices with dimension of !WI x 4 constructed as following: 

the mth row of E 1 is sx(i,jf and the mth row of E 2 is s+(i,jf, where (i,j) is the 

coordinate of pixel Xm. 

Therefore, given the current estimates of the HR pixels x and the model param­

eters X, 't, the minimization problem in (5.11) reduces to min.6.:ll,.6.X,.6.t r(x + ~x, X+ 
~X, 't + ~'t), which is 

2 
~x-l+C1 E1 0 -ri(x,x) 

(5 .13)min -I+C2 0 E2 + -r2(x, 't)~x.6.:ll,.6.:x;,.6.t 
~'t -r3(x)JXC3 0 0 
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The resulting .6.x, .6.x, and .6.'t are the updates of the estimates of HR pixels x 

and model parameters X, 't for the next iteration. In each iteration the least-squares 

problem (5.13) is linear with .6.x, .6.X, and .6.'t being variables , and hence it can be 

solved efficiently. 

We present below in pseudocode the STLS algorithm for the proposed NEARU 

interpolation method. The HR pixels x and the PAR model parameters x, 't are 

jointly estimated in a local window W. At the initialization stage, given initial model 

parameters X(o) and 't(o), the first estimates of x are produced by solving a linear 

least squares described in (5.14). In successive iterations, the updates of .6.x, .6.x, 

and .6.'t are obtained by solving another least square optimization problem (5.13). To 

speed up the algorithm we adopt the conjugate gradient method to solve these two 

linear least square problems, instead of directly using the closed form formula which 

requires inverting matrices of large size. 

ALGORITHM STLS Joint estimation of a block of HR pixels and the PAR 

model parameters. 

Input - Observed LR pixels y in window w, initial model parameters x(O) ' 't(O)' 

and the PSF h. 

Output - Estimated model parameters X, 't, and the reconstructed HR pixels x 

in window W . 

1. 	 Initialization: Construct matrices C 1, C 2, and C 3 from X(o), 't(o), and h. Solve 

the following linear least square problem for x(o): 

2 

(5.14)mm O 
:z: 

../Xy 

2. 	 Iteration: For the k-th step 

(a) Construct matrices E 1 and E 2 from the estimate: x(k-l) . 
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(b) Solve the linear least square optimization problem in (5.13) for 	~x, ~X, 

and ~'t. 

(c) Update: x(k) = x(k-l) + ~x, X(k) = X(k-l) + ~X, and 't(k) = 't(k-l) + ~'t. 

(d) Construct matrices C 1 , C2 , and calculate the new residue vector r(k). 

3. 	 Stop condition: ( ll~xll ~ t, ll~xll ~ t and ll~'tll ~ t) or llr(k) 11 
2 > llr(k-1) 11 

2
, 

where t is a pre-defined stopping criterion. 

5.4 Estimation of PAR Model Parameters 

In general, the objective function (5.11) of NEARU is not convex, hence the way 

of initializing the iterative algorithm STLS is crucial to upconversion performance. 

The initialization steps involve the PAR model parameters. To proceed we need the 

following useful property of the 2D autoregressive process degraded by PSF h. 

Proposition 1. If an original image is a 2D autoregressive (AR) process and it has 

been degraded by a given point spread function h, then the degraded image is a 2D 

autoregressive moving average (ARMA) process. Its AR part has the same parameters 

as those of the original image, and its moving average (MA) part is determined by 

the parameters of h. 

Proof: Consider a 2D AR process (HR image) x with parameters a 

x(i,j) = Lau,vx(i - u,j - v) + e(i,j) (5.15) 
u,v 

where e( i, j) is white noise. Let y be the LR image generated from x by degradation 

with a 2D function (e.g., PSF) h: 

y(i,j) = L h(m,n)x(i - m , j - n). 	 (5.16) 
m,n 
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It follows from 

L au,vY(i - u,j - v) = L au,v L h(m, n)x(i - u - m,j - v - n) 
u,v u,v m,n 

= L h(m, n) L au,vx(i - u - m,j - v - n) 
m,n u ,v 

(5.17) 
= Lh(m,n)(x(i- m,j- n) - e(i-m,j- n)) 

m ,n 

= y(i,j) - Lh(m,n)e(i- m,j - n) 
m ,n 

that y is a 2D ARMA process 

y(i,j) = Lau,vY(i- u,j -v) + Lh(m,n)e(i- m,j - n), (5.18) 
u,v m,n 

whose AR part is the same as x and whose MA part is given by h. • 
The proposition suggests that we can estimate the PAR model parameters X and 

't for the original HR pixel block x E W from the observed LR pixel block y E W. 

Therefore, we initialize the algorithm STLS by assuming y to be an autoregressive 

process of zero mean in local window W. Then by Proposition 1, we compute the 

initial PAR model parameters x(O) and 't(O) via the following linear least square esti­

mation: 

x(O) = argm1n{ L (y(i,J)-xTsx(i,J))2} 
(i,J)EW 

(5.19) 
't(o) = argm~in{ L (y(i,J) - 'tTs+(i,J))2

}' 

(i,J)EW 

where sx(i,J) and s+(i,J) are two four-dimensional vectors whose elements are the 

four 8-connected neighbors and four 4-connected neighbors of y(i, J) in the LR image, 

respectively. Note that these two vectors only contain the known LR pixels. The 

closed form solutions of (5.19) are 

x(o) =(ATAt1ATY 
(5 .20) 

't(o) = (BTBtlBTy 
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where the column vector y consists of all the LR pixels y( i, J) in the window W . Each 

row of the matrix A is the corresponding vector sx(i,J). And each row of the matrix 

Bis the corresponding vector s+(i,J). 

5.5 Experimental Results and Remarks 

In this section we evaluate the performance of the NEARU method in both PSNR 

measurement and visual quality. Same as in the previous chapter, we compare 

NEARU method with four existing interpolation methods: the bicubic interpola­

tion method [7], the NEDI method [3], the fused bidirectional interpolation method 

of [42], and the subpixel edge localization method in [33]. All methods other than 

NEARU do not perform deconvolution in the interpolation process. To make fair 

comparisons, we also report the results of the other methods with a deconvolution 

step of Weiner filtering , assuming a known PSF in the simulation. A large set of test 

images was used to ensure the generality and validity of the experimental results. 

Fig. 5.2 lists ten sample images in the test set. 

(a) Lena (b) Hat (c) Bike (d) Flower (e) Pepper 

(f) Parrot (g) Bush (h) Leaves (i) Fruit (j) Flight 

Figure 5.2: Ten sample images in the test set. 

In our experiments LR images were simulated through low pass filtering and down­
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sampling of the test images. The PSF used in the simulation is a 2D Gaussian filter 

with standard deviation of 0.6. Table 5.1 lists the PSNR results of the reconstructed 

HR images by the five methods. For the four methods that do not consider PSF 

we also include the PSNR values after Wiener deconvolution. Interestingly, Wiener 

deconvolution increases the PSNR of the bicubic interpolation method, but it actu­

ally decreases the PSNR of the NEDI method and the methods [33, 42] by 3dB or 

more. This manifests the deficiency of carrying out interpolation and deconvolution 

separately in tandem. On all of the test images the NEARU method outperforms 

the others methods without exception. The average gain of NEARU over the second 

best method in the group, which is the bicubic method with Wiener deconvolution, 

is 1.37 dB. 

To assess the visual quality of the NEARU method in comparison with others, 

we display in Fig. 5.3 through Fig. 5.6 the output images of the NEARU, NEDI and 

bicubic methods on five test images. We include the NEDI method in the visual 

comparison group because its perceptual quality is among the best of the previously 

published methods. The images produced by the NEDI method look more blurred 

than those by the NEARU method for the obvious reason that the former ignores 

the effect of PSF. Applying Wiener deconvolution to NEDI sharpens the images but 

also generates severe speckle and ringing artifacts, which makes NEDI followed by 

deconvolution inferior to NEARU. Similar conclusions can be drawn between the 

bicubic interpolation method and NEARU. The NEDI method reproduces large scale 

edges noticeably better than the bicubic method, but its performance deteriorates on 

edges of high curvature and on small structures. This weakness can be seen by closely 

inspecting the eye lashes of Lena (Fig. 5.5( c)) and the writings on the hat (Fig. 5.4( c)). 

The new NEARU method appears to be a clear winner in visual quality, preserving 

edge geometry well and free of most of the artifacts made by the other methods. The 

visual quality assessment results also corroborate the objective measure of PSNR in 

Table I. 
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Table 5.1: PSNR (dB) of reconstructed HR images by different methods. For the 

first four methods the results with and without Wiener deconvolution are included 

Bicubic Method [33] NEDI [3] Method [42] 

Image With Without With NEARU 

Wiener 

Without With Without With Without 

Wiener Wiener Wiener Wiener Wiener Wiener Wiener 

Lena 34.40 33.40 29.01 33.11 30.89 33.66 33.08 33.96 35.74 

Flower 32.25 31.60 25.41 29.68 26.25 29 .85 30.39 31.24 33.51 

Leaves 30.66 30.05 25.55 29.71 27.58 30.05 29.46 30.19 32.99 

Bush 26.80 26.29 24.21 25.45 22.85 25.33 25.13 25.80 27.41 

Bike 26.03 25.54 23.95 25.27 23.23 25 .37 25.37 25.60 27.48 

Parrot 35.87 35.52 32.53 34.83 32.70 35.34 34.43 35.24 37.20 

Fruit 36.41 35.98 29.89 35.00 31.94 35.33 34.80 35.92 38.23 

Hat 30.74 30.38 28.73 30.51 29.14 30.59 30.13 30.55 31.92 

Flight 30.34 29.94 28.27 30.05 28.62 30.00 29.85 30.14 31.62 

Pepper 33.80 33.55 28.76 33.11 31.12 33.31 33.01 33.69 34.87 

Average 31.73 31.23 27.63 30.67 28.43 30.88 30.57 31.23 33.10 
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An advantage of the proposed NEARU method is its ability to upconvert an image 

by an arbitrary scaling factor a. In contrast, with exception of the bicubic interpo­

lation method, the other previously published methods were designed to interpolate 

images only for scaling factor of power of 2. Therefore, we only compare the NEARU 

method with the bicubic method for scaling factors that are not power of 2. Fig. 5.7 

and Fig. 5.8 show the interpolated Bike and Hat images by scaling factor of 1.8 and 

3.2 respectively. The HR images produced by the NEARU method are visually far 

more pleasant than those by the bicubic method followed by Wiener deconvolution, 

having cleaner and sharper edges. 

We also evaluate the visual quality of different methods for large scaling factors, 

a 2: 3. There are applications that demand large scaling factors, such as reproduction 

of digital images on magazine cover pages in prepress and on large posters in adver­

tisement. Fig. 5.9 shows a part of LR Bike image and its four times magnifications by 

the five methods. In this case, the method [33], the NEDI method and the method 

[42] are applied twice to perform image resolution upconversion by a factor of four. 

As demonstrated by Figs. 5.8 and 5.9, the improvement of the NEARU method over 

other methods in perceptual quality becomes even more convincing as scaling factor 

a increases. We call readers' attention to the capability of NEARU to faithfully re­

produce high curvature edges (e.g., fonts) and large structures alike, free of artifacts 

plaguing the other methods. 

In the experiments on arbitrary scaling factors, the test images are directly used as 

input LR images for the five methods. Here we do not know the true HR images nor 

the PSF function h, as in proceeding simulations. Instead, we use a Gaussian PSF 

h to associate the input LR with the output HR images in (5.4). In our simulations 

the standard deviation a of the Gaussian PSF is made proportional to scaling factor 

a, a =ca, c E [0.25, 0.5]. The ratio c = a/a governs the extent of the overlap of PSF 

kernels of two adjacent LR pixels. The results shown in Fig. 5.7, Fig. 5.8 and Fig. 5.9 

correspond to c = 0.33. In practice, one can adjust the parameter c to control the 
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sharpness of the reconstructed HR image. Given the scaling factor a, a PSF of larger 

<J (i.e., larger c) will lead to a sharper HR image. Fig. 5.10 illustrates what happens 

to the reconstructed HR image when one changes the value of c. 

5.6 Conclusion 

A technique of model-based nonlinear estimation for adaptive resolution upconver­

sion is proposed in this chapter. The image is modeled by two separate piecewise 

autoregressive models. The model parameters and the unknown HR pixels are jointly 

estimated for an image block. The problem is formulated as a nonlinear least square 

optimization problem and a structure total least square based solution is given. The 

proposed NEARU technique combines the adaptive upsampling and deconvolution 

into one pass and can resize the LR image by an arbitrary scaling factor. The new 

technique outperforms the existing techniques in both PSNR measure and subjective 

visual quality over a wide range of scenes, and is particularly suitable for large-scale 

resolution upconversion. 
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(a) Original Image (b) NEARU 

(c) NEDI [3] (d) NEDI with Wiener deconvolution 

Figure 5.3: Comparison of different methods on Bush image (to be continued). 
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(e) Bicubic (f) Bicubic with Wiener deconvolution 

Figure 5.3: Comparison of different methods on Bush image (Cont'd.). 

(a) Original Image (b) NEARU 

Figure 5.4: Comparison of different methods on Hat image (to be continued). 
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(c) NEDI [3] ( d) NEDI with Wiener deconvolution 

(e) Bicubic (f) Bicubic with Wiener deconvolution 

Figure 5.4: Comparison of different methods on Hat image (Cont'd.). 
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(a) Original Image (b) NEARU 

(c) NEDI [3] (d) NEDI with Wiener deconvolution 

Figure 5.5: Comparison of different methods on Lena image (to be continued). 
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(e) Bicubic (f) Bicubic with Wiener deconvolution 

Figure 5.5: Comparison of different methods on Lena image (Cont'd.). 

(a) Original Image (b) NEARU 

Figure 5.6: Comparison of different methods on Flower image (to be continued). 
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(c) NEDI [3] ( d) NEDI wjth Wiener deconvolution 

(e) Bicubic (f) Bicubic with Wiener deconvolution 

Figure 5.6: Comparison of different methods on Flower image (Cont'd.). 
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(a) Bicubic with Wiener deconvolution 


Figure 5.7: Interpolated Bike image with scaling factor a= 1.8 (to be continued). 
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(b) NEARU 

Figure 5.7: Interpolated Bike image with scaling factor a= 1.8 (Cont'd.). 
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(a) Bicubic with Wiener deconvolution 


Figure 5.8: Interpolated Hat image with scaling factor a= 3.2 (to be continued). 
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(b) NEARU 

Figure 5.8: Interpolated Hat image with scaling factor a= 3.2 (Cont'd.). 

88 




Ph.D. Thesis - X. Zhang McMaster - Electrical & Computer Engineering 

(a) LR Im­ (b) Bicubic with Wiener deconvolution 

age 

(c) Method [33] with Wiener deconvolution (d) Method [42] with Wiener deconvolution 

Figure 5.9: Comparison of different methods on Bike image with scaling factor a= 4.0 

(to be continued). 
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(e) NEDI with Wiener deconvolution (f) NEARU 

Figure 5.9: Comparison of different methods on Bike image with scaling factor a= 4.0 

(Cont'd.). 
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(a) c = 0.4 (b) c = 0.5 

(c) c = 0.67 

Figure 5.10: Effects of changing c in <7 = ca, the standard deviation of a Gaussian 

PSF, here a= 1.5. 
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Chapter 6 

Compression by Collaborative 

Adaptive Down-sampling and 

Upconversion 

In the remainder of this thesis our attention is turned to the use of image inter­

polation as a tool for low bit-rate image compression. In this chapter we study 

interpolation-based image compression of single description, and extend this work to 

multiple descriptions in the next chapter. 

6.1 Overview 

Over the past half century the prevailing engineering practice of image/video com­

pression, as exemplified by all existing image and video compression standards, is to 

start with a dense 2D sample grid of pixels. Compression is done by transforming the 

spatial image signal into a space (e.g., spaces of Fourier or wavelet bases) in which 

the image has a sparse representation and by entropy coding of transform coefficients. 

Recently, researchers in the emerging field of compressive sensing challenged the wis­

dom of what they called "oversampling followed massive dumping" approach. They 
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showed, quite surprisingly, it is possible, at least theoretically, to obtain compact 

signal representation by a greatly reduced number of random samples [78]. 

In this chapter, we seek for compact image representation in an approach of sparse 

sampling in the spatial domain. The fact that most natural images have an exponen­

tially decaying power spectrum suggests the possibility of interpolation-based com­

pact representation of images. A typical scene contains predominantly smooth regions 

that can be satisfactorily interpolated from a sparsely sampled low-resolution image. 

The difficulty is with the reconstruction of high frequency contents. Of particular 

importance is faithful reconstruction of edges without large phase errors, which is 

detrimental to perceptual quality of a decoded image. 

To answer the above challenge, we develop a new image compression methodol­

ogy of collaborative adaptive down-sampling and upconversion. The CADU approach 

puts an emphasis on edge reconstruction for the perceptual importance of edges and 

also to exploit the anisotropy of edge spectrum. In the CADU encoder design we 

choose not to perform uneven irregular down sampling of an input image according 

to local spatial or frequency characteristics. Instead, we stick to conventional square 

pixel grid by uniform spatial down sampling of the image. Consequently, the re­

sulting LR image can be readily compressed by any of existing image compression 

techniques, such as DCT-based JPEG and JPEG 2000. Yet the simple uniform down­

sampling scheme is made adaptive by a directional low-pass prefiltering step prior to 

down-sampling. The other purpose of this preprocessing is to induce a mechanism of 

collaboration between the spatial uniform down-sampling process at the encoder and 

optimal upconversion process at the decoder. 

The CADU decoder first decompresses the LR image and then upconverts it to 

the original resolution in constrained least squares restoration process, using a 2D 

PAR model, which is similar to the interpolation method described in previous chap­

ter. Two-dimensional autoregressive modeling was a known effective technique of 

predictive image coding [72, 79]. For the CADU decoder, the PAR model plays a role 

93 




Ph.D. Thesis - X. Zhang McMaster - Electrical & Computer Engineering 

II Directional 
Pre-filtering 

-~ 

• /J,Uniform 
Downsampling 

.I,,
CADU 

Upconversion 

Autoregressive 
Modeling 

Third Party 
Encoder ..._ 

Third Party 
Decoder 

Figure 6.1: Block diagram of the proposed CADU image compression system. 

of adaptive non-causal predictor. What is novel and unique of the CADU approach 

is that the predictor is only used at the decoder side, and the non-causal predictive 

decoding is performed in collaboration with the prefiltering of the encoder. 

Fig. 6.1 presents a block diagram of the proposed CADU image compression sys­

tem, summarizing the above ideas and depicting the collaboration between the en­

coder and decoder. 

The CADU image compression technique, although operating on down-sampled 

images, obtains some of the best PSNR results and visual quality at low to medium 

bit rates. CADU outperforms the JPEG 2000 standard, even though the latter is fed 

images of higher resolution and is widely regarded as an excellent low bit-rate image 

codec [80] . 

Since the down-sampled image has the conventional form of square pixel grid and 

can be fed directly to any existing image codec, standard or proprietary, the CADU 

upconversion process is entirely up to the decoder. Thus, as shown in Fig. 6.1, the 

proposed CADU image coding approach can work in tandem with any third party 

image/video compression techniques. This flexibility makes standard compliance a 

non-issue for the new CADU method. We envision that CADU becomes a useful 

enhancer of any existing image compression standard for improved low bit-rate per­

formance. 
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An important application of CADU is visual communication in wireless networks, 

where the bandwidth is at a premium and end devices have diverse display capa­

bilities, ranging from small screens of cell phones to regular screens of laptops. As 

illustrated in Fig. 6.1, the same standard-compliant code stream 11 feeds displays 

of different resolutions. The only difference is that high-resolution displays invoke 

CADU upconversion while low-resolution displays do not. This design happens to be 

compatible with network hardware levels since high-resolution displays are typically 

associated with more powerful computers. In such a heterogenous wireless environ­

ment scalable or layered image compression methods (e.g., JPEG 2000) are inefficient , 

because the refinement portion of the scalable code stream still consumes bandwidth 

and yet generates no benefits to low-resolution devices. 

Because the down-sampled image is only a small fraction of the original size, 

CADU greatly reduces the encoder complexity, regardless what third-party codec 

is used in conjunction. This property allows the system to shift the computation 

burden from the encoder to decoder, making CADU a viable asymmetric compression 

solution when the encoder is resource deprived. Furthermore, the superior low bit-rate 

performance of the CADU approach seems to suggest that a camera of unnecessarily 

high resolution can ironically produce inferior images than a lower resolution camera, 

if given a tight bit budget. This rather counter-intuitive observation should be heeded 

when one designs visual communication devices/systems with severe constraints of 

energy and bandwidth. 

The related previous works were reviewed in Section 2.3 of Chapter 2. Those 

works were largely motivated by the susceptibility of DCT-based block codecs to 

severe artifacts at low bit rates. However, in our view, for applications of very tight 

bit budget , one should adopt wavelet-based codecs, such as JPEG 2000, which are 

well known for their clear superiority over DCT-based codecs in both subjective and 

objective quality at low bit rates. Now the question is whether it is also advantageous 

to downsample an image prior to wavelet-based compression at low bit rates. This 
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chapter will answer this question affirmatively. In fact, according to our experimental 

results, the CADU technique coupled with JPEG 2000 consistently has higher PSNR 

than all existing techniques for bit rates below 0.3 bpp, and it achieves better visual 

quality than others for bit rates up to 0.5 bpp. 

The chapter is organized as follows. Section 6.2 describes the CADU encoder of 

uniform down-sampling with adaptive direction prefiltering. Section 6.3 presents the 

restoration process in decoder: a constrained least squares upconversion algorithm 

driven by a PAR image model. We report and discuss the experimental results in 

Section 6.4. 

6.2 	 Uniform Down-Sampling with Adaptive Direc­

tional Prefiltering 

Out of practical considerations, we make a more compact representation of an image 

by decimating every other row and every other column of the image. This sim­

ple approach has an operational advantage that the down-sampled image remains a 

uniform rectilinear grid of pixels, and can readily be compressed by any of existing 

international image coding standards. To prevent the down-sampling process from 

causing aliasing artifacts, it seems necessary to low-pass pre-filter an input image to 

half of its maximum frequency !max· However, on a second reflection, one can do 

somewhat better. In areas of edges, the 2D spectrum of the local image signal is 

not isotropic. Thus we seek to perform adaptive sampling, within the uniform down­

sampling framework, by judiciously smoothing the image with directional low-pass 

prefiltering prior to down-sampling. 

To this end, we design a family of 2D directional low-pass prefilters under the 

criterion of preserving the maximum 2D bandwidth without the risk of aliasing. Let 

wL(B) and WH(B) be the side lengths of the rectangular low-passed region of the 2D 

filter in the low- and high-frequency directions of an edge of angle e, respectively. 
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The maximum area of this low-passed region without aliasing is A= wL(O)wH(O) = 

7r2
. It is easy to show that there are only eight values of () (corresponding to three 

combinations of wL(O) and wH(O) values) to achieve wL(O)wH(O) = 7r2 while avoiding 

aliasing. These eight cases are tabulated in Table 6.1. Fig. 6.2 illustrates the above 

directional low-pass filter design for()= 0, tan-1 !, ~ (the low-passed frequency range 

for other angles can be obtained by rotation). The spectra in the diagrams are those 

of the straight line of angle (). 

Table 6.1: The design of directional low-pass 2D pre-filters 

() 0. Z!:. 
, 2 ± tan-1 l

2 
· ±tan-1 2, ±Z!:.

4 

WL(()) 7r 7r/V5 7r/../2 
WH(O) 7r V57r ../27r 

In addition, the directional low-pass filter design serves two other purposes: 1) 

Most efficient packing of signal energy in presence of edges; 2) Preservation of sub­

jective image quality for the edge is an important semantic construct . Moreover, as 

we will see in the next section, the use of low-pass prefilters establishes sample re­

lations that play a central role in the decoding process of constrained least squares 

upconversion. 

Many implementations of directional low-pass prefilters are possible. For instance, 

the following directional low-pass prefilter can be used 

h ( ..) . ( icosO +jsinO) . (-isinO+jcosO) ff·(· .)e i,J = msmc smc 'i' i,J (6.1) 
Si Sj 

where mis the normalization factor to keep the filter in unit energy, and w(i,j) is a 

window function (such as the sine window function). The parameters Si and Sj are: 

WH(O) WL(O)
s·--- (6.2)Si= 2;-' J - 27r 

In the directional prefiltering step, the CADU encoder first computes the gradient 

at the sampled position. If the amplitude of the gradient is below a threshold, the 

97 




Ph.D. Thesis - X. Zhang McMaster - Electrical & Computer Engineering 

(a) B = 0 (b) () = tan- 1 ~ 

(c) () = % 

Figure 6.2: Directional filters of maximum passed region wL(O)wH(O) = 7r2 . 
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isotropic low-pass filter h 0 is applied. Otherwise, the gradient direction is quantized 

and the corresponding filter ho in Table 6.1 is selected and applied. 

Despite its simplicity, the CADU compression approach via uniform down-sampling 

is not inherently inferior to other image compression techniques in rate-distortion per­

formance, as long as the target bit rate is below a threshold. The argument is based 

on the classical water-filling principle in rate-distortion theory. To encode a set of 

K independent Gaussian random variables {X1,X2 , • · · ,XK}, Xk ,....., N(O,ak), the 

rate-distortion bounds, when the total bit rate being R = L,~=l Rk and the total 

mean-squares distortion being D = L,~=l Dk, are given by 

K { 1 2}R(D) ={;max 0, 2log2 ; 

(6.3)
K 

D(R) = 	I:min{r,aD 
k=l 

Most natural images have a rapidly (e.g., exponentially) decaying power spectrum 

<I>(w). Suppose that the input image is i.i.d. in the Fourier domain and its power 

spectrum is monotonically decreasing. Therefore, given a target rate r*, if the rate­

distortion function of the image signal satisfies 

D(r*) > 11r <I>(w)dw, 	 (6.4) 
7r/2 

then uniform down-sampling by the factor of two will not limit the rate-distortion 

performance in information theoretical sense. Indeed, our experimental results (see 

Section 6.4) demonstrate that the CADU approach outperforms the state-of-the-art 

JPEG 2000 standard in the low to medium bit rate range. 

6.3 	 Constrained Least Squares Upconversion with 

Autoregressive Modeling 

In this section we develop the decoder of the CADU image compression system. Let 

Ji be the decompressed ~ x 1¥- subsampled image, and I be the original M x N image. 
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0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

(a) Downsampled prefiltered image (b) Original image 

Figure 6.3: The relationship between the down-sampled pre-filtered image and the 

original image. The illustrated kernel size of the filter is 3x3. A low-resolution pixel 

(black dots in (a)) is the filtered value of the corresponding 9 original pixels (white 

dots in (b)). 

The sample relation between I and I 1 is illustrated by Fig. 6.3. The decoder needs to 

upconvert I1 to the original resolution of I, which is the same problem as stated in the 

previous chapter for scaling factor of 2. Therefore, we apply the interpolation method 

described in the previous chapter to this upconversion problem. For convenience, we 

re-state the following notations of the previous chapter. x denotes the pixels of the 

original image I. y stands for the decoded pixels in the down-sampled pre-filtered 

image I 1. sx(i , j) and s+(i,j) are two vectors of four 8-connected neighbors and 4­

connected neighbors of x(i,j), respectively. Now, the upconversion problem can be 

formulated as follows: 

min{ 2:= (x(i,j)-xTsx(i,j)) 2+ 2:= (x(i,j)--cTs+(i,j))2}
:i:,x,i: 

(i,j)EW (i,j)EW ( 6.5) 

subject to llx *h - Yll 2 = ll11w(r)ll 2 for x E W 

where X = (x1 , x2 , x3 , x4 ) and "C = (T1 , Tz, T3 , T4 ) are parameters of the two PAR 

models ARx and AR+, respectively. Comparing with (5.4), we introduce a term 

1Jw(r) in (6.5) to stand for quantization errors incurred on lossy compressed y in 

local window W . Clearly, the compression noise 1Jw(r) is a function of rater. 
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The two PAR models in (6.5) characterize the axial and diagonal correlations 

respectively, as depicted in Fig. 6.4. These two models act, in a predictive coding 

perspective, as non-causal adaptive predictors. This gives rise to an interesting inter­

pretation of the CADU decoder: adaptive non-causal predictive decoding constrained 

by the prefiltering operation of the encoder. 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0'tt 

0 0 0 
'to 't2 

't30 0 0 0 0 

0 

0 

0 0 0 0 0 0 0 0 0 0 

(a) (b) 

Figure 6.4: Sample relationships with PAR model parameters: (a) x = (x1,x2,x3,X4), 

(b) 't = (r1,T2,T3,T4). 

Similar to (5.6), by applying a Lagrange multiplier .A, (6.5) can be converted to 

the following unconstrained least square problem 

Since y is lossy compressed, the value of A should be chosen according to the bit 

rate r . The quantization noise '11w(r) is a decreasing function in the bit rater . As 

r increases, the decoder weighs the constraint llx * h - Yll 2 = 11'17w(r)ll 2 more by 

increasing the value of .A. 

For each pixel Yi E 11, ho is adaptively chosen from the pool of prefilters listed in 

Table 6.1: ho for smooth waveform and others for different quantized edge directions, 

as described in the proceeding section. The decoder needs to know the chosen ho for 

optimal reconstruction, and it can determine the adaptive directional filter used at 
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the encoder by applying the same gradient operator as the encoder to the decoded 

image J1. This achieves the synchronization of the encoder and decoder with high 

probability without sending any side information. 

The CADU system design is asymmetric: the encoder is a simple and inexpensive 

process, while the decoder involves solving a rather large-scale optimization problem 

described in (6.6). 

6.4 Experimental Results and Discussions 

The proposed image coding method was implemented and evaluated in both PSNR 

and subjective quality. We compared the CADU method with the adaptive downsampling­

based image codec proposed by Lin and Dong [67]. The latter was reportedly the best 

among all previously published downsampling-interpolation image codecs [63, 64] in 

both objective and subjective quality. Note that all existing image codecs of this 

type were developed for DCT-based image compression, whereas the CADU method 

is applicable to wavelet-based codecs as well. Therefore, we also include in our com­

parative study JPEG 2000, the quincunx coding method [81], and the method of 

uniform down-sampling at the encoder and bicubic interpolation at the decoder. The 

bicubic method in the comparison group and the CADU method used the same sim­

ple encoder: JPEG 2000 coding of uniformly down-sampled prefiltered image. The 

difference is in the upconversion process: the former method performed bicubic im­

age interpolation followed by a deconvolution step using Weiner filter to reverse the 

prefiltering, instead of solving a constrained least squares image restoration problem 

driven by autoregressive models as described in the proceeding section. 

Although the proposed CADU method favors the reconstruction of edges, we 

chose, for fairness and generality of our comparative study, a large set of test images 

of various scene compositions. Here we report experimental results for four repre­

sentative images, which represent all common image features in balance: edges of all 
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scales, smooth regions, and granular textures, as one can see in Fig. 6.5. 

Table 6.2 lists the PSNR results of seven methods: DCT-based old JPEG stan­

dard (column JPEG), the method of Lin and Dong [67] (the 2nd column), the CADU 

method coupled with DCT-based JPEG (column CADU-JPG) JPEG 2000 (column 

J2K), JPEG 2000 coupled with uniform downsampling and bicubic interpolation (col­

umn Bicubic), the quincunx method [81] (column Quincunx), and the CADU method 

coupled with JPEG 2000 (column CADU-J2K). The results are tabulated against var­

ious bit rates from 0.1 bpp to 0.3 bpp. For the first two methods of the group, some 

table entries at very low bit rates are "N/A" because the DCT-based JPEG cannot 

even operate at such low rates for the image tested. 

The PSNR comparison between Lin-Dong's method and the CADU-JPG method 

is somewhat mixed. CADU-JPG has a small advantage over Lin-Dong's method in 

most cases, but the former lost to the latter by small margin for test images Flower and 

Bike when the rate is equal to and greater than 0.25 bpp. Although these two methods 

outperform old JPEG without downsampling, but they both produced significantly 

lower PSNR than wavelet-based JPEG 2000 without downsampling. Obviously, one 

should use JPEG 2000 when the bit budget is low in practice. For the state of the art 

in low bit rate image compression, the reader should pay closer attention to the results 

of the wavelet group in Table 6.2. At low rates, the CADU-J2K method achieves up 

to 0.5 dB higher PSNR than JPEG 2000. This improvement is quite remarkable given 

that JPEG 2000 is highly regarded for its outstanding performance at low rates [2]. 

Among the four competing methods in the wavelet group, the bicubic interpolation 

method has the lowest PSNR in most cases. Given that the CADU-J2K and bicubic 

interpolation methods use the same prefilters and the same JPEG 2000 encoder, the 

performance gap between the two manifests the efficacy of least squares non-causal 

predictive decoding constrained by adaptive directional low-pass prefiltering. 

The quincunx coding method also outperforms JPEG 2000 at low to modest bit 

rates, but it requires a much more expensive, non-standard encoder. 
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Table 6.2: The PSNR (dB) results for different compression methods. 
Methods 

Image Rate (bpp) DCT-based Wavelet-based 

JPEG Method [67] CADU-JPG J2K Bicubic Quincunx CADU-J2K 

0.10 

0.15 

N/A 

25.57 

N/A 

28.77 

27.69 

29.48 

30.19 

31.85 

30.13 

31.82 

30.29 

32.02 

30.42 

32.19 

Lena 0.20 28.77 30.67 30.72 33.21 32.88 33.28 33.35 

0.25 30.58 31.63 31.66 34.27 33.43 34.23 33.98 

0.30 31.81 32.39 32.48 35.02 33.82 34.91 34.46 

Leaves 

0.10 

0.15 

0.20 

N/A 

N/A 

24.14 

N/A 

N/A 

26.33 

23.83 

25.61 

26.78 

25.67 

27.51 

28.99 

25.69 

27.26 

28.29 

25.71 

27.91 

29.33 

26.05 

28.02 

29.43 

0.25 26.64 27.62 27.87 30.16 28.92 30.75 30.45 

0.30 27.86 28.58 28.73 31.35 29.42 32.01 31.22 

Flower 

0.10 

0.15 

0.20 

N/A 

N/A 

22.08 

N/A 

N/A 

25.13 

22.42 

24.24 

25.47 

24.16 

25.67 

26.98 

24.10 

25.72 

26.71 

23.99 

25.62 

26.88 

24.25 

25.92 

27.09 

0.25 24.84 26.40 26.43 27.98 27.78 27.87 28.04 

0.30 26.01 27.27 27.08 28.78 28.65 28.72 28.84 

Bike 

0.10 

0.15 

0.20 

N/A 

N/A 

20.74 

N/A 

N/A 

21.83 

20.20 

21.25 

21.97 

21.38 

22.42 

23.28 

21.34 

22.37 

23.25 

21.30 

22.30 

23.29 

21.55 

22.63 

23.61 

0.25 21.84 22.73 22.53 24.08 23.81 24.09 24.18 

0.30 22.66 23.46 23.03 24.68 24.33 24.77 24.90 

Next let us assess the subjective quality of the methods evaluated. Fig. 6.5 presents 

the decoded images by different methods at bit rate 0.2 bpp. First, we notice that 

the wavelet-based methods have superior visual quality to the DCT-based methods, 

which is consistent with the PSNR comparison results in Table 6.2. In the wavelet 

group, the CADU-J2K method produces the visually most pleasing images. At low bit 

rates both JPEG 2000 and the bicubic interpolation method produce objectionable 

visual artifacts (e.g., jaggies and ringings) in edge areas, whereas the CADU-J2K 

method is largely free of those defects. Even when the bit rate gets higher and JPEG 
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2000 starts to have higher PSNR than the CADU-J2K method, its visual quality still 

appears inferior, as demonstrated by examples in Fig. 6.6. The superior visual quality 

of the CADU-J2K method is due to the good fit of the piecewise autoregressive model 

to edge structures and the fact that the human visual system is highly sensitive to 

phase errors in reconstructed edges. We believe that the CADU-J2K image coding 

approach of down-sampling with directional prefiltering at the encoder and edge­

preserving upconversion at the decoder offers an effective and practical solution for 

subjective image coding. 

Some viewers may find that JPEG 2000 produces somewhat sharper edges com­

pared with CADU-J2K, although at the expense of introducing more and worse ar­

tifacts. However, one can easily tip the quality balance in visual characteristics to 

favor CADU-J2K by performing an edge enhancement of the results of CADU-J2K. 

Fig. 6. 7 presents some sample results of JPEG 2000 and CADU-J2K at the bit rate 

of 0.2 bpp after edge enhancement. For better judgement these images should be 

compared with their counterparts in Fig. 6.5. As expected, the high-pass operation 

of edge enhancement magnifies the structured noises accompanying edges in images 

of JPEG 2000. In contrast, edge enhancement sharpens the images of CADU-J2K 

without introducing objectionable artifacts, which further improves the visual quality. 

The CADU-J2K decoder has much higher complexity than the decoder based on 

bicubic interpolation. A close inspection of the reconstructed images by the CADU­

J2K decoder and the bicubic method reveals that the two methods visually differ 

only in areas of edges. Therefore, an effective way of expediting the CADU-J2K 

decoder is to invoke least squares non-causal predictive decoding, which is the com­

putation bottleneck of CADU, only in regions of high activity, and resort to fast 

bicubic interpolation in smooth regions. If a decoder is severely constrained by com­

putational resources, it can perform bicubic interpolation everywhere in lieu of the 

CADU restoration process. Such a resource scalability of the decoder is desired in 

application scenarios when decoders of diverse capabilities are to work with the same 
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code stream. 

(a) JPEG (b) Method [67] 

(c) CADU-JPG (d) J2K 

Figure 6.5: Comparison of different methods at 0.2bpp (to be continued). 

6.5 Conclusions 

We proposed a new, standard-compliant approach of coding uniformly down-sampled 

images while still outperforming JPEG 2000 in both PSNR and visual quality at low 
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to modest bit rates. This success is due to the novel upconversion process of least 

square non-causal predictive decoding constrained by adaptive directional low-pass 

prefiltering. Our findings suggest that a lower sampling rate can actually produce 

higher quality images at certain bit rates. 
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(e) Bicubic-J2K (f) CADU-J2K 

(g) JPEG (h) Method [67] 

Figure 6.5: Comparison of different methods at 0.2bpp (to be continued) . 
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(i) CADU-JPG (j) J2K 

(k) Bicubic (1) CADU-J2K 


Figure 6.5: Comparison of different methods at 0.2bpp (to be continued). 
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(m) JPEG (n) Method [67] 

(o) CADU-JPG (p) J2K 


Figure 6.5: Comparison of different methods at 0.2bpp (to be continued) . 
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(q) Bicubic (r) CADU-J2K 

(s) JPEG (t) Method [67] 

Figure 6.5: Comparison of different methods at 0.2bpp (to be continued). 
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(u) CADU-JPG (v) J2K 

(w) Bicubic (x) CADU-J2K 


Figure 6.5: Comparison of different methods at 0.2bpp (Cont'd.) . 
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(a) J2K (0.3bpp, 35.02 dB) (b) CADU-J2K (0.3bpp, 34.46 dB) 

(c) J2K (0.35bpp, 32.32 dB) (d) CADU-J2K (0.35bpp, 31.36 dB) 

Figure 6.6: Comparison of different methods. Note the superior visual quality of the 

CADU method even though it has a lower PSNR (to be continued). 
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(e) J2K (0.45bpp, 26.45 dB) (f) CADU-J2K (0.45bpp, 26.02 dB) 

Figure 6.6: Comparison of different methods. Note the superior visual quality of the 

CADU method even though it has a lower PSNR (Cont 'd .). 

(a) J2K (b) CADU-J2K 

Figure 6. 7: Edge-enhanced versions of the output images of JPEG 2000 and CADU 

at 0.2bpp. These images are to be compared with their counterparts in Fig. 6.5 (to 

be continued). 
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(c) J2K (d) CADU-J2K 

(e) J2K (f) CADU-J2K 

Figure 6.7: Edge-enhanced versions of the output images of JPEG 2000 and CADUat 

0.2bpp. These images are to be compared with their counterparts in Fig. 6.5 (Cont'd.). 
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Chapter 7 

Spatial Multiplexing Multiple 

Description Coding 

In this chapter, we extend our study on interpolation-based image compression from 

conventional single description coding to multiple description coding , and propose 

a practical standard-compliant image MDC technique. Multiple descriptions of an 

image are generated in the spatial domain by an adaptive prefiltering and uniform 

down sampling process, similar to the CADU approach described in the previous 

chapter. The resulting side descriptions are conventional square sample grids that 

are interleaved with one the other. As such each side description can be coded by 

any of the existing image compression standards. The side decoder is same as the 

decoder in CADU approach. The central decoder is algorithmically similar to the side 

decoder, but it improves the reconstruction quality by using received side descriptions 

as additional constraints when solving the underlying inverse problem. 

7.1 Overview 

One of the landmarks of modern digital multimedia technology is ubiquitous vi­

sual communications over lossy public networks (e.g., the Internet). The needs for 
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network-aware coding techniques to mitigate the problem of packet losses have gen­

erated much interest in MDC of images and videos. But all existing image MDC 

techniques [82, 83, 84, 85] are not compliant to existing image compression stan­

dards, either being completely different approaches or requiring a significant degree 

of modifications to an existing standard. 

Because all image compression standards, such as DCT-based JPEG and wavelet­

based JPEG 2000, require the input image to be a rectangular grid of pixels, the 

only standard-compliant approach of image MDC is to generate side descriptions by 

uniform down-sampling in the image space, as illustrated in Fig. 1.4. The question 

is whether the spatial multiplexing scheme of Fig. 1.4 can be made a practical and 

competitive solution for multiple description (MD) compression of images. In this 

chapter we will give an affirmative answer to the above question. 

Our new MDC technique, called spatial multiplexing multiple description, is 

schematically described in Fig. 7.1. An input image is prefiltered with an adaptive di­

rectional low-pass filter described in Section 6.2. In SMMD scheme, this preprocessing 

serves dual purposes: 1) introduction of correlations between side descriptions, and 

2) better energy packing of image signal. The filtered image is then split by a simple 

multiplexer into K ~ 2 SMMD side descriptions, each of which is a down-sampled 

subimage of square lattice. Any third party image compression method, standard or 

proprietary, can be used to compress the K subimages, generating K side descrip­

tion code streams. These SMMD K descriptions are transmitted from a source node 

to a destination node via diversity links in an erasure network. The SMMD side 

decoder is exactly same as the decoder in CADU approach. Specifically, it decom­

presses the received subimage and subsequently solves an inverse problem of restoring 

the original image using the correlation between subimages introduced by the pre­

filtering and a two-dimensional PAR model. The SMMD central decoder performs 

a joint demultiplexing-restoration of multiple interleaved decompressed subimages. 

Algorithmically, the SMMD central decoder is very similar to the SMMD side de­
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coder, but it improves the restoration quality by using received multiple subimages 

(side descriptions) as additional regularization constraints when solving the ill-posed 

inverse problem. 

I Adaptive 
Pre-filtering 

Spatial 
Multiplexer 

Third Party 
Encoder 

Least-squares Restoration is 
with WAR Modeling 

Least-squares Restoration isi 
with WAR Modeling 

Least-squares Restoration is 
with WAR Modeling 

Demultiplexing and i 
Least-squares Restoration 

with WAR Modeling 

Figure 7.1 : SMMD Framework. 

As clearly illustrated by Fig. 7.1, the SMMD encoder and decoder are independent 

of the third party conventional single-description image compression method used, 

thus they are compatible with any image compression standard. 

Since the prefiltering process and the side decoder are same as that in CADU 

method, we focus on describing the central decoder in the following section, and then 

report and discuss the experimental results in Section 7.3. Section 7.4 concludes. 

7.2 SMMD Central Decoder 

For the clarity of presentation and without loss of generality, we discuss the SMMD 

central decoder for the case of two descriptions (see Fig. 7.2). The following develop­

ment and results can be easily generalized to any number of descriptions. 

The block diagram of the SMMD central decoder is shown in Fig. 7.2. Upon 

receiving both descriptions, the central decoder demultiplexes the two decompressed 

subimages (side descriptions) i 1 and i 2 , and reconstructs a quincunx subimage JQ. 
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000000 
000000 
000000 

Third Party JI 
Decoder 

Third Party f2 

Decoder • • 

Demultiplexing 

• 

A 000000 
000000 
000000

Description 1 
A 

IQ Least-squares 
Restoration 

Description 2 

Autoregressive 
Modeling 

Figure 7.2: Block diagram of the SMMD central decoder. 

Then the original image I is reconstructed from JQ by a similar inverse filtering 

technique as the side decoder. 

The subimage JQ can be formed by directly merging the two decoded descriptions 

f 1 and f2. However, since the two subimages f1 and f2 are spatially interleaved, one 

can also be estimated from the other by interpolation. Suppose that a pixel Yi in JQ 
corresponds to a sample Y?) in side description ik, k = 1, 2. We can interpolate Yi 

from the other description and obtain another estimate Yi. We fuse y;k) and Yi to 

make a more robust estimate of yi: 

(7.1) 


where w is a context-based weight. The context consists of three features: 

(7.2) 


We quantize the context into four classes, and select the weight w based on the 
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classification: 

W1 if di<= 2 


W2 if 2 <di<= T n lµi - Cil <= di/2 

(7.3) w= 

W3 if 2 <di<= T n lµi - Cil > di/2 


W4 if di> T 


The threshold T and the four weights w1 through w4 in (7.3) are optimized using a 

training set. 

As in the proceeding chapter, denote by y the pixels in the quincunx image fQ 

and x the pixels in the original image I. Then the problem formulation for SMMD 

central decoding is the same as (6.5). But there are important differences between the 

SMMD central and side decoding when it comes to solving (6.5) and estimating model 

parameters. Firstly, the term llx*h-yll 2 = ll1Jw(r)ll 2 in (6.5) now has twice as many 

constraints as in the case of side decoding. This is because the SMMD central decoder 

works with the quincunx subimage fQ instead of f1 or f2 . Since these constraints are 

imposed by directional prefiltering, the availability of more constraints improves the 

estimate made by the inverse filtering of (6.5) that is an ill-posed problem to begin 

with. Secondly, the estimates of the PAR model parameters are also improved by the 

availability of both side descriptions i1 and f2. Fig. 7.3 shows the spatial configuration 

between Yi and its neighbors for the SMMD central decoder, in which the relationship 

between Yi and its neighbor Yi~t in fQ has the same space scale as that between xi and 

its neighbors x:Ot in I . Therefore, the the model parameters X can be better estimated 

for the central decoder than for the side decoder. The above are the reasons for the 

reduction of distortion from the side decoder to the central decoder. 

7 .3 Experimental Results and Discussions 

Experiments were carried out on natural images to evaluate the proposed SMMD 

technique in comparison with two recently published multiple description image cod­
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• • + • •Yiol• x • x •Yi<>O Yiol• + • • + •Yi<>0 Yi Yio2 

• + 

x• x • •Yio2 Yio3 

Yio3 

Figure 7.3: The relationship between low-resolution pixel Yi with its neighbors in IQ. 

ing techniques [84] and [85]. The latter two techniques produced some of the best 

MDC image coding results so far. The reported SMMD results are for two sym­

metric side descriptions as described in the proceeding sections. Each resulting side 

description is encoded by the JPEG 2000 standard. 

Fig. 7.4 plots the side PSNR and central PSNR of the different MDC techniques 

versus the central bit rate (bpp) for four test images. For all the test images, both 

the side and central descriptions of the SMMD technique achieve higher PSNR than 

the other two MDC techniques at low to modest bit rates. For the same performance 

of the central decoder, the SMMD side decoder can outperform the other two side 

decoders by more than ldB in PSNR at low bit rates. However, at high rates, the 

currently implemented SMMD system performed worse than the other two methods in 

PSNR. This performance can be improved by different spatial multiplexing schemes. 

The study on this line is underway. 

With its emphasis on edge reconstruction, the SMMD technique appears to pro­

duce superior visual quality than its competitors in both side and central descriptions. 

This is the case even when the SMMD technique has a lower PSNR than the others. 

To verify this please refer to Fig. 7.5 through Fig. 7.7 in which some decoded images 

by the three MDC techniques are compared. Common compression artifacts at low 

bit rates, such as jaggies along edges, are greatly reduced by the SMMD technique. 
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When losing one description , the SMMD side decoder still preserves edges well 

and reconstructs the original image with good visual quality. This can be seen by 

comparing Fig. 7.5(e) with Fig. 7.5(f) , and Fig. 7.6(e) with Fig. 7.6(f) . However, a 

side description is insufficient to reproduce very high frequency components due to the 

spatial downsampling. In this case, the visual quality of the reconstructed image can 

be improved significantly by the central decoder when both descriptions are available. 

Fig. 7.8 presents three such examples. The high frequency clothes stripes, and the 

details such as eyelashes and spokes are reconstructed much better by the central 

decoder than the side decoder. 

7.4 Conclusion 

A spatial multiplexing multiple description scheme for image MDC is proposed in 

this chapter. Multiple descriptions are generated by uniformly downsampling in im­

age space with adaptive prefiltering. Side decoder reconstructs the input image by 

solving an inverse problem with 2D piecewise autoregressive modeling. Central de­

coder demultiplexes the multiple descriptions first, and then reconstructs the input 

image in a way similar to side decoder, but improves the reconstruction quality with 

additional constraints. 
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Figure 7.4: Comparison of different methods in both side and central PSNR (dB) 

versus the central rate (bpp) (to be continued). 
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Figure 7.4: Comparison of different methods in both side and central PSNR (dB) 

versus the central rate (bpp) (Cont'd.). 
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(a) Side description of [84] (b) Central description of [84] 

(c) Side description of [85] (d) Central description of [85] 

Figure 7.5: Comparison of decoded Lena images at 0.25 bpp/description (to be con­

tinued). 
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(e) SMMD side description (f) SMMD central description 


Figure 7.5: Comparison of decoded Lena images at 0.25 bpp/description (Cont'd.). 


(a) Side description of [84] (b) Central description of [84] 

Figure 7.6: Comparison of decoded Fruit images at 0.4 bpp/description (to be con­

tinued). 
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(c) Side description of [85] ( d) Central description of [85] 

(e) SMMD side description (f) SMMD central description 


Figure 7.6: Comparison of decoded Fruit images at 0.4 bpp/description (Cont'd.). 
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(a) Side Description of [85] (b) Side Description of [84] 

(PSNR: 26.87dB) (PSNR: 26.79dB) 

Side Descrip­(c) SMMD 

tion(PSNR:26.59dB) 

Figure 7.7: Comparison of decoded Bike images at 0.6 bpp/description. Note that 

the SMMD side decoder produces superior visual quality even though it has lower 

PSNR than the other two MDC techniques. 
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(a) Side (b) Central 

(c) Side (d) Central 

(e) Side (f) Central 

Figure 7.8: Comparison of the performance of SMMD central decoder and side de­

coder. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

The research of this thesis advances the state-of-the-art of image interpolation tech­

nology and significantly improves the accuracy and visual quality of existing methods. 

Three new image interpolation methods are proposed: the first one is a classification 

approach that chooses an interpolation direction based on texture orientation; the 

second method is a soft-decision approach that estimates missing pixels in blocks 

rather than individually to ensure spatial coherence of the reconstructed image; the 

third method takes a new model-based nonlinear image restoration approach in which 

the model parameters and the unknown HR pixels are jointly estimated. These new 

methods have been implemented and thoroughly evaluated in comparison with those 

published in the literature. Extensive experiments have been conducted and the re­

sults convincingly demonstrate the advantages of the proposed methods over their 

predecessors. 

In addition, we study and explore the use of image interpolation as a technique 

for image compression, in particular for two important scenarios: low bit-rate visual 

communication and network-aware multiple description coding. The study results in 

two novel standard-compliant interpolation-based compression methods, one for low 
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to medium bit rates and the other for multiple descriptions. They generate some 

of the best rate-distortion performance reported in the literature in their respective 

categories. 

Although most of our results are satisfying and among the best so far in the fields, 

they can still, we believe, be improved and extended to other topics of image/video 

processing. The piecewise autoregressive image model plays a central role in the de­

velopment of the SAi and NEARU methods. But the estimation of model parameters 

in an LR image is prone to the problem of data overfitting. Currently, we circumvent 

the problem by using two separate models of lower order and weighing them. But 

a more principled solution should be a unified model whose order is determined in 

minimize description length principle. Any progress in this regard will further im­

prove the interpolation performance in the future. Another possibility is to choose 

from a pool of one-dimensional models of higher order. This may allow us to fully 

exploit the anisotropic property of the image signal and interpolate in the direction 

of highest statistical redundancy. 

Discerning readers may have found our technique of NEARU is a general model­

based image restoration framework. With some modifications this framework can be 

applied to other image restoration problems, such as video superresolution, denois­

ing, deconvolution, deblurring, color demosaicking, and reconstruction of compressive 

sensing. This line of research is underway. 
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