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Abstract 

Multi-Target Tracking (MTT), where the number of targets as well as their states 

are time-varying, concerns with the estimation of both the number of targets and 

the individual states from noisy sensor measurements, whose origins are unknown. 

Filtering typically produces the best estimates of the target state based on all mea

surements up to current estimation time. Smoothing or retrodiction, which uses 

measurements beyond the current estimation time, provides better estimates of tar

get states. This thesis proposes smoothing methods for various estimation methods 

that produce delayed, but better, estimates of the target states. 

First, we propose a novel smoothing method for the Probability Hypothesis Den

sity (PHD) estimator. The PHD filter, which propagates the first order statistical mo

ment of the multitarget state density, is a computationally efficient MTT algorithm. 

By evaluating the PHD, the number of targets as well as their individual states can be 

extracted. Recent Sequential Monte Carlo (SMC) implementations of the PHD filter 

have paved the way to its application to realistic nonlinear non-Gaussian problems. 

The proposed PHD smoothing method involves forward multitarget filtering using 

the standard PHD filter recursion followed by backward smoothing recursion using a 

novel recursive formula. 

Second, we propose a Multiple Model PHD (MMPHD) smoothing method for 
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tracking of maneuvering targets. Multiple model approaches have been shown to 

be effective for tracking maneuvering targets. MMPHD filter propagates mode

conditioned PHD recursively. The proposed backward MMPHD smoothing algorithm 

involves the estimation of a continuous state for target dynamic as well as a discrete 

state vector for the mode of target dynamics. 

Third, we present a smoothing method for the Gaussian Mixture PHD (GMPHD) 

state estimator using multiple sensors. Under linear Gaussian assumptions, the PHD 

filter can be implemented using a closed-form recursion, where the PHD is represented 

by a mixture of Gaussian functions. This can be extended to nonlinear systems by 

using the Extended Kalman Filter (EKF) or the Unscented Kalman Filter (UKF). In 

the case of multisensor systems, a sequential update of the PHD has been suggested 

in the literature. However, this sequential update is susceptible to the imperfections 

in the last sensor. In this thesis, a parallel update for GMPHD filter is proposed. 

The resulting filter outputs are further improved using a novel closed-form backward 

smoothing recursion. 

Finally, we propose a novel smoothing method for Kalman based Interacting Mul

tiple Model (IMM) estimator for tracking agile targets. The new method involves 

forward filtering followed by backward smoothing while maintaining the fundamental 

spirit of the IMM. The forward filtering is performed using the standard IMM recur

sion, while the backward smoothing is performed using a novel interacting smoothing 

recursion. This backward recursion mimics the IMM estimator in the backward di

rection, where each mode conditioned smoother uses standard Kalman smoothing 

recursion. 
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Chapter 1 

Introduction 

Multi-Target Tracking (MTT) problem arises in various applications such as surveil

lance, navigation, control, failure detection, signal processing, medicine, and eco

nomics [5][7][8][15][32][92]. In the MTT problem, the objective is to estimate states 

(e.g., positions and velocities) of targets of interest using noisy observations from one 

or more sensors. In general, the number of targets in the region of interest may vary 

over time due to their spontaneous appearance and disappearance. Sensors such as 

radar and sonar not only report target originated measurements with a probability of 

detection less than one, but also generate spurious measurements from noise or un

wanted sources. Typically, sensors return measurements, whose origins are unknown, 

in regular intervals. Most tracking algorithms estimate target states recursively using 

Bayesian principle with Markov assumption on target state evaluation. 

1.1 Single Target State Estimation 

Consider a clean environment, where a single target evolves and sensor provides only 

target originated measurement with a probability of detection one. In this simple case 
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2 CHAPTER 1. INTRODUCTION 

(Figure 1.1), target tracking can be cast as state estimation of a dynamic system. 

In this formulation, target state is assumed to evolve according to some dynamic 

model and follow an unobserved Markov process, whereby the target state at a given 

time is conditionally independent of all the earlier states given the state at the last 

observation time. It is also assumed that the measurement at a given time is related to 

the target state at that time by a measurement model and is conditionally independent 

of all the previous target states given the state at the time of measurement. With these 

assumptions, the partially observed target states can be estimated using a recursive 

Bayesian filter. 

Target 
Target 

State 
Sensor Signal Processing 

and Measurement Fonnation Dynamics 

StateMeasurements 
Filtering 

Estimate 

1 
Figure 1.1: Single target tracking 

In the case of linear Gaussian problem, where system and measurement models are 

linear and both process and measurement noises are additive Gaussian, the Kalman 

filer provides optimal estimate [7]. This Bayesian filter propagates the mean and 

the covariance of the target state that are sufficient statistics of the posterior for the 

linear Gaussian problem. Alpha-Beta filter, which is the constant gain Kalman filter, 

propagates only the mean of the posterior. 

For a problem with nonlinear system and/or measurement models, modified ver

sions of the Kalman filter can be used. The Extended Kalman Filter (EKF) performs 

the Kalman filter recursion with locally linearized models. The Unscented Kalman 

Filter (UKF) [47], which is a derivative free method, uses unscented transformation 

to perform Kalman-like recursion. For nonlinear non-Gaussian problems, Sequential 
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Monte Carlo (SMC) methods (also known as the particle filter) can be used [4][22]. In 

this method, the target posterior density is represented by a set of random samples. 

In maneuvering target tracking problems, where target may change its motion 

dynamic, the detection and tracking of motion model changes are crucial to get ac

curate state estimates. For such problems, Multiple Model (MM) approaches have 

been shown to be highly effective. In these approaches, the target is assumed to 

evolve according to one of many models from a known set of models throughout the 

entire process. The optimal MM estimator, which keeps track of exhaustive model 

histories, has exponentially increasing computational complexity over the time. All 

MM approaches used in practice are approximate versions of the optimal one. The 

Interacting Multiple Model (IMM) method cleverly keeps track of model paths at any 

time by making a soft decision and by maintaining interaction between them [7][11]. 

1.2 MTT Algorithms 

In contrast, multitarget tracking (Figure 1.2) is more challenging due to the time

varying number of targets and measurement origin uncertainties [6][8]. The number 

of targets varies over time as targets in the area of interest continually appear and 

disappear. Sensors report both target-originated measurements with a probability 

of detection less than one and a set of spurious measurements not originating from 

any of the targets of interest. In such a situation, an MTT algorithm must jointly 

estimate the number of targets and their states using the collection of measurements 

reported by the sensor at each time step. One way of solving this problem is to find 

explicit associations between measurements and targets, and then to filter associated 

measurements for individual target states [6][8][56]. The Nearest Neighbor (NN) and 
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Target 
Sensor Signal Processing Measurements Data StateFiltering

States and Measurement Formation Association Estimates 

Predicted l 
Tracks 

Prediction 

Figure 1.2: Conventional multitarget tracking 

Strongest Neighbor (SN) use the nearest and strongest measurement as associated 

measurement, respectively [5]. The Multiple Hypotheses Tracking (MHT) algorithm 

builds all possible association hypotheses for the sequence of measurements [8] [9] [80]. 

In multiframe assignment, which is a sliding window version of the MHT, the MTT 

problem is solved using an optimization formulation [67]. The Joint Probabilistic 

Data Association (JPDA) filter [6], and the Probabilistic MHT (PMHT) algorithm 

[93] consider soft association by weighting the measurements probabilistically. These 

explicit association methods require combinatorial enumeration of targets and mea

surements that results in a huge computational load [63][98]. 

On the other hand, the multitarget problem can be modelled using Random Fi

nite Sets (RFS) [32] [66]. This association-free approach considers the collection of 

target states as a single meta-target state and the collection of observations as a 

single meta-observation. Finite Set Statistics (FISST) offers a systematic foundation 

for multitarget tracking based on the theory of RFS [61][62]. It leads to an elegant 

multitarget generalization of the single-target Bayes filter [63][64][65][66]. The opti

mal multitarget Bayes filter based on RFS, which involves set integration, is usually 

computationally expensive and intractable [96]. 
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1.2.1 Probability Hypothesis Density Filter 

The Probability Hypothesis Density (PHD) filter, which is the first-order moment 

approximation of the optimal multitarget Bayes filter based on RFS, is a computa

ti01w1ly tractable alternative. This recursive filter assumes that the predicted multi

target state density is Poisson for which the PHD (the first order statistical moment) 

completely characterizes the underline dynamic Poisson point process. The PHD is 

a positive function defined on single target state space. The integral of the PHD in 

any region is equal to the expected number of targets in that region. By evaluating 

the PHD recursively, the number of targets as well as their individual states can be 

extracted [66][63]. 

Though the PHD recursion consists of equations that are considerably simpler 

than those of the optimal multitarget Bayes filter, it still requires solving multi

dimensional integrals that do not have closed-form solutions in general. SMC imple

mentations of the PHD filter, where the PHD is represented by set of random samples 

particles, have paved the way to its application to realistic nonlinear non-Gaussian 

problems [88][95][96]. For maneuvering target tracking, Multiple Model PHD (MM

PHD) filter, which propagates mode dependent intensity recursively, was proposed 

[76][77]. 

Recently, the Gaussian mixture PHD (GMPHD) filter [96][98], where th~ PHD 

surface is represented by a mixture of Gaussian intensity functions, was proposed 

for the linear-Gaussian MTT problem with a Gaussian mixture model for target 

birth. Similar to the Gaussian sum filter [1][91], GMPHD filter propagates means, 

covariances, and weights of the constituent Gaussian components of the posterior 

intensity surface through two steps: namely, prediction and update. This closed-form 

recursion can be extended to mildly nonlinear problems using the EKF or the UKF. 
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The convergence property of the SMC based PHD filter has been established in 

[46]. The convergence analysis of GMPHD filter is provided in [18]. However, it is 

indicated in [26] that the PHD filter is dependent on current measurements, especially 

in the case of low observable target problems (i.e., estimates are sensitive to missed 

detections and false alarms) that is the motivation behind introducing smoothing 

method for PHD based estimator in this thesis. 

1.3 Smoothing 

Using filtering algorithms, one can typically achieve the best estimates of the tar

get states at a given time based on all measurements up to the current estimation 

time. This best estimate at a given time can be improved significantly by smoothing 

or retrodiction, which uses more measurements beyond the current estimation time 

[38]. If a certain time delay can be tolerated, accurate estimates can be obtained 

using smoothing, which requires some additional computational load to incorporate 

information to the current state from measurements beyond current estimation time. 

The Kalman based smoothing algorithms can be found in [7]. Smoothing has 

been incorporated into a number of different tracking algorithms. Probabilistic Data 

Association (PDA) smoothing algorithm is proposed in [59] to improve the tracking 

performance in a clutter environment. Maneuvering target tracking is improved by 

IMM smoothing method in [40]. IMM-PDA smoothing is reported in [17] to improve 

the tracking of agile targets in clutter environment. Improved multitarget tracking is 

demonstrated using IMM-MHT smoothing in [54]. 

Similarly, particle based smoothing algorithms are proposed to improve nonlinear 

non-Gaussian tracking problems. In [51], smoothing is performed by using a two-filter 
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formula, where the smoothed distribution is obtained by combining the results of 

forward and backward filtering algorithms. In [28], a block-based particle smoothing 

method was proposed. In [42][21][31], particle smoothing is performed using forward 

filtering followed by backward smoothing. 

1.4 Contributions 

The main focus of this thesis is to develop smoothing method for various state estima

tion algorithms. All methods, which are Rauch-Tung-Striebel (RTS) type smoothers 

[30] [79], involve forward filtering using existing standard algorithms followed by novel 

backward smoothing algorithms. These methods provide delayed, but better, esti

mates for target states that requires additional computational effort. The following 

sections outline the main contributions of the thesis. 

1.4.1 PHD Smoothing 

In this work, we propose a PHD smoothing algorithm to improve the capability of 

PHD based state estimator. It involves a forward multitarget filtering using the stan

dard PHD filter recursion and then a backward smoothing recursion. This backward 

smoothing recursion is performed with a novel recursive formula, which is derived us

ing the physical-space approach presented in [27]. The resulting backward recursion 

incorporates intensity for surviving targets as well as disappearing targets. Compared 

to optimal multitarget Bayesian smoothing, this first order recursion is simple and 

evolves in single target state space. However, it does not yield any closed-form recur

sion. To mitigate this problem, we propose an SMC implementation of the smoothing 

method. We show that this SMC implementation requires much more computational 
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effort to compute smoothed particle weights. To alleviate this, we introduce a fast 

implementation [52], which uses the N-body algorithm from [34]. This fast method 

requires that target transition density be defined in metric space. However, we show 

that most commonly used transition models can be converted into a function defined 

in a metric space using simple transformations. 

1.4.2 Multiple Model PHD Smoothing 

MMPHD filter is a natural extension of the PHD filter for maneuvering target track

mg. In this work, we propose a smoothing algorithm for MMPHD based state estima

tor. Here, the mode dependent PHD is propagated recursively. SMC implementation 

of the backward recursion involves continuous density as well as probability mass 

function due to discrete variable for mode. This discrete density does not permit the 

use of the fast method discussed in the previous section. However, we demonstrate 

that the fast method can still be used for a special case where targets switch between 

two dynamic models and have symmetric mode transition matrix. 

1.4.3 Gaussian Mixture PHD Smoothing 

Next, we propose a smoothing method for the GMPHD state estimator using multiple 

sensors. Under linear Gaussian assumption, the PHD filter can be implemented 

using closed-form recursion, where the PHD is represented by a mixture of Gaussian 

functions. This can be extended to nonlinear systems by using the EKF or the UKF. 

In the case of multisensor systems, a sequential update of the PHD has been suggested 

in the literature. However, this sequential update is susceptible to the imperfections 

in the last sensor. In this thesis, a parallel update for GMPHD filter is proposed. 

The resulting filter outputs are further improved using a novel closed-form backward 
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smoothing recursion. 

1.4.4 IMM Smoothing 

Finally, we propose a novel smoothing method for Kalman filter based IMM estima

tors for tracking agile targets. The new method involves forward filtering followed 

by backward smoothing while maintaining the fundamental spirit of the IMM esti

mator. The forward filtering is performed using the standard IMM recursion, while 

the backward smoothing is performed using a novel interacting smoothing recursion. 

This backward recursion mimics the IMM estimator in the backward direction, where 

each mode conditioned smoother uses the standard Kalman smoothing recursion. 

1.5 Organization of the Thesis 

This thesis is structured as follows: Chapter 2 focuses on a brief review of filter

ing algorithms including single target filtering and multitarget filtering. Chapter 3 

outlines the PHD filter and the derivation of its recursion using physical space ap

proach. Chapter 4 provides an overview of smoothing algorithms. In Chapter 5, the 

backward PHD smoothing algorithm is derived using the physical-space approach and 

implemented using SMC method. Chapter 6 provides MMPHD smoothing algorithm. 

It also briefly discusses an efficient implementation of this backward smoothing. In 

Chapter 7, GMPHD smoothing is developed. This closed-form recursion is applied 

to multisensor systems. Chapter 8 proposes a new smoothing algorithm for Kalman 

filter IMM estimator. Finally, Chapter 9 concludes the findings. 



Chapter 2 

Filtering 

In target tracking, filtering plays crucial role whereby we estimate target state from 

noisy observations. Target state, which includes position and velocity of the target, is 

partially observed by one or more sensors. The objective of filtering algorithms is to 

produce optimal estimate of the target state based on some criteria such as Minimum 

Mean Square Error (MMSE). This chapter reviews filtering methods, which are part 

of smoothing methods (i.e., forward filtering and backward smoothing) developed 

in this thesis. Section 2.1 reviews single target filtering methods, while multitarget 

filtering methods are outlined in Section 2.2. 

2.1 Single Target Filtering 

In a clean environment, where a single target evolves and sensor provides only target 

originated measurement with the probability of detection one, the state estimation 

problem can be defined as follows: state sequence xk E JRnx at time steps k E N 

evolve according to some state transition model, where nx is the dimension of target 

10 
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state. That is, 

(2.1) 


where fklk-l : ]Rn, x ]Rn,, ---+ ]Rnx is a possibly nonlinear function of the previous state 

xk-I and an I.I.D process noise sequence vk-l E ]Rnv with dimension nv. Sensor 

observation process is modeled as follows: 

(2.2) 


where hk : ]Rnx x ]Rn,, ---+ ]Rnz is a possibly nonlinear function of the current state Xk 

and an I.I.D measurement noise sequence nk E ]Rnn. 

The objective of the filtering algorithms is to find estimate xk for state xk using 

measurement sequence zu = {zj,j = 1, ... , k} up to time k and given the above 

models. For this dynamic estimation problem, the recursive Bayesian approach pro

vides an optimal solution [81 J. In the Bayesian filter, posterior Probability Density 

Function (PDF) Pklk (xklzu) of target state xk is recursively constructed starting 

from initial PDF fJo(xo). 

2.1.1 The Bayesian Filter 

In Bayes filter, the recursive estimation of the state is performed with following as

sumptions: 

• 	 Target state is conditionally independent of all earlier states given the immediate 

previous state. That is, 

(2.3) 
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• The measurement at time k is dependent only on the state xk and conditionally 

independent of all other states. That is, 

(2.4) 


With these assumptions, the posterior PDF PkJk (xklzl:k) at time t can be found by 

following two-step recursion. 

• Prediction - Given by Chapman-Kolmogorov equation as follows: 

• Update - Given by Bayes rule as follows: 

(2.6) 

where the normalizing constant 

(2.7) 

According to Bayesian inference, the posterior PDF PkJk (xklzl:k) contains all informa

tion of the target state and completely characterizes all statistical uncertainty in the 

target state. Hence, given the posterior density, the estimate of the state can be ob

tained under certain criterion such that it minimizes an objective function called the 

Bayes risk [82]. The most common estimators are the Maximum a posterior (MAP) 
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and the Expected a posteriori (EAP). They are defined as 

(2.8) 

(2.9) 

The EAP estimate minimizes the Mean Square Error (MSE) of the estimate, while 

the MAP corresponds to maxima of posterior PDF. Due to the multi-dimensional 

integration in (2.5) and (2.6), in general, the Bayes filter cannot be realized for most 

practical problems. There are several approaches that approximate the Bayes recur

sion. In the following sections, an outline of the closed-form recursion for a special 

case and most common approximate approaches are provided. 

2.1.2 Kalman Filter 

The Kalman filter [48] provides a closed-form recursion for a special case, where 

system and measurement models, ( 2.1) and (2.2), are linear Gaussian as follows: 

(2.10) 

(2.11) 

where Fk is the state transition matrix, fh is the measurement matrix, and vk-l and 

nk are Gaussian noises with covariance matrices Qk-l and Rk. It is also assumed that 

the initial density is Gaussian. That is, 

Po(xo) = N(xo; mo, Po) (2.12) 
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where N(x; m, P) is a Gaussian distribution characterized by its mean, m, and covari

ance, P. The Kalman filter works because, if Pk-llk-1(xk-1izu_i) and Pklk-1(xkixk-1) 

and Pklk(zklxk) are all Gaussian distributions, then so is Pklk(xklzu) [35][78]. That 

is, if 

(2.13) 

Pklk-1 (xk Jxk-1) N(xk; FkXk-1, Qk-1) (2.14) 

Pklk(zklxk) N(zk; Hkxk, Rk) (2.15) 

then the Kalman filter recursion is given as follows: 

• Prediction 

(2.16) 

• Update 

(2.17) 

with the parameters given by 

Fkmk-llk-1 (2.18) 


FkPk-llk-1F[ + Qk-1 (2.19) 
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mkik mklk-1 + Kk(zk - Hkmklk-1) 

Pklk (/  Kk!-h)Pklk-1 

Kk Pklk-1H[S-,; 1 

Sk HkPklk-1H[ 

The matrix Kk is referred to as the Kalman gain, the residual zk-Hkmklk-l is referred 

to as the innovation and the matrix Sk is the innovation covariance. An interesting 

point to note about the recursion formed by (2.16) and (2.17) is that there is no effect 

of the measurement on the covariances of the normal distributions. The covariance 

is defined entirely by the matrices that comprise the system, Fki Hk, Qk-l, Rk, Po. 

If the system matrices are known and constant over time, then the covariances can 

be precalculated. It is also worth noting that in such cases, the covariance will tend 

to a value. This means that, after some initial period, the uncertainty is constant. 

This steady state is the result of a balance between the increase in uncertainty as a 

result of the prediction step and the reduction in uncertainty due to the update step. 

This observation leads to the a - {3 filter, which can be viewed as a special case of 

the Kalman filter. 

2.1.3 Interacting Multiple Model Estimator 

Since the Kalman filter assumes a fixed model for the state evolution, its performance 

is not satisfactory in terms of the estimation error when it is used to estimate the 

state of systems whose model vary with time [49]. In such a scenario, Multiple Model 

(MM) estimators perform better than a Kalman filter. In the MM approach, it is 

assumed that the system obeys one of a finite number of models and a Bayesian 

framework is used: starting with prior probabilities of each model being correct, (i.e., 
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system is in particular mode), the corresponding posterior probabilities are obtained. 

A system that can undergo model switching in time can be described by the 

following equations: 

(2.20) 


(2.21) 


where rk denotes the mode or model at time k. The mode at time k is assumed to 

be among the possible Nr modes 

(2.22) 


The event that model j is in effect at time k is denoted as 

(2.23) 


It will be assumed that the mode switching is a Markov process (Markov chain) with 

known mode transition probabilities 

(2.24) 


These mode transition probabilities will be assumed time-invariant and independent 

of the base state. The lth mode history - or sequence of models - through time k is 

denoted as 

(2.25) 
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where irc,l is the model index at time K, from history l and 

/\, = 1, ... ,k (2.26) 

The conditional PDF of the state at time k is obtained using the total probability 

theorem with respect to the mutually exclusive and exhaustive set of events (2.25), 

as a Gaussian mixture with an exponentially increasing number of terms 

N: 
Pklk(xklzu) = L Pklk(xklrk,l, zu)P{rk,zlzl:k} (2.27) 

l=l 

Since to each mode sequence one has to match a filter, it can be seen that an expo

nentially increasing number of filters are needed to estimate the (base) state, which 

makes the optimal approach impractical. All MM approaches used in practice are 

approximate versions of the optimal one. The Interacting Multiple Model (IMM) 

method cleverly keeps track of model paths at any time by making soft decision and 

having interaction between them [10][11]. The IMM recursion at time k starts with 

the Gaussian mixture, Mk-llk-l = {ML11 k_ 1}t'.;'1, which represents the posterior 

density at time k - 1. Here, ML 1lk-l denotes the ith mode density, which is a 

Gaussian component with mode probability µL 1lk-l' mean mL 1lk-l' and covariance 

matrix PL 1lk-i· The IMM recursion can be summarized as follows [7]: 

• Mixing probability calculation: The mixing probability is given by 

ilj 1 i N 
µk-llk-1 = ~Pi]µk-llk-1 i, j = 1, · · · , r (2.28) 

Cj 
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where 

Nr 

Cj = L Pij/J,L11k-l j = 1, ... , Nr. (2.29) 
i=l 

• 	 Mixing: The mean and the covariance matrix for the jth mode-matched filter 

are given by 

mOj (2.30)k-llk-l 
i=l 

pOj 
k-llk-l 

Nr 

~ ilj {pi + [ i 
~ µk-llk-l k-llk-1 mk-llk-l -

Oj ]
mk-llk-l 

i=l 

x [ 
· o· JT}

mL11k-1 - mk~llk-1 (2.31) 

• 	 Mode-matched filtering: The mean and the covariance in (2.30) and (2.31) are 

used as input to the mode-matched filter with model r{ using measurement zk· 

The mode likelihood is given by 

(2.32) 

where z{lk-l (m~~llk-l) and S{(P~~llk-l) are the predicted measurement and the 

innovation covariance for mode filter r{, respectively. 

• Mode probability update: The updated mode probability is given by 

(2.33) 

where the normalizing constant c = l::f~ 1 A{cj. 
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• Estimate: Finally the estimate and corresponding covariance matrix are found 

using moment matching. That is, 

(2.34) 

i=l 

(2.35) 

The algorithm is also summarized in Figure 2.1. 

ml pl m2 p2
k-llk-l 1 k-llk-1 k-1.k-l' k-l'k-1 

Interaction/mixing 

01 pOl mo2 po2
k-llk-1' k-llk-1

~IHAl 
A2FilterZk Zk -----k 

2 

t 
1 pl 2 p2

mklk' kik mklk' klk 

Mode probabilityAl 
update and 

A2 mixing probabilityk 
calculation 

1 pl
mklk' klkµklk 

2 p2----- mklk' klk 
µklk 

State estimate 
and covariance 

combination 

m.klk 

pklk 

Figure 2.1: IMM filter with two models 

2.1.4 Extended Kalman Filter 

In many situations of interest, linear Gaussian assumption of the Kalman filter does 

not hold. It is then necessary to make approximation. The Extended Kalman Filter 
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(EKF) relaxes linear assumption such that new models are given by 

fklk-1(Xk-l) + Vk-1 (2.36) 

hk(xk) + nk (2.37) 

where functions fklk- 1(·) and hk(·) are nonlinear, vk-l and nk are still zero mean 

Gaussian and statically independent. The EKF linearizes the models about the cur

rent mean and the covariance using Taylor series approximation and then apply the 

standard Kalman filter equations [2] [7]. The local linearization is as follows: 

Fk 
dfklk-1(xk-1) 

dxk-l 
(2.38) 

Xk-1=mk-llk-l 

Hk 
dhk(xk) 

dxk 
(2.39) 

Xk=illkik-1 

Here, the system and the measurement matrices Fk and Hk in the Kalman recursion 

(2.16) and (2.17) are replaced with above Jacobian matrices Pk and ih, respectively. 

Such a local approximation of the models may be a sufficient description of the non

linearity. However, it may fail to describe highly nonlinear system and measurement 

models. A higher order EKF that retains further terms in the Taylor expansions 

exists and results in a closer approximation to the true posterior. The additional 

complexity has prohibited its widespread use. 

2.1.5 Unscented Kalman Filter 

The Unscented Kalman Filter (UKF) [47][100] is another approximate approach to 

the Kalman filter based on the unscented transform. This approach considers a 
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set of points that are deterministically sampled from Gaussian approximations for 

p(xk-ilzl:k_ 1). These points are all propagated through the true nonlinearity and 

the parameters of the Gaussian approximation are re-estimated as follows. If the 

posterior density at time k - 1 is Gaussian 

(2.40) 

start with the augment mean and covariance 

(2.41) 


and generate a set of Ly 

according to 

Wkl) = K,j (ny + K,) l = 0 

wr) = 1/2(ny + K,) = l = 1, ... , ny 

Wkny+l) = 1/2(ny + K,) l = 1, ... , ny 

where K, E JR and ( J(ny + K,)Ck) denotes the lth row of the square root of matrix 
1 

(ny + K,)Ck. Each sigma point consists of following partitions 

(l) _ [( (l) )T ( (l) )T ( (l))T] T
Yk - xk-l vk-1 nk (2.42) 

For the prediction, the sigma points are propagated through the transition function 

according to x~?k-l = h1k-1 ( x~~ 1 , Vk1~ 1 ) for l = 0, ... , Ly, and the predicted density 
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at time k is approximated as the Gaussian 

(2.43) 

where 

Ly 

'""' (l) (l)
~wk xklk-1 
l=O 

Ly 

)T'""' (l) ( (l) ) ( (l)
~wk xklk-l - mklk-1 xklk-1 - mklk-1 
l=O 

For the update, the sigma points are propagated through the measurement model 

·d· · (l) h ( (l) (ll) f l L d d d accor mg to zklk-l = k xklk-l' nk or = 0, ... , y, an the update ensity at 

time k is approximated as Gaussian 

(2.44) 

where 

mklk mklk-1 + Kk(zk - Zkjk-1) 

Pklk Pkjk-1 - PxzSk1P~ 
Ly2= (l)(l)

Zkjk-1 wk zklk-1 
l=O 

1Kk Pxz8'k
Ly

2= (l)( (l) ) ( (l) ) TS\ wk zklk-1 - Zkjk-1 zkjk-1 - Zkjk-1 

l=O 

Ly 

( (l) ) T2= ui ( ui )Pxz wk xklk-1 - mklk-1 zkjk-1 - Zkjk-1 

l=O 
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UKF is equivalent to a higher order EKF and its algorithmic simplicity makes it 

more attractive than the higher order EKF. If the true distribution of non-Gaussian 

then a Gaussian, however good approximation, can never describe the distribution 

well. It is possible to approximate the state space as consisting of a grid of points 

and then use an approximate grid based approach. This is frequently the approach 

taken by the speech processing research community. In such cases, approximate grid 

based filters yield an improvement in performance in comparison to that of the EKF 

[3]. The Gaussian Mixture Filter (GMF) has been proposed in [1] to handle non-

Gaussian distribution. GMF works by approximating the non-Gaussian distribution 

with a mixture of Gaussian terms. However it requires linear approximations to the 

system and measurement models. The GMF results in the exponential growth in the 

number of mixture components. 

2.1.6 Particle Filter 

Recently, a large number of filters based on Sequential Monte Carlo (SMC) approx

imations to the Bayes filter, called particle filters, were proposed [4][22][81], which 

require no linear or Gaussian assumptions on the dynamical models. Rather than 

approximating the models in order to be able to fit a distribution of a given type to 

the posterior, a particle filter explicitly approximates the distribution so that it can 

handle highly nonlinear non-Gaussian models. The approach has also been known as 

bootstrap filter [33], condensation algorithm [58] and SMC filtering [22]. 

In particle filtering, the required posterior density function is represented by a set 

of random samples ('particles') with associated weights [4][33]. Let {x~2 }~~ 1 , with1 
associated weights { Wkj~llk-l}~~1 be the random samples representing the posterior 

density Pk-llk-1 (xk-1 lzl:k-1). Here, NP is the number of particles. The weights are 
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. l h h '\'NP (j) 1 Th . . t• 1 filtnorma1izec sue t at L...j=l wk-Ilk-I = . ere are many vanants m par ic e er. 

The simplest and widely implemented variant is Sampling Importance Resampling 

(SIR) particle filter. 

2.1.6.1 SIR Particle Filter 

Sampling Importance Resampling (SIR) [83] [90] propagates and updates the particles 

in which the Pk-llk-i(xk-ilzl:k_i) is represented by equally weighted particles. Then 

(2.45) 

where 5(-) is the Dirac Delta function. The prediction and update of the particles in 

SIR method are given as follows: 

Prediction: Take each existing particle, x~2 and sample from Importance den1 
sity (x~*J) ,...., fklk-l (x~2 1 , v~2 1 )), using the system model, where v~2 1 is a random 

sample from the distribution of the process noise vk-l· The set {x~*J)};~ gives an1 
approximation of the prior, Pklk-i(xklzl:k-i), at time k, i.e., 

(2.46) 


Update: At each measurement epoch, to account for the fact that the samples, 

x~*J) are not drawn from Pklk(xklzl:k), the weights are modified using the principle 

of Importance sampling. When using the prior as the Importance density, it can be 

shown that the weights are given by 

(2.47) 
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Reselection: Resample (with replacement) from { x~*J)}f~1 , using the weights, 

{wkjkl}f~ 1 , to generate a new sample, {x~l}f~1 , then set w~k = 1/NP for j 

1, ... , NP. We then have: 

(2.48) 


At each stage the mean of the posterior distribution is used to estimate, XkJk of the 

target state, xk, i.e., 

JE[xklzl:k] (2.49) 

r Xk p(xklzl:k)dxk
Jxk 

(2.50) 

(2.51) 


2.2 Multitarget Filtering 

In a multitarget tracking problem, the number of targets changes over time as new 

targets may appear in the region of interest due to spontaneous target birth or target 

spawning. Moreover, existing targets may not survive to the next time step and 

disappear from the scene. The sensor does not generate measurements corresponding 

to all targets present in its field of view. Furthermore, the collections of measurements 

available at each time step often include spurious measurements not generated by the 

targets, known as clutter. Finally, measurements are indistinguishable from each 

other; hence there is no way of knowing which measurement is generated by a target 

or is clutter. As a result, multi-target tracking involves jointly estimating the number 

as well as the states of a finite but time varying number of targets from a given set 
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of finite and time varying number of measurements of uncertain origins. 

To summarize, let X k denote the collection of target states in the region of interest 

at time k, i.e.' xk = {xL ... 'x~k} ~ ]Rnx. Similarly, zk denotes the collection of 

measurements at time k, i.e., Zk = {zk,1, ... ,zk,MJ ~ JRnz. A measurement Zk,i is 

either generated by one of Nk targets or is clutter. Mk and Nk represent the number 

of measurements and targets respectively at time k, and are both time dependent. 

Let Zl:k = {Z1, ... , Zk} denote the sequence of measurement sets received from the 

sensor up to time k. Given Zl:k, the objective is to find the estimate of the target 

number, Nklk, and the estimates of individual states. 

2.2.1 Conventional Multitarget Filtering 

In conventional methods, multitarget tracking is treated as two separate functions 

[6][8][56]; association of correct measurement to existing tracks and estimation of tar

get states based on these associations using single target state estimation method 

discussed in Section 2.1. A simple approach to perform the association is the Nearest 

Neighbor (NN) method, i.e., associate a measurement that is closest in some statisti

cal sense to a track. Only the measurements that fall within the gate are considered. 

However, when one or more measurements fall within gates of more than one track, 

likely associations amongst measurements to tracks depend on which track is consid

ered first. The Global Nearest Neighbor (GNN) method considers all possible ways 

of associating measurements to tracks and chooses the one that minimizes the sum 

of the statistical distances between the tracks and measurements. 

Multiple Hypothesis Tracking (MHT) is a widely used technique that considers all 

possible associations amongst measurements and tracks at each time step and allows 

measurement that will arrive in subsequent time steps to resolve the uncertainty in 
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associations at present by maintaining and updating their probabilities. However, 

the complexity and inherent computational costs of such exhaustive data association 

are considerable. In practice, MHT uses various ad hoc techniques to manage the 

number of hypotheses from growing exponentially with time. In multidimensional 

assignment (also known as s-D assignment) algorithm , which a sliding window ver

sion of the MHT, the MTT problem is solved using optimization formulation [67]. 

The 2-D assignment algorithm is equivalent to GNN. The Joint Probabilistic Data 

Association (JPDA) filter [6][29], and the Probabilistic MHT (PMHT) algorithm [93] 

consider soft association by weighting the measurements probabilistically. Instead of 

allowing all feasible associations to propagate ahead in time, JPDA considers asso

ciations that survive gating and combines these associations in proportion to their 

likelihoods. PMHT forms synthetic measurement for each track from gated measure

ments using Expectation Maximization (EM) algorithm. These explicit association 

methods require combinatorial enumeration of targets and measurements that result 

in a huge computational load [63][98]. 

2.2.2 Unified Multitarget Filtering 

On the other hand, the multitarget problem can be modeled using RFS [32] [66]. This 

association-free approach considers the collection of target states as a single meta-

target state and the collection of observations as a single meta-observation. It leads to 

an elegant multitarget generalization of the single-target Bayes filter [63][64][65][66]. 

By generalizing the single target recursive Bayes filter, the multitarget prediction and 
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update can be written respectively as follows [66][63]: 

j Ps,klk-1(Xk1xk-1)Ps,k-llk-1 (Xk-1 I zl:k-1)6Xk-1 

(2.52) 

Ps,k( zk IXk)Ps,klk-1 (Xkl zl:k-1) 
(2.53)

Ps,k( zk Izl:k-1) 

where PB,klk(XklZl:k) is the multitarget posterior density at time k, Ps,k(ZklXk) 

is the multitarget likelihood function, PB,klk-1(Xk1Xk_i) is the multitarget Markov 

transition density, PB,klk-1(Xk1Zl:k_i) is the prediction of the multitarget posterior 

PB,k-llk-1(Xk-1IZ1:k-1), and Ps,k(ZklZl:k-1) is the Bayes normalizing factor. It is not 

possible to compare the states of different dimensions using ordinary Bayesian statis

tics of fixed dimensional spaces. However, FISST [32][61] paves the way to address 

this problem by constructing the multitarget densities from multitarget transition 

functions using the computation of set derivatives of belief-mass functions [61], which 

makes it possible to combine states of different dimensions. This approach is limited 

by the dimension of the full state space, which increases with number of targets, hence 

the computational load for propagating the full posterior increases exponentially with 

the number of targets. To avoid this problem, the first-order moment, also known 

as the PHD [61], of multitarget state density can be propagated. Since the PHD is 

defined over the single target state space in contrast to the full posterior distribu

tion, which is defined over the state space of all the targets, the computational cost 

of propagating the PHD over time is much lower than that of propagating the full 

posterior density. A comparison of multitarget filtering using the complete FISST 

particle filter and the PHD particle filter in terms of computation and estimation 

accuracy is given in [88]. 
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PHD Filter 

The PHD filter is a suboptimal but computationally tractable alternative to the 

multitarget Bayes filter described in Section 2.2.2. As shown below, it is a recursion 

that only propagates the first order moments of the RFS of the targets, which is known 

as the PHD function or the intensity function. Rest of this chapter introduces the 

intensity function and its recursion via the PHD filter. It also outlines the derivation 

of PHD filter recursion using physical space approach. Finally, it provides an overview 

of implementations of the PHD filter. 

time Bayes' 
prediction ( ) rule ( )

( )--> P::::,k-llk-1 X I Zu-1 --> PB,klk-1 X 1Zu-1 --> PB,klk XIZu --> · · · 

l l l 
predictor corrector__, __, __, ... 

29 
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3.1 The PHD 

The first order statistical moment (the PHD) D(x) of the multitarget state density 

Ps(X) is defined as [63] [66] 

D(x) ~ JE[o2 (x)] = j b'x(x)ps(X)oX 

j Ps({x}ux)ox (3.1) 

where xis the target state vector, X is the multitarget state set, r52 (x) is the density 

on RFS 3 and equals the summation of Dirac delta functions centered at w for each 

w E 3. That is, 

b's(x) = L Ow(x) (3.2) 
wES 

The PHD is a uniqnc function defined on single target state space E and its integral 

over a measurable subset S ~ E (e.g., the region of interest) yields the expected 

number of targets in S. That is, 

Ns = 1D(x)dx (3.3) 

The suboptimal filter, which propagates the PHD, provides estimates for the number 

of targets as well as individual target state. 

3.2 PHD Filter Recursion 

The recursive propagation involves two steps: the prediction (Section 3.2.1) and the 

update (Section 3.2.2) with the following assumptions [63]: 
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• Targets evolve independent of each other 

• Target originated measurements are independent of each other 

• Clutter is Poisson and independent of target originated measurements 

• The predicted multitarget RFS follows a Poisson process 

Here, the reader is referred to [63] for further mathematical details of the PHD filter. 

The local maxima of the PHD correspond to approximate expected states of the 

targets. One cycle of the recursive propagation of the PHD can be summarized as 

follows. 

3.2.1 Prediction of PHD 

In the prediction step, the predicted PHD, Dklk-i(xklZl:k-i), at time k given all 

measurements up to time k - 1 is given by 

(3.4) 

where Dk-llk-i(xk-ilZl:k_i) is the PHD at time k-1 and the PHD prediction operator 

<I>klk-1 is defined by 

(3.5) 

for any integrable function a on E with /k(-) denoting the intensity function of newly 

appearing targets at time k, 

(3.6) 
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Here, Ps(x) is the probability of target survival, h1k-l (xi~) is the single-target Markov 

transition density, and bklk-l (xlO is the intensity function of the spawning targets. 

3.2.2 Single-Sensor Update of PHD 

For single sensor tracking, the updated PHD Dklk(xklZl:k) at time k is given by 

(3.7) 


where it is assumed that the multitarget posterior is approximately Poisson and the 

update operator Wk is defined by 

(3.8) 

with 

(3.9) 


Here, Pd(x) is the probability of detection, Pk(zklx) is the single target likelihood 

function, >.k is the false alarm intensity, and ck(zk) is the false alarm spacial density. 

Since the domain of the intensity function is the same as the state space of an individ

ual target, its propagation requires much less computational power than that of the 

multitarget posterior. However, the above recursion still involves multiple integrals 

that have no closed-form expressions in general. Therefore, approximate methods can 

be sought: namely the SMC method [88] [95] [96] and the Gaussian mixture method 

[98]. 
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3.3 Derivation of the PHD Filter Recursion 

In this section, the derivation of the PHD filter recursion using the physical-space 

approach [27], also used in derivation of the novel backward PHD smoothing for

mula in Section 5.1, is reviewed (more details can be found in [66, pp. 599-609]). 

According to the physical-space approach, PHD is the target density corresponding 

to the probability of having a target in an elementary (hyper)volume in the state 

space. It is assumed that the surveillance region is divided into infinitesimal bins, 

(bi, i = 0, ... , oo), and each bin has at most one target. Let lbil denote the bin

(hyper)volume and u( ·) denote the indicator function, which is defined as 

Bin bi having a target 
u(b,) ~ { ~ 

Otherwise 

Proposition 3.3.1 The bin probability, P {u(bi) = 1}, of the ith bin approaches the 

PHD, D(x), when bin (hyper)volurne approaches 0. That is, 

(3.10) 


Proof Consider a locally compact Hausdorff separable space E (e.g., !R.n"'). An RFS 

S on E is defined as a measurable mapping [32] 

S: 0 ___. :F(E) 

where 0 is a sample space with a probability measure P defined on O"(O) and F(E) 

denotes the collection of finite subsets of E. The bin probability in (3.10) can be 
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written as 

P{w: 3(w) E SbJ 

(3.11)ls.. (~ls,, (x)) f(X)5X 

where Sb; is the set of states in the bin bi, lsb; (x) is the indicator function of set Sb;, 

and f(X) is the multitarget state density. Set integration is defined as follows [66]: 

Jg(X)6X = f ~! Jg({x1,. .. ,xn})dx1,. . .,dxn (3.12) 
n=O 

where g(X) is any integrable function of set X. Using (3.12), (3.11) can be simplified 

as follows: 

P{u(b)=l} 

(3.13) 

In the above, the second line is due to the assumption that states are independent 
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and identical. Consider the following limit 

1 
lim -b 1(/ f (YU {x}) r5Y) dx 

lb; 1--+0 b;1	 i 1 

1
b	 (3.14)lim - l1dx/.t(YU{x})bY

lb; 1->0 1i b; 

In the above, the second line is due to the infinitesimal size of the bin, which includes 

state x. The first integration in (3.14) is equal to the (hyper)volume lbil· From (3.1), 

the second integration is equal to the PHD that leads to the limiting augment of the 

physical space approach in (3.10). I 

Using this interpretation, the PHD filtering steps that are given by (3.5) and (3.7) 

can be obtained by considering the limiting values of respective bin probabilities as 

follows. 

3.3.1 Prediction 

Consider the possible events for the ith bin having target at time k 

• 	 Spontaneous appearance of a target in bin i, with probability Pb(uk(bi) = 1) 

• 	 The target in the jth bin at time k - 1 moved to the ith bin at time k. Its 

probability is given by 

The three terms in the above expression are the probability for the jth bin 

having a target at time k - 1, its survival probability and the probability for 

that target moving into the ith bin at time k, respectively. 
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• The target in the jth bin at time k - 1 spawned a target in the ith bin at time 

k. Its probability is given by 

Here, the last term is the probability for the target in the jth bin spawning a 

target in the ith bin at time k. 

Since the assumption of infinitesimal bins makes the above events to be mutually 

exclusive, the bin probabilities at time k given the measurement set Zi:k-l can be 

written as 

Pb{ uk(bi) = 1} 
+ L [Ps{uk-1(bj) = 1}P{uk(bi) = lJuk-1(bj) = 1} 

j 

+Pg{uk(bi) = lJuk-1(bj) = 1}J 

xP{ uk-1(bj) = llZu-1} (3.15) 

Dividing both sides by (hyper)volume lbiJ and rearranging result in 

P{ uk(bi) = lJZ1:k-1} Pb{ uk(bi) = 1} 
Jbil lbi I 

_ } P{ uk(bi) = lJuk-1(bj) = 1}
+ L Ps {Uk-1(bj) - 1 · JbiJ 

j 
[ 

Pg{ uk(bi) = lluk-1(bj) = 1}] 

+ lbil 

P{ (uk-1(bj) = llZ1:k-1} 
x Jbjl . lbjl (3.16) 
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Note that the (hyper)volume lbjl is inserted in two places such that they cancel each 

other. In the limiting case, bin probabilities approach to respective PHDs as follows: 

P{ uk(bi) = llZl:k-1} 
--+ 

lbi I 

Pb{ uk(bi) = 1} 
lbi I 


P{uk-1(bj) = 11zl:k-1} 

--+ 

lbjl 


P9 { uk(bi) = lluk-1(bj) = 1} 


lbi I 


In addition, the state transition probability P{uk(b;)=~~~k-i(bj)=l} approaches to state1
transition density fklk-1 (xklxk_i), the survival probability Ps {uk-1 (bj) = 1} --+ Ps(xk-1), 

and the bin (hyper)volume lbj I --+ dxk-l· The substitution of these limiting values 

into (3.16) leads to the continuous PHD prediction equation of (3.5). 

3.3.2 Update 

Using Bayes' rule, the posterior bin probability can be written as 

where the normalizing constant P{ZklZl:k-d is given by 

P{ Zkluk(bi) = 1, Zl:k-1 }P{uk(bi) = llZl:k-1} 

+P{ Zkluk(bi) = 0, Zl:k-1} 

x [ 1 - P{ uk(bi) = llZ1:k-1}] (3.18) 
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Since: the: infinitesimal bin size forces the bin probability, P{·uk(bi) = llZl:k-1 }, to 

an arbitrarily small value, the first-order Taylor approximation to the right hand side 

of (3.17) results in [66] 

(3.19) 

The above expression can be simplified under the assumption that the number of 

targets in the surveillance region follows Poisson distribution as follows [66][27]: 

After dividing both sides by (hyper)volume lbil, for the limiting case, (3.20) becomes 

the continuous PHD corrector equation of (3.7). 

3.4 Sequential Monte Carlo Implementation of PHD 

In the SMC implementation of the PHD filter [88][95][96], the PHD surface is rep

resented by a set of particles. These particles are propagated according to the 

PHD recursion given by (3.5) and (3.7). Each recursion involves particle predic

tion, weight update and resampling. The kth recursion starts with the particle set 

{ ( ) (") }Lk-1
x/,_ 1 , wL 1lk-l j=l that represents the PHD at time k - 1. Here, Lk-l is the num

ber of particles at time k - 1. In the prediction step, samples for existing targets are 
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drawn as follows: 

(j) 
rv 

( I (j) z ) . - 1 Lxklk-1 qk . xk-11 k .J - ) ... ) k-1 

where qk( ·) is the proposal density function. The associated weights are given by 

Also, samples for new-born targets are drawn from birth proposal intensity function 

Pk(·). Then 

(j) ( IZ ) j = Lk-1 + 1, ... , Lk-1 + Jkxklk-1 "" Pk · k 

where Jk is the number of particles per new-born target. The associated weights are 

given by 

In the update step, the particle weights are updated as follows: 

where 
Lk-1 +Jk 

wk(zk) = L Pd(x~L1)f(zilx~L1)w~L1 
j=l 
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The expected number of targets at time k is given by 

Lk-1+h 

Nklk = L wkj~) 
j=l 

( ") A ( ") }Lk-1+h
Finally, the particle set wkj~ / Nklk, x~k-l j=l is resampled to get a new set of 

particles { w~k/Nklki x~l}~~ , where Lk = NklkNp and Np is the number of particles 

{ 

1 
per target. For output purposes, the estimated number of targets is given by Nk = 

round(Nklk), where round(-) refers to the nearest integer. The state estimates for Nk 

targets can be extracted from the particles approximating the posterior PHD function 

using clustering techniques [96] or Expectation-Maximization (EM) [94]. 

3.5 Gaussian Mixture Implementation of PHD 

In Gaussian mixture implementation of the PHD filter, a closed-form recursion is 

performed with the following assumptions [97] [98]: 

• Targets evolve according to a linear Gaussian dynamic model, i.e., 

(3.21)fklk-l (xi() 

where N(·; m, P) denotes a Gaussian density with mean m and covariance P. 

• Measurement model is linear Gaussian, i.e., 

(3.22) 
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• The target survival and detection probabilities are state independent, i.e., 

(3.23) 

(3.24) 

• The intensities of the birth and spawn RFSs are Gaussian mixtures of the form 

J-y,k 

'Yk(x) L w~,kN(x; m~,k' P~,k) (3.25) 
i=l 

Jb,k

L w~,kN(x; F;,k-1( + d~,k-1, Q~,k-1) (3.26) 
i=l 

where J 1,k is the number of Gaussian components of the birth intensity surface, 

and w~,k' m~,k' and P~,k are the weight, mean and covariance of the ith com

ponent respectively. Similarly, Jb,k, wb,k, F~,k-l' and Qb,k-l' i = 1, ... , Jb,k are 

parameters of the spawning intensity of a target with previous state (. 

The GMPHD filter recursion at time k starts with the PHD at time k - 1, which is 

represented by a Gaussian mixture, i.e., 

Jk-l 

Dk-l[k-1(xk-1IZ1:k-1) = L wL1tk-1N(x; mL1tk-1: PL1tk-1) (3.27) 
i=l 

The predicted PHD at time k is given by 
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The term Ds,klk-1(xk1Zu-1) corresponds to surviving targets and is a Gaussian mix

ture, whose components are computed using the standard Kalman prediction equa

tions as follows: 

Jk-l 

Ps L wL11k-1N(x; m:,klk-1> P;,klk-1) (3.29) 
i=l 

(3.30) 

(3.31) 

The second term in (3.28) corresponds to spawning targets and is given by 

i=l j=l 

(3.32) 

i,j
mb,klk-l F£k-l mL11k-1 + d~,k-1 (3.33) 

pi,j Q~,k-l + Fl,k-l PL11k-l (Ft,k-lf (3.34)b,klk-l 

Here, AT denotes the transpose of matrix A. The last term in (3.28) corresponds to 

newly born targets and is given by (3.25). The update PHD at time k is given by 

Dklk(xklZu) = (1 - Pd)Dklk-1(xklZu-1) + L Dz,k(xk; z) (3.35) 
zEZk 

where the first term corresponds to missed-detection and the second term corresponds 

to measurements. The parameters of the each component are computed using the 
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standard Kalman update equations as follows: 

h1k-l 

Dz,k(xk; z) I: w11k(z)N(x; m~lk(z), P~lk) (3.36) 
i=l 

wik 
Pdwilk-1qk(z) 

,\ ( ) p L:Jklk-l j j ( )kck Zk + d j=l wklk-lqk z 
(3.37) 

q~(z) N(z; Hkm{lk-1' Rk + HkPi 
1 
k_ 1H[) (3.38) 

mi1k(z) milk-1 + Kk(z - Hkmilk-1) (3.39) 

pklk [I  K1HK]Pklk-1 (3.40) 

Kik p~lk-1H[ (fhPklk-1 H[ + Rkr 
1 

(3.41) 

For nonlinear systems, the EKF [7] or the UKF [47] can be used. In this work, 

the UKF is used to handle the nonlinearity of the system. This Gaussian mixture 

PHD filter suffers from computation problems associated with the increasing number 

of Gaussian components as time progresses. Gaussian mixture reduction methods 

[84] [86] [87] can be used to mitigate this problem. A simple heuristic pruning method 

is given in [98]. 



Chapter 4 

Smoothing 

The state estimation problem can be cast as the determination of the conditional 

density Ptik(xtlzl:k), where Xt is the target state at time t and zl:k is the collection of 

measurements up to time k. If t > k then it is called prediction; if t = k as in the case 

of Chapter 2, then it is known as filtering; and if t < k then it is called smoothing or 

retrodiction [23][24][25]. Since smoothing uses more measurements beyond the current 

estimation time, it yields improved estimates than that of filtering or prediction. 

If a certain time delay can be tolerated, accurate estimates can be obtained using 

smoothing, which requires some additional computational load to incorporate to the 

information current state from the measurements at time beyond current estimation 

time. 

Smoothing problems can be categorized into three classes according to the point at 

which the estimate is interested. Fixed-interval smoothing is concerned with finding 

the density Ptlk(xtlzl:k) for all time indices l = 1, ... , k. It is most commonly used 

in off-line applications. Fixed-point smoothing is always concerned with the density 

at a fixed time t while k varies. Fixed-lag smoothing is concerned with the density 

44 
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at time t = k - L, where L is the fixed time lag. It is very suitable for online 

tracking problems that can tolerate delayed estimates. All three problems can be 

solved by employing a single smoothing scheme based on fixed-interval smoothing 

[14][89]. The most common schemes used to perform the fixed-interval smoothing are 

two-filter method [13][50][51] and forward-backward smoothing [2][89]. The two-filter 

method involves fusion of estimates from forward and back filters. The backward 

filter requires invertible state transition model. On the other hand forward-backward 

is easy to implement and does not require invertible state transition model [89]. 

This thesis is concerned with improving the estimates for multitarget problem 

using fixed-lag smoothing, which is performed using forward filtering followed by 

backward smoothing. This RTS type smoothing is incorporated into a number of 

existing tracking algorithms. In section 4.1, single target smoothing methods are 

reviewed. In Section 4.2, multitarget smoothing methods are reviewed. 

4.1 Single Target Smoothing 

For single target, the marginal smoothed posterior distribution Ptik(Xt lzl:k), where 

t < k, can be obtained using following forward-backward recursive expression. 

JPtlk(Xt, Xt+1 lzl:k)dxt+l 

JPt+ljk(xt+1lzl:k)Ptik(xtlxt+1, zl:k)dxt+1 

JPt+11k(xt+1lzl:k)Ptik(xtlxt+1, zu)dxt+l 

) JPt+ljk(Xt+1lzl:k)Pt+ljt(Xt+1lxt)d
Ptit (Xt Izu Xt+1 ( 4.1) 

Pt+ljt(xt+1 lzu) 
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In the above, the first two lines are due to the total probability theorem and the chain 

rule, respectively. The third line is due to Markov assumption. Finally, the applica

tion of the Bayes' rule leads to the required backward smoothing recursion. It is thus 

possible to compute the filtered and predicted distributions in a forward (filtering) 

recursion of the algorithm (by calculating Ptit(xtlzu)), and then execute a backward 

recursion with each smoothed distribution (Ptik(Xt lzu)) relying upon the quantities 

calculated in the previous (in reverse time) smoothed distribution (Pt+Ilk(xt+1lzu)). 

4.1.1 Kalman Smoothing 

For linear Gaussian problem defined in (2.10) and (2.11), the Bayesian backward 

recursion in (4.1) become a closed-form recursion, which propagates the mean and the 

covariance matrix of the smoothed posterior distribution. The backward smoothing 

recursion at t starts with the filtered density at t (Ptlt(xtlzu)) and smoothed density 

at t + 1 (Pt+Ilk(xt+1 lzl:k)) that are Gaussian as follows: 

Ptit(Xt lzu) N(xt; mtlt, Pt1t) (4.2) 

Pt+Ijk(xt+1 lzu) N(xt+1; mt+Ilk, Pt+11k) (4.3) 

Given the above densities, the smoothed density at t (Ptjk(xtlzl:k)) is given by [20][55] 

(4.4) 




------ ---
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where 

llitlk IDtlt +At (mt+llk - mt+llt) (4.5) 

Ptlk Ptit +At (Pt+llk - Pt+11t) Af (4.6) 

(4.7)At PtltFtPt~111t 

llit+llt Ftmt It (4.8) 

pt+ lit Qt + FtPtltFt (4.9) 

This backward recursion is initialized by the filtering result at the present scan k. 

In the case of nonlinear problems as in (2.36) and (2.37), either extended Kalman 

smoother [19][85] or unscented Kalman smoother [101] can be used. 

4.1.2 Particle Smoothing 

Using SMC, the smoothed posterior density in (4.1) can be represented by a set of 

t . 1 { (j) (j) }Np Th t . par lC es xk_1, wk-llk-l j=l · a lS, 

Np 

Ptlk(xtlzu) ~ L wij~6(xt - x~j)) (4.10) 
j=l 

where the importance weights wij~ are obtained through the following backward re

cursion: 
Np p (x(j) lx(i)) l

( ") ( ") (i) t+llt t+l t 
w 1 -w 1 W (4.11)

tlk - * [ L t+llk l:::Np (!) ( (j) I (l))
i=l l=l wtltPt+llt xt+1 xt 
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4.2 Multitarget Smoothing 

In the case of multitarget tracking problem, smoothing has been incorporated into a 

number of different conventional tracking algorithms. Probabilistic Data Association 

(PDA) smoothing algorithm is proposed in [59] to improve the tracking performance 

in a clutter environment. Maneuvering target tracking is improved by IMM smoothing 

method in [40]. IMM-PDA smoothing is reported in [17] to improve the tracking of 

agile targets in clutter environment. In [25], a fixed-lag smoothing is applied to JPDA 

filtering. Improved multitarget tracking is demonstrated using IMM-MHT smoothing 

in [53][54]. 

On the other hand, rnultitarget smoothing can be unified scheme, where distri

bution of the multitarget state set are smoothed. Similar to multitarget forward 

filtering generalization in Section 2.2.2, the backward smoothing can also be general

ized with RFS. Given the measurement sets up to time k, the smoothed multitarget 

state density at time t, (t < k), can be written as 

, _ (X [Z ) _, _ (X [Z ) ;· P2,t+11k(Xt+1[Zu)P2,t+11t(Xt+1[Xt) oX (4.12)
fJ::::.,tlk t l:k - fJ:=:.,tlt t l:t ' - (X Iz ) t+l 

. P::::.,t+llt t+l l:t 

where P2,t1t(Xt [Zu) is the filtered multi target state density at time t, Ps,t+llk(Xt+1 [Zu) 

is the smoothed multitarget state density at time f, + 1, P2,t+llt(Xt+1IXt) is the mul

titarget Markov transition density, and Ps,t+Ilt(Xt+1 [Zi:t) is the Bayes normalizing 

factor. Since it involves set integration, a computationally tractable first order ap

proximation is useful for practical application that is the prime goal of this thesis. 



Chapter 5 

PHD Smoothing 

In this chapter, a novel smoothing method for PHD based state estimator is developed. 

The proposed method involves a forward multitarget filtering using the standard 

PHD filter recursion (Chapter 3) and then a backward smoothing recursion. This 

backward smoothing recursion is performed with a novel recursive formula, which 

is derived using the physical-space approach (Section 5.1). The resulting backward 

recursion incorporates intensity for surviving targets as well as disappearing targets. 

Compared to optimal multitarget Bayesian smoothing, this first order recursion is 

simple and evolves in single target state space. However, it does not admit any closed

form recursion. To mitigate this problem, we proposed an SMC implementation 

of the smoothing method in Section 5.2. We show that this SMC implementation 

requires much computational effort to compute smoothed particle weights. For this, 

we introduced a fast implementation in Section 5.2.1. This fast method requires that 

target transition density should be defined in metric space. However, we have shown 

that most commonly used transition models can be converted into a function defined 

in a metric space using simple transformations. 

49 




50 CHAPTER 5. PHD SMOOTHING 

5.1 Derivation of the PHD Smoothing Recursion 

In the derivation below, the notations of the physical-space approach in Section 3.3 

are extensively used. In order to find the smoothed PHD Dtlk(xtlZl:k), consider the 

event where the ith bin has a target at time t, given measurements set Zl:k. In 

the limiting case (i.e., as the bin (hyper)volume approaches zero), its bin probability 

P{ ut(bi) = llZl:k} will approach the required smoothed PHD. Consider the following 

possible events for a target in the ith bin at time t: 

• It can occupy the jth bin at time t + 1 with probability 

• It does not survive after time l with probability 

where dt(bi) is the event that the target in the ith bin at time t does not survive 

and Ps{ ut(bi) = 1} is the probability of target survival. 

Using the total probability theorem, the above bin probability can be written as 

p { Ut (bi) = 1IZ1:k} = 

L Ps{ Ut(bi) = 1}P{Ut(bi) = llut+1(b1) = 1, zl:k }P{Ut+1(b1) = 11zl:k} 
j 

(5.1) 
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The term P{'ut(bi) = ll'ut+1(b1) = 1, Zu} can be simplified as follows: 

P{Ut(bi) = llut+1(b1) = 1, Zu} = P{Ut(bi) = llut+1(b1) = 1, Zi:t} 

P { Ut+1 (b1) = 1lut(bi) = 1, Zi:t} 

P{ut+1(b1) = llZi:t} 

xP{nt(lh) = llZl:t} (5.2) 

In the above, the first line is due to the occupation of a target in bin bi at time t is 

independent of measurements Zt+l:k given that it occupies bin b1 at time t + 1. The 

second line results from the application of the Bayes' rule. Using Markov assumption, 

one has P{ ut(bi) = lldt(bi), Zu} = P{ut(bi) = llZi:t }· The substitution of these 

terms into (5.1) results in following backward smoothing iteration for bin probability: 

P{ ut(bi) = llZu} = 

p { Ut (bi) = 1IZ1:t } ( 1 - Ps {Ut (bi) = 1 } ) + p { Ut (bi) = 1IZ1:t } 

Ps{nt(bi) = 1}P{'nt+1(b1) = llZu}P{ut+1(b1) = llut(bi) = 1} 
x I: (5.3) 

j P{Ut+1(b1) = llZi:t} 
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Dividing both sides by (hyper)volume lbil and rearranging result in 

P{ ut(bi) = 11zl:k} _ 


lbi I 


P{Ut(bi) = llZ1:t} 


lbil 


- }p{Ut+i(bj)=llZu} p{Ut+i(bj)=.llut(bi)=l} 

~ Ps {Ut(bi) - 1 lbJI lb;I 
X [L--------~----- · lbjl 

j P{ Ut+1(bJ)=llZ1:t} 

lbi I 

+ (1 - Ps {Ut (bi) = 1 } ) ] ( 5 .4) 

Note that the (hyper)volume lbjl is inserted in four places such that they cancel each 

other. In the limiting case (i.e., as bin (hyper)volumes lbil, lbjl----"* 0), bin probabilities 

approach the respective PHDs. That is, 

p ( Ut(bi) = llZl:k) 
lbil ----"* Dtlk(xt!Zl:k) 

p ( Ut (bi) = 1IZ1:t)
Ibi I ----"* Dtlt (Xt IZu) 

P(ut+1(bj) = 11zl:k) 


lbjl 


P(ut+1(bj) = llZu) 


lbjl 


where /Jtlk(xtlZl:k) and !Jt+llk(Xt+1IZl:k) are the smoothed PHD at time t and t + 

1, respectively, Dtit(xtlZu) is the filtered PHD at time t, and Dt+11t(xt+1IZu) is 

the predicted PHD at time t + 1. In addition, the state transition probability 
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p {Ut+i(bj )=llut (b;)=l 
lbjl approaches to state transition density !t+llt(xt+1lxt), the sur

vival probability Ps{ut(bi) = 1} __, P8 (xt), and the bin (hyper)volume lbjl __, dxt+I· 

The substitution of these limiting values into (5.4) leads to the following continuous 

backward PHD smoothing equation: 

The smoothed PHD at time t is function of the filtered PHD time t and the smoothed 

PHD at time t + 1 as shown below. 

prediction Update__, ----; ----; __, ... __,Dtlt Dt+llt Dt+1lt+1 Dklk 

~ / l l 
smoothing,...__ ..___ ,...__ ... ,...__Dtlk Dt+Ilk Dklk 

Here, the backward recursion is initialized with the filtering results at the present time 

k and stopped at time k - L, where L is the time lag of the smoothing algorithm. 

SMC implementation of this backward recursion is given in following section. 

5.2 SMC Backward PHD Smoothing Iteration 

In SMC PHD smoothing, the smoothed particle weights at time k - L are evaluated 

from filter outputs { wift), x~P)}:: for t = k - L, ... , k using backward iterations. 
1 

From (5.5), the smoothed weights are computed as follows: 
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• For t = k - 1, ... , k - L and p = 1, ... , Lt 

where 

Lt 

(q) ( (q)) '"', (r) {P ( (r)) ( (q) I (r)) b ( (q) I (r))}l't+Ilt rt+I xt+l + L..,, wtit s xt Pt+Ilt xt+l xt + t+llt xt+l xt 
r=l 

At the end of the iteration, the particle set { wk1'~Llk' xr~L}~:1 L is used to find smooth

ing outputs: namely, smoothed expected number of targets and corresponding target 

state estimates. 

5.2.1 Fast Smoothing Iteration 

The iteration (5.6) requires O(LtLt+I) operations to evaluate the smoothed weights. 

The bottleneck is due to evaluation of the sum of kernels, i.e., 

(5.7) 


The computational cost can be reduced using the fast method proposed in [52] that 

uses the N-body algorithm [34]. For this method, the transition model should be a 

~imilarity kernel defined on a metric space, that is Pt+11t(Xt+1lxt) = r;;(d(xt+1, Xt)), 

where d( ·) denotes distance. The conversion of state space into a metric space is 

discussed in Section 5.3. This space can be partitioned into KD-tree [52], which 

groups the particles into subgroups in its leaf nodes. Having created the trees for 

particles at time t and t + 1 with the pre-specified error tolerance, evaluation of 
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the above sum can be approximated by querying leaf nodes of the dual-tree instead 

of querying between particles [52]. This N-body simulation method requires only 

O(Lt log Lt+i) operations to evaluate approximate sum-kernel. 

5.3 Simulation 

In this section, the results of the simulation studies using the novel PHD smoothing 

algorithm are presented. In this study, a two-dimensional scenario with surveillance 

region of [-200, 200] x [-200, 200] is considered. The number of targets in the region 

is time-varying due to possible target appearance and disappearance at any time. 

Spontaneous target birth is assumed to follow a Poisson point process with intensity 

function /k = O.lN(-lxb, Qb), where N(·lxb, Qb) denotes a normal distribution with 

mean Xb = [O 3 0 - 3]T and covariance Qb = diag([lO 1 10 1]). The target state 

at time k, xk = [xk :h Yk Ykf, consists of position, [xk Yk]r, and velocity, [:h Yk]T 

of the target. Here, [·JT represents the transpose of a matrix. Each existing target 

survives with probability Ps = 0.95, which is state-independent. The target state has 

the following linear-Gaussian target dynamics: 

(5.8) 
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and the process noise vk-l has a normal distribution with mean zero and covariance 

matrix Qk-l, which is given by 

T3 /3 y2;2 0 0 

y2;2 T 0 02
C2k-l = J 

0 0 T 3 /3 y2;2 

0 0 r 2;2 T 

Here, T is the sampling period and equal to 1. The process noise standard deviation, 

rT, is equal to 0.2. For this discretized continuous time kinematic model [7], Qk-l 

is a full rank matrix, which is essential for computing the transition prior in the 

smoothing formula (5.6). As mentioned in Section 5.2.1, the target state needs to 

be converted such that the transition prior is defined on metric space for the fast 

smoothing method. The conversion is as follows: 

1 ( T 1 )ck exp - (xk - Fkxk-1) QJ;_1 (xk - Fkxk_ 1) /2 

~exp (-llYk - Ykll 2/2) (5.9)
Ck 

where QJ;\ is the inverse of covariance matrix C2k-l, ck = Jdet(27rQk_1), Yk = 

Q"k~~2xk, Y'k = Q"k~~2 
Fkxk-1, llz1 - z2ll is the Euclidean distance between vectors z1 

and z2, and Q"k~~2 is the Cholesky factor of QJ;~ 1 . The position ground truth of three 

tracks over 100 scans are displayed in Figure 5.1. The individual plots for :r: and y 

components of each track against time show the start and finish times of the tracks 

in Figure 5.2. The sensor is located at [O - lOO]T and measures the range rk and 
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Figure 5.1: Ground truth: position plots of 3 true tracks 

the bearing Bk of a target that are related to the target state as follows: 

0 0 
+ W1,k (5.10)[~ ~00 ]: ] Xk - [ 0 1 

0 0 0 ]x, ) 
(5.11)arctan C} 1 

+ W2,k 

0 1 0 ] Xk + 100 

where w1,k and w2,k are the independent zero-mean Gaussian noises with standard 

deviations 2 and 0.05, respectively. The above measurements are reported by the 

sensor with probability of detection Pd = 0.9, which is also state-independent. Clutter 

is uniformly distributed over the sensor field of view [O 300] x [-JT/2 1T/2]. The 

measurement set for a typical run is shown in Figure 5.3. 
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Figure 5.2: Ground truth: plots of x and y components of the 3 true tracks against time 
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Figure 5.3: Measurements for a typical run 

In this simulation, the smoothed states are obtained by backward PHD smoothing 

with different lags. The SMC method is implemented with 1000 particles per track, 

while tracks are initialized with 2000 particles. The extraction of point estimates 

from particle approximation is obtained using K-mean clustering method [36]. To 

demonstrate the improvement performance, Wasserstein distance [41] is used, which 

is a multitarget miss-distance generalizing the standard root mean square error of a 

single target problem to a multitarget problem. Results from 100 Monte Carlo runs 

are discussed below. 

Figure 5.4 shows multi target miss-distances of the estimates of filter and smoothers 

with different lags for the scenario with average rate of 20 cutter returns per scan. Sim

ilar results for the scenario with average rate of 50 clutter returns per scan are given 

in Figure 5.5. Both demonstrate improved performance of the smoothing method 
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Figure 5.4: Multitarget miss-distance (The average rate of clutter returns per scan = 20) 

over the filter. Increasing the clutter density degrades the performance of the filter, 

and hence that of the smoother. It can also be observed that the higher the lag we 

use for smoothing the better the estimates we obtain. However, this tendency satu

rates after the lag of 3. This suggests that the future measurements with long lag do 

not improve the current state as the information from them becomes irrelevant with 

lag. The improved performance of the smoothing method is achieved at the cost of 

additional computational load (i.e., the proposed smoothing method with the lag of 3 

requires 1.95 seconds while the standard PHD filter requires 1.31 seconds for a single 

step of MATLAB implementation on a Pentium IV 3 GHz processor). 
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Chapter 6 

MMPHD Smoothing 

In maneuvering target tracking problems, detection and tracking of changes in the 

target motion model are crucial to get accurate state estimates. For such problems, 

multiple model approaches have been shown to be highly effective. A PHD-based 

multiple model approach for multitarget tracking was proposed in [77]. This chapter 

provides a smoothing algorithm for the MMPHD approach, which is a natural exten

sion of PHD smoothing algorithm for maneuvering targets. In Section 6.1, MMPHD 

filter is reviewed. The smoothing algorithm for maneuvering targets is given in Sec

tion 6.2. The particle implementation of MMPHD filter is provided in Section 6.3, 

while particle implementation of novel MMPHD smoothing is developed in Section 

6.4. In Section 6.5, simulation studies are provided. 

6.1 MMPHD Filter 

In MMPHD filtering, the mode-dependent densities Dklk(xk, rk = ulZl:k), u = 

1, ... , Nr are propagated recursively through three steps: namely, mixing, predic

tion and update [77]. Here, Nr is the number of models and rk is the model index 
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parameter governed by an underlying Markov process with the model transition prob

ability 

(6.1) 

In the mixing stage, each mode-matched filter is fed with a different density that 

is a combination of the previous mode-dependent densities. The initial density 

Dklk-1(xk-1, Tk = ulZu-1) fed to the PHD filter, which is matched to the target 

model n, is calculated on the basis of Markovian model transition probability ma

trix [hvu] and mode-dependent prior Dk-llk-1(xk-1, rk-l = vJZ1:k-1). That is, for 

u = 1, ... , Nr 

Nr 

Dklk-1(Xk-1, Tk = uJZu-1) = L Dk-llk-1(Xk-l1 rk-l = vlZu_i)hvu (6.2) 
v=l 

In the prediction stage, having obtained the initial density for the PHD filter that is 

matched to the model u, the mode-dependent density is calculated as 

'""tk(xk, rk = u) 

+ J[Ps(xk-1)Pklk-1(xkJxk-1, rk = u) 

+bklk-1(xkixk-1, rk = u)] 

xfJklk-1(Xk-1, rk = ulZl:k-1)dxk-l (6.3) 
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Finally, with the availability of measurements, the update stage results in the mode

dependent updated density is given by 

(6.4) 

where the likelihood function '~J( ·) is given by 

This update stage implicitly incorporates the mode probability update. The expected 

number of targets can be found by summing up all the integrals of the updated mode-

dependent PHDs. 

6.2 MMPHD Smoother 

Having reviewed the MMPHD filter in Section 6.1, the PHD smoothing formula can 

now be extended (5.5) for maneuvering targets. The smoothed mode-dependent den

sity can be found with following backward recursion 

Dtlk(xt, rt= ulZl:k) = 

Dtit(Xt, rt= u!Zi:t) 

~ Dt+llk(Xt+l, Tt+l = vlZl:k)Pt+llt(Xt+1IXt, Tt = u)hvud[p ( )JX s Xt 	 ~ Xt+l 
v=l Dt+llt(Xt+11 Tt+l = vlZi:t) 

+(1 - P,(x,))l 	 (6.6) 
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where the normalizing constant, Dt+Ilt(xt+1, rt+I = vlZu), is given by 

Dt+11t(Xt+1, rt+I = vlZu) = 

J 
Nr 

'Yt+1(Xt+1,rt+1 = v) + L [Ps(xt)Pt+Ilt(Xt+1lxt,rt = u) 
u=l 

+bt+11t(Xt+1IXt, rt= u)] hvuDtlt(Xt, rt= ulZu)dxt (6.7) 

6.3 SMC MMPHD Filter 

In the SMC implementation of the MMPHD filter [77], the PHD surface is represented 

{ () () . }Lk-1 (") .
by a set of particles wLilk-l' xL1, rL1 j=l , where xL1 and rL1 are the target 

state and the target mode of the jth particle, w~~Ilk-I is the associated weight and 

Lk-I is the number of particles. Therefore the PHD at time k - 1 can be written as 

(6.8) 

where 5(·) is the Dirac Delta function. The recursion at time k is summarized as 

follows: 

• Mixing or model prediction: For j = 1, ... , Lk-l 

(j) 
rklk-I 

-(j)
wklk-I 

where Kk(rklrk-I) is the proposal mass function for mode transition. 

• Prediction: 



66CHAPTER 6. MMPHD SMOOTHING 

- Samples for existing and spawning targets: For j = 1, ... , Lk-l, 

(j) 
xklk-1 

(j) 
wklk-1 

- Samples for new-born targets: For j = Lk-l + 1, ... , Lk-1 + Jk, 

(j) 
rklk-1 

(j)
xklk-1 

(j) 1 
wklk-1 

(jJ Iz ) f3 ( ui ) JkPk ( xklk-1 k k rklk-1 

where ek(·) and ek(·) are state density and model mass function for target 

birth, while Pk(·) and f3k(-) are corresponding proposal density and mass 

function. 

• Update: 

-	 updated particle weights for j = 1, ... , Lk-l + Jk 

Nf p (x(j) ) 1· (zi lx(j) r(j) ) l
, *(j) - ( - (j) ) ~ d klk-1 . k k klk-1' klk-1 , (j)1wklk - Pd(xklk-1) + L.t >. c (zi) + w (zi) wklk-1[ i=l k k k k k 

where 

Lk-1 +Jk 

wk(zk) = L Pd(xk!L1)fk ( zilxkl~-1' ri[L1) wi[L1 
s=l 
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• Resampling: 

- Find the expected number of targets 

j=l 

At the end of the recursion, the estimate of the number of targets is given by 

Nk = round(Nklk)· Then the state estimates of Nk targets can be extracted from 

the particles approximating the posterior PHD function from suitable clustering tech

niques or EM algorithm. 

6.4 SMC MMPHD Smoother 

In SMC MMPHD smoothing, the smoothed particle weights at time k - L are 

evaluated using backward iterations using the filter outputs { wijt), x~j), rij)};: t = 
1 

k - L, .... k. The smoothed weights are computed as follows: 

• For l = k - 1, ... , k - L, j = 1, ... , Lt 

where 
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At the end of the iteration, the particle set { WkJ2Llk' x~2L, r~2L};~~L is used to 

find smoothing outputs: namely, smoothed expected number of targets, corresponding 

target state estimates and modes. In this case, the fast method discussed in Section 

5.2.1 cannot be used since the new sum of kernels has discrete density hvu given by 

(6.10) 

However, for a special case where the targets have two models with symmetric tran

sition probabilities, the fast method can still be used. That is, the model transition 

matrix has the form 

(6.11) 

After converting!(·) into metric Gaussian kernel, also discussed in Section 5.3, the 

sum of kernels in ( 6.10) can be rewritten as follows: 

(6.12) 

where Yt+l = [Yt+1 b1+1f, sr;+l = [Y;+/ bt]T, Yt+l and Y;+l are the states in the 

metric space corresponding to xt+1 and Xt. Here, bt is given by 

0 u=l 
bt = { (6.13) 

y'~2l-n(-a/~1--a) u=2 

Now, the sum of kernels rn (6.12) is in the required metric space, hence the fast 

method can be used. 
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6.5 Simulation 

In the simulation study, we consider a two-dimensional scenario with two maneuvering 

targets, namely, target 1 and target 2. With initial position at (25, 10) km, target 

1 moves westward for 50s at a nearly constant velocity with velocity of 320 ms- 1 , 

before executing a 1.8° /s coordinated turn in the counter-clockwise for 50s. Then it 

moves southward for another 50s, followed by a clockwise 1.8° /s coordinated turn for 

50s. Target 2, starting from (25, - 25) km with initial velocity of 300 ms- 1
, executes 

a coordinated turn of 1.8° /s in the counter-clockwise for 50s, followed by a nearly 

constant velocity motion for 50s. Then it executes a clockwise coordinated turn of 

1.8°/s, followed by a nearly constant velocity motion for 50s. The target trajectories 

are shown in Figure 6.1. The sensor is located at the origin, and provides range 

and bearing measurements with measurement noise standard deviations of lOOm and 

0.02 rad. The measurements are available at discrete sampling interval T = 5s with 

probability of detection Pd = 0.9. Clutter is uniformly distributed over sensor field of 

view [O 30] km x [-7r 7r] rad with average rate of 8 returns per scan. The MMPHD 

filter consists of two models with symmetric transition probability matrix as follows: 

1-I ~ [hvu] = (6.14)
[ 

Here, the sojourn time T = lOOs. The first model is a constant velocity with a 2 = 

1 m2s-3 . That is, 

(6.15) 
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where xk = [xk :h Yk Yk]T and the target transition matrix F1,k is given by 

1 T 0 0 

0 1 0 0 

0 0 1 T 

0 0 0 1 

and the process noise vi,k-l has a normal distribution with mean zero and covariance 

matrix Qi,k-l, which is given by 

T 3 /3 r 2;2 0 0 

r 2;2 T 0 0
2 

Q1,k-1 = a 
0 0 T 3 /3 r 2 ;2 
0 0 r 2;2 T 

The second one is coordinated turn model with variable turn rate and given by 

(6.16) 

where xk = [xk xk Yk Yk Dkf is the augmented state vector, which consists of target 

position [xk, Yk]T, target velocity [xk, Yk]T and target turn rate Dk at time step, and 
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target transition matrix F2,k is given by 

sinnk-1T l-cosnk-1T1 0 0nk-1 nk-1 

0 cosOk-1T 0 - sinnk-1T 0 

1-cosnk_1T sinnk-1TFz,k = 0 1 0nk-1 nk-1 

0 sinnk-1T 0 cosDk-1T 0 

0 0 0 0 1 

and the process noise Vz,k-l has a normal distribution with mean zero and covariance 

matrix Qz,k-l, which is given by 

rT2T3 /3 rT2T2 /2 0 0 0 

CT 
2T 2/2 rT2T 0 0 0 

Qz,k-1 = 0 0 CT 
2T 3/3 rT2T2 /2 0 

0 0 rT2T2 /2 rT2T 0 

0 0 0 0 CTn 
2T 

Results from 100 Monte Carlo runs are discussed below. Figure 6.2 shows the 

moclcl-switd1ing property of the MMPHD filter and smoother for both targets. It 

clearly demonstrates improved model-switching of MMPHD smoother over the MM

PHD filter. The RMSE for position, velocity and turn rate are provided in Figure 

6.3, 6.4 and 6.5 respectively. The comparisons of these RMSE values also confirm the 

improved performance of the smoother over the filter. 



73 CHAPTER 6. MMPHD SMOOTHING 

1.5 

>.:=:: 
:0 .. -co 1 

~ .....0 
0 
'a. 
Q) 

"O 0.5 
:0 

~ 

0 


-0.5 

0 10 


2 

1.5 

:0 .·• rco 
.0 e 
a. 
Q) 

_.·,.·'I'"O 0.5 I ;.. ' ' 
0 

(·'"•. _.,~ 
j · .. ' .. :.. 
. '••', 

--Truth 
- - - Filter 
·······Smoother 

.····\ 
\.I I\ -··..; '\ 

\ ... . ' 
............ -~ ..,,,, 
 :. >\·· 

: - I 
. '' ·.. ' 

I ·.. \·. ' 
~~, \. -- --' ~ ~ 
'•'''•········ 

20 30 40 
Time (s) 

(a) Target 1 

--Truth 
- - - Filter 
·······Smoother 

'.' .. 

,•''•, 

.. -"'>" \ ~ fill" ~.:. \ •• ' """ "" -- .. , 
. . ·: ' .............•. >/.· , 

. ' 
··.. , ... :-" 

• •. ~ .~. '."7· ' '' ' •. 
.. ·

-0.5'--~~~---''--~~~---'-~~~~-'-~~~~_J 

0 10 20 30 40 
Time (s) 

(b) Target 2 


Figure 6.2: Model switching 
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Figure 6.5: Turn rate RMSE 




Chapter 7 

GMPHD Smoothing 

In this chapter, we propose a smoothing method for GMPHD state estimator using 

multiple sensors. In the case of multisensor systems, a sequential update of the PHD 

has been suggested in the literature. The posterior is sequentially updated using 

measurements from one sensor at a time, while assuming that the posterior updated by 

the previous sensor is approximately Poisson [63]. In Section 7.4, we demonstrate that 

this sequential update is susceptible to the imperfections in the last sensor, which was 

also observed in [26]. To mitigate this behavior of the PHD filter, we propose different 

strategies to improve the GMPHD filter using measurements from multiple sensors 

simultaneously: namely, the all-sequence update and the parallel update (Section 

7.1). In all-sequence update, we get average of the posterior PHD surfaces resulting 

from all possible sequences of update by considering permutation of the order of 

update. In the parallel update, the posterior PHD surface is found by averaging 

the updated posterior PHD surfaces from all sensors. The resulting filter outputs 

are further improved using a backward smoothing (Section 7.2). An approximate 

closed-form solution is found for the backward smoothing recursion using Gaussian 

77 
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mixture implementation. Resulting algorithm provides delayed but better estimates 

for the target states. Further, we propose a Gaussian mixture implementation of the 

smoothing algorithm for the Multiple Model PHD (MMPHD) approach (Section 6.2), 

which is a natural extension of PHD smoothing algorithm for maneuvering targets. 

Improved performance is demonstrated using simulation studies with multiple bearing 

only sensors in Section 7.4. 

7.1 Multisensor PHD Update 

In the case of multisensor systems, the following sequential update was suggested in 

[63] 

(7.1) 

DX1 ( \Z ) ~ >T,[Js]DS-1( \Z )
kjk Xk l:k '*' k kjk Xk l:k (7.2) 

where S is the number of sensors, x1 = {j1 , ... , js} is a sequence of sensor indices, 

and wfi] is the update operator (Section 3.2.2) of the jith sensor. In each step of the 

above update (7.1)-(7.2), it is assumed that the posterior updated by previous sensor 

is approximately Poisson [63]. As demonstrated in Section 7.4.1, these approximations 

make the performance of the PHD filter sensitive to the order of updates. That is, it is 

shown that different update sequences result in different filter results. By considering 

permutations of the sensor index sequence, the end result will be S! different PHD 
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surfaces. To improve the PHD filter with multiple sensor, the average of all possible 

surfaces can be obtained. That is, 

(7.3) 

Hereafter, this update will be known as all-sequence update, which provides better 

results than the sequential update in [63]. However, it is computationally demanding 

for problems with a large number of sensors. Using a similar argument, the average 

of the PHD surfaces obtained by individual sensor updates from the predicted PHD 

can be considered. That is, the proposed parallel update is given by 

(7.4) 

It will be shown in Section 7.4 that the performance of this method is similar to 

that of the all-sequence method, while its computational load is similar to that of the 

sequential method of [63]. 

For the Gaussian mixture implementation, the update procedure in (3.35) is re

peatedly applied with measurements from each sensor according to the sequential 

update step (7.1)-(7.2). For all-sequence update in (7.3), the updated mixtures of all 

possible sequences are combined and each component is reweighted by a factor of }i. 

For the parallel update in (7.4), the updated mixtures from all sensors are combined 

with reweighting by a factor of ~. 
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7.2 Gaussian Mixture PHD Smoothing 

In this section, a backward smoothing recursion for PHD-based state estimator using 

Gaussian mixture implementation is proposed. An approximate closed-form solution 

is derived for the backward recursion. In the backward smoothing recursion at time 

t (k - L :S: t < k), we evaluate the smoothed PHD at time t using the filtered PHD 

at time t and the smoothed PHD at time t + 1, which are Gaussian mixtures. That 

is, they are given by 

Jt]t 

L w;ltN (xt; m~lt' ptilt) (7.5) 
i=l 
Jt+l]k

L w;+llkN (xt+1; m~+llki pti+llk) (7.6) 
i=l 

The smoothed PHD at time t can be found by substituting (7.5) and (7.6) into (5.5) 

as follows: 

J* lt+llk 

L L Psw;ltwi+llkN (xt; m~lt' ptilt) 
i=l j=l 

JN (xt+1; m~+llk' Pf+llk) N (xt+1; Ftxt, FtPtiltFt +Qt) 

x dxi+1 


Dt+11t(xt+1 IZu) 

Jtlt 

+ (1 - Ps) L w;ltN (xt; m;lt> Ptlt) (7. 7) 
i=l 

In the above, the term in the second line, which has the normalization factor 

Dt+i1t(xt+1IZu) (a Gaussian mixture), does not allow an exact closed-form solution. 

However, one can consider the above expression as interaction of the components of 

the Gaussian mixtures corresponding to the filtered PHD at time t and the smoothed 
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PHD at time t + 1. Each interaction can be viewed as Kalman smoother with cor

responding means and covariances of the components considered. Therefore, the 

proposed smoothed PHD can be written as 

i=l j=l 

J* 
+ (1 - Ps) L w;ltN (xt; m~lt' ptilt) (7.8) 

i=l 

where the mean and the covariance are given by the standard backward Kalman 

smoothing equations as follows: 

i,j
mtik m~lt + A~ ( m~+l[k  m~+llt) (7.9) 

pi,j
t[k Fic!t +A~ (PZ+1tk - Fici+1tt) A~ (7.10) 

Ai 
t 

. T . -1 
Pt'ttFt Pt'+1tt (7.11) 

The smoothed weight w~ik in (7.8) needs to be determined. Using the standard 

Kalman smoothing recursion [44] the Gaussian component in the first summation 

of (7.8) can be written as 

N (xt; m~it' P;lt) 

N (xt+1; Fxt, Q) N (Xt+1; m~+llk' P/+i[k) 
x dxt+ 1 (7.12)J N (Xt+1; m~+1[t' pti+11t) 
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Using (7.12), (7.8) can be rewritten as 

Jtit Jt+llk 

L L w;[kN (xt; m~it' P;1t) 
i=l j=l 

J* 
+ (1 - Ps) L w;ltN (xt; m~lt' Ptlt) ( 7.13) 

i=l 

By comparing the actual smoothed PHD in (7.7) and the proposed smoothed PHD 

in (7.13), the error in the proposed smoothed PHD is given by 

J* lt+llk 

L L JN (xt; m~ 1 t, ?tilt) N (xt+1; Fxt, Q)N (xt+1; m~+llk' Pi+llk) 
i=l j=l 

The above can be rewritten as follows: 

Jtlt lt+llk 

L L j N (xt; m~lt + A~(xt+I - m~+11t), Pf1t - A~P;+11tA~T) 
i=l j=l 
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where identity [44] 

N (xt; m~ t, ptilt) N (xt+1; Fxt, Q) =1 
N (Xt; m~lt + A~(xt+1 - m~+llt), ptilt - A~Pti+lltA~T) N (xt+1; m~+llt' pti+11t) 

is used. Here, the predicted mean m~+llt and its covariance Pt\iit are defined in (2.18) 

and (2.19), respectively. The matrix A~ is defined by (4.7). Now consider the second 

line in (7.15): the first term is the predicted Gaussian function and the second term 

smoothed Gaussian function. Since the covariance of the smoothed Gaussian function 

is usually much smaller than that of predicted Gaussian function. the second term 

can be approximated with a 8-function. That is, 

(7.16) 

Using this approximation, the error function in (7.15) can be simplified as follows: 

J* Jt+llk 

L L N (Xt; m~lt + A~(m{+llk - m~+11t), ptilt - A~Pti+11tA~T) 
i=l j=l 

(7.17) 
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The above error function can be minimized by setting the whole term in the square 

bracket to zero that leads to required smoothed weight as follows: 

(7.18) 

Similar to the forward filtering, the backward smoothing suffers from increasing num

ber of components, which can be mitigated by using Gaussian mixture reduction 

methods. 

7.3 	 GMPHD Smoothing for Maneuvering Target 

Tracking 

For maneuvering target tracking problems, a multiple model approach for PHD-based 

multitarget states estimator was proposed in [77]. In [99], a Gaussian mixture im

plementation for the multiple model approach was provided. This section provides a 

Gaussian mixture implementation of the smoothing algorithm for the Multiple Model 

PHD (MMPHD) approach, which is a natural extension of the PHD smoothing algo

rithm for maneuvering targets. In Section 7.3.1, Gaussian Mixture implementation of 

MMPHD is reviewed. A new Gaussian mixture implementation of MMPHD smoother 

is proposed in Section 7.3.2. 
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7.3.1 Gaussian Mixture Implementation of MMPHD Filter 

In Gaussian mixture implementation of the MMPHD filter, the filtered mode-dependent 

density at time k - 1, Dk-llk-i(xk-l, rk-ilZl:k_i) is represented by the sum of Gaus

sian components as follows: 

Jk_i(v) 

Dk-llk-1(xk-1,rk-1 = v!Zl:k-1) = 	 L wLi1k-i(v)N(x;mL 1 1k-i(v),P~-llk-l(v)) 
i=l 

The propagation of these Gaussian components is similar to the PHD filter recursion 

in Section 3.5 by replacing PHD by the above mode dependent PHD. 

7.3.2 Gaussian Mixture MMPHD Smoothing 

In Gaussian mixture MMPHD smoothing, the smoothed Gaussian components at 

time k - Lare found using backward recursion (6.6) as follows: 

Nr J,1,(v) lt+llk(u)

LL L w;i~(v,u)N(xt+1;m~ik(v,u),Ptil,k(v,u)) 
u=l i=l j=l 

J,1,(v) 

+(1-Ps) L w~lt(v)N(xt;m~lt(v),Ptilt(v)) (7.19) 
i=l 

where m~i~(v,u) and Ptli(v,u) are given by (7.9) and (7.10) with appropriate models. 

The smoothed component weight w;i~(v, u) is given by 

(7.20) 
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At the end of the iteration, the smoothed Gaussian components at time k - L are 

used to find smoothing outputs: namely, smoothed expected number of targets, cor

responding target state estimates and modes. 

7.4 Simulation 

In this section, the results of the simulation studies for the new multiple sensor PHD 

update method (Section 7.1) and GMPHD smoothing method (Section 7.2) are pre

sented. Section 7.4.1 provides results for various multiple sensor update methods, 

while Section 7.4.2 demonstrates the improved performance of the GMPHD smooth

ing method. In this work, we consider a multiple bearing only sensor system with a 

2D target scenario. As shown in Figure 7.1, it consists of three sensors, which are 

located at [O - 2] km, [-2 OJ km, and [2 O] km, respectively. The number of targets in 

the region is time-varying due to target appearance and disappearance at any time. 

Spontaneous target birth is assumed to have Gaussian mixture intensity as follows: 

(7.21) 

where x~ = [-1200 20 - 1700 15]T, x~ = [-1200 - 20 - 1700 15]r, and Qb = 

diag([2500 250 2500 250]). The target state at time k, Xk = [xk xk Yk Ykf, consists 

of the position, [xk Yk]T, and the velocity, [xk Ykf of the target. Each existing 

target survives with probability of Ps,k = 0.95, which is state-independent. It has the 

following linear Gaussian target dynamics [7]: 

(7.22) 
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where target transition matrix F is given by 

1 T 0 0 

F= 
0 

0 

1 

0 

0 

1 

0 

T 

0 0 0 1 

and the process noise vk-l has a normal distribution with mean zero and covariance 

Q, which is given by 

T 3 /3 r 2/2 0 0 

r 2;2 T 0 0
Q = a2 

0 0 T 3 /3 r 2;2 

0 0 r 2;2 T 

Here, Tis the sampling period equal to ls. The process noise standard deviation, a, 

is equal to 1 ms-1 . Position ground truth of two tracks over 100 scans are displayed 

in Figure 7.1. The individual plots for x and y components of each track against time 

show the start and finish times of the tracks in Figure 7.2. Each sensor provides 

bearing measurement which is related to target state as follows: 

i Yk - Ys ii)ek = arctan ( . + wk (7.23) 
Xk - X~ 

where [x~ y~]T is the position of the ith sensor and wk, is a zero mean Gaussian 

noise with standard deviation of 0.5 rad. Other sensor parameters (the probability of 

detection Pd, the average rate of clutter returns per scan >., and the field of view) are 

provided in Table 7.1. Simulation results given in this paper are based on 100 Monte 
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Figure 7.1: Ground truth: position plots of two true tracks 
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Figure 7.2: Ground truth: plots of x and y components of the 2 true tracks against time 
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Sensor pd >.. FOV 
1 0.95 1 [O 7r] 
2 0.6 20 [-7r/2 7f /2] 
3 0.6 20 [7r/2 37f/2] 

Table 7.1: Sensor parameters 

Carlo runs. 

7.4.1 Filtering 

In this section, the results of different update methods from Section 7.1 are compared. 

For the sequential update, different sequences update by placing the perfect sensor 

(sensor 1) at different places are considered as follows: 

• Sequence 1: {1, 2, 3} 

• Sequence 2: {3, 1, 2} 

• Sequence 3: {2, 3, 1} 

Figures 7.3 - 7.5 show the estimate of the number of targets and its one-sigma gates 

for each of the above update sequences. Wasserstein distance [41], which is a multi-

target miss-distance generalization of the standard root mean square error of a single 

target problem to a multitarget problem, is given in Figure 7.6. Sequence 3 yields 

better results than the other two sequences. Accuracy of the last sensor influences 

the accuracy of estimation results, which is in contradiction with intuition and ob

servations from other standard tracking algorithms [6], where it is recommended to 

update first with the most accurate sensor. Also the above results demonstrate that 

the update order in the multiple sensor PHD filtering determines the fiirnl estinrntes. 

That is, different sequences of update result in different PHD surfaces. Therefore, 
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in the all-sequence method, we obtain the average of PHD surfaces of all possible 

sequences. This all-sequence method provides better results (Figures 7.7 and 7.9), 

but it requires more computational load for problems with a large number of sen

sors. On the other hand, the average of updated PHD surfaces from all sensors are 

obtained for the parallel method. This requires computational load similar to that 

of the single sequence method while having performance similar to the all-sequence 

method (Figures 7.8 and 7.9). 
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7.4.2 Smoothing 

In this section, results for the novel GMPHD smoothing algorithm are provided. 

Here, the smoothed states are obtained by backward PHD smoothing with a lag of 

4 time steps. The estimates of the number of targets for various update methods 

are provided in Figures 7.10 - 7.14. Multitarget miss-distances of the estimates of 

both filter and smoother are shown in Figures 7.15 - 7.19. These results clearly 

demonstrate improved performance by the smoother over the filter. 
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Chapter 8 

Interacting Multiple Model 

Smoothing 

In this chapter, a novel smoothing method for Kalman based IMM estimator is pro

posed for tracking agile target. This RTS-type method involves forward filtering fol

lowed by backward smoothing while maintaining the fundamental spirit of the IMM. 

The forward filtering is performed using the standard IMM recursion (Section 2.1.3), 

while the backward smoothing is performed using a novel interacting smoothing re

cursion. This backward recursion, which is derived in Section 8.1, mimics the IMM 

estimator in the backward direction, where each mode conditioned smoother uses the 

standard Kalman smoothing recursion. The proposed algorithm is compared with 

existing augmented IMM smoothing method [16]. However, this augmented method 

explicitly assumes that there is no mode jumps within the lag [45][57]. Further, the 

proposed method does not require the existence of the inverse of the target dynamic 

as in [12] [39]. Both the proposed method and augmented methods are summarized 

in Section 8.2. The simulation results are provided in Section 8.3. 
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8.1 Derivation of IMM Smoother 

In backward smoothing, we are interested in smoothed density, p (Xt Izn. using total 

probability theorem, it can be written as follows: 

Nr

LP (xtH, zn p {rf1zn (8.1) 
j=l 

The rest of this section shows that the above density can be approximated as a mixture 

of mode conditioned smoothing densities (i.e.' p (Xt lrf' zn is a Gaussian density that 

represents the smoothed density given mode rl, and P { rf IZ}} is the smoothed mode 

probability). Note that, the notations in Section 2.1.3 are extensively used in the 

following derivations. Using the total probability theorem and the Bayes' rule, the 

density p (xtlrt' zn can be simplified as follows: 

In the above, p (xtlrf, zi) is the filtered mode conditioned density which is a Gaussian. 

The term p (xt+i lxt, rf, Zi) is a Gaussian density as it is corresponding to state tran

sition density of model rf where we used Markov property of state transition model. 

The term in the denominator is the normalizing constant. The term p (Xt+ 1 Irt, zn 
can be written as follows: 

N,.'"°' ( I i j zk) { i I j zk} (8.3)~ P Xt+1 rt+l' rt' 1 P rt+l rt' 1 

i=l 
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Here, the condition on rf in the first term can be ignored due to Markov property. 

Hence, the first term is the smoothed density at time t + 1 given the mode r~+l that 

is a Gaussian. The term P {r~+ 1 lrf, zt} is the mixing probability which is found in 

the sequel. Therefore, (8.3) refers a Gaussian mixture which can be approximated to 

a single Gaussian using moment matching method. By replacing this approximated 

Gaussian density in (8.2), we will end up with the standard Kalman smoothing equa

tion that will give a Gaussian density for p (xtlrf, zn as required in (8.1). Using the 

Bayes' rule, the mixing probability P { r~+i lrf, zt} can be written as follows: 

(8.4) 

where P {rflr1+1 , Zt} is the backward mode transition probability, P {r1+11Zt} is the 

smoothed mode probability at time t+ 1, and dj is the normalizing constant and given 

by 

L
Nr 

p {rilr;+l> z~} p {,,..;+1IZ~} (8.5) 
h=l 

The backward mode transition probability can be written as follows: 

P {rf Ir~+1, Zi} 


_!_ P { r~+ 1 lri, Zi} P { rf IZi} (8.6)

ei 

In the above, the first line is due to Markov property of mode transition. Here, 

P { r~+l H, Zi} is the forward mode transition probability, P { rf IZi} is the filtered 
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mode probability at time t, and the normalizing constant ei is given by 

Nr 

e· LP {r;+1lr;, Zi} P{r;lzi} (8.7)i 

h=l 

The smoothed mode probability P {rf IZD in (8.1) can be found as follows: 

P {rflMt+llk, Zi} 


yP {Mt+llklri, Zi} P{rf IZi} (8.8) 


The approximation in the first line is due to replacement of the mixture Mt+llk 

which can be considered as sufficient statistics for the measurement set z;".+-i · The 

normalizing constant f is given by 

Nr 

f LP {Mt+llklr~, Zi} P {r;IZi} (8.9) 
i=l 

The first term in (8.8) can be written as follows: 

Nr

LP {Mt+1lklr;+1,rf, Zi} P{r;+1 lri, Zi} 
i=l 

Nr

LP {Mt+llklr:+1 , rf, Mt1t} P{r~+ 1 H} 
i=l 

Nr 

LP {M~+llklM~lt} P {r;+1 lrf} (8.10) 
i=l 

Here, we again used the Markov property and sufficient statistic argument. 
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8.2 IMM Smoother Algorithms 

Finally, we summarize the novel backward smoothing method for multiple model 

approach in Section 8.2.1. The results of this proposed method are compared with 

that of existing augmented smoothing method [16], which is reviewed in Section 8.2.2. 

8.2.1 Backward IMM Smoother Algorithm 

In the backward smoothing, we find Gaussian mixture that represents the smoothed 

density at time t given measurement up to time k, where k - L::::; t::::; k and Lis the 

time lag. Given the filtered mixture Mtlt at time t and smoothed mixture Mt+Ilk at 

time t + 1, the backward recursion can be summarized as follows: 

• 	 Calculation of backward transition probability: Using (8.6), the backward mode 

transition probability can be written as 

(8.11) 

• 	 Calculation of the backward mixing probability: The mixing probability is given 

by 

i,j = l, ... ,Nr 	 (8.12) 

• 	 Mixing: The mean and the covariance matrix for the /h mode-matched smoother 
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are given by 

i=l 

(8.13) 


• 	 Mode-matched smoothing: The mean and the covariance in (8.13) and (8.14) 

are used as input to the mode-matched smoother rr The smoothed mode 

conditioned mean and covariance matrix are given by 

(8.15) 

(8.16) 

where m;+llt and P/+llt are the predicted mean and covariance matrix corre

sponding to Ph mode, and A~\k is the smoothing gain and given by [79] 

(8.17) 


Here, Fi~ is the state transition matrix of the Ph model. 

• 	 Mode probability smoothing: The smoothed mode probability is given by 

. 1 . . 
µ1 - A1µ1 	 (8.18)t\k 	- 7 tik tit 

where the normalizing constant f 	= 2...:~1 A~ 1 kµ~\t and 

Nr 

A;\k = LP1iN (m~+l\k; m;+1\t' P/+11t) 	 (8.19) 
i=l 
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• Estimate: Finally the estimate and corresponding covariance matrix are found 

using moment matching. That is, 

(8.20) 

i=l 

(8.21) 

The algorithm is also summarized in Figure 8.1, which resembles IMM filter in the 

backward direction (Figure 2.1). 

m2 p2
t+llk:' t+llk: 

Interaction/mixing 

mo1 poi
t+llk:' t+llk: 

Smoother Smoother 
1 2 

Mode probability 
update and 

mixing probability 
calculation 

State estimate~' 
and covariance 

combination 

Figure 8.1: IMM smoother with two models 
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8.2.2 Augmented IMM Smoother Algorithm 

In the augmented method [16], an augmented state vector is considered as follows: 

(8.22) 


where 

The associated covariance matrix is defined as 

p(O,O) p(O,l) p(O,L) 
klk klk klk 

p(l,O) j>(l,1) p(l,L) 

H1k= 
klk klk klk 

p(L,O) p(L,l) p(L,L) 
klk klk klk 

where 

P IE [(-(i) - ::(i)) (-(j) - ::(j))T] (8.23)-(i,j) 
klk - xk xklk xk xklk 

with 

::(i) IE[-(i)I ] A 

xklk = xk Z1:k = Xk-ilk (8.24) 
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which is the smoothed estimate at time k - 1 given measurements up to time k. The 

augmented system is defined as follows: 

-(0)
xk Fk(rk) 0 0 0 -(0) 

xk-1 

- (1)
xk I 0 0 0 - (1) 

xk-1 

-(2)
xk 0 I 0 0 - (2)

xk-l + 

-(L)
xk 0 0 I 0 

-(L)
xk-l 

Vk-l(rk) 

0 

0 

0 

where H(rk) is the state transition matrix currently in effect (2.20). The augment 

measurement model is given by 

-(0)
xk 
- (1)
xk 

Zk = [Hk(rk) 0 ... 0 O] x~2 ) + nk(rk) 

where Hk(rk) is the measurement matrix currently in effect (2.21). The augmented 

state (8.22) is propagated using IMM recursion in Section 2.1.3. Here, it is assumed 

that there is no model switching within the augmented block. Finally the smoothed 

state estimates at time k - L is given by 

(8.25) 
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The associated error covariance matrix 

-(L,L) 
h-Llk = pklk (8.26) 

The smoothed mode probability can be written as 

j - 1 N (' . j pJ ) j (8.27)µk-Llk - -- Xk-Llk1 mk-Llk-L• k-Llk-L µk-Llk-L
Ck-Llk 

where normalizing constant ck-Llk is given by 

Nr 

(8.28)ck-Llk = L N (xk-Llk; m{_Llk-L' Pk_Llk-L) µ~-Llk-L 
j=l 

8.3 Simulation 

In this section, the results of the simulation studies using the novel IMM smooth

ing algorithm are presented. In the simulation study, we consider a two-dimensional 

scenario with a maneuvering target as shown in Figure 8.2. With initial position 

at (29.5, 35) km, the target moves southwest direction for 10s at a nearly constant 

velocity with velocity of 330 ms- 1, before executing a 3g coordinated turn in the 

counter-clockwise for 12s. Then it moves southward for 4s, followed by a clockwise 

3g coordinated turn for 12s. Finally, it moves southwest direction for 12s at a nearly 

constant velocity with velocity of 330 ms- 1. The sensor is located at the origin, and 

provides range and bearing measurements with measurement noise standard devia

tions of 15m and 0.002 rad. The measurements are available at discrete sampling 

interval T = ls. The IMM filter consists of two models with transition probability 



---- --- --- ----- ----

118 CHAPTER 8. INTERACTING MULTIPLE MODEL SMOOTHING 
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Figure 8.2: Ground truth of the maneuvering target scenario 
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matrix as follows: 

0.95 0.05 l[hvu] = (8.29)
[ 0.1 0.9 

The first model is a constant velocity with 0"
2 = 1 m2s-3

. That is, 

(8.30) 

where Xk = [xk Xk Yk Yk]T and the target transition matrix F1,k is given by 

1 T 0 0 

0 1 0 0 

0 0 1 T 

0 0 0 1 

and the process noise v 1,k-l has a normal distribution with mean zero and covariance 

matrix Q 1,k_ 1 , which is given by 

T3/3 y2;2 0 0 

r 2;2 T 0 0 
Ql,k-l =(Ji 

0 0 T3/3 y2;2 

0 0 r 2;2 T 

3where 0"1 = 0.5 m2s- . The second one is a constant acceleration model and given by 

(8.31) 
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where xk = [xk Xk Xk Yk Yk iikV is the augmented state vector, which consists of 

target position [xk, YkJI', target velocity [xk,Yk]T and target acceleration [xk,iikV at 

time step, and target transition matrix F2,k is given by 

and the process noise v 2,k-l has a normal distribution with mean zero and covariance 

matrix Q2,k-i, which is given by 

1..Ts
20 

lT4 
8 

lT3 
6 0 0 0 

lT4 
8 

lT3
3 

lT2
2 0 0 0 

Q2,k-1 = (}~ 
lT3 
6 

0 

lT2
2 

0 

T 

0 

0 

..!..Ts
20 

0 

lT4 
8 

0 

lT3 
6 

0 0 0 lT4 
8 

lT3
3 

lT2
2 

0 0 0 lr3 
6 

lT2
2 T 

where ()3 = 3 m2s-5 . 

Results from 100 Monte Carlo runs are discussed below. Figure 8.3 shows the 

model-switching property of the IMM filter and both smoothing methods with time 

lag of 3. The RMSE for position and velocity are provided in Figures 8.4 and 8.5, 

respectively. They clearly demonstrate the improved performance of the proposed 

IMM smoothing method over both IMM filter and augmented IMM smoother. Figure 
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Figure 8.3: Mode switching 

8.6 shows Normalized Estimation Error Squared (NEES) for all three methods. The 

comparisons of the NEES values also confirms that the proposed IMM smoother is 

more consistent than IMM filter and augmented IMM smoother. 
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Figure 8.4: Position RMSE 
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Figure 8.5: Velocity RMSE 
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Figure 8.6: NEES 



Chapter 9 

Conclusions 

In this thesis, we have considered the problem of tracking multiple targets usrng 

retrodiction (smoothing). The main focus of the thesis was to develop RTS type 

smoothing methods for various state estimators. Filtering typically produces the best 

estimates of the target state based on all measurements up to current estimation time. 

Smoothing, which uses measurements beyond the current estimation time, provides 

better estimates of target states. This delayed but improved estimates were achieved 

with additional computational load to incorporate information from measurements 

beyond the current estimation time to current estimates. 

We developed a smoothing algorithm to improve the capability of PHD based 

state estimator. The proposed method involves a forward multitarget filtering using 

the standard PHD filter recursion and then a backward smoothing recursion. The 

PHD filter, which propagates the first order statistical moment of the multitarget 

state density, is a computationally efficient MTT algorithm. The backward smooth

ing recursion is performed with a novel recursive formula, which was derived using 
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the physical-space approach. The resulting backward recursion incorporates inten

sity for surviving targets as well as disappearing targets. Further, we proposed SMC 

implementation of the backward smoothing method. It was shown that this SMC 

implementation requires much computational effort to compute smoothed particle 

weights. To mitigate this, we introduced a fast implementation, which uses the N-

body algorithm. However, this fast method requires that target transition density 

should be defined in metric space. It was shown that most commonly used transi

tion models can be converted into a function defined in a metric space using simple 

transformations. 

Then, we proposed a smoothing method for MMPHD based state estimator. The 

MMPHD filter is a natural extension of the PHD filter for maneuvering target track

ing. Here, the mode dependent PHD is propagated recursively. The mode dependent 

filtered PHD is reprocessed in back direction using a new smoothing equation. The 

SMC implementation of the backward recursion, which involves continuous density 

as well as probability mass function due to discrete variable for mode, was also pro

posed. A fast method was provided for a special case where targets switch between 

two dynamic models and have symmetric mode transition matrix. 

Next, we proposed a smoothing method for GMPHD state estimator using multi

ple sensors. In the Gaussian mixture implementation, the PHD surface is represented 

by a mixture of Gaussian functions. Under linear Gaussian assumption, the PHD 

filter can be implemented using closed-form recursion. This can be extended to non

linear systems by using the EKF or the UKF. The proposed G MPHD smoothing 

method was applied for multisensor system. In the case of multisensor systems, a 

sequential update of the PHD has been suggested in the literature. However, this 

sequential update is susceptible to the imperfections in the last sensor. To mitigate 
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this, a parallel update for GMPHD filter was proposed. The resulting filter outputs 

were further improved using a novel closed-form backward smoothing recursion. 

Finally, we developed a novel smoothing method for Kalman based IMM estimator 

for tracking maneuvering target. The proposed method involves forward filtering 

followed by backward smoothing while maintaining the fundamental spirit of the 

IMM. The forward filtering is performed using the standard IMM recursion, while 

the backward smoothing is performed using a novel interacting smoothing recursion. 

This backward recursion mimics the IMM estimator in the backward direction, where 

each mode conditioned smoother uses the standard Kalman smoothing recursion. A 

comparison studies were performed with existing augmented smoothing method. 



Appendix A 

K-mean Algorithm 

The K-mean algorithm is clustering algorithm to partition N objects into K clusters, 

where K < N. It attempts to find the centers of natural clusters in the data [43]. 

The main idea is to define K centroids, one for each cluster. The centroids are found 

such that they minimize total intra-cluster variance as follows [37]: 

K N 

v LL Im(xU>)(i)llx(j) - cill 2 (A.1) 
i=l j=l 

where I lxUl - ci 11 is a chosen distance between a data point x(jl and the cluster center 

ci. The algorithm (Figure A.1) is as follows: 

• Initialize centroids ci, i = 1, ... , K (e.g., random selection of { xUl}) 

• For each object x(j) find membership 

(A.2) 

• While m has changed 
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- For each i E {1, ... ,K} compute the centroid ci of {x(jlJm(x(jl) = i} 

- For each object x(jl find membership 

m(x(jl) = arg min JJx(j) - ciJJ (A.3)
iE{l,. .. ,K} 

(Start ) 

Number of 

cluster K 


Centroid 

Distance objects to 
centoids 

Grouping based on 
minimum distance 

Figure A.1: K-mean algorithm 



Appendix B 

Gaussian Mixture Reduction 

A simple pruning procedure can be used to reduce the number of Gaussian com

ponents propagated to the next time step. A good approximation to the Gaussian 

mixture intensity 

D(x) = L
J 

wiN (x; m\ r) (B.4) 
i=l 

can be obtained by truncating components that have weak weights wi. This can 

be done by discarding those with weights below some preset threshold, or by keep

ing only a certain number of components with strongest weights. Moreover, some 

of the Gaussian components are so close together that they could be accurately 

approximated by a single Gaussian. Hence, in practice these components can be 

merged into one. These ideas lead to the simple heuristic pruning algorithm shown 

below. 

Given {w\m\ Pi}/=1 , a truncation threshold[!, a mergmg threshold U, and a 

maximum allowable number of Gaussian terms lmax· 
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Set l = 0, and I= {i = 1, ... , Jlwi > e}. 

repeat 

l := l + 1. 

J
. 
:= arg maxiEI w 

i . 

L := { i E II (mi - mj)T (Pi)-1 (mi - mj) ~ U}. 


wl = LiEL wi. 


ml = -1. ""'. wimi
wl L.nEL · 

p1 = ~1 LiEL wi (pi+ (m1 - mi) (m1 - mi)r). 

I:= I\ L 

until I=0 

if l > I max then replace { wi, mi, fai}~=l by those of the I max Gaussian with largest 

weights. 

Output {wi, mi, fai}~=i as pruned Gaussian components. 
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