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ABSTRACT

This thesis investigates the broad theme of guaranteeing the stability of nonlinear control

systems. In the first section, we describe the application of discrete controller for the

stabilization of certain nonlinear stochastic control systems subject to unavailability of state

measurements. In the second section, we consider input constrained nonlinear systems and

characterize the region from which stabilization to the origin is possible. We then use this

information to design a controller which stabilizes everywhere in this set.
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Chapter 1

Introduction

This thesis is, in a broad sense, is an investigation of mathematical control systems. In

this way, all we have studied is how to influence dynamical systems to provoke desirable

properties. However, this thesis is also as much as a study of control systems engineering,

where we design control systems to accomplish engineering objectives.

1.1 Motivation and Goals

This research spans several themes, the most prominent of which is the design of controllers

which recognize the nonlinearities exhibited by many systems. In chemical engineering ap-

plications, particularly the dynamics of chemical reactors, we face the challenge of designing

control systems to stabilize highly nonlinear reaction kinetics. We are also challenged to

control systems with input constraints. For example, all reactors have a maximum heating

and cooling rate. We consider both this saturation nonlinearity and other nonlinearities in

the system dynamics.

In many other applications, we must design control systems which are robust to distur-

bances to their dynamics. For instance, the feed composition into a reactor may experience

wide variations. Controllers (and observers) which address the uncertainty caused by dis-
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turbances is another theme of this research.

In yet another set of themes, we employ controllers with the objective of guaranteeing

stability. For stability analysis, we make use of Lyapunov’s much celebrated direct method.

To stabilize systems, we frequently propose the technology of model predictive control.

This is again motivated by chemical engineering applications where predictive controllers

are often used to steer complex dynamics close to their setpoints.

Hence, this research is motivated by the challenges which afflict modern control systems.

The goal of this research is to design control systems which improve upon the performance

of current designs.

1.2 Key Contributions

This thesis is an exposition of work on two topics.

The first topic is a study of the properties of a model predictive controller for systems with

stochastic disturbances. In this topic, covered in two papers, we investigate how, and in

what sense, stability can be imparted by a discrete controller operating on a continuous

random dynamical system. In that work, we address the additional complication where the

system has states which cannot be measured and must be reconstructed by an observer. A

further introduction can be found in Chapter 2.

The second topic considers the problem of characterizing the null controllability region of

nonlinear control systems. We use the machinery of optimal control theory to trace the

boundary of this set. We then use the definition of this set to define a control law which

guarantees stability from the largest possible set of initial conditions. This research has

not yet formed any published or submitted document. Again, further introductions are

contained in Chapter 3.

Both works focus on the stabilization of nonlinear systems with input constraints. Because

of this, both works begin with a characterization of the system’s region of attraction. Sec-
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ondly, both works use Lyapunov analysis to show stability of the feedback systems and

employ Lyapunov-based predictive controllers.

1.3 Preliminaries

What follows is a very fast introduction to a few basic technical prerequisites in this thesis,

however, it would be intractable for this document to be self-contained. As such, the reader

should consider the material in the texts: H. Khalil ”Nonlinear Systems”, and C. Chen

”Linear Systems Theory and Design”, to be essential. Less is assumed from the material in

L. Evans ”An Introduction to Mathematical Optimal Control Theory” and L. Evans ”An

Introduction to Stochastic Differential Equations”, but these two manuscripts should also

be considered prerequisite.

In this thesis, we consider the problem of controlling a generalized dynamical system to

some desirable setpoint. However, we are more concerned about the states of the sys-

tem converging to the setpoint (i.e. the origin) than we about the controller’s dynamic

performance. Likewise, the prevention of closed-loop instability has important safety and

reliability implications. This is why, in our formulations, we make a special effort to confer

stability guarantees upon the controller. If there is a region of state-space from which the

system necessarily converges to the origin, we say that it is locally asymptotically stable.

For example, observe that the system ẋ = −2x is everywhere stable.

It is well known the linear autonomous system are asymptotically stable if the closed-loop

system has all eigenvalues with negative real parts. We use Lyapunov’s second method to

analyze the stability of nonlinear systems. In this technique, we define a positive-definite

’energy’ associated with the deviations of the states from the origin. Importantly, if the

control action always causes the energy to decrease, then this shows that the system is stable.

To make this more precise let ẋ = f(x, u) be a system dynamics and let V (x) : Rn → R+

be a functional which admits V (0) = 0 and V (x) > 0 whenever x 6= 0. Then, if there exists

a control policy φ(x) such that V̇ (x) = ∂V
∂x ·f(x, φ(x)) < 0 for all x 6= 0, and V̇ (0) = 0, then
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the dynamics are asymptotically stable under the control φ(x).

For example, it is known that a controllable linear system ẋ = Ax + Bu can be stabilized

with an appropriate choice of the gain K, where u = Kx. Thus, nothing is stopping us

from suggesting a Lyapunov function of the form V (x) = xTPx. With the appropriate

manipulations, we can show that its derivative along the flow of the trajectory x(t) is just

V̇ (x) = −xTQx, where Q > 0 is determined from the dynamics. Thus, this system is

asymptotically stable. Conversely, if a system is asymptotically stable, then there exists a

V (x) which verifies this fact.

Moreover, we make frequent use of model predictive control. This controller often takes

the form of implementing the sequence of feasible control actions which are predicted to

minimize the states’ distance from the setpoint. The controller then regularly re-computes

the optimal control plan as new information becomes available. MPC can be augmented

by other logic, such as to obey state constraints or minimize control effort. Notice that

because the control objective is arbitrary in general, we must employ additional conditions

explicitly to guarantee stability of the closed-loop system.

In Chapter 2, we consider the control of stochastic dynamical systems. These systems

have dynamics that evolve randomly in time but where possible realizations have well-

characterized probabilities. A stochastic system (in the sense of Ito) is shown below:

dXt = f(Xt, ut)dt+ g(Xt)dWt (1.1)

where Wt is the ’Brownian motion’ random variable. Notice that the system is written

as an infinitesimal because stochastic processes are non-differentiable. The usual rules of

calculus do not apply to these systems, so quantities such as the derivative of the Lyapunov

function have their own special definitions in this setting. For instance, Ito’s Lemma giving

expansion of a function p(Xt) of a scalar stochastic process Xt is shown below:

dp(Xt) =

(
∂p(Xt)

∂t
+ f(Xt, ut)

∂p(Xt)

∂x
+

1

2
g(Xt)

2∂
2p(Xt)

∂x2

)
dt+ g(Xt)

∂p(Xt)

∂x
dWt (1.2)

Terms in the dynamics that are purely deterministic are called ’drift’ (e.g. f(·)), otherwise

they are called ’diffusion’ (e.g. g(·)). In this chapter, we use the idea of the diffusion
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process to model state-dependent disturbances. Unlike deterministic disturbances, random

disturbances have unbounded magnitudes, so stability is achieved in a probabilistic sense.

In many applications, some states are not measured directly by instruments and so they

must be reconstructed indirectly by observing other system behavior. In general, the es-

timated states are adjusted until the dynamics of the measured states are corroborated

by what is observed in the plant. To show convergence of the estimator, we show asymp-

totic stability of its error dynamics. To this end, consider the following typical Luenberger

observer for a linear control system:

˙̂x = Ax̂+Bu+ L(y − Cx̂) (1.3)

Where y = Cx is a measurable state (an output), and ŷ is its estimate using the observer.

Next, notice that the dynamics of the error e = x − x̂ is simply ė = (A − LC)e. It is well

known that if A−LC has eigenvalues with all negative real parts, then the error dynamics

are asymptotically stable.

In Chapter 3, we make extensive use of results from optimal control. These results are a

re-statement of the famed Euler-Lagrange equation of the calculus of variations, which can

be used to determine a whole path which minimizes some objective.

Finally, a system is said to be controllable if there exists a sequence of control actions which

controls the system from any state to any other state. That is, there exists a u(t) and T

such that x2 = x1 +
∫ T

0 Ax(t)+Bu(t)dt for all x1 and x2. In this formulation, u can take on

any value, but in practice, the presence of input constraints will limit the set of states which

can be controlled to the origin. Criteria for unconstrained nonlinear controllability can be

found in Slotine ”Applied Nonlinear Control”. The question of constrained controllability

is considered in Chapter 3.
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1.4 Thesis Overview

This thesis presents the two topics in individual chapters and then concludes. It reproduces

verbatim the text of their corresponding journal paper drafts.



Chapter 2

Output Feedback Model Predictive

Control of Stochastic Nonlinear

Systems

In this chapter we present our results on stochastic model predictive control. This work

was first published as ”Output-Feedback Model Predictive Control of Stochastic Nonlin-

ear Systems” in the Proceedings of the American Control Conference 2015. It was then

greatly expanded and submitted as ”Output-Feedback Lyapunov-based Predictive Control

of Nonlinear Systems” to a prominent control theory journal. At the time of writing, we

are awaiting a verdict from the reviewers.

This chapter has two related facets. The first contribution of this chapter concerns the de-

sign of stochastic observers. There we discuss the existing results on observers for stochastic

nonlinear systems that can be transformed exactly into a linear system and design an ob-

server for an example system. We also go on to show closed loop stability of this system. For

more on feedback linearization, see the end of this chapter. We then create a novel observer

design for nonlinear stochastic systems and prove that it has error dynamics which are

asymptotically stable in probability under certain conditions. We use a Lyapunov method

7
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(see Chapter 1) for this purpose and show that the observer is the first that is applicable

to stochastic chemical reactor systems.

The second contribution in this chapter concerns the design of discrete controllers for

stochastic dynamical systems. The first step is to define the finite region of state space

(the region of attraction) where the control action is strong enough to stabilize the system

to the origin in expectation if continuous implementation of the controller were possible. In

that analysis, the fact that the estimated states are corrupted by error is used to shrink this

region appropriately. Next, using a particular hold time of the control, our results give the

probability that the trajectory will adopt stabilizing behaviour over the whole hold period.

The proof of this result is analogous to calculating a maximum escape speed of the states. A

second result gives the probability that the system remains within a certain neighbourhood

of the origin for a period of time, even in view of the random disturbances.

We then design a model predictive controller that inherits the described properties by sat-

isfying a constraint that it must choose a control action which decreases the energy of

the expected dynamics. We simulate a stochastic chemical reactor system (with unmea-

sured reactant concentration) and show that realizations have stabilizing behaviour with

the anticipated likelihoods. Lastly, because the MPC is only feasible inside the region of

attraction, we show that the disturbance rejection probability can be re-stated to calculate

the probability of successive feasibility of the predictive controller.

The rest of this chapter follows the journal paper submission verbatim, except in the final

section on stochastic feedback linearization which was removed to condense the paper.

2.1 Abstract

In this chapter, the problem of output-feedback control of stochastic nonlinear systems

is considered. A predictive controller is designed for which stability and feasibility (in a

probabilistic sense) are guaranteed from an explicitly characterized region of attraction.

The controller’s performance is characterized by its risk of allowing destabilizing system



9

behavior. Since the controller design relies on certain convergence properties of the state

observer, two compatible observer designs are presented: an existing design using stochastic

feedback linearization, and a novel generalization of a nonlinear observer to the stochastic

setting. Simulation results illustrating the efficacy of these designs are presented.

2.2 Introduction

Model predictive control (MPC) is an effective solution for controlling complex plants char-

acterized by nonlinearities, constraints, and uncertainties [1]. The prevalence of these chal-

lenges has driven a large number of research contributions and industrial implementations

of nonlinear MPC.

For systems with stochastic disturbances, MPC designs which recognize their inherent

stochastic nature can out-perform designs based on conservative bounded disturbance mod-

els. As such, research on model predictive control of stochastic systems has diverged into

two main approaches. One method is to attenuate the largest sequence of disturbances

[2; 3]. In this direction, robust Lyapunov-based MPC (LMPC) designs have been proposed

that guarantee robust stability from an explicitly characterized stability region (see e.g. [3]

and [4] for results in the absence of uncertainty). These formulations constrain the search

space to only trajectories that decrease a given Lyapunov function.

Another solution is to mitigate the disturbances with a quantifiable probability. Along these

lines, MPC formulations that use stochastic dynamic programming provide disturbance

rejection but are often too computationally burdensome [5]. Another solution, perhaps more

popular, has been to compute the control action by minimizing the cost of the expected

trajectory [6].

Drawing on stochastic Lyapunov theory [7; 8], LMPC has recently been adapted to stochas-

tic nonlinear systems [9] under the assumption of full state feedback and in the absence of

measurement noise. To address the issue of lack of state measurements, work on the stochas-

tic nonlinear output feedback problem has produced results for controlling systems that can
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be transformed into observer canonical [10] or feedback linearized form [11; 12; 13]. How-

ever, nonlinear model predictive control designs that simultaneously address the problems

of lack of state measurements and stochastic uncertainty have not been developed.

Motivated by the above considerations, in this chapter, we consider the problem of model

predictive control of nonlinear stochastic systems subject to limited availability of mea-

surements and design an output feedback Lyapunov-based MPC. The design, applicable

to a class of nonlinear systems with additive stochastic noise, assumes the existence of an

observer which has a sufficiently strong convergence rate and the design allows an explicit

characterization of the stability (in probability) region.

The rest of the manuscript is organized as follows: we begin by covering some preliminaries

in Section 2.3, including a brief review of the Stochastic LMPC results in [9]. We use Section

2.4 to present two compatible observer designs. The first observer is an existing design for

systems that are stochastic feedback-linearizable. The second stochastic observer is a novel

generalization of a design for a class of deterministic nonlinear systems [14]. In Section 2.5,

we present the LMPC design, and characterize the region in which the controller has both

initial feasibility and stability in probability. Then, further properties of this controller are

characterized, including the risk of destabilizing control action, the probability of remaining

close to the origin before escaping the stability region. Lastly, in Section 2.6, the efficacy of

the proposed results are illustrated using two simulation examples.

2.3 Preliminaries

2.3.1 Notation

We assume a probability space (Ω,F ,P) and say that X : Ω → R is a random variable if

it is F-measurable on every Borel subset of F . For each ω ∈ Ω, we say that xω(t) is a

realization or trajectory of the solution x(t). We use N(n) to refer to the set {1, ..., n}. We

use the p-norm | · |p, the Euclidean norm | · |, the weighted norm | · |Q = xTQx and the
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supremum norm | · |∞. By a ball, we mean an open neighbourhood of the origin defined by

BQ
d = {x ∈ Rn : |x|Q < d}. We further use ∂A, A◦, Ac, and A to indicate the boundary,

interior, complement and closure of set A, whereas A\B indicates the relative complement.

Finally, we refer to the Lie derivative of functional V and vector field f as LfV . The hitting

time of a set Ω with respect to a trajectory x(t;x0 ∈ Ω◦) and process time t > t0 is defined

as τΩ(t) = min {t, inft>t0{t : x(t) /∈ Ω}}. Wherever we refer to a state observer, we use x̂

for the estimate of state x and x̃ for its observation error, and then x = x̂+ x̃.

2.3.2 System Description

We consider autonomous nonlinear stochastic systems with affine input and additive dis-

turbances described by:

dxi = fi(x)dt+ gi(x)utdt+ hi(y)dWt

dxn+1 = m(x)dt+ r(x)utdt+ ψ(y)dWt

(2.1)

where y is the scalar output and x ∈ Rn+1 is the vector of states. The first n states are

unmeasured but can be observed from the output y = xn+1. W ∈ Rw is the vector of

independent Brownian motions associated with the probability triplet (Ω,F ,P), u ∈ Rk

is the vector of control inputs and f(·), m(·), g(·), r(·), and H(·) = [h1, . . . , hn, ψ] are

suitably sized arrays. The convex set of admissible control inputs is U = {u ∈ Rk : umin ≤

u ≤ umax} 6= ∅, where umin, umax ∈ Rk. For all x(t0) = x0, to give us a unique solution

almost surely, we assume that on t ∈ [0,∞) that all terms in Eq. (2.1) are locally Lipschitz

continuous and also that they are C2 causal processes so that the Itô integral is well defined.

Lastly, we assume that the disturbance is vanishing at the origin (i.e. H(0) = 0) and that

the origin is an equilibrium point of the unperturbed system (i.e. f(0) = 0 and m(0) = 0).

2.3.3 Stochastic Stability

We start by reviewing a definition of stability and some concepts in Lyapunov analysis.

In what follows, we assume the existence of a C2 stochastic control Lyapunov functional

(SCLF) V : Rn+1 → R+
0 .
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Definition 1 [15]: Given a C2 scalar Lyapunov function V (xt) and the system in Eq. (2.1),

the operator L is the infinitesimal generator, defined as:

LV (x) = LfV + LgV u(t) +
1

2
tr

{
HT ∂

2V

∂x2
H

}
(2.2)

Proposition 1 [16]: Given a Lyapunov function V associated to the system in Eq. (2.1),

we have:

E(V (xt)) = V (x0) +

∫ t

0
LV (xt)dt (2.3)

Clearly if LV is negative definite, then E(V (xt)) < V (x0).

Definition 2 [10]: The equilibrium x = 0 of a system is said to be globally asymptotically

stable in probability if for any real numbers ε > 0 and t0 > 0, the system admits

P (limt→∞ x(t) = 0) = 1

limx(t0)→0 P
(
supt>t0 |x(t)| > ε

)
= 0

(2.4)

Proposition 2 [8]: If LV (x) ≤ −Θ(|x|) for some class K∞ function Θ(·), then the system

in Eq. (2.1) is globally asymptotically stable in probability.

2.3.4 Stochastic Lyapunov-based MPC

In this section, we review stochastic Lyapunov MPC results applicable under state feed-

back systems, to enable us to clearly see the impact of the lack of state measurements on

the probabilistic stability guarantees. To this end, consider Eq. (2.1) and assume x is

measurable. The presentation here is kept very brief. For details, see [9].

First, suppose we have some SCLF from which a stabilizing in probability Lyapunov-based

control policy u = φ(x) can be designed for the constrained-input system that yields

LV (x) ≤ −ρV (x) for some ρ > 0. Then, we can define the set of states Π as the largest

closed set containing the origin for which negative definiteness of LV can be achieved as:

Π = {x ∈ Rn+1 : infu∈U LV (x) + ρV (x) ≤ 0} (2.5)

We define fc as the maximal Lyapunov level set that is contained within Π:

fc = supc∈R+
0
{x ∈ Rn+1 : x ∈ Π, V (x) ≤ c} (2.6)
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By comparison of Eq. (2.5) with Eq. (2.3), it results that if the system is initialized in fc,

then under continuous implementation of the control action, the expected realization will

be stabilizing. If fc is the whole state-space, then the controller readily satisfies Proposition

2.

We assume without loss of generality that fc corresponds with c = 1 and, in the rest of

the manuscript, drop the subscript, and write it as f. Next, consider a discrete (sample

and hold) state feedback controller implementation u(t) = u(j∆) = φ(x(j∆)), j ∈ N, for all

j∆ ≤ t ≤ (j + 1)∆. It has been shown in [9] that, provided the system is initialized within

f, there exists a sufficiently small hold period ∆ such that the system will realize stabilizing

behavior with any given probability λ. This is formalized in Proposition 3 below:

Proposition 3 [9]: For the system in Eq. (2.1) under state feedback and some SCLF

V , given any probability λ ∈ [0, 1), there exists positive real numbers ∆∗ := ∆∗(λ), and

δ < δ′ < 1, such that if ∆ ∈ (0,∆∗], then

(i) P
(

supt∈[0, τf\f◦
δ

(∆)] LV (xt) < 0
)
≥ 1− λ, x0 ∈ f\f◦δ

(ii) P
(

supt∈[0, τf\Ωδ (∆)] V (xt) ≤ δ′
)
≥ 1− λ, x0 ∈ fδ

(2.7)

Next, these results were used to quantify the stability in probability of the system under

Lyapunov-based feedback control subject to discrete control action.

Proposition 4 [9]: For the system in Eq. (2.1) under the Lyapunov-based controller u =

φ(x[t]) designed using some SCLF V , given any positive real number d and probability

λ ∈ [0, 1), there exists positive real numbers ∆∗ := ∆∗(λ), δ < α and probabilities α,

β ∈ [0, 1) such that if ∆ ∈ (0,∆∗], then the following will hold for the closed–loop system:

(i) P
(

supt∈[0,∆] ‖xt‖ ≤ d
)
≥ (1− β)(1− λ), x0 ∈ fδ

(ii) P
(

supt∈[0,∆] V (xt) < 1, supt∈[0,∆] ‖x(t+ τRn\f◦δ )‖ < d

)
≥ (1− α)(1− β)(1− λ)2, x0 ∈ fα\f◦δ

(2.8)

In Proposition 4, (i) defines the likelihood that the states will remain bounded to within

a given ball during each hold period, whereas (ii) gives the probability that the system’s
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states can be stabilized to within a target neighborhood of the origin (and remain there)

while never escaping the stability region.

2.4 Observer Design

In this section, we present two examples of observer designs that can satisfy the convergence

properties required in our output feedback controller design. These designs rely on the

existence of a stabilizing feedback control law, which we will subsequently present and

characterize in Section 2.5.

We use the Lyapunov functional V1 = 1
4

∑n+1
1 x̂4 + 1

4

∑n+1
1 x̃4 to show stability of the

following observers and to design the Lyapunov-based output-feedback controller φ(x̂).

2.4.1 Stochastic Feedback Linearizing Observer

It has been shown [11] that observers can be designed for SISO systems of the form of

Eq. (2.1) if it can be transformed exactly using some diffiomorphism zt = χ(xt) into the

integrator chain form:

dzi = zi+1dt+ ϕi(y)dW ∀ i ∈ N(n)

dzn+1 = νdt+ ϕn+1(y)dW y = z1

(2.9)

Recall that a stochastic dynamical system is called stochastic feedback linearizable if it

can be transformed into Eq. (2.9). For an excellent explanation of stochastic feedback

linearization, including existence and solution methods for various special forms, see [13].

Then, a full-order Luenberger observer [11] for the transformed system Eq. (2.9) takes the

form:
˙̂zi = ẑi+1 + `i(y − ẑ1) ∀ i ∈ N(n)

˙̂zn+1 = ν + `n+1(y − ẑ1) y = z1

dz̃ = A0z̃ + ϕ(y)dWt

(2.10)
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where ϕ = [ϕi . . . ϕn+1]T and where ` ∈ Rn+1 is the vector of observer gains. The matrix

A0 is given by

A0 =


`1 1 · · · 0
...

... I
...

... 0 · · · 1

`n+1 0 · · · 0

 (2.11)

Once ẑ is obtained, x̂ can be recovered from x̂ = χ−1(ẑ). It has been shown that, when

employed with some stabilizing controller φ(x̂), this observer can be used to globally asymp-

totically stabilize a system (in probability) provided that ` is chosen so that the matrix A0

is Hurwitz (e.g. [11; 17]).

2.4.2 Nonlinear Stochastic Observer

In this section, we generalize the deterministic observer from [14] to a stochastic setting.

To begin, consider the nonlinear system defined in Eq. (2.1) and assume that the drift

dynamics are observable and controllable. We first recall the estimator design from [14].

˙̂x = f(x̂) + g(x̂)u+ L[ẏ −m(x̂)− r(x̂)ut] (2.12)

where L is an n-vector of observer gains.

Subsequently, the change of variables z = x̂− Ly is introduced, which results in:

ż = ˙̂x− Lẏ = f(x̂) + g(x̂)u− L[m(x̂) + r(x̂)ut] (2.13)

With this design, z(t) is calculated at each time and x̂ is recovered through x̂ = z + Ly.

Note that this presentation of the observer has no explicit dependency on ẏ and is a reduced

order observer because no estimate of y is maintained. Thus, for this observer, x̃n+1 ≡ 0 and

x̂ = [x̂1, . . . , x̂n, y]. Note that to reduce noise amplification from the observer, the observer

could be augmented by a filtering technique.

In this section, we consider the application of this observer to a subset of the stochastic

nonlinear system in Eq. (2.1) and then characterize the error convergence properties in
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Theorem 1. To better motivate the required assumptions, we first consider the following

error dynamics of the system in Eq. (2.1), using the estimator in (2.12).

dx̃ =
[
f(x)− f(x− x̃) + g(x)ut − g(x− x̃)ut

]
dt

+L
[
m(x)−m(x− x̃)

]
dt+ [h1 · · ·hn,−Lψ]dWt

(2.14)

where dW = [dW x1 · · · dW xn , dW y]T are independent Brownian motions and where we

would like the r(·) terms to not appear. For clarity, we label the above as

dx̃i = γi(x̃, x, u)dt+ H̃i(y)dWt ∀i ∈ N(n) (2.15)

Then, the assumptions required for the observer are:

Assumption 1: (i) The state drift terms fi(·) satisfies xifi(·) < 0 and error dynamics drift

terms γi(·) satisfy x̃iγi(·) < 0 for some L∗ ∈ Rn, ∀x̃, x, u 6= 0, i ∈ N(n); (ii) the drift term

m(·) is globally Lipschitz continuous in x1, . . . , xn; (iii) r(·) is a function of only y; (iv)

rank{[gi(x̂), · · · , gn(x̂), r(y)]} ≤ k ∀x̂ 6= 0; (v) for all x̂, ∂ẏ
∂x̂i
6= 0 ∀i ∈ N(n).

Part (i) of Assumption 1 can be seen as a requirement that the zero-input drift dynamics

be inherently strongly stable. Part (ii) is satisfied by bounded or linear output dynamics

and part (iii) is satisfied similarly. Part (iv) is equivalent to [g1(·), . . . , gn(·), r(·)]u = Gu ≤ b

being a consistent linear inequality, that is, has a solution u for all b, which is a type of

reachability condition. It is trivially satisfied by linear G of sufficient rank. Note that

condition (iv) is only a sufficient condition, and (v) assures observability. Assumption 1

allows the result of Theorem 1 (for all the proofs, see the Appendix).

Theorem 1: Consider the system Eq. (2.1) subject to Assumption 1, and the state observer

of Eq. (2.13). Then there exists an L∗ ∈ Rn and a stabilizing controller u = φ(x̂) such that

if sign(L∗i )Li ≥ |L∗i | ∀ i ∈ N(n), the observer Eq. (2.13) achieves global asymptotic stability

in probability.
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2.5 Controller Design

In this section, we assume the existence of an appropriate state estimation design. We

first consider a Lyapunov-based controller and characterize its stability region subject to

constrained input and then give its stability properties, which are the main results of the

chapter. Then, we present an output feedback LMPC design that has the same properties,

within a defined feasibility set.

2.5.1 Stability Region for State Estimates

Firstly, to infer the position of the states from the state estimates, we need to assume x̃ is

bounded. That is,

Assumption 2: For any finite time t ≥ t0, all sample paths have observation errors that

admit |x̃|∞ ≤ E almost surely.

We note that no proper Brownian motion would have a bounded distribution in the limit

of infinite time. To construct the following sets, we will make use of V2 = 1
4

∑n+1
1 x̂4 (for

a justification, see Remark 2 . We define the set f̃′c′ such that if the state estimates are in

f̃′c′ , utilizing the assumed bound on the error, we can infer that the states are in fc. With

fc′ = {x̂ : V2(x̂) ≤ c′}, we have:

f̃′c′ = supc′∈R+
0
{x̂ : x̂ ∈ fc′ ⇒ x̂+ x̃ ∈ fc, ∀|x̃|∞ ≤ E} (2.16)

Similar to before, we assume without loss of generality that the largest level set is c′ = 1

(resulting in c > 1) and denote this space by f̃′c′ = f̃′1 ≡ f̃′.

Finally, we also define fN = {x̂ : V2(x̂) ≤ K7
ρ E}, with K7 being a constant to be defined

later and f̃ = f̃′\fN . Figure 2.1(A) shows a pictorial representation of the sets f̃, f̃′, fN ,

and Π.

Remark 1: Note that f̃, f̃′, and fN are images in Rn+1. Using this construction of f̃′,

x̂ ∈ f̃ and x̃ ∈ {x̃ : |x̃|∞ ≤ E} can vary independently, while guaranteeing state xt is
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positively invariant with respect to f.

Remark 2: V2 was chosen because it takes all observable arguments so that it is possible

to evaluate it and use as a constraint in a controller implementation. We refer the reader to

Appendix 2.10 where Lemma 1 justifies our claim that it is sufficient to use V2 and the con-

straint V2(x̂)+LV2(x̂)|x̃=0 ≤ 0 if the observer gain L is large enough. We note that the claim

is resolved by prescribing a rate of error convergence, and that both observers presented

can have these desired convergence properties for compatibility with our controller.

Remark 3: In our formulation, we use the specific Lyapunov function V2 to construct

the stability region, to show certain stability properties, and to compute the associated

risk margins. Note that this specific choice of the Lyapunov function is not unique. Other

suitable Lyapunov functions could readily be used, and would results in the same properties

in general, albeit with the corresponding values of the constants and risk margins.

2.5.2 Discrete Implementation of the Output Feedback Lyapunov-based

Controller

In this section, we will characterize the stability in probability properties of the output

feedback LMPC. Recall that in Proposition 3, we quantified the probability of a discrete

state-feedback system realizing stabilizing behavior. To adapt this to an output feedback

setting, we have to address the additional risk associated with the observation error.

Lemma 2: Consider the system in Eq. (2.1) under the discrete output feedback controller

φ(x̂[t]) and subject to Assumption 2. Then, given any probabilities ζ, λ ∈ [0, 1), there exists

positive real numbers ∆̃∗ ≤ ∆∗, where ∆∗ was defined in Proposition 3 and δ < δ′ < 1 such

that if ∆̃ ∈ (0, ∆̃∗], then

(i) P
(

supt∈[0,τf̃\f◦
δ

(∆̃)] LV2(xt) < 0

)
≥ (1− λ)(1− ζ), x̂0 ∈ f̃\f◦δ

(ii) P
(

supt∈[0,τf̃\Ωδ
(∆̃)] V2(xt) ≤ δ′

)
≥ (1− λ)(1− ζ), x̂0 ∈ fδ

(2.17)

Remark 4: At t = 0, we know that x̂0 ∈ f̃ implies LV2(x̂0) ≤ −ρV2(x̂0). As the system
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evolves within t ∈ [0, ∆̃, the states are not confined to f as a result of the discrete control

action, but instead obey Lemma 2. This stabilization in probability property is only valid

outside of a given small target set near the origin, inside of which the hold time is too large

to guarantee Lemma 2 (i).

The proof technique is to calculate a maximum hold time ∆̃∗. It begins with determining

the maximum ’speed’ of the state dynamics implied by the risk λ. The rest of the proof

is analogous to calculating, given a worst-case ’position’ in state-space and the maximum

’speed’, the minimum time until exiting the given set. The risk margin ζ for which the

observation error meets a required bound is determined by solving the error SDE and

finding its variance.

Next, the stability and boundedness of the states that results from a output feedback

discrete time implementation of the controller is characterized. Similar to Proposition 4,

we have the following analogue for an output feedback controller.

Theorem 2: For system Eq. (2.1) with discrete control φ(x̂[t]), for any given positive

number d and some λ, ζ, and ∆̃ defined in Lemma 2, there exists probabilities β̃ ∈ (β, 1]

and α̃ ∈ (α, 1] such that the system is characterized by

(i) P
(

supt∈[0,∆̃] ‖xt‖Q ≤ d
)
≥ (1− β̃)(1− λ)(1− ζ), x̂0 ∈ fδ

(ii) P
(

supt∈[0,∆̃] V2(xt) < 1
)
≥ (1− α̃)(1− λ)(1− ζ), x̂0 ∈ fα\f◦δ

(iii) P
(

supt∈[0,∆̃] V2(xt) < 1, supt∈[0,∆̃] ‖x(t+ τRn\f◦δ )‖ < d
)

≥ (1− α̃)(1− β̃)(1− λ)2(1− ζ)2, x̂0 ∈ fα\f◦δ

(2.18)

This result has an identical interpretation to Proposition 4. The proof follows immediately

from some specific results in stochastic Lyapunov analysis from [16].

Figure 2.1(B) shows a pictorial representation of the sets fα and fδ indicated in Lemma 2

and Theorem 2.
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Figure 2.1: Pictorial representation of (A) the sets f̃, f̃′, fN , and Π; (B) the sets fα and

fδ used in Theorem 2.

2.5.3 Design of the Model Predictive Controller

The proposed Lyapunov-based model predictive controller takes the following form:

uMPC(x̄) = arg min{J(x̄, t, u) : u[t] ∈ U}

s.t. x̄i(0) = x̂i(t) ∀i ∈ N(n+ 1)

dx̄i
dt̄ = fi(x̄t̄) + gi(x̄t̄)u(t̄)

dx̄n+1

dt̄ = m(x̄t̄) + r(x̄t̄)u(t̄)

LV2(x̄t̄) + ρV2(x̄t̄)) ≤ 0

(2.19)

where uMPC is the sequence of optimal control inputs, N = T/∆ is the number of hold

periods, V2 is a SCLF that yields a stabilizing φ(x̂), and the Lyapunov constraint has

observable arguments. The cost-to-go is given below.

J(x̄, t, u) =
∫ T

0 |x̄
u(s; x̄, t)|Qw + |u(s)|Rw ds (2.20)

At each hold period, there is an observer that first updates the state estimates, and then

passes them to the prediction model in Eq. (2.19). The observer updates independently as

new measurements become available, much more quickly than the actuation changes.
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The algorithm implements only the first control action u[t] in the plant, then re-solves the

optimization problem at t+ ∆ based on the updated state estimates.

As proven previously for state feedback in [9], it is clear that the output feedback LMPC

implementation in Eq. (2.19) inherits the properties of the Lyapunov-based controller in

Theorem 2. Stability (in probability) of the observer error follows from Lemma 1 and the

asymptotic stability of the observer presented in Section 2.4.

Lastly, we discuss the feasibility of the MPC problem. Rather than using soft constrains to

ensure feasibility, we give the probability that the LMPC is feasible (i) initially, and (ii) for

N̄ hold periods. Note that in a probabilistic setting, we cannot guarantee that our problem

is feasible for an infinite amount of time.

Theorem 3: (i) If x̂(t0) ∈ f̃, then the LMPC in Eq. (2.19) is initially feasible. (ii)

If x̂(t0) ∈ fα ⊂ f̃, then the event AF that the LMPC is successively feasible for times

t ∈ [0, N̄∆] admits the probability

P(AF ) ≥ (1− λ)N̄ (1− ζ)N̄ (1− α̃)N̄ (2.21)

We can recover the successive feasibility result applicable to the state feedback case simply

by setting ζ = 0 and α̃ = α.

2.6 Simulation Results

We present two examples: the first shows stabilization using the observer from Section

2.4.1, whereas the second is a chemical reactor example using the state estimator in Section

2.4.2. This second system is used to show the experimental probabilities for the events from

Theorem 2.
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2.6.1 Example using Stochastic Feedback Linearization

We consider a stochastic nonlinear system, using an example modified from [13]. The Itô

SDE of this system is given bydx1

dx2

 =

 x2 − x2
1

Σ2 − 2x3
1 − x2 + 2x1x2 − x2

1x2

dt+

 0

1 + x2
1

udt+ Σ

 1

1 + 2x1

dWt

(2.22)

with an output of y = −x1 and where Σ is a noise scale factor. It turns out that this SISO

system is globally feedback linearizable to Eq. (2.9) using the following diffiomorphism.z1

z2

 =

 −x1

x2
1 − x2

 (2.23)

Using Eq. (2.23), it is easy to verify that in the z domain the Itô system becomes simplydz1

dz2

 =

0 1

0 0

z1

z2

dt+

0

1

 νdt+

−Σ

−Σ

dWt (2.24)

where the output in this space is just y = z1 and the physical input u is related to the

virtual input ν by u = x2 − (1 + x2
1)−1ν. The observer in Section 2.4.1 is implemented

as ˙̂zi = zi+1 + Li(y − ẑ1) with z3 = ν, L = [20, 20]T . The output-feedback LMPC as

described in Section 2.5.3 is designed with a Lyapunov function of the form of V2(·), given

by V = 100x̂4
1 + x̂4

2, J = 100x2
1 + x2

2 + 5 × 10−6u2, Σ = 0.2, ρ = 0.001, ∆ = 0.1, Tp = 2∆,

Tf = 3 and subject to the input constraint |u| ≤ 200.

To verify the design, a thousand sample paths were simulated with an initial condition of

x̂0 = x0 = [−5,−5]T , and then another one thousand were run from random initializations

in the domain x0 ∈ [−5, 5]× [−5, 5]. These realizations are shown in Figure 2.6.1 and Figure

2.6.1. In both cases, the closed-loop system stabilizes at the unstable equilibrium point.

Because the noise is non-vanishing in this example, we achieve only practical stability in

probability (instead of asymptotic stability).

Although not shown, if ∆ is too large, then the system is frequently unstable.
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Figure 2.2: (A) Realizations of the system Eq. (2.22) under LMPC action with static

initializations at x0 = [−5, 5]T . Bold line represents the median of all realizations, whereas

the upper and lower lines are the 5th and 95th percentiles.

2.6.2 Application to a Chemical Process Example

Consider a constant volume continuous stirred tank reactor (CSTR) where an exothermic

reaction A→ B takes place. The overall dynamics are given by:

dCA =
(
F
VR

(CinA − CA)− k0CAe
−E
RT

)
dt+ σCA(TR − TSR)dWCA

dTR =
(
F
VR

(T inR − TR) + (−∆H)
ρdcp

k0CAe
−E
RT + QR

ρdcpVR

)
dt+ σTR(TR − TSR)dWTR

(2.25)

where TR and CA are the reactor’s prevailing temperature and the concentration of species

A, and T inR and CinA are the temperature and concentration at the reactor inlet. Other
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Figure 2.3: Realizations of the system Eq. (2.22) under LMPC action using the variable

domain x0 ∈ [−5, 5]× [5, 5]. Bold line represents the median of all realizations, whereas the

upper and lower lines are the 5th and 95th percentiles.

parameters are defined in Table 1. The manipulated inputs are the heater duty QR sub-

ject to |QR| ≤ 90 kJ/min, and the feedstock concentration CA0 subject to 0 ≤ CA0 ≤ 2

kmol/m3. The output-dependent stochastic component impacts both the concentration and

temperature.

Remark 5: Note that the specific form of the diffusion terms in Eq. (2.25) (in particu-

lar, the vanishing nature, and dependence only on the observable variable) was chosen to

illustrate the key idea of the proposed results. The proposed control design, however, when

applied to more physically realistic problems (e.g., with non-vanishing diffusion), would
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yield practical stability in probability (instead of asymptotic stability).

Table 2.1: Chemical reactor parameters and steady–state values.

Parameter Value Units

F 100× 10−3 m3/min

VR 0.1 m3

∆H −4.78× 104 kJ/kmol

k0 72× 109 min−1

E 8.314× 104 kJ/kmol

R 8.314 kJ/kmol · K

ρd 1000.0 kg/m3

cp 0.239 kJ/kg · K

CA0 1.0 kmol/m3

TR0 350.0 K

T sR 388.48 K

CsA 0.8076 kmol/m3

σCA 5.7× 10−3 –

σTR 2 –

To estimate CA, we implement the stochastic nonlinear observer from Section 2.4.2. It can

be shown that CA is observable from TR whenever TR > 0 and ∆H 6= 0. Using Eq. (2.13)

and the coordinate transform z = CA−LTR, and again referencing [14], our observer takes

the following form:

ż =
F

VR
(CinA − LT inR )− F

VR
z −

[
1 +

L(−∆H)

ρdcp

]
(z + LTR)k0e

−E
RT − LQR

ρdcpVR
(2.26)

where z(0) = CA(0)+LTR(0). It is easy to show that this gives the following error dynamics.

dz̃t = −
(
F
VR

+
[
1 + L(−∆H)

ρdcp

]
k0e

−E
RT

)
z̃t dt+ [σCA(TR − TSR),−LσTR(TR − TSR)]dW

(2.27)



26

which is stable whenever L(−∆H) > 0. It meets the globally Lipschitz requirement of

Assumption 1 because of physical limitations which ensure TR > 0. The control objective

is that of stabilization at the unstable equilibrium point (CSA, T
S
R).

All SDEs were simulated using MATLAB ’s Econometrics Toolbox and function SDE.simByEuler

with a step size of h = 0.001 min, whereas the optimizations were carried out with the func-

tion fmincon. We used a hold period of ∆ = 0.02 min, constraint parameter ρ = 0.001,

error bound Eζ = 0.2, a prediction horizon of Tp = 2∆, and ran for a total time of

Tf = 2 min. Lastly, we used the Lyapunov functional of the form V = (x̂TPx̂)2, where

P = 0.05

0.3333 0.0215

0.0215 0.0024

, while Rw = 10−6

0.1 0

0 100

 and Qw =

100 0

0 0.1

 were used

for the objective function.

Table 2.2: Observed event frequencies for different values of α and β.

α̃ supx0∈fα\f◦δ
P (Aα) β̃ supx0∈∂fδ′ P (Aδ)

0.5 0.103 0.5 0.033

0.6 0.228 0.6 0.082

0.7 0.340 0.7 0.161

0.8 0.490 0.8 0.266

0.9 0.682 0.9 0.386

Similar to [9], we consider the events Aα = {τR\f◦δ > τf, x0 ∈ fα\f◦δ} and Aδ = {∃t :

|x(t)| > d, x0 ∈ fδ}. Note that these events imply those in Theorem 2.

The simulator ’observed’ the occurrence of these events from the simulated trajectories

during a single hold period of the controller. The results are reported in Table 2. We

discretized the initial sets ∂fα and ∂fδ into 18 locations and simulated 1000 realizations

from each one. In this case, we used δ = V2([C0
A, T

0
R]) and calculated an appropriate

sequence of disturbances. Since the computed frequencies are less than theoretical maximal

probabilities, the simulation corroborates the results presented in Theorem 2.
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2.7 Conclusion

We presented an output feedback LMPC design for stochastic nonlinear systems. To this

end, we first reviewed a compatible observer design and presented a generalization of an

existing nonlinear observer in the stochastic setting. We then presented a controller design

and defined the stability in probability properties of the closed-loop system and illustrated

them using two simulation examples.
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2.9 Proof of Theorem 1

Our strategy will be for the observer-controller feedback system to satisfy Proposition 2

and hence prove convergence of the observer.

It is clear in view of Eq. (2.14) and vanishing H̃, that asymptotic convergence of the error

occurs only at the origin. Elsewhere, the estimates are corrupted by the diffusion term.

Let V1 = 1
4

∑n
i x̂

4
i + 1

4

∑n
i x̃

4
i + 1

4y
4. Then we have

LV1(x, y, x̃) =
∑n

i x̂
3
i [fi(x̂) + gi(x̂)ut + Li ˙̃y] + y3[m(x) + r(y)ut]

+
∑n

i x̃
3
i γi(x̃, x, u) + 3

2tr{H̃(y)diag[x̃2
1 · · · x̃2

n, y
2]H̃(y)T }

(2.28)

where ˙̃y = ẏ −m(x̂)− r(y)ut.

From here, we invoke Assumption 1 (iv). Then, we can select some u(x̂, ẏ), where ẏ is a

known signal, such that [gi(x̂), · · · , gn(x̂), r(y)]Tu ≤ [−L1
˙̃y, · · · ,−Ln ˙̃y,−ηy−m(x̂)]T , where

η is to be determined. We can solve any (n+ 1× n+ 1) block subsystem and set k− n− 1
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controls to zero.

Moreover, from Assumption 1 (ii), we know m(·) is globally Lipschitz in x, and therefore we

can infer that |m(x)−m(x̂)| ≤M |x− x̂| ≤M |x̃|.

Next, we examine f(·) and γ(·). It is a premise of the observer (i.e. Assumption 1 (i))

that the error dynamics admit x̃iγi(·) < 0. Because they are vanishing, by the mean

value theorem, we can write each component as fi(x) = −xiθi(x) and γi(x̃, x, u, L) =

−x̃iσi(x̃, x, u, L), where both θ(·), σ(·) ≥ 0. By exploiting this, we get

LV1(x̂, x̃, L) ≤ −
∑n

i x̂
4
i θi(x̂)−

∑n
i x̃

4
iσi(x̃, x, u, L)

+ 3
2tr{H(y)diag[x̃2

1 · · · x̃2
n, y

2]H(y)T }+My3|x̃| − ηy4

(2.29)

To proceed, we use Young’s Inequality [18], which states that for any a, b ∈ R, k > 0, that

ab ≤ kp|a|p

p
+
|b|q

qkq
(2.30)

With it, the last term of (2.29) can be written as

My3|x̃| ≤ 3

4
Mε

3
4
y |y|4 +

1

4
ε−4
y |x̃|4 (2.31)

For the next step, we use a technique similar to [11]. Using Young’s Inequality, properties

of norms, the definition of the trace, a standard polynomial inequality, and the mean value

theorem, the second last term of (2.29) can be written as

tr{H(y)diag[x̃2
1 · · · x̃2

n, y
2]H(y)T }

≤ n|H(y)H(y)Tdiag[x̃2
1 · · · x̃2

n, y
2]|∞

≤ n
√
n|H(y)H(y)T ||diag[x̃2

1 · · · x̃2
n, y

2]|∞

≤ n
√
n|H(y)|2(|x̃2|∞ + |y2|∞)

≤ n
√
n|H(y)|2(|x̃|2∞ +

√
n|y|2)

≤ 1
2n
√
n(ε−2|H(y)|4 + ε2(|x̃|2∞ +

√
n|y|2)2)

≤ 1
2n
√
n(ε−2|H(y)|4 + 2ε2(|x̃|4∞ +

√
n|y|4))

≤ 1
2n
√
n(ε−2|Ψ(y)|4|y|4 + 2ε2(|x̃|4∞ +

√
n|y|4))

(2.32)
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Now we can choose η as

η = 3
4Mε

3
4
y + 3

4n
√
n(ε−2|Ψ(y)|4 + 2

√
nε2) (2.33)

Lastly, we only have to choose constants such that the effect of the error terms on LV is

overall negative. That is,

∑n
i x̃

4
iσi(x̃, x, u)− (n

√
nε2 + 1

4

√
nε−4

y )|x̃|4∞ > 0 (2.34)

In view of Eq. (2.14), we can assert that there exists some L such that σ(·) ≥ κi1 and hence

σ(·) has the property that 0 < κi1 ≤ σi. Then, using the fact that
∑n

i x̃
4
i = |x̃4|1 ≥ |x̃4|∞ =

|x̃|4∞, we only have to choose ε, εy and L such that p > ρ > 0.

p = mini{κi1} − (n
√
nε2 + 1

4

√
nε−4

y ) (2.35)

Substituting Eq. (2.33), Eq. (2.35) and Eq. (2.32) into (2.29) leaves us with

LV1(x, x̃) ≤ −
∑n

i x̂
4
i θi(x̂)− p|x̃|4∞ (2.36)

This proves global asymptotic stability in probability for the state estimator, and also the

system as a whole. Given this result, z is also stabilized. �

2.10 Lemma 1 and Proof

Consider the Lyapunov functionals V1 and V2 and the sets Π(V1, ρ) = {x ∈ Rn+1 :

infu∈U LV1(x̂, x̃) + ρV1(x̂, x̃) ≤ 0, ∀ x̃ ∈ Rn} and Π(V2, ρ) = {x ∈ Rn+1 : infu∈U LV2(x̂, x̃) +

ρV2(x̂, x̃) ≤ 0, ∀ x̃ ∈ Rn}.

In Theorem 1, V1 was used to show stability of the overall system by accounting for the

evolution of the unobservable error, whereas V2 does not incorporate the error nor does its

use imply stabilization. To use the observable V2 as a proxy for V1 in our LMPC design,

we need to show that for both observers, under certain conditions, satisfying x ∈ Π(V2, ρ̄)

implies x ∈ Π(V1, ρ), with ρ̄ to be determined.

Lemma 1: For the system Eq. (2.1), there exists an observer gain vector L∗ such that if

each Li verifies sign(L∗i )Li ≥ |L∗i | ∀ i ∈ N(n), then Π(V2, ρ̄) ⊆ Π(V1, ρ). (i) For the observer
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in Eq. (2.10) of Sections 2.4.1, ρ̄ = ρ; (ii) for the observer in Eq. (2.13) of Section 2.4.2,

ρ̄ > ρ.

Proof of Lemma 1: Let C(V (x)) = LV (x) + ρV (x), the value of the Lyapunov constraint

in Eq. (2.19). Eq. (21) in [11] shows that for the observer in Section 2.4.1:

LV (ẑ, x̃) ≤ −
∑n+1

i ciẑ
4
i − p

∑n+1
i x̃4

i
(2.37)

for some constants c and virtual variable z := z(x̂) diffiomorphic to x. It is analogous to

Eq. (2.36) in this chapter for the observer in Section 2.4.2. We see that for either observer:

C(V1(x)) = C(V2(x)) + C(V1(x))− C(V2(x))

≥ C(V2(x)) + ηy4 − p|x̃|4∞ + 1
4ρ|x̃|

4
∞

≥ C(V2(x)) + 4ηV2(x) + (1
4ρ− p)|x̃|

4
∞

≥ LV2(x) + (ρ̄+ 4η)V2(x) + (1
4ρ− p)|x̃|

4
∞

(2.38)

In [11] Eq. (17) and similarly in Eq. (2.35) of this chapter (i.e. for both observers), it was

shown that p := p(L) can be made arbitrarily large by choice of observer gain vector L (or

equivalently, `). By choosing p > 1
4ρ, the last term in (2.38) is negative definite.

For part (i), we have η = 0 and hence (2.38) proves that Π(V2, ρ) ⊆ Π(V1, ρ). For part (ii),

we have C(V2(x), ρ̄) ≤ 0 for some ρ̄ = ρ+ 4η, where η := η(εy) can be regarded as a design

parameter. Hence, we have C(V1(x), ρ) ≤ 0 which gives Π(V2, ρ̄) ⊆ Π(V1, ρ), as desired. �

2.11 Proof of Lemma 2

We will first show part (i), following along the lines of the Proof of Lemma 1 in [9].

Consider the collection of realizations AB = {ω : supt∈[0,∆] |Wt| < B,B ∈ R+} where the

vector of Brownian motions is bounded. It is a standard result that there exists a probability

λ such that P(AB) = (1− λ) [19].
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We also make use of the fact that trajectories ω ∈ AB are Holder continuous, meaning that

|xt − x0|∞ ≤ K1(t− t0)γ for any γ < 1
2 , where K1 := K1(λ,∆) for all t− t0 ≤ ∆.

We have also assumed that LV2(xt) from Eq. (2.2) is composed of terms that are all locally

Lipschitz continuous on a sufficiently large compact rectangle, so let K2, K3, and K4 be

their respective Lipschitz constants. Then for any z2, z1, we get

LV2(z2)− LV2(z1) = (LfV2(z2)− LfV2(z1)) + (LgV2(z2)− LgV2(z1))u0

+1
2

(
tr
{
h(z2)T ∂

2V2(z2)
∂x2 h(z2)

}
− tr

{
h(z1)T ∂

2V2(z1)
∂x2 h(z1)

})
≤ (K2 +K3 +K4)|z2 − z1|∞ ≡ K7|z2 − z1|∞

(2.39)

To employ this result, we begin by separating LV2 into

LV2(xt) = LV2(x0) +
[
LV2(xt)− LV2(x0)

]
(2.40)

However, recall whenever x0 ∈ f̃ and u = φ(x[t]), the system will satisfy LV2(x̂) ≤ −ρV2(x̂)

at t = t0. To proceed, we note that local Lipschitz continuity of LV implies that

LV2(xt) = LV2(x̂0) +
[
LV2(x0)− LV2(x̂0)

]
+
[
LV2(xt)− LV2(x0)

]
≤ LV2(x̂0) +K7|x0 − x̂0|∞ +K7|xt − x0|∞

(2.41)

Next, in view of Assumption 2, we claim that there is an event Aζ such that the observation

errors satisfy |x̃0|∞ ≤ Eζ < E with probability P(Aζ) = (1 − ζ). Using this, the Holder

continuity established previously, and the Lyapunov constraint using the ρ defined in (2.38),

we can write Eq. (2.41) as

LV2(x) = −ρV2(x̂) +K7|x̃|+K7K1∆γ

≤ −ρδ̃ +K7K1∆γ

(2.42)

where δ̃ = δ− K7
ρ Eζ . Note that Eq. (2.42) applies to x̂0 ∈ f̃\fδ because we used x̂0 ∈ ∂fδ,

which is the smallest level set. Remember also that by by construction, δ̃ > 0, since

fN ⊆ fδ ⊂ f̃.

In view of Eq. (2.42), to satisfy LV2(xt) ≤ −ε, where 0 < ε < ρδ̃ is an arbitrarily small

positive number, we can define

∆1 =

(
ρδ̃ − ε
K1K7

) 1
γ

(2.43)
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which would imply that LV2(x) < 0 for all t ∈ [0, τf̃\fδ(∆1)] whenever ω ∈ AB ∪ Aζ . The

time domain given is justified by the fact that we cannot guarantee constraint satisfaction

in f̃c, and because the hold time is too large to succeed in f◦δ .

For part (ii), consider again ω ∈ AB ∪ Aζ . By compactness, we have |V2(x2) − V2(x1)| ≤

K5|x2 − x1|∞. Since x̂0 ∈ fδ, we know that V2(x̂0) ≤ δ. Then, we can write V2(xt) as

V2(xt) = [V2(xt)− V2(x0)] + [V2(x0)− V2(x̂0)] + V2(x̂0)

≤ K5K1∆γ +K5|x̃|+ δ ≤ K5K1∆γ + δ̆

(2.44)

where we have labeled δ̆ = K5Eζ + δ.

Next, consider some excursion of magnitude |x|Q = d, and let Z = Rn\B̄Q
d = (B̄Q

d )c. Then,

we can use continuity of V2 to impose the existence of a δ′ that satisfies δ′ = infy∈Z V2(y) =

inf |y|=d V2(y). Using this, provided that δ′ − δ̆ > 0, we can solve (2.44) for a hold time

∆2 ≤

(
δ′ − δ̆
K1K5

) 1
γ

(2.45)

This is the maximal hold time such that realizations starting on x̂ ∈ ∂fδ still cannot reach

fδ′ . Thus, finally, choosing ∆̃∗ ≤ min{∆1,∆2} proves the Lemma.

To prove our claim that |x̃| can be made to obey |x̃|∞ ≤ Eζ , we start by solving the

error SDE. Recall that observer updates independently from the control action, and much

more frequently. The event AB restricts the trajectory to a compact set, so, referring to

Theorem 1, we can define maximal diffusion Φ = | supx,y H̃i(x, y)|∞ and drift A|x̃|∞ =

| supx,y σi(x, y)|∞|x̃|∞. Assuming for simplicity that x̃(0) = E(x̃(0)) = 0, we can write the

error SDE as the scalar process d|x̃|∞ ≤ A|x̃|∞dt+MdWt. This equation has the integral

definition |x̃|∞ = Φ
∫ t

0 e
A(s−t)dWs [20]. Using Itô’s isometry, we can easily compute its

variance.

Var(|x̃|∞) = E(|x̃|2∞)− E(|x̃|∞)2

= E
{

(Φ
∫ t

0 e
A(s−t)dWs)

2
}

= Φ2
∫ t

0 e
2A(s−t)ds = Φ2

2A(1− e−2At)

(2.46)
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Clearly, Eq. (2.46) eventually approaches |x̃|∞ ∼ N (0, Φ2

2A). Hence, by considering only

some subset of realizations Aζ , we can retrieve from standard probability tables a probability

P(Aζ) = (1− ζ) ∈ [0, 1] such that |x̃|∞ ≤ Eζ . �

2.12 Proof of Theorem 2

The reader is advised that our proof draws on some definitions stated in the proof of Lemma

2.

In what follows, we denote by the superscript ∗ any probability that is conditional upon

the event AB ∪Aζ .

To show part (i) for all x̂0 ∈ fδ, it suffices to show that it holds for x̂0 ∈ ∂fδ. As such, we

can be assured that V2(x0) ≤ δ̆, where δ̆ ≥ δ. To approach part (i), we use an argument

from [16] as follows.

E(V (xt)) =
∫
V (y)dP(y) ≥

∫
Z V (y)dP(y)

≥
∫
Z infy∈Z V (y)dP(y) ≥ infy∈Z V (y) · P(Z)

(2.47)

Using Eq. (2.3) and Lemma 2 (i) which together imply the supermartingale property of

E(Vt) < V (x0), we get

P∗ (|xt| > d for some t > 0) ≤ V2(x0)
infy∈Z V2(y)

(2.48)

Next, recall that δ < δ̆ < δ′. Then, we can define the probability β̃ ∈ (β, 1) as β̃ = δ̆/δ′ >

β = δ/δ′. Taking complements and the supremum of both sides, we get

supx̂0∈∂fδ P
∗ (|xt| ≤ d, ∀t > 0) ≥ (1− β̃) (2.49)

Lastly, using Bayes’ formula, part (i) is complete.

For (ii), we want to quantify the probability of the event AT = {ω : τRn\f◦δ > τf̃}. With a

reminder that we are strictly confined to the time domain t ∈ [0,∆] defined previously, we
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begin by recalling from [9] that these hitting times occur in finite time almost surely (i.e.

τf̃\fδ <∞).

Now, similar to the state feedback configuration in Proposition 4, by realizing that AT ⊆

{ω : V2(x(τf̃\fδ)) ≥ 1}, we can state that

P∗(AT ) ≤ P∗
(
V2(x(τf̃\fδ)) ≥ 1

)
(2.50)

Next, consider (2.47) and the inequality in Eq. (2.48). To apply this to Eq. (2.50), we

observe that because inf{V (·) : Vt(·) ≥ 1} = 1, we can write simply that

P∗
(
V2(x(τf̃\fδ)) ≥ 1

)
≤ E∗

(
V2(x(τf̃\fδ))

)
(2.51)

Then, taking the supremum over x0 on both sides and again using E(Vt) < V (x0) for any

t > t0, we get

supx0∈fα\f◦δ
P∗(τRn\f◦δ > τf) < supx0∈fα\f◦δ

V2(x0) (2.52)

To convert this statement to one about estimated states, it is enough to evaluate V2(x0)

over the largest space of initial process conditions implied by both the given set of estimates

and constraints on x̃. To this end, we can write (2.52) as

supx̂0∈fα\f◦δ
P∗ (AT ) ≤ supx̂0∈fα\f◦δ

V2(x0)

= supx̂0∈fα\f◦δ
{V2(x0)− V2(x̂0) + V2(x̂0)}

≤ K5Eζ + α ≡ α̃

(2.53)

where to separate V2(x0), we used a procedure similar to (2.44).

Then, it follows that, if Eζ and fα are chosen such that α̃ < 1, we can recover P∗(τRn\f◦δ <

τf) by taking the complement of (2.53) and recognizing that continuity implies τRn\f◦δ 6= τf̃

almost surely.

For part (iii), we see that it remains only to write the probability that the event in part (i)

occurs after AT occurs. Thus, by applying Bayes’ law again, the proof is complete. �
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2.13 Proof of Theorem 3

For part (i), we use the property that x̂0 ∈ f̃ by construction implies x̂0 ∈ Π. When subject

to u[t] = φ(x0), for the first input in the sequence, we will have LV2(x̂0) < −ρV2(x̂0). If,

assuming N prediction intervals, the other N − 1 control actions in the prediction hori-

zon were set to zero, then this sequence of controls would give us initial feasibility of the

optimization problem.

For part (ii), we use Theorem 2 (ii), which gives the probability that the system trajectory

is confined to {V2(x̂t) < 1} for all t ∈ [0,∆]. Because this implies that x̂(∆) ∈ f̃, using part

(i) of this Theorem, it also implies that the problem is feasible. To show successive feasibility

for N̄ periods, we see that we can recursively apply Theorem 2 (ii). The probability can

then be written as:

P(x(0) ∈ f̃ ∪ · · · ∪ x(N̄∆) ∈ f̃)

≥ (1− α̃1)( · · · )(1− α̃N̄ )(1− λ)N̄ (1− ζ)N̄
(2.54)

To get the risk margins α̃k at each of the k ∈ N(N̄) periods, note that from Eq. (2.51) and

(2.53), we can quantify it as α̃k ≥ E(V2(τf̃)|V2(x[(k − 1)∆]) = α̃k−1) + K5Eζ . However,

V2(x[(k − 1)∆]) is unknown at t = 0 (except for V2(x0)). By observing that repeated

occurrence of AB ∪ Aζ implies that E(V2(N̄∆)) < · · · < E(V2(∆)) < V2(x0) ≤ α1, we can

use α̃k = α̃ for all k. �

2.14 Stochastic Feedback Linearization

This summary was omitted from the submitted papers for brevity, although it explains how

Example 1 was constructed. It is reproduced below.

The following concepts enabled us to construct the observer in Section 2.4.1 for the system

in (2.1). For another design, see Section 2.4.2.

One class of systems for which a suitable observer can be designed are those that can be
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transformed exactly using some zt = χ(xt) into the integrator chain form:

dzi = zi+1dt+ ϕi(y)dWi ∀ i ∈ N(n− 1)

dzn = νdt+ ϕi(y)dWi y = z1

(2.55)

This leads to the following definition:

Definition 3 [13]: A system as in (2.1) is called feedback linearizable if it can be transformed

into (2.55).

Next, recall (e.g. [20]) that the dynamics in (2.1) is equivalent to its Stratonovich integral

representation. Because the Stratonovich integral will be desired in the ensuing formulation,

we will state the conversion from an Itô integral to a Stratonovich integral.

Proposition 5 [13]: Given the Itô dynamical system (2.1), there is a transformation that

gives the system as a Stratonovich SDE dxt = f(xt)dt + g(xt)utdt + H(xt) ◦ dWt through

the correction

f(xt) = a(xt)−
1

2

dh(xt)

dx
h(xt) (2.56)

One fortunate property of the Stratonovich representation is that it permits the same lin-

earizing diffiomorphism as the analogous deterministic system in. This is formalized below.

Proposition 6 [13]: Given the dynamics of a Stratonovich stochastic process, if the cor-

responding deterministic system can be feedback linearized using χ(x), then the stochastic

system is also feedback linearized by the same χ(x).

The inverse correction of (2.56) is then used to convert the linearized system back to an Itô

integral.

It has been shown that the transformation χ(xt) exists if

Proposition 7 [13]: The system in (2.1) is feedback linearizable if and only if it verifies

the following

rank[g, adfg . . . adn−2
f g] = n− 1

rank[hi, adfhi . . . adn−2
f hi] = n− 1 ∀ i ∈ N(n)

(2.57)
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The follows from standard feedback linearization theory that the diffiomorphism is found

from

Proposition 8 [12]: The diffiomorphism, if it exists, is found by solving the partial differ-

ential equations

〈dτ, adif 〉 = 0, ∀ i ∈ N(n− 2)

〈dτ, adn−1
f 〉 6= 0

(2.58)

Then the components of the linearizing diffiomorphism zt = χ(xt) and the control u =

α(z)ν + β(z) are determined from

zj = Lj−1
f τ, ∀ j ∈ N(n)

α =
−Lnf τ

LgL
n−1
f τ

β = 1
LgL

n−1
f τ

(2.59)



Chapter 3

Constructing Constrained Control

Lyapunov Functions for

Control-Affine Nonlinear Systems

This chapter encompasses the ongoing investigation into the null controllable region (NCR)

of nonlinear control systems. Although the paper has been mostly been prepared individ-

ually by the author, it is being co-authored with Maaz Mahmoud and Prashant Mhaskar.

At the time of writing, this work has not formed any submitted paper.

In this work, we first endeavor to define the boundary of the region from which the states

can be controlled to the origin (i.e. the NCR). We have found from recent results [21] that

this problem is unexpectedly related to the time-optimal control of the same system. We

prove that the boundary is defined by a set of trajectories with saturated control action (i.e.

u = ±1). The proof technique for this is to show that there is a quantity (the Hamiltonian)

that must be maximized along this trajectory, and the only way to accomplish that is to

apply saturated control. We next show that for many systems, the equilibrium points of

the system under saturated control must be on the boundary of the NCR. This is shown by

noticing that under certain conditions, which for now we have assumed, it would take infinite

38
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time to reach these equilibrium points in reverse time, beginning at the origin. Lastly, we

show that by computing time-optimal controls from one forced-system equilibrium point to

the other, we traverse the boundary of the NCR for planar systems. We propose a numerical

method which uses an indirect optimization method to exactly solve for the controller. This

method, the solution of the costate ODE, is described later. The results are general enough

to be applicable to higher dimensional systems, although these results are not yet complete.

The second contribution in this chapter is to describe a control law which stabilizes nonlinear

systems with constrained inputs. Our results show that if a controller has the property that

it forces the system into successively smaller shells of the NCR, then it conveys asymptotic

stability. Identical to [22], we then show that the MPC formulation has these necessary

properties, and hence stabilizes from everywhere in the NCR.

The rest of this chapter is formed by a reproduction of this draft paper.

3.1 Abstract

In this work we consider control affine nonlinear systems, and present a construction method

for constrained control Lyapunov functions, and an illustrative control design that achieves

stabilization from the null controllable region (NCR). To this end, we first propose a con-

struction of the NCR for control affine nonlinear systems subject to input constraints. Then,

the characterization is utilized in the construction of a constrained control Lyapunov func-

tion. An illustrative control design is presented that enables stabilization from all initial

conditions in the NCR.

3.2 Introduction

Systems exhibiting nonlinearity, constraints, and uncertainty are ubiquitous in practice and

can pose significant challenges. Previous results have shown that control designs which do

not acknowledge these features can under-perform more advanced techniques or even result
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in closed-loop instability [23]. In many applications, particularly those systems with input

constraints, control designs are sought that guarantee stabilization to the origin from the

largest possible set of initial conditions. This set has been termed the null controllable

region (NCR) [24].

Constrained Control Lyapunov Functions (CCLF) are Lyapunov functions designed so that

the control laws which guarantee their decay are admissible and stabilizing for the con-

strained system with a region of attraction equal to the NCR [22]. Clearly, control designs

using control Lyapunov functions that are not CCLFs only guarantee stabilization within

subsets of the NCR [25]. There currently do not exist results that identify the NCR of a

general nonlinear system or give controls laws for its stabilization everywhere within the

NCR.

Motivated by the above, in this work we consider the problem of determining the NCR of

control-affine nonlinear unstable systems with constrained controls.

Our construction of the nonlinear NCR is a generalization of the results for linear systems

[23], where it was shown that for single-input linear systems of arbitrary dimension, the

NCR of the system was covered by extremal trajectories of the reverse-time system, i.e. its

reachable set. Via convex analysis, it was shown that these trajectories are induced solely

by all bang-bang controls with a known number of switches.

To determine the NCR for nonlinear systems, we will exploit the fact that time-optimal

trajectories traverse the boundary of the NCR [21; 26]. Nonlinear time-optimal controls

were prominently investigated in [27] (and later works) where conditions were given for

solutions to be strictly bang-bang. These characterizations, which give rise to feedback

control laws, also have an analogue in the nonlinear setting.

To study time-optimal trajectories in the nonlinear setting, we will make use of Pontrya-

gin’s Maximum Principle and the Hamilton-Jacobi-Bellman equation (for more details, see

[28]). However, because of the various complexities of the nonlinear case, we use a direct

optimization approach in conjunction with some simplifications.
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We will show that the NCR is a CCLF and that decay of the trajectory into successive

concentric sub-NCRs, corresponding to proportionally smaller input requirements, is suffi-

cient to result in stabilization to the origin. To illustrate the proposed approach, we will

employ the CCLF in a model predictive controller that guarantees stability everywhere by

constraining the control action to those which force the trajectory into successive shells of

the NCR.

The rest of the chapter is organized as follows: In Section 3.3, we will introduce some

preliminaries. In Section 3.4, we will first justify our method of constructing the NCR, and

then outline a numerical method for the most general and then more simplified cases. Then

we will employ this NCR as a CCLF and show that it results in a stabilizing control law.

Lastly, in Section 3.5, we will illustrate the application using simulation examples.

3.3 Preliminaries

We consider nonlinear, single-input, affine-in-the-control dynamical systems of the form:

ẋ(t) = f(x) + g(x)u (3.1)

where x ∈ Rn, u ∈ R, so that f(·), g(·) : Rn → Rn.

We further assume that all controls are constrained to the control set u ∈ U = [−1, 1] so

that u(t) : R+ → U and call such maps admissible controls. We also assume that f(·), g(·)

are locally Lipschitz continuous.

We also declare the following assumption on (3.1) that will be useful later. Using (iterated)

Lie bracket notation, we need that:

Assumption 1: For any vector λ ∈ Rn, and x ∈ R\{0} there exists a k := k(x) ∈ N such

that λ · adkgf 6= 0.

Remark 1: For planar systems with [f(x), g(x)] ≡ α(x)f(x) + β(x)g(x), it is sufficient for

α(·) to be sign definite [26]. Situations where k ≥ 3 are quite rare [26].
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We will denote the solution of (3.1) given x(0) = x0 and applying u(t) by x(t, u(t);x0). We

assume throughout that x = 0 is globally asymptotically unstable for the unforced system,

i.e. limt→∞ |x(t, 0; ξ0)| = ∞ whenever ξ0 6= 0. For simplicity of presentation, we assume

that the unconstrained system is globally controllable [29].

Remark 2: Note that the condition requiring unstable states is strict. It is a future avenue

of research to determine the NCR of systems which have one or more open-loop stable

states.

Furthermore, if V (·) : Rn → R+ is a Lyapunov functional for (3.1), and V̇ is its derivative

along the solution x(t), then:

Π ≡ {x : infu∈U V̇ (x, u) ≤ 0}

fc ≡ {x : x ∈ Π, V (x) ≤ c}
(3.2)

As discussed earlier, for an arbitrary choice of V (·), f = supcfc is not necessarily the

largest set of ξ0 such that x(t, u; ξ0)→ 0 as t→∞.

Towards finding a largest such set, we define the NCR of the system in (3.1) as:

C = {ξ0 : ∃ T̃ : s.t. x(T̃ , u(t); ξ0) = 0, u ∈ U} (3.3)

Note that C 6= ∅ and f ⊆ C ⊂ Rn. It is known that C is compact and connected, but

generally not convex or symmetric.

Note that C is equivalent to the reachable set of the reverse time system given by:

ż(t) = −f(z)− g(z)v (3.4)

with v(t) = u(T − t) on any t ∈ [0, T ]. v(t) can thus be thought of as being the reverse plan

to u(t) on the interval [0, T ]. Recall that trajectories of z(t) trace the same paths as x(t),

but in reverse. Then the reachable set R0 (for the original system) is given simply by:

R0 = {z : z(t, v(t); 0), v ∈ U} (3.5)

We will now review several useful properties of Pontryagin’s Maximum Principle. Let us

define a value function as:

J = −
∫ T

0
L(x, u)dt (3.6)
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and define u∗ as the control trajectory that maximizes J and x∗ as the corresponding state

trajectory. This value function, along the flow of the optimal solution (x∗, u∗), is known to

satisfy the Hamilton-Jacobi-Bellman equation. That is:

Jt + Jx
dx

dt
(x∗, u∗) + L(x∗, u∗) = 0 (3.7)

where Ja is a partial derivative with respect to parameter a. It is known that there exists a

unique viscosity solution to this equation whenever the dynamics are Lipschitz continuous

[30].

It is useful now to recall the general free-time time-optimal control problem. In this case,

the value function is just the time taken to reach some target manifold from a specified

initial point. Hence, J = −tf and L(·) = 1.

Notice that the definition of C implies that any x ∈ Rn for which there exists a solution to

the free-time time-optimal control problem that also belongs to C.

We also define the so-called costate p(t) ∈ Rn and the Hamiltonian of the system as:

H(x, u, p) = λ0L(x, u) + p(t)[f(x) + g(x)u(t)]T (3.8)

It is well known that the control u∗(t) that maximizes the value function (3.6) also maximizes

the Hamiltonian (3.8). That is:

H∗(t, x∗, u∗) = max
u(t)
{H(x, u, p)} (3.9)

For problems with free end-times, the Hamiltonian is actually everywhere zero along the

flow of x∗(t), that is:

H∗(t, x∗, u∗, p∗) = 0 (3.10)

and the solution evolves as a set of coupled ODEs governed by:

ṗ∗(t) = −Hx(x∗, u∗, p∗)

ẋ∗(t) = Hp(x
∗, u∗, p∗)

(3.11)

We say that u(t) is a bang-bang control if it is only at the extreme points of U , i.e. u(t) ∈

{−1, 1} almost everywhere.
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The next proposition is essential to our NCR construction procedure:

Proposition 1: The boundary of the reachable set is covered by time-optimal trajectories.

Proof : See [21], Lemma 6.2, Page 71. �

3.4 Main Results

3.4.1 Support for the NCR Construction Procedure

We will now present a construction procedure for the null controllable region for (3.1). The

next lemma further characterizes free time optimal solutions for system 3.1:

Lemma 1: Time-optimal trajectories of the system (3.1) are bang-bang controls.

Proof : It turns out that, without loss of generality, we can assume that λ0 = 1. In general,

either λ0 = 0 (called abnormal) or λ0 = 1 (called normal) [28]. However, one can verify

that the abnormal case implies there are no switches [26], which would obviously fail to

cover the reachable set when n ≥ 2.

Next, we know that the optimum solution must maximize its Hamiltonian. For time optimal

control problems, we get that:

H∗(t) = −1 + (p∗)T f(x∗) + max
u(t)
{(p∗)T g(x∗)u} (3.12)

Hence it is clear that to maximize H, we need only that:

u∗(t) = Φ(t) = sign{p∗(t) · g(x∗)} (3.13)

This shows if an affine-input system has Φ 6= 0 almost everywhere, then its time-optimal

solutions are realized by bang-bang controls.

If Φ(t) = 0 over some open interval t ∈ I, then the solution is said to contain singular

arcs. In these intervals, u(t) is not given by the maximum principle and takes on values

in the interior of the control set. While singular arcs are well-defined and not necessarily
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’uncommon’,(see [26; 21]), their characterization adds complexity that we will avoid here.

To rule them out, observe that if x(t) were singular, then Φ̇ and all other derivatives must

also vanish identically on I. That is:

Φ(k)(t) = p(t) · adkfg = 0 (3.14)

Hence, it is sufficient to invoke Assumption 1 to guarantee that there cannot be any such

singular arcs. �

Next we show that to cover the reachable set with simulated trajectories, it is first required

to identify a suitable location on the boundary to initialize on.

We define x+
e (x−e ) as an external forced equilibrium point of the subsystem if it solves

f(x) + g(x)u = 0 with u = 1 (u = −1). Let x±e = {x+
e , x

−
e }. We next make use of the

following assumption.

Assumption 2: (i) We assume that elements of xe are reachable, that is (with some abuse

of notation) that there exists a control θ(t) such that z(t̆, θ(t); 0) = xe for some t̆, possibly

infinite. (ii) We also assume that z(t, θ(t), 0) does not contain a limit cycle for any time

optimal control θ(t). (iii) We also assume there is only one external forced equilibrium point

for each control u = 1 and u = −1. (iv) We further assume the control θ+(t) that reaches

x+
e admits that θ+(t) = 1 for all t sufficiently large, and that x−e is reached similarly such

that θ−(t) = −1 for all large enough t.

The above assumptions are restrictive. We note that an objective of future research is to

identify the class of systems which satisfy the above assumptions. For many systems, we

expect (iv) to be implied by (i) and (ii), although we have not proved this.

Lemma 2: Trajectories of the reverse-time system emanating from the external forced

equilibrium points are a finite cover of the reachable set.

Proof : We show that it is sufficient to consider only those trajectories that emanate from

the external forced equilibrium points. To prove this, we will first show that the external

forced equilibrium points reside on the boundary of the reachable set.
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Because f(·) is globally asymptotically unstable, we know that (3.1) has a finite compact

reachable set [21]. We know that trajectories are confined in some compact set D and, by

invoking Assumption 1 (i), xe ⊂ D.

Next, consider the autonomous system ż|v=κ1 , where κ1 is a constant. Appealing to LaSalle’s

Invariance Principle, we know that solutions z1(t) = z(t, κ1; 0) must tend towards some

maximal invariant set in D. In particular, because D contains only isolated equilibrium

points via Assumption 1 (ii), then this trajectory approaches one of them. As such, consider

the set of all such points L(κ1) = {z : ż|v=κ1 = 0}. Then:

lim
t→∞

z(t, κ1; 0) = `1 ∈ L(κ1) (3.15)

It is now clear that trajectories of the reverse time system under bang-bang control flow

from the origin to an equilibrium point of the forced system.

Next, consider another trajectory of (3.4), z2(t) = z(t, κ2; `1), where κ2 6= κ1 is another

constant and where z2(T̃ ) = Z̃ for some T̃ < ∞. Thus, in forward time, there exists a

trajectory of (3.1), x(t, uκ(t); Z̃), where:

uκ(t) =

 κ2, t ≤ T̃ + t0

κ1, t > T̃ + t0
(3.16)

Hence, the concatenation of the trajectories z1(t) and z2(t) is feasible for the reverse time

system as well.

Lastly, to see that `1 ∈ ∂R0, notice that Assumption 1 (iv) implies that, in a neighborhood

of xe, the dynamics 3.4 (which are under constant control) are Lipschitz continuous and

hence x → xe only in the limit when t → ∞ (e.g. see [31]). Hence, `1 is reachable with

bang-bang controls but only in infinite time. To conclude, we note that the boundary of

the reachable set must at least contains all the points not reachable in finite time. That is,

if R∞0 = inf{R0\R0(T ) : T <∞}, then since ∂R0 ⊇ R∞0 , we know that ±xe ∈ R∞0 .

Finally, we know that time-optimal trajectories emanating from these equilibrium points

are also on ∂R0 since [21] asserts that optimal trajectories on ∂R0 remain on ∂R0 for all

time. �
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Lemma 3: Trajectories that cover ∂R0 have at most n−1 arbitrarily designated switching

times.

Proof : To see why we cannot assert n or more switches, observe that the trajectory is

necessarily traced by its corresponding state-costate pair, (ψ(t), p̃(t)). For p̃(t) to corrob-

orate ψ(t), there must be an initial co-state such that g(ψ(ti))p̃
T (ti) = 0. Along with the

the Hamiltonian at ψ(t0) = 0, this imposes n constraints on p0. To see this, consider the

following inner product formed with the costate trajectory along ψ(t):

pT (ti) = pT (t0) +
∫ ti
t0
ṗT (τ)dτ

g(ti)p
T (ti) = g(ti)p

T (t0) + g(ti)
∫ ti
t0
ṗ(τ)dτ

0 = g(ti)p
T (t0) + g(ti)

∫ ti
t0
ṗT (τ)dτ

(3.17)

Next, if we write this down for all switching times and include the Hamiltonian constraint,

we get that p0 must satisfy:
g(t1)

...

g(tn−1)

f(x0) + g(x0)Φ(t0)

 p0 =


g(t1)(p1 − p0)T

...

g(tn−1)(pn−1 − p0)T

−1

 (3.18)

Hence we cannot guarantee existence if we require more than n − 1 arbitrary switches

because otherwise (3.18) may not have a initial co-state solution. �

3.4.2 The NCR Construction Procedure

The equations in (3.11) suggest that, given any x0, we could produce an optimal trajectory

if only we knew the corresponding optimal initial costate p∗0. Then, we could integrate the

coupled ODEs using the control law in (3.13).

We first consider planar systems. We will take the approach of finding the optimal initial

costate p∗0, since, in contrast with finding the switching times, there are only n components

to p∗0, and an unknown number of switches. We will use the shooting method to find an
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initial costate p0 such that the Hamiltonian vanishes (i.e. (3.10)) at the known points x0

and xf . In this construction, we use elements of the set xe initial and final points. This

produces trajectories wholly on the boundary of the NCR because of the fact that they

time-optimally connect two points also on the boundary.

To make this precise, let us denote p̂k as the kth iteration of an estimate of the costate and

let pk(t, u(t);x0, p0) be the p(t) subspace of a trajectory (x(t), p(t)) integrated from (x0, p0)

. Then, if:

hkf (p̂k0) = lim
t→∞

p̂k(t,Φ(t);x0, p̂
k
0) · ẋf − 1 (3.19)

where ẋf = f(xf ) + g(xf )uf . It is clear that hk is an approximation of the Hamiltonian.

Hence, hk → 0 as pk0 → p∗0. Let p0 = [p0,1, p0,2]. To reduce the dimensionality of this search

space (to one), we solve the following equation for pk0,2 using a guess of pk0,1.

hk0(p̂k0) = p̂k0 · (f(x0) + g(x0)u0)− 1 (3.20)

The search of p0,1 can use standard techniques. We see that the solution for planar NCRs

is completely determined by x0, xf , and the switching law Φ.

The picture in higher dimensions is more complex. We want to rely on transversality

conditions to define p∗(T ), but because the sub-manifold defining the target set is a point,

the typical conditions do not apply. Unfortunately, the boundary value problem defining

the flow of (x, p) is degenerate in the sense that we don’t have uniqueness from the boundary

conditions at the initial and final states. They give rise to a family of admissible costate

trajectories. The correct one is the unique path such that H(t) = 0 along the solution.

Hence, the solution method takes the form of sifting through the (large) space of admissible

initial co-states. Methods for solving this intractable problem are not discussed further.

3.4.3 The Constrained Control Lyapunov Function

Here we seek an asymptotically stabilizing control policy that makes use of our knowledge

of the NCR. We will exploit the fact that, in a neighborhood of the origin, (3.1) has the
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property that the control action necessary to stabilize the system, λ, tends monotonically

to zero as x→ 0.

If denote Cλ as the null controllable region that results from the control set |u(t)| ≤ λ ≤ 1,

we will assert that Cλ1 ⊂ Cλ2 whenever λ2 > λ1 and also that C0 = {0}. Let C1 = C. We

can now state the following theorem:

Theorem 1: Any control law which guarantees that λ̇(t) < 0 everywhere in some region

E ⊃ {0} is asymptotically stable in E.

Proof : Follows immediately from V (x) = λ(x). Clearly, λ̇(t) < 0 implies V̇ < 0. Then,

V (x)→ 0, which implies x→ C0.

To determine λ(x), it is sufficient to compute the level sets Cλ for numerous λ, and inter-

polate between them. We claim that if x ∈ C, then Γ(λ)x ∈ Cλ, where Γ(·) is a class Kappa

scalar function (see [29]).

Remark 3 : It is common that the value function inspires a choice of a Lyapunov function. In

view of this, even the time to stabilization t∗ is a (somewhat trivial) CCLF for a controller

which admits ṫ∗ < 0.

For example, one controller which satisfies this requirement is a Lyapunov-based model

predictive controller. This controller could take the following form:

u(t) = arg min J(u)

s.t. dx̂
dt̄ = f(x̂) + g(x̂)u(t)

x̂(t̄0) = x(t)

x̂ ∈ C, u ∈ U

dλ
dt̄ < 0

(3.21)

where J(x, u, t) =
∫ t+∆
t x(τ̄)TPx(τ̄)+Ru(τ̄)2dτ̄ and ∆ is the time horizon being considered.

More details of such an MPC implementation can be found in [22].
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3.5 Examples

Here we present just a few examples of reachable set boundaries for nonlinear systems.

Notice that in view of [T. Hu], obviously the reachable set for linear systems can also be

produced by our construction.

Example 1 Consider the planar system:

ẋ1 = x1(sin(x2) + 1) + x2 + u

ẋ2 = x2(sin(x1) + 1) + u

(3.22)

Figure 3.5 shows the null controllable region of this system. As discussed, it is produced

by integrating the dynamics to form bang-bang arcs that emanate from each forced system

equilibrium point.

Figure 3.1: The boundary of the reachable set in Example 1.
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Example 2 Consider the planar system:

ẋ1 = k1(x1 − k2)− k3x1 exp( −k4
x2+k5

)

ẋ2 = k1(x2 − k6)− k7x1 exp( −k4
x2+k5

)− k8u

(3.23)

where [k1, ..., k8] > 0. For certain values of the parameters, this system has the form of

a time-reversed continuously stirred tank reactor. Figure 3.5 shows the null controllable

region of this system, where we have translated the state space so that its equilibrium point

corresponds with x = 0.

Figure 3.2: The boundary of the reachable set in Example 2.

3.6 Conclusion

In conclusion, we have demonstrated a procedure for constructing the null controllable

region of unstable nonlinear systems with affine constrained controls. A future avenue of
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investigation will be to construct the null controllable region for semi-stable systems. Yet

another will be to determine the control law implied by these time-optimal solutions.



Chapter 4

Conclusion

4.1 Conclusions

In this thesis, we have focused on the stability of nonlinear systems. In particular, we have

designed controllers that guarantee stabilization of systems with stochastic disturbances

and also of deterministic systems with input constraints. In a reflection of the theme of

this work, we have proposed solutions to control systems afflicted by the challenges of

nonlinearity, uncertainty, and input constraints.

4.2 Recommendations for Further Work

There are significant opportunities for future investigation. The most direct opportunity is

in completing our characterization of the null controllable region. We will endeavour prove

the hypotheses laid out in the third chapter which will show that the proposed construction

procedure is rigorous.

Following this, there are many opportunities to extend the results given. The first oppor-

tunity is to extend the validity of the construction procedure to semi-stable systems. That

53
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is, to systems with semi-unbounded null controllable regions (NCRs). The second opportu-

nity is to investigate the NCR of multiple-input systems. Here we will consider both linear

and nonlinear systems, since the path that would trace the boundary of the NCR is not

well-understood in either case. The third opportunity is to describe the switching manifolds

of the system under bang-bang control, which would result in a feedback controller. The

fourth opportunity is to implement the resulting stabilizing control design into an industrial

system. The fifth opportunity would be to extend the results to stochastic systems using

the stochastic analogues of key optimal control results.
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