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ABSTRACT 

Quantum dot infrared photodetectors (QDIPs) have emerged as a 

promising technology in the mid- and far-infrared (3-25 µm) for medical and 

environmental sensing that have a lot of advantages over current technologies 

based on Mercury Cadmium Telluride (MCT) and quantum well (QW) infrared 

photodetectors (QWIPs). In addition to the uniform and stable surface growth of 

III/V semiconductors suitable for large area focal plane applications and thermal 

imaging, the three dimension confinement in QDs allow sensitivity to normal 

incidence, high responsivity, low darkcurrent and high operating temperature. The 

growth, processing and characterizations of these detectors are costly and take a 

lot of time. So, developing theoretical models based on the physical operating 

principals will be so useful in characterizing and optimizing the device 

performance. 

Theoretical models based on non-equilibrium Green's functions have been 

developed to electrically and optically characterize different structures of QDIPs. 

The advantage of the model over the previous developed classical and semi­

classical models is that it fairly describes quantum transport phenomenon playing 

a significant role in the performance of such nano-devices and considers the 

microscopic device structure including the shape and size of QDs, heterostructure 

device structure and doping density. The model calculates the density of states 

from which all possible energy transitions can be obtained and hence obtains the 

operating wavelengths for intersubband transitions. The responsivity due to 

intersubband transitions is calculated and the effect of having different sizes and 

different height-to-diameter ratio QDs can be obtained for optimization. The dark 

and photocurrent are calculated from the quantum transport equation provided by 

the model and their characteristics at different design parameter are studied. All 

the model results show good agreement with the available experimental results. 
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The detectivity has been calculated from the dark and photocurrent characteristics 

at different design parameters. The results shows a trade off between the 

responsivity and detectivity and what determines the best performance is how 

much the rate of increase of the photocurrent and dark current is affected by 

changing the design parameters 

Theoretical modeling developed in the thesis give good description to the 

QDIP different characteristics that will help in getting good estimation to their 

physical performance and hence allow for successful device design with 

optimized performance and creating new devices, thus saving both time and 

money. 
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CHAPTER 1 INTRODUCTION 

High performance Infrared photodetectors in the mid- and far-infrared (3-

25 µm) wavelength range have attracted much interest due to their important 

sensing applications [ l] . They are used in medical and environmental sensing, 

optical communications, thennal imaging, night vision cameras, and missile 

tracking and recognition. It is required to obtain a technology that gives high 

performance at high operating temperature and with low cost. Current 

technologies based on Mercury Cadmium Telluride (MCT) [2, 3] and quantum 

well (QW) infrared detectors (QWIPs) [4-15] have some disadvantages that lower 

the overall performance of the sensing devices. The MCT's epitaxial gro\·Vth 

problems limit the manufacturing yield of large area focal plane arrays (FP As) 

applications [ 16, 17]. QWIPs do not support normal incidence detections and so 

need complicated optical coupling in addition to the requirement of operating at 

very low temperature [ 15]. 

The advance in epitaxial growth of heterostructure semiconductors allows 

for the fabrication of devices at nano scale dimensions. These nano-devices have 

new physical operating principles and novel performance characteristics. 

Quantum dots (QDs) grown by the self-assembled epitaxial technique have 

attracted much interest in recent years for laser [26-32] and photodetector 

applications [ 18 -25]. In addition to the low cost, stable and uniform surface 

epitaxial growth of the III/V semiconductors, suitable for large area FP As 

application in thermal imaging, the three-dimensional confinement in QDs has 

many advantages such as the intrinsic sensitivity to normal-incidence light which 

simplifies the optical configuration for any application, reduced electron-phonon 

scattering, long-lived excited states, low dark current and high temperature 
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operation [ 18, 19]. These advantages make quanhtm dot infrared photodetectors 

(QDIPs) emerge as an alternative technology to replace QWIP and MCT infrared 

detectors. Therefore, improving the QDIP performance by optimizing the device 

design through accurate modeling is useful for obtaining the required 

characteristics. In this research work, theoretical models based on non-equilibrium 

Green 's functions will be developed to describe the electrical and optical 

characteristics of QDIPs. The model results will be compared to the available 

experimental results and the models will be used for optimizing the device 

perfom1ance. 

1.1. OPTICAL ABSORPTION 

Semiconductor materials typically used for photodetectors in the visible 

and near infrared (< 2 µm) ranges are shown in Fig. l-1. For longer wavelength 

detection, smaller band gap semiconductor materials are used for interband 

transitions. Alternatively, the intersubband transitions between the bound states in 

quantum nanostmcture detectors such as QWIPs and QDIPs can be used for 

detection as shown in Fig. 1-2. 

10 ',j .-------------------.. 10· l 

10° ... 
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c -"' 
!!? a. 
~ U) <l.> 
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...., 
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~ d c: 
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.2 j .... ;;:; 
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Figure 1-1 - Absorption coefficient as a funct ion of wavelength for various semiconductor 

materials in the visible and near infrared domain 
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flw 
~ flw 

l\/V'+ 
flw 
1W'-+ 

Bound-to-contin·uum 

Intersubband transition Interband transition 

Figure 1-2 - Intersubband transition in quantum nanostmcture systems vs. interband 

transition in narrow band gap materials for infrared detection 

1.2. INFRARED PHOTODETECTORS 

Near infrared wavelengths ( < 2.0 µm) are extensively used in optical fiber 

communications due to their low attenuation compared to the visible range. The 

attenuation loss for single mode fiber at 1.55 µm is less than 0.2 dB/km and this 

leads to the need for fewer repeaters [33, 34]. This attenuation is very small 

compared to attenuation in the visible range which exceeds 5 dB/km [35]. The 

development of non-silica fibers allows having smaller attenuations at longer 

wavelengths in the mid-infrared [36] which makes the development of mid­

infrared detectors imp01iant for telecommunications [37]. There are some 

important environmental and medical sensing applications that make the 

development of infrared detectors very attractive. For example, the remote 

sensing of gases in the atmosphere such as, for example, 0 2, H20, CO, C02, CH4, 

and NH3 can be done using infrared detectors since the principle absorption lines 

of these gases lay in the range 0.6 to 2.5 µm [38, 39]. In particular, the monitoring 

of C02 can help in solving the global wanning problem by identifying the regions 

where the emission of C02 is big and needs to be decreased . Mid-infrared 

detectors can be used to monitor forest fires, thermal and gas pollution from 

3 
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industrial sources. An example in the semiconductor industry would be the 

monitoring of HCl used in the plasma-etching of poly-Si but there are many 

others [40]. Mid-infrared detectors are also used in biomedical applications [41] 

and can be used for sensing biotoxins such as smallpox, sarin gas, ricin, and 

anthrax and monitoring water contamination with bacteria. Also, they can be used 

in molecular imaging which is the visualization of specific molecules in vivo. The 

term "molecular imaging" reflects a change in thinking about the noninvasive 

visualization of disease progression and response to treatment [42-44]. 

The detection of mid- and far infrared wavelengths can be done through 

the interband transition process in narrow band gap semiconductors or through the 

intersubband transitions in quantum nanostmcture detectors such as QWIPs and 

QDIPs. Semiconductor materials with narrow band gap materials such as InAsSb 

(III-V), PbSnTe (IV-VI), and HgCdTe (II-VI) are used for mid- and far-infrared 

detection. In addition to narrow band gap material detectors, Schottky barrier 

photosensitive detectors and doped silicon detectors are used. Photodetectors 

based on interband transitions in narrow band gap materials have some 

advantages such as high optical absorption, high quantum efficiency, high 

mobility and less thennal generation compared to extrinsic detectors and Schottky 

barriers [ 15]. The compositions of these materials in the alloy can be controlled 

for band gap engineering which allows detection of specific infrared regions. 

Amongst the interband transition detectors, the MCT-based are the most used as 

the other semiconductor based detectors suffer from less mature technology and 

their performance is much lower than the MCT photodiodes [9]. Although the 

MCT photodetectors have many advantages, the problem of the epitaxial gro·wth 

and alloy instability make it difficult to produce a homogenous composition over 

a large area. These problems have limited the manufacturing yield of large FPAs 

which makes the final imaging system very expensive. The performance of the 

long wavelength infrared InAs/lnGaSb superlattices (SL) photodiodes is 

comparable to MCT photodiodes. The InAs/lnGaSb strained layer SL detectors 

4 
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employ interband transitions across a fundamental energy gap. The band 

alignment in the strncture is based on a type II interface where the conduction 

band of InAs is lower than the valence band of the InGaSb. Because of this band 

alignment the SL can have a band gap smaller than that of either constituent 

material. The presence of coherent strain due to a small lattice mismatch ( < 5%) 

shifts the band edges such that the SL energy gap is reduced. This reduced band 

gap is advantageous because longer cut-off wavelengths can be obtained with 

reduced layer thickness in the strained SL, leading to even higher optical 

absorption coefficient. The resultant effective bandgap is dependent upon the 

composition, well width, and strain within the SL. The substrate difficulties and 

immature technology in addition to high dark current are some disadvantages that 

need further developments. 

As an alternative, the intersubband transitions in QWIPs can be used to 

detect infrared light. QWIPs are based on III-V technology and mostly on 

GaAs/ AlGaAs system. The dependence on the mature GaAs technology results in 

highly uniform and stable surface growth which is suitable for large area FPAs. 

Other advantages are the high control on the heterostrncture design which gives a 

good control on the operating wavelength in addition to compatibility with high 

speed GaAs electronics and the low cost. However, QWIPs do not support normal 

incidence light detection which complicates the optical coupling. Also they have 

low quantum efficiency and high dark current and need to be operated at low 

temperature [15]. 

Recently, QDIPs consisting of self-assembled QD active regwns have 

emerged as an alternative technology to replace quantum well and HgCdTe 

infrared photodetectors [24]. The intersubband transitions in the QD can be used 

to detect incident infrared radiation in the mid- and long-wavelength ranges (3-25 

µm) [35]. The advantages of QDIP over MCT and QWIP will be discussed in the 

next section. 
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1.3. QUANTUM DOT INFRARED 

PHOTO DETECTORS 

The QDIP consists of a stack of QD arrays (layers) separated by wide 

band gap material layers. It is similar to the QWIP structure but replaces the QW 

layers with arrays of QDs as shown in Fig. 1-3. 

Infrared radiation 

Emitter 

Collector 

Figure 1-3 - Schematic of planar QDIP strncture. 

The QDs are formed by the self-assembled epitaxial technique. For 

example, a QDIP can be formed using QD layers of InAs or InGaAs separated by 

barrier material layers such as GaAs which have a higher conduction band edge. 

The QD material is deposited over the substrate and due to the lattice mismatch 

between deposited material and substrate, the strain is build up and after a critical 

thickness is reached, the two-dimensional growth changes into a three­

dimensional one and dislocation free QD islands start to grow. The QD islands are 

covered with a layer of the substrate material and three-dimensional confinement 

of charges inside the QDs are obtained. The QD arrays play the role of the 

photosensitive base for the QDIP where photoexcited electrons are obtained 

through intersubband transitions. The QD active region of the QDIP is 
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sandwiched between heavily doped contact layers which can be viewed as the 

emitter and collector of the detector. 

1.3.1. ADV ANT AGES OF QDIPS 

QDIPs fabricated using III-V semiconductor self-assembled QD layers 

show advantages over other infrared photodetector technologies such as those 

based on MCT and III-V based QWIPs. The main disadvantage of the MCT 

technology is the MCT's epitaxial growth problems, such as non-uniformity and 

instability of the growth surface, which limits the manufacturing yield of large 

area FP As. The IIVV semiconductors allow low cost, stable and uniform surface 

epitaxial growth, hence are suitable for large area FPA applications in thermal 

imaging. A problem with QWIPs is that they do not support nonnal incidence 

detection and so need complicated optical coupling in addition to the requirement 

of operating at ve1y low temperature. However, the three-dimensional 

confinement in QDs has many advantages: 

• The intrinsic sensitivity to normal-incidence light which simplifies the 

optical configuration for any application. 

• Reduced electron-phonon scattering due to the large separation between 

the QD energy levels which exceeds the longitudinal optical phonon 

energy (phonon bottle-neck effect) [52, 53]. 

• High responsivity and high photoconductive gain due to the long-lived 

excited states [ 68]. 

• Reduced thermionic emission and low dark current and hence possible 

high operating temperature. 

The main disadvantages are ( l) the reduced absorption coefficient which can 

be overcome by increasing the absorption volume, through increasing the number 

of QD layers, and (2) the variable uniformity of the QD shape and size which 

needs to be minimized in order to enhance the absorption in a narrow wavelength 

range and (3) the non-unifonn distribution of QDs in the layers [20). So 
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optimizing the growth conditions to produce a high density of uniformly 

distributed QDs with a narrow size distribution within the layer will improve the 

absorption coefficient and give high detectivity values at a high operating 

temperature. 

1.3.2. QDS FOR PHOTODETECTORS 

For photodetectors applications, QDs should fulfill some requirements in 

terms of size, uniformity and material quality in order to be useful for good 

performance at room temperature. 

1.3.2.1.Size 

The size of the QD should be sufficiently large to have at least one energy 

level for an electron or hole inside the QD but should not be too large such that 

the separation between the energy levels inside the QD is below KT for high 

temperature operation. For example, the minimum diameter for a spherical QD of 

InAs/ Alo.4Gao.e>As to give one energy level inside the QD is about 3-5 run. The 

upper limit in size is detem1ined by limiting the population of higher energy levels 

and to get room temperature operation, the size for InAs/Alo.4Ga0.6As QDs is 20 

nm [54]. 

Figure 1-4 -Atomic force microscope image oflnAs self-assembled QDs on GaAs, 

Courtesy: S. Tavakoli. 
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1.3.2.2. Uniformity 

The nonunifonn distribution of QDs in the layer affects the dark current 

characteristics. The dark current density increases in the regions where there are 

lacks of QDs in the QD layer due to the low potential energy at these punctures. 

So a high density, uniform distribution of QDs in the layers will reduce the dark 

current density of the detector. Also the minimum variance of the size variation 

of the QDs will increase the responsivity by enhancing the absorption at specific 

wavelength since the variation of the positions of the energy levels of the QDs 

will be small and then the photon energy to induce intersubband transitions will 

be almost the same for all QDs. 

1.3.3.QDIP CHARACTERISTICS 

The QDIP using intersubband transitions have been studied and characterized 

experimentally [55- 63]. The following are the main operating characteristics of 

interest for QDIPs 

• The operating wavelengths corresponding to the peaks of the responsivity 

of the detector. By calculating the energy eigenvalues corresponding to 

both bound and continuum states of the QDs, the photon energies 

corresponding to all possible intersubband transitions between the energy 

states can be obtained and hence the operating wavelengths of the 

detector. 

• The dark current due to thermionic emission and field assisted tunneling 

• The responsivity which is the photocurrent, Ip11, per unit watt of incident 

light 

(1.1) 

where fim is the photon energy and <D is the intensity of the incident photon 

flux, i.e. the number of photons per unit area per unit time. 

• The detectivity which is a measure to the signal to noise ratio and is given 

by 
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I 

( 1.2) 

where RP is the peak responsivity, S; is the noise density spectra, where 

S/11 
=/noise I .fij and ~f is the band width of where the noise current is 

measured, and A is the detector area. The noise density is related to the dark 

current, as shown experimentally, through the relation [ 49] 

s 
g= I +-

4q/dark 2N, 
(1.3) 

where g is the photoconductive gain and N is the number of QD layers. For a large 

value of N , the second term can be neglected compared to the first term and the 

noise density can be approximated by 

S/12 = ~4q/darkg (1.4) 

• The photoconductive gain and quanh1m efficiency 

The photoconductive gain can be given in terms of the carrier life-time which 

is the time the photocarriers have after photoexcitation until capturing or 

relaxing back to the QD and the transit time which is the time the carrier needs 

to be collected by the contacts such that g = rlife I r1ransii . The photoconductive 

gain of QDIP can be extracted experimentally from the measured dark and 

noise currents as shown in Eq. ( 1.4). The quantum efficiency is related to the 

responsivity and photoconductive gain through the relation [ 15] 

R 
eg 

=-ry 
p ncv 

( 1.5) 

The quantum efficiency describes how well the detector couples to the 

detected light. It is defined as the number of photoexcited carriers per incident 

photon. 
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1.3.4. QDIP STRUCTURES 

There are different QDIP structures according to the heterostructure 

design of the detectors. By careful design of the QDIP heterostructure the 

performance of the QDIP can be improved. The design can improve the 

responsivity, reduce the dark current, and improve the absorption coefficient by 

increasing the number of QD layers and the absorption volume. 

1.3.4.1. 70 layers planar array 

The QDIP reported in [24] has a planar structure of 70 layer QD arrays to 

increase the absorption volume. The barrier width between the QD layers has 

been controlled to allow growth of this large number of layers, with a minimal 

amount of dislocations. A relatively wide barrier between the QD layers of 50 nm 

was used. Substrate temperature cycling was applied during the growth of the 

GaAs barriers to allow this large number of QD layers to be grown with minimum 

dislocations [24]. A variation of QDs was obtained with larger dots located at the 

top of the QD stack and the smaller ones located near the bottom of the stack. The 

peak responsivity of the detector obtained at 2 V applied bias was 0.12 NW and 

the dark current was 1.83x10-2 Ncm2 at T= 175 K which is low at this 

temperature due to the large width of the GaAs barrier. 

1.3.4.2. Quantum Dot-in-a wel1 detector QDWELL 

The QDWELL structure reported in [ 45] is a hybrid between QWIP and 

conventional QDIP. In this device, the InAs QDs were grown inside an 

In0.1 5Ga0.85As QW which was covered by GaAs barriers as sho\vn in the 

schematic of the conduction band offset profile in Fig. 1-5. It combines the 

advantages of a QDIP and QWIP such that it allows for normal incidence 

operation, as for the QDIP, and also provides better control of the operating 

wavelengths through bound-to-bound transitions instead of bound-to-continuum 

transitions. The electrons are photoexcited from the ground state of the QD to a 

set of bound states provided by the QW. The measured peak responsivity at 1 V 
11 
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was 0.0125 A/W which is low due to the small number of layers (15 layers) and 

the non optimized thickness of the barrier layers [ 45] . 

GaAs 

93meV 

477 meV 

lnAs 

Figure 1-5 - Schematic of the conduction band offsets and the energy levels of the QDWELL 

structure. 

1.3.4.3. Superlattice SL-QDIP 

The SL-QDIP stmcture reported m [24, 46] is a modification of the 

QDWELL. InAs QDs were directly grown on AlAs layers as shown in Fig. 1-6. 

The AlAs barriers form a QW stmcture. The width of the QW can be controlled to 

change the positions of the minibands fonned for wavelength tunability. The 

growth of InAs on AlAs instead of GaAs leads to increasing the density of QDs 

by an order of magnitude due to the low mobility In on AlAs compared to GaAs 

[24]. The SL-QDIP shows high peak responsivity of about 2.5 NW at 78 K due to 

the large QD density which allows increased absorption of IR light. A high 

responsivity detector is suitable for low level signal detection. However the 

measured dark current [ 46] is high due to the thin active region of the detector 

which requires operation at low temperature. 
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Figure 1-6 - Schematic of the conduction band offset profile of the SL-QDIP demonstrating 

the energy levels in the QD and wetting layers and mini-bands in the QW (in meV) relative to 

conduction band ofGaAs. 

1.3.4.4. Resonant tunneling RT-QDIP 

The RT-QDIP reported in [24, 47, and 48] consisted of InGaAs QD layers. 

Associated with each QD layer are a double barrier Alo.3Gao.1As/ Ino.1Gao.9As and 

a single barrier Alo. 1Ga0.9As forming a resonant tunneling structure as shown in 

Fig. 1-7. The widths of the double barrier and QW are chosen such that the energy 

levels in both of them coincide allowing for resonant tunneling through the 

structure. Resonant tunneling will enhance the photocurrent by allowing 

photoexcited electrons with the resonant energy to be transmitted, while the dark 

current will be reduced due to the blocking of the broad distribution of the thermal 

excited carriers. A dark current density as low as about 1.6 A/cm2 is measured at 

300 K and l V applied bias. This low value of the dark current allows the 

photoresponse to be detectable, even at room temperature, due to the almost two 

orders of magnitude reduction compared to that measured in conventional QDIP 

and the measured responsivity is about 0.15 A/W at a long wavelength response at 

17 µm at room temperature. The detectivity measured is about 107 cmHz112/W at 

13 
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17 µm . Fmiher improvement of the detector design can give higher values of peak 

responsivity and detectivity making it suitable as a room temperature IR detector. 

-103 

-172 

lnGaAs/GaAs 
Quantum dot 

Resonant 
levels 

Figure 1-7 - Schematic of the conduction band offset profile of the RT-QDIP demonstrating 

the energy levels in the QD and the QW (in meV) relative to conduction band of GaAs. 

1.4. THEORETICAL MODELING OF QDIP 

1.4.1. CLASSICAL MODEL 

The electronic transport model is based on a balance equation between the 

thennal and photoexcitation rates of electrons from the QDs and the capture or 

relaxation rate into the QDs [16, 25, 64-69]. The balance equation at steady state is 

given by [ 65] 

(J) P =Gk+ Gt+ al (N) 
eIQD 

( 1.6) 

The L.H.S is the capture rate and ( J) is the current density; P is the capture 

probability and I 0D is the QD density. The R.H.S is the thennal and photexitation 

rates per QD where Gk is the thennionic emission rate, Gt is the field assisted 

tunneling rate, and O" is the cross section of the photon induced electron escape 

from QDs, I is the photon flux intensity, and (N) is the average number of 

electrons per dot. 
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Figure 1-8 - (a) Schematic of cross-sectional view of the QDIP; arrows indicates possible 

trajectories of electrons, (b) schematic of the conduction band profile illustrating QD capture, 

field-assisted tunneling, and thermionic emission processes used in the balance equation 

under dark conditions (65](25]. 

Electrons escape the QDs by thermal excitation from the bound states of 

the QDs to the continuum states above the QD barrier as shown in Fig. 1-8 (b) 

Electron in the excited states can also escape the QDs by field assisted tunneling 

through the triangular barrier of the QDs due to the electric field of an applied 

bias. At steady state response, electrons escaping the QDs by thermal excitation, 

field assisted tunneling or photoexcitation in the presence of light are balanced by 

electrons caphired by the QDs as described by Eq. ( 1.6). The average current 

density in Eq. ( 1.6) can be expressed as [ 65] 

( ) f 2 ( ecp1 ( N)) 
J = Jmax LQD dr exp kBT (1.7) 

where J
111

. x is the maximum current density provided by the emitter and cp1 ( N) is 

the potential energy distribution in the QD layer adjacent to the emitter as a 

function of the average number of electrons per dot which satisfies the balance 

equation (1.6). The average potential energy through the device satisfies Poisson 

Equation and the Dirac delta functions are used to represent the average 2-D 

charge density of the QD layers. The average potential energy is given by 
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d
2

~~) = 4nef((N)IQ0 -I0 )o(z-kL) (1.8) 
J_ c k=I 

The thermionic emission current density of the emitter and the average potential 

energy are solved simultaneously such that they satisfy the balance equation given 

by Eq. ( 1.6). The thermionic emission and field assisted tunneling rates and the 

capture probability are given in [25, 65, 69]. The relations used to calculate these 

rates contain fitting parameters that need to be extracted by comparisons with 

experimental results. The analytical solutions based on this model shows good 

agreement with experimental results for dark and photocurrents for QDIPs at low 

applied biases(< l V) as shown in [65 , 69]. The model can be used to fit the dark 

current results at < 3 V with modification of some of the fitting parameters as 

shown in [25]. The dependence of fitting parameters in obtaining the transition 

rates, instead of the actual calculations of these rates, limits the use of the model 

for optimization to get the best designs. Moreover, the model does not take into 

consideration the microscopic device stmcture including the shape and size of 

QDs and the heterostmcture design including quantum wells or tunneling barriers 

that have a big effect in determining the device characteristics. 

1.4.2. SEMICLASSICAL MODEL 

Microscopic models such as those reported in [70, 71], provide a better 

description of the QDIP relevant parameters by taking into consideration the QD 

shape and size to calculate the QD wavefunctions, which in tum can be used to 

calculate the transition rates. The current is calculated using a semiclassical 

Boltzmann equation. At steady state under dark or light conditions, the population 

of QD energy levels and consequently the dark current and responsivity are 

calculated. 

The model considers the simplest possible periodic arrangement of the QD 

layers. Instead of the random arrangement of QDs in different layers as appeared 

in Fig. 1-9 (a), QDs in all layers are chosen to be aligned as shown in Fig. 1-9 (b ). 
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This simplification is chosen because the transport properties are believed not to 

depend on the QD arrangement since the transport of electrons from one QD layer 

to the next one is done through the continuum states and not the direct transport 

through the QD bound states. Therefore, electrons are exited from bound states of 

QDs to continuum states, mainly localized in the QD region, and then they are 

transported via continuum states to the next QD layers until they are collected by 

contacts or captured by QDs in the next layers and relaxed from continuum states 

to QD bound states. Fig. 1-9 ( c) shows a cylindrical volume in which the 

Hamiltonian eigenvalue problem is solved to obtain the energy eigenvalues and 

the corresponding wavefunctions. An orthonormal wavefunction expansion 

method is used to get the eigenenergies and the corresponding wavefunctions [70, 

71]. 

• • • • 
• • • • r (b) (c) 

• • .. .. 
Figure 1-9 - Schematic view ofQDIP periods: (a) realistic structure and (b) structure used by 

the model. (c) The region in space in which the Hamiltonian eigenvalue problem is solved 

illustrating conical shaped QDs [70] . 

A similar method of using eigenfunctions expansion to obtain the 

eigenstates of the QD-in-a well detector is shown in [ 45, 72]. The eigenfunctions 

of the Hamiltonian of a cylindrical volume encompassing a QD can be written as 

a superposition of basis functions fonned by the product of the Bessel function of 

integer n with the sine function assuming zero boundary conditions on the 

cylindrical surface. The eigenfunctions can be written as [72) 
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i>O,j>O ( 1.9) 
;-_n. (r - 8) = an J (k" R)e;no sin(K z) 
":i1 , j 'k, /.Jr II 1 ) 

where k;' R is the i1
1i zero of the Bessel function of order n, R is the cylinder 

radius, K1 =}Tr I Z and Z is the cylinder height and /3/' is the normalization 

constant. The choice of the Bessel and sine functions forces zero boundary 

conditions on the cylinder surface enclosing the QD which gives good results for 

the ground state of the QDs; however, assuming zero boundary conditions is less 

accurate for the higher excited states near the QD barrier and not suitable for 

getting the wetting layer energy levels or continuum states. Other theoretical 

models used to calculate the QD energy eigenvalues and the corresponding 

wave functions are based on the eight-band k.p model [73]. Most of these models 

predicts a separation between the ground state and the first excited of about 50-60 

meV (20-25 ~tm). However, many experimental groups report intersubband 

QDIPs with photoresponse in the range of 4-7 µm [49, 50]. The wavefunctions are 

used to calculate the transition rates due to interaction with longitudinal optical 

(LO) phonons and interaction with light. The electron-LO phonon interaction was 

considered in the strong coupling regime where the carrier lifetime is determined 

by the decay of a LO phonon into two longitudinal acoustic phonons. The details 

of the model are shown in [70, 71]. The interaction with light is treated using the 

first order dipole approximation and the Fermi golden rule and the optical cross 

section of the transition from initial state Ii) to a final state If) is given by 

( 1.10) 

where fl' is the Harniltonian due to interaction with the electromagnetic field. 

The occupation of the energy levels and the current density are obtained from a 

semiclassical Boltzmann model where systems of rate equations are formed and 

given by [70] 
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dn; = "w 11 . (1-..!..n)- "wn(1-..!..n)- "cr(w)(n-n \m, dt L. JI } 2 I L. I] I 2 j L., lj I j rv 
}~I }~ I j (l.11) 

0 s n; s 2 including spin degeracy 

where the energy levels of the QDs are denoted by i = ( M, P) representing the ph 

level of the QD of Ar layer, Wii is the total transition rate from the state i to the 

state j due to interactions with phonons, cru ( w) is the optical cross section 

between the states i and j due to photon absorption of energy ncv , and cD is the 

flux of incident radiation. Equation ( 1.11) is solved under steady state conditions 

( d I dt = 0) by imposing a condition on the total number of electrons in the 

system. It was assumed that on the average there is 1 electron per dot which is a 

typical QD occupation at relatively small applied biases. After solving the system 

of equations in ( 1.11 ), the current density can be obtained from [70] 

(1.12) 

where J if is the current density due to the transition from the state i to the state f 

A reference plane is chosen perpendicular to the growth direction where electrons 

can be counted when passing through the reference plane; P; is the probability 

that the electron in state i is located to the left of the reference plane and p 1 is the 

probability that the electron in state f is located to the right of the reference plane. 

The probability calculation and details of the model are given in [70]. 

1.4.3. QUANTUM TRANSPORT MODEL 

A quantum transport model can be used to produce a better description of 

the electron dynamics in QDIPs. The semiclassical models based on Boltzmann 

formalism combine Newton's law with a probabilistic description of the 

interaction with random scattering forces . However, the non-equilibrium Green's 

functions (NEGF) is a quantum transport model that combines Schrodinger 
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equation for quantum dynamics with statistical description of dissipative 

interaction [79]. The advantage of such a quantum transport model is that it gives 

a general framework to deal with quantum structure under non-equilibrium 

conditions such as high applied biases and in the presence of internal interactions. 

The interactions inside the device can be electron-electron, electron-phonon or 

electron-photon interactions. According to the type of interactions included, 

electron scattering can be elastic, which causes no energy transitions between 

different energy states or inelastic which leads to energy transitions. The 

straightforward way of including interactions in the system gives considerable 

flexibility in the types of interactions to be included and the degree of 

approximations to be used depending on the accuracy required in the results and 

the complexity of the calculations. The model should take into consideration the 

microscopic device stmcture such as, the shape, size and composition of QDs, 

density of QDs, and doping density as well as the internal structure design which 

is useful in device design optimization as it describes the realistic device structure 

and physical operation. The internal parameters such as density of states (DOS) 

and electron density, in addition to the transmission function and current, can be 

obtained. 

1.5. THESIS OBJECTIVE 

The objectives are to develop theoretical models to well describe the 

electrical and optical properties of QDIP which can be used for device design 

optimization for better performance. Improving the device performance 

experimentally by fabricating and testing devices using combinations of different 

design parameters are very costly and time wasting. Hence, it is desirable to 

develop theoretical modeling based on the physical operating principals that can 

be used in characterization and optimizing the device perfonnance through 

recommending the best design parameters suitable to achieve specific 

characteristics. In addition, the models can be used as a design tool to create new 
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device structures and making compansons between different structures to 

establish the best structure for a specific characteristic, such as a high operating 

temperature, a high responsivity or a high signal-to-noise ratio. Each can be 

suitable for certain operating conditions. 

The research objective is to develop theoretical models based on NEGF 

that can be used for electrical and optical characterization of QDIPs and give a 

good physical understanding of the device operation in order to have a guideline 

to improve the device design. Unlike classical and semi-classical models that are 

based on fitting parameters or depend on classical physics, the NEGF models 

developed in the thesis are quantum mechanical models that fairly describe 

quantum transport phenomenon where energy quantization and tunneling have 

significant role in the performance of such nano-devices . For any QDIP structure, 

the model considers the microscopic detector structure including the shape and 

size of QDs, number of QD layers, the separation between the layers, and the QD 

doping density. A summary of the results obtained by the NEGF models 

developed in the thesis are given below 

• The density of states of the QDs that gives both the discrete energy 

levels in the QDs in addition to the continuum states outside the QDs. 

• The energy levels provided by the density of states give information 

about the possible energy transitions and therefore the operating 

wavelengths of the detector. 

• The corresponding calculated wavefunctions are used to calculate the 

dipole moment between different energy states which indicate the 

strength of the transition rates between the energy states and therefore 

gives information about the relative peak of the responsivity of the 

detector. 

• The effect of changing the shape and size of QDs has been studied to 

establish their effects on the operating wavelength and the 
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corresponding value of the responsivity. 

• The dark current characteristics at different applied biases have been 

obtained for different design parameters such as the barrier separation 

between QD layers, the number of QD layers and the QD doping 

density to test different design perfom1ances. 

• The photocurrent characteristics at different design parameters have 

been obtained for comparison with the dark current characteristics to 

get the best device performance. 

• The detectivity of the detector with different design parameters has 

been calculated using the dark and photocurrent results to obtain the 

best operating conditions and the best design perfonnance, and can be 

used for comparisons between different QDIP strnctures. 

To achieve the research objectives, a detailed theoretical model based on 

NEGF has been developed [74, 75, 76]. The model takes into consideration the 

microscopic device structure such as the shape and size of QDs, density of QDs, 

doping density in addition to the internal structure design. The model is fully 

quantum mechanical, including interactions with the lattice and with the light. The 

model uses the potential energy and electron effective masses based on a single 

band effective mass approximation. The governing equation of the Green 's 

functions is obtained in the cylindrical coordinates to be suitable for conical 

shaped QDs that have a cylindrical symmetty around its axis. Making use of the 

cylindrical symmetry and assuming local interactions allow reduction of the size 

of the problem to 2D instead of 3D which simplifies the numerical solution. The 

differential equation of the retarded Green's function in cylindrical coordinates is 

discretized using the method of finite differences and the retarded Green's 

function matrix is obtained by a matrix inversion. The localized DOS of the QD is 

obtained from the retarded Green's function and from which both the discrete 

energy levels and the continuum states above the QD barrier are obtained [76]. 
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The DOS shows all possible energy transitions which indicate the operating 

wavelengths of the detector. The model is used to calculate the spectral function 

and density of states of different QDIPs such as the quantum dot in a well [76), 

superlattice and resonant tunneling QDIPs [75]. Infonnation of electronic states, 

operating wavelengths and allowed energy transitions are obtained and they are in 

a good agreement with experimental results. The responsivity of QDIPs is 

calculated using the first-order dipole approximation and Fem1i-golden rule, and 

the results obtained by the model are in a good agreement with the experimental 

results. The model is used for optimizing the responsivity with respect to the 

shape and size of QDs to give an insight into the growth requirements needed to 

give the best responsivity values . [75]. 

The quantum transport equation of the NEGF is solved numerically to 

calculate the dark and photocurrent of the RT-QDIP [74). The dark and 

photocurrent results by the model are in good agreement with the experimental 

results over a wide range of applied biases and temperatures . The model has also 

been used for theoretical predictions of the dark and photocurrent characteristics 

at different design parameters for detectivity optimization. The effect of using 

different design parameters such as the number of QD layers, the barrier 

separation between the layers and the QD doping density on the dark and 

photocurrent has been obtained. The interaction with light for photocurrent 

calculations has been done using the first order dipole moment and the Fermi­

golden rule. From the dark and photocurrent results, the detectivity of the detector 

has been calculated for different design parameters. The model has been applied 

to the RT-QDIP structure for dark current, responsivity and detectivity modeling 

and the result obtained by the model was in good agreement with experimental 

results. The model has been used to test different design parameters to get their 

effect on the RT-QDIP characteristics to get the best design perfonnance. 

The electrical and optical characterization by the model is very helpful, 

because after getting good matching with the experimental observations, the 
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model can be used to test different alternatives of design parameters to get the 

best design without the need of the actual fabrication of trial devices. The 

simulation tool provided by the model will be helpful to predict and design a 

detector with prescribed characteristics suitable for specific applications in the 

biomedical and industrial fields , saving money and time. 

The research work presented in this thesis has resulted in the following 

publications: 

Journal papers 

• M. A. Naser, M. J . Deen and D. A. Thompson, "Photocurrent 

modeling and detectivity optimization in a resonant tunneling quantum 

dot infrared photodetector," IEEE J Quantum. Elect., 11 pages, 

Submitted (October 2009) . 

• Shahram Ghanad-Tavakoli , M. A. Naser, David A. Thompson, and M. 

Jamal Deen, "Experimental characterization and theoretical modeling 

of the strain effect on the evolution and inter-band transitions of InAs 

quantum dots grown on InxGa 1.xAs (0 .0 :'.S x :'.S 0.3) metamorphic 

pseudosubstrates on GaAs wafers", Journal of Applied Physics, Vol. 

106, # 063533 , 8 pages (28 September 2009) 

• M. A. Naser, M. J. Deen and D. A. Thompson, "Theoretical modeling 

of dark current in quantum dot infrared photodetectors using non­

equilibrium Green's functions ," Journal of Applied Physics, Vol. 104, 

#014511, 11 pages (1July2008). 

• M. A. Naser, M. J. Deen and D. A. Thompson, "Spectral function and 

responsivity of resonant tunneling and superlattice quantum dot 

infrared photodetectors using Green's function," Journal of Applied 

Physics , Vol. 102, # 083108, 12 pages (15 October 2007) . 

The paper has also been chosen to be in the Virtual Journal of 

Nanoscale Science & Technology, Vol. 16, Issue 19, (Nov. 5, 2007). 
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• M. A. Naser, M. J. Deen and D. A. Thompson, "Spectral function of 

InAs/InGaAs quantum dots in a well detector using Green's function," 

Journal of Applied Physics, Vol. 100, #093102, 6 pages (Nov. l, 2006). 

The paper has also been chosen to be in the Virtual Journal of 

Nanoscale Science & Technology, Vol. 14, Issue 21, (Nov. 20, 2006). 

Conference papers 

• M. A. Naser, M. J. Deen and D. A. Thompson, "Photocurrent 

Modeling of Resonant Tunneling Quantum Dot Infrared 

Photodetectors," submitted to 2 l 7th ECS Meeting, Vancouver, Canada 

I April 25-30, 20 l 0. 

• M. A. Naser, M. J. Deen and D. A. Thompson, "Theoretical Modeling 

of Quantum Dot Infrared Photodetectors," 14111 Canadian 

Semiconductor Technology Conference (12 August 2009). 

• M. A. Naser, M. J. Deen and D. A. Thompson, "Modeling and 

Optimization of Quantum Dot Infrared Photodetectors," 

Electrochemical Society Conference, ( 1 July 2008). 

1.6. THESIS ORGANIZATION 

The thesis contains seven chapters. Chapter 1, above, discussed the 

different applications of infrared detectors in medical and environmental sensing. 

The QDIP is a promising technology with advantages over current technologies 

based on QWIP and MCT. A literature review of QDIP modeling, including 

classical and semi-classical methods, has been discussed in addition to an 

overview of the NEGF modeling that has been developed in the thesis. 

Chapter 2 gives a review of the NEGF. The different Green's functions, 

the self energy, and scattering functions are presented as they will be used 

intensively in the following chapters of the thesis. The kinetic equation of the 

NEGF has been shown. The method of finite differences is presented and applied 
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to solve one dimensional problems as simple examples of the way of solving the 

differential equation governing the Green's function in the later chapters. Some 

applications of Green's function have been presented such as solving the wave 

equation, the transmission function and the current. 

Chapter 3 shows the development of theoretical modeling to obtain the 

DOS of the QDIP. The localized DOS is obtained from the retarded Green's 

function. The retarded Green's function is obtained numerically by solving the 

governing kinetic equation using the method of finite differences. The model was 

applied to calculate the DOS of three different QDIP structures such as 

QDWELL, SL-QDIP, and RT-QDIP. The chapter is based on the published 

journal papers [76] and [75]. 

Chapter 4 shows the development of theoretical modeling to calculate the 

responsivity of the QDIP. The first order dipole approximation and the Fermi­

golden rule were used to model the interaction with light. The bound states of the 

QDs have been obtained by solving the eigenvalue problem of the QD 

Hamiltonian, while the continuum states have been obtained using the retarded 

Green's function. The model has been applied to the SL-QDIP and RT-QDIP. The 

effect of changing the shape and size of QDs on the calculated responsivity has 

been studied using the SL-QDIP structure. The chapter is based on the paper [75]. 

Chapter 5 shows the development of theoretical modeling to obtain the 

dark current characteristics of QDIP. A uniform self-energy model corresponding 

to a constant scattering rate has been used to simplify the calculations. A self­

consistent solution of the potential energy and charge density has been obtained. 

The model has been applied to the R T-QDIP and good matching with measured 

data has been found for a wide range of temperatures and applied biases. The 

model was used to obtain the dark current characteristics at different design 

parameters for design optimization. The chapter is based on the paper [74]. 
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Chapter 6 shows the development of theoretical modeling to obtain the 

photocurrent of the QDIP. The dark current model of chapter 5 has been upgraded 

to include the interaction with light to calculate the photocurrent. The interaction 

with light is added using the first order dipole approximation and the Fermi­

golden rule. The model has been applied to the RT-QDIP and the responsivity 

obtained by the model was in good agreement with that measured. The detectivity 

of the RT-QDIP has been calculated using the dark and photocurrent 

characteristics and different design parameters have been tested for detectivity 

optimization. 

Finally, chapter 7 concludes the thesis with the major findings and the 

recommended improvements and extensions for future research. Appendix A 

shows application of the finite difference method to numerically solve the 

governing kinetic equation of the retarded Green's function in the cylindrical 

representation and the conversion to matrix equation. Appendix B shows detailed 

calculations to the Green's function in the lead outside the QD cylinder which is 

used to calculate the self-energy added to the QD Hamiltonian due to coupling 

with the surrounding lead. 
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CHAPTER 2 NON-EQUILIBRIUM 
GREEN'S FUNCTIONS 

The Green's function is a powerful concept that gives the response at any 

point due to any excitation at any other point. The excitations can be due to waves 

incident from the contact leads or due to the internal interactions such as electron­

electron, electron-phonon or electron-photon interactions. For non-interacting 

transport, the excitations are only from coupling with the leads and then the 

transport is coherent and the Green's function is equivalent or related to a 

generalized Scattering-matrix approach that can be used to calculate the 

transmission function and describe the electronic transport. For interacting 

transport, where the internal interactions within the device exist, the transport is 

non-coherent and hence the Green ' s functions are ve1y powerful in describing 

quantum transport including dissipative internal interactions [80-95]. Simple 

treatment of the problem using the S-matrix approach or the semi-classical 

Boltzmann equation is not sufficient to give good results. 

The concept of Green's function can be used in many physical topics, and 

whenever the response R is related to the excitation S by a differential operator 

Dor 

D0rR = S, (2 . l) 

the Green's function and the response [79] can be expressed in the form 

R = n::s =GS where G = v:: (2 .2) 

For a Schrodinger like equation with a source term in the right hand side, 
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where H 0 P is the Hamiltonian operator, 'f' is the wavefunction and S is the 

excitation term due to a wave incident from the leads, the Green's function is 

defined as 

1 

[ J
- 1 {itiV + eAt 

G= E-H0 P , whereH
0
P = +U(r) 

2m 
(2.4) 

The Green's function defined in (2.4) is not unique, as the inverse of a differential 

operator needs to have the boundary conditions specified to give a unique 

solution. For example, the Green's function for a simple lD problem with a 

constant potential energy U , 

which can be written as 

112 ~2 

[ ]

- l 

G= E-U +-·-!!_ 
2m ox2 

[ 
fi

2 
()

2 
] E-U+--1 G(x,x')=b"(x-x') 

2m ox-

(2 .5) 

(2.6) 

Equation (2.6) is just like the Schrodinger equation except with the delta function 

source tenn in the R.H.S, and the Green's function gives the wave function at 

x due to a unit excitation at x' . There are two solutions for (2.6) referred to as the 

retarded Green's function ( G,.) and the advanced Green's function ( G0 
) and are 

given by 

G,.(x,x')=--i exp[iklx-x'IJ and G0 (x,x')=+-i exp[-iklx-x'IJ nv tiv 

where k = ~2m(E-U) and v = tik 
(2.7) 

n m 

Physically the retarded solution gives an outgoing plane wave originating 

at the excitation point x' and going away to ±oo , while the advanced solution 

gives an incoming plane wave from ±oo and that disappear at the excitation 

pointx'. The boundary conditions can be incorporated in the differential equation 

to make one solution a valid and finite one while the other one is growing to 
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infinity when going away from the source term. This can be done by adding an 

infinitesimal imaginary part to the energy. The sign of this imaginary term 

specifies which solution is the finite one. Equation (2 .6) can be rewritten as 

[ 
112 ...,2 ] 

E-U +-·-~±i77 G'·0 (x,x') = b'(x-x') 
2m ax (2.8) 

The small imaginary pa11 added to the energy causes a small imaginary part of the 

wavenumber, and according to the sign of this imaginary part, only one solution 

will be finite and the wavenumber is given by 

k'= J1m(E±iq-U) = J1m(E-U) ~l± iq 
11 11 E-U 

k' ~ ~2m(E-U) [1 ± i17 ] = k(l±io) 
n 2(E-U) 

(2 .9) 

2.1. EIGENFUNCTION EXPANSION 

For any structure, if the eigenfunctions of the Hamiltonian operator are 

available, the Green's function [79] can be obtained as 

G" (x,x') = L lf/;(X)lf/;(~'), where H
0
plf/

0
(x) = &alfa(x) 

a -&a +l!J 
(2 .10) 

Equation (2. l 0) can be derived easily by knowing that the eigenfunctions of the 

Hamiltonian fon11 a complete orthonormal set of states and hence the Green's 

function can be expanded in the form 

G' (x,x')= LCa(x')1f0 (x) , where Jw;(x)wa(x)dx =8/ia (2.11) 
a 

By substituting (2 .11) into (2.10) we get 

[ E - H op + i17 J G1 (x, x') = L ( E - &a + i17 ''f'alf a (x) = o(x - x') (2 .12) 
a 

Multiplying both sides of (2 .12) by If/; (x) and integrating we get 
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C = lf/; (x') 
a E-sa +iry 

(2.13) 

and by substituting back in (2. l l) we get the definition of the retarded Green's 

function using the eigenfunctions expansion defined in (2. l 0). 

2.2. ZERO TEMPERATURE GREEN'S FUNCTIONS 

The zero temperature Green's function, using the language of second 

quantization and field operators is defined as [80] 

G(2, 1 - 1') = -i (jrc;. (r)Cl Ct')I) (2 .14) 

where Tis the time order operator that arranges the operators with the earlier time 

to the right, the quantum number A can be anything depending on the problem of 

interest and for example, it can be taken as the quantum number of the free 

electron gas A. = ( k, o-) as k is the wavevector and a is the spin, Cl (t') is the 

creation operator that creates an excitation at the state }. at the time t' and C;. (t) 

is the annihilator operator that destroys the excitation at the state A at the time t. 

At zero temperature, the only state that can be occupied is the ground state, so the 

bra (I and ket I) in (2 .14) represent the average over the ground state of the 

system. The time evolution of the creation or annihilation operators are given in 

the Heisenberg picture and are given by 

(2.15) 

where H is the total Hamiltonian of the system including interactions and the 

Hamiltonian can be written as H = H0 + V. The non-interacting part of the 

Hamiltonian H0 is simple and can be diagonalized and its eigenstates can be 

obtained. The interaction part V is usually complex and so the eigenstates of Hare 

not easy to obtain. C,, and CJ. are defined in terms of a complete set of 

eigenstates of the non-interacting Hamiltonian H 0 whose eigenstates are known. 
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For the simple form of the Green's function where there is no interaction, H = H 0 , 

.?.. will be an eigenstate to H and H /) = e0 /) and HCJ. I)= e-< CJ./). Then, the 

Green's function will have the simple exponential time dependence 

G(J.,t > t') = -i(lcA (t)CJ. (t')I) = -i exp[-i(t-t')(e;. - e0 )] (2.16) 

The Green's function in the energy representation is obtained by the Fourier 

transform of the Green's function in the time domain and is given by 

G().., , E) = f dte;Er G(J.,, t) =-if d1e1
<E- (c,-<o)+iS)i = 1 . 

_,, 0 E - ( e ;, - e0 ) + u5 
(2.17) 

where a small infinitesimal imaginaty pa11 was added to the energy for the 

integration to converge. In the real situation, where the interactions exist, ). is not 

an eigenstate to the Hamiltonian and the particle in the state )., gets scattered, 

shifted in energy during the interval (t-t'). The magnitude of the Green's 

function at a later time t will not be unity as in the case of non-interaction, but it 

will have a smaller value due to the decay of the state. To correctly calculate the 

Green's function, the average should be done on the ground state of the total 

Hamiltonian H and not the ground state of the non-interacting Hamiltonian H 0 . 

An S-matrix operator method can be used to relate the two ground states to each 

other. The idea is that at t = -oo the system is assumed to be in the non-interacting 

state where the ground state is/)
0

, the ground state of H0 , and after the interaction 

is switched on, the state at t = 0 becomes the ground state of H. So the S-matrix 

operator brings the ground state of the non-interacting Hamiltonian from -w to 

the cuITent moment where it becomes the ground state of the total Hamiltonian 

l)=S(O,-w)/)
0 

and(/= 0 (/S(oo,0) (2.18) 

Equation (2 .18) means that the ground state at a very far time in the future is 

assumed to be back to the ground state of the non-interacting Hamiltonian after 

the interaction is switched off. Using the S matrix expansion, it can be shov.rn that 

the Green's function defined in (2.14) can be written as [80] 
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0 (1rc\ (t)C1 (t')S(oo, -oo) 1) 
G(A,t-t')=-i o(ITS(oo,-oo)l)o o (2 .19) 

In this definition of the Green's function, the field operators are defined in the 

interaction picture and not the Heisenberg picture and are given by 

(2.20) 

So, both of the field operator and ground states are related to the non-interacting 

Hamiltonian. The time order operator T in the numerator will order the operator 

from the earlier to the later starting from the right to the left, such that if t > t', the 

sequence will be S(t',-oo), CJ(!'), S(t,t'), C;.(t), S(oo,t) . When the interaction 

V=O, then the S-matrix S( oo, -oo) = 1, and the non-interacting, or sometime called 

the free propagator Green's function, is then simplified to 

(2.21) 

The S matrix is related to the interacting Hamiltonian Vin the interaction picture 

and is given by [80] 

S(t,t') = Texp[-it dt,i'(I,)] and 
(2.22) 

S(t ,t) = 1, st (t, t') = S(t', t), S(t ,t')S(t', t") = S(t, t") 

and T is the time order operator. The last form of the scattering matrix using the 

time order operator is compact and its solution can be obtained by some 

diagrammatic techniques like Feynman diagrams that can be used to calculate 

some terms of the expansion according to the level of approximation required 

[80]. By expanding the S-matrix S(oo, -oo) in (2.19) and applying The Wick's 

theorem as shown in [80], we obtain the Dyson equation which is shown here 

below in energy representation by taking the Fourier transform of both sides: 

G(A.,E) = G0 (A.,E) + G0 (A., E)'I(A.,E)G(A,E) 

and l:(J., E) is the self-energy due to interaction. 
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2.3. MATSUBARA GREEN'S FUNCTIONS 

At nonzero temperature, other states can be occupied in addition to the 

ground state. The Green's function should be calculated using a statistical average 

over all possible configurations of the system weighted by the thermodynamic 

factor e - f:IH and,8=1/ KT. The Green's fw1ction is then defined as (80] 

, Tr[ e-PH Ci. (t)CJ. (t') J 
G(}., t - t ) = [ - PH J 

Tr e 
(2.24) 

where the Tr = L ( n I · · · I n) over all possible states n. The total Hamiltonian 

including interactions appear in two different places in this definition of the 

Green's function in (2.24). It appears in the thermodynamic factor e-flH and in the 

e±iHr in the operator definition C,:(t) = eiHr C;.e- iHt. So instead of using two S­

matrix expansions in order to express the time evolution and the thennodynamic 

factor with respect to the non-interacting Hamiltonian, the time t and ,8 can be 

considered as the imagina1y and real parts of a complex variable, which is known 

as Matsubara technique. Thus, only one S-matrix is required and the Green's 

function can be written as [80] 

(2.25) 

where r =it, C). ( r) = erH Ci.e-rH and r;. is a r - ordering operator that arranges 

operators with the earliest r closest to -,8 to the right. Using the cyclic properties 

of the trace, the Green's function can be shown, as in (80], to be periodic in r 

such that 

G()o, r) = -G(,1,, r + ,8) (2.26) 

and then it can be expanded in a Fourier series 

p 

G(,1,,ico,,) = J dreiru,, r G(A-, r) (2.27) 
0 
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where ico
11 

is an odd multiple of re I /3. Using the S-matrix expansion to use the 

non-interacting Hamiltonian instead of the total Hamiltonian, we end up with the 

Dyson equation which is shown here in the energy representations: 

(2.28) 

where G0 (A. ,iw
11

) is the energy representation of the free propagator Green's 

function G0 (A., r) = - 0(jr/7.«r)C'1(0)l)
0 
and C;;.(r) = e rH°C;. e- rH0

• 

The advantage of the Matsubara Green's function is that it gives a simpler way to 

get the retarded Green 's function in both zero and nonzero temperature, as the S­

matrix expansion is simpler in the Matsubara method than in the real time 

method. So it can be used to calculate some measurable equilibrium quantities 

such as the conductivity or the susceptibility. 

2.4. NON-EQUILIBRIUM GREEN'S FUNCTIONS 

At non-equilibrium conditions, the temperature of the system is not 

defined and so the thermodynamic average over all possible states cannot be done 

as shown before for equilibrium Green's function. Thus, the starting point by 

calculating the Matsubara Green's function to get from it the retarded Green's 

function is not suitable. In fact, real time calculations have to be used when 

dealing with systems out of equilibrium. In equilibrium, the S-matrix S( oo, -oo) is 

constructed such that the system is in the non-interacting states att = -oo. The 

interaction is switched on and off again and eventually the system goes back to be 

in the non-interacting states att =co. At non-equilibrium, actually the system is 

not expected to go back to the non-interacting state after a long time. Instead, 

Schwinger ( 1961) suggested a different way of handling the asymptotic behavior 

att = oo [80, 81]. The time integral starts at t = -oo until a moment I = rand after 

that it starts from r and goes back to -oo again and eventually r ~ oo as shown 

in Fig. 2-1. So, the start and the end points of the contour is at - oo and then the 

system can be in the non-interacting states at the two ends of the contour. 
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Figure 2-1 - The contour integration path. 

The S-matrix defined in the contour shown above will be from -oo to -oo 

and using the contour time order operator, it is given by 

(2 .29) 

The contour time-order operator arranges the operators with the earliest time to 

the right. So, the time evolves from -oo to r through C1 and then from r to -oo 

through the C2. The contour Green's function in the space representation is given 

by 

(2.30) 

where (l)=(lj,t1)and If/Hand If/~ are the field operators defined in the 

Heisenberg picture and the total Hamiltonian of the non-equilibrium system can 

be divided as 

H = h + H'(t) and h = H 0 + H; (2.31) 

The total Hamiltonian consists of an equilibrium and time independent part h, 

which can be divided into a non-interacting and simple partH0 , and another part 

due to interaction H;, and a non-equilibrium and time dependent Hamiltonian 

H'(t) like an external applied bias, for example. The non-equilibrium part is 

assumed to be zero before a specific time t < 10 and 10 ~ -oo for steady-state 

problems where the transient response is not important. In order to define the 
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Green's function in terms of the non-interacting equilibrium part of the 

Hamiltonian as done before, two S-matrix expansions are needed. The first one is 

to express the time evolution according to h instead of H and another S-matrix 

expansion is needed to write the time evolution with respect to H0 instead of h. 

The transformation is complicated and as shown in [94] is given by 

(2 .32) 

The them1odynamic function Po and the two contour S-matrices S~ and S~ are 

given by 

exp(-/3H0 ) 
p - --=-----------= 0 

- Tr[ exp(-/3H0 ) J 
S~ = exp [-if d1H~0 (t)]. and H~, ( t) = e'n,, H' ( O )e-m•' (2.33) 

S~ = exp [-if dtH~0 (t) J and H~,(t) = e'n°' H' ( 0 )e -mJ 

The previous definition of the contour Green's function seems complicated but it 

is exact and all the time dependences are governed by the non-interacting 

Hamiltonian. The contour Green's function has similar definition as the 

equilibrium Green's function and hence it can be expanded using the S-matrix 

expansion and applying the Wick's theorem to get the Dyson equation. According 

to the positions of the times t1 and t2 on the contour defined in Fig. 2-1 , four 

different Green's functions can be obtained as follows [80, 83] 

Gt (I, I') tl,t; ECl 

G(l,!') = 
G>(l,I') ti EC2 , 1; EC! 

(2 .34) 
G<(l, I') 11 E c1, t; E c2 

GI (1, I') t1,I; E C2 

37 



I PhD Thesis - Mohamed A. Naser McMaster - Engineering Physics I 

The Green ' s functions are called the time-ordered, the greater, the lesser, and the 

antitime-ordered respectively. Using the field operators in the Heisenberg picture, 

the four Green's function are given by 

G1 (1 ,1') = -iB(t1 -r;)(w H(l)w;1(I')) +iB(t; -11 )(\f/~(l')wH(l)) 

G> (l, I')= +i (I// H (l)lfl ~ (l')) 

G«l,l') = -i(1f11(1')1f1H(l)) 

cl (I, l') = -iB(r; - 11 >(If/ H (I)lfl 1 (l')) + iB(r1 -1;) ( lfl ~ (l')lfl H (1)) 

(2.35) 

Two other Green's functions can be derived from the previous four Green's 

functions and although they are not independent, defining them simplifies the 

equations and they are used directly to calculate some physical properties. These 

Green's functions are called the retarded and advanced Green 's functions and they 

are given by [80] 

G'(l, l') = -iB(tl -1;)({1/1 H(I),lfl ~Cl')}) 

= ai (1,1')-G<(l, I')= G>(l,l')-d (1, I') 

G
0 (1, l') = iB(t; -fl) ( {lfl H (I), If/~ (l')}) 

= G' (1, I')- G> (1,1') = G<(l, l')- Gi (1, 1') 

(2 .36) 

A Dyson equation of the contour Green's function defined in (2.32) by expanding 

the S-matrices and applying the Wick's theorem can be obtained, and by using the 

four Green's functions shown above, the Dyson equation can be put in a matrix 

form derived by Keldysh ( 1965) [80, 83] 

((2.37) 

where the matrices for the four the Green 's functions and interaction self-energy 

functions are given by 

((2.38) 
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The general definition of the four free propagator Green's functions matrix G0 is 

given by 

(2.39) 

and according to the potions of t1 and !2 on the contour, the four free propagator 

Green's function can be obtained from the previous general definition. 

2.4.1. LANGRETH THEOREM 

In order to resolve the Dyson matrix equation to get the retarded and lesser 

Green's function and their relation to each other and to the self-energy functions, 

the Langreth theorem gives a simple way to do that using the analytic 

continuation rules. The rule can be explained by this simple example. For a 

contour integration given as, 

C(t1,1;) = f dtA(t1,t)B(t,t;), ((2.40) 
c 

if t1 is in the upper half of the contour, while t2 is in the lower half, then C is a 

lesser function. The contour can be split into two parts and the integration can be 

done in the real time integration as shown in [94) such that 

"' 
C<(t1,r;)= J dt[ A'"(t1,t)B«1,1;)+A<(11,1)Ba(1,t;)] 

(2.41) 

and in a matrix fonn: C< = (ABr =A,. B< + A<Ba 

If t2 is in the upper half of the contour, while t1 is in the lower half, then C is a 

greater function. The greater function in a similar way for the contour integration 

defined in (2.40) is given in the matrix form as 

(2.42) 

The retarded function can be obtained from the lesser and greater function as 
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11 

C1(rl'r;)=8(r1 -r;)[ c> (t1 ,r;)-C«rl't) J = f dt[ A' (11 ,t)B' (t , 1;) J 
(2.43) 

or C =(AB)'= A"B r 

In the previous example, A and/or B can be a multiplication of two functions . By 

applying these simple rules, The retarded and lesser Green's functions can be 

obtained from the generic Dyson equation G = G0 + G0 :LG . 

2.4.2. DYSON EQUATION 

The kinetic equation that governs the dynamics of the Green's function is 

the Dyson equation (80] 

(2.44) 

ff L(lj, r;t1 - t)G( r, 12 ; t - t2 )dtdr 

The dependence on the time difference for both the Green's function and the self­

energy (11 - t 2 ) is for steady state response. The Fourier transfonn to (2 .44) gives 

H = - fi2 \72 U( ) 
op 

2 
I + lj 

m 

(2.45) 

In Equation (2.45), the Hamiltonian in the L.H.S is the free or the non-interacting 

Hamiltonian while all sources of interactions are included in the self-energy in the 

R.H.S. Equation (2.45) can be written in a simplified matrix form, where a matrix 

multiplication can be used instead of integration over the internal variables 

[EI-H]G =I +:LG (2.46) 

The Dyson equation can be put in another form which is useful to get the different 

forms of Green's function. By multiplying both sides of (2.46) by [El - Hr1 , we 

get 
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G=g+g"i,G 

and g = (El - Hr 
(2.47) 

where g is the Green's function of the system without including interactions . The 

last form of the Dyson equation, it is known also by Keldysh fonnulation, is 

generic and using Langreth theorem and the analytic continuation rules, different 

forms of Green's function can be obtained such as the retarded, advanced, less 

than, greater than, time ordered and anti time ordered Green's functions. 

2.4.3. KINETIC EQUATION 

The Dyson equation mentioned above can be used to get the retarded and 

lesser Green's functions and get the relation between them which is called the 

kinetic equation. Applying the analytic continuation rules on (2.47) we get 

(2.48) 

and so 

[g,.J' G,. =I+ I,,. G,. 

G,. = [ [gr r -I,,. r = [El - H - I,,. J1 (2.49) 

The less than Green's function can be obtained from (2.4 7) by applying the 

analytic continuation rules 

=g<+gr"i,rG<+gr"i,<Ga+g<"i,aGa 
(2.50) 

The function g< represents the initial occupation of the device before coupling 

with the surrounding leads. It can be set to zero as the steady-state occupation of 

the device cannot depend on the initial occupation. It can be proved that g< equal 

zero as shown in [ 94]. 

Multiplying both sides of (2.50), after setting g< = 0, by[ g'' J1
, we get 
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and so 

[[g'r'-L:' JG<= L:< G0 

[EI - H - L:' JG< = L:< Ga 
(2.52) 

The kinetic equation relating the lesser and the retarded Green 's function is then 

given by 

(2 .53) 

2.4.4. REPLACING THE LEADS BY SELF-ENERGY 

The retarded Green's function for a conductor connected to a semi-infinite 

lead contact as shown in Fig. 2-2 is given by 

G' = ( (£ +i17)-Hr (2 .54) 

where H is the total Hamiltonian representing the conductor and the lead. The 

isolated conductor, with no coupling with any surrounding contacts, is H e and 

the Hamiltonian of the isolated semi-infinite lead isH P . 

Lead p 

HP 

Figure 2-2 - A conductor in contact with a contact lead 

Equation (2.54) can be rewritten in sub matrices and is given by 
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where r is the coupling matrix whose elements are zero except at the interface 

points r(p;,i) = t. By solving equation (2 .55) as shown in [79], we end up with 

Ge = [EI -He -L;~actJ
1

, where L;~.d = rtg~ r 

g~ =[(E+i17)!-HPJ
1 

(2.56) 

Although the dimensions of the matrices to be inverted to get the retarded Green's 

function inside the conductor taking into consideration the coupling with the leads 

is finite due to the small size of the conductor, the dimensions of the matrix HP, 

the Hamiltonian of the semi-infinite lead is still infinite. Thus it needs to be 

inverted to get the Green's function of the lead used to calculate the self-energy. 

So, the reduction in size obtained by replacing the leads by self-energy and so get 

smaller matrices to be inverted to get the Green's function does not help much 

unless the Green's function in the semi-infinite lead can be calculated 

analytically. In most cases, the lead can be approximated in simple shapes and the 

Green's function of it is easy to get. Then the numerical solution is needed to 

solve for the Green's function in the conductor which has a complicated potential 

profile and cannot be solved analytically. The self-energy is complex, so the real 

part shifts the energy eigenvalues, while the imaginary part is proportional to the 

decay rate of the states, whether by being lost in the leads or scattered to a 

different state. 

2.4.5. SELF-ENERGY 

The retarded self-energy is a non-Hennitian Hamiltonian that describes 

the effect of coupling with the leads or internal interactions within the device on 

the electron dynamics. 
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2.4.5.1. Interactions with leads 

As shown in the previous section, the leads can be replaced by a self­

energy :L;,ad = rtg~r and g~ is the retarded Green's function of the isolated 

semi-infinite lead and. For a ID problem the retarded Green's function of the lead 

and the corresponding self-energy is given by [79] 

r 1 1 ika d "r t r ika g (x=x =a)=--e an ..:::...1end =r gPr=-te 
P I (2.57) 

E = U + 2t(I-cos(ka)) 

In equation (2.57), the Green's function of the lead is calculated at one lattice 

point from the interface with the conductor, where zero bounda1y condition is 

assumed for the isolated lead. For 20 semi-infinite lead as shown in Fig. 2-3 , the 

Green's function and the corresponding self-energy are given by [79] 

• 
Lead p 

Pi. 

i pi • 

• 
Zero B.C ~ 

Figure 2-3 - Schematic of 2D semi-infinite lead 

L~ead = rtg~r => :L;ead(i, j) = -tiz111 (P;)exp[ik,,,a]z111 (p) 
(2.58) 

Ill 

The transverse wavefunction x,,, appearing in the Green's function and self-

energy satisfies the eigenvalue problem: 

(2 .59) 
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and the dispersion relation is now given by 

E-&"' = 2t(l-cos(k
111
a)) (2 .60) 

The in-scattering and out-scattering self-energy functions due to the coupling with 

leads can be obtained from the retarded self-energy assuming that the leads are in 

thermal equilibrium with a specific Fermi function. The total transition rate or the 

decay rate of state due to interactions is related to the retarded self-energy such 

that: 

r - · [~:r -L: 0 
]- I < I > lea<l - l · k a<l kad - lead + lend (2 .61) 

The decay rate of a state equals twice the imaginary part of the retarded self­

energy. This decay rate of a state equals the summation of the in-scattering and 

out-scattering rates from and to the leads. The reason that the decay rate equals 

the summation of the in-scattering and out-scattering rate and not only the out­

scattering rate is that the new incoming electrons from the lead will be blocked by 

the current electron occupying the state, but this interaction already contributes to 

the decay of the state. The state remains evolving without decay as long as no 

thing happens that disturbs the coherence and causes the state to decay whether by 

the loss in the leads or the scattering to a new state. The in-scattering and out­

scattering are related to the total transition rates by the Fermi function of the 

thermal equilibrium lead and are given by 

I~.J(E) = /(E)r1.act(E) 

I~.ct(E) = (1- /(£))11,ad(E) 

2.4.5.2. Internal interactions 

(2 .62) 

The internal interactions such as electron-electron and electron-phonon 

interactions affect the dynamics of electrons inside the device through the self­

energy term. The imaginary part of the self-energy gives the rate of decay of a 

state due to the scattering occurring by the interactions within the device. The 

electron-electron interaction in the Hartree-Fock approximation does not give rise 

to energy transitions through in-scattering or out-scattering processes, so the 
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while P means the principal part of the integral. The previous relation between the 

real and imaginary part of the retarded self-energy is to have a causal function 

such that when we take the Fourier transform to get the function in time domain, 

it becomes proportional to the time step ftmction and so vanishes for times less 

than zero and in time domain the retarded self-energy is L:;~ ( t) - 9( t)r q> (t). 

2.5. GREEN'S FUNCTIONS APPLICATIONS 

Calculations of the Green's functions are very useful for device modeling. 

The retarded Green's function allows us to describe the electrons while they are 

inside the device and it can be used to calculate the wavefunctions for open 

boundary conditions. The transmission function of electrons through the device 

can be expressed in tenm of the retarded Green's function. The coITelation or the 

lesser Green's function is a generalized density matrix and from which the 

probability of states occupancy and the phase con-elation between different states 

are known. The correlation function is important to calculate the current in the 

non-coherent transport regime. Usually in most cases, a numerical solution is 

needed to calculate the kinetic equation describing the retarded or the correlation 

Green's functions as obtaining analytical solutions are very hard for a complicated 

potential profile of the device. 

2.5.1. TIGHT BINDING MODEL (FINITE DIFFERENCES) 

To solve a differential equation like (2.6), a common way is to discretize 

the spatial coordinate such that the Green's function becomes a matrix: 

Gr(x,x') ~ G'(i,j) where i,j denote points in a discrete lattice 

The differential equation becomes a matrix equation 

[(E+i17)!-H]Gr =I 

(2. 71) 

(2.72) 

where [I] is the identity matrix and [ H] is the matrix representation of the 

Hamiltonian operator H
0
r . So, from this matrix equation, the retarded Green's 
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function equals[(E+i17)I-HT
1

• One way to discretize the Hamiltonian 

operator and to get the matrix H is the method of finite differences or the tight 

binding model. 

a .._... 
-=-e-e-e-~--e-o-c~ .......... 411111()--

0 1 2 3 N-1 N N+1 

Figure 2-4 - Discrete lattice space 

For lD problem with zero magnetic vector potential, the Hamiltonian 

operator in (2.4) can be discretized as follows : 

[HF] =[-!!.__d2FJ +UF 
op x=ja 2m dx2 x=ja J J 

(2. 73) 

where a is the lattice constant and the second derivative can be expressed as 

[ d 
2 

F] l {[ dF] [ dF] } l { } - .-2 =- - - - =-2 F,+1-2~ +~-I 
dx x=ja a dx x=(j+l l2 )a dx x=(j-112)a a 

So (2.73) can be written as 

(2 .74) 

where t = n1 I 2ma2 and is called the hopping matrix element or the overlap 

integral between neighboring sites, while the term (U1 + 2t) represents the 

energy of the localized orbital. So the matrix representation of the lD 

Hamiltonian in (2 .74) can be shown in the matrix form 

-t 0 0 0 

-t U_1 +2t -t 0 0 

H= 0 -t U0 +2t -t 0 (2.75) 

0 0 -t u1 +21 -t 

0 0 0 -t 

This can be used to calculate the Green's function matrix in (2.72). 
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2.5.1.1. Dispersion relation 

For a free electron moving in a constant potential in ID space , the wave 

function is a plane wave and the relation between energy the wavenumber is a 

parabolic dispersion relation [96]: 

P1ck 2 

\fl k(x) = exp(ikx] where E = U +--
2111 

In a discrete space, the Schrodinger equation can be written as 

Ew1 = (U +21)1//J -llflJ- l -llflJ+I satisfied by lfl ,; =exp[i!cr1 ] 

provided that 

E = U + 2t(l- cos(ka)) 

(2. 76) 

(2 .77) 

(2.78) 

The parabolic dispersion relation in (2.76) is modified to (2 .78) in discrete space 

and the possible values of energy in the discrete space E ~ U + 41 . The velocity is 

then given by 

8£ 
trv = - = 2at sin(ka) 

ok 
(2.79) 

At the limit a ~ 0, we recover back the parabolic dispersion relation and the 

velocity v = nk I m 

k 

Figure 2-5 - Dispersion relation between E and k in both continuum and discrete space 
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2.5.2. WAVEFUNCTIONS CALCULATIONS 

For l D time independent Schrodinger equation 

-fz2 d 21f/(X) 
- 2 + U(X)lf/(X) = Elf/(X) 
2m dx 

(2.80) 

Using the discrete space shown in Fig. 2-4, the discrete wavefunction satisfies the 

difference equation 

[-tlf;- i + (21 + U;)lf/; - llf/;+i] =Elf/; and i = l, 2, 3, ... , N (2.8 l) 

To solve (2.81), the boundary conditions at i = 0 and i = N + should be 

specified. 

2.5.2.1. Eigenvalue problem 

Figure 2-6 - Potential energy profile of bound system 

For zero boundary conditions where the wavefunction vanishes at the boundaries 

for a closed system as shown in Fig. 2-6, the energy eigenvalues and the 

corresponding wavefunctions are obtained by solving the eigenvalue problem 

u1 +21 -I 0 0 lf/1 lf/1 
-t 

Hw =Elf/~ 0 -t ui +21 -1 0 If/; =E If/; (2 .82) 

-t 

0 0 -f UN+2t lf/N lf/N 
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leik1a 

re;kia 

2.5.2.2. Open boundary conditions 

a 
++ 

---•2..l•l,-e·~--c-e-e-e~e-e.-e-..e,-~ 
0 1 2 3 N-1 N N+1 

Figure 2-7 - Device in contact with leads in discrete space 

When the device is in contact with leads, the system is not confined and 

the energy states become continuum. Assuming incident, reflected and transmitted 

plane waves at the contact interfaces as shown in Fig. 2-7, the discrete wave 

equation near the left contact at U= I) is given by 

E\f' 1 -[ -r\f' 0 + ( 21+u1 )\f'1 - 1\f' 2 J = o (i = 1) (2 .83) 

In equation (2.83), \f' 0 is the value of the wavefunction inside the contact. By 

applying that the wavefunction at the interface point should be continuous, we can 

get (2.83) expressed as only wavefunctions inside the device. The wavefunction 

inside the left contact can be expressed as \f'(x) = le;k,.r + re-ik,x x :'.S: 0. Equating 

the wavefunctions of the device and leads at the interface points we get 

\f'(x=0)=\f' 1 =l+r 
(2.84) 

From (2 .84), \f'
0 

= 't'/k,a -(e;k,a -e-ik,a), and so equation (2.83) can be expressed 

in tem1s of wavefunctions inside the device as 

£\f'J -[( 21 + u1 -teik,a ) \f'J -t\f' 2 J = t(eik,a -e-ik,a) (i = 1) (2.85) 

The effect of the coupling with the left lead appeared through adding a self-energy 

term -te;k,a to the device first point (i= l ), and instead of having zero in the R.H.S, 

we have the broadening term t(eik,a -e-ik,a) which is the excitation term. The self-

energy due to coupling with the right lead can be obtained in the same way. 
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Figure 2.8 shows the added self-energy terms due to the coupling with the left and 

right lead contacts in addition to the excitation term in the R.H.S arise from the 

wave incident from the left lead. 

'~ '"'-. 0 
-t U+2t -t 

o ~~ 
Hamiltonian • Device 

0 
-teik2a 

Self-energies - Contacts 

1I.'1· ·r··· "" 
Broadening 

Wave functions 

Figure 2-8 - Self-energy telll1s and excitation tem1 to express the effect of lead coupling 

The wavefunction can be calculated from the Green's function as 

(2 .86) 

At every energy value, the self-energies at the left and right contacts are 

calculated. The broadening or the excitation term in the R.H.S is obtained from 

the self-energy. The wavefunction at specific energy is then obtained by 

multiplying the Green's function matrix times the excitation vector. The discrete 

dispersion relation between the energy and the wavevector is used to get the 

values of the wavevector and hence to calculate the self-energies. 

2.5.3. TRANMISSION FUNCTION 

After calculating the retarded Green's function of the device, including the 

coupling effect with the contact leads, it can be used to calculate the elements of 

the scattering matrix and from which the transmission function can be obtained. 
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The transmission function between two contact leads p and q through a device can 

be obtained in terms of the retarded and advanced Green's function as [79] 

(2 .87) 

The Green's function in (2.87) gives the dynamics of the electrons inside the 

device taking into consideration the effect of the leads and is given by 

G" = [EI -H - z::;-z::~r' and L:~.q = -t.eika (2.88) 

and r P and r q represent the coupling of the device with the leads and are given 

by 

rrq =i(L:~q-z::;.")=2tsin(ka) 

and the dispersion relation is given by 

E =2t(l-cos(ka)) 

2.5.4. CURRENT CALCULATIONS 

(2.89) 

(2.90) 

The terminal current per unit energy from the contact lead p to the device 

in terms of the correlation Green's functions, the lesser and the greater, and the in­

scattering and out-scattering self-energy functions is given by [79] 

(2.91) 

The in-scattering rate from the lead p to an empty state in the device is given 

by I: and G> gives the probably of a state to be unoccupied. So, the term 

L: ; G> gives the in-scattering flow of electrons going from the lead p to the device, 

while the L: ;G< gives the out-scattering flow of electrons from the device to the 

lead p. The difference of the two terms gives the net current per unit energy 

flowing from the lead p to the device. The integration of iP(E) over all energy 

values gives the tenninal current. The internal interactions inside the device, 

which leads to a change in the energy and phase of electrons, can be modeled as if 
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the device is connected to an external virtual prop (reservoir) such that the device 

and the virtual reservoir exchange electrons where the energy channels of 

electrons are changed and the electrons phases are randomized. A schematic of 

particles exchange between a device and a reservoir is shown in Fig. 2-9. 

Lead p Lead q 

~ 
Surface, S 

Figure 2-9 - Non-coherent transport is viewed as exchange of particles benveen the device 

and a reservoir where the energy and phase of electrons are changed 

The flow of electrons into this reservoir is given in a similar formula as the 

one of the terminal current and is called the vertical current: 

(2.92) 

where .r; and .r; are in-scattering and out-scattering self-energy functions from 

and to the reservoir, respectively. There is no net loss or gain of particles from the 

device, but what happens is that electrons leave the device to the reservoir with a 

specific value of energy and are re-injected back with a different energy value. So, 

the vertical current may have some positive values for some energy channels and 

some negative values for other channels and the net current after integration over 

all energy channels should give f i'l' (E)dE = 0. Although the integration over all 

energy channels of the vertical current gives zero, but it does not equal zero at 

every energy channel unless there are no interactions. The interactions affect the 

terminal current through G> and G< as the correlation functions depend on the in­

scattering and out-scattering self-energy functions which can be from coupling 
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with leads or internal interactions. Assmning they are independent, they can be 

written as 

p p 

and 

G< = G'T.<G0 and G> = G' J:/ Ga 

Equation (2.91) can be written as 

(2.93) 

(2 .94) 

iP(E) =*Tr[ 1 ; G> + I ; G< -I; G< -I; G<] =*Tr[ I ; A-f PG< J (2 .95) 

and by writing the scattering function as 

I ' =I; + II~ andf=fql + II; 
q q 

(2 .96) 

The total terminal current can be separated into two components, coherent from 

leads and non-coherent from interactions 

[ i J =..:_ ~Tr[I'GT G" -f Grl: >Ga] 
P coherenc h L... P q P q 

q 
(2.97) 

[; J =.:.Tr[I<G'T G" -r G' I '' G"] 
P non-coherent h P qi P qi 

If z:; and I~ are zero at the case when we do not have electron-phonon or 

electron-photon interactions, then the transp011 is coherent and the formula is 

simplified to the Landauer-Buttiker formalism. For equilibrium contacts, the in­

scattering and out-scattering functions are given by 

(2.98) 

where j~ is the Fermi function in lead p and by substituting back in (2.97), we get 

[ · J e IT [r G'f G" J ( f, 1· ) e I · ( f, r ) z =- r J - =- T - 1 , 
'p coberen1 h P q • p q h pq · p q 

q q 
(2 .99) 

So, for coherent transport the current formula is simplified to the Landauer­

Buttiker formalism and the Green's function is then used to calculate the 

transmission function . 
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CHAPTER 3 QDIPS DENSITY OF STATES 
MODELING 

QDIPs can be used to detect infrared light in the mid- and far-infrared (3-

25 pm) through the intersubband transitions in the conduction band of the 

quantum dots. Both of the bound-to-bound and bound-to-continuum transitions 

can be used for detection. In order to obtain the operating wavelengths 

corresponding to these transitions, the positions of the quantum dot energy levels 

relative to the quantum dot conduction band edge should be obtained. A 

theoretical model based on Green's function has been used to calculate the 

spectral function and the density of states (DOS) of the quantum dot (76). The 

kinetic equation that governs the Green's functions is solved numeri~ally using 

the method of finite differences (79). The model considers the microscopic device 

structure including the shape and size of QDs and the device heterostructure. 

From the calculated density of states, all possible energy transitions can be 

obtained, and hence, the corresponding operating wavelengths for intersubband 

transitions are detem1ined. The model has been applied to three different QDIP 

structures which are quantum dot-in-a-well detector QDWELL, resonant 

tunneling (RT) QDIP and superlattice (SL) QDIP (75) and good agreement with 

experimental data has been found . 

3.1. GREEN'S FUNCTION MODEL 

The method of Green's function is used to calculate the spectral function 

or the localized density of states (DOS) of the quantum dots. The spectral fm1ction 

can be integrated over an arbitra1y selected volume enclosing one quantum dot to 

get the DOS or the number of states per unit energy inside this the arbitrary 
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selected volume. The DOS gives the positions of the discrete energy levels inside 

the QD in addition to the continuum spectrum of states outside the QD. Thus from 

the DOS, the positions of the discrete energy levels relative to the continuum 

states are known and so all possible intersubband transitions bound-to-bound or 

bound-to-continuum are obtained; thus the operating wavelengths for both 

transitions are detennined. The retarded Green's function of the system in 

cylindrical representation is given by [79, 80, and 96] 

[ E -H
0
v JG,. (r, r'; 8, 8'; z, =') = _!_S(r- r')c5(8-8')6(z- z'), (3.1) 

r 

where E is the total energy of electron and H
0

P , the Hamiltonian operator of the 

system, is given by 

H _ -'1
2 

( i a r a 1 I a2 a 1 a ) v ( . 8 -) --- -- + --+- + I -
op 2 rarn{(r,z)or m,.(r,z)r 2 882 ozmz(r,z)o= '' 

(3.2) 

where V(r,8,z) is the potential energy seen by the electron, n{ and m= are the 

in-plane and out-of-plane effective masses, respectively. If the potential energy of 

the QD has an azimuthal symmetry around the =-axis, which is the case for 

cylindrical and conical shape QDs, the potential energy is not a function of e, thus 

the z-component of the angular momentum and the Hamiltonian commute, and 

hence, the Green's function can be written as 

G r( '88' '£) I""'"' in(O-O') Gr( ' '£) . . r,r;, ;z,z; · =-~e 11 r,r;=,=; ,n1sanmteger. 
21' 11 

(3.3) 

The diagonal elements of the spectral function [79] is given by 

A(r,z;E) =-2Im[ G'(r,r;8,8;z,z;E) J =-_!_I Im[ G;;(r,r;z,=;E)]. (3.4) 
ff 11 

The density of states, which is the number of states per unit energy, is obtained 

from the spectral function and is given by 
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i i I D(E)=-Tr[A(r,=;E)]=- 2trrdrdz A(r, z;E) . 
2tr 2tr 

(3 .5) 

The trace or the integration is done over an arbitrary cylindrical volume enclosing 

the QD. This model will be applied to three different QDIP stmctures to calculate 

the DOS and from which the discrete and continuum energy levels can be 

obtained. The intersubband transitions obtained by the model are compared with 

the available experimental responsivity of the detectors and good matching is 

obtained. The details of how to apply the model to obtain the DOS will be given 

for the DWELL stmcture and then the results of the models will be given for the 

other two structures 

3.2. QUANTUM DOT-IN-A WELL MODELING 

The quantum dots-in-a-well (DWELL) detector is a hybrid between the 

conventional quantum well and the emerging quantum dot detectors. The DWELL 

detectors are advantageous over quantum well and quantum dot photodetectors in 

that they can detect light at precise wavelengths since their detection is based on 

bound-to-bound rather than bound-to-continuum transitions. Moreover, they 

demonstrate normal incidence operation and low dark current [45]. The nature of 

the potential profiles of these detectors makes the theoretical modeling 

challenging. Different approaches have been used in the literature for theoretical 

modeling of pyramidal, cylindrical and hemispherical quantum dots [97-101]. A 

theoretical model of pyramidal-shaped InAs quantum dots placed in an InGaAs 

quantum well , which is buried in a GaAs matrix, is shown in [72]. The model of 

the DWELL is based on a Bessel function expansion of the wave function. The 

model can estimate the ground state of the quantum dot. For the higher states in 

the quantum well, the model has to be modified to account for the free motion of 

electrons perpendicular to the growth direction. 
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The DWELL detector grown by molecular beam epitaxy, reported in [45], 

consists of a ten-period active region of 6 run Ino.15Gaos5As, 2.4 monolayers (ML) 

of InAs, 6 nm Ino.1sGao.ssAs, and 49 nm of GaAs, as shown in Fig. 3-1. 

0.2 µm GaAs (n=1-2x101s cm·3) 

50 nm GaAs 

2.4 ML n-doped lnAs QOs 

50 nm GaAs 

0.5 µm GaAs (n=1-2x101a cm·3) 

S.I GaAs Substrate 

Figure 3-1 - Schematic of a l 0-layer In.As/In Ga As QDWELL [ 45]. 

The TEM image of the DWELL heterostructure is shown in Fig. 3-2 [72] . 

The darkest region is the InAs quantum dot. The quantum dot is placed in 

Ino. 15Ga0.85As quantum well which is surrounded by the GaAs region, as shown in 

Fig. 3-2. The image shows that the quantum dots are positioned in the top half of 

the quantum well and have a pyramidal shape with base dimension of 11 run and 

height of 6.5 nm. 

Figure 3-2 - Cross-section TEM image of a single QD layer of the DWELL [72]. 
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From the information of the TEM image, a schematic for the potential 

profile of the DWELL can be defined as shown in Fig. 3-3. The potential profile 

has a cylindrical symmetry about the =-axis and consists of a conical shaped lnAs 

quantum dot with a diameter of 11 nm and height of 6.5 nm placed in the top half 

of an l l nm quantum well. There is 2.4 ML (- 0.5 nm) of lnAs (wetting layer) 

between the first half of the quantum well and the quantum dot. The numerical 

method used to get the energy spectmm of the DWELL is described in [45, 72]. 

The approach is to enclose the region that contains the quantum dot by a cylinder 

of radius R and height Zc where the wavefunctions are forced to vanish on the 

surface. The stmcture is shown in Fig. 3-3. The coupling between quantum dots is 

neglected and the cluster inside the cylinder is treated as isolated. The ground 

state of the quantum dot is confined inside the quantum dot and vanishes outside, 

so it can be estimated fairly well by this model. However, for the higher states, 

especially those in the quantum well, the electron has no confinement in the 

lateral direction perpendicular to the =-axis, so the zero boundary condition on the 

cylindrical surface has to be changed. 

R 

Ga As 

ln0~y'\ 
__/lnAs \ ___ _ 6.Snm 

/)I 

GaAs 

Figure 3-3 - Schematic of the DWELL structure to be used to fonnulate potential profile. 
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To get the potential profile, the band offset between the different materials 

in the structure must be known. The conduction band offset between InAs and 

GaAs is about 60% of their band gap difference [102, 103]. The calculated band 

offset used in [72] is 477 meV between InAs and Ino. 15Ga0.85As and 93 meV 

between Ino.1sGao.s5As and GaAs. The zero level is chosen to be the conduction 

band edge of the Ino.15Gao.ssAs. The band offset profile is shown in Fig. 3-4. 

Using the conduction band offsets between the different heterostruch1re material 

and the schematic of the cylindrical volume enclosing one QD, the potential 

energy profile of electrons in the conduction band is shown in Fig. 3-5 . 

Ga As 

93meV 

477 meV 

lnAs 

Figure 3-4 - Conduction band offsets and the energy levels of the QDWELL. 
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Figure 3-5 - Potential energy profile used by the model plotted as a fimction of rand z [76]. 
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It represents the variation m the conduction band offsets between the 

different materials in space. It is drawn in a plane passing through the axis of the 

cylinder shown in Fig. 3-3, where r varies from 0 to Rand= varies from 0 to Zc. 

The figure shows the InAs quantum dot and wetting layer, the InGaAs quantum 

well and the GaAs barrier. The variations in effective masses are described in the 

same way as that used for the potential energy. Since the potential energy is not a 

function ofB, the Green's function can be defined as in Eq. (3.3), and by 

substituting Eq. (3 .3) into Eq. (3.1) and using8(B-B')= z;e;n(&-e'i j2Jr, the 

problem can be reduced to two dimensions instead of three, and we get 

[ E - H,,) G~ (r, r' ; z, z') = .!.s(r - r')S(z - z'), 
r 

(3.6) 

where H n is given by 

H =-!!:__[_!_a r 8 + I (-n
2

) +~ 1 oJ+V(r =) 
" 2 r or m'"(r,=) or m'(r,z) r 1 oz m=(r,z) o= ' (

3
.?) 

Equation (3 .6) can be solved numerically using the method of finite differences to 

convert the differential equation into a matrix equation. The Hamiltonian in Eq. 

(3.6) is transformed to a matrix fom1 by discretizing the space in the r-z plane 

using a grid with a lattice constant a such that we have N, points in the r-direction 

and Nz in z-direction. A schematic of the grid is shown in Fig. 3-6. 
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0 0 0 0 Q © @ 0 
Ga As 

0 0 0 0 0 0 G 0 
Q 0 0 0 0 0 

0 0 0 0 

0 0 0 0 
lno.1s Ga0.85As 

0 0 0 0 
0 0 0 0 aw 

GaAs 
0000000 

Figure 3-6 - Schematic of the lattice grid in r-z plane used in the numerical simulation 

At every lattice point in the grid shown in Fig. 3-6, the value of the 

potential energy V (ia , ja) , where i and j are integers, are obtained as shown in 

Fig. 3-5. The effective mass value of electrons at every lattice point in the grid is 

obtained in the same way. The derivatives with respect to r and z are 

approximated by finite differences, for example, ( 8F /oz )I; -+ ( Fi+I - Fi)/ a. The 

delta functions in the RHS of Eq. (3.6) are transformed to the identity matrix, and 

the details of the Hamiltonian discretization are shown in appendix A. After 

discretizing Eq. (3.6), the differential equation is transformed to a matrix equation 

which is given by 

[EI-H11 ]G; =[rf1
, (3.8) 

where H
11 

is the matrix representation of the Hamiltonian operator and its 

form is given in appendix A, I is the identity matrix and [r] is a diagonal matrix 

where its diagonal elements take the r component of the total position vector. The 

matrix H
11 

has infinite dimensions since it represents the Hamiltonian of the 

whole system inside and outside the cylinder. By adding appropriate boundary 

conditions at the cylindrical surface, the size of the matrices can be finite. In order 
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to truncate the matrix and consider only the Hamiltonian inside the cylinder, we 

can consider the Hamiltonian inside cylinder as if it were isolated, and then 

compensate for the coupling to the outside region by adding an additional 

effective Hamiltonian at the cylinder's surface, to simulate the coupling between 

the points inside and outside the cylinder. This effective Hamiltonian is not 

Hermitian, which means it has real and imaginary parts and it is called self­

energy. The real part of the self-energy shifts the energy eigenvalues and the 

imaginary part of it determines the decay rate of the electron state. The matrix 

representation of the total Hamiltonian and Green's function can be divided into 

sub-matrices such that [79] 

[
El-H,,L 

,+ Q ]-I' 
rD 

(3 .9) 

where H,,L and H,,0 are the Hamiltonian matrices outside and inside the isolated 

cylinder, respectively, and r is the coupling matrix where its elements are zero 

everywhere except at points adjacent to the interface (L;,i). For such points, 

r(L;,i) = t and t is the hopping or tunneling parameter. This concept is 

described in detail in [79, 104]. Equation (3.9) can be reduced to 

(3.10) 

where Hno is the matrix representing the Hamiltonian of the isolated cylinder 

(without coupling) and L:r is the self-energy term that gives the interaction 

between the points at the interface inside and outside the cylinder and is given by 

L:,. = r[EI - H,,J-1 r + R, where R is the radius of the cylinder. The self-energy 

tennis obtained from the retarded Green's function outside the cylinder, with zero 

boundary condition at the cylinder's surface. The retarded Green's function 

outside the cylinder satisfies Eq. (3.6); however, the potential energy and the 

effective mass are functions only of z . 
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Now if we take an average value of the effective mass in the radial part, 

we can solve for the Green's function analytically by the method of separation of 

variables. The Hamiltonian outside the cylinder is approximated by 

n2 (I{I8 a n
2

} al aJ H =-- - --r--- +----- +V(z) 
n 2 m av r or or r 2 8z m z ( z) oz , (3 . I I) 

where mav an average effective mass of the electron and its value is chosen such 

that it gives the same lowest eigenvalues obtained by solving 1-D problem which 

has the same potential and effective mass variation in z-direction. 

Using the Hamiltonian in Eq. (3.11 ), the retarded Green's function outside 

the cylinder with zero boundary condition at r=R, calculated at r = r' = R +a and 

at specified energy E is given by 

z • _, 2m.v "{J"[k111 (R+a)]Y,,(kmR)-}x 
Xm( )Xm(-) n2 2 J (k R)Y [k (R )] 

~ n m 11 m +a £ > <' 

~ ' "m 
111 H,,(km(R+a)) 

o;,~ = 
H,,(k'"R) 

_ . z' 2m .. ,.{K11 [km(R+a)]I11 (kmR) }x 
Xm(-)Xm( ) h2 -K (k R)I [k (R )] I II /11 II 111 +a ' E::::; Gm 

m K
11
(k,,,(R +a)) 

(3.12) 

K 11 (kmR) 

The details of the calculations are shown in appendix B. In Eq. (3 .12), a is the 

lattice constant of the grid, J", Y,, and H,, are the Bessel, Neuman and Hankel 

functions of order n, respectively, 1
11 

and K
11 

are the modified Bessel functions of 

the first and second kinds, respectively, x,,, (z) and G
117 

are the eigenvectors and the 

corresponding eigenvalues obtained by numerically solving the eigenvalue 

problem 
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(3.13) 

and assuming zero boundary condition at z=O and z= Zc, and km is related to the 

energy of electron by the dispersion relation [79, 96] given by 

E = 8
111 

+ 2t(l-cos(kma)). (3.14) 

Equation (3.14) is the modified version of the parabolic dispersion relation 

between E and k due to discretization and t is the tunneling or the hopping 

parameter given by t = ( n2 I 2m.va 2
). The self-energy is related to the Green, s 

function in Eq. (3.12) by the relation 

(3.15) 

The self-energy matrix is zero everywhere except at the points of interface 

where we have coupling between the inner and outer points at r=R. The lattice 

constant a appeared in Eq. (3.15) is used since the Green's function GnL• solved 

analytically in Eq. (3.12), is for a continuum semi-infinite lead and is used to 

calculate the self-energy in the discrete space to give the correct result when using 

the matrix multiplication instead of doing integration over the intermediate 

variables. By substituting Eq. (3.15) into Eq. (3.10), we can get the retarded 

Green's function inside the cylinder by doing a matrix inversion at certain values 

of E and n. The height of the cylinder is taken to be 44 nm while the radius of the 

cylinder is 30 nm. The grid step is 0.2 nm, and hence the matrix dimensions 

are 33000 x 33000. The spectral function is calculated from Eq. (3 .4). The series 

converges and for the energy ranges used in the calculations, the first 10 tenns in 

the series corresponding to n=O, 1, 2, ... , 9 are enough to produce the required 

DOS for both the discrete and continuum part of the spectrum near the top of the 

potential barrier surrounding the QDs. The contributions to the DOS from the 

terms corresponding to negative values of n are equal the ones corresponding to 
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the positive values due to the Hamiltonian degeneracy with respect to n. 

Therefore, there is no need for further calculations of the negative terms and 

instead the terms corresponding to positive values of n are multiplied by 2. The 

measured responsivity of the QDWELL of a sample having pyramidal quantum 

dots with 11 nm for the base and 6.5 run for the height is shown in Fig. 3-7. The 

resulting three-color response has peaks at wavelengths 5, I 0 and 25 µm . The 

corresponding energy transitions t!.E due to photon absorption at these 

wavelengths are - 250, 124 and 50 meV. 

0.03 .....----------------~ 

0.025 

~ ~ 0.02 

~ 
:~ 0.015 -
f/j 
c 
0 
c.. 
f/j 
Q) 

~ 

0.01 ·V 
0.005 -

0 
4 

Vb=·1.4 V 

~ (~\ T=4.6 K 

\ J \ 
~ / \ . '.. ~.. . . . """' .llJ 

9 14 19 24 29 34 

Wavelength (µm) 

Figure 3-7 - The measured multicolor responsivity of the QDWELL [ 45]. 

To interpret the appearance of these peaks (Fig. 3-7) at these wavelengths 

111 the responsivity curve, we need to calculate the density of states of the 

QDWELL. The matrix representation of the spectral function can be used to 

N N 

obtain the density of states such thatD(E) = f Iaix A(ai,aj ;E). The calculated 
i= I j =I 

density of states of the DWELL is shown in Fig. 3-8. From the density of states 

shown in Fig. 3-8, we notice three quantized levels of the DWELL - E0 , E1 and E2 

at the energy values -178, -60 and 65 meV, respectively. The sharp peak at E=-

178 me V is due to the ground state of the quantum dot and the electron is 

completely confined inside the quantum dot. There are no more quantized levels 
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inside the quantum dot as seen in the density of states for these quantum dot 

dimensions. For quantum dots with larger lateral area, such as the ones obtained 

by growing InAs on GaAs, the quantum dot has a base of ~20 nm and a height of 

-3 nm, and so more than one quantized level can be found inside the quantum dot 

as shown in [105). The two quantized levels £ 1 and £ 2 are in the InAs wetting 

layer and in the InGaAs quantum well, respectively. They appeared in the density 

of states as two steps of constant values, as expected when the electron is confined 

in one dimension and free to move in the other two dimensions. Due to the 

quantum dot potential, the two steps have some defonnation and we get a peak at 

energy E = -60 meV. 

The Density of states 
1, ........................... , .... . 

! 
. ......... ..................... ................... ~ .. .... -...... ...... ,.. ..... . 

0.9 i 
' 

-150 -100 -50 0 50 100 
E in meV 

Figure 3-8 -The density of states of the QDWELL [76)_ 

In Figure (3-8), the increase in the density of states for E > 93 is due to the 

continuum states above the quantum \:veil. The density of states for E > 93 me V 

should vary as £ 112
, as the electron is free above the quantum well. When the 

spectral function was calculated for E < -60 meV, an infinitesimal imaginary 

part was added to the energy in Eq. (3. l 0) such that E -t E + i 17. The addition of 

this small imaginary part is necessary because the self-energy tenn has only a real 

part for these energy values, and to do the matrix inversion we have to remove the 

69 



I PhD Thesis - Mohamed A Naser McMaster - Engineering Physics I 

singularities at the values of energies which are equal to the eigenvalues of the 

Hamiltonian. However, we do not need to worry about that for E>-60 meV since 

the self-energy has already an imaginary part. 

The spectral function at E=-178 meV 

... 
x 10 

150 

zla 0 0 
rla 

Figure 3-9 - The spectral function at the ground state in the QD at E= £ 0 [76]. 

The transition between the ground state in the quantum dot E0 to the 

second excited state E2 gives M = 243 meV. So, it is expected to have a peak in 

the responsivity at (),=5 ~un, D.£=250 meV). The peak at (f.=10 µm, M=l25 

meV) can be interpreted as the transition between £ 0 and E1 which gives ~E= l 18 

meV or the transition between E1 and E2 which gives M = l25 meV. The peak 

appeared at the long wavelength (A.=25 µm, ~£=50 meV) and has width from 

),= 19 µm to 29 ~tm can be due to the transition between the level of the quantum 

well at E2 and the continuum states since the difference between this level and the 

top of the quantum well is around 30 me V. 

The spectral function calculated at the energy values £=-178, -60 and 65 

meV are shown in Figures 3-9, 3-10 and 3-11. It is shown that for the ground state 

of the quantum dot, the electron is completely confined inside the quantum dot as 

the spectral function is non-zero in the QD region and almost zero elsewhere. For 

the peak at E=-60 meV, corresponding to the energy level localized in the wetting 
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layer, the electron is mostly confined in the wetting layer outside the quantum dot. 

For the energy £=65 meV, the electron is confined in the quantum well which 

shows that the energy level lies inside the quantum well as expected . 
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Figure 3-10 -The spectral function at E= E1 [76]. 
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Figure 3-1 I -The spectral function at E= £ 2 [76]. 
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3.3. RESONANT TUNELLING (RT) QDIP 

The RT-QDIP grown by molecular beam epitaxy, reported in [47, 48], is 

schematically shown in Fig. 3-12 . It consists of a ten-period active region, where 

each period contains a double barrier strncture fonued by a 4 nm layer of 

Ino.1Gao.9As surrounded by a 3 run layer of Alo3 Ga<l.7As, 1 nm GaAs layer for 

surface smoothing, 6 MLs Ino.4Ga0.6As for quantum dots formation, 4 nm GaAs 

and finally 4 nm Alo. 1Gao.9As barrier layer. The growth of the 4 nm barrier layer 

of Alo.1Gao.9As opposite to the double barrier strncture forms a quantum well that 

creates a well-defined quasi-bound final state for the photoexcited electrons. The 

double barrier and the quantum well are designed such that the ground state 

energy levels in both of them coincide. The eigenfunctions in the double barrier 

and the quantum well overlap and hence the corresponding energy level split 

allows for resonant tunneling through the strncture. The shape and size of 

individual quantum dots, as observed from high-resolution images of transmission 

electron microscopy [51, 106], are pyramidal with a base dimension of - 25 nm 

and height of - 6 nm. Measured values of dark current of the RT-QDIP is as low 

as l .6x 1 o·8 A/cm2 at 80 Kand 1.55 A/cm2 at 300 K for 1 V applied bias have been 

reported [47] which is ve1y low compared to other QDIP structures. The double 

barrier is designed such that the resonant level inside the double barrier coincides 

with the energy of the photoexcited carriers and hence enhances the photocurrent 

transport across the structure. Thus, the dark current is reduced since the 

themially excited carriers have a broad energy distribution where the transmission 

probability across the double barrier is low. The calculated energy levels in the 

quantum dot of the resonant tunneling QDIP using the eight-band k.P model 

estimated an energy separation between the ground state of the quantum dot and 

the resonant energy level in the quantum well as M==l61 meV [47]. However, it is 

expected that this energy separation is larger since the observed peak at A.==6 µmin 

the responsivity curve coITesponds to an energy transition M=206 meV [24]. It is 

estimated from the model developed in this chapter that the energy of the ground 
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state m the QDs is -178 me V while the energy of the resonant levels in the 

quantum well are 15 and 30 meV, as shown in Fig. 3-12. Therefore, the center of 

the peak in the responsivity is estimated to be due to L\E-200 meV which is in a 

good agreement with L\£=206 me V observed experimentally. The responsivity of 

the detectors can be qualitatively understood from the information provided by the 

density of states which gives an insight about the possible energy transitions. 

><10 

(a) 

(b) 

40 nm GaAs 

0.5 µm n• Ga As 

S.I GaAs Substrate 

-109 

-178 

lnGaAs/GaAs 
Quantum dot 

Resonant 
levels 

Figure 3-12 - (a) Schematic of the RT QDIP heterostructure. (b) Schematic of the conduction 

band profile demonstrating the energy levels (in meV), relative to CB bottom in GaAs, in the 

quantum dot and quantum well [47, 48]. 

The numerical approach used to obtain the energy spectrum of the RT 

QDIP is to enclose the region that contains the quantum dot by a cylinder of 
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radius R and height Zc as shown in Fig. 3-13 . The radius and height of the 

cylinder are chosen such that the cylinder encloses one quantum dot, including the 

double barrier, the quantum well and the single barrier (Al0.1Ga0.9As) opposite to 

the double barrier, as shown in Fig. 3-13. The model physically approximates the 

problem by considering one quann1m dot, which is uncoupled to other quantum 

dots, and lies on an infinite wetting layer. The spectral function and the density of 

states, which is defined as the number of energy states inside the cylindrical 

volume which contains one quantum dot, can be calculated. Both the discrete 

energy levels inside the quantum dot and the continuum energy levels in the 

wetting layer, the quantum well and the double barrier structure will appear in the 

density of states and hence the possible energy transitions for electrons can be 

determined. The density of states of the structure is obtained by solving for the 

retarded Green's function. To describe the potential energy profile of electrons 

inside the cylinder, the conduction band offsets between the different materials in 

the heterostrncnJie need to be calculated. 

R 

Figure 3-13 - Schematic of the RT QDIP stmcture used for fornrnlating the potential energy 
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The conduction band offsets of AlAs and InAs compared to GaAs are 

taken to be 60% of the band gap differences [46, 107]. The band gap of AlxGa1-xAs 

and lnxGa1.xAs can be calculated from the simple quadratic formula [108] 

Eg (A,_ ... B,.) = (1- x)Eg (A)+ xEg (B)- x(l-x)C, (3 .16) 

\Vhere C is called the bowing parameter to account for the deviation from the 

linear interpolation and is 0.477 for lnxGa1.xAs and-O.l27+1.310x for AlxGa1-xAs. 

The zero level is chosen to be the conduction band edge of GaAs. The calculated 

band offsets for Alo 3Gao 1As, Alo.1Gao.9As, Ino.4Gao.6As and Ino.1Gao.9As are 250, 

95, -333 and -92 meV, respectively. A linear interpolation is used to calculate the 

effective masses in the different materials. The effective masses used for GaAs, 

Alo.3Gao 1As, Alo 1Gao.9As, Ino.4Gao.6As and Ino.1Gao.9As are 0.067, 0.092, 0.075, 

0.048 and 0.062 respectively. The band offset used for InAs is -500 meV and its 

effective mass is 0.026, while the band offset for AlAs is 500 meV and its 

effective masses in the radial- and z- direction (growth direction) are 0.22 and 

0.97, respectively [108]. From the calculated band offsets, the potential energy 

profile for the RT-QDIP, V(r, =),can be obtained and it is shown in Fig. 3-14. It is 

drawn in a plane passing through the axis of the cylinder, where r varies from 0 to 

Rand z varies from 0 to Zc. Figure 3-14 shows the Ino.4Gao.<A.s quantum dot (with 

a base of 25 nm and a height of 6 nm), the wetting layer (2 MLs thick), the 

quantum well and the double barrier stmcture. The variations in effective masses 

are described in the same way as that used for the potential energy. The retarded 

Green's function is calculated numerically from Eq. (3 .10) by doing a matrix 

inversion at certain values of E and n. For the RT QDIP, the height of the cylinder 

is taken to be 20 run while the radius of the cylinder is 30 nm. The grid step is 0.2 

run, and hence the matrix dimension is 15000x15000 . The spectral function and 

the DOS are calculated the same way as described before for the QDWELL 

stmcture. 
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Figure 3-14 -The potential energy profile of the RT QDIP used for the theoretical modeling 

is plotted as a function of r and z. 

The measured responsivity of the RT QDIP is shown in Fig. 3-15 [24). The 

figure shows two strong peaks at A ~ 6 µm and A - l 7 µm, in addition to a weak 

response at /., - 9 µm . The corresponding energy transitions !'1£ due to photon 

absorption at these wavelengths are - 206, 113 and 73 meV. It is also shown that 

the peak centered at A.=6 ~tm is split into two peaks at /,=5.8 µm and /.,.=6.2 µm 

with an energy separation 1'1£=14 meV. 
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Figure 3-15 -The measured responsivity of the RT QDIP [24]. 
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To interpret the characteristics of the responsivity curve (Fig. 3-15), we 

need to calculate the density of states of the RT QDIP. The matrix representation 

of the spectral function can be used to obtain the density of states such 

N, N, 

thatD(E)= LL}axA(Ja,ka;E) . The calculated density of states of the RT 
j=I k=I 

QDIP is shown in Fig. 3-16. The figure shows three peaks at E=-178, -109 and -

45 me V corresponding to the three quantized levels inside the quantum dot in 

addition to continuum of states for E>O. The peaks look like delta-functions which 

is the case for a 3-D confining potential. When the Green's function is calculated 

for E <O, a small (infinitesimal) imaginary part ( 17) is added to the 

energy, E ~ E + i17 in order to remove the singularities before doing the matrix 

inversion. Physically, the addition of this small imaginary part is attributed to the 

disorder in the shape and size of the quantum dots, as we consider only the 

average values in the calculations, which broadens the delta functions in the 

spectrum. 
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Figure 3-16 -The density of states of the RT QDIP. 
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The main contribution to the ground state at E=-178 me V comes from 

n=O, while the other terms in the series for n i= 0 are very small. The first excited 

state at E=-109 me V is from n= 1 and n=-1 as they are degenerate. The second 

excited state has contribution from n=O at £=-45 meV and from n=2 at £=-40 

me V. The spectral functions corresponding to the three eigenstates of the quantum 

dot are shown in Fig. 3-17. It is shown that the states are mainly concentrated in 

the region of the quantum dot since the spectral function is almost zero outside the 

QD. 
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Figure 3-17 - The spectral function of the RT QDIP in the quantum dot at (a) the ground state 

at n=O and £=-178 meV; (b) the first excited state at n=I and £=-109 meV; (c) the second 

excited state at n=O and E=-45 meV; and (d) the second excited state at 11=2 and E=-40 meV. 

In the continuum part of the spectrnm, there are two peaks at E= 15 and 20 

meV superimposed on two step functions whose edges are at £=15 and 30 meV. 

To illustrate this part of the spectrnm in detail , the contribution of the density of 

states from n= 1 and n=3 are shown in Fig. 3-18. It is also shown in the figure the 
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density of states for the structure in the absence of the quann1m dot, but the 

wetting layer is included. The two peaks at E= 15 and 20 me V in the density of 

states in Fig. 3-18 are from n= l and n=3. The spectral function, in the presence 

and absence of the quantum dot, is also shown in Fig. 3-19 at a point in the 

continuum spectrum where E=32 meV. The figure shows the variation of the 

number of states inside the cylinder between the first barrier of the double barrier, 

==3 nm, and the barrier of the quantum well, z=Zc-4 nm. The effect of the 

quantum dot appears in the deformation of the spectral function and in the 

existence of the two peaks that correspond to n=I and 3. 

The density of states 
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Figure 3-18-(a) The density of states at n==l; (b) the density of state at 11==3; and (c) the 

density of state in the absence of the quantum dot. 
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Figure 3-19-The spectral function of the tunneling QDIP at £=32 meV (a) with and (b) 

without including the quantum dot potential. 

The two step functions in the spectrnm (Fig. 3-18(c)) are due to two levels 

at £=15 and 30 meV in the quantum \veil above the quantum dot. These two 

levels are formed as a result of the interaction between the wavefunctions in the 

double barrier and the quantum well. Due to this interaction, the energy level 

splits into these two levels, corresponding to two distinct eigenstates which are 

symmetric and anti-symmetric in the z-direction, allowing for resonant tunneling 

through the structure, as shown in Fig 3-20. 
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Figure 3-20 - The resonant levels and the corresponding z-component waveftmctions of the 

RTQDIP. 

The calculated DOS shown above was done at zero applied bias. For non­

zero bias, we have to modify the potential energy profile in Fig. 3-14 to include 

the electric field effect throughout the structure. An additional potential energy 

term will be added to the Hamiltonian of the system in the form V ( z) = -eFz , 

where F is the electric field strength which is assumed to be uniform. The self-

energy L,. is modified through the new eigenvalues and eigenstates, em and Xm, 

obtained by solving Eq. (3.13) and taking into consideration the modified 

potential. Figure 3-2 l shows the variation of the eigenvalues inside the quantum 

dot and of the resonant levels in the quantum well with the electric field. The 

eigenvalues shift to lower values with the increase of the electric field. The 

separation between the eigenvalues are nearly constant, which means that the 

peaks in the responsivity curve will be nearly the same as in the zero bias 

condition for these electric field values. 
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Figure 3-21 - Variation of the theoretically calculated energy levels in the quantum dot and 

resonant levels in the quantum well of the RT QDIP with the applied electric field. 

3.4. SUPERLATTICE (SL) QDIP 

The SL-QDIP is a modified version of the dot-in-a well (DWELL) 

structure. The InAs QDs are embedded in a GaAs/AlAs superlattice barrier. It 

benefits from the increased carrier confinement due to the AlAs barrier and the 

spectral response tunability due to the multiple transitions between the QD energy 

states and the minibands in the SL quantum well. The growth of the InAs QDs 

directly on the AIAs barrier increases the QD density by one to two orders of 

magnitude relative to that of conventional InAs/GaAs QDs, and this is due to the 

low mobility of In on AlAs compared to GaAs which affects the adatom kinetics 

[ 51]. The responsivity of this detector is high due to the high density of the QDs in 

the layers. A peak responsivity of2.5 A/W measured at T= 78 K for a bias of -1.5 

V was reported in [ 46]. The high responsivity allows the detector to be sensitive to 

low level optical signal. The dark current is also high due to the small thickness of 

the active layer and hence it has to be operated at low temperature. The schematic 

diagram of the heterostructure in this detector is shown in Fig. 3-22. It consists of 

a ten-period of 1 nm AlAs, 2 ML of InAs and 14 nm GaAs. The quantum dot 
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shape and size are taken to be similar to that of InAs quantum dots grown on 

GaAs. It is estimated that the quantum dot has a pyramidal shape with a base 

dimension of- 18 to 20 nm and a height -3 nm [105]. 
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Figure 3-22 - (a) Schematic of the SL QDIP heterostructure. (b) Schematic of the conduction 

band profile demonstrating the energy levels (in meV) in the quantum dot and the wetting 

layer as well as the fomJation of the minibands in the quantum well. 

From the calculated conduction band offsets between the different 

materials, the potential energy profile for the SL-QDIP, V(r, z), can be obtained 

and it is shown in Fig. 3-23. The variations in effective masses are described in 

the same way as that used for the potential energy. The retarded Green's function, 

the spectral function and the DOS are calculated numerically in the same way as 

described before for the DWELL structure. 
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The measured responsivity of SL is shown in Fig. 3-24 [24] . The 

maximum peak of the responsivity is observed at A.=4.3 µm corresponding to 

ti.£=288 meV. 
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Figure 3-24 -The normalized spectral response of the SL QDIP [24]. 
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The density of states of the SL is shown in Fig. 3-25. There are two energy 

levels inside the quantwn dot at E=-195 and -60 me V corresponding to n=O and 1, 

respectively. The step function appearing at E=-5 meV is due an energy level in 

the wetting layer. The step functions starting at £=35, 120, 245 and 430 meV are 

the minibands formed between the double barrier structure. There are two sharp 

peaks due to the QD potential, corresponding to n=O, that appear in the spectrum 

at E=40 and 110 meV superimposed on the step functions. The energy levels in 

the quantum dot and wetting layer and the minibands in the quantum well were 

shown schematically in Fig. 3-22. 
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Figure 3-25 - The density of states of the SL QDIP. 

The spectral functions for both the ground state and the first excited state 

in the quantum dot are shown in Fig. 3-26. The states are concentrated in the 

region of the quantum dot and nearly zero outside as expected. The maximum 

peak in the responsivity curve at A.=4.15 ~un occurs due to the transition from the 

ground state to the second mini-band in the continuum states. The peaks in the 

responsivity at A.=6 .2 and 5.75 µmare assigned to the transition from the ground 
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state to the wetting layer level, the peaks at A.=5 .1 and 4.6 µmare assigned to the 

transition to the first mini-band and the peaks at A.=4.15 and 3.7 µmare assigned 

to the transition from the ground state to the second mini-band. Assigning the 

peaks of the responsivity to these transitions mentioned above will be clear after 

including interaction with light and calculating the dipole moments and the 

responsivity in the next chapter. 
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Figure 3-26 - The spectral ftmction of the SL QDIP in the quantum dot at (a) the ground state 

at n=O and E=-195 meV; and (b) the first excited state at n=l and E=-60 meV. 
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CHAPTER 4 QDIPS RESPONSIVTY 
MODELING 

The DOS of the QDs gives an insight into the possible intersubband 

transitions whether between the bound states of the QDs, bound-to-bound, or 

between the bound states and the continuum, bound-to-continuum and hence the 

corresponding operating wavelengths . However, the DOS does not explain why 

some peaks in the responsivity are bigger than other peaks and why some other 

peaks are very small or disappear. In order to get a better description of the 

responsivity, the interaction with light is required. In this chapter, a theoretical 

model [75] to calculate the responsivity is given. The model has been applied to 

the RT-QDIP and the SL-QDIP described before in the previous chapter. The 

model gives a good qualitative agreement with the responsivity experimentally 

measured for these detectors. A quantitative description of the dark and photo 

current using NEGF [74] will be given in the next two chapters. In the calculations 

of the responsivity, the first-order dipole approximation and Fenni-golden rule are 

used to get the selection rules for the possible transitions and the relative strength 

for all transitions. To calculate the dipole moment, the wavefunctions for the 

bound states in the QDs and for the continuum have been calculated. The bound 

states are calculated by solving the eigenvalue problem using the method of finite 

differences assuming zero boundary conditions on the cylindrical surface 

surrounding the QD, while the continuum states localized in the QD region are 

calculated using the Green' s functions in a similar way that described in chapter 

2. The theoretical model is then used for shtdying the effect of changing the 

quantum dot height- to-diameter ratio on the nonnal incidence responsivity of the 

SL structure for responsivity optimization. 
87 



I PhD Thesis - Mohamed A Naser McMaster - Engineerinf! Physics l 

4.1. THEORETICAL MODELING 

The interaction with the electromagnetic radiation is treated within the 

first order dipole approximation and Fermi's golden rule. In tenns of the dipole 

moment, the absorption coefficient is written as [109, 110] 

a(liOJ) = TrOJ 2 "'je j2 r I 2 ( + - +) 
V L...i .µbe (£ -£ -h )2 (I' / 2)2 lb .l e ' n,.ceo b.c e b !OJ + 

(4.I) 

where t10J is the photon energy, £ 6 and £, are the energies of the initial and 

final states, e is the polarization direction of the incident light, Jibe = e ( ljl c JrJ ljl b) 

is the electric dipole moment and r is the linewidth of the transition representing 

the inhomogeneous broadening due to the size inhomogeneity of the quantum 

dots. 

The absorption coefficient defined in Eq. (4.1) gives the ratio between the 

number of photons absorbed per unit volume per second and the number of 

photons injected per unit area per second, so that the responsivity which is the 

photocurrent per Watt of incident radiation, can be written as [109] 

where S / liOJ is the optical intensity divided by the photon energy which gives 

the number of injected photons per unit area and T(E,) is the transmission 

probability of the photoexcited electrons at the total energy £, . 

4.1.1. WAVEFUNCTIONS CALCULATIONS 

To calculate the dipole moment in (4.2), the wavefunctions corresponding 

to the initial and final states of the transitions should be obtained. The 

waveftmctions corresponding to the discrete energy states in the QDs are localized 

inside the QDs. Therefore, assuming zero boundary conditions on a virtual 

cylinder surrounding the QD, the bound wavefunctions and the corresponding 
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discrete energy eigenvalues can be calculated. In the continuum states above the 

QD barrier, the assumption of zero boundary conditions is not suitable for 

obtaining the wavefunctions in this part of the DOS. Instead, the method of the 

Green's function is used to calculate the wavefunctions in this part of the 

spectrum. A self-energy term is added to the Hamiltonian at the cylinder surface 

to simulate the proper boundary conditions representing the coupling with the 

surroundings outside the cylinder. 

The wavefunctions in the bound and continuum states, due to the 

cylindrical symmetry of the Hamiltonian, can be written as 

qi n (r, B, z) = e;,,o rp
11 
(r, z), (4.3) 

where n is integer and represents the quantum number of the z component of the 

total angular momentum. The bound state wavefunctions in the quantum dots are 

calculated by solving the eigenvalue problem 

(4.4) 

which gives all the eigenstates and the corresponding eigenvalues at the quantum 

number n and HnD is the Hamiltonian matrix of the isolated cylinder that contains 

the QD at specific quantum number n. This procedure is suitable to calculate the 

bound states since they are localized inside the quantum dot and hence we can 

assume zero boundary condition at the cylinder radius. 

To get the wavefunctions in the continuum part of the spectrum, the 

Green's function method has been used to simulate the free motion of electrons 

above the quantum dot and to add an additional self-energy term at the cylindrical 

surface to simulate the open boundary condition. The retarded Green's function 

gives the response at any point due to a unit excitation at any other point. So from 

Eq. ( 4.4 ), the Hamiltonian of the isolated cylinder is modified by adding a self­

energy term to simulate the interaction with the surroundings in addition to the 

excitation term in the R.H.S. The wavefunctions [79] satisfy the equation 
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(4.5) 

where S is the excitation term due to propagating waves incident from the lead at 

the cylinder's surface. The retarded Green's function of the system in the 

cylindrical representation and in the matrix form is given by 

[ ",.JG,. [ ]-1 EI - H,,D - £-- nD = rD . (4.6) 

From (4.5) and (4.6), the wavefunction can be related to the Green's function by 

the relation 

(4.7) 

If we write the self-energy Ill the compact 

formL:,. = :L.t;,(R)lz11,(z))(Xm(z')!, then the excitation Sis given by 
m 

S= l:(.f,,*(R)-f,,(R))lzm(:)), (4.8) 
Ill 

which gives the contribution from all propagating modes at same total energy E. 

The equations (4.5), (4.6), (4.7) and (4.8) are the multimode version of the 1-D 

single mode problem discussed before in chapter 2. The detailed form L:,. was 

shown before in Eqs. (3.12) and (3.15) in chapter 3. 

In normal incidence operation, the electric field is polarized in the in-plane 

directions, that is, x- or y-directions. Therefore for the x-polarized electric field, 

the dipole moment will be given by 

1-'bc = e( lf/c Ir! lf/b) = e( eile rp1 (r, z) !xi ein(} rp11 (r, z)) 
= e( ei(11±l)(I rpn±I (r, z) Ir cos e1 ei110 rpn (r, =)) 

which indicates the selection rules for allowed optical transitions. The electrons 

can be photoexcited from the bound states of quantum number n to the continuum 
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states which differ in this quantum number by±l, otherwise the integration over 

8 will make the dipole moment vanish. 

The transmission probability function T( E,) as a function of the z­

component of energy Ez and neglecting the quantum dot potential, is calculated 

using the relation for 1-D case given by 

(4.9) 

where G~ = [ EJ -H, - L:~ r, L:~ is the self-energy due to coupling with the 

leads and for Hamiltonian matrix of dimensions NxN 

L:~ ( l, I)= L:: ( N, N) = -t.eika and zero otherwise. The transition rate matrix 

r " = i(L:~ - L:~) which is zero everywhere except at the interface points with the - - -

leads r:(1,l)=f=(N,N)=2tsin(ka) and E= =2t(l-cos(ka)). Calculating the 

transmission function as a function of the z-component of energy Ez, assuming 

that the effect of the quantum dot potential can be neglected for the energy values 

higher than the QD barrier potential, simplifies the solution. At applied bias, the 

photoexcited electrons will drift in the electric field in the =-direction toward the 

contact. For the RT-QDIP and the SL-QDIP structures, T(EJ has non-zero 

values only at E, corresponding to the resonant levels in the RT-QDIP and to the 

miniband energies in the QW in the SL-QDIP as shown in Figures (4-4) and (4-7). 

The transmission function in the z-direction as a function of the total energy will 

be equal to T(E,) at the resonant levels for E ~ (Ez =en,), where e,,, are resonant 

levels in the quantum well, and zero for E < e
111 

• 
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4.2. RT-QDIP RESPONSIVITY MODELING 

The wavefunctions of the bow1d and continuum states are calculated using 

Eqs. (4.4) and (4.7) respectively. The excitation in the R.H.S of Eq. (4.7) is 

calculated using the two modes of the resonant levels shown in Fig. 4-1. The 

responsivity of the device is calculated using Eq. (4.2) and the transmission 

probability as a function of total energy is T(E)~ 1 when E exceeds the first 

resonant level value and zero otherwise, since Ez coincides with one of the two 

resonant levels. The inhomogeneous broadening factor r is assumed to be 5 

meV. 
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Figure 4-1 - The resonant levels and the corresponding z-component wavefunctions of the 

RT-QDIP 

Figure ( 4-2) shows the calculated responsivity as a function of wavelength 

at different temperatures for the RT QDIP. The splitting of the peak at 6 µm is 

due to the transition probability from the ground state to the resonant levels in the 

quantum well. This is shown in Fig. 4-3 through the dipole moment between the 

ground state at n=O and the continuum states with n=±l.. The peak at 9 ~Lm is due 

to the transition from the first excited state in the quantum dot at n = I to the 

continuum states at n=O and 11=±2. The peak centered at I 7 ~Lm is due to the 
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transition from the second excited states in the quantum dot at n=O to the 

continuum states at n =±I, and the bound state at n = 2 to the continuum states at 

n=±l and n=±3. As the temperature increases, the peak at A.=17 ~Lm becomes more 

pronounced, as shown in Fig. 4-2. This can be interpreted by the occupation of the 

higher states in the quantum dot increasing with the temperature increase. The 

second excited state is more degenerate than the ground state since it has 

contribution from n=O, ±2 in addition to the spin degeneracy, while the ground 

state has only spin degeneracy. 
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Figure 4-2- Responsivity of the RT QDIP in a.u. at different temperatures 

The calculated responsivity by this model is in good qualitative agreement 

with the experimental results , shown before in Fig. 3-15 in chapter 3, as it predicts 

the peak splitting at 6 µm due to the transition from the ground state, the weak 

response at 9 µm due to the transition from the first excited state in addition to the 

increase in the magnitude of the peak at 17 ~Lm with temperature due to the 

increased filling of the second excited state. The increase of the peak at 17 µm, 

predicted by the model when the temperature increases from 280 K to 300 K, is 

due to the increase of the filling of the second level in the quantum dot which 

does not appear clearly in the experimental results. This can be interpreted as the 
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increase in temperature leading to reducing the relaxation time of the electron due 

to the interaction with the lattice, which leads to increasing the probability of 

capturing the electron in the quantum dots and hence reducing the photocurrent. 

This effect was not considered in the model. 
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Figure 4-3 - The dipole moment of transition between the ground state of n=O and the 

continuum states of n =± 1. 

Fig. 4-4 shows the transmission function for the structure. The 

transmission has two peaks at the values of Ez that corresponds to the two resonant 

levels. The separation between the two peaks is - 14 me V and is the same as the 

separation between the resonant levels and comparable to the separation between 

the peaks appearing in the responsivity. 
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Figure 4-4- The transmission probability function of the RT structure without including the 

quann1m dot potential. 

4.3. SL-QDIP RESPONSIVITY MODELING 

The transmission probability function across the double barrier above the 

quantum dot of the SL structure as a function of the z-component of energy is 

shown in Fig. 4-5. A biasing electric field of 1 MV/m is used in the calculations. 

When the total energy exceeds the first band energy (E>35 meV), T(E)-I, while 

T(E)-0.2 when E exceeds the wetting layer level and is less than the first mini­

band energy. 
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Figure 4-5 - The transmission probability function of the SL structure without including the 

quann1m dot potential. 
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The normalized responsivity is calculated and shown in Fig. 4-6. The 

dipole moments of transitions from the ground and first excited states in the 

quantum dot to the continuum states are shown in Fig. 4-7. It is noticed from Fig. 

4-7 that the peak maximum in the responsivity curve at A.=4.15 µm occurs due to 

the transition from the ground state to the second mini-band in the continuum 

states. The peaks in the responsivity, in Fig. 4-6, at A.=6.2 and 5.75 µm are 

assigned to the transition from the ground state to the wetting layer level, the 

peaks at A.=5 .1 and 4.6 µm are assigned to the transition to the first mini-band and 

the peaks at A.=4.15 and 3.7 µm are assigned to the transition from the ground 

state to the second mini-band. 
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Figure 4-6 - Nonnalized responsivity of the SL-QDIP. 
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Figure 4-7 - The dipole moment of transition between (a) the ground state of n=O and the 

continuum; (b) the first excited state at n= I and the continuum. 

4.4. SL-QDIP RESPONSIVITY OPTIMIZATION 

To study the effect of changing the shape of the quantum dot on the 

normal incidence responsivity, the responsivity is calculated for different height­

to-diameter ratios as shown in Fig. 4-8 such that the ground state energy level is 

kept almost constant and the Fermi level is taken to be 90 me V above the ground 

state energy level in all shapes to keep the occupation of QDs the same equivalent 

to same doping density. Figure 4-9 shows the calculated responsivity versus 

wavelength for various quantum dot shapes while the other parameters in the 

strncture are kept the same, such as the QD density and the heterostructure design. 

Increasing the height-to-diameter ratio leads to increasing the responsivity. So 

taller quantum dots is more sensitive to normal incidence light than shorter ones. 

This is expected since when h/D--+O, the quantum dot layer transforms to a 

quantum well which is insensitive to normal incidence light. Figure 4-10 shows 

the amount of increase in the peak responsivity as a function of the height-to­

diameter ratio. 
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Figure 4-8 - Different height-to-diameter ratio QDs 
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Figure 4-9 - The responsivity in a.u. for the SL QDIP for different quantum dot shapes. 
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Figure 4-10 - The peak responsivity as a function of the height-to-diameter ratio 
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To investigate the increase of the height of the quantum dot with a fixed 

diameter as shown in Fig. 4-11 and with the same doping density, the nonnal 

incidence responsivity is calculated for three quantum dots with the same 

diameter but having different heights. The doping density is kept constant and 

hence the Fermi level is taken to be above the ground state by 90 meV in all 

cases. Figure 4-12 shows the calculated responsivity for the three quantum dot 

stmctures. From the figure, the responsivity decreases with height increase which 

means the quantum dots with smaller size give higher responsivity than the ones 

with larger sizes. So the optimum solution for nonnal incidence peak responsivity 

is to maximize the height-to-diameter ratio of the quantum dot, such that the 

ground state position is kept constant. 

Figure 4-11 - Fixed diameter with different height QDs 
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Figure 4-12 - The responsivity in a.u. for the SL QDIP for different quantum dot heights at 

fixed diameter size 
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CHAPTER 5 DARK CURRENT 
MODELING 

Theoretical modeling of the dark and photocurrent in QDIPs is very useful 

smce it allows studying the dark and photocurrent characteristics at different 

design parameters such as doping density, barrier separation between QD layers 

and the number of QD layers to establish the optimized detector design. Reducing 

the dark current of the QDIP wiil improve the detector detectivity or the signal to 

noise ratio (SNR) and the photoresponse of the detector can be still detectable at 

higher operating temperature. In this chapter, a theoretical model (74] describing 

electron dynamics in QDIPs is presented to obtain the dark current characteristics 

of the RT-QDIP. The model is based on the non-equilibrium Green's functions 

formalism (NEGF) which provides a general framework to study electron 

transport in a non-equilibrium quantum system and in the presence of interactions 

[Ill , 112, and 115]. A self-consistent solution of the charge density and the 

average potential energy through the device by satisfying Poisson's equation has 

been obtained; hence, the Hamiltonian of the QDs is established. The self­

energies due to coupling with the contact layers and due to internal electron 

interactions are calculated and then the Green's functions of the QDs are obtained 

by numerically solving their governing kinetic equations using the method of 

finite differences. A quantum transport equation using the Green's functions is 

formed to calculate the current. The model [74] has been applied to simulate the 

dark current and to extract microscopic infonnation about the density of states and 

carrier distribution in the quantum dot bound and continuum states. The simulated 

dark currents with this model are in good agreement with experimental results 

over a wide range of applied biases and temperatures. The model was also used to 
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study the effect on the dark current and the average number of electrons 

occupying the QDs due to changing the QD doping density, the barrier separation 

between QD layers and the number of QD layers. The model is general and can be 

applied to any QDIP structures as a tool in design and for predictions of their dark 

current characteristics. 

5.1. QUANTUM TRANSPORT MODEL 

Theoretical models to study the current of QDIP performance under dark 

or light conditions have been made [16, 25, 64-69] . In these models, the current is 

obtained from a balance equation between the carrier capture rate and the thennal 

and photoexcitation rates. The calculations of these rates contain fitting 

parameters obtained by comparisons with the experimental results . Microscopic 

models such as those reported in [70, 71], provide a better description of the QDIP 

relevant parameters by taking into consideration the QD shape and size to 

calculate the QD wavefunctions, which in turn can be used to calculate the 

transition rates. The current is calculated using a semiclassical Boltzmann 

equation. 

A quantum transport model [ 111-115] can be used to produce a better 

description of the electron dynamics in QDIPs as it takes into consideration the 

microscopic device structure such as, the shape, size and composition of QDs, 

density of QDs, and doping density as well as to the internal structure design. The 

advantage of such a quantum transport model is that it gives a general framework 

to deal with quantum structure under non-equilibrium conditions such as high 

applied biases and in the presence of internal interactions. The interactions inside 

the device can be electron-electron, electron-phonon or electron-photon 

interactions. According to the type of interactions included, electron scattering 

can be elastic, which causes no energy transitions between different energy states 

or inelastic which leads to energy transitions. The straightforward way of 

including interactions in the system gives considerable flexibility in the types of 
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interactions to be included and the degree of approximations to be used depending 

on the accuracy required in the results and the complexity of the calculations. The 

internal parameters such as density of states (DOS) and electron density, in 

addition to the transmission function and current, can be obtained. 

In next sections, a theoretical model [74] based on non-equilibrium 

Green's functions (NEGF) is given. The model is used first to calculate the DOS 

of the QDs, which then is used to calculate the electron density. A self-consistent 

solution of electron density and the average potential energy satisfying Poisson's 

equation has been achieved, allowing determination of the average potential and 

the estimated quasi-Fermi level throughout the structure. After obtaining the 

potential energy, the Hamiltonian of the QD is obtained and then the Green's 

functions are calculated. Using the quantum transport equation of the Green's 

functions, the dark current of the device is calculated. The model is applied to the 

RT-QDIP device discussed before in the previous chapters to calculate the 

dependence of the dark current on bias at various temperatures and compare with 

the experimental data. This device structure shows better performance in terms of 

dark current and operating temperature compared to other conventional QDIPs 

since the measured dark current values are two orders of magnitude less than for 

conventional QDIP structures [47]. A Green's function model to calculate the 

responsivity of RT-QDIP has been shown in chapter 4. In this model, the retarded 

Green's function contains all the information we need to calculate the DOS and 

the electron density since equilibrium conditions are assumed at low applied 

biases. The retarded Green's function is used to calculate the DOS in addition to 

the wavefunctions in the continuum part of the spectrum. However, at non­

equilibrium conditions at high applied biases and in the presence of interactions, 

the NEGF formalism should be used which combines quantum dynamics with 

dissipative interactions. In NEGF formalism, the retarded Green's function 

describes the dynamics of the electrons inside the device, while the correlation 

Green's function is needed to calculate the current and the electronic occupation 

102 



I PhD Thesis - Mohamed A. Naser McMaster - Engineering Physics I 

of different energy states at non-equilibrium. The calculated dark current 

determined by the given model shows a good agreement with the experimental 

results. The model is also used to study the effect of varying the barrier widths 

between the QO layers, QO doping density and number of QO layers on the dark 

current. The details of the model and the dark current characteristics results are 

presented in the following sections. 

5.2. STEADY-STATE NEGF 

For steady-state transport in a quantum system, The Green's functions can 

be obtained as a function of the total energy. The retarded Green's function 

describes the dynamics of the electrons and its imaginary part gives the localized 

density of states of the system. At equilibrium, these states are occupied according 

to the Fem1i function. However, at non-equilibrium, the states are filled according 

to the correlation or the lesser Green's function. The relation between the retarded 

and lesser Green's functions are through the kinetic equation. The correlation 

functions, lesser ( G<) and greater ( G>) Green's functions are given by [79] 

(5.1) 

where I:< and L> are the lesser (in-scattering) and greater (out-scattering) self­

energy functions of electron due to coupling with the contact layers and 

interactions. The electron and hole densities per unit energy are given by 

n(r; E) =(-ii 2;r )G<(r,r; E) andp(r; E) =(ii 2;r) G>(r,r;E), (5.2) 

and the local density of statesA(r; E) = n(r;E) + p(r;E) = -2 Im[ G,.{r,r;E) J. 
For a cylindrically symmetric system as in the case of conically shaped 

QOIPs, the potential energy in the vicinity of QOs is invariant under rotation 

around QO axis. By considering only local interactions in the system, the self­

energy can be considered independent of rotation angle e. Therefore, the 

dimensions of the problem can be reduced from 30 to 20 problem. In cylindrical 
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coordinate' s representation, the retarded Green's function of the system including 

local interactions is written as [ 111] 

[ E -H
0
P -I:;;u(r,z;E)]G,.(r,r';8,8';=,='; E) = .!.o(r-r')o(8-8}5(=-z'), (5.3) 

r 

where the Hamiltonian operator of the system in cylindrical coordinates is given 

by 

H =-11
2

(..!_8 r 8+ l l 8
2 

+~ 1 8J+V(rz). ) 
op 2 r or m,.(r,=) or m'(r,=) r 2 88 2 8= m=(r,z) oz ' (

5
.4 

and I;m is the retarded self-energy due to localized interactions. In Eq. (5.4), 

V ( r, z) is the potential energy seen by the electron and it is given by the 

summation of the conduction band offsets shown in Fig. 3-14 and the average 

potential energy satisfying Poisson's equation at the specific applied bias, andm' 

and m= are the in-plane and out-of-plane effective masses, respectively. Since the 

potential energy and the self-energy are not a function of 8, then the z-component 

of the angular momentum and the Hamiltonian commute, and hence, the Green's 

function can be written as 

G r ( ·'· 8 8'· - '· . - l "\"' i11(8-8')Gr ( • '·.,. '· E) . . . r,1,, , ... ,z,E)--L...,,e 
11 

1,r, ... ,z, ,n1san111teger. 
2tr n 

(5.5) 

By substituting (5.5) into (5.3) and following the same procedure used before in 

chapter 3 to replace the contact layers by self-energy, we end up with 

(5.6) 

where H
0 

is the matrix representation of the Hamiltonian obtained using the 

finite differences applied to Hop defined in Eq. ( 5 .4) after replacing ( fi / 082
) by 

(- n 2
) as shown in chapter 3. The subscript n associated with the Green's 

functions, Hamiltonian, and self-energies means that the calculations of these 
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matrices are done at a specific value n which is the quantum number of the =­
component of total angular momentum. The Hamiltonian matrix H

11 
represents 

the non-interacting Hamiltonian of an isolated QD inside the virtual cylinder 

enclosing the QD. The coupling between the QD inside the cylinder and the 

surrounding, contact layers at specific n is given by the self-energy L:~ . The 

localized interactions are given by the self-energy L:;;n which is independent of n. 

The term [r] is a diagonal matrix whose diagonal elements are the radial part of 

the position vector of the electron inside the cylinder. 

The diagonal elements of the localized density of states are given by 

A(r,z;E) = -2Im[ G,. (r,r;8,8;=,=;E) J 
=-_!_ ~)m[ G~(r,r;=,z;E) J = ,LA11 (r,z;E). 

1r n n 

(5.7) 

The density of states is obtained from A and is given by 

1 1 f D(E)=-Tr[A(r,z;E)]=- 2trr A(r,z;E)drdz. 
2n 2n 

(5.8) 

The electron and hole densities are given by 

n(r,=;E) =(-il2tr),LG~' (r,r;z,z;E) and 
n 

(5.9) 
p(r,z;E) = (i I 2tr) LG: (r,r;=,z;E) 

n 

5.2.1. CALCULATING THE SELF-ENERGY 

The self-energy ( L:') and scattering functions ( L:< and L'' ) used in 

calculating the retarded ( G') and correlation Green's functions ( G< and G>) are 

due to the coupling with the contact layers and internal interactions. Assuming 
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that they are independent, then they can be respectively written as 2:' = I::1 + L~ni, 

5.2.1.1. Contact layers self-energy 

The Hamiltonian used in Eq. (5.6) is for an isolated QD and hence the 

contact layers are replaced by the self-energy which is given by [74) 

2:~ = rt (EI - H nL r r[1i], (5.10) 

where r is the coupling matrix whose elements are zero every where except at 

the interface points inside the contact layers adjacent to the points inside the QD 

cylinder and H
1
iL is the Hamiltonian of the isolated contact layer. 

ZL 

Zc 

ZL 

.. • • • • • • • • • '• • • ! • 40 nm GaAs Barrier • • 

.I • • • • • • • • • • 
• • • • • • 
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Figure 5-1 - Schematic of the lanice grid in r-z plane used in the mm1erical simulation. The 

surrounding contact layers are replaced by self-energies at the interface planes of the QD 

cylinder 

Figure 5-1 shows a schematic of a discrete lattice-grid of an r-z plane 

passing through the axis of a QD containing one QD layer including the barriers 

that separate it from the previous and adjacent layers. The GaAs barriers above 

and below the cylinder in addition to the semi-infinite contact layer for r> R are 

replaced by self-energies at the interface points at z=ZL, z=ZL+Zc and at r=R. 
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The self-energy due to the semi-infinite contact layer is calculated analytically 

and shown before in chapter 3 and is given by 

, ,. 2G,. 
"'-'nR = t nLR, (5.11) 

and G~ are the elements of the retarded Green's function of the contact layer at 

r=R+a, t = 11.
2 I 2ma2 is the hopping parameter and a is the lattice grid constant. 

The self-energy for the upper barrier is calculated numerically using 

(5.12) 

where H nLc is the Hamiltonian of the isolated upper barrier, L~c is the portion 

of self-energy of the semi-infinite layer L~R , from z=ZL+Zc to ==2ZL+Zc, coupled 

to the upper barrier at r=R-a and G~cl= .='=a are the elements of the retarded 

Green's function of the upper barrier at the interface points with the QD cylinder. 

The self-energy of the lower barrier is given by 

(5.13) 

where H nLo is the Hamiltonian of the isolated lower barrier, L;~0 is the portion 

of self-energy of the semi-infinite layer L:R , from z=O to z=ZL, coupled to the 

lower GaAs barrier at r=R-a and G~0 L.: '=ZL-a are the elements of the retarded 

Green's function of the lower barrier at the interface points with the QD cylinder. 

After coupling these self-energies to the Hamiltonian of the QD, it becomes easier 

to obtain the retarded Green's function and the spectral function by inverting a 

relatively smaller matrix dimension, instead of dealing with the very big matrix 

required by including the QD and the barriers, in a single matrix Hamiltonian. 
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By assummg quasi-equilibrium conditions in the contact layers, the 

scattering rates are directly related to the self-energies calculated above by the 

expression [79) 

(5.14) 

where f(E) is the Fermi function where the states are occupied according to the 

quasi-Fermi level of the contact layers and r 
0 
(£), the transition rates, is related to 

the self-energy by 

(5.15) 

The detem1ination of the quasi-Fem1i levels of the contact layers, which 

represents the boundary conditions of the problem, should be obtained by a self­

consistent solution between the charge density of the device and potential energy 

as will be shown in the next section. 

5.2.1.2. Interactions self-energy 

The self-energy due to interactions depends on the types of interactions to 

be included and the degree of approximations to be made. The scattering 

functions due to electron-phonon interactions in the first order self-consistent 

Born approximation are given by [ 111] 

(5.16) 

where D is the correlation Green's function of the phonons. For localized 

interactions, we have three cases for D(E), 

• D(E) - 8(£) for elastic scattering where there are no energy transitions, 

• D(E) - 8(£ ± tuo
0

) for Longitudinal optical scattering where n(J)
0 

is the 

optical phonon energy, and 

• D(E) - E 28(h(J)n -E) for acoustic phonon scattering where n(J)D is the 

acoustic phonon energy. 
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The dependence of the scattering functions and hence the self-energy on 

the Green's functions leads to the requirement of an iterative solution of the 

interactions and Green's functions. It is expected to have a reduced electron­

phonon scattering in QDIP (the phonon bottleneck effect) due to the 3D 

confinement and large separation between the energy levels of the QD. The 

electron-electron interactions will be treated classically by including the average 

potential obtained by solving Poisson's equation at specific applied bias and 

including the QD layer's space charge, in the total potential energy used in the 

Hamiltonian. So for simplicity, in this model, the interaction is chosen to be 

constant, independent of energy and position, which broadens the energy levels 

equally according to the same scattering rates. The self-energy used in the model 

due to interactions is given by 

"" . h L....int =-l-, 
2r9' 

(5 .17) 

where r 'I' is the scattering time. The corresponding scattering functions are given 

by 

L~1 (£) = ~f (£)r;01 (£) and L~u (£) = -i(l- f (E))r int(£), 

where r int =i ( L:;~ - L~nt ) = .!!:_ . 
r 'P 

5.3. POTENTIAL ENERGY & QUASI-FERMI 

LEVEL 

(5.18) 

The potential energy of the electron in the Hamiltonian is obtained by the 

summation of the band offsets of the conduction bands in Fig. 3-14 and the 

average potential energy due to the applied bias and the space charge of the QD 

layers. The average potential energy satisfies Poisson's equation with specific 

boundary conditions at the contacts. The Poisson's equation of the average 

potential can be expressed as 
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d 2U e2 

- 2 =-(N0 (z)-n(z)), 
dz e 

(5.19) 

where N0 and n are the doping and electron densities inside the QD array. The 

boundary conditions at the n +-GaAs contacts are 0 and e Vbias, where Vbias is 

applied bias. The electron charge density in the device is composed of the QD 

charge density localized in the QD layers and the charge density due to coupling 

with the contacts. The doping and QD electron densities are concentrated in the 

QDs and the wetting layers and hence can be approximated by o functions at the 

positions of the QD layers. The electron densities due to coupling with the left and 

right contacts, nL and nR respectively, are obtained from the average density of 

states due to the coupling with the contacts which are occupied according to the 

Fenni levels of the corresponding contacts. So the doping and electron densities 

can be written as 

M M 
N0 (=)= L:L.:0 0(=-kW) andn(z)=nL(z)+nR(z)+ LLQoNko(z-kW), (5.20) 

k=I k=I 

where Wis the separation between QD layers, Mis the number of QD layers, L.:0 

is sheet doping density, L:Qo is the QD density and Nk is the average number of 

electrons per dot in the k-layer. Since the charge densities nL and nR depend on 

the average density of states which depend on the average potential energy 

through the device, a self-consistent solution between the charge density and 

potential should be obtained. The average number of electrons per dot is obtained 

by integrating the product of the density of states of the QD, which is asswned to 

be the same for all QDs in all layers, and the Fermi function, and it is given by 

Nk = f D(E).~(E)dE. (5.21) 

The states are occupied according to a local quasi-equilibrium Fem1i level. 

According to the discussions of the capture rates and average occupations of QDs 
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by electrons in different QD layers in [69], when the energy relaxation length of 

electrons in the QD array is comparable to or longer than the array length, the 

average electron energy and capture rates are determined by the average electric 

field throughout the device. So in the model described in this chapter, the quasi­

Fermi level during the iterative solution of the potential and the charge density 

will be adaptively modified such that it keeps uniform electron occupation 

through the QD arrays and be continuous with the equilibrium Fermi levels at the 

contacts. So in the middle of the device, the quasi-Fermi level will follow the 

average potential energy keeping the separation between them constant value. 

This constant value is taken to be the same as the separation between the 

maximum value of the potential, and the value of the Penni level in the contact 

that has the higher potential. However near the contacts, the separation between 

the average potential and quasi-Fermi changes such that they equal their 

corresponding values in the them1al equilibrium contacts. 

Assuming a constant Fermi level in the contacts leads to having zero 

current inside the contacts J = -aV E1 while there is a current inside the device 

which is injected from the contacts. This non-conservation of the current is due to 

fixing the values of the Fermi levels at the device-contact interface and deeply 

inside the contacts. Actually the Fenni level is not constant at the interface and the 

current decays exponentially deep inside the contacts. However, assuming 

equilibrium boundary conditions simplifies the solution. More discussion on 

boundary conditions can be found in [112, 115]. Therefore, the current will be 

calculated in the central period of the QD array where the electric field equals its 

average value E = V:,pplied I Ldevice . 

The charge densities due to coupling with the contacts are given by [ 115] 

(5.22) 
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where ( Ain ( E)) and ( Ain ( E)) are the average density of states due to coupling 

with the left and right contacts respectively, and /L and /R are the equilibrium 

Fermi functions of the contacts. The average density of states is given by [ l l l] 

E 

( Ai~(=;E))=_!!!___2 f A~~(z; E')dE', 
. 2trh . 

-er, 

where 

A ID Gr r Ga 
LR - ID LR ID · 

The ID Green's function is given by 

fr d- ,. ,. ..,,. , ' 
[ 

2 ' ] E +--2 -U(z)- L,L -L,R (Jrn(z, = ;E) = 8(z-z), 
2m d= 

(5.23) 

(5.24) 

(5.25) 

where L.~.R and r LR are the ID self-energies and the corresponding transition 

rates due to coupling with the left and right contacts and they are defined and 

calculated before in chapter 4 when the ID transmission function was calculated 

in Eq. (4.9). So the coupling between the Green's function and Poisson's 

equation through the potential energy and the charge density leads to the 

requirement of a self-consistent solution, as shown in the flow-chart in Fig. 5-2. 

The equations of Green's function and Poisson are solved numerically using the 

method of finite differences. 
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Initial values of U(z) and E~z) "linear drop" 

Calculate the 1 D Green's function 

Calculate the electron charge density 
of QDs and due to contacts 

Calculate U(z) using Poisson's equation 

Check convergence of the updated 
U(z), n(z) and Ef(z) 

No 

Stop 

Figure 5-2 - Flow chart of the munerical solution of the electron density and average potential 

energy. 

5.4. CURRENT CALCULATION 

The terminal current per unit energy injected from a contact L in terms of 

the spectral function and lesser Green's function is given by [79] 

inL (E) = ; Tr [ ( -i L:~) A0 - 1 nL ( -iG:)] . (5.26) 

Equation (5.26) can be used to calculate the current that exits the QD cylinder to 

the contact layer at z=O, crossing the double barrier structure adjacent to the QD. 

Since the interactions used in the model are constant, a simple form for the current 

can be obtained by substituting 

(5.26), after which we get 
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and this can be written as 

Equation (5.28) is the Landauer formalism which can be used to calculate the 

current. For constant interactions where we do not include electron-electron or 

electron-phonon interactions that cause transition between energy states, the 

NEGF gives a straightforward way of calculating the transmission function and 

hence the current which can be calculated from Eq. (5 .28). When including non­

constant interactions, the current should be calculated from the general equation 

(5.26). In equation (5 .28},fo and fd are the Fermi functions corresponding to the 

quasi-Fermi level of the contact layer at z=O and at the QD. From the wetting 

layer to the top of the cylinder, through the QD height, the quasi-Fermi level of 

the dot is kept the same as its average value in the middle of the QD. The 

transition rate r" used in Eq. (5.28) includes the transition rates of the contact 

layers from the wetting layer to the top of the cylinder at 1-R and z=Zc. The total 

current per unit energy and the transmission function are obtained by the sum over 

all the values of the quantum number n and is given by 

(5 .29) 
II II 

The total current exit the cylinder and the current density of the device are given 

by 

(5.30) 
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5.5. RT-QDIP DARK CURRENT RESULTS 

The self-energies of the contact layers coupled to the QD Hamiltonian at 

the interface surfaces at r=R, z=Zc and z=O, which are I~R, I;;c and I:0 are 

calculated from Eqs. (5.11), (5.12) and (5.13) respectively. The self-energy of the 

semi-infinite contact layer I~ has an analytical solution as shown in chapter 3, 

while I:c and I:o are calculated numerically. The interaction self energy 

I;~1 = -1Tim I 2 is taken the same for all points inside the cylinder where 

rint = h I r rp = 2 me V corresponding to scattering timer rp = 3 .3 ps . The matrix 

representation of the spectral function can be used to obtain the DOS such 

.""r, N: 

thatD(E) = "'f."'f.JaxA(ja,ka;E). Figure 5-3 shows the calculated DOS of the 
j=I k=I 

QD in both bound and continuum energy ranges. As shown in the inset of Fig. 5-

3, there are three bound states lying below the conduction band edge of GaAs, 

zero level, and the continuum part of the DOS contains the contributions of the 

resonant levels in the quantum well in addition to localized states due to the QD 

potential. 

1.4 

1 .2 

1 

~0.8 
0.6 

0.4 . 

0.2 ' 

-~00 - -100 0 
E in meV 

ift(10_¢tl.IA, .......... 

100 200 

Figure 5-3 -The DOS vs energy E of the QD. The inset illustrates the position of the bound 

states of the QD and the resonant levels in the quantum well relative to the CB ofGaAs. 
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The DOS shown in Fig. 5-3 is used to calculate the average number of 

electrons per dot from Eq. (5.21) which is used in calculating the average 

potential energy using Poisson's equation. The Fermi levels in the (n+ GaAs) 

(
Ee-Er) 

b . d C'. N kT I 18 -3 . l contacts are 0 tame ifOin 71contacc = ce , W lere nconcacc = 2X10 Cm IS t le 

doping density, Ne is the effective density of states in the conduction band of 

GaAs, which is temperature dependent, and Ee is the conduction band energy of 

GaAs which is taken to be zero. At all applied biases and temperatures, an 

iterative solution of the average potential energy, quasi-Fenni level and electron 

charge density is obtained as described in the model according to the flow chart of 

Fig. 5-2. 
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Figure 5-4 - (a) The average potential energy including the band offset variations and the 

quasi-Fermi level profile through the device at an applied bias of3 V and T = 160K. (b) The 

average electron charge density of the QD array, including charge density due to coupling 

with the contacts, is given at an applied bias of 3 V and T = l 60K. 
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The average potential energy, quasi-Fermi level and electron charge 

density are shown in Fig. 5-4. The results presented in Fig. 5-4 are obtained at a 

temperature T of 160 K and the applied bias of 3 volts. The results show that the 

QD layers are unifonnly occupied by electrons and the QD layers near the right 

contact are in thermal equilibrium with the contact as their quasi-Fermi level 

equals the Fenni level of the contact to satisfy the boundary conditions and to 

have the charge density at the device contact interface equal to the electron charge 

density just inside the contact for charge continuity. The variation of the band 

offsets is added to the average potential energy to illustrate the positions of the 

QD layers. In the central QD layer, the electric field almost equals its average 

value Vapplied I Ld•vic• . The average potential energy and quasi-Fenni level of the 

central QD period calculated at a specific value of applied bias and temperature 

are used to calculate the total electron potential energy and scattering functions of 

the contact layers and interactions. The average potential energy is added to the 

band offset variation shown in Fig. 3-14 to obtain the potential energy used to 

calculate the Hamiltonian of the QD cylinder. The quasi-Fermi level is used to 

calculate the scattering functions L< and I > of the contact layers and interactions 

from Eq. (5-14) and Eq. (5-18) respectively. 

Figure 5-5 - Measured dark current density as a function of bias in the temperature range 80-

300 K [47). 
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Bias (V) 

.• 

3.0 3.5 

Figure 5-6 - Comparison between the calculated dark current density by the model and 

experimentally measured ones at various temperatures. 

Experimental results of the dark current density of RT-QDIP as a function 

of applied bias and temperature are shown in Fig. 5-5 and are from Ref. [47]. A 

slight asymmetry of the measured dark current with opposite bias polarities can be 

due to the asymmetry of the dot heterostructure. The dark current density 

calculated from our model as a function of the applied bias and various 

temperatures are compared with the experimental results in Fig. 5-6. The 

experimental data used in Fig. 5-6 are extracted from Fig. 5-5. The results of the 

model show good agreement with the experimental results, especially for bias 

values above 0.5 Volt. The sensitivity of calculating the average potential energy 

and quasi-Fenni level on the electron charge density is larger at small bias values 

than for large biases. The average electron charge density in the device is 

calculated from Eqs. (5.21) and (5 .22) using numerical integration with respect to 

energy. The energy step used is 1 me V and since increasing the temperature 

makes it small compared to kT, the accuracy of the numerical integrations used to 

calculate the charge density and the dark current increases with increasing 
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temperature. Also the convergence criteria chosen in obtaining the average 

potential energy and quasi-Fermi level using the flow-chart in Fig. 5-2 is to have a 

relative error of 1 percent in the calculated quantities. The same tolerance, grid 

step and energy step are used in the calculations of the dark currents for all bias 

values and temperatures. Improving the accuracy of the results can be achieved 

by decreasing the values of the tolerance and grid step used in addition to using 

smaller energy steps. This enables calculating the dark current and electron 

density at more energy values which improves the accuracy, but this requires 

significantly more memory usage and longer processing/computation time. 
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Figure 5-7 -The current exiting the QD cylinder per unit energy at T=l60 Kand bias=0.5 V. 

The inset shows the transmission function and the DOS at the same bias and temperature 

values. 

Figure 5-7 shows the current per unit energy that exits the QD cylinder at 

an applied bias of 0.5 volts and a temperature T of 160 K. The inset shows the 

transmission function from the wetting layer to the cylinder surface at z=O through 

the double barrier structure and the DOS. The current curve has its peak at the 

position of the resonant levels in the quantum well above the QD. The splitting of 
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the peak of the current density per unit energy is due to resonant tunneling 

through the energy levels of the QW above the QD. The separation between the 

two peaks is comparable to the separation between the energy levels of the QW 

appeared as two step functions in Fig. 3-18. The QD bound state appeared in the 

continuum part of the spectrum of the DOS in the inset has also contributions on 

the shape of the current density peak. 
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Figure 5-8 - The average number of electrons per dot as a function of applied bias at different 

temperature values. 

To improve the performance of the detector, the dependence of the 

responsivity and dark current on different design parameters should be obtained 

and optimized. Concerning the dark current, quantitative theoretical predictions of 

the dark current characteristics for different design parameters are given. The 

model has been used to study the effect of changing the design parameters on the 

dark current and to extract internal information about carrier distribution in QDs 

at different bias voltages and temperatures. The effect of varying the applied bias 

and temperature on the number of electrons occupying the QD is shown in Fig. 5-

8. The results show an increase of the average number of electrons per dot with 

the applied bias, however there is no significant change with temperature at a 
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specific value of bias. From the dark current results of Fig. 5-6, there is significant 

increase of the current with bias and temperature. 
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Figure 5-9- Occupation ofQD states as a function of electron energy at bias=l V and T=l60 

Kand 300 K. 

In order to illustrate how the average number of electrons per dot almost 

does not change with temperature while the dark current increases significantly 

with temperature, the occupancy of QD states or the number of electrons per unit 

N, N, 

energy which is given by n(E) = LL}a x n(ja,ka;E) is calculated. Figure 5-9 
j =I k=l 

shows the occupancy of the QD bound and continuum states at an applied bias of 

I V and at T= 160 K and 300 K. The total number of electrons is almost the same; 

however, increasing the temperature leads to redistribution of electrons among the 

states such that the bound states of high energies and the continuum states become 

more occupied at higher temperatures, which leads to an increase in the dark 

current. The peaks appeared in fig. 5-9 are corresponding to the bound states of 

the QD as appeared in the DOS in Fig. 5-3. However, the positions of the peaks in 

Fig. 5-9 are shifted due to the applied bias which increases the average potential 
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energy and hence shift the energy levels of the QD. Figure 5-10 shows the 

occupancy of QD energy states at a temperature of 160 K and bias values 0.5 V 

and 3 V. Increasing the applied bias leads to an increase of the occupancy of all 

bound and continuum states as a result of the shift of the QD Fermi level toward 

the conduction band edge. The broadening of the Lorentzian shape of the 

occupancy of the QD states is dependent on the value of !int . The value of 

r int used in the model is 2 meV. Using larger values makes the shape of the levels 

broader and smaller values gives narrower levels. The broadening of the levels is 

related to the scattering time. 
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Figure 5-10 - Occupation of QD states as a function of electron energy at T= 160 K and 

bias=0.5 V and 3 V. 
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Figure 5-11 - The average number of electrons per dot as a fonction of applied bias at 

different doping densities. 

The model is also used to study the effect of varying the doping density, 

barrier separation between QD layers and number of QD layers on the dark 

current characteristics. Figure 5-11 shows the effect of using different doping 

densities on the QD average occupation number of electrons. Four different QD 

sheet doping densities are used. The doping densities used are defined relative to 

the QD density such that .L:0 I .L:QD = 0 for undoped layers in the experimental 

results shown in Fig. 5-5. Also given are the occupation numbers for .L:D l.L:QD = 

0.5, l and 2. The dark current density at the various doping levels as a function of 

bias is shown in Fig. 5-12. The dark current at 0.5 V shows an increase of almost 

one and two orders of magnitude corresponding to increasing the relative doping 

density from 0 to 1 and to 2 respectively. The increase in the current becomes less 

for higher applied biases. 
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Figure 5-12 - Dark current density vs. applied bias at T=l60 Kand at different doping 

densities. 

Figures 5-13 and 5-14 show the variation of the dark current density vs. 

applied bias with varying the barrier separation between the QD layer and the 

number of QD layers respectively. Increasing the barrier separation between QD 

layers or increasing the number of QD layers leads to a decrease of the dark 

current due to the decrease of the average electric field inside the device. The 

variation of the dark current becomes more pronounced at higher applied biases. 
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Figure 5-13 -Dark current density vs. applied bias at T=l60 Kand at different barrier 

separations, B. 
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Figure 5-14 - Dark current density vs . applied bias at T=l60 Kand at number ofQD 

layers= IO and 15. 
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CHAPTER 6 PHOTOCURRENT 
MODELING 

Improving the responsivity and detectivity of QDIPs will enhance the 

detector performance and allow for the detection of low level optical input signal 

and operation at higher temperature. Optimizing the responsivity and detectivity 

requires obtaining the dark and photocurrent characteristics of the detector for 

different design parameters such as the QD doping density and the separation 

between QD layers. Theoretical models to study the current characteristics of 

QDIP under dark and illumination conditions have been made [64-69). The current 

is calculated from a classical transport equation that includes balanced thermal 

and photoexcitation rates, and capture rates that are calculated classically with 

fitting parameters obtained by comparison with experimental results. The semi­

classical Boltzmann equation model was used in [70, 71] to calculate the dark 

current and responsivity of a planar array QDIP structure. The microscopic device 

structure was used to calculate the electronic wavefunctions for calculating the 

thennal and optical transitions which are used to determine the current. Using a 

quanh1m transport model to obtain the current characteristics in QDIPs is 

preferable since it fairly describes the quantum transport phenomenon playing a 

significant role in the perfonnance of such nano-devices, such as resonant 

tunneling and quantum interference, and considers the microscopic device 

structure including the shape and size of QDs, heterostructure device structure and 

doping density. 

Theoretical modeling of the photocurrent of a resonant tunneling (RT) 

quantum dot infrared photodetector (QDIP) based on the non-equilibrium Green's 

function (NEGF) is presented in this chapter. The interaction with light used in 
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the model is based on the first order dipole approximation and the Fermi-golden 

rule which is used to obtain the transition rates due to photon emission or 

absorption. The bound states of the QD are obtained by solving numerically the 

eigenvalue problem of the Hamiltonian of the QD, while the continuum states are 

obtained from the retarded Green's function . The in-scattering and out-scattering 

self-energy functions due to photon interactions are calculated from the total 

transition rate and the quasi-Fermi level of the QD. The Green's functions of the 

QDs are obtained by numerically solving their governing kinetic equations using 

the method of finite differences. A quantum transport equation using the Green's 

functions is formed to calculate the dark and photocurrent. The model has been 

applied to simulate the dark current and responsivity of the RT-QDIP at different 

temperatures and applied biases. The simulated dark current and responsivity with 

this model are in good agreement with experimental results. The model was used 

to study the effect on the dark current and the responsivity due to changing the 

QD doping density and the barrier separation between QD layers. The detectivity 

of the detector is obtained for different design parameters to get the best 

performance 

6.1. GREEN'S FUNCTION MODEL 

In cylindrical coordinates representation, the retarded Green's function of 

the system including local interactions is given as [l 11] 

[ E -H
0
P - :L~1 (r,=;E) ]G' (r,r';B,B';z,z';E) = .!..o(r-r')o(B-B')o(z-='), (6. l) 

r 

where the Hamiltonian operator of the system in cylindrical coordinates is given 

by 

H __ f1
2 

( l o r o l l 8
2 j_ l o J V( ) 

op - + 2 , + + r,z . 
2 rorn{(r,=)8r mr(r,=)r ae- 0=m=(r,z)8z 

(6.2) 

For a cylindrically symmetric system as in the case of conically shaped QD-based 

RT-QDIP, the potential energy in the vicinity of QDs V(r,z), in Eq. (6.2), 1s 
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invariant under rotation around QD axis and can be considered independent of 

rotation angle 8. By considering that the interactions with the light and the lattice 

are only local, the self-energyL:~11 (r,z;E), in Eq. (6.1), can be considered 

independent of rotation angle 8. Therefore, the dimensions of the problem can be 

reduced from 3D to a two-dimensional problem which simplifies the numerical 

calculations. In Eq. (6.2), V(r,z) is the potential energy seen by the electron and 

is given by the summation of the conduction band offsets between the QD 

material and the surrounding barrier materials, and the average potential energy 

satisfying Poisson's equation at a specific applied bias as shown before in chapter 

5. The Green's function can be written as 

G,.( ·'·8 8'· - '7'·£)--1-" ,,,<e-o·ic,.( '·- '·£) . . r,1 , , ,-,-, - ~e ,, r,r , ... ,z, , n is an integer. 
2ll" n 

(6.3) 

The retarded Green's function at a specific quantum number n can be 

obtained by substituting (6.3) into (6.1) and following the same procedure used 

before in chapter 5 to replace the contact layers by self-energy, we get 

(6.4) 

where H
0 

is the matrix representation of the Hamiltonian obtained using the 

finite differences applied to H
0
Pdefined in Eq. (6.2) after replacing (a 2/ae2

) 

by(- n 2 
) . The subscript n represents the quantum number associated with z­

component of total angular momentum and all matrices corresponding to the 

Hamiltonian, self-energies and Green's functions are calculated at a specific value 

of n. The term [r] is a diagonal matrix whose diagonal elements are the radial 

part of the position vector of the electron inside the cylinder. The Hamiltonian . 
matrix H

0 
is the non-interacting Hamiltonian of an isolated cylinder 

encompassing one QD. Zero boundary conditions are taken for H
0 

at the 

cylindrical surface, and so the coupling between the QD inside the cylinder and 
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the surrounding contact layers at specific n, is compensated by adding the self­

energy I~ at the cylindrical surface. The internal interactions inside the cylinder, 

electron-photon interaction and interaction with the lattice, are assumed to be 

localized. The interaction with light is modeled using the first order dipole 

approximation and the Fern1i golden rule, and it depends on n, while the 

interaction with the lattice is taken to be constant, independent on energy and 

position as assumed before in chapter 5. The localized interactions are given by 

the self-energy I;~1 = I:_light + I;~rtice , which is the summation of the interaction 

with light and lattice respectively. From the retarded Green's function, the 

localized density of states is calculated from 

A(r,=; E) = -2Im[ Gr(r,r;B,B;z,z;E) J 
= _ _!_ ~)m[ G~(r,r;z,z;E)] = L4(r,z;E) 

Ji n n 

The lesser and greater Green's functions are given by 

G: = G~ ( r: + I:_light + I~ttice) GI~ 
G~· = G,: (I: + I:_1igh1 + I;~uice) G: , 

(6.5) 

(6.6) 

where the I < and I > are the lesser and greater self-energies corresponding to the 

in-scattering and out-scattering processes, respectively. The calculations of these 

functions will be given in the next section. The electron and hole densities per unit 

energy are related to the lesser and greater Green's functions, and are given by 

n(r,z;E) = (-i I 27i) L G:(r,r; =.=;E), 
n 

and (6.7) 

p(r,z;E) = (i I 27i) L G:(r,r;=,z;E) 
n 
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6.1.1. CALCULATING THE SELF-ENERGY 

The self-energy ( 2:') and scattering functions (I< and 2:") m the 

cylindrical system that include one QD inside have contributions from the 

coupling with surrounding contact layers outside the cylinder, and the internal 

interactions with the lattice and the light. Assuming that these sources are 

independent, the self-energy and scattering functions can be written as 

0 

,,. ,,. ,, ,,. 
L = L 0 .cI + Ln.Jight + L1auice, 

and 

ln0•1Ga0.9As 

In-scattering 
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Quantum dot 
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Figure 6-1 -(a) Schematic of the conduction band profile of the RT-QDIP demonstrating the 

heterostructure of one QD layer and the energy levels of the QD and the quantum well (in 

meV), relative to CB bottom in GaAs; the QD composition is Ino~Ga0 6QAs. (b) Schematic of 

the lattice grid in r-z plane used in the numerical simulation. The surrounding contact layers 

are replaced by self-energies at the interface planes of the QD cylinder. 
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6.1.1.1. Contact layers self-energy 

The self-energy due to coupling with the contact layers at a specific value 

of n at the cylindrical surface as shown in Fig. 6-1 is given by [74, 75] 

,,. t [ 1-1 ] 
L..,1-C1 = r EI - H nL r[rL , (6.9) 

where r is the coupling matrix whose elements are zero every where except at 

the interface points inside the contact layers adjacent to the points inside the QD 

cylinder and H nL is the Hamiltonian of the isolated contact layer. The calculations 

of the self-energies L~, L~. andL~, at the cylindrical surfaces 

z = 0, = = Zc, and r = R respectively, from Eq. (6.9) have been shown in chapter 

5. By assuming that the contact layers are at quasi-equilibrium conditions, then 

the scattering rates are directly related to the self-energies calculated above by the 

expression [79] 

(6 .10) 

where /(£)is the Fermi function where the states are occupied according to the 

quasi-Fermi level of the contact layers andfn_c1(E), the transition rates, is related 

to the self-energy by 

( 6.11) 

The detennination of the quasi-Fenni levels of the contact layers, which 

represents the boundary conditions of the problem, should be obtained by a self­

consistent solution between the charge density of the device and potential energy 

as shown in chapter 5. 

6.1.1.2. Interactions self-energy 

In this model, for simplicity, the self-energy due to interactions with the 

lattice is chosen to be constant, independent of energy and position, which 
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broadens the energy levels equally according to the same scattering rates . The 

self-energy used in the model due to interactions with the lattice is the same at 

every lattice point of the grid in Fig. 6-1 , and is given by 

"' r • h L.Janice = -z -
2 

' 
T'fl 

(6.12) 

where r 'I' is the scattering time. The corresponding scattering functions are given 

by 

L~nic.(E) = if(E)rlauic.(£), and 

L~uice(E) = -i(l- f(E))rLmice(E), 
(6.13) 

where r ianice =i ( L;~uice - L~uice) = !!..._ . This simplified way of modeling the self­
r tp 

energy and scattering functions for lattice interaction inside the cylinder simplifies 

the calculations, since the self-consistent Born approximation of modeling the 

interactions with optical and acoustic phonons requires an iterative solution 

between the Green's function and the self-energy functions. The model assumes 

elastic scattering, since there is no energy transition between different energy 

states, and the transition between energy states through the in-scattering or out­

scattering processes are assumed to be due to interaction with light through 

photon absorption and emission respectively. 

The interaction with light is treated within the first order dipole 

approximation and Fenni golden rule, and the transition rate between an initial 

and final state due to photon absorption or emission is given by [109, 110] 

(6.14) 

where nw is the photon energy, Em and £
0 

are the energies of the initial and 

final states, e is the polarization direction of the incident light, 

Jl111" =£.(1//mle,dl//,,) is the electric dipole moment and a is the proportionality 
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constant which relates the transition rate to the imaginary part of the self-energy. 

The width of the broadening of an energy state described by the imaginary part of 

the self-energy gives the decay rate of this state. For a cylindrically symmetric 

problem, the wavefunctions can be assmned in the form 

'¥
11 
(r , 8,z) = e;ne cp

11
(r, z ) . (6.15) 

Therefore, for normal incidence light, the electric field is polarized in the in-plane 

directions, that is, x- or y-directions, and for example, for the x-polarized electric 

field, the dipole moment is given by 

I'm,, = ~-(•//m led If/ m) = ( eimB 'Pm(r, z )lexle;"e 'Pn (r, z)) 
= e( ei(u±l)B 'Pn±I (r, z) Ir cos Bl ei118 (/Jn (r , =)) (6.16) 

Equation (6.16) gives the selection rnle for optical transition for normal incidence. 

The allowed energy transition between the bound and continuum states differ in 

the quantum number n by± 1, otherwise the integration over 8 will make the 

dipole moment vanish. The bound states in the quantum dots are calculated by 

solving an eigenvalue problem assuming zero boundary conditions at the 

cylinder's surface, while the Green's function method is used to calculate the 

wavefunction in the continuum part as shown in chapter 4. The transition rate, 

which is the summation of the in-scattering and out-scattering rates, of the state 

with quantum number 11 and energy E, is given by 

(6.17) 

which gives the summation of the in-scattering transition rate ( -i}:~-lighc) to the 

state (n, E) from the bound state in the QD, '//n±l' due to photon absorption, and 

the out-scattering rate ( i}:~-lighc) from the state (n, E) to the bound state '//n±I due to 

a photon emission. The corresponding scattering functions, assuming that the QD 

is occupied according to a quasi-equilibrium Fermi function are given by 
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I:.Jigbt (£) = lT n-lighr (E)f (E,,±1 ), 

and 

I :_ligbt (£) = -lT n-light (E)( 1-f (En±I) )-

Mc Master - Engineering Physics I 

( 6.18) 

The in-scattering function is the multiplication of the transition rate and the Fenni 

function at the bound state that gives the occupancy of the bound state assuming 

that the continuum state is empty, while the out-scattering function gives the 

capture rate from the assumed occupied continuum state to the empty bound state_ 

The summation of the in-scattering and out-scattering functions gives the decay 

rate of the state, which is the total transition rate such that 

r n-tigh1 ( E) = -11:~-Iighr ( £) + iI: _lish1 ( E) , (6-19) 

Equations ( 6.17), ( 6.18), and ( 6.19) show that the decay rate or the total transition 

rate of the state due to interaction with light is dependent only on the dipole 

moment and independent of temperature, while the in-scattering and out­

scattering parts of the total transition rate depend on temperature through the 

Fermi function. The absolute value of the proportionality constant a was found to 

not affect the actual value of the responsivity which mainly depends on the ratio 

between the in-scattering and out-scattering functions and the total transition rate. 

Increasing the magnitude of this constant leads to a smoother responsivity curve 

without actually affecting its magnitude significantly. So choosing a suitable 

value fora , corresponding to decay rate of around ~100 meV, gives very 

acceptable results. The self-energy due to the interaction with the light is given as 

I~-ligb1 (£)=-if n-Iigh1 (E) I 2 · (6.20) 

The self-energy and scattering functions I~-lighi, I~-lighr, I:_Jighc, and f n-Iigbc given by 

equation (6.17), (6.18), and (6-20) are assumed to have non-zero values only at 

the gray area representing the QD, where photoexcitation and capture occur, and 

are zero elsewhere. 
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6.2. CURRENT CALCULATION 

The tenninal current per unit energy injected from a contact Lat a specific 

quantum number n in tenns of the lesser Green's function and the spectral 

function or the greater Green's function [ 111] is given by 

;nL (E) = !!._ Tr[(-i L~) A0 -f,!L (-iG: )] 
h 

= ;Tr[(-iL~)(;c:)-(;L::i_)(-;c,~)] 
(6.21) 

Equation (6.21) gives the terminal current per unit energy that enters the QD 

cylinder from the contact layer L. It can be explained using simple arguments. In 

the first term ( -; L::r.) is the rate of in-scattering into an empty state from the 

contact layer L, and ( iG;) is the density of empty states. Therefore, the first term 

gives the actual rate of in-scattering and in the same way, the second term gives 

the rate of out-scattering and the difference gives the net inflow of electrons. 

Equation (6.21) can be used to calculate the current that exits the QD cylinder to 

the contact layer at z=O, crossing the double barrier structure adjacent to the QD. 

In the absence of light, the terminal current is the dark current 

and L~-lighi = L~-light = 0. Since the interactions with the Lattice used in the model are 

constant, the Landauer formula can be obtained from Eq. (6.21) to calculate the 

dark current as show before in chapter 5. The dark current per unit energy at a 

specific value of n at the contact layer at z=O is given by 

;no-dark (E) = * T.i (E)(fo(E)- JAE)), 

and 

7;1 ( E) =Tr [ f 00G~· (f 0 + f 1anice) c:]. 
(6.22) 

In Equation (6.22), fo and fd are the Fem1i functions corresponding to the quasi­

Fenni level of the contact Layer at z=O and at the QD respectively. 
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In the presence of light, Eq. (6.21) can be used to calculate the total tem1inal 

current in the contact layer at z=O. The photocurrent part can be obtained from Eq. 

( 6.21) by using the in-scattering and out-scattering function due to light 

interactions in the lesser and greater Green's function, and is given by 

(6.23) 

The photocurrent given by Eq. (6.23) is the total current minus the dark current, 

and the total terminal current is given by 

inO (£) = inO-dark (£) + inO-pboto ( £) · (6.24) 

The total terminal current flowing from the contact layer to the cylinder is 

obtained by the sum over all the values of the quantum number n and the 

integration over all energy values, and is given by 

10 = f i0 (E)dE and i0 (E) = 2)00 (£). (6.25) 
II 

6.3. DETECTIVITY 

The detectivity of the detector can be calculated from [ 4 7] 

R A
112 

[ Hz112] D = P _ci_n_. __ 
8112 w-' , 

I 

(6.26) 

where RP is the peak responsivity, S; is the noise density spectra and A is the 

detector area. The noise density is related to the dark current, as shown 

experimentally, through the relation [49] 

s l 
g= I +-, 

4qldark 2N 
(6.27) 
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where g is the photoconductive gain, and N is the number of QD layers. For a 

large value of N, the second term can be neglected compared to the first term and 

the noise density can be approximated by 

(6.28) 

6.4. RT-QDIP PHOTOCURRENT RESULTS 

The model is applied to the RT-QDIP reported in [47, 48]. A schematic 

diagram of the conduction band profile of one QD layer of the RT-QDIP is shown 

in Fig. 6-r(a) and its description was given before in the previous chapters. 

The measured responsivity of the RT-QDIP at 2 V applied bias and at 

different temperatures (48] is shown in Fig. 6-2. The detector has a response at 6 

µm, a far-infrared response at 16 µm in addition to weak responses at 8 and 11 

~Lm. The peak detectivity measured is 2.4x1010 cm.Hz112 I W for the response at 6 

µmat 80 K and 2 V applied bias (48]. The responsivity at 16 µm increases with 

temperature due to the increase of the occupation of the second excited states and 

disappears at low temperatures. The 300 K responsivity at 16 ~Lm is 0.16 A/Wand 

the detectivity is-107 cm.Hz1
i
2 I W (48]. 
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Figure 6-2 -The measured responsivity of the RT QDIP [48). 
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The response at 80 Kasa function of bias is shown in Fig. 6-3(a) (47]. The dark 

current characteristics of the detector are shown in Fig. 6-3(b) (74] . The 6 µm 

peak increases with bias from 0.05 A/W at 2 V to 0.3 A/W at 3 V, while the 

corresponding dark current increase is much larger at the same temperature and 

applied bias. Increasing the applied bias will improve the responsivity, but will 

decrease the detectivity due to the bigger increase of the dark current. 
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Figure 6-3 - (a) The measured responsivity of the RT-QDIP at the bias range from 2 to 4 V 

[47]. (b) The dark current of the RT-QDIP at various bias and temperatures by both the model 

[7 4] and measurements [ 4 7). 
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To interpret the responsivity curve in Fig. 6-2, the number of states per 

unit energy in the cylindrical volume shown in Fig. 6-l(b), is calculated and 

shown in Fig. 6-4. The retarded Green's function at each value of n is calculated 

from Eq. (6.4) using a matrix inversion, and from which the localized density of 

states is obtained at different values of n from Eq. (6.5). The density of states 

shown in Fig. 6-4 is then obtained by integrating over the space of the cylindrical 

volume of the localized density of states. The details of the calculations are 

described before in chapter 3. The QD has 3 bound states. At zero applied bias, 

the ground state is at E=-178 meV, relative to the CB edge of GaAs, 

corresponding to n=O. The first excited state is at E=-109 meV corresponding to 

n=l , while the second excited state is at E=-45 meV, corresponding to n=O and 2. 

The transition between the three bound states and the continuum states gives the 

peaks appearing in the responsivity curve. 
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Figure 6-4 - The density of states of the RT QDIP. The bound states are from the 

contributions of the terms in Eq. (5) corresponding to n=O, I, and 2. The second excited state 

has contributions from n=O and n=2 as they are degenerate. The continuum states for E>O has 

contributions from all terms in the series in Eq. (5) . 
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Using the model described above, the calculated responsivity at 2 V 

applied bias and at three different temperatures is given in Fig. 6-5. The model 

gives peak responses at 6 µm and 16 µmin addition to two smaller peaks at 8 µm 

and 11 µm. The positions of the peaks as well as the relative amplitude of the 

peaks show good agreement with the experimental data in Fig. 6-2. The 

responsivity curve in Fig. 6-5 is obtained by the summation of all photocurrent 

components at different values of n due to the optical transitions between the 

bound states of the QD and the continuum states. 
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Figure 6-5 - Calculated responsivity by the model at different temperatures and 2 V applied 

bias. 

The in-scattering functions due to the transitions from different bound 

states to the continuum states at 2 V and 300 Kare shown in Fig. 6-6. For photon 

energy nm = he , the transition from a bound state corresponding to n and energy 
,.i 

E. will be to a continuum state corresponding to n ± 1 and energy E such 

that 7 = E - E • . The in-scattering function I~1 from the ground state at n=O to 

the continuum states at n=l as a function of the photon wavelength is shown in 

Fig. 6-6(a). The mid-infrared contribution of the responsivity at the 6 µmis due to 
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the transition from the ground state of the QD. Figure 6-6(b) shows the in­

scattering functions from the first excited state at n= 1, to the continuum states 

corresponding to n=O and n=2. The two transitions give the peaks in the 

responsivity at 8 µm and 11 µm. The far-infrared peak at 16 ~Lm is obtained due to 

the transitions for the second excited state at n=O to the continuum states at n= 1 

and the transitions from the second excited state at n=2 to the continuum states at 

n= 1 and n=3 as shown in Fig. 6-6( c) and ( d). The in-scattering functions L:~, and 

L:;, are added together since the excited states corresponding to n=O and 2 have 

the same energy and the transitions from both of them to the continuum state at 

n= 1 are correspond to the same photon energy. The in-scattering, out-scattering 

and total transition functions L:<, L:> and r are calculated using Equations (17) 

and (18). 

0.7 
(a) 

0 .6 · 

........ 0.5 > 
Q.) 0.4 
E - 0.3 

v "" w 0.2 

0.1 

0.0 
3 4 5 6 7 8 

Wavelength (f1m) 

1.2 1 (c) 
.--.. 
> 1.0 
Q.) 

E 08 ..._. 

v ;:; 0.6 
V-l 
+ ;; 04 v 
w 

0.2 

0 .7 

0.6 

> 0.5 
Q.) 
E o.4 

........ 
c:; 0.3 

\/ .... 
H 02 

0 1 

(b) 

, , 

, . , . , 
' 

__ ,< 
-,. 

- - - ~ ·r "' -,, 

0.0 +--~~-.-::....;::::..-,. _ _...,.__...+--.....-~ 

9 6 

2.0 

> 1.5 
Q.) 

E 
........ 1.0 

0.5 

(d) 

8 10 12 
Wavelength ()1m) 

14 

0.0 0 0 ..,_--r--r--r--r--.--.--.-.-.~.-.-...... 
6 8 10 12 14 16 18 20 22 24 26 6 8 10 12 14 16 18 20 22 24 26 

Wavelength (µm) Wavelength (ftm) 

Figure 6-6 - In-scattering rate functions, as a fimction of the photon wavelength, due to 

electron transition from (a) the ground state at n=O to the continuum at n=I, (b) the first 

excited state at n=I to the continuum at n=O and 2, (c) the excited states at n=O and 2 to the 

continuum at n= I, (d) the second excited states at n=2 to the continuum at n=3. 
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The photocurrent components corresponding to the transition from the 

bound states of the QD to the continuum states at 2 V and 300 Kare shown in Fig. 

6-7. The photocurrent at different values of n is calculated from Eq. (6.23) and it 

is given as a function of the photon wavelength. The superposition of the entire 

photocurrent component shown in Fig. 6-7 gives the responsivity curve in Fig. 6-

5. 
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Figure 6-7 - The different photocurrent components a function of the photon wavelength, for 

the transitions from the bound states of the QD to the continuum states. 

The mid-infrared peak at 6 µm corresponding to the transition from the ground 

state at n=O to the continuum states at n= 1, at 80 K and at different applied biases 

is shown in Fig. 6-8. The splitting of the peak is due to the overlap of the 

wavefunctions in the double barrier and the quantum well. The separation 

between the two peaks at 6 µm and 6.7 µmis - 21 meV which is comparable to 

the observed one. The increase of the responsivity with applied bias is due to the 
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increase of the occupation of the ground state which increases the in-scattering 

rate from the bound to the continuum state and the increase of the electric field 

that increase the transmission function. 
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Figure 6-8 -The calculated responsivity of the RT-QDIP at the bias range from 2 to 4 Vat 

80 K. 

The mid-infrared responsivity at 6 µm and at T=80 K as a function of 

applied bias is shown in Fig. 6-9. The responsivity shows an increase of almost 

one order of magnitude when the bias increased from 1 V to 2 V and again from 2 

V to 4 V. However, the rate of increase of the dark current is much larger, as seen 

in Fig. 6-3, which means lower detectivity values will be obtained at large values 

of applied bias. So, the increase of the applied bias to increase the detector 

responsivity will be limited by having lower detectivity values. 

The detectivity of the detector is calculated from Eq. ( 6.26) using the peak 

responsivity and the noise spectrum. The noise spectrum can be approximated by 

Eq. (6.28) and, obtained from the dark current characteristics and the 

photoconductive gain. The photoconductive gain of the detector is obtained 

experimentally from the measured dark current and noise spectra [49). The 

photoconductive gam used m the model is approximated by the 

relation g =I+ A exp(BV), where A= 10-5 and B=4.6 v· 1
. Figure 6-10 shows the 

approximate photoconductive gain used in the model and the inset shows the 
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measured one from the dark current and noise spectra in [47]. The gain is almost 

one for bias values less than 2V and increases almost exponentially for biases 

greater than 2 V due to avalanche effect [47]. 
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Figure 6-9 - The peak responsivity at 6 ~un as a function of applied bias at 80 K. 
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Figure 6-10 - The photoconductive gain used by the model as a function of applied bias, the 

inset shows the measured photoconductive gain of the 5.7 ~un peak response at 80 K (47]. 

Using the peak responsivity values of the 6 µm peak at T=80 K, the dark 

current characteristics, the photoconductive gain at 80 K, and Eq. (6.26), the 

detectivity of the detector as a function of bias is calculated and shown in Fig. 6-

11. The detectivity initially increases with bias and reaches maximum value of 
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3x1011 cm.Hz112 I W at 2 V due to the increase of the responsivity with bias while 

the dark current values are not large. However, increasing the bias beyond 2 V 

will increase the dark current at a higher rate than the responsivity rate of 

increase. In addition the increase of the photoconductive gain, which increases the 

noise, will drop the detectivity of the detector as shown in Fig. 6-11. The 

detectivity drops to 4.15 x I 07 cm.Hz112 I W at 4 V. The detectivity values 

calculated by the model shows agreement with the calculated detectivity in [ 47]. 
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Figure 6-11- The peak detectivity by the model at 6 µm and 80 K. 

The model is also used to test the effect of the doping of the QD layers and 

the width of the barrier between the layers, on the photocurrent, dark current and 

detectivity characteristics. The RT-QDIP modeled in the chapter is 10 layers and 

the barrier separation between the layers is 40 nm and the QDs are undoped. In 

the modeling, the barrier separation values used in the calculations were 30, 40, 

and 50 nm. The relative doping density Lo I 2::00 , the ratio of the sheet doping 

density to the QD density, were 0, 0.5, 1, and 2 corresponding to 0, 0.5, 1, and 2 

electrons per dot respectively. Figure 6-12 shows tht? peak responsivity at 6 µm 

and 80 K and an applied bias of 2 V as a function of relative doping density and at 

different barrier widths. The average electric field in the detector and occupation 
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of the QD bound states will be affected by the doping density and the barrier 

width. As discussed in chapter 5, a self-consistent solution of the charge density and 

the average potential energy through the device and satisfying Poisson's equation has 

been used to detennine the quasi Fermi level and to calculate the in-scattering rates at 

different design parameters. The responsivity increases with the increase of the 

doping density and decreases with the increase of the barrier width as shown in 

Fig. 6-12. Increasing the relative doping density beyond that corresponding to 

more than 1 electron per dot produces only a small improvement in the mid­

infrared responsivity since the ground state of the detector is almost fully 

occupied by 2 electrons per dot and the in-scattering rate does not increase. 
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Figure 6-12-The peak responsivity at 2 V and 80 Kasa function of the relative doping 

density and at different barrier widths. 

Figure 6-13 shows the dark current values at 2 V applied bias and 80 K as 

a function of relative doping density and at different barrier widths. The dark 

current shows a monotonic increase with doping density. The value of the dark 

current increases ah:nost three orders of magnitude when the relative doping 

density changes from 0 to 2. The increase of the barrier width from 30 run to 50 

nm decreases the dark current more than one order of magnitude. 
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Figure 6-13- The dark current at 2 V and 80 K as a function of the relative doping density and 

at different barrier widths. 

From the peak responsivity and dark current values shovm above, the 

detectivity of the detector can be obtained at different doping densities and barrier 

widths. The mid-infrared peak detectivity at 2 V and 80 K is shown in Fig. 6-14. 

The increase of the doping density reduces the detectivity due to the higher rate of 

increase of the dark current above the photocurrent. Increasing the barrier width 

increases the detectivity due to the decrease in the dark current. The responsivity 

also decreases with the barrier width, but the decrease in the dark current is 

greater. The results of the Fig. 6-14 show that a larger barrier width and small 

doping density can give higher detectivity values, as the 0.5 relative doping and 

50 nm barrier width gives higher detectivity than the undoped QDs with 40 run 

barrier width. The responsivity of the detector can be improved by increasing the 

QD density in all layers and the number of QD layers, in order to increase the 

light absorption. Also, increasing both number of layers and the QD density in all 

layers results in a lower dark current. However, when we change the bias, the 

rates of increase in responsivity and dark current are different. Therefore, there is 

an optimum bias (see Fig. 6-11) at which the detectivity peaks, indicating the 
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mass approximation. The governing equation of the Green's functions is obtained 

in the cylindrical coordinates to be suitable for conical shaped QDs that have a 

cylindrical symmetry around its axis. Making use of the cylindrical symmetry and 

assuming local interactions allow reduction of the size of the problem to 2D 

instead of 3D which simplifies the numerical solution. The differential equation of 

the retarded Green's function in the cylindrical coordinates is discretized using the 

method of finite differences and the retarded Green 's function matrix is obtained 

by a matrix inversion. 

The localized DOS of the QD is obtained from the retarded Green ' s 

function and from which both the discrete energy levels and the continuum states 

above the QD barrier is obtained. The DOS shows all possible energy transitions 

which indicate the operating wavelengths of the detector. The model is used to 

calculate the spectral function and density of states of different QDIPs such as the 

QDWELL, SL-QDIP and RT-QDIP. Information of electronic states, operating 

wavelengths and allowed energy transitions are obtained and they are in a good 

agreement with experimental results. 

The responsivity of QDIPs is calculated usmg the first-order dipole 

approximation and Fermi-golden rule. The bound states of the QD are obtained by 

solving the Hamiltonian eigenvalue problem, while the continuum states are 

obtained using the retarded Green's function. The responsivity results by the 

model are compared with the measured data and they are in good agreement with 

the experimental results. The model is used for optimizing the responsivity with 

respect to the shape and size of QDs to have an insight about the growth 

conditions that give best responsivity values. QDs with larger height-to-diameter 

ratio and small size QDs show high responsivity values. 

The quantum transport equation of the NEGF is solved numerically to 

calculate the dark and photocurrent of the RT-QDIP. The interaction with light for 

photocurrent calculations has been done using the first order dipole moment and 

the Fermi-golden rule. A self-consistent solution of the charge density using the 
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density of states of the QDs and the average potential energy through the device 

and satisfying Poisson's equation has been done to obtain the quasi Fermi level 

and the average potential energy through the device. The model results for the 

dark and photocurrent are in good agreement with the experimental results. The 

model has been used for theoretical predictions of the dark and photocurrent 

characteristics at other design parameters. The effect of using different design 

parameters such as the number of QD layers, the barrier separation between the 

layers and the doping density on the dark and photocurrent has been obtained. 

The detectivity of the RT-QDIP has been calculated at different design 

parameters. The results shows a trade off between the responsivity and detectivity 

and what detern1ines the best perfonnance is how much the rate of increase of the 

photocurrent and dark current is affected by the different design parameters. 

The models developed in the thesis show good matching with 

experimental results. The models can be used as a tool of characterization of 

different QDIP stmctures to get the operating wavelengths, the relative strength of 

the responsivity peaks, the dark and photocurrent characteristics and the detector 

detectivity at different design parameters. This allows the best design for final 

device fabrication to be found saving money and time. In addition it is possible to 

establish the characteristics of new stmctures to ensure that they will meet the 

required specifications before their actual growth and processing. So, the 

outcomes of this research will allow for efficient device design with optimized 

performance with respect to operating wavelength, responsivity, detectivity, etc. 

7.2. FUTURE WORK 

The present research lays the foundation for developing quantum transport 

models based on NEGF to describe the main characteristics of QDIPs. The goal of 

these models is to understand the physical operations of these nano-devices in 

order to have an insight of how the detector design can be improved such that it 

gives the optimized perfonnance efficiently fulfilling the required characteristics. 
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There is a trade off between the accuracy of the model and its complexity. 

Therefore, for good results a compromise between the accuracy and complexity is 

necessary. More research is required to improve and upgrade the models 

developed in the thesis to make them more accurate and to calculate more 

physical quantities required in fully characterizing the QDIPs. Some of these 

recommendations will be described in this section 

7.2.1. INTERMIXING AND STRAIN EFFECT 

The models developed in the thesis are based on a single band effective 

mass approximation. The QDIPs modeled are unipolar devices and the values of 

the conduction band offsets and electron effective masses are used to solve the 

differential equation of the Green's function. As described in chapter 3, all points 

in the lattice grid associated to the QD have single values for the potential energy 

and electron effective mass and the same thing for the QW and barrier regions. 

This means that no intennixing is assumed between the QD material and the 

material corresponding to the surrounding barriers. For example, for InAs QDs 

grown on GaAs, the model assumed no intennixing between In and Ga to get a 

simplified potential energy and effective mass profiles. The real situation is that 

intennixing between different heterostructure materials [ 116, 117, 118] does occur 

which will modify the values of the band offsets and effective masses [125]. Also 

the strain field distribution in the QD region will affect the values of band offsets 

and effective masses such that they will have a specific distribution in the QD and 

the surrounding regions. The numerical model developed in the thesis is general 

and can accept any input potential energy and effective masses profile if known. 

So finding out the exact compositions of the QD and the surrounding barrier in 

addition to the effect of the strain field distribution on the values of the 

conduction band offsets and effective masses will allow the model to describe a 

more realistic configuration of the QD region and hence giving better results. 
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7.2.2. NON-UNIFORMITY OF QDS SIZE, AND 

DISTRIBUTION 

One of the assumptions used in the model to simplify the calculations is 

that it actually describes a uniform distribution of QDs in the layers of the 

detector in addition to using the average values of height and diameter of QDs in 

the calculations. This gives symmetry that allows, for example, calculating the 

portion of the current that passes through one QD and then the total current is the 

QD density times this portion of the current. In addition it simplifies the 

calculations of the DOS, energy eigenvalues and the corresponding 

wavefunctions. The model used in the thesis considered the uncertainty in the 

shape and size of QDs by using average values for the height and diameter of the 

QDs by adding a small imaginary part to the electron energy in the equation. 

Adding this small imaginary part causes broadening to the energy levels such that 

they have a Gaussian shape instead of sharp delta functions obtained when all 

QDs have the same shape and size. A better description of the random shape and 

size of QDs can be done through a sensitivity analysis technique described in [I 19, 

120, 121]. This technique gives an estimate about the rate of change of a specific 

physical quantity as a function of one of the dimensional parameters, for example. 

In this way there is no need of multiple simulations to scan all possible values of 

heights and diameters of QDs and instead, the average values can be used one 

time in the simulation and then the sensitivity analysis will give the corresponding 

simulation values at other values of QD sizes. So including this technique may 

save time of repeating the simulations in case other QDs need to be tested. 

7.2.3. INTERACTION WITH THE LATTICE 

The NEGF model gives a straightforward way of including interactions in 

the system whether with the surrounding contacts or internally in the QDs and the 

surrounding barriers. The types of interactions to be included and the degree of 

approximations to be used determine both the accuracy and the complexity of the 

153 



I PhD Thesis - Mohamed A. Naser McMaster - Engineerinp: Physics I 

calculations. The interactions with the lattice are modeled in its simplest form. 

The self-energy due to lattice interactions is assumed to be constant independent 

on energy and position and corresponding to localized elastic scattering of a 

constant scattering rate. This simple form of self-energy does not require a self­

consistent solutions between the Green's functions and the self-energy as in the 

case of considering the self-consistent first order Born approximation for 

modeling electron phonon interactions. A realistic description of the interaction 

with the lattice requires including self-energies corresponding to interactions 

between electrons and longitudinal and acoustic phonons, but a self-consistent 

solution is needed in this case. Assuming constant and uniform scattering rates 

simplifies the calculations but it might not be valid for high applied biases and 

high temperature. The electron-electron interaction is considered qualitatively in 

the model through a self-consistent solution between the electron density and the 

potential energy as shown in chapter 5. A better description of electron-electron 

interaction can be done through the Hartree-Fock approximation to calculate the 

self-energy due to the charges of the QD and surrounding QDs. 

7.2.4. TEMPERATURE EFFECT ON RESPONSIVITY 

One important aspect that should have further interest and focus in future 

research is the effect of temperature on the responsi vity of the detector [ 122- 124]. 

In chapter 6, the photocurrent model uses a simplified version of the interaction 

with the lattice that does not include inelastic scattering and the energy transitions 

are only due to interaction with light. Therefore the total decay rate of a state is 

independent of temperature while the in-scattering and out-scattering transition 

rates are a function of temperature through a quasi-Fermi function. This 

assumption does not show a decrease of the responsivity with temperature for the 

mid-infrared as expected, while the far-infrared peak is increased and not 

decreased due to the increase of the occupation of the higher excited states with 

temperature as shown in Fig. 6-5. Further research on interactions with the lattice 
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and the temperature effect on the responsivity is recommended to give better 

solution the problem. 

7.2.5. TRANSIENT RESPONSE 

Furthermore, there is one important characteristic of QDIP that has not 

been discussed in this work which might be useful for some applications. The 

transient response of the QDIP should be modeled for fluorescent applications 

where the time decay of the received pulse is important. The models in the thesis 

focus on DC applications such as thermal imaging and focal plane arrays where 

the signal is in steady state. For time varying signal, the transient response for the 

responsivity is needed. Some techniques to model the transient response in 

QWIPs have been shown in [126-128] using Monte Carlo methods. For an accurate 

description of the transient response in a quantum system like a QDIP, the real 

time Green's functions can be used to calculate the responsivity as a function of 

time [129]. Further research is needed to solve the problem without adding a lot 

of complexity due to the increase of the dimensions of the problem by adding an 

extra time axis. One simple way would be to obtain a circuit model for the QDIP 

in order to estimate a time constant RC for the detector. The time constant could 

be obtained by calculating the resistance of the barrier material between the QD 

layers and the equivalent capacitance between the contacts of the detector taking 

into consideration the QD capacitance in the layers . 

155 



I PhD Thesis - Mohamed A. Naser Mc Master - Engineering Physics I 

APPENDIX A 

The Hamiltonian in cylindrical coordinates assuming that the potential 

energy has azimuthal symmetry and does not depend on the rotation angle () is 

given by 

H = _ ~ (.!_ 8 r 8 + 1 1 8
2 

+ !._ 1 8 ) + V (,. z) A ) 
2 r or mr(r,=) 8r n{(r,=) r 2 8()2 8= m=(r,=) 8z ' ( .l 

Assuming that the eigenfunctions of the Hamiltonian have the form 

\Tl ( • () -) - i111J ( ) r 11 1, ,- -e l//n r,z (A.2) 

Therefore 

(A.3) 

Substituting (A.2) into (A.3) and making use of 
82 ~n = -n2'¥ n, the angular part 
8() 

dependence can be removed and we end up with 

(A.4) 

and 

Hn = _!!..__ .!_!._ ,. r 8 + .~n 1 + 8 - 1 ~ + V(r,z) 2 ( 2 ) 

2 r or m (r,=) 8r m (r,z) r 2 8z m"(r,z) oz 
(A.5) 

The differential operator in (A.5) can be discretized according to the grid 

representation shown in Fig. Al as follows: 
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Nr 
i,,j+1 
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P-Nz ., P+Nz 
i-1,,j i+1,,j 
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(b) P-1 

i,,j-1 

z 

' Cs 
r 

(a) (c) 
C2 

Figure A 1 - (a) Schematic of a 16 points grid used to discretize the Hamiltonian operator. (b) 

A lattice point and the 4 surrounding points showing the relation between the number of the 

point in the lattice and the corresponding indices in the radial part i= 1 to 4 and the z part j=l 

to 4. (c) Schematic shows that each lattice point has 5 places of non-zero values in the 

Hamiltonian matrix. 

The radial differential part is given by 

[( 
1 8 r D ) ] 1 [( r D ) ( r D ) ] - If/ = - -- - -- If/ 
r Dr m'(r,z) or iJ ariJ m' or ;+112_1 m' or ;_112.J 

11 

lj+1i 2.j ( ) 
r lf/;+I,j -ljli.j 

m ;+11 2.1 
= 

lj_l/ 2.j ( ) .. - '/ . 
r lfl1.; If- 1-1.1 

m ;-112.1 
(A.6) 

( 
r r ) 

12 
lf/;+1,j - lfli ,j 

m i+l.J +m i ,J 

= 
1, ) / - , ) ( r .+r 1 .)!2 ( ) 

and 
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[(
? J] ( ?) -n· -n· 

r 0 If/ = 2 r 2 If I ij 
m (r,z)r· iJ a m ;/'iJ 

The z differential part is given by 

[( 8 1 8J] l[ I (8 ) 1 (8 ) ] - If/ =- - -lj/ - - -lj/ oz m- (r, z) oz iJ a m· i ,J+i : 2 8= ;,; +i i i m\1_112 oz i.J-112 

= a2 

-
2 

- ( lf/i.j+I - lf/i ,j) 
m\;+1 + m- i.J 

z 
2 

: (If/;.; - lf/i ,j-1) 
m i ,J + m i ,J-1 

and the potential energy part is given by 

(A.7) 

(A.8) 

(A.9) 

By combining the equations A.6 to A.9, the Hamiltonian differential equation in 

A.4 is given in a matrix form as 

[H w] .. = -r[c1w _, + c2w _, + C31f/ . + C41f/ i + Cslf/ i .J II y I .) 1.) I ,) l , j+ I+ ,) (A.10) 

where t = ~ and m
0 

is the free electron mass while m,. and m= are the 
2111

0
a 

electron effective masses in the materials in the radial and z directions and 
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c1(P) = 'i .J + 'i- 1.1 
= 

rp +1?-N, 
mr . +mr I. 

r r ' 
1, ) 1- , ) m P +m P-N_ 

c2 (P) = 
2 2 

= 
m= . . +m= .. 

1 mzp +m=P-1 
I ,) l ,J-

c4 (P) = 
2 2 

= 
m=i,j + mzi,j+I mz p +m=P+I 

c;(P) = 
lj ,j + 'i+ l,j 

= 
rP +rP+N, 

and r ,. r ,. ' m i.J + m ;+1,1 m p+m P+N, 

The Hamiltonian matrix elements for a grid of Nz x N,. points are given by 

Hn(P, P) = C3(P), 

Hn(P,P-N:) = Hn(P-Nz ,P) = C1(P), 

Hn(P,P+N;) = Hn(P+N:,P) =C5(P), 

Hn(P,P-l) = Hn(P-1,P)= c2 (P), and 

Hn(P,P+l) = H,,(P+l,P) =cAP) 

(A.11) 

(A.12) 

where P is from 1 to Nz x N,. . The rest of the elements of the matrix are zero. The 

boundary conditions should be specified at the elements corresponding to i= 1 and 

i=N,. andj=l andj=Nz. For zero B.C atj=l corresponding to the points 1, 5, 9, 13 

andj=Nz corresponding to the points 4, 8, 12, 16, the Hamiltonian matrix elements 

are given by 

H,,(P,P-l)=Hn(P-1,P)=O forj=l 

H,,(P,P+ 1) = Hn(P+ l,P) = 0 for}= N= 
(A.13) 

For zero B.C at i = N, corresponding to the elements 13, 14, 15, 16, the 

Hamiltonian matrix elements are given by 

H,,(P,P+ Nz) = H,,(P+Nz ,P) = 0 for i = N, (A.14) 
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Around the cylinder axis at i=l corresponding to the points 1, 2, 3, 4, the zero 

derivative B.C should be applied. The wavefunction value should be the same 

around the axis and SOlf/n(l) = lf/,,(O) . By using this B.C in A.IO, the Hamiltonian 

matrix elements will be given by A.12 except that 

(A.12) 

For the corner points such as 1, 4, 13 , 16, they have two B.C corresponding to 

both the radial and = parts and both of the two conditions will be applied to the 

Hamiltonian matrix elements as shown above. After obtaining the Hamiltonian 

matrix including the B.C, the eigenvalue problem can be solved to get the energy 

eigenvalues and the corresponding eigenstates. For the continuum part of the 

spectrum, a proper self energy function should be added at the cylinder 

boundaries to simulate the proper open B.C. After obtaining the Hamiltonian 

matrix and the self-energy due coupling with the surrounding or due internal 

interactions, the Green's function of the system can be calculated and from which 

the electronic and transport properties can be obtained as showed in the thesis. 
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APPENDIXB 

The retarded Green's function in the lead satisfying the equation 

(B.l) 

can be written as 

G~ = LXm(z)x111 • (=')f,,,,,(r,r') (B.2) 
Ill 

where x
111 

(z) satisfies the eigenvalue problem 

(B.3) 

and 

LXm(z)x.,°(=') = S(z-z') (B.4) 
Ill 

Substituting B.2 into B.1 and using B.3 and B.4 we end up with 

( E - &m) /,,., +- --::;-r---, f,
1111 

= -S(r-r) 11
2 

( I a a n
2 J 1 I 

2m r or or r r 
(B.5) 

This can be written as 

( 
l a a ) ( 2 n

2 J 1 , 2m --r-::;- f,,,,,+ km--2 f, 1111 =-S(r-r)x-2 r 8r or r r Ii 
(B.6) 

Which is Bessel differential equation with a delta function source tenn in the 

H S d k ? 
2m ( E - &m) ' h" h · · "d h l" d R. . an ;;, = 1 . For Rs r < r , w ic is a pomt outs1 e t e cy m er 

11-

which has a radius of R and lies in the surrounding lead, the solution to B.6 is 

given by 

(B.7) 

For r > r', the solution should be finite at infinity, so it is given by the Henkel 

function of the first kind 
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f,,m = C3H!1)(kmr) (B.8) 

The first solution should give zero B.C at r =Rand therefore 

(B.9) 

The two solutions should be equal at r = r' and therefore the solution can be 

written in the form 

(B.10) 

where r < and r> are the smaller and greater of rand r'. By integrating B.6 

around r = r', the solution should satisfy the equation 

8~~· 1r=r'+c - 8~;• L .. ·-c = :, X ~7 
Substituting B. l 0 into B.11, we get 

H'(l)(k r')(J (k r')-Y(k r')Jn(kmR)) 
11 m n m n m y (k R) 

c II m 

-H<1l(k r')(J'(k r')-Y'(k r')J;,(k,,,R)) 
11 m 11 m 11 m y (k R) 

n m 

l 2m 
=-X­

r' '12 

(B.11) 

(B.12) 

Solving B.12 will give the value of the constant C. To solve B.12, the asymptotic 

behavior for large value of r --+ oo of the Bessel and Henkel functions will be 

used to do the derivative and the required substitution in B.12. The asymptotic 

value of the Bessel function at very large r are given by 
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(B.13) 

H~l)(x)~ /2 exp[i(x- n;r - tr)]. x »l v-;; 2 4 

Substituting B.13 into B.12, the constant C can be obtained and it is given by 

(B.14) 

So the radial pa1i of the Green's function can be written as 

f, (r r') = (tr Y,, (k,,,R) J x 2m [J (k r<)- Y (k r<) J" (k111 R)l H(1>(k r>) (B.15) 
• 11111 ' 2 H (l) (/i R) /i2 11 m n m y (k R) n m 

n (m n m 

and r< and r> are the smaller and greater of rand r' . Specifically the radial part 

calculated atr = r' = R +a , which is one lattice constant inside the lead and 

outside the cylinder is given by 

f, (r=r'=R+a)= tr 2m[Jn(k111(R+a))Y,,(k111R) ]H,'.
1
l(k111 (R+a)) (B.l 6) 

11111 

2 11
2 -Jn (k111 R) Y,, ( k,,, (R +a)) H,'.

1
l (k111 R) 

and the Green's function is then given by 

G,. = °" . (z) *(=')tr 2m[J,, (k,,,(R+a))Y,,(k,,,R) ]H~')(k,,,(R+a)) (B. l?) 
11 L..,Xm X,,, 2 n2 ( ) ( ( )) H(11(k R) 

111 -Jn k111 R Y,, km R+a 11 m 

The previous derivation is obtained for propagating modes for E > 8 111 . The same 

procedure can be used to obtain the Green' s function for evanescent modes 

where E ::;; 8,,, . And in this case, the modified Bessel functions I and K will be used 

and the same procedure will be applied. So the Green's function for all energy 

values is given by 

163 



I PhD Thesis - Mohamed A. Naser McMaster - Engineerin~ Physics I 

Gr= 
II 

", ('?) ' *(,-')1i 2m[J,,(k,,,(R +a))Y,,(k111 R) ] 
f...J x Ill - x,,, - 2 p,2 ( ) ( , ( )) m -J,, kmR Y,, k111 R + a 

H,~ 1 J (km ( R + a)) 
x H~Il (k,,,R) ' E > e"' 

• '? • _ , 1i 2m [K,, (km ( R +a)) I,, ( k,,,R) ] 
LX,,,(-)Xm (-. )27 ( ) 
Ill . -Kn(k,,,R)I,, km(R+a) 

Kn ( k,,, ( R +a)) 
x ( , E ~ e,,, 

K,, k111 R) 

164 

(B.18) 



I PhD Thesis - Mohamed A. Naser McMaster - Engineering Physics I 

REFERENCES 

I. A. Rogalski, "Infrared detectors: status and trends," Progress in Quantum Electronics, 
27, pp.59-210, (2003). 

2 . J. Piotrowski and A. Rogalski, "Uncooled long wavelength infrared photon detectors," 
Infrared Physics & Tech110/ogy, 46, pp .115- 131 , (2004). 

3. A. Rogalski. K. Adamiec, J. Rutkowski, Narrow-Gap Semiconductor Photodiodes, 
SPIE Press, Washington (2000). 

4. B. F. Levine, "Quann1m-well infrared photodetectors," J. Appl. Phys., 74, pp.Rl-R81 , 
(l 993). 

5. J. L. Pan, C. G. Fonstad Jr. , "Theory, fabrication and characterization of quantum well 
infrared photodetectors," Mater. Sci. Eng., 28, pp.65-147, (2000). 

6. A. Rogalski, "Assessment of HgCdTe photodiodes and quantum well infrared 
photoconductors for long wavelength focal plane arrays," Infra. Phys. Teclmol., 40, pp. 
279-294, ( 1999). 

7. M. 0. Manasreh , Semiconductor quantum wells and superlattices for long-wavelength 
infrared detectors, (artech House, Norwood,, 1993) 

8. F . F. Sizov, and A. Rogalski, Infrared photon detectors, (SPIE Optical Engineering 
Press, Bellingham, 1995) 

9. S. D.Gunapala and K. M. S. V. Bandara, Recent development in quann1m-well infrared 
photodetectors," Thin.films, Academic Press, New york, Vol. 21, pp. 113-237, (1995) 

10. L. J. Kozlowski, G. M. Williams, G. J. Sullivan, C. W. Farley, R. J. Anderson, J. Chen, 
D. T.Cheung, W. E. Tennant and R. E. DeWames, "LWIR 128xl28 GaAs/AlGaAs 
multiple quantum well hybrid focal plane array" IEEE Trans. Electron devices, 38, pp. 
I 124-1130, May (l 99 I). 

I 1. B. F. Levine, C. G. Bethea, K. G. Glogovsky, J. W. Stay and R. E. Leibenguth, "Long­
wavelength 128*128 GaAs quantum well infrared photodetector arrays", Semicond. 
Sci. Tech110!. 6, pp. Cl 14-Cl 19, Dec. (1991). 

12. G. C .. Bethea, B. F. Levine, M. T. Asom, R. E. Leibenguth, J. W. Stayt, K. G. 
Glogovsky, R. A. Morgan, J. D. Blackwell and W. J. Parrish, " Long wavelength 
infrared 128 x 128 AlxGa1_x As/GaAs quann1m well infrared camera and imaging 
system" IEEE Trans. Electron devices, 40, pp. 1957-1963 (1993 ). 

13 . W. A. Beck, J. W. Little, A. C. Goldberg and T. S. Faska, in: H. C. Liu, B. F.Levine, J. 
Y. Anderson (Eds), Quantum Well Intersubband Transition Physics and Devices, 
(Kluwer Academic Publishers, Dordrecht, 1994). 

14. L.J. Kozolwski, in:H. C. Liu, B. F. Levine, J. Y. Anderson , Quantum well 
lntersubband Transition Physics and Devices, (Kluwer Academic Publ ishers, 
Dordrecht, pp. 43, I 994 ). 

165 



I PhD Thesis - Mohamed A. Naser Mc Master - Engineering Physics I 

15 . A. Rogalski, "Comparison of the perfomiance of quantum well and conventional bulk 
infrared photodetectors," Infra. Phys. Technol., 38, pp. 295-310 (1997). 

16. J. Phillips, "Evaluation of the fundamental properties of quantum dot infrared 
detectors," J. Appl. Phys., 91, pp. 4590-4594, Apr. (2002). 

17. Y. G. Sidorov, S. A. Dvoretsky, M. V. Yakushev, N. N. Mikhailov, V. S. Varavin and 
V. I. Liberman, "Peculiarities of the MBE growth physics and technology of narrow­
gap II-VI compounds," Thin Solid Films , 306, pp. 253-265 (1997) 

18. S. Krislma, A. D. Stiff-Roberts, J. D. Phillips, P. Bhattacharya and S. W. Kennerly, 
"Hot dot detectors," IEEE Circuits a11d Devices Magazine, 18, pp. 14-24, Jan.(2002). 

19. J. Phillips, ""Evaluation of the fundamental properties of quantum dot infrared 
detectors," J. Appl. Phys., 91, pp. 4590-4594, (2002). 

20. B. Kochman, A. D. Stiff-Roberts, S. Chakrabarti, J. D. Phillips, S. Krishna, J. Singh 
and P. Bhattacharya, "Absorption, carrier lifetime, and gain in InAs- GaAs quantum­
dot infrared photodetectors," IEEE J. Quant. E/ec., 39, pp. 459-467, Mar. (2003). 

21. V. Ryzhii , I. Khmyroval , M. Ryzhii , V. Mitin, "Comparison of dark current, 
responsivity and detectivity in different intersubband infrared photodetectors," 
Semicond. Sci. Teclmol., 19, pp. 8-16, (2004). 

22. E. Finkman, S. Maimon, V. Immer, G. Bahir, S. E. Schacham, F. Fossard, F. H. Julien, 
J. Brault and M. Gendt;," Polarized front-i llumination response in intraband quantum 
dot infrared photodetectors at 77 K," Phys. Rev. B 63, 045323 (7 pages) (2001), and 
references therein. 

23. S. Krishna, S. D. Gunapala, S. V. Bandara, C. Hill and D. z. Ting, "Quantum dot based 
Infrared focal plane arrays," Proceedings of the IEEE, 95, pp. 1838-1852, Sep (2009). 

24. S. Chakrabarti, AD. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa and A.G. 
U. Perera, "High-perfom1ance mid-infrared quantum dot infrared photodetectors," J 
Phys. D: Appl. Phys., 38, pp. 2135-2141 (2005). 

25. A. D. Stiff, X. H. Su, S. Chakrabarti and P. Bhattacharya, "Contribution of field­
assisted tunneling emission to dark current in InAs-GaAs quantum dot infrared 
photodetectors," IEEE Photonics Technol. Lett,. 16, pp. 867-869, (2004). 

26. D. L. Huffaker, G. Park, Z. Zou, 0. B. Shchekin, and D. G. Deppe," 1.3 ~Lm room­
temperature GaAs-based quantum-dot laser," Appl. Phys. Lett. 73, pp. 2564-2566 
(1998). 

27 . L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, 
"Optical characteristics of 1.24-µm InAs quanh1m-dot laser diodes," IEEE Photon. 
Tech. Lett., 11, pp. 931-933 (1999). 

28. A. E. Zhukov, A. R. Kovsh, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. 
Tsatsul'nikov, M. V. Maximov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, P. 
S. Kop'ev, and Zh. I. Alferov, N. N. Ledentsov and D. Bimberg.,"Long-wavelength 
lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates," Appl. 
Phys. Lett., 75, 1926 (3 pages), (1999). 

29. A. E. Zhukov, et al.," Continuous-wave operation of long-wavelength quantum-dot 
diode laser on a GaAs substrate," IEEE Photon. Tech. Lett, 11, pp. 1345-1347 (1999). 

166 



I PhD Thesis - Mohamed A. Naser McMaster - Engineering Physics I 

30. Y. Nakata, K. Mukai, M. Sugawara, K. Ohtsubo, H. Ishikawa, and N. Yokoyama," 
Molecular beam epitaxial growth of InAs self-assembled quantmn dots with light­
emission at 1.3 ~tm," J. Cryst. Grmvth 208, pp. 93-99 (2000). 

31. R. S. Attaluri, S. Annamalai, K. T. Posani, A. Stintz, and S. Krishna, "Effect of Si 
doping on normal icidence InAs/In0.15Ga0.85As dots-in-well quantum dot infrared 
photdetectors," J. Appl. Phys. 99, 083105 (3 pages), May (2006). 

32. N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. 
Vasil'ev, E. S. Semenova, M. V. Maximov, Yu M. Shemyakov, N. V. Kryzhanovskaya, 
V. M. Ustinov, and D. Bimberg, "High performance quantum dot lasers on GaAs 
substrates operating in l .5 ~un range," Electro11. Lett., 39, pp. 1126-1128, July (2003). 

33. J. Gowar, Optical Commwrication Systems, pp. 71-89, Prentice Hall, London, (1984) . 

34. J. M. Senior, Optical Fiber Communications: Principles and Practice, 2"d Ed., pp. 84-
153, Prentice Hall, U.K., (1992). 

35. G. P. Agrawal, Fiber-Optic Co1111111111icatio11 Systems, 3rd ed., Wiley Interscience, N.Y., 
(2002). 

36. I. D. Aggarwal, G. Lu, Fluoride Glass Fiber Optics, pp. xi-xiv, Academic Press, 
(1991). 

37. James A. Harrington, Infrared Fibers and their Applications, pp. 5-7, SPIE Press, 
(2004). 

38. M. N. Abedin, T. F. Refaat, 0 . V. Sulima, S. Ismail and U.N. Singh, "Two-micron 
detector development using Sb-based material systems," Proceedings of the Sixth 
Annual NASA Earth Science Technology Conference, ESTC-2006, (2006). 

39. S. D. Humphries, K. S. Repasky, P. Nachman, J. A. Shaw, J. L. Carlsten, L. H. 
Spangler, "Atmospheric carbon dioxide measurements using a ttmable laser based 
system," 6111 Annual Conference on Carbon Capture & Sequestration , Pittsburgh, 
Pennsylvania, (2007). 

40 . P. Norton, "Infrared sensors in spacecraft that monitor planet Earth," Opto-E!ectron. 
Rev., 16, pp. 105-117, (2008). 

41. N. P. Prasad, Introductio11 to Biophotonics, John Wiley & Sons Canada, Ltd., (2003). 

42. R. Weissleder and U. Mahmood, "Molecular imaging," Radiology 219, pp. 316-333 
(2001). 

43. S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging 
physics," Physics in Medicine and Biology 49, Rl3-R48 (2004). 

44 . C. Bremer, C. H. Tung, A. Bogdanov, Jr., and R. Weissleder, "Imaging of differential 
protease expression in breast cancers for detection of aggressive tumor phenotypes," 
Radiology 222, pp. 814-818 (2002). 

45. S. Krishna, "Quantum dots-in-a-well infrared photodetectors," J. Phys. D: Appl. Phys., 
38, pp . 2142-2150 (2005). 

46. S. Chakrabarti, A. D. Stiff, P. Bhattacharya, and S. W. Kennerly, "High responsivity 
AlAs/InAs/GaAs superlattice quanttm1 dot infrared photodetector," Electron. fe ll., 40, 
pp.197-198, Feb. (2004). 

167 



I PhD 111esis - Mohamed A. Naser McMaster - Engineering Physics I 

47. S. Xiaohua, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa and A.G. Unil Perera, "A 
Resonant Tmmeling Quantmn-Dot Infrared Photodetector," IEEE J. Quantum 
Electron., 41, pp. 974-979 (2005). 

48. P. Bhattacharya, X. H. Su and S. Chakrabarti, "Characteristics of a Tunneling 
Quantum-dot Infrared Photodetector Operating at Room Temperan1re," Appl. Phys. 
Lett. 86, 191106 (3 pages), May (2005). 

49. A. D. Stiff, S. Krislma, P. Bhattacharya, and S. W. Kennerly, "Nomial-incidence, high­
temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector," 
IEEE J. Quantum Electron. 37, pp. 1412-1419, Nov. (2001). 

50. D. Pan and E. Towe, "Normal-incidence intersubband (In, Ga)As/GaAs quantum dot 
infrared photodetectors," Appl. Phys. Lett. 73, pp. 193 7- 1939 (1998). 

51. L. Jiang, S.S. Li, N. T. Yeh, J. I. Chiy, C. E. Ross and K. S. Jones "In0.6GaoAAs/GaAs 
quantum-dot infrared photodetector with operating temperahlre up to 260 K,", Appl. 
Phys. Lett. 82, 1986 (3 pages), Mar. (2003). 

52. M. Sugawara, K. Mukai, and H. Shoji, "Effect of phonon bottleneck on quantum-dot 
laser performance," Appl. Phys. Lett., 71, pp. 2791-2793 (1997). 

53. K. Ikeda,, H. Sekiguchi, F. Minami, J. Yoshino, Y. Mitsnmori, H. Amanai, S. Nagao, 
and S. Sakaki, "Phonon bottleneck effects in InAs/GainP quantum dots," Journal of 
Luminescence 108, pp. 273- 276 (2004). 

54. D. Biniberg, M. Grundmann, and N. N. Ledentsov, "Quantum Dot Heterostructures," 
(Joh11 Wile & Sons Ltd, England, 19995). 

55. J. Phillips, K. Kamath, T. Brock, and P. Bhattacharya, "Characteristics oflnAs/AlGaAs 
self-organized quantum dot modulation doped field effect transistors," Appl. Phys. 
Lett., 72, 3509 (3 pages), (1998) ~ 

56. S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, "Growth and 
characterization of InGaAs/InGaP quann1m dots for midinfrared photoconductive 
detector," Appl. Phys. Lett., 73, 963 (3 pages), ( 1998) . 

57. Dong Pan, E.Towe, and S. Kennerly, "Normal-incidence intersubband .In, Ga.As/GaAs 
quantum dot infraredphotodetectors," Appl. Phys. Lett., 73, 193 7 (3 pages), Oct. 
( 1998). 

58. S. Maimon, E. Finkman, G. Bahir, S. E. Schacham, J. M. Garcia and P. M. Petroff, 
"Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors," Appl. 
Phys. Lett. 73, pp. 2003-2005 (1998). 

59. S. J . Xu, S. J. Chua, T. Mei, X. C. Wang, X. H. Zhang, G. Karunasiri, W. J. Fan, C.H. 
Wang, J. Jiang, S. Wang, and X. G. Xie, "Characteristics of InGaAs quann1m dot 
infrared photodetectors," Appl. Phys. Lett. 73, 3153 (3 pages), (1998). 

60. N. Horiguchi, T. Futatsugi, Y. Nakata, N. Yokoyania, T. Marikad, and P. M. Petroff, 
"Quantum Dot Infrared Photodetector Using Modulation Doped InAs Self-Assembled 
Quannun Dots," Jpn. J. Appl. Phys., 38, pp. 2559-2561 (1999). 

61. E. Kim, A. Madhukar, Y. Zhengmao and J. C. Campbell, "High detectivity InAs 
quantum dot infrared photodetectors," Appl. Phys. Lett. 84, 3277 (3 pages), (2004). 

62. D. Pan, E. Towe, and S. Kennerly, "A five-period nonnal-incidence (In, Ga)As/GaAs 
quantum-dot infrared photodetector," Appl. Phys. Lett. 75, 2719 (3 pages), (1999) . 

168 



I PhD 111esis - Mohamed A. Naser McMaster - Engineering Physics I 

63 . L. Chu, A. Zrenner, G. Bohm, and G. Abstreiter, "Nonnal-incident intersubband 
photocurrent spectroscopy on InAs/GaAs quantmn dots," Appl. Phys. Lett., 75, 3599 (3 
pages), (1999). 

64. D. M. -T. Kuo, A. Fang, and Y. C. Chang," 111eoretical modeling of dark current and 
photo-response for quantum well and quantmn dot infrared detectors," Infrared Physics 
& Technology 42, pp. 433-442 (2001). 

65. M. B . El Mashade, M. Asir and A. Nasr, "Theoretical analysis of quantum dot infrared 
photodetectors," Semicond. Sci. Technol. 18, pp. 891-900 (2003). 

66. V. Ryzhii, "Negative differential photoconductivity in quantum-dot infrared 
photodetectors," Appl. Phys. Lett. 78, 3346 (3 pages), (2001). 

67. V. Ryzhii, I. Khmyrova, V. Mi tin, and M. Stroscio, "On the detectivity of quann1m-dot 
infrared photodetectors," Appl. Phys. Lett. 78, 3523 (3 pages), (2001). 

68 . V. Ryzhii, "The theory of quantum-dot infrared phototransistors," Semicond. Sci. 
Technol., 11, pp. 759-765 (1996). 

69. V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin and M. Willander, "Device model for 
quantwn dot infrared photodetectors and their dark-current characteristics," Semicond. 
Sci. Tee/mo/. 16, pp. 331-338 (2001). 

70. N. Vukmirovic, Z. Ikonic, I. Savic, D. Indjin and P. Harrison, "A microscopic model of 
electron transport in quanrum dot infrared photodetectors," J. Appl. Phys., 100, 74502 
(10 pages), (2006). 

71. N. Vukmirovic, Z. Ikonic, V. D. Jovanovic, D. lndjin and P. Harrison," Optically 
pumped intersublevel midinfrared lasers based on InAs-GaAs quann1m dots," IEEE J. 
Quantum Electron. 41, pp. 1361-1368 (2005). 

72. A. Amtout, S. Raghavan, P. Rotella, G. von Winckel, A. Stintz and S. Krishna, 
"Theoretical modeling and experimental characterization of InAs/InGaAs quantum dots 
in a well detector," J. App. Phys., 96, 3782 (5 pages), (2004). 

73. H. Jiang and J. Singh, "Strain distribution and electronic spectra of InAs/GaAs self­
assembled dots : An eight-band study," Phys. Rev. B 56, pp. 4696- 4701 (1997). 

74. M. A. Naser, M. J. Deen and D. A. Thompson, "Theoretical modeling of dark current 
in quantwn dot infrared photodetectors using nonequilibrium Green's functions," J. 
Appl. Phys. 104, 14511 (l l pages), July (2008). 

75 . M. A. Naser, M. J. Deen and D. A. Thompson, "Spectral function and responsivity of 
resonant tunneling and superlattice quantum dot infrared photodetectors using Green's 
function," J. Appl. Phys. 102, 83108 (12 pages), Oct.(2007). 

76. M. A. Naser, M. J. Deen, D. A. Thompson, "Spectral function of InAs/InGaAs 
quantum dots in a well detector using Green's function," J Appl. Phys. 100, 093102 (6 
pages) , Nov.(2006). 

77. M.A. Naser, M. J. Deen and D. A. Thompson, "Theoretical Modeling ofQuannnn Dot 
Infrared Photodetectors," 14th Canadian Semiconductor Technology Conference (12 
August 2009). 

78. M. A. Naser, M. J. Deen and D. A. Thompson, "Modeling and Optimization of 
Quantum Dot Infrared Photodetectors," Electrochemical Society Conference, (1 July 
2008). 

169 



I PhD Thesis - Mohamed A Naser Mc Master - Engineering Physics I 

79. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University, Press, 
1995). 

80. G. D. Mahan, Many-Particle Physics (Kluwer Academic/ Plenum Publishers, New 
York, 2000). 

81. P. C. Martin and J. Schwinger, "Theory of many- particle systems," Phys. Rev. , 115, 
pp. 1342-1349 (1959). 

82. L. P. Kadanoff and G. Baym, Quant/Im statistical Mechanics, Frontiers in physics 
Lecture notes series, Benjamin/ cmnmings, ( 1962). 

83 . L. V. Keldysh, "Diagram technique for non- equilibrium processes," sov. Phys. JETP 
20, pp. 1018-1026, (1965). 

84. D. C. Langreth, linear and non- linear Electron transport in solids, eds. J. T. Devreese 
and E. Van Doren, NATO Advanced Study Institute Series B, vol. 17, p.3, plenum, 
New York (1976). 

85. P. Danielewicz, "Quantum theory of non-equilibrium processes," Ann. Phys. , 152, 239, 
(1984). 

86. J. Rammer and H. Smith, "Quantum field-theoritical methods in transport theory of 
metals," Rev. Mod. Phys. 58, pp. 323-359, (1986) 

87 . G.D. Mahan. "Quantum transport equation for electric and magnetic fields," phys. Rep. 
145,pp. 251-318,(1987) 

88. F. S. Khan, J. H. Davies and J. W. Wilkins, "Quantum transport equations for high 
electric fields," Phys. Rev. B, 36, pp. 2578-2597 (1987). 

89. E. V. Anda and F. Flores, "The role of inelastic scattering in resonant tunneling 
beterostructures," J. Phys. Cond. Maller, 3, pp. 9087-9101 (1991). 

90. E. Rm1ge and H. Ehrenreich, "Non-equilibrium transport in alloy-based resonant 
tunneling system," Annals of Physics, 219, 55 (1992). 

91. R. Lake and S. Datta, "Rate equations from the Keldysh formalism applied to the 
phonon peak in resonant tunneling diodes," Phys. Rev. B, 46, pp. 6427-6438 (l 993). 

92. H. M. Pastawki and H. Ehrenreich, "Classical and quantum transport from generalized 
Landauer-Buttiker equations. II. Time-dependant resonant tunneling," phys. Rev. B, 46, 
pp. 4053-4070 (1992). 

93. C. Caroli, R. Combescot, P. Nozieres and D. Saint-James, "A direct circulation of the 
tunneling current :IV. Electron-phonon interaction effects," J. phys. C. :solid state 
Physics, 5, pp. 21-42 (1972). 

94. H. Hang and A. Jauho, Quantum Kinetics in transport and optics of semiconductors 
(Springer-Velag, 1996). 

95. P. I. Danielewicz, "Quantum theory of nonequilibrium processes," Annals of Physics, 
152, Issue 2, pp. 239-304 ( 1984). 

96. D. K. Ferry and S. M. Goodnick, Transport in Nanostructures (Cambridge University, 
Press, 1997). 

97. J. -Y. Marzin and G. Bastard, "Calculation of the energy levels in InAs/GaAs quantum 
dots," Solid State Commun. 92, pp. 437-442, (1994). 

170 



I PhD Thesis - Mohamed A Naser McMaster - Engineering Physics I 

98 . M. Califano, and P. Harrison, "Approximate methods for the solution of quantum wires 
and dots: Connection mies between pyramidal, cuboidal, and cubic dots," J. Appl. 
Phys. 86, pp. 5054-5059, (l 999). 

99. M .. Califano and P. Harrisonn, "Presentstion and experimental validation of a single­
band, constant-potential model for self - assembled InAs/GaAs quantum dots," Phys. 
Rev. B, 61, pp. 10959-10965 (2000). 

100. D. Gershoni, H. Temkin, G. J. Dolan, J. Dunsmuir, S. N. G. Chu, and M. B. Panish," 
Effects of two-dimensional confinement on the optical properties of InGaAs/InP 
quantum wire structures," Appl. Phys. Lett., 53, 995 (3 pages), (1988). 

101. S. Li, J. Xian, J. Liu, F. Yang, Z. Niu, S. Feng and H. Zheng, " InAs/GaAs single­
electron quantum dot qubit," J App. Phys . 90, 6151 (5 pages), (2001). 

102. Y. Zou, P. Grodzinski , E. P. Menu, W. G. Jeong, P. D. Dapkus, J. J. Alwan and J. J. 
Coleman, "Characterization and detennination of the band-gap discontinuity of the 
InxGa1-xAs/GaAs pseudomorphic quann1m well," Appl. Phys. Lei!. 58, 601 (3 pages), 
(1991). 

103. E. S. Koteles, "Determining energy-band offsets in quantum wells using only 
spectroscopic data," J Appl. Phys. 73, 8480 (5 pages), (l 993). 

104. F. Michael,M. D. Johnson, "Replacing leads by self-energies using non-equilibrium 
Green's functions , " Physica B 339, Issue l, pp. 31-38 (2003). 

105. B. Asian, H .. C. Liu, M. Korkusinski, S. -J. Cheng and P. Hawrylak, "Response spectra 
from mid- to far-infrared, polarization behaviors, and effects of electron numbers in 
quantum-dot photodetectors," Appl. Phys. Lett. 82, 630 (3 pages), (2003). 

106. S. Chakrabarti, X. H. Su, P. Bhattacharya, G. Ariyawansa and A. G. U. Perera, 
"Characteristics of a multi-color InGaAs/GaAs quantum dot infrared photodetector," 
IEEE Photonics Tech. Lett. , Vol. 17, No. l , pp.l 78-180, (January 2005). 

107. K. Pierz, S. Krishna, P. Bhattacharya and S. Kennerly, "Normal-incidence, high-
temperature, mid-infrared, InAs-GaAs vertical quann1m-dot infrared 
photodetector" ,JEEE J. Quantum Electro11 . 37, pp. 1412-1419 (2001). 

108. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III-V 
compound semiconductors and their alloys ," J. Appl. Phys. 89, pp. 5815-5875 (2001). 

109. S. L. Chuang, Physics of Optoelectronic Devices, (John Wiley & Sons, Inc., 1995). 

110. J. H. Davies, The Physics of Low-Dimensional Semiconductors, (Cambridge 
University Press, 1998). 

111. R. Lake and S. Datta, "The Non-equilibrium Green's Function Method Applied to 
Double Barrier Resonant Tunneling Diodes," Phys. Rev. B 45, pp. 6670-6685 (1992). 

112. M. J. McLennan, Y. Lee and S. Datta, "Voltage Drop in Mesoscopic Systems: A 
Numerical Study Using a Quantum Kinetic Equation," Phys. Rev. B 43, pp. 13846-
13884 (1991). 

113. M. Cahay, M. McLennan, S. Datta, and M. S. Lundstrom, "Importance of space-charge 
effects in resonant tunneling devices," Appl. phys. Lett .. 50, pp. 612-614 (1987). 

114. S. Datta, "A simple kinetic equation for steady-state quantum transport," J. Phys. 
Matter 2, pp. 8023-8052, ( 1990). 

171 



I PhD Thesis - Mohamed A. Naser McMaster - Engineerin~ Physics I 

115. S. Datta .," Nanoscale device modeling: the Green's function method," Superlattice and 
Microstructures 28, pp. 253-278 (2000). 

116. P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, B. A. Joyce, 
and H. Davock, "Scarming transmission-electron microscopy study of lnAs/GaAs 
quantum dots" Phys. Rev. B 58, Rl0127-Rl0130 (1998). 

117. D. Leonard, M. Krishnamurthy, S. Fafard, J. L. Merz, and P. M. Petroff, , "Molecular­
beam epitaxy growth of quantum dots from strained coherent unifonn islands of 
InGaAs on GaAs," J Vac.Sci. Teclmol. B 12, pp. 1063-1066 (1994). 

118. J. M. Garcia, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. 
Kotthaus, and P. M. Petroff, "Intermixing and Shape Changes during the Formation of 
InAs Self-Assembled Quantum Dots" Appl. Phys. Lett. 71, 2014 (3 pages), (1997). 

119. M. A. Swillam, M. H. Bakr, X. Li and J. Deen, "Efficient sensitivity analysis of time 
independent Schrodinger equation with application to quantmn lasers," Optics 
Communications, 281, pp 4169-4554 (2008). 

120. M. A. Swillam, M. H. Bakr, and X. Li, "Efficient 3D sensitivity analysis of surface 
plasmon waveguide strncnJres," Optics Express, vol. 16, pp. 16371-16381 Oct. (2008). 

121. M. A. Swillam, M.H. Bakr, and X. Li, "Full vectorial 3D sensitivity analysis and 
design optimization using BPM," IEEE J. Lightwave Technology, vol. 26, pp. 528 -
536, Mar. (2008). 

122. X. Lu and J. Vaillancourt, and M. J. Meisner, 'Temperanrre-dependent 
photoresponsivity and high-temperature ( 190 K) operation of a quantum dot infrared 
photodetector," Appl. Phys. Lett. 91, 051115 (3 pages), (2007). 

123. Z. Ye and J. C. Campbell, Z . Chen, E. Kim, and A. Madhukar, "Noise and 
photoconductive gain in InAs quantum-dot infrared photodetectors," Appl. Phys. Lell. 
83, pp. 1234-1236 (2003). 

124. H. C. Liu, "Noise gain and operating temperature of quantum well infrared 
photodetectors," Appl. Phys. Lett. 61, pp. 2703-2705, (1992). 

125. S. Tavakoli, M. A. Naser, D. A. Thompson, and M. J. Deen, "Experimental 
characterization and theoretical modeling of the strain effect on the evolution and inter­
band transitions of InAs quantum dots grown on lnxGa1_xAs (0.0 :S x :S 0.3) 
metamorphic pseudosubstrates on GaAs wafers", J. Appl. Phys., 106, 063533 (8 pages), 
(2009). 

126. M. Ryzhii, V. Ryzhii, and M. Willander, "Monte Carlo modeling of electron velocity 
overshoot effect in quantum well infrared photodetectors," J. Appl. Phys., 84, pp. 3403-
3408 (1998). 

127. M. Ryzhii and V. Ryzhii, "Monte Carlo analysis of ultrafast electron transport in 
quantum well infrared photodetectors," Appl. Phys. Lett. 72, pp. 842-844 (1998). 

128. V. Ryzhii and M. Ryzhii, "Nonlinear dynamics of recharging processes in multiple 
quantum well structures excited by infrared radiation," Phys.Rev B . 62, pp. 10292-
10296, (2000). 

129. A. Jauho, N. Wingreen, Y. Meir, "Time-dependent transport in interacting and 
noninteracting resonant-tunneling systems," Phys.Rev B . 50, pp. 5528-5544, (1994). 

172 

654 0 30 




