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Abstract 


Conventional image compression algorithms use transform coding to achieve a 

compact representation of the image. Most transforms used in image compression 

algorithms map image data to a complete set of transform basis functions which can 

decorrelate image information and represent data in a more compact form. This tech­

nique has proven to be very efficient and is used in most state of the art compression 

algorithms. However , if an over-complete set of basis functions is available, the image 

information can be captured by fewer basis functions. This results in a more compact 

image representation and can potentially yield a better compression performance. In 

this thesis , we study the use of over-complete image representation as an alternative 

to transform coding techniques used in image compression. The matching pursuit 

(MP) algorithm is used to map the image to an over-complete dictionary. We de­

velop new quantization and encoding algorithms for matching pursuit image coding 

and compare the proposed MP image encoder with state of the art image codecs that 

use transform coding techniques. Additionally, the iterative nature of the matching 

pursuit algorithm can be used to design progressive encoders. We also study progres­

sive coding by matching pursuit and design new progressive MP encoders and show 

how they outperform existing solutions. 

We start by study of progressive coding by matching pursuit and design a progres­

sive encoder for i.i.d. Gaussian sources. The choice of Gaussian sources is motivated 

by the fact that theoretical bounds on progressive coding of Gaussian sources are 
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known and therefore can be used to determine the efficiency of matching pursuit in 

progressive coding. Our proposed MP progressive encoder outperforms all existing 

progressive encoders designed for Gaussian sources. However , redundancies in the 

MP algorithm prevents us from closing the gap that exists between progressive and 

non-progressive Gaussian source coding. Therefore, we design another progressive 

encoder based on lattice quantization and address some of the issues associated with 

our proposed MP encoder. 

In the second part of this thesis we study the application of matching pursuit 

m image compression. We start our study by developing a new adaptive quanti­

zation technique that can outperform existing quantization techniques designed for 

matching pursuit image coding. We continue our study by designing an optimal en­

coding algorithm for encoding MP coefficients and atom positions. The proposed 

encoding algorithm results in significant rate distortion improvement over existing 

encoding techniques. The use of our proposed encoding technique enables compari­

son of matching pursuit image coding with state of the art compression algorithms 

that use transform coding such as JPEG2000. Our proposed MP image encoder out­

performs JPEG2000 at low bit rates and results in better visual quality at moderate 

bit rates. We show that the flexibility offered by the over-complete dictionary can re­

sult in superior performance compared to image compression using transform coding 

techniques. 
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Chapter 1 

Introduction 

The evolution of digital electronic systems in recent decades has had an inevitable 

impact on people's daily lives. Electronic devices have made their ways into human's 

lives and many people cannot imagine finishing the day without getting online on 

their computers or receiving a phone call on their cell phones. Digital systems have 

changed the way humans can communicate with each other through development of 

a variety of digital media available today. Cell phones, digital TV, digital cameras, 

video games, internet, DVDs and many other types of digital media have provided 

variety of resources for people to communicate, interact with each other and send and 

receive information. 

In order to use digital data, digital media content must be delivered to the end 

user through a transmission medium. This transmission medium can be an internet 

link, a wireless channel or a cable. Additionally in many applications, after creation 

of digital media, the digital media data must be stored on a storage device for future 

use or transmission. Storage devices can be a DVD or Blu-ray disc, a memory card, 

or any other storage device that can store digital content. 

The storage and transmission of digital content can only be achieved if the stor­

age device or the transmission channel have enough capacity to store or transmit 
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data. However , the size of data in many digital contents can exceed the available 

storage resources or the capacity of the communication channel. In order to facilitate 

data storage and transmission , digital data is usually compressed before storage or 

transmission. Data compression reduces the size of the data and therefore allows 

more data to be stored on limited storage resources or transmitted through a com­

munication channel with limited bandwidth. As an example, if video data is not 

compressed, a DVD can only store about 2 minutes of uncompressed video while an 

MPEG2 compression codec allows the whole two hour movie to be stored on a 4 GB 

DVD disc [1]. Additionally, for most communication channels, bandwidth is an ex­

pensive and limited resource and therefore it is important to compress data as much 

as possible before sending it through the channel. A 300 Kbps internet connection 

allows for transmitting uncompressed video with only a resolution of 40 pixels by 40 

pixels at 15 frames per second. For comparison, You Tube video sequences have a 

resolution of 240x320 pixels (i.e. 48 times higher resolution than a 40x40 video) and 

are transmitted at 30 frames per second (twice the frame rate of the uncompressed 

video) [2]. This is possible by the use of an H.263 compression codec in storage and 

transmission of YouTube sequences. 

While the storage and bandwidth requirements necessitate the use of compression 

algorithms in transmitting digital media, it is worth mentioning that compression 

codecs are relatively cheap compared to their benefit. Any computer can easily decode 

MPEG video streams or compress data into a ZIP file [3] . JPEG codecs [4] are widely 

used in digital cameras. Even the old fax machines that are still in use compress data 

before transmission. The relatively low cost of compression codecs is an important 

factor in the fast adoption of compression techniques in industrial applications. 
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1.1 Overview of data compression 

Data compression is achieved by using the structure in the data in order to rep­

resent it in a compact form . A data compression system consists of a compression 

encoder and a compression decoder. The encoder compresses data and generates a 

bitstream that contains fewer bits than the original data size. This smaller bitstream 

can be stored in a storage device or sent through a communication channel. At the 

receiver side, the compression decoder, receives the compression bit stream, decom­

presses the data and generates the original data from the encoded bitstream. The 

decoder must be aware of the compression algorithm used at the encoder in order to 

be able to decode data. 

In many applications, a perfect reconstruction is achieved after compression and 

decompression and no data is lost during the compression process. This type of 

compression is referred to as lossless compression. A well known example is the ZIP 

file format that is widely used in computers for compressing and archiving computer 

files. After compression and decompression , the exact original file is reconstructed 

from the compressed ZIP file and no data is lost in the process. 

Lossless compression cannot achieve the storage and bandwidth requirements of 

many applications. Moreover, in many applications, some loss of data is tolerable 

and humans cannot notice small differences to the original data. This is the case for 

image, video, audio and speech data. When some loss of information occurs during 

the compression process the compression algorithm is referred to as lossy compression. 

Most lossy compression algorithms take advantage of human perceptual system. For 

example, the human eye is less sensitive to loss in high frequency image information. 

Thus most compression algorithms take advantage of this property and allocate fewer 

bits for high frequency information in the image. 
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1. 2 Overview of thesis 

1.2.1 Motivations and objectives 

Data compression has evolved considerably in the past few decades. JPEG and 

JPEG2000 [53] are both very efficient in image compression and are widely used 

in computers, digital cameras and digital cinema applications. Video compression 

standards like MPEG4 [5], H.264/AVC [6] and VC.1 [7] can compress video data 

to the bandwidth required for most of today's commercial applications. Although 

many compression techniques have been developed that can achieve performances 

that are very close to theoretically achievable performance bounds, in many cases 

comparison between theoretical bounds and practical compression qualities show a 

relatively large gap between what can be achieved theoretically and practical results. 

This is especially the case for image and video data in which the theoretical bounds of 

compression are not exactly known. At the core of most image and video compression 

algorithms is a transform coding which can be in the form of wavelet, DCT or integer 

transforms. All these transforms are complete transforms and they map the original 

image data to a complete set of transform basis functions . In this thesis we focus on 

an alternative technique to complete transforms and study the use of over-complete 

representations in compression of data. We use matching pursuit algorithm to map 

the data to an over-complete dictionary of basis functions. We try to find the best 

coding performance achievable by over-complete transforms and compare our results 

with the conventional compression techniques that use complete transforms. 

While it is important to be able to compress data as much as possible with mini­

mum loss, there are other properties that may be required for some applications that 

can constrain the compression algorithm. For example, in many applications it is 

important to be able to decode only part of the bitstream and achieve a relatively 

meaningful reconstruction of the original data before decoding the entire stream. As 
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an example, when a user is visiting a web page that contains an image, it is desired 

that a coarse reconstruction of the full image is available first and as more data is 

downloaded the quality of image improves. This can be achieved by progressive cod­

ing. The compression encoder ensures the compressed data is formatted in such a 

way that more data adds to the quality of reconstruction. This is in contrast with 

sequential coding in which the original data is encoded sequentially at its full compres­

sion quality. Another application of progressive coding is in browsing applications. 

In browsing, the viewer is only interested in a coarse representation of the image or 

video content and does not need to wait for the full resolution image or video to be 

decoded. Additionally in many applications, the same data should be transmitted 

through several channels with different channel capacities. The transmitter should be 

able to transmit as much data as each channel can transmit using a single progressive 

stream. An application of this is watching video over the internet. Users may have 

different internet speeds and if a video is encoded using a progressive or scalable cod­

ing technique, a same stream can be used by different users with different internet 

connection speeds. In this dissertation , we also focus on progressive coding of data 

and try to develop progressive encoding algorithms that are as close as possible to the 

theoretical bounds known for progressive coding. For this study, we focus on Gaus­

sian sources due to the existence of theoretical limits on compression for progressive 

coding. However, we also design a progressive image encoder based on over-complete 

representations and compare it with existing image compression standards. 

1.2.2 Outline 

This dissertation is organized as follows: vVe began with this chapter which 

presents an introduction to our work. Chapter 2 provides the necessary background 

on data compression. In chapter 3 we propose a new progressive coding technique for 

Gaussian sources based on matching pursuit. In chapter 4 an alternative progressive 
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coding algorithm based on lattice quantization is designed for Gaussian sources. In 

chapter 5 we study image coding by over-complete representations and propose a 

new quantization algorithm for matching pursuit image coding. In chapter 6 we find 

an optimal encoding algorithm for matching pursuit image coding and compare our 

results with the conventional image compression algorithms. Chapter 7 includes our 

concluding remarks and future directions. 

1.2.3 Contributions and publications 

The results of the research presented in this thesis have been published in various 

journals and conference proceedings. Different parts of this thesis have been published 

in 5 conference papers [12- 16] and 2 journal papers [8 , 9]. Another journal paper is 

accepted for publication and will be published in March 2009 [10]. One journal 

paper has been accepted with mandatory minor revisions and is currently under 

revisions [ 11] . 

The research results presented in chapter 3 of this thesis is published in the IEEE 

Transactions on Signal Processing [8] . The algorithm proposed in chapter 5 of this 

thesis is published in the IEEE Transactions on Image Processing [9] . The work in 

chapter 4 of this thesis will be published in the March 2009 issue of the IEEE Trans­

actions on Signal Processing and a summary of chapter 6 is submitted to the IEEE 

Transactions on Image Processing. This paper has been accepted with mandatory 

minor revisions and is currently under revisions. 
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Chapter 2 

Background 

Data compression was first studied and formulated by Claude Shannon in his 

classic paper [17] in the 1940's. In his paper Shannon founded a new branch in math­

ematics called information theory. Information theory addresses two fundamental 

questions: 

1. 	 How can we define and measure information? 

2. 	What is the maximum information that can be sent through a communication 

channel? 

Shannon showed that the amount of information in an outcome of a source depends 

on the probability of that outcome and can be measured by: 

I(x) = -log2 p(x) 	 (2.1) 

where p(x) is the probability of event x. When the base of the log function is 2, infor­

mation is measured in bits. Based on the above definition, the average information 

or entropy of a source can be found by: 

h(x) = - :Lp(x) log2 (p(x)) 	 (2.2) 
x 

7 




Ph.D. Thesis - A. Shoa McMaster - Electrical & Computer Engineering 

Shannon showed that entropy of a source is the minimum bit rate which can be 

achieved by any lossless compression algorithm. In other words , in order to be able to 

transmit a source through a channel, the bandwidth of the channel must be at least 

equal to the entropy of the source. 

In lossless compression the goal is to compress data as much as possible with no 

loss of information. According to information theory the minimum bit rate achieved 

by any compression algorithm is the entropy. Entropy of a source only depends on 

the probability distribution of the source. Therefore , the compression process can be 

summarized in two steps: 

1. Find the probability distribution of the source 

2. Find an encoding method that matches the probability distribution 

The second step is often referred to as entropy coding. We start by assuming the 

probability distribution of the source is known and discuss different entropy coding 

techniques. Then we explain how probability distributions are estimated. 

2.1 Entropy coding 

Once the probability distribution function is known an entropy coding algorithm 

should be designed to match the PDF function of the input source. In other words, 

unique decodable binary strings should be assigned to each symbol such that the aver­

age number of bits required for encoding the input symbols is minimized. A common 

approach is to use variable length coding (VLC). In variable length coding the length 

of each codeword is selected based on the probability of the symbol corresponding to 

that codeword. Many VLC techniques are developed and used in data compression 

algorithms. Here we only describe two simple examples to clarify how entropy coding 

algorithms can compress data. 
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Symbol IProbability ICodeword 
B 0.75 0 
R 0.125 10 
y 0.0625 110 
G 0.0625 111 

Figure 2.1: (a) Huffman code for 4 symbols 

2.1.1 Huffman coding 

Huffman algorithm is one of the most widely used algorithms for designing variable 

length codes. Huffman algorithm finds the optimum code length for each symbol 

based on the probability of the symbol and generates a uniquely decodable binary 

string with a length found based on the probabilities. An example is shown in Fig. 

2.1. The input alphabet contains 4 symbols and the probability of each symbol is 

shown in Fig. 2.1. Note that the entropy of this source is 1.1836 and the average rate 

obtained by this Huffman code is 1.375. 

2 .1. 2 Extended Huffman coding 

Although Huffman codes find the best code lengths for each symbol, the gap 

between the entropy and the rate of the Huffman code in the example in Fig. 2.1 

shows that Huffman coding is not optimum in terms of compression. One way to 

achieve better rates than Huffman coding is to block multiple symbols together and 

encode them by Huffman codes. This method is called extended Huffman coding. An 

example is shown in Fig. 2.2. In this example two symbols from the example in Fig. 

2.1 are blocked together and the corresponding Huffman code is computed. Note that 

the average rate for this code is 1.2031 which is much closer to the entropy than the 

Huffman code for a single symbol. It can be shown that extended Huffman codes can 

achieve rates equal to entropy if an infinite number of symbols are blocked together 
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Symbol I Probability Codeword 

BB 0.5625 0 

BR 0.09375 100 


RR 0.015625 111100 

RY 0.0078125 1111010 

RG 0.0078125 1111011 

YR 0.0078125 1111100 

GR 0.0078125 1111101 


RB 0.09375 1010 

BY 0.046875 1011 

BG 0.046875 1100 

YB 0.046875 1101 

GB 0.046875 1110 


yy 0.00390625 11111100 
YG 0.00390625 11111101 
GY 0.00390625 11111110 
GG 0.00390625 11111111 

Figure 2.2 : (a) Extended Huffman code. 

and encoded. However, the computational and storage cost grows exponentially which 

limits its use in practical applications. In order to solve this problem arithmetic coding 

has been developed. In arithmetic coding large number of symbols can be blocked 

together and encoded based on the probability of the group of symbols without having 

to compute all possible codes. This approach is used in many advanced image and 

video coding standards like JPEG2000. 

2.2 Finding probability models 

Finding probability distributions is required if the probability distribution of the 

source is not explicitly known. This is the case for many sources like image and video 

data. For image and video data the probability distributions are usually estimated 

based on the information available from the previously encoded data. The more 

information we use, the less uncertainty will remain in the source data. In other words 
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(a) (b) 

Figure 2.3: (a) The original image (b) Prediction error image, prediction is found 
from the top pixel. 

the variance of the approximated probability distribution will be smaller. In general 

the entropy depends on the variance of the PDF of the input source [27]. Probability 

distributions with small variances generally result in lower entropy and thus allow 

for more compression. Therefore, in order to achieve maximum compression, it is 

desired to find a probability distribution for the source that has the least amount 

of uncertainty or in other words results in the lowest possible variance and entropy. 

Many different approaches are used to achieve this goal. Since, in this dissertation we 

focus on image compression, we only describe the techniques used in image coding. 

2.2.1 Prediction 

Prediction is used in many image and video coding algorithms as a means to find 

probability distributions with low entropy. It is known that neighboring image pixels 

are highly correlated. This correlation can be extracted by spatial prediction tech­

niques. An example is shown in Fig. 2.3. In this example each pixel is predicted 

from the pixel above. The prediction errors are shown in Fig. 2.3 (b). If the first 

line in the image and this prediction error image are encoded and transmitted , the 

decoder can reconstruct the original image from the prediction errors. As mentioned 
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Figure 2.4: Histogram of the (a) original image (b) prediction errors 

previously, the compression ratios that can be achieved depends on the probability 

distribution of the data that is being compressed. The histograms of the original and 

the prediction error data are shown in Fig. 2.4. As shown in this figure, the PDF 

of prediction errors has a much smaller variance than the PDF of the original image 

pixels. This means that better compression efficiency can be achieved if the compres­

sion is performed on the prediction error data rather than the original pixel data. 

Moreover, the shape of the PDF of prediction errors is very similar to a Laplacian 

distribution. This is the property of most natural images and can be used to design 

efficient entropy coding in order to compress prediction error data. More complex 

prediction techniques can result in prediction errors with lower variance and hence 

higher compression efficiency. 

Successive video frames are also highly correlated and this correlation can be 

extracted by temporal prediction often referred to as motion compensation. 
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2.2.2 Transforms 

Image data in its original pixel domain exhibits a probability distribution with 

high variations as shown in Fig. 2.4. Prediction was used to alleviate this problem 

and find new symbols that have a probability distribution function with a smaller 

variance. However, if the image data can be transformed to another domain in which 

the probability distribution is known and shows a small variance, we can encode and 

transmit the transform coefficients instead of original pixels and perform the inverse 

transform at the decoder in order to retrieve the original data. If the probability 

distributions of the transform coefficients are known and have small variances high 

compression ratios can be achieved by this approach. This technique is called trans­

form coding. The next step is to find a transform that can result in probability 

distributions with the smallest variances. 

2.2.2.1 Karhunen-Loeve Transform 

It is shown in [48] that if the rows of the transform consist of the eigenvectors of 

the autocorrelation matrix of the input data, the resulting transform will minimize 

the geometric mean of the variance of the transform coefficients. This transform 

is called the Karhunen-Loeve Transform (KLT) and provides the largest transform 

coding gain among all transforms. However, if the source data is non-stationary which 

is the case for image data, the autocorrelation matrix is not fixed and the transform 

must be recomputed and sent to the decoder. This will limit the efficiency of the 

KLT transform in practical applications in which a fixed transform is desired. 
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Figure 2.5: DCT basis functions 

2.2.2.2 Discrete Cosine Transform 

It is well known that image data exhibit similar characteristics in the frequency 

domain. Most of the information in natural images are in the low frequency coeffi­

cients in the frequency domain. This results in probability distributions with small 

variances for high frequency coefficients which in turn results in low entropy and high 

compression ratios. One of the most efficient transforms used in image compression 

is the discrete cosine transform (DCT). The DCT basis functions are shown in Fig. 

2.5. The high frequency transform coefficients are generally smaller than the low 

frequency coefficients. An example is shown in Fig. 2.6. An 8 x 8 DCT transform 

is applied to the image in Fig. 2.6 (a) and the resulting transform coefficients are 

shown in Fig. 2.6 (b). High frequency coefficients are usually zero or close to zero 

(small variance) and most of the information are captured in a few low frequency 

coefficients. Moreover, the DC coefficients of neighboring blocks are also very close 

to each other. This means a simple prediction mechanism can be used to reduce the 

variance of PDF of DC coefficients and achieve better compression. DC prediction is 

used in most block DCT based codecs (e.g. JPEG [4]). 
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(a) (b) 


Figure 2.6: (a) The original image (b) Transformed image 


Mf2 
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Figure 2. 7: Implementation of wavelet transform by low pass and high pass filtering 
and downsampling. H0 and H 1 are the low pass and high pass filters respectively. 
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2.2.2.3 Discrete wavelet transform 

Wavelet transform is usually realized by applying low pass and high pass filters 

and downsampling the output. This is shown in Fig. 2. 7. If the filters satisfy certain 

conditions [27] , perfect reconstruction is possible and the original data can be recov­

ered by the inverse wavelet transform. In terms of compression performance, for most 

natural images the majority of the information will be captured by the low frequency 

subband. An example is shown in Fig. 2.8 (b). Most of the high frequency coefficients 

are zero or close to zero (small variance) and therefore high compression ratios can be 

achieved in the high frequency subbands. For image coding applications, usually the 

low frequency subband is transformed further by the wavelet transform. An example 

is shown in Fig. 2.8 (c). Most of the image information is in the low frequency sub­

band and high compression ratios can be achieved in the high frequency bands since 

most coefficients are zero and close to zero in these subbands. Another advantage of 

the wavelet transform is that it preserves the correlations between neighboring pixels. 

This property can be used to for better prediction of wavelet coefficients and is used 

in some wavelet based image compression techniques to achieve better compression 

(e.g. JPEG2000 [53]). 

2.2.2.4 Over-complete transform 

The transforms that we discussed in the previous sections are all complete trans­

forms , i.e. the input signal is mapped to N independent transform basis functions 

where N is the dimension of the signal space. However, it is possible to have more 

than N basis functions in the transform dictionary. If there are more than N basis 

functions , the transform is called an over-complete transform. Since there are more 

basis functions than needed in the dictionary, the input signal can be represented with 

fewer basis functions and therefore , more energy compactness can be achieved. This 
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(a) (b) 

(c) 

Figure 2.8: (a) The original image (b) Transform coefficients after 1 level of wavelet 
transform, ( c) Transform coefficients after 2 levels of wavelet transform. 
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can result in better compression than complete transforms. In this thesis we study 

the application of over-complete signal representations in image coding. Therefore, 

we provide a more detailed review of over-complete representations in section 2.5. 

2.2.3 Probability estimation 

After prediction or transform, the input symbols must be compressed by an en­

tropy coding technique. If the PDF has a small variance, the entropy coding technique 

can compress data efficiently and achieve high compression ratios. However, in order 

to design an entropy coding technique that matches the probability distribution of 

data, the exact PDF function must be known. The PDF function depends on the 

input image and should be estimated before an entropy coding algorithm can be used. 

In some applications fixed probability distributions that can closely approximate the 

actual PDF function are used. For example as shown in Fig. 2.4 the PDF of predic­

tion errors is very similar to the PDF of a Laplacian source. In some compression 

algorithms a fixed Laplacian distribution is assumed for the prediction errors and 

the entropy coding is designed based on this distribution. In order to find a more 

accurate estimation a large set of images can be used and an average distribution can 

be estimated. This method results in better compression since the PDF matches the 

data more accurately. 

For non-stationary sources the PDF function is not fixed and can change over 

time. For these applications the PDF function can be estimated adaptively from the 

already encoded data. This method is called context modeling and is used in most 

advanced image and video coding standards like JPEG2000 and H.264/ AVC. 
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2. 3 Lossy compression 

So far we showed how data can be compressed to bit rates as close as possible to its 

entropy. However, in many cases more compression is required and compression to a 

bit rate equal to the entropy may not satisfy the storage or transmission requirements 

of the application. According to the information theory, more compression cannot 

be achieved without any loss of information. However, in many applications slight 

loss of information is tolerable and it is possible to achieve more compression at the 

cost of losing some information. This is especially the case for image and video data, 

since the viewer usually cannot notice small loss of data or in some cases is willing to 

watch a lower quality image or video to satisfy the bandwidth costs. 

2.3.1 Rate distortion theory 

Shannon's rate distortion theory provides the theoretical bounds for lossy com­

pression. The theory states that , for every source there is a rate distortion function 

R(D) that specifies the minimum bit rate required for any encoder to compress data 

such that the distortion of the reconstructed data is not larger than D. Based on the 

above definition the rate distortion function depends on: 

1. the probability distribution of the source 

2. the distortion metric used to find D 

An example of a rate distortion function is shown in Fig. 2.9. According to the rate 

distortion theory, no encoder exists that operates outside the gray area. The rate dis­

tortion function is known for some sources (e.g. Gaussian source with mean squared 

error distortion) . However for many sources the R/D function is not explicitly known 

due to the complexity of computing the rate distortion function and the unavailability 

of the probability distribution or a distortion metric that represents true distortion. 
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Figure 2.9: Rate distortion functi.on of a Gaussian source with variance (};. 

According to the rate distortion theory, in order to design a lossy compression algo­

rithm, the PDF of the input source and a distortion metric must be used and the 

lossy compression algorithm must ensure the rate distortion performance is as close 

as possible to the rate distortion function . 

2.3.2 Distortion metrics 

The choice of distortion metric depends on the type of data that is being com­

pressed. For image data the best metric is the one that can model how image is 

perceived by human visual system. Many different techniques based on modeling 

the human visual system are proposed and used in lossy compression. However, a 

complete model of the human visual system is not known and the ones designed in 

the literature are mostly very computationally complex. Therefore, in practical ap­

plications simpler distortion metrics are often used. Sum of squared errors is one 

of the most widely used metrics. However , for many practical applications sum of 

absolute errors is preferred in order to avoid the high computational complexity of 

finding squared errors. In order to model the human visual system simple techniques 

are often used. For example it is known that human eye is less sensitive to errors 
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in high frequency components in the image. This property is used in many image 

compression standards and the low frequency components are usually compressed at 

less loss than the high frequency components. Other techniques like color subsam­

pling or region of interest coding are also used in order to approximate how images 

are perceived by the human visual system. 

2.3.3 Quantization 

In lossy compression, the amount of information in the source is reduced in order 

to be able to encode the information at the desired bit rate. To achieve optimum 

performance the encoded information must result in minimum distortion. The loss of 

information is usually achieved by quantization of data. Quantization is the process 

of representing a large or infinite set of values with a much smaller set [27]. The 

input range is divided to several regions and each region is represented by a code­

word. All input values that lie within the same region are represented by the same 

codeword. The decoder receives the codeword and assigns a reconstruction value for 

each codeword. The design of a quantizer includes defining all regions, codewords and 

reconstruction values such that the output rate distortion performance is as close as 

possible to the rate distortion curve of the source. For example, if the bit rate is fixed 

and we use fixed length coding for encoding the codewords, the optimum quantizer 

is the one that minimizes distortion for a given number of quantization regions . 

Quantization techniques vary in terms of performance and complexity. In general 

more complex quantization techniques can reduce the amount of information while 

achieving lower distortions. In this section we review some of the more common 

quantization techniques as well as the ones used in this thesis. 
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Codes 

000 001 010 011 100 101 110 111 


-4 0 2 3 input 

Reconstruction values 

Figure 2.10: A 3-bit uniform quantizer. 

2.3.3.1 Scalar quantization 

In this technique quantization of each sample is performed independently of other 

samples. The simplest form is uniform scalar quantization. An example is shown in 

Fig. 2.10. In this quantizer all quantization regions are the same size except the two 

outer intervals. The reconstruction values are the midpoint of each interval. In scalar 

quantization the size of the quantization interval is called the quantization step size. 

For example the quantizer in Fig. 2.10 has a step size of 6 = 1. Since zero is one of 

the reconstruction values this special uniform scalar quantizer is called the midtread 

quantizer. 

Suppose we want to design a q level uniform scalar quantizer for an input uniformly 

distributed in [-Xmax, Xmaxl· In the uniform scalar quantizer, the range of input must 

be divided to equally sized intervals. Therefore, each quantization step size will be 

6 = ~. Since data is uniformly distributed in each quantization interval and 
q 

the midpoint of the interval is used as the reconstruction value, the mean square 

distortion can be computed by: 

D = ~ !6/2 x2dx = J2 = (2Xmax)2 (2.3)
6 -6/2 12 12q2 

22 




Ph.D. Thesis - A. Shoa McMaster - Electrical & Computer Engineering 

PDF~ 


Quantization intervals 

Figure 2.11 : A uniform quantizer for a Laplacian PDF. 

A uniform quantizer can be used to quantize nonuniform sources as well. An ex­

ample is shown in Fig. 2.11. In this example a Laplacian source is quantized by a 

uniform quantizer. In this case since the data is unbounded, the quantization errors 

are unbounded as well. For uniform quantizers the errors in the inner intervals are 

bounded. This type of error is called granular error. However, for the outer intervals 

the error can be infinite. This error is referred to as overload error. Both overload 

errors and granular errors must be computed to find the distortion for this type of 

quantizer . 

A better approach for quantizing nonuniform sources is to use nonuniform quan­

tizers . In nonuniform quantizers, the quantization intervals can be different and the 

reconstruction values are not evenly distributed in the input range. An example is 

shown in Fig. 2.12 for a Laplacian source. The quantization step size is smaller in the 

intervals close to the origin since the data is more likely to be in this range. Therefore , 

for most cases a smaller distortion is obtained than a uniform scalar quantizer. 

One of the most commonly used nonuniform quantizers is the pdf-optimized quan­

tizer. In this quantizer , the quantization intervals and the reconstruction values are 
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Quantization intervals 

Figure 2.12: A non-uniform quantizer for a Laplacian PDF. 

obtained based on the probability distribution of the source such that the average out­

put distortion is minimized. However, in order to minimize the distortion in terms 

of quantization intervals, the values of the reconstruction levels are required and to 

minimize in terms of reconstruction levels the quantization intervals must be known. 

Lloyd and Max designed a technique for solving this problem iteratively [55]. This 

quantizer is called Lloyd-Max quantizer and is widely used for nonuniform quantiza­

tion of nonuniform sources. 

2.3.3.2 Vector quantization 

In vector quantizers instead of encoding each input value individually, a group of 

input values are grouped together to form a vector and the vector is quantized. By 

quantizing symbols together it is possible to exploit the structure in the source data 

and achieve better quantization performance, i.e. better distortion at a given rate or 

a better rate at a given distortion. Even when the source is uniformly distributed 

better rate distortion performance can be achieved when a vector of input values 

are quantized compared to scalar quantization. We will discuss this in more detail 
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Figure 2.13: Vector quantization example. The stars are the reconstruction values 
and each cell is the Voronoi region. 

in the section 2.3.3.3. However, when there is some structure in the source data, 

the structure is easier to extract when a large number of input values are available. 

Therefore a vector quantizer can achieve better performance than a scalar quantizer. 

The design of vector quantizers involve designing quantization regions, quantization 

codewords and reconstruction values. The quantization region is often referred to as 

the Voronoi region. An example is shown in Fig. 2.13. In this example the stars are 

the reconstruction values and each cell is the Voronoi region. All values inside the 

Voronoi region are quantized to the same reconstruction value. In order to exploit 

the structure in the source, the Voronoi regions in the areas where the probability 

of input source is high must be smaller. In other words more reconstruction values 

and Voronoi regions must be placed in the areas where data is more likely to be 

located. The most common approach to achieve this is to use the Linde-Buzo-Gray 

algorithm (LBG) [29]. LBG algorithm is based on a clustering procedure known as 

the k-means algorithm. In the LBG algorithm, we assume a training set containing a 

large number of samples from the input source is available. We start with an initial 
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Figure 2.14: The cubic lattice in 2-D 

set of reconstruction values. Then for each reconstruction value we find the points 

that are closer to this reconstruction value than any other reconstruction value. Then, 

each reconstruction value is updated by the average value of the points that are closer 

to this reconstruction value. This process continues until a convergence condition is 

satisfied. 

2.3.3.3 Lattice quantization 

A lattice is a regular arrangements of points in the space. In Lattice quantization 

a subset of lattice points is used as the reconstruction values of a vector quantizer. 

The simplest lattice is the cubic lattice shown in Fig. 2.14. This lattice is in fact 

similar to performing scalar quantization on each of the elements in the input vector. 

A better lattice in two dimensions is the hexagonal lattice quantizer shown in Fig. 

2.15. It can be shown that if the size of the Voronoi regions are similar, the granular 

distortion of the hexagonal lattice is smaller than the granular distortion of a cubic 

lattice. In fact as the shape of the Voronoi region approaches the shape of a sphere 
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(circle in 2-D) , the resulting distortion will be lower. In our 2 dimensional example, 

since hexagon is closer to a circle than a square, the granular distortion of a hexagonal 

lattice quantizer is smaller than the granular distortion of a cubic lattice quantizer. 

It is proven than the best lattice quantizer in 2 dimensions is the hexagonal lattice 

quantizer [28]. 

Many different factors are used to compare lattices. In general as the shape of the 

Voronoi region approaches the shape of a sphere the lattice results in lower granular 

distortion. The normalized average mean squared error per dimension can be used to 

compare lattices designed at different dimensions and with different Voronoi region 

size. It is computed as: 

G(A) = NS Jn l l tl~2dt (2.4)
V(A)l+ N-1 

where II is the Voronoi region of the lattice A, V(A) is the volume of the Voronoi 

region and N is the dimension of the lattice. G(A) is often called the normalized 

second moment of the lattice. Its value is 0.083333 for the cubic lattice and 0.080188 

for the hexagonal lattice [31]. Other important properties are packing radius and 

density. The packing radius is the largest radius of the non-overlapping spheres that 

are centered at the lattice points and the density is the proportion of space that 

is occupied by these spheres. If the density is 1, the entire space is covered by 

nonoverlapping spheres which results in the best sphere packing and therefore the 

best lattice quantizer. The density of a hexagonal lattice is 0.9069 while for a cubic 

lattice it is 0. 785. The packing radiuses of the cubic lattice and the hexagonal lattice 

are both 0.5. Other related properties are the covering radius and the thickness. 

The covering radius of a lattice is the radius of the smallest spheres centered at the 

lattice points that cover the entire space and the thickness of the lattice is the ratio 

of the volume of this sphere to the volume of the Voronoi region of the lattice. If the 

thickness is 1, the Voronoi region is a sphere and therefore the best lattice quantizer is 

achieved. For example the thickness of a cubic lattice is 1.5708 while for a hexagonal 
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Figure 2.15: The hexagonal lattice in 2-D. 

lattice the thickness is equal to 1.2092. The covering radii of the cubic lattice and 

the hexagonal lattice are 0. 7071 and 0.5774 respectively. 

Since a lattice is a structured arrangement of points, this structure can be used to 

design fast quantization algorithms. In fact in a lattice quantizer it is not necessary to 

find all lattice points and their corresponding codewords and save them in memory. 

For each input point the closest lattice point can be computed without finding all 

the lattice points and their distances to the input point. This significantly reduces 

the number of computations and the size of memory. However, lattices can only be 

effective if the data is uniformly distributed in the range of the lattice. Additionally, 

since lattices minimize the granular distortion, they are more effective if the granular 

distortion is the dominant source of distortion compared to overload errors. This is 

not the case at low bit rates and therefore lattice quantization is more effective in 

higher resolution and bit rates. 

In this thesis, we use the 24-dimensional Leech lattice in chapters 3 and 4. This 

lattice is the best known lattice and results in the smallest granular distortion. The 

normalized second moment of this lattice is equal to 0.065771 compared to 0.08333 for 

the cubic lattice and 0.080188 for the hexagonal lattice. Its packing and covering radii 
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are 1 and 1.4142 respectively. Its thickness is 7.9035 and its density is 0.001930 [31]. 

2.3.4 Rate control 

Most lossy compression algorithms include a rate control block that ensures the 

encoder operates as close as possible to the rate distortion function . Rate control usu­

ally adjusts the number of quantization regions used for quantizing different image 

components such that the resulting rate is smaller than the desired output rate while 

the overall distortion is minimized. Lagrangian optimization [30] is usually used in 

order to allocate bits to different components in the image in a rate distortion opti­

mal manner. In Lagrangian optimization it is proven that optimum performance is 

achieved when the slopes of the R/D curves of all components are the same. There­

fore , the rate distortion function associated with each image component must be 

computed. This can be done by performing the actual encoding and calculating the 

resulting bit rates and distortions for several different encoder parameters. In some 

applications it is possible to compute the bit rate and distortion from the probability 

distribution function of the input source. In any case, the Lagrangian optimization 

approach ensures a point on the R/D curve with similar slope for all image compo­

nents are selected in order to ensure the overall performance is rate distortion optimal. 

This approach is used throughout this thesis to allocate bit rates to different data 

components in a rate distortion optimal manner. 

2.4 Progressive source coding 

In many applications it is desired to be able to decode an approximation of the 

input signal at a lower bit rate before decoding the entire stream at full bit rate. The 

user can see a low quality image first and if needed can decode the rest of the bit 

stream in order to achieve higher qualities. This is important in browsing applications 
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where the viewer does not need a high quality representation of every image, instead 

wants to be able to get the high quality image of the selected images. Progressive 

coding refers to first approximating a signal using a few bits and then successively 

refining the approximation by sending more information about signal. This process is 

also called successive refinement. Equitz and Cover studied the problem of successive 

refinement in [18] . They defined a source as successively refinable if it is possible to 

achieve rate distortion optimal descriptions of the source at each refinement stage. In 

other words, a source is successively refinable if it is possible to achieve all points on 

the rate distortion curve using a single scalable stream. They showed that successive 

refinement can only be achieved if and only if the descriptions at each refinement 

stage can be written as the Markov Chain [18] . Therefore not every source is suc­

cessively refinable . However, they showed that i.i.d. Gaussian sources with squared 

error distortion, Laplacian sources with absolute error distortion and arbitrary dis­

crete sources with Hamming distortion are successively refinable. They showed that 

Gaussian sources are successively refinable if an infinite number of samples from the 

Gaussian source are blocked together and quantized. They also described a general 

strategy for designing successively refinable quantizers for Gaussian sources. How­

ever , in practice the dimension of the input vector cannot be arbitrarily large and 

therefore successive refinement may not be possible. In this dissertation, we propose 

two different algorithms for successive refinement of Gaussian sources. Since it is 

proven in [18] that successive refinement theoretically does not increase the bit rate 

required for encoding Gaussian sources, our goal is to achieve rate distortion functions 

that are obtained by other non-progressive encoders designed for Gaussian sources. 
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2.4.1 Gaussian source coding 

Before we study progressive coding of Gaussian sources we need to explain how 

Gaussian sources are quantized and encoded. Let X be an N dimensional vector con­

sisting of i.i.d. random variables x with pdf fx(x) and entropy h(x). The asymptotic 

equipartition property (AEP) states that for sufficiently large N and arbitrary small 

t:, we can write [27]: 

(2.5) 


The above equality means that as N approaches infinity, almost all vectors lie close 

to a contour of constant probability: 

Ilog ~(X) I= -h(x) (2.6) 

In the case of having a Gaussian distribution, these contours are in fact hyper-spheres. 

The result of the above statement is that the optimum way to encode Gaussian sources 

at rate Risto distribute 2RN points uniformly on the N-dimensional sphere [35]. 

If elements of X are selected from a memoryless Gaussian source with zero mean 

and variance <72, the properties of random variable llXll can be summarized by [37] : 

2rN-I exp(;-;~) 
(2.7)ftix11(r) = f(N/2)(2<72)N/2 

(2.8) 

E(llXll 2) = Ne72 (2.9) 

E(llXll) ~ ~~4() 

2
f( N+l ))

var(//XI/) = N<72 - 2<72 ~ (2.10)( f(z-) 

where f(k) is the Gamma function defined as: 

(2.11) 
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Figure 2.16: Codebook generated by wrapped spherical codes 

It is easy to verify that for asymptotically large N, the random vector X/Vf[;i2 is 

uniformly distributed on the surface of an N-dimensional unit sphere. Many quantiz­

ers designed for Gaussian sources encode the Gaussian source using vectors uniformly 

distributed on the surface of a unit N-dimensional sphere [35, 37, 46]. In this thesis 

we use the wrapped spherical codes designed in [36] to distribute vectors uniformly 

on the sphere. Wrapped spherical codes refer to a method of distributing points uni­

formly on the surface of an N dimensional sphere [36]. In wrapped spherical codes, a 

lattice in N - 1 dimensions is mapped to the surface of an N dimensional sphere. The 

surface of the sphere is divided into several annuli and each annulus is partitioned 

by an N - 1 dimensional lattice. A sample dictionary designed based on wrapped 

spherical codes is shown in Fig. 2.16. The wrapped spherical codes have been used 

in [37] to design a quantizer for Gaussian sources. This quantizer is one of the best 

quantizers designed for Gaussian sources and operates within 1 dB of the rate distor­

tion function for bit rates higher than 1 bit per sample. In this thesis , we extend this 

quantizer to provide successively refinable output streams. Two different method are 

used and compared with other progressive quantizers in chapters 3 and 4. 
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2.5 Over-complete representations 

In most traditional image compression algorithms, first a transform is used to 

capture image information in few transform coefficients. In the transform domain, 

the lower frequency components contain most of the image energy, while there is 

little information in the high frequency components. Therefore, most of the image 

information can be captured by encoding a few transform coefficients which results 

in a compressed representation. Most transforms used in image compression are 

complete transforms, i.e. the image is mapped to a complete set of basis functions 

(e.g. wavelet basis functions in JPEG 2000 or DCT basis functions for JPEG). This 

means that if the space of the input signal is of dimension N, the input signal is 

mapped to a set of N independent basis functions (the DCT basis functions are 

shown in Fig. 2.5) . Now let D = {g'Y}o:'.S'Y:'.SM be an over-complete (or redundant) 

dictionary of basis functions. Therefore D includes at least N linearly independent 

basis functions (i.e. M > N). For any k ~ 1 an approximation fk of f can be 

calculated with a linear combination of k elements in D [38]: 
k-1 

1k = L cig'Yi (2 .12) 
i=O 

Since an over-complete set of basis functions is available, the input data can be more 

efficiently represented and the information can be captured by fewer basis functions 

than in complete transforms. This potentially can result in better compression. 

Obviously, there is no unique solution for the above representation and many com­

binations of basis functions can be formed to represent fk· For general over-complete 

dictionaries finding k basis functions that minimize II f - Jk II is an NP hard prob­

lem [38, 39]. Therefore, pursuit algorithms have been developed to reduce the compu­

tational complexity of finding sparse signal representations. Many pursuit algorithms 

have been proposed for efficient mapping of signals to over-complete dictionaries. 

Matching pursuit [25], orthogonal matching pursuit [57], tree based pursuit [58] and 
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basis pursuit [56] are among the most efficient pursuit algorithms designed to map in­

put signals to redundant dictionaries. Among these methods matching pursuit (MP) 

is perhaps one of the most commonly used due to its relatively low computational 

complexity and good performance and is the one used in this thesis to solve the 

problem of mapping signals to over-complete dictionaries. 

2.5.1 Matching Pursuit 

Matching pursuit is a greedy algorithm that decomposes a signal f E H into an 

over-complete dictionary of bases (g'Y E H) [25] where H is a Hilbert space. At each 

stage of matching pursuit the dictionary element g"I that results in the maximum 

inner-product with the residual signal Rif is found. Then, the residual signal is 

projected on gT This can be written as: 

(2.13) 


where Ri+l f is the new residual signal. At the first stage R0 f is replaced by the 

input signal f. The matching pursuit iterations continue based on equation (2.13) for 

k stages in order to achieve a k stage MP decomposition. Therefore, the MP signal 

representation can be written as: 

k-1 
~ i kf = ~(R f,g'Y;)g"/i +Rf (2.14) 
i=O 

The inner product coefficients and the dictionary indexes of all stages form the de­

scription of the input signal. 

2.5.1.1 Convergence of matching pursuit 

Since g"li and Ri+l f are orthogonal and the dictionary elements are normalized, it 

can be shown that: 

(2 .15) 
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Equations (2 .15) and (2.14) result in signal energy decomposition that can be written 

as: 
k-1 

11111 2 
= L l(Ril, 9-rJ l2 +llRk111 2 (2.16) 

i=O 

llRkf 11 2 is the square norm of the error in the k-stage MP representation. Mallat 

proved in [38] (theorem 9.10) that the residual norm is upper-bounded and the upper­

bound is an exponentially decreasing function of the iteration stage i. This can be 

written as: 

(2.17) 


where A is a constant that depends on the dictionary. Equation (2 .17) shows that 

as i ---+ oo, II RiJ II ---+ 0 and therefore error in MP representation converges to 0. 

Moreover , according to equation (2.15): 

(2.18) 


Substituting equation (2 .18) into equation (2 .17) results in: 

(2.19) 


Thus, the absolute values of the inner product coefficients are also upper-bounded by 

an exponentially decreasing function of the iteration number. This upper-bound is 

often used for efficient quantization of inner product coefficients. Equations (2 .17) and 

(2.19) show that, although the sparsity of the MP representation is not guaranteed , 

the MP representation always converges and since the value of A depends on the 

dictionary, the rate of convergence depends on the dictionary that is used. 

2.5.2 MP image coding 

Matching pursuit was first used for encoding motion compensated residual video 

frames by Neff et al. in [22]. MP was used instead of DCT transform and significant 
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PSNR improvements was achieved at very low bit rate video coding. In a more recent 

work in [24], MP is applied to image compression and it is shown that matching 

pursuit image coding can improve image compression quality at very low bit rates 

while providing additional features like fine grained PSNR and bit rate scalability. 

Moreover , the subjective quality of MP encoded images is significantly better than 

those compressed by traditional compression algorithms like JPEG 2000. 

When MP is used for image coding applications, the input image is successively 

mapped to a redundant dictionary of bases. MP representation consists of both 

the dictionary indexes and the quantized inner product coefficients at each stage. 

Therefore, efficient dictionary design and efficient encoding techniques heavily affect 

the bit rate of the MP encoder. 

2.5.2.1 MP dictionary design 

When MP is used for image coding, the dictionary usually consists of a set of 

functions, that are scaled, rotated , and modulated versions of a generating function. 

Then each dictionary element is translated to all pixel locations in the image to gen­

erate the over-complete dictionary. The dictionary elements are often called atoms. 

Therefore , the matching pursuit representation consists of atom parameters (e.g. scal­

ing, frequency modulation or rotation parameter), atom positions and inner product 

coefficients. 

The most commonly used dictionary is the separable Gabor dictionary which 

consists of a collection of 2 dimensional Gabor functions . The Gabor functions are 

found by scaling and modulating a Gaussian window defined as: 

(2.20) 

The 1-D Gabor functions are found by scaling and modulating the above Gaussian 
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Figure 2.17: The 2-D separable Gabor dictionary. 

window: 
.) _ K (i - N/2+1) (27r((i - N/2+1) ,1,)

9a (i - a·9 . COS + 'f' (2.21) 
s 8 

i E 0, 1, ... , N - 1. Ka is a normalizing factor that ensures the function is of unit 

norm. s is the scale, ( is the modulation frequency and ¢ is a phase shift . The 2 

dimensional separable Gabor functions are found by: 

(2.22) 


In practice a set of discrete scales, frequency modulation and phase shifts are selected 

to form the dictionary. Then this dictionary is translated to all pixel positions in the 

image to form the over-complete dictionary. For example, in [22] a set of 20 triples 

of scales, modulation frequency and phase shifts was selected to form a dictionary of 

size 400 that is translated to all pixel locations. This dictionary is shown in Fig. 2.17. 

The use of this dictionary in low rate video coding applications results in significant 

improvements over DCT based codecs. 
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Although the above dictionary is very efficient in representing motion compen­

sated residual frames, it is not very efficient for image coding applications. A better 

dictionary was designed in [24] and it was shown that this dictionary can result in 

better coding performance than wavelet based JPEG2000 codec at very low bit rates. 

This dictionary is also built based on changing parameters of a generating function. 

Instead of a Gaussian window, a different generating function was designed with the 

goal of being able to efficiently approximate contours in 2 dimensions. To achieve this 

goal, the generating function is a Gaussian function in one direction and the second 

derivative of a Gaussian function in the other direction: 

(2 .23) 


The choice of Gaussian function in one direction is motivated by the optimal localiza­

tion of Gaussian functions in time and frequency domain and the second derivative 

of Gaussian functions in the other direction is selected for efficient representation of 

strong edges in the image. This generating function is scaled by anisotropic scaling 

factor -0: = (a1 , a2 ) to adapt to contour smoothness and is rotated by angles e to 

adapt to contour direction. Similar to other dictionaries used in image coding, all 
--t 

atoms are translated to every pixel position by a translation vector b = (b1 , b2 ) to 

find the exact location of contours in the image. The resulting basis functions can be 

written as: 

97 (x, y) = ~(49~ - 2)e-(gf+g~) (2.24) 

where 
cos(O)(x - bi)+ sin(O)(y - b2 ) 
~~~~~~~~~~~~91 = (2.25)

a1 

and 
cos(O)(y - b2 ) - sin(O)(x - bi)

92 = (2.26)
a2 

The above generating function is not able to efficiently capture low frequency 

information in the image. Therefore, a second generating function is included in 
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(a) (b) 

Figure 2.18: Example of dictionary elements used in our experiments (a) anisotropic 
atom, (b) Gaussian atoms. 

the dictionary for efficient representation of low frequency information in the image. 

The second generating function is a Gaussian function in both directions and can be 

written as: 
1 ( 2 2)g(x, y) = foe- x +y (2.27) 

The above generating function is scaled by isotropic scaling and no rotation is applied 

since the generating function is symmetric around origin. Two dictionary elements 

belonging to this dictionary are shown in Fig. 2.18. 

2.5.2.2 MP atom and coefficient coding 

As mentioned before, the MP representation consists of quantized inner product 

coefficients, atom positions and atom indexes which can consist of different scale, 

modulation and rotation parameters. While it is possible to encode each parameter 

independently, a better approach would be to use the correlations that exist between 

atom parameters and different atoms in order to achieve higher compression efficiency. 

There have been a number of works addressing the problem of efficient encoding of 

MP coefficients and indexes. These coding methods can be classified into two major 
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categories. The more common method is to find all atoms and encode them in their 

position order. The position of atoms are differentially encoded which results in fewer 

bits needed to encode the position information of dictionary indexes [22, 23, 54]. In 

the second class of methods, atoms are encoded in the order of the magnitude of coef­

ficients. In this method more bits are assigned to more important atoms which results 

in fewer bits required to encode the inner product coefficients [9, 41]. Both methods 

are shown to result in almost similar performances for image coding applications [41]. 

However, the second class allows for fine grained PSNR and bit rate scalability which 

is an important property in image compression and is the method used in [24] for 

compressing still images by matching pursuit. 

In chapter 5 of this dissertation , we propose an encoding algorithm that belongs to 

the second category. In our proposed algorithm atoms are encoded in their importance 

order. We use the correlations between successive atoms in order to achieve lower bit 

rates than the ones obtained in [41]. We show that our proposed encoding algorithm 

outperforms the one in [41] for all images and bit rates. 

Additionally, we propose another encoding algorithm that finds the optimum 

tradeoff between encoding in position order and encoding in importance order. Sig­

nificant improvements are achieved by this algorithm and our results are better than 

JPEG2000 at low bit rates. This algorithm is discussed in detail in chapter 6. 

2.5.3 Progressive coding by matching pursuit 

The iterative nature of matching pursuit algorithm can be used for progressive 

coding. In MP at each stage the closest dictionary element to the input signal is 

found and encoded along with its inner product coefficient. Therefore, each stage 

results in an increment in signal quality and therefore MP is an immediate candidate 

for progressive coding. In fact this property is used in [24] and they showed how 

MP can be used in progressive coding of images. They showed MP can provide 
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fine-grained PSNR and bit rate scalability beyond what could be achieved by JPEG 

2000. In this thesis we also study the application of matching pursuit in progressive 

coding. From a practical point of view we study the application of MP in progressive 

coding of images and design new algorithms that can outperform existing techniques 

designed for progressive coding of image sources. Moreover, we study the application 

of MP in progressive coding from a theoretical point of view and try to answer if MP 

can provide optimum progressive coding. For this study we chose Gaussian sources 

since the theoretical rate-distortion limits for progressive coding of Gaussian sources 

are known. A progressive encoder based on matching pursuit is designed in chapter 

3 and we compare it with other progressive encoders designed for Gaussian sources. 

We also design another successively refinable quantizer based on lattice quantization 

in chapter 4 and try to achieve better performance than the one designed in chapter 

3. 
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Chapter 3 

Progressive Coding of i.i.d. 

Gaussian Sources Using Matching 

Pursuit 

As mentioned in chapter 2 a source is said to be successively refinable if the output 

distortion at each rate is minimal, i.e. no decrease in the rate-distortion performance 

of the encoder occurs due to successive refinement. Equitz et al. proved in [18] that 

i.i.d. Gaussian sources are successively refinable if infinite number of samples from 

the Gaussian source are blocked together and quantized. However, in practice the 

dimension of the input vector cannot be too large and thus successive refinement 

may not be possible. In fact , in all the existing progressive quantizers for Gaussian 

sources [19-21, 49], rate-distortion performance is traded for successive refinability 

and no practical method exists that preserves the performance of a Gaussian source 

quantizer while providing successive refinement. 

In this chapter, we study the application of matching pursuit algorithm in suc­

cessive refinement of i.i.d. Gaussian sources. The rate-distortion performance of the 

MP encoder is analyzed in terms of dictionary size and number of quantization levels 
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and optimum parameters are calculated based on a probabilistic model for Matching 

pursuit residual vectors. 

As mentioned in chapter 2, the optimum way to encode a Gaussian source at rate 

R is to distribute 2RN points uniformly on the N-dimensional sphere. Our approach 

in this chapter is to use this property and apply matching pursuit to successively 

map the signal to a dictionary with vectors uniformly distributed on the surface of 

a sphere. This approach results in an embedded bitstream for the Gaussian source. 

We compare the performance of the MP encoder with other quantizers designed for 

successive refinement of Gaussian sources and show that significant improvements can 

be achieved by our MP encoder. 

3.1 MP for Spherically Uniform Signals 

In this section the average distortion of matching pursuit is calculated in terms 

of MP encoder parameters for signals uniformly distributed on the surface of a unit­

sphere. As mentioned in chapter 2, matching pursuit decomposes a signal f E H into 

an over-complete dictionary of bases (g7 E H) [25] where His a Hilbert space (in this 

chapter H = JRN). At each stage of matching pursuit the dictionary vector g'Y that 

results in the maximum inner-product with the residual signal Rif is found . Then, 

the residual signal is projected on g'Y. This can be written as: 

(3.1) 


where Ri+ 1f is the new residual signal. At the first stage R0 f is replaced by the 

input signal f. The matching pursuit iterations continue based on equation (3.1) for 

k stages in order to achieve a k stage MP decomposition. Therefore, the MP signal 

representation can be written as: 

k-1 
~ i kf = L...t (Rf, g'YJg'Yi + R f (3.2) 
i=O 
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The inner product coefficients and the dictionary indexes of all stages form the de­

scription of the input signal. Since g1; and Ri+l f are orthogonal and the dictionary 

vectors are normalized, it can be shown that: 

(3.3) 


Equations (3.3) and (3.2) result in signal energy decomposition that can be written 

as: 

11111 2 = L
k-1 

l(Ril,g,Jl 2 + llRkfll 2 (3.4) 
i=O 

II Rk 111 2 is the square norm of the error in the k-stage MP representation. Let us 

divide both sides of equation (3.1) by llRifll: 

Rif Rif Ri+1 j 
(3.5)llRiJll = (llRiJll '9')g,+ llRiJll 

and let: 

and (3 .6) 

Equation (3.5) is the MP equation for the normalized signal ~;} and therefore, ri11 11 
is the norm of the resulting residual signal when matching pursuit is applied to the 

normalized signal. Substituting llR0 !II by 11111 and using equation (3.6) repeatedly, 

we can write: 

(3.7) 

The square of the norm of the residual signal at the kth stage is equal to the total 

distortion of k-stage matching pursuit. Since the input signal is on the surface of a 

unit N-sphere, II! II = 1, Therefore: 

(3.8) 


where DMP is the distortion of matching pursuit. In order to find the distortion of 

matching pursuit , the behavior of the residual norm r i must be studied. In what 
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follows , we first approximate the Voronoi regions in which the vectors fi are located. 

Then , we find the probability distribution of ri and their product (f17=i ri) · Once 

this probability distribution is available, the expectation of DMP can be calculated. 

Since f is an N-dimensional vector, ~;7 is a vector on the surface of a unit 11 11 
N-sphere where N-sphere is an N-dimensional hyper-sphere. Moreover, since the 

dictionary elements are normalized N dimensional vectors, they are also on the surface 

of the unit N-sphere. Now suppose the negative of each dictionary vector is included 

in the dictionary. Therefore, finding the maximum inner-product is equivalent to 

finding the minimum Euclidean distance (which is equal to the mean squared error 

distortion). If the size of the original dictionary is M, the size of the new dictionary 

will be 2M. Note that this assumption is only for our modeling convenience and is 

not implemented in practice. In fact , the sign bit of the inner product coefficient is 

now used to encode the dictionary index for a dictionary of size 2M. 

Our analysis is for signals uniformly distributed on the surface of the unit N­

sphere. Since the signal is uniform, for the best rate-distortion performance, the 

dictionary vectors must be uniformly placed on the surface of the N-sphere. This 

means that the Voronoi regions for each dictionary vector must be identical and 

therefore have the same area. Moreover, to maximize uniformity, the Voronoi regions 

must approach the shape of a spherical cap. The latter argument is justified by the 

similarity of matching pursuit dictionary design to sphere packing problem in lattice 

quantization [31]. In sphere packing problem, it is argued that the best covering 

of space is a dense packing of spheres with minimal overlap. Therefore, in lattice 

quantizer design the best Voronoi regions are the ones that best approximate a sphere 

[32] . The difference between matching pursuit and lattice quantizer dictionary design 

is that in matching pursuit the space is the surface of a unit N-sphere rather than JRN. 

Therefore, N-spheres are analogous to N-dimensional spherical caps (sphere caps of 

a hyper-sphere in JRN) . So the best covering of the surface of a unit N-sphere is a 
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dense packing of N-dimensional spherical caps with minimal overlap. 

If the total surface area of the unit N-sphere is AN, since there are 2M Voronoi 

regions and the Voronoi regions are identical, the surface area of each of the Voronoi 

regions will be S = ~. For the optimum dictionary these shapes must be as close 

as possible to the shape of a spherical cap and their surface areas must be as close as 

possible to S . Therefore, when the number of elements in the dictionary is high, it is 

reasonable to approximate the Voronoi regions by N - 1 dimensional spheres with the 

same volume as the surface area of the Voronoi regions (S). This is shown in Fig. 3.1 

(a). Thus, using the equations for the volume and surface area of hyper-spheres [33], 

the volume of these N - 1 dimensional spheres can be written as (the radius of the 

unit N-sphere is 1): 

N-1 N 
1f-2- nN-1 = N7r2 (3.9) 

( N;l )! (~)!2M 

where R is the radius of the N - 1 dimensional sphere. Therefore, R can be found 

by: 

;;;;N(N-1)') N:._ 1 R = y1f - 2- • M-N=-1 = t(N)M-N:._1 (3.10)( 2( ~)! 

where t(N) is defined by: 

(3.11) 


Now that the Voronoi regions are modelled for the uniform dictionary, the distribution 

of the residual norms (ri) can be found. According to (3 .5) and (3.6): 

(3.12) 


Therefore , ri is the residual vector for the normalized signal ~;_\1 . Hence , ii points1 1 
from the approximation of the normalized vector to the normalized vector which is 

located in the Voronoi region as shown in Fig. 3.1. (b). The Voronoi regions are 
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~ /' /;- .-· -····- · ---· ··-~- .......... 

Figure 3.1: (a) 3-dimensional Voronoi region is approximated by a two dimensional 
circle with the same volume as the surface area of the Voronoi region (in two dimen­
sions, volume=7rR2

, surface area=27rR) (b) Geometric interpretation of the residue 
ri . (c) ii is uniformly distributed in the volume of the 2-dimensional sphere. 

approximated by an N - l dimensional sphere with a radius found in equation (3.10) . 

Since the input signal is uniformly distributed on the surface area of a unit N-sphere, 

the residual vector ii is uniformly distributed in the volume of the (N - 1)-sphere 

with radius Ras shown in Fig. 3.1.(c) . ri = llrill will be the distance of the point 

corresponding to vector ri to the center of the sphere. Let ri be the random variable 

corresponding to this distance. Since the residual vector is uniformly distributed in 

the volume of the (N - 1)-sphere, the probability distribution of ri can be expressed 

as: 

(3 .13) 

Therefore: 
) = dFri (ri) = (N - l)rf-2 

f r ; (Ti 
·

dri R,N-I 0 ::=; ri ::=; R (3.14) 

Now in order to compute the right hand side of equation (3.8), the probability distri­

bution function of a new random variable corresponding to r 1r 2. .. rk must be found. 
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First , Let us define a new random variable r~ as: 

(3.15) 


Therefore, the PDF of r~ can be computed as [34]: 

(3.16) 


From equations (3.8) and (3.15), the distortion of k-stage MP is: 

(3.17) 


Thus, in order to find DMP, the PDF of r~r; ...r~ must be calculated. We use the 

following lemma to find this probability distribution. 

Lemma 1 Suppose x and y are independent random variables with PDF's: 

(3.18) 

Let z = xy. Then: 

(3 .19) 


where T/, (3, a and p are constants. 

Proof: Let w be an auxiliary random variable defined by w = x. The determinant of 

the Jacobian matrix is J(x, y) = -w. Therefore the PDF of z can be written as [34]: 

fz(z) = j fzw(z, w)dw = j l~I fxy (W, ~) dw (3.20) 

For nonzero probability distribution functions, x and y must be between 0 and 1. 

Therefore, 0 :::; w :::; 1 and 0 :::; ~ :::; 1. This yields the boundaries of the integral 

equation as z :::; w :::; 1. The independence of the two random variables implies that: 

1 

fz(z) = 1~fx(w)fy (~) dw (3 .21) 
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Substituting the PDF's of x and y from (3.18) into (3.21): 

fz(z) = f	1 ~wf3 (ln w)P-1 'T] z:dw = a'T}zf3 j 1 

(ln w)p-l dw (3.22) 
z w w z w 

Therefore, the solution of the integral equation is: 

fz(z) = - 'T]a z!3 (ln z)P 0::::; z::::; 1 • 	 (3.23) 
p 

From equation (3.16) the PDF's of r~ and r; have the same form as equation (3.18) 

with 'TJ =a= N - 1, {3 = N - 2 and p = 1. In order to use Lemma 1 we must prove 

that r~ and r; are independent. According to (3.5) and (3.6), ri+l is the norm of the 

residual vector at the ( i + 1)th stage if matching pursuit is applied to the normalized 

th ..E..Lresidual vector at the i stage (i.e. llRi !II). Therefore, ri+l is determined only by 
Rif 


llRifll' But 

Rif 


llRi 1 !II 
 (3.24)
II fill 11 llR~~{fl! II 

Thus, ri+1 depends only on W· Since llfill and Ware independent (the norm and 

the direction of a vector are independent) and ri+1 only depends on W' we can 

conclude that ri+l is independent of IJfi II = ri. Therefore their scaled versions r~+ 1 

and r~ are also independent . 

Using Lemma 1, the PDF of z2 ~ r~r; can be written as: 

(3.25) 

Equation (3.25) has the same form as the PDF of x in Lemma 1 with a= -(N -1) 2 , 

{3 = N - 2 and p = 2. The PDF of r~ (equation (3.16)) has also the same form as 

the PDF of yin Lemma 1 with 'T] = N - 1 and {3 = N - 2 and r~ and z2 = r~r; are 

independent. Thus, the PDF of z3 ~ z2 r~ = r' 1r'2r'3 can be found using Lemma 1: 

(3.26) 
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Continuing this fork times, the PDF of zk ~ r~r~ .. .rk will be: 

(3.27) 

(3.28) 

I 

Let l ~ -(n + N - 1) lnzk . Therefore, Zk = e-n+lv-1, dzk = _e~~ dl and 0 :S l :S 

oo . Thus: 
E Zn - (N - l)k fo

00 
zk-le-1dl - (N - l)k f(k) 

(3.29)
( k) - (k - l)!(n + N - l)k - (k - l)!(n + N - l)k 

where f(k) is the Gamma function defined in equation (2 .11). Since f(k) = (k - 1)! 

for integer k, the expectation of zk is: 

E(zn) = ( N - 1 ) k (3.30)
k n+N-l 

Substituting (3.30) and (3.10) into (3.17), the average distortion of k-stage matching 

pursuit for signals and dictionaries uniformly distributed on a hyper-sphere can be 

found by: 

-2k (N - l)k
DMP = t(N) 2kM N- l 	 -- (3.31)

N + l 

3.2 Quantized Matching Pursuit 

In the previous section we found the distortion of matching pursuit assuming the 

values of inner product coefficients are known to the decoder. However, since inner 

product coefficients can take on any real values, they have to be quantized before 

they can be encoded and sent to the decoder. Therefore, the distortion caused by 

quantization must be considered in the total matching pursuit distortion. In practical 

matching pursuit encoders, the quantized inner product coefficient is used in the 
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Figure 3.2: The block diagrams of (a) MP encoder , (b) MP decoder 

computation of the residual vector in order to prevent accumulation of quantization 

error (in-loop quantization). This results in partial correction of the quantization 

error in the subsequent stages. Therefore direct addition of the quantization error to 

the MP distortion will not accurately model the total distortion. In this section we 

find a reasonably accurate approximation for the distortion in quantized matching 

pursuit . Our approach is based on the results of previous section with modifications 

to facilitate computation for quantized matching pursuit . 

The block diagrams of quantized matching pursuit encoder and decoder are shown 

in Fig. 3.2. At the encoder side, the input vector goes through the first stage of 

matching pursuit and the dictionary vector with maximum inner product coefficient 

is found along with the inner product coefficient. The inner product coefficient is 

quantized and encoded and is sent to the decoder together with the encoded index of 

the dictionary vector. Then, the quantized inner product coefficient is used to find the 

residual vector which goes through the second matching pursuit stage. This process 
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Figure 3.3: Geometric interpretation of quantized matching pursuit 

continues for all MP stages until the full k stage decomposition is constructed. The 

decoder decodes the inner product coefficients and dictionary indexes and reconstructs 

the input vector according to equation (3.2). Since the quantized inner product 

coefficient is used to find the input to next stages, the MP equation at each stage 

(equation (3.1)) can be modified to: 

(3.32) 


where Ri fq is the residual vector which is computed using the quantized value of inner 

product coefficients at previous stages. 

Let ci and Cqi be the unquantized and quantized values of the inner product 

coefficient at stage i respectively. If the inner product coefficients are not quantized, 

the total distortion at stage i will be 11Ri+1!11 2
. However, at each stage the inner 

product coefficient is quantized. This introduces an additional quantization error 

lleqill 2 
, where: 

(3.33) 
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Part of this error will be corrected in the subsequent stages if we plug 

i+l - i+l ­R f q - R f + eqi - R i fq - cqi9-y; 	 (3.34) 

into the next stage instead of Ri+lj (see Fig. 3.2) . The distortion at stage i is equal 

to the square norm of the total residual vector at stage i (i.e. 11Ri+1fqll 2 ). Since Ri+1f 
and eqi are orthogonal (Fig. 3.3): 

(3.35) 

Equation (3.35) can be written as: 

where rqi is defined as: 

(3 .36) 


(3.37) 


According to this definition and equation (3.32), rM 1 is the residual vector when 

matching pursuit is applied to the normalized input vector ( ~:j; ). This is exactly 11	 11 
similar to the definition of r;+1 in the previous section except that in quantized MP, 

· · Ri fq h·1 · · d MP h · .J!!.j_ s·the mput vector is llRi fqll w i e m unquant1ze t e mput vector was llRi 
111 

. mce 

in section 3.1, the only assumption on the input vector ~;} was that it is uniformly 11	 11 
distributed on the surface of the unit sphere and this assumption holds for ~:j: as11	 11 
well, we can conclude that rqi has the same characteristics as r; defined in equation 

(3 .6) . More specifically, the PDF of rqi is the same as the PDF of r; computed in 

equation 	(3 .14). 

The average distortion at stage i can be written as: 

(3 .38) 

Now in the above equation, rq;+i only depends on ~:j: (i .e. the direction of vector 11	 11 
Rifq) · Since norm and direction of the residual vectors are independent, llRifqll and 
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r qi+i are independent and we can write: 

(3.39) 

E{r~i+J can be found from the PDF of rqm (which is found in equation (3.14)) and 

equation (3.30) for k = 1 and n = 2: 

2 (N - 1)E{r2
_ } = t(N) 2 M N"-1 -- (3.40)

q,+1 N + 1 

Now, let us assume that the values of E{lleqi/1 2 
} are known. If E{lleqill 2 

} is known 

for every i, starting from the first stage, we can write: 

(3.41) 

or 

(3.42) 

DMPQl = E{llR2 fqll 2 
} can also be found from equations (3.40), (3.42) and (3.39). 

This process can be continued to find E{llRi+lfqll 2 
} for every i using the recursive 

formula in equation (3.39) and the expectations found in the previous stages. 

Now, it only remains to compute the values of E{lleqill 2 
} at each stage. The 

quantization error E{jjeqi/1 2 
} depends on the quantizer that is used at each stage and 

the PDF of inner product coefficients at that stage. In order to find the quantization 

distortion at each stage we need to find the PDF of the inner product coefficients. 

Unfortunately, unlike the previous section, it is not easy to compute the probability 

distributions when quantization is performed within the encoding cycle. However, 

if quantization is done outside the encoding cycle, we can approximately find the 

PDF of inner product coefficients. If quantization error is not the dominant source of 

distortion (relatively high resolution quantization) , we can approximately assume that 

the PDF of inner product coefficients does not change significantly by quantization. 
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According to equation (3.3): 

(3.43) 


Thus, using equation (3.6) we can write: 

(3.44) 


For large dictionary sizes (M > 22N), R is smaller than 0.25 and we can assume 

rl+i « 1 (since ri+1 < R). Therefore: 

(3.45) 


where zi = r~r; .. .r~. Since the PDF of zi is known, we can quantize c; using PDF opti­

mized quantization techniques. Assuming ci is quantized by q levels, the quantization 

distortion at stage i can be written as: 

(3.46) 


where ai is a factor that depends on the PDF of ci and the quantizer [27] and ac; is 

the variance of c; which can be found by: 

a~; =var (Rizi) = R 2(i) (E(zJ) - E(zi) 2 
) (3.47) 

a;, = t(N)'i'lM-;,'!'! ( G~ ~) i - ( N;; 1)2(i)) (3.48) 

Equation (3.46) is the quantization distortion at each stage and can be used in equa­

tion (3.39) to find the total matching pursuit distortion at every stage. 

As discussed in section 2.4.1, for asymptotically large N, the N dimensional vector 

of the form v1:,,.2 , with elements of vector X selected from a memoryless Gaussian 

source, lies on the surface of an N dimensional unit-sphere. However, in practical 

applications N cannot be arbitrarily large and the input vector is not localized on 
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the surface of a sphere. Therefore, the norm of the input vector has to be quantized 

and encoded before the MP encoder can be used. The input signal is normalized 

by this gain and the resulting normalized signal will be located on the surface of a 

unit sphere and can be quantized using the MP encoder. Quantization of the gain 

component causes additional distortion which can be written as: 

2 
O:gO' g 

DQg = -2- (3.49) 
qg 

where a9 is the variance of the norm found by equation (2.10), q9 is the number of 

quantization levels and O:q is a parameter depending on the type of the quantizer and 

the distribution of the gain component found by (2.7) . 

We can further improve the rate-distortion performance of the MP encoder by 

combining the quantizers for the gain component and the inner product of the first 

stage. In fact, instead of sending two codewords for the gain component and the 

inner product coefficient of the first stage, we can find the inner product coefficient of 

the dictionary vector and the original input vector (instead of the normalized vector) 

and quantize the resulting inner product coefficient . Therefore, a single quantizer is 

required at the first stage. Moreover, since for not very large N and large dictionary 

sizes, the gain component is more dominant than the inner product coefficient of 

the first stage, we can approximate the quantization distortion at the first stage by 

equation (3.49). Therefore the total quantization distortion at the first stage can be 

written as: 
2 

2 O:gO' g E{lleqol/ } = - 2 
(3.50) 

qg 

Now that E{lleqi ll 2 } is found for each stage, the total matching pursuit distortion can 

be found from the recursive formula in equation (3.39). 

In order to achieve the best quantization strategy for inner product coefficients , a 

set of PDF optimized quantizers must be designed for quantizing the inner product 

coefficients at each stage. However , the distribution of the inner product coefficients 
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obtained by equation (3.27) is an approximate estimation of the actual PDF and its 

accuracy depends on the quality of the lattice used in the wrapped spherical codes 

(this will be shown in the simulation results presented in the next section). Therefore, 

in this chapter, we use a simple uniform quantizer for quantizing the inner product 

coefficients. In order to apply the characteristics of the distribution of coefficients 

which vary significantly for different stages, the uniform quantizer for each stage is 

centered around the mean of the inner product coefficients and its granular region is 

set proportional to standard deviation of coefficients of that stage. In other words, 

the granular region of the uniform quantizer is set to (mci - a~crCi, mci + a~crCi), where 

a~ is a constant, me; is the mean of the inner product coefficients at stage i and is 

computed by: (N -l)i. -i (3.51)mci = t(N)iMN-1 ~ 

and O'c; is the standard deviation of the inner product coefficients at stage i which is 

derived in equation (3.48). In case of high resolution (q a large value), the high reso­

lution analysis can be used and the values of ai in equation (3.46) can be computed 

as ai = a? /3 [55]. The quantization method described above is used to quantize 

the inner product coefficients throughout this chapter. Note that although uniform 

quantization is used, the range and center of the quantizers are different for different 

stages and are adapted to the distribution of the coefficients. Therefore, our quan­

tization algorithm matches the distribution of the inner product coefficients at each 

stage and as will be shown in the next section our quantization scheme results in very 

efficient quantization of the inner product coefficients. 

3.2.1 Convergence of quantized MP 

As mentioned in section 2.5.1.1, the distortion of MP is guaranteed to converge to 

zero if an infinite number of stages are applied. Moreover there exists an exponentially 
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decreasing upper bound for the distortion at each stage. However, this is only true 

when quantization distortion is ignored. When a new quantization scheme is proposed 

for MP, its convergence must be studied in order to ensure a generally decreasing 

distortion. In this section we analyze the convergence of our proposed quantization 

scheme and prove that the MP distortion is upper-bounded by a decreasing function 

that is always larger than the exponentially decreasing upper bound for unquantized 

MP. According to equation (3.36) , MP distortion at stage i + 1 is equal to: 

(3.52) 


where rq(i+l) is defined in equation (3.37). Based on the discussions following equation 

(3.37) , the PDF of rq(i+i) is defined by equation (3.14) and therefore rq(i+i) ::; 'R. 

Hence: 

(3.53) 


Therefore, in order to find an upper-bound for 11Ri+1fqll 2 
, we need to find the max­

imum value of the quantization distortion lleqill 2 
. According to our discussions in 

the previous section, our quantizer is a uniform quantizer with q quantization steps 

that partition the range between (me; - a~O"c;, me; + a~O"c;). Therefore, the maximum 

quantization error caused by our quantization scheme depends on the value of ci· 

1. If ci is within the granular region of the quantizer, it can be easily verified that: 

I 
Qi(J"Ci 

e· < -­ (3.54)qi ­ q 

2. If ci ::; me; - a~O"c;, the quantized coefficient will be mci - a~O"ci (i - ~) if 

midpoint reconstruction is used. Therefore: 
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3. 	 When e; ;::: me; + a~O"c; , the quantized coefficient is me; + a~O"c; ( 1 - % ) and 

therefore the quantization error can be computed as: 

eqi 	= Ci-me;-0'.~0"e; (1- ~) ~ /IRifqll-me;-0'.~0"e; (1- ~) Ci;::: me;+a~O"e; 
(3.56) 

where the last inequality is based on the definition of Ci and the fact that 

dictionary vectors are normalized (ci = l(Rifq,g"fi)I ~ llRifqll). 

Therefore, the maximum distortion at stage i can be written as: 

(a;;c;) 2 

+ llRifqll~axR2 

11 Ri+l+qllm2ax=max ( ' ( 1))2 II ·+112 2 	 (3 .57) J, 	 me; - O'.iO"c; 1 - q + RiJq maxR 

(11Rifqllmax - me; - a~O"c; ( 1 - %) r+ llRifqll~axR2 

where llRifllmax is the maximum of llRifll· The above recursive equation can be used 

to find the upper-bound at each stage, if the upper bound at the first stage and the 

values of a~ and q are known. In what follows, we show that for any function C(i) 

(where i is the stage number), we can find a~ and q such that llRifq/1 2 ~ C(i) provided 

that C(i + 1) > C(i)R2 
. 

Lemma 2 SupposeC(i) is afunctionthatsatisfiesC(i+l) > C(i)R2 
. IJllRifqll~ax ~ 

C(i), there exists a~ and q such that llRi+l fqll 2 ~ C(i + 1). 

Proof: Equation (3 .57) can be used to find the conditions on a~ and q that satisfy 

11Ri+ 1 fqll 2 ~C(i+1). Using the first term in equation (3.57), one can show that: 

a~ JC(i + 1) - llRifqll~axR2 
~ < ~~~~~~~~~~ (3 .58) 
q O"e; 

The second term in equation (3.57) implies that: 

2 a~ 	(1 _ ~) ;::: _m_c;_-_J_C_(i_+_l_)_-_l_IR_if_q_ll~_ax_R_ (3.59) 
q 	 O"e; 
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Finally, using the third term in equation (3.57) , we can write: 

a~ (l _~) ~ llRilq llmax - me; - JC(i + 1) - llRi1qll~axR2 

(3.60) 
q CTc; 

The above inequalities are satisfied for any values of a~ and q such that: 

(3.61) 


and 
I> aicrc; (3.62) 

q - /C(i + 1) - llRi1qll~axR2 

Since C(i + 1) > C(i)R2 and l!Rilqll~ax S C(i), therefore C(i + 1) > llRi1qll~axR2 . 

Hence, according to equations (3.61) and (3.62), there exists finite real values for a~ 

and q that guarantee llRi+l 1qll 2 S C(i + 1). • 

Now suppose the input vector square norm is 11111 2 s C(O) < oo . For any function 

C(i) that satisfies C(i + 1) > C( i)R2 
, lemma 2 can be used repeatedly to find a~ 

and q for any stage (starting from i = 0) such that llRilqll~ax S C(i). Note that 

C(i + 1) > C(i)R2 implies that C(i) > R 2illlll 2 for all values of i. But R 2illlll 2 is 

the exponentially decreasing upper bound for MP distortion when quantization error 

is not considered (this can be easily verified by ignoring the quantization distortion 

terms in equation (3.57) and substituting llR0 lqllmax by 11111 and the fact that R < 1 

for all dictionaries used in this chapter). Therefore, it is expected that when inner 

product coefficients are quantized, only functions that are larger than the upper 

bound for unquantized MP distortion at every stage can provide an upper bound for 

quantized MP distortion. 

3.2.2 Optimum dictionary size and quantization levels 

The matching pursuit representation of signals consists of the dictionary indexes 

and inner product coefficients at all stages. Therefore, if the dictionary size is M, the 
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dimension of the input vector is N and the inner product coefficients are quantized 

by q levels, the rate of a k-stage MP encoder can be found by: 

Rate = N 
k 

(log2 q + log2 M) (3.63) 

and can be found for any value of N, k, M and q. Now, in order to find the best 

dictionary size M and number of quantization levels q, the following optimization 

problem has to be solved: 

minD 

k 
s.t . N (log2 q + log2 M) = Rate (3 .64) 

where: 

(3.65) 


In this chapter , we use a fixed value for N which is chosen by the lattice used in the 

dictionary or the application requirement . The number of stages ( k) determines the 

number of successive refinements performed on the input vector and is selected by 

the application requirements . When k is fixed , the best dictionary size and number 

of quantization levels must be found such that the resulting distortion is minimized. 

The possible choices for both q and M are integer values. Therefore the optimization 

problem can be solved by an exhaustive search over a limited number of integer values. 

Moreover , the rate budget constraint imposes a relationship between q and M . Thus, 

choosing a value for each of these two parameters yields a value for the other one 

according to equation (3 .63) . Since the range of possible values for q is smaller than 

the range for M, we search over the possible choices for q in order to find the optimal 

parameters that result in minimum distortion. 

Now that we proposed an algorithm for finding the optimum values for q and 

M for a fixed number of MP stages, we can investigate the case when there is no 

requirement on the number of MP stages and k can be optimized such that the 
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total distortion is minimum. Again, we employ an exhaustive search strategy and 

minimize the distortion for a range of possible values of k (the optimization algorithm 

described for a fixed k must be performed for all values of k). We performed the above 

optimization algorithm for different bit rates and input dimensions and for all our 

experiments, the optimum number of stages was found to be k = 1 (for one such 

example see section 3.3.2, Fig. 3.9). This means that single stage matching pursuit 

which is equivalent to gain-shape vector quantization is optimum for Gaussian signals. 

However, successive refinement is only achieved if k > 1 and for applications that 

need progressive coding, the rate-distortion performance must be sacrificed in order 

to achieve the desired structure in the output bitstream. 

3.3 Simulation Results 

In this section, first the dictionary used in our experiments is introduced. Then, 

the accuracy of our analytical study of MP encoder is verified by comparison to 

practical matching pursuit encoders. In the end, the application of our proposed MP 

encoder in progressively quantizing Gaussian signals is discussed and our MP encoder 

is compared with other quantizers designed for Gaussian sources. 

3.3.1 Dictionary Design 

As discussed in section 2.4.1, a vector that consists of samples selected from an 

independent Gaussian source is uniformly distributed on the surface of a sphere. 

Therefore, in order to efficiently represent this vector with an over-complete dictio­

nary, the dictionary vectors must be uniformly distributed on the surface of a unit 

sphere. In this chapter, we use the wrapped spherical codes proposed in [36] to gen­

erate such dictionary. In wrapped spherical codes, a lattice in N - 1 dimensions is 

mapped to the surface of an N dimensional sphere. In the following, we briefly review 
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(a) 

Figure 3.4: (a) Geometric interpretation of the wrapped spherical codes (b) Example 
in 3 dimensions (figures are taken from [37]) 

the wrapped spherical codes (for more detailed discussion see [36]) . 

Let A be a lattice in JRN-l and let the latitude of a point X = (x1 , x2 , .. ., XN) be 

defined as sin-1(xN ). Suppose n + 1 latitudes are selected in the range (-7r/2, 1T/2): 

-1T/2 = Bo < ... < Bn = 7r/2 (3.66) 

The ith annulus is defined as the set of points satisfying: 

(3.67) 

where 0,N is the surface of an N dimensional sphere. For each X E A, the point 

XL which is the closest point to X and is located on the border between the ith and 

i - 1th annuli can be found by: 

(3.68) 
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Figure 3.5: Dictionary generated by wrapped spherical codes 

For each i, a mapping </>i is defined from A to a subset of JRN-l by: 

(3.69) 


where (x)+ = max(O, x) and prime notation denotes mapping from JRN to JRN-l by 

deleting the last coordinate. According to [36] the wrapped spherical codebook WA 

with respect to lattice A is defined as: 

(3.70) 


A pictorial representation of the above definitions is shown in Fig. 3.4 (for more details 

see [36 ,37]). To summarize the algorithm, in order to quantize a point X = (x1, .. ., XN) 

on the surface of the N dimensional unit sphere, first, the annulus number i must 

be found satisfying ei :::;: sin-1xN < ei+l· The second step is to calculate the N - 1 

dimensional vector </>i(X) according to (3 .69). Then, </>i(X) is quantized to /Pi(X) by 

the N - l dimensional lattice A and finally the codevector </>i1((/>i(X)) is computed. 

A sample dictionary generated by wrapped spherical codes is shown in Fig. 3.5. 

Note that the efficiency of the dictionary in uniformly partitioning the surface of 

a sphere, directly depends on the choice of the N - 1 dimensional lattice. This is 

because the surface of the unit sphere is partitioned by this lattice and the input 
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-·-·· · Experimental distortion 
- Predicted distortion 

......, 
......,............ 

·•·•·•·•·•·•···•·•·•···• 
.•. ......... 

10·15.___ _.___ _,___ __,___,___ __,__~_ __, 

1 2 3 4 5 6 7 8 
k (number of MP stages) 

Figure 3.6: Comparison of distortions computed by equation (3.31) and the distortion 
obtained through experiment for N = 25 and M = 272 

. The cubic lattice is used in 
the wrapped spherical code 

vectors will be quantized by this lattice (or more accurately by the mapping of the 

N - l dimensional lattice on the surface of the sphere). Therefore, in order to achieve 

the best performance with the wrapped spherical codes, a high quality lattice must 

be used to partition the surface of the unit sphere. 

3.3.2 Verification 

In this section, our mathematical analysis is verified by comparing the rate­

distortion performance predicted by our equations and what is obtained by experi­

mental data. The dictionary used in all our experiments is designed based on the 

algorithm described in section 3.3.1. The input signal is generated by blocking i.i.d 

Gaussian random samples into N dimensional vectors and then normalizing the vec­

tors. 1000 N-dimensional vectors generated as described above are encoded by the 

MP encoder and the experimental data is computed by averaging over the results for 
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all 1000 vectors . 

Fig. 3.6 shows the distortion of the output of an MP encoder for different number 

of matching pursuit stages. The dimension of the input vector is 25 and the dictionary 

272size is M = . The quantization error is not considered in this experiment and will 

be discussed later in this section. The 24 dimensional cubic lattice (Z24 ) is used in 

the wrapped spherical code to quantize the 24 dimensional vector </>i(X). As can be 

seen in the figure, the distortion calculated by equation (3.31) approximately predicts 

the distortion computed using experimental data. The main reason for discrepancies 

is the approximation of the Voronoi regions by spheres in our analysis. The Voronoi 

regions in the Z24 lattice are cubical. However, in our equations they are modeled by 

spheres and the distortion is calculated for the spherical Voronoi regions. Since this 

error exists in all stages, as the number of stages increases, the error accumulates and 

causes more error in our prediction. Therefore, we can conclude that using a lattice 

whose Voronoi regions are closer to the shape of a sphere will cause our experimental 

data to be closer to the predicted distortion. This is done in Fig. 3.7.(a) where a 24­

dimensional Leech lattice is used instead of the cubic lattice in the wrapped spherical 

code. The Leech lattice provides the best known packing of space in 24 dimensions. 

Thus, the shapes of its Voronoi regions are closer to the shape of a sphere. Therefore, 

our experimental results should be closer to our analysis results when the Leech lattice 

is used instead of the cubic lattice. As can be seen in Fig. 3.7.(a), the predicted 

distortion is a perfect approximation of the experimental distortion which proves the 

accuracy of our assumptions in section 3.1. 

Comparison of Fig. 3.6 and Fig. 3.7.(a) shows that the choice of lattice in the 

wrapped spherical codes has a great impact on the rate-distortion performance of the 

MP encoder. Therefore in this chapter we use the Leech lattice in wrapped spherical 

codes to achieve the best partitioning of space in 24 dimensions. 

Fig. 3.7.(b) performs the same experiment on quantized matching pursuit. The 
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Figure 3. 7: (a) and (b) Comparison of distortions obtained by experiments and the 
distortions computed by (a) equation (3.31) and (b) equation (3.39). (c) The his­
togram of square norm of the input vector. (d) and (e) The histogram of the square 
norm of residual vectors at stages 2 and 6 respectively. In all figures N = 25 , M = 272 , 

q = 16 and the Leech lattice is used in the wrapped spherical code. 
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inner product coefficients are quantized by the method described in the previous sec­

tion using 4 bits for each stage. The corresponding quantization errors are considered 

in both the experimental and analytical graphs. As can be seen in the figure, the 

distortion predicted by our approximate equations is very close to the distortion ob­

tained in practice which proves the accuracy of our approximation for quantization 

error. Also note that the distortions obtained in quantized matching pursuit are very 

close to the distortions when the inner product coefficients are not quantized. The 

quantization error results in only a slight increase in the distortion in both the theo­

retical and experimental distortions. This shows that our assumption in section 3.2 

that quantization does not significantly change the inner product coefficients is valid. 

In section 3.2, we assumed inner product coefficients are quantized at a very high 

resolution and therefore quantization does not significantly change the characteristics 

of inner product coefficients. However, in this experiment we only use 4 bits for quan­

tization for all stages and the reason for accurate quantization is mostly the fact that 

our quantization scheme is very efficient and matches the distribution of coefficients 

at every stage. In fact although the number of quantization levels is fixed and is not 

too high for all quantizers at every stage, the quantizer at each stage is different from 

other stages since both the granular region and the step size are adjusted according to 

the mean and variance of the inner product coefficients at that particular stage. The 

histogram (PDF) of the square norm of the input vector is shown in Fig. 3.7.(c) for 

10000 input vectors. This figure shows how the norm of the input vector is distributed 

around its mean (see equation (2 .7)) . The histogram (PDF) of the square norm of the 

residual vectors (which is equivalent to MP distortion) at stages 2 and 6 are shown 

in Fig. 3.7.(d) and (e) (histograms are obtained using 10000 input vectors) . These 

figures show how the distortions are distributed around their means (plotted in Fig. 

3. 7 (b)) and converge to zero as the number of stages increase. 

Fig. 3.8 shows how the quantizers at each stage are adapted to the distribution 
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Figure 3.8: The dots show the absolute value of inner product coefficients for 100 tests 
performed on 25 dimensional vectors with a dictionary with 284 vectors. The circles 
show the means obtained by equation (3 .51) and the crosses show the exponentially 
decreasing upper bound for the inner product coefficients. 

of inner product coefficients. In this figure, the dots represent the actual values of 

inner product coefficients at each stage obtained by 100 different tests performed on 

25 dimensional vectors consisting of Gaussian samples (Each dot represents the value 

obtained in one test) . The circles show the mean of the inner product coefficients for 

each stage obtained in equation (3.51). Fig. 3.8 shows that equation (3.51) is a very 

accurate approximation of the mean of inner product coefficients. Moreover, since 

the inner product coefficients have much higher probability of occurrence in the areas 

around the average values, centering the quantizers around these means will result in 

efficient quantization of inner product coefficients. 

As shown in Fig. 3.8 , the mean values of inner product coefficients exponentially 

decrease as the number of stages increases (This can also be seen in equation (3.51)). 

This result is in agreement with the fact that the upper bound of inner product co­

efficients exponentially decreases with the number of MP stages for unquantized MP. 
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Also shown in the figure is the well known exponentially decreasing upper-bound of 

the inner product coefficients derived in equation (2.19) (the cross points). The value 

of this upper bound is found using the algorithm described in [40] for the dictio­

nary used in this experiment. This upper-bound is found in [38] and is often used 

in matching pursuit encoders to provide efficient quantization [23, 40, 41, 54]. As an 

example, in [41] the range between zero and this upper bound is quantized using a 

variable number of quantization levels at each stage. As shown in Fig. 3.8 our quan­

tization scheme is much more efficient than the ones that only use the exponentially 

decreasing upper-bound since the range of our quantizers only covers the areas in 

which inner product coefficient have higher probability of occurrence. Therefore, our 

quantization scheme results in finer quantization and better performance for Gaussian 

signals. Moreover, since we explicitly find the distortion in terms of encoder parame­

ters such as dictionary size, signal dimension and number of quantization levels, our 

optimization method is more accurate than the ones that only use the upper bound 

for the residual vectors to find the distortion of matching pursuit (e.g. [40, 41]). 

Fig. 3.9 compares 4 different MP encoders with different number of stages. All 

encoders operate at the rate of 7 bits per sample and the dimension of the input 

vector is N = 25. The Leech lattice is used in the wrapped spherical code. The 

vertical axis is the distortion and the horizontal axis is the number of MP stages used 

in each encoder. The number of MP stages are different for each encoder and the 

dictionary sizes are adjusted such that all encoders operate at the rate of 7 bits per 

sample. For a k stage encoder operating at 7 bits per sample the dictionary size can 

be approximately found by: 
7(N-l ) 

kM = 2 (3. 71) 

where N = 25 in this experiment. The above equation and equation (3.63) mean that 

;: of the bit rate is assigned to the dictionary (which partitions the surface of a 25 

1dimensional sphere) and 2 of the bit rate is allocated to the quantization of inner 5 
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Figure 3.9: The distortion of different MP encoders with different number of stages 
operating at the rate of 7 bits per sample 

product coefficients. The dictionary sizes obtained by our optimization algorithm and 

the ones found to be optimum in practice are both very close to the dictionary sizes 

found using the above equation. Therefore, the dictionary sizes of the 4 encoders 

used in this experiment can be found from the above equation. This experiment 

proves that in order to achieve the best performance by matching pursuit encoder, 

the input vector has to be quantized in only one stage and as the number of stages 

increases, the output distortion increases. Both experimental and analytical graphs 

prove this statement. However, the rate of distortion increase of the analytical results 

is smaller than the experimental results. The reason for this is that for large number 

of MP stages, the dictionary size has to be relatively small. The wrapped spherical 

codes are only efficient when relatively large dictionary sizes are chosen and as the 

dictionary size decreases the efficiency of the wrapped spherical codes in uniformly 

partitioning the surface of a sphere decreases . This makes some of our assumptions 

less accurate (e.g. approximation of the Voronoi regions by spheres). Therefore, 
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Figure 3.10: Comparison of distortions computed by equation (3.31) and the experi­
mental distortion for N = 64 and k = 4 

for small dictionary sizes our prediction of distortion is less accurate. Nevertheless, 

the analytical graph shows that the reduction in performance, although small, is 

inevitable when multi stage matching pursuit is applied. This is the price for having 

a progressive coding of the input . 

Finally, Fig. 3.10 compares the distortion obtained by experimental data and the 

one calculated by equation (3.31) for different dictionary sizes. In this experiment 

the dimension of the input vector is N = 64, the cubic lattice is used in the wrapped 

spherical code and the number of MP stages is k = 4. The computed distortion is 

a good approximation for the distortion obtained by experimental data which proves 

the accuracy of our analysis. In this experiment , the discrepancies are due to the use 

of the cubic lattice and the approximation of the Voronoi regions. 
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3.3.3 Application in Gaussian Source Coding 

As mentioned in section 2.4.1, a vector consisting of samples of an i.i.d memory­

less Gaussian source is localized on the surface of a sphere, if the dimension of the 

vector is sufficiently large. Considering the structure of our MP dictionary, the MP 

encoder is an immediate candidate for progressively encoding the Gaussian source. 

The implementation details of our Gaussian source encoder is as follows: 

25 samples of an i.i .d memoryless Gaussian source are blocked into 25-dimensional 

vectors and this vector forms the input to the MP encoder. The wrapped spherical 

codes are used as the matching pursuit dictionary as discussed in section 3.3.1. The 

24-dimensional Leech lattice is applied in the wrapped spherical codes. The quanti­

zation method is based on discussions in section 3.2 and the number of quantization 

levels and dictionary size are obtained by the method described in section 3.2.2. The 

values of a( are selected such that they provide a reasonable balance between low av­

erage distortion and rapid convergence rate. This is done by finding the best a~ values 

for each stage experimentally such that minimum average distortion is obtained at 

each stage. If the number of training inputs are large, this approach results in a good 

tradeoff between minimum average distortion and rapid convergence rate. We used 

25000 Gaussian samples at each stage in order to find optimum values of a~. This 

generally results in larger values for a~ for higher stages which is mainly the result 

of consideration for convergence. Our simulation results are shown in Table 3.1. In 

order to compute the signal to noise ratios , the SNR for 1000 25-dimensional vectors 

is calculated. The SNR computation is performed 10 times and the average of the 

resulting SNR values is reported in Table 3.1. Our MP encoder is compared to some 

of the best known quantizers designed for quantizing Gaussian sources and the results 

are shown in Table 3.1. 

The first row in Table 3.1 shows the results when a 3-stage matching pursuit 

encoder quantizes the source at 6 bits per sample. Each stage contributes 2 bits per 
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Method Rate: 1 2 3 4 5 6 7 

MP (2 bits per stage) 11.06 22.01 32.87 
MP (3 bits per stage) 17.35 34.21 

MP ( 4 and 2 bits for stages 1 and 2) 23.36 33 .75 
MP (3 , 2 and 2 bits for stages 1, 2 and 3) 17.35 28.28 38.32 

Shape-gain VQ using Leech lattice [37] 2.44 11.02 17.36 23.33 29.29 35.27 41.33 
TB-SVQ (4 state) [42] 5.39 11.18 16.92 

TB-SVQ (32 state) [42] 5.49 11.28 17.05 
Wilson (128 state) [43] 5.47 10.87 16.78 
TCQ (256 state) [44] 5.56 11 .04 16.64 

TCQ (2D, 16 state) [44] 5.29 10.84 16.62 22.63 
Entropy coded scalar quantizer [37,49] 4.64 10.55 16.56 22.55 28.57 34.59 40.61 

zl(f lattice [46] 10.07 15.52 21.00 26.16 32.07 37.68 
Unrestricted polar quantizer [47] 4.40 9.63 

Lloyd-Max Scalar [37,49] 4.40 9.30 14.62 20.22 26.02 31.89 37.81 
Uniform scalar [48] 4.40 9.25 14.27 19.38 24.57 29.83 35.13 

Table 3.1: Comparison of different quantizers designed for Gaussian source with MP 
encoder proposed in this chapter. Only the uniform scalar and the Lloyd-Max scalar 
quantizers are scalable (The information in this table is obtained from [37]). 

sample. Thus, the resulting embedded bitstream can be used to decode data at the 

rates of 2, 4 and 6 bits per sample. The signal to noise ratios obtained at each of these 

bit rates are also shown in the same row of the table. In the second example, the MP 

encoder is configured so that each stage contributes 3 bits per sample. Therefore the 

6 bit per sample bitstream can be used to decode data at the rates of 3 and 6 bits per 

sample. The signal to noise ratios at 3 and 6 bits are shown in the second row of the 

table. The third and forth rows of the table show the case when different rates are 

chosen for different stages. This case is especially important when we need very good 

quality at the base rate and would like to have the capability of increasing the quality 

whenever extra rates are available. In the third row, the first stage contributes 4 bits 

and the second stage contributes 2 bits per sample. As can be seen in the table , in 

this configuration , we achieve very good performance at 4 bits per sample and are 

still capable of using the same bitstream and add the next stage to achieve the 6 bits 
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per sample bit stream. Note that we could achieve an embedded bitstream which 

could be decoded at the rates of 4 and 6 bits per sample using the configuration in 

the first row. However , since this configuration has an extra matching pursuit stage 

for decoding at 2 bits per sample, the performance is worse than the configuration 

in the third row. The configuration in the fourth row produces a bitstream that can 

be decoded at 3, 5 and 7 bits per sample. The SNR values are comparable to other 

quantizers at lower bit rates and the results are always better than the quantizers 

that can produce embedded bitstreams (scalar and Lloyd Max scalar quantizers). 

Comparing the MP encoder with other quantizers designed for Gaussian sources, 

one can see that , the performance of MP encoder is comparable to the best known 

quantizers for small number of stages k < 3. In fact, for a single stage matching 

pursuit , our results are very close to the gain shape VQ using Leech lattice [37]. This 

is not surprising since in this case both quantizers are essentially the same except that 

in matching pursuit, the inner product of the input vector and the dictionary element 

is encoded along with the dictionary index while in [37], the norm of the input vector 

is quantized as the gain component and is encoded along with the dictionary index. 

Our experiments showed that encoding the inner product coefficient rather than the 

input norm results in a slight improvement. However, since this improvement is not 

very significant , we can conclude that the MP encoder is the same as gain shape 

vector quantizer when the number of matching pursuit stages is one. As can be 

seen in the table , when the number of MP stages is one (results for gain-shape VQ 

using Leech lattice) , the performance is comparable to all existing quantizers . As 

the number of MP stages increases , the performance of the MP encoder decreases 

in comparison to other quantizers including the gain-shape VQ. However, this is the 

price we pay to achieve an embedded bitstream and as discussed in section 3.3.2 the 

reduction in performance is the direct consequence of applying multi-stage matching 
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pursuit . We can always set the number of MP stages to one to achieve the best rate­

distortion performance. In this case the resulting bitstream would not be embedded 

anymore. As for progressive coding, none of the quantizers shown in Table 3.1 produce 

embedded bitstreams except for the Lloyd Max and uniform scaler quantizers. Table 

3.2 compares our proposed MP encoder with some of the quantizers designed for 

progressively quantizing Gaussian sources [19, 20, 49]. Also shown in the table is the 

rate distortion function of Gaussian sources ( D( R)). As can be seen in the table, the 

progressive code generated by the MP encoder has higher SNR values than the SNR 

values for other quantizers that generate embedded bitstreams. The disadvantage of 

MP encoder is that due to poor performance of wrapped spherical codes at low bit 

rates, successive refinement by less than 2 bits per sample is not very efficient using our 

MP encoder whereas other quantizers listed in Table 3.2 can be configured to operate 

at lower bit rates as well. Nevertheless , the performance improvement achieved by 

MP is significant in the relatively high bit rates used for successive refinement . 

MP TS-TCQ (19) SR-TCVQ (19) MS-TCQ [20) Lloyd-Max (49) D(R) 
Rl I R2 Dl j D2 Dl 02 Dl 02 01 02 Dl 02 01 02 

2 I 2 11.06 I 22.01 10.55 21.55 10.54 21.69 10.24 19.70 9.30 20.22 12.04 24.08 
3 I 2 17.35 I 28.28 - - - - 15.89 25.51 14.62 26.02 18.06 30.10 

Table 3.2: Comparison of different successively refinable quantizers designed for Gaus­
sian source with MP encoder proposed in this chapter. The table shows the SNR 
values for different bit rates whenever such data is available. Rl, R2 , Dl and D2 are 
the rates and distortions at stages 1 and 2 respectively. 

3.4 Conclusion 

In this chapter, we studied the application of matching pursuit for progressively 

encoding samples from memoryless i.i.d Gaussian sources. The accuracy of our analyt­

ical study is verified by experimental data and we showed how our proposed matching 
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pursuit encoder can be applied to generate embedded bitstreams for Gaussian inputs. 

Our theoretical analysis shows that progressive encoding of the input signal using MP 

results in an increase in output distortion compared to non-embedded encoders op­

erating at the same rate. This is the price for generating embedded bitstreams. Our 

experimental results are in agreement with this theoretical result. Nevertheless , our 

MP encoder outperforms existing quantizers that can produce embedded bitstreams 

for Gaussian sources. 
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Chapter 4 

Design and Analysis of a 

Successively Refinable Lattice 

Quantizer for i.i.d. Gaussian 

Sources 

As shown in Fig. 3.9 in the previous chapter, multiple stage matching pursuit 

is not able to find a rate distortion optimal progressive code for Gaussian sources. 

The main reason is that the same dictionary is used to quantize all residual vectors 

and the dictionary vectors have the same dimension as the input vector. However, as 

discussed in the previous chapters, the residual vector is orthogonal to the dictionary 

vector and therefore its dimensionality is one dimension less than the original vector. 

This redundancy in the dictionary is the main reason for the reduced performance of 

MP compared to non-progressive coding. In this chapter we solve this problem by 

quantizing the residual vectors in the space orthogonal to the dictionary vector and 
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eliminate the redundancy in the dictionary. We compare our results with other suc­

cessively refinable quantizers designed for Gaussian sources and show that significant 

improvements are achieved by the proposed algorithm. We also compare the results 

with the MP encoder and discuss the advantages and disadvantages of each method. 

4.1 The proposed successively refinable quantizer 

In this chapter, first we quantize the N dimensional input vector X using the 

shape-gain quantizer designed in [37]. The wrapped spherical codes [37] are used to 

generate a codebook with vectors uniformly distributed on the surface of the unit 

sphere. In practical cases, N cannot be arbitrarily large and the input vector X is 

not localized on the surface of a sphere. Therefore, in [37] a shape-gain quantizer is 

designed and the normalized shape and the norm of the input vector are quantized 

independently1
. In this chapter, in order to provide successive refinement, instead of 

encoding the norm of the input vector, we quantize and encode the inner product of 

the input vector and the codevector. Thus , the distance between the reconstructed 

vector and the input vector is minimized. Let g be the shape vector obtained from 

a spherical codebook operating at rate Rs1 i.e. g is the vector in the codebook that 

has the maximum inner product coefficient with the input vector X. Therefore: 

X = (X,g)g + X1 ( 4.1) 

where X 1 is the residual vector at stage 1. We define the gain component as X 9 = 

(X, g) and the shape component is defined as Xs = (ff,g) (note that X = X 9 .X8 ). In 

order to provide successive refinement, we refine the gain and shape components at 

1The quantizer in [37] is rather different from conventional gain shape vector quantizers [52] in 
a sense that it normalizes the input vector before finding the shape vector and the computation of 
shape vector and gain component are done independently. The main reason for this is to ensure the 
input vector is positioned on the surface of the sphere and therefore the lattice quantizer can use 
the nearest neighbor methods in order to find the closest lattice point to the input vector. 
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each refinement stage. The gain component is refined using a scalar quantizer and at 

each stage the quantization step size is decreased. The resulting gain component at 

stage i is denoted as Qi [(X, g)]. At the first stage the shape component is quantized 

by the wrapped spherical codes resulting in the reconstruction vector g. In order 

to provide refinements for the shape component the residual shape vector X 1n = 
2Xs - g = cf,g) - g is quantized further by a lattice quantizer operating at rate Rs2 . 

The resulting quantized vector is denoted as X 1nq· At the next refinement stage the 

normalized residual vector is X 2n = X 1n - X 1nq and is quantized by another lattice 

operating at rate R83 . Therefore, after j refinement stages the reconstructed vector 

Xq can be found by: 

(4.2) 

In order to quantize X 1n using a lattice quantizer, the range of X 1n must be 

found and lattice points must be distributed in this range. As mentioned before, 

X 1n = Xs - g = &~) · Since g is normalized (X1,g) = 0 and therefore (X1n,g) = 0. 

Thus X 1n is located on the N - 1 dimensional hyperplane which is orthogonal to 

vector g and is tangent to the unit sphere at vector g (see Fig. 4.1). Thus, the 

range of X 1n is the mapping of the Voronoi cell of vector g to the hyper-plane that 

is orthogonal to g and is tangent to the unit sphere at g (see Fig. 4.1). For high 

resolution dictionaries , this range will be very similar to the Voronoi cell of vector 

g. X 1n is quantized by a lattice that partitions this range. The resulting quantized 

vector is X 1nq· The remaining residual shape vector X2n = X 1n - X 1nq is located in 

the Voronoi cell of X 1nq and is on the same N - 1 dimensional hyperplane as Xin · 

2Note that after the shape component and the inner product (gain component) are calculated by 
the wrapped spherical codes, the input vector is divided by the gain component. Although division 
is usually not desired for computational complexity reasons, the cost of division is negligible if a 
high complexity lattice (like Leech lattice) is used in the wrapped spherical codes or in the following 
stages. Moreover, the implementation of wrapped spherical codes requires a number of divisions and 
thus an extra division for computing the shape component does not heavily affect the computational 
complexity of the algorithm. 
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Figure 4.1: Geometric interpretation of vectors and regions defined in this chapter 
for N = 2 

Therefore this region can be further partitioned using lattice A2 in order to provide 

a refinement. This process continues for as many refinement stages as needed. 

In order to use a single lattice defined in a single N - 1 dimensional hyperplane for 

all vectors g, the hyperplane orthogonal to vector g which includes vectors Xin , must 

be mapped to the N - l dimensional hyperplane in which the lattice is defined. In this 

chapter we defined the lattice in the hyperplane CR= {XIX= (x 1 , .. . ,xN),xN = O} . 

Therefore all vectors (i.e. Xin) must be mapped to this plane before being quantized 

by the lattice. The quantized value must be mapped back to the original hyperplane 

which is orthogonal to vector g. Let 

C = {YI (Y,g) = 0, llYll :::; llY + g - 9i ll ,Vgi E D} (4.3) 
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where D is the codebook. Hence, C is the range of vector Xin· Let 

(4.4) 


We find XL which is the closest point to Xin and is located on L (see Fig. 4.2) . 

XL= argminz{llXin - Zll: Z EL} (4.5) 

Let the prime notation denote mapping from the N dimensional space to the N - 1 

dimensional space by setting the Nth coordinate to zero. Thus, XL can be found by: 

g' g'I I 
(4.6)XL= xin - (Xin• llg'll)ii9'if 

Now the one to one mapping m from C to Cr C CR is defined by: 

(4.7) 


The inverse mapping can be found by finding XLq from mq (the quantized value of 

m) . 
g' g'I I 

(4.8)
XLq = mq - (mq, llg'll) llg'll 

The vector mqc E C is found such that: 

(4.9) 


The quantized value of X in can now be found by: 

(4.10) 


A geometric interpretation of the above method is shown in Fig. 4.2. This mapping 

is used at each stage to quantize the N dimensional vector Xin (i > 0) by a lattice 

on the N - 1 dimensional hyperplane XN = 0. 

Once the N dimensional vector is mapped to the N - 1 dimensional hyperplane 

XN = 0, it must be quantized by a lattice that partitions the range of the vector. As 
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Figure 4.2: Geometric interpretation of the mapping from C to Cr and its inverse 
mapping 

mentioned before the range of the vector X 1n is the mapping of the Voronoi cell of 

vector g to the hyperplane orthogonal to g. The Voronoi cell of g is the mapping of 

the Voronoi region of the lattice used in the wrapped spherical codes to the surface 

of the sphere. Consequently, the range of X 1n is a function of the Voronoi cell of the 

lattice used in the wrapped spherical codes (in the case of high resolution this range is 

almost equal to the Voronoi cell of g). Since X 1n is quantized by a lattice, the range of 

the residual vector X 2n is the Voronoi cell of the lattice used to quantize X 1n and this 

region must be partitioned by another lattice in order to provide a refinement . But 

the Voronoi regions of most lattices have irregular shapes and there is no simple way 

for efficiently partitioning this region using another lattice. In fact as shown in [51], 

even for regular lattices in lower dimensions , efficient subdividing is not possible 

except for the cubic lattice (which has the worst performance). Additionally, since 

the Voronoi region is partitioned by another lattice to provide successive refinement, 

no overload error can be tolerated and all errors (i.e. residual vectors) must be within 

the Voronoi region in order to be able to provide a refinement in the subsequent stages. 
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Therefore, in order to solve the above problems, we only use lattice points that are 

inside a sphere. In other words , the lattice which is partitioning the Voronoi region is 

now defined in a spherical volume. In order to minimize the overload error we need 

to ensure the entire Voronoi region is covered by the lattice partitioning the Voronoi 

region. This can be achieved by locating a lattice in the volume of a sphere with a 

radius that is equal to the covering radius of the lattice used in the previous stage. 

If this area is partitioned by a lattice all residual vectors will be inside this volume 

and therefore no overload error will occur. Thus, the irregularly shaped ranges of 

the residual vectors are efficiently partitioned while no overload error will occur due 

to partitioning the entire volume of the Voronoi region using a sphere with a radius 

equal to the covering radius of the lattice. 

4.2 High resolution analysis 

In this section a high resolution analysis is presented for our successively refinable 

lattice quantizer and we assume all the refinement rates are asymptotically large 

(R1 , ... , Ri--+ oo). At each stage i, Rs; bits are assigned to the shape component and 

R9; bits are assigned to the gain component. At each stage R; = Rs; + R9; and all 

rates are asymptotically large (Rs; --+ oo , R9; --+ oo for 1 ::; i ::; j). 

The distortion of the quantizer designed in [37] has been calculated in the case of 

high resolution (Rs 1 --+ oo, R91 --+ oo) when the wrapped spherical codes are used to 

design the codebook. In this section we compute the rate distortion function achieved 

by our proposed successive refinement algorithm. We compare this rate distortion 

function with that of the quantizer of [37] and compute the distortion increase caused 

by successive refinement . In [37] it is proven that the total distortion of the shape-gain 

quantizer is the summation of the distortion caused by quantizing the gain component 

(gain distortion) and the distortion caused by quantizing the shape component (shape 
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distortion). Since for the case of high resolution (X,g) ~ llXll ,our proposed quantizer 

will be equivalent to the one designed in [37] with the exception that our quantizer 

provides scalability. Therefore, the distortion of our proposed quantizer is also equal 

to the summation of the gain and shape distortions. Note that in our quantizer 

the gain distortion per dimension is D9 = ~E [( (X, g) - Qj [(X, g) ])2] and the shape 

distortion per dimension is Ds = CJ
2E [11 ({,g) - (g + X1nq + X2nq + ... + X(j-I)jnq) 11 2] 

and therefore the total distortion per dimension is D = D s + D9 (for more details 

see [37]) . According to [37], the shape distortion of the wrapped spherical code is: 

(4.11) 


where Vi (A) is the volume of the Voronoi region of the lattice used in the wrapped 

spherical code, G(A) is the normalized second moment of lattice A and is given for 

the best known lattices in [31] and N is the dimension of the input vector. G(A) is 

defined as: 

G(A) = NS frr1 lltl!2dt (4.12)
Vj_(A)l+N-1 

where II1 is the Voronoi region of the lattice. If the bit rate allocated to the shape 

component at the first stage is Rsu Vi (A) can be found by: 

(4.13) 


where SN is the surface area of an N dimensional sphere. Therefore, the shape 

distortion at the first stage can be written as: 

(4.14) 


The normalized residual vector X 1n is located in the mapping of the volume of the 

Voronoi region of lattice A (i.e II 1) on the N - 1 dimensional hyperplane that is 

orthogonal to vector g. However , for high resolution dictionaries the Voronoi region 

of A is almost on the N - 1 dimensional hyperplane and therefore the range of X 1n is 
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almost identical to the Voronoi region of lattice A. In order to provide a refinement, 

we partition the sphere on the N - 1 dimensional hyperplane that is tangent to the 

unit sphere at point g by the scaled version of the lattice A at rate N R 52 • The center 

of this sphere is at g and its radius is equal to the covering radius of the lattice which 

is denoted as Rei. Rei can be found by [31]: 

RN-I
8 = VN-l ei (4.15)

Vi(A) 

In equation (4.15), 8 is the thickness of the lattice A, Vi(A) is the volume of the 

Voronoi region and VN-l is the volume of the N - I-dimensional unit sphere which 

can be found by: 
N-1

7f-2­
(4.16) 

The N - 1 dimensional sphere with radius Rei is partitioned at the rate N Rs2 • Thus, 

if the Voronoi region of the resulting lattice is denoted by II2 , the volume of II2 

(denoted as Vi(A)) can be computed by: 

Vi(A) = VN-1R~-1 = Vi(A)8 = SN8rN(Rs1+Rs2) (4.17)
2NRs2 2NRs 2 

II2 defines a new lattice that is used to quantize the normalized residual vector (i.e. 

X 1n)· Since the input vector X is uniformly distributed in SN, the residual shape 

vector X 1n is uniformly distributed in the volume of the Voronoi region of A (i.e. II1 ) . 

The quantization error of the scaled version of lattice A used to quantize X 1n is equal 

to the total shape distortion at the second stage. It can be computed by: 

( 4.18) 

Thus 

(4.19) 

or 

( 4.20) 
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Continuing this process for j times: 

_2_ 2(j-l) 2N (R R R )
Dsj = (N - l)o-2G(A)s~-l e N-1 r N-1 8 1 + s2+ .. + 8 j (4.21) 

Or the distortion after j refinements can be written as: 

(4.22) 


where: 

(4.23) 


As discussed previously, the gain component must also be successively quantized and 

encoded along with the shape component. Suppose at each refinement stage i, R9i bits 

are assigned to the gain component. Since a successively refinable scalar quantizer 

is used (at each refinement stage, the quantization step size is quantized by another 

scalar quantizer), for high resolution quantizers ( R9i ---* oo) the gain distortion at 

stage i can be written as: 

(4.24) 


where C9 is a constant [50]. Therefore the total distortion can be found by: 

(4.25) 

In order to find the optimum values for the gain rate and the shape rate at each refine­

ment stage, the distortion function must be minimized subject to the rate constraint. 

In fact, at each stage we need to allocate Rs; bits to the shape component and Rg; 

bits to the gain component such that the total bit rate is equal to a predefined value 

(Rsi + R9i = Ri) at that particular refinement stage. The optimum value for each of 

the shape component rates can be found by solving a~ = 0. This yields: 
t 

(4.26) 
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The distortion must be minimum at each stage. When no successive refinement is 

provided (i.e. j = 1), the optimum bit allocation can be found using the results 

in [37]: 
N - 1 Cs(l) N - 1 

(4.27)Rs= 2N2 log2 (N - l)Cg + ~R 

Now let us use the following allocation of bit rates to the gain and shape components: 

N - 1 Cs(l) N - 1 
(4.28)Rs1 = 2N2 log2 (N - l)Cg + ~R1 

N-l 2 N-1
R = --log28N-1 +--P. i > 1 ( 4.29) 

s, 2N2 N .LLi 

Using equation (4.23), it is easy to verify that the above allocation satisfies equation 

(4. 26) for all values of j and therefore results in minimum distortion for all bit rates . 

Note that in the asymptotic case when N ---t oo, R9i ---t 0, Rs; ---t ~, 8 ---t 1 and 

G(A) ---t 2;e ([31]). Therefore DJ= 0"
22-2

R (where R = R1 + ... + RJ) which is equal 

to the distortion rate function of Gaussian sources. Thus, successive refinement of 

the output does not affect the performance of the quantizer and minimum distortion 

can be achieved at all rates regardless of the value of j. This result shows that in the 

asymptotic case, our quantizer preserves successive refinability of Gaussian sources. 

4.2.1 Cost of successive refinement 

In practice, the lattice dimension cannot be very large and successive refinement 

causes some increase in distortion compared to the distortion obtained when no suc­

cessive refinement is provided. This increase is mainly due to the redundancy caused 

by defining lattices in spherical volumes rather than the actual Voronoi regions. Using 

equations ( 4.26) and ( 4.25) the distortion of our successively refinable lattice quan­

tizer (SRLQ) can be computed and compared for different values of j. In fact, the 

distortion obtained by our proposed successively refinable quantizer is approximately 

equal to the distortion obtained by shape gain quantizer designed in [37] multiplied by 
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2(j-l)

8 N-1 . This shows that in the case of high resolution, for every refinement stage our 

successive refinement approach increases the output distortion by a factor of 8 N-
2 

1 . 

Thus, when the 24 dimensional Leech lattice is used (N = 25 and 8 = 7.9035 [31]) 

every refinement stage reduces the value of SNR by approximately 0.74 dB compared 

to the signal to noise ratio obtained without successive refinement. 

4.3 Simulation results 

We block an i.i .d memoryless Gaussian source into 25-dimensional vectors and this 

vector forms the input to the quantizer. Thus, the 24 dimensional Leech lattice which 

provides the best packing in 24 dimensions can be used in the wrapped spherical 

code [37]. A PDF optimized scalar quantizer is used to successively quantize the 

value of the gain. The bit allocation for the gain and the shape components are 

found based on the method described in section 4.2. One important rate allocation 

case in successive refinement is when the refinement rate is exactly 1 bit per sample 

(~ = 1 for i > 1) . Based on the results of section 4.2 , the optimal gain and shape 

bit allocation is to allocate approximately 2
1
5 bits to refinement of gain and ~: bits to 

refinement of the shape component (the first term in equation ( 4.29) is equal to 0.0048 

for the SRLQ based on the 24-dimensional Leech lattice and therefore is negligible) . 

This means that in order to operate at 1 bit per sample, the sphere containing the 

lattice points in the first refinement stage must have 224 points. However, the structure 

of the Leech lattice does not allow 224 points in any sphere. In fact , the 4th shell 

6of the Leech lattice contains exactly 224 points while the first 3 shells contain 217· 

points. Thus, the only way to set the refinement bit rate to 1 is to use only the 4th 

shell. Therefore , we modified the decoding algorithm to ensure the lattice point is 

selected only from the 4th shell when the refinement rate is 1 bit per sample. 

The simulation results are shown in table 4.3. The signal to noise ratio is calculated 
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SRLQ TS-TCQ (19] SR-TCVQ [19] MS-TCQ (20] 
Rl R2 Dl D2 Dl D2 Dl D2 Dl D2 
2 1 11.02 16.46 10.55 15.96 10.52 16.21 - -
2 2 11.02 22.09 10.55 21.55 10.54 21.69 10.24 19.70 
3 1 17.32 22.63 16.21 21.76 16.18 21.99 15.89 19.73 
3 2 17.32 28.10 - - - - 15.89 25.51 

MS-TCQl21) Lloyd-Max J49) MP [8) 
Rl R2 Dl D2 Dl D2 Dl D2 
2 1 10.76 15.49 9.30 14.62 - -
2 2 - - 9.30 20.22 11.06 22.01 
3 1 - - 14.62 20.22 - -
3 2 - - 14.62 26.02 17.36 28.28 

Table 4.3: Comparison of different successively refinable quantizers designed for Gaus­
sian sources with the successively refinable lattice quantizer (SRLQ) proposed in this 
chapter. The SNR values for different bit rates are shown whenever such data is avail­
able. Dl and D2 denote the SNR values in db at rates Rl and R2 respectively. Note 
that using the quantizer in [37] (no successive refinement) we achieve SNR values of 
11.02, 17.36, 23.33 and 29.29 db for rates 2, 3, 4 and 5 bits per sample respectively. 

by quantizing 25000 samples from a Gaussian source and finding their resulting signal 

and noise powers. The performance of our successively refinable quantizer is compared 

to successively refinable quantizers designed for quantizing Gaussian sources in [19­

21, 49]. As can be seen in the table, our results are always better than the results 

achieved by other successively refinable quantizers. Comparing the SRLQ with the 

MP encoder designed in chapter 3, we can see that the performance of SRLQ and the 

MP encoder are almost the same. This means that the redundancy of having one extra 

dimension in the codebook is almost equal to the redundancy caused by partitioning 

spheres that cover the Voronoi regions instead of the Voronoi regions. However the 

MP encoder cannot be used for bit rates less than 2 bits per sample due to the poor 

performance of the wrapped spherical codes at low bit rates. As mentioned in section 

4.2 in the case of high resolution our proposed successive refinement algorithm results 

in 0.74 dB decrease in SNR for each stage. Comparing our successively refinable 

quantizer with the one designed in [37] (no successive refinement), we can see that 

successive refinement results in about 0.7 to 1.3 dB decrease in SNR values for low 
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bit rates which is relatively close to our high resolution analysis result . 

4.4 Conclusion 

A new successively refinable quantizer is proposed for quantizing Gaussian sources. 

We presented a high resolution analysis and found the optimal bit allocation for our 

proposed successively refinable quantizer. Moreover, we calculated the penalty caused 

by successive refinement and showed that 0. 7 4 dB decrease in SNR will occur for 

high resolution coding of Gaussian sources using the 24-dimensional Leech lattice. 

Our simulation results show that in the practical case of low resolution, successive 

refinement causes about 0. 7 to 1.3 dB decrease in the signal to noise ratio values. Our 

proposed quantizer outperforms the best known quantizers that provide successive 

refinability and its performance is almost similar to the MP encoder designed in 

chapter 3 with the added advantage of being able to provide refinements at 1 bit per 

sample. The MP encoder in chapter 3 and the SRLQ designed in this chapter have 

been able to reduce the gap between the theoretical bound on the rate distortion 

function of progressive encoders and the practical results. However, they were not 

able to close the gap completely due to a number of practical considerations. 
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Chapter 5 

Adaptive Rate-Distortion Optimal 

In-loop Quantization for Matching 

Pursuit Image Coding 

As discussed in chapter 2, traditional image compression algorithms usually in­

clude prediction, transform, quantization and entropy coding. The transform used in 

most conventional image codecs are complete transforms like DCT, wavelet or inte­

ger transform. We stated that over-complete transforms can provide a more compact 

image representation and consequently achieve higher compression. In this chap­

ter and also in the next chapter, we study image compression using over-complete 

dictionaries. To map signals to the over-complete dictionary we use the matching 

pursuit algorithm due to its relatively low computational complexity compared to 

other algorithms and its good performance. 

In chapter 3, we showed how matching pursuit can be used for progressive encoding 

of Gaussian sources and we showed that our proposed encoder results in better rate 

distortion performance than other quantizers designed for successive refinement of 

Gaussian sources. In this chapter we also study the application of matching pursuit 
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in progressive encoding of image data and propose an MP image encoder that can 

outperform existing MP encoders designed for image coding. 

Matching pursuit has been shown to outperform DCT transform coding of residual 

frames in very low bit rate coding of video sequences [22]. In a more recent work in 

[24] , MP is applied to image compression and it is shown that matching pursuit image 

coding can improve image compression quality at very low bit rates while providing 

additional features like fine grained PSNR and bit rate scalability. Moreover, based 

on the results reported in [24], the subjective quality of MP encoded images at low 

bit rates is significantly better than those compressed by traditional compression 

algorithms like JPEG2000 [53] . 

As mentioned in chapter 2, in matching pursuit , the input image or the motion­

compensated residual frame are encoded by successively mapping them to a redundant 

dictionary of bases. MP representation consist.s of both the dictionary indexes and 

the quantized inner product coefficients at each stage. Therefore, efficient encoding 

of dictionary indexes and quantized inner product coefficients heavily affect the bit 

rate of the MP encoder. There have been a number of works addressing the prob­

lem of encoding MP inner product coefficients and dictionary indexes. In chapter 

2, we classified these coding methods into two major categories. The more common 

method is to find all atoms and encode them in their position order. The position 

of atoms are differentially encoded which results in fewer bits needed to encode the 

position information of dictionary indexes [22,23,54]. In the second class of methods 

atoms are encoded in the order of the magnitude of coefficients (i.e. atoms with larger 

inner product coefficients are encoded first). In this method more bits are assigned 

to more important atoms and the redundancy between inner product coefficients is 

exploited [41]. Both methods are shown to result in almost similar performances 

for image coding applications [41] . However , the second class allows for fine grained 

PSNR and bit rate scalability which is an important property in image compression 
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and is the method used in [24] for compressing still images by matching pursuit . In 

this chapter we propose an adaptive quantization algorithm that uses the proper­

ties of inner product coefficients and show how it can outperform the quantization 

method proposed in [41] . Our method belongs to the second category, i.e. atoms are 

encoded in their importance order. Therefore, encoding of the atom positions is more 

expensive than methods proposed in [22] and [54]. However the inner product coef­

ficients are quantized by fewer bits than the above methods and are more efficiently 

quantized than the one proposed in [41]. Moreover , in [41] a posteriori quantization is 

used and quantization is performed after all atoms are found . However, a posteriori 

quantization results in accumulation of quantization errors and is known to perform 

worse than in-loop quantization. In in-loop quantization, quantization error is added 

to residual vectors at each stage and therefore can be corrected by the atoms found 

in the following stages. In this chapter we consider in-loop quantization in order 

to maximize the efficiency of our quantization scheme while providing PSNR and 

bit rate scalability. We adopt our analysis in chapter 3 for in-loop quantization of 

MP coefficients , apply it to image data and design an adaptive in-loop quantization 

algorithm for quantizing MP coefficients1
. 

Although the use of in-loop quantization does not allow finding the rate distortion 

optimal quantization parameters for all bit rates without recomputing the atoms (as 

opposed to a posteriori quantization) , the resulting stream is still scalable and can 

be decoded at any bit rate. This is because atoms are encoded in their importance 

order which consequently results in a scalable bitstream. This scalable stream is 

only rate-distortion optimal if it is decoded at the same rate as the encoding rate 

(the bit rate that is used for finding optimal quantization parameters). However , 

1In-loop quantization has been studied in [23] for quantizing inner product coefficients for the 
application of video coding. For that application atoms are encoded in their position order and 
therefore , the quantization method studied in [23] belongs to the first class of MP coding methods. 
In this chapter we study in-loop quantization when atoms are encoded in their importance order 
and find the optimal quantizers for each stage based on a rate distortion optimization. 
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our simulation results show that decoding this stream at a different bit rate than 

the encoding rate results in images with higher PSNR than the ones decoded from 

a stream generated by a posteriori quantization algorithm in [41] optimized for the 

decoding bit rate. This shows that the efficiency of our proposed adaptive in-loop 

quantization algorithm compensates for the sub-optimality caused by not being able 

to find optimal quantization parameters for all bit rates without recomputing the 

atoms. 

5.1 Proposed Quantization Scheme 

The inner product coefficients found at each MP stage have to be quantized before 

they can be encoded. Some MP encoders quantize inner product coefficients using 

a fixed uniform quantizer [22]. However , the properties of inner product coefficients 

can be used for more efficient quantization [23, 41]. The inner product coefficients 

of successive stages are generally close to each other and their magnitude decreases 

as we go to higher stages. Moreover, if we plot the probability distribution of inner 

product coefficients of each stage, they tend to have a high probability around a 

certain average value and as we move away from the average, the probability of 

having an inner product coefficient reduces (see Fig. 5.1 and Fig. 3.8). This result 

motivates us to design the quantizer for each stage such that the quantizer is centered 

at the mean value of the coefficients at that stage (this is similar to the quantizer used 

in chapter 3). As discussed in chapter 3, this quantization scheme clearly results in 

more accurate quantization of inner product coefficients than a scheme that quantizes 

the coefficients in the entire range. However, in order to use the above technique 

and design a PDF-optimized quantization scheme, the PDF of coefficients must be 

known at each stage. For Gaussian signals we were able to find the PDF, mean 

and variance of the inner product coefficients in section 3.1. For image data the 
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inner product coefficients depend on the PDF of the input image which is generally 

unknown. Therefore, the probability distributions of the coefficients of each stage 

should be found by training the MP encoder over a large number of training inputs. 

Similar to the MP encoder in chapter 3, in order to reduce the complexity, we only 

use the mean and variance of the coefficients at each stage (which are denoted as me; 

and Ve; respectively) and use a uniform quantizer to quantize the coefficients in the 

range (me; - aO"e;, me;+ aO"c;) where a is a fixed constant. In section 5.2, we assume 

the mean and variance of coefficients are known and find the optimal quantization 

levels and number of MP stages. In section 5.3 we show how the means and variances 

can be found from the already quantized coefficients that are available at both the 

encoder and the decoder. 

The second property of inner product coefficients that is considered in our pro­

posed quantization scheme is the fact that the inner product coefficients of different 

stages do not have similar impact on the total MP distortion. This is because the 

inner product coefficients of atoms found in the early stages of matching pursuit gen­

erally have higher variances than the ones found at the higher stages. In other words, 

the dynamic range of coefficients in early stages is larger than the dynamic range of 

the coefficients found in the higher stages (e.g. see Fig. 5.1). Thus, if a fixed number 

of quantization levels is used for all stages, the quantization step size must be larger 

for quantization of coefficients in the early stages. Therefore, errors in quantization of 

early stage inner product coefficients can cause more distortion than errors in quanti­

zation of higher stage coefficients. On the other hand, part of the quantization error 

of the early stages will be corrected in the subsequent stages if in-loop quantization 

is applied. Hence, it is important to consider these two contrasting effects in bit 

allocation for quantization at each stage. 

In order to consider this unequal importance of quantization error at different 

stages, in this chapter we allow variable number of quantization levels for different 
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Figure 5.1: Distribution of inner product coefficients for i={0,4,9} for the MP ex­
pansion of ten-sample random signals over a dictionary of 128 atoms (figure is taken 
from [41]). 

MP stages. Thus, an optimum number of bits can be assigned to quantization of 

inner product coefficients at each stage based on the impact of the quantization error 

at that stage on the total MP distortion. In the next section we model the matching 

pursuit distortion considering in-loop quantization and find the optimum quantization 

levels for each stage using a rate distortion optimization. Our analysis is similar to 

our analysis in chapter 3 for Gaussian distribution except that for image data the MP 

distortion cannot be explicitly computed. For the sake of completeness, we repeat 

the analysis in chapter 3 for computing the distortion for in-loop quantization and 

apply our analysis to image data. 

5.2 Rate Distortion Optimization for Quantized 

MP 

The block diagrams of matching pursuit encoder and decoder are shown in Fig. 

5.2. At the encoder side, the input vector f goes through the first stage of matching 

pursuit and the dictionary element g~ ; with maximum inner product coefficient is1
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Figure 5.2: The block diagrams of (a) MP encoder, (b) MP decoder 

found along with the inner product coefficient Ci · The inner product coefficient is 

quantized and encoded and is sent to the decoder together with the encoded index 

of the dictionary element. Then, the quantized inner product coefficient Cqi is used 

to find the residual vector which goes through the second matching pursuit stage. 

This process continues for all MP stages until the full k stage decomposition is con­

structed. The decoder decodes the inner product coefficients and dictionary indexes 

and reconstructs the input vector according to equation (2 .14) . Since the quantized 

inner product coefficient is used to find the input to next stages, the MP equation at 

each stage (equation (2.13)) can be modified to: 

(5.1) 


where Ri fq is the residual vector which is computed using quantized value of inner 

product coefficients at previous stages. Thus Ri fq can be written as: 

i-1 

Rifq = f - L Cqj9/j (5.2) 
j=O 
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Figure 5.3: Geometric interpretation of quantized matching pursuit 

where Cqj is the quantized value of inner product coefficient at stage j (i.e. c1). If 

the inner product coefficients are not quantized, the total distortion at stage i will 

2be II Ri+l f 11 . However, at each stage the inner product coefficient is quantized. This 

introduces an additional quantization error Jleqi 11 2 , where eqi is the quantization error 

vector and can be written as (see Fig. 5.3): 

(5.3) 


Part of this error will be corrected in the subsequent stages if we plug 

i+l i+l iR f q = R f + eqi = R fq - Cqi9"f; (5.4) 

into the next stage instead of Ri+l f (see Fig. 5.3 for the above equalities). Now, the 

distortion at stage i is equal to the square norm of the total residual vector at stage i 

(i.e. IJRi+l fqll 2 
). As shown in Fig. 5.3, the MP distortion Ri+l f is orthogonal to g"f; , 

at every iteration, thus quantization error eqi is also orthogonal to matching pursuit 

distortion R i+l f, therefore: 

(5.5) 
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Equation (5.5) can be written as: 

(5.6) 


where rqi is defined as: 
llRi+1fl/e:, 

(5.7)rqi = llRifqll 

Now, the average total distortion at stage i can be written as: 

If both sides of equation (5.1) are divided by llRifqll, we will have: 

(5.9) 


where 
_ e:, Ri+1f 

(5.10)rqi = llRifq/I 

Using equations (5.7) and (5.10) we can write: 

(5.11) 


Now according to equation (5.9), rqi is the norm of the residual vector when matching 

pursuit is applied to the normalized input vector ( ~;~! ). Therefore, rqi only depends 11 11 
on ~;~q (i.e. the direction of vector Rifq)· Since norm and direction of the residual11 11 
vectors are independent, II Ri fq II and rqi are independent and equation (5.8) can be 

written as: 

(5.12) 

If ci is quantized by qi levels, the quantization distortion at stage i can be written as: 

(5.13) 
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where ai is a factor that depends on the PDF of ci and the quantizer [27] and er~ is 

the variance of ci . Let us define2 : 

8; = E{r;J (5.14) 

Using equations (5.12) and (5.13) repeatedly, the distortion of k stage matching pur­

suit can be written as: 

Equation (5.15) can be summarized as: 

(5.16) 

The above equation formulates MP distortion based on number of quantization levels 

at each stage (qi), number of MP stages (k), values of 8i and CTc; which mainly depend 

on the dictionary and source distribution and ai which depends on quantization 

method. In this section we assume 8i and CTc; are known (they can be found by 

training over a large set of training set) . In the next section we show how these values 

can be found adaptively based on already decoded information. As mentioned above, 

ai depends on the quantization scheme. The most efficient quantization scheme is 

the one that is designed based on the probability distribution of coefficients. In order 

to design such quantizer, we need to know the PDF of the coefficients. The PDF's 

heavily depend on the source characteristics and MP dictionary and is different for 

different sources and dictionaries. However, the PDF graphs tend to have a large 

peak close to a mean value and the probability decreases as the values get farther 

from the mean. As mentioned before, in this chapter we use a uniform quantizer with 

2 Note that O; was explicitly computed in chapter 3 equation 3.40 for Gaussian sources. However, 
for image data 8; depends on the PDF of the image and cannot be computed if the PDF of the 
image is unknown. 
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a granular region that is equal to (me; - a.CJc;, me; + a.CJc;) where me; and CJc; are the 

mean and standard deviation of the inner product coefficient at stage i respectively 

and are assumed to be known at this point . Based on our experimental results, the 

majority of coefficient values lie within the range (me; - 3CJc;• me;+ 3CJc;)· Therefore, 

in this chapter we set a = 3 in all our experiments. The quantization distortion for 

this particular quantizer can be easily computed if the probability distribution of the 

inner product coefficients is known. However , if the number of quantization levels is 

high, the high resolution approximation can be used and the quantization error can be 

approximated by ~; where 6 is the quantization step size [55]. If the coefficients are 

quantized by qi levels in the range (me; - CY.CJc;, me; + a.CJc;), the quantization step size 

will be 6 = 20q:c and according to the above assumptions the quantization distortion 

at stage i can be written as: 
Q2CJ2

DQ· ~ __c_; (5.17)
I 3qi2 

To have a complete description of MP expansion, the quantized values of the inner 

product coefficients at each stage and the index of the dictionary element with the 

maximum inner product must be encoded. Therefore, the bit rate of a k-stage MP 

encoder can be found by: 

k-l 

Rate= µq L log2 qi+ µMk log2 M (5.18) 
i=O 

where M is the total number of dictionary elements and µq ~ 1 and µM ~ 1 are 

constants that model the effect of entropy coding on the bit rate. When no entropy 

coding is applied µq = µM = 1. 

Now that the rate and distortion have been formulated based on the MP encoder 

parameters (qi, k and M) and source distribution , an optimum tradeoff can be found 

between the number of matching pursuit stages (k) and the number of quantization 

levels (qi). For a fixed bit rate, if the number of bits assigned to quantization levels 

is low (i.e. qi is small), more MP stages can be encoded (since there are more bits 
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to send for the dictionary indexes) resulting in a decrease in MP distortion. However 

small number of quantization levels increases the quantization distortion. Therefore 

the optimum values for qi and k must be found such that the distortion is minimized 

for a given rate . The Lagrangian multiplier method is used to solve this optimization 

problem: 

J(>.) = DMPQ +>.Rate (5.19) 

where ).. is the Lagrangian multiplier. Substituting the equations for MP distortion 

and rate from (5.16) and (5.18) into (5.19), the Lagrangian cost function can be 

formulated as: 

Taking the partial derivative in terms of qi yields the optimum values for quantization 

levels. It is easy to show that: 

(5.21) 

Using equation (5.21), one can show that: 

qi (JC; 1
-=--X- (5 .22) 
qi-1 (JCi-1 8i 

Note that combining equation (5.21) and (5.16) results in: 

(5 .23) 


Substituting the value of qi from equation (5.21) into (5 .20) and taking the partial 

derivative, the optimum ).. can be computed as a function of k, CJc; and 8( 

(5.24) 


The function j(CJi ,8i, k) is computed in Appendix A. Now that the optimum values 

for>. and qi have been found , the next step is to find the optimal number of MP stages 
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k that satisfies the bit budget constraint and minimizes equation (5.20). Assuming 

the bit budget is fixed and is denoted by Rbudget: 

k-1 

Rbudget = µq L log2 qi+ µMk log2M (5 .25) 
i=O 

Since both .A and qi are functions of k, equation (5.25) can be solved numerically to 

find k for any value of Rbudget· Additionally, since k can only take on integer values, 

the computation of optimum k does not impose high complexity and the search is 

performed over a small number of integer values. 

5.3 Adaptive Quantization 

The optimization method proposed in section 5.2 has a number of limitations 

that makes it difficult to be used in practical applications. First, the values of <50 

to 6k-I must be known which requires knowledge of the rate distortion curve of 

matching pursuit coding of the source. Moreover, the distribution of the inner product 

coefficients at each stage must be known. In particular the mean and the variance of 

the inner product coefficients at each stage must be known. Although these values can 

be obtained from experiments for a large set of training inputs, it is more desirable 

to be able to find those information dynamically during encoding. Additionally, for 

image coding applications, the rate distortion curve of MP encoding of an image can 

vary significantly among different images. Thus , adapting the rate distortion curve to 

the rate distortion curve of the input source results in more efficient quantization than 

using an average rate distortion curve. Therefore , we propose an adaptive quantizer 

that finds the required parameters at the encoder. This algorithm is a modification 

of the adaptive algorithm proposed in [41] and finds the necessary parameters for the 

quantization algorithm proposed in section 5.2 using a similar approach as the one 

used in [41]. Since the encoder only uses the information available from the previously 
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encoded stages to find the parameters , the same parameters can be computed at the 

decoder and no side information is needed to be sent to the decoder. 

The parameters that must be known at stage i at the encoder and decoder are: 

1. q( number of quantization levels at stage i 

2. m ci : mean of the inner product coefficients at stage i 

3. <Jci : variance of the inner product coefficients at stage i 

Once these parameters are known the inner product coefficient at stage i (i.e. ci) can 

be quantized by qi levels in the range ( m ci - O:<Jc;, me; +O:<Jc;). According to equation 

(5.1) we have: 

(5.26) 


Thus , using equation (5 .7) we can write: 

(5.27) 


Now, if the two consecutive inner product coefficients are divided together and equa­

tion (5.6) is used, we can write: 

CT II Ri fq 11 2 (1 - r;i) 

cL1 llRi-l fqll 2(l - r~(i-1)) 
(5.28) 

The values of r qi for two consecutive stages are very close. Also , quantization distor­

tion eqi is usually much smaller than the norm of input vector at stage i (II Ri fq II). 

Therefore equation (5.28) can be approximately written as: 

(5.29) 


Equation (5.29) can be used to find the mean of the absolute value of inner product 

coefficient from the inner product coefficient at the previous stage if rq(i-l) is known: 

(5 .30) 
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Equation (5 .29) is also used to estimate rqi at stage i: 

(5.31) 


Therefore since rq(i-l) is available at the end of stage i - 1, the value of me; can be 

computed from equation (5.30) at stage i. Now the values of O-c; must be estimated. 

If we assume the variances of coefficients are the same for the past L stages ( L = 4 

in our experiments), a-c; can be estimated by: 

(5.32) 


The next step is to find the value of qi. From equation (5.22) we can write: 

(5.33) 


Note that in our adaptive quantization scheme the values of rqi are used instead of 

the average values 8qi · Consequently, the optimization is performed based on the 

operating rate distortion function rather than the average rate distortion function. 

Therefore, the adaptive quantization scheme can adapt the quantization scheme based 

on the operating rate distortion function and find more efficient quantizers than the 

method described in section 5.2. 

Since the values of a-c; , me; , qi and r qi must be calculated at both the encoder and 

the decoder , at the encoder the quantized values of the inner product coefficients are 

used to find the required parameters. This ensures both the encoder and decoder use 

the same quantization parameters. The adaptive algorithm can be described by the 

following pseudo code (in the following, Q[ci] is the quantized value of inner product 

coefficient ci): 

1. Initialize rJc0 , m c0 , qo , rJc1 , mCJ , q1. 

2. rqo = rq1 = 1 
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3. For i = 0 to k - 1 do 

if i > 1 Then 

2O"~ = ±2::f=1(Q[ci-j] - mc;_J

me; = rq(i-1)Q[ci-1] 

end if 

Q[ci] := Quantize ICi I in range (me; - a.CJ"c;, me; + a.CJ"c;) by qi levels 

r . - ---9EL 
qi - Q[c;-1] 

4. end for 

The parameters O"c0 , mc0 , O"ci and mc1 are approximated by finding the two stage 

MP description of a set of input signals. The values of q0 and q1 must be selected 

based on the bit rate. The optimal choice is to find these values using equation (5.21). 

However, this requires knowledge of rate distortion curve of the input which is not 

available at the beginning of coding. Therefore we found the best values for q0 and 

q1 by experiments for a numb.er of bit rates and save them in both the encoder and 

decoder. The encoder selects q0 and q1 based on the required bit rate and sends that 

information to decoder. The rest of the quantization levels are found by the above 

algorithm. 

The proposed algorithm only uses the parameters from the previous stages and 

the quantized inner product coefficients at each stage to estimate the required pa­

rameters for quantization. Since this information is available at the decoder side, no 

side information is required and both encoder and decoder can calculate the same 

parameters from the parameters of the previous stage and quantized inner product 

coefficients. The only side information is the quantization levels for the first two 

stages which must be sent to the decoder. The improvement in the bit rate comes 
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from the fact that in general fewer bits are assigned to the last MP stages while more 

bits are assigned to the early and more important stages. 

In the quantization scheme proposed in [41] the inner products can be encoded 

with zero bits, i.e. no bits are sent for the inner product coefficient and only the 

dictionary index is sent. The inner product coefficient is mapped on the rate distortion 

function. However, sending atoms without inner product coefficients can cause our 

algorithm to converge to a nonzero distortion. This is because in our algorithm, 

the granular regions of the quantizers do not cover the entire range of inner product 

coefficients as opposed to the quantizer designed in [41] . Thus, when coefficient 

magnitudes are not in the range (me; - O:O"c;, me;+ 0:<7c;), overload error occurs which 

is added to the MP distortion. In some cases overload error can be significantly 

larger than the granular error and the MP error (e.g. compare the range (me; ­

O:O"c;i me;+ 0:<7cJ and the full range of inner product coefficients (0, max(ci)) in Fig. 

5.1). Additionally, the quantization range at the beginning of encoding is defined 

by the choice of q0 and q1 . If q0 and q1 do not match the rate distortion curve of 

the source that is being encoded, large overload errors can occur. As described in 

the following paragraphs, these cases can potentially cause our proposed quantizer 

to converge to a nonzero distortion. Let e 0 i = eqi denote the quantization distortion 

vector which is caused by the overload error. According to equation (5.4) and since 

eoi is in the same direction as g'Yi> when ll eoi ll » 11Ri+1!II the residual vector at stage 

i can be written as: 

(5.34) 


Now, since Ri+1 fq ~ Jle0 Jg'Yi> the dictionary element g'Yi will have the largest inner 

product with residual vector Ri+1 fq and therefore g"f; will also be selected in the next 

stage (i.e. g'Y;+i = g'Y;). Thus, according to equation (5.4), the residual vector at stage 
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i + 1 can be written as: 

(5 .35) 

The above equation states that the overload error will be corrected only if Cqi+i is 

comparable with lleoi jj. If no bits are sent for quantized inner product coefficients, 

the coefficients are quantized to their average value (i.e. Cqi+i = mc;+J· Thus: 

(5.36) 


mci+ 1 is the average of ci+l and when overload error occurs it is possible that mc;+i << 
II e0 i II. In this case, the residual vector at stage i + 1 can be written as: Ri+2 fq ~ 

1ie0 1ig-r; = Ri+I fq · Therefore, the error at stage i + 1 will be equal to the error at 

stage i and is equal to the overload error. Since me; is a decreasing function of i, the 

overload error will not be corrected in the next stages either and the same dictionary 

element will be selected at the following stages. Thus, the distortion does not reduce 

significantly by performing more MP iterations. In order to ensure this condition 

will never happen in our adaptive quantization scheme, we assign at least one bit to 

the absolute value of the quantized inner product coefficients. This guarantees that, 

the values of me; and ere; are updated according to Cq; and Cq; becomes large enough 

in the following stages to compensate for the overload error according to equation 

(5 .35) . This feature is another advantage of our proposed adaptive quantization 

scheme compared to a non-adaptive scheme. As shown in chapter 3 (section 3. 2.1), in 

a non-adaptive scheme, in order to guarantee that distortion always converges to zero, 

the range of the quantizers must be large to ensure overload errors are negligible (i .e. 

a must be large). This decreases the efficiency of the quantizers in fine quantization 

of inner product coefficients. However, the convergence problem does not exist in 

our proposed adaptive quantization scheme and it can exploit all advantages of our 

proposed quantization (in-loop quantization and fine quantization of inner product 
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coefficients). Note that , large overload errors caused by inappropriate values of q0 

and q1 or by the small quantization range can cause some sub-optimality in our 

proposed quantization algorithm. This sub-optimality does not exist in a posteriori 

quantization since the best initial quantization ranges can be found after all atoms 

are computed and the quantization range is always large enough to prevent overload 

errors. However, the advantage of in-loop quantization compensates for this sub­

optimality and as our simulation results show our proposed adaptive quantization 

scheme always outperforms a posteriori quantization. 

5.4 Experimental Results 

5.4.1 Random Signals 

In this section we compare our proposed adaptive quantization algorithm with 

the quantization scheme proposed in [41]. Note that the main difference between our 

proposed method and the method introduced in [41] is that in our quantization scheme 

the quantization levels are placed around the mean of the inner product coefficients 

and the granular region of the quantizer is proportional to the standard deviation of 

the inner product coefficients. The second difference is the use of in-loop quantization 

in our quantization method. 

Fig. 5.4. shows the rate distortion curves for our proposed algorithm and the 

algorithm proposed in [41]. The input signal is a 10 dimensional random signal. Each 

of the arguments in the 10 dimensional input vector is uniformly distributed between 

0.5 and -0.5. The dictionary elements are also random and the size of the dictionary is 

50. Our proposed quantization algorithm clearly outperforms the quantizer proposed 

in [41] . As can be seen in the figure , at low bit rates both quantizers have the same 

performance. This is because the number of MP stages is low at low bit rates. The 
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Figure 5.4: Comparison of R-D curves for MP coding of IO-dimensional random 
signals over a dictionary of 50 random vectors for our proposed quantization scheme 
and a posteriori quantization proposed in [41]. 

small improvement at low bit rates is caused by more accurate quantization of inner 

product coefficients by our proposed algorithm since in [41] the quantization range is 

between 0 and max(ci) while in our method the range is (mi - a(}'c;, mi+ a(}'cJ· At 

high bit rates the improvement is more significant . This is because the inner product 

coefficients of the final stages are still accurately quantized while in [41] the accuracy 

is degraded by assigning fewer bits without adjusting the range. Additionally, since 

in-loop quantization is used in our proposed quantization scheme, quantization error 

does not accumulate which results in better rate distortion performance. 

5.4.2 Image Coding 

In this section the application of our method is evaluated in the more practical 

case of matching pursuit image coding. The dictionary used in our MP encoder is 

based on the one proposed in [24]. We applied the quantizer proposed in section 5.3 

as well as the one proposed in [41] in order to quantize the inner product coefficients. 
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Figure 5.5: Comparison of PSNR versus bit rate curves for the proposed quantizer 
and the quantizer designed in [41]. (a) Lena, 256x256 (b) Camera man 256 x 256 

The same dictionary is used for both quantizers. The dictionary indexes and the 

position information are encoded without entropy coding (the addition of entropy 

coding can improve the resulting PSNR graphs for both methods). The PSNR ver­

sus bit rate curves are shown in Fig. 5.5 for both our proposed quantizer and the 

quantizer designed in [41]. As shown in the figure, our proposed quantization scheme 

outperforms the quantizer proposed in [41] for both images used in this experiment. 

5.5 Conclusion 

In this chapter we proposed an adaptive in-loop quantization scheme for matching 

pursuit coding. Our quantization scheme allows different quantization levels for differ­

ent stages. Additionally, the granular range of the quantizers are variable and depend 

on the distribution of the inner product coefficients at different stages. We found the 

MP distortion when in-loop quantization is used and calculated the optimum quan­

tization levels and optimum number of MP stages using rate distortion optimization. 

112 




Ph.D. Thesis - A. Shoa McMaster - Electrical & Computer Engineering 

We also proposed an adaptive quantizer that finds the parameters required for quan­

tization at each stage from the parameters and quantized inner product coefficients 

of the previous stages which are available at both the encoder and the decoder. Our 

experimental results show that our proposed quantization scheme outperforms the 

quantizer proposed in [41] which is used for matching pursuit image coding in [24]. 
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Chapter 6 

Optimized Atom Position and 

Coefficient Coding for Matching 

Pursuit Based Image Compression 

In chapter 5, we designed an MP image encoder and used the correlations be­

tween inner product coefficients to achieve a better performance than the existing 

MP image encoders. However , the PSNR values achieved by the MP encoder in 

chapter 5 is still below what could be achieved by conventional image coders that 

use complete transforms such as JPEG2000. Although the wavelet transform used in 

JPEG2000 provides a very compact representation of the image, a significant portion 

of compression efficiency is achieved by the advanced entropy coding algorithm used 

in JPEG2000 [53]. The entropy coding algorithm in JPEG2000 uses all correlations 

between transform coefficients and therefore is able to achieve a very high compres­

sion ratio. Thus, in order to compare compression efficiency of over-complete image 

representations with complete transforms, more advanced entropy coding techniques 

must be designed to fully exploit the redundancy between the encoded data (i.e. atom 

indexes and inner product coefficients). 
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As mentioned in the previous chapters, MP encoding algorithm can be classified 

to encoding in the order of atom positions or in the order of inner product coeffi­

cients. Although both methods are shown to be efficient for certain applications, 

none of them are optimal. Differential coding of atom positions discards the corre­

lation between inner product coefficients while encoding in importance order results 

in very expensive atom position coding. In this chapter, we find an optimum trade­

off between the two methods and take advantage of the benefits of both encoding 

in atom position order and importance order. We show that our algorithm results 

in significant improvements over the methods proposed in [41] and the algorithm in 

chapter 5 and it results in better rate distortion performance than JPEG2000 in low 

bit rates. 

6.1 Proposed Atom Position and Coefficient Cod-

In order to encode atom positions and coefficients first we find all atoms and their 

corresponding inner product coefficients. When coding in position order, image is 

scanned in a raster order and atom positions are differentially encoded. When coding 

in atom importance order , atoms are encoded in the order of their inner product 

coefficients and the coefficients are differentially coded. In this method there is no 

correlation between atom positions. Therefore for an N x N image, 2 log2 N bits 

must be sent for each atom in order to encode atom positions. In this chapter after 

atoms are found, the image is blocked into Bx B blocks. For each block, the number 

of atoms that are located inside the block is sent. Then these atoms are encoded in 

importance order. Therefore, for each atom 2 log2 B bits must be sent in order to 

encode atom positions. Then the atom coefficients are encoded differentially. Blocks 
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are encoded in the raster scan order. Therefore, fewer bits are needed to encode atom 

positions while there is still some correlations between atom coefficients which can 

be used for efficient coefficient encoding. However, by limiting ourselves to blocks of 

size B x B the amount of correlation that exists between successive atom coefficients 

reduces and therefore, more bits may be needed to encode these coefficients than the 

case when all atoms are encoded in their importance order. However , since fewer bits 

are needed to encode atom positions the overall bit rate can be reduced if the block 

size is selected in an optimum manner. In this section we solve this optimization 

problem and find the optimum block size and quantization levels for different bit 

rates. 

Note that when B = N our proposed algorithm reduces to one that encodes atoms 

in the order of inner product coefficients while when B = 1 our algorithm is equivalent 

to one that encodes atoms in their position order. In this chapter we try to find the 

best tradeoff between the two methods which in effect is equivalent to finding the 

best block size B. 

As mentioned in chapter 2 section 2.5.1, the square of the norm of the residual 

signal at the Kth stage is equal to the total distortion of K-stage matching pursuit . 

Therefore: 

(6.1) 


where DMP is the distortion of matching pursuit. 

Each inner product coefficient is quantized by a uniform scaler quantizer with 

range I and q quantization levels. The quantization distortion for this particular 

quantizer can be easily computed if the probability distribution of the inner product 

coefficients is known. However, if the number of quantization levels is high, the high 

resolution approximation can be used and the quantization error can be approximated 

by ~; where .6 is the quantization step size [55]. If the coefficients are quantized by 

q levels in the range I, the quantization step size will be .6 = I and according to the 
q 
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above assumptions the quantization distortion can be written as: 

12 
D -­ (6.2)

Q - 12q2 

The range of inner product coefficients is different among atom coefficients and de­

pends on when the atom is found. In order to quantize coefficients efficiently we 

assign different ranges to different coefficients and the range is optimized based on 

the probability distribution of the atom coefficient. Since the quantization ranges are 

variable, the number of quantization levels should be adjusted accordingly to have the 

minimum overall quantization distortion. Therefore, different quantization levels are 

assigned to each atom and the optimum number of quantization levels are found by 

a rate distortion optimization. Since all atoms are found first and then based on the 

required bit rate the coefficients are quantized , in-loop quantization cannot be used 

and the quantization errors are not added to residual frames. Therefore, the total 

quantization error will be the summation of quantization errors for each individual 

atom coefficient. Now, suppose there are ki ,j atoms in block Bi ,j· The range of the kth 

atom coefficient in block Bi,j is denoted by Ii ,j,k and the number of quantization levels 

assigned to it is shown by qi, j,k· The total quantization distortion can be written as: 

(6.3) 


Now suppose there are M elements in the over-complete dictionary and these elements 

are translated to each pixel position in the image (i.e. the effective dictionary size is 

M x N 2 with NJ main elements that are translated to N x N positions). For each 

block, first the number of atoms inside the block (i .e. ki ,j) must be encoded. Let us 

suppose we need to send Rate( ki,j) bits to encode ki, j . Then for each atom, log2 M 

bits must be sent for each dictionary index, 2 log2 B bits must be sent to identify the 

atom position inside the block and 1 + log2 qi,j,k bits must be sent for the sign and 
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value of the quantized coefficient. Therefore, the bit rate can be computed as: 

R = ~~ ( Rate(k;,;) + 't,\1og2 q;.;,k +log, M + 1+2log2 B)) (6.4) 

In order to compute Rate(ki ,j) the probability distribution of ki,j must be found. 

Assuming atoms are randomly distributed in the image, the probability of an atom 

being located in a B x B block can be found by 

B2 
(6.5)p= N2 

where N 2 is the image resolution. Since the total number of atoms and the probability 

of each atom being in block i, j are known the probability of having ki,j atoms in block 

i, j will have a binomial distribution and can be found by 

(6.6) 

where K is the total number of atoms. Note that since in each stage of MP coding an 

atom is generated, the total number of atoms is the same as the number of stages of 

MP. Thus, p( ki,j) has binomial distribution with mean K ~~ and variance K ~~ (1 ­

~~ ). For large values of K, binomial distribution can be approximated by normal 

distribution with the same mean and variance. 

( B2 B2 ( B2))P(k ·) c::::. N K- K- 1 - - (6.7)
i,1 N2 ' N2 N2 

Since ki ,j has a normal distribution its entropy can be found by: 

(6.8) 

Thus, the best rate that can be achieved by entropy coding ki ,j is found as: 

B2 ( B2)27reK- 1- - (6.9)Rate(ki,j) =In 
N2 N2 
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Now that the rate and the distortion are found in terms of block size B and 

number of quantization levels qi,j,k, the optimal values of B and qi ,j,k can be found 

using Lagrangian optimization. The Lagrangian cost function can be written as: 

J(>.) = D + >.R (6.10) 

where D and R are the distortion and rate respectively and >. is the Lagrangian 

multiplier. Substituting the values of rate and distortion into the Lagrangian cost 

function we can write: 

~-1 ~-1 k; ,j-l J2 

J(>.) = llRK!11 2 + L L L i ,~k 
12q 'ki=O j=O k=O i ,J, 

1 1 1 

+, (~.=- ~ (ln B ) ).=- B ( k;,j- )" ~ L 27reK N 2 1 - N 2 + ~ (log2 qi,j,k + log2 M + 1 + 2 log2 B)0 3 0 
2 2 

(6.11) 

The optimum value of number of quantization levels can be found by taking the 

partial derivative of J(>.) with respect to qi ,j,k: 

fJJ(>.) = 0 (6.12)
fJq·i,J,'k 

The optimum value of qi ,j ,k can be computed as: 

(6.13)qi,j,k = 

Note that the above equation results in: 

I i,j,k Ii' ,j' ,k' 
(6.14) 

qi,j,k qi' ,j' ,k' 

The above equation shows the optimum quantization is achieved when the same 

quantization step size is used for all atom coefficients. 

The next step is to find the optimum value of>. 

fJJ(>.) = 0 (6.15)
a>. 
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As shown in Appendix B, ,\can be found as a function of K, B and I i ,j ,k where K is 

the total number of matching pursuit stages. 

,\ = J(K, B,Ii,j ,k) (6.16) 

In this chapter we find the optimum MP parameters for a given number of MP stages 

which indirectly relates to the final bit rate. In order to optimize for a certain bit 

rate, different values of K must be selected until the desired bit rate is achieved. 

Now the optimum value of block size B must be computed. Since, qi,j,k and ,\ are 

found in terms of B, the optimum value of B can be found by an exhaustive search 

over all values of B and selecting the one that minimizes J(>.). Since B can only take 

on integer values this exhaustive search can be completed with only a few iterations. 

Moreover, since the atom positions within the blocks must be encoded, we restrict 

ourselves to block sizes of powers of two so that atom positions can be efficiently 

encoded. This further reduces the number of options for B and thus, the number of 

iterations required to find optimal value of B . 

6.1.1 Practical implementation 

In computation of optimum block size and number of quantization levels we as­

sume the values of MP distortion II RKf 11 
2 and the range of quantizers Ii,j ,k are known. 

The MP distortion can be found by training over several images and finding the av­

erage value. Also the quantization range Ii ,j ,k can be found by finding the average 

histogram of inner product coefficients for each stage at each block size. However, 

the optimum value of Ii,j ,k depends on the number of quantization levels qi ,j ,k which 

in return depends on Ii ,J,k· While an iterative algorithm can be designed to find the 

optimum Ii ,j ,k and qi,j ,k it is easier to find the ranges adaptively during encoding. 

Additionally the value of DMP can be found during encoding. This enables the pa­

rameters to be optimized based on the operating rate distortion function, which in 
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general results in better rate distortion performance than optimizing based on an 

average rate distortion curve. In order to realize this adaptation we perform the op­

timization after all atoms are found. Thus, first atoms are found and are reordered 

based on the magnitude of inner product coefficients. Once atoms are found the 

unquantized MP distortion DMP can be easily computed by computing the square 

norm of the residual image. Since in each block atoms are encoded in the order of the 

magnitude of inner product coefficients, the range of each coefficient is between zero 

and the value of inner product coefficient of the previous stage. For the first stage 

in each block, the range of coefficients Ii,j,l is between zero and the maximum inner 

product coefficient. This value is sent to the decoder using 8 bits. In order to find the 

optimum block size and quantization levels the Lagrangian cost function is computed 

for all values of block sizes between 1 and N that are powers of two. The block size B 

and its corresponding ,\ = f(K, B , Ii,j,k) that minimize the Lagrangian cost function 

are selected and used for decoding. B is sent to the decoder using jlog2 log2 Nl bits. 

Instead of sending,\ to the decoder, the value of Qi ,j ,l = 2round(Iog2 J 1fJ, 11n 2
/ 5>.) is com­

puted and sent to the decoder using 8 bits. Note that Qi ,j,l can only take on integer 

values that are powers of two. This is to ensure each coefficient can be efficiently 

encoded using binary strings of length log2 Qi ,j ,l · Then blocks are scanned in the 

raster scan order and atoms are encoded. For each block first the number of atoms 

inside that block (i.e. ki ,j) must be encoded. Since the probability distribution of ki,j 

is known, Huffman coding can be used to encode ki,j at a rate close to its entropy. 

However , if the entropy of ki,j is less than 1, Huffman coding is not very efficient 

and alternative coding algorithms like arithmetic coding, extended Huffman coding 

or run-length coding must be used [27]. In all our experiments the optimum block 

size found by our optimization results in a larger than 1 entropy for ki ,j · Therefore 

Huffman coding can be used to achieve bit rates close to entropy. The probability 

distributions used to find the Huffman codes are the ones found by equation (6.7). 
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Once k i,i is encoded, the atoms inside each block must be encoded in the order 

of their inner product coefficient. As mentioned before, Ii,j,I and qi,j ,I are fixed for 

all blocks and are sent to the decoder. The first atom coefficient Ci,j ,l is quantized by 

qi ,j ,I levels in the range Ii ,j ,I · Let us denote the quantized value by cqi,j,i. Since atoms 

are reordered in the order of the magnitude of their inner product coefficients, the 

range of the next coefficient is equal to the previous quantized coefficient. Therefore, 
I; ,j,k+ l

round(log2 1 . Qi,j,k) Th l . . 
Ii,j,k+I = cqi,j,k £or k 2: 1 an d qi ,j ,k+I = 2 i.1 .k . e atter equat10n is 

derived from equation (6.14) and the values of qi ,j,k are restricted to integer values 

that are powers of two. Once the atom coefficient is quantized, log2 qi ,j,k bits are sent 

for the quantized absolute inner product coefficient and one bit is sent for the sign 

bit of coefficient. The atom position inside the block can be encoded by 2 log2 B bits 

and the dictionary index can be encoded by log2 M bits. Note that all quantization 

levels and ranges can be computed at the decoder side and there is no need to send 

any extra side information. Our proposed algorithm can be summarized as follows: 

1. 	 Find all atoms by MP and reorder them based on their inner product coeffi­

cients. 

22. 	Compute distortion DMr = llRKf 11 

3. 	For log2 B = 0 to log2 N 

• Set Ii,j,I = maximum inner product coefficient 

• Set Ii ,j,k = ci,j,k-1 for k > 1 

• 	 Find >. = f(K, B,Ii ,i,k) 

• 	 Find J(>. ,B) 

4. 	 Choose B and >. that result in minimum J(A, B) 

5. 	Set I i,j, I =maximum coefficient quantized by 8 bits and transmit to the decoder 
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6. Set qi,j,I = 2round(log2Jrf,j,i1n 2/ 5A) and transmit to decoder using 8 bits 

7. For i = 1 to log2 j} 

• For j = 1 to log2 j} 

- Find the Huffman code for ki,j (the number of atoms in block i,j) and 

transmit the code 

- For k = 1 to k · · 2,J 

* cqi,j,k = Quantize ci ,j ,k by qi ,j,k levels in the range Ii,j ,k, transmit 

cqi ,j,k by log2 qi,j ,k bits. 

* transmit the atom position by 2 log2 B bits, dictionary index by 

log2 M bits and sign of the coefficient by 1 bit. 

* Ii J. I k+I = Cq · . kI t. 1J 1 

Ii ,i ,k+l )round(log2 I· . Qi,j,k* qi,j,k+I = 2 i,J,k 

6.2 Simulation results 

In this section our proposed encoding algorithm is compared with the ones de­

signed in [41] and [9] . Note that [9] is the algorithm described in chapter 5. We also 

compare our results with rate distortion curves achieved by the JPEG2000 codec. 

The JPEG2000 rate distortion curves are obtained using the KaKadu software [61] . 

The dictionary used in our simulation results is based on the dictionary proposed 

in [24]. This dictionary is built based on anisotropic scaling, rotation and translation 

of a function that is optimized for efficient approximation of contours in two dimen­

sions and therefore is very efficient in representing contours and edges in images [24]. 

However , in order to efficiently represent low frequency components in the image a 

Gaussian function with a number of isotropic scales is also included in this dictionary. 
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(a) (b) 

Figure 6.1: Example of dictionary elements used in our experiments (a) anisotropic 
atom, (b) Gaussian atoms. 

Two atoms from this dictionary are shown in Fig. 6.1 (see [24] for more information 

on the design of this dictionary) . We applied the proposed algorithm and the ones 

designed in [41] and [9] to quantize and encode MP coefficients and indexes. The 

above dictionary is used in all our experiments. Our simulation results are shown 

in Fig. 6.2, 6.3 and 6.4. As can be seen in the figures, our proposed algorithm 

outperforms the encoding algorithms designed in [41] and [9] in all bit rates. The 

improvements are more significant in higher bit rates since in high bit rates it is very 

inefficient to encode atoms in their importance order. This is because for high bit 

rates there are many atoms that need to be encoded and therefore, encoding their 

position information becomes very expensive in algorithms designed in [41] and [9]. 

Nevertheless, our results show that using the correlations between the atom positions 

and inner product coefficients simultaneously yields significant improvements in all 

bit rates compared to previous MP encoding techniques. 

Additionally our proposed algorithm outperforms JPEG2000 at low bit rates. 

The reason for the improved performance is that MP dictionary is highly flexible and 

includes atoms in various positions, scales, directions and frequencies. This allows 
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Figure 6.2: Comparison of PSNR versus bit rate curves for the proposed MP coding 
algorithm and the algorithms designed in [41], [9] and JPEG2000 for Lena image 

MP algorithm to find the best match for the dominant features of the image in the 

early stages. However, wavelet or DCT transforms can only use the set of wavelet 

or DCT bases to represent data which are much more limited sets than the over­

complete dictionary. Therefore, MP can extract important features and contours in 

the image using one of the atoms in the dictionary while wavelet or DCT transforms 

may need many transform coefficients to extract the same information. The flexibility 

of choosing atoms offered by the over-complete dictionary is the main reason why 

matching pursuit based encoder outperforms JPEG2000 at low bit rates. 

The improvements are more significant in the case of Barbara image and our algo­

rithm outperforms JPEG2000 for bit rates less than 0.23 bpp. This is mainly because 

the Barbara image contains many directional edges which cannot be efficiently rep­

resented by the wavelet transform. The dictionary used in our experiments includes 

atoms that are rotated to different angles and therefore can efficiently represent di­

rectionality in images. 

The dictionary used in our experiments is not optimized to capture texture and 

details in the image. Therefore, once the dominant contours and features of the 
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Figure 6.3: Comparison of PSNR versus bit rate curves for the proposed MP coding 
algorithm and the algorithms designed in [41], [9] and JPEG2000 for Cammera man 
image 
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Figure 6.4: Comparison of PSNR versus bit rate curves for the proposed MP coding 
algorithm and the algorithms designed in [41], [9] and JPEG2000 for Barbara image 
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(a) (b) 

Figure 6.5: Lena image encoded at 0.30 bpp , (a) JPEG2000 PSNR 29.47 (b) MP 
PSNR 29.15 

image are extracted by the MP algorithm, the correlation between the residual image 

and the dictionary atoms decreases and thus , it becomes more difficult to find good 

matches for the patterns and features that exist in the residual image. This is the 

main reason why MP is not very efficient in higher bit rates. Perhaps a different 

dictionary must be used at higher bit rates to adapt to the changing properties of the 

residual image. 

Fig. 6.5 shows the Lena image encoded by MP and JPEG2000 at the rate 0.3 bpp. 

While PSNR of JPEG2000 is higher than MP, the MP encoded image is visually more 

pleasant than the one encoded by JPEG2000. This is particularly evident around and 

on the hat in the Lena image. The main reason for the improved visual quality is 

the flexibility offered by matching pursuit dictionary. Wavelets are only efficient for 

capturing vertical and horizontal correlations in the image. However, the dictionary 

used in our experiment is capable of approximating contours and correlations in any 

direction. This is achieved by rotating the basis functions in a number of angles 

which results in efficient capturing of directional correlations in the image. This can 
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be seen by comparing the non-vertical and non-horizontal edges in the image shown in 

Fig. 6.5. While these edges are efficiently represented by the MP dictionary, wavelet 

transform used in JPEG2000 was unable to use the directional correlations that exist 

in these edges. 

6.3 Conclusion 

In this chapter we proposed an algorithm for optimal encoding of atom positions 

and inner product coefficients in matching pursuit image coding. We showed that our 

algorithm outperforms other existing encoding algorithms proposed for MP image 

coding. We also showed that MP image coding outperforms JPEG2000 in low bit 

rates. This shows that over-complete signal expansion can potentially improve image 

compression performance when efficient entropy coding algorithms are used to exploit 

the existing correlations among image components in an over-complete expansion. 
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Chapter 7 

Concluding Remarks and Future 

Direction 

7.1 Conclusion 

In this dissertation we studied the progressive coding of image and Gaussian data 

using the matching pursuit algorithm. This study is motivated by the rapid growth in 

the applications of compression algorithms and the necessity of better understanding 

of alternative compression techniques to the ones used in conventional image compres­

sion algorithms. We also focused on reducing the gaps between theoretical bounds 

and practical compression performances and developed new compression techniques 

that outperform existing algorithms. We started with an introduction in chapter 1 

where we outlined our motivations and summarized our contributions. We provided 

the necessary background in chapter 2 and summarized some of the most widely used 

compression techniques and discussed the techniques used in this thesis. More specif­

ically, we focused on over-complete signal representations using matching pursuit and 

discussed how it is used for compressing still images. Additionally, we explained the 

applications of progressive coding and discussed the theoretical bounds that exist for 
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progressive coding of certain sources. 

In chapter 3, we studied the application of matching pursuit in progressive coding 

of i.i .d Gaussian sources. We designed a novel progressive MP encoder and optimized 

the encoder parameters using Lagrangian optimization. In order to do the optimiza­

tion we found the relationship between the MP distortion and the encoder parameters 

and optimized the encoder to achieve the best rate distortion performance. In-loop 

quantization was used and a novel quantization algorithm was proposed based on the 

properties of MP inner product coefficients. Additionally, we studied the convergence 

of our quantization algorithm and found the conditions that guarantee rapid conver­

gence of the quantization algorithm. The progressive MP encoder was used to encode 

i.i.d Gaussian sources and our simulation results showed that our new MP encoder 

outperforms existing quantizers designed for progressive coding of Gaussian sources. 

Although the MP encoder designed in chapter 3 outperforms all the existing pro­

gressive encoders designed for Gaussian sources, its rate distortion performance is not 

comparable to non-progressive quantizers designed for Gaussian sources. In fact the 

progressive structure is achieved at the cost of reduced compression quality. However, 

Gaussian sources are known to be successively refinable and thus progressive coding 

theoretically should not cause any decrease in the rate distortion performance. Al­

though we were able to outperform all progressive Gaussian source coders with the 

MP encoder designed in chapter 3, we have not been able to close the gap between 

the rate distortion function of a practical progressive encoder and the theoretically 

achievable rate distortion function . The main reason for the reduced performance 

was the use of the same dictionary for all refinement stages. We showed that due to 

orthogonality of the MP residual vector and the dictionary vector selected at the first 

stage , the range of the residual vector is one dimension less than the dimension of 

the MP dictionary. Therefore, using the same dictionary in all stages results in some 

redundancy which reduces the rate distortion performance. 
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In chapter 4 we addressed this problem and designed a successively refinable quan­

tizer for Gaussian sources and quantized the residual vector at the correct space to 

remove the redundancy in the dictionary. However, practical limitations caused addi­

tional sources of redundancy in the new algorithm and our simulation results showed 

that the new progressive encoder has very similar performance to the MP encoder 

designed in chapter 3. A high resolution analysis was presented for the quantizer 

designed in chapter 4 and we explicitly derived the distortion increase caused by suc­

cessive refinement . Our simulation results showed that the distortion increase caused 

by successive refinement in the practical case of low resolution quantization is very 

close to our high resolution results. This is mainly due to the high performance of 

the Leech lattice and the wrapped spherical codes used in our quantizer. 

In the next two chapters we focused on the more practical case of image coding 

and studied the application of matching pursuits in image compression. Most con­

ventional image codecs use transforms to represent image data in a compact form 

and achieve compression. In our study we used over-complete image expansion using 

the matching pursuit algorithm to achieve a compact representation of the image. 

Our objective in this study was to find out how much compression can be achieved 

by using over-complete image representations instead of transform coding. We used 

the best dictionary designed for image coding applications and focused on finding 

efficient quantization and entropy coding techniques in order to achieve the best rate 

distortion performance. 

In chapter 5 we proposed a new adaptive in-loop quantization technique for quan­

tization of MP inner product coefficients and used it in an image coding application. 

Our adaptive algorithm is designed mainly based on the findings in chapter 3 and the 

analysis of the in-loop quantizer in chapter 3 is used in modelling the rate distortion 

performance. We optimized our quantizer based on the operational rate distortion 

function and showed that our new quantizer is more efficient than the quantizers used 
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for quantization of MP coefficients in image coding applications. 

Although the quantizer designed in chapter 5 improved the rate distortion per­

formance of MP image coding, our results were still not better than what can be 

achieved by common transform coding techniques (e.g. JPEG2000). Therefore, we 

tried to improve the performance of MP image coding by designing better MP en­

coding techniques and proposed an optimal MP image coder in chapter 6. In the new 

MP image encoder, we used all the correlations that exist between atom positions 

and inner product coefficients and designed an encoding algorithm that uses all these 

correlations to achieve optimum rate distortion performance. We showed that signif­

icant improvements can be achieved by using optimum coding of atom positions and 

coefficients over existing MP image coders and the one designed in chapter 5. We 

compared our results with JPEG2000 encoder which uses the wavelet transform. Our 

comparison showed that MP image coding results in improved rate distortion per­

formance at low bit rates while it can provide better visual quality at moderate bit 

rates. The reason for the improved performance is the flexibility offered by the over­

complete dictionary used by the MP algorithm. The dictionary used by our encoder 

includes atoms that can efficiently approximate two dimensional contours, edges and 

other features in any scale and direction in the image. This results in a very compact 

representation of the predominant features in the image which are extracted at the 

early stages. Our proposed optimum atom position and coefficient coding finds the 

minimum number of bits required for encoding this information and therefore results 

in very efficient compression qualities at lower bit rates. Conventional transform cod­

ing techniques only use the limited set of transform bases to represent image features 

and therefore , they cannot represent image features as efficiently as the MP algorithm. 

Additionally most transforms including the wavelet transform used in JPEG2000 only 

use the correlations in vertical and horizontal directions . However, due to the high 

level of flexibility offered by the MP dictionary, the atoms in our MP dictionary can 
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approximate contours and edges in any direction. Thus, our proposed MP encoder 

results in visually pleasing decoded images that contain less ringing artifacts along 

edges than the images encoded by JPEG2000. This results in improved visual qual­

ity for the MP encoded images at moderate bit rates even though the PSNR values 

are in favor of JPEG2000 at these bit rates. However, since the dictionary used in 

our MP image codec is not designed to capture texture and detail in the image or 

patterns in the residual image, the high bit rate performance of our MP coder is not 

comparable with JPEG2000. In summary our study of MP image coding showed 

that over-complete image representation is very promising for image compression and 

can overcome some of the limitations of current transform coding techniques by the 

flexibility offered by the over-complete dictionary. 

7.2 Future direction 

Our study of progressive coding of Gaussian sources showed that although the 

new progressive coders designed in chapters 3 and 4 outperform the existing progres­

sive coders for Gaussian sources, they are still not able to achieve the rate distortion 

performance predicted by the theoretical results. Although achieving the rate distor­

tion function of the Gaussian source may not be possible with limited computational 

complexity, achieving the rate distortion function of the best non-progressive Gaus­

sian quantizers by a progressive quantizer may not need unlimited computational 

complexity. The performances of the quantizers designed in chapters 3 and 4 while 

much better that the existing progressive solutions are not comparable with non­

progressive rate distortion results and better algorithms can still be designed to close 

the gap between progressive coding and non-progressive quantization results. 

Our study of MP image coding showed that matching pursuit can potentially result 

in improved compression performance. However , the existing dictionaries designed 
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for image coding applications do not include atoms optimized for capturing texture 

and detail in images. Additionally, they are not very efficient in extracting patterns 

and correlations that remain in the residual images. Therefore MP image coding is 

inefficient in high bit rates. Dictionaries optimized for high bit rate coding should 

be designed if MP image coding is to be used at higher bit rates. Perhaps, the 

dictionary elements should be used adaptively to improve rate distortion performance. 

Atoms optimized for extracting contours, edges and low frequency components in the 

image should be used first and once all the dominant features are extracted from the 

image, different atoms optimized for approximating details , texture and patterns in 

the residual image should be used. 

Although the dictionary used by the MP algorithm has a huge impact on the rate 

distortion performance of the MP image encoder, we showed in chapter 6 that sig­

nificant compression gain can be achieved by exploiting redundancies between atom 

positions and coefficients. However, in the algorithm designed in chapter 6, we only 

considered the correlations between atom positions and inner product coefficients. 

The dictionary indexes or more specifically the scaling, rotation and modulation pa­

rameters are highly correlated and their dependencies can be used to design better 

entropy coding techniques and achieve a better rate distortion performance. 

Another possible approach for improving the compression performance of MP im­

age coding is to design dictionaries that are optimized for better entropy coding. In 

transform coding, it is known to the encoder that most of the image information is 

contained in the low frequency transform coefficients. Therefore, although the image 

representation in the transform domain is less compact than the MP image represen­

tation , significant bit rate saving is achieved by entropy coding, since the behavior 

of transform coefficients is more or less known to the entropy coder. In contrast , the 

atoms selected by the MP algorithm are usually very random and therefore, entropy 
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coding cannot be as efficient as it is in transform coding applications. Perhaps dic­

tionaries can be designed that show more predictable behavior which can result in 

better compression achieved by entropy coding techniques. 

Another factor that limits the use of MP in image coding applications is the high 

computational complexity required at the encoder. The MP algorithm finds the best 

dictionary element by an exhaustive search over all dictionary elements which can be 

prohibitive in certain applications. Many algorithms have been proposed to reduce 

the computational complexity of the search in the MP algorithm [16, 22, 25, 58-60]. 

However , more work can be done in this area since the current solutions mostly come 

at the price of reduced performance or the reduction in computational complexity is 

not enough for many applications. Perhaps a small size adaptive dictionary optimized 

for efficient entropy coding is ideal for solving the computational complexity problems 

while it can improve the rate distortion performance at high bit rates. 
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Appendix A 

Optimum Lagrangian multiplier for 

MP encoder in chapter 5 

Substituting the optimum values of qi from equation (5.21) into equation (5 .20), 

the Lagrangian cost function can be written as: 

or 

k-I ( ff!ln 1 

>..µq L log2 a-c;6i+I ·· ·6k-1a - - 2) + >..kµq log2 >..-2 + >..kµM log2 M (A.2)
3i=O µq 

The partial derivative in terms of ).. can be computed as: 

(A.3) 
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Therefore: 

(A.4) 

Thus , ,\ can be expressed as a function of k , e5c.; and 8i: 

(A.5) 
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Appendix B 

Optimum Lagrangian multiplier for 

MP encoder in chapter 6 

Substituting the optimum values of qi ,j,k from equation (6.13) into equation (6.11), 

the Lagrangian cost function can be written as: 

J(>.) = llRKfll 2 + ~~+ 

E.- 1 E._1 ( k -1B B i.J 1 P.k~2 ))
" 

1
' + log2 M + 1 + 2 log2 B)>. ~ ~ Rate(ki,j) + ~ (-2 log2 >. + log2 6( 

(B.1) 

The partial derivative in terms of>. can be computed as: 

Therefore: 

(B.2) 
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2
B2 ( B2) k;,j -1 
1i,J, k ln 2 + log2 M + 1 + 2 log2 B)) ) 27reK N 2 1 - N 2 + L (log2 
 6


k=O 

(B.3) 

Thus, >.can be expressed as a function of K, B , and Ii,j,k: 

>. = J(K, B, Ii ,j,k) (B.4) 
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