
ROBUST MODEL PREDICTIVE CONTROL FOR PROCESS CONTROL AND 


SUPPLY CHAIN OPTIMIZATION 




ROBUST MODEL PREDICTIVE CONTROL FOR PROCESS CONTROL AND 


SUPPLY CHAIN OPTIMIZATION 


By 

XIANG LI, B.Eng., M.Eng. 

A Thesis 


Submitted to the School of Graduate Studies 


in Partial Fulfillment of the Requirements 


for the Degree of Doctor of Philosophy 


McMaster University 


© Copyright by Xiang Li, September 2009 




DOCTOR OF PHILOSOPHY (2009) McMaster University 

(Chemical Engineering) Hamilton, Ontario 

TITLE: Robust Model Predictive Control for Process Control and Supply Chain 
Optimization 

AUTHOR: Xiang Li, B.Eng., M.Eng. (Zhejiang University, P. R. China) 

SUPERVISOR: Professor T. E. Marlin 

NUMBER OF PAGES: x, 295 

11 



Abstract 

Model Predictive Control (MPC) is traditionally designed assuming no model 

mismatch and tuned to provide acceptable behavior when mismatch occurs. This thesis 

extends the MPC design to account for explicit mismatch in the control and optimization 

of a wide range of uncertain dynamic systems with feedback, such as in process control 

and supply chain optimization. 

The major contribution of the thesis is the development of a new MPC method for 

robust performance, which offers a general framework to optimize the uncertain system 

behavior in the closed-loop subject to hard bounds on manipulated variables and soft 

bounds on controlled variables. This framework includes the explicit handling of 

correlated, time-varying or time-invariant, parametric uncertainty appearing externally (in 

demands and disturbances) and internally (in plant/model mismatch) to the control 

system. In addition, the uncertainty in state estimation is accounted for in the controller. 

For efficient and reliable real-time solution, the bilevel stochastic optimization 

formulation of the robust MPC method is approximated by a limited number of (convex) 

Second Order Cone Programming (SOCP) problems with an industry-proven heuristic 

and the classical chance-constrained programming technique. A closed-loop uncertainty 

characterization method is also developed which improves real-time tractability by 

performing intensive calculations off-line. 

The new robust MPC method is extended for process control problems by 

integrating a robust steady-state optimization method addressing closed-loop uncertainty. 

In addition, the objective function for trajectory optimization can be formulated as 

nominal or expected dynamic performance. Finally, the method is formulated m 

deviation variables to correctly estimate time-invariant uncertainty. 
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The new robust MPC method is also tailored for supply chain optimization, which 

is demonstrated through a typical industrial supply chain optimization problem. The 

robust MPC optimizes scenario-specific safety stock levels while satisfying customer 

demands for time-varying systems with uncertainty in demand, manufacturing and 

transportation. Complexity analysis and computational study results demonstrate that the 

robust MPC solution times increase with system scale moderately, and the method does 

not suffer from the curse of dimensionality. 
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Chapter 1 

Introduction 

This thesis focuses on the optimization of uncertain dynamic systems with 

feedback. Here "feedback" is the term from automatic control, which means the use of 

the measurement information of system outputs to determine future system inputs. While 

all physical systems are uncertain to some extent, this thesis concentrates on physical 

systems in which uncertainty significantly affects the behaviour of the control. 

There exist a wide range of feedback control technologies. Here, we will 

concentrate on a method termed "Model Predictive Control" (MPC) for reasons 

explained subsequently. In addition, there are many methods for determining optimal 

performance for systems (usually, without feedback control), such as stochastic 

optimization. The developments in this thesis merge MPC and stochastic optimization in 

novel ways to provide unique advantages for the overall system performance. 

The methods developed in this thesis are general, but they have been tailored to 

two applications of special interest in the chemical process industries. The first is process 

control, which applies automatic control to equipment in the process industries. The 

second in supply chain optimization (management), which involves coordinating the raw 

materials, manufacturing, transportation, sales, and storage of an integrated business. 

Both of these systems involve slow dynamics (relative to disturbances and control 

objectives) and significant uncertainties that provide challenges in attaining the desired 

performance. 
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The remainder of this chapter contains the following sections. Section 1.1 gives a 

general introduction of MPC methods (including robust MPC), and Sections 1.2 and 1.3 

introduce process control and supply chain optimization, respectively. Then, Section 1.4 

further defines the goal and scope of the research, and Section 1.5 shows an overview 

outline of the thesis. Finally, Section 1.6 defines some terms and conventions used in the 

thesis. 

1.1 Model Predictive Control 

1.1.1 Conventional, nominal MPC 

Model predictive control (MPC) refers to a class of computer control algorithms 

that utilize an explicit process model to predict the future response of a plant (Qin and 

Badgewell, 2003). At each control interval, feedback information is used to update the 

model to reduce the effects of model mismatch. Then, the MPC algorithm optimizes 

future model behavior by computing a sequence of future manipulated variables. The first 

input in the optimal sequence is then sent to the plant, and the entire calculation is 

repeated at subsequent control intervals. The advantage of this "rolling horizon" 

implementation is that the new measurement information of the system at each control 

interval can be used to update the explicit process model for a better prediction of the 

future. 

Figure 1.1 shows a typical MPC block diagram, where y denotes the controlled 

variables (or sometimes called system outputs in the thesis), which are to be maintained 

at their desired values, u denotes the manipulated variables (or sometimes called system 

inputs in the thesis), which are adjusted to drive the controlled variables to their desired 

values. The desired values of the controlled variables are called set points, shown as SP in 

the figure. An MPC controller includes at least an explicit model to predict the future and 

an optimizer to compute the optimal manipulated variables according to the prediction. 
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Figure 1.1 A typical block diagram of MPC 

MPC has been widely adopted in industry as an effective control technology to 

deal with multivariable constrained control problems (Qin and Badgwell, 2003). 

Conventionally, MPC uses a linear deterministic model to predict the future, although a 

real system is usually nonlinear and uncertain. We call this type of MPC method 

"nominal MPC" in this thesis and call the deterministic model "nominal model". 

1.1.2 Robust MPC, nonlinear MPC and adaptive MPC 

The performance of nominal MPC will degrade if the real plant deviates from the 

nominal model used in the controller. The difference between the real plant and its 

nominal model is usually called the uncertainty, which is caused by the differences in 

structure, measurement error, and unmeasured disturbances in the system. Applying an 

MPC using only the nominal model and (de )tuning the controller is a typical approach to 

address the uncertainty, but it can lead to poor performance. Substantial performance 

improvement could be achieved by addressing the uncertainty explicitly in the control 

calculation, which leads to the concept of robust MPC. Unless otherwise specified, robust 

MPC refers to the MPC methods using linear nominal model with parametric 

uncertainties, which calculates the manipulated variables such that the future plant 
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behavior satisfies specific (feasibility, stability or performance) criteria for not only the 

nominal plant realization, but also all the other possible plant realizations with the 

uncertainty in a specified region. 

When the nonlinearity of the plant is significant and a good model of the 

non-linear process is available, describing the plant with a nominal model and the 

additional uncertainty may not be the appropriate controller to achieve a good 

performance. In this case, an explicit use of a nonlinear model would be appropriate to 

predict the future behavior. The resulting MPC method is called nonlinear MPC 

(Camacho and Bordons, 2007; Badgwell and Qin, 2001; Allgower et. al. 1999). 

Furthermore, if the uncertainty is explicitly addressed in nonlinear MPC calculation, the 

resulting method is called robust nonlinear MPC (e.g., Grancharova and Johansen, 2009; 

Zavala and Biegler, 2009). Although it has attracted much attention in the academic 

research, the nonlinear MPC has not been very widely applied in the industry, because 

some difficult problems, including nonlinear identification, nonlinear state estimation, 

nonconvex optimization of the transient behavior, etc. (Camacho and Bordons, 2007). 

An alternative approach to address uncertainty is to adopt the idea from adaptive 

control, where the control law or controller tuning is changed with the real-time 

measurement information of the system (Sastry and Bodson, 1994). In the context of 

MPC, it usually refers to the MPC methods with real-time identification or selection of 

prediction models (e.g., Dougherty and Cooper, 2003). The limitation of adaptive MPC 

control is that it's challenging to satisfy the stability or even feasibility and other 

performance criteria, especially when the uncertainty changes frequently (Mayne, et al., 

2000). So, an adaptive MPC method is usually designed with the integration of robust 

MPC techniques to address some uncertainty explicitly in the controller calculation, 

which is actually a robust adaptive MPC (e.g. Fukushima et al, 2007). Sometimes a 

nonlinear model is also used in the method, which gives robust adaptive nonlinear MPC 

(e.g. Rahideh et al., 2008; Adetola et al., 2009). 

In this thesis, we only address the robust MPC method using linear dynamic 

models with uncertain parameters. This choice is appropriate when (a) the system is not 

highly non-linear or non-linear models appropriate for real-time control are not available 

and (b) adapting models in real time is not appropriate because of lack of correlation of 
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the plant behaviour with its recent past. Many process control and supply chain problems 

fit into this category, as indicated by the current dominant practice of applying linear 

nominal MPC with detuning. 

1.2 Process Control 

Process control is a sub-discipline of automatic control that involves tailoring 

methods for the operation of chemical processes with the goal of improving the safety 

and profitability of a process, while maintaining consistently high product quality (Marlin, 

2000). 

Process control usually deals with physicochemical systems such as reactors, heat 

exchangers, distillation columns, and so forth. The controlled variables and manipulated 

variables in process control depend on the specific process and control objectives. They 

can typically be temperature, pressure, flow rate, level, and composition. For example, 

for a binary distillation column that separates the light product from the feed flow, the 

controlled variables are usually the pressure, liquid levels, and compositions of the 

distillate and the bottoms products, and the manipulated variables are the condenser duty, 

reflux flow, reboiler duty, and product flow rates. 

In process control, the cause of the uncertainty can be the uncertainty in the 

system variables that are independent from the control decisions. For example, in the 

binary distillation control system mentioned above, the feed flow rate and the feed 

composition can vary, which changes the relationship between the controlled and 

manipulated variables. The cause of the uncertainty can also be the approximation of a 

nonlinear process with linear model. This is because a linear model is only exactly 

accurate for a nonlinear process at a particular point, but the process operates in a region 

around a nominal operating point. The uncertainty of a process control system usually 

occurs as the net effects of the two causes mentioned above. 

The most widely used process control methods are Proportional-Integral­

Derivative (PID) control methods (e.g., Marlin, 2000) and MPC. The PID methods are 

appropriate for controlling a single output variable or for multivariable systems in which 

the interaction among control loops, which do not communicate in the controller 
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calculations, does not significantly degrade dynamic performance. In contrast, the more 

complex MPC method is appropriate for systems with strong interaction among variables, 

for which centralized decision making will improve dynamic performance. This work 

deals exclusively with MPC control that optimizes the trajectory of the controlled and 

manipulated variables to their desired values. 

The desired values of controlled variables are usually obtained according to an 

economic objective, which could change while disturbances enter the process. So, a 

steady-state optimization unit is usually integrated in many industrial process control 

systems that calculate the desired values of the controlled variables (and mostly also the 

desired values of the manipulated variables) before each controller execution (Qin and 

Badgwell, 2003). Due to its importance in process control practice, the steady-state 

optimization problem will also be addressed in this thesis. 

1.3 Supply Chain Optimization 

Supply chain optimization or supply chain management is "a set of approaches 

utilized to efficiently integrate suppliers, manufacturers, warehouses and stores, so that 

merchandise is produced and distributed at the right quantities, to the right locations, and 

at the right time, in order to minimize system-wide costs while satisfying service level 

requirements" (Simchi-Levi et al., 1999). Extensive work has been done for supply chain 

optimization in the management, operations research and industrial engineering 

communities, with a tremendous number of publications available. Readers can refer to 

Pinedo (2005), Chopra and Meindl (2004) and Nahmias (2001) for the review of the 

traditional supply chain optimization research. 

The supply chain optimization applied to the process industries has been a hot 

research area recently (Shah, 2006; Neiro and Pinto, 2005), which includes making 

decisions for different levels of a supply chain, namely, strategic, tactical and operational 

(Neiro and Pinto, 2005). The operational problem, which refers to making decisions to 

drive some variables of the supply chain to the desired values (or force them to satisfy 

some objective), is analog to the process control problem. The decision variables (inputs) 

of the problem could be the production rate, orders to the upper stream units (Braun et al., 
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2003), or the advertising effort to increase the sales (Tzafestas et al. , 1997). The 

controlled variables (outputs) could be the inventories, productions rates or material 

feedstock purchases, and they can be measured. Figure 1.2 illustrates the similar structure 

of process control and supply chain operation problems in the MPC framework. This 

motivates the concept of introducing feedback control technology to optimal supply chain 

operation problems, especially the MPC techniques (e.g. Braun et al., 2003; Perea-Lopez 

et al. 2001; Tzafestas et al., 1997). 

The customer demands, which can change frequently and substantially and cannot 

be predicted accurately, are the most common disturbances in a supply chain system. The 

processing time for products, transportation times and the prices of the materials are other 

main sources of uncertainties (Lin et al., 2004). The most important impact of the 

uncertainties on a supply chain system is that supplies may not match demands, which 

results in back orders or lost sales. A back order is a customer order, which cannot be 

,---------------·r-------------------­

Distillate 

Bottoms 
A composition (y2) 

Process control Supply chain optimization 

SP (objective)-.o-+ C 
11ontro er or 

Optimizer Process 

Model 

Figure 1.2 The MPC framework for process control and supply chain optimization 
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filled immediately and for which the customer is prepared to wait for some time 

(BusinessDictionary, 2009). Naturally, back orders lead to customer dissatisfaction, may 

incur price penalties, and if persistent, will lead to lost sales. The percentage of items 

back ordered and the number of the back order days (until the back ordered-products are 

ultimately delivered) are important measures of the quality of a firm's customer service. 

Since the uncertainties are usually very large in a supply chain system, we cannot 

overlook them in supply chain optimization if we want to achieve a satisfactory customer 

service level. As we shall see, robust MPC, which can address uncertainties explicitly, is 

an excellent tool for operational supply chain optimization problems. 

1.4 Goal and Scope of the Research 

The goal of the research is to develop a robust MPC method that has fast and 

reliable solution as well as good control performance for control and optimization of 

uncertain systems with feedback, such as occurs in process control and supply chain 

optimization. Particularly, the method should offer a framework addressing the following 

issues: 

Plant characteristics: 

• 	 Linear or nonlinear but can be approximated by linear model with uncertain 

parameters; 

• 	 Multi-input multi-output; 

• 	 With strict physical limits on manipulated variables; 

• 	 With bounds on controlled variables. 

Uncertainty modelling: 

• 	 Time-vary or time-invariant uncertainty allowed; 

• 	 Correlated, parametric uncertainties of the unmeasured disturbances and noises, 

the plant/model mismatch and the disturbance plant/model mismatch. 

• 	 An estimate of the uncertainty of all transient variables in the system under 

control 
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Feedback scheme: 

• 	 State feedback (i.e., all the system states are measured) or output feedback (i.e., 

some of the system states are not measured); 

• 	 State-estimation addressing uncertainty explicitly. 

Optimization formulation: 

1) 	 Hard bounds on the manipulated variables and soft bounds on the controlled 

variables; 

2) 	 Flexible objective function that can contain nominal or expected performance; 

3) 	 Reliable and efficient solution for real-time computation; 

4) 	 Both steady-state and trajectory optimization considered. 

Figure 1.3 shows a more detailed block diagram of the MPC system addressed in 

the thesis with the variables and parameters explicitly appearing in the robust MPC 

formulation, where u denotes the manipulated variables decided by the MPC controller 

(trajectory optimization), YP denotes the real (uncertain) controlled variables, Ym denotes 

the measured controlled variables, dm are the measured information of the true 

disturbance dp, Wd and v denote the measurement noises of dp and YP respectively, Gww= 

denotes the effects of the noise w= on the system states through linear channel Gw. All the 

noises are assumed to be white noises. Also, x and e denote the estimated states and 

feedback information for the dynamic system model, b denotes the estimated bias for the 

steady-state system model, Ysp and Usp denote the set points of the controlled and 

manipulated variables for the trajectory optimization, which are obtained in the 

steady-state optimization with reference values Yr and Ur that can be determined by an 

upper-level optimization or prior experience. Note that the steady-state optimization unit 

may not exist in some applications (e.g., supply chain optimization), and the 

state-estimation unit is not needed if all of the system states are measured, which is 

unusual for process control but could be the case for some supply chain systems. 
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Disturbance Plant 
(uncertain) 

Gwwx 
(uncertain) 

Disturbance 
Model v (uncertain) 

u PlantTrajectory 
(uncertain)optimization 

Model 

x, e State 

Optimization Estimate Estimate 

Steady-State Bias 

y,, u, 

Figure 1.3 Detailed block diagram of the MPC system addressed in the thesis 

1.5 Thesis Outline 

The remammg part of the thesis is organized as described in the following 

paragraphs and is shown schematically in Figure 1.4. 

Chapter 2 reviews the state-of-the-art robust MPC methods and points out the 

technology gaps between these methods and the research goals. It also reviews the 

state-of-the art supply chain optimization under uncertainty. 

Chapter 3 develops a new robust MPC framework for the optimization of 

uncertain system with feedback. This framework addresses various sources of 

uncertainties of the closed-loop system with hard input bounds. An efficient and reliable 

optimization solution method and an uncertainty characterization are developed for the 

real-time implementation of the new robust MPC method. 
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Optimization of uncertain system with feedback 

Goal (Chapter 1, Section 1.3) 

Develop a robust MPC method that has fast and reliable solution as well as good control performance 

for the optimization of uncertain systems with feedback. The method addresses linear models with 

commonly occurring sources of uncertainty and hard limits on manipulated inputs. 


P~!~~ ~':.~~~~!?~-(~~~'!!~~ J.)_ -------­ r------------------------------------­
State-of-the-art: 	 Gaps: 
1. Parametric, correlated uncertainty 1. No steady-state opt. with CL uncertainty 
2. Stochastic opt. ~ SOCP or SDP 2. No unified formulation for model mismatch 
3. Individual formulations for either model and disturbance uncertainty with hard bounds 
mismatch or disturbance uncertainty 3. Formulation involves simplifications that 
4. Closed-loop prediction 	 limit control performance 

General Formulation and Solution Method (Chapter 3) 
Key contributions 
1. 	 A unified formulation addressing: (a) model mismatch and disturbance uncertainties, (b) measured 

disturbances and the disturbance model mismatch, (c) hard input bounds in closed-loop prediction, 
and ( d) tractable solution for real-time implementation 

2. 	 Dynamic deviation model for time-invariant uncertainty 
3. 	 State estimation and output feedback under uncertainty 
4. 	 Efficient on-line calculation for uncertainty characterization 

Case study 
1. 	 CSTR control system 1 & 2 

..n Applications of the new robust MPC ..n 
Model Predictive Control 

(Reach steady state within horizon, Chapter 4) 

Key contributions 
I. Robust steady-state optimization with deviation 
model for time-invariant uncertainty 
2. Objective function for expected performance 

Case study 
1. Binary distillation control system 1 & 2 
2. CSTR control system 3 & 4 

Supply Chain Optimization 
(No steady-state settling, Chapter 5) 

Key contributions 
1. Tailored state-space model 
2. Modified LP to suit the method 
3. Addressing non-normally distributed 
disturbance uncertainty 

Case study 
1. An industrial supply chain optimization project 

Summary and Future Work (Chapter 6) 

Figure 1.4 An overview outline of the remaining part of the thesis 
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Chapter 4 extends the new robust MPC method for the application to process control 

problems, where a new robust steady-state optimization method is developed to obtain 

optimal set points for the trajectory optimization and a flexible but convex objective 

function is developed to include either nominal or expected performance. 

Chapter 5 applies the new robust MPC method to an industrial supply chain 

optimization problem, where both a tailored system model and a tailored robust MPC 

formulation are developed for the problem. The complexity of this problem and results of 

computational experiments are reported. 

Chapter 6 summarizes the research results and contributions and suggests future 

research topics. 

1.6 Terminology and Conventions 

We assume the readers have basic chemical process control and mathematical 

programming background, so not all the terms in the thesis are explained. We give 

explanations of some important terms as follows for the ease of the discussions in the 

remaining part of thesis. 

• 	 Control horizon (or sometimes called input horizon in the thesis) refers to the 

future time periods (or number of time intervals in discrete control systems) 

during which the dynamic system behaviours are calculated in MPC. 

• 	 Controlled variables (or sometimes called outputs in the thesis) refer to the 

variables of a system to be regulated to satisfy some goal (e.g., maintained at 

specific level or a function of them being optimized). 

• 	 Controller execution period refers to the time interval between two successive 

controller decisions. 

• 	 Disturbances to a system refer to the variables that cannot be adjusted by the 

controller but affect the controlled variables. 

• 	 Disturbance plant/model mismatch refers to that the real disturbance plant 

associating the disturbances with the controlled variables is not exactly described 

with its model. 
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• 	 Manipulated variables (or sometimes called inputs in the thesis) refer to the 

variables of a system to be adjusted to influence the controlled variables. 

• 	 Plant and process are essentially synonymous terms. They all refer to any system 

to be controlled. 

• 	 Plant/model mismatch refers to that the real plant associating the manipulated 

variables with the controlled variables is not exactly described with its model. 

• 	 Prediction horizon (or sometimes called output horizon in the thesis) refers to 

the future time periods (or number of time intervals in discrete control systems) 

during which the controller decisions are calculated in MPC. 

• 	 Reference refers to the desired value of the controlled variables (or sometimes 

include the manipulated variables) at the steady state used in the steady-state 

optimization. It is obtained from an upper-level optimizer or experience of plant 

personnel. 

• 	 Saturation of a manipulated variable refers to the situation where a hard bound 

posed on this variable is active. 

• 	 Set point refers to the desired value of the controlled variables (and sometimes 

the manipulated variables as well) at the steady state used in the trajectory control 

(optimization). 

• 	 Simulation period of an MPC method refers to the time interval of the discrete 

prediction model used by the MPC. 

• 	 Steady-state optimization refers to the optimization of the steady-state settling 

point of the system. 

• 	 Trajectory optimization (control) in MPC refers to the optimization (control) of 

the dynamic behavior of the system. 

The following conventions will be observed in the thesis. Matrices are denoted 

with uppercase English letters. Scalars and vectors are denoted with lowercase English or 

Greek letters, except that the extended vectors containing the elements of a vector over 

prediction or control horizon are denoted with bold English or Greek letters. 
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Chapter 2 

Literature Review 

This chapter reviews the state-of-the-art robust MPC methods and the 

state-of-the-art methods to address uncertainty explicitly in supply chain optimization. 

The advantages and the disadvantages of the various existing methods are discussed, and 

the gap between the state-of-the-art technologies and the research goals are outlined. 

Since this thesis focuses on explicit handling of uncertainties, this chapter does 

not review the classical, nominal MPC. Readers can refer to Camacho and Bordons 

(1999), Macejowski (2000) for more details of the nominal MPC methods. For readers 

not already familiar with MPC, a brief introduction is given in Section 3 .1. 

Also, this chapter does not review the supply chain optimization methods that do 

not address uncertainty explicitly. Readers can refer to Pinedo (2000), Nahmias (2001), 

Chopra and Meindl (2004) for the review of the extensive work on the "nominal supply 

chain optimization" methods. 

2.1 The State-of-the-art Robust MPC Methods 

This section reviews the state-of-the-art methods for robust MPC. First, in Section 

2.1.1, we discuss the different approaches to build the uncertain prediction model for 

robust MPC calculation. This issue is key for a robust MPC method, because it not only 

determines how good the method can be, but also affects the complexity of the 
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formulation and the tractability of the solution of the method. Then in Section 2.1.2, we 

discuss the approaches to address other important aspects of robust MPC that has been 

outlined in Chapter 1. In Section 2.1.3, we summarize some typical robust MPC methods 

and point out the gap between the state-of-the-art and the research goals. Finally, in 

Section 2.1.3, we discuss the issue of robust steady-state optimization, which is not 

addressed in most of the existing robust MPC research but very important for industrial 

process control systems. 

2.1.1 Different approaches for formulating uncertain model 

Open-loop or closed-loop prediction? 

Nominal MPC predicts the future with a nominal process model that is assumed 

to be perfect, so it assumes that the forecast of future model errors is perfect and the 

control sequence obtained at the current time step are unchanged in the future (if the 

prediction horizon is infinite or sufficiently large). Under these assumptions, the 

open-loop prediction that does not explicitly consider the effects of the future feedback 

control is equivalent to the actual closed-loop behavior of the manipulated and controlled 

variables. So all the existing nominal MPC optimize the open-loop dynamics instead of 

the equivalent (but more complex) closed-loop dynamics of the system for the simplicity 

of the formulation. The degrees of freedom of the optimization problem are the future 

control sequence. 

A simple approach to address uncertainty explicitly in MPC calculation is to use 

an uncertain process model (instead of nominal model) in the same open-loop prediction 

framework as in nominal MPC. This approach has been adopted in some robust MPC 

methods, e.g., Badgwell (1997), Schwarm and Nikolaou (1999), Li et al. (2002). 

However, the open-loop prediction is not equal to the closed-loop prediction in the 

context of robust MPC, and it may overestimate the uncertainty of the closed-loop system 

dynamics due to the omission of the future correcting actions of the feedback controller. 

(See Chapter 3 for more discussion on the limitation of open-loop prediction.) This 

point has been widely recognized (e.g. Bemporad, 1998) and most of the existing robust 

MPC methods adopt closed-loop prediction, i.e. using a closed-loop prediction model that 
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includes both a model for describing the uncertain process and a model for describing the 

future controller actions. 

Modeling ofclosed-loop dynamics - The rigorous approach 

The key to building a closed-loop model is modelling the controller behaviour in 

the future. The rigorous way is to exploit the "Principle of Optimality", which is the basis 

of the well-known dynamic programming theory (Bellman, 1957). This principle states 

that in an optimal sequence of decisions, each subsequence must also be optimal, i.e., in 

the context of MPC (with infinite or sufficiently large horizon), an optimal control 

sequence obtained at one time step must include the optimal control sequence obtained in 

any future time steps. Therefore, we can describe the controller actions in robust MPC 

using a dynamic programming framework, i.e., we can model the controller behavior at 

end of the horizon (which is easy) first and derive its behavior at the other time steps in a 

backward mode according to the "Principle of Optimality". Refer to Lee and Yu (1997), 

Sakizlis et al. (2004) for more details on formulating robust MPC with this idea. 

However, the scale of a dynamic programming problem is exponential with 

respect to the number of possible system states at each decision stage, which makes even 

small problems suffer the "curse of dimensionality" (Bertsekas, 2000). This 

widely-recognized drawback of dynamic programming prevents its direct application on 

most of the real-time problems. 

The most popular approach to relieve the "curse of dimensionality" is to 

approximate the state space with a smaller number of states and the more complicated 

cost functions with simpler functions, which gives the idea of approximate dynamic 

programming (Bertsekas and Tsitsiklis, 1998; Lee and Lee, 2004). Refer to Lee et al. 

(2000), Lee and Lee (2001) and Kaisare et al. (2003) for details of applying approximate 

dynamic programming to MPC control problems. This approach relies on extensive 

off-line sampling to validate the approximation; for large or even medium scale 

problems, it either makes off-line sampling computationally intractable or limits the 

off-line sampling in a smaller subregion so that the real-time application is only viable 

within this subregion. So this approach will not work if the real-time operation is outside 
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the subregion of offline sampling, as would occur when the inequality constraint bounds 

in the system change over the time. 

The other approach to address the "curse of dimensionality" is to change the 

high-dimensional aspects of the calculation from on on-line computation to on off-line 

computation through parametric programming. The aim of the parametric programming 

approach is to obtain the optimal solution as a function of the parameters (Dua et al., 

2002); once the realizations of the uncertain parameters are known in real-time, the 

decision can be made by directly evaluating the function of the parameters, which takes 

little time. The parametric programming approach does not eliminate the "curse of 

dimensionality"; it still suffers from it in the off-line calculation that may be 

computationally intractable even for medium scale problems. Also, determining the 

correct active set is a challenging problem that must be solved in real time. So this 

approach has the same limitation as approximate dynamic programming. 

Modeling ofclosed-loop dynamics - The approximating approaches 

Due to the high computational complexity induced by ngorous modeling 

approach, many robust MPC methods model the future controller behaviour with an 

approximating control law that has a simpler structure, so that the results robust MPC 

formulation is simpler and tractable for real-time applications. In this case, the degrees of 

freedom of the optimization problem are not the future control sequence, but the 

parameters of the approximating control law (e.g. the feedback gain of the control law). 

Linear or affine feedback control laws are widely used for this approximation. For the 

convenience of discussion, we denote the controller decisions (or the manipulated 

variables) at the ith time step in the horizon as u;, the states and controlled variables at the 

lh time step in the horizon as x;, Yi respectively. Then, we can summarize the linear and 

affine control laws used in the different robust MPC methods into five types: 

Type 1: u; = Kx; (e.g., Kothare et al., 1996), where K denotes the constant 

feedback gain matrix throughout the horizon, but it needs to be evaluated at the beginning 

of each robust MPC execution period. This control law is a simple proportional 

expression, and it can be used to develop a convex robust MPC formulation that 

guarantees robust stability (see Section 2.1.2 for more details); however, it can not 
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describe the input saturation in the future horizon, because in general (unless K is a zero 

matrix) it requires U; to be different for different x; (under different plant realization). 

Type 2: U; = KafflineXi + C; (e.g., Kouvaritakis et al., 2000), where Kaffline denotes the 

constant feedback gain throughout the horizon that is obtained offline, c; denotes the 

variable perturbed term that is evaluated at the beginning of each robust MPC execution 

period. The degrees of freedom of the resulting robust MPC optimization problem are the 

perturbed term c; (whose effects on u; is independent of the plant realization), while the 

feedback gain Kaffline is constant (whose effects on u; is dependent on the plant 

realization). This optimization problem is much easier to solve than the problem based on 

Type 1 control law. However, Type 2 control law loses the flexibility to adjust the 

feedback gain in the real time, and it cannot describe the input saturation in the future 

horizon as well. 

Type 3: u; = Kx; + c; (e.g., Bemporad, 1998), where Kand c; denote the same 

variables defined in the above Type 1 and Type 2, and they are evaluated at the beginning 

of each robust MPC execution period. Obviously, the type of control law includes the 

Type 1 and Type 2 control law, and it can describe some special input saturation 

situations (e.g. the input saturation is held throughout the horizon). However, it cannot 

model the input saturation occurring during the transient response, because it requires the 

same gain matrix K for the whole prediction horizon. Also, it leads to a much more 

complicated optimization problem for robust MPC and the efficient solution can be 

obtained only for special cases. For example, Bemporad (1998) developed robust MPC 

method based on Type 3 control law for the problems where the only source of 

uncertainty is the unmeasured disturbances. 

Type 4: u; = K;X; + c; (e.g., Goulart et al., 2006), where K; denotes the variable 

feedback gains. Both Ki and Ci are evaluated at the beginning of each robust MPC 

execution period. Obviously, this type of affine state feedback law includes the Type 3 

feedback law (so that it also includes Type 1 and Type 2 feedback laws), and the input 

saturation can be well described by this type of control law (by forcing the corresponding 

elements in Ki to be zero). However, using this control law in closed-loop prediction 
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results in the robust MPC formulation being highly nonconvex, which is difficult to solve 

in the real-time (Goulart et al., 2006). 

Goulart et al. (2006) proved that, if the process model is perfect and the 

uncertainty only comes from only the unmeasured disturbances, Type 4 control law is 

identical to a unmeasured disturbance feedback, ui = K/w; + c/ (where w; denotes the 

unmeasured disturbances at the lh time step in the horizon). To use this unmeasured 

disturbance feedback in the closed-loop prediction leads to a convex optimization robust 

MPC formulation, which can be solved efficiently and reliably in the real-time (see more 

details in Section 2.1.2). This clever mathematical transformation can be understood as 

the following: when the unmeasured disturbances are the only source of uncertainty, they 

equal to the difference between the measured and predicted states, so an affine state 

feedback is equivalent to an affine unmeasured disturbance feedback. However, in 

general an unmeasured disturbance feedback is not theoretically sound for control 

problems, because we have no exact information about future unmeasured disturbances. 

Therefore, Type 4 control law is a better approximation than Type 1-Type 3 

control laws, but it can lead to a practical robust MPC formulation only when the source 

of uncertainty is solely the unmeasured disturbances. 

Type 5: ui = Ko;i + c; (e.g., Van Hessem and Bosgra, 2006), which is similar to 

Type 4 control law but uses output feedback instead of state feedback. Its properties are 

similar to that of Type 4 control law. 

There are other approximating control laws in addition to the linear or affine 

feedback laws discussed above. For example, Warren (2004) used unconstrained nominal 

MPC with variable output references to approximate the robust MPC in the closed-loop 

prediction. The degrees of freedom of the resulting robust MPC optimization problem are 

the references of the controlled variables at different time steps in the prediction horizon. 

This problem is convex and easy to solve in the real time. However, the input saturation 

was not modeled. Warren (2004) reduced the model inaccuracy due to the input 

saturation by partitioning the original uncertainty region into several small subregions 

and solving for different output references for uncertainties in the different subregions. 
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2.1.2 Approaches for other aspects of robust MPC 

This section introduces the approaches to address other aspects of robust MPC in 

the research goads outlined in Chapter 1. We discuss these aspects one by one. 

Source ofuncertainty 

As mentioned in Chapter 1, the source of uncertainty in the system can be the 

plant/model mismatch, the measured disturbance plant/model mismatch and the 

unmeasured disturbances and noise. Any robust MPC method has to address one or more 

of these uncertainties. Generally, the uncertainty in the plant/model mismatch is more 

difficult to handle than the uncertainty in the measured disturbance plant/model mismatch 

and the unmeasured disturbances, because the effects of the former on the system depend 

on the decisions, while the effects of the latter are independent of the decisions. 

Most robust MPC methods only address part of these sources of uncertainties. 

Some address plant/model mismatch only, e.g. Kothare et al. (1996), Badgwell (1997), 

and Kouvaritakis et. al. (2000). Some others address unmeasured disturbances only, e.g. 

Bemporad (1998), Goulart et al. (2006), Van Hessem and Bosgra (2006). 

Warren (2004)'s method can handle plant/model mismatch and measured 

disturbance plant/model mismatch as well as time-invariant unmeasured disturbances and 

noise, but these uncertainties are not addressed in a unified framework. Lee and Yu 

( 1997)' s addressed plant/model mismatch only in their method that is based on 

approximate dynamic programming; however, their method can also address other 

sources of uncertainty (although the resulting robust MPC formulation is more 

complicated). 

Temporal manner ofuncertainty 

The uncertainty in a system could be time-invariant or time-varying. If a robust 

MPC method can handle time-varying uncertainty, it can naturally handle time-invariant 

uncertainty (although additional work may need to be done to exploit the time-invariant 

characteristics for better control performance). Examples of the methods capable of 

handling time-varying uncertainty are Kothare et al. (1996), Lee and Yu (1997), Goulart 

20 




PhD Thesis - Xiang Li 	 McMaster University - Chemical Engineering 

et al. (2006). Examples of the methods only addressing time-invariant uncertainty are 

Badgwell (1997), Warren (2004). 

Description ofuncertainty 

The way to describe the uncertainty is important for a robust MPC method 

because it not only determines how accurate the uncertainty is described, but also affects 

the complexity of the robust MPC calculations. Since this thesis only addresses the 

parametric uncertainty, we only discuss the description of uncertain parameters here. 

Typically, there are four types of approaches to describe the uncertain parameters: 

1) 	 Multi-plant (Scenario based description): This approach samples representative 

realizations of the uncertain plant or disturbances and addresses these realizations 

only in the robust MPC formulation. Advantages of this method are that it is easy to 

formulate the optimization problem and the resulting robust formulation has the same 

linearity/nonlinearity property as the nominal formulation (e.g. if the nominal 

formulation is linear, the robust formulation is linear too). However, it is usually 

difficult to choose the representative samples from all the possible uncertainty 

realizations, and even if these samples are correctly selected, the number of these 

samples is usually large, and the resulting problem is too large to solve. Some robust 

MPC methods use this description for the uncertainty in the plant/model mismatch, 

e.g. Badgwell (1997). 

2) Polytopic uncertainty region: This approach assumes the uncertainty lies within a 

polytopic uncertainty region. This region is usually in the form of a convex hull of a 

series of sample realizations, and one can address this region by addressing these 

sample realizations. So this method leads to a similar formulation as the method using 

multi-plant description. Many robust MPC methods use this uncertainty description, 

e.g. Bemporad (1998), Kouvaritakis et al. (2000), and Sakizlis et al. (2004). 

3) 	 Structured uncertainty region: The term "structured uncertainty" here denotes the 

uncertain parameters having significant correlations among one another. Ellipsoidal 

uncertainty region is a typical structured uncertainty region, where the size and shape 

of the ellipsoid indicates the correlations among the parameters. It can be described 

21 




PhD Thesis - Xiang Li 	 McMaster University - Chemical Engineering 

by bounds on the norms of uncertain vectors or matrices. This description usually 

makes the robust MPC formulation more difficult to solve than the nominal 

formulation, e.g. if the nominal formulation is linear, the robust formulation becomes 

nonlinear (see more details in the later discussion on on-line optimization). However, 

in many process control problems the uncertainty parameters are strongly correlated, 

so the structured uncertainty description is more desirable than the above two 

description approaches. Therefore, many robust MPC methods are designed to be 

able to adopt both the structured uncertainty and the polytopic uncertainty 

descriptions, e.g. Kothare et al. (1996), Lee and Yu (1997), Goulart et al. (2006). 

4) 	 Multivariate continuous distribution: This approach characterizes the uncertainty 

with multivariate distribution of continuous variables, where the correlations among 

the uncertain variables are described with their covariance matrix. So this approach 

can also be used to describe the correlated uncertainties, and the resulting robust MPC 

stochastic optimization problem can be transformed (equivalently or approximately) 

into a (more complicated) deterministic problem with a given confidence level by 

chance-constrained programming technique (Chames and Cooper, 1958; Kleywegt 

and Shapiro, 2001) (see more details in the later discussion on on-line optimization). 

Some robust MPC methods use this approach to describe correlated uncertainty, e.g., 

Warren (2004), Van Hessem and Bosgra (2006). 

Feedback Scheme 

Most of the robust MPC methods assume that all the states of the system can be 

measured directly at the beginning of each time step, which means the system has full 

state feedback. However, in many real process systems, not all the states can be 

measured; the controller has to infer the states from the limited measurements of the 

outputs. In this case, one needs to use an output feedback scheme to estimate the states 

for the robust MPC calculation. The theory for output feedback and the state estimation 

has been well established for nominal problems (see Appendix A for more details), and 

some robust MPC methods have adopted this theory, e.g. Van Hessem and Bosgra 

(2006). However, applying a nominal estimation method will deteriorate the performance 

of robust MPC because the uncertain error in the nominal estimation of the states is not 
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explicitly addressed. There are some robust state estimation methods that are developed 

to guarantee the convergence of the state estimation to the real states, e.g. Mangoubi 

(1998), Xie et al. (1994), but these methods do not obtain the uncertain estimation error at 

each controller execution for the use in the controller calculation. According to the 

author's knowledge, the uncertainty in the state estimation error is not addressed in any 

of the existing robust MPC methods explicitly in each controller calculation. 

Note that the state-estimation may not be needed if an input-output model (instead 

of state-space model) is used in a robust MPC methods model and all the controlled 

variables are assumed to be measurable (e.g., Warren, 2004; Wang and Rawlings 2004). 

Objective function 

When optimizing the dynamics of a system, the most commonly used objective 

function is the sum of the squared differences between the controlled and manipulated 

variables and their desired values over the horizon, which is quadratic and with 

appropriate tuning, convex. With the presence of uncertainty, however, this function 

becomes uncertain. 

A natural choice for the objective of robust MPC is the expected value of the 

dynamic performance function. This idea has been adopted in the robust optimization 

research in Darlington et al. (2000) and Darlington et al. (1999). 

Another choice is the worst-case value of the dynamic performance. This idea has 

been widely adopted in robust MPC research (e.g. Kothare et al., 1996; Kouvaritakis et 

al., 2000; Lee and Yu, 1997). This is because using this objective makes the robust 

stability easier to be guaranteed. However, optimizing worst case dynamic performance 

may lead to conservative control. So, some robust MPC methods optimize nominal 

performance, e.g. Goulart et al. 2006, Warren (2004). Badgwell (1997) proposed to 

include both the nominal performance and an additional stabilizing term to guarantee 

robust stability for time-invariant uncertainty in plant/model mismatch with multi-plant 

description. 

An ideal objective function would evaluate the entire dynamic response for all 

realizations of the uncertain parameters, from which expected value and other 

characteristics could be determined. However, the statistical information on parameter 
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uncertainty would not typically support these calculations, and the resulting algorithm 

would be intractable. 

Robust stability 

Stability is an important property for a closed-loop control system because if it 

cannot be achieved, the performance will always be unacceptable. In the context of MPC, 

the concept of Lyapunov stability is usually used to define the stability of the closed-loop 

system, and it can be guaranteed by forcing a Lyapunov function to decrease at each time 

step (details on Lyapunov stability theory can be found in Haddad and Chellaboina, 

2008). In many robust MPC methods (e.g. Kothare et al. 1996; Kouvaritakis et al., 2000), 

the worst-case dynamic performance, which is a Lyapunov function, is the objective 

function that the controller minimizes. Interesting readers can refer to the summary 

papers of Bemporad and Morari (1999) and Mayne et al. (2000) for more discussions on 

robust stability of robust MPC. 

This thesis is primarily aiming at the optimization, instead of the stabilization, of 

the dynamics of a system; therefore, the controller is not designed with a robust stability 

guarantee. We note that common industrial practice using commercial nominal MPC 

software for process control does not implement the constraints guaranteeing nominal 

stability; instead, ad hoc approaches are integrated in the control calculation (Qin and 

Badgwell, 2003), which have been successful to ensure stability in practice, especially for 

open-loop stable system and integrating system. Also, stability has not been reported to 

be an issue in supply chain optimization. 

On-line optimization problem 

The optimization problem to be solved on-line is determined by how the robust 

MPC is formulated to address all the aspects discussed above, especially the way to 

model the closed-loop dynamics. When the closed-loop dynamics are modelled 

rigorously using the dynamic programming framework (e.g., Lee and Yu 1997), the 

resulting optimization problem is a dynamic programming problem, which can be solved 

by approximate dynamic programming technique (e.g. Lee and Lee, 2004) on-line or the 

parametric programming technique off-line (e.g. Sakizlis et al., 2004). However, as 
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discussed in Section 2.1.1, the techniques offer computational challenges for large 

problems. 

When the closed-loop dynamics are modelled approximately as discussed in 

earlier part of this section, the closed-loop model is linear with uncertain parameters. 

Then the resulting robust MPC formulation contains linear inequalities with uncertain 

parameters. This formulation can be basically transformed into deterministic Quadratic 

Program (QP) or Second Order Cone Program (SOCP) depending on the source and 

description of uncertainty. Also, if the robust MPC optimizes the worst dynamic 

performance for the stability guarantee, it can be transformed into Semi-Definite 

Programming (SDP) (or called Linear Matrix Inequality) (LMI) problems. Examples of 

robust MPC solving QP are Badgwell (1997) and Bemporad (1998); examples solving 

SOCP are Warren (2004) and Goulart et al. (2006); examples of solving SDP are Kothare 

et al. (1996) and Kouvaritakis et al. (2000). 

QP, SOCP and SDP are all convex optimization problems where the local optimal 

objective value is the same as the global optimal value (Boyd and Vandenberghe, 2004). 

In general, QP is easier to solve than SOCP, and SOCP is easier to solve than SDP (Lobo, 

et al., 1998); but all of these problems can be solved in polynomial time using the interior 

point method (or called barrier method) (Nocedal and Wright, 1999; Boyd and 

Vandenberghe, 2004). Many state-of-the-art optimization solvers are featured with 

interior point method, e.g. CPLEX (ILOG Inc., 2008), IPOPT (Wachter and Biegler, 

2002), and SeDuMi (Sturm, 1999). 

2.1.3 Summary of the "representative" robust MPC methods 

In Sections 2.1.1 and 2.1.2 we discussed the typical approaches to address the 

different aspects of robust MPC in the literature. In this section we show some 

representative robust MPC methods with their approaches to address these different 

aspects summarized in Tables 2-1 and 2-2, which gives an overview of the 

state-of-the-art in the robust MPC research with a different perspective. Here the word 

"representative" is used to describe the methods featured with typical approaches to 

address some important aspects of robust MPC, and each of the methods representatives a 

typical approach for formulating the problem. Actually, there are some other methods 
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that are different from all the methods in the tables; we do not show them here because 

their ways to address the different aspects of robust MPC have been covered by one or 

more of the methods in the tables, or the special features they have are not included in the 

goals of research. 

Tables 2-1 and 2-2 indicate the gap between the state-of-the-art robust MPC 

research results and our research goals. Specifically, the following issues are not well 

addressed: 

Table 2-1: Summary of robust MPC methods: modeling of closed-loop uncertainty 

Controller model in Source and temporal UncertaintyAuthors closed-loop prediction manner of uncertainty description 

Kothare et al. 
(1996) 

Lee and Yu [II 

(1997) 

Badgwell 
(1997) 

Bemporad 
(1998) 

Kouvaritakis et 
al. (2000) 

Sakizlis et al. 
(2004) 

Warren (2004) 

Goulart et al. 
(2006) 

Van Hessem 
and Bosgra 

(2006) 

U; =Kx, 

Dynamic program 

No controller 
(open-loop prediction) 

U; = Kx; +C; 

U; = Koff/ineXi + C; 

Dynamic program 


Unconstrained nominal 

MPC 


u; = K;x; +c; 

u; = K;Y; +c; 

Time-varying plant/model 
mismatch 

Time-varying plant/model 
mismatch 

Time-invariant plant/model 
mismatch 

Time-varying disturbances 

Time-varying plant/model 
mismatch 

Time-varying disturbances 

Time-invariant plant/model 
mismatch and time-varying 

disturbances 

Time-varying disturbances 

Time-varying disturbances 

Structured or 
polytopic region 

Structured or 
polytopic region 

Multi-plant 

Ploytopic region 

Ploytopic region 

Polytopic region 

Multivariate and 
continuous 
distribution 

Structured or 
polytopic region 

Multivaraite and 
continuous 
distribution 

Note: [1] Their method can be extended to include all the other sources of uncertainties. 
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Table 2-2: Summary of robust MPC methods: feedback and optimization formulation 

Robust OnlineFeedbackAuthors Objective Function stability optimizationscheme included? problem 

Kothare et al. 
(1996) State feedback Upper bound of the 

worst performance Yes SDP 

Lee and Yu 
(1997) State feedback The worst 

performance Yes A huge number of 
QP!4J 

Badgwell 
(1997) State feedback 

Nominal 
performance+ 

stabilizing term 
Yes QP 

Bemporad 
(1998) State feedback Nominal performance No QP 

Kouvaritakis 
et al. (2000) State feedback Upper bound of the 

worst performance Yes SDP 

Evaluating 
Sakizlis et al. 

(2004) State feedback Nominal or expected 
performance Yes131 parametric solution 

ofQPand LP 
(obtained offiine) 

Warren 
(2004) 

Output feedback 
without state 
estimation Pl 

Nominal performance No SOCP or QP !5l 

Goulart et al. 
(2006) State feedback Nominal performance No SOCP or QP 161 

VanHessem 
and Bosgra 

(2006) 

Nominal outRut 
feedback 1 Nominal performance No SOCP 

Note: [l] The author uses the input-output model instead of state-space model to describe 

the process; [2] Here "nominal" means the uncertainty in the state estimation is not 

considered explicitly; [3] The robust stability is guaranteed only for constant uncertain 

disturbances; [4] The problem can also be solved by approximate dynamic programming 

technique (see Lee and Lee (2004) for more details); [5] The formulation is QP if 

uncertainty only appears in disturbance; otherwise it is SOCP; [6] The formulation is 

SOCP for structured uncertainty and QP for polytopic uncertainty. 
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1) 	 The trade-off between the rigorousness of the formulation and the tractability of the 

solution. The closed-loop prediction model used in the formulation is either too 

complex for a tractable solution of a large problem (e.g., the approaches using 

dynamic programming), or lack accuracy in modeling the controller behaviors (e.g., 

approximating linear feedback control law can not model input saturation). 

2) 	 An output feedback and state-estimation scheme that exploits uncertainty explicitly. 

All the methods in the tables consider state feedback only or output feedback without 

including uncertainty in the state estimation explicitly. 

3) 	 An objective function that can include expected performance and the variances of the 

controlled variables. All the methods in the tables optimize either the worst 

performance only or the nominal performance only. 

4) 	 There is no unified framework that can well address all the aspects listed. Each 

method in the tables has advantages in addressing some issues but is limited in 

addressing other issues. 

2.1.4 Robust steady-state optimization 

Industrial MPC control systems usually include a steady-state optimization unit 

that is executed immediately before each controller execution (Qin and Badgwell, 2003). 

It is formulated to find a feasible "settling point" or steady state of the system that is 

close to the reference values of the controlled and manipulated variables that are 

determined by an upper-level optimizer or by plant personnel. The desired steady state is 

called the set point of the system, which is used by the MPC controller to regulate the 

dynamics of the system. The steady-state optimization is important because disturbances 

entering the system or new input information from the operator may change the location 

of the optimal steady state. 

A nominal steady-state optimization may give infeasible set points with the 

presence of uncertainty. In this case, a robust steady-state optimization method that 

addresses uncertainty explicitly in the calculation is required. Although it is important for 

a system with significant uncertainty, robust steady-state optimization has not been 

addressed in most of the robust MPC research. Some results on robust steady-state 

optimization can be found in Kassmann et al. (2000) where open-loop parametric 
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uncertainty described with multivariate continuous distribution is addressed, or Wang and 

Rawlings (2004) where open-loop parametric uncertainty described with polytopic 

uncertainty region is addressed. Due to the explicit integration of the uncertainty in the 

formulation, these two methods reduces the chance of generating infeasible steady-states, 

but they may be overly conservative on uncertainty estimation of steady-state because of 

the omission of the controller action in the closed-loop (as we discussed before for the 

uncertainty estimation of dynamics). According to the author's knowledge, no research 

has been published for a robust steady-state optimization method addressing closed-loop 

uncertainty. 

2.2 Supply Chain Optimization U oder Uncertainty 

This section reviews the state-of-the-art methods to address uncertainty explicitly 

in supply chain optimization. The review includes two major topics: a) In Section 2.2.1, 

we discuss the techniques for optimization under uncertainty; b) In Section 2.2.2, we 

discuss the control strategies to address uncertainty with feedback. The optimization 

methods with deterministic models, such as mathematical programming (see the review 

paper Biegler and Grossmann, 2004), constraint programming (see the review paper 

Lustig and Puget, 2001 ), are not reviewed here. 

2.2.1 Methods for optimization under uncertainty 

Stochastic Programming 

Stochastic programming is an approach for modeling and solving optimization 

problems that involve uncertainty (Shapiro and Philpott, 2007), where an expected 

cost/performance of the system is optimized with the known distribution of uncertainty. 

A variability measure (e.g., the variances of some key system variables) can also be 

included in the objective function to capture the notion of risk (Sen and Higle, 1999). 

There are typically two types of formulations of stochastic programming: 

1) Chance-constrained programming: The idea of chance-constrained programming is 

to satisfy the constraints with a specified confidence level (a lower threshold for the 
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probability of the satisfaction of the constraints) (Charnes and Cooper, 1958; Kleywegt 

and Shapiro, 2001 ). The problem can be formulated so that the confidence level can be 

observed for each individual constraint or all the all the constraints together. The idea of 

solving a chance-constrained program is to transform it into a deterministic optimization 

problem, which is in general not easy because of the need of the integration of 

multivariate distribution functions (Li et al., 2008). However, if the parameters obey 

multivariate normal distribution and the confidence level is observed for each individual 

constraint, the problem can be transformed into a deterministic SOCP that is convex and 

can be solved using standard software (Lobo, et al., 1998). 

2) Stochastic programming with recourse: Another type of formulation is based on a 

"wait-and-see" analysis for multi-stage decision-making (Sen and Higle, 1999; Shapiro 

and Philpott, 2007). The formulation mimics the following decision-making procedure: 

the decision maker takes some action in the first stage, after which a random event occurs 

affecting the outcome of the first-stage decision. A recourse decision can then be made in 

the second stage that optimizes the remaining problem, but cannot change the first stage 

decisions. The optimal policy from such a formulation is a single group of first-stage 

decisions and collections of recourse decisions (decision rules) defining the actions that 

should be taken in response to random outcomes in the future stages. The stochastic 

recourse formulation is usually solved by addressing representative samples of the 

uncertain parameters, which makes the problem suffer from "curse of dimensionality", 

especially as the number of stages expands beyond two, as is the case in the systems 

considered in this research (Kleywegt and Shapiro, 2001). 

Robust Optimization 

Robust optimization ts another approach for modeling and solution of 

optimization problems that involve uncertainty (Ben-Tal and Nemirovski, 2002), where 

the worst cost/performance of the system is optimized with the uncertainty described by 

uncertainty region. Similar to stochastic programming, robust optimization is solved by 

transforming the original problem into a deterministic problem. Several types of robust 

optimization problems can be transformed into convex deterministic optimization 
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problems such as LP, SOCP and SDP (See Ben-Tal and Nemirovski, 1999; Ben-Tal and 

Nemirovski, 2002) for more details. 

Dynamic Programming 

Dynamic programming is an approach for the modeling of dynamic and stochastic 

decision problems as well as the solution of these problems. Kleywegt and Shapiro 

(2001) pointed out that dynamic programming offers another framework and solution 

approach for multistage stochastic programming. As discussed in Section 2.1.1, the 

advantage of dynamic programming lies in its ability to rigorously model a 

sequential-decision making problem with explicit uncertainty. However, it is only 

applicable for small problems due to the "curse of dimensionality". Approximating 

solution techniques for dynamic programming problems, such as approximate dynamic 

programming (Lee and Lee, 2004), have been developed to achieve better efficiency of 

on-line calculation by using less complicated approximating formulation or limiting the 

application to smaller subregion of closed-loop uncertainty. But as we discussed in 

Section 2.2.1, these methods will not work if the real-time operation is outside the 

subregion of offline sampling or the constraint values on the system change over the 

time, which is usual for process control and supply chain systems. 

Parametric Programming 

Parametric programming obtains the optimal basis as a function of the parameters 

off-line (Dua et al., 2002) and evaluates the parametric solution according to the known 

realizations of the uncertain parameters on-line. Obviously, parametric programming 

makes the on-line calculation very fast, but the off-line procedure to obtain the parametric 

solution is much more complicated. Examples of the application of parametric 

programming on small problems can found in Ryu et al. (2007), Ryu and Pistikopoulos 

(2007). According to the author's knowledge, no applications on medium or large 

problems have been published. 

2.2.2 Control strategies for the uncertain system with feedback 

As stated in Chapter 1, the supply chain operation problems are analog to process 

control problems. In both type of problems new information of the system is available 
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periodically at each decision-making stage, which can be exploited to regulate the 

dynamics of the system so that the uncertainty is addressed in an implicit way. In process 

control, different approaches to exploit the new information appear as the different 

feedback schemes and controller algorithms, which can also be used for supply chain 

operation problems. 

The systematic research on the application of control strategies for supply chain 

optimization can be traced back to late 1950s, when Forrester (1958; 1961) introduced his 

pioneering work on so-called "industrial dynamics". This methodology, later referred as 

"system dynamics", used a feedback perspective to model, analyze and improve 

industrial dynamics systems such as production-inventory systems. The philosophy of 

this methodology forms the basis for the application of control technologies to supply 

chain optimization problems. For more details of the "system dynamics" philosophy and 

its various applications, see Sterman (2000). 

As it is widely used in process control, PID control methods have been applied to 

supply chain optimization, such as Proportional (P) control (e.g. Perea-Lopez et al. 2001), 

Proportional-Integral (PI) control (e.g. Lin et al., 2004). It was shown that the "bullwhip 

effect" (Lee et al., 1997), which denotes the phenomenon that the variability of the 

demand at a downstream node is amplified at a upper stream node, can be relieved or 

reduced by proper tuning of the controllers (e.g., Perea-Lopez et al. 2001; Lin et al., 

2004). 

However, the classical PID control methods have inherent limitations that could 

prevent their application to real supply chain systems: a) They can not handle the 

constraints on the system explicitly; b) They basically pose a decentralized control 

structure that does not share the information between the different control loops. The 

system may not achieve the best overall performance through these "local controllers". 

Perea-Lopez et al. (2003) showed though a supply chain optimization case study that the 

centralized controller, which makes decisions according to all the available information 

in the system, performs better than the decentralized controller. 

As stated in Chapter 1, MPC is an effective means for multivariate constrained 

control (Maciejowski, 2002) that has been widely applied in industry (Qin and Badgwell, 

2003). It is a natural choice for the centralized control of supply chain systems with 
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constraints. Therefore, the applications of MPC to supply chain optimization has been 

paid much attention recently, e.g., Tzafestas et al. (1997), Braun et al. (2003), and 

Perea-Lopez et al. (2003). Seferlis and Giannelos (2004) employed a two-layer 

optimization framework for supply chain optimization, where an MPC controller is used 

as the upper layer controller for the entire supply chain system and PID controllers are 

used as the lower layer controllers to maintain the safety stocks at different nodes of the 

system. 

However, the performance of MPC control can be degraded by the uncertainties, 

especially for supply chain system where uncertainties are usually significant. For 

example, back orders may occur due to the inaccurate demand forecast or the mismatch 

between the supply chain system and the nominal model used by MPC. 

To prevent significant performance degradation caused by uncertainties, Wang et 

al. (2007) introduced an upper level stochastic optimizer that executes infrequently and 

provides constraint back-off parameters to the lower level MPC controller. However, this 

approach cannot respond quickly to changes in the control structure, such as when a 

manipulated variable is temporarily placed on manual or is placed in operation after 

having been in manual. 

A better way to address the uncertainties is to include them in the controller 

calculation explicitly at every controller execution period. In the context of MPC, this 

means to use the robust MPC for supply chain optimization. For example, Warren (2004) 

successfully applied robust MPC to a generalized production planning problem. 

However, very little work has been published on such applications, which may be due to 

the lack of a flexible robust MPC method that includes the various necessary features 

required for the application to real supply chain systems (e.g. ability to address different 

sources of uncertainties, efficient real time calculation, etc.). 

2.3 Summary 

The purpose of this chapter is to outline the gaps between the state-of-the-art 

technologies and the research goals by reviewing the existing robust MPC methods and 
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the existing methods to address uncertainties in supply chain optimization. We 

summarize all the discussions in this chapter as follows. 

A practical robust MPC method has to build the formulation in the way that the 

optimization problem to be solved on-line is tractable, and it also has to model the 

closed-loop dynamics accurately enough for good control performance. In addition, 

different features should be included in the robust MPC formulation for different goals of 

control (or optimization). Therefore, a good robust MPC method should be able to keep a 

good trade-off between the accuracy and features of the formulation and the efficiency of 

the solution. Among all the aspects of robust MPC discussed in this chapter, the modeling 

of closed-loop dynamics, or more specifically, the modelling of the controller behaviour 

in the prediction horizon, is key to a robust MPC method, because it not only determines 

the accuracy of the formulation, but also impacts on the efficiency of the solution. 

After examining the "representative" robust MPC methods, we can conclude the 

following major drawbacks of the robust MPC technologies according to the research 

goals: 

+ 	 Lack of a closed-model that addresses the input saturation in the prediction and 

yields tractable on-line solution, for different sources ofuncertainties; 

+ 	 Lack of a unified framework that well addresses all the aspects of interest; 

+ 	 Lack of some features in the formulation, which may be important for particular 

problems: a) an output feedback and state-estimation scheme that exploits 

uncertainty explicitly; b) a flexible objective function that can include expected 

performance and the variances of controlled variables; c) a robust steady-state 

optimization method addressing closed-loop uncertainty. 

The techniques for optimization under uncertainty and the control strategies are 

the two categories of methodologies to address uncertainties in supply chain optimization, 

in which the uncertainties are addressed explicitly in the optimization formulation or 

implicitly by exploiting the periodical feedback information. A more powerful tool for 

robust supply chain optimization can be developed by merging the two types of 

methodologies in a unified framework of robust MPC, which can essentially improve the 

performance of the optimization of uncertain supply chain system with periodical 

feedback information. 
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Therefore, a new robust MPC method needs to be developed in this research, 

which should offer a unified framework that provides a good approximation of 

closed-loop dynamics, includes all the important features of interest as well as yields 

efficient on-line solution. The following chapter develops the general framework of the 

new robust MPC method, and tailored formulations using this framework are developed 

for process control problems in Chapter 4 and for supply chain optimization problems in 

Chapter 5. 
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Chapter 3 

A General Framework for Robust MPC 

In this chapter, a general framework is presented for the new robust MPC method 

to optimize an uncertain dynamic system with feedback. Recall that the general problem 

is to achieve good dynamic performance with robust feasibility for a dynamic system 

with uncertain parameters. 

This framework is developed based on the nominal MPC formulation using 

state-space model, which is introduced in Section 3 .1. The extension to robust MPC is 

explained in detail in Sections 3.2 to 3.4. The original robust formulation is a bilevel 

stochastic optimization problem where the inner optimization problems model the 

behavior of the MPC controller in the closed-loop. Methods for solving this problem 

could involve either unrealistically large numbers of variables and equations with a 

scenario-based uncertainty description or highly nonconvex with continuous parametric 

uncertainty, so it is computationally intractable for real-time applications. Here, we 

consider the continuous parametric uncertainty in the robust MPC and develop a series of 

reformulations and approximations that yield tractable computation for real-time 

applications. Figure 3.1 shows the "road map" of the development of the new robust 

MPC method, which outlines the key steps of the development and their locations in this 

chapter. 
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Robust MPC - Bilevel formulation 

(Section 3.2.1) 


• Optimize closed-loop dynamics 
• 	 Scenario-based uncertainty description leads to 

exponential complexity in the scale of problem 
• 	 Highly nonconvex with continuous parametric 

uncertainty 

i Replace the inner problems by their KKT conditions 

Robust MPC - Single level formulation 

(Section 3.2.2) 


• 	 The complementarity constraints, which model the 
saturation of the manipulated variables, are highly 
nonconvex 

i 	Remove the complementarity constraints 
The active set heuristic 

(Section 3.2.4) 

Robust MPC ­ the "t" formulation 

• 
(Section 3.2.3) 

The complementarity constraints can be removed 
with the known active bounds on the manipulated 

• 
variables 
A OP with uncertain linear constraints 

• An industrially proven heuristic 

I to iteratively obtain the active 
bounds 

Time-invariant uncertainty 
\ (Section 3.2.5) 

~---- • 	 Use the new deviation model 
for time-invariant uncertainty to Techniques to handle the 
reduce the conservativeness 

uncertain linear constraints l 	 l 
Efficient uncertainty characterization 

(Section 3.3.1) 
Chance-constrained program 

(Section 3.3.2) 
• 	 Guarantee feasibility at given • Extensive calculation (to characterize 

confidence level unconstrained uncertainty) done off-line 
• Efficient real-time calculation (to update 

are nice convex problems 
• 	 Solves deterministic SOCPs that 

uncertainty according to active set) 

Robust MPC final formulation 
• Deterministic subproblems nonlinear but convex 
• Limited number of subproblems 
• Moderate scale of the subproblem 

Uncertain state estimation 
(Section 3.4) 

• 	 Include uncertainty in state 
estimation in the formulation 

Figure 3 .1 "Road map" for developing the new robust MPC method 
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The new robust MPC method is summarized in Section 3.5 with detailed steps for 

its implementation. The simulation studies are reported in Section 3.6 for a number of 

simple applications that clearly show the benefits of using the new robust MPC method, 

and the conclusions of the chapter are summarized in Section 3.7. 

3.1 Nominal MPC formulation-Basis of the Robust MPC 

We introduce the nominal MPC in this section, because it forms a basis for the 

discussion of the new robust MPC. The conventional nominal MPC determines the 

current control action by solving, at each sampling time interval, a finite horizon 

open-loop optimal control problem, using the current state of the process as the initial 

state for a dynamic optimization. The open-loop optimization is written in this thesis as 

follows: 

NMPC: 

p-1 n-1 

L(Yk+I - Yspl Q(Yk+I - Ysp)+ L(uk -uspl R(uk -usp) 
k=O k=O 

(3. la)
n-1 p-1 

+ LL1u/WL1uk + Isk+/Wssk+I 

k=O k=O 


s.t. (3.lb) 

(3.lc) 

(3. ld) 

k =O,···,p-1 (3. le)umin,k ~ u k ~ umax,k 

(3.1 t)
Ymin,k+I - sk+I ~ Yk+I ~ Ymax,k+I + sk+l 

(3. lg) 

k = O,···,n-1 (3.lh) 

k = n,-··,p-1 (3.li) 

(3. lj) 
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where n is called control horizon (or input horizon), p is called prediction horizon (or 

output horizon), Yk E Rny contains the output variables at the kth time step, uk E Rn• 

contains the manipulated variables at the kth time step, dm k E Rnd contains the measured 

disturbance variables at the kth time step, xk E Rn, contains the state variables at the kth 

time step, ek E Rn· denotes the feedback vector which contains the estimated unmeasured 

disturbances, eo E Rn· denote the estimated states and unmeasured 

disturbances at the current time step, umax k, umin k E Rn• are the upper and lower bounds on 

the manipulated variables at the kth time step, Ymax,k'Ymin,k E Rny are the upper and lower 

bounds on the controlled variables at the kth time step, sk E Rny denotes the slack 

variables of the controlled variables Yk in the bounds. Ysp E Rny denotes the desired 

values of controlled variables, which are usually called the set points of the control 

system; usp E Rn· denotes the desired values of manipulated variables, and we call these 

the set points of the manipulated variables in this thesis. Q E Rnyxny is the weighting 

matrix for controlled variables, R E Rn· xn. is the weighting matrix for manipulated 

variables, WE Rn.xn. is the weighting matrix (or move suppression matrix) on the change 

of the manipulated variables and Ws E Rnyxny is the weighting matrix of the slack 

variables. 

The mathematical program (3.la-3.lj) is a Quadratic Program (QP, Boyd and 

Vandenberghe, 2004). The objective function (3.la) includes the distance between the 

predicted controlled and manipulated variables and their desired values, the penalty on 

the changes of manipulated variables and the slack variables that penalize violations of 

soft bounds. The process model (3.lb-3.lc) describes the open-loop behavior of the 

system, where we assume an unmeasured disturbance e affects the system states through 

Be and in this thesis, it is assumed to be constant throughout the prediction horizon by 

equation (3.ld). Equation (3.li) enforces the limited control horizon; the manipulated 

variables do not change after the control horizon. Equation (3.le) denotes the hard 

bounds on the manipulated variables, which can never be violated in the physical system. 

Equations (3. lf-3. lg) describe the soft bounds on the controlled variables, which may be 
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violated in the solution but their violation is penalized in the objective function. The 

benefit of using the soft bounds for the controlled variables is that it makes the 

mathematical program feasible even when the physical system is infeasible (i.e., when 

some controlled variables have to violate the bounds). Therefore, the controller will 

continue to function when faced with a violation that cannot be avoided due to, for 

example, a large disturbance and feedback dead time. 

Note that: 

1) The weighing matrices Q, R, W, Ws are properly tuned such that the QP problem 

is strictly convex (the Hessian of the objective function is positive definite). 

Then, the NMPC problem involves convex optimization in which the objective 

function value of a local optimum is ensured of being the value of the global 

optimum. 

2) The unmeasured disturbance model described by equations (3.lb) and (3.ld) is 

from a more general framework introduced by Muske and Badgwell (2002), 

where the unmeasured disturbances can be deemed as the additional system 

states. For offset-free control, the unmeasured disturbance model should be 

designed such that the augmented system, equations (3.lb-3.ld), is detectable 

(Muske and Badgwell, 2002). We will check this for the unmeasured disturbance 

model used in all the case studies in the thesis. Then the system states x and the 

unmeasured disturbance states e can be estimated at the beginning of each time 

step by 

(3.2) 

eo =e0/-1 + L. (ym,O - Cxo/-1) (3.3) 

where ym,o e Rny denotes the measurements of the outputs at the current time 

step, Xo1-1 E Rnx 'e0/-1 E Rn· denote the states and unmeasured disturbances at 

the current time step that is estimated at the last time step, Xo E Rnx ' eo E Rn· 

denote the states and unmeasured disturbances at the current time step that is also 
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estimated at the current time step, Lx E Rn,xny, Le E Rnexny denote the discrete 

steady-state Kalman filter (Kalman, 1960) gains for x and e respectively. See 

Appendix A for more detail on output feedback and linear state estimation used 

in deriving the unmeasured disturbance model and the equations (3.2) and (3.3). 

3) 	 The open-loop optimization problem (3.la-3.lj), in the context of nominal MPC 

with infinite (or sufficiently large) horizon, is equivalent to a closed-loop 

optimization problem that considers the effect of future control actions on the 

system behavior (Mayne et al., 2000), because it is assumed that no mismatch 

exists between the process and the controller model. However, solving the single, 

open-loop optimization does not optimize the closed-loop trajectories when the 

uncertainties are considered in the formulation explicitly (see the next section for 

details). 

4) 	 If there is time-delay between a manipulated variable and a controlled variable 

(or state variable) we write the process model in the canonical form (3.lb-3.lc) 

by introducing additional states to the system. See Appendix B for more detail. 

The open-loop optimization problem (3.1) can also be written in the following 

form using the extended vectors: 

(3.4a) 

(3.4b) 

y=Cx 	 (3.4c) 

(3.4d) 

(3.4e) 

s~O 	 (3.4f) 

41 


http:3.lb-3.lc
http:3.la-3.lj


PhD Thesis - Xiang Li McMaster University - Chemical Engineering 

where the bold symbols denote the extended vectors that contain the related variables in 

the control or prediction horizon, specifically, 

Ymin J (Umax J (Umin J y min = YTm ERnyp' umax = u~ax ERn·n' Umin= u7m ERn.n' 
[ 

Ymm umax umm 

the weighing matrices in the objective function 

~ (QQ= 

and the coefficient of the open-loop model 
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A =(1iJE R(n,p)xn,
x • ' 

AP 

B 

An-IB An-2B 

AnB An-IB
B= 

Ap-IB AP-2B 

Bd 

An-IB An-2B 

A = 
e 

i:O 

0d dBd = AnB An-1B 0d d 

Ap-IB AP-2Bdd Bd 

In addition, 

p-1 
(LAi)Be 

i:O 

B 
AB+B 

p-n 
(LAi)B 

(n,p)xnuRE ' 

R(n,p)x(nun)
E ' 

E R(n,p)x(ndp) c=[c cJE R'"'PM•,P).' 

I 
-I I 

16.1 = 
( 

-] 

More discussion on MPC can be found in Maciejowski (2002) and its industrial 

applications in Qin and Badgwell (2003). Nominal MPC has proved extremely 

successful and is widely applied, but it cannot guarantee feasibility for uncertain 

processes. Thus, the Robust MPC is presented in the next section. 
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3.2 The New Robust MPC Formulation 

3.2.1 Robust MPC with closed-loop model 

In this research, we develop the robust MPC formulation based on the nominal 

MPC formulation (3 .1) in the last section. We first discuss a simple, but incorrect, 

formulation that provides insight into the correct formulation. Then, the correct 

formulation is presented. We conclude that the correct formulation is not 

computationally tractable, and modifications are presented in subsequent sub-sections to 

achieve a controller algorithm that is both theoretically sound and tractable. 

A straightforward way to formulate the robust MPC problem (i.e. to explicitly 

address uncertainty in the system) is to replace the nominal process model (3.lb-3.lc) 

with an uncertain process model in the open-loop optimization framework in problem 

(3 .1 ). A scenario method (e.g., Sen and Higle, 1999) for introducing the uncertain model 

would be to use a number of uncertain models, in which the optimal manipulations are 

implemented, and require all models to predict feasible solutions. (Naturally, even a 

large but finite number of models will not guarantee feasibility for parametric uncertainty 

that is continuous, but they could provide an adequate approximation.) The resulting 

formulation obtains a series of deterministic manipulated variables such that the nominal 

performance is the optimal and different realizations of controlled variables are kept 

within (or driven close to) the feasible region. Figure 3.2 shows the prediction of a 

sample single input-single output (SISO) system (the first CSTR system studied in 

Section 3.6) using a set of uncertain models and this open-loop formulation for 

uncertainty in MPC. 

We can see that while the controlled variables are different for different 

realizations of the process, the manipulated variables are the same for different 

realizations of the process. This open-loop prediction is not correct because the feedback 

controller will respond differently for different realizations of the process because the 

measurements of y will be different. As a result, the manipulated variables will be 

different after the first controller execution (or for the dead time plus one) for every 
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realization. Therefore, we conclude that a correct prediction of the future system 

behavior, and a correct controller formulation, has to include the effect of the control law. 

The dashed dotted lines show the predicted boundaries of the open-loop uncertainty, 

which are the maximum and minimum controlled or manipulated variables under this 

uncertainty with 99% confidence. The method for obtaining these boundaries is explained 

in the subsection 3 .3 .1. 

Before developing the improved controller formulation, we will observe the same 

CSTR SISO system with feedback measurements and controller execution at a period of 

0.30 minute. Several realizations from the parameter distribution have been selected, and 

the process with each realization of the process parameters is controlled by a nominal 

MPC. Figure 3.3 shows the transient results. We can see that both the controlled 

variable and the manipulated variable vary with the realization of parameter values, so 

that we say that they are uncertain in the prediction horizon. We use dashed lines to show 

the predicted boundaries of the closed-loop uncertainty, which are the maximum and 

minimum controlled or manipulated variables under this uncertainty with 99% 

confidence. The closed-loop uncertainty region is smaller than the open-loop uncertainty 

region for the controlled variable, and the controlled variable returns to its set point value 

in steady state with nearly zero uncertainty, while the manipulated variable final value is 

uncertain. In general, the open-loop prediction of uncertainty is bigger than the 

closed-loop prediction of uncertainty (with a properly tuned controller), and in this case 

the robust MPC with open-loop model gives a more (overly) conservative control. 

Figure 3.4 shows the special case in which the manipulated variable saturates 

throughout the horizon. In this case, the open-loop uncertainty equals to closed-loop 

uncertainty because the controller action does not influence the manipulated variable for 

all realizations. In other words, the feedback information does not change the controller 

action at all, and the closed-loop system behaves as though no control existed. Thus, we 

conclude that the effect of the model uncertainty depends on the scenario occurring, 

which must be included in the robust MPC controller design. 
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Figure 3.3 NMPC control of numerous realizations of the uncertain CSTR system 
(No saturation of the manipulated variable) 
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Figure 3.4 NMPC control of numerous realizations of the uncertain CSTR system 
(Saturation of the manipulated variable) 

According to the above discussion, a good robust MPC method has to use the 

closed-loop model, i.e., a model of the (uncertain) process and the controller, to predict 

the future system behavior. This means that the effects of the future controller actions on 

the system behavior have to be modelled. In contrast to the nominal MPC, which has 

only a model for the process at each future time step, the robust MPC requires models for 

the process and the controller at every time step, and the future controllers would be the 

robust formulation. While this formulation would be correct, the resulting mathematical 

problem would be too complex for real-time computation. In this research, the nominal 

MPC controller, i.e., formulation (3.1), is adopted as the controller model that will be 

included at every future time step in the robust formulation. The performance with this 

approximation will be shown to provide good performance through numerous case 

studies in this thesis. 

Therefore, a robust MPC formulation with closed-loop model, called RMPC-CL, 

can be built as shown in the following 
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RMPC-CL: 


p~ n~ 

min ~)Yk+I -yspl Q(Yk+I - Ysp)+ ~)uk -u.P)T R(uk -u.P)
0 5Y,p,k+1> 'P.k> k=O k=O 

n-1 p-1 

+ L8u/W8uk + Lsk+ITWssk+I 
k=O k=O 

xr,k+I = Ar,k+lxr,k + Br,k+lur,k + Ber,k+ler,k 
s.t. 

+ Bd, k+1dm k + Gwx wk 


er,k+I = e,,k + Gwe wk 


Yr,k+I = cr,k+lxr,k+I 

Yr,m,k+I =cr,k+lxr,k+I + vk+I 

Ymin,k+I -sk+I ::::; Yr,k+I ::::; Ymax,k+I + sk+I 

k =O,···,p-1 

O,··., n -1} k = 

u,,k = ur,k-1 k =n,···,p-1 

A 

x,,o = Xo 

(3.Sa) 

(3.Sb) 

(3.Sc) 

(3.Sd) 

(3.Se) 

(3.St) 

(3.Sg) 

(3.Sh) 

(3.Si) 

(3.Sj) 

(3.Sk) 

(3.51) 

(3.Sm) 

(3.Sn) 

For all Ar,k+J• Br.k+J, Bdr,k+J, Cr,k+J, Wk, Vk+J in uncertainty region, k = 0,. . ., n-1 
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where 

1) 	 The objective of the optimization is still to minimize the nominal performance 

equation (3.5a), and the degrees of freedom are the values of controlled and 

manipulated variable set points in the future horizon y k+l E RnyP, u k E Rn·n . sp, sp, 

2) 	 Equations (3.5b-3.5e) are the process models containing uncertain parameters. 

Ar,k+1,B,,k+1'Ber,k+l'Bdr,k+1'Cr,k+I denote all realizations (rE<I>r) of the uncertain 

parameters of the model at time step k+ 1 within defined uncertainty region. These 

parameters could be either time-invariant or time-varying. wk E Rnw denotes the 

unmeasured disturbances and noise that affect the states of the system (through 

Gwx 'Gwe ). xr,k E Rn,' er,k E Rn·' Yr,k E Rny denote the uncertain values of state 

variables, feedback variables and controlled variables at the kth time step, which 

depend on the realizations of the process. y rm,k+I E Rny denotes the measurements of 

the controlled variables at the (k+ J)th time step, and vk+I E Rny denotes the noise in 

the measurement. 

3) Equation (3.5f) denotes the state estimation using linear steady-state Kalman filter 

(details in Appendix A). 

4) 	 Equation (3.5g) denotes the hard bounds on the uncertain manipulated variables in the 

future. Equations (3.5h-3.5i) denote the soft bounds on the uncertain controlled 

variables in the future. 

5) 	 Equations (3.5j-3.51) denote the nominal MPC control that determines the 

manipulated variables at the future kth time step in the control horizon (with the 

estimates xr,k E Rn,' er,k E Rn·' the predicted disturbances dm,k E Rndp and the set 

points ysp,k+i, iisp,k)· The nominal MPC control law NMPC(x,,k ,e,,k ,dm,k ,y sp,k+i, 

usp,k) is from the solution of the QP formulation (3 .1 ). Here, we do not consider the 

bounds on controlled variables (equations (3.lf-3.lg)) in this control law because 

they can be enforced by the soft bounds in the outer problem (equations (3.5h-3.5i)). 

Since the state estimates in the future depend on the realizations of the process, the 

manipulated variables determined in the future also depend on the realizations of the 

process. Therefore, we use the new symbol u,,k E Rn· to represent the uncertain 
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manipulated variables in the future kth time step so as to differentiate them from the 

nominal manipulated variables uk • 

6) Equations (3.5m-3.5n) approximate the current state and feedback variables with their 

nominally estimated values respectively. 

There are basically two ways to characterize the parametric process model 

uncertainty. One way is to use the representative sampled values of the uncertain 

parameters. In this way the robust MPC formulation (3.5) would be a convex QP 

problem, and the problem is essentially a multi-stage stochastic program where the 

number of time steps in the input horizon is the number of decision stages. In this case, 

however, the problem size would increase exponentially with the increase of the number 

of realizations, so this approach would suffer the curse of dimensionality even for 

small-scale problems (Kleywegt and Shapiro, 2001). For example, a robust MPC problem 

with 2 manipulated variables, 2 controlled variables, 10 time steps control horizon and 10 

plant realizations involves neq=4x 1010 variables. A linear equation system with the same 

number of variables and equations is easier than this robust MPC problem and it requires 

more than 2(neq) 313 floating-point operations (Golub and Van Loan, 1996). Solving this 

equation system with the IBM Roadrunner supercomputer (IBM, 2008) (the fastest 

computer of the world until 2008 with the computing power of about 1015 floating-point 

operations per second) would take over 1.3 x 109 years! 

The other way to model the uncertainty is to use the continuous distribution or 

continuous uncertainty region of the uncertain parameters. We adopt this method to avoid 

the curse of dimensionality (Kleywegt and Shapiro, 2001). However, the bilevel 

stochastic optimization problem with continuous uncertainty is typically very difficult to 

solve in the real-time (Colson et al., 2007). Therefore, in the next several sections we will 

discuss our reformation and approximations of this difficult bilevel problem that yield 

tractable computation for real-time applications. 

3.2.2 The reformulation to single level problem 

Due to the challenges in solving a bilevel problem, we transform the bilevel 

problem (3.5) into a single-level problem by replacing the inner optimization problems 
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(equation (3.5b) for nominal MPC calculations with their optimality conditions (Clark 

and Westerberg, 1983). 

For convenience of the description, we use the matrix-vector form of nominal 

MPC (formulation (3.4) without soft bounds on the controlled variables) as the inner 

optimization problem. If the inner nominal MPC is properly tuned (typically it has the 

same weighting matrices as the outer problem), the QP problem will be strictly convex so 

that it's optimum can be determined through its first order Karush-Kuhn-Tucker (KKT) 

conditions (Nocedal and Wright, 1999). Therefore, the QP is equivalent to the 

following equations 

(3.6a) 

I..+ ·(u-umax)=O 1..- ·(-u+umin)=O 1..\1..-1 :2:0 (3.6b) 
' 

(3.6c) 

Here equation (3.6a) is the stationary condition, and equation (3.6b) denotes the 

complementarity constraints that describe the active bounds on the manipulated variables. 

>.. + and >.. - denote the Lagrange multipliers for the constraints u ~ umax and Umin ~ u 

respectively, where l..+=((A.~)r,. .. ,(,,t,:_1f)ERn·n and A~=(A;,k,···,A~.,kY ERn·, 

1..- =((A.~)r, .. ·,(A.:_1 )r)ERn•n and A~ =(~,k····,A~.,ky ERn•, the dot"·" denotes the 

element-wise multiplication. 

From Equation (3.6a) we have 

Since nominal MPC only implements the control actions at the solution time, we only 

require the part of Equation (3.7) that provides u0, 
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(3.8) 

where lpu is a "pick-up" matrix (containing only 1 's and O's) to extract the values of the 

manipulated variables at the first time step in the solution. 

Since they are equivalent, we can replace the nominal MPC control law 

NMPC(xk ,ek ,dm,k ,y sp,k+I, Dsp,k) with equations (3.6b-3.6c) and (3.8), so that the bilevel 

stochastic problem (3.5) becomes single level Mathematical Program with Equilibrium 

Constraints (MPEC) (Luo et al., 1996). However, this single level stochastic problem is 

still difficult to solve in the real-time because: 

1) The complementarity constraints (3.6b) are highly nonconvex. Also their Jacobian 

could be singular at the solution, which will cause numerical problems for convergence. 

2) There is no systematic and efficient method to solve the complementarity constraints 

with uncertain parameters characterized by continuous uncertainty region. 

3.2.3 The reformulation with known saturated manipulated variables 

If we knew the "saturation pattern", i.e., which bounds are active at which time 

steps, before we solve the problem, we could avoid including the Lagrange multipliers 

and the complementarity constraints in the formulation. We will assume that the active 

inequality constraints are known and develop a simplified solution for the nominal 

controller; then, we will explain the method used to determine the active set. 

Here we assume the following. 

Assumption 3.1: A manipulated variable at a time step either equals its bound for all the 

realizations ofthe process or is unconstrained for all the realizations ofthe process. 

In practice, this means that if the manipulated variable is active for the "most 

extreme" value in its uncertainty region, the manipulated variable at that time step of the 
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solution to the nominal MPC is set active. The remaining part of this section gives the 

details of replacing the complementarity constraints and Lagrange multipliers in the 

nominal MPC control law (3.6b-3.6c) and (3.8) with selected equality constraints 

modeling a known saturation status of the manipulated variables. 

When no bounds are active, all the Lagrange multipliers must be zero (because of 

the complementarity constraints (3.6b)), and equation (3.8) becomes 

We note that equation (3.9) has nyxp+nux n degrees of freedom (set points for all 

controlled variables and manipulated variables) while the physical system has only nux n 

degrees of freedom (all manipulated variables). This situation will yield ill-conditioned 

problems with alternative solutions. We apply only the manipulated variable values, not 

the set points, in the solution of the robust MPC. Therefore, we define a new vector of 

variables, t, which is a linear combination of the set points of the controlled variables and 

manipulated variables targets and will be the variables adjusted to optimize the robust 

MPC: 

(3.10) 

and write equation (3.9) as 

(3.11) 

where 
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-r-r--- - T - -1-T_T ___ 
Kd =-Ipu • (B C QCB + R + Ill1WI!l1) B C QCBd. 

Note that the nominal MPC can be properly tuned so that the weighting matrix R has 

full rank. In this case, for any value oft there will be values ofYsp, Usp that give the same 

value oft through Equation (3.10); or for any value ofysp, Usp there will be unique value 

oft corresponds to it through equation (3 .10). Equation (3 .11) denotes the unconstrained 

nominal MPC control law. 

When a manipulated variable (an element in u0) is active, the corresponding 

non-zero Lagrange multiplier forces the manipulated variable to its bound through the 

complementarity relationship and the multiplier value does not affect other manipulated 

variables. Therefore, the Lagrange multipliers can also been omitted in the formulation 

if we know the active set and enforce them via linear equations. We can address the 

saturation of the manipulated variables through extending equation (3.11) by adding the 

active constraints as equations. 

(3.12) 

(3.13) 

where I e Rn.xn. is a diagonal matrix with the diagonal elements containing 0 or 1 to 
0 

specify the saturation, I e Rn.xn. is an identity matrix. The vector Uc contains the active 

upper bound or lower bound, which is known when we know the saturation pattern. 

Using this formulation, the controller can be modeled for any known active set. If an 

element in u0 is active, the corresponding element in I 0 is 0, i.e., we make the element in 

u0 equal to the corresponding element in t. The result is a solution that ensures the 

predefined active set is achieved, and the remaining manipulated variable values are 

calculated based on the MPC optimization. 

The resulting MPC model can be substituted into the inner optimization problem 

NMPC( xk , ek , dm,k , y sp,k+t, u sp,k) in the robust MPC formulation RMPC-CL 
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(formulation (3.5)) with the control law (3.12) and (3.13). The problem contains a 

convex quadratic objective function, a series of linear equations and bounds, which can 

be summarized as the following problem RMPC-CLT: 

RMPC-CLT: 

(3.14a) 

(3.14b) 

(3.14c) 

(3.14d) 

Umin ~Ur ~ Umax (3.14e) 

Ymin-S~Yr~Ymax+S (3.14f) 

s;?:O (3.14g) 

For all Lur, Lyn Mun Myn m in the uncertainty region and the pre-determined I0 and Uc 

where 

1) The objective function of the problem is still the nominal dynamic performance of the 

uncertain system, but the degrees of freedom change from ysp,k+l ' usp,k to 

t =(t6, •··, f~_J E Rn•n • 
2) Equations (3.14b-3.14c) are the closed-loop model of the system with uncertain 

parameters Lur, Mur, Lyn Myr and certain parameters Nu, Ny (see Appendix D for details on 

deriving this model). The bold symbol Ur =(u;,o' ... ' u;,n-1 rdenotes the extended vector 

containing the uncertain manipulated variables in the control horizon and 

yr =(y;,1,· · ·, y;,P J denotes the extended vector containing the uncertain controlled 
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variables in the prediction horizon. 0 =(u~"d: 'xb' 'eb' y contains data that define the 

scenario, which are (1) the current manipulated variables, (2) the disturbance forecast, (3) 

initial states, and (4) the current feedback error. ro contains the noise in the future. 

3) Equation (3. l 4d) is used to force the saturated manipulated variables to their 

corresponding bounds, where I 3 E R(n.n)x(n.n) denotes the diagonal matrix with the 

diagonal vector () = (<5t ,· ··,<5:f specifying the saturation patterns for the future n time 

steps in the control horizon, uc =(u~0 ,-··,u~n-iY contains the corresponding active 

bounds, IE R<n.n)x(n.n) is an Identity matrix. As noted previously, Ia and uc are given 

before we solve problem RMPC-CLT. 

4) The uncertainties in the parameters Lur, Mun Lyr, Myr depend on the saturation of the 

manipulated variables (defined by Ia). 

It's not difficult to find that: 

Remark 3.1: IfAssumption 3.1 holds and we know the correct saturation pattern of the 

manipulated variables, the control law (3.12) is equivalent to the inner optimization 

problem NMPC(x,,k,er,k,dm,k•Ysp,k+i;usp,k) and the formulation RMPC-CLT is 

equivalent to the formulation RMPC-CL. 

Now the question is: How do we get a "reasonable" saturation pattern for problem 

RMPC-CLT? 

3.2.4 The active set heuristic to obtain the active bounds 

We will use a heuristic to obtain the active bounds on the manipulated variables in 

an iterative manner. The heuristic is given in the following steps. 

1) Assume no bounds are active in the future, set all diagonal elements in Ia to 1, and 

solve problem RMPC-CLT. 

2) The solution of problem RMPC-CLT gives the uncertain trajectory of the 

manipulated variables in the control horizon. If some manipulated variables, 
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which are assumed unsaturated, have a value(s) at its bound (i.e. the boundaries of 

their uncertainty regions reach the upper or lower bounds on these manipulated 

variables), go to step (3) ; otherwise, end the iterative procedure and the current 

solution is the final solution. 

3) 	 Set all manipulated variables, which are at their bounds at the earliest time step, to 

their bound values (by specifying 10, uc). Solve problem RMPC-CLT again and go 

to step (2). (Any manipulated variable that has been set to its bound value will be 

constrained for the remainder of the RMPC-CLT solution). 

Figure 3.5 illustrates the heuristic. At the first iteration, the problem is solved with 

the assumption that no bounds are active (in the inner problem). However, the solution 

,, ' ' 
I I 

: : --------­~----_-__,~\ '~,~ ~-~-~ I - - - -~ 

, ,.- -........ 
' , ' , 

', 
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I 
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time 

Iteration #1 
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Time step 3 "hits" constraint 
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Until all unconstrained 

Figure 3.5 The active set heuristic to obtain the active bounds on manipulated variables 
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gives the uncertain trajectory of the manipulated variable whose boundary at the 3rd time 

step is active at its upper bound. Then, the manipulated variable at the 3rd time step is 

fixed to the upper bound. Then, the problem is solved again. The procedure is repeated 

until at each time step all manipulated variables are either fixed to a bound or are within 

their bounds. 

Note that: 

1) 	 A similar heuristic has been successfully applied in industry for the constrained 

(nominal) MPC algorithm called Dynamic Matrix Control, DMC (Prett and 

Gillette, 1979), for more than 20 years. DMC is an industrial version of nominal 

MPC technique, and the heuristic addressed the hard bounds on the manipulated 

variables iteratively so that at each iteration only a linear least squares problem is 

to be solved in the MPC calculation. Due to its success in the deterministic MPC 

formulation, we believe the idea of the heuristic is also appropriate for the 

stochastic MPC formulation in this thesis. 

2) Although the input bounds are assumed to be inactive (unless they have been 

fixed to their bounds already) during the heuristic, the uncertain values of all the 

inputs are still bounded with constraint (3. l 4e ). Therefore, at the solution of the 

SOCP subproblem in the heuristic, the boundary of the uncertainty region of an 

input must be within its limits; if the limit is active, all the realizations of the 

uncertain input are forced to the limit according to Assumption 3.1. We recognize 

that this assumption is an approximation of real behavior, in which only a fraction 

of the realizations may be at the limit. 

3) 	 The reason for the success of heuristic lies in the special characteristics of the 

optimal control structure of the MPC formulation. The MPC controller typically 

wants to drive the controlled variables to their set points as quickly as possible to 

minimize its objective function, which is basically the sum of the difference 

between the controlled variables and their set points throughout the prediction 

horizon. It requires inputting the needed "energy" into the system at the beginning 

of the horizon. If the physical limits on the manipulated inputs (i.e. the opening of 

a valve can only range between 0%-100%) prevent inputting the required energy 
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immediately, the optimal manipulated inputs will tend to remain at their limits (i.e. 

a valve is fully open) to input the largest energy possible into the system. 

4) The number of iterations in the heuristic is proportional to the length of the 

control horizon. Thus, the heuristic results in a small number of iterations. 

5) 	 The heuristic does not guarantee "global optimum" of solution, i.e., there may be 

another saturation pattern that is better than the one found by the heuristic. 

However, the heuristic converges to the optimum if the correct active set is 

selected. 

This subsection and the last two subsections (Section 3.2.2-3.2.4) presents the 

method developed in this thesis to approximate the original bilevel stochastic 

optimization problem RMPC-CL with a limited number of single-level stochastic 

(convex) optimization problems RMPC-CLT. The next subsection will explain the 

developed method to enhance the process model (3.5b-3.5d) in the original formulation 

RMPC-CL for time-invariant uncertainty, with the goal of reducing the conservativeness 

in the uncertainty prediction. 

3.2.5 The deviation model enhanced for time-invariant uncertainty 

If the uncertain parameters of the plant do not change over time or they change 

slowly, we can assume they are invariant in the prediction horizon. In this situation, we 

will model the closed-loop dynamic system using deviation variables. There are several 

variable choices for the steady state about which the deviations are measured. Here, we 

will develop the method used consistently in this research for time-invariant systems. 

Further discussion of the importance of this choice is given in Appendix C. 

To demonstrate the method using deviation variables, the uncertain process model 

(3.5b-3.5d) can be simplified by temporarily removing the noise variables as follows 

(because we will concentrate on the uncertainty in the process model): 

(3.15) 

er,k+l = e,,k 	 (3.16) 
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Yr,k+I =C,xr,k+I (3.17) 

k =O,···,p-l 

where the parameters Ar, Br. Ber, Bdr, Cr are uncertain but time-invariant. With the 

uncertain model (3.15-3.17), the predicted states Xr.k+I and the controlled variables yp,k+I 

are different for different realizations of the uncertain parameters (i.e., their uncertainty is 

not zero). As discussed previously, the robust MPC without constraints should anticipate 

achieving its set points at steady state because (a) the values of u are known, and (b) the 

time-invariant model uncertainty in the predictions of x and y are compensated by the 

feedback e and the implicit integral mode in the MPC controller. 

Model (3.15-3.17) includes uncertain parameters and predicts uncertainty in the 

process outputs even ifthe manipulated variables do not change in the horizon. However, 

the uncertainty only influences the outputs when the manipulated variables change. As a 

result, the robust MPC will perform conservatively at steady state, e.g., maintaining an 

excessive safety margin from controlled variable constraints. (See Appendix C for more 

extensive discussions on this issue.) 

In this thesis, we modify the uncertain process model (3.15-3.17) for the 

prediction of uncertainty by calculating the deviation variables from a steady-state that 

would be determined by the most current manipulated variables U-1 and the measured 

disturbances dm.-I· We will call this a "virtual" steady state because it does not occur in 

the process, although we can calculate it using the (nominal) model. A similar idea has 

been successfully applied to robust steady-state optimization by Kassmann et al. (2000). 

For more details, we denote the variables at the virtual steady state as Xs, Ys, Us, ds, 

es, where Us, ds, es are known or are estimated at each controller execution as follows. 

Us = U_I (3.18) 

(3.19)ds = dm,-1 

A 

es= eo (3.20) 
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Then, Xs, Ys can be obtained using the nominal steady-state model. 

(3.21) 

Ys = Cxs (3.22) 

We can express the model (3 .15-3 .17) as the deviation from the steady state in equations 

(3.21) and (3.22) as the following. 

x, k+I - XS = A,(x, k - xs) + B,(u, k - us)+ Bd,(dm k - ds) (3.23). ' . ' 

Yr,k+I - Ys =C,(x,,k+I - xs) (3.24) 

k = 0,-··,p-1 

As the system approaches a steady state Xss, Yss, Uss' dss, the virtual steady state approaches 

the steady state too and uncertainty predicted using the deviation model (3.23-2.24) is 

appropriately small. If the system reaches the steady state, the virtual steady state will 

coincide with the actual steady-state, i.e. xs=Xss, Ys=Yss' Us=Uss, ds= dss, and Xr,k+l and Yr.k+l 

will be predicted to be Xss and Yss respectively, which means the their uncertainty is zero. 

As a summary of the above discussion, the process model (3.15-3.17) 

overestimates the uncertainty caused by the changes in the manipulated variables, which 

may lead to conservative control. The deviation model (3.23-3.24), which recognizes that 

uncertainty results from changes in inputs, avoids this conservativeness. In this thesis, the 

robust MPC will use the deviation variable formulation for all the time-invariant systems 

for uncertainty prediction. Note that if we define the new deviation variables, 

I

xr,k+I = xr,k+I - XS (3.25) 
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I 

xr,k = xr,k - XS (3.26) 

I 

Ur,k+I =Ur,k - Us (3.27) 

d~k =dmk -ds (3.28)
' , 

I 

Yr,k+I =Yr,k+I - Ys (3.29) 

I 

er,k+I =er,k+I - es (3.30) 

I 

er,k =er,k - es (3.31) 

k =0,-··,p-l 

then the deviation model (3.23-3.24) can be written into the form of model (3.15-3.17) 

(note that equations (3.20) and (3.30-3.31) implies e~,k =O for all feedback variables over 

the prediction horizon). Therefore, the formulations derived previously are applicable to 

the situation using the deviation model, except that the variables should be replaced with 

the deviation variables as defined above. Accordingly, the set points and bounds of the 

deviation variables should be defined in deviation form as 

, 
Ysp = Ysp - Ys (3.32) 

(3.33) 

, 
Ymax,k+I =Ymax,k+I - Ys (3.34) 

I 

Ymin,k+I =Ymin,k+I - Ys (3.35) 

(3.36) 
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(3.37) 

k = o,. ..,p-I 

For the convenience of discussion, we will not write out separate formulations for using 

deviation model in this chapter. When the deviation model is needed, we can modify the 

variables to deviation form and calculate the bounds as deviations as well before the 

optimization (using equations (3.25-3.37)) and if desired for plotting or plant 

implementation, restore the solution in the deviation-variable form back to the original 

form (using equations (3.25-3.37) again) after the optimization. 

3.3 The Solution Techniques 

In Section 3 .2 we discussed how to transform the bilevel stochastic optimization 

problem RMPC-CL for robust MPC into a series of single-level stochastic optimization 

RMPC-CLT. In this section we will show how to solve the problem RMPC-CL T. 

3.3.1 Solution with chance-constraints 

The basic idea in solving problem RMPC-CL T is to approximate it by a 

deterministic optimization problem. The uncertainty in RMPC-CL T comes from the 

uncertain parameters in the plant behavior that appear in the closed-loop model 

(3.14b-3.14c). The closed-loop model (3.14b-3.14c) and the bounds (3.14e-3.14f) 

(3.38a) 

(3.38b) 

Umin ::; u, ::; Umax (3.38c) 

(3.38d) 
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can be combined into 

(3.39a) 

(3.39b) 

(3.39c) 

(3.39d) 

Constraints (3.39a-3.39d) are linear inequalities with uncertain parameters. Ben-Tal and 

Nemirovski (1999) showed how to transform such inequalities to deterministic 

constraints when the uncertain parameters are within an ellipsoidal uncertainty region. 

Lobo et al. (1998) showed the transformation for the case where the uncertain parameters 

obey multivariate normal distribution using the chance-constrained program (Sen and 

Higle, 1999) framework. In this research, we adopt the latter formulation without 

requiring a normal distribution. To explain the approach, the Ith constraint in (3.39a) will 

be considered: 

(3.40) 

Here, Lur,1'Mur,1'Nu,I denote the /th row of matrices Lur•Mur•Nu respectively and 

umax I denotes the /th element in umax . The idea of chance-constrained program is to 

guarantee the feasibility of constraint (3.40) at a confidence level a, i.e., to transform 

the constraint into the following form, 

(3.41) 
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If (Lur,t •M ur,i •ro T) follows a normal distribution, the above inequality 1s exactly 

equivalent to the following deterministic constraint (Lobo et al., 1998), 

where E(-) denotes the expected value of the parameters in the brackets, <D-1(a) 

denotes the inverse cumulative probability function of normal distribution, vu,/ denotes 

the covariance matrix of (Lur,1,Mur,l•ror,l), 11.11 2 means the L2-norm of the vector 

(Weisstein, 2009). The deterministic constraint (3.42) is called a second order conic 

constraint and is a convex inequality when the probability a> 112. Note that the LHS of 

the constraint (3.42) is the maximum of the uncertain LHS of constraint (3.40) (in this 

expression, the maximum of the uncertain manipulated variable) with the confidence 

level a. Therefore, the constraint (3.42) requires the worst-case uncertain manipulated 

variable to be less than its upper bound (with confidence level a). 

Note that the equivalence of constraints (3.41) and (3.42) is based on 

Lur,t •M urJ 'ro obeying the normal distribution. Since ro denotes unmeasured 

disturbances and noises in the system, it usually can be deemed to obey normal 

distribution. However, the parameters Lur,1,Mur,t in closed-loop model may not be 

normally distributed, although such uncertain parameters may depend on normally 

distributed uncertainty. In this case, the reformulation from constraint (3.41) to constraint 

(3.42) is an approximation. 

If we approximate all the uncertain linear inequalities (3.39a-3.39d) in the same 

way, the problem RMPC-CLT becomes a deterministic Second Order Cone Program 

(SOCP, Lobo et al., 1998) that can be solved efficiently and reliably with a 

state-of-the-art interior point optimizer, such as CPLEX. This SOCP problem, which is 

called RMPC-CLTSOCP, is as follows: 
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RMPC-CLTSOCP: 

mm 
t,s (3.43a) 

r -	 r ­
+(/Mu-Jd2U-1) W(Jdlu-ld2U-1)+s Wss 

E(Lur,l )t + E(Mur,l )0 + Nu,1E(ro)-umax/ 

s.t. 	 (3. 43b) 
+<l>-1(a) II Vu1,?(e ,or ,Nu,1,lJ 112::;; O· 

} l=l,···,n,n
-E(Lur,/ )t-E(Mur,l )O-Nu,1E(ro) +Umin) 

(3. 43c) 
+ <l>-1(a) II Vu1?(e 'or' Nu,i'ly112::;; 0' 

E(Lyr,1 )t + E(Myr,I )0 + Ny,1E(ro)-y max,t -s1 
(3. 43d) 

+ <1>-
1
(a) II v;?(e ,or ,Ny,1,lJ 112::;; o ' } 

-E(Lyr,1)t-E(Myr,1)0-Ny,1E(ro)+YminJ -s1 l = l,-·-,nyp 
(3. 43e) 

+<1>-1(a) II v;,?(e ,or ,Ny,/'1) 11 2 ::;; o 

(3. 43t) 

s;?: 0 	 (3. 43g) 

where Lyr,1,Myr,i'Ny,1 denote the Ith row of matrices Lyr,Myr'NY respectively and 

Umin/' y max,/' y min,/ denotes the Ith element in Umin' y max' y min respectively, vy,I denotes 

the covariance matrix of (Lyr,i'Myr,/'ror, 1). 
Note that guaranteeing constraint-wise confidence level a does not ensure the 

satisfaction of all the constraints in the problem with such confidence criteria. Actually, a 

joint chance constrained program needs to be solved to achieve a specified confidence for 

the satisfaction of all the constraint, but this problem is typically very difficult to solve 

(Li et al., 2008). So this thesis, we propose to achieve the desired overall confidence level 

by select an appropriate constraint-wise confidence level and solving the resulting 

individual chance constraint program (such as problem RMPC-CLTSOCP) A trial and 

error procedure can be performed offline with numerical simulation for the selection of 

the appropriate constraint-wise confidence level. 

The variance matrix Vu,1 is estimated through Monte Carlo sampling as follows 
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(and a similar approach is used for Vy,1): 

1) 	 Randomly select a sample of the open-loop uncertain parameters (Ar,k+J, Br,k+J. 

Bdr,k+J, Cr.k+J, w"' Vk+1) shown in formulation (3.5) from their distribution within 

the a confidence level; 

2) 	 Calculate closed-loop uncertain parameters (Lur. Lyr, Mur, Myr. Nu, Ny shown in 

formulation (3.32)) accordingly; 

3) 	 Repeat procedure (a-b) for a number of samples of the open-loop uncertain 

parameters and obtain different groups of closed-loop uncertain parameters, 

which are then be used to estimate Vu.1 according to the standard technique (Box 

et al., 2008), i.e., Vu,FXTXl(n5-l) where X denotes the matrix whose rows contain 

difference between different realizations of vector (Lur,/, Mur,/, mr, 1) and their 

average values, and ns denotes the total number of realizations. 

Note that the total number of samples ns should be sufficiently large so that the variance 

calculation is accurate enough for the problem RMPC-CLTSOCP. We note that that the 

covariance matrix Vu.1 or Vy,! reflects the range of the uncertainty (of a manipulated or 

controlled variable) through the norms in the constraints (3. 43b-3. 43e), so we choose 

the total number of samples ns such that the a larger number of samples does not change 

the norm of the matrix Vu,! or Vy,! by 5% or more of its original value. We use the spectral 

norm of matrix that is induced from the L2-norm of vector (Weinstein, 2009). This 

procedure resulted in 100 samples being adequate for the calculation of the covariance 

matrices in the numerical experimentation for all the case studies in this thesis. 

Substantial computing for the Monte Carlo sampling is performed off-line as part 

of the controller design and tuning, and therefore, it does not affect the tractability of the 

real-time solution. The computational complexity of the off-line calculation can be found 

in the next subsection. The covariance matrices Vu,/, Vy,1 depend on the saturation pattern 

of the manipulated variables. Thus, these covariance matrices must be updated for each 

controller execution and the method is given in the next subsection. 

3.3.2 Efficient uncertainty characterization 

To obtain the covariance matrices Vu,1, Vy,1 according to the saturation pattern of 

the manipulated variables in real-time, a natural way would be to obtain and store Vu,1, Vy.I 
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for each of the saturation patterns respectively before the real-time application (off-line). 

However, the number of saturation patterns is exponential with respect to the product of 

the number of manipulated variables times the number of time steps in the control 

horizon ( 2n.·n ), which could make the off-line sampling results unrealistically large even 

for small problems. For example, when nu = 6, n = 9, the total number of saturation 

patterns is about 106
. In this case, if the mean and variance matrices for one saturation 

pattern required 1 MB space, the total space required to store all the variance matrices 

would be about 103 TB! 

Therefore, an on-line uncertainty characterization method has been developed in 

this research to reduce the complexity, which involves sampling and storing the 

uncertainties for the case of saturated manipulated inputs off-line and updating this result 

for specific saturation pattern on-line. The updating rule is key for applying this method. 

Assume the closed-loop model of manipulated variables Ur for a particular saturation 

pattern is: 

where 

L(O,O) 

ur 


L(l,O) L(l,l) 
ur ur 

R (n·n. )x(n·n.) 
ur ur ur 

Lc2,oi Lc2,1i Lc2,2i 
E ' 

L(m-1,0) L(n-1,1) L(n-1,n-2) L(n-l,n-1) 
ur ur ur ur 

and the block m the matrix Lur on the row k1 ( k1 =0,...,n - l ) and the column k2 

(k2 =O, ...,k1 ), 

68 




PhD Thesis - Xiang Li McMaster University - Chemical Engineering 

Note that when =k2 , L~~1 ,k2 l is an identity matrix. Also, k1 

where , nm denote the numbers of elements m 0 and ro respectively,n8 

= O, ...,n-l.k1 

Ifmanipulated inputs at a time step that were assumed to be unsaturated are found 

to encounter its constraint, e.g. the ith manipulated input at time stepj (denoted by Ur,iJ), 

we need to update the closed-loop model of the manipulated variables as follows. 

(3.44a) 

(3.44b) 

kl= j + 1,...,n-1, k2 = o,...,j-1, 01=1, ... ,nu' 02=1,... ,nu 

1where L~~,~~~2 * and (M~;:;1 , N~~~;f denote the updated values of L~~.~~~2 and 

(M~;:;1 , N~~~; ), respectively. The proof of this updating rule is presented in Appendix E. 

Figure 3.6 illustrates this updating rule. The block Dur in the matrix Lur denotes 
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the effects of the change of manipulated variables before time step j on the change of Ur, iJ 

when Ur, iJ does not saturate, the block Bur denotes the effects of the change of Ur, iJ on the 

change of manipulated variables after time step j . Therefore, Bur x Dur denotes the 

effects of the change of manipulated variables before time step j on the change of the 

manipulated variables after time step j through Ur,iJ when Ur, iJ does not saturate. When 

Ur,iJ saturates, these effects should be 0, so we deduct them from the block Au (which are 

the net effects of the change of manipulated variables before time step j on the change of 

manipulated variables after time step j) as Aur*= A ur - Bur x Dur. This corresponds to 

equation (3.44a). 

The block Eur in the matrix [Mur, Nu] denotes the effects of the change of initial 

condition of the system (e.g. , system states, feedback information, etc.) on the change of 

Ur,ij when Ur,ij does not saturate, so Bur x Eur denotes the effects of the change of initial 

condition on the change of manipulated variables after time step j through Ur,iJ when Ur,iJ 

' 
1--.,....-,i - ..... ' ' , ,, 

' ' ' 
Bur '',,, 

' , 

D 	 D 
B G- ~ ... x B B- ~ ... x 

Dimensions of matrices: 	 Aur : [n. (n- l- j)] x [n. (j-1)] C., : [n. (n- l- j)] x [n8 + n(i} ] 

B., :[n. (n-1-j)] x l D., : l x [n"(j-1)] E., : l x [n8 +n(i} ] 

Figure 3.6 Illustration of model-updating for manipulated variables with UrJ.i saturation 
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does not saturate. When Ur,iJ saturates, these effects should be 0, so we deduct them from 

the block Cu (which are the net effects of the change of initial condition on the change of 

manipulated variables after time step j) as Cur*= Cur - Bur x Eur. This corresponds to 

equation (3 .44b). 

Similarly, the closed-loop model of the controlled variables can be updated as 

(3.45a) 

(3.45b) 

k1 = j + 1,..., p, = 0,..., j , 0 1 = 1,...,ny , = 1,..., nuk2 0 2 

where L~).~~~2 * and (M;;'.~, , NC:,~;r denotes the updated value of L~).~~~2 
and(M;;'.~ , N;~~;). Figure 3.7 illustrates this updating rule, where Ayr*= Ayr - Byr x Dur1 
corresponds to (3.45a) and Cyr*= Cyr -Byr x Eur corresponds to (3.45b). 

The online model-updating calculation can be performed for each of the saturated 

manipulated inputs sequentially. Then, we have the closed-loop model coefficients Lur. 

Mun Lyn Myr of a particular saturation pattern for all the samples, which can be used to 

calculate the covariance matrices Vu,1, Vy,l· 

The time complexity of the on-line calculation in the worst case (i.e., all the manipulated 

variables in the horizon saturate) is O(ns(nun)3 
) and the storage complexity O(ns(nun) 2 

), 

where ns denotes the total number of samples. Note that we only need to calculate and store the 

uncertainty information for the case with no manipulated variables saturation, so we avoid the 

exponential complexity of offiine computation. The time complexity of the off-line calculation is 

O(ns(nun) 3 
) and storage complexity O(ns(nun) 2 

). Please refer to Appendix E for the 

discussion of the computational complexity for the on-line and off-line calculations. 
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I·-- ...I·-- ...I 
I 

t- - ' 
I·-- ...I 

L- - ' 
I 
L-

Dimensions of matrices: Ayr :[ny(p- j)] x [ny}] Cyr :[ny(p- j)] x [n0 +n., ] 

Byr :[ny(p- j)] x l 

Figure 3.7 Illustration of model-updating for controlled variables with UrJ ,i saturation 

3.4 Uncertainties in State-Estimation 

As mentioned in Section 3.1 and Appendix A, equations (3.1-3.2) denote the 

"nominal" steady-state Kalman filter that is based on assuming the nominal model of the 

system is perfect. In the context of robust MPC, however, we need to address the 

parametric uncertainty in the state estimation explicitly if the states cannot be measured 

directly. Here we introduce an approach developed in this research to incorporate 

parametric uncertainties in state estimation for time-invariant process. 

First, we assume the real process model coefficients (Ar, B,., Bdr, Cr) are known. 

Then, the state estimation can be performed as follows. 
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(3.46) 


(3.47) 


where Lxr, Ler denote the steady-state Kalman gains calculated according to Ar, Cr using 

the well-known method (Kalman, 1960) whose details are shown in Appendix A. xr.01-1 , 

er.Ol-l denote the estimate of the states and feedback errors at time step k given the output 

measurement at time step k-1 and xr.o and er.o denote the update of the estimate given 

the output measurement at time step k. xr.01-1, er.01-1 can be calculated by 

(3.48) 


A A 

er,01-1 =er,-1 (3.49) 

The equations (3.46-3.49) can be integrated into the following form 

(3.50) 


where we define 

Ym,k 

dm,-k-1 

(1-Lx,Cr)B, 
-Le,C,B, 

Equation (3.50) means that the estimated states at the current time step (o depend 

linearly on the estimated states at the last time step (_ 1 (as well as the inputs, disturbances 

and the output measurements inµ_1). C1 depends on C2 in the similar way, which is 
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(3.51) 

and equations (3.50-3.51) can be combined to give the following equation 

(3.52) 

Repeat the above procedure for the previous p_time steps iteratively, and then we get the 

following equation, 

p_-1 
so =G!(s-p_ + Z:(c~(G<Jiµ-1-;) (3.53) 

i=O 

Note that even the state estimates S-p_ may still be uncertain. However, we can 

set p _ 2:: p obs , where Pobs denotes the least number of time steps for the nominal 

estimates of states to converge to the real states (no matter where the nominal estimate is 

correct or not); the symbol Pobs is called the (backward) horizon of the observer in the 

thesis. Refer to Appendix A for the way to obtain Pobs· Therefore, the current states and 

feedback s0 can be estimated using the nominal estimate of the states the p _ time 

steps ago (s-p_) through equation (3.53). We call p_ the estimation horizon in this 

thesis. 

Note that the nominally estimated states at a steady state can be deemed as the 

real states. So if the system has been at steady state during the previous Pobs time steps, 

e.g. k time steps ago (k<pobs), we could estimate So using the nominal estimate of the 

states and feedback at that time step 	 S-p_ = S-k through equation (3.53). 

The above discussion is based on assuming the real process model coefficients (Ap. 
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Bp Bdp Cp) are known. If they are unknown and uncertain, the coefficients Gss Gi;;, in 

equation (3.53) should be uncertain accordingly. So the estimate of the current states and 

feedback errors through equation (3.53) is uncertain, whose uncertainty depends on the 

estimated states and feedback p _ time steps ago as well as the measurement of controlled 

and disturbance variables and the implemented manipulated variables during the past p _ 

time steps. The robust MPC considering this uncertainty in the state estimate will have 

the same formulation as formulation (3.14) (so that the same SOCP formulation (3.43)), 

except that the nominal estimate of the current states and feedback x~ ,e~ is replaced by 

its uncertain expression in equation (3.14), thus in the uncertain closed-loop model 

(3.14b-3.14c), the vector 

(3.54) 

is changed into 

(3.55) 

Here the "current system state" cannot be simply expressed by its nominal estimate. It 

should be expressed using its nominal estimate p. time steps before as well as the 

measurement of controlled and disturbance variables and the implemented manipulated 

variables during the past p. time steps. The uncertain matrices Mur. Myr in the uncertain 

closed-loop model (3.14b-3.14c) are changed accordingly. So addressing uncertainty in 

state estimate using the new Mur, Myr and 1t will change the variance calculation of the 

manipulated and controlled variables. The benefits of integrating the uncertainty in state 

estimate will be shown in a case study in Section 3.6. 

Another important issue to be clarified is: the Kalman filter is used here as an 

observation that provides a nominally stable observer instead of "filtering" the noises, 
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because the all the uncertainties including the noises are addressed explicitly in the robust 

MPC framework. Therefore, other stable observers could be used to replace the Kalman 

filter in the formulation, e.g., a Luenberger observer (Luenberger, 1971). 

3.5 Summary of the Robust MPC Algorithm 

According to the discussions from Section 3.2 to Section 3.4, the new robust MPC 

algorithm can be summarized as follows. 

Calculation performed off-line: 

1) 	 Calculate the nominal value of the coefficients Lur, Mur, Nur, Lyn Myr, Nyr in the 

closed-loop model (3.14b-3.14c), for the situation where no input bounds are 

active, using the method derived in Appendix D; 

2) Repeat the calculation in step 1 for samples of the open-loop uncertain system 

(100 samples used in this thesis). Calculate the covariance matrices for the 

closed-loop coefficients according to the results of the sample calculations. 

Calculation performed on-line at each controller execution period: 

1) 	 Obtain the set points of the controlled and manipulated variables, Ysp. Usp 

according to plant personnel or upper level controller/optimizer. 

2) 	 Read new measurements of controlled variables and the measured disturbances 

Ym.o, dm,o respectively. Set uo to be the implemented manipulated variables in the 

last controller execution. 

3) 	 Calculate nominally predicted controlled variable for the current time step, y0, 

according to the previous implemented manipulated variables, measured 

disturbances and nominally estimated state and feedback variables, and estimate 

the nominal state and feedback variables for the current time step, .X0 e0 • 

' 
4) 	 If the uncertainty in the system is time-invariant and the deviation model is 

needed, calculate the virtual steady state according to equations (3.18-3.22) and 

express the system variables, set points and bounds as deviations from the virtual 

steady state according to equations (3.25-3.37); otherwise skip this step. 
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5) 	 Assume no bounds are active in the future, and set all diagonal elements in 13 to 1. 

Then solve problem RMPC-CLTSOCP equations (3.43a-3.43g) if all the system 

states are measured, or estimate and store the current state and feedback variables 

and solve the following problem RMPC-SOCP2 (with all the variables and 

parameters in the formulation same as defined before) to include the uncertainty 

in state estimation if not all the system states are measurable: 

RMPC-CLTSOCP2: 

mm 
t,s (3.56a)

T ~ 	 T ~ 
+(JA1u-JA2u_1) W(JA1u-JA2u_1)+s Wss 


E(Lur,l )t + E(Mur,l )7t+ Nu,1E(ro)-UmaxJ 

s.t. 	 (3.56b)

+<l>-1(a) II Vu1,?(e ,7tr ,Nu,l,ly 112~ O· 
} I~ 1,-··,n.n 

-E(Lur,1)t-E(Mur,t)7t-Nu,1E(ro) +Umin,/ 
(3.56c) 

+ <l>-1 (a) II v112 (e 7tr N 1)r II < o,u,1 ' ' u,/' 2 ­

E(Lyr,l )t + E(Myr,1 )7t + Ny,1E(ro)-ymaxJ - S1 

(3. 56d)
+<1>-

1
(a) II v),?(e ,7tr ,Ny,1,ly 112~ o ' } 

l=l···np
' 	 ' y

-E(Lyr,t )t-E(Myr,l )7t-Ny,1E(ro) + y min,1 -s1 
(3. 56e) 

+<1>-1(a) 11 v)?(tr ,7tr ,Ny,/'1t 11 2 ~ o 

(3. 56f) 

s~O 	 (3. 56g) 

6) 	 The solution gives the uncertain trajectory of the manipulated variables in the 

control horizon. If some manipulated variables, which are assumed unsaturated, 

have a value(s) at its bound (i.e. the boundaries of their uncertainty regions reach 

the upper or lower bounds on these manipulated variables), go to step 7; otherwise, 

77 




PhD Thesis - Xiang Li 	 McMaster University - Chemical Engineering 

end the iterative procedure of the heuristic and go to step 8 (the current solution is 

the final solution obtained by the heuristic). 

7) 	 Set all manipulated variables, which are at their bounds at the earliest time step, to 

their bound values (by specifying Ii;, Uc). Update the closed-loop model 

coefficients Lur, Mur, Nur, Lyr, Myr, Nyr according to the current saturation pattern 

using equations (3.44a-3.44b) and (3.45a-3.45b), and solve problem 

RMPC-CLTSOCP (if all the system states are measurable) or RMPC-CLTSOCP2 

(if some system states are not measurable). Then go to step 6. Note that any 

manipulated variable that has been set to its bound value will be constrained for 

the remainder of the iterative procedure. 

8) 	 If the uncertainty in the system is time-invariant and the deviation model has been 

used in the previous calculation, restore the solution from the deviation variable 

mode using equations (3.25-3.37); otherwise skip this step. 

9) 	 Implement the values of the manipulated variable in the first future controller 

execution period in the solution. 

3.6 Case Study Results and Discussion 

The simulation case studies were performed on a PC with Intel Core 2 Duo 3.0 

GHz, 4GB memory and Windows Vista. The solution for the plant simulation is 

programmed in MATLAB 7.5, and the QP and SOCP problems are solved in GAMS with 

the interior point (barrier) solver of CPLEX 11. The data in MATLAB and CPLEX are 

exchanged using the interface software MATGAMS developed by Ferris (2005). All the 

system models are initially expressed with continuous input-output model in S-domain, 

and they are all discretized and transformed into state-space model using the Control 

System Toolbox in MATLAB 7.5. 

3.6.1 The control methods evaluated in the case studies 

We will evaluate several control methods in the case studies, through which the 

advantage of the new robust MPC method will be demonstrated. We basically compare 

the following three methods: 
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1) The nominal MPC 

This method solves the QP problem (3.1) at each controller execution period, 

where the initial states and feedback are estimated using equations (3.2-3.3). 

2) The robust MPC (developed in this thesis) 

The detailed steps to implement this method are shown in Section 3.6. 

3) The open-loop robust MPC 

Here the open-loop robust MPC means the robust MPC method using open-loop 

uncertainty prediction, as discussed in Section 3.2.1. In this (incomplete) formulation the 

future controller actions are assumed to be unchanged for different realizations of the 

plant. This is equivalent to assuming that the control laws of the closed-loop system in 

the future horizon are ur=t and the dynamic performance of the system is optimized is by 

adjusting t. Therefore, this method can be implemented in the same way as detailed in 

Section 3.6 with the uncertainty calculated assuming that all the manipulated variables 

saturated, but with the values of the manipulated variables determined by t instead of 

being fixed to the bounds. The active set heuristic is not needed here because the 

saturation pattern has been defined. 

3.6.2 CSTR control system 1 

The first case study applies control to the Continuous Stirred-Tank Reactor 

(CSTR) process in the Appendix C of Marlin (2000), page 897-908, which is shown in 

Figure 3.8. In this case study, the inlet feed concentration of A (CAo) into the reactant is 

used to control the outlet concentration of A (CA)· The temperature of the reactor is 

maintained constant by a temperature controller manipulating the cooling flow rate. So, 

we consider the CSTR system to be isothermal. The non-linear plant model is given by 

the following equation, 

(3.57) 
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Figure 3.8 CSTR control system 1 

where KA is the constant first-order reaction rate, Vol is the reactor volume, F is the 

volumetric feed in flow rate. 

This non-linear model can be linearized at a particular steady-state operating point 

and the linear differential equation expressed as a transfer function as the following. 

(3.58) 


where y is the controlled variable CA, u is the manipulated variable CAo, B=0.9 minutes 

denotes the time for the output flow to reach the remote component analyzer, which 

introduces the delay between u and y. See Appendix F for the details of the linearization 

procedure and the parameters and operating points used in the thesis. 

The uncertainty of the system comes from the slowly varying inlet flow rate F, 

whose uncertain value is assumed to obey normal distribution with mean 1 m3/min and 

standard deviation 0.3 m3/min. The nominal plant model is derived at F=l m3/min as, 
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Nominal Model CSTR-1: 

0.8953e-0
·
95 

( ) 
y s ( ) = us (3.59)

0.8953s+ 1 

In the case studies, we evaluate the performance of the controllers at two specific plant 

mismatch realizations in the case study. One is with F=l.87 m3/min and its model is: 

Plant CSTR-1.1: 

0.9417e-0
·
95 

( ) 
y ( ) us (3.60)s = 

0.5025s + 1 

The other is with F=0.41 m3/min and its model is: 

Plant CSTR-1.2: 

0.7790e-0
·
95 

( ) 
y s ( ) = us (3.61)

1.8957s + 1 

These plants represent a "faster" plant (Plant CSTR-1.1 with a higher gain and smaller 

time constant) and a "slower" plant (Plant CSTR-1.2 with a lower gain and larger time 

constant). Both are within the uncertainty considered in the robust controller design. 

The controller execution period for this system is selected to be 0.3 minutes, so 

the models of the system are discretized with sampling time of 0.3 minutes. The 

state-space form of the reactor model without time delays andfeedback variables has the 

state vector x with 1 element and the system is controllable and observable. The feedback 

scheme assumes the unmeasured disturbance enters the system through the input channel 

(See Appendix A for more discussion on the selection of unmeasured disturbance model), 

which introduces the unmeasured disturbance vector e with 1 element. So the augmented 

system with x and e has 2 states, and it is detectable. Furthermore, the time delay between 

y and u is described by 3 additional states using the method introduced in Appendix C. 
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Since these 3 states denote the u in the last 3 time steps, they are known, and no observer 

gain is need for them. 

The tuning of all nominal MPC controllers in this thesis follows these guidelines: 

a) The control and prediction horizons n, p are tuned according to the guidelines 

introduced in Camacho and Bordons (1999). b) The observer horizon Pobs and observer 

gains are tuned according to the discussion in Appendix A. c) The weighting matrices Q 

and R, W are used to keep an acceptable trade-off between variability of the controlled 

variables y and the variability of the manipulated variables u in the closed-loop dynamics. 

In this thesis, the variability of variable is evaluated through set point step change test by 

calculating the sum of its squared difference from its set point; and we tune the weighing 

matrices such that the variability of u is within the ± 50% of the variability of y (when 

the system model is so scaled that the gain is 1 ). Also, when comparing robust MPC with 

nominal MPC in a case study, the robust MPC controller has the same tuning as the 

nominal MPC controller, except for the additional tuning parameter of confidence level. 

We can tune the MPC controllers for CSTR control system 1 with the above 

tuning guidelines, and tuning parameters are shown in Table 3-1. 

Table 3-1 Tuning parameters for the MPC controllers for CSTR control system 1 

Tuning Parameter Value 

Control horizon, n 

Prediction horizon, p 

Estimation horizon, p_ 

Observer gain for [xT, eT], L 

Weight for controlled variables in Q 

Weight for controlled variables in R 

Weight for controlled variables in W 

Penalty on controlled variable violation in Ws 

Confidence of each stochastic bound, a 

8 


20 


20 


[1, 0.556f 


10 


0.1 


1 

105 

99.9% 
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The deterministic SOCP subproblem solved by the proposed robust MPC method 

for this system has 8 decision variables, 92 linear constraints and 56 second order cones. 

This subproblem is typically solved in 0.02 CPU seconds. When applying the active set 

heuristic, the maximum number of SOCP subproblems solved for this system is 8 (the 

number of time steps in the control horizon), so the robust MPC costs at most 

0.02x8=0.16 CPU seconds. 

3.6.2.1 Set point tracking while observing bounds on controlled 

In this study on control system 1, there is a set point change from 1.79 kmole/m3 

to 2.79 kmole/m3 (toward the upper bound of the controlled variable) and then from 2.79 

kmole/m3 to 2.09 kmole/m3 (away from the bound). Figure 3.9 shows the system dynamic 

behaviours with the nominal MPC, the robust MPC and the open-loop robust MPC in two 

situations: (a) Plant= Nominal Model CSTR-1, and (b) Plant=Plant CSTR-1.1. 

We can see from Figure 3.9 (a) that the nominal MPC gives the best performance 

when there is no plant/model mismatch. The two robust MPC methods are more 

conservative when the set point is moved toward the bound, because they take actions 

that prevent the potential bound violation due to uncertainty. However, all the three 

methods give identical performance when the set point is moved away from the bound. 

The conservativeness of the two robust MPC methods is advantageous when 

plant/model mismatch is present, as shown in Figure 3.9 (b). In this study when the set 

point is moved toward the bound, they-bound is observed with the two robust MPC 

methods; however, it is violated with the nominal MPC. Again, all the three methods give 

identical performance when the set point is moved away from the bound. 

Note that for both realizations, the open-loop robust MPC is unnecessarily more 

conservative than the robust MPC, because it does not consider the effect of the feedback 

in the prediction; therefore, it overestimates the uncertainty in the future. 

One hundred simulations of the closed-loop system during time the first part of 

the transient (0-9 minutes) with the three MPC methods have been run with Monte Carlo 

sampling of the plant realizations. The results are summarized in Table 3-2. We observe 

that the nominal MPC gives the most aggressive control, which results in bound 

violations in many scenarios. The robust MPC gives more conservative control, and it 
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Figure 3.9 	 Set point tracking while observing bounds on manipulated variables 
- CSTR control system 1 

Table 3-2 Monte-Carlo Simulation Results of case study in Figure 3.9 during 0-9 min 

Samples with ' MaximumAverage IAE (I) Average IAV (Z) 	 violation/total
violation 

samples 

Nominal MPC 5.1727 0.1940 0.1940 44/100 

RobustMPC 5.3475 0.0006 0.0115 2/100 

Open-loop 
5.4834 0 	 0 0/100robustMPC 

Note: (1) IAE denotes Integrated Absolute Error. (2) IAV denotes Integrated Absolute Violation. 
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observes the bound for 98% scenarios. The open-loop robust MPC is even more 

conservative, so it prevents violation for all the 100 plant realizations but provides poorer 

control as measured by the IAE. 

3.6.2.2 Driving controlled variables back to feasible region 

In this study using control system 1, we assume that the controller is initially off 

and the controlled variable is outside its feasible region (smaller than its lower bound). 

Then, the controller is switched on after 1 controller execution time step (i.e., at 0.3 

minute), and it regulates the controlled variable back to the set point in the feasible 

region. Figure 3.3 shows the system dynamics with the nominal MPC, the robust MPC 

and the open-loop robust MPC in two situations: (a) Plant =Nominal Model CSTR-1, 

and (b) Plant= Plant CSTR-1.2. 

We can see from Figure 3.10 (a) for the case with no model mismatch that the 

nominal MPC drives the controlled variable back to its feasible region fast while giving 

the best dynamic performance. The two robust MPC methods are more aggressive; they 

return the controlled variables to feasible region quickly for not only the nominal plant 

realization, but also all other probable plant realizations. 

The advantage of the aggressiveness of the two robust MPC methods is apparent 

when plant/model mismatch is considered in Figure 3.10 (b). In this situation, the 

nominal MPC takes about four minutes to drive the controlled variable back to feasible 

region while the two robust MPC methods spend only 1 minute to do the same thing. For 

both situations, the open-loop robust MPC is more conservative than the robust MPC. 

One hundred simulations of the closed-loop system with the three MPC methods 

have been run with Monte Carlo sampling of the plant realizations. The results are 

summarized in Table 3-3. The two robust MPC methods drive the controlled variable 

quickly back to the feasible region, and to achieve this result, they are more aggressive 

than required for most realizations. Therefore, their IAE is relatively high, although the 

robust MPC is better than the open-loop robust MPC. In contrast, the nominal MPC is not 

aggressive enough and could take as long as 3.9 minutes to return the controlled variable 

to the feasible region. 
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Figure 3.10 Return to feasible region - CSTR control system 1 

Table 3-3 Monte-Carlo Simulation Results of case study in Figure 3.10 

Average time back to Maximum time back to 
Average IAE (I) 

feasible region (min) feasible region (min) 

NominalMPC 4.4180 1.6 3.9 

RobustMPC 11.1919 1.2 1.5 

Open-loop 
robustMPC 11.9372 1.2 1.5 

Note: (1) IAE denotes Integrated Absolute Error. 
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3.6.2.3 Set point tracking while observing the hard input bounds 

This case study shows the importance of addressing the input saturation in the 

prediction in robust MPC. We compare the performance of the robust MPC and the 

robust MPC whose algorithm does not consider manipulated variable (input) saturation in 

the closed-loop prediction model. The latter method assumes the inner optimization 

problem in the bilevel problem (3.5) is unconstrained, so the active set heuristic is not 

implemented and only one SOCP problem needs to be solved at each controller execution 

period. Thus, the latter method has unconstrained inner problems (but the outer problems 

are still constrained) and we call it unconstrained robust MPC (UCRMPC) here. 

Naturally, these two methods are identical when saturation does not occur; but 

they could have significant difference when saturation occurs. To understand this 

conceptually, let's rewrite the constraints on a manipulated variable (equation (3.56b)) in 

the following simplified form, 

(3.62) 

where the left-hand-side of the constraint denotes the maximum value of the uncertain 

manipulated variable u (u +), which is the sum of the expected value of u (E(u)) and the 

effects of the uncertainties <1>-1 (a) II v; t + V2 11 2 ). If the robust MPC does not address 

input saturation in the closed-loop prediction, the predicted u will be different for 

different plant realizations and the effects of the uncertainties <1>-1(a) II v; t + V2 11 2 will 

not be zero. So the constraint (3.62) only enforces the maximum value of the uncertain u 

to its upper bounds, and it keeps other realizations of u away from the bound. Figure 3 .11 

(a) illustrates this situation. The proper robust MPC (proposed in this work) addresses 

input saturation explicitly in the closed-loop prediction. When the active set heuristic 

decides a variable is at its bound, u will be constant for all plant realizations and the 

effects of the uncertainties <1>-1(a) II v; t + V2 11 2 will be zero. So the constraint (3.62) 

enforces the u for all the plant realizations (including the maximum u value, u +, and the 

minimum u value, u-) to its upper bound. Figure 3.11 (b) illustrates this situation. 
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The advantage of addressing input saturation in the closed-loop prediction is 

demonstrated in the case study shown in Figure 3.12. In this case study, the feed flow rate 

is constant at F=l m3/min, i.e., the plant is the Nominal Model CSTR-1. Two situations 

are simulated, and their results are shown in Figure 3.12 (a) and (b), respectively. In the 

first situation shown in Figure 3.12 (a), there is a set point step decrease and then a set 

point step increase. When the set point decreases, u moves away from its bound and the 

robust MPC and the unconstrained robust MPC give the same performance. When the set 

point increases, y cannot be driven to the set point because of the upper bound on u. So 

the robust MPC forces u to remain at its upper bound, and y is driven as close as possible 

to its set point quickly. However, the unconstrained robust MPC moves u slowly to its 

upper bound, and thus, y is driven slowly towards its set point. This is because the 

algorithm requires that all realizations of the manipulated variable remain feasible, which 

moderates the aggressiveness of the manipulated variable when it approaches a 

constraint. 

In the second situation shown in Figure 3.12 (b), the upper bound on u is not so 

tight, and the set point can be reached at the steady state. The robust MPC allows the 

input saturation during the transient to drive y quickly to the set point. However, the 

unconstrained robust MPC keeps u away from its upper bound during the transient, so y 

is driven to the set point slower. 

~'~~~~'"'-"'-"" &'-~''''''~'~
E(u) }<I>-1(a)llVit+V2 ll2 !- .- . 

(a) Prediction without addressing saturation (b) Prediction addressing saturation 

- • - • Maximum or minimum value Expected value Upper bound 

Figure 3.11 Conceptual comparison of robust MPC predictions for input saturation 
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3.6.3 CSTR control system 2 

The second control system involves the CSTR process from the Appendix C of 

Marlin (2000), page 897-908. The controlled variable is still the outlet concentration of A 

(CA) and the manipulated variable the inlet feed concentration of A (CAo). However, there 

is no temperature controller to maintain the temperature of the reactor, so the system is 

non-isothermal. The cooling flow rate Fe is measured at the beginning of each controlled 

execution period, and its measurement is sent to the MPC controller as a measured 

disturbance. Figure 3.13 shows the diagram of this control system. 

The non-linear plant model is given by the following equations, 

Mass balance: 

·········· ....._.__________, 

4 5 8 

(3.63) 
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Figure 3.13 CSTR control system 2 

where kA0 e-EIRr gives the reaction rate KA that obeys first order Arrhenius equation. 

Energy balance: 

Vol· pC dT = pC F(T, -T)- aF',;b+I (T T ) Ml V4 l k E!Rrc 
P dt P O aFb - c,in - rxn 0 • AOe- A 

(3.64)F + c 

c 2pcCpc 

where p and Cp are the density and specific heat capacity of the mixture in reactor, pc and 

Cpc are the density and specific heat capacity of the coolant, a, b denote the coefficients of 

the heat transfer during the cooling procedure, To denotes the temperature of the inlet 

flow, Tc,in denotes the temperature of the inlet cooling flow, L1Hrxn<O denotes the enthalpy 

change due to the (exothermic) reaction. 

This non-linear model can be linearized at a particular operating point and 

expressed as a transfer function. See Appendix F for the details of the linearization 

procedure and the parameters and operating points used in the thesis. The uncertainty of 

the system comes from the slowly varying inlet cooling flow temperature Tc,in, whose 
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uncertain value is assumed to obey normal distribution with mean 310 K and standard 

deviation 5 K. The nominal plant model is derived at Tc, in =310 K as, 

Nominal Model CSTR-2: 

95 095
(s + 0.8078)e-0

· ( ) 0.02204e- · d( )
( ) us+ (3.65)ys= s 

s 2 +l.925s+1.143 s 2 +l.925s+1.143 

where y is the controlled variable CA, u is the manipulated variable CAo, dis the measured 

disturbance Fe. The time delay B =0.9 minutes denotes the time for the output flow to 

reach the remote component analyzer. 

In this case study, we will evaluate performance at two mismatch plant 

realizations. One is with Tc.in=318.95 K, and its model is: 

Plant CSTR-2.1: 

95 95= (s + 0.8078)e-0
· ( ) 0.0126e-0

· d( )
ys( ) us+ s (3.66) 

s 2 +l.925s+l.143 s 2 +1.925s+l.143 

The other is with Tc.in= 300.36, and its model is: 

Plant CSTR-2.2: 

(s + 0.8078)e-0 9 
s ( ) 0.0322e-0·95 d( )

ys=( ) us+ s (3.67) 
s 2 +1.925s + 1.143 s 2 +1.925s + 1.143 

The controller execution period for this system is selected to be 0.3 minutes, so 

the models of the system are discretized with sampling time of 0.3 minutes. The 

state-space form of the models without time delays and feedback variables has the state 

vector x with 2 elements, and the system is controllable and observable. The feedback 

scheme assumes the unmeasured disturbance enters the system through the disturbance 

channel, which introduces the unmeasured disturbance vector e with 1 element. So the 

augmented system with x and e has 3 states, and it is detectable. The time delays between 
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y and u, d are described by 3 additional states using the method introduced in Appendix 

C. Since these 3 states denote the u and d in the last 3 time steps, they are naturally 

known and no observer gains are need for them. 

The MPC controllers for this system have the same tuning parameters (except that 

NMPC does not have a confidence value for stochastic bounds), which are obtained using 

the method for the CSTR control system 1. Table 3-4 shows these parameters. 

The deterministic SOCP subproblem solved by the proposed robust MPC method 

for this system has 10 decision variables, 115 linear constraints and 70 second order 

cones. This problem is typically solved in 0.02 CPU seconds. When applying the active 

set heuristic, the maximum number of SOCP subproblems solved for this system is 10 

(the number of time steps in the control horizon), so the robust MPC costs at most 

0.02x10=0.2 CPU seconds. 

Since the unmeasured disturbance variable Tc.in affects the dynamics between the 

measured disturbance variable and the controlled variable, we need to address the 

Table 3-4 Tuning parameters of the MPC controllers for CSTR control system 2 

Tuning Parameter Value 

Control horizon, n 

Prediction horizon, p 

Estimation horizon, p_ 

Observer gains for [xr, erf, L 

Weight for controlled variables in Q 

Weight for controlled variables in R 

Weight for controlled variables in W 

Penalty on controlled variable violation in Ws 

Confidence of each stochastic bound, a 

10 


25 


25 


[1, -12.902, 18.983f 


10 


0.1 


1 

105 

99.9% 
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uncertainty in the disturbance model used explicitly in the robust MPC. As we discussed previously in 

this chapter, closed-loop uncertainty should be used in the uncertainty prediction. Figure 3.14 

illustrates the open-loop uncertainty and closed-loop uncertainty after a disturbance step change of 1.5 

m3/min. The open-loop uncertainty shown in Figure 3.14 (a) is the uncertainty based on assuming no 

feedback correction occurs for disturbance plant/model mismatch in the future. So the future u series 

is deterministic and the future y series is different for different plant realizations. The closed-loop 

uncertainty shown in Figure 3.14 (b) is the uncertainty including the effect of the future feedback 

corrections on the closed-loop system. So, the both the future u series and y series are different for 

different plant realizations. 

In Figure 3.14, the dashed dotted lines and the dashed lines show the boundaries 

of the open-loop and closed-loop uncertainty regions respectively with 99% confidence, 

which are obtained with the method shown in the Subsection 3.3.1. We observe that the 

closed-loop uncertainty region is smaller than the open-loop uncertainty region. 
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Figure 3.14 Open-loop and closed-loop uncertainty-CSTR control system 2 
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Therefore, using closed-loop uncertainty in robust MPC prediction for disturbance 

plant/model mismatch is not only conceptually more accurate, but also less conservative. 

3.6.3.1 Constant disturbance rejection 

In this study with the CSTR control system 2, there is a step change in the 

measured disturbance Fe from 15 m3/min to of 7.5 m3/min. Figure 3 .15 shows the system 

dynamics with the nominal MPC and the robust MPC in two situations: (a) Plant = 

Nominal Model CSTR-2, and (b) Plant= Plant CSTR-2.1. Figure 3.15 (a) shows that the 

nominal MPC compensates the disturbance change perfectly while the robust MPC drives 

the controlled variable away from its upper bound to prevent potential violation for some 

realizations. When the plant/model mismatch is present in the second situation shown in 

Figure 3.15 (b), the controlled variable violates its upper bound with the nominal MPC, 

while the bound is observed with the robust MPC. 

(a) Plant= Nominal Model CSTR-2 (b) Plant= Plant CSTR-2.1 

~ Upperbound - - - · NominalMPC -- Robust MPC - • - Set point 

y =CA kmole/m3 u =CAO kmole/m3 x-axis =time (minute) 

Figure 3.15 Constant disturbance rejection- CSTR control system 2 
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Table 3-5 Monte-Carlo Simulation Results of case study in Figure 3.15 

Samples with 
Maximum2Average IAE (l) Average IAV < ) violation/total
violation 

samples 

NominalMPC 0.0590 0.0062 0.0296 18/100 


RobustMPC 0.0999 0.0007 0.0131 3/100 


Note: (1) IAE denotes Integrated Absolute Error. (2) IAV denotes Integrated Absolute Violation. 

Table 3-5 summarizes 100 simulation results with Monte Carlo sampling of 

plant realizations. The robust MPC experiences far fewer constraint violations, and to 

achieve this good feasibility performance, it incurs a larger IAE. If the set point were far 

from a constraint, both controllers would provide the same performance, as measured by 

IAE. 

3.6.3.2 Stairs disturbance rejection 

In this study with the CSTR control system 2, the measured disturbance increases 

by 3 m3/min during three successive controller execution periods. Figure 3.16 shows the 

system dynamics with the robust MPC and the open-loop robust MPC in two situations: 

(a) Plant= Nominal Model CSTR-2, and (b) Plant= Plant CSTR-2.2. In both cases, the 

open-loop robust MPC is more conservative. 

Table 3-6 summarizes the simulation results of the closed-loop system with 

Monte Carlo sampling of 100 plant realizations. We can see that the robust MPC ensures 

the bound satisfaction at a high confidence level (97%) while it achieves much better 

dynamic performance than the open-loop robust MPC does. This demonstrates that the 

open-loop prediction of the disturbance plant uncertainty is overly conservative for a 

robust MPC formulation. 
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Figure 3 .16 Stairs disturbance rejection - CSTR control system 2 

Table 3-6 Monte-Carlo Simulation Results of case study in Figure 3.16 

Average IAE (l) Average IAV < 
2

) 
Maximum 
violation 

Samples with 
violation/total 

samples 

RobustMPC 0.1929 0.0005 0.0122 3/100 

Open-loop 
robustMPC 0.2496 0.0001 0.0053 1/100 

Note: (1) IAE denotes Integrated Absolute Error. (2) IAV denotes Integrated Absolute Violation. 

3.6.3.3 Periodic disturbance rejection 

In this study with the CSTR control system 2, the measured disturbance changes 

periodically from 3 m3/min to -3 m3/min. Figure 3.17 shows the system dynamics with 

the nominal MPC, the robust MPC and the open-loop robust MPC for Plant = Plant 
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CSTR-2.2. Again, we can see the nominal MPC is the most aggressive control method, 

and the controlled variable violates the constraint periodically during the transient. The 

robust MPC gives more conservative control according to its explicit consideration of 

uncertainty, so it prevents the constraint violation. The open-loop robust MPC prevents 

the constraint violation but it is more conservative than the robust MPC. 

Table 3-7 summarizes 100 simulation results of the closed-loop system with 

Monte Carlo sampling of the plant realizations. Again, the robust MPC observes the 

constraints for almost all the plant realizations, and to achieve this behavior, it achieves a 

somewhat higher JAE. The nominal MPC achieves lower JAE, but it results in constraint 

violation for many plant realizations. The open-loop robust MPC observes the constraints 

for all the plant realizations, but it achieves the largest JAE. 
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Figure 3.17 Seasonal disturbance rejection - CSTR control system 2 
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Table 3-7 Monte-Carlo Simulation Results of case study in Figure 3.17 

Samples with 
2 MaximumAverage IAE (l) Average IAV < ) violation/total

violation 
samples 

Nominal MPC 0.3362 0.0397 0.0296 47/100 

RobustMPC 1.1394 0.0002 0.0021 1/100 

Open-loop 
1.4684 0 0 0/100robustMPC 

Note: (1) IAE denotes Integrated Absolute Error. (2) IAV denotes Integrated Absolute Violation. 

3.6.3.4 Disturbance rejection with different state estimation methods 

This case study with CSTR control system 2 shows the importance of including 

the uncertainty in state estimation in the robust MPC formulation. We compare the 

performance of the robust MPC with traditional state estimation not addressing 

uncertainty explicitly (which solves the SOCP problem (3.32)) and the robust MPC with 

state estimation addressing uncertainty explicitly (which solves the SOCP problem 

(3.45). Figure 3.18 compares the system dynamics under the robust MPC using the two 

different state estimation methods respectively for the situation in which Plant = Plant 

CSTR-2.2 and the measured disturbance decreases from 15 m3/min to 9 m3/min and then 

increases to 21 m3/min. We can see that the controlled variable violates its upper bound if 

uncertainty in state estimation is not addressed and the bound is not observed when 

uncertainty in state estimation is addressed. 

The advantage of addressing uncertainty m state estimation lies in the 

incorporation of greater (and more accurate) uncertainty in the closed-loop prediction of 

the controlled variables. To explain this conceptually, let's rewrite the constraints on a 

controlled variable y (equation (3.43d) without addressing uncertainty in state estimation 
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Figure 3.18 RMPC using different state estimation methods - CSTR control system 2 


or equation (3.56d) addressing uncertainty in state estimation) in the following simplified 

form, 

(3.68) 


where the left-hand-side of the constraint denotes the maximum value of the uncertain 

controlled variable y (J./), which is the sum of the expected value of y (E(y)) and the 

effects of the uncertainties (<I>-1(a.)ll Vit+ Vill2). If the robust MPC includes the 

uncertainties in the state estimation, the norm term <l>-1(a.)ll Vit+ Vill2 will be bigger than 

that without the uncertainties in the state estimation. Thus, the decisions will be more 
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conservative if uncertainty in state estimation is also included, so that the constraint 

violation will be less probable to occur. 

The above conceptual discussion is validated by the simulation results shown in 

Figure 3 .19. This figure compares the maximum values of the norm term of the output 

over the prediction horizon with and without including uncertainty in state estimation, at 

each controller execution period. We can find that this norm term is bigger when 

uncertainty in state estimation is addressed than that when uncertainty in state estimation 

is not addressed, which explains the more appropriate control when including uncertainty 

in state estimation in Figure 3.18. 

One hundred simulations have been run for the same disturbance scenario and 

with Monte Carlo sampling of different plant realizations. The controlled variable-bound 

is observed for 83% of the plant realizations when uncertainty in state estimation is not 

addressed and 97% when it is addressed, with the same robust MPC controller. This 

again demonstrates the importance of including the uncertainty in state estimation in the 

robust MPC formulation explicitly. 
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3.7 Conclusions 

In this chapter, a new robust MPC method has been developed for feedforward 

and feedback control of uncertain dynamic systems. The presentation has followed the 

organization in the "roadmap" in Figure 3.1. This method primarily addresses robust 

feasibility for MPC with model uncertainty, and it possesses the following characteristics: 

1) 	 A framework that addresses: 

a. 	 Bilevel optimization - The original bilevel optimization problem was 

reformulated as a single-level problem by replacing the inner optimization 

with its optimality conditions; 

b. 	 Correlated parametric uncertainty - The uncertainty from the plant, the 

measured disturbance(s) and the stochastic unmeasured 

disturbances/noises. A novel deviation model formulation, which is 

obtained by the deviation of the variables from a virtual steady state of 

them (determined by the latest implemented manipulated variables), is 

used to reduce the conservativeness in the prediction of time-invariant 

uncertainty by limiting the effects of plant uncertainty to changes in the 

input variables; 

c. 	 Hard bounds on manipulated variables in closed-loop prediction - The 

saturation pattern of the manipulated variables is obtained through an 

active set heuristic in an iterative way; 

d. 	 Tractable solution for real-time implementation - The method solves a 

limited number of (convex) SOCPs, which can be solved by the 

stat-of-the-art interior point optimizers. 

We note that other researchers have addressed some of these issues, but no published 

method provides a controller that addresses all of these issues. 

2) 	 A novel deviation model formulation obtained by the deviation of the variables from 

a virtual steady state of them (determined by the latest implemented manipulated 
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variables). This formulation is used for time-invariant uncertainty to reduce the 

conservativeness in uncertainty prediction by limiting the effects of plant uncertainty 

to changes in the input variables. 

3) 	 Efficient real-time calculation for uncertainty characterization, where the extensive 

calculation is performed off-line. 

4) 	 Explicit handling ofuncertainties in state-estimation. 

The new robust MPC method can be used to optimize uncertain systems with 

feedback. Its advantages are demonstrated in simulation case studies. We can conclude 

from the simulation results that: 

1) 	 The robust MPC outperforms the nominal MPC on handling the constraints on 

controlled variables; 

2) 	 The robust MPC, which uses a closed-loop uncertainty estimate, is better than the 

robust MPC with open-loop prediction of uncertainty, which could be unnecessarily 

conservative due to its overestimation ofuncertainty; 

3) 	 The robust MPC handles the saturation of the manipulated variables well (but without 

a global optimality guarantee); 

4) 	 The feasibility of the plant can be achieved with a high probability though 

chance-constrained programming for the robust MPC formulation (provided a 

feasible plant trajectory exists). The probability of constraint violations can be 

reduced by increasing the confidence level for each constraint as well as increasing 

the uncertainty of the parameters. 

The new robust MPC method can be applied to process control and supply chain 

optimization problems. The following Chapters 4 and 5 will discuss special issues in 

these two types of applications and introduce special extensions in modeling and 

formulation for the unique needs of each application. 

102 




PhD Thesis - Xiang Li McMaster University - Chemical Engineering 

Chapter 4 

Robust MPC for Process Control 

In this chapter, we extend the general framework of the robust MPC developed in 

Chapter 3 to include features required for the process control problems. Two extensions 

are developed: i) integrating the robust steady-state optimization, and ii) including the 

robust dynamic performance in the objective function. 

Industrial MPC control systems usually include a steady-state optimization unit 

that is executed immediately before each controller execution (Qin and Badgwell, 2003). 

Since a nominal steady-state optimization may give infeasible set points with the 

presence of uncertainty, a new robust steady-state optimization method that is developed 

to address the closed-loop uncertainty explicitly is introduced in Section 4.1. The original 

formulation is a bilevel stochastic optimization problem, which is then approximately 

transformed into a limited number of convex optimization problems for efficient 

real-time calculation. This reformulation is similar to the one introduced in Chapter 3 for 

dynamic feedback systems. 

In some process control problems, we would like to optimize the dynamic 

performance based on the behaviors of all realizations of the uncertain system instead of 

just the nominal dynamic performance. Section 4.2 discusses including the expected 

performance and the variances of the controlled variables in the objective function, and it 
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also shows that the new objective function is still convex and quadratic, yielding tractable 

real-time calculations. 

Section 4.3 reports the case study results that show the advantages of the robust 

MPC method and the two extensions in process control, and the conclusions are 

summarized in Section 4.4. 

4.1 Robust Steady-State Optimization 

4.1.1 Steady-state optimization in industrial MPC control system 

As introduced in Chapter 1, a typical industrial MPC control system involves a 

steady-state optimization unit that obtains optimal set points and a trajectory optimization 

unit (i.e., MPC controller) that determines the controller action to regulate the dynamics 

of the system. Figure 4.1 shows the simplified diagram of the closed-loop system that 

includes both the steady-state and trajectory optimizations. 

The steady-state optimization is executed immediately before every trajectory 

optimization at the beginning of each controller execution period. It is formulated to find 

a feasible "settling point" or steady state of the system that is close to the reference values 

y(rej)' u(rej) 

Steady-State b 
Bias0 timization Estimate 

Ysp' Usp 

MPC x,e 

(Trajectory optimization) 

u 
State 

Estimate 

Plant Ym 

Figure 4.1 Closed-loop system with steady-state and trajectory optimization 
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of the controlled and manipulated variables y<ref), u<ref), which are reference values 

determined by an upper-level optimizer or by plant personnel. The results of the 

steady-state optimization are the set point of the system (ysp Usp), which are used by the 

MPC trajectory optimization as described in Chapter 3. 

The steady-state optimization is important because disturbances entering the 

system or new input information from the operator may change the location of the 

optimal steady state. It is performed based on the steady-state plant model, which can be 

obtained from the state-space dynamic model (equations (3.5b-3.5d) in Chapter 3) as 

(4.1) 

Yssr = C,xssr (4.2) 

Rny Rn, Rn• d Rnd Rn•h denote the vectorsw ere Yssr E ' xssr E ' ussr E ' mss E ' ess E 

containing the controlled variables, state variables, manipulated variables, measured or 

forecast disturbances and feedback variables at the steady state respectively, Ar, Br, Bdr, 

Ber and Cr are the uncertain parameters of the plant. Here, we do not consider the noises 

for steady-state optimization. 

Since the steady-state measured disturbances dmss and the steady-state feedback ess 

can not be obtained directly during the transient, we have to use estimated values for 

them in equation (4.1). In this thesis, we assume the disturbances measured at the current 

time step to be constant in the future and estimate dmss by the current measured 

disturbance dm.o. We also assume the feedback estimated at the current time step to be 

constant in the future and estimate ess by e0 • Thus, the steady state model equations 

( 4.1-4.2) can be combined into the following form. 

(4.3) 
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where K, = C,(J-A,)-1 B, and Kd, = C,(J -A,r1Bdr are the uncertain gams and 

h0 =C,(J -A,f1 Be,eo ~ C(I-Af1 Beeo , which means we approximate h0 by its 

nominally estimated value. 

The nominal steady-state optimization formulation can be written in the following 

form. 

NSSO: 

mm (4.Sa)
USS ,S 

(4.Sb) 

Ysp =Yss (4.Sc) 

usp (4.Sd)=USS 

(4.Se) 

Ymin - S ~ Yss ~ Ymax + S (4.Sf) 

-S < Y -y(ref) < S 
y- SS - y (4.Sg) 

-S < U -U(ref) < S 
- (4.Sh)u- SS U 

(4.Si) 

The mathematical program (4.5a-4.5i) is a Linear Program (LP, Boyd and Vandenberghe, 

2004). Equation (4.5b) denotes the nominal steady-state plant model (4.3) using the 

nominal value of all parameters. Yss E Rny and Yss E Rn· are the nominal steady-state 

controlled and manipulated variables, and the nominal gains K and Kd can be calculated 

using the nominal values of the plant parameters. Equations ( 4.5c-4.5d) define results of 

the steady-state optimization as the set points YspE Rny, UspE Rn· to MPC controller. 
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Equation (4.5e) denotes the hard lower bounds UminE Rn· and upper bounds UmaxE Rn· on 

the manipulated variables. Equation (4.5f) denotes the soft lower bounds YminE Rny and 

upper bounds YmaxE Rny on the controlled variables with the slack variables s measuring 

any violation. Equations (4.5g-4.5h) define the slack variables SyE Rny and SuE Rn· for the 

deviation of the steady-state controlled and manipulated variables from their reference 

values, respectively. Equation (4.5i) denotes all the slack variables are nonnegative. The 

objective function for the optimization ( 4.5a) minimizes the weighted deviation of the 

steady-state controlled and manipulated variables from their references plus the weighted 

violation of the soft bounds on the controlled variables. The weighing and penalty 

coefficients c.Jh Cu and f can be determined according to economics or other preferences 

for the operation. 

4.1.2 The robust steady-state optimization with closed-loop uncertainty 

The purpose of the steady-sate optimization is to find the "best, feasible" settling 

condition for the control system. However, due to the uncertainty in the plant, the 

steady state of the uncertain plant is different for different plant realizations. Then, the set 

points Ysp, Usp obtained by solving problem NSSO will likely not be the best values and 

the variables in the plant may not even be feasible. Therefore, a robust steady-state 

optimization method is developed in this research to address the uncertainty explicitly. 

This method is designed to achieve the following goals: the set points Ysp and Usp give the 

maximum profit for the nominal model and feasible y and u for all model parameters 

within their uncertainty definition. 

A straight-forward approach for formulating the robust steady-state optimization 

for the above two goals is to a) Replace the nominal model ( 4.5b) by the uncertain plant 

model (4.3) (so that for deterministic steady state manipulated variables, the steady state 

controlled variables are different for different plant realizations); b) Pose the constraint 

(4.5f) on the uncertain steady-state controlled variables instead of their nominal values. 

This idea has been used in the robust steady-state optimization method developed 

by Kassmann et al. (2000). However, this approach does not address the effect of the 

controller on the steady state in the closed-loop system. As we know, the controller will 

compensate for model errors by adjusting the manipulated variables to minimize the 
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objective function. These adjustments would tend to maintain feasibility and bring the 

controlled variables, Ysp, to their reference values, y<ref>, if possible. So, the method of 

Kassmann et. al. is not correct for the uncertainty in the closed-loop system because it 

overlooks the effect of the controller. We call this method robust steady-state 

optimization with open-loop uncertainty. 

To address the uncertainty of the steady state of closed-loop system correctly, we 

have to consider both the uncertain steady-state plant model ( 4.3) and a steady-state 

controller model. We call the method using this idea robust steady-state optimization 

with closed-loop uncertainty. Similar to our discussion in Chapter 3 for trajectory 

optimization, closed-loop uncertainty 1s more accurate and less conservative than 

open-loop uncertainty for steady-state optimization. This will be demonstrated by some 

case study results in Section 4.3. 

Here, we develop the robust steady-state optimization method using closed-loop 

uncertainty. The steady-state MPC controller model is approximated by the steady-state 

version ofnominal MPC (similar to equation (3 .1) in Chapter 3) as 

NMPCSS: 

min (4.6a) 

s.t. (4.6b) 

(4.6c) 

The objective function ( 4.6a) is simplified to contain only the deviations of the controlled 

and manipulated variables from their set points at the steady state because the system is 

invariant at the steady state throughout the horizon. Q and R contain the weighting 

coefficients from Q and R in NMPC equation (3 .1) for only one time step. The 

nominal steady-state model ( 4.6b) is the steady-state version of the nominal dynamic 

model (3.lb-3.ld), which can be derived from the model (3.lb-3.ld) as we discussed in 

the previous Section 4.1.1. Note that the feedback term used by the controller in its model 
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at steady state will be different for different plant realizations, so the bias bssr E Rny in 

the model ( 4.6b) is not exactly bo, but an uncertain value depending on plant realization. 

Here, we only include the hard bounds on the manipulated variables (4.6c) because the 

soft bounds on the controlled variables will be enforced by the robust steady-state 

optimization in the outer layer of the bilevel problem. 

Then, we can write the new robust steady-state optimization formulation in the 

following form 

RSSO-CL: 

mm (4.7a) 

s.t. (4.7b) 

(4.7c) 

(4.7d) 

usp (4.7e)=USS 

Ysp = Yss (4.7f) 

(4.7g) 

Ymin - S::; Yssr ::; Ymax + S (4.7h) 

- S < Y - Y(ref) < S (4.7i)y- SS - y 

-s <u -u<ref) <s (4.7j)u- SS - U 

(4.7k) 

For all Kr, Kdr in the uncertainty region 

Equation ( 4.7b) denotes the steady-state nominal MPC control law ( 4.6), with the optimal 

manipulated variables Ussr different for different estimated steady-state bias bssr due to 
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different realizations of the plant. Equation (4.7c) relates the uncertain Yssr to the 

uncertain Ussr using the uncertain steady-state plant model, and equation (4.7c) relates the 

uncertain estimated steady-state bias to the uncertain plant realizations. Equations 

(4.7e-4.7t) define that nominal steady state values Yss. Uss that are sent to the MPC 

controller as set points Ysfh Usp· Equations (4.7g-4.7h) enforce hard bounds on the 

uncertain manipulated variables Ussr and soft bounds on the uncertain controlled variables 

Yssr· Equations (4.7i-4.7j) define the slack variables Sy and Su for the deviation of the 

nominal steady-state controlled and manipulated variables from their reference values, 

respectively. Equation ( 4.7k) denotes all the slack variables are nonnegative. The 

objective of the optimization ( 4.7a) minimizes the weighted deviation of the nominal 

steady-state controlled and manipulated variables from their references plus the weighted 

violation of the soft bounds on the controlled variables. 

Obviously, RSSO-CL is a bilevel stochastic optimization problem. As we 

discussed in Chapter 3, we do not use the scenario-based uncertainty because of 

tractability; rather, we use a continuous parametric uncertainty description. However, the 

bilevel problem is very difficult to solve in the real-time. Again, we can transform this 

problem approximately into a limited number of single-level deterministic optimization 

problems using the similar idea we use for dynamic optimization in Chapter 3. We will 

discuss the details in the following sections. 

4.1.3 The reformulation to convex optimization 

The first step of the reformulation is to replace the inner optimization problem 

(4.7b) by its KKT conditions. If NMPCSS is properly tuned, the QP Problem will be 

strictly convex so that it's optimum can be uniquely determined through its first order 

KKT conditions as 

(4.8b) 

(4.8c) 
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where the Lagrange multiplier vectors ,.i+, X e Rn· relate to the upper and lower bounds 

on the manipulated variables respectively, the dot "· " denotes the element-wise 

multiplication. We can replace the nominal MPC control law ussr =NMPCSS(bssr) with 

the KKT conditions (4.8a-4.8c) so that the bilevel stochastic problem (4.7) becomes 

single level stochastic MPEC problem. However, this problem is still difficult to solve in 

the real-time due to the complementarity constraints (4.8b). 

So the second step of reformulation is to remove the complementarity 

constraints (4.8b). Similar to what we have done for trajectory optimization, we assume 

the following assumption holds 

Assumption 4.1: A manipulated variable at steady state either equals its bound for all 

the realizations ofthe process or is unconstrained for all the realizations ofthe process. 

We also assume the all the active bounds on manipulated variables at the steady 

state are known (using a heuristic to be explained). When no bounds are active, all the 

Lagrange multipliers must be zero due to ( 4.8b ), and equation ( 4.8a) becomes 

(4.9) 

According to equation (4.7d), equation (4.9) can be written as 

(4.10) 

Now we define a new, artificial vector 

(4.11) 
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Note that the nominal MPC can be properly tuned so that the weighting matrix R has full 

rank, so that for any value of fss there will be (perhaps several sets of) values of Ysp, Usp 

which gives the same value of fss through equation ( 4.11 ); or for any value ofYsp Usp there 

will be unique value of fss corresponds to it through equation ( 4.11 ). Then, equation 

(4.10) can be equivalently transformed into the following unconstrained steady-state 

nominal MPC control law. 

(4.12) 

When a steady-state manipulated variable (an element in Ussr) saturates, the 

corresponding Lagrange multiplier forces it to its bound and the multiplier value does not 

affect other manipulated variables. Therefore, the Lagrange multipliers can also been 

omitted in the formulation when we know the active set. We can address the known 

saturation of the manipulated variables by modifying equation (4.12) into give the 

following. 

where lo,ssE Rn.xn. is a diagonal matrix with the diagonal vector containing 0 or 1 to 

specify the saturation, IE Rn.xn. is an identity matrix. The vector Uc contains the active 

upper bound or lower bound, which is known when we know the saturation pattern. 

According to equations (4.7c) and (4.13), 

Yssr =Krussr + Kdrdm,0 +ho 

= Kr[Io,ss((KT QKr + Rr1tss -(KTQK, + Rr1 KT QKdrdm,0)-tss}+ tsJ (4.15) 

+ Kdrdm,O +ho 
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The equations (4.13-4.15) construct the closed-loop steady-state model that can be 

rewritten into the following form for convenience 

(4.16) 

Yssr =Gyrfss +Gydrdm,O +bo 	 (4.17) 

(4.18) 

Substitute the equations (4.7b-4.7d) in RSSO-CL with the above closed-loop model, then 

the robust steady-state optimization formulation is changed into the following form 

RSSO-CLT: 

min 	 (4.19a) 
tss,s 

s.t 	 (4.19b) 

(4.19c) 

(4.19d) 

usp =USS 	 (4.19e) 

(4.19f)Ysp =Yss 

(4.19g) 

(4.19h)Ymin - S::;; Yssr ::;; Ymax + S 

y-
-y(ref) < S-S < Y 

SS - y 	 (4.19i) 

(4.19j) 

(4.19k) 

For all Gur, Gudr. Gy,., Gydr in the uncertainty region 
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where the of freedom change from Ysp, Usp to tss, the different realizations of the 

parameters Gun Gudr, Gy,., Gydr can be calculated from different realizations of Kn Kdr and 

the saturation of the manipulated variables (defined by hss). 

Based on the previous development: 

Remark 4.1: IfAssumption 4.1 holds and we know the correct saturation pattern of the 

manipulated variables at the steady state, the control law (4.13) is equivalent to the inner 

optimization problem Ussr= NMPCSS(bssr) and the formulation RSSO-CLT is equivalent 

to the formulation RSSO-CL. 

The third step of the reformulation is to introduce an active set heuristic, which is 

similar to the one discussed in Chapter 3, to obtain the active bounds on the manipulated 

variables in an iterative way. The heuristic is given in the following steps: 

1) 	 Assume no bounds are active at steady state, set all elements in Jss to 1, and solve 

problem RSSO-CL T. 

2) 	 The solution of problem RSSO-CL T gives the uncertain steady-state manipulated 

variables. If some manipulated variables, which are not assumed to saturate, have a 

value(s) at its bound (i.e., the boundaries of their uncertainty regions reach the upper 

or lower bounds on these manipulated variables), go to step (3); otherwise, end the 

iterative procedure and the current solution is the final solution. 

3) 	 Review the saturation status of all manipulated variables not already fixed at their 

bounds. Fix the manipulated variables that have encountered their bounds to their 

bound values (by specifying Jss, Uc). Solve problem RSSO-CL T again and go to step 

(2). 

The heuristic does not guarantee the "global optimum" of solution, i.e., there may 

be another saturation pattern that is better than the one found by the heuristic. However, 

the heuristic converges to the optimum if the correct active set is selected. The maximum 

number of iterations in the heuristic is the number ofmanipulated variables. 

The problem RSSO-CLT is an LP with uncertain linear constraints. Using the 

method explained in Section 3.3.1 of Chapter 3, this problem can be transformed 
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approximately into a SOCP by chance-constrained program technique with a given 

confidence level ass as 

RSSO-CLTSOCP: 

(4.20a) 

E(Gur ,I )fss + E(Gudr ,I )dm ,O 

s.t. (4.20b) 
+ <D-l (aSS) II v:~~l (t~' d!,o' 1y112 ~ umax,l 

I = 1, .. .,nu 
E(Gur,I )fss + E(Gudr,I )dm,0 

(4.20c)1
-<D- (ass) II Vu%~(t~, d~,0' ly 112~ Umin,/ 


E(Gyr,I )fss + E(Gydr,I )dm,O 


+ <D­
1 
(ass) II v:~~i{t~, d~,0' 1Y 112~ Ymax,I + S1 

I =1, .. .,ny 

(4.20d) 

E(Gyr,1 )tss + E(Gydr,I )dm,O 

-<D­
1
(ass) II v::s~/(t~, d~,0' 1Y 112~ Ymin,I -s, 

(4.20e) 

(4.20f) 

(4.20g) 

(4.20h) 

-S < Y -y(ref) < S (4.20i)y- SS - y 

-s <u -u(ref) <s (4.20j)u- SS - U 

(4.20k) 

For all Gur, Gudr, Gyr, Gydr in the uncertainty region 

where ass is constraint-wise confidence level, Gur,/, GudrJ, denote the /th row of matrices 

Gur, Gudr, and Umin,!, Umax,l denote the /th element in Umin, Umax respectively, Gyr,/, Gydr,/, 
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denote the /th row of matrices Gyp, Gydp, and Ymin,/, Ymax,l denote the Ith element in Ymin, 

Ymax respectively. s1 denotes the Ith row of the slack variable vectors. 

Vuss,1and Vyss,1denote the covariance matrices of vector (Gup,/, Gudp,t, 1) and vector 

(Gyp,/, GydplJ• 1) respectively, which are different for different saturation patterns of the 

manipulated variables (defined by IJ,ss). Vuss.l is obtained through Monte Carlo sampling 

as follows (and a similar approach is used for Vyss,t): 

1) Randomly select a sample of the open-loop uncertain parameters (Kr, Kdr) shown 

in model ( 4.3); 

2) Calculate closed-loop steady-state uncertain parameters (Gur, Gudr) accordingly; 

3) Repeat procedure (1-2) for 100 samples of the open-loop uncertain parameters 

and obtain different groups of closed-loop uncertain parameters, which are then be 

used to calculate Vuss,l according to the standard technique (Box et al., 2008). 

The characterization of Vuss,l and Vyss,l can be performed using the same method 

introduced in Section 3.3.2., where the extensive computation is performed off-line and 

the real-time computation requires little time. 

Equations ( 4. l 9g-4.19h) mean nominal steady state values Yss' Uss are sent to the 

MPC controller as the set points Ysp. Usp. 

Therefore, the new robust steady-state optimization method is implemented by 

solving the SOCP problem RSSO-CL TSOCP iteratively using the heuristic. 

4.1.4 The deviation model to exploit the feedback information 

In many cases, the uncertain parameters in an industrial MPC control system 

change slowly with respect to the closed-loop dynamics of the control system. In these 

cases, we can assume they are time-invariant, and we can exploit the feedback 

information to reduce the predicted uncertainty using the same idea we discussed in 

Section 3.2.5, i.e., to enhance the uncertain steady-state plant model (4.3) by expressing 

the variables as deviations from a virtual steady-state that is determined by the "most 

current" manipulated variables and the measured disturbances. 

For more details, we define the variables at the virtual steady state are Ys, Us, ds, 

bs, where Us, ds, es are known or are estimated at each controller execution as follows. 
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(4.20) 

(4.21) 

(4.22) 

and thenys can be obtained through the nominal steady-state model as 

(4.23) 

As discussed in Section 3.2.5, if there are time delays between the controlled and 

manipulated variables, we choose the value of a manipulated variable Bmax time steps 

before for its value at the virtual steady state, where Bmax denotes the maximum time 

delay between this manipulated variable and different controlled variables. We can also 

choose the value of a measured disturbance in the similar way if there are time delays 

between the controlled variables and the measured disturbances. 

With the virtual steady state determined by equations (4.20-4.23), we can enhance 

the uncertain steady-state plant model ( 4.3) into the following deviation model. 

(4.24) 

We can see that when the system is at a steady state, Yss , Uss, dss(=dm,o), the virtual steady 

state coincides with the actual steady-state, i.e. Ys=Yss, Us=Uss, ds= dss· Then the deviation 

model (4.24) will correctly predict Yssr to be Yss and its uncertainty zero. However, the 

steady-state model ( 4.3), which is not formulated in deviation variables, would predict 

that Yssr is different for different plant realizations (i.e. its uncertainty is not zero) at the 

steady state, which is not correct for time-invariant system. Therefore, in this thesis we 

use the deviation model for the prediction of time-invariant uncertainty in problem 

RSSO-CLTSOCP. The same idea has been successfully applied by Kassmann et al. 

(2000) in their robust steady-state optimization formulation with open-loop uncertainty. 
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As discussed in Section 3.2.5 in Chapter 3, when a deviation model is needed to 

handle time-invariant uncertainty, we do not need to change the structure of the general 

formulation developed; we only need to express the variables, their references, set points 

and bounds as deviation variables before the optimization as follows, 

, 
ussr =ussr - us 	 (4.25) 

d~ss = dmss - ds 	 (4.26) 

, 
Yssr =Yssr - Ys 	 (4.27) 

b;sr =bssr - bs 	 (4.28) 

y'(reft) =Y(reft) _ Ys (4.29) 

u'(reft) =u<reft) - u (4.30)s 

Ysp 	
, 

=Ysp - Ys ( 4.31) 

, 
usp =usp -us 	 (4.32) 

, 
Ymax =Ymax - Ys 	 (4.33) 

, 
Ymin =Ymin - Ys 	 (4.34) 

, 
umax = umax -us 	 (4.35) 

, 
Umin= Umin -Us 	 (4.36) 

k =0,-·-,p-l 

And after the optimization, we can restore the solution in the deviated variable form back 

to the original form (using equations ( 4.25-4.36) again). 

Note that if the steady-state optimization is required for a system, this system 

usually can be deemed as a time-invariant system (otherwise the calculation of the steady 
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state is meaningless). Therefore, for the case studies that run robust steady-state 

optimization in this research, all can be deemed as time-invariant. We will consistently 

use the deviation model (i.e., express the variables as deviation variables for optimization) 

for the robust steady-state optimization in the thesis. 

4.1.5 Summary of the Robust Steady-State Optimization Method 

According to the previous discussions in Section 4.1, the new robust steady-state 

optimization algorithm can be summarized as follows. 

Calculation performed off-line: 

1) Calculate the nominal value of the coefficients Gur, Gudr, Gyr, Gydr m the 

closed-loop model ( 4.16-4.17), for the situation no input bounds are active, 

according to equations ( 4.13-4.17); 

2) Repeat the calculation in step 1 for other samples of the open-loop uncertain 

system (100 samples used in this thesis). Calculate the covariance matrices for the 

closed-loop coefficients according to the results of the sample calculations. 

Calculation performed on-line at each controller execution period: 

1) 	 Obtain the reference values of the controlled and manipulated variables, y<re}}, u(re}} 

according to plant personnel or upper level optimizer. 

2) 	 Read new measurements of controlled variables and the measured disturbances 

Ym,o, dm,o respectively. Set uo to be the implemented manipulated variables in the 

last controller execution. 

3) 	 Calculate nominally predicted controlled variable for the current time step, y0, 

according to the previous implemented manipulated variables, measured 

disturbances and nominally estimated state and feedback variables. Then get the 

bias variables b0 =Ym,o - Yo· 

4) 	 Calculate the virtual steady state according to equations (4.20-4.23) and deviate 

the variables, references, set points and bounds from the virtual steady state 

according to equations ( 4.25-4.36). 
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5) Assume no bounds are active at steady state, set all elements in bss to 1, and solve 

the following problem RSSO-CL TSOCP2 with deviation variables: 

RSSO-CLTSOCP2: 

(4.37a) 

E(Gurj )fss +E(Gudrj )d~,O 
(4.37b)s.t. 

+ <l>-l (aSS) II V..~s:/ (t~' d':,o' 1rI b ~ u~axJ 
l=l, .. .,nu 

E(Gur,l )fss + E(Gudr,l )d~,O 
(4.37c) 

-<l>-
1(ass) II V..%:1(t~, d':,o, lJ 112;::: U~in,t 


E(Gyr,l )tss + E(Gydr,l )d~,O 

(4.37d) 

+ <l>-
1
(ass) II v::s~(t~, d':,o, lJ 112~ Y~ax,l + S1 

I =l, .. .,ny 

E(Gyr,l )tss + E(Gydr,l )d~,O 
(4.37e) 

-<l>-1(asJ II v::s:1(t~, d':,o, lJ lb;::: Y~in,/ -SI 

(4.37f) 

(4.37g) 

(4.37h) 

-S < y' -y'(ref) < S (4.37i)y- SS - y 

- s < u' - u'(ref) < s (4.37j)u- SS - U 

(4.37k) 

For all Gun Gudr, Gyr, Gydr in the uncertainty region 
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Note that the problem RSSO-CL TSOCP2 is different from the problem 

RSSO-CLTSOCP (equations (4.20a-4.20k) only in using the system variables and 

parameters that has been expressed as deviations from the virtual steady state. All 

the other variables and parameters in the problem RSSO-CL TSOCP2 are the 

same as defined before. 

6) 	 The solution gives the uncertain steady-state manipulated variables. If some 

manipulated variables, which are not assumed to saturate, have a value(s) at their 

bounds (i.e., the boundaries of their uncertainty regions reach the upper or lower 

bounds on these manipulated variables), go to step 7; otherwise, end the iterative 

procedure of the heuristic and go to step 8 (the current solution is the final 

solution obtained by the heuristic). 

7) 	 Review the saturation status of all manipulated variables not already fixed at their 

bounds. Fix the manipulated variables that have encountered their bounds to their 

bound values (by specifying Jss, uc). Solve problem RSSO-CL TSOCP2 again and 

go to step 6. 

8) 	 Restore the solution from the deviation variable mode using equations ( 4.25-4.36) 

and send the solved set points Ysfh Usp to the lower level controller. 

4.2 Optimization of Robust Dynamic Performance 

The general framework of robust dynamic MPC developed in Chapter 3 addresses 

the uncertainty explicitly in constraint handling only, where the objective of the 

optimization is still to minimize the nominal dynamic performance, 
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However, in some circumstances we would like to include in the objective function not 

only the nominal dynamic performance, but also some measure of uncertainty in the 

dynamic performance. (We will show several such circumstances in the cases studies in 

Section 4.3.) Our approach here is to express the robust objective function as a 

combination of the expected objective function and the appropriately weighted variances 

of the variables y, u, and Au that provide a measure of the effects of the uncertainty on 

the performance. We will demonstrate that this form is the natural result of the 

uncertainty description and the application of the expectation operator. Then, we will 

prove that the robust objective function can be reformulated as a convex quadratic 

function of the optimization decision variables, t, so that the resulting robust MPC 

formulation can also be transformed (approximately) into SOCP problems. 

As a first step in the development, we will prove the following relationship. 

where Yr, Un Aur are the uncertain controlled variables, manipulated variables and change 

of manipulated variables in the future horizon, Yr,1 denotes the /th element of vector yr, Ur,! 

denotes the /th element of vector Ur, q1, r1 and w1denote the /th element of the diagonal of 

weighting matrices Q R and W, respectively, V(·) denotes the variance of the 

variables in the parentheses. For the convenience of notation, we define the following 

T~ 

JI (yr) = (yr - Ysp) Q(y r - Ysp) (4.40) 

(4.41) 

(4.42) 
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then 

We can reformulate equation (4.40) as 

T~ 

JI (yr) = (yr -y sp) Q(y r - Ysp) 

=[{yr -E(y r))+ (E(yr)-y sp WQ[(y r -E(yr))+ (E(y r)-y sp)] 
(4.44) 

=(yr -E(yr)Y Q(y r -E(y r))+ (E(y r)-y spy Q(E(y r)-y sp) 

+ 2(£(y r)-y sp YQ(y r - E(yr)) 

So 

E[J1 (yr)]= El(yr -E(yr)Y Q(y r -E(yr))j+ El(E(yr)-Yspf Q(E(yr)-y sp)j 

+ E[2(E(yr)-yspf Q(yr -E(yr))] (4.45) 

=E[(Qu2yr -E(Q112y r) r(Q112y r -E(Q112y r) )]+ J1 (E(y r)) + 0 

Note that the first term of the above expression is the sum of the variances of each 

112element ofvector Q y r' so it equals to tr(Var(Q 112 y r)) = tr(QVar(y r)). Therefore, 

nvp (4.46) 
=Lq1Var(yr,l) + J 1(E(y r)) 

l=I 

Similarly, we can obtain 

nun 

E[J2(ur)] =~>mVar(ur,m) + J 2(E(ur)) (4.47) 
m=I 
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nun 

E[J3 (~ur)] =I wmVar(~ur,m) + J3 (E(~ur)) (4.48) 
m=I 

The equation ( 4.39) can be obtained by summing equations ( 4.46-4.48). 

We can also include the variances of the variables Yr, Ur, and Aur in the objective 

to get a more general objective function as, 

E(J(y o Ur, Aur))+ ~Yy,Far(Yr,1)+ Iru,Far(ur,1)+ Ir~u,Far(~ur,1) 

l=l l=l m=I 


=J(E(yr), E(ur), E(~ur)) (4.49) 

+ ~(q1 + Yy,1)Var(Yr,1)+ I(r1+ Yu,1)Var(ur,1)+ I Cw,+ hu,1)Var(Aur,1) 
l=l l=l m=I 

where Yy,1, Yu,1 and hu,1 are the weighting coefficients of the variances, whose 

non-negative values can be tuned to express extra emphasis for reduced variances. 

Next, we will express each term in equation (4.49) as function oft. We rewrite the 

closed-loop model developed in Chapter 3 again as follows (variable 0 will be replaced 

by 1t if some system states are not measurable and state estimation is required, as 

discussed in Section 3.4 of Chapter 3): 

(4.50) 

(4.51) 

and from equation (4.50) we can obtain 

(4.52) 
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According to the closed-loop model ( 4.50-4.52), we can obtain 

E(~ur) = E(L!'.ur)t + E(M!'.ur)0 + E(N!'.u)ro (4.55) 

Var(y,,1 )=Var(Lyr,1t+Myr,10+Ny,1ro)=llV:?(e, OT, N;,,f 11; (4.56) 

Var(ur,1 )=Var(Lur,1t+Mur,iO+Nu,iro)=llVu1?(e, OT, N~,f II; (4.57) 

where Lyr,1, Myr,l denote the /th rows of the uncertain matrices Lyr, Myr respectively, Vy,1 

denotes the covariance matrix of vector (Lyr,/, Myr,1, ro); Lur,l, Mur,l denote the /th rows of 

the uncertain matrices Lu,, Mur respectively, Vu,m denotes the covariance matrix of vector 

(Lur,l, Myr,/, ro); LL1ur,l, ML1ur,l denote the /th rows of the uncertain matrices LL1ur. ML1ur 

respectively, VLJu,l denotes the covariance matrix ofvector (LL1ur,[, ML1yr,l, ro). 

According to equations (4.38) and (4.53-4.58), the objective function (4.49) that 

includes both the expected performance and the variances or the system variables can be 

transformed into the following function oft, 

II Q112 (E(Lyr)t +E(Myr)O +E(Ny)ro -ysp) II; 
+II R112 (E(Lur)t +E(Mu,)9 +E(Nu )0>-U 5p) II; 

+II W112 
(E(L!'.ur)t +E(M!'.ur)O +E(N!'.u)ro) 11; +f cq, +Yy,1) II Vu1,?(e' OT, N~,y II (4.59) 

I=! 

n 11 n nyp 

+".'L(r,+ru,1)llV1z'.,7(e, OT, N'i,,,1f 11;+:LCw,+rtiu,1)llV),?(e, OT, N;,,f 11; 
I=! 1=1 
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It is easy to confirm that the objective function ( 4.59) is convex and quadratic 

with respect to the degrees of freedom t. Therefore, with this "robust" objective function, 

the robust MPC can still be solved by solving a series of SOCP problems using the 

method developed in Chapter 3. 

Note that as stated in Section 3.2.5, ifthe uncertainty in the system can be deemed 

as time-invariant and the deviation model is needed for better performance, we can still 

optimize an objective function with the same structure of equation (4.59) for the expected 

performance and weighted variances of the system variables; and the only change is 

replacing the variables in equation ( 4.59) with the corresponding deviation variables that 

have been deviated from the virtual steady state. For the simplicity of the discussion, we 

will not show a separate objective function for time-invariant uncertainty only. 

4.3 Case Study Results and Discussion 

This section contains the case studies of the several distillation control and CSTR 

control systems, which are investigated to show: 

1) The advantage of using closed-loop uncertainty over using open-loop uncertainty in 

the robust steady-state optimization; 

2) The advantage of the robust steady-state and dynamic optimization over the nominal 

steady-state and dynamic optimization in Multiple Input Multiple Output (MIMO) 

system; 

3) The advantage of minimizing robust performance instead of nominal performance in 

the robust MPC formulation for particular situations. 

The simulation case studies were performed on a PC with Intel Core 2 Duo 3.0 

GHz, 4GB memory and Windows Vista. The solution for the plant simulation is 

programmed in MATLAB 7.5 and the QP and SOCP problems are solved in GAMS with 
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the interior point (barrier) solver of CPLEX 11. The data in MATLAB and CPLEX are 

exchanged using the interface software MATGAMS developed by Ferris (2005). All the 

system models are initially expressed with continuous input-output transfer functions, 

and they are all discretized and transformed into state-space model using the Control 

System Toolbox in MATLAB 7.5. 

4.3.1 The control and optimization methods used in the case studies 

We will evaluate several dynamic control and steady-state optimization methods 

m the case studies, through which the advantage of the new methods will be 

demonstrated. These methods include: 

1) The nominal steady-state optimization 

This method solves the LP problem ( 4.5) at each controller execution period. 

2) The robust steady-state optimization 

The detailed steps to implement this method are shown in Section 4.1.5. 

3) The open-loop robust steady-state optimization 

Here the open-loop robust steady-state optimization means the robust MPC 

method that uses open-loop uncertainty prediction (e.g. the method developed by 

Kassmann et al., 2000), where the controller action at the steady state are assumed to be 

unchanged for different realizations of the plant. This is equivalent to assuming that the 

control law of the closed-loop system at the steady state are Urss=fss and the steady-state 

system is optimized is by adjusting fss· 

Therefore, this method can be implemented in the same way as detailed in Section 

4.1.5 with the uncertainty calculated assuming that all the manipulated variables 

saturated, but with the values of the manipulated variables determined by t instead of 

being fixed to the bounds. The active set heuristic is not need here because the saturation 

pattern has been defined. 
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4) The different dynamic control methods 

In the case studies in this section, we apply the nominal MPC, the robust MPC 

that is developed in Chapter 3, the unconstrained robust MPC that does not address input 

saturation in the closed-loop prediction, and the robust MPC minimizing robust 

performance that is developed in this chapter. The first three methods are the same as 

those we described in Section 3.5.1 in Chapter 3. The last method is similar to the robust 

MPC developed in Chapter 3, but the SOCP problems it solves have the robust objective 

function in the form of equation ( 4.59) instead of a nominal objective. 

4.3.2 Binary distillation control system 1 

Figure 4.2 shows the diagram of the binary distillation control system. The 

controlled variables are the distillate composition of light key XD (y1) and the bottoms 

composition of light key XB (y2). The manipulated variables are the Reflux rate R (u1) 

and the reboiler rate V (u2). The nonlinear model of the binary distillation process is 

described by a simulator, which is developed using the formulation from Marlin (1995) 

and the parameters from Luyben (1989). This nonlinear process can be linearized around 

F, 7<J 


Figure 4.2 Binary distillation control system 1 
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the initial steady-state and expressed as input-output transfer functions. See Appendix G 

for the details the parameters and linearization procedure used in the thesis. We assume 

it takes B=10 minutes for the distillate and bottoms outlet flows to reach the 

component analyzer and get analyzed, which introduces the time delay of 10 minutes 

between the controlled and manipulated variables. 

The uncertainty of the system comes from the slowly varying feed in flow rate F, 

whose uncertain value is assumed to obey normal distribution with mean 8.7713 

kmole/min and standard deviation 1.4619 kmole/min. The nominal plant model is derived 

at F = 8.7713 kmole/min as, 

Nominal Model: 

Y1(s)] =[O~~~:;:::s 
(4.60)[ y (s) 0.0649e-IOs

2 

34.13s + 1 

The controller execution period for this system is selected to be 10 minutes. The 

linearized model of the system is discretized with sampling time of 10 minutes and 

transformed into state-space model using the MATLAB control system toolbox. The 

state-space form of the distillation model without time delays andfeedback variables has 

the state vector x with 4 element and the system is controllable and observable. The 

feedback scheme assumes the unmeasured disturbance enters the system through the 

input channel (See Appendix A for discussion on selection of unmeasured disturbance 

model), which introduces the unmeasured disturbance vector e with 2 element. So the 

augmented system with x and e has 6 states, and it is detectable. Furthermore, the time 

delay between y and u is described by 2 additional states using the method introduced in 

Appendix C. Since these 2 states denote the u in the last time step, they are known, and 

no observer gain is need for them. The MPC controllers are tuned according to the 

methods described in Chapter 3, and Table 4-1 shows the tuning parameters. 
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The deterministic SOCP subproblem solved by the proposed robust MPC method for 

this system has 20 decision variables, 230 linear constraints and 140 second order cones. 

This problem is typically solved in 0.04 CPU seconds. When applying the active set 

heuristic, the maximum number of SOCP subproblems solved for this system is 10 (the 

number of time steps in the control horizon), so the robust MPC costs at most 

0.04x 10=0.4 CPU seconds. 

Table 4-1 Tuning parameters of the MPC controllers for distillation control system 1 

Tuning Parameter Value 

Control horizon, n 10 

Prediction horizon, p 25 

Estimation horizon, p_ 25 

[9.5 28 8.1 14 29Observer gain for [xT, eTf, L l.3J
-10 -29 -17 -30 -22 -4.4 

Weights for controlled variables, [q1, q2] [10, 100] 

Weights for manipulated variables, [r1, r2] [0.001, 0.001] 

Move suppression weights [w1, w2] [0.1, 0.1] 

Penalty on slack variables [ws,J, Ws,2] [105
, 106

] 

Cost of controlled variables Cy (10, l]T 

Cost of manipulated variables Cu [0, O]T 

Confidence of each stochastic bound in 
99.7% 

robust steady-state optimization, ass 


Confidence of each stochastic bound in 

99.9% 

robust MPC, a 
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4.3.2.1 Closed-loop steady-state uncertainty 

As discussed in Section 4.1, the correct prediction of the uncertain steady state 

must include the effect of the controller on the closed-loop system, which could make 

either the manipulated variable or the controlled variable or both uncertain at the steady 

state depending on the active set. An "open-loop" prediction of uncertainty is incorrect. 

Figure 4.3 shows three situations of the steady state with the presence of 

uncertainty for the distillation control system 1. In the first situation, shown in Figure 4.3 

(a), the system is unconstrained (or none of the constraints are active), so the steady-state 

values of the controlled variable will be equal to their reference values for all plant 

realizations because of the "implicit integral mode" in the MPC structure. Accordingly, 

the manipulated variables are different for different plant realizations. 

Figure 4.3 (b) shows the second situation, where the upper bound on u1 is active 

at the steady state. So here u1 is the same for all realizations and u2 is different for 

different plant realizations. Accordingly, the controlled variables cannot be kept at their 

desired values at the steady state, and their values are different for different plant 

realizations. 

Figure 4.3 (c) shows the third situation, where the upper bounds of both 

manipulated variables are active at the steady state. Therefore, both of the manipulated 

variables are the same for all realizations, and both of the controlled variables are 

uncertain at the steady state. The controlled variables are far from their desired values, 

and part of their uncertainty region is outside the feasible region. 

The results demonstrate the need of a closed-loop prediction, which includes the 

effect of the controller on the system, to accurately model the uncertainty at the steady 

state for the robust steady-state optimization. Next, we compare the robust steady-state 

optimization with open-loop and closed-loop uncertainty in the control of dynamic 

system. 
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4 

1.4 x 10 
95% confidence bound 

(­ 0.028 


1.35 0.026 

>: 0.024 The steady-state controlled 
variables reach their desired values 

1.3 0.022 

variables with different 


plant realizations 0.02 


Steady-state manipulated 

0.018---......___.......___.....__ 
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Figure 4.3 Closed-loop steady-state uncertainty - Binary distillation control system 1 

4.3.2.2 Compare 	 two robust steady-state optimization approaches: 
open-loop uncertainty vs. closed-loop uncertainty 

Here, the closed-loop simulation is performed with either of the steady-state 

optimization methods (using either open-loop or closed-loop uncertainty description) and 

the robust MPC method developed in Chapter 3 (naturally, using the better, closed-loop 

uncertainty description in all cases here). We run the simulation for two situations. In 

both situations, the feed flow rate F equals to its nominal value 8.7713 kmole/min, i.e., 

plant = nominal model. 

In the first situation, there is an initial step change of the reference of y 1 of +0.02 

mole fraction and then a step change of -0.049 mole fraction. Figure 4.4 shows the 

closed-loop dynamics of the system under the two robust steady-state optimization 

methods integrated with the robust MPC for dynamic control. We can find that both 

methods lead to the same dynamics when the reference moves away from the y1 bound, 
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but the open-loop steady-state optimization results in more conservative control than 

appropriate when the reference moves toward the y 1 bound. 

The results shown in Figure 4.4 can be understood by observing the variables in 

Figure 4.5, which compares the set points calculated by the two steady-state optimization 

methods. We observe that the set points calculated by both methods are same for the first 
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part of the transient, because no bounds are active during the steady-state calculation and 

the reference values of the controlled variables can be achieved at the steady state. When 

the reference for Yi approaches its bound, the Yi set points (Jlsp. i) calculated by the 

open-loop robust steady-state optimization differs greatly from its reference, and it is 

away fromyi bound at many time steps. This is because the open-loop robust steady-state 

optimization method overestimates the steady-state uncertainty ofYi. In contrast, the 
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Figure 4.5 	 Set points calculated by the two robust steady-state optimization methods at 
each time step (first situation) - binary distillation control system 1 
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closed-loop uncertainty prediction accounts for the correcting action of the feedback 

controller and correctly predicts a much smaller uncertainty. 

In the second situation, there is a step change of the y 1 reference of -0.03 mole 

fraction. Figure 4.6 shows the closed-loop dynamics of the system under the robust MPC. 

Although the y2 reference does not change, Y2 is moved away from its reference during 

the transient for both methods. This is because the movement of the manipulated 
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Figure 4.6 Closed-loop dynamics under the robust MPC and the two robust steady-state 
optimization methods (second situation) - binary distillation control system 1 
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variables for tracking the reference ofyi influences the nominal value and the uncertainty 

ofy2 through the interaction in the MIMO system. 

These results show that if the open-loop robust steady-state optimization is used, Y2 is 

moved further away form its reference, because the Y2 set points calculated by this 

method is further away from the y2 upper bound due to the overestimation of the 

steady-state uncertainty This is shown clearly in Figure 4.7, which compares the set 

points calculated by the two robust steady-state optimization methods. 
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Figure 4.7 Set points calculated by the two robust steady-state optimization methods at 
each time step (second situation) - binary distillation control system 1 
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4.3.2.3 Set point tracking while observing output bounds 

The simulations here are performed to demonstrate the advantage of using the 

robust steady-state optimization method (developed in this chapter) and the robust 

dynamic MPC method (developed in Chapter 3) over the traditional way of using 

nominal steady-state optimization and nominal dynamic optimization on observing 

output bounds. The robust formulations employed use recommended closed-loop 

uncertainty at both the steady-state and the dynamic optimization layers. 

In this simulation, the feed flow rate in the plant is F = 4.9438 (kmole/min) which 

is different from its nominal value, so the plant is not the nominal model shown in 

equation ( 4.60) but the following model 

Plant: 

0.2755e-10s 


Y1 (s)] = 89.90s + 1 
 (4.61)[ y (s) O.ll90e-IOs
2 [ 

64.32s+ 1 

Figure 4.8 compares the system dynamics under nominal and robust methods when a step 

change in the Yi reference of -0.038 mole fraction is entered toward the Yi lower bound 

occurs. Clearly the robust method observes the constraints while the nominal method 

leads to the violation of Yi lower bound. This is due to the mismatch between the plant 

and the nominal model. 

4.3.2.4 Set point tracking while observing hard input bounds 

In this simulation, there is a step change in the Yi reference of 0.03 mole fraction, 

and the plant equals the nominal model. We compare in Figure 4.9 the closed-loop 

dynamics under the robust steady-state optimization and the two robust MPC methods: 

the robust MPC and the unconstrained robust MPC that does not include input saturation 

in its optimization. 
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Figure 4.8 Set point tracking while observing output bounds 

- binary distillation control system 1 

First, we observe that the u1 is limited by its upper bound so that the system 

cannot reach the desired steady-state reference values for both controlled variables. Due 

to the interaction in the system and the different importance of controlled variables (the 

cost of deviating from the reference for the top composition is ten times larger than for 

the bottoms composition), Yi reaches the reference at the steady state and Y2 does not. 
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Second, we observe that when using the unconstrained robust MPC, u1 approaches 

its upper bound very slowly because the closed-loop uncertainty is overestimated. Thus 

Yi reaches its reference much slower. 
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4.3.3 	Binary distillation control system 2 

Figure 4.10 shows the diagram of the second binary distillation control system. 

The binary distillation column is the same as in the previous two distillation control 

systems. Details of its model and initial conditions are described in Appendix G. The 

controlled variables are the distillate composition of light key XD (y1) and the bottoms 

compositions of light key XB (y2). The manipulated variables are the Reflux rate R (u1) 

and the reboiler rate V (u2). The controller will also receive the measured information of 

the feed flow rate F at the beginning of each controller execution period, which is 

deemed as measured disturbance (d) by the controller for feedforward compensation. We 

assume it takes B =10 minutes for the distillate and bottoms outlet flows to reach the 

component analyzer and get analyzed, which introduces the time delay of 10 minutes 

between the controlled and manipulated variables. 

The uncertainty of the system comes from the slowly varying feed composite of 

light key Zo, whose value is assumed to obey the normal distribution with mean mean 0.5 

mole fraction and standard deviation 0.033 mole fraction. The nominal linearized plant 

Figure 4.10 Binary distillation control system 2 
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model is derived at Za=0.5 mole fraction as, 

Nominal Model: 

10 
_ 0.1386e-IOs l [ 0.0570e- sl

53.28s+l u1(s) + 74.18s+l d s (4.62)-0.0775e-"·' [ u
2 
(s)] 0.0562e-10" ( ) 

3 l.33s + 1 30.07s + 1 

The case study evaluates the ability of the robust method to observe the bounds 
when rejecting the measured disturbances. We assume feed composition Za=0.5942 mole 
fraction, then the plant is 

Plant: 

0.1163e-!Os -O.l099e-IOs l [0.0567e-!Os l 
Y1(s)]= 43.87s+l 55.lls+l u1(s) + 77.08s+l d s (4.63)[y (s) [ 0.0940e-IOs -0.1075e-"" [ u (s)] 0.0857e-"" ( ) 

2 2 

41.50s + 1 38.71s + 1 38.39s + 1 

which is different from the nominal model. 

The controller execution period for this system is selected to be 10 minutes. The 

linearized model of the system is discretized with sampling time of 10 minutes and 

transformed into state-space model using the MATLAB control system toolbox. The 

state-space form of the distillation model without time delays andfeedback variables has 

the state vector x with 4 element and the system is controllable and observable. The 

feedback scheme assumes the unmeasured disturbance enters the system through the 

input channel (See Appendix A for discussion on the selection of unmeasured disturbance 

model), which introduces the unmeasured disturbance vector e with 2 element. So the 

augmented system with x and e has 6 states, and it is detectable. Furthermore, the time 

delay between y and u is described by 3 additional states using the method introduced in 

Appendix C. Since these 3 states denote the u and d in the last time step, they are known, 

and no observer gain is need for them. The MPC controllers are tuned according to the 
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methods described in Chapter 3, and Table 4-2 shows the tuning parameters. 

The deterministic SOCP subproblem solved by the proposed robust MPC method 

for this system has 20 decision variables, 230 linear constraints and 140 second order 

cones. This problem is typically solved in 0.04 CPU seconds. When applying the active 

set heuristic, the maximum number of SOCP subproblems solved for this system is 10 

(the number of time steps in the control horizon), so the robust MPC costs at most 

0.04x 10=0.4 CPU seconds. 

Table 4-2 Tuning parameters of the MPC controllers for distillation control system 2 

Tuning Parameter Value 

Control horizon, n 


Prediction horizon, p 


Estimation horizon, p_ 


Weights for controlled variables, [q1, q1] 


Weights for manipulated variables, [r1, r1] 


Move suppression weights [ wJ, w2] 


Penalty on slack variables [ws,J, Ws,2] 


Cost of controlled variables Cy 


Cost ofmanipulated variables Cu 


Confidence of each stochastic bound in 

robust steady-state optimization, ass 

Confidence of each stochastic bound in 
robust MPC, a 

10 

25 

25 

9.5 28 8.1 14 2.9 1.3 r 
[-10 -29 -17 -30 -2.2 -4.4 


[1, 1O] 


[0.001, 0.001] 


[0.1, 0.1] 


[105
, 106

] 


[10, l]T 


[0, O]T 


99.7% 


99.9% 
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Figure 4.11 shows the simulation results after a step change of the feed flow rate 

of 0.44 kmole/min. The closed-loop system dynamics under robust steady-state 

optimization and robust MPC and that under nominal steady-state optimization and 

nominal MPC are compared. When using the nominal methods, y2 not only goes far away 

from its reference during the transient, but also violates its upper bound because of the 

plant/model mismatch. When using the robust methods that address the uncertainty 

explicitly, y2 is driven far away from its upper bound during early stage of the transient to 

prevent the potential constraint violation for the "worst case" realization in this scenario. 
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4.3.4 Advantages of robust MPC minimizing robust performance 

The purpose of the case studies in this section is to compare the robust MPC 

minimizing either nominal or robust performance. Two CSTR control systems are studied 

in the following two subsections 4.3.4.1 and 4.3.4.2, respectively. Both systems are 

non-square with one controlled variable and two manipulated variables. When a 

non-square system has more manipulated than controlled variables, opportunity exists to 

tailor the dynamic behavior to suit the objectives by considering the relative costs, 

dynamics and uncertainties of the manipulated variables. Both control systems have a 

robust steady-state optimization unit and a robust trajectory optimization unit. We will 

keep the robust steady-state optimization method the same as we developed in this 

chapter for all the case studies in this section (note the objective of the method is a 

nominal cost function and no "robust" cost functions are developed in this thesis), and we 

will compare the robust MPC (trajectory optimization) methods minimizing nominal and 

robust performance. The simulation results will show that minimizing robust 

performance in robust MPC leads to the preferred closed-loop control behavior when 

significant differences in uncertainties exist for different manipulated variables. 

4.3.4.1 CSTR control system 3 

Here we look at the CSTR control system 3 shown in Figure 4.12. The details of 

the parameters and the initial conditions of this process can be found in Table F-1 in 

Appendix F. The controlled variable of the system is the outlet concentration of reactant 

A, CA (y). CA is measured by an on-stream analyzer, and it takes B=0.9 minutes for the 

outlet flow to reach the analyzer, which introduces the delay of 0.9 minutes between u 

and y. The temperature in the reactor, T, is measured without delay, for use by the 

observer for providing the estimates to the controller. Temperature is not controlled. 

CA is controlled by adjusting the inlet concentration of A, CAO· This can be 

realized by changing the flows with high concentrations of A that are mixed with solvent 

to generate the reactor inlet flow. In this system, two flows of high concentration of A, 

FA,1, FA,2, are available. F A,l is cheap, but its concentration of A is slowly changing; 
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therefore, it has a significant uncertainty. FA,2 is expensive, but its concentration of A is 

constant and known accurately. 

For the simplicity of the discussion, let us define the manipulated variables of 

the control system to be u1 and u2 that denote the nominal CAo by adjusting FA,I and FA,2 

respectively. Since FA,I is cheaper but uncertain, variable u1 has a lower cost and greater 

uncertainty in its effect on CAo; u2 has a higher cost and negligible uncertainty in its 

effects on CAO· The block diagram of this system is shown in Figure 4.13, where the gain 

between u1 and CAo, KcAo, is uncertain. We assume KcAo obeys the normal distribution 

with mean 1 and standard deviation 0.233. 

The model of this CSTR system is the following. 

S + 0.8078 K -0.9s ( ) S + 0.8078 -0.9s ( )
y ( s) = CAOe U1 s + e U2 s (4.64) 

s 2 +l.925s+1.143 s 2 +l.925s+1.143 

:····••HHOOOHH••·I MPC 14.........................................................~ 

't : I : 

Ul C::, : : : 

FA.1 ~- : ~.................... : 


(cheap, with uncertain A) ~···· •.•.••••.••••.•.••: l : 

' 0F Ui C::, CAO 

11 I 
. ('.th

2 ~A) : () 0 S(expensive, wi certam : ~( n- treamF, T0 ),.__ _ __,~._, 

Solvent Analyzer 
(y) 

Tc.out 

Figure 4.12 CSTR control system 3 
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MPC 
1 

Figure 4.13 The diagram of the control structure of CSTR control system 3 

The closed-loop control employs the robust steady-state optimization method 

developed in this chapter for steady-state optimization and the robust MPC method 

developed in Chapter 3 for dynamic control. The robust MPC method will minimize the 

following two objectives for each simulation case respectively: 

1) The nominal performance + the nominal cost u: 

(4.65) 

2) The robust performance (expected performance)+ the nominal cost ofu: 

(4.66) 

Note that the term Cu Ju-Uspl represents the economic cost that is linear with respect to the 

manipulated variables (associated with the flow rates of A). The robust performance 

function in the objective function (4.66) is a special case of the robust objective function 

(4.49) developed in Section 4.2 (containing expected performance only), so we can 

transform it into a convex and quadratic function oft as discussed in Section 4.2. 

The execution period for both the steady-state optimization and the dynamic 

control is selected to be 0.3 minute because the closed-loop settling time was about six 
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minutes. The linearized continuous model of the system is discretized with sampling time 

of 0.3 minute and transformed into a state-space model using the MATLAB control 

system toolbox. The state-space form of the reactor model without time delays and 

feedback variables has the state vector x with 2 elements, and the system is controllable 

and observable. The feedback scheme assumes the unmeasured disturbance enters the 

system through the u1 channel (See Appendix A for more discussion on the selection of 

unmeasured disturbance model), which introduces the unmeasured disturbance vector e 

with 1 element. So the augmented system with x and e has 3 states, and it is detectable. 

Furthermore, the time delay between y and u is described by 3 additional states using the 

method introduced in Appendix C. Since these 3 states denote the u1 in the last 3 time 

steps, they are known, and no observer gain is need for them. 

Since the case studies on this system focus on comparing the different objective 

functions instead of constraint handling, we pose loose inequality constraints on the 

system so that all the inequality constraints are inactive in all the simulations. The robust 

MPC controllers are tuned according to the methods described in Chapter 3, and the 

tuning parameters are shown in Table 4-4. 

The deterministic SOCP subproblem solved by the proposed robust MPC method 

for this system has 16 decision variables, 184 linear constraints and 112 second order 

cones. This problem is typically solved in 0.02 CPU seconds. When applying the active 

set heuristic, the maximum number of SOCP subproblems solved for this system is 8 (the 

number of time steps in the control horizon), so the robust MPC costs at most 

0.02x8=0.16 CPU seconds. 

Figure 4.14 compares the system dynamic responses, to a step increase in they 

reference from an upper-level optimizer of 0.10 kmole/m3
, which also results in a change 

in the u1 reference of 0.14 kmole/m3
, with the robust MPC minimizing nominal and 

robust performance. Because the reference values are obtained by an optimizer, they are 

feasible for the nominal plant realization. The closed-loop system dynamics for three 

separate three realizations are plotted: nominal plant realization (KcAo = 1), plant 

realization 1 (KcAo= 0.32), and plant realization 2 (KcAo= 1.61). Figure 4.14 (a) shows 

that when the robust MPC minimizes the nominal performance, only u1 is moved and u2 

is unchanged for the set point tracking. This is because both u1 and u2 give the same 
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Table 4-4 Tuning parameters of the robust MPC controllers for CSTR control system 3 

Tuning Parameter Value 

Control horizon, n 


Prediction horizon, p 


Estimation horizon, p_ 


Observer gain for [xr, e T], L 

Weight for controlled variable, q 


Weight for manipulated variables, [r1, r2] 


Move suppression weights, [ wi, w2] 


Costs ofmanipulated variables, [cu.I, Cu.2] 


Cost of the controlled variable, Cy 


Confidence of each stochastic bound in 


robust steady-state optimization, ass 

Confidence of each stochastic bound in 
robust MPC, a 

8 

20 

20 

0 0 .30 ] T[~ 0.044 

10 

[0.01, .0.01] 


[1, 1] 


[0.0001, 0.001] 


0.01 


99.7% 

99.9% 

nominal performance and u2 is much more expensive than u1• For the nominal plant 

realization where there is no plant/model mismatch, y is quickly driven to the new 

reference. However, for the other two plant realizations where there is severe plant/model 

mismatch, y either overshoots the reference or approaches the reference slowly. This 

performance is typical for nominal MPC and occurs for robust MPC as well when 

minimizing the nominal performance, because the controller does not consider the effects 

of uncertainty in the feedback on the objective. The performance is not very good, 

leaving potential for improvement. 
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(b) Robust MPC minimizing the robust performance, equation ( 4.66) 

-- Nominalplantrealization ·•••••••••• Plantrealization I - - - · Plantrealization2 y=measuredCAkmole/m3 

u1 =Nominal CAo by adjusting FA,! (kmole/m 3) u2 =Nominal CAo by adjustingFA,z (kmole/m3 ) x-axis= time (min) 

Figure 4.14 Comparing robust MPC with different objectives 
-The system dynamic responses after reference step changes of CSTR control system 3 
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Figure 4.14 (b) shows that when the robust MPC minimizes the robust performance, it 

manipulates (increases) u2 at the beginning of the transient. Once y is close to the 

reference, it decreases u2 and increases u1 slowly and simultaneously until u2 is moved 

back to its initial position. By doing this, the robust MPC leads to good dynamic 

performance for all the three plant realizations. The robust MPC adjusts the certain u2 

instead of the uncertain u1 at the beginning of the transient to avoid introducing large 

uncertainty into the system so that a good dynamic performance can be achieved. Once 

the system is close to the steady state, the more expensive manipulated variable u1 can be 

replaced by the cheaper manipulated variable u2 slowly without introducing large 

uncertainty. Therefore, by minimizing the robust performance in this case, the robust 

MPC properly chooses different manipulated variables for this non-square system at 

different stages of the transient. 

Figure 4.15 shows the references to the system from an upper-level optimizer and 

the set points calculated by the steady-state optimization during the transient with the 

different robust MPC. In Figure 4.15 (a) with the robust MPC minimizing the nominal 

performance, the set point ofy is the same as its reference value throughout the transient 

for all the three plant realizations, which is because reaching the y reference value at the 

steady state is more important than reaching the input reference values, and the this is 

feasible for the realizations simulated. The u2 set point is also the same as its reference 

value, 0.0 kmole/m3
, because u2 is more expensive than u1 and it is to be kept at zero at 

steady state. The u1 set point is the same as its reference value under the nominal plant 

realization, but it is different from this value when plant model mismatch occurs (under 

plant realizations 1 and 2). This is because when minimizing the nominal performance, y 

is controlled by manipulating uncertain input ui, which introduces the uncertainty into the 

system. So the feedback variable (e) is different for different plant realization and 

different for different u1 values during the transient, which leads to different set points 

through the steady-state optimization. 

Figure 4.15 (b) shows that when the robust MPC mmumzes the robust 

performance, the variation in the u1 set points over different plant realizations is much 

less than that in Figure 4.15 (a). This is because here u2 is manipulated to adjusty at the 
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(a) Set points with robust MPC minimizing the nominal performance, equation (4.65) 

(b) Set points with robust MPC minimizing the robust performance, equation ( 4.66) 

-- Norn inal plant realization ........... Plant realization l - - - · Plant realization 2 

- · - · Reference y sp =Set point of CA kmole/m3 x-axis= time (min) 

Usp,1 =Set pointofnominalCAo by adjusting FA,! (kmole/m3) u sp.2 =Set pointofnominalCAo by adjusting FA; (kmole/m3) 

Figure 4.15 Comparing robust MPC with different objectives 

- The system set points after reference step changes of CSTR control system 3 


152 




PhD Thesis-Xiang Li McMaster University - Chemical Engineering 

Table 4-4 Monte-Carlo Simulation Results of case study in Figure 4.14 

Average IAE (l) Worse IAE 

Robust MPC minimizing 
0.7353 1.8391

nominal performance 

Robust MPC minimizing 
0.4196 0.5813

robust performance 

Note: (1) IAE denotes Integrated Absolute Error. 

beginning of the transient to avoid introducing large uncertainty in the dynamic 

performance; as a result, smaller changes in u1 set points were required. Figure 4.15 (b) 

also shows that the set points of y and u2 are the same as their reference values 

throughout the transient, which is the same as in Figure 4.14 (a). 

One hundred case studies of this closed-loop system with the Robust MPC using 

the two different objective functions have been run with Monte Carlo sampling of the 

plant realizations. The results are summarized in Table 4-4. We can find that when 

minimizing the robust performance, the better performance occurs for both the average 

performance and the worst-case metrics. We conclude that the robust MPC with the 

robust performance objective function can provide superior dynamic behaviour when a 

process has manipulated variables with different costs and uncertainties. 

4.3.4.2 CSTR control system 4 

Figure 4.16 shows the CSTR control system 4. The CSTR process is from page 

438-439 of Marlin (2000). Details on the parameters and initial conditions of this CSTR 

process can be found in Table F-2 in Appendix F. The controlled variable (y) of the 

system is the outlet concentration of A, CA. Both CA and the temperature in the reactor T 

are measured and used by the observer for providing estimates to the controller. CA can 

be controlled by a) adjusting the inlet concentration ofA, CAo orb) adjusting the cooling 

153 




------

PhD Thesis - Xiang Li McMaster University - Chemical Engineering 

F:::::::::::::::::·..... ­MPC 
U\ :····•••••••••••••••••••: 

.~ CAo 
FA,, --;--i>I(] ' --r---. 

with uncertain A 

Solvent 

Tc,out 

l 
F, To 

A~B 

Figure 4.16 CSTR control system 4 

follow rate Fe. The first manipulated variable (u1) has faster dynamics, but there is large 

uncertainty associated with it. This uncertainty is from the slowly varying concentration 

of A in flow FA that is mixed with solvent to generate the inlet flow. For the simplicity of 

the discussion, let us define u1 is the nominal value of CAo the controller achieves by 

changing the flow FA· The second manipulated variable (u2) has slower dynamics, but 

there is no uncertainty associated with it. We define u2 the cooling flow rate, Fe. 

Figure 4.17 gives a diagram of the structure of the CSTR control system 4, where 

KcAo is the uncertain gain between u1 and the actual CAO· We assume KcAo obeys the 

normal distribution with mean 1 and standard deviation 0.25. According to the 

parameters and the initial condition shown in Appendix F, the linearized model of this 

system is 
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U1 CAOJ .....KcAo } ....~MPC CSTR........ 
Fc (Ui) 

~~ 

T, CA (y) 

Figure 4.17 The diagram of the control structure of CSTR control system 4 

0.04048 K ( ) 0.0123 ( ) ( ) s= us+ us (4.67)
y s + 0.07808 CAO I s 2 + 0.1617s + 0.00653 2 

The closed-loop control employs the robust steady-state optimization method 

developed in this chapter for steady-state optimization and the robust MPC method 

developed in Chapter 3 for dynamic control. The robust MPC method will minimize the 

following two objectives for each simulation case respectively: 

1) The nominal performance: 

(4.68) 

2) The robust performance (expected performance+ weighted variance of v): 

Note that we assume the economic costs associated with the manipulated variables are 

negligible for dynamic control, so that we do not include the linear cost in the objective 

function. The robust performance objective function ( 4.69) is a special case of the robust 

objective function ( 4.49) developed in Section 4.2 (without variances of inputs and input 
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changes), so we can transform it into a convex and quadratic function oft as discussed in 

Section 4.2. 

The controller execution period for this system is selected to be 3 minutes because 

the closed-loop settling time is about 60 minutes. The above linear model is discretized 

with sampling time of 3 minutes and transformed into state-space model using the 

MATLAB control system toolbox. The state-space form of the reactor model without 

feedback variables has the state vector x with 2 elements, and the system is controllable 

and observable. The feedback scheme assumes the unmeasured disturbance enters the 

system through the u1 channel (See Appendix A for more discussion on the selection of 

unmeasured disturbance model), which introduces the unmeasured disturbance vector e 

with 1 element. So the augmented system with x and e has 3 states, and it is detectable. 

Again, since the case studies on this system focus on comparing the different 

objective functions instead of constraint handling, we pose loose constraints on the 

system so that all the inequalities constraints are inactive in all the simulations. The 

robust MPC controllers are tuned according to the methods described in Chapter 3 and 

the tuning parameters are shown in Table 4-5. 

The deterministic SOCP subproblem solved by the proposed robust MPC method 

for this system has 16 decision variables, 214 linear constraints and 132 second order cones. 

This problem is typically solved in 0.03 CPU seconds. When applying the active set 

heuristic, the maximum number of SOCP subproblems solved for this system is 8 (the 

number of time steps in the control horizon), so the robust MPC costs at most 

0.03x8=0.24 CPU seconds. 

Figure 4.18 compares the system dynamic responses, to a step increase in the y 

reference of 0.050 kmole/m3 and in the u2 reference of 0.027 m3/min, with the robust 

MPC minimizing nominal and robust performance. The closed-loop system dynamics are 

plotted for three realizations: nominal plant realization (KcAo= 1 ), plant realization 1 

(KcAo=0.26), and plant realization 2 (KcAo=l.71). Figure 4.17 (a) shows that when the 

robust MPC minimizes the nominal performance, u1 is manipulated relatively quickly, 

while u2 is changed very slowly. This is because nominal u1 can drive y to the reference 

much quicker than u2 does. So, y is well controlled to the new reference value for the 

nominal plant realization. However, for the other two plant realizations where there is 
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Table 4-5 Tuning parameters of the MPC controllers for CSTR control system 4 

Tuning Parameter Value 

Control horizon, n 8 

Prediction horizon, p 25 

Estimation horizon, p_ 25 

0Gains of the state observer, L [b l 

Weights for controlled variables, q 10 

Weights for manipulated variables, [r1, r2] [0.01, 0.1] 

Move suppression weights, [w1, w2] [1, 1O] 

Costs of the manipulated variables (used in 
[0.01, 0.01] 

robust steady-state optimization only), [cu,J, Cu,2] 

Cost of the controlled variable (used in robust 
10

steady-state optimization only), cy 


Weight for variance of controlled variable, Yy,1 1000 


Confidence of each stochastic bound in robust 

99.7% 

steady-state optimization, Uss 


Confidence of each stochastic bound in robust 

99.9% 

MPC,a 

severe plant/model mismatch, y either overshoots the reference substantially or 

approaches the reference slowly. This performance is typical for nominal MPC and 

occurs for robust MPC as well when minimizing the nominal performance, because it 

does not distinguish between feedback paths with large and small uncertainty. This 

performance is not very good, leaving potential for improvement. 
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(b) Robust MPC minimizing the robust performance, equation ( 4.69) 

-- NominalRealization ·•·•••••••• Plant Realization I - - - · Plantrealization2 

y =CA (kmole/m3) u 1 =Nominal CAo by adjusting flow FA (kmole/m3) u2 =Fe (m 3/min) x-axis= time (min) 

Figure 4.18 Robust MPC with different objectives 

- The system set points after reference step changes of CSTR control system 4 
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Figure 4.18 (b) shows that when the robust MPC m1mm1zes the robust 

performance, it increases u2 aggressively and keeps u1 almost unchanged. This is because 

the controller avoids using the manipulated variable with large uncertainty, so that y 

trajectory does not vary significantly for different plant realizations. This strategy results 

in dynamic performance that is the better than nominal MPC for many plant realizations 

but cannot be guaranteed better for every plant realization. This robust strategy would be 

preferred in the situation where reducing the variation of the performance is more 

important than improving the performance, that is, where consistent closed-loop plant 

behavior is required. 

Figure 4.19 shows the references of the controlled variable and the manipulated 

variables and compares the set points calculated by the steady-state optimization during 

the transient with the different robust MPC. We observe that in both Figure 4.19 (a) and 

Figure 4.19 (b ), all the set points calculated are the same as their reference values (in 

spite of the different plant realizations and different dynamic performance in the 

objective of robust MPC). This is because 1) u2 is cheaper to manipulate than u1 is to 

influence y, concerning the gains of the two inputs (the gain of u2 is bigger than the gain 

of u1), so the steady-state optimization chooses to change the steady state value of u2 

(instead of u1) to maintain y at the new reference value; 2) u2 is known to have no 

uncertainty in its effect on y, so the steady-state settling point is constant in this case 

(while the dynamic responses of the system may be different for different plant 

realizations and different dynamic performance in the objective ofrobust MPC. 

One hundred cases of the closed-loop system with the robust MPC using the 

different objective functions have been run with Monte Carlo sampling of the plant 

realizations. The results are summarized in Table 4-6. We find that minimizing the 

nominal performance leads to the worse performance for both the average performance 

and the worst-case performance. From this study we conclude that the robust MPC 

minimizing the robust performance can provide almost the same good performance for all 

the sampled plant realizations when differences in dynamics and uncertainty exist. When 

consistent quality is essential, the robust MPC with robust objective could provide 

substantially better dynamic behaviour. 
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(b) Set points with robust MPC minimizing the robust performance, equation ( 4.69) 

-- Nominal Realization ···••··•··· Plant Realization I - - - · Plantrealization2 - • - • Reference x-axis= time (min) 

y,P =Set point of CA (kmole/m3) u,p.I =Set point ofnominalCAo by adjusting flow FA (kmole/m 3) u,p.2 =Set point of Fe (m 3/min) 

Figure 4.19 Comparing robust MPC with different objectives 

- The system set points after reference step changes of CSTR control system 4 
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Table 4-6 Monte-Carlo Simulation Results of case study in Figure 4.17 

Average IAE (l) Worse IAE 

Robust MPC minimizing 
0.2167 2.3551

nominal performance 

Robust MPC minimizing 
0.1862 0.1864

robust performance 

Note: (1) IAE denotes Integrated Absolute Error. 

4.4 Conclusions 

In this chapter, we extend the robust MPC method from Chapter 3 with the three 

additional features that are important for applications in process control: the first is a new 

robust steady-state optimization method; the second is a novel steady-state deviation 

model developed for robust steady-state optimization with time-invariant uncertainty; and 

the third is a new objective function minimizing the dynamic performance robustly. 

The new robust steady-state optimization method developed in this chapter 

includes the features that follow the developments in Chapter 3 for dynamic optimization: 

1) Correlated parametric uncertainty of the closed-loop system at steady state (with 

deviation model, see explanation below); 

2) An active set heuristic that is used to obtain the active hard bounds on manipulated 

variables at steady state in an iterative way; 

3) Tractable solution for real-time implementation through a limited number of (convex) 

SOCPs. 

A novel deviation model formulation is obtained by the deviation of the variables 

from a virtual steady state of them (determined by the latest implemented manipulated 

variables). This formulation is used for time-invariant uncertainty to reduce the 
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conservativeness in uncertainty prediction by limiting the effects of plant uncertainty to 

changes in the input variables. 

The proposed new objective function includes the expected dynamic performance 

and the variances of the controlled variables. The new objective function is convex and 

quadratic with respect to the degrees of freedom t, so the resulting robust MPC 

formulation is still a SOCP that can be relatively easily solved in real time. 

The case study results shown in Section 4.3 demonstrate that: 

1) 	 The new robust steady-state optimization method using closed-loop uncertainty is 

better than the method using open-loop uncertainty because it is more accurate in 

modelling the closed-loop system and less conservative in determining the set points 

of the controlled variables. When integrated with the robust trajectory optimization 

(robust MPC), the steady-state closed-loop method achieves better dynamic 

performance than the open-loop method. 

2) 	 The robust method (including steady-state and trajectory optimization) outperforms 

the nominal method (including steady-state and trajectory optimization) on handling 

the constraints on controlled variables. 

3) 	 In the situations where the uncertain non-square system has alternative ways to adjust 

manipulated variables, optimizing a robust measure of robust dynamic performance is 

better than optimizing the nominal dynamic performance. This is because the new 

method includes uncertainty in evaluating future performance and enables the 

controller to trade off uncertainty, economics, and nominal feedback dynamics. 

This chapter has tailored the basic robust MPC method in Chapter 3 to 

applications in process control. The next chapter will tailor the basic robust MPC 

method for applications in supply chain optimization, which is another important 

uncertain dynamic system with feedback. 
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Chapter 5 

Robust MPC for Supply Chain Optimization 

This chapter addresses the application of the robust MPC method to the 

optimization of supply chain operation under uncertainty. The general robust MPC 

framework developed in Chapter 3 is adapted for the application, with the formulation 

tailored for supply chain optimization. The need to tailor the formulation is introduced 

through a real supply chain optimization problem from industry. The industrial supply 

chain system contains manufacturing of the intermediate and final products, 

transportation of the final products and storage units located in different parts of the 

supply chain, so its structure is typical of many supply chain systems. As a result, the 

method developed for this system is applicable to many other supply chain systems. 

Section 5.1 introduces the industrial supply chain system and the goal of the 

optimization. Section 5.2 describes the modeling of the dynamic system with a discrete, 

state-space model and the nominal MPC formulation. Section 5.3 discusses the robust 

MPC formulation with emphasis on: 1) the modeling of parametric uncertainty; 2) a 

bilevel formulation for closed-loop optimization; 3) a tailored chance constrained 

program for the non-normally distributed customer demands. Section 5.4 discusses the 

supply chain model for simulation, which enforces integer values when needed. Section 

5.5 shows the advantage of the robust MPC over nominal MPC on reducing the back 

orders though the case study results of the industrial supply chain optimization problem. 

Issues of the tuning and the computational complexity of the robust MPC method are also 

addressed in Section 5.5. Section 5.6 summarizes the chapter with conclusions. 

163 




PhD Thesis-Xiang Li McMaster University - Chemical Engineering 

5.1 The Industrial Supply Chain Optimization Problem 

Let's see the industrial multi-echelon supply chain system in Figure 5.1 first. The 

sketch of the system is shown in Figure 5.l(a) and its schematic diagram (with defined 

symbols and variables) is shown in Figure 5.1 (b). 

Final ProductIntermediate 

Product 


ti) 

• 
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c 
nsRaw m:::> . EMaterials me:!> (I) 
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(a) The sketch of the system 
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Symbol of each node in the system: 

UR: Unlimited raw materials 

IPM: IP manufacturing plant 

IPS: Plant IP storage 

SKUM: SKU manufacturing plant 


DC: Plant distribution center 

RDC: Regional distribution center 


Uncertain parameters in the system: 

R,: SKU manufacturing rate (SKU/hour) 

Ti Transportation time to the/' SKU (hour) 

D1i Customer demand of the 11h SKU 


to the;1h RDC(SKU/hour) 

~i 13 · · ' , l ,j 

EJ' ,I ~F4,IJ .. Tl. Fs · · ,IJFJ. ~Ts,Rs ,IJ F6 .. 
SKUM ~ DC c::::=> RDC ~ D,J 

Decision variables in the optimization: 

P1: Manufacturing rate of the 11h IP (IP/84 hours) 

T,,;: Machine running time for the 11h SKU (hour) 

F4,;/ Shipping of the 11h SKU to the;'lh RDC (SKU/shipping hours) 


Other variables in the system: 

/ 0 : Inventory of the 11h IP at IPS (IP) 

12.1: Inventory of the 11h SKU at DC (SKU) 
h i,i Inventory of the 11h SKU at the ;'lh RDC (SKU) 

Fu: Flow of the 11h IP from IPM to IPS (IP/hour) 

F2.;: Flow of the 11h IP from IPS to SKUM (IP/hour) 

F3,1: Flow of the 11h IP from SKUM to DC (SKU/hour) 

F5.1/ Arrival of the 11h SKU to the;1h RDC (SKU/shipping hours) 
F6,1J: The 11h SKU from the ;'lh RDC to costumer (SKU/hour) 

(b) Simplified schematic diagram of the system 


Figure 5.1 The industrial multi-echelon supply chain system 
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The design of this supply chain was completed after discussions with an industrial 

company, so that many of the specific parameters, e.g., decision frequency, are close to 

the parameters used by the company. Naturally, these parameters could be changed, but 

this design gives a reasonable basis for evaluating the robust optimization methods 

developed in this thesis. 

In this system, different types of unlimited raw materials are processed in the 

plant IPM into different Intermediate Products (denoted by IP). The different types of raw 

materials and the associated products are indexed by i=l, .. .,n;. P; (IP/84 hours) denotes 

the manufacturing rates of the IP that is associated with the ;th material type (hereafter, 

referred to as the ;th IP). The decisions of the IP manufacturing are made once every 84 

hours or 3 .5 days. 

The intermediate products are stored in the Plant IP storage (denoted by IPS). Iu 

(IP) is the inventory of the ith IP. The intermediate products are then processed into 

different final products, called Stock Keeping Units (denoted by SKU), in plant SKUM. 

F2,; (IP/hour) denotes the processing rate of ;th IP into the associated SKU (hereafter, 

referred to as the ;th SKU), which is determined by the machine running time Ts,i for the 

;th IP. The decisions on the SKU manufacturing are made once every day. 

The SKUs are sent to the plant Distribution Center (denoted by DC), where the 

inventory of the ;th SKU is h,; (SKU). Then, they are shipped by truck to different 

Regional Distribution Centers (denoted by RDC), which are indexed by j =1, ...n1. F4,;J 

(SKU/shipping hours) denotes the quantity of the ;th SKU to be shipped to the /h RDC 

and r1 denotes the transportation time for the shipment from DC to the /h RDC. The 

decisions on the shipments are made at different frequencies for different regional 

centers, and the frequencies are between once per day to three times per day. The unit 

cost of SKU shipment is constant, because if the SKUs do not fill up a truck, other 

products can be transported to fill the truck. h,;J (SKU) denotes the inventory of the lh 
SKU at the /h RDC. 

The SKUs are sold to the customers at different RDCs. The customer demands 

DiJ (SKU/simulation period) of the ith SKU to the /h RDC can be estimated from 

historical data, but a large variability exists in demands. Ifa demand of the ;th SKU at the 

/h RDC cannot be satisfied immediately, a stock-out occurs, and the unfilled part of the 
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order is recorded as a back order OiJ (SKU), which must be satisfied by later shipments 

before new demands will be satisfied. 

In all cases considered, plants IPM and SKUM have sufficient capacity to satisfy 

the total customer demands over the time horizon (14 days in the cases studies in this 

Chapter). However, a capacity limit can be encountered during a short period of the 

horizon (e.g., 1 day). The maximum storage capacities are unlimited, but naturally have 

lower bounds of zero. 

The goal of this supply chain optimization is to minimize the total system cost of 

the supply chain (including inventory cost, manufacturing cost and transportation cost) 

while satisfying customer demands (if possible) by making decisions on the IP 

manufacturing rates Pi, SKU manufacturing machine running times Ts,i (hour), and the 

SKU transportation quantities F4,iJ· The uncertainties in the system include the SKU 

manufacturing rate Rs (SKU/hour), the product transportation time T; (hour) and the 

customer demands DiJ· 

We make the following assumptions for the model used in optimization based on 

the real industrial problem and the needs for real-time computing: 

1) 	 In each manufacturing decision interval, the IP or SKU manufacturing is continuous 

and the manufacturing rates are constant. The production scheduling, control and 

optimization (if needed) are assumed to be solved locally, which are out of the scope 

of this supply chain optimization. This decomposition is typical (e.g., Pinedo, 2000). 

2) The SKU shipments to RDC only occur at predetermined time points each day. For 

example, if the shipment is once every 12 hours, it can only occur at l 2am and l 2pm. 

3) The daily quantities of customer demands are assumed to be continuous, and the 

demand rate is assumed to be constant within each day. 

4) Fractional numbers are allowed in the solution of the supply chain optimizer and are 

rounded to an integer for implementation. 
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5.2 The Nominal MPC Formulation 

This section gives the detailed information on the nominal MPC formulation of 

this supply chain optimization problem. The nominal MPC will be extended in the 

following Section 5.3 to include robust performance using the method developed in 

Chapter 3. Also, This nominal MPC will be used for comparison with the robust MPC in 

case studies in Section 5.5. The nominal MPC is composed of three parts: the nominal 

state-space dynamic model of the supply chain system, the economic objective function 

and the constraints on the variables. We start with the modeling of a nominal state-space 

dynamic model for the system. 

5.2.1 The discrete-time nominal state-space model 

5.2.1.1 Handling of different feedback and implementation periods 

In process control, often the controlled variables are measured and the 

manipulated variables are decided at the same time point, so the sampling period and the 

decision implementation period are same. We can choose this period to be simulation 

time period (the length of a discrete time step) of the discrete system, and then depict this 

system with a canonical discrete state-space model. In this supply chain optimization 

problem, however, the implementation periods of the decision variables are not all the 

same, and they are not consistent with the frequency of measuring the different feedback 

information. So we have to determine the simulation time period in another way. 

It is logical to execute the supply chain optimizer only when new measured 

information on inventories is available. Since all the inventories in this system are 

measured once per 24 hours, the controller (optimizer) execution period of this system, 

L1Tc, is taken to be 24 hours. However, the decisions on the IP manufacturing (Pi) are 

determined once per 84 hours, the decisions on the SKU manufacturing (Ts,i) are 

determined once per 24 hours, and the decisions on the SKU transportation (F4,iJ) are 

determined at different frequencies for different RDCs. Here, we choose the simulation 

period, L1 T, to be the greatest common deviser of the different periods so that all the 
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Predefined periods for the 
supply chain system 

84 hours 
P; decision time interval 

24 hours 
T,,; decision time interval 

12 homs 
----l F 4,iJ decision time interval 

24 homs 
Inventory measurement period 

Periods in the MPC 
contro Iler (optimizer) { 

24 hours 

12 hours 
----l Simulation period in controller model (!1T) 

Controller execution period (!17;,) 

Periods in the simulation{ 
of the "real system" 

1 hom 
-l Simulation period in the simulation model for the "real system" 

0 12 24 36 48 Time (hour) 

Figure 5.2 The different time periods for the supply chain system 

periods can be addressed with a canonical discrete state-space model with this L1 T. For 

example, since the shortest F4,iJ decision periods are 12 hours, we set L1T=l2 hours. We 

also choose 1 hour to be the simulation period for the simulation model that presents the 

behavior of the real supply chain (refer to Section 5.4 for more discussion on this model). 

The different periods set for the supply chain system are shown in Figure 5.2. 

5.2.1.2 Dynamic model based on mass balances 

Now, we discuss the nominal dynamic model used by the controller. This model 

can be built based on the dynamic mass balance for each inventory in the supply chain 

system, which is discretized as given in the following. 

IPS inventory: 

i = l, ... ,n; (5.1) 
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where the k subscript denotes the sequence number of sampled time steps. 

The flow of the ih IP coming out of plant IPM, Ft,;,k, is determined by the 

manufacturing decision of the ith IP, P;, at the current time step or a prior time step, 

according to the following relationship 

i = l, ... ,n; (5.2) 

where P; m is the decision variable giving the total ih IP production during its decision 
' I 

time period L1 Tp (equal to 84 hours) beginning at time step ( m1 ~ k ).m1 

The flow of the i1h IP sent to the plant SKUM, F2,;,k, is determined by the SKU 

manufacturing decision, processing time I:,; , at the current time step or a prior time step, 

according to the following relationship 

i = l, ... ,n; (5.3) 

where Ts,i,mi denotes the decision variable that determines the i1h SKU manufacturing 

time during its decision time period L1 Tc (equal to 24 hours) at time step ( m2 ~ k );m2 

Rs,i,k is the (uncertain) production rate of the ih SKU at time step k; C1P-sKu,; converts 

the units of the ih IP i to the ith SKU, that is, how much of the intermediate product is 

required for one SKU. 

DC inventory: 

nf 

12,i,k+I = 12,i,k + F3,i,kl!!..T- L F4,i,j,kl!!..T, i = l, ...,n;, (5.4) 
}=1 

where the SKU mass flow F3,i,k is equal to the IP flow F21 k because there is no 

inventory accumulated in the manufacturing plant SKUM, so 

i = l, ...,n; (5.5) 
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RDC inventory: 

l3 · · k 1 = l3 · · k + Fs · · k!iT - F6 · · k!iT' i = 1,..., n;, j = 1,..., n (5.6),I,), + ,I,), ,1,), ,I,), 1 

i = l, ...,ni' j = l, ...,n1 (5.7) 

Equation (5.7) denotes the back order balance. Let 

13-,I,),"k*=l3- .k-0.'I,) k,I,), 

then equations (5.6-5.7) can be written into 

13- ·k 1*=l3- ·k*+Fs- -k-D ·k, i = l, ...,n;, j = l, ...,n1 (5.8),l,j, + ,l,j, ,l,j, l,j, 

where hiJ,k+I *can be negative (when back orders exist), zero, or positive. The purpose of 

the variable hiJ,k+1* is to accumulate backorders that must be serviced as soon as 

possible. In the case studies, orders are not lost if not satisfied immediately, and we will 

monitor the magnitude of backorders when evaluating the performance of supply chain 

optimization. 

Also, the arrival shipment of the i1h SKU to the /h RDC, comes from the departure 

shipment of the ;th SKU to the /h RDC, so 

F5,i,j,k = F4,i,j,k-(r1 I t:.T)' i = 1,..., n;, j = 1,..., n (5.9)1 

The time delay between the departure shipment and the arrival shipment in equation (5.8) 

is caused by the transportation time r1. To maintain the model in state space form, we can 

express equation (5.9) in an equivalent form by introducing additional variables 

si,j = (sl,i,j , .•. ,s,jlt:.T,i,)T that denote the quantities of the ith SKU in the transportation to 

the/h RDC during a time step: 
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Fs ,l,j · ·k s,,i,Jk-1 

s,,i,J,k S2,i,j,k-I 
i = l, ...,n;, j = 1,.. ., n1 (5.10) 

F4 · ·k,l,j, 

Equations (5.1-5.5), (5.8) and (5.10) can be combined into the following 

state-space model 

(5.11) 


variables, U = (Pi_, ... ,Pn, Tsl'"""Tsn' F411'"""F4n n V contains all decision 
I • • t '' • l• j J 

(manipulated) variables and dm =(n,," ... ,Dn,,n f denotes the predicted disturbances 
1 

which are forecast customer demands. 

5.2.2 The economic objective and the constraints 

According to the goal of the supply chain optimization, the economic objective of 

the nominal MPC can be written as 

min 
Uk,Oi.J,k+I 

+""Cs· ·,k ,sk, +"" Cp .kPk +""Cr .kTk (5.12)~ ,l,j + l,), + ~ ,l, l, ~ 3 ,l, S,l, 

i,j,k i,k i,k 

+ "" CF · ·kF4 · · k + "" Co · · k ,O k 1~ 4,l,j, ,l,j, ~ ,l,j, + l,j, + 
i,j,k i,j,k 

where cl1,i,k+I ' cl2,i,k+I ' CI3,i,j,k+l denote the costs of inventory li,;,k, /i,;,k, hi,j,k 

respectively; C s,i,J,k+i denotes the cost of the SKU in the transportation; C P,i,k, CT,,i,k, 
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c F.,i,j,k denote the costs of implementing the decisions Puu Ts,i,lu F4,iJ,k; cO,i,j,k+I 

denotes the penalty on the back order oi,j,k+I. According to the definition of the state 

vector xk and the decision vector Uk, the objective function (5.12) can be also written in 

the following form 

(5.13) 

where c;k+I, c;k, CJo,k+i contain appropriate costs and penalty coefficients, and the 

Now let's discuss the inequality constraints on the variables. First, all the 

inventories and the SKU s in transportation should be nonnegative, so 

11,i,k+P 12,i,k+P 13,i,j,k+P Si,j,k+I ~ Q' i = l,. .. ,n;, j = l, ... ,n1 (5.14) 

According to the definition of xk, constraints (5.14) can be written into the form of 

(5.15) 

where B0 is a diagonal matrix whose diagonal elements are 1 when associated to h,;J,k• 

and 0 otherwise. Second, all the back orders should be nonnegative, so 

(5.16) 


Third, the decision variables are all nonnegative and are subject to upper limits, so 
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(5.17) 

n; 

L Ts ,i ,k :::; Ts ,max,k ' (5.18) 
i=I 

n; 

"F4 .. k<F4 ·k, (5.19)L.. ,1,;, - ,max,;, 
i=I 

where the constraints (5.18) denote the total SKU manufacturing time at the kth controller 

execution period L1 Tc cannot exceed Ts,max,k (i.e., Ts,max,k=L1 Tc=24 hours), and the 

constraints (5.19) denote the quantities of different SKUs in a shipment to the /h RDC 

cannot exceed the available transportation capacity, F4,max,;,k· Since IP manufacturing 

capacity is larger than any possible optimal solution, no upper bounds are imposed on Pi, 

Fl,i., although such bounds could be accommodated in the robust MPC. 

Special modeling is required because the IP manufacturing decision P; is made 

once every 84 hours and not reconsidered until 84 hours have elapsed, Fu, and the 

optimizer is executed every 24 hours. Therefore, the IP manufacturing decisions in the 

subsequent several time steps must be set to the values determined in an earlier 

optimization. To achieve this, we need to force these Fu to be the value that has been 

determined in a previous optimization, which can be realized by setting the upper and 

lower bounds on these Fu to be the value in the previous optimization. We can express 

these special bounds as 

F,I .. k<F,l.k<F,I .k, i = l, ... ,n;, (5.20),m1n,1, - ,1, - ,max,z, 

For the time step when P; are degrees of freedom that determines F;.,;,k, the above 

constraints denote the equipment capacity limits; for the time step when Pi has been 

determined in an earlier controller execution that determines F;.,;,k , the bounds 

F 1,min,i,k = Fi,max,i,k and they are equivalent to the value of F'i.,i,k determined in the prior 

optimization. 

All the above bounds on decision variables can be written in the following form: 
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(5.21) 

with the minimum and maximum values determined pnor to each optimization as 

required to achieve the above-discussed strategy. 

5.2.3 The nominal MPC formulation 

The nominal MPC formulation consists of the objective function (5.13), the 

nominal dynamic model (5.11) and the constraints (5.15-5.16) and (5.21). 

NMPC SCO: 

(5.22a) 

s.t. (5.22b) 

(5.22c) 

(5.22d) 

(5.22e) 

k=O,···,n-1 

where n denotes the same control and prediction horizons, the additional variable e0 in 

Equation (22.b) denotes the feedback information which contains the difference between 

the predicted and the measured inventories. Note that for this supply chain system, we 

assume that all the inventories can be measured at each time step, but the SKU s in transit 

(i.e., S;J,k in state vector xk) cannot be measured. Therefore, we set the feedback elements 

in eo, which correspond to S;J,k. to be zero at each time step. This nominal MPC 

formulation, NMPC_SCO, is a Linear Program (LP) instead of a QP because the cost 

function is linear. 
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5.3 The Robust MPC Formulation 

This section discusses the development of a robust MPC formulation based on the 

nominal MPC formulation (5.22) to explicitly address the uncertainties in the system. We 

can develop a closed-loop model for uncertainty using the same approach as in Chapter 3, 

so here we will not repeat the general development. However, some additional issues 

need to be addressed for the application of the robust MPC to this supply chain 

optimization problem, which are discussed in the following subsections respectively. 

5.3.1 Description of uncertainties with uncertain parameters 

The uncertainties in the supply chain system include the customer demands, the 

SKU manufacturing rate in the plant SKUM and the SKU transportation time. We will 

describe these uncertainties and show how to characterize them using uncertain 

parameters. 

5.3.1.1 Costumer demands 

The uncertainty in the customer demands can be estimated from the historical 

data. Figure 5.3 shows the histogram of the daily demand of the 1st SKU to the 1st RDC 

during years of 2004 and 2005, where we can find that the uncertain demand does not 

obey a normal distribution but a distribution close to exponential distribution 

(Balakrishnan and Basu, 1996). The demands of other products (to other RDCs) follow 

similar distributions (see Appendix H for the histograms of their demands). 

Furthermore, correlations exist between the uncertain demands. Figure 5.4 

shows the normalized covariance matrix of the demands of the 1st and 2nd SKU s to the 1st 

and the 2nd RDCs in the two successive days, which is calculated according to the 

historical data from years of 2004 and 2005 using the standard technique (Box et al., 

2008). We observe that the correlations between the demands in the same day are more 

significant, especially between demands of the 1st SKU to the two RDCs, although the 

correlations between the demands in different days are much weaker. 
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Figure 5.3 The histogram of the daily demand of the 1st SKU to the 1st RDC 

D1,1,1 D1,2,1 D2,1,1 D2,2,1 D1,1,2 D1,2,2 D2,1,2 D2,2,2 

D1,1,1 1 0.50 0.29 0.23 0.24 0.31 0.16 012 

D1,2,1 0.21 0.26 0.16 0.31 0.14 0.09 

D2,1,1 0.29 0.21 1.00 0.21 0.14 0.12 0.10 0.05 

D2,2,1 0.23 0.26 0.21 1.00 0.07 0.05 0.10 0.11 
------------­

D1,1,2 0.24 0.16 0.14 0.07 0.29 0.23 

D1,2,2 0.31 0.31 0.12 0.05 0.50 1.00 0.21 0.26 

D2,1,2 0.16 0.14 0.10 0.10 0.29 0.21 1.00 0.21 

D2,2,2 0.12 0.09 0.05 0.11 0.23 0.26 0.21 1.00 

Figure 5.4 Normalized covariance matrix of demands of the SKUs to RDCs 

(D;J,k denotes demand of the ith SKU to the/h RDC in day k) 
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The uncertainty in customer demands can be directly described by the uncertainty 

in parameter dkin the process model (5.11). According the above discussion, one way to 

characterize dk uncertainty is to use the analytical expression of a joint (multi-variate) 

exponential distribution. However, the existing work on multi-variate exponential 

distribution (e.g. Bemis et. al., 1972; Marshall and Olkin, 1967; Proschan and Sullo, 

1976) is limited for specific correlations between the variables only. So in this thesis, we 

propose to characterize the demand uncertainty with sampling from the historical data 

and use the results to build the chance-constrained program. The details of this method 

are presented in Section 5.3.3. 

5.3.1.2 SKU manufacturing rate 

We will take estimates of the SKU manufacturing rate Rs,k as their nominal value 

± 25% (from 13.3 to 22.2 SKU/hour) with 90% confidence. We assume that Rs.k obeys 

a normal distribution and that there is no correlation between Rs,k in different days. 

Because the manufacturing rate appears on the left-hand side in equations (5.4-5.5), the 

uncertainty in Rs,k leads to the uncertainty in the process gain B in the process model 

(5.11). 

5.3.1.3 SKU transportation time 

We know the approximate ranges of the SKU transportation time ~·.k to different 

RDCs with 90% confidence from discussions with the supplier of the case study. We 

assume that r1,k obeys a normal distribution and that there is no correlation between r1,k in 

different shipments. 

The uncertainty in SKU transportation time makes the structure of the model 

uncertain, because it changes the number of states in (5.10). To model the uncertainty 

would require disjunctive programming and integer variables, and no method is available 

for modeling continuous uncertainty across multiple models. Therefore, we propose to 

use an alternative disjunctive modeling approach with uncertain parameters to 

approximate this structural uncertainty. The concept is illustrated in Figure 5.5. The 

shipment from DC is 
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D 

F (3) 
4,iJ, 

Figure 5.5 Approximate disjunctive model for SKU transportation time uncertainty 

assumed to reach the /h RDC through several, in this study three, different virtual routes 

with different but known transportation times, r}1) =r1,min (minimum transportation time 

with 90% confidence, typically 132 hours), r/2)=r1,n (nominal transportation time, 

typically 144 hours) and r}3)=r1,max (maximum transportation time with 90% confidence, 

typically 156 hours). (Refer to Appendix H for a more complete information of TJ,min, r1,n 

and TJ,max for different RDCs.) Then, we have 

F4,i,j,k (/) = f31F4,i,j,k' 0 :$ /31 :$ l, L/31 = 1 (5.23) 
I 

F. . . (/) =F (/)I (5.24)5,1,J,k 4,i,j,k-{TJ >11'.T) 

(/)F. = L F. (5.25)5,1,j,k 5,1,j,k 
I 

l =1, 2, 3 
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where equation (5.24) describes the time delay between the departure shipment F 4,iJ,k(l) 

and the arrival shipment Fs,iJ,k(l) due to the transportation time r/l), and this equation can 

be transformed into a state-space model of the form of equation ( 5 .10) with additional 

variables. Note the ratios /Jz are uncertain parameters, so the uncertainty in SKU 

transportation time can be approximately described by the uncertain elements in B that 

depend onfJz. In this chapter, we assume the nominal values of different /J1 are /h=O, /J2=1, 

/J3=0, and the uncertain values of /31 are generated as follows: 

1) Generate values for 3 random variables /31*, /32*, f3/, each of which obtains nominal 


distribution with mean 0.5 and standard deviation 1/6. 


2) Calculate each fJ1by the formula /JF /J1l(/J1 *+fJ/+fJ3*) (so that each /Jz is between 0 and 1 


and their summation equals to 1 ). 


The case study results will demonstrate that this approximation provides good supply 

chain optimization for the different cases. 

5.3.2 Closed-loop optimization with approximating inner QP problems 

The robust MPC formulation in Chapter 3 can be adapted for the supply chain 

robust optimizer. Here, we present the robust controller formulation, including the change 

in the formulation to give an inner QP problem for the robust supply chain optimization, 

even though the nominal objective function is linear. 

With the presence of uncertainty described in Section 5.3.1, we can use the 

following model to describe the uncertain supply chain system, 

(5.26) 

where Ur,k. Xr,k+J, er.k+J, denote the decision (manipulated) variables, state variables and 

feedback variables, respectively. The model (5.26) can be built in the same approach we 

followed for the nominal model (5.11). However, additional state variables are needed to 

model the uncertainties in the transportation time (as we discussed in Section 5.3.1.3). 

The parameters Bdr,kand dr.k in the model (5.26) are uncertain. 

179 




PhD Thesis-Xiang Li McMaster University - Chemical Engineering 

The robust MPC for this supply chain optimization problem addresses the 

closed-loop uncertainty of the system. So, its formulation includes not only the uncertain 

system model (5.26); it also includes the effects of the controller (optimizer) on the 

system dynamics during each time step in the future. As in Chapter 3, we will use a 

nominal MPC for the future controllers in the model. Thus, the robust MPC requires to 

solving the following bilevel stochastic optimization problem RMPC _ SCO-CL 

RMPC SCO-CL: 

min (5.27a)
isp,k+I. ,iisp,k ,Ok+l 

(5.27b) 

(5.27c) 

(5.27d) 

(5.27e) 

(5.27±) 

(5.27g) 

For all Bd,k, di.kin uncertainty region and k= 0, ... , n-l 

where equation (5.27a) means that the robust MPC is to minimize the nominal cost of the 

system. Equation (5.27c) denotes the uncertain system model with the feedback 

information eo. Equation (5.27d) denotes the feedback scheme where the feedback 

information is the difference between the real states and the nominal states. Equations 

(5.27e-5.27g) impose the bounds on the variables. 

Equation ( 5 .27b) means that the "simulated" control decisions in the future 

horizon are determined using a nominal MPC formulation, so equation (5.27b) denotes 

the embedded inner optimization problem. If we use the nominal MPC formulation 

NMPC_SCO (formulation (5.22) discussed in Section 5.2.3) in equation (5.27b), then the 
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mner optimization problem is an LP. Thus, we cannot solve the bilevel stochastic 

optimization problem RMPC_SCO-CL using the method developed in Section 3.2 of 

Chapter 3, which is based on modeling the future control action with QP. Therefore, we 

need a modified nominal MPC formulation in form of QP to take advantage of the 

method developed in Chapter 3. We call the modified formulation NMPC_SCO* and 

show it as the following. 

NMPC SCO*: 

mm (5.28a)
Xsp,k+l •UJ.p,k 

s.t. (5.28b) 

(5.28c) 

k=O, ... ,n-1 

where Xsp,k+I· Usp,k denote the desired values of the states and the decision variables 

respectively. Here, the objective (5.28a) is a quadratic function of the deviations of the 

state and decision variables from their desired values instead of the linear cost functions 

problem NMPC_SCO, so the problem NMPC_SCO is a QP instead of LP. Q and Rare 

the weighting matrices that can be tuned off-line. We do not include the bounds on the 

state variables explicitly within the inner QPs because these bounds are addressed with 

constraints (5.27f) that are outside the inner QPs. 

Therefore, the decisions determined at the future kth time step, Ur,k, are 

determined by the controller at that time step that solves the QP problem in the form of 

NMPC_SCO* with the initial conditions Xr,k. er,k. dm,k=(dm,/, .•• ,dm,k+n-?l and the desired 
· · - ( T T)T - ( T T)T ­States an d deCISIOnS X sp,k+I= Xsp,k+I , ••. , Xsp,k+n , U sp,k= Usp,k , • • ., Usp,k+n-I · X sp,k+I, 

ii sp,k are the degrees of freedom of the outer level of the bilevel problem 

RMPC_SCO-CL. The problem RMPC_SCO-CL can be transformed (approximately) 

using the approach developed in Chapter 3 by a limited number of linear stochastic 

optimization problems in the following form 
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RMPC SCO-CLT: 

min 
t,O 	

(5.29a) 

s.t. 	 (5.29b) 

(5.29c) 

(5.29d) 

(5.29e) 

(5.29t) 

o;:::o 	 (5.29g) 

For all Lun Mxur, Lxr, Mxn co in uncertainty region 

where 

1) 	 Equation (5.29a) denotes the objective of the optimization is to mm1m1ze the 

economic cost of the states and decisions as well as the penalties on the back orders. 

The degrees of freedom xsp,k+h ii sp,k are changed into t = (t~ ,···,t~_1 y (which are 

linear combinations of xsp.k+i. ii sp,k) to prevent ill-conditioning. The process 

variables are x =(x[ , ... ,x~+if , u =(ur, ... ,u~f , 0 = (O[ , ... ,0:+1f and 

coefficients are c; =(C;p···,C;n+tf c: =(C~0 ,···,C~n)r 
C~ = (C~,P···,C~,n+t)r. 

2) Equations (5.29b-5.29d) denote the closed-loop model of the system with the known 

• b d h d • • ( T T )T ( T T )Tactive Oun S On t e eClSlOnS. Ur = Ur,O• • ··, Ur,n-I , Xr = Xr,1' •• ·, Xr,n , 

9 = (x~ ,e~ ,d~)r where dm = (d~,0 , ... ,d~,n)r denotes the predicted disturbance in 

the horizon, co= &Ir= (d;,0 -d~,0 , ... , d;,n -d~,n)r denotes the difference between 

the uncertain disturbances and their predicted values. Equation (5.29d) enforces the 

active bounds, where () is determined according to the known active bounds 
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specified in uc. 13 , uc using the active set heuristic explained in Section 3.2.4 in 

Chapter 3. The uncertain coefficients Lur, Mur, Lxr, Mxr can be obtained using the 

same approach developed in Section 3.2.3 of Chapter 3 and Appendix D. 
3) Equations (5.29e-5.29g) impose bounds on the process variables, where 

T T )T ( T T )T ( T T )T and
Umin = ( Umin,0' ••• ' Umin,n-1 'Umax = Umax,O' ••• ' Umax,n-1 'Xmin = Xmin,I' • •• ' Xmin,n 

The problem RMPC _ SCO-CL can be solved by solving the problem 

RMPC_SCO-CLT iteratively with the active set heuristic developed in Chapter 3. The 

next subsection will discuss the solution of the linear stochastic optimization problem 

RMPC _ SCO-CL T as a chance-constrained program. 

5.3.3 SOCP formulation with tailored chance-constrained program 

The equations (5.29b-5.29c) and (5.29e-5.29f) can be combined into the following 

linear constraints with uncertain parameters, 

(5.30) 

(5.31) 

(5.32) 

In Chapter 3 we pointed out that the uncertain linear inequalities can be transformed into 

deterministic constraints using the idea of chance-constrained program. The accuracy of 

the transformation replies on how close the distribution of uncertain parameters to normal 

distribution. However, in this supply chain optimization problem, the uncertain parameter 

ro , which denotes the prediction errors of the uncertain customer demands in the future, 

has a distribution that is significantly different from normal distribution (as discussed in 
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Section 5.3.1). Therefore, we propose a revised chance-constrained program approach so 

that the resulting deterministic constraints can better approximates the uncertain linear 

inequalities. 

For more details, let us consider the /th constraint in (5.30), 

(5.33) 

where Lur"Murt,Nut denote the /th row of matrices Lur,Mur,Nu respectively and 
' ' ' 

umax,1 denotes the /th element in umax. Assume we want to guarantee the feasibility of 

constraint (5.33) at the given confidence level a, then the constraint can be written as, 

(5.34) 

We assume the uncertainties in Lur,t,Mur,t (from the uncertainties in manufacturing rate 

and transportation time) are independent of the uncertainties in ro (comes from the 

uncertainties in demand forecast), thus we can handle them separately. 

112Define ru~t such that Pr(Nu,10> ~<1 ) ~ a , then constraint (5.34) can be 

transformed into 

(5.35) 

where we assume the uncertain parameters Lup,/, Mup,t to obey a normal distribution. Then 

constraint (5.35) is equivalent to the following deterministic constraint (see Lobo et al., 

1998 for more details), 
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where E(.) denotes the expected value of the parameters in the brackets, <l>-1(au2) 

denotes the inverse cumulative probability function of normal distribution, vu,/ denotes 

the covariance matrix of (LurJ,MurJ' 1), which can be obtained using the method 

discussed in Chapter 3. 

If we transform all the uncertain linear inequalities (5.30-5.32) in the same way, 

the problem RMPC SCO-CL T becomes problem RMPC _ SCO-CL TSOCP, a 

deterministic SOCP in the following form 

RMPC SCO-CLTSOCP: 

min 
t,0 

(5.37a) 

E(Lur,l )t + E(Mur,l )0 + </
s.t. (5.37b) 

+ <l>-1 (a112) II v112 (e 9T i)T II < uu,l ' ' 2- max,/ 
} l~l,.··,n.n 

(5.37c) 
+ <l>-1 (a112) II v112 (e 9T i)T II > u . 

u,/ ' ' 2- mm,/ 

E(Lxr,I )t + E(Mxr,l )0 + rx~l 
(5.37d) 

+ <l>-1(a 112 
) II v;,;i(e ,0T ,1 yIii~ xmin,/ -BOO' 

(diag(l)-3) · t =Uc (5.37e) 

where Lxr,i,Mxr,t denote the /th row of matrices Lxr•Mxr respectively and 

Umin,/, Xmin,/ , denotes the /th element in Umin,, Xmin respectively, Vx,l denotes the 

covariance matrix of (Lx,,i,Mxr,I• 1) , ru~t , rx~I are the parameters such that 

112 112
P, (Nu,1ro ~ ru~i) ~ a , P, (Nx,1ro ~ rx~i) ~ a • 

Note that <1 , ru~1 , rx~i are obtained off-line numerically based on sampling of 

the historical data. For example, <1 can be calculated as follows: 
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1) 	 Randomly select p samples of the customer demands from historical data over the 

horizon ofp time steps, and these samples form the vector ro ; 

2) Calculate ru,i = Nu,1ro; 

3) Repeat steps (1) and (2) for 100 groups of samples in the historical data set (from 

years of 2004 and 2005), and then get values of ru,1 for all the 100 groups of 

samples. Pick the smallest ru,1 value such that the percentage of the ru,l values less 
112than it is above a , and then set <1 at this value. 

With these parameters evaluated, we can solve the bilevel stochastic optimization 

problem RMPC _ SCO-CL by solving a limited number of SOCP problems. In this thesis, 

RMPC_SCO-CLTSOCP was solved using an interior point optimizer, CPLEX. 

5.4 The Model for Supply Chain Simulation 

In the purpose of simulation case study, we need a model to represent the 

behavior of the real supply chain. The simulation period of this model is selected to be 1 

hour for all the case studies in this chapter. Also, this model enforces all integer values 

where required, even though factional numbers are allowed in the commands from the 

optimization. It is non-trivial to round the fractional numbers into the integer variables, 

because the hard process constraints need to be observed when implementing commands 

from the optimizer. The following rules are used to implement the commands from the 

optimizer: 

1) 	 The manufacturing rate of the ;th IP, P;, is rounded up to the nearest integer. 

2) 	 The processing rate of the i1h IP, F2, i, is rounded down to the nearest integer if there is 

enough inventory of the i1h IP (Iu) in IPS; Otherwise, F2,; is rounded to the largest 

integer that is feasible with the existing Iu. 

3) 	 The optimization tells how much SKUs to be produced within a SKU manufacturing 

period, but it does not indicate the sequence of manufacturing the different SKU s 

within the period. In the simulation model, this sequence is determined according to 

the inventories of different SKUs at the end of the optimization period, i.e. the 

smaller the inventory of a type of SKU is, the earlier that type of SKU is 
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manufactured. (We could choose to look at the inventories at the beginning or the end 

of the optimization period; here, we choose the end of the period to take the customer 

demand information into account.) 

4) 	 The SKU transportation quantities to different RDCs (F4,;J) are rounded sequentially 

according to the RDC indices j=1,...n1 and then the materials/product indices 

i=l, ...n;. For a particular F4,;J, we round it in the following steps: 

a) 	 Round F4,iJ up to the nearest integer and call the result F4,il) 

b) 	 IfF4,i/) is not feasible with the existing available inventory of SKU i in DC, h,;, 

decrease it to the largest integer that is feasible with the existing available h,1; 

Otherwise, do not change F4,i/). We call the result after this step F4,;Jb). 

c) 	 If the maximum transportation capacity to RDC j is not enough for F4,;Jb>, 

decrease it to the largest integer that is feasible; otherwise, do not change F4,;Jb). 

We call the result after this step F4,i/). 

d) 	 F4,i/) is the quantity of SKU i to be shipped to RDC j, which is used in the 

dynamic material balances for the inventories. 

Naturally, solving and continuous optimization problem and rounding the answer 

for implementation is not always acceptable. We note that this rounding is generally 

acceptable in this problem because the number of SKU's manufactured and transported is 

relatively large. The results from numerous case studies reported in this chapter 

demonstrate the applicability of the approach for this realistic supply chain. 

5.5 Case Study Results and Discussion 

The simulation case studies were performed on a PC with Intel Core 2 Duo 3.0 GHz, 

4GB memory and Windows Vista. The solution for the plant simulation is programmed 

in MATLAB 7.5, and the controller SOCP optimization problems are solved in GAMS 

with the interior point (barrier) solver of CPLEX 11. The data in MATLAB and CPLEX 

are exchanged using the interface software MATGAMS developed by Ferris (2005). 

The following Section 5.5.1 discusses the case studies with 1 IP/SKU (material) 

type and 1 RDC, and Section 5.5.2 discusses a case study involving a more complex 

system with 2 IP/SKU types and 2 RDCs. Section 5.5.3 discuss the computational 
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complexity of the method with respect to the number of IP/SKU types and RDCs. We 

start all cases with sufficient inventory so that the inventories remain non-zero (for 

uncertain demands) until the first shipments from the DC arrive at the RDC. This is to 

avoid back orders that are merely due to an insufficient initial inventory. 

The uncertainties descriptions used in the studies are evaluated using the methods 

in Section 5.3.3. To evaluate the importance of considering the uncertainty in the supply 

chain optimizer, both nominal MPC and robust MPC methods are applied to the case 

study problems. 

1) Nominal MPC 

This method solves the LP problem NMPC_SCO (equation (5.22)) at each 

controller execution period. 

2) Robust MPC 

The method is the one developed in Section 5.3, which solves a series of SOCP 

problems at each controller execution period with the active set heuristic. The detailed 

steps of implementing the method is the same as described in Section 3.5 of Chapter 3 

(for process control), except that the SOCP subproblems to be solved is as follows 

(developed in Section 5.3 of this chapter) 

min (5.38a)
t,0 

E(Lur,I )t + E(Mur,I )0 +<1 
s.t. (5.38b)

+ ct>-1 (a112) II v112 (e oT 1)T II < u 
u,l ' ' 2- maxj 

} l=l,···,n.n 
E(Lur,I )t + E(Mur,I )0 + ru~I 

(5.38c)
+e1>-1(a112)ll v112(e OT 1)T II >u .u,I ' ' 2- mm.,/ 

E(Lxr,I )t + E(Mxr,I )0 + rx~l 
l=l .. ·nn (5.38d)

.m.-1 ( 112) II v112 (tT oT 1)T II > - B~ o, , , x+ 'V a x,l ' ' 2 - Xmin,I o 

(diag(I)-o) · t = uc (5.38e) 

o~o (5.38f) 
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Also notice that the uncertainty in the supply chain system is time-varying so the 

deviation model approach developed in Chapter 3 is not needed. 

5.5.1 Case study with 1 IP/SKU type and 1 RDC 

Case studies in this section only consider the 1st IP/SKU and the 1st RDC in the 

system. The controller and system parameters in all the case studies results are basically 

the same, expect that the nominal demands used are different and the specific realizations 

of the uncertainty experienced by the simulations are different, which will be described 

later for each specific study case. 

Here we display the common parameters are used for all the case studies in this 

section. Table 5-1 shows the system parameters, and Table 5-2 shows the cost 

information specifically (which was defined arbitrarily for the study). Table 5-3 shows 

the different periods used in both the nominal and robust MPC controllers. Since the 

measurements of the inventories are available once a day, the MPC execution period, L1 

Tc, is 1 day. According to the different decision implementation periods shown in Table 

5-1 and the rules discussed in Section 5.2.1.1, the simulation period of the discrete model 

of the system used by the controller, L1 T, is selected to be 12 hours. Table 5-4 shows the 

weights related to the different controlled variables and decision variables in the 

weighing matrices Q, R of the inner QP problems, which are used to approximate the 

future LP optimizers. The weights of the different variables are first selected as the 

squares of the related costs (because we are using quadratic functions to approximate the 

linear economic functions). The resulting controller could be overly aggressive because 

the importance of the controller variables is amplified with the use of quadratic function, 

so the controller is tuned to reduce the aggressiveness. The case study results will 

demonstrate that using the weights showed in Table 5-4 in the inner problems of the 

robust MPC gives good supply chain optimization performance. 

189 




PhD Thesis-Xiang Li McMaster University - Chemical Engineering 

Table 5-1 Parameters of the system with the 1st IP/SKU and the 1st RDC 

Parameter Value 

Nominal SKU manufacturing rate Rs (SKU/hour) 


Rs range with 90% confidence (SKU/ hour) 


Unit converting coefficients C1P-SKU (IP/ SKU) 


Nominal SKU transportation time r (hour) 


r range with 90% confidence (hour) 


SKU Shipping Intervals (hour) 


SKU transportation capacity F4,max (SKU/12 hours) 


Demands D range with 90% confidence (SKU/day) 


16.7 


13.3-22.2 


6.0 


144 


132-156 


12 


40 


0-38 


Table 5-2 Costs defined by the author for the case study 

Parameter Value 

IP Inventory cost, C11 ($/IP/hour) 0.6 

SKU Inventory cost, C
12 

, C
13 

($/SKU/hour) 0.1 

Back order cost (penalty) C0 ($/SKU/hour) 100 

IP manufacturing cost Cp ($/IP) 1 

SKU manufacturing cost Cr ($/SKU) 0.1 

SKU Transportation costCF ($/ SKU) 
4 

0.01 
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Table 5-3 The different periods of the nominal and robust MPC controllers 

Parameter Value 

Measurement and MPC execution period, Ll Tc (day) 1 

Discrete model time interval, Ll T (day) 0.5 

Control and prediction horizon, n (day) 14 

Table 5-4 The additional parameters of the robust MPC controller 

Parameter Value 

Confidence of each chance constraint, a 


Q in inner problem - element for IP Inventory (IP-2
) 


Q in inner problem - element for SKU Inventory (SKU-2
) 


R in inner problem - element for IP manufacturing (IP-2
) 


R in inner problem - element for SKU manufacturing (SKU-2
) 


R in inner problem - element for SKU Transportation (SKU-2
) 


90% 

0.072 

0.002 

1 

0.01 

0.0144 

5.5.1.1 Simulation results of three typical situations 

Results for three typical model mismatch situations are presented here: 

Case A: The forecast prediction of customer demand, SKU manufacturing rate 

and SKU transportation time are exactly correct. This is the no model-mismatch case. 

Case B: The nominal SKU manufacturing rates and SKU transportation times 

differ from their nominal values at each time period in a random manner; the sampled 
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values could be outside of the 90% limits reported in Table 5-1. The forecast prediction 

of customer demand per day is the expected demand obtained from historical. The 

simulated plant experiences the actual demands taken from the demands in some 

successive 28 days in the year of 2006 (which could be outside of the 90% limits used in 

designing the controller), as well as a group of specific SKU manufacturing rates and the 

SKU transportation times over the 28 days that are randomly selected according to their 

assumed distributions. 

Case C: Similar to Case B, but the demand forecast is nearly perfect, differing 

from the actual demand only on the 16th day (the prediction is 30 SKU less then the 

actual demand). 

Note that Case A represents an ideal case that is very unlikely to happen in the 

real world, and Cases B and C are more realistic. Case B corresponds to the situation in 

which the daily customer demands are random and not known ahead of time, but the 

expected demands during a period can be estimated using historical data (e.g., retailers). 

Case C corresponds to the situation in which most of the products are ordered or 

contracted ahead of time and rush orders are possible but infrequent (e.g., wholesalers). 

We applied the nominal MPC and the robust MPC to all these threes situations 

respectively. 

Figure 5.6 shows the simulation results with the nominal MPC and robust MPC in 

Case A. First, we notice that the variable F4,1,1 in Figure 5.6, which denotes the SKU 

quantity shipped from DC to the RDC, is shown in a discrete way because we assume the 

shipments only occur at particular time points in the supply chain system; but F4,1,1 itself 

is a continuous variable in the MPC calculation, and it is rounded to an integer variable 

for the implementation to the real plant (using the rule described in Section 5.4). The 

customer demand D1,1 is shown with their daily demand in the figure, and the demand 

rate is assumed to be constant within each day. 

Second, we observe in Figure 5 .6 that the nominal MPC performs very well - it 

controls the inventory near zero while satisfying customer demands essentially all the 

time. (Note that the small back orders occurring around the 28th day were caused by the 

modeling approximations we made when building the nominal model used by the 

controller.) Robust MPC also prevents the back orders, but it keeps a larger inventory 

192 




PhD Thesis-Xiang Li McMaster University - Chemical Engineering 

o: .... :~I _____ _.Cl~..__.:=1 _:O[ 
oL_J· ... dW'\ J 

0 10 20 0 10 20 

'C' 200 .---------------. 


~-.r::. 

Li..'" Q: 1 / _;:;-~ 100L f\- 0. n--n -----nn ~ 0- r "- ~ 
0 10 20 0 10 20 

soj~------------.~ ~-s- 1ooh I\ J 
" ..0. I I. I " I, I111 ti J _::i§_ 

5

~ I \.J-:AJ \.. .AJ 
0 10 20 0 10 20 

1

~L-.i-:--;-d1--:1.t.;--.~l 6~ ~_I_______]~
0 10 20 0 10 20 

(a) Results with nominal MPC 

-;::­
~-.r::. 

LL~ Q: 
:::::::.. 

o.:, I .D 
~-,..:c..- ::::.. ~K 

0 10 20 0 10 20 
-;::­

~-.r::. 

LLN c::-
-
o.iL 

0 10 
:n:J 
20 

100 

_;;~ 50~ 
Cf) -- 00 

: 
10 

.... 
20 

~ 
.r::. 400 

~-N 
~_ ..... 
-q:-... 

LL ::> 
::i::: 

5 

: ~iii. II L. I .. I .I ... I 1•••1.1.1.. 1.I 3~~b.c-
~ 0 10 20 0 10 
~ 

~ co 
~-:g 

Cl ::> 
::i::: 
~ 

1 

~ l--.l-:--~d1--:l~;--..1l 
0 10 20 

-~- ::> 
~ ::i::: 
o~ ~, 

-1 
0 10 20 

(b) Results with robust MPC 

Fi,;: Flow of the 11h IP from IPM to IPS F2,;: Flow of the 11h IP from IPS to SKUM F4.ij: Shipping of the 11h SKU to the ;'h RDC 

Iu: Inventory of the 11h IP at JPS 12,;: Inventory of the 1th SKU at DC 13.ij: Inventory of the 1th SKU at the1th RDC 

D;i Customer demand of the 11h SKU to theJth RDC O;i Back order of the zth SKU at the Jth RDC 

Figure 5.6 Simulation Results without model mismatch- Case A 
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of IP and SKU because the robust MPC tries to avoid back orders not only for the 

nominal realization of the system, but also for other realizations within the confidence 

level. The additional inventories to prevent the potential back orders are "safety stock" 

for uncertainty, which is not required in this ideal case. 

Finally, the manipulated variables F4,1, 1 and the F2,1 (determined by the 

manipulated variable Ts, 1) are fluctuating from day to day and the fluctuations under 

robust MPC are greater than under nominal MPC. Similar results can also be found in 

other case studies in this chapter. This may be because the robust MPC is more 

"sensitive" to the time-varying uncertainties. The fluctuations in the manipulated 

variables could be reduced in either MPC method by adding move suppression terms in 

the objective function or constraints on the change of the manipulated variables. 

Figure 5.7 and Figure 5.8 present the simulation results in Cases B and C, 

respectively. In these mismatch cases, the nominal MPC performs unsatisfactory because 

of the large numbers of back orders occurring after the about 20th day. The nominal MPC 

reduces inventories and does not consider safety stock, which would enable it to respond 

well to mismatch. The robust MPC prevents back orders because it keeps a safety stock 

to satisfy deviations from average performance that are due to model and forecast 

mismatch. In both Cases B and C, the nominal MPC takes long time to eliminate the back 

orders, because the transportation time from the DC the RDC is long (5.5-6.5 days), 

which is the minimum time for the system to respond to the shortage SKU at the RDC. 

5.5.1.2 Summary of the results of more situations 

The figures in the last subsection represent the behavior of nominal and robust 

MPC for a specific mismatch realization in three typical situations. The simulation 

studies for a larger numbers of realizations and the variation combinations of mismatch 

were performed to better understand the advantages of robust MPC. These simulation 

results are summarized in Table 5-5. To generate the results for Table 5-5, simulation 

were performed with nominal and robust MPC for 12 different cases for 28 days, in 

which the parameters Rs, r, D can have mismatch from the actual process. (Note the 

mismatch types in Case 1, 11, 12 are the same to those in Case A, B, C discussed in the 

previous subsection.) The results in the table report the average behavior for 100 
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(b) Results with robust MPC 

F1,;: Flow of the 11h IP from IPM to IPS F2,;: Flow of the 11h IP from IPS to SKUM F4,;j: Shipping of the 11h SKU to theP RDC 

I1,;: Inventory of the 11h IP at IPS I2.i: Inventory of the 11h SKU at DC I3.iJ: Inventory of the 11h SKU at the11h RDC 

D;J Customer demand of the z1h SKU to theJ1h RDC O;J Back order of the 11h SKU at the11h RDC 

Figure 5.7 Simulation results with model mismatch-Case B 
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(b) Results with robust MPC 

Fl.i: Flow of the 11h IP from IPM to IPS F2,i: Flow of the 11h IP from IPS to SKUM F4,ii Shipping of the 1th SKU to the;th RDC 

Il.i: Inventory of the 1th IP at IPS I2,i: Inventory of the 1th SKU at DC I3,iJ Inventory of the 1th SKU at the;th RDC 

D,J Customer demand of the 1th SKU to the;th RDC 0,J Back order of the 1th SKU at the;th RDC 

Figure 5.8 Simulation Results with model mismatch- Case C 
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realizations of the uncertain parameters for each of the 12 cases. The uncertainty 

realizations were selected randomly from their distributions and therefore, were allowed 

to exceed the ranges used when designing the optimizer. 

The results in Table 5-5 clearly demonstrate the reduced quantity of back orders 

when the supply chain system is optimized by the robust MPC. Some small backorders 

occurred with robust MPC because of (a few) realizations with demand outside the 

design confidence region and the approximation made for the modeling. In contrast, the 

average back order was nonzero in all the 11 study cases when nominal MPC was used, 

and the increase in backorders was substantial in most cases. It is also clear that the 

inventories maintained by the robust MPC are larger than those by the nominal MPC. 

The extra inventories maintained by the robust MPC provide the safety stocks that 

significantly reduce back orders. 

Table 5-5 also shows that the uncertainty in any single source has effect on the 

system performance. Uncertainty in the customer demand D has the dominant effect, and 

this uncertainty must be addressed in the MPC calculation to reduce the back orders. 

While the effects of the uncertainties in the SKU transportation time rare less significant, 

addressing it in the robust MPC calculation is still essential to reduce the back orders. 

The uncertainty in the manufacturing rate Rs has the least effect on the system 

performance in Table 5-5, because the manufacturing capacity is large enough in this 

case study to enable the daily manufacturing quantity to be fulfilled as the uncertain rate 

varied, that is, sufficient spare capacity existed in most of the days. Finally, the more 

sources of uncertainty are present, the more back orders are incurred. 

From these studies, we conclude that we need to address all sources ofuncertainty 

simultaneously in the robust MPC to reduce the back orders. Also, since Rs, r appear in 

the feedback model and D is the disturbance to the system, both the feedback model 

mismatch and the disturbance uncertainty must be addressed to achieve the robust MPC 

performance in Table 5-5. Many existing robust MPC methods are only able to address 

part of the sources of the uncertainty in Table 5-5, e.g., feedback model mismatch 

(Kothare et al., 1996) or disturbance uncertainty (Goulart et al., 20006), so they cannot 

achieve the same performance as the method developed in this thesis. 
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Table 5-5 The simulation results with nominal and robust MPC in the 12 cases 

Nominal MPC RobustMPCCase 

Number 
Rs D 

AveC51(Li61) Ave(Ld71) Ave(LJ) Ave(LO) 

(SKU) (SKU) (SKU) (SKU) 

1 cclJ c c 6233 4[8] 11733 0 

2 c c u1[3l 7356 602 10187 43 

3 c c u2[4l 6593 241 10540 30 

4 c u c 7722 46 11531 0 

5 c u Ul 7296 794 10279 70 

6 c u U2 6558 330 10647 56 

7 u[21 c c 6282 5 11212 0 

8 u c Ul 7300 607 10284 43 

9 u c U2 6571 248 10454 32 

10 u u c 7502 49 11408 0 

11 u u Ul 7185 796 10359 74 

12 u u U2 6560 338 10519 56 

Note: [l] C =Certain; [2] U =Uncertain; [3] Ul for uncertain demands denotes the nominal 
demands are expected demands; [4] U2 for uncertain demands denotes the nominal 
demands are only incorrect for the 16th day; [5) The average of the quantity in the 
parentheses for the 100 samples; [6] The sum of the daily inventory level over the 
simulation horizon; [7] The sum of the daily back order level over the simulation 
horizon; [8] The small back orders are due to the approximation introduced in the 
modeling. 
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We emphasize that the robust MPC obtains the minimum safety stock through 

optimization according to the known uncertainty characterization. Therefore, the safety 

stock is the minimum for the closed-loop uncertainty experienced, which is better than 

setting constant safety stocks based on past experience. 

5.5.1.3 Trade-off between back orders and safety stock 

Table 5-5 reports small amounts of back order under the robust MPC, which are 

caused by the realizations outside the confidence region addressed by the robust MPC 

and modeling approximations. We could increase the confidence level of satisfying 

uncertain constraints to reduce the potential back orders at the cost of maintaining greater 

"safety stock". The trade-off in the tuning of the confidence level for robust MPC is 

shown in Table 5-6. In this table, the results with the robust MPC using different 

confidence levels are from the simulation of Case 11 in Table 5-5 (where the nominal 

demands are the expected demands obtained from historical data). The quantities shown 

in the table are from 100 realizations of the system. 

We can see from Table 5-6 that when the confidence level is increased, the 

average total inventory during the 28 days increases while the average total back orders 

and the worst case back orders decrease. A new quantity, service level, is also shown in 

Table 5-6. The service level of a period is defined to be 1 minus the ratio of the total back 

orders to the total demands during the period (Tersine, 1994). It indicates how well the 

customers are serviced during the period. It is clear that the higher the confidence level, 

the better the system can service the customer but the more inventory the system needs to 

maintain. 

If the back order cost (penalty) correctly reflects the importance of service to the 

customers, we can determine the best tuning of the confidence level quantitatively by 

comparing the total costs of the inventories and back orders. According to the inventory 

and back order unit costs shown in Table 5-2 and the inventories and back orders shown 

in Table 5-6, we can calculate the costs for the 5 different tuning of the confidence levels. 

The calculated results are illustrated in Figure 5.9. We can see that the inventory 

cost increases and the back order cost decreases with the increase of the confidence level, 

and the lowest total cost is present with the confidence of90%. We note the steep 
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Table 5-6 The simulation results ofrobust MPC with different confidence levels 

Confidence level Ave[1J(Li21) Ave(Ld31) Max[41(L0) Average service level 

99% 22819 35 261 93.1% 

95% 13244 37 271 92.9% 

90% 12439 42 362 92.1% 

85% 11319 58 418 89.2% 

80% 10416 72 670 86.9% 

Note: [1] The average of the quantity in the parentheses for the 100 samples; [2] The sum of 
the daily inventory over the simulation horizon; [3] The sum of the daily back order over 
the simulation horizon; [4] The maximum of the quantity in the parentheses for the 100 
samples. 
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Figure 5.9 Relationship between system cost and the confidence level ofrobust MPC 
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increase in total cost when the confidence level is above 95%, which indicates that 

achieving service levels above 93% will be very expensive for this system because of 

model uncertainty and demand forecast errors as well as the long transportation times 

which delay feedback corrections. 

5.5.1.4 The Tuning of the confidence level 

A confidence level properly tuned off-line may still not as good as desired in 

practice, because the current uncertainty of the system may be different from the 

uncertainty characterized according to historical data. Reasons could be changes in 

traffic, modifications to process equipment (planned or wear), or changes in customer 

purchasing patterns. This problem can be addressed by tuning the confidence level 

automatically online based on real time data. Here, we are not trying to propose a 

systematic adaptive tuning method, but to demonstrate the advantage of the idea of 

adaptive tuning through a simple heuristic and a case study. 

The heuristic adaptive tuning method used here is: 

1) When back orders occur, increase the confidence level of the robust MPC, a, by 1 %. 

This is to prevent a to be overly small. 

2) When the SKU inventory at the RDC (h) is above a particular level for a week, 

decrease a by 1 %. The particular inventory level is an indicator to judge if the safety 

stock is too large, which can be obtained by the experienced personnel or an 

inventory management heuristic. 

Figure 5.10 compares the robust MPC methods with and without adaptive tuning 

by the simulation of the closed-loop system for 15 weeks. Here, the nominal demands are 

the expected demands obtained from historical data (i.e. as in the Case 11 in Table 5-5). 

In the controller, the nominal predictions of the manufacturing rate and transportation 

time have mismatch and the forecast of the demand is the average demand. The initial 

confidence level of the robust MPC is 99%. We set the 90 SKUs to be the threshold 

inventory level to judge if the SKU inventory at the RDC is overly large. We can find 

that if keeping the 99% confidence level without using the adaptive tuning, the robust 

MPC will maintain an excessive SKU inventory (IJ,1) of over 200 SKUs at the RDC for 
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(b) Simulation results under robust MPC with adaptive tuning 

F1,i: Flow of the 11h IP from IPM to IPS F2,i: Flow of the z1h IP from IPS to SKUM F4,ij: Shipping of the ith SKU to the11h RDC 

I1,i: Inventory of the z1h IP at IPS I2,i: Inventory of the z1h SKU at DC I3,ij: Inventory of the z1h SKU at the11h RDC 

D;J Customer demand of the z1h SKU to the11h RDC O;J Back order of the z1h SKU at the11h RDC 

Figure 5.10 Comparison of the robust MPC with and without adaptive tuning 
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the quarter of the year. With adaptive tuning the robust MPC will gradually decrease the 

confidence level so that h,1 decreased to about 100 SKUs. This study demonstrates the 

potential for improving supply chain optimization through adaptive updating of 

uncertainties, and we conclude that this is an opportunity for future investigation. 

5.5.1.5 Back orders due to limited transportation capacity 

Previous cases have demonstrated that we can decrease back orders occurring 

with robust MPC by increasing the confidence level of the chance constraints. Here, we 

note that it is not always possible to achieve zero back orders by increasing the 

confidence level to almost 100%. In some situations, the occurrence of back orders is not 

due to the tuning of robust MPC, but to the limitations in the behaviour of the real 

system. 

Figure 5.11 shows a situation where large amount of back orders occur both 

under nominal MPC and under robust MPC. In the controllers, the nominal predictions of 

the manufacturing rate and transportation time have mismatch and the forecast of the 

demand is the average demand (as the Case 11 in Table 5-5), but the simulated plant 

experiences the actual demands taken from some successive 28 days in the year of 2004 

(which is within the 90% uncertain demand region used in the controller design) In this 

case scenario, there are large demands (100 SKUs/day) at the RDC on the 7th and gth days 

of the simulation period. The transportation time is 6 days to ship SKUs from DC to the 

RDC, and this lead time (in supply chain terminology) or dead time (in automatic control 

terminology) presents a limit to the responsiveness of the feedback system. In this case 

study, the initial SKU inventory at the RDC roughly equals the demands in the first 6 

days, so no infeasibility occurs due to insufficient initial inventory. From the system 

dynamics, the SKU s shipped in the first two days from the DC to the RDC must be able 

to satisfy the demands on the 7th and gth days (minus any residual inventory in the RDC) 

to ensure that no back orders occur. However, the transportation capacity for two days is 

limited to a maximum of 160 SKUs (40 SKU/shipment and 1 shipment/12 hours). 

Because of short-term high demands at the RDC, the existing transportation capacity is 

not large enough to satisfy all the demands in the 7th and gth days (totally 200 SKUs). We 

can see in Figure 5.11 (b) that the robust MPC addresses the potential uncertainty and 
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(b) Results with robust MPC 

F1,;: Flow of the 11h IP from IPM to IPS F2,;: Flow of the 1'h IP from IPS to SKUM F4,y: Shipping of the 11h SKU to the ;1h RDC 

11,;: Inventory of the 11h IP at JPS 12,;: Inventory of the 11h SKU at DC 13,y: Inventory of the 11h SKU at the;1h RDC 

D;i Customer demand of the 11h SKU to the;1h RDC O;i Back order of the 11h SKU at the/h RDC 

Figure 5 .11 Simulation Results with incorrect nominal prediction of parameters 
- unavoidable back orders due to the limit of transportation capacity 
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orders the system to ship the SKU s to the RDC at the full capacity in the first several 

days. However, because of capacity limits, back orders still occur during the 7th and 8th 

days. As the demand decreases to within the capacity of the transportation system, the 

back orders are quickly eliminated after the 8th day by the SKUs transported on the 3rd 

and subsequent days. 

We can also find from Figure 5.11 (a) that more back orders occur under nominal 

MPC on the 7th and 8th days as well as on the 21st and subsequent days. Therefore, the 

robust MPC still outperforms the nominal MPC in this situation. 

5.5.2 Case study with 2 IP/SKU types and 2 RDCs 

This section shows the case study results when considering two material/product 

types (the 1st and 2nd IP/SKU) and two regional distribution centers (the 1st and 2nd RDC). 

Table 5-7, Table 5-8 and Table 5-9 show the supply chain system parameters, the 

different periods used in the nominal and robust MPC and the additional robust MPC 

parameters used in this section respectively. Also, we use the costs in Table 5-2 for this 

section. The uncertainty in the customer demands of both SKU types at both RDCs can 

be characterized from the historical demand data, and we show the histograms of the 

demand data in Appendix H. The nominal forecast of the demand is the expected demand 

obtained from historical data. The nominal forecast values of the manufacturing rate and 

transportation time do not match the actual process behavior. The simulations were run 

for 28 days. 

Figures 5 .12 and 5 .13 show the simulation results under nominal and robust MPC, 

respectively. We can find that if the nominal MPC is employed, back orders of the 1st 

SKU will occur at both RDCs (especially the 2nd RDC) due to the model mismatch; but 

no back orders of the 2nd SKU occur because the uncertainty in the demand forecast of 

the 2nd SKU is much smaller than that of the 1st SKU. 

We can also find that ifthe robust MPC is employed, back orders do not occur for 

either SKU s at either RDCs because of the explicit handling of uncertainty in robust 

MPC. Also, the robust MPC maintains much larger inventories of the 1st SKU at the 

RDCs (about 200 SKUs for each) than those of the 2nd SKU at the RDCs (about 70 and 
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100 for each), because the nominal prediction and the uncertainty in the 1st SKU demands 

are much larger than those for the 2nd SKU. 

Table 5-7 Parameters of the system with the 1st and 2nd IP/SKU and the 1st and 2nd RDC 

Parameter Value 

Nominal SKU manufacturing rate Rs 
(SKU/hour) 

Rs range with 90% confidence (SKU/ hour) 

Unit converting coefficients C1P-SKu,; 

(IP/ SKU) 

Nominal SKU transportation time ; (hour) 

; range with 90% confidence (hour) 

SKU Shipping Intervals (hour) 

SKU transportation capacity F4,maxJ 

(SKI/shipping interval) 

Customer demands DiJ range with 90% confidence* 
(SKU/day) 

16.7 (the 1st IP/SKU) 
16.7 (the 2nd IP/SKU) 

13.3-22.2 (the 1st IP/SKU) 
13.3-22.2 (the 2nd IP/SKU) 

6.0 (the 1st IP/SKU) 
6.6 (the 2nd IP/SKU) 

144 (the 1st RDC) 
144 (the 2nd RDC) 

132-156 (the lstRDC) 
132-156 (the 2nd RDC) 

12 (the 1st RDC) 
8 (the 2nd RDC) 

40 (the 1st IP/SKU) 
40 (the 2nd IP/SKU) 

0-38 (the 1st SKU 1, the 1st RDC) 
0-55 (the 1st SKU 1, the 2nd RDC) 
0-12 (the 2nd SKU 1, the 1st RDC) 
0-16 (the 2nd SKU 1, the 2nd RDC) 
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Table 5-8 The different periods of the nominal and robust MPC controllers 

Parameter Value 

Measurement and MPC execution period, L1 Tc (day) 1 

Discrete model time interval, L1 T (hour) 4 

Control and prediction horizon, n (day) 14 

Table 5-9 The additional parameters of the robust MPC controller 

Parameter Value 

Confidence of each chance constraint, a 


Q in inner problem - element for IP Inventory (IP-2
) 


Q in inner problem - element for SKU Inventory (SKU-2
) 


R in inner problem - element for IP manufacturing (IP-2
) 


R in inner problem - element for SKU manufacturing (SKU-2
) 


R in inner problem - element for SKU Transportation (SKU-2
) 


90% 

0.0144 

0.0004 

1 

0.01 

0.0016 
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(b) Simulation results for the 2nd IP /SKU 

F1.;: Flow of the 1th IP from IPM to IPS F2,;: Flow of the 1th IP from IPS to SKUM F4,ij: Shipping of the 1th SKU to theJth RDC 

I1,;: Inventory of the 1th IP at IPS I2,;: Inventory of the 1th SKU at DC I3,ij: Inventory of the zth SKU at the 1th RDC 

D;J Customer demand of the 1th SKU to the 1th RDC O;J Back order of the zth SKU at theJth RDC 

Figure 5.12 Simulation results of2 IP/SKU types and 2 RDCs-Nominal MPC 
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(b) Simulation results for the 2nd IP/SKU 

F1,;: Flow of the 1th IP from IPM to IPS F2,;: Flow of the 1th IP from IPS to SKUM F4,iJ: Shipping of the 1th SKU to the;th RDC 

I1,;: Inventory of the 1th IP at IPS I2,;: Inventory of the ;th SKU at DC I3,w: Inventory of the 1th SKU at the;th RDC 

D1/ Customer demand of the 1th SKU to the;th RDC 0 1/ Back order of the 1th SKU at the;th RDC 

Figure 5.13 Simulation results of2 IP/SKU types and 2 RDCs-Robust MPC 
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5.5.3 Computational complexity 

In Section 5.5.2 we demonstrated that the robust MPC method works well for 

multiple IP/SKU types and multiple RDCs. This section discusses the computational 

complexity of the problem with respect to the number of IP/SKU types and RDCs. We 

define Case B described in Section 5.5.1.1 as the base case for the simulation, and 

compare the results with different numbers (denoted by n1PisKu) of IP/SKU types and 

only 1 RDC, or the results with different number of RDCs (denoted by n RDC ) and 1 

IP/SKU type. Also, only one manufacturing plant (SKUM) and one plant SKU 

distribution center (DC) exist in all the simulations. We will discuss the both theoretical 

computational complexity and also give computational results from test problems. 

First, with the increase of nRDC and n1p;sKu, the scale of the optimization 

problem (formulation (5.37)) will increase. According to the modeling of the system and 

the robust MPC formulation shown in Sections 5.2 and 5.3, the number of the decision 

variables ndecision, the number of the linear constraints nLc and the number of the 

second order cones Nsoc are all linear with respect to nRDCnIPISKu , i.e. 

naecision,nLoNsoc ~ O(nRDCnIPISKu). The following Figure 5.14 summarizes the simulation 

results that indicate the effects of n ROC and nIP1sKu on ndecision , nLC , N soc , which is in 

accordance with the theoretical analysis. 

Second, the larger optimization problem requires the increased computer 

memory for real-time computation. The memory is basically used to store the matrices 

used in the calculation, so it is proportional to the elements in the matrices. According to 

formulation (5.37), the matrix elements are O((nRDcnIPISKu )
2
). Figure 5.15 shows the 

memory required in the online calculation, which is more linear than quadratic with 

respect to nRDCnIPISKu. This is because many matrices are sparse, and the zero elements 

do not occupy any space when sparse matrix numerical methods are employed. 

Finally, the larger optimization problem takes more time to solve. Note that we 

need to update the uncertainty characterization according to the saturation of the decision 

variables in the real-time before we solve the optimization problem. According to the 

discussion in Section 3.3.2 in Chapter 3 and in Appendix E, the uncertainty update 
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calculation is cubic with respect to the number of decision variables, i.e. O(n~ecision) and 

thus O((nRDcnJPISKu )3
). According to Lobo et al. (1998), the time complexity of solving 

a SOCP problem is bounded from above by O(N1~~n;ecisionL:7c nsoc,1), where nsoc,J 

denotes the size of each second order cone, which is proportional to nRDC, nJP 1sKu in this 

problem. So the time complexity of solving the SOCP problem (5.37) is bounded by 

O(N1~~n;ecisionNsocnRDCnIPISKU)' i.e., O((nRDCnJPISKU )
912

) • 

Figure 5.16 shows the effects of nRDc and n1p;sKu on the CPU time required 

for the real-time uncertainty update and the optimization. It's clear that both times are 

polynomial with respect to nRDc and n1p1sKu. Note that here we only show the CPU 

time of these two jobs, but the total time to complete all the calculations required for a 

controller execution is much more than those shown in Figure 5.16 for the current version 

of the software. The additional time is due to (a) a large amount of auxiliary operations 

and calculations to preprocess the data and build the optimization formulation in 

MATLAB; and (b) the slow procedure to exchange data between MATLAB and the 

CLPLEX optimizer in GAMS (through reading and writing data from and to the hard 
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disk). This additional time can be reduced by changing the software structure to make the 

data preprocessing and organization more efficient and improving the data exchange 

between MATLAB and GAMS in computer memory. 

5.6 Conclusions 

This chapter discusses the application of robust MPC to supply chain optimization 

through a real industrial multi-echelon supply chain optimization problem. Since the 

structure of the supply chain system is representative of those in industry, the method 

developed for this system should also be applicable to many other real problems. The key 

restriction is the occurrence of only continuous variables for the supply chain, with any 

discrete decisions made at a lower level in the decision hierarchy. While certainly not 

completely general, other researchers have found similar formulations appropriate for 

industrial problems, e.g., Braun et al. (2003), Wang et al. (2007), etc. 

In this chapter, we choose the greatest common divisor of the different decision 

implementation periods and feedback period as the sampling time period, so the supply 

chain system can be modeled in the form of a canonical discrete time state-space model. 

The different uncertainties of the system are modeled using uncertain parameters. The 

structural uncertainty caused by the uncertainty in the SKU transportation time 1s 

approximated by a novel disjunctive model formulation with parametric uncertainty. 

We adapted the general robust MPC framework developed in Chapter 3 for the 

supply chain optimization. The resulting bilevel optimization problem is different from 

the one in Chapter 3, because the inner optimization problems are LPs instead of QPs. 

We approximate these LPs by QPs with the goal of achieving the targets set by the upper 

level optimization. With this modification we can apply the active set heuristic developed 

in Chapter 3 and transform the bilevel problem into single level problem. Also, the 

non-normally distributed uncertain customer demands are characterized with Monte 

Carlo sampling, so that it can be handled within the framework of chance-constrained 

program 

The case study results show that the robust MPC can determine the optimal safety 

stock with the known information on uncertainties, which is a key advantage of the 
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robust MPC over nominal MPC for supply chain optimization. The simulation study also 

shows the ability of the robust MPC to address both the model mismatch and disturbance 

uncertainty for this supply chain optimization problem, which is important to reduce the 

back orders. When hard bounds (that represents the limitation of the real system) are 

encountered, the robust MPC may not prevent back orders, but it can manage the system 

to reduce back orders when compared with a nominal MPC. 

We also discuss the trade-off between the inventory and back order (or service) 

levels through tuning the confidence level of robust MPC through and evaluate the 

effects through simulation studies. The trade-off can be evaluated by comparing the 

inventory and back order costs with different tunings. The importance of adaptive tuning 

is discussed, and its advantage is demonstrated in a case study using a prototype adaptive 

method. 

The robust MPC is successfully applied to the system with 1 IP/SKU type and 1 

RDC and the system with 2 IP /SKU types and 2 RDCs. We point out that the theoretical 

computational complexity of the problem is polynomial with respect to the number of 

IP/SKU types and RDCs, which is validated by simulations of different test problem. 

This means we can apply this method to larger systems with more IP/SKU types an 

RDCs, and while computations increase with problem size, the rate of increase 1s 

moderate and the robust MPC does not suffer from the curse of dimensionality. 
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Chapter 6 

Summary and Future Work 

6.1 Summary 

This thesis develops a novel robust MPC method for the control and optimization 

of dynamic, uncertain systems with feedback, such as process control systems or supply 

chain systems. The method is designed to optimize an uncertain closed-loop system 

behavior, not to robustly stabilize it, although the method could be extended to provide 

robust stability, as discussed later. It offers a general framework that can address different 

sources of parametric uncertainty with efficient and reliable solution for real-time 

implementation, and this framework can be tailored for the application to different types 

of problems. 

Chapter 3 develops the general framework of the new robust MPC method based 

on the conventional nominal MPC formulation with a state-space model. Because the 

controller influences the prediction of future behavior for uncertain systems, the robust 

MPC formulation is initially a bilevel stochastic optimization with the inner optimization 

approximating the future controller behavior. With an industry-proven heuristic and the 

chance-constrained programming technique, this difficult-to-solve problem is solved 

(approximately) by solving a limited number of deterministic, convex SOCP problems, 

which can be solved efficiently and reliably with an optimizer using an interior point 
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method. An enhanced dynamic model with deviation variables is developed to reduce the 

conservativeness in the prediction of time-invariant uncertainty. An efficient closed-loop 

uncertainty characterization method is developed so that the extensive calculation can be 

performed off-line and the on-line calculation is efficient. The uncertainty in the state 

estimation, if not all the states are measurable, is integrated explicitly in the general 

framework of the new robust MPC. The case studies of several CSTR control problems 

demonstrate the new robust MPC method outperforms nominal MPC and outperforms 

simpler robust MPC formulations that do not include feedback uncertainty descriptions or 

state estimation errors. 

Chapter 4 extends the general robust MPC framework developed in Chapter 3 to 

include two key features required for process control applications. The first feature is the 

robust steady-state optimization, which obtains feasible and economically optimal set 

points while addressing the closed-loop uncertainty, for the trajectory optimization 

(control) at each control execution period. Deviation variables are again used to enhance 

the steady-state model of the system for better prediction of time-invariant uncertainty. 

The steady-state method is originally formulated as a bilevel stochastic optimization 

problem, which is then approximated by a limited number of deterministic SOCP 

problems using the similar approach introduced in Chapter 3. The second feature is a 

quadratic and convex objective function formulation that can include expected 

performance and variances of the controlled variables in the prediction horizon, so that 

the robust MPC method can account for different input-output uncertainties when 

optimizing the (expected) performance. The advantages of the two extensions on 

handling constraints and achieving robust performance with the presence of uncertainty 

are demonstrated through case studies of several distillation and CSTR control systems. 

Chapter 5 tailors the general robust MPC framework developed in Chapter 3 for a 

typical industrial supply chain optimization problem. At the beginning, a nominal linear 

state-space model is developed for the supply chain system with appropriate assumptions, 

and the uncertainties in the system are modeled as uncertain parameters in the linear 

model. Next, a bilevel linear stochastic optimization formulation is built to optimize the 

uncertain closed-loop dynamics of the supply chain system. The inner LP problems of the 

formulation are then approximated by QP problems so that the formulation can be 
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approximated by a limited number of deterministic SOCP problems using the similar 

approach introduced in Chapter 3 and a tailored chance-constrained programming 

technique. The case study results show the advantage of the robust MPC over nominal 

MPC on reducing the back orders as well as the trade-off between the controller tuning 

and the customer service level. Finally, the theoretical polynomial computational 

complexity of the robust MPC method is validated by simulation studies, which show 

that the computations increase with problem size moderately and this robust MPC supply 

chain method does not suffer from the curse of dimensionality. Note that if we model the 

supply chain optimization problem in Chapter 5 using multi-stage stochastic 

programming formulation with recourse, a 14- stage problem must be solved that will be 

computationally intractable because the scale of the problem is exponential in the number 

of scenarios. 

6.2 Summary of Contributions 

The key contributions of this thesis are summarized in the following. 

• 	 A general formulation of a new linear robust MPC method that optimizes the 

uncertain closed-loop system behavior in the prediction horizon and is subject to 

hard bounds on manipulated variables and soft bounds on controlled variables. 

The formulation explicitly addresses correlated, time-varying or time-invariant, 

parametric uncertainty of the plant/model mismatch, measured disturbance 

plant/model mismatch, unmeasured disturbances and noises. Although existing 

robust MPC methods can address one or more of these sources of uncertainty, 

none of them can address all these sources of uncertainty in a unified framework 

simultaneously with efficient solution. 

• 	 Efficient real-time solution of only a few convex SOCP problems, with intensive 

calculations for uncertainty description performed offline. 

• 	 Uncertainty in state estimation is addressed explicitly in the general robust MPC 

framework (if not all the system states are measurable). 
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• The first robust steady-state optimization method that explicitly addresses 

closed-loop uncertainty. This method has efficient and reliable solution for 

real-time applications. 

• 	 The first explanation and application of the deviation variable formulation for 

robust MPC applied to time-invariant systems. This formulation provides a tight 

bound on the uncertainty of the future transient behavior. 

• 	 A flexible convex and quadratic objective function is formulated to include 

nominal or expected dynamic performance as well as the output variances of an 

uncertain system. The inclusion of the objective function does not affect the 

computational tractability of the method. 

• 	 A tailored robust MPC formulation, with modified inner optimization problems 

and chance-constrained approach, for the operational optimization of a typical 

industrial supply chain system with uncertainties in manufacturing, transportation 

time and customer demand. Theoretical analysis and computational studies 

demonstrate that the computing time and storage space for solution increase 

moderately with system scale (i.e. number of SKUs and number regional 

distribution centers) and the method does not suffer from the curse of 

dimensionality. 

6.3 Future Work 

Optimization of uncertain systems with feedback is a broad topic with a large 

number of research opportunities. This section briefly discusses some specific topics for 

the research to address issues identified but not addressed in the process of completing 

this thesis. 

6.3.1 Addressing integer variables 

Integer variables may be required in the model for a process or supply chain 

system. For example, a process system may contain some parts described by logic, such 

as on-off decisions associated with equipment start up or shutdown or selection of only 

218 




PhD Thesis-Xiang Li McMaster University - Chemical Engineering 

one from many manipulated variables. The logic is usually modelled with binary 

variables in the mathematical formulation of the optimization problem. In a supply chain 

system, integer variables may also come from the discrete nature of some quantities, such 

as number of trucks in a distribution network, the number of product packages to be 

shipped, and so forth. So, these systems must be modelled with both continuous and 

integer variables, and they are usually called hybrid systems. The application of nominal 

MPC to hybrid systems is attracting more and more attention for process systems (e.g. 

Bemporad and Morari, 1999a) and has always been recognized as important for supply 

chain systems (e.g., Mestan, et al. 2006). 

Addressing integer variables in the new robust MPC framework will be very 

challenging because the inner optimization problems in the original bilevel stochastic 

optimization formulation are Mixed Integer Quadratic Programming (MIQP) problems 

instead of QP problems. Therefore, they cannot be transformed equivalently into an 

optimization formulation as a set of algebraic equations (as QP problems were 

transformed using their first order KKT conditions). Other approximating approaches or 

heuristics are needed to transform the bilevel formulation into single level formulation. 

Alternatively, one could use simpler control laws (e.g. PID control) to approximate the 

future control actions in the closed-loop prediction, so that the bilevel formulation can be 

avoided at the beginning; however, this would introduce complementary constraints for 

saturation effects. 

Another challenge brought by integer variables is that the resulting robust MPC 

formulation is a Mixed Integer Programming (MIP) problem, which does not have 

polynomial solution times. So, the robust MPC method may not be able to be solved in 

real-time for a large (or even medium) scale problem. The future research should take 

advantage of the advances in the MIP research. For more details in MIP solution 

methods, readers can refer to Biegler and Grossmann (2004), Grossmann and Biegler 

(2004), Floudas (1995) and for robust MPC for hybrid system, e.g. Mhaskar et al. (2008). 

6.3.2 Addressing nonlinear prediction model 

As stated in Chapter 1, the robust MPC using linear models can deal with linear 

systems or nonlinear systems that can be well approximated by linear models with 
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uncertain parameters (i.e., the nonlinearity of the system around the operating point or in 

the operating region is not substantial). In the engineering applications, however, some 

systems are highly nonlinear, and the operation of such a system may not be around a 

specific operating point (e.g. a batch process system). In this case, an explicit use of 

nonlinear model for the prediction of future dynamic behavior is needed. 

The challenges of addressing nonlinear model in the robust MPC are similar to 

that of addressing integer variables. First, the inner optimization problems of the original 

bilevel stochastic optimization problem cannot be transformed into their first order KKT 

conditions. More complete KKT conditions (including the second order sufficient 

conditions) are needed for a (possibly approximating) transformation (Nocedal and 

Wright, 1999), which will make the formulation much more complicated. A realistic way 

to avoid the complicated KKT conditions is to use alternative approximating control laws 

to model the future controller. Second, the inclusion of nonlinear model may make the 

robust MPC formulation nonconvex. Although there are successful applications of local 

optimization method to nonconvex optimization in nonlinear MPC (e.g. Zavala and 

Biegler, 2009; Zavala et al., 2008), a global optimization (Floudas, 1999) method, which 

is not polynomial in time, is required to guarantee satisfactory control performance. 

Third, the use of nonlinear model makes the linear state estimation method, e.g. Kalman 

Filter, invalid, and requiring a more complicated estimation method, such as Extend 

Kalman Filter (EKF) (K wakemaak and Sivan, 1972) or moving horizon estimation 

(Rawlings and Bakshi, 2006). 

The future research has to take advantage of the advances in nonlinear MPC and 

nonlinear optimization. More details on these topics can be found in Allgower and Zheng 

(2000) and Biegler and Grossmann (2004). 

6.3.3 Incorporating robust stability 

The new robust MPC method proposed in this thesis does not guarantee the 

stability of the closed-loop system with presence of uncertainty, but it could be extended 

to include additional constraints to guarantee robust stability. 

Let's briefly review how stability is guaranteed for nominal MPC first. The basis 

of achieving nominal stability for MPC is the Lyapunov stability theory (Haddad and 
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Chellaboina, 2008). According to the author's knowledge, all the existing MPC methods 

ensure asymptotical stability by forcing a Lyapunov function to monotonically decrease 

during the transient. For infinite horizon MPC, the dynamic system performance over the 

horizon (i.e., the squared difference between the controlled and manipulated variables 

and their set points) is a natural choice of the Lyapunov function (Keerthi and Gilbert, 

1988). For finite horizon MPC, additional features need to be added to guarantee 

stability, such as zero stability constraints (Keerthi and Gilbert, 1988; Mayne and 

Michalska, 1990), a local stabilizing controller (with the resulting method dual-mode 

MPC) (Michalska and Mayne, 1993), or adding a terminal cost in the objective function 

with or without additional terminal constraints (e.g., Scokaert and Rawlings, 1998; 

Alamir and Bomard, 1995). Some other approaches force a Lyapunov function other than 

the dynamic performance to decrease in the constraints (e.g., Bemporad, l 998a; Yang 

and Polak, 1993). 

The above idea for nominal stability may be extended to ensure robust stability, 

i.e., forcing a particular Lyapunov function to decrease during the transient not only for 

the nominal uncertainty realization, but also for all the other uncertainty realizations of 

concern. This strategy has been applied in some existing robust MPC methods. For 

example, Kothare et al. (1996) presented a robust MPC formulation for the system with 

polytopic or ellipsoidal uncertainty in plant/model mismatch, where the upper bound of a 

L yapunov function is guaranteed to decrease with the presence of such uncertainty 

provided the initial solution is feasible. The real-time optimization problem of this 

method can be formulated into a (deterministic) Linear Matrix Inequalities (LMI) or 

called Semi-Definite Programming (SDP) (Ben-Tal and Nemirovski, 2002; Boyd and 

Vandenberge, 2004) problem. LMI or SDP problems are still convex problems that can 

be solved efficiently and reliably by inter point method, but they are typically more 

difficult than SOCP problems (Lobo et al, 1998). We may be able to incorporate this idea 

into the new robust MPC framework developed in this thesis to achieve robust stability at 

a particular significance level and for specific uncertainty sources and ranges. 
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6.3.4 Handling the change in the uncertainty 

Since robust MPC addresses the uncertainty explicitly in it calculation, it is 

important that the uncertainty representation used by robust MPC is in accordance with 

the uncertainty in the real system. If the uncertainty used by robust MPC is larger than 

the real uncertainty, robust MPC will give overly conservative control which may lead to 

poor dynamic performance; if it is smaller, robust MPC will give overly aggressive 

control which may lead to constraint violations or even instability of the system. 

In this thesis, the system uncertainty used in the robust MPC calculation is 

obtained off-line through historical data. During the real-time applications, the actual 

(current) uncertainty may be different from the uncertainty characterized off-line, e.g., it 

may have different mean, variance or even distribution pattern, and the robust MPC must 

be able to address this change to prevent undesired control performance. 

One way to address the uncertainty change is to develop a heuristic to tune the 

robust MPC parameters (such as weighting matrices, confidence level, etc.) in the real 

time according to the measured information from a past time horizon. This idea has been 

demonstrated by a case study in Section 5 .5 .1.4 of Chapter 5 where a simple heuristic is 

applied to tune the confidence level of the robust MPC. 

The second way is to identify the uncertainty according to recent measured data 

of the system variables in real-time, so that we can address the change in the uncertainty 

in the robust MPC formulation explicitly. Although it is different from the traditional 

system identification that identifies the value of a parameter instead of its uncertainty, the 

research in this approach should take advantage of the state-of-the-art system 

identification (e.g. Verhaegen and Verdult, 2007), and time series analysis (Box et al., 

2008) methods. To avoid the need of interrupting the process in the real time, the method 

should be able to identify the uncertainty according to the closed-loop data without 

additional exciting signals, so the future research should also take advantage of the 

research work in the closed-loop identification (e.g., Box and MacGregor, 1976; Zhu, 

1998; Esmaili et al., 2000). Note that some parameters in the system may be measured 

directly in the real time, such as production rate or transportation time in a supply chain 

system, and this may make the characterization of uncertainty easier. 
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6.3.5 Very Large-scale Systems 

Although the solution time for the new robust MPC method is polynomial with 

respect to the size of the system, it can be prohibitively large for very large-scale systems 

(e.g. a supply chain system with hundreds of SKUs and stores). In this case, additional 

numerical techniques need to be incorporated into the robust MPC method to speed up 

the solution procedure. 

First, a large-scale system is usually "sparse" in the sense that each of most inputs 

to the system only affects a few outputs of the system and most outputs of the system are 

only affected by a few inputs. The optimization of such system involves calculations with 

sparse matrices, and the efficiency of these calculations can be dramatically improved 

with the sparse matrix techniques (Zlatev, 1991). 

Second, a large-scale system usually has a specific structure that can be taken 

advantage of. For example, the system may be composed of different subsystems that are 

connected by only a few variables. In this case, the Lagrangian decomposition (Guignard 

and Kim, 1987) method can be applied to decompose the optimization problem 

approximately into the subproblems for the different subsystems, respectively. The 

subproblems are easier to solve and can be solved in parallel. Then, the whole problem 

can be solved by solving these easier subproblems iteratively until the error in the optimal 

value is within a given tolerance. 
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Nomenclature 

A Coefficients in the nominal state-space model (3 .1) 

Coefficients in the continuous state-space model (B.4) 

Coefficients in the model (B.10) with additional states for time delay 

A, Coefficients in the uncertain state-space model (3.5) 

Coefficients in the extended state-space model (A.9) 

Coefficients in the state-space model (3.4) 

Coefficients in the state-space model (3 .4) 

b Difference between measured and nominally predicted controlled variables 

b ssr 

Difference between measured and nominally predicted controlled variables at 
the steady state 

B Coefficients in the nominal state-space model (3 .1) 

Coefficients in the continuous state-space model (B.4) 

Coefficients in the nominal state-space model (3 .1) 

Coefficients in the uncertain state-space model (3.5) 

Coefficients in the model (B.10) with additional states for time delay 

Coefficients in the bounds ( 5 .15) 

Extended B
0 

matrix for the whole prediction horizon 

B, Coefficients in the uncertain state-space model (3.5d) 
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Coefficients in the extended process model (A.9) 

B Coefficients in the state-space model (3.4) 

Coefficients in the state-space model (3.4) 

Cost of manipulated variables used in steady-state optimization 

Cost of controlled variables used in steady-state optimization 

c Coefficients in the nominal state-space model (3 .1) 

c Coefficients in the state-space model (3.4) 

Coefficients in the continuous state-space model (B.4) 

Coefficients in the model (B.10) with additional states for time delay 

Coefficients in the uncertain state-space model (3.5) 

Cost of state variables 

Coefficients in the extended process model (A.10) 

Cost of the manipulated variables 

Cost of the state variables 

Cost of 11 

Cost of 12 

Cost of 13 

The constant to convert the product unit into the intermediate product unit 

Cost of the inventories and backorders 

Cost of transportation 
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Penalty (cost) on back orders 


Cost of intermediate product manufacturing 


Cost of the products in the transportation 


Cost of the product manufacturing 


Measured or predicted disturbances 


d m in the future p time steps 


Predicted steady-state disturbances 
d mss 

d m in the future n+p-1 time steps 

d, 	 Real values of measured or predicted disturbances 

Differences between the measured or predicted disturbances and their real 
values over the prediction horizon 

Virtual steady-state measured disturbances used in the deviation model 

D Customer demands to the regional distribution centers 

e Unmeasured disturbances 

e 
A Estimated unmeasured disturbances from the output measurements usmg 

nominal model 

Estimated unmeasured disturbances from the output measurements using the 
e, uncertain model representing the real plant 

Virtual steady-state feedback used in the deviation model 

A 

Unmeasured disturbances at steady state 

Flow of the intermediate products entering the plant storage 

F; max 	 Upper bound on F; 

F'i,min 	 Lower bound on F; 
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F; Flow of the intermediate products to be processed in the manufacturing plant 

F; 	 Flow of the products entering the plant distribution center 

Shipment of the products to the regional distribution centers F4 

F:t,max Transportation capacity for the regional distribution centers 

F's Flow of the products arriving at the regional distribution centers 

~ Flow of the sent to the customers 

The coefficients in equation (D.12) Gd 

The coefficients in equation (D.12) Gt 

Coefficients in the uncertain closed-loop model (4.16) for steady state Gudr 

Coefficients in the uncertain closed-loop model (4.16) for steady state Gur 

Gw Coefficients ofunmeasured disturbances in the model (A.11) 

G Coefficients of unmeasured disturbances in the model (A.11) for states 
wx 

Gwe 	 Coefficients of unmeasured disturbances in the model (A.11) for feedback 

Coefficients in the uncertain closed-loop model (4.16) for steady state Gydr 

Coefficients in the uncertain closed-loop model (4.16) for steady state Gyr 

Gt;t; Coefficients in the state-estimation model (3.50) 


Gr;µ Coefficients in the state-estimation model (3.50) 


G; The coefficients in equation (D.12) 


G;d The coefficients in equation (D .13) 


G;i The coefficients in equation (D .13) 
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G¢¢ The coefficients in equation (D.13) 

G¢m The coefficients in equation (D .13) 

The coefficients in equation (D.12) G
(0 

I Identity matrix 


Id Pick-up matrix in equation (D.7) 


Jd Pick-up matrix in equation (D.16) 

2 

!pd Pick-up matrix in equation (D.1) 


Jpu Pick-up matrix in equation (3.8) 


/ Matrix to specify saturation ofmanipulated variables 

0 

I 0 Extended I 0 for the future n time steps 

I 0 ss Matrix to specify saturation ofmanipulated variables in steady state model 

f t>. Matrix in the objective function (3.4) 
1 

Jt>.	 Matrix in the objective function (3.4) 
2 

/ 1 	 Inventory of intermediate products at plant 

Inventory of products at plant distribution center / 2 

Inventory of products at regional distribution center / 3 

Kd Coefficients in the nominal steady state model ( 4.5) 

Kd, Coefficients in the uncertain steady state model (4.3) 

Ke Coefficients in the control law (3.12) 
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Coefficients in the uncertain steady state model ( 4.3) K, 

Coefficients in the control law (3 .12) 


Coefficients in the control law (3 .12) 


Uncertain gain in models (4.64) or (4.67) for CSTR control system 3 or 4 


Linear steady-state Kalman gain for feedback vector e 


Uncertain coefficients in the closed-loop model (3.14) 


Linear steady-state Kalman gain for states vector x 


Uncertain coefficients in the closed-loop model (3.14) 


Linear steady-state Kalman gain for the extended state vector z 


Uncertain coefficients in the closed-loop model (3.14) 
Mur 

Uncertain coefficients in the closed-loop model (3.14) MY, 

n Control horizon 

Number of measured or predicted disturbances 

Number of decision variables of an optimization problem 
ndecision 

Number of feedback variables 


Number of samples for Monte Carlo sampling 


Number of manipulated variables 


Number of unmeasured disturbances (not including the measurement noises 
on controlled variables) 

Number of state variables 
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Number of controlled variables 

Number of intermediate product and final product types 
n!PISKU 

Number of linear constraints ofan optimization problem 

Number of regional distribution centers nRDC 

nsoc Size of a second order cone 

Coefficients in the closed-loop model (3.14) 


Coefficients in the closed-loop model (3.14) 


Number of second order cones in an optimization problem 


0 Back orders at the regional distribution centers 

0 0 over the prediction horizon 

p Prediction horizon 


Observer horizon 
P obs 

p_ The backward horizon for state-estimation under uncertainty 

p Manufacturing rate of the intermediate products 

q Diagonal elements in the weighting matrix Q 

Weighting matrix for controlled variables Q 

Extended weighting matrix for controlled variables in the prediction horizon Q 

Uncertain coefficients in equation (D.14) 


Uncertain coefficients in equation (D .14) 
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Uncertain coefficients in equation (D.14) 


Covariance matrix of unmeasured disturbances wz 


Uncertain coefficients in equation (D.15) 


Uncertain coefficients in equation (D.15) 


Uncertain coefficients in equation (D.15) 


r 	 Diagonal elements in the weighing matrix R 

The threshold parameter to transform chance constraints - for u upper bound 

The threshold parameter to transform chance constraints - for u lower bound 

The threshold parameter to transform chance constraints - for x upper bound 

The threshold parameter to transform chance constraints - for x lower bound 

R 	 Weighting matrix for manipulated variables 

Extended weighting matrix for manipulated variables in the control horizon R 

Rs Product manufacturing rate 

Covariance matrix of measurement noises of the controlled variables v 

s 	 Slack variables for controlled variables in the soft constraints 

s s in the future p time steps 

Slack variables for difference between references and targets of manipulated 
Su variables, as used in formulation ( 4.5) 

Slack variables for difference between references and targets of controlled 
variables, as used in formulation ( 4.5) 

s The additional state variables used to model the transportation time delay 

t Degrees of freedom of the optimization problem in robust MPC 
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t 

f SS 

AT 

t in the future n time steps 

Degrees of freedom of the optimization problem in 
optimization 

Simulation period of the prediction model used in MPC 

robust steady-state 

Controller execution period 

Decision-making period for manufacturing rate of the intermediate products 

Machine running time for the products 

T,,max Maximum bound on T, 

u Nominal manipulated variables 

u 

Au 

Au 

u in the future n time steps 

Difference between the nominal manipulated variables at two successive time 
steps 

Au in the future n time steps 

The active bounds on manipulated variables 

u c in the future n time steps 

Upper bounds of manipulated variables 

umax in the future n time steps 

Lower bounds of manipulated variables 

Umin in the future n time steps 

Real manipulated variables 

u r in the future n time steps 

Difference between the real manipulated variables at two successive time 
steps 
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~u, 

us 

~u r in the future n time steps 

Virtual steady-state manipulated variables used in the deviation model 

Targets of manipulated variables obtained by steady-state optimization 

usp in the future n time steps 

Targets of the manipulated variables that will be obtained by steady-state 
optimization in the future 

Nominal manipulated variables at steady state 

Real manipulated variables at steady state U ssr 

References of manipulated variables obtained by 
real-time optimization or from experience 

Noises on the manipulated variables 

Covariance matrix in the SOCP formulation (3.43) 

Covariance matrix in the SOCP formulation (4.20) 
vuss 

Covariance matrix in the SOCP formulation (3.43) 

vyss 
Covariance matrix in the SOCP formulation (4.20) 

Vol Volume (m3
) 

w Diagonal elements in weighing matrix W 

Noises on the measurements of disturbances 

Unmeasured disturbances 

ws Diagonal elements in weighing matrix Ws 

Unmeasured disturbances on the state variables 

upper-lever nonlinear 
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w 	 Move suppression matrix 

Extended move suppression matrix for the future n time steps w 

Penalty matrix for the slack variables of the controlled variables w. 
Extended penalty matrix for the slack variables of the controlled variables in 

w. the future p time steps 

x Nominal state variables 

x 	 x in the future p time steps 

Estimated state variables from the output measurements and nominal plant " x 	 model 

Estimated state variables from the output measurements and plant model with 
uncertain parameters 

x 	 Extended state vector that contains additional states for time delay 

Real state variables 

x r in the future p time steps 

Estimated state variables from the output measurements using the uncertain 
model representing the real plant 

x. 	 Virtual steady-state state variables used in the deviation model 

Nominal state variables at steady state x•• 

Real state variables at steady state X ssr 

y Nominal controlled variables 

y y in the future p time steps 


Upper bounds on controlled variables 
Ymax 

y max in the future p time steps Ymax 
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Lower bounds on controlled variables Ymin 

Ymin y min in the future p time steps 

Real controlled variables Yr 

yr in the future p time steps Yr 

Measured controlled variables Yr,m 

Virtual steady-state controlled variables used in the deviation model 
Ys 

Ysp 
Targets of controlled variables obtained by steady-state optimization 

Ysp y sp in the future p time steps 

Targets of controlled variables that will be obtained by steady-state 
Ysp optimization in the future 

Nominal controlled variables at steady state 

A 

Yss 

Real controlled variables at steady state 
Y ssr 

References of controlled variables obtained by upper-lever nonlinear real-time 
optimization or from experience 

z Extended state variables that include x and e 

z 
A 

Estimated extended state variables that include x and e 
A 

Zr Estimated extended state variables that include xr and er 

Z Feed composition of light key of the binary distillation column 
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Greek Letters 

a Constraint-wise confidence level for trajectory optimization 

a SS Constraint-wise confidence level for steady-state optimization 

/3 Ratios for the virtual routes to model the transportation time uncertainty 

Yu Weight on the input variance in objective function ( 4.49) 

Weight on the output variances in objective function ( 4.49) 

r 

Weight on the variances of input changes in objective function ( 4.49) 

Number of delayed time steps, or transportation time from the 
distribution center to the regional centers in the supply chain system 

Nominal transportation time 

plant 

rmax Maximum transportation time 

?"min Minimum transportation time 

Uncertain estimated state in equation (3.50) 

e Time delay (continuous variable) 

0 

1..­

Vector in the closed-loop model (3.14), containing the effects from "the past" 

Lagrange multipliers of the upper bounds on manipulated variables in 
optimization problem, as in equations ( 4.7) 

,.i+ in the future n time steps, as in equation (3 .6) 

Lagrange multipliers of the lower bounds on manipulated variables m 
optimization problem, as in equation ( 4.7) 

A,­ in the future n time steps, , as in equation (3 .6) 

µ The quantities used to estimate the uncertain states in equation (3.50). 
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Vector defined in equation (D.12) 

1t 	
Extended version of 0 with the closed-loop model integrating state-estimation 
uncertainty (as defined by equation (3.55) 

The set containing indices of uncertain realizations 

OJ 	 Vector containing all the unmeasured stochastic disturbances 

Indexing Subscripts 

Index for an arbitrary manipulated variable for the discussion in Section 3 .3 .2; 
Or index for intermediate or final products for supply chain modeling 

j Index for an arbitrary time step for the discussion in Section 3.3.2; 
Or index for regional distribution centers in the supply chain system 

k Time step index 

kl k-l Index to indicate the estimated value for time 
information at time step k - 1 . 

step k according to the 

l Index for the rows for a matrix or the elements of a vector 

Index for the elements in the sub-matrices discussed in Section 3.3.2 


Index for the elements in the sub-matrices discussed in Section 3.3.2 


Indexing Superscripts 

Index for the sub-matrices m the closed-loop model coefficient matrices 
discussed in Section 3 .3 .2 

Index for the sub-matrices in the closed-loop model coefficient matrices 
discussed in Section 3 .3 .2 

The prime symbol indicates the variable in the parentheses is a deviation
O' variable used to handle time-invariant uncertainty in robust MPC 
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Appendix A 

The Output Feedback and Linear State 

Estimation in Nominal MPC 

The feedback scheme, or how to utilize the output measurements in the controller 

calculation, is key for offset-free control if unmeasured disturbances enter the process or 

model mismatch is present. In the context of the nominal MPC using state-space model, 

the feedback scheme needs to address two issues: 

1) A prior structure of the unmeasured disturbances that is used to update the model 

according to output measurements; 

2) An observer to estimate the states and unmeasured disturbances (if they are not 

measurable). 

Once the states and the unmeasured disturbances are estimated, the open-loop optimal 

control problem will be resolved. 

A.1 Output Feedback With Unmeasured Disturbances Model 

Muske K. R. and T. A. Badgwell (2002) gave a general model structure for 

unmeasured disturbances in state-space model: 

(A.1) 

Yk+1 =Cxk+1 + GpPk+1 (A.2) 
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(A.3) 

Pk+t 	=Pk (A.4) 

where e denotes the unmeasured state disturbances and p denotes the unmeasured 

output disturbances. Equations (A.3-A.4) mean the state and output disturbances are 

assumed to be constant in the prediction horizon. 

Gd and GP are design parameters of the unmeasured disturbance model. 

According to the theory presented in Muske and Badgwell (2002), for the purpose of 

offset-free control, the unmeasured disturbance model should be designed such that 

augmented system (A.1-A.4) is detectable. 

There are two typical designs of unmeasured disturbance model: 

1) 	 When GP = I and Gd = 0 , the disturbance model assumes that a step disturbance is 

added on the controlled variables and remains constant throughout the prediction 

horizon. This famous "DMC feedback model" (Qin and Badgwell, 2003; 

Maciejowski, 2002) has been recognized to be weak for characterizing non-stationary 

disturbances on the outputs and open-loop unstable processes. Muske and Badgwell 

(2002) pointed out that such augmented system is not detectable when the process has 

integrating modes. 

2) 	 When GP =0, the disturbance model assumes that a step disturbance is added on the 

state variables through a Gd channel and remains constant throughout the prediction 

horizon. Here Gd is the design parameter of the unmeasured disturbance model. 

According to Muske and Badgwell (2002), if the outputs of the system are linearly 

independent, there exists a Gd such that the system (A.1-A.4) is detectable. Davison 

and Smith (1971) presented this as a standard technique to remove steady-state offset 

for the Linear Quadratic Regulator (LQR). A special case of this design is to choose 

Gd =B , which means the disturbance model assumes that a step disturbance is added 

251 




PhD Thesis - Xiang Li McMaster University - Chemical Engineering 

on the manipulated variables and remains constant throughout the prediction horizon. 

This feedback scheme is good for both open-loop stable and unstable processes 

(Muske and Rawlings, 1993). 

In this thesis we adopt the framework of the second design, i.e. we write the 

process and the unmeasured disturbance model as 

(A.5) 

(A.6) 

(A.7) 

where Be denotes the channel through which the unmeasured disturbances affect the 

states. For example, if we assume the unmeasured disturbances are errors on manipulated 

variables and they influence the states through the input channel, then Be= B. With this 

type of design, we can achieve off-set free for all the case studies in this thesis, i.e. for 

each of the case studies, we can find a parameter Be such that the system (A.5-A.7) is 

detectable. Although not having been done in this thesis, the new robust MPC method 

developed in this thesis can be easily extended to include the more general unmeasured 

disturbance model (A.1-A.4). 

In the case that measurement or prediction on some disturbances is available and 

we need to use this information in the controller calculation, equation (A.5) can be 

written as 

(A.8) 

where dm denotes the measured or predicted disturbances. The model (A.6-A.8) can be 

rewritten into the following form with the augmented state vector z, 
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(A.9) 

(A.10) 

where z =[:l A, = [ ~ ~l B, = [ ~ B;l C, =[c o]. 

A.2 Linear State Estimation with Kalman Filter 

The Kalman filter (Kalman, 1960) is an optimal observer that minimizes the effect 

of the given noise on state estimation (in the least square sense). Assume there are 

zero-mean, normally distributed independent noise vectors wz, vd , v in the following 

system, 

(A.11) 

=C z +vY m,k+I z P,k+I k (A.12) 

where zP denotes the real (extended) states and y m denotes the measured controlled 

variables, Gw = ( g::) denotes the coefficients of wz , Gwx corresponds to states x 

and G., corresponds to feedback e . Let w = s,(_~J+ Gww, , then w obeys 

zero-mean multivariate normal distribution. Thus equation (A.11) can be written as, 

253 




PhD Thesis - Xiang Li McMaster University - Chemical Engineering 

(A.13) 

A standard steady-state Kalman filter algorithm (Maciejowski, 2002; Muske and 

Rawlings, 1993) for system (A.12-A.13) can be expressed as. 

(A.14) 

where zklk-I denotes the estimate of the augmented state vector at time step k given the 

output measurement at time step k-1 and zklk denotes the update of the estimate given 

the output measurement at time step k. Lz denotes the steady-state Kalman filter gain 

that can be computed by solving the following algebraic Riccati equation, 

(A.15) 

(A.16) 

This observer optimally reconstructs the states from the output measurement given the 

noise w, v obey zero mean normal distribution and have the covariance Qw, Rv 

respectively. If Rv > 0, (Az, CJ is detectable and (Az, GwQ~2 ) is stabilizable, this 

filter is nominally stable (Maciejowski, 2002; Muske and Rawlings, 1993), i.e., the 

estimate of the states by the observer will converge to the real states nominally. 

We define Pobs the time steps for the convergence of the estimate of the states to 

the real states, i.e., with any given initial estimate error & 0 = z0 - z010 , the estimate error 

after Pobs time steps, & Pob' = z Pob' - zPob' 1Pob, , is negligible. Note that according to 

(A.13-A.14), we have the following recursive relationship 
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(A.17) 

which means, 

/jzPob, =(Az-LzCzAz)Pob'IYzo 
(A.18) 

= Kz,obslYzo 

Therefore, we can select Pobs such that the norm of K z,obs is less than some threshold 

Kmax· In this thesis, we set Kmax=0.05 and use the following spectral norm for K z,obs 

(Weisstein, 2009), 

II Kz,obs 11 2 =(maximum eigenvalue of K;,obsKz,ob) 112 

II Kz obs/jzO II (A.19) 
=max--·--­

ll&olli ..o I\ &o 112 

So the state estimation error II &P , 11 2 ~ Kmax = 0.05 II & 0 11 2 for any initial state 
06

estimation error &0 • 

The observer algorithm shown by equation (A.14) for the augmented state vector 

can be partitioned for the states and the unmeasured disturbances of the system 

respectively, 

(A.20) 

(A.21) 

where [ ~:] = L,. For simplicity of the notation, we write and 

in this thesis. 
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Appendix B 

Integrating Time-Delay in the State-Space 

Model by Introducing Additional States 

B.1 Delay Between Manipulated and State Variables 

Let's see the following state-space model without time-delay, 

(B.1) 

where xk+I = (xi,k+I' x 2,k+I' · · ·, xn,,k+t YE Rnx contains the state variables at time step k+ 1 

and uk = (u1,k, u 2,k,···,un.,k YE Rn• contains the manipulated variables at time step k. 

Here we are not considering the measured disturbances dm,k explicitly because they can 

be handled as manipulated variables for the time-delays. 

Assume there is a delay of r time steps between the state variable x; k+I and 

the manipulated variable uJ,k , then define the additional state vector 

( (i,J) )
Xdelay k 

( (i,J) (i,J) )T Rrxl= Xdelay,1,k' ... ' Xdelay;r,k E 
where x(i,J)

delay,m,k denotes the jth manipulated 

variable implemented at time step k-m that will affect the ith state variable at the time 

step k-m+r +1. Thus, 
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(i,j) ) ­
( Xdelay,I k+I - U j,k 

(i,j) ) - ( (i,j) )( Xdelay,2 k+I - Xdelay,I k 

(i,J) ) - ( (i,j) )( xdelay,T k+I - xdelay,T-1 k 

~ H ~ 

xi,k+I = L A;,1X;,k + B;,/x~;a,,r)k +L Bi,JJu JJ,k + L Bi,JJuJJ,k 
l=l jj=I jj= j+I 

nx nu 

X;;,k+1 = LA;;,zX;;,k + LB;;,1U1,k ii =1,. .. 'i -1, i + 1,. .. nx 
l=l l=l 

where A;,1 denotes the element of A at the ith row and Ith column, Bi,J denotes the 

element of B at the ith row and jth columen. The above equations can be summarized in 

the following canonical state-space model 

(i,j) 
Xde/ay,I 

(i,j) 
xdelay,2 

(i,j) 
Xde/ay,T 

x 

where B;:1 E Rn• with the 

B~1 E Rn,xn. with the ith 

= 

k+I 

0 0 0 

1 0 

0 

1 0 0 

0 0 B+ 
l,J 

A 

ith element being Bi,J 

(i,j) 
Xdelay,I 

(i,j) 
xdelay,2 

(i,j) 
Xdefay,T 

x 

(B.2)+(1•'.J}B~. k 
l,j 

k 

and other elements being 0, 

element being 0 and other elements equivalent to the 

corresponding elements in B, 11: E Rrxn. with the jth element of the first row being 1 
1 

and other elements being 0. 

More delays between state variables and manipulated variables can be integrated 

one by one into the state-space model in the same way. 
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B.2 Delay Between Manipulated and Controlled Variables 

Here we consider the Single Input Single Output (SISO) system first. Assume the 

following general input-output model ins-domain and there is no time-delay between the 

controlled (output) variable y and the manipulated (input) variable u: 

(B.3) 

The above model can be transformed into state-space model in time domain (Nise, 2008): 

(B.4) 

(B.5) 

where 

-an-I -an-2 -an-3 -ao 

1 0 0 

A = c 0 1 

0 0 1 0 

, Bc = 

1 

0 
..., Cc = [bn-1 bn-2 ho]. 

0 

0 

With a proper sampling time D..t , we can discretize the above state-space model into 

(B.6) 

(B.7) 
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Details of the transformation can be found in Nise (2008). Now let's consider the time 

delay e (which becomes eI Af =T steps with the sampling time Af) between y and u. 

define the additional state vector (x(i,J)) (x(i,J) x<i.J) )r E R'x1 where
delay k = delay,l,k' • • ·' delay,r,k 

x(i,J) denotes the ]"th manipulated variable implemented at time step k-m that will delay,m,k 

affect the ith state variable at the time step k-m+r +1. Thus, 

(i,J) ) ­
( Xdelay,I k+l - U j,k 

(i,j) ) - ( (i,j) )
( Xde1ay,2 k+t - Xde1ay,1 k 

(i,j) ) - ( (i,j) )
( Xdelay,r k+I - Xdelay,r-1 k 

- A + B ( (i,Jl )
Xk+I - Xk i,J Xdelay,r k 

The above equations can be rewritten into the following vector form: 

(i,j) 
Xdelay,I 

(i,j) 
xdelay,2 

(i,j) 
xdelay,r 

x 

= 

k+I 

Y . =(0 ...1,k+I 

or simply 

0 0 0 

1 0 

0 

1 0 0 

0 0 B A 

(i,j) 
xdelay,1 

(i,j) 
xdelay,2 

0 c 
(i,j) 

xdelay;r 

x 
k+I 

(i,j) 
xdelay,I 

(i,j) 
xdelay,2 

(i,j) 
xdelay,r 

x 

+ 

k 

1 

0 

0 Uk (B.8) 

0 

(B.9) 
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h ~ - ( (i,J) (i,j) )T d t th t d d t t t .c: thw ere xk+I - xdelay,I,k+I•···,xdetay,r,k+1'xk+I eno es e ex en e s a e vec or ior e 

system. Note that if the delay step r =0, the extended state-space model (B.1 O-B.11) 

will degrade into the original model without time delay (B.6-B.7). 

Now Let's consider the Multi-Input Multi-Output (MIMO) system. Assume the 

delay between the ith controlled variable Y; and the jth manipulated variable u1 is 

r i,J time steps. Then according to the above derivation for SIMO system, the 

relationship between y; and u1 can be written as 

(B.12) 

(B.13) 

Repeat doing the same thing for all the controlled variable-manipulated variable pairs, 

then the whole MIMO system can be written as 
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Appendix C 

Additional Discussion on the Prediction of 

Time-Invariant Uncertainty 

Appendix C gives additional discussion on the prediction of time-invariant 

uncertainty, which complements the discussion in Section 3.2.5 in Chapter 3. In Section 

C.1 we discuss the reasons to express the variables as deviations from their "virtual" 

initial steady states values. In Section C.2 we discuss how to address the time delays 

when determining the virtual steady state. 

This appendix deals exclusively with the uncertainty in the feedback model and 

does not address the uncertainty due to unmeasured disturbances. Before giving the 

details of the formulations and results, we need to emphasize the proper predictions 

required by the prediction model in the robust MPC framework. First, formulation 

should correctly predict the uncertainty bounds around the nominal model due to changes 

in the manipulated variables in response to an input change such as a set point change. 

Second, the formulation should predict zero uncertainty when the system is at steady state 

and no input change is introduced. Three formulations are presented here, only one of 

which satisfies both of these requirements. 

C.1 Dynamic model formulations with uncertainty predictions 

If the uncertain parameters of the plant do not change over time or they change 

slowly so that we can assume they are invariant in the prediction horizon, the formulation 

can be considered to be time-invariant. The uncertain process model (3.5b-3.5d) can be 

simplified by setting the unmeasured disturbances to zero, which will enable us to see 
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clearly the effect of feedback model uncertainty. The resulting model is given in the 

following. 

Prediction Model C.1: 

x,,k+1 = A,x,,k + B,u,,k + B.,e,,k + Bd,dm,k (C.1) 

er,k+l =e,,k (C.2) 

Yr,k+l =C,xr,k+l (C.3) 

k =O,···,p-l 

where the parameters A,, B,, Ber. Bdr. C, are uncertain but time-invariant. Now we will use 

an example case study to demonstrate the drawback of using the equations (C.1-C.3) for 

prediction. The case study is for the CSTR control system 1 described in Section 3.5.1. 

The plant behavior in this study, i.e., the realization from the infinite set of possible plant 

realizations in the uncertainty description, is the same as the nominal model. The 

simulation results of this system with robust MPC for a single step set point change are 

shown in Figure C.1. 

Now, we will examine the closed-loop uncertainty predicted by the robust MPC 

controller using the model (C.1-C.3) at the two different conditions: (a) the time step 

when the set point change just occurs and (b) an initial steady state without input change. 

Figure C.2 shows the uncertainty predictions of u and y. We can find from Figure C.2 (a) 

that both u andy are predicted to be uncertain (i.e. different for different plant realizations) 

in the short-term future, y is predicted to have zero offset by the end of the horizon 

(because of the integral mode), and u is predicted to be uncertain at the end of the horizon 

(because of the gain uncertainty). These uncertainty results meet our expectations. (Recall 

that unmeasured disturbances are not included in this discussion, so that the controlled 

and manipulated variables are constant at the end of the transient.) 
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- • ­ · Set point Simulation results with robust MPC 

Figure C. l The simulation results of the example case with robust MPC 

However, Figure C.2 (b) shows that, at steady state, both u and y are predicted to 

be uncertain in the future prediction horizon. This prediction is too conservative because 

we know the real time-invariant plant is correctly depicted by the nominal model and the 

feedback at steady state, and there should not be any uncertainty in the future. This 

conservative prediction could lead to conservative control, e.g., maintaining an excessive 

safety margin from controlled variable constraints. The reason for this result is that the 

uncertainty is expressed as a multiple of the controller degrees of freedom, "t", and since 

this is non-zero, the uncertainty will be non-zero. 

One way to avoid this conservativeness is to express variables as deviation 

variables, so that they will be zero at the steady state about which the deviation is 

calculated. A second formulation in the equations (C.1-C.3) expresses variables as 

deviations from their final steady states, as shown in the following. 
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2.6~------------~ 2.6~------------~ 
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(a) Prediction for the set point change (b) Prediction at steady state 

- · - Set point - - • Predictions for different plant realizations • • • • • Predicted uncertainty boundaries 

Figure C.2 The uncertainty in prediction models using Prediction Model C. l 

Prediction Model C.2: 

er,k+l =e,,k (C.5) 

Yr,k+1 - Yss =C,(x,,k+1 - xsJ (C.6) 

k =0,-··,p-1 

where Xss, Yss, Uss, dss, ess are the values of the process variables at the final steady state, 

which can be obtained using the steady-state optimization method discussed in Chapter 4. 

This deviation method was suggested by some researchers for set point tracking by robust 

MPC, e.g. Kothare et al. (1996) and Wang and Rawlings (2004). 
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Now, we evaluate the prediction model with the deviation variables (C.4-C.6) 

with the same example case study by examining the uncertainty predictions of the u and y 

at the set point change and at steady state, respectively. The predictions are shown in 

Figure C.3. We can find from Figure C.2 (b) that, at the final steady state, both u and y 

are predicted to be certain, which is the prediction that we expect. 

However, Figure C.3 (a) shows that, u is predicted to be certain at the final 

steady state of the controller prediction horizon. This prediction is incorrect, because y is 

driven to the set point at the steady state for every realization of the plant, so that u must 

achieve different steady-state values for different realizations of the plant (with different 

process gains). Therefore, Prediction Model C.2 is incorrect for Figure C.3a although it is 

correct for Figure C.2b. 

Next we evaluate another deviation model where the deviation variables are not 

from the final steady state but a "virtual" steady state that would be determined by the 

2.6~---~-~-~--~-~ 2.6 

2.4 

2.2 
.... 

1.8 

4 10 12 
1.6 

0 10 12 

= 2.5 

2 

2 4 10 12 min 2 4 10 12min 

(a) Prediction at the set point change (b) Prediction at the final steady state 


- · - Set point - - · Predictions for different plant realizations • • • • • Predicted uncertainty boundaries 


Figure C.3 Uncertainty in prediction models using Prediction Model C.2 
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most current manipulated variables u_1 and the measured disturbances dm,-J. This virtual 

steady state is the steady state that would have been achieved if the controller had been 

turned off and the processed had been allowed to settle to steady state. Thus, the 

deviation from this virtual steady state measures the effects of the controller executions 

from the current situation to the final steady state. A similar idea has been successfully 

applied to robust steady-state optimization by Kassmann et al. (2000) without explanation. 

We denote the variables at the virtual steady state as Xs, Ys, Us, ds, es, where Us, ds, es are 

known or are estimated at each controller execution as follows. 

(C.7) 

(C.8) 

(C.9) 

Then, Xs, Ys can be obtained using the nominal model. 

(C.10) 

Ys =Cxs (C.11) 

Then we can express the controller prediction model (C.1-C.3) as the deviation from the 

virtual steady state as shown in the following. 

Prediction Model C.3: 

(C.12) 

(C.13) 

k =O,···,p-1 
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The advantage of the Prediction Model C.3 can be illustrated by Figure C.4, 

which shows the uncertainty predictions of u and y for the example case study for the set 

point change and at steady state. We find that for the set point change in Figure C.4a, 

both u and y are different for different plant realizations throughout the transient, with 

zero uncertainty for y and non-zero uncertainty for u at the end of the transient. Also, 

for the prediction starting at a steady state in Figure 4b, both u and y are predicted to be 

certain throughout the transient. Both of these results are qualitatively correct. 

Prediction Model C.3 uses deviation variables, so when the deviation variables 

are zero (at the virtual steady-state), the calculated uncertainty as a multiple of the 

variables becomes zero. Also, since the deviation is from a "virtual" steady state, they are 

non-zero when responding to a non-stationary disturbance; then, the predicted uncertainty 

is non-zero. Therefore, we conclude that Prediction Model C.3 is better than Prediction 

Models C.1 and C.2, and we have used Prediction Model C.3 for the robust MPC 

controller of the time-invariant uncertain closed-loop systems in this research. 
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(a) Prediction at the set point change (b) Prediction at the final steady state 

- · - Set point - - - Predictions for different plant realizations • • • • • Predicted uncertainty boundaries 

Figure C.4 Uncertainty in prediction models using Prediction Model C.3 
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C.2 Choosing Virtual Steady States With Time Delays 

Note that we pair the current feedback e0 with the "most current" manipulated 

variables U_1 for the Virtual Steady State, because e0 reflects the mismatch due to U_1 • 

However, if there is time delay between the controlled and manipulated variables, e0 

will not includes the effects of u_1 , but the effects of u in an earlier time step. We have 

chosen to select the value of u for the virtual steady state according to the time delays. 

For a particular manipulated variable, we choose its value Bmax time steps before the 

current time, where emax denotes the maximum time delay between this manipulated 

variable and different controlled variables. This is because the effects of the manipulated 

variable at that time on all the controlled variables are included in the current feedback. 

We can also choose the value of a measured disturbance in the similar way if there are 

time delays between the controlled variables and the measured disturbances. 
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AppendixD 

Derivation of the Closed-loop Model 

(3.14b-3.14c) in Formulation RMPC-CLT 

The closed-loop model (3.14b-3.14c) is derived from the three parts of the 

closed-loop model in formulation RMPC-CL T. 

(1) The controller model: 

According to Section 3.2.3, the controller model at the kth time step can be 

approximated by 

(D.l) 

where I o,k is the diagonal matrix with the diagonal vector ok specifying the active 

bounds on manipulated variables at the kth time step, dm =(d~,o, .. ·, d~,n+p-z Y and 

matrix I pd,k picks the measured or predicted disturbances used by the controller at the 

kth time step from dm, i.e., Ipd,kdm =(d~,k,···,d~,k+p-iY. The control law (D.l) can be 

simplified as 

(D.2) 
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(2) The uncertain process model: 


The model at the kth time step is same as Equation (3.5c-3.5f): 


(D.3) 

(D.4) 

Yr,k+t = Cr,k+txr,k+t (D.5) 

Yr,m,k+l = cr,k+lxr,k+I + vk+I (D.6) 

Define the pick-up matrix Id,k such that dm k =Id kdm, then Equation (D.3) becomes 

(D.7) 

(3) The state-estimation: 

According to the discussion in Appendix A, the state-estimation at the (k+l)th 

time step is 

x,,k+t = xr,k+11 k + Lx (y r,m,k+t - Cx,,k+11 k) (D.8) 

er,k+I =er,k+llk + Le(Yr,m,k+I -Cxr,k+llk) (D.9) 

Also we have 

271 


http:3.5c-3.5f


PhD Thesis - Xiang Li McMaster University - Chemical Engineering 

xr,k+11k =Axr,k + Bur,k + Beer,k + Bddm,k 
(D.10) 

= AXr,k + Bur,k + Bir,k + Bdfd,kdm 

e A A 

r,k+l,k -e- r,k (D.11) 

Now define the extended vector ~k = (ur,k-1 T' xr,/' er/' xr,/' er,/ r and 

mk =(w/, vk+iTf, then we can summarize Equations (D.2) and (D.4-D.11) as 

k = 0,-·-,n-l (D.12) 

where 

Ku,k 0 0 Kx,k Ke,k 
Br,k+IKu,k Ar,k+I Ber,k+I Br,k+IKx,k Br,k+IKe,k 

0 0 I 0 0 

G~,k = 

(B ­ LxCB)Ku,k 

+LxCr,k+IBr,k+IKu,k 
LxCr,k+1Ar,k+1 LxCr,k+IBer,k+I 

A- LxCA +(B- LxCB)Kx,k 

+ LxCr,k+IBr,k+lKx,k 

(B - LxCB)Ke,k 

+Be-LxCBe 

+ LxCr,k+IBr,k+lKe,k 

LeCr,k+IBr,k+IKu,k 

-LeCBK,, k 
LeCr,k+14,k+1 LeCr,k+1Ber,k+1 

- LeCA- LeCBKx,k 

+LeCr,k+IBr,k+IKx,k 

1-LeCBKe,k 

-LeCBe 

+ LeCr,k+IBr,k+IKe,k 

Kt,k 
Br,k+IKt,k 

0 
(B- LXCB)Kt,k

Gk=t, 

+ LxCr,k+IBr,k+IKt,k 
LeCr,k+IBr,k+IKt,k 

-LeCBK1 k 

0 0 
Gwx 0 
Gwe 0G,o,k = 

LxCr,k+IGwx Lx 
LeCr,k+IGwx Le 
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The recursive formula (D.12) can be rewritten into the following explicit 

formulation: 

(D.13) 

k =O, ... ,n-1 

Note that robust MPC prediction is based on that the initial estimation is correct, i.e. 

x,,o = x0 and e,,o =e0 , therefore the formulation (D.13) can be written in the following 

form, 

k =o, ... ,n-1 (D.14) 

k=O, ... ,n-1 (D.15) 

At the nth time step and thereafter, the manipulated variables will not change, i.e., 

u1 = un-i for j = n, ... p. Therefore, 
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1 

[ x,,. xr,r+2 J= 

xr,p 

Ar,n 

Ar n+1Ar n 

k 

TI Ar,p-i 
i=l 

xr,n + 

Br,n 


Ar n+1Br n +Br n+l
, , , 

p-n-1 p-n-i-1

L (( TI Ar,p-j)Br,n+i) 
i=O }=1 

+ 
p-n-1

(TI Ar,p-j )Ber,n Ber,p-1 
}=1 

+ 
p-n-1

(TI Ar,p-)Bdr,n Bdr,p-1 
}=1 

n-1 

GweLWi 
j=O 
n-2 

GweLWi 
J=O 

(D.16) 


where ld2 is the matrix such that ld 2dm =(d~,n,··-,d~,p-iY· According to Equations 

(D.14-D.15), the above formulation (D.16) can be written into, 

(D.17) 

The above Equation (D .17) and Equations (D .14-D .15) can be summarized as 
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U, = Lurt + Mu,0 + Nur(l) (D.16) 

(D.17) 

where n= , smceur =(? J, xr =(YJ, t=( t~ J, ~m ro=[ ~o J, and 
r,n I r,p f Xo OJ 

~ ~ 

yr =Crxr, then 

(D.18) 

The closed-loop model parameters Lyr, Myr. Nyr, Lur. Mur, Nur are different for different 

realizations of the process and their corresponding nominal values are denoted by Ly, My. 

Ny, Lu. Mu, Nu. Now define 

Nyr = Nr +f)]Vyr 

where Nr is nominal value of Nyr, then 

Similarly, we have 

so from the Equations (D.16) and (D.18) we obtain the closed-loop model 

Ur = Lurt + Mu,0 + Nuro (D.19) 

(D.20) 
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Appendix E 

Closed-Loop Model Update Rules and 

Computational Complexity of the Efficient 

Uncertainty Characterization Method 

E.1 The Closed-Loop Model Update Rules 

Let's see how to update the closed-loop model of the manipulated variables when 

the ith manipulated input at time step j, Ur,iJ, becomes saturated. Fist we write out more 

details of the closed-loop model shown in Section 3.3.2 as 

(E.l) 

where u,,k = (u,,1,k, .. .,ur,n.,k)r E Rn• denotes the manipulated variables at the future kth time step, 

tk =(tl,k, . .. , tn. ,k f E Rn• denotes the degrees of freedom for the control law at the future kth time 

step, nu denotes the number of manipulated variables. Also we can use n8 , nw to denote the 

numbers of elements in 0 and <O respectively. The coefficient matrices Lun Mur. Nu are composed 

of sub-matrices defined as follows: 
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L(O,O) 
ur 

L(l,O) Lc1,1) 
ur ur 

Lur = Lc2,o) 
ur 

Lc2,i) 
ur 

Lc2,2) 
ur 

E R(n·n.)x(n·n.) 

' 
where the sub-matrices 

Lcm-1,0) Lcn-1,i) L(n-1,n-2) L(n-1,n-1) 
ur ur ur ur 

and again the sub-matrices 

L (k1>k2) = (L(k1,k2l, ••• ,L(k1>k2) )e Rlxn.. Th . t k 0 1 k 0 k de superscnp s = ,...,n - , = ,..., an ur, ur,o1,I ur,o1,nu 1 2 1o1 

2. t 1 N t that h k k LCki k ) • "d t" · 

Also, 

the SUbSCrtp S 0 1 = ,...,nu • 0 e W en 1 = 2 , ur' lS an 1 en lty matnx. 

According to the closed-loop (E. l ), when UrJ,i does not saturate, its model can be expanded as 

- (L(j,O)
U, i l. - ur i ' ', ' (E.2) 

= t,. l. + tiu, ; l.' , , 

And when Ur,iJ saturates, it will be forced to be the corresponding degrees of the freedom 

of the controller (according to the heuristic discussed in Section 3.2.4), t,.J, i.e., 
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u,,;,; = t;,; ' ui,j will be forced to a bound in optimization) (E.3) 

Note that the difference between the Ur,iJ values with and without saturation is denoted by 

f),.u,,i,J according to the above equations (E.2) and (E.3). With the presence of the Ur,iJ 

saturation, the models for the manipulated variables after the jth time step will change; 

We assume this change can be quantified as: 

(kl = j + 1,...,n - 1, 01 =1,..., nu ) (E.4) 

where u, 
0 

k denotes the value of the manipulated variable with the closed-loop model 
' 1' l 

before model update and ur,ol>kl * denotes the value after model update, c~;:~~j denotes 

the closed-loop effect of u,,;,; on u,,
01 

,k • According to equation (E.4), the coefficients 
1 

ofthe closed-loop model of u,,
01 

,k
1 
can be updated as, 

(E.5) 


NU))
U,l (E.6) 

kl = j + 1,.. ., n -1 ' k2 =0,... , j -1, 01 =1,...,nu ' 02 =1,..., nu 

Now the question is: 

Next, we will prove 
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According to equation (E.1 ), 

(E.7) 

We can also write the closed-loop model of ur 
0 

k as if the (j+ 1 )th time step is the initial 
' 1' 1 

time step, 

(E.8) 

where means that the value of the parameter or variable is based on taking the 11+1 

(j+ J)th time step as the initial time step. Since 01 is the linear function of 0, ro ,1+1 

to, ... , 9-J and ur,j (note the input vector ur.J = (ur,l,j,.. ·,ur,n.,jrE Rn·) ' the above 

equation (E.8) can be written as 

(E.9) 

where C denotes the closed-loop effect of UrJ on ur 
0 

k • As we know, each element in UrJ 
' 1' 1 

is linear function of 0, ro, to, ... , 9·, so equation (E.9) can also be written as 
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(E.10) 

Since equations (E.7) and (E.8) are identical for any parameter values, equations 

(E.7) and (E. l 0) are identical for any parameter values too. Therefore, 

which means the closed-loop effect of u,,1 on u,,ol>k, 1s r<k1>J) • so the closed-loop effect 
ur,o1 ' 

of u . . on u is L(k,,J) • 
r ,l ,J r ,o1 ,k1 ur ,o1 ,i 

According to all the above discussion, the coefficients of the closed-loop model of 

the manipulated variables after the jth time step can be updated as 

(E.11) 

(E.12) 

kl = j + 1,..., n - 1 ' k2 =0,. .., j - 1, 01 =1,..., nu ' 02 =1,..., nu 

Similarly, the closed-loop model of the controlled variables can be written as 

(E.13) 

where 
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L(l,O) 
yr 

Lc2,o) Lc2,1) 
yr yr 

Lyr = c o)L n, Lcn,1) L(n,n-1) 
E R 

(p·n )x(n·n ) 
Y • , 

.
where the sub-matrices 

yr yr yr 

L(p,O) L(p,1) L(p,n-1) 
yr yr yr 

The superscripts = l, ... ,p, k2 =0, ... ,min(k1 -1, n-1) and the subscripts = l, ... ,ny ., nyk1 o1 

denotes the number of the controlled variables. Also, 

1 

NC ) J= ~r R(p·ny )xn,,,N and' ur • E
[ NCP) 

ur 

If an unsaturated manipulated variable UrJ,i becomes saturated, the model coefficients in 

equation (E.13) can be updated as 

(E.14) 


NCJ))
y,1 (E.15) 

kl = j + 1,..., p ' k2 =0,..., j ' 01 =1,..., ny ' 02 =1,... , nu 

These results are obtained in the similar approach in which the update rules 
(E.11) and (E.12) are obtained. 
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E.2 Complexity of On-line Uncertainty Characterization 

E.2.1 The time complexity (number of scalar calculation needed) 

To update the model coefficients of the manipulated variables by equations 

(E.ll-E.12) for the case that u,,;,J becomes saturated, we need the number of scalar 

calculations 

where nMN denotes the number of elements of each row of the augmented matrix [Mu, 

Nu] (or the total number of elements in vectors 9 and ro, i.e. nMN = +nm). Ton8 

update the model coefficients of the controlled variables by equations (E.14-E.15) for the 

same case, we need the number of scalar calculations 

So the total calculation associated to coefficient update is 

2ns( L(nu ·j+nMN)[(n-1- j)·nu +(p-j+l)·ny]J 
[J,i]en 

where ns denotes the total number samples, Q denotes the set containing the indices of 

the additional saturated inputs. In the worst case, we will find all the future inputs should 

saturate, then the total number of scalar calculation will be 
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2n{t%(n. ·j + nMN )[(n-1- j)·n. +(p- j+l)·n,]J 

n-1 

=2nsnu(L(nMN[(n-l)nu + (p + l)ny]-nu(nu + ny)j2 
j=O 

+[(n-l)nu
2 

+(p+l)nynu -nMN(nu +ny)]j)) (E.16) 
n(n -1)(2n -1)

=2nsnu(n·nMN[(n-l)nu +(p+l)ny]-nu(nu +ny) 
6 

2 n(n -1)
+ [(n - l)nu + (p + l)nynu - nMN (nu + ny )] )

2 
~ O(ns (nun) 3 

) 

Here we are assuming the number of manipulated variables times the number of 

time steps in the control horizon dominates the scale of the system. 

E.2.2 The space complexity (number of scalars to be stored in memory) 

The online calculation is to update the coefficients of the closed-loop models for 

different samples, Lur, Mun Nu, Lyr, Myr, Ny. So the number of scalars in memory during 

the calculation is at least the number of elements in these matrices. 

For one sample, the number of elements in Lur, Mur, Nu is at most 

and the number of elements in Lyr, Myr, Ny is at most 

n-1 

Inynu(j+l)+(p-n)·ny ·nu ·n+ny ·p·nMN 
J=O 

n(n + l)nynu
= +n(p-n)nynu +nynMNp

2 

So the total number of scalars is at most 
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(E.17) 

Here we are assuming the number of manipulated variables times the number of time 

steps in the control horizon dominates the scale of the system. 

E3 Complexity of Off-line Uncertainty Characterization 

E.3.1 The time complexity (number of scalar calculation needed) 

The off-line calculation is to obtain the closed-model using the procedure shown 

in Appendix D. It's not difficult to find that the calculation described by equation (D.13) 

dominates the total off-line calculation. Let's repeat equation (D.13) here for convenience 

of discussion: 

(E.18) 

k = o, ... ,n-1 

We can see that the matrices (G1.i' Gd,i' Gm.i' G0 _;) has the scale of 

so the number of scalar calculations in equation (E.18) for each time step k is bounded by 
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and the total number of scalar calculations is 

Since we need to obtain the closed-loop model for each of the realizations, so the 

total scalar calculations involved in the off-line calculation is at most ~ O(ns (nun) 3 
). 

E.3.2 The space complexity (number of scalars to be stored in memory) 

The number of scalars in memory during the off-line calculation is basically the 

number of elements in the matrices Lun Mur, Nu, Lyr, My,, Ny in the closed-loop model, so 

the space complexity of off-line calculation is the same as that of on-line calculation, i.e., 
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Appendix F 

Details of the CSTR Processes 

We first introduce the general model and the linearization of it for a typical CSTR 

process, and then give details of the parameters and operating points used in the CSTR 

control case studies in the thesis. 

Figure F. l illustrates a typical Continuous Stirred Tank Reactor (CSTR) system. 

We assume the tank is full of well-mixed liquid and physical properties are constant. In 

the reactor there is an irreversible, elementary reaction A->B, which is first-order with 

Arrhenius temperature dependence. The heat loss of the system is negligible. 

Solvent ____. 

L 

A~B 

T 

Tc,out 

Figure F .1 The diagram of a typical CSTR system 
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The nonlinear model of the system is composed of the mass balance and the 

energy balance equations as follows: 

Mass balance: 

l dCA ( l k -EIRTCVo --= F CAo -CA)-Vo · Aoe A (F.l)
dt 

where CAo is the inlet flow concentration of A, CA is the outlet flow concentration of A. F 

is the inlet and outlet flow rate, Vol is the volume of the reactor, T is the temperature in 

the reactor, KAoe-EIRT gives the reaction rate KA that obeys first-order Arrhenius equation. 

Energy balance: 

T'ol · pC dT = pC F(T -T)- aFcb+l (T T ) Afl TT l k -EIRTC 
r1 p dt p 0 aFb - cin -Ll rxnro . AOe A 

F+ c ~ 
c 2pcCpc 

where p and Cp are the density and specific heat capacity of the mixture in reactor, Pc and 

Cpc is the specific heat capacity of the coolant, a, b denote the coefficients of the heat 

transfer during the cooling procedure, To denotes the temperature of the inlet flow, Tc,in 

denotes the temperature of the inlet cooling flow, AHrxn denotes the enthalpy of the 

reaction. 

The nonlinear model (F .1 )-(F .2) and can be linearized around a steady-state into: 

dCA C' T' C' F' (F.3)-- = a11 A+ a12 + aB Ao + a14 c
dt 

dCA C' T' C' F' (F.4)-- = a11 A+ a12 + a13 Ao + a14 c
dt 

where 
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F -EIRT
a11 =--- kAoe s 

Vol 

F
a13 =­

Vol 

-/1H k e-EIRTs _ rxn AO a21 ­

pCP 

E 

F a(FJ~+I l[(FJs +a(FJ~ 12pcCpcJ RT,2 -Et RT 
a ---- -11H --k e sc 

22 - Vol Vol . pCP rxn pCP Ao As 

and the subscript "s" denotes the steady-state value of the variable, the prime symbol (') 

denotes the deviation variable that deviates the original variable from its steady-state 

value. 

The process in the CSTR control system 1 and 2 in Chapter 3 and the CSTR 

control system 3 in Chapter 4 is an exothermic CSTR process (i.e. L1Hrxn<O). This process 

is discussed and its parameter values used in the thesis are shown on page 897-908 of 

Marlin (2000). The parameters are shown in Table F-1. 

The process in the CSTR control system 4 in Chapter 4 is the CSTR process with 

zero heat of reaction (i.e. LJHrxn=O). This process is discussed and its parameter values 

used in the thesis are shown on page 438-439 of Marlin (2000). The parameters are 

shown in the following Table F-2. 
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Table F-1 The parameters of the exothermic CSTR process 

Parameter Value Unit 

F 1 m 3/min 

Vol 1 m3 

CAo 2.0 kmole/m3 

To 343 K 

Cp 1 cal/(g•K) 

p 106 g/m3 

kAo 1010 min-1 

EIR 8330.1 K 

LJHrxn -l.3x108 cal/kmole 

Tcin 310 K 

Cpc 1 cal/(g•K) 

Pc 106 g/m3 

a l.678x 106 cal/(min•K) 

b 0.5 

Ts 330.9 K 

CAs 1.79 kmole/m3 

Fcs 15 m 3/min 
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Table F-2 The parameters of the CSTR process with zero heat of reaction 

Parameter Value Unit 

F 0.085 m3/min 

m3Vol 2.1 

CAo 0.965 kmole/m3 

To 423.15 K 

Cp 1 cal/(g•K) 

p 106 g/m3 

kAo 5.62x 107 min-1 

EIR 1804.1 K 

LIHrxn 0 cal/kmole 

Tcin 298.15 K 

Cpc 1 cal/(g•K) 

106 g/m3Pc 

a 1.41x105 cal/(min•K) 

b 0.5 

Ts 358.55 K 

CAs 0.465 mole/m3 

Fcs 0.5 m3/min 
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Appendix G 

Model Details of the Binary Distillation 

Column 

~ Y1(XD)
F 

Figure G.1 The binary distillation column 

Figure G.l shows the binary distillation column described in Chapter 4. The 

model formulation of this distillation column is from Marlin (1995) and parameters from 

Luyben (1989). The controlled variables are the distillate composition (light key) XD (y1) 

and the bottoms composition (light key) XB (y2). The manipulated variables are the 

reflux rate (u1) and boil up rate (u2). The designed parameter and the initial condition is 

described in the following Table G-1. 
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The linearized model around the initial condition shown in Table G-1 can be 

obtained through step change test and the statistical model identification method 

introduced in Marlin (2000). For the linearized models used in Chapter 4, the step 

changes of RO, VO and FO of 10 mole/min respectively are performed for the step change 

test. 

Table G-1 The parameters of the binary distillation column in Figure G-1 

Parameter Value Unit 

Relative volatility (a ) 2.0 

Number of trays (NT) 25 

Feed tray location (NF) 12 

Analyzer dead time (AT) 10 min 

Feed rate (FO) 8.7713 kmole/min 

Feed light key (zO) 0.5 mole frac 

Feed liquid frac (qO) 1 mole frac 

Reflux rate (RO) 8.47511 kmole/min 

Boilup rate (VO) 13.0022 kmole//min 

Distillate rate (DO) 4.52712 kmole//min 

Bottoms rate (BO) 4.24418 kmole//min 

Distillate light key (XD) 0.95 mole frac 

Bottoms light key (XB) 0.02 mole frac 

Distillate drum hold up (MDO) 87.713 kmole 

Column base hold up (MBO) 87.713 kmole 
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AppendixH 

Details of the Industrial Supply Chain System 

in the Case Studies in Chapter 4 

Figure H. l ( a-d) show the histograms of the daily customer demand of the 1st or 

2nd SKU to the 1st or 2nd RDC in the case studies of the industrial supply chain system, 

which are obtained from the industrial historical data of the year 2004 and 2005. 

Table H-1 summarizes the parameters of the industrial supply chain system with 

the 1st and the 2nd IP/SKU and the 1st and the 2nd RDC. 
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Figure H.l Histograms of the daily demands in the industrial supply chain system 
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Table H-1 Parameters of the industrial supply chain system 

Parameter Value 

Nominal SKU manufacturing rate Rs 
(SKU/hour) 

Rs range with 90% confidence (SKU/ hour) 

Unit converting coefficients C1P-SKu,; 

(IP/ SKU) 

Nominal SKU transportation time ; (hour) 

; range with 90% confidence (hour) 

SKU Shipping Intervals (hour) 

SKU transportation capacity F4,max,; 

(SKI/shipping interval) 

16.7 (the 1st IP/SKU) 
16.7 (the 2nd IP/SKU) 

13.3-22.2 (the 1st IP/SKU) 
13.3-22.2 (the 2nd IP/SKU) 

6.0 (the 1st IP/SKU) 
6.6 (the 2nd IP/SKU) 

144 (the 1st RDC) 
144 (the 2nd RDC) 

132-156 (the lstRDC) 
132-156 (the 2nd RDC) 

12 (the 1st RDC) 
8 (the 2nd RDC) 

40 (the 1st IP/SKU) 
40 (the 2nd IP/SKU) 
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