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Abstract

Model Predictive Control (MPC) is traditionally designed assuming no model
mismatch and tuned to provide acceptable behavior when mismatch occurs. This thesis
extends the MPC design to account for explicit mismatch in the control and optimization
of a wide range of uncertain dynamic systems with feedback, such as in process control
and supply chain optimization.

The major contribution of the thesis is the development of a new MPC method for
robust performance, which offers a general framework to optimize the uncertain system
behavior in the closed-loop subject to hard bounds on manipulated variables and soft
bounds on controlled variables. This framework includes the explicit handling of
correlated, time-varying or time-invariant, parametric uncertainty appearing externally (in
demands and disturbances) and internally (in plant/model mismatch) to the control
system. In addition, the uncertainty in state estimation is accounted for in the controller.

For efficient and reliable real-time solution, the bilevel stochastic optimization
formulation of the robust MPC method is approximated by a limited number of (convex)
Second Order Cone Programming (SOCP) problems with an industry-proven heuristic
and the classical chance-constrained programming technique. A closed-loop uncertainty
characterization method is also developed which improves real-time tractability by
performing intensive calculations off-line.

The new robust MPC method is extended for process control problems by
integrating a robust steady-state optimization method addressing closed-loop uncertainty.
In addition, the objective function for trajectory optimization can be formulated as
nominal or expected dynamic performance. Finally, the method is formulated in

deviation variables to correctly estimate time-invariant uncertainty.
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The new robust MPC method is also tailored for supply chain optimization, which
is demonstrated through a typical industrial supply chain optimization problem. The
robust MPC optimizes scenario-specific safety stock levels while satisfying customer
demands for time-varying systems with uncertainty in demand, manufacturing and
transportation. Complexity analysis and computational study results demonstrate that the
robust MPC solution times increase with system scale moderately, and the method does

not suffer from the curse of dimensionality.
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Chapter 1

Introduction

This thesis focuses on the optimization of uncertain dynamic systems with
feedback. Here “feedback” is the term from automatic control, which means the use of
the measurement information of system outputs to determine future system inputs. While
all physical systems are uncertain to some extent, this thesis concentrates on physical
systems in which uncertainty significantly affects the behaviour of the control.

There exist a wide range of feedback control technologies. Here, we will
concentrate on a method termed “Model Predictive Control” (MPC) for reasons
explained subsequently. In addition, there are many methods for determining optimal
performance for systems (usually, without feedback control), such as stochastic
optimization. The developments in this thesis merge MPC and stochastic optimization in
novel ways to provide unique advantages for the overall system performance.

The methods developed in this thesis are general, but they have been tailored to
two applications of special interest in the chemical process industries. The first is process
control, which applies automatic control to equipment in the process industries. The
second in supply chain optimization (management), which involves coordinating the raw
materials, manufacturing, transportation, sales, and storage of an integrated business.
Both of these systems involve slow dynamics (relative to disturbances and control
objectives) and significant uncertainties that provide challenges in attaining the desired

performance.
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The remainder of this chapter contains the following sections. Section 1.1 gives a
general introduction of MPC methods (including robust MPC), and Sections 1.2 and 1.3
introduce process control and supply chain optimization, respectively. Then, Section 1.4
further defines the goal and scope of the research, and Section 1.5 shows an overview
outline of the thesis. Finally, Section 1.6 defines some terms and conventions used in the

thesis.

1.1 Model Predictive Control

1.1.1 Conventional, nominal MPC

Model predictive control (MPC) refers to a class of computer control algorithms
that utilize an explicit process model to predict the future response of a plant (Qin and
Badgewell, 2003). At each control interval, feedback information is used to update the
model to reduce the effects of model mismatch. Then, the MPC algorithm optimizes
future model behavior by computing a sequence of future manipulated variables. The first
input in the optimal sequence is then sent to the plant, and the entire calculation is
repeated at subsequent control intervals. The advantage of this "rolling horizon"
implementation is that the new measurement information of the system at each control
interval can be used to update the explicit process model for a better prediction of the
future.

Figure 1.1 shows a typical MPC block diagram, where y denotes the controlled
variables (or sometimes called system outputs in the thesis), which are to be maintained
at their desired values, u denotes the manipulated variables (or sometimes called system
inputs in the thesis), which are adjusted to drive the controlled variables to their desired
values. The desired values of the controlled variables are called set points, shown as SP in
the figure. An MPC controller includes at least an explicit model to predict the future and

an optimizer to compute the optimal manipulated variables according to the prediction.
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Figure 1.1 A typical block diagram of MPC

MPC has been widely adopted in industry as an effective control technology to
deal with multivariable constrained control problems (Qin and Badgwell, 2003).
Conventionally, MPC uses a linear deterministic model to predict the future, although a
real system is usually nonlinear and uncertain. We call this type of MPC method

"nominal MPC" in this thesis and call the deterministic model "nominal model".

1.1.2 Robust MPC, nonlinear MPC and adaptive MPC

The performance of nominal MPC will degrade if the real plant deviates from the
nominal model used in the controller. The difference between the real plant and its
nominal model is usually called the uncertainty, which is caused by the differences in
structure, measurement error, and unmeasured disturbances in the system. Applying an
MPC using only the nominal model and (de)tuning the controller is a typical approach to
address the uncertainty, but it can lead to poor performance. Substantial performance
improvement could be achieved by addressing the uncertainty explicitly in the control
calculation, which leads to the concept of robust MPC. Unless otherwise specified, robust
MPC refers to the MPC methods using linear nominal model with parametric

uncertainties, which calculates the manipulated variables such that the future plant

3



PhD Thesis — Xiang Li McMaster University — Chemical Engineering

behavior satisfies specific (feasibility, stability or performance) criteria for not only the
nominal plant realization, but also all the other possible plant realizations with the
uncertainty in a specified region.

When the nonlinearity of the plant is significant and a good model of the
non-linear process is available, describing the plant with a nominal model and the
additional uncertainty may not be the appropriate controller to achieve a good
performance. In this case, an explicit use of a nonlinear model would be appropriate to
predict the future behavior. The resulting MPC method is called nonlinear MPC
(Camacho and Bordons, 2007; Badgwell and Qin, 2001; Allgower et. al. 1999).
Furthermore, if the uncertainty is explicitly addressed in nonlinear MPC calculation, the
resulting method is called robust nonlinear MPC (e.g., Grancharova and Johansen, 2009;
Zavala and Biegler, 2009). Although it has attracted much attention in the academic
research, the nonlinear MPC has not been very widely applied in the industry, because
some difficult problems, including nonlinear identification, nonlinear state estimation,
nonconvex optimization of the transient behavior, etc. (Camacho and Bordons, 2007).

An alternative approach to address uncertainty is to adopt the idea from adaptive
control, where the control law or controller tuning is changed with the real-time
measurement information of the system (Sastry and Bodson, 1994). In the context of
MPC, it usually refers to the MPC methods with real-time identification or selection of
prediction models (e.g., Dougherty and Cooper, 2003). The limitation of adaptive MPC
control is that it's challenging to satisfy the stability or even feasibility and other
performance criteria, especially when the uncertainty changes frequently (Mayne, et al.,
2000). So, an adaptive MPC method is usually designed with the integration of robust
MPC techniques to address some uncertainty explicitly in the controller calculation,
which is actually a robust adaptive MPC (e.g. Fukushima et al, 2007). Sometimes a
nonlinear model is also used in the method, which gives robust adaptive nonlinear MPC
(e.g. Rahideh et al., 2008; Adetola et al., 2009).

In this thesis, we only address the robust MPC method using linear dynamic
models with uncertain parameters. This choice is appropriate when (a) the system is not
highly non-linear or non-linear models appropriate for real-time control are not available

and (b) adapting models in real time is not appropriate because of lack of correlation of

4
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the plant behaviour with its recent past. Many process control and supply chain problems
fit into this category, as indicated by the current dominant practice of applying linear
nominal MPC with detuning.

1.2 Process Control

Process control is a sub-discipline of automatic control that involves tailoring
methods for the operation of chemical processes with the goal of improving the safety
and profitability of a process, while maintaining consistently high product quality (Marlin,
2000).

Process control usually deals with physicochemical systems such as reactors, heat
exchangers, distillation columns, and so forth. The controlled variables and manipulated
variables in process control depend on the specific process and control objectives. They
can typically be temperature, pressure, flow rate, level, and composition. For example,
for a binary distillation column that separates the light product from the feed flow, the
controlled variables are usually the pressure, liquid levels, and compositions of the
distillate and the bottoms products, and the manipulated variables are the condenser duty,
reflux flow, reboiler duty, and product flow rates.

In process control, the cause of the uncertainty can be the uncertainty in the
system variables that are independent from the control decisions. For example, in the
binary distillation control system mentioned above, the feed flow rate and the feed
composition can vary, which changes the relationship between the controlled and
manipulated variables. The cause of the uncertainty can also be the approximation of a
nonlinear process with linear model. This is because a linear model is only exactly
accurate for a nonlinear process at a particular point, but the process operates in a region
around a nominal operating point. The uncertainty of a process control system usually
occurs as the net effects of the two causes mentioned above.

The most widely used process control methods are Proportional-Integral-
Derivative (PID) control methods (e.g., Marlin, 2000) and MPC. The PID methods are
appropriate for controlling a single output variable or for multivariable systems in which

the interaction among control loops, which do not communicate in the controller

5



PhD Thesis — Xiang Li McMaster University — Chemical Engineering

calculations, does not significantly degrade dynamic performance. In contrast, the more
complex MPC method is appropriate for systems with strong interaction among variables,
for which centralized decision making will improve dynamic performance. This work
deals exclusively with MPC control that optimizes the trajectory of the controlled and
manipulated variables to their desired values.

The desired values of controlled variables are usually obtained according to an
economic objective, which could change while disturbances enter the process. So, a
steady-state optimization unit is usually integrated in many industrial process control
systems that calculate the desired values of the controlled variables (and mostly also the
desired values of the manipulated variables) before each controller execution (Qin and
Badgwell, 2003). Due to its importance in process control practice, the steady-state

optimization problem will also be addressed in this thesis.

1.3 Supply Chain Optimization

Supply chain optimization or supply chain management is “a set of approaches
utilized to efficiently integrate suppliers, manufacturers, warehouses and stores, so that
merchandise is produced and distributed at the right quantities, to the right locations, and
at the right time, in order to minimize system-wide costs while satisfying service level
requirements” (Simchi-Levi et al., 1999). Extensive work has been done for supply chain
optimization in the management, operations research and industrial engineering
communities, with a tremendous number of publications available. Readers can refer to
Pinedo (2005), Chopra and Meindl (2004) and Nahmias (2001) for the review of the
traditional supply chain optimization research.

The supply chain optimization applied to the process industries has been a hot
research area recently (Shah, 2006; Neiro and Pinto, 2005), which includes making
decisions for different levels of a supply chain, namely, strategic, tactical and operational
(Neiro and Pinto, 2005). The operational problem, which refers to making decisions to
drive some variables of the supply chain to the desired values (or force them to satisfy
some objective), is analog to the process control problem. The decision variables (inputs)

of the problem could be the production rate, orders to the upper stream units (Braun et al.,

6
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2003), or the advertising effort to increase the sales (Tzafestas et al., 1997). The
controlled variables (outputs) could be the inventories, productions rates or material
feedstock purchases, and they can be measured. Figure 1.2 illustrates the similar structure
of process control and supply chain operation problems in the MPC framework. This
motivates the concept of introducing feedback control technology to optimal supply chain
operation problems, especially the MPC techniques (e.g. Braun et al., 2003; Perea-Lopez
et al. 2001; Tzafestas et al., 1997).

The customer demands, which can change frequently and substantially and cannot
be predicted accurately, are the most common disturbances in a supply chain system. The
processing time for products, transportation times and the prices of the materials are other
main sources of uncertainties (Lin et al., 2004). The most important impact of the
uncertainties on a supply chain system is that supplies may not match demands, which

results in back orders or lost sales. A back order is a customer order, which cannot be

I_ _______________ _lr ————————————————————

b v

Demands

4 Distillate
Q composition (y,)

Plant warchouse
inventory (y;)

...... Regional center
Inventories (y,)

Bottoms
® composition (y,)

SP (objective)
Controlleror | Y y
Optimizer > Process

e Model

Figure 1.2 The MPC framework for process control and supply chain optimization
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filled immediately and for which the customer is prepared to wait for some time
(BusinessDictionary, 2009). Naturally, back orders lead to customer dissatisfaction, may
incur price penalties, and if persistent, will lead to lost sales. The percentage of items
back ordered and the number of the back order days (until the back ordered-products are
ultimately delivered) are important measures of the quality of a firm's customer service.
Since the uncertainties are usually very large in a supply chain system, we cannot
overlook them in supply chain optimization if we want to achieve a satisfactory customer
service level. As we shall see, robust MPC, which can address uncertainties explicitly, is

an excellent tool for operational supply chain optimization problems.

1.4 Goal and Scope of the Research

The goal of the research is to develop a robust MPC method that has fast and
reliable solution as well as good control performance for control and optimization of
uncertain systems with feedback, such as occurs in process control and supply chain
optimization. Particularly, the method should offer a framework addressing the following

issues:

Plant characteristics:

e Linear or nonlinear but can be approximated by linear model with uncertain
parameters;

e Multi-input multi-output;

e With strict physical limits on manipulated variables;

e With bounds on controlled variables.

Uncertainty modelling:

e Time-vary or time-invariant uncertainty allowed;

e Correlated, parametric uncertainties of the unmeasured disturbances and noises,
the plant/model mismatch and the disturbance plant/model mismatch.

e An estimate of the uncertainty of all transient variables in the system under

control
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Feedback scheme:

e State feedback (i.e., all the system states are measured) or output feedback (i.e.,

some of the system states are not measured);

e State-estimation addressing uncertainty explicitly.

Optimization formulation:
1) Hard bounds on the manipulated variables and soft bounds on the controlled

variables;
2) Flexible objective function that can contain nominal or expected performance;
3) Reliable and efficient solution for real-time computation;

4) Both steady-state and trajectory optimization considered.

Figure 1.3 shows a more detailed block diagram of the MPC system addressed in
the thesis with the variables and parameters explicitly appearing in the robust MPC
formulation, where u denotes the manipulated variables decided by the MPC controller
(trajectory optimization), y, denotes the real (uncertain) controlled variables, y,, denotes
the measured controlled variables, d, are the measured information of the true
disturbance dj,, w; and v denote the measurement noises of d, and y, respectively, G,w:
denotes the effects of the noise w; on the system states through linear channel G,,. All the
noises are assumed to be white noises. Also, x and e denote the estimated states and
feedback information for the dynamic system model, b denotes the estimated bias for the
steady-state system model, yg, and uy, denote the set points of the controlled and
manipulated variables for the trajectory optimization, which are obtained in the
steady-state optimization with reference values y, and , that can be determined by an
upper-level optimization or prior experience. Note that the steady-state optimization unit
may not exist in some applications (e.g., supply chain optimization), and the
state-estimation unit is not needed if all of the system states are measured, which is

unusual for process control but could be the case for some supply chain systems.
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Figure 1.3 Detailed block diagram of the MPC system addressed in the thesis

1.5 Thesis Outline

The remaining part of the thesis is organized as described in the following
paragraphs and is shown schematically in Figure 1.4.

Chapter 2 reviews the state-of-the-art robust MPC methods and points out the
technology gaps between these methods and the research goals. It also reviews the
state-of-the art supply chain optimization under uncertainty.

Chapter 3 develops a new robust MPC framework for the optimization of
uncertain system with feedback. This framework addresses various sources of
uncertainties of the closed-loop system with hard input bounds. An efficient and reliable
optimization solution method and an uncertainty characterization are developed for the

real-time implementation of the new robust MPC method.
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Optimization of uncertain system with feedback

Goal (Chapter 1, Section 1.3)

Develop a robust MPC method that has fast and reliable solution as well as good control performance
for the optimization of uncertain systems with feedback. The method addresses linear models with
commonly occurring sources of uncertainty and hard limits on manipulated inputs.

State-of-the-art:

1. Parametric, correlated uncertainty

2. Stochastic opt. > SOCP or SDP

3. Individual formulations for either model
mismatch or disturbance uncertainty

4. Closed-loop prediction

)
Gaps: i
1. No steady-state opt. with CL uncertainty E
2. No unified formulation for model mismatch |
and disturbance uncertainty with hard bounds E
3. Formulation involves simplifications that !
limit control performance '

]

General Formulation and Solution Method (Chapter 3)

Key contributions

1. A unified formulation addressing: (a) model mismatch and disturbance uncertainties, (b) measured
disturbances and the disturbance model mismatch, (c) hard input bounds in closed-loop prediction,
and (d) tractable solution for real-time implementation
Dynamic deviation model for time-invariant uncertainty
State estimation and output feedback under uncertainty
Efficient on-line calculation for uncertainty characterization

2.
3.
4
Case study
1. CSTR control system 1 & 2

@ Applications of the new robust MPC @

Model Predictive Control Supply Chain Optimization
(Reach steady state within horizon, Chapter 4) (No steady-state settling, Chapter 5)
Key contributions Key contributions
1. Robust steady-state optimization with deviation 1. Tailored state-space model
model for time-invariant uncertainty 2. Modified LP to suit the method
2. Objective function for expected performance 3. Addressing non-normally distributed
Case study disturbance uncertainty
1. Binary distillation control system 1 & 2 Case study
2. CSTR control system 3 & 4 1. An industrial supply chain optimization project

Il

Summary and Future Work (Chapter 6)

Figure 1.4 An overview outline of the remaining part of the thesis
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Chapter 4 extends the new robust MPC method for the application to process control
problems, where a new robust steady-state optimization method is developed to obtain
optimal set points for the trajectory optimization and a flexible but convex objective
function is developed to include either nominal or expected performance.

Chapter 5 applies the new robust MPC method to an industrial supply chain
optimization problem, where both a tailored system model and a tailored robust MPC
formulation are developed for the problem. The complexity of this problem and results of
computational experiments are reported.

Chapter 6 summarizes the research results and contributions and suggests future

research topics.

1.6 Terminology and Conventions

We assume the readers have basic chemical process control and mathematical
programming background, so not all the terms in the thesis are explained. We give
explanations of some important terms as follows for the ease of the discussions in the
remaining part of thesis.

e Control horizon (or sometimes called input horizon in the thesis) refers to the
future time periods (or number of time intervals in discrete control systems)
during which the dynamic system behaviours are calculated in MPC.

o Controlled variables (or sometimes called outputs in the thesis) refer to the
variables of a system to be regulated to satisfy some goal (e.g., maintained at
specific level or a function of them being optimized).

o Controller execution period refers to the time interval between two successive
controller decisions.

e Disturbances to a system refer to the variables that cannot be adjusted by the
controller but affect the controlled variables.

e Disturbance plant/model mismatch refers to that the real disturbance plant
associating the disturbances with the controlled variables is not exactly described

with its model.
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e Manipulated variables (or sometimes called inputs in the thesis) refer to the
variables of a system to be adjusted to influence the controlled variables.

o Plant and process are essentially synonymous terms. They all refer to any system
to be controlled.

¢ Plant/model mismatch refers to that the real plant associating the manipulated
variables with the controlled variables is not exactly described with its model.

e Prediction horizon (or sometimes called output horizon in the thesis) refers to
the future time periods (or number of time intervals in discrete control systems)
during which the controller decisions are calculated in MPC.

e Reference refers to the desired value of the controlled variables (or sometimes
include the manipulated variables) at the steady state used in the steady-state
optimization. It is obtained from an upper-level optimizer or experience of plant
personnel.

e Saturation of a manipulated variable refers to the situation where a hard bound
posed on this variable is active.

e Set point refers to the desired value of the controlled variables (and sometimes
the manipulated variables as well) at the steady state used in the trajectory control
(optimization).

e Simulation period of an MPC method refers to the time interval of the discrete
prediction model used by the MPC.

o Steady-state optimization refers to the optimization of the steady-state settling
point of the system.

¢ Trajectory optimization (control) in MPC refers to the optimization (control) of

the dynamic behavior of the system.

The following conventions will be observed in the thesis. Matrices are denoted
with uppercase English letters. Scalars and vectors are denoted with lowercase English or
Greek letters, except that the extended vectors containing the elements of a vector over

prediction or control horizon are denoted with bold English or Greek letters.
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Chapter 2

Literature Review

This chapter reviews the state-of-the-art robust MPC methods and the
state-of-the-art methods to address uncertainty explicitly in supply chain optimization.
The advantages and the disadvantages of the various existing methods are discussed, and
the gap between the state-of-the-art technologies and the research goals are outlined.

Since this thesis focuses on explicit handling of uncertainties, this chapter does
not review the classical, nominal MPC. Readers can refer to Camacho and Bordons
(1999), Macejowski (2000) for more details of the nominal MPC methods. For readers
not already familiar with MPC, a brief introduction is given in Section 3.1.

Also, this chapter does not review the supply chain optimization methods that do
not address uncertainty explicitly. Readers can refer to Pinedo (2000), Nahmias (2001),
Chopra and Meindl (2004) for the review of the extensive work on the “nominal supply

chain optimization” methods.

2.1 The State-of-the-art Robust MPC Methods

This section reviews the state-of-the-art methods for robust MPC. First, in Section
2.1.1, we discuss the different approaches to build the uncertain prediction model for
robust MPC calculation. This issue is key for a robust MPC method, because it not only

determines how good the method can be, but also affects the complexity of the
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formulation and the tractability of the solution of the method. Then in Section 2.1.2, we
discuss the approaches to address other important aspects of robust MPC that has been
outlined in Chapter 1. In Section 2.1.3, we summarize some typical robust MPC methods
and point out the gap between the state-of-the-art and the research goals. Finally, in
Section 2.1.3, we discuss the issue of robust steady-state optimization, which is not
addressed in most of the existing robust MPC research but very important for industrial

process control systems.

2.1.1 Different approaches for formulating uncertain model

Open-loop or closed-loop prediction?

Nominal MPC predicts the future with a nominal process model that is assumed
to be perfect, so it assumes that the forecast of future model errors is perfect and the
control sequence obtained at the current time step are unchanged in the future (if the
prediction horizon is infinite or sufficiently large). Under these assumptions, the
open-loop prediction that does not explicitly consider the effects of the future feedback
control is equivalent to the actual closed-loop behavior of the manipulated and controlled
variables. So all the existing nominal MPC optimize the open-loop dynamics instead of
the equivalent (but more complex) closed-loop dynamics of the system for the simplicity
of the formulation. The degrees of freedom of the optimization problem are the future
control sequence.

A simple approach to address uncertainty explicitly in MPC calculation is to use
an uncertain process model (instead of nominal model) in the same open-loop prediction
framework as in nominal MPC. This approach has been adopted in some robust MPC
methods, e.g., Badgwell (1997), Schwarm and Nikolaou (1999), Li et al. (2002).
However, the open-loop prediction is not equal to the closed-loop prediction in the
context of robust MPC, and it may overestimate the uncertainty of the closed-loop system
dynamics due to the omission of the future correcting actions of the feedback controller.
(See Chapter 3 for more discussion on the limitation of open-loop prediction.) This
point has been widely recognized (e.g. Bemporad, 1998) and most of the existing robust

MPC methods adopt closed-loop prediction, i.e. using a closed-loop prediction model that

15



PhD Thesis — Xiang Li McMaster University — Chemical Engineering

includes both a model for describing the uncertain process and a model for describing the

future controller actions.

Modeling of closed-loop dynamics — The rigorous approach

The key to building a closed-loop model is modelling the controller behaviour in
the future. The rigorous way is to exploit the “Principle of Optimality”, which is the basis
of the well-known dynamic programming theory (Bellman, 1957). This principle states
that in an optimal sequence of decisions, each subsequence must also be optimal, i.e., in
the context of MPC (with infinite or sufficiently large horizon), an optimal control
sequence obtained at one time step must include the optimal control sequence obtained in
any future time steps. Therefore, we can describe the controller actions in robust MPC
using a dynamic programming framework, i.e., we can model the controller behavior at
end of the horizon (which is easy) first and derive its behavior at the other time steps in a
backward mode according to the “Principle of Optimality”. Refer to Lee and Yu (1997),
Sakizlis et al. (2004) for more details on formulating robust MPC with this idea.

However, the scale of a dynamic programming problem is exponential with
respect to the number of possible system states at each decision stage, which makes even
small problems suffer the “curse of dimensionality” (Bertsekas, 2000). This
widely-recognized drawback of dynamic programming prevents its direct application on
most of the real-time problems.

The most popular approach to relieve the “curse of dimensionality” is to
approximate the state space with a smaller number of states and the more complicated
cost functions with simpler functions, which gives the idea of approximate dynamic
programming (Bertsekas and Tsitsiklis, 1998; Lee and Lee, 2004). Refer to Lee et al.
(2000), Lee and Lee (2001) and Kaisare et al. (2003) for details of applying approximate
dynamic programming to MPC control problems. This approach relies on extensive
off-line sampling to validate the approximation; for large or even medium scale
problems, it either makes off-line sampling computationally intractable or limits the
off-line sampling in a smaller subregion so that the real-time application is only viable

within this subregion. So this approach will not work if the real-time operation is outside
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the subregion of offline sampling, as would occur when the inequality constraint bounds
in the system change over the time.

The other approach to address the “curse of dimensionality” is to change the
high-dimensional aspects of the calculation from on on-line computation to on off-line
computation through parametric programming. The aim of the parametric programming
approach is to obtain the optimal solution as a function of the parameters (Dua et al.,
2002); once the realizations of the uncertain parameters are known in real-time, the
decision can be made by directly evaluating the function of the parameters, which takes
little time. The parametric programming approach does not eliminate the “curse of
dimensionality”; it still suffers from it in the off-line calculation that may be
computationally intractable even for medium scale problems. Also, determining the
correct active set is a challenging problem that must be solved in real time. So this

approach has the same limitation as approximate dynamic programming.

Modeling of closed-loop dynamics — The approximating approaches

Due to the high computational complexity induced by rigorous modeling
approach, many robust MPC methods model the future controller behaviour with an
approximating control law that has a simpler structure, so that the results robust MPC
formulation is simpler and tractable for real-time applications. In this case, the degrees of
freedom of the optimization problem are not the future control sequence, but the
parameters of the approximating control law (e.g. the feedback gain of the control law).
Linear or affine feedback control laws are widely used for this approximation. For the
convenience of discussion, we denote the controller decisions (or the manipulated
variables) at the i™ time step in the horizon as u;, the states and controlled variables at the
i™ time step in the horizon as x;, y; respectively. Then, we can summarize the linear and

affine control laws used in the different robust MPC methods into five types:

Type 1: u; = Kx; (e.g., Kothare et al.,, 1996), where K denotes the constant
feedback gain matrix throughout the horizon, but it needs to be evaluated at the beginning
of each robust MPC execution period. This control law is a simple proportional
expression, and it can be used to develop a convex robust MPC formulation that

guarantees robust stability (see Section 2.1.2 for more details); however, it can not
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describe the input saturation in the future horizon, because in general (unless K is a zero

matrix) it requires u; to be different for different x; (under different plant realization).

Type 2: u; = Koginex: + c; (€.g., Kouvaritakis et al., 2000), where K, denotes the
constant feedback gain throughout the horizon that is obtained offline, ¢; denotes the
variable perturbed term that is evaluated at the beginning of each robust MPC execution
period. The degrees of freedom of the resulting robust MPC optimization problem are the
perturbed term c; (whose effects on u; is independent of the plant realization), while the
feedback gain K,mmn. is constant (whose effects on u; is dependent on the plant
realization). This optimization problem is much easier to solve than the problem based on
Type 1 control law. However, Type 2 control law loses the flexibility to adjust the
feedback gain in the real time, and it cannot describe the input saturation in the future

horizon as well.

Type 3: u; = Kx; + ¢; (e.g., Bemporad, 1998), where K and c; denote the same
variables defined in the above Type 1 and Type 2, and they are evaluated at the beginning
of each robust MPC execution period. Obviously, the type of control law includes the
Type 1 and Type 2 control law, and it can describe some special input saturation
situations (e.g. the input saturation is held throughout the horizon). However, it cannot
model the input saturation occurring during the transient response, because it requires the
same gain matrix K for the whole prediction horizon. Also, it leads to a much more
complicated optimization problem for robust MPC and the efficient solution can be
obtained only for special cases. For example, Bemporad (1998) developed robust MPC
method based on Type 3 control law for the problems where the only source of

uncertainty is the unmeasured disturbances.

Type 4: u;= Kx; + ¢; (e.g., Goulart et al., 2006), where K; denotes the variable
feedback gains. Both K; and ¢; are evaluated at the beginning of each robust MPC
execution period. Obviously, this type of affine state feedback law includes the Type 3
feedback law (so that it also includes Type 1 and Type 2 feedback laws), and the input
saturation can be well described by this type of control law (by forcing the corresponding

elements in K; to be zero). However, using this control law in closed-loop prediction
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results in the robust MPC formulation being highly nonconvex, which is difficult to solve
in the real-time (Goulart et al., 2006).

Goulart et al. (2006) proved that, if the process model is perfect and the
uncertainty only comes from only the unmeasured disturbances, Type 4 control law is
identical to a unmeasured disturbance feedback, u; = K,»*wi + ci* (where w; denotes the
unmeasured disturbances at the /™ time step in the horizon). To use this unmeasured
disturbance feedback in the closed-loop prediction leads to a convex optimization robust
MPC formulation, which can be solved efficiently and reliably in the real-time (see more
details in Section 2.1.2). This clever mathematical transformation can be understood as
the following: when the unmeasured disturbances are the only source of uncertainty, they
equal to the difference between the measured and predicted states, so an affine state
feedback is equivalent to an affine unmeasured disturbance feedback. However, in
general an unmeasured disturbance feedback is not theoretically sound for control

problems, because we have no exact information about future unmeasured disturbances.

Therefore, Type 4 control law is a better approximation than Type 1-Type 3
control laws, but it can lead to a practical robust MPC formulation only when the source

of uncertainty is solely the unmeasured disturbances.

Type 5: u;= Ky; + c; (e.g., Van Hessem and Bosgra, 2006), which is similar to
Type 4 control law but uses output feedback instead of state feedback. Its properties are

similar to that of Type 4 control law.

There are other approximating control laws in addition to the linear or affine
feedback laws discussed above. For example, Warren (2004) used unconstrained nominal
MPC with variable output references to approximate the robust MPC in the closed-loop
prediction. The degrees of freedom of the resulting robust MPC optimization problem are
the references of the controlled variables at different time steps in the prediction horizon.
This problem is convex and easy to solve in the real time. However, the input saturation
was not modeled. Warren (2004) reduced the model inaccuracy due to the input
saturation by partitioning the original uncertainty region into several small subregions

and solving for different output references for uncertainties in the different subregions.
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2.1.2 Approaches for other aspects of robust MPC

This section introduces the approaches to address other aspects of robust MPC in

the research goads outlined in Chapter 1. We discuss these aspects one by one.

Source of uncertainty

As mentioned in Chapter 1, the source of uncertainty in the system can be the
plant/model mismatch, the measured disturbance plant/model mismatch and the
unmeasured disturbances and noise. Any robust MPC method has to address one or more
of these uncertainties. Generally, the uncertainty in the plant/model mismatch is more
difficult to handle than the uncertainty in the measured disturbance plant/model mismatch
and the unmeasured disturbances, because the effects of the former on the system depend
on the decisions, while the effects of the latter are independent of the decisions.

Most robust MPC methods only address part of these sources of uncertainties.
Some address plant/model mismatch only, e.g. Kothare et al. (1996), Badgwell (1997),
and Kouvaritakis et. al. (2000). Some others address unmeasured disturbances only, e.g.
Bemporad (1998), Goulart et al. (2006), Van Hessem and Bosgra (2006).

Warren (2004)’s method can handle plant/model mismatch and measured
disturbance plant/model mismatch as well as time-invariant unmeasured disturbances and
noise, but these uncertainties are not addressed in a unified framework. Lee and Yu
(1997)’s addressed plant/model mismatch only in their method that is based on
approximate dynamic programming; however, their method can also address other
sources of uncertainty (although the resulting robust MPC formulation is more

complicated).

Temporal manner of uncertainty

The uncertainty in a system could be time-invariant or time-varying. If a robust
MPC method can handle time-varying uncertainty, it can naturally handle time-invariant
uncertainty (although additional work may need to be done to exploit the time-invariant
characteristics for better control performance). Examples of the methods capable of

handling time-varying uncertainty are Kothare et al. (1996), Lee and Yu (1997), Goulart
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et al. (2006). Examples of the methods only addressing time-invariant uncertainty are
Badgwell (1997), Warren (2004).

Description of uncertainty

The way to describe the uncertainty is important for a robust MPC method

because it not only determines how accurate the uncertainty is described, but also affects

the complexity of the robust MPC calculations. Since this thesis only addresses the

parametric uncertainty, we only discuss the description of uncertain parameters here.

Typically, there are four types of approaches to describe the uncertain parameters:

)

2)

3)

Multi-plant (Scenario based description): This approach samples representative
realizations of the uncertain plant or disturbances and addresses these realizations
only in the robust MPC formulation. Advantages of this method are that it is easy to
formulate the optimization problem and the resulting robust formulation has the same
linearity/nonlinearity property as the nominal formulation (e.g. if the nominal
formulation is linear, the robust formulation is linear too). However, it is usually
difficult to choose the representative samples from all the possible uncertainty
realizations, and even if these samples are correctly selected, the number of these
samples is usually large, and the resulting problem is too large to solve. Some robust
MPC methods use this description for the uncertainty in the plant/model mismatch,
e.g. Badgwell (1997).

Polytopic uncertainty region: This approach assumes the uncertainty lies within a
polytopic uncertainty region. This region is usually in the form of a convex hull of a
series of sample realizations, and one can address this region by addressing these
sample realizations. So this method leads to a similar formulation as the method using
multi-plant description. Many robust MPC methods use this uncertainty description,
e.g. Bemporad (1998), Kouvaritakis et al. (2000), and Sakizlis et al. (2004).

Structured uncertainty region: The term “structured uncertainty” here denotes the
uncertain parameters having significant correlations among one another. Ellipsoidal
uncertainty region is a typical structured uncertainty region, where the size and shape

of the ellipsoid indicates the correlations among the parameters. It can be described
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by bounds on the norms of uncertain vectors or matrices. This description usually
makes the robust MPC formulation more difficult to solve than the nominal
formulation, e.g. if the nominal formulation is linear, the robust formulation becomes
nonlinear (see more details in the later discussion on on-line optimization). However,
in many process control problems the uncertainty parameters are strongly correlated,
so the structured uncertainty description is more desirable than the above two
description approaches. Therefore, many robust MPC methods are designed to be
able to adopt both the structured uncertainty and the polytopic uncertainty
descriptions, e.g. Kothare et al. (1996), Lee and Yu (1997), Goulart et al. (2006).

4) Multivariate continuous distribution: This approach characterizes the uncertainty
with multivariate distribution of continuous variables, where the correlations among
the uncertain variables are described with their covariance matrix. So this approach
can also be used to describe the correlated uncertainties, and the resulting robust MPC
stochastic optimization problem can be transformed (equivalently or approximately)
into a (more complicated) deterministic problem with a given confidence level by
chance-constrained programming technique (Charnes and Cooper, 1958; Kleywegt
and Shapiro, 2001) (see more details in the later discussion on on-line optimization).
Some robust MPC methods use this approach to describe correlated uncertainty, e.g.,
Warren (2004), Van Hessem and Bosgra (2006).

Feedback Scheme

Most of the robust MPC methods assume that all the states of the system can be
measured directly at the beginning of each time step, which means the system has full
state feedback. However, in many real process systems, not all the states can be
measured; the controller has to infer the states from the limited measurements of the
outputs. In this case, one needs to use an output feedback scheme to estimate the states
for the robust MPC calculation. The theory for output feedback and the state estimation
has been well established for nominal problems (see Appendix A for more details), and
some robust MPC methods have adopted this theory, e.g. Van Hessem and Bosgra
(2006). However, applying a nominal estimation method will deteriorate the performance

of robust MPC because the uncertain error in the nominal estimation of the states is not
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explicitly addressed. There are some robust state estimation methods that are developed
to guarantee the convergence of the state estimation to the real states, e.g. Mangoubi
(1998), Xie et al. (1994), but these methods do not obtain the uncertain estimation error at
each controller execution for the use in the controller calculation. According to the
author’s knowledge, the uncertainty in the state estimation error is not addressed in any
of the existing robust MPC methods explicitly in each controller calculation.

Note that the state-estimation may not be needed if an input-output model (instead
of state-space model) is used in a robust MPC methods model and all the controlled

variables are assumed to be measurable (e.g., Warren, 2004; Wang and Rawlings 2004).

Objective function

When optimizing the dynamics of a system, the most commonly used objective
function is the sum of the squared differences between the controlled and manipulated
variables and their desired values over the horizon, which is quadratic and with
appropriate tuning, convex. With the presence of uncertainty, however, this function
becomes uncertain.

A natural choice for the objective of robust MPC is the expected value of the
dynamic performance function. This idea has been adopted in the robust optimization
research in Darlington et al. (2000) and Darlington et al. (1999).

Another choice is the worst-case value of the dynamic performance. This idea has
been widely adopted in robust MPC research (e.g. Kothare et al., 1996; Kouvaritakis et
al., 2000; Lee and Yu, 1997). This is because using this objective makes the robust
stability easier to be guaranteed. However, optimizing worst case dynamic performance
may lead to conservative control. So, some robust MPC methods optimize nominal
performance, e.g. Goulart et al. 2006, Warren (2004). Badgwell (1997) proposed to
include both the nominal performance and an additional stabilizing term to guarantee
robust stability for time-invariant uncertainty in plant/model mismatch with multi-plant
description.

An ideal objective function would evaluate the entire dynamic response for all
realizations of the uncertain parameters, from which expected value and other

characteristics could be determined. However, the statistical information on parameter
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uncertainty would not typically support these calculations, and the resulting algorithm

would be intractable.

Robust stability

Stability is an important property for a closed-loop control system because if it
cannot be achieved, the performance will always be unacceptable. In the context of MPC,
the concept of Lyapunov stability is usually used to define the stability of the closed-loop
system, and it can be guaranteed by forcing a Lyapunov function to decrease at each time
step (details on Lyapunov stability theory can be found in Haddad and Chellaboina,
2008). In many robust MPC methods (e.g. Kothare et al. 1996; Kouvaritakis et al., 2000),
the worst-case dynamic performance, which is a Lyapunov function, is the objective
function that the controller minimizes. Interesting readers can refer to the summary
papers of Bemporad and Morari (1999) and Mayne et al. (2000) for more discussions on
robust stability of robust MPC.

This thesis is primarily aiming at the optimization, instead of the stabilization, of
the dynamics of a system; therefore, the controller is not designed with a robust stability
guarantee. We note that common industrial practice using commercial nominal MPC
software for process control does not implement the constraints guaranteeing nominal
stability; instead, ad hoc approaches are integrated in the control calculation (Qin and
Badgwell, 2003), which have been successful to ensure stability in practice, especially for
open-loop stable system and integrating system. Also, stability has not been reported to

be an issue in supply chain optimization.

On-line optimization problem

The optimization problem to be solved on-line is determined by how the robust
MPC is formulated to address all the aspects discussed above, especially the way to
model the closed-loop dynamics. When the closed-loop dynamics are modelled
rigorously using the dynamic programming framework (e.g., Lee and Yu 1997), the
resulting optimization problem is a dynamic programming problem, which can be solved
by approximate dynamic programming technique (e.g. Lee and Lee, 2004) on-line or the

parametric programming technique off-line (e.g. Sakizlis et al., 2004). However, as
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discussed in Section 2.1.1, the techniques offer computational challenges for large
problems.

When the closed-loop dynamics are modelled approximately as discussed in
earlier part of this section, the closed-loop model is linear with uncertain parameters.
Then the resulting robust MPC formulation contains linear inequalities with uncertain
parameters. This formulation can be basically transformed into deterministic Quadratic
Program (QP) or Second Order Cone Program (SOCP) depending on the source and
description of uncertainty. Also, if the robust MPC optimizes the worst dynamic
performance for the stability guarantee, it can be transformed into Semi-Definite
Programming (SDP) (or called Linear Matrix Inequality) (LMI) problems. Examples of
robust MPC solving QP are Badgwell (1997) and Bemporad (1998); examples solving
SOCP are Warren (2004) and Goulart et al. (2006); examples of solving SDP are Kothare
et al. (1996) and Kouvaritakis et al. (2000).

QP, SOCP and SDP are all convex optimization problems where the local optimal
objective value is the same as the global optimal value (Boyd and Vandenberghe, 2004).
In general, QP is easier to solve than SOCP, and SOCP is easier to solve than SDP (Lobo,
et al., 1998); but all of these problems can be solved in polynomial time using the interior
point method (or called barrier method) (Nocedal and Wright, 1999; Boyd and
Vandenberghe, 2004). Many state-of-the-art optimization solvers are featured with
interior point method, e.g. CPLEX (ILOG Inc., 2008), IPOPT (Wachter and Biegler,
2002), and SeDuMi (Sturm, 1999).

2.1.3 Summary of the “representative” robust MPC methods

In Sections 2.1.1 and 2.1.2 we discussed the typical approaches to address the
different aspects of robust MPC in the literature. In this section we show some
representative robust MPC methods with their approaches to address these different
aspects summarized in Tables 2-1 and 2-2, which gives an overview of the
state-of-the-art in the robust MPC research with a different perspective. Here the word
“representative” is used to describe the methods featured with typical approaches to
address some important aspects of robust MPC, and each of the methods representatives a

typical approach for formulating the problem. Actually, there are some other methods
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that are different from all the methods in the tables; we do not show them here because
their ways to address the different aspects of robust MPC have been covered by one or
more of the methods in the tables, or the special features they have are not included in the
goals of research.

Tables 2-1 and 2-2 indicate the gap between the state-of-the-art robust MPC

research results and our research goals. Specifically, the following issues are not well

addressed:

Table 2-1: Summary of robust MPC methods: modeling of closed-loop uncertainty

Controller model in

Authors closed-loop prediction

Source and temporal
manner of uncertainty

Uncertainty
description

Kothare et al.

(1996) = Kx,
Lee and Yu " D .
(1997) ynamic program
Badgwell No controller
(1997) (open-loop prediction)
Bemporad -
(1998) u, =Kx, +c,

Kouvaritakis et

al. (2000) Uy = KogneX, + €,

Sakizlis et al. Dynamic program

(2004)
Warren (2004) Unconstr;i{r}x%i nominal
Goulart et al. _
(2006) u,=Kx +c
Van Hessem
and Bosgra u, =K,y +c,
(2006)

Time-varying plant/model
mismatch

Time-varying plant/model
mismatch

Time-invariant plant/model
mismatch

Time-varying disturbances

Time-varying plant/model
mismatch

Time-varying disturbances

Time-invariant plant/model
mismatch and time-varying
disturbances

Time-varying disturbances

Time-varying disturbances

Structured or
polytopic region

Structured or
polytopic region

Multi-plant

Ploytopic region

Ploytopic region

Polytopic region

Multivariate and
continuous
distribution

Structured or
polytopic region

Multivaraite and
continuous
distribution

Note: [1] Their method can be extended to include all the other sources of uncertainties.

26



PhD Thesis — Xiang Li McMaster University — Chemical Engineering

Table 2-2: Summary of robust MPC methods: feedback and optimization formulation

Robust Online
Authors Fse ce: eb:lzk Objective Function stability optimization
included? problem
Kothare et al. Upper bound of the
(1996) State feedback worst performance Yes SDP
Lee and Yu The worst A huge number of
(1997) State feedback performance Yes QPM
Nominal
Bald gggv;ell State feedback performance+ Yes QP
(1997) rorm
stabilizing term
Birln9pgog)a d State feedback  Nominal performance No QP
Kouvaritakis Upper bound of the
et al. (2000) State feedback worst performance Yes SDp
Sakinl | | i Evaluating
akizlis et al. Nominal or expecte 3] parametric solution
(2004) State feedback performance Yes of QP and LP
(obtained offline)
Output feedback
?272(1)1'631)1 without state Nominal performance No SOCP or QP 1%
estimation Y
Gm(%a:)r(t) g)t al. State feedback  Nominal performance No SOCP or QP !
Van Hessem .
and Bosgra N(%;neglta;l;c(;(u[t U Nominal performance No SocCp
(2006)

Note: [1] The author uses the input-output model instead of state-space model to describe
the process; [2] Here “nominal” means the uncertainty in the state estimation is not
considered explicitly; [3] The robust stability is guaranteed only for constant uncertain
disturbances; [4] The problem can also be solved by approximate dynamic programming
technique (see Lee and Lee (2004) for more details); [{5] The formulation is QP if
uncertainty only appears in disturbance; otherwise it is SOCP; [6] The formulation is
SOCEP for structured uncertainty and QP for polytopic uncertainty.
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1) The trade-off between the rigorousness of the formulation and the tractability of the
solution. The closed-loop prediction model used in the formulation is either too
complex for a tractable solution of a large problem (e.g., the approaches using
dynamic programming), or lack accuracy in modeling the controller behaviors (e.g.,
approximating linear feedback control law can not model input saturation).

2) An output feedback and state-estimation scheme that exploits uncertainty explicitly.
All the methods in the tables consider state feedback only or output feedback without
including uncertainty in the state estimation explicitly.

3) An objective function that can include expected performance and the variances of the
controlled variables. All the methods in the tables optimize either the worst
performance only or the nominal performance only.

4) There is no unified framework that can well address all the aspects listed. Each
method in the tables has advantages in addressing some issues but is limited in

addressing other issues.

2.1.4 Robust steady-state optimization

Industrial MPC control systems usually include a steady-state optimization unit
that is executed immediately before each controller execution (Qin and Badgwell, 2003).
It is formulated to find a feasible “settling point” or steady state of the system that is
close to the reference values of the controlled and manipulated variables that are
determined by an upper-level optimizer or by plant personnel. The desired steady state is
called the set point of the system, which is used by the MPC controller to regulate the
dynamics of the system. The steady-state optimization is important because disturbances
entering the system or new input information from the operator may change the location
of the optimal steady state.

A nominal steady-state optimization may give infeasible set points with the
presence of uncertainty. In this case, a robust steady-state optimization method that
addresses uncertainty explicitly in the calculation is required. Although it is important for
a system with significant uncertainty, robust steady-state optimization has not been
addressed in most of the robust MPC research. Some results on robust steady-state

optimization can be found in Kassmann et al. (2000) where open-loop parametric
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uncertainty described with multivariate continuous distribution is addressed, or Wang and
Rawlings (2004) where open-loop parametric uncertainty described with polytopic
uncertainty region is addressed. Due to the explicit integration of the uncertainty in the
formulation, these two methods reduces the chance of generating infeasible steady-states,
but they may be overly conservative on uncertainty estimation of steady-state because of
the omission of the controller action in the closed-loop (as we discussed before for the
uncertainty estimation of dynamics). According to the author’s knowledge, no research
has been published for a robust steady-state optimization method addressing closed-loop

uncertainty.

2.2 Supply Chain Optimization Under Uncertainty

This section reviews the state-of-the-art methods to address uncertainty explicitly
in supply chain optimization. The review includes two major topics: a) In Section 2.2.1,
we discuss the techniques for optimization under uncertainty; b) In Section 2.2.2, we
discuss the control strategies to address uncertainty with feedback. The optimization
methods with deterministic models, such as mathematical programming (see the review
paper Biegler and Grossmann, 2004), constraint programming (see the review paper

Lustig and Puget, 2001), are not reviewed here.

2.2.1 Methods for optimization under uncertainty

Stochastic Programming

Stochastic programming is an approach for modeling and solving optimization
problems that involve uncertainty (Shapiro and Philpott, 2007), where an expected
cost/performance of the system is optimized with the known distribution of uncertainty.
A variability measure (e.g., the variances of some key system variables) can also be
included in the objective function to capture the notion of risk (Sen and Higle, 1999).

There are typically two types of formulations of stochastic programming:

1) Chance-constrained programming: The idea of chance-constrained programming is
to satisfy the constraints with a specified confidence level (a lower threshold for the
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probability of the satisfaction of the constraints) (Charnes and Cooper, 1958; Kleywegt
and Shapiro, 2001). The problem can be formulated so that the confidence level can be
observed for each individual constraint or all the all the constraints together. The idea of
solving a chance-constrained program is to transform it into a deterministic optimization
problem, which is in general not easy because of the need of the integration of
multivariate distribution functions (Li et al., 2008). However, if the parameters obey
multivariate normal distribution and the confidence level is observed for each individual
constraint, the problem can be transformed into a deterministic SOCP that is convex and

can be solved using standard software (Lobo, et al., 1998).

2) Stochastic programming with recourse: Another type of formulation is based on a
“wait-and-see” analysis for multi-stage decision-making (Sen and Higle, 1999; Shapiro
and Philpott, 2007). The formulation mimics the following decision-making procedure:
the decision maker takes some action in the first stage, after which a random event occurs
affecting the outcome of the first-stage decision. A recourse decision can then be made in
the second stage that optimizes the remaining problem, but cannot change the first stage
decisions. The optimal policy from such a formulation is a single group of first-stage
decisions and collections of recourse decisions (decision rules) defining the actions that
should be taken in response to random outcomes in the future stages. The stochastic
recourse formulation is usually solved by addressing representative samples of the
uncertain parameters, which makes the problem suffer from “curse of dimensionality”,
especially as the number of stages expands beyond two, as is the case in the systems

considered in this research (Kleywegt and Shapiro, 2001).

Robust Optimization

Robust optimization is another approach for modeling and solution of
optimization problems that involve uncertainty (Ben-Tal and Nemirovski, 2002), where
the worst cost/performance of the system is optimized with the uncertainty described by
uncertainty region. Similar to stochastic programming, robust optimization is solved by
transforming the original problem into a deterministic problem. Several types of robust

optimization problems can be transformed into convex deterministic optimization
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problems such as LP, SOCP and SDP (See Ben-Tal and Nemirovski, 1999; Ben-Tal and
Nemirovski, 2002) for more details.

Dynamic Programming

Dynamic programming is an approach for the modeling of dynamic and stochastic
decision problems as well as the solution of these problems. Kleywegt and Shapiro
(2001) pointed out that dynamic programming offers another framework and solution
approach for multistage stochastic programming. As discussed in Section 2.1.1, the
advantage of dynamic programming lies in its ability to rigorously model a
sequential-decision making problem with explicit uncertainty. However, it is only
applicable for small problems due to the “curse of dimensionality”. Approximating
solution techniques for dynamic programming problems, such as approximate dynamic
programming (Lee and Lee, 2004), have been developed to achieve better efficiency of
on-line calculation by using less complicated approximating formulation or limiting the
application to smaller subregion of closed-loop uncertainty. But as we discussed in
Section 2.2.1, these methods will not work if the real-time operation is outside the
subregion of offline sampling or the constraint values on the system change over the

time, which is usual for process control and supply chain systems.

Parametric Programming

Parametric programming obtains the optimal basis as a function of the parameters
off-line (Dua et al., 2002) and evaluates the parametric solution according to the known
realizations of the uncertain parameters on-line. Obviously, parametric programming
makes the on-line calculation very fast, but the off-line procedure to obtain the parametric
solution is much more complicated. Examples of the application of parametric
programming on small problems can found in Ryu et al. (2007), Ryu and Pistikopoulos
(2007). According to the author’s knowledge, no applications on medium or large

problems have been published.

2.2.2 Control strategies for the uncertain system with feedback

As stated in Chapter 1, the supply chain operation problems are analog to process

control problems. In both type of problems new information of the system is available
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periodically at each decision-making stage, which can be exploited to regulate the
dynamics of the system so that the uncertainty is addressed in an implicit way. In process
control, different approaches to exploit the new information appear as the different
feedback schemes and controller algorithms, which can also be used for supply chain
operation problems.

The systematic research on the application of control strategies for supply chain
optimization can be traced back to late 1950s, when Forrester (1958; 1961) introduced his
pioneering work on so-called “industrial dynamics”. This methodology, later referred as
“system dynamics”, used a feedback perspective to model, analyze and improve
industrial dynamics systems such as production-inventory systems. The philosophy of
this methodology forms the basis for the application of control technologies to supply
chain optimization problems. For more details of the “system dynamics” philosophy and
its various applications, see Sterman (2000).

As it is widely used in process control, PID control methods have been applied to
supply chain optimization, such as Proportional (P) control (e.g. Perea-Lopez et al. 2001),
Proportional-Integral (PI) control (e.g. Lin et al., 2004). It was shown that the “bullwhip
effect” (Lee et al.,, 1997), which denotes the phenomenon that the variability of the
demand at a downstream node is amplified at a upper stream node, can be relieved or
reduced by proper tuning of the controllers (e.g., Perea-Lopez et al. 2001; Lin et al.,
2004).

However, the classical PID control methods have inherent limitations that could
prevent their application to real supply chain systems: a) They can not handle the
constraints on the system explicitly; b) They basically pose a decentralized control
structure that does not share the information between the different control loops. The
system may not achieve the best overall performance through these “local controllers”.
Perea-Lopez et al. (2003) showed though a supply chain optimization case study that the
centralized controller, which makes decisions according to all the available information
in the system, performs better than the decentralized controller.

As stated in Chapter 1, MPC is an effective means for multivariate constrained
control (Maciejowski, 2002) that has been widely applied in industry (Qin and Badgwell,

2003). It is a natural choice for the centralized control of supply chain systems with
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constraints. Therefore, the applications of MPC to supply chain optimization has been
paid much attention recently, e.g., Tzafestas et al. (1997), Braun et al. (2003), and
Perea-Lopez et al. (2003). Seferlis and Giannelos (2004) employed a two-layer
optimization framework for supply chain optimization, where an MPC controller is used
as the upper layer controller for the entire supply chain system and PID controllers are
used as the lower layer controllers to maintain the safety stocks at different nodes of the
system.

However, the performance of MPC control can be degraded by the uncertainties,
especially for supply chain system where uncertainties are usually significant. For
example, back orders may occur due to the inaccurate demand forecast or the mismatch
between the supply chain system and the nominal model used by MPC.

To prevent significant performance degradation caused by uncertainties, Wang et
al. (2007) introduced an upper level stochastic optimizer that executes infrequently and
provides constraint back-off parameters to the lower level MPC controller. However, this
approach cannot respond quickly to changes in the control structure, such as when a
manipulated variable is temporarily placed on manual or is placed in operation after
having been in manual.

A better way to address the uncertainties is to include them in the controller
calculation explicitly at every controller execution period. In the context of MPC, this
means to use the robust MPC for supply chain optimization. For example, Warren (2004)
successfully applied robust MPC to a generalized production planning problem.
However, very little work has been published on such applications, which may be due to
the lack of a flexible robust MPC method that includes the various necessary features
required for the application to real supply chain systems (e.g. ability to address different

sources of uncertainties, efficient real time calculation, etc.).

2.3 Summary

The purpose of this chapter is to outline the gaps between the state-of-the-art

technologies and the research goals by reviewing the existing robust MPC methods and
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the existing methods to address uncertainties in supply chain optimization. We
summarize all the discussions in this chapter as follows.
A practical robust MPC method has to build the formulation in the way that the
optimization problem to be solved on-line is tractable, and it also has to model the
closed-loop dynamics accurately enough for good control performance. In addition,
different features should be included in the robust MPC formulation for different goals of
control (or optimization). Therefore, a good robust MPC method should be able to keep a
good trade-off between the accuracy and features of the formulation and the efficiency of
the solution. Among all the aspects of robust MPC discussed in this chapter, the modeling
of closed-loop dynamics, or more specifically, the modelling of the controller behaviour
in the prediction horizon, is key to a robust MPC method, because it not only determines
the accuracy of the formulation, but also impacts on the efficiency of the solution.
After examining the “representative” robust MPC methods, we can conclude the
following major drawbacks of the robust MPC technologies according to the research
goals:
¢ Lack of a closed-model that addresses the input saturation in the prediction and
yields tractable on-line solution, for different sources of uncertainties;

¢ Lack of a unified framework that well addresses all the aspects of interest;

¢ Lack of some features in the formulation, which may be important for particular
problems: a) an output feedback and state-estimation scheme that exploits
uncertainty explicitly; b) a flexible objective function that can include expected
performance and the variances of controlled variables; ¢) a robust steady-state

optimization method addressing closed-loop uncertainty.

The techniques for optimization under uncertainty and the control strategies are
the two categories of methodologies to address uncertainties in supply chain optimization,
in which the uncertainties are addressed explicitly in the optimization formulation or
implicitly by exploiting the periodical feedback information. A more powerful tool for
robust supply chain optimization can be developed by merging the two types of
methodologies in a unified framework of robust MPC, which can essentially improve the
performance of the optimization of uncertain supply chain system with periodical
feedback information.
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Therefore, a new robust MPC method needs to be developed in this research,
which should offer a unified framework that provides a good approximation of
closed-loop dynamics, includes all the important features of interest as well as yields
efficient on-line solution. The following chapter develops the general framework of the
new robust MPC method, and tailored formulations using this framework are developed
for process control problems in Chapter 4 and for supply chain optimization problems in

Chapter 5.
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Chapter 3

A General Framework for Robust MPC

In this chapter, a general framework is presented for the new robust MPC method
to optimize an uncertain dynamic system with feedback. Recall that the general problem
is to achieve good dynamic performance with robust feasibility for a dynamic system
with uncertain parameters.

This framework is developed based on the nominal MPC formulation using
state-space model, which is introduced in Section 3.1. The extension to robust MPC is
explained in detail in Sections 3.2 to 3.4. The original robust formulation is a bilevel
stochastic optimization problem where the inner optimization problems model the
behavior of the MPC controller in the closed-loop. Methods for solving this problem
could involve either unrealistically large numbers of variables and equations with a
scenario-based uncertainty description or highly nonconvex with continuous parametric
uncertainty, so it is computationally intractable for real-time applications. Here, we
consider the continuous parametric uncertainty in the robust MPC and develop a series of
reformulations and approximations that yield tractable computation for real-time
applications. Figure 3.1 shows the “road map” of the development of the new robust
MPC method, which outlines the key steps of the development and their locations in this
chapter.
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Robust MPC - Bilevel formulation
(Section 3.2.1)

Optimize closed-loop dynamics
¢ Scenario-based uncertainty description leads to
exponential complexity in the scale of problem

+ Highly nonconvex with continuous parametric
uncertainty

l Replace the inner problems by their KKT conditions

Robust MPC - Single level formulation
(Section 3.2.2)

¢ The complementarity constraints, which model the
saturation of the manipulated variables, are highly

nonconvex
The active set heuristic
l Remove the complementarity constraints (Section 3.2.4)
¢ An industrially proven heuristic
Robust MPC - the “t” formulation / to iteratively obtain the active
(Section 3.2.3) bounds
¢ The complementarity constraints can be removed
with the known active bounds on the manipulated ) ) ) :
variables Time-invariant uncertainty
¢ A QP with uncertain linear constraints \ (Section 3.2.5)
¢ Use the new deviation model
Techniques to handle the for time-invariant uncertainty to
L. ] reduce the conservativeness
uncertain linear constraints
Chance-constrained program Efficient uncertainty characterization
(Section 3.3.1) (Section 3.3.2)
+ Guarantee feasibility at given ¢ Extensive calculation (to characterize
confidence level unconstrained uncertainty) done off-line
* Solves deterministic SOCPs that ¢ Efficient real-time calculation (to update
are nice convex problems uncertainty according to active set)
Robust MPC final formulation Uncertain state estimation
Deterministic subproblems nonlinear but convex | ¢ (Section 3.4)
Limited number of subproblems ¢ Include uncertainty in state
+  Moderate scale of the subproblem estimation in the formulation

Figure 3.1 “Road map” for developing the new robust MPC method
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The new robust MPC method is summarized in Section 3.5 with detailed steps for
its implementation. The simulation studies are reported in Section 3.6 for a number of
simple applications that clearly show the benefits of using the new robust MPC method,

and the conclusions of the chapter are summarized in Section 3.7.

3.1 Nominal MPC formulation — Basis of the Robust MPC

We introduce the nominal MPC in this section, because it forms a basis for the
discussion of the new robust MPC. The conventional nominal MPC determines the
current control action by solving, at each sampling time interval, a finite horizon
open-loop optimal control problem, using the current state of the process as the initial
state for a dynamic optimization. The open-loop optimization is written in this thesis as

follows:

NMPC:

p-l n-1
min Z(ykﬂ - ysp)T Q(yk+l - ysp) + Z (uk - usp)T R(uk - usp
k=0

Skl

n-1 p-1 (3.1a)
+ 3 Au WAu, + ) St WS

k=0 k=0

s.t. Xy =A4x, +Bu,+B,e, +B,d, ) (3.1b)

Vi = Cxyq (3.1¢)

€1 = € (3.1d)

Ui S Uy S Uy > k=0,p=1 (3¢

Yoings1 = Ske1 = Viesr S Vimaxaert T Ska1 (3.19)

Sp 20 ) G.1g)

Au, = =y k=0,---,n-1 (3.1h)

U, =u,,, k=n,---,p—-1 G.1)

X, =$c0’ e, =€, (3.1)
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where n is called control horizon (or input horizon), p is called prediction horizon (or
output horizon), y, € R™ contains the output variables at the kth time step, u, € R™
contains the manipulated variables at the kth time step, d,,, € R" contains the measured
disturbance variables at the kth time step, x, € R™ contains the state variables at the kth
time step, e, € R™ denotes the feedback vector which contains the estimated unmeasured
disturbances, X,€ R™ , ¢,eR™ denote the estimated states and unmeasured

disturbances at the current time step, u Upin » € R™ are the upper and lower bounds on

max,k *

the manipulated variables at the kth time step, ¥,.;>Vminx € R~ are the upper and lower
bounds on the controlled variables at the kth time step, s, € R denotes the slack
variables of the controlled variables y; in the bounds. y € R™ denotes the desired
values of controlled variables, which are usually called the set points of the control
system; u,, € R™ denotes the desired values of manipulated variables, and we call these
the set points of the manipulated variables in this thesis. Q€ R™™™ is the weighting
matrix for controlled variables, Re R"™™ ™ is the weighting matrix for manipulated

variables, W e R™"™ is the weighting matrix (or move suppression matrix) on the change

n,xn

of the manipulated variables and W, e R is the weighting matrix of the slack

variables.

The mathematical program (3.1a-3.1j) is a Quadratic Program (QP, Boyd and
Vandenberghe, 2004). The objective function (3.1a) includes the distance between the
predicted controlled and manipulated variables and their desired values, the penalty on
the changes of manipulated variables and the slack variables that penalize violations of
soft bounds. The process model (3.1b-3.1¢) describes the open-loop behavior of the
system, where we assume an unmeasured disturbance e affects the system states through
B, and in this thesis, it is assumed to be constant throughout the prediction horizon by
equation (3.1d). Equation (3.11) enforces the limited control horizon; the manipulated
variables do not change after the control horizon. Equation (3.1e) denotes the hard
bounds on the manipulated variables, which can never be violated in the physical system.

Equations (3.1f-3.1g) describe the soft bounds on the controlled variables, which may be
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violated in the solution but their violation is penalized in the objective function. The

benefit of using the soft bounds for the controlled variables is that it makes the

mathematical program feasible even when the physical system is infeasible (i.e., when

some controlled variables have to violate the bounds). Therefore, the controller will

continue to function when faced with a violation that cannot be avoided due to, for

example, a large disturbance and feedback dead time.

1)

2)

Note that:

The weighing matrices Q, R, W, W are properly tuned such that the QP problem
is strictly convex (the Hessian of the objective function is positive definite).
Then, the NMPC problem involves convex optimization in which the objective
function value of a local optimum is ensured of being the value of the global
optimum.

The unmeasured disturbance model described by equations (3.1b) and (3.1d) is
from a more general framework introduced by Muske and Badgwell (2002),
where the unmeasured disturbances can be deemed as the additional system
states. For offset-free control, the unmeasured disturbance model should be
designed such that the augmented system, equations (3.1b-3.1d), is detectable
(Muske and Badgwell, 2002). We will check this for the unmeasured disturbance
model used in all the case studies in the thesis. Then the system states x and the
unmeasured disturbance states e can be estimated at the beginning of each time

step by

Xo =X +1L, (ym,O -Cxy,4) (3.2)

é0 = é0/-1 +L, (ym,O - CJ%O/—I) (3.3)

where y,,€ R” denotes the measurements of the outputs at the current time
step, x,_, € R™,é,,, € R denote the states and unmeasured disturbances at
the current time step that is estimated at the last time step, %, € R™, ¢, € R™

denote the states and unmeasured disturbances at the current time step that is also
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3)

4

estimated at the current time step, L € R™™, L e R™™ denote the discrete
steady-state Kalman filter (Kalman, 1960) gains for x and e respectively. See
Appendix A for more detail on output feedback and linear state estimation used
in deriving the unmeasured disturbance model and the equations (3.2) and (3.3).

The open-loop optimization problem (3.1a-3.1j), in the context of nominal MPC

with infinite (or sufficiently large) horizon, is equivalent to a closed-loop
optimization problem that considers the effect of future control actions on the
system behavior (Mayne et al., 2000), because it is assumed that no mismatch
exists between the process and the controller model. However, solving the single,
open-loop optimization does not optimize the closed-loop trajectories when the
uncertainties are considered in the formulation explicitly (see the next section for
details).

If there is time-delay between a manipulated variable and a controlled variable
(or state variable) we write the process model in the canonical form (3.1b-3.1c)

by introducing additional states to the system. See Appendix B for more detail.

The open-loop optimization problem (3.1) can also be written in the following

form using the extended vectors:

min (y-y,) 0y ~y,)+@-u,) Ru-u,)

- N (3.4a)
+(Iu-T,u WU u—1,u)+s"Ws
st. x=A%, +A4é,+Bu+Bd, (3.4b)
y= ax (3.4¢)
l'lmin <us U ax (34d)
ymin -8 < y < ymax +8 (348)
$s>0 (34D
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where the bold symbols denote the extended vectors that contain the related variables in

the control or prediction horizon, specifically,

X Uy A Vi
x d
x=|"21eR™, u= “ilerm, d, =|“m |eR™P, y= Y2 |e R™,
xp Uy dp—l y.ﬂ
5y ysP uSP Y max
S n,p y n,p u n,n y n,p
— 2 — — u —
s=|"2|eR™, y,=["F [€R™, u,=|"?|eR™, y,, =|"™|eR",
sl’ ysp usp Y max
Y min U mnax Unnin
. n u u_.
Yoin = y‘?"" €R o H umax = max € Rn,,n H umin = n:lm € Rnun’
ymin U nax umin

the weighing matrices in the objective function

o R
é — . c R(nyp)x(nyp) , E — .. ) e R(nun)x(nun) ,
o R
w W,
W= e RO Ws = e RUPmP)
w W,

and the coefficient of the open-loop model

42



PhD Thesis — Xiang Li McMaster University — Chemical Engineering

Be
N ;142 | 4B, +B,
Ax — : e R("xp)x"x , Ae — : c R(nxp)xnu ,
Ap p-1 ._
Q. 4")B,
i=0
B
_|47'B 4B . B
B=| A"B A"'B --- AB+B |g R"¥mm
. . . pn : |
A™'B 47?B .- (O A")B
\ i=0
B, v e e
- An_-lB An—.ZB 0 N C
B. = d d R(nxp)X(ndp) — (n,pyx(n.p)
4=\ 4"B, 4B, - 0 |° ¢ c <R :

A"'B, 47’B, - B,

In addition,

1 I
IAI _ —I I '.. e R(nun)x(nun) and IAZ — (.) c R("u")xnu
-7 1 0

are the matrices such that Au=(/,,u—-171,,u_) and Au= (Aug oo Al )T € R™.

More discussion on MPC can be found in Maciejowski (2002) and its industrial
applications in Qin and Badgwell (2003). Nominal MPC has proved extremely
successful and is widely applied, but it cannot guarantee feasibility for uncertain

processes. Thus, the Robust MPC is presented in the next section.
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3.2 The New Robust MPC Formulation

3.2.1 Robust MPC with closed-loop model

In this research, we develop the robust MPC formulation based on the nominal
MPC formulation (3.1) in the last section. We first discuss a simple, but incorrect,
formulation that provides insight into the correct formulation. Then, the correct
formulation is presented. @ We conclude that the correct formulation is not
computationally tractable, and modifications are presented in subsequent sub-sections to
achieve a controller algorithm that is both theoretically sound and tractable.

A straightforward way to formulate the robust MPC problem (i.e. to explicitly
address uncertainty in the system) is to replace the nominal process model (3.1b-3.1c)
with an uncertain process model in the open-loop optimization framework in problem
(3.1). A scenario method (e.g., Sen and Higle, 1999) for introducing the uncertain model
would be to use a number of uncertain models, in which the optimal manipulations are
implemented, and require all models to predict feasible solutions. (Naturally, even a
large but finite number of models will not guarantee feasibility for parametric uncertainty
that is continuous, but they could provide an adequate approximation.) The resulting
formulation obtains a series of deterministic manipulated variables such that the nominal
performance is the optimal and different realizations of controlled variables are kept
within (or driven close to) the feasible region. Figure 3.2 shows the prediction of a
sample single input-single output (SISO) system (the first CSTR system studied in
Section 3.6) using a set of uncertain models and this open-loop formulation for
uncertainty in MPC.

We can see that while the controlled variables are different for different
realizations of the process, the manipulated variables are the same for different
realizations of the process. This open-loop prediction is not correct because the feedback
controller will respond differently for different realizations of the process because the
measurements of y will be different. As a result, the manipulated variables will be

different after the first controller execution (or for the dead time plus one) for every
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realization. Therefore, we conclude that a correct prediction of the future system
behavior, and a correct controller formulation, has to include the effect of the control law.
The dashed dotted lines show the predicted boundaries of the open-loop uncertainty,
which are the maximum and minimum controlled or manipulated variables under this
uncertainty with 99% confidence. The method for obtaining these boundaries is explained
in the subsection 3.3.1.

Before developing the improved controller formulation, we will observe the same
CSTR SISO system with feedback measurements and controller execution at a period of
0.30 minute. Several realizations from the parameter distribution have been selected, and
the process with each realization of the process parameters is controlled by a nominal
MPC. Figure 3.3 shows the transient results. We can see that both the controlled
variable and the manipulated variable vary with the realization of parameter values, so
that we say that they are uncertain in the prediction horizon. We use dashed lines to show
the predicted boundaries of the closed-loop uncertainty, which are the maximum and
minimum controlled or manipulated variables under this uncertainty with 99%
confidence. The closed-loop uncertainty region is smaller than the open-loop uncertainty
region for the controlled variable, and the controlled variable returns to its set point value
in steady state with nearly zero uncertainty, while the manipulated variable final value is
uncertain. In general, the open-loop prediction of uncertainty is bigger than the
closed-loop prediction of uncertainty (with a properly tuned controller), and in this case
the robust MPC with open-loop model gives a more (overly) conservative control.

Figure 3.4 shows the special case in which the manipulated variable saturates
throughout the horizon. In this case, the open-loop uncertainty equals to closed-loop
uncertainty because the controller action does not influence the manipulated variable for
all realizations. In other words, the feedback information does not change the controller
action at all, and the closed-loop system behaves as though no control existed. Thus, we
conclude that the effect of the model uncertainty depends on the scenario occurring,

which must be included in the robust MPC controller design.
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Figure 3.2 An open-loop prediction of the uncertain CSTR system in MPC control
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Figure 3.3 NMPC control of numerous realizations of the uncertain CSTR system
(No saturation of the manipulated variable)
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Figure 3.4 NMPC control of numerous realizations of the uncertain CSTR system
(Saturation of the manipulated variable)

According to the above discussion, a good robust MPC method has to use the
closed-loop model, i.e., a model of the (uncertain) process and the controller, to predict
the future system behavior. This means that the effects of the future controller actions on
the system behavior have to be modelled. In contrast to the nominal MPC, which has
only a model for the process at each future time step, the robust MPC requires models for
the process and the controller at every time step, and the future controllers would be the
robust formulation. While this formulation would be correct, the resulting mathematical
problem would be too complex for real-time computation. In this research, the nominal
MPC controller, i.e., formulation (3.1), is adopted as the controller model that will be
included at every future time step in the robust formulation. The performance with this
approximation will be shown to provide good performance through numerous case
studies in this thesis.

Therefore, a robust MPC formulation with closed-loop model, called RMPC-CL,

can be built as shown in the following
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RMPC-CL:

n-1

-1
min Z(ykﬂ - ysp)T Q(yk+1 - ysp) + Z(uk - usp)T R(uk - usp
k=0 k=0

Ysp k+1-Usp >8

et -l (3.5a)
+ ZAukTWAuk + Z:skHTWssk+1
k=0 k=0
. Xpkrl = Ar,k+1xr,k + Br,k+1ur,k + B, 1@ \ (3.5b)
S.t. .
+ Bdr,k+1dm,k + wa wk
er,k+1 = er,k + Gwewk (35C)
Ykl = Cr,k+1xr,k+1 (3.5d)
yr,m,k+l = Cr,k+lxr,k+1 + vk+1 > k = 0 . p _1 (353)
(Jer,k+l 9ér,k+1) = SE(’er,k 3ér,k s Ymis1) (3.5%)
umin,k < ur,k < umax,k (35g)
Ymingst =Skt S Vst S Yimaxps1 T Siat (3.5h)
S 20 (3.50)
ur,k = NMPC(i"r,k s é\r,k b4 dm,k ’ 5’sp,k+l b4 l”isp,k ) (35])
k=0,---,n-1
Au, =u, —u,_, (3.5k)
U = Uy gy k=n,-,p-1 (3.51)
X0 =X, (3.5m)
€, 0= ¢ (3.5n)

For all A,4+75 Bri+1, Bark+1, Crk+1, Wiy Vi+1 in uncertainty region, k= 0,..., n-1
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where

1)

2)

3)

4)

5)

The objective of the optimization is still to minimize the nominal performance
equation (3.5a), and the degrees of freedom are the values of controlled and

manipulated variable set points in the future horizon y_,,, € R*”, &, € R™".

Equations (3.5b-3.5¢) are the process models containing uncertain parameters.
Ar,k+19Br,k+1’B Bd

er.k+12 r

4+15C, iy denote all realizations (re®,) of the uncertain
parameters of the model at time step k+1 within defined uncertainty region. These
parameters could be either time-invariant or time-varying. w, € R™ denotes the
unmeasured disturbances and noise that affect the states of the system (through

G

variables, feedback variables and controlled variables at the kth time step, which

wi> Gue) % €R™, e, €R™, y,,€R” denote the uncertain values of state
depend on the realizations of the process. y,,,,, € R” denotes the measurements of
the controlled variables at the (k+1)™ time step, and v,,, € R” denotes the noise in
the measurement.

Equation (3.5f) denotes the state estimation using linear steady-state Kalman filter
(details in Appendix A).

Equation (3.5g) denotes the hard bounds on the uncertain manipulated variables in the
future. Equations (3.5h-3.5i) denote the soft bounds on the uncertain controlled
variables in the future.

Equations (3.5j-3.51) denote the nominal MPC control that determines the
manipulated variables at the future kth time step in the control horizon (with the
estimates x,, € R™, é,, € R™, the predicted disturbances d,,, € R™” and the set
points ¥ sx+1, spx). The nominal MPC control law NMPC(%, ; ,€,,,d,, .V spr+is
5, 5) is from the solution of the QP formulation (3.1). Here, we do not consider the
bounds on controlled variables (equations (3.1f-3.1g)) in this control law because
they can be enforced by the soft bounds in the outer problem (equations (3.5h-3.51)).
Since the state estimates in the future depend on the realizations of the process, the
manipulated variables determined in the future also depend on the realizations of the

process. Therefore, we use the new symbol u,, € R™ to represent the uncertain
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manipulated variables in the future kth time step so as to differentiate them from the
nominal manipulated variables u, .
6) Equations (3.5m-3.5n) approximate the current state and feedback variables with their

nominally estimated values respectively.

There are basically two ways to characterize the parametric process model
uncertainty. One way is to use the representative sampled values of the uncertain
parameters. In this way the robust MPC formulation (3.5) would be a convex QP
problem, and the problem is essentially a multi-stage stochastic program where the
number of time steps in the input horizon is the number of decision stages. In this case,
however, the problem size would increase exponentially with the increase of the number
of realizations, so this approach would suffer the curse of dimensionality even for
small-scale problems (Kleywegt and Shapiro, 2001). For example, a robust MPC problem
with 2 manipulated variables, 2 controlled variables, 10 time steps control horizon and 10
plant realizations involves 7,,=4x 10" variables. A linear equation system with the same
number of variables and equations is easier than this robust MPC problem and it requires
more than 2(n,,) 3 floating-point operations (Golub and Van Loan, 1996). Solving this
equation system with the IBM Roadrunner supercomputer (IBM, 2008) (the fastest
computer of the world until 2008 with the computing power of about 10" floating-point
operations per second) would take over 1.3x 10° years!

The other way to model the uncertainty is to use the continuous distribution or
continuous uncertainty region of the uncertain parameters. We adopt this method to avoid
the curse of dimensionality (Kleywegt and Shapiro, 2001). However, the bilevel
stochastic optimization problem with continuous uncertainty is typically very difficult to
solve in the real-time (Colson et al., 2007). Therefore, in the next several sections we will
discuss our reformation and approximations of this difficult bilevel problem that yield

tractable computation for real-time applications.

3.2.2 The reformulation to single level problem

Due to the challenges in solving a bilevel problem, we transform the bilevel

problem (3.5) into a single-level problem by replacing the inner optimization problems
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(equation (3.5b) for nominal MPC calculations with their optimality conditions (Clark
and Westerberg, 1983).

For convenience of the description, we use the matrix-vector form of nominal
MPC (formulation (3.4) without soft bounds on the controlled variables) as the inner
optimization problem. If the inner nominal MPC is properly tuned (typically it has the
same weighting matrices as the outer problem), the QP problem will be strictly convex so
that it’s optimum can be determined through its first order Karush-Kuhn-Tucker (KKT)
conditions (Nocedal and Wright, 1999). Therefore, the QP is equivalent to the

following equations

2B"C"Q(CA,%, +CB,d,, +CA4,8, -y, )+2(B"C"OCB + R+ I, W1, )u

] Ty + - (3.6a)
—2Ra, -2, Wl u  +h" —h™ =0

A (u-u_)=0 A -(-u+u,)=0 A,A7"20 (3.6b)

u <aswu (3.6¢)

Here equation (3.6a) is the stationary condition, and equation (3.6b) denotes the
complementarity constraints that describe the active bounds on the manipulated variables.
A" and A~ denote the Lagrange multipliers for the constraints u<u_, and u__ <wu
respectively, where A" = ((A;)T,---,(ZZ_I)T)E R™ and 4, = (ﬂ{k,---,i;u,k)T e R™ ,
A= ((ﬂg)T,---,(/l’_l)T)e R"™ and 4, = (/?{k,---,l;uk)T € R™, the dot “-” denotes the
element-wise multiplication.

From Equation (3.6a) we have

u=(B"C"OCB+ R+ I,WI,,)"(B"C"O(y,, ~ CA,%, —-CB,d,, — C4,,)

+ Ry + I qu, — (M =17)/2) G.7)

Since nominal MPC only implements the control actions at the solution time, we only
require the part of Equation (3.7) that provides uy,
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uy =1, (B"CTQCB+ R+ I\ W1,y (B'CTO(y,, - C4,%, - CB,d, —C4,é,)

+ Ru, + IIIWIAZu—l -(A"-47)/2) 3.8)

where I, is a “pick-up” matrix (containing only 1’s and 0’s) to extract the values of the
manipulated variables at the first time step in the solution.

Since they are equivalent, we can replace the nominal MPC control law
NMPC(%,,e,,d,, .Y sprr1, gp) With equations (3.6b-3.6¢) and (3.8), so that the bilevel
stochastic problem (3.5) becomes single level Mathematical Program with Equilibrium
Constraints (MPEC) (Luo et al., 1996). However, this single level stochastic problem is
still difficult to solve in the real-time because:

1) The complementarity constraints (3.6b) are highly nonconvex. Also their Jacobian
could be singular at the solution, which will cause numerical problems for convergence.
2) There is no systematic and efficient method to solve the complementarity constraints

with uncertain parameters characterized by continuous uncertainty region.

3.2.3 The reformulation with known saturated manipulated variables

If we knew the “saturation pattern”, i.e., which bounds are active at which time
steps, before we solve the problem, we could avoid including the Lagrange multipliers
and the complementarity constraints in the formulation. We will assume that the active
inequality constraints are known and develop a simplified solution for the nominal

controller; then, we will explain the method used to determine the active set.
Here we assume the following.

Assumption 3.1: 4 manipulated variable at a time step either equals its bound for all the

realizations of the process or is unconstrained for all the realizations of the process.

In practice, this means that if the manipulated variable is active for the “most

extreme” value in its uncertainty region, the manipulated variable at that time step of the
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solution to the nominal MPC is set active. The remaining part of this section gives the
details of replacing the complementarity constraints and Lagrange multipliers in the
nominal MPC control law (3.6b-3.6c) and (3.8) with selected equality constraints
modeling a known saturation status of the manipulated variables.

When no bounds are active, all the Lagrange multipliers must be zero (because of

the complementarity constraints (3.6b)), and equation (3.8) becomes

uy =1, (B'"C"OCB + R+ I{W1,))"(B"C"Q(y,, - CA %, - CB,d4, - C4,é,)

~ 3.9
+ Ru,, + I, qu.,) 3.9

We note that equation (3.9) has n,x ptn,xn degrees of freedom (set points for all
controlled variables and manipulated variables) while the physical system has only n,x n
degrees of freedom (all manipulated variables). This situation will yield ill-conditioned
problems with alternative solutions. We apply only the manipulated variable values, not
the set points, in the solution of the robust MPC. Therefore, we define a new vector of
variables, t, which is a linear combination of the set points of the controlled variables and

manipulated variables targets and will be the variables adjusted to optimize the robust
MPC:

t=1,-(B'C"OCB+R+ I WI1,)"(B"C"Qy,, + Ru,,) (3.10)
and write equation (3.9) as

uy=K x,+K,e,+Ku,+K,d, +t (3.11)
where
K, =-1,-(B'"C"QCB+R+1I,WI,)"B"C"QC4,,

X

K,=-1,-(B"C'"OCB+R+1I,WI,)"'B"C"QC4,,

e
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K,=1, -(B"C"OCB + R + I[W1,))" F'WF,,

K, =-1,,-(B"C"0CE + R+ IL1,,)" BTC"OCB, .

Note that the nominal MPC can be properly tuned so that the weighting matrix R has
full rank. In this case, for any value of ¢ there will be values of y,, uy, that give the same
value of ¢ through Equation (3.10); or for any value of y,,, ug, there will be unique value

of t corresponds to it through equation (3.10). Equation (3.11) denotes the unconstrained

nominal MPC control law.
When a manipulated variable (an element in uj) is active, the corresponding

non-zero Lagrange multiplier forces the manipulated variable to its bound through the
complementarity relationship and the multiplier value does not affect other manipulated
variables. Therefore, the Lagrange multipliers can also been omitted in the formulation
if we know the active set and enforce them via linear equations. We can address the
saturation of the manipulated variables through extending equation (3.11) by adding the

active constraints as equations.

uy=I;(Kx,+K,é,+Ku,+K,d, )+t (3.12)

(I-1)t=u, (3.13)

where [ e R™ is a diagonal matrix with the diagonal elements containing 0 or 1 to
specify the saturation, / € R"™*™" is an identity matrix. The vector u. contains the active
upper bound or lower bound, which is known when we know the saturation pattern.
Using this formulation, the controller can be modeled for any known active set. If an
element in uy is active, the corresponding element in s is 0, i.e., we make the element in
uy equal to the corresponding element in #. The result is a solution that ensures the
predefined active set is achieved, and the remaining manipulated variable values are
calculated based on the MPC optimization.

The resulting MPC model can be substituted into the inner optimization problem
NMPC( %, ,é,,4d,,, ¥ spir1, 4 pp) in the robust MPC formulation RMPC-CL
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(formulation (3.5)) with the control law (3.12) and (3.13). The problem contains a
convex quadratic objective function, a series of linear equations and bounds, which can

be summarized as the following problem RMPC-CLT:

RMPC-CLT:
min (y-y,,) Q¥ -y,)+@-u,) Ru-u,)
s - _ (3.142)
+({yu- IAzu-l)TW(Imu —Iyu )+ STVVSS
st. u, =L t+M 0+N o (3.14b)
y,=L,t+M 06+ N o (3.14¢)
(I-I,)t=u, (3.14d)
U, <u <u (3.14¢)
ymin—ssyr '<—ymax+s (314f)
s=>0 (3.14g)

For all L, Ly, M,,, M,,, @ in the uncertainty region and the pre-determined I5 and u,

where
1) The objective function of the problem is still the nominal dynamic performance of the

uncertain  system, but the degrees of freedom change from ¥, .1

t=(t§,~--,tf_l)r eR™.

ik to

2) Equations (3.14b-3.14c) are the closed-loop model of the system with uncertain

parameters Ly, My, L,;, My, and certain parameters N,, N, (see Appendix D for details on

T ul )Tdenotes the extended vector

r,0° > %r.n-1

deriving this model). The bold symbol u, = (u
containing the uncertain manipulated variables in the control horizon and

Y, =(y,T, 1" y,T’ p)T denotes the extended vector containing the uncertain controlled
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A

variables in the prediction horizon. 0= (ufl,ai,xo .0 )T contains data that define the
scenario, which are (1) the current manipulated variables, (2) the disturbance forecast, (3)
initial states, and (4) the current feedback error. @ contains the noise in the future.

3) Equation (3.14d) is used to force the saturated manipulated variables to their
corresponding bounds, where I, € R™”™" denotes the diagonal matrix with the
diagonal vector &= (8], --,8])" specifying the saturation patterns for the future » time
steps in the control horizon, u, = (uf,o,--',uf’n_l )T contains the corresponding active
bounds, Ie R"™”" is an Identity matrix. As noted previously, Is and u_ are given
before we solve problem RMPC-CLT.

4) The uncertainties in the parameters L,. M,,, L,,, M,, depend on the saturation of the

manipulated variables (defined by I;).

It’s not difficult to find that:

Remark 3.1: If Assumption 3.1 holds and we know the correct saturation pattern of the
manipulated variables, the control law (3.12) is equivalent to the inner optimization
problem NMPC(X, .8, .4, .V, 4n-8,,) and the formulation RMPC-CLT is
equivalent to the formulation RMPC-CL.

Now the question is: How do we get a “reasonable” saturation pattern for problem
RMPC-CLT?

3.2.4 The active set heuristic to obtain the active bounds

We will use a heuristic to obtain the active bounds on the manipulated variables in
an iterative manner. The heuristic is given in the following steps.
1) Assume no bounds are active in the future, set all diagonal elements in Isto 1, and
solve problem RMPC-CLT.
2) The solution of problem RMPC-CLT gives the uncertain trajectory of the

manipulated variables in the control horizon. If some manipulated variables,
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which are assumed unsaturated, have a value(s) at its bound (i.e. the boundaries of

their uncertainty regions reach the upper or lower bounds on these manipulated

variables), go to step (3); otherwise, end the iterative procedure and the current

solution is the final solution.

3) Set all manipulated variables, which are at their bounds at the earliest time step, to

their bound values (by specifying I, u.). Solve problem RMPC-CLT again and go

to step (2). (Any manipulated variable that has been set to its bound value will be

constrained for the remainder of the RMPC-CLT solution).

Figure 3.5 illustrates the heuristic. At the first iteration, the problem is solved with

the assumption that no bounds are active (in the inner problem). However, the solution

T Iteration #1
= ; X Without complementarity
< t J o constr.
= s ) ' s
= L T
S N P o st .
m keeswss 22222222 TmEmEe \\
£ ~~
—a ————— Time step 3 “hits” constraint
E time
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Iteration #2

ll’ \\
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o ] 2 Fix solution at bound and
s | eeeaah ) i T resolve “unconstrained”
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= | e e
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>
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2 °
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g .
£ '
E Until all unconstrained

Figure 3.5 The active set heuristic to obtain the active bounds on manipulated variables
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gives the uncertain trajectory of the manipulated variable whose boundary at the 3rd time

step is active at its upper bound. Then, the manipulated variable at the 3rd time step is

fixed to the upper bound. Then, the problem is solved again. The procedure is repeated

until at each time step all manipulated variables are either fixed to a bound or are within

their bounds.

1)

2)

3)

Note that:

A similar heuristic has been successfully applied in industry for the constrained
(nominal) MPC algorithm called Dynamic Matrix Control, DMC (Prett and
Gillette, 1979), for more than 20 years. DMC is an industrial version of nominal
MPC technique, and the heuristic addressed the hard bounds on the manipulated
variables iteratively so that at each iteration only a linear least squares problem is
to be solved in the MPC calculation. Due to its success in the deterministic MPC
formulation, we believe the idea of the heuristic is also appropriate for the
stochastic MPC formulation in this thesis.

Although the input bounds are assumed to be inactive (unless they have been
fixed to their bounds already) during the heuristic, the uncertain values of all the
inputs are still bounded with constraint (3.14e). Therefore, at the solution of the
SOCP subproblem in the heuristic, the boundary of the uncertainty region of an
input must be within its limits; if the limit is active, all the realizations of the
uncertain input are forced to the limit according to Assumption 3.1. We recognize
that this assumption is an approximation of real behavior, in which only a fraction
of the realizations may be at the limit.

The reason for the success of heuristic lies in the special characteristics of the
optimal control structure of the MPC formulation. The MPC controller typically
wants to drive the controlled variables to their set points as quickly as possible to
minimize its objective function, which is basically the sum of the difference
between the controlled variables and their set points throughout the prediction
horizon. It requires inputting the needed “energy” into the system at the beginning
of the horizon. If the physical limits on the manipulated inputs (i.e. the opening of

a valve can only range between 0%-100%) prevent inputting the required energy
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immediately, the optimal manipulated inputs will tend to remain at their limits (i.e.
a valve is fully open) to input the largest energy possible into the system.

4) The number of iterations in the heuristic is proportional to the length of the
control horizon. Thus, the heuristic results in a small number of iterations.

5) The heuristic does not guarantee “global optimum” of solution, i.e., there may be
another saturation pattern that is better than the one found by the heuristic.
However, the heuristic converges to the optimum if the correct active set is

selected.

This subsection and the last two subsections (Section 3.2.2-3.2.4) presents the
method developed in this thesis to approximate the original bilevel stochastic
optimization problem RMPC-CL with a limited number of single-level stochastic
(convex) optimization problems RMPC-CLT. The next subsection will explain the
developed method to enhance the process model (3.5b-3.5d) in the original formulation
RMPC-CL for time-invariant uncertainty, with the goal of reducing the conservativeness

in the uncertainty prediction.

3.2.5 The deviation model enhanced for time-invariant uncertainty

If the uncertain parameters of the plant do not change over time or they change
slowly, we can assume they are invariant in the prediction horizon. In this situation, we
will model the closed-loop dynamic system using deviation variables. There are several
variable choices for the steady state about which the deviations are measured. Here, we
will develop the method used consistently in this research for time-invariant systems.
Further discussion of the importance of this choice is given in Appendix C.

To demonstrate the method using deviation variables, the uncertain process model
(3.5b-3.5d) can be simplified by temporarily removing the noise variables as follows
(because we will concentrate on the uncertainty in the process model):

ervr.k

xr,k+1 = Arxr,k + Brur,k +B,e + Bdrdm,k (315)

er,k+1 = er,k (316)
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Yrkst = Crxr,k+l (3.17)

k=0,-,p-1

where the parameters A, B,, B., Bas, C, are uncertain but time-invariant. With the
uncertain model (3.15-3.17), the predicted states x4+, and the controlled variables yp x+1
are different for different realizations of the uncertain parameters (i.e., their uncertainty is
not zero). As discussed previously, the robust MPC without constraints should anticipate
achieving its set points at steady state because (a) the values of u are known, and (b) the
time-invariant model uncertainty in the predictions of x and y are compensated by the
feedback e and the implicit integral mode in the MPC controller.

Model (3.15-3.17) includes uncertain parameters and predicts uncertainty in the
process outputs even if the manipulated variables do not change in the horizon. However,
the uncertainty only influences the outputs when the manipulated variables change. As a
result, the robust MPC will perform conservatively at steady state, e.g., maintaining an
excessive safety margin from controlled variable constraints. (See Appendix C for more
extensive discussions on this issue.)

In this thesis, we modify the uncertain process model (3.15-3.17) for the
prediction of uncertainty by calculating the deviation variables from a steady-state that
would be determined by the most current manipulated variables u.; and the measured
disturbances d,,.;. We will call this a “virtual” steady state because it does not occur in
the process, although we can calculate it using the (nominal) model. A similar idea has
been successfully applied to robust steady-state optimization by Kassmann et al. (2000).

For more details, we denote the variables at the virtual steady state as x;, ys, us, ds,

es, where u,, d;, e are known or are estimated at each controller execution as follows.

U, =u_, (3.18)
d, =d, _, (3.19)
e, =¢, (3.20)
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Then, x;, ys can be obtained using the nominal steady-state model.

x, =Ax,+Bu + B,e + B,d, (3.21)

¥, =Cxg (3.22)

We can express the model (3.15-3.17) as the deviation from the steady state in equations
(3.21) and (3.22) as the following.

xr,k+l - xs = Ar (xr,k - xs) + Br (ur,k - us) + Bdr (dm,k - ds) (323)
yr,k+1 — Vs = Cr (xr,k+1 - xs) (324)
k=0,---,p-1

As the system approaches a steady state xss, Vs, Uss, dss, the virtual steady state approaches
the steady state too and uncertainty predicted using the deviation model (3.23-2.24) is
appropriately small. If the system reaches the steady state, the virtual steady state will
coincide with the actual steady-state, i.€. X;=Xs5, Vs=Vss, Us=Uss, ds= dss, and Xp+1 and Y41
will be predicted to be x,s and y,, respectively, which means the their uncertainty is zero.
As a summary of the above discussion, the process model (3.15-3.17)
overestimates the uncertainty caused by the changes in the manipulated variables, which
may lead to conservative control. The deviation model (3.23-3.24), which recognizes that
uncertainty results from changes in inputs, avoids this conservativeness. In this thesis, the
robust MPC will use the deviation variable formulation for all the time-invariant systems

for uncertainty prediction. Note that if we define the new deviation variables,

X ksl = Xp a1 — X, (3.25)
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! = —_
Xep =X 1 — X

s

’

Uy T U —U

s
'
dm,k - dm,k - ds
! = -—
yr,k+1 - yr,k+1 ys

’
er,k+1 - er,k+1 - es

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

then the deviation model (3.23-3.24) can be written into the form of model (3.15-3.17)

(note that equations (3.20) and (3.30-3.31) implies e, , =0 for all feedback variables over

the prediction horizon). Therefore, the formulations derived previously are applicable to

the situation using the deviation model, except that the variables should be replaced with

the deviation variables as defined above. Accordingly, the set points and bounds of the

deviation variables should be defined in deviation form as

L -—
ysp - ysp ys
! e —
usp - usp U
! —_ —_—
ymax,k+1 - ymax,k+1 Vs
! — —_
Yuin e+t = Vming+1 — Vs
’
u U r U

max,k — “*max, s
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(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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Unin e = Upnin e — U (3.37)

k=0,-,p-1

For the convenience of discussion, we will not write out separate formulations for using
deviation model in this chapter. When the deviation model is needed, we can modify the
variables to deviation form and calculate the bounds as deviations as well before the
optimization (using equations (3.25-3.37)) and if desired for plotting or plant
implementation, restore the solution in the deviation-variable form back to the original

form (using equations (3.25-3.37) again) after the optimization.
3.3 The Solution Techniques

In Section 3.2 we discussed how to transform the bilevel stochastic optimization
problem RMPC-CL for robust MPC into a series of single-level stochastic optimization
RMPC-CLT. In this section we will show how to solve the problem RMPC-CLT.

3.3.1 Solution with chance-constraints

The basic idea in solving problem RMPC-CLT is to approximate it by a
deterministic optimization problem. The uncertainty in RMPC-CLT comes from the
uncertain parameters in the plant behavior that appear in the closed-loop model
(3.14b-3.14c). The closed-loop model (3.14b-3.14¢) and the bounds (3.14¢-3.14f)

u =L t+M_0+No (3.38a)
y,=L,t+M 6+N o (3.38b)

u <u <u,.. (3.38¢)
Yoin =S SY, SV +8 (3.38d)
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can be combined into

Lt+M, 0+Now<u_ (3.39a)
-Lt-M 0-No<-u_ (3.39b)
L,t+M, 0+N o<y, . (3:39%¢)
-L,t-M 0-No<-y . (3.394d)

Constraints (3.39a-3.39d) are linear inequalities with uncertain parameters. Ben-Tal and
Nemirovski (1999) showed how to transform such inequalities to deterministic
constraints when the uncertain parameters are within an ellipsoidal uncertainty region.
Lobo et al. (1998) showed the transformation for the case where the uncertain parameters
obey multivariate normal distribution using the chance-constrained program (Sen and
Higle, 1999) framework. In this research, we adopt the latter formulation without
requiring a normal distribution. To explain the approach, the /th constraint in (3.39a) will

be considered:

L,t+M, 0+N o<u_, (3.40)

ur,l ur,l

Here, L _ ,, M

u

M

denotes the /th element in u,__ . The idea of chance-constrained program is to

wisM, s N,, denote the Ith row of matrices L,,M,,N, respectively and

max,/

guarantee the feasibility of constraint (3.40) at a confidence level «, i.e., to transform

the constraint into the following form,

P(L,t+M, 0+N, 0<u, )2« (3.41)

ur,l
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If (Lur’,,M u,,,,coT) follows a normal distribution, the above inequality is exactly

equivalent to the following deterministic constraint (Lobo et al., 1998),

E(L, )t+EM,, )0+N, E@)+®" @) V2 ([7,0",N,,1) L<u,, (42

ur,l ur,l ul s

where E() denotes the expected value of the parameters in the brackets, @' ()
denotes the inverse cumulative probability function of normal distribution, V,, denotes

M mT,l), |.|l, means the L2-norm of the vector

ur,l? urj>

the covariance matrix of (L
(Weisstein, 2009). The deterministic constraint (3.42) is called a second order conic
constraint and is a convex inequality when the probability o > 1/2. Note that the LHS of
the constraint (3.42) is the maximum of the uncertain LHS of constraint (3.40) (in this
expression, the maximum of the uncertain manipulated variable) with the confidence
level « . Therefore, the constraint (3.42) requires the worst-case uncertain manipulated
variable to be less than its upper bound (with confidence level « ).

Note that the equivalence of constraints (3.41) and (3.42) is based on
L, M, ® obeying the normal distribution. Since @ denotes unmeasured
disturbances and noises in the system, it usually can be deemed to obey normal
distribution. However, the parameters L, ,,M, , in closed-loop model may not be
normally distributed, although such uncertain parameters may depend on normally
distributed uncertainty. In this case, the reformulation from constraint (3.41) to constraint
(3.42) is an approximation.

If we approximate all the uncertain linear inequalities (3.39a-3.39d) in the same
way, the problem RMPC-CLT becomes a deterministic Second Order Cone Program
(SOCP, Lobo et al., 1998) that can be solved efficiently and reliably with a
state-of-the-art interior point optimizer, such as CPLEX. This SOCP problem, which is
called RMPC-CLTSOCEP, is as follows:
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RMPC-CLTSOCP:
min  (y-y,) 0 -y,)+@-u,) Ru-u,)

~ . (3.43a)
+ ([ yu—1,u, )T Wlya—1,u )+ STWss
E(Lur,l )t + E(Mur,l )9 + Nu,IE((o) - umax,l
s.t. (3. 43b)
+@ (@ |72 (7,07, N, 1) [1,<0°
I= 19' s
~E(L, )t EM,,, )0~ N, E@) +u,, £
(3. 43¢)
+@ @)V (.07, N, 1) 11,50°
E(Lyr,, t+ E(My,’, )0 + Ny,,E((o) ~ Yoy — S
(3.434d)
+ @7 @) || V1,07, N, 1) <0
- E(Lyr,l - E(Myr,l )0 — Ny,zE((”) +Y ming — 5 I=1,- »h,p
(3. 43¢)
+@7 (@) |72 (t7.07, N, 1) |,<0
A, -d)t=u, 3. 439)
$>0 3. 43g)
where L, ;.M ,,N , denote the /th row of matrices L,,M N, respectively and

Wi Y maxs» Yminy d€notes the /th element in u respectively, V', denotes

min > Y max > Y min
M0 1)

Note that guaranteeing constraint-wise confidence level o does not ensure the

the covariance matrix of (L

yrd2 2yl

satisfaction of all the constraints in the problem with such confidence criteria. Actually, a
joint chance constrained program needs to be solved to achieve a specified confidence for
the satisfaction of all the constraint, but this problem is typically very difficult to solve
(Li et al., 2008). So this thesis, we propose to achieve the desired overall confidence level
by select an appropriate constraint-wise confidence level and solving the resulting
individual chance constraint program (such as problem RMPC-CLTSOCP) A trial and
error procedure can be performed offline with numerical simulation for the selection of
the appropriate constraint-wise confidence level.

The variance matrix V7, is estimated through Monte Carlo sampling as follows
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(and a similar approach is used for V},)):

1) Randomly select a sample of the open-loop uncertain parameters (4,4+s Bri+s,
Bark+1, Crir1, Wi vi+y) shown in formulation (3.5) from their distribution within
the o confidence level;

2) Calculate closed-loop uncertain parameters (L, L,, My, M, N, N, shown in
formulation (3.32)) accordingly;

3) Repeat procedure (a-b) for a number of samples of the open-loop uncertain
parameters and obtain different groups of closed-loop uncertain parameters,
which are then be used to estimate V,; according to the standard technique (Box
et al., 2008), i.e., Vu,FXTX/(ns-l) where X denotes the matrix whose rows contain
difference between different realizations of vector (Lu,;, M1, ol 1) and their

average values, and n; denotes the total number of realizations.

Note that the total number of samples #; should be sufficiently large so that the variance
calculation is accurate enough for the problem RMPC-CLTSOCP. We note that that the
covariance matrix V,;or V, reflects the range of the uncertainty (of a manipulated or
controlled variable) through the norms in the constraints (3. 43b-3. 43¢), so we choose
the total number of samples »; such that the a larger number of samples does not change
the norm of the matrix V,,;or V,;by 5% or more of its original value. We use the spectral
norm of matrix that is induced from the L2-norm of vector (Weinstein, 2009). This
procedure resulted in 100 samples being adequate for the calculation of the covariance
matrices in the numerical experimentation for all the case studies in this thesis.
Substantial computing for the Monte Carlo sampling is performed off-line as part
of the controller design and tuning, and therefore, it does not affect the tractability of the
real-time solution. The computational complexity of the off-line calculation can be found
in the next subsection. The covariance matrices V,, V5, depend on the saturation pattern
of the manipulated variables. Thus, these covariance matrices must be updated for each

controller execution and the method is given in the next subsection.

3.3.2 Efficient uncertainty characterization

To obtain the covariance matrices V,,;, V), according to the saturation pattern of

the manipulated variables in real-time, a natural way would be to obtain and store V,;, V,;
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for each of the saturation patterns respectively before the real-time application (oft-line).
However, the number of saturation patterns is exponential with respect to the product of
the number of manipulated variables times the number of time steps in the control
horizon (2"™), which could make the off-line sampling results unrealistically large even
for small problems. For example, when n, = 6, n = 9, the total number of saturation
patterns is about 10°. In this case, if the mean and variance matrices for one saturation
pattern required 1 MB space, the total space required to store all the variance matrices
would be about 10° TB!

Therefore, an on-line uncertainty characterization method has been developed in
this research to reduce the complexity, which involves sampling and storing the
uncertainties for the case of saturated manipulated inputs off-line and updating this result
for specific saturation pattern on-line. The updating rule is key for applying this method.

Assume the closed-loop model of manipulated variables u, for a particular saturation

pattern is:
u =L t+M, 0+N o
where
M 70,0 ]
‘Lur
(1,0) (D
Lur Lur
— (2,0) (2.1 (2.2) (nen, <(n-ny)
Lllr - Lur Lur Lur € R 2
(m-1,0) (n-1,1) (n-1,n-2) (n-1,n-1)
_Lur Lur e Lur Lur o

and the block in the matrix L,, on the row k; (k, =0,..,n—1) and the column k;

(ky =0,... k),
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(ky k) (kyk2)
Lur,l,l o Lur,l,nu
ky .k M ‘ . u ™y
LBk = . : € R"™.
(k) . k)
Lur,nu 1 Lur,nu My

Note that when k, =k,, L% is an identity matrix. Also,

0 (k)
MIEV) " Ml",ll
w=| 1 |€eR"™™and MY =| : |eR™™,
(n-1) (k)
Mur Mur,lnu
0 (k)
ler) Nur,ll
- = : € R and N® =| : |eR"",
(n-1) (k1)
N Nur,lnu

where n, , n, denote the numbers of elements in @ and  respectively,

k, =0,.,n-1.
If manipulated inputs at a time step that were assumed to be unsaturated are found
to encounter its constraint, e.g. the ith manipulated input at time step j (denoted by u,;)),

we need to update the closed-loop model of the manipulated variables as follows.

(kika) % — glhky)  _ p(kug) p(iks)
Lurl,olz,oz =L url,olz,az Lurl,oI i Lur,i,zol (3.44a)
(k) (k) e — (k) (ky) (ky,J) (€)) )
(Mur,lol b Nu,(;l - (Mur,lol ? Nu,cil )_ Lurl,ol,i (Mur,i’ Nu,i ) (344b)

k=j+1.,n-1, k,=0,.,j-1, o,=1..,n,, 0,=1,...,n,

where ng";,’ifgz* and (M,ffjo)l, N,fk;l)}* denote the updated values of Lffi‘fl’zz and

(M ) N ,fk;l)), respectively. The proof of this updating rule is presented in Appendix E.

ur,0,*

Figure 3.6 illustrates this updating rule. The block Dy, in the matrix L,, denotes
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the effects of the change of manipulated variables before time step j on the change of u,;;
when u,;; does not saturate, the block By, denotes the effects of the change of u,;; on the
change of manipulated variables after time step j. Therefore, B, xD,  denotes the
effects of the change of manipulated variables before time step j on the change of the
manipulated variables after time step j through u,;; when u,,; does not saturate. When
uy;; saturates, these effects should be 0, so we deduct them from the block A, (which are
the net effects of the change of manipulated variables before time step j on the change of
manipulated variables after time step j) as A *=A_ —B, xD_ . This corresponds to
equation (3.44a).

The block E,; in the matrix [M,,, Ny] denotes the effects of the change of initial
condition of the system (e.g., system states, feedback information, etc.) on the change of
uy,;;when u,;; does not saturate, so B, xE  denotes the effects of the change of initial

condition on the change of manipulated variables after time step j through u,,;; when u, ;;

Ly [Myp, N |

ur?

. Aur. — Cu; A‘ — C‘“- —_— Bur x r—— o
Dimensions of matrices: 4, :[n,(n—1-j)]x[n,(j-1)] C, :[n,(n=1-j)x[n, +n,]
Bur:[nu(n—l—j)]xl Dur:lx[nu(j—l)] Eurzlx[n8+nm]

Figure 3.6 Illustration of model-updating for manipulated variables with u,;; saturation
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does not saturate. When u, ;; saturates, these effects should be 0, so we deduct them from
the block C, (which are the net effects of the change of initial condition on the change of
manipulated variables after time step j) as C *=C_  —B, xE . This corresponds to
equation (3.44b).

Similarly, the closed-loop model of the controlled variables can be updated as

(kpky) % _ plhiky) gl j) p(ika)
Lyrl,olz,o2 _'Lyrl,olz,a2 ‘Lyrl,ol,iLyr,i,zo1 (345&)

bag, Nb=am, M), M) s

yr,o, 2 ¥,0, yr,op? yr,oq,i yr,i?

k=j+L.,p, k,=0,.,j, o= Ly, 0, =11

u

where L{%) *  and (Mﬁ',‘,‘o)l, N ;";l)}* denotes the updated value of L2
and (M ;’,“3‘ , Nik;])) Figure 3.7 illustrates this updating rule, where A *=A -B_ xD,
corresponds to (3.45a)and C, *=C, —B xE  corresponds to (3.45b).

The online model-updating calculation can be performed for each of the saturated
manipulated inputs sequentially. Then, we have the closed-loop model coefficients L,,,
M.y, Ly, My, of a particular saturation pattern for all the samples, which can be used to
calculate the covariance matrices Vy,;, V1.

The time complexity of the on-line calculation in the worst case (i.e., all the manipulated
variables in the horizon saturate) is O(n,(n,n)’) and the storage complexity O(n, (n,n)?),
where n_ denotes the total number of samples. Note that we only need to calculate and store the
uncertainty information for the case with no manipulated variables saturation, so we avoid the
exponential complexity of offline computation. The time complexity of the off-line calculation is
O(n, (nun)3) and storage complexity O(n, (nun)z). Please refer to Appendix E for the

discussion of the computational complexity for the on-line and off-line calculations.

71



PhD Thesis — Xiang Li McMaster University — Chemical Engineering

L. [M,, N,]

yr?

iy

Dimensions of matrices: 4, :[7,(p— /)]x[n,/] C,, :[n,(p=NIx[n, +n,]
B, :[n,(p—N]x1 D, :1x[n,j] E, :1x[n,+n,]

Figure 3.7 Illustration of model-updating for controlled variables with u,;; saturation

3.4 Uncertainties in State-Estimation

As mentioned in Section 3.1 and Appendix A, equations (3.1-3.2) denote the
“nominal” steady-state Kalman filter that is based on assuming the nominal model of the
system is perfect. In the context of robust MPC, however, we need to address the
parametric uncertainty in the state estimation explicitly if the states cannot be measured
directly. Here we introduce an approach developed in this research to incorporate
parametric uncertainties in state estimation for time-invariant process.

First, we assume the real process model coefficients (4,, B, Ba, C,) are known.

Then, the state estimation can be performed as follows.
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"er,o = ‘)’er,o/—l + Lxr (ym,O - Cr‘i"r,O/-l) (346)

ér,o = ér,O/—l + L, (Vo — Cr’er,om) 3.47)

where L,,, L., denote the steady-state Kalman gains calculated according to 4,, C, using
the well-known method (Kalman, 1960) whose details are shown in Appendix A. X 0./,
é ro.1 denote the estimate of the states and feedback errors at time step & given the output
measurement at time step k-1 and x,p and é,odenote the update of the estimate given

the output measurement at time step k. X 0./, € 0.;can be calculated by

xr,O/—l = Arxr,—l + Brur,—l + Berer,—l + Bdrdm,—-l (348)

A

.01 =6, (3.49)

The equations (3.46-3.49) can be integrated into the following form

§o = G;{é,—l + Gguu-l (3.50)
where we define
ym,k
— ‘)’er —k _ (I - Lerr )Ar (I - Lerr )Ber
é,_k B (ér,—k ] ’ lu_k B u-k—l ’ G{( ( Lercr Ar I~ LerCrBer ’
dm,—k—-l

0

L -L,C.,B

er er~rr er~'r

G, = Lxr (I_Lxrcr )Br (I_Lxr r)Bdr
u = L ’

0
&)
&

Equation (3.50) means that the estimated states at the current time step { depend
linearly on the estimated states at the last time step {’; (as well as the inputs, disturbances

and the output measurements in 4.;). {; depends on {; in the similar way, which is

73


http:3.46-3.49

PhD Thesis — Xiang Li McMaster University — Chemical Engineering

g, = G(gg-z +GyH, (3.51)
and equations (3.50-3.51) can be combined to give the following equation
Co = ng o +GGup, +Gyu, (3.52)

Repeat the above procedure for the previous p time steps iteratively, and then we get the

following equation,
Pl
$o=G., + 2(CeCubtor) (3.53)
i=0

Note that even the state estimates ¢, may still be uncertain. However, we can
set p_ 2 p,.» where py, denotes the least number of time steps for the nominal
estimates of states to converge to the real states (no matter where the nominal estimate is
correct or not); the symbol p,s is called the (backward) horizon of the observer in the
thesis. Refer to Appendix A for the way to obtain p,s;. Therefore, the current states and
feedback £, can be estimated using the nominal estimate of the states the p_ time
steps ago (&_, ) through equation (3.53). We call p_ the estimation horizon in this
thesis.

Note that the nominally estimated states at a steady state can be deemed as the
real states. So if the system has been at steady state during the previous p,ss time steps,
e.g. k time steps ago (k<p,»s), we could estimate ¢, using the nominal estimate of the

states and feedback at that time step ¢, =4, through equation (3.53).

The above discussion is based on assuming the real process model coefficients (4,
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By, By, Cp) are known. If they are unknown and uncertain, the coefficients G, G,, in
equation (3.53) should be uncertain accordingly. So the estimate of the current states and
feedback errors through equation (3.53) is uncertain, whose uncertainty depends on the
estimated states and feedback p time steps ago as well as the measurement of controlled
and disturbance variables and the implemented manipulated variables during the past p
time steps. The robust MPC considering this uncertainty in the state estimate will have
the same formulation as formulation (3.14) (so that the same SOCP formulation (3.43)),
except that the nominal estimate of the current states and feedback X ,é; is replaced by
its uncertain expression in equation (3.14), thus in the uncertain closed-loop model

(3.14b-3.14c¢), the vector

T JT oT AT
0= (u_l,dm,xo ,€y )I (3.54)
is changed into
_( T T T roar dT o dr gt o )T (3.55)
n= u_p__la"'au_lrym,p_9"':ym,09 m=—p_-15"""s% 15 m>x_p_,e_p_ .

Here the “current system state” cannot be simply expressed by its nominal estimate. It
should be expressed using its nominal estimate p. time steps before as well as the
measurement of controlled and disturbance variables and the implemented manipulated
variables during the past p. time steps. The uncertain matrices M,,, M,, in the uncertain
closed-loop model (3.14b-3.14c) are changed accordingly. So addressing uncertainty in
state estimate using the new M,,, M,, and = will change the variance calculation of the
manipulated and controlled variables. The benefits of integrating the uncertainty in state
estimate will be shown in a case study in Section 3.6.

Another important issue to be clarified is: the Kalman filter is used here as an

observation that provides a nominally stable observer instead of “filtering” the noises,
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because the all the uncertainties including the noises are addressed explicitly in the robust

MPC framework. Therefore, other stable observers could be used to replace the Kalman

filter in the formulation, e.g., a Luenberger observer (Luenberger, 1971).

3.5 Summary of the Robust MPC Algorithm

According to the discussions from Section 3.2 to Section 3.4, the new robust MPC

algorithm can be summarized as follows.

Calculation performed off-line:

1

2)

Calculate the nominal value of the coefficients L., My, Ny, Ly, M,, N, in the
closed-loop model (3.14b-3.14c), for the situation where no input bounds are
active, using the method derived in Appendix D;

Repeat the calculation in step 1 for samples of the open-loop uncertain system
(100 samples used in this thesis). Calculate the covariance matrices for the

closed-loop coefficients according to the results of the sample calculations.

Calculation performed on-line at each controller execution period:

1

2)

3)

4)

Obtain the set points of the controlled and manipulated variables, yg, u,
according to plant personnel or upper level controller/optimizer.

Read new measurements of controlled variables and the measured disturbances
Ym0, Amo respectively. Set uy to be the implemented manipulated variables in the
last controller execution.

Calculate nominally predicted controlled variable for the current time step, yy,
according to the previous implemented manipulated variables, measured
disturbances and nominally estimated state and feedback variables, and estimate

the nominal state and feedback variables for the current time step, %, ¢, .
If the uncertainty in the system is time-invariant and the deviation model is

needed, calculate the virtual steady state according to equations (3.18-3.22) and
express the system variables, set points and bounds as deviations from the virtual

steady state according to equations (3.25-3.37); otherwise skip this step.
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5) Assume no bounds are active in the future, and set all diagonal elements in Isto 1.
Then solve problem RMPC-CLTSOCP equations (3.43a-3.43g) if all the system
states are measured, or estimate and store the current state and feedback variables
and solve the following problem RMPC-SOCP2 (with all the variables and
parameters in the formulation same as defined before) to include the uncertainty

in state estimation if not all the system states are measurable:

RMPC-CLTSOCP2:
min  (y-y,) 0y -y,)+@-u,) Ru-u,)

i B (3.56a)
+ (IAlu_IA2u—1)T W(IAlu_IAZu—1)+sTst
E(Lur,l )t + E(Mur,l )7!? + Nu,l E((D) - umax,l
L. 3.56b
S + @ @)V 77 N, ) (<0 (369
I=1,--,n,n
_E(Lurl)t_E(Murl)n_NulE(m)+un1inl
’ ’ ’ oo (3.56¢)
+ o @IVt 2" N, L) (<0
E(Lyr,l)t + E’(Myr,l)1Ir + Ny,IE(('o) _ymax,l - sl
3. 56d
+ @7 (@) | VI, TN, ) <0 (3.56d)
I=1---,np
_E(Lyr,l)t_E(Myr,l)n—Ny,IE(('o)+ymin,1 —-sl (3 56 )
. €
+@7 (@) | V2", N, ) ),<0
(I, -8)t=u, (3. 56f)
$>0 , 3. 56g)

6) The solution gives the uncertain trajectory of the manipulated variables in the
control horizon. If some manipulated variables, which are assumed unsaturated,
have a value(s) at its bound (i.e. the boundaries of their uncertainty regions reach

the upper or lower bounds on these manipulated variables), go to step 7; otherwise,
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end the iterative procedure of the heuristic and go to step 8 (the current solution is

the final solution obtained by the heuristic).

7) Set all manipulated variables, which are at their bounds at the earliest time step, to
their bound values (by specifying Is, u;). Update the closed-loop model
coefficients L., My, Nu, Lyy, M,,, N, according to the current saturation pattern
using equations (3.44a-3.44b) and (3.45a-3.45b), and solve problem
RMPC-CLTSOCEP (if all the system states are measurable) or RMPC-CLTSOCP2
(if some system states are not measurable). Then go to step 6. Note that any
manipulated variable that has been set to its bound value will be constrained for
the remainder of the iterative procedure.

8) If the uncertainty in the system is time-invariant and the deviation model has been
used in the previous calculation, restore the solution from the deviation variable
mode using equations (3.25-3.37); otherwise skip this step.

9) Implement the values of the manipulated variable in the first future controller

execution period in the solution.

3.6 Case Study Results and Discussion

The simulation case studies were performed on a PC with Intel Core 2 Duo 3.0
GHz, 4GB memory and Windows Vista. The solution for the plant simulation is
programmed in MATLAB 7.5, and the QP and SOCP problems are solved in GAMS with
the interior point (barrier) solver of CPLEX 11. The data in MATLAB and CPLEX are
exchanged using the interface software MATGAMS developed by Ferris (2005). All the
system models are initially expressed with continuous input-output model in S-domain,
and they are all discretized and transformed into state-space model using the Control
System Toolbox in MATLAB 7.5.

3.6.1 The control methods evaluated in the case studies

We will evaluate several control methods in the case studies, through which the
advantage of the new robust MPC method will be demonstrated. We basically compare
the following three methods:
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1) The nominal MPC
This method solves the QP problem (3.1) at each controller execution period,

where the initial states and feedback are estimated using equations (3.2-3.3).

2) The robust MPC (developed in this thesis)

The detailed steps to implement this method are shown in Section 3.6.

3) The open-loop robust MPC

Here the open-loop robust MPC means the robust MPC method using open-loop
uncertainty prediction, as discussed in Section 3.2.1. In this (incomplete) formulation the
future controller actions are assumed to be unchanged for different realizations of the
plant. This is equivalent to assuming that the control laws of the closed-loop system in
the future horizon are u,~t and the dynamic performance of the system is optimized is by
adjusting t. Therefore, this method can be implemented in the same way as detailed in
Section 3.6 with the uncertainty calculated assuming that all the manipulated variables
saturated, but with the values of the manipulated variables determined by t instead of
being fixed to the bounds. The active set heuristic is not needed here because the

saturation pattern has been defined.

3.6.2 CSTR control system 1

The first case study applies control to the Continuous Stirred-Tank Reactor
(CSTR) process in the Appendix C of Marlin (2000), page 897-908, which is shown in
Figure 3.8. In this case study, the inlet feed concentration of A (Cao) into the reactant is
used to control the outlet concentration of A (C,). The temperature of the reactor is
maintained constant by a temperature controller manipulating the cooling flow rate. So,
we consider the CSTR system to be isothermal. The non-linear plant model is given by

the following equation,

dc,

Vol ” =F(C,-C,)-VolK ,C, (3.57)
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Figure 3.8 CSTR control system 1

where K, is the constant first-order reaction rate, Vol is the reactor volume, F' is the
volumetric feed in flow rate.
This non-linear model can be linearized at a particular steady-state operating point

and the linear differential equation expressed as a transfer function as the following.

K
()=~ si 1<e‘9su(S) (3.58)
p

where y is the controlled variable Ca, u is the manipulated variable Ca, 8 = 0.9 minutes
denotes the time for the output flow to reach the remote component analyzer, which
introduces the delay between u and y. See Appendix F for the details of the linearization
procedure and the parameters and operating points used in the thesis.

The uncertainty of the system comes from the slowly varying inlet flow rate F,
whose uncertain value is assumed to obey normal distribution with mean 1 m’/min and

standard deviation 0.3 m*/min. The nominal plant model is derived at F=1 m*/min as,
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Nominal Model CSTR-1:

_0.8953¢7%

M) = eosas el

(s) (3.59)

In the case studies, we evaluate the performance of the controllers at two specific plant

mismatch realizations in the case study. One is with F=1.87 m*/min and its model is:

Plant CSTR-1.1:

_0.9417¢7°

YO =025 41

u(s) (3.60)

The other is with F=0.41 m’/min and its model is:

Plant CSTR-1.2:

_0.7790e™*%

Y= o575 71

(5) (3.61)

These plants represent a “faster” plant (Plant CSTR-1.1 with a higher gain and smaller
time constant) and a “slower” plant (Plant CSTR-1.2 with a lower gain and larger time
constant). Both are within the uncertainty considered in the robust controller design.
The controller execution period for this system is selected to be 0.3 minutes, so
the models of the system are discretized with sampling time of 0.3 minutes. The
state-space form of the reactor model without time delays and feedback variables has the
state vector x with 1 element and the system is controllable and observable. The feedback
scheme assumes the unmeasured disturbance enters the system through the input channel
(See Appendix A for more discussion on the selection of unmeasured disturbance model),
which introduces the unmeasured disturbance vector e with 1 element. So the augmented
system with x and e has 2 states, and it is detectable. Furthermore, the time delay between

y and u is described by 3 additional states using the method introduced in Appendix C.
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Since these 3 states denote the u in the last 3 time steps, they are known, and no observer
gain is need for them.

The tuning of all nominal MPC controllers in this thesis follows these guidelines:
a) The control and prediction horizons #, p are tuned according to the guidelines
introduced in Camacho and Bordons (1999). b) The observer horizon p,ss and observer
gains are tuned according to the discussion in Appendix A. ¢) The weighting matrices Q
and R, W are used to keep an acceptable trade-off between variability of the controlled
variables y and the variability of the manipulated variables u in the closed-loop dynamics.
In this thesis, the variability of variable is evaluated through set point step change test by
calculating the sum of its squared difference from its set point; and we tune the weighing
matrices such that the variability of u is within the * 50% of the variability of y (when
the system model is so scaled that the gain is 1). Also, when comparing robust MPC with
nominal MPC in a case study, the robust MPC controller has the same tuning as the
nominal MPC controller, except for the additional tuning parameter of confidence level.

We can tune the MPC controllers for CSTR control system 1 with the above

tuning guidelines, and tuning parameters are shown in Table 3-1.

Table 3-1 Tuning parameters for the MPC controllers for CSTR control system 1

Tuning Parameter Value
Control horizon, n 8
Prediction horizon, p 20
Estimation horizon, p 20
Observer gain for [x”, e ], L [1,0.556]"
Weight for controlled variables in Q 10
Weight for controlled variables in R 0.1
Weight for controlled variables in 1
Penalty on controlled variable violation in W; 10°
Confidence of each stochastic bound, o 99.9%
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The deterministic SOCP subproblem solved by the proposed robust MPC method
for this system has 8 decision variables, 92 linear constraints and 56 second order cones.
This subproblem is typically solved in 0.02 CPU seconds. When applying the active set
heuristic, the maximum number of SOCP subproblems solved for this system is 8 (the
number of time steps in the control horizon), so the robust MPC costs at most
0.02x8=0.16 CPU seconds.

3.6.2.1 Set point tracking while observing bounds on controlled

In this study on control system 1, there is a set point change from 1.79 kmole/m’
to 2.79 kmole/m® (toward the upper bound of the controlled variable) and then from 2.79
kmole/m® to 2.09 kmole/m® (away from the bound). Figure 3.9 shows the system dynamic
behaviours with the nominal MPC, the robust MPC and the open-loop robust MPC in two
situations: (a) Plant = Nominal Model CSTR-1, and (b) Plant=Plant CSTR-1.1.

We can see from Figure 3.9 (a) that the nominal MPC gives the best performance
when there is no plant/model mismatch. The two robust MPC methods are more
conservative when the set point is moved toward the bound, because they take actions
that prevent the potential bound violation due to uncertainty. However, all the three
methods give identical performance when the set point is moved away from the bound.

The conservativeness of the two robust MPC methods is advantageous when
plant/model mismatch is present, as shown in Figure 3.9 (b). In this study when the set
point is moved toward the bound, the y-bound is observed with the two robust MPC
methods; however, it is violated with the nominal MPC. Again, all the three methods give
identical performance when the set point is moved away from the bound.

Note that for both realizations, the open-loop robust MPC is unnecessarily more
conservative than the robust MPC, becaﬁse it does not consider the effect of the feedback
in the prediction; therefore, it overestimates the uncertainty in the future.

One hundred simulations of the closed-loop system during time the first part of
the transient (0-9 minutes) with the three MPC methods have been run with Monte Carlo
sampling of the plant realizations. The results are summarized in Table 3-2. We observe
that the nominal MPC gives the most aggressive control, which results in bound
violations in many scenarios. The robust MPC gives more conservative control, and it
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(a) Plant = Nominal Model CSTR-1 (b) Plant = Plant CSTR-1.1
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Figure 3.9 Set point tracking while observing bounds on manipulated variables
— CSTR control system 1

Table 3-2 Monte-Carlo Simulation Results of case study in Figure 3.9 during 0-9 min

Samples with

Average IAE")  Average IAV @ M.a x1rr}um violation/total
violation
samples
Nominal MPC 5.1727 0.1940 0.1940 44/100
Robust MPC 5.3475 0.0006 0.0115 2/100
U aan 5.4834 0 0 0/100

robust MPC

Note: (1) IAE denotes Integrated Absolute Error. (2) IAV denotes Integrated Absolute Violation.
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observes the bound for 98% scenarios. The open-loop robust MPC is even more
conservative, so it prevents violation for all the 100 plant realizations but provides poorer

control as measured by the TAE.

3.6.2.2 Driving controlled variables back to feasible region

In this study using control system 1, we assume that the controller is initially off
and the controlled variable is outside its feasible region (smaller than its lower bound).
Then, the controller is switched on after 1 controller execution time step (i.e., at 0.3
minute), and it regulates the controlled variable back to the set point in the feasible
region. Figure 3.3 shows the system dynamics with the nominal MPC, the robust MPC
and the open-loop robust MPC in two situations: (a) Plant = Nominal Model CSTR-1,
and (b) Plant = Plant CSTR-1.2.

We can see from Figure 3.10 (a) for the case with no model mismatch that the
nominal MPC drives the controlled variable back to its feasible region fast while giving
the best dynamic performance. The two robust MPC methods are more aggressive; they
return the controlled variables to feasible region quickly for not only the nominal plant
realization, but also all other probable plant realizations.

The advantage of the aggressiveness of the two robust MPC methods is apparent
when plant/model mismatch is considered in Figure 3.10 (b). In this situation, the
nominal MPC takes about four minutes to drive the controlled variable back to feasible
region while the two robust MPC methods spend only 1 minute to do the same thing. For
both situations, the open-loop robust MPC is more conservative than the robust MPC.

One hundred simulations of the closed-loop system with the three MPC methods
have been run with Monte Carlo sampling of the plant realizations. The results are
summarized in Table 3-3. The two robust MPC methods drive the controlled variable
quickly back to the feasible region, and to achieve this result, they are more aggressive
than required for most realizations. Therefore, their IAE is relatively high, although the
robust MPC is better than the open-loop robust MPC. In contrast, the nominal MPC is not
aggressive enough and could take as long as 3.9 minutes to return the controlled variable

to the feasible region.
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Figure 3.10 Return to feasible region — CSTR control system 1

Table 3-3 Monte-Carlo Simulation Results of case study in Figure 3.10

Average time back to Maximum time back to

Average IAE feasible region (min)  feasible region (min)
Nominal MPC 4.4180 1.6 3.9
Robust MPC 11.1919 1.2 1.5
Openlocp 11.9372 1.2 1.5

Note: (1) IAE denotes Integrated Absolute Error.
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3.6.2.3 Set point tracking while observing the hard input bounds

This case study shows the importance of addressing the input saturation in the
prediction in robust MPC. We compare the performance of the robust MPC and the
robust MPC whose algorithm does not consider manipulated variable (input) saturation in
the closed-loop prediction model. The latter method assumes the inner optimization
problem in the bilevel problem (3.5) is unconstrained, so the active set heuristic is not
implemented and only one SOCP problem needs to be solved at each controller execution
period. Thus, the latter method has unconstrained inner problems (but the outer problems
are still constrained) and we call it unconstrained robust MPC (UCRMPC) here.

Naturally, these two methods are identical when saturation does not occur; but
they could have significant difference when saturation occurs. To understand this
conceptually, let’s rewrite the constraints on a manipulated variable (equation (3.56b)) in

the following simplified form,

u"=E@)+@ () ||V, t+V, ||,<u_,, (3.62)

where the left-hand-side of the constraint denotes the maximum value of the uncertain
manipulated variable u ("), which is the sum of the expected value of u (E(u)) and the
effects of the uncertainties @' (a) || V; t+V, |,). If the robust MPC does not address
input saturation in the closed-loop prediction, the predicted » will be different for
different plant realizations and the effects of the uncertainties @' () ||V, t+V, |, will
not be zero. So the constraint (3.62) only enforces the maximum value of the uncertain u
to its upper bounds, and it keeps other realizations of ¥ away from the bound. Figure 3.11
(a) illustrates this situation. The proper robust MPC (proposed in this work) addresses
input saturation explicitly in the closed-loop prediction. When the active set heuristic
decides a variable is at its bound, u will be constant for all plant realizations and the
effects of the uncertainties ®~'(a) ||V, ¢+V, ||, will be zero. So the constraint (3.62)
enforces the u for all the plant realizations (including the maximum u value, u', and the

minimum u value, u’) to its upper bound. Figure 3.11 (b) illustrates this situation.
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The advantage of addressing input saturation in the closed-loop prediction is
demonstrated in the case study shown in Figure 3.12. In this case study, the feed flow rate
is constant at F=1 m’/min, i.e., the plant is the Nominal Model CSTR-1. Two situations
are simulated, and their results are shown in Figure 3.12 (a) and (b), respectively. In the
first situation shown in Figure 3.12 (a), there is a set point step decrease and then a set
point step increase. When the set point decreases, ¥ moves away from its bound and the
robust MPC and the unconstrained robust MPC give the same performance. When the set
point increases, y cannot be driven to the set point because of the upper bound on u. So
the robust MPC forces u to remain at its upper bound, and y is driven as close as possible
to its set point quickly. However, the unconstrained robust MPC moves u slowly to its
upper bound, and thus, y is driven slowly towards its set point. This is because the
algorithm requires that all realizations of the manipulated variable remain feasible, which
moderates the aggressiveness of the manipulated variable when it approaches a
constraint.

In the second situation shown in Figure 3.12 (b), the upper bound on u is not so
tight, and the set point can be reached at the steady state. The robust MPC allows the
input saturation during the transient to drive y quickly to the set point. However, the
unconstrained robust MPC keeps u away from its upper bound during the transient, so y

is driven to the set point slower.

ANARRARRRNRRRRNRRNN AN
E(t) mmmad @ @IV 147, 1 7

- N Em =
+

u ~u “E@)
ut = E@)+ @7 @)1V, 147, |
(a) Prediction without addressing saturation (b) Prediction addressing saturation
=+ = » Maximum or minimum value Expected value = Upper bound

Figure 3.11 Conceptual comparison of robust MPC predictions for input saturation
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Figure 3.12 Observing hard input bounds — CSTR control system 1

3.6.3 CSTR control system 2

The second control system involves the CSTR process from the Appendix C of
Marlin (2000), page 897-908. The controlled variable is still the outlet concentration of A
(Ca) and the manipulated variable the inlet feed concentration of A (Cag). However, there
is no temperature controller to maintain the temperature of the reactor, so the system is
non-isothermal. The cooling flow rate F, is measured at the beginning of each controlled
execution period, and its measurement is sent to the MPC controller as a measured
disturbance. Figure 3.13 shows the diagram of this control system.

The non-linear plant model is given by the following equations,

Mass balance:

dc,

Vol = F(Cyup—-C)=Vol ke *'"C, (3.63)
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Figure 3.13 CSTR control system 2
where k,e™*'*" gives the reaction rate K, that obeys first order Arrhenius equation.

Energy balance:

dr aF!
Vol-pCpE= pC,F(T, —T)—#(T—T

F+-2e |
2p.C

pc

—AH _Vol -k e ' C
) nn AO A (364)

where p and C,, are the density and specific heat capacity of the mixture in reactor, p. and
C,care the density and specific heat capacity of the coolant, a, b denote the coefficients of
the heat transfer during the cooling procedure, 7y denotes the temperature of the inlet
flow, T ;» denotes the temperature of the inlet cooling flow, 4H,,,<0 denotes the enthalpy
change due to the (exothermic) reaction.

This non-linear model can be linearized at a particular operating point and
expressed as a transfer function. See Appendix F for the details of the linearization
procedure and the parameters and operating points used in the thesis. The uncertainty of

the system comes from the slowly varying inlet cooling flow temperature 7. ;,, whose
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uncertain value is assumed to obey normal distribution with mean 310 K and standard

deviation 5 K. The nominal plant model is derived at T, ;, =310 K as,

Nominal Model CSTR-2:

_ (5+0.8078)e™* u(s)+ 0.02204¢7%%¢
s?+1.9255+1.143 52 +1.9255+1.143

y(s) d(s) (3.65)
where y is the controlled variable Ca, u is the manipulated variable Cag, d is the measured
disturbance F,. The time delay & =0.9 minutes denotes the time for the output flow to
reach the remote component analyzer.

In this case study, we will evaluate performance at two mismatch plant

realizations. One is with T, ;,,=318.95 K, and its model is:

Plant CSTR-2.1:

_ (5+0.8078)e™* 0.0126¢7°%

R) us)+
Y= T onss+ 1143t T 10255 11143

d(s) (3.66)

The other is with T, ,= 300.36, and its model is:

Plant CSTR-2.2:

_ (s+0.8078)e™"” 0.0322¢7°%

S uis)+
Y= T onss 41143 Ot 19255 11143

d(s) (3.67)

The controller execution period for this system is selected to be 0.3 minutes, so
the models of the system are discretized with sampling time of 0.3 minutes. The
state-space form of the models without time delays and feedback variables has the state
vector x with 2 elements, and the system is controllable and observable. The feedback
scheme assumes the unmeasured disturbance enters the system through the disturbance
channel, which introduces the unmeasured disturbance vector e with 1 element. So the
augmented system with x and e has 3 states, and it is detectable. The time delays between
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y and u, d are described by 3 additional states using the method introduced in Appendix
C. Since these 3 states denote the u and d in the last 3 time steps, they are naturally
known and no observer gains are need for them.

The MPC controllers for this system have the same tuning parameters (except that
NMPC does not have a confidence value for stochastic bounds), which are obtained using
the method for the CSTR control system 1. Table 3-4 shows these parameters.

The deterministic SOCP subproblem solved by the proposed robust MPC method
for this system has 10 decision variables, 115 linear constraints and 70 second order
cones. This problem is typically solved in 0.02 CPU seconds. When applying the active
set heuristic, the maximum number of SOCP subproblems solved for this system is 10
(the number of time steps in the control horizon), so the robust MPC costs at most
0.02x10=0.2 CPU seconds.

Since the unmeasured disturbance variable 7 ;, affects the dynamics between the

measured disturbance variable and the controlled variable, we need to address the

Table 3-4 Tuning parameters of the MPC controllers for CSTR control system 2

Tuning Parameter Value
Control horizon, » 10
Prediction horizon, p 25
Estimation horizon, p_ 25
Observer gains for [x, e’]", L [1,-12.902, 18.983]"
Weight for controlled variables in O 10
Weight for controlled variables in R 0.1
Weight for controlled variables in W 1
Penalty on controlled variable violation in W; 10°
Confidence of each stochastic bound, o 99.9%
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uncertainty in the disturbance model used explicitly in the robust MPC. As we discussed previously in
this chapter, closed-loop uncertainty should be used in the uncertainty prediction. Figure 3.14
illustrates the open-loop uncertainty and closed-loop uncertainty after a disturbance step change of 1.5
m*/min. The open-loop uncertainty shown in Figure 3.14 (a) is the uncertainty based on assuming no
feedback correction occurs for disturbance plant/model mismatch in the future. So the future u series
is deterministic and the future y series is different for different plant realizations. The closed-loop
uncertainty shown in Figure 3.14 (b) is the uncertainty including the effect of the future feedback
corrections on the closed-loop system. So, the both the future u series and y series are different for
different plant realizations.

In Figure 3.14, the dashed dotted lines and the dashed lines show the boundaries
of the open-loop and closed-loop uncertainty regions respectively with 99% confidence,
which are obtained with the method shown in the Subsection 3.3.1. We observe that the

closed-loop uncertainty region is smaller than the open-loop uncertainty region.
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Figure 3.14 Open-loop and closed-loop uncertainty — CSTR control system 2
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Therefore, using closed-loop uncertainty in robust MPC prediction for disturbance

plant/model mismatch is not only conceptually more accurate, but also less conservative.

3.6.3.1 Constant disturbance rejection

In this study with the CSTR control system 2, there is a step change in the
measured disturbance F, from 15 m*/min to of 7.5 m*/min. Figure 3.15 shows the system
dynamics with the nominal MPC and the robust MPC in two situations: (a) Plant =
Nominal Model CSTR-2, and (b) Plant = Plant CSTR-2.1. Figure 3.15 (a) shows that the
nominal MPC compensates the disturbance change perfectly while the robust MPC drives
the controlled variable away from its upper bound to prevent potential violation for some
realizations. When the plant/model mismatch is present in the second situation shown in
Figure 3.15 (b), the controlled variable violates its upper bound with the nominal MPC,
while the bound is observed with the robust MPC.
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Figure 3.15 Constant disturbance rejection — CSTR control system 2
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Table 3-5 Monte-Carlo Simulation Results of case study in Figure 3.15

Samples with

Average IAE " Average IAV @ M.ax m.lum violation/total
violation
samples
Nominal MPC 0.0590 0.0062 0.0296 18/100
Robust MPC 0.0999 0.0007 0.0131 3/100

Note: (1) IAE denotes Integrated Absolute Error. (2) IAV denotes Integrated Absolute Violation.

Table 3-5 summarizes 100 simulation results with Monte Carlo sampling of
plant realizations. The robust MPC experiences far fewer constraint violations, and to
achieve this good feasibility performance, it incurs a larger IAE. If the set point were far

from a constraint, both controllers would provide the same performance, as measured by
IAE.

3.6.3.2 Stairs disturbance rejection

In this study with the CSTR control system 2, the measured disturbance increases
by 3 m*/min during three successive controller execution periods. Figure 3.16 shows the
system dynamics with the robust MPC and the open-loop robust MPC in two situations:
(a) Plant = Nominal Model CSTR-2, and (b) Plant = Plant CSTR-2.2. In both cases, the
open-loop robust MPC is more conservative.

Table 3-6 summarizes the simulation results of the closed-loop system with
Monte Carlo sampling of 100 plant realizations. We can see that the robust MPC ensures
the bound satisfaction at a high confidence level (97%) while it achieves much better
dynamic performance than the open-loop robust MPC does. This demonstrates that the
open-loop prediction of the disturbance plant uncertainty is overly conservative for a

robust MPC formulation.
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Figure 3.16 Stairs disturbance rejection — CSTR control system 2

Table 3-6 Monte-Carlo Simulation Results of case study in Figure 3.16

Maximum Samples with

Average IAE ) Average IAV @ e violation/total
violation
samples
Robust MPC 0.1929 0.0005 0.0122 3/100
Open-toop 0.2496 0.0001 0.0053 1/100
robust MPC : : :

Note: (1) IAE denotes Integrated Absolute Error. (2) IAV denotes Integrated Absolute Violation.

3.6.3.3 Periodic disturbance rejection

In this study with the CSTR control system 2, the measured disturbance changes

periodically from 3 m*min to -3 m*/min. Figure 3.17 shows the system dynamics with
the nominal MPC, the robust MPC and the open-loop robust MPC for Plant = Plant
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CSTR-2.2. Again, we can see the nominal MPC is the most aggressive control method,
and the controlled variable violates the constraint periodically during the transient. The
robust MPC gives more conservative control according to its explicit consideration of
uncertainty, so it prevents the constraint violation. The open-loop robust MPC prevents
the constraint violation but it is more conservative than the robust MPC.

Table 3-7 summarizes 100 simulation results of the closed-loop system with
Monte Carlo sampling of the plant realizations. Again, the robust MPC observes the
constraints for almost all the plant realizations, and to achieve this behavior, it achieves a
somewhat higher IAE. The nominal MPC achieves lower IAE, but it results in constraint
violation for many plant realizations. The open-loop robust MPC observes the constraints

for all the plant realizations, but it achieves the largest IAE.
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Figure 3.17 Seasonal disturbance rejection - CSTR control system 2
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Table 3-7 Monte-Carlo Simulation Results of case study in Figure 3.17

Maximum Samples with

Average IAE"  Average IAV @ 1L violation/total
violation
samples
Nominal MPC 0.3362 0.0397 0.0296 47/100
Robust MPC 1.1394 0.0002 0.0021 1/100
Open-loop
robust MPC 1.4684 0 0 0/100

Note: (1) IAE denotes Integrated Absolute Error. (2) IAV denotes Integrated Absolute Violation.

3.6.3.4 Disturbance rejection with different state estimation methods

This case study with CSTR control system 2 shows the importance of including
the uncertainty in state estimation in the robust MPC formulation. We compare the
performance of the robust MPC with traditional state estimation not addressing
uncertainty explicitly (which solves the SOCP problem (3.32)) and the robust MPC with
state estimation addressing uncertainty explicitly (which solves the SOCP problem
(3.45). Figure 3.18 compares the system dynamics under the robust MPC using the two
different state estimation methods respectively for the situation in which Plant = Plant
CSTR-2.2 and the measured disturbance decreases from 15 m’/min to 9 m*/min and then
increases to 21 m*/min. We can see that the controlled variable violates its upper bound if
uncertainty in state estimation is not addressed and the bound is not observed when
uncertainty in state estimation is addressed.

The advantage of addressing uncertainty in state estimation lies in the
incorporation of greater (and more accurate) uncertainty in the closed-loop prediction of
the controlled variables. To explain this conceptually, let’s rewrite the constraints on a

controlled variable y (equation (3.43d) without addressing uncertainty in state estimation
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Figure 3.18 RMPC using different state estimation methods — CSTR control system 2

or equation (3.56d) addressing uncertainty in state estimation) in the following simplified

form,

Y =E@)+D @)V, t+V; 11,2 Vi (3.68)

where the left-hand-side of the constraint denotes the maximum value of the uncertain
controlled variable y (), which is the sum of the expected value of y (E(y)) and the
effects of the uncertainties (@'()||Vit+Vall2). If the robust MPC includes the
uncertainties in the state estimation, the norm term ®@'(a)||Vi¢+ 72|, will be bigger than

that without the uncertainties in the state estimation. Thus, the decisions will be more
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conservative if uncertainty in state estimation is also included, so that the constraint
violation will be less probable to occur.

The above conceptual discussion is validated by the simulation results shown in
Figure 3.19. This figure compares the maximum values of the norm term of the output
over the prediction horizon with and without including uncertainty in state estimation, at
each controller execution period. We can find that this norm term is bigger when
uncertainty in state estimation is addressed than that when uncertainty in state estimation
is not addressed, which explains the more appropriate control when including uncertainty
in state estimation in Figure 3.18.

One hundred simulations have been run for the same disturbance scenario and
with Monte Carlo sampling of different plant realizations. The controlled variable-bound
is observed for 83% of the plant realizations when uncertainty in state estimation is not
addressed and 97% when it is addressed, with the same robust MPC controller. This
again demonstrates the importance of including the uncertainty in state estimation in the

robust MPC formulation explicitly.

0.12 - . ' - -
Max(®-1 (o) |vit+v,|l,) predicted when

01 uncertainty in state estimation addfessed
- 0087 )
£
Q
g 0.06+ Max(®"! (o) ||vit+v,|],) predicted when uncertainty
v in state estimation not adressed

Figure 3.19 Robust MPC predictions with different state estimation methods —
CSTR control system 2
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3.7 Conclusions

In this chapter, a new robust MPC method has been developed for feedforward
and feedback control of uncertain dynamic systems. The presentation has followed the
organization in the “roadmap” in Figure 3.1. This method primarily addresses robust

feasibility for MPC with model uncertainty, and it possesses the following characteristics:
1) A framework that addresses:

a. Bilevel optimization — The original bilevel optimization problem was
reformulated as a single-level problem by replacing the inner optimization
with its optimality conditions;

b. Correlated parametric uncertainty — The uncertainty from the plant, the
measured disturbance(s) and  the stochastic unmeasured
disturbances/noises. A novel deviation model formulation, which is
obtained by the deviation of the variables from a virtual steady state of
them (determined by the latest implemented manipulated variables), is
used to reduce the conservativeness in the prediction of time-invariant
uncertainty by limiting the effects of plant uncertainty to changes in the
input variables;

¢. Hard bounds on manipulated variables in closed-loop prediction — The
saturation pattern of the manipulated variables is obtained through an
active set heuristic in an iterative way;

d. Tractable solution for real-time implementation — The method solves a
limited number of (convex) SOCPs, which can be solved by the

stat-of-the-art interior point optimizers.

We note that other researchers have addressed some of these issues, but no published

method provides a controller that addresses all of these issues.

2) A novel deviation model formulation obtained by the deviation of the variables from

a virtual steady state of them (determined by the latest implemented manipulated
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variables). This formulation is used for time-invariant uncertainty to reduce the
conservativeness in uncertainty prediction by limiting the effects of plant uncertainty

to changes in the input variables.

3) Efficient real-time calculation for uncertainty characterization, where the extensive

calculation is performed off-line.
4) Explicit handling of uncertainties in state-estimation.

The new robust MPC method can be used to optimize uncertain systems with
feedback. Its advantages are demonstrated in simulation case studies. We can conclude

from the simulation results that:

1) The robust MPC outperforms the nominal MPC on handling the constraints on
controlled variables;

2) The robust MPC, which uses a closed-loop uncertainty estimate, is better than the
robust MPC with open-loop prediction of uncertainty, which could be unnecessarily
conservative due to its overestimation of uncertainty;

3) The robust MPC handles the saturation of the manipulated variables well (but without
a global optimality guarantee);

4) The feasibility of the plant can be achieved with a high probability though
chance-constrained programming for the robust MPC formulation (provided a
feasible plant trajectory exists). The probability of constraint violations can be
reduced by increasing the confidence level for each constraint as well as increasing

the uncertainty of the parameters.

The new robust MPC method can be applied to process control and supply chain
optimization problems. The following Chapters 4 and 5 will discuss special issues in
these two types of applications and introduce special extensions in modeling and

formulation for the unique needs of each application.
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Chapter 4

Robust MPC for Process Control

In this chapter, we extend the general framework of the robust MPC developed in
Chapter 3 to include features required for the process control problems. Two extensions
are developed: i) integrating the robust steady-state optimization, and ii) including the
robust dynamic performance in the objective function.

Industrial MPC control systems usually include a steady-state optimization unit
that is executed immediately before each controller execution (Qin and Badgwell, 2003).
Since a nominal steady-state optimization may give infeasible set points with the
presence of uncertainty, a new robust steady-state optimization method that is developed
to address the closed-loop uncertainty explicitly is introduced in Section 4.1. The original
formulation is a bilevel stochastic optimization problem, which is then approximately
transformed into a limited number of convex optimization problems for efficient
real-time calculation. This reformulation is similar to the one introduced in Chapter 3 for
dynamic feedback systems.

In some process control problems, we would like to optimize the dynamic
performance based on the behaviors of all realizations of the uncertain system instead of
just the nominal dynamic performance. Section 4.2 discusses including the expected

performance and the variances of the controlled variables in the objective function, and it
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also shows that the new objective function is still convex and quadratic, yielding tractable
real-time calculations.

Section 4.3 reports the case study results that show the advantages of the robust
MPC method and the two extensions in process control, and the conclusions are

summarized in Section 4.4.

4.1 Robust Steady-State Optimization

4.1.1 Steady-state optimization in industrial MPC control system

As introduced in Chapter 1, a typical industrial MPC control system involves a
steady-state optimization unit that obtains optimal set points and a trajectory optimization
unit (i.e., MPC controller) that determines the controller action to regulate the dynamics
of the system. Figure 4.1 shows the simplified diagram of the closed-loop system that
includes both the steady-state and trajectory optimizations.

The steady-state optimization is executed immediately before every trajectory
optimization at the beginning of each controller execution period. It is formulated to find

a feasible “settling point” or steady state of the system that is close to the reference values

ly(reﬁ, u(reﬁ

Steady- State b Bias
Optimization Estimate
Yspr Usp A
MPC <« ©°
(Trajectory optimization)
" State
Estimate
Plant _y"'__f

Figure 4.1 Closed-loop system with steady-state and trajectory optimization
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of the controlled and manipulated variables 3, 4%, which are reference values
determined by an upper-level optimizer or by plant personnel. The results of the
steady-state optimization are the set point of the system (ysp, ug), which are used by the
MPC trajectory optimization as described in Chapter 3.

The steady-state optimization is important because disturbances entering the
system or new input information from the operator may change the location of the
optimal steady state. It is performed based on the steady-state plant model, which can be

obtained from the state-space dynamic model (equations (3.5b-3.5d) in Chapter 3) as

x,=Ax,+Bu,+B,d, +B,e 4.1)

rossr rossr mss er — ss

Visr = Cr X ssr (42)

where y_.€R” ,x,€R™,u,eR",d,  eR", e, ,eR" denote the vectors
containing the controlled variables, state variables, manipulated variables, measured or
forecast disturbances and feedback variables at the steady state respectively, 4,, B,, Ba,
B., and C, are the uncertain parameters of the plant. Here, we do not consider the noises
for steady-state optimization.

Since the steady-state measured disturbances d,s and the steady-state feedback e
can not be obtained directly during the transient, we have to use estimated values for
them in equation (4.1). In this thesis, we assume the disturbances measured at the current
time step to be constant in the future and estimate d,; by the current measured
disturbance d,,y We also assume the feedback estimated at the current time step to be
constant in the future and estimate ey by ¢é,. Thus, the steady state model equations

(4.1-4.2) can be combined into the following form.

yssr = K u + Kdrdm,O + bO (43)

roUssr
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where K, =C,(I-A4,)"'B, and K, =C,(I-A4,)"'B, are the uncertain gains and
by=C,(I-4)"'B,é,~C(I-A4)"B,é,, which means we approximate b, by its

nominally estimated value.

The nominal steady-state optimization formulation can be written in the following

form.
NSSO:
1311151 c,s,+c,s, +f's (4.52)
st. Vo =Ku,+K,d,+b, (4.5b)
Vp = Vs (4.5¢)
Uy, =Ug (4.5d)
Ui SULSUL (4.5¢)
Vmin =5 S Vs S Vi T8 (4.51)
-5, <Y -y < s, (4.5g)
-5, <u,—-u" <5, (4.5h)
5,585,820 (4.51)

The mathematical program (4.5a-4.5i) is a Linear Program (LP, Boyd and Vandenberghe,
2004). Equation (4.5b) denotes the nominal steady-state plant model (4.3) using the
nominal value of all parameters. y, € R” and y, e R™ are the nominal steady-state
controlled and manipulated variables, and the nominal gains K and K; can be calculated
using the nominal values of the plant parameters. Equations (4.5¢c-4.5d) define results of

the steady-state optimization as the set points yg,e R™, ugpe R™ to MPC controller.
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Equation (4.5¢) denotes the hard lower bounds #,;;e€ R™ and upper bounds #,,.€ R™ on
the manipulated variables. Equation (4.5f) denotes the soft lower bounds ymne R™ and
upper bounds V€ R™ on the controlled variables with the slack variables s measuring
any violation. Equations (4.5g-4.5h) define the slack variables s,e€ R™ and s, R™ for the
deviation of the steady-state controlled and manipulated variables from their reference
values, respectively. Equation (4.51) denotes all the slack variables are nonnegative. The
objective function for the optimization (4.5a) minimizes the weighted deviation of the
steady-state controlled and manipulated variables from their references plus the weighted
violation of the soft bounds on the controlled variables. The weighing and penalty
coefficients c,, ¢, and f can be determined according to economics or other preferences

for the operation.

4.1.2 The robust steady-state optimization with closed-loop uncertainty

The purpose of the steady-sate optimization is to find the “best, feasible” settling
condition for the control system. However, due to the uncertainty in the plant, the
steady state of the uncertain plant is different for different plant realizations. Then, the set
points yg, ug, obtained by solving problem NSSO will likely not be the best values and
the variables in the plant may not even be feasible. Therefore, a robust steady-state
optimization method is developed in this research to address the uncertainty explicitly.
This method is designed to achieve the following goals: the set points y, and ug, give the
maximum profit for the nominal model and feasible y and u for all model parameters
within their uncertainty definition.

A straight-forward approach for formulating the robust steady-state optimization
for the above two goals is to a) Replace the nominal model (4.5b) by the uncertain plant
model (4.3) (so that for deterministic steady state manipulated variables, the steady state
controlled variables are different for different plant realizations); b) Pose the constraint
(4.5f) on the uncertain steady-state controlled variables instead of their nominal values.

This idea has been used in the robust steady-state optimization method developed
by Kassmann et al. (2000). However, this approach does not address the effect of the
controller on the steady state in the closed-loop system. As we know, the controller will

compensate for model errors by adjusting the manipulated variables to minimize the
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objective function. These adjustments would tend to maintain feasibility and bring the
controlled variables, yy,, to their reference values, y('ef), if possible. So, the method of
Kassmann et. al. is not correct for the uncertainty in the closed-loop system because it
overlooks the effect of the controller. We call this method robust steady-state
optimization with open-loop uncertainty.

To address the uncertainty of the steady state of closed-loop system correctly, we
have to consider both the uncertain steady-state plant model (4.3) and a steady-state
controller model. We call the method using this idea robust steady-state optimization
with closed-loop uncertainty. Similar to our discussion in Chapter 3 for trajectory
optimization, closed-loop uncertainty is more accurate and less conservative than
open-loop uncertainty for steady-state optimization. This will be demonstrated by some
case study results in Section 4.3.

Here, we develop the robust steady-state optimization method using closed-loop
uncertainty. The steady-state MPC controller model is approximated by the steady-state

version of nominal MPC (similar to equation (3.1) in Chapter 3) as

NMPCSS:
n’}in (yss - ysp)T Q(yss - ysp) + (uss - usp )T R(uss - usp) (463)
s.t. yss = Kuss + Kddm,O + bssr (46b)
umin = U < U nax (460)

The objective function (4.6a) is simplified to contain only the deviations of the controlled
and manipulated variables from their set points at the steady state because the system is
invariant at the steady state throughout the horizon. Q and R contain the weighting
coefficients from é and R in NMPC equation (3.1) for only one time step. The
nominal steady-state model (4.6b) is the steady-state version of the nominal dynamic
model (3.1b-3.1d), which can be derived from the model (3.1b-3.1d) as we discussed in

the previous Section 4.1.1. Note that the feedback term used by the controller in its model
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at steady state will be different for different plant realizations, so the bias b, € R” in

the model (4.6b) is not exactly by but an uncertain value depending on plant realization.

Here, we only include the hard bounds on the manipulated variables (4.6c) because the

soft bounds on the controlled variables will be enforced by the robust steady-state

optimization in the outer layer of the bilevel problem.

Then, we can write the new robust steady-state optimization formulation in the

following form

RSSO-CL:

: T T T
min ¢, s, +c, 5, +f°s

Vspsthsp S

st.  u,, = NMPCSS(b,,)
yssr = K u + Kdrdm,O + bO

rUssr

bssr = K u + Kdrdm,O + bO - Kussr - Kddm,O

r*ssr

For all K,, K, in the uncertainty region

(4.72)

(4.7b)

4.7c)

(4.7d)

(4.7¢)

(4.7)

(4.7g)

(4.7h)

(4.71)

@7

(4.7%)

Equation (4.7b) denotes the steady-state nominal MPC control law (4.6), with the optimal

manipulated variables u, different for different estimated steady-state bias by, due to
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different realizations of the plant. Equation (4.7c) relates the uncertain ys to the
uncertain u,, using the uncertain steady-state plant model, and equation (4.7¢) relates the
uncertain estimated steady-state bias to the uncertain plant realizations. Equations
(4.7e-4.7f) define that nominal steady state values y;, ug that are sent to the MPC
controller as set points yg, ug. Equations (4.7g-4.7h) enforce hard bounds on the
uncertain manipulated variables u,;, and soft bounds on the uncertain controlled variables
yss- Equations (4.71-4.7j) define the slack variables s, and s, for the deviation of the
nominal steady-state controlled and manipulated variables from their reference values,
respectively. Equation (4.7k) denotes all the slack variables are nonnegative. The
objective of the optimization (4.7a) minimizes the weighted deviation of the nominal
steady-state controlled and manipulated variables from their references plus the weighted
violation of the soft bounds on the controlled variables.

Obviously, RSSO-CL is a bilevel stochastic optimization problem. As we
discussed in Chapter 3, we do not use the scenario-based uncertainty because of
tractability; rather, we use a continuous parametric uncertainty description. However, the
bilevel problem is very difficult to solve in the real-time. Again, we can transform this
problem approximately into a limited number of single-level deterministic optimization
problems using the similar idea we use for dynamic optimization in Chapter 3. We will

discuss the details in the following sections.

4.1.3 The reformulation to convex optimization

The first step of the reformulation is to replace the inner optimization problem
(4.7b) by its KKT conditions. If NMPCSS is properly tuned, the QP Problem will be
strictly convex so that it’s optimum can be uniquely determined through its first order

KKT conditions as

2KTQ(Kussr + Kddm,O + bssr - ysp) + 2R(ussr - usp) + A‘+ - /1_ = 0 (483)
A’+ : (ussr - umax) =0 , 2’_ ' (—ussr + umin) = 0 , ﬂ'+ ’ﬂ’_l 2 O (48b)
umin < ussr < umax (48C)
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where the Lagrange multiplier vectors A",A” € R™ relate to the upper and lower bounds
on the manipulated variables respectively, the dot “-” denotes the element-wise
multiplication. We can replace the nominal MPC control law u_, = NMPCSS(b,,) with
the KKT conditions (4.8a-4.8¢) so that the bilevel stochastic problem (4.7) becomes
single level stochastic MPEC problem. However, this problem is still difficult to solve in
the real-time due to the complementarity constraints (4.8b).

So the second step of reformulation is to remove the complementarity
constraints (4.8b). Similar to what we have done for trajectory optimization, we assume

the following assumption holds

Assumption 4.1: 4 manipulated variable at steady state either equals its bound for all

the realizations of the process or is unconstrained for all the realizations of the process.

We also assume the all the active bounds on manipulated variables at the steady
state are known (using a heuristic to be explained). When no bounds are active, all the

Lagrange multipliers must be zero due to (4.8b), and equation (4.8a) becomes
2K"O(Ku,, +K,d, , +b,, - Yp)+ 2Ry, —u,)=0 4.9)
According to equation (4.7d), equation (4.9) can be written as
u,, =(K'QOK, + R)'[K"O(y,, -b, —K,d,,,) + Ru,,] (4.10)
Now we define a new, artificial vector

t, =K'Q(y,, —b,)+Ru,, 4.11)
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Note that the nominal MPC can be properly tuned so that the weighting matrix R has full
rank, so that for any value of ¢ there will be (perhaps several sets of) values of yg, ug
which gives the same value of f; through equation (4.11); or for any value of ys,, ug, there
will be unique value of 7, corresponds to it through equation (4.11). Then, equation
(4.10) can be equivalently transformed into the following unconstrained steady-state

nominal MPC control law.
u, =(K'OK, +R)"'t, —(K"QK, +R)'K"QK . d,, (4.12)

When a steady-state manipulated variable (an element in u,,) saturates, the
corresponding Lagrange multiplier forces it to its bound and the multiplier value does not
affect other manipulated variables. Therefore, the Lagrange multipliers can also been
omitted in the formulation when we know the active set. We can address the known
saturation of the manipulated variables by modifying equation (4.12) into give the

following.

u, =1, (KTOK, + R)'t, —~(K"OK, + B K" OK ,.d,, ) - b, )+, (4.13)

(I-Is ), =u, (4.14)

where I5;e R™™ is a diagonal matrix with the diagonal vector containing 0 or 1 to
specify the saturation, /€ R™ is an identity matrix. The vector u, contains the active

upper bound or lower bound, which is known when we know the saturation pattern.

According to equations (4.7c) and (4.13),

yssr = K u + Kdrdm,O + bO

=K,[I, (K"OK, + R)'t, —~(K"QK, + R K" QK ,d, ) —1,, )+1,, 4.15)
+K,d,, +b,
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The equations (4.13-4.15) construct the closed-loop steady-state model that can be

rewritten into the following form for convenience

ussr = Gurtss + Gudrdm,o (416)
yssr = Gyrtss + Gydrdm,O + bO (417)
(I - Iﬁ,ss )tss = uc (418)

Substitute the equations (4.7b-4.7d) in RSSO-CL with the above closed-loop model, then

the robust steady-state optimization formulation is changed into the following form

RSSO-CLT:

Itnml? c,s,+c,s,+f's (4.19a)

st u, =Gt + Gudrdm,O (4.19b)
Ver = Gyrtss + Gydrdm,O +b, (4.19¢)
(I-I;.)t, =u, (4.19d)

Uy =Ug (4.19¢)

Yo = Vs (4.199)

Upin SUG S UL (4.19g)

Vimin =55 Veor S Vmax T5 (4.19h)

~-5, <y, -y < s, (4.191)

—s, <u,—u" <s, (4.19))
sy,su,SZO (4.19k)

For all G, Gua» Gy, Gyar in the uncertainty region
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where the of freedom change from yg, wug to ts the different realizations of the
parameters Gyr, Guar, Gy, Gyar can be calculated from different realizations of X,, K and

the saturation of the manipulated variables (defined by I ).

Based on the previous development:

Remark 4.1: If Assumption 4.1 holds and we know the correct saturation pattern of the
manipulated variables at the steady state, the control law (4.13) is equivalent to the inner
optimization problem us,= NMPCSS(bssy) and the formulation RSSO-CLT is equivalent
to the formulation RSSO-CL.

The third step of the reformulation is to introduce an active set heuristic, which is
similar to the one discussed in Chapter 3, to obtain the active bounds on the manipulated

variables in an iterative way. The heuristic is given in the following steps:

1) Assume no bounds are active at steady state, set all elements in Jg to 1, and solve
problem RSSO-CLT.

2) The solution of problem RSSO-CLT gives the uncertain steady-state manipulated
variables. If some manipulated variables, which are not assumed to saturate, have a
value(s) at its bound (i.e., the boundaries of their uncertainty regions reach the upper
or lower bounds on these manipulated variables), go to step (3); otherwise, end the
iterative procedure and the current solution is the final solution.

3) Review the saturation status of all manipulated variables not already fixed at their
bounds. Fix the manipulated variables that have encountered their bounds to their
bound values (by specifying g, u.). Solve problem RSSO-CLT again and go to step
(2).

The heuristic does not guarantee the “global optimum” of solution, i.e., there may
be another saturation pattern that is better than the one found by the heuristic. However,
the heuristic converges to the optimum if the correct active set is selected. The maximum
number of iterations in the heuristic is the number of manipulated variables.

The problem RSSO-CLT is an LP with uncertain linear constraints. Using the

method explained in Section 3.3.1 of Chapter 3, this problem can be transformed
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approximately into a SOCP by chance-constrained program technique with a given

confidence level a as

RSSO-CLTSOCP:

s.t.

: T T T
min c¢,s,+c,s,+f's

1S

(4.20a)
E(Gur,l )tss + E(Gudr,l )dm,O N
(4.20b)
+ q)-l (ass) “ Vuls{vzl(tiv’ d: (134 I)T ”2S umaxl
’ ’ L I=1..,n,
E(Gur,l )tss + E(Gudr,l )dm,O
) , (4.20c)
- q) ! (ass) ” Vulsfs,zl (t.z; s dr:,O > 1) ”2 2 umin,] 7
E(Gyr,l )tss + E(Gydr,l )dmO 3\
i , (4.20d)
+(D_1(ass)”V)}sszl(tss’d;ml) ||2Syma_xl +S1
’ ’ ’ > l :1, . ,ny
E(Gyr,l )tss + E(Gydr,l )dm,O
-1 2,7 4T r J (4.20¢)
-0 (ass) ” Vyss,l(tss’ dm,O’ 1) “2Z ymin,] -5
I-I; ), =u, (4.201)
u,=u, =Gt + G4, (4.20g)
Vo =V =G0+ G,d,ot+b, (4.20h)
-5, <y, -y <s, (4.20i)
-5, <u,—u" <5, (4.205)
5,,8,,520 (4.20k)

For all Gy, Guar, Gyr, Gyar in the uncertainty region

where ay is constraint-wise confidence level, G,r;, Gua;, denote the /th row of matrices

Gur, Gudr, and Uminj, Umax; denote the /th element in umin, Umax respectively, Gyri Gyari
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denote the /th row of matrices G,p, Gyap, and Ymins, Ymax; denote the /th element in Ymin,
Ymax Tespectively. s; denotes the /th row of the slack variable vector s.
Vissiand Vg denote the covariance matrices of vector (G, Guaps, 1) and vector
(Gypi Gyapyp, 1) respectively, which are different for different saturation patterns of the
manipulated variables (defined by Ij). Vs is obtained through Monte Carlo sampling
as follows (and a similar approach is used for Vi ):
1) Randomly select a sample of the open-loop uncertain parameters (K,, K;) shown
in model (4.3);
2) Calculate closed-loop steady-state uncertain parameters (G, Guar) accordingly;
3) Repeat procedure (1-2) for 100 samples of the open-loop uncertain parameters
and obtain different groups of closed-loop uncertain parameters, which are then be
used to calculate V,,; according to the standard technique (Box et al., 2008).
The characterization of Vs, and Vg can be performed using the same method
introduced in Section 3.3.2., where the extensive computation is performed off-line and
the real-time computation requires little time.
Equations (4.19g-4.19h) mean nominal steady state values y;, us are sent to the
MPC controller as the set points yg, usp.
Therefore, the new robust steady-state optimization method is implemented by
solving the SOCP problem RSSO-CLTSOCEP iteratively using the heuristic.

4.1.4 The deviation model to exploit the feedback information

In many cases, the uncertain parameters in an industrial MPC control system
change slowly with respect to the closed-loop dynamics of the control system. In these
cases, we can assume they are time-invariant, and we can exploit the feedback
information to reduce the predicted uncertainty using the same idea we discussed in
Section 3.2.5, i.e., to enhance the uncertain steady-state plant model (4.3) by expressing
the variables as deviations from a virtual steady-state that is determined by the “most
current” manipulated variables and the measured disturbances.

For more details, we define the variables at the virtual steady state are y;, u;, d;

bsy  where u,, dy, e; are known or are estimated at each controller execution as follows.
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Ug = Uy (4.20)
ds = dm,—l (421)
b, =b, (4.22)

and then y; can be obtained through the nominal steady-state model as

Y, =Ku,+K,d, +b, (4.23)

As discussed in Section 3.2.5, if there are time delays between the controlled and
manipulated variables, we choose the value of a manipulated variable €, time steps
before for its value at the virtual steady state, where 6, denotes the maximum time
delay between this manipulated variable and different controlled variables. We can also
choose the value of a measured disturbance in the similar way if there are time delays
between the controlled variables and the measured disturbances.

With the virtual steady state determined by equations (4.20-4.23), we can enhance

the uncertain steady-state plant model (4.3) into the following deviation model.

yssr _ys = Kr (ussr _us) + Kdr (dm,O - ds) (424)

We can see that when the system is at a steady state, s , Uss, dss(=dm0), the virtual steady
state coincides with the actual steady-state, i.e. ys=ys;, Us=us;, ds- dss. Then the deviation
model (4.24) will correctly predict y;, to be yss and its uncertainty zero. However, the
steady-state model (4.3), which is not formulated in deviation variables, would predict
that y, is different for different plant realizations (i.e. its uncertainty is not zero) at the
steady state, which is not correct for time-invariant system. Therefore, in this thesis we
use the deviation model for the prediction of time-invariant uncertainty in problem
RSSO-CLTSOCP. The same idea has been successfully applied by Kassmann et al.
(2000) in their robust steady-state optimization formulation with open-loop uncertainty.
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As discussed in Section 3.2.5 in Chapter 3, when a deviation model is needed to

handle time-invariant uncertainty, we do not need to change the structure of the general

formulation developed; we only need to express the variables, their references, set points

and bounds as deviation variables before the optimization as follows,

o
Uy = U, —U

ssr 5

d' = deS - dS

mss
4 —_ —
Yy ssr Vo = Vs

b’ = bssr - b

Ssr §

1(refty o (reft) _

y y Vs

U el _

5

U
ysp _ysp =Y
- —_
usp—usp U
'

Ymax = VYmax — Vs
4 aadd —
ymin_ymin Vs
! = -_—
Upax = Umax — U
! = —_
umm umin us
k=0,-,p-1

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

And after the optimization, we can restore the solution in the deviated variable form back

to the original form (using equations (4.25-4.36) again).

Note that if the steady-state optimization is required for a system, this system

usually can be deemed as a time-invariant system (otherwise the calculation of the steady
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state is meaningless). Therefore, for the case studies that run robust steady-state
optimization in this research, all can be deemed as time-invariant. We will consistently
use the deviation model (i.e., express the variables as deviation variables for optimization)

for the robust steady-state optimization in the thesis.

4.1.5 Summary of the Robust Steady-State Optimization Method

According to the previous discussions in Section 4.1, the new robust steady-state

optimization algorithm can be summarized as follows.

Calculation performed off-line:

1) Calculate the nominal value of the coefficients G,,, Gus Gy», Gya in the
closed-loop model (4.16-4.17), for the situation no input bounds are active,
according to equations (4.13-4.17);

2) Repeat the calculation in step 1 for other samples of the open-loop uncertain
system (100 samples used in this thesis). Calculate the covariance matrices for the

closed-loop coefficients according to the results of the sample calculations.

Calculation performed on-line at each controller execution period:

1) Obtain the reference values of the controlled and manipulated variables, y*% 4%

according to plant personnel or upper level optimizer.

2) Read new measurements of controlled variables and the measured disturbances
Ym0, Amo respectively. Set uy to be the implemented manipulated variables in the

last controller execution.

3) Calculate nominally predicted controlled variable for the current time step, yy,
according to the previous implemented manipulated variables, measured

disturbances and nominally estimated state and feedback variables. Then get the

bias variables b, =y, o~ .

4) Calculate the virtual steady state according to equations (4.20-4.23) and deviate
the variables, references, set points and bounds from the virtual steady state

according to equations (4.25-4.36).
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5) Assume no bounds are active at steady state, set all elements in s to 1, and solve

s.t.

the following problem RSSO-CLTSOCP2 with deviation variables:

RSSO-CLTSOCP2:

: T T T
I}'ll? c,s,+c, s, +fs

E(Gur,l )tss + E(Gudr,l )d"”o

-1 172 {,T T
+ CD (ass) “ l'/uss,l(tss’ dr’n,O’ 1)T ”2S u:nax,l

I=1..n,
E@G, )ty +EGyy ),
~ 0 @ )V, 1) 12
EG, )ty +E(Goy))dig
+ O @) IV, o 1] (LS Yoy +5,
I=1,..,ny

E(Gyr,l )tss + E(Gydr,l )drln,()
-o™ ()|l V)}s/sz,l (tsTsa d,’nT,os 1)r Il,2 y:nin,l =5

I-I; ) =u,

u;p =u, =Gt + Guddr’n,O

Vo =V =Gt +Gud, o + b
-5, <Y, -y < 5,

-5, <u, —-u'"P <5,

u

5,,8,,520

For all Gy, Guar, Gyr. Gyar in the uncertainty region
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(4.37j)

(4.37k)



PhD Thesis — Xiang Li McMaster University — Chemical Engineering

Note that the problem RSSO-CLTSOCP2 is different from the problem
RSSO-CLTSOCP (equations (4.20a-4.20k) only in using the system variables and
parameters that has been expressed as deviations from the virtual steady state. All
the other variables and parameters in the problem RSSO-CLTSOCP2 are the

same as defined before.

6) The solution gives the uncertain steady-state manipulated variables. If some
manipulated variables, which are not assumed to saturate, have a value(s) at their
bounds (i.e., the boundaries of their uncertainty regions reach the upper or lower
bounds on these manipulated variables), go to step 7; otherwise, end the iterative
procedure of the heuristic and go to step 8 (the current solution is the final
solution obtained by the heuristic).

7) Review the saturation status of all manipulated variables not already fixed at their
bounds. Fix the manipulated variables that have encountered their bounds to their
bound values (by specifying dss, u.). Solve problem RSSO-CLTSOCP2 again and

go to step 6.

8) Restore the solution from the deviation variable mode using equations (4.25-4.36)

and send the solved set points ys, us, to the lower level controller.

4.2 Optimization of Robust Dynamic Performance

The general framework of robust dynamic MPC developed in Chapter 3 addresses
the uncertainty explicitly in constraint handling only, where the objective of the

optimization is still to minimize the nominal dynamic performance,

J@y,u, Au)=(y -y, ) O(y~y,)+@u-u,) Ru-u,)+Au"WAu (4.38)
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However, in some circumstances we would like to include in the objective function not
only the nominal dynamic performance, but also some measure of uncertainty in the
dynamic performance. (We will show several such circumstances in the cases studies in
Section 4.3.) Our approach here is to express the robust objective function as a
combination of the expected objective function and the appropriately weighted variances
of the variables y, u, and Au that provide a measure of the effects of the uncertainty on
the performance. We will demonstrate that this form is the natural result of the
uncertainty description and the application of the expectation operator. Then, we will
prove that the robust objective function can be reformulated as a convex quadratic
function of the optimization decision variables, t, so that the resulting robust MPC
formulation can also be transformed (approximately) into SOCP problems.

As a first step in the development, we will prove the following relationship.

E(J(yr’ ur’ Aur)) = J(E(Yr)7 E(ur)ﬂ E(Aur))

n,p n,n nyn 4.39
P> g Var(y, )+ S nVaru, )+ S wharAu,) )
I=1 I=1 m=1

where y,, u,, Au, are the uncertain controlled variables, manipulated variables and change
of manipulated variables in the future horizon, y,;denotes the /th element of vector y,, u,;
denotes the /th element of vector u,, q;, ; and w;denote the /th element of the diagonal of
weighting matrices Q R and W, respectively, V(:) denotes the variance of the

variables in the parentheses. For the convenience of notation, we define the following

Jl(yr)=(yr_ysp)T§(yr _ysp) (440)
J(u,)=(u, —u,) R(u, —u,,) (4.41)
J,(Au,) = Au’WAu, (4.42)
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then
E(J(yr ] ur s Aur )) = E(']l (yr )) + E(JZ (ur )) + E(JS (Aur )) (443)

We can reformulate equation (4.40) as

L0)=0,-Y,) 0¥, -¥,)
=, -Ey, )+ By -y, F Olo, - Ey )+ (B ) -y,
=(y,~Ey,)) Oy, - Ey )+ (Ey) -y, ) OEF,)-y,)
+2Ey,)-y,) O, - Ev,))

(4.44)

So

Bl 5)]=Ely, - Ev,)) 06, - Ey )+ E[Ev) -y, F OEG) -y, )|
+ E[2(E(y,)—ysp)TQ(yr —E(Y,))] (4.45)
- E[(é“y, —E@"y,)) (0", - E(Q‘”y,))]+ JU(E(y,))+0

Note that the first term of the above expression is the sum of the variances of each

element of vector 0"%y,,soitequalsto tr(Var(Q'%y,)) =tr(QVar(y,)). Therefore,

E[J,(y)]=r(QVar(y,) + J,(E(y,))

nyp (4.46)
=) qVar(y,,)+J,(E(Y,))
I=1
Similarly, we can obtain
E[1, )= rVar(, )+ J,(E@,)) (4.47)
m=1
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Bl (au))= 3w, Var(8u, ) + T, (E(au, ) @.48)
m=1

The equation (4.39) can be obtained by summing equations (4.46-4.48).
We can also include the variances of the variables y;, u,, and Au, in the objective

to get a more general objective function as,

n,p n,n n
B0, A0+ S 7, Var(y,) + Sy Varu, )+ 3y Var(Au,,)
=1 I=1

m=1

=J(E(y,), E(u,), E(Au,)) (4.49)

n.p n,n n
+ z (g, +7y,, War(y,,)+ 2 (r+y, War(u,,)+ f (W, + ¥ au War(Au, )
[

1=l m=1

where y,,, 7,, and y,,, are the weighting coefficients of the variances, whose
non-negative values can be tuned to express extra emphasis for reduced variances.

Next, we will express each term in equation (4.49) as function of t. We rewrite the
closed-loop model developed in Chapter 3 again as follows (variable @ will be replaced
by = if some system states are not measurable and state estimation is required, as

discussed in Section 3.4 of Chapter 3):

u =L t+M _0+N,o0 (4.50)

y,=L,t+M 8+N e (4.51)
and from equation (4.50) we can obtain

Au, =L, t+M, 0+N, o (4.52)

124


http:4.46-4.48

PhD Thesis — Xiang Li McMaster University — Chemical Engineering

According to the closed-loop model (4.50-4.52), we can obtain

E(u,)=E(L,)t+E(M,)0+EN,)e 4.53)
E(y,)=E(L,)t+EM,)8+E(N o (4.54)

E(Au,) = E(L,)t+E(M,,)0+E(N,)o 4.55)
Var(y,))=Var(L, t+ M, 8+N, 0)=| V{7, o7, NI )| (4.56)

Var(u,,)=Var(L, ,t+ M, 0+ N, 0)=| V,}f(tT, 0", N, )T 13 (4.57)

ur,l

Var(Au,;) =Var(Ly, t+M,, 0+ Ny, @) =| V227, o7, NL,J 2 @58

where Ly, ;, M, denote the /th rows of the uncertain matrices L,,, M,, respectively, V,,;
denotes the covariance matrix of vector (Ly.;, My1, ®); Lyr1, M,,,1 denote the /th rows of
the uncertain matrices L,,, M, respectively, V,,,, denotes the covariance matrix of vector
(Lurty, Myr1, ®); Lauri, Mawr; denote the /th rows of the uncertain matrices Ljur, Myyr
respectively, V4., denotes the covariance matrix of vector (L1, My, ®).

According to equations (4.38) and (4.53-4.58), the objective function (4.49) that
includes both the expected performance and the variances or the system variables can be

transformed into the following function of t,

| Q" (E(L, )t +E(M,, )0+ E(N o -y,
+[| R (E(L, )t + E(M,, 0+ E(N,)o—u,,)

~ n,n -
+ || WY EW@L It +EM,, )8+ EN,)®) | +Z(q,+}/y,,)||V,}’§2(tT, 0", N,{,) I 4.59)

I=1

n,n n,p
= 7 T
IV, o7, NLY B+ 0w +ru ) IV, o7, NT) I

=1 I=1
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It is easy to confirm that the objective function (4.59) is convex and quadratic
with respect to the degrees of freedom t. Therefore, with this “robust” objective function,
the robust MPC can still be solved by solving a series of SOCP problems using the
method developed in Chapter 3.

Note that as stated in Section 3.2.5, if the uncertainty in the system can be deemed
as time-invariant and the deviation model is needed for better performance, we can still
optimize an objective function with the same structure of equation (4.59) for the expected
performance and weighted variances of the system variables; and the only change is
replacing the variables in equation (4.59) with the corresponding deviation variables that
have been deviated from the virtual steady state. For the simplicity of the discussion, we

will not show a separate objective function for time-invariant uncertainty only.

4.3 Case Study Results and Discussion

This section contains the case studies of the several distillation control and CSTR
control systems, which are investigated to show:

1) The advantage of using closed-loop uncertainty over using open-loop uncertainty in
the robust steady-state optimization;

2) The advantage of the robust steady-state and dynamic optimization over the nominal
steady-state and dynamic optimization in Multiple Input Multiple Output (MIMO)
system;

3) The advantage of minimizing robust performance instead of nominal performance in

the robust MPC formulation for particular situations.

The simulation case studies were performed on a PC with Intel Core 2 Duo 3.0
GHz, 4GB memory and Windows Vista. The solution for the plant simulation is
programmed in MATLAB 7.5 and the QP and SOCP problems are solved in GAMS with
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the interior point (barrier) solver of CPLEX 11. The data in MATLAB and CPLEX are
exchanged using the interface software MATGAMS developed by Ferris (2005). All the
system models are initially expressed with continuous input-output transfer functions,
and they are all discretized and transformed into state-space model using the Control

System Toolbox in MATLAB 7.5.

4.3.1 The control and optimization methods used in the case studies

We will evaluate several dynamic control and steady-state optimization methods
in the case studies, through which the advantage of the new methods will be
demonstrated. These methods include:

1) The nominal steady-state optimization

This method solves the LP problem (4.5) at each controller execution period.

2) The robust steady-state optimization

The detailed steps to implement this method are shown in Section 4.1.5.

3) The open-loop robust steady-state optimization

Here the open-loop robust steady-state optimization means the robust MPC
method that uses open-loop uncertainty prediction (e.g. the method developed by
Kassmann et al., 2000), where the controller action at the steady state are assumed to be
unchanged for different realizations of the plant. This is equivalent to assuming that the
control law of the closed-loop system at the steady state are u,;=f;s and the steady-state
system is optimized is by adjusting ;.

Therefore, this method can be implemented in the same way as detailed in Section
4.1.5 with the uncertainty calculated assuming that all the manipulated variables
saturated, but with the values of the manipulated variables determined by t instead of
being fixed to the bounds. The active set heuristic is not need here because the saturation

pattern has been defined.
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4) The different dynamic control methods

In the case studies in this section, we apply the nominal MPC, the robust MPC
that is developed in Chapter 3, the unconstrained robust MPC that does not address input
saturation in the closed-loop prediction, and the robust MPC minimizing robust
performance that is developed in this chapter. The first three methods are the same as
those we described in Section 3.5.1 in Chapter 3. The last method is similar to the robust
MPC developed in Chapter 3, but the SOCP problems it solves have the robust objective

function in the form of equation (4.59) instead of a nominal objective.

4.3.2 Binary distillation control system 1

Figure 4.2 shows the diagram of the binary distillation control system. The
controlled variables are the distillate composition of light key XD (y;) and the bottoms
composition of light key XB (7). The manipulated variables are the Reflux rate R (u;)
and the reboiler rate V (u;). The nonlinear model of the binary distillation process is
described by a simulator, which is developed using the formulation from Marlin (1995)

and the parameters from Luyben (1989). This nonlinear process can be linearized around

Figure 4.2 Binary distillation control system 1
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the initial steady-state and expressed as input-output transfer functions. See Appendix G
for the details the parameters and linearization procedure used in the thesis. We assume
it takes =10 minutes for the distillate and bottoms outlet flows to reach the
component analyzer and get analyzed, which introduces the time delay of 10 minutes
between the controlled and manipulated variables.

The uncertainty of the system comes from the slowly varying feed in flow rate F,
whose uncertain value is assumed to obey normal distribution with mean 8.7713
kmole/min and standard deviation 1.4619 kmole/min. The nominal plant model is derived
at F'=8.7713 kmole/min as,

Nominal Model:

0.1491e7%  —0.1386¢7'%*
[yl(s)]_ 4558s+1  53.285+1 [”I(S)}

y,(s)| | 0.0649¢™™  —0.0775¢™ || u, (s) (4.60)

34.135+1 31.33s+1

The controller execution period for this system is selected to be 10 minutes. The
linearized model of the system is discretized with sampling time of 10 minutes and
transformed into state-space model using the MATLAB control system toolbox. The
state-space form of the distillation model without time delays and feedback variables has
the state vector x with 4 element and the system is controllable and observable. The
feedback scheme assumes the unmeasured disturbance enters the system through the
input channel (See Appendix A for discussion on selection of unmeasured disturbance
model), which introduces the unmeasured disturbance vector ¢ with 2 element. So the
augmented system with x and e has 6 states, and it is detectable. Furthermore, the time
delay between y and u is described by 2 additional states using the method introduced in
Appendix C. Since these 2 states denote the u in the last time step, they are known, and
no observer gain is need for them. The MPC controllers are tuned according to the

methods described in Chapter 3, and Table 4-1 shows the tuning parameters.
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The deterministic SOCP subproblem solved by the proposed robust MPC method for
this system has 20 decision variables, 230 linear constraints and 140 second order cones.
This problem is typically solved in 0.04 CPU seconds. When applying the active set
heuristic, the maximum number of SOCP subproblems solved for this system is 10 (the

number of time steps in the control horizon), so the robust MPC costs at most
0.04x10=0.4 CPU seconds.

Table 4-1 Tuning parameters of the MPC controllers for distillation control system 1

Tuning Parameter Value
Control horizon, n 10
Prediction horizon, p 25
Estimation horizon, p 25
Observer gain for [x7, e']", L [_9'150 _2289 _8117 _1340 _2;92 _1"34]1
Weights for controlled variables, [q;, 2] [10, 100]
Weights for manipulated variables, [r;, 72] [0.001, 0.001]
Move suppression weights [w;, w;] [0.1,0.1]
Penalty on slack variables [wy ;, w; 2] [10°, 10%]
Cost of controlled variables c, [10,11"
Cost of manipulated variables ¢, [0, 0]"

Confidence of each stochastic bound in

. .. 99.7%
robust steady-state optimization, ot
Confidence of each stochastic bound in 99.9%
robust MPC, o
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4.3.2.1 Closed-loop steady-state uncertainty

As discussed in Section 4.1, the correct prediction of the uncertain steady state
must include the effect of the controller on the closed-loop system, which could make
either the manipulated variable or the controlled variable or both uncertain at the steady
state depending on the active set. An “open-loop” prediction of uncertainty is incorrect.

Figure 4.3 shows three situations of the steady state with the presence of
uncertainty for the distillation control system 1. In the first situation, shown in Figure 4.3
(a), the system is unconstrained (or none of the constraints are active), so the steady-state
values of the controlled variable will be equal to their reference values for all plant
realizations because of the “implicit integral mode” in the MPC structure. Accordingly,
the manipulated variables are different for different plant realizations.

Figure 4.3 (b) shows the second situation, where the upper bound on u; is active
at the steady state. So here u; is the same for all realizations and u; is different for
different plant realizations. Accordingly, the controlled variables cannot be kept at their
desired values at the steady state, and their values are different for different plant
realizations.

Figure 4.3 (c) shows the third situation, where the upper bounds of both
manipulated variables are active at the steady state. Therefore, both of the manipulated
variables are the same for all realizations, and both of the controlled variables are
uncertain at the steady state. The controlled variables are far from their desired values,
and part of their uncertainty region is outside the feasible region.

The results demonstrate the need of a closed-loop prediction, which includes the
effect of the controller on the system, to accurately model the uncertainty at the steady
state for the robust steady-state optimization. Next, we compare the robust steady-state
optimization with open-loop and closed-loop uncertainty in the control of dynamic

system.
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(c) Both input bounds are active

Figure 4.3 Closed-loop steady-state uncertainty - Binary distillation control system 1

4.3.2.2 Compare two robust steady-state optimization approaches:
open-loop uncertainty vs. closed-loop uncertainty

Here, the closed-loop simulation is performed with either of the steady-state
optimization methods (using either open-loop or closed-loop uncertainty description) and
the robust MPC method developed in Chapter 3 (naturally, using the better, closed-loop
uncertainty description in all cases here). We run the simulation for two situations. In
both situations, the feed flow rate F equals to its nominal value 8.7713 kmole/min, i.e.,
plant = nominal model.

In the first situation, there is an initial step change of the reference of y; of +0.02
mole fraction and then a step change of —0.049 mole fraction. Figure 4.4 shows the
closed-loop dynamics of the system under the two robust steady-state optimization
methods integrated with the robust MPC for dynamic control. We can find that both

methods lead to the same dynamics when the reference moves away from the y; bound,
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but the open-loop steady-state optimization results in more conservative control than
appropriate when the reference moves toward the y; bound.

The results shown in Figure 4.4 can be understood by observing the variables in
Figure 4.5, which compares the set points calculated by the two steady-state optimization

methods. We observe that the set points calculated by both methods are same for the first

0.025
0.96 i
= 0.94 = 0.02== VAT
0.92 b i
: : 0.015 - :
0 200 400 600 0 200 400 600
9.5 14
13.5
= s 13
12.5
. ' - 12 ’ '
0 200 400 600 0 200 400 600

"""""" The open-loop robust steady-state optimization +robust MPC o » Lower bound

The robust steady-state optimization +robust MPC ~ « = « Reference x-axis = time (min)
y1=XD (mole frac of light key) y,=XB (mole frac of light key) u;=R (kmole/min) u;=V (kmole/min)

Figure 4.4 Closed-loop dynamics under the robust MPC and the two robust steady-state
optimization methods (first situation) - binary distillation control system 1
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part of the transient, because no bounds are active during the steady-state calculation and
the reference values of the controlled variables can be achieved at the steady state. When
the reference for y; approaches its bound, the y; set points (yg, 1) calculated by the
open-loop robust steady-state optimization differs greatly from its reference, and it is
away from y; bound at many time steps. This is because the open-loop robust steady-state

optimization method overestimates the steady-state uncertainty of y;. In contrast, the

0.025
0.96
s
> 0.94 0.02
0.92
b3
- , 0.015 ‘ '
0 200 400 600 0 200 400 600
9.5 14
9 135
- i &N J i
[=% ) Q. H
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"""""" The open-loop robust steady-state optimization The robust steady-state optimization r7@w@® Lowerbound

Ysp1 =XD (mole frac of light key) ygp2=XB (mole frac of light key) usp,=R (kmole/min) ugy; =V (kmole/min) x-axis = time (min)

Figure 4.5 Set points calculated by the two robust steady-state optimization methods at
each time step (first situation) - binary distillation control system 1
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closed-loop uncertainty prediction accounts for the correcting action of the feedback
controller and correctly predicts a much smaller uncertainty.

In the second situation, there is a step change of the y; reference of -0.03 mole
fraction. Figure 4.6 shows the closed-loop dynamics of the system under the robust MPC.
Although the y, reference does not change, y, is moved away from its reference during

the transient for both methods. This is because the movement of the manipulated
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Figure 4.6 Closed-loop dynamics under the robust MPC and the two robust steady-state
optimization methods (second situation) - binary distillation control system 1

136



PhD Thesis — Xiang Li McMaster University — Chemical Engineering

variables for tracking the reference of y; influences the nominal value and the uncertainty
of y, through the interaction in the MIMO system.

These results show that if the open-loop robust steady-state optimization is used, y; is
moved further away form its reference, because the y, set points calculated by this
method is further away from the y, upper bound due to the overestimation of the
steady-state uncertainty This is shown clearly in Figure 4.7, which compares the set

points calculated by the two robust steady-state optimization methods.
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Figure 4.7 Set points calculated by the two robust steady-state optimization methods at
each time step (second situation) - binary distillation control system 1
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4.3.2.3 Set point tracking while observing output bounds

The simulations here are performed to demonstrate the advantage of using the
robust steady-state optimization method (developed in this chapter) and the robust
dynamic MPC method (developed in Chapter 3) over the traditional way of using
nominal steady-state optimization and nominal dynamic optimization on observing
output bounds. The robust formulations employed use recommended closed-loop
uncertainty at both the steady-state and the dynamic optimization layers.

In this simulation, the feed flow rate in the plant is F' = 4.9438 (kmole/min) which
is different from its nominal value, so the plant is not the nominal model shown in

equation (4.60) but the following model

Plant:

0.2755¢7'% —0.2682¢7'%

NG| _1789.90s+1  109.925+1 || %)
0.1190e™*  —0.1369¢™" || u,(s)

¥, (s)
64.32s+1 57.04s +1

(4.61)

Figure 4.8 compares the system dynamics under nominal and robust methods when a step
change in the y; reference of —0.038 mole fraction is entered toward the y; lower bound
occurs. Clearly the robust method observes the constraints while the nominal method
leads to the violation of y; lower bound. This is due to the mismatch between the plant

and the nominal model.
4.3.2.4 Set point tracking while observing hard input bounds

In this simulation, there is a step change in the y; reference of 0.03 mole fraction,
and the plant equals the nominal model. We compare in Figure 4.9 the closed-loop
dynamics under the robust steady-state optimization and the two robust MPC methods:
the robust MPC and the unconstrained robust MPC that does not include input saturation

in its optimization.
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Figure 4.8 Set point tracking while observing output bounds
- binary distillation control system 1

First, we observe that the u; is limited by its upper bound so that the system
cannot reach the desired steady-state reference values for both controlled variables. Due
to the interaction in the system and the different importance of controlled variables (the
cost of deviating from the reference for the top composition is ten times larger than for

the bottoms composition), y; reaches the reference at the steady state and y, does not.
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Second, we observe that when using the unconstrained robust MPC, u; approaches
its upper bound very slowly because the closed-loop uncertainty is overestimated. Thus

y1reaches its reference much slower.
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Figure 4.9 Set point tracking while observing hard input bounds
- binary distillation control system 1
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4.3.3 Binary distillation control system 2

Figure 4.10 shows the diagram of the second binary distillation control system.
The binary distillation column is the same as in the previous two distillation control
systems. Details of its model and initial conditions are described in Appendix G. The
controlled variables are the distillate composition of light key XD (y;) and the bottoms
compositions of light key XB (y;). The manipulated variables are the Reflux rate R (u;)
and the reboiler rate V (u2). The controller will also receive the measured information of
the feed flow rate F' at the beginning of each controller execution period, which is
deemed as measured disturbance (d) by the controller for feedforward compensation. We
assume it takes # =10 minutes for the distillate and bottoms outlet flows to reach the
component analyzer and get analyzed, which introduces the time delay of 10 minutes
between the controlled and manipulated variables.

The uncertainty of the system comes from the slowly varying feed composite of
light key Zy, whose value is assumed to obey the normal distribution with mean mean 0.5

mole fraction and standard deviation 0.033 mole fraction. The nominal linearized plant

Figure 4.10 Binary distillation control system 2
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model is derived at Zy=0.5 mole fraction as,

Nominal Model:

0.1491e7'%  —0.1386¢7"% 0.0570e™"%

N 4558541 53.28s+1 || M) |\ 7418541 |40
y,(s)| |0.0649¢7'” -0.0775¢"" || u,(s)| | 0.0562¢7*

34135 +1 31.335+1 30.07s+1

(4.62)

The case study evaluates the ability of the robust method to observe the bounds
when rejecting the measured disturbances. We assume feed composition Zy=0.5942 mole
fraction, then the plant is

Plant;

0.1163¢7 ' —0.1099¢7'% 0.0567¢™'%

WO _1"a387s+1 T ssaLs+1 |[M) | 177708541 |y
y,(s)| |0.0940e7” —0.1075¢7"" ||u,(s)| |0.0857¢7"

41.50s5+1 38.71s +1 38.39s5+1

(4.63)

which is different from the nominal model.

The controller execution period for this system is selected to be 10 minutes. The
linearized model of the system is discretized with sampling time of 10 minutes and
transformed into state-space model using the MATLAB control system toolbox. The
state-space form of the distillation model without time delays and feedback variables has
the state vector x with 4 element and the system is controllable and observable. The
feedback scheme assumes the unmeasured disturbance enters the system through the
input channel (See Appendix A for discussion on the selection of unmeasured disturbance
model), which introduces the unmeasured disturbance vector e with 2 element. So the
augmented system with x and e has 6 states, and it is detectable. Furthermore, the time
delay between y and u is described by 3 additional states using the method introduced in
Appendix C. Since these 3 states denote the # and d in the last time step, they are known,

and no observer gain is need for them. The MPC controllers are tuned according to the
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methods described in Chapter 3, and Table 4-2 shows the tuning parameters.

The deterministic SOCP subproblem solved by the proposed robust MPC method
for this system has 20 decision variables, 230 linear constraints and 140 second order
cones. This problem is typically solved in 0.04 CPU seconds. When applying the active
set heuristic, the maximum number of SOCP subproblems solved for this system is 10

(the number of time steps in the control horizon), so the robust MPC costs at most
0.04x10=0.4 CPU seconds.

Table 4-2 Tuning parameters of the MPC controllers for distillation control system 2

Tuning Parameter Value
Control horizon, n 10
Prediction horizon, p 25
Estimation horizon, p 25
Observer gain for [x’, e’]", L [9'5 28 81 14 29 13 ]]
-10 =29 -17 =30 -22 -44
Weights for controlled variables, [q;, q:] [1, 10]
Weights for manipulated variables, [7), 7] {0.001, 0.001]
Move suppression weights [w;, w;] [0.1,0.1]
Penalty on slack variables [w; 1, ws ] [10°, 10%
Cost of controlled variables ¢, [10, 17"
Cost of manipulated variables ¢, [0, 01"

Confidence of each stochastic bound in

e e . 99.7%
robust steady-state optimization, ot

Confidence of each stochastic bound in

99.9%
robust MPC, o
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Figure 4.11 shows the simulation results after a step change of the feed flow rate
of 0.44 kmole/min. The closed-loop system dynamics under robust steady-state
optimization and robust MPC and that under nominal steady-state optimization and
nominal MPC are compared. When using the nominal methods, y, not only goes far away
from its reference during the transient, but also violates its upper bound because of the
plant/model mismatch. When using the robust methods that address the uncertainty
explicitly, y, is driven far away from its upper bound during early stage of the transient to

prevent the potential constraint violation for the “worst case” realization in this scenario.
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Figure 4.11 Disturbance rejection while observing output bound
- binary distillation control system 2
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4.3.4 Advantages of robust MPC minimizing robust performance

The purpose of the case studies in this section is to compare the robust MPC
minimizing either nominal or robust performance. Two CSTR control systems are studied
in the following two subsections 4.3.4.1 and 4.3.4.2, respectively. Both systems are
non-square with one controlled variable and two manipulated variables. When a
non-square system has more manipulated than controlled variables, opportunity exists to
tailor the dynamic behavior to suit the objectives by considering the relative costs,
dynamics and uncertainties of the manipulated variables. Both control systems have a
robust steady-state optimization unit and a robust trajectory optimization unit. We will
keep the robust steady-state optimization method the same as we developed in this
chapter for all the case studies in this section (note the objective of the method is a
nominal cost function and no “robust” cost functions are developed in this thesis), and we
will compare the robust MPC (trajectory optimization) methods minimizing nominal and
robust performance. The simulation results will show that minimizing robust
performance in robust MPC leads to the preferred closed-loop control behavior when

significant differences in uncertainties exist for different manipulated variables.

4.3.4.1 CSTR control system 3

Here we look at the CSTR control system 3 shown in Figure 4.12. The details of
the parameters and the initial conditions of this process can be found in Table F-1 in
Appendix F. The controlled variable of the system is the outlet concentration of reactant
A, Ca (). Ca is measured by an on-stream analyzer, and it takes & = 0.9 minutes for the
outlet flow to reach the analyzer, which introduces the delay of 0.9 minutes between u
and y. The temperature in the reactor, T, is measured without delay, for use by the
observer for providing the estimates to the controller. Temperature is not controlled.

Ca is controlled by adjusting the inlet concentration of A, Cao. This can be
realized by changing the flows with high concentrations of A that are mixed with solvent
to generate the reactor inlet flow. In this system, two flows of high concentration of A,

Fa1, Fap, are available. Fa; is cheap, but its concentration of A is slowly changing;
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therefore, it has a significant uncertainty. Fa» is expensive, but its concentration of A is
constant and known accurately.

For the simplicity of the discussion, let us define the manipulated variables of
the control system to be u; and u; that denote the nominal Cag by adjusting Fa; and Fa
respectively. Since F4 | is cheaper but uncertain, variable u; has a lower cost and greater
uncertainty in its effect on Cao; u; has a higher cost and negligible uncertainty in its
effects on Cag. The block diagram of this system is shown in Figure 4.13, where the gain
between u; and Cao, Kca9, is uncertain. We assume Kcao obeys the normal distribution
with mean 1 and standard deviation 0.233.

The model of this CSTR system is the following.

s+0.8078 005 s+0.8078 —05s
s) = e u (s)+ e u,(s 4.64
y(s) s> +1.9255+1.143 1(5) 52 +1.9255+1.143 2(9) (4.64)
:. -------------------- MPC 4 .....
Y T
ulQ -
FA,1 — Rcceeenreerisnarny . i
(cheap, with uncertain A) ? :
V| ¢ ?
F uzg A0

Solvent

LAz —— 0
(expensive, with certain A) § S On-Stream
l ET, T O Analyzer

Figure 4.12 CSTR control system 3
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i Kcao Cao
MPC | —| CSTR
.———’ 1
y'y
T,Co(y)

Figure 4.13 The diagram of the control structure of CSTR control system 3

The closed-loop control employs the robust steady-state optimization method
developed in this chapter for steady-state optimization and the robust MPC method
developed in Chapter 3 for dynamic control. The robust MPC method will minimize the
following two objectives for each simulation case respectively:

1) The nominal performance + the nominal cost u:

¥-v,) Oy-y,)+@-u,) Ru-u,)+Au"WAu+C, [u-u,, (4.65)

2) The robust performance (expected performance) + the nominal cost of u:

Ely, -y,) Oy, -y,)+ @, —u,) R(u, —u,)+Au, WAu, |+ C, [u-u, | (4.66)

Note that the term C, ju-uy,| represents the economic cost that is linear with respect to the
manipulated variables (associated with the flow rates of A). The robust performance
function in the objective function (4.66) is a special case of the robust objective function
(4.49) developed in Section 4.2 (containing expected performance only), so we can
transform it into a convex and quadratic function of t as discussed in Section 4.2.

The execution period for both the steady-state optimization and the dynamic

control is selected to be 0.3 minute because the closed-loop settling time was about six
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minutes. The linearized continuous model of the system is discretized with sampling time
of 0.3 minute and transformed into a state-space model using the MATLAB control
system toolbox. The state-space form of the reactor model without time delays and
feedback variables has the state vector x with 2 elements, and the system is controllable
and observable. The feedback scheme assumes the unmeasured disturbance enters the
system through the u; channel (See Appendix A for more discussion on the selection of
unmeasured disturbance model), which introduces the unmeasured disturbance vector e
with 1 element. So the augmented system with x and e has 3 states, and it is detectable.
Furthermore, the time delay between y and u is described by 3 additional states using the
method introduced in Appendix C. Since these 3 states denote the u; in the last 3 time
steps, they are known, and no observer gain is need for them.

Since the case studies on this system focus on comparing the different objective
functions instead of constraint handling, we pose loose inequality constraints on the
system so that all the inequality constraints are inactive in all the simulations. The robust
MPC controllers are tuned according to the methods described in Chapter 3, and the
tuning parameters are shown in Table 4-4.

The deterministic SOCP subproblem solved by the proposed robust MPC method
for this system has 16 decision variables, 184 linear constraints and 112 second order
cones. This problem is typically solved in 0.02 CPU seconds. When applying the active
set heuristic, the maximum number of SOCP subproblems solved for this system is 8 (the
number of time steps in the control horizon), so the robust MPC costs at most
0.02x8=0.16 CPU seconds.

Figure 4.14 compares the system dynamic responses, to a step increase in the y
reference from an upper-level optimizer of 0.10 kmole/m’, which also results in a change
in the u; reference of 0.14 kmole/m’, with the robust MPC minimizing nominal and
robust performance. Because the reference values are obtained by an optimizer, they are
feasible for the nominal plant realization. The closed-loop system dynamics for three
separate three realizations are plotted: nominal plant realization (Kc4 = 1), plant
realization 1 (Kc4o= 0.32), and plant realization 2 (Kc49= 1.61). Figure 4.14 (a) shows
that when the robust MPC minimizes the nominal performance, only %, is moved and u;

is unchanged for the set point tracking. This is because both u; and u, give the same
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Table 4-4 Tuning parameters of the robust MPC controllers for CSTR control system 3

Tuning Parameter Value
Control horizon, n 8
Prediction horizon, p 20
Estimation horizon, p 20
Observer gain for [x”, e 7], L [(1) (1) 00‘ '03;: ]T
Weight for controlled variable, g 10
Weight for manipulated variables, [ry, 7] [0.01, .0.01]
Move suppression weights, [w), ws] [1,1]
Costs of manipulated variables, [c, 1, ¢4 2] [0.0001, 0.001]
Cost of the controlled variable, c, 0.01
Confidence of each stochastic bound in 99.7%
robust steady-state optimization, olss
Confidence of each stochastic bound in 99.9%

robust MPC, o

nominal performance and u, is much more expensive than u,. For the nominal plant
realization where there is no plant/model mismatch, y is quickly driven to the new
reference. However, for the other two plant realizations where there is severe plant/model
mismatch, y either overshoots the reference or approaches the reference slowly. This
performance is typical for nominal MPC and occurs for robust MPC as well when
minimizing the nominal performance, because the controller does not consider the effects
of uncertainty in the feedback on the objective. The performance is not very good,

leaving potential for improvement.
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Figure 4.14 Comparing robust MPC with different objectives
— The system dynamic responses after reference step changes of CSTR control system 3
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Figure 4.14 (b) shows that when the robust MPC minimizes the robust performance, it
manipulates (increases) u; at the beginning of the transient. Once y is close to the
reference, it decreases u, and increases u; slowly and simultaneously until #, is moved
back to its initial position. By doing this, the robust MPC leads to good dynamic
performance for all the three plant realizations. The robust MPC adjusts the certain u;
instead of the uncertain u; at the beginning of the transient to avoid introducing large
uncertainty into the system so that a good dynamic performance can be achieved. Once
the system is close to the steady state, the more expensive manipulated variable u; can be
replaced by the cheaper manipulated variable u,; slowly without introducing large
uncertainty. Therefore, by minimizing the robust performance in this case, the robust
MPC properly chooses different manipulated variables for this non-square system at
different stages of the transient.

Figure 4.15 shows the references to the system from an upper-level optimizer and
the set points calculated by the steady-state optimization during the transient with the
different robust MPC. In Figure 4.15 (a) with the robust MPC minimizing the nominal
performance, the set point of y is the same as its reference value throughout the transient
for all the three plant realizations, which is because reaching the y reference value at the
steady state is more important than reaching the input reference values, and the this is
feasible for the realizations simulated. The u; set point is also the same as its reference
value, 0.0 kmole/m’, because u, is more expensive than u; and it is to be kept at zero at
steady state. The u; set point is the same as its reference value under the nominal plant
realization, but it is different from this value when plant model mismatch occurs (under
plant realizations 1 and 2). This is because when minimizing the nominal performance, y
is controlled by manipulating uncertain input ;, which introduces the uncertainty into the
system. So the feedback variable (e) is different for different plant realization and
different for different u; values during the transient, which leads to different set points
through the steady-state optimization.

Figure 4.15 (b) shows that when the robust MPC minimizes the robust
performance, the variation in the u; set points over different plant realizations is much

less than that in Figure 4.15 (a). This is because here u is manipulated to adjust y at the
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Figure 4.15 Comparing robust MPC with different objectives
— The system set points after reference step changes of CSTR control system 3
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Table 4-4 Monte-Carlo Simulation Results of case study in Figure 4.14

Average IAE ¢V Worse IAE
Robusjt MPC minimizing 0.7353 1.8391
nominal performance
Robust MPC minimizing 0.4196 0.5813

robust performance

Note: (1) IAE denotes Integrated Absolute Error.

beginning of the transient to avoid introducing large uncertainty in the dynamic
performance; as a result, smaller changes in u; set points were required. Figure 4.15 (b)
also shows that the set points of y and 42 are the same as their reference values
throughout the transient, which is the same as in Figure 4.14 (a).

One hundred case studies of this closed-loop system with the Robust MPC using
the two different objective functions have been run with Monte Carlo sampling of the
plant realizations. The results are summarized in Table 4-4. We can find that when
minimizing the robust performance, the better performance occurs for both the average
performance and the worst-case metrics. We conclude that the robust MPC with the
robust performance objective function can provide superior dynamic behaviour when a

process has manipulated variables with different costs and uncertainties.

4.3.4.2 CSTR control system 4

Figure 4.16 shows the CSTR control system 4. The CSTR process is from page
438-439 of Marlin (2000). Details on the parameters and initial conditions of this CSTR
process can be found in Table F-2 in Appendix F. The controlled variable (y) of the
system is the outlet concentration of A, Cs. Both C4 and the temperature in the reactor T
are measured and used by the observer for providing estimates to the controller. Cs can

be controlled by a) adjusting the inlet concentration of A, Cyp or b) adjusting the cooling
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Figure 4.16 CSTR control system 4

follow rate Fc. The first manipulated variable (u;) has faster dynamics, but there is large
uncertainty associated with it. This uncertainty is from the slowly varying concentration
of A in flow F4 that is mixed with solvent to generate the inlet flow. For the simplicity of
the discussion, let us define u; is the nominal value of C,g the controller achieves by
changing the flow Fa. The second manipulated variable () has slower dynamics, but
there is no uncertainty associated with it. We define u; the cooling flow rate, Fc.

Figure 4.17 gives a diagram of the structure of the CSTR control system 4, where
Kcao is the uncertain gain between u; and the actual Cao. We assume Kcap obeys the
normal distribution with mean 1 and standard deviation 0.25. According to the
parameters and the initial condition shown in Appendix F, the linearized model of this

system is
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Figure 4.17 The diagram of the control structure of CSTR control system 4
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The closed-loop control employs the robust steady-state optimization method
developed in this chapter for steady-state optimization and the robust MPC method
developed in Chapter 3 for dynamic control. The robust MPC method will minimize the
following two objectives for each simulation case respectively:

1) The nominal performance:

(y-¥,) Oy -y,)+@-u,) Ru-u,)+Au"WAu (4.68)

2) The robust performance (expected performance + weighted variance of y):

~ —~ _ np
E(y,-v,)" 00, -y,)+ @, ~u,) Ru, ~u,)+Au, WAu, )+ Yy, Var(y,,) (4.69)
I=1
Note that we assume the economic costs associated with the manipulated variables are
negligible for dynamic control, so that we do not include the linear cost in the objective
function. The robust performance objective function (4.69) is a special case of the robust

objective function (4.49) developed in Section 4.2 (without variances of inputs and input

155



PhD Thesis — Xiang Li McMaster University — Chemical Engineering

changes), so we can transform it into a convex and quadratic function of t as discussed in
Section 4.2.

The controller execution period for this system is selected to be 3 minutes because
the closed-loop settling time is about 60 minutes. The above linear model is discretized
with sampling time of 3 minutes and transformed into state-space model using the
MATLAB control system toolbox. The state-space form of the reactor model without
feedback variables has the state vector x with 2 elements, and the system is controllable
and observable. The feedback scheme assumes the unmeasured disturbance enters the
system through the u; channel (See Appendix A for more discussion on the selection of
unmeasured disturbance model), which introduces the unmeasured disturbance vector e
with 1 element. So the augmented system with x and e has 3 states, and it is detectable.

Again, since the case studies on this system focus on comparing the different
objective functions instead of constraint handling, we pose loose constraints on the
system so that all the inequalities constraints are inactive in all the simulations. The
robust MPC controllers are tuned according to the methods described in Chapter 3 and
the tuning parameters are shown in Table 4-5.

The deterministic SOCP subproblem solved by the proposed robust MPC method
for this system has 16 decision variables, 214 linear constraints and 132 second order cones.
This problem is typically solved in 0.03 CPU seconds. When applying the active set
heuristic, the maximum number of SOCP subproblems solved for this system is 8 (the
number of time steps in the control horizon), so the robust MPC costs at most
0.03x8=0.24 CPU seconds.

Figure 4.18 compares the system dynamic responses, to a step increase in the y
reference of 0.050 kmole/m’ and in the u, reference of 0.027 m3/min, with the robust
MPC minimizing nominal and robust performance. The closed-loop system dynamics are
plotted for three realizations: nominal plant realization (Kc4=1), plant realization 1
(Kc40=0.26), and plant realization 2 (Kc40=1.71). Figure 4.17 (a) shows that when the
robust MPC minimizes the nominal performance, u; is manipulated relatively quickly,
while u; is changed very slowly. This is because nominal #; can drive y to the reference
much quicker than u, does. So, y is well controlled to the new reference value for the

nominal plant realization. However, for the other two plant realizations where there is
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Table 4-5 Tuning parameters of the MPC controllers for CSTR control system 4

Tuning Parameter Value
Control horizon, n 8
Prediction horizon, p 25
Estimation horizon, p 25

Gains of the state observer, L [(1) (1) 0 'é) 1 ] '
Weights for controlled variables, ¢ 10
Weights for manipulated variables, [}, 73] [0.01, 0.1]
Move suppression weights, [wi, w;] [1,10]

Costs of the manipulated variables (used in

robust steady-state optimization only), [c, ;, ¢y 2] [0.01, 0.01]
Cost of the controlled variable (used in robust 10
steady-state optimization only), ¢,
Weight for variance of controlled variable, y,, 1000
Confidence of each stochastic bound in robust 99.7%
steady-state optimization, oiss R
Confidence of each stochastic bound in robust 99.9%

MPC, a

severe plant/model mismatch, y either overshoots the reference substantially or
approaches the reference slowly. This performance is typical for nominal MPC and
occurs for robust MPC as well when minimizing the nominal performance, because it
does not distinguish between feedback paths with large and small uncertainty. This

performance is not very good, leaving potential for improvement.
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(b) Robust MPC minimizing the robust performance, equation (4.69)
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Figure 4.18 Robust MPC with different objectives
— The system set points after reference step changes of CSTR control system 4
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Figure 4.18 (b) shows that when the robust MPC minimizes the robust
performance, it increases u; aggressively and keeps u; almost unchanged. This is because
the controller avoids using the manipulated variable with large uncertainty, so that y
trajectory does not vary significantly for different plant realizations. This strategy results
in dynamic performance that is the better than nominal MPC for many plant realizations
but cannot be guaranteed better for every plant realization. This robust strategy would be
preferred in the situation where reducing the variation of the performance is more
important than improving the performance, that is, where consistent closed-loop plant
behavior is required.

Figure 4.19 shows the references of the controlled variable and the manipulated
variables and compares the set points calculated by the steady-state optimization during
the transient with the different robust MPC. We observe that in both Figure 4.19 (a) and
Figure 4.19 (b), all the set points calculated are the same as their reference values (in
spite of the different plant realizations and different dynamic performance in the
objective of robust MPC). This is because 1) u is cheaper to manipulate than u; is to
influence y, concerning the gains of the two inputs (the gain of u, is bigger than the gain
of u;), so the steady-state optimization chooses to change the steady state value of u,
(instead of u;) to maintain y at the new reference value; 2) u, is known to have no
uncertainty in its effect on y, so the steady-state settling point is constant in this case
(while the dynamic responses of the system may be different for different plant
realizations and different dynamic performance in the objective of robust MPC.

One hundred cases of the closed-loop system with the robust MPC using the
different objective functions have been run with Monte Carlo sampling of the plant
realizations. The results are summarized in Table 4-6. We find that minimizing the
nominal performance leads to the worse performance for both the average performance
and the worst-case performance. From this study we conclude that the robust MPC
minimizing the robust performance can provide almost the same good performance for all
the sampled plant realizations when differences in dynamics and uncertainty exist. When
consistent quality is essential, the robust MPC with robust objective could provide

substantially better dynamic behaviour.
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(b) Set points with robust MPC minimizing the robust performance, equation (4.69)
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Figure 4.19 Comparing robust MPC with different objectives
— The system set points after reference step changes of CSTR control system 4
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Table 4-6 Monte-Carlo Simulation Results of case study in Figure 4.17

Average IAE ¢V Worse IAE
Robusjt MPC minimizing 02167 2.3551
nominal performance
Robust MPC minimizing 0.1862 0.1864

robust performance

Note: (1) IAE denotes Integrated Absolute Error.

4.4 Conclusions

In this chapter, we extend the robust MPC method from Chapter 3 with the three
additional features that are important for applications in process control: the first is a new
robust steady-state optimization method; the second is a novel steady-state deviation
model developed for robust steady-state optimization with time-invariant uncertainty; and
the third is a new objective function minimizing the dynamic performance robustly.
The new robust steady-state optimization method developed in this chapter
includes the features that follow the developments in Chapter 3 for dynamic optimization:
1) Correlated parametric uncertainty of the closed-loop system at steady state (with
deviation model, see explanation below);

2) An active set heuristic that is used to obtain the active hard bounds on manipulated
variables at steady state in an iterative way;

3) Tractable solution for real-time implementation through a limited number of (convex)
SOCPs.

A novel deviation model formulation is obtained by the deviation of the variables
from a virtual steady state of them (determined by the latest implemented manipulated

variables). This formulation is used for time-invariant uncertainty to reduce the
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conservativeness in uncertainty prediction by limiting the effects of plant uncertainty to

changes in the input variables.

The proposed new objective function includes the expected dynamic performance

and the variances of the controlled variables. The new objective function is convex and

quadratic with respect to the degrees of freedom t, so the resulting robust MPC

formulation is still a SOCP that can be relatively easily solved in real time.

1)

2)

3)

The case study results shown in Section 4.3 demonstrate that:

The new robust steady-state optimization method using closed-loop uncertainty is
better than the method using open-loop uncertainty because it is more accurate in
modelling the closed-loop system and less conservative in determining the set points
of the controlled variables. When integrated with the robust trajectory optimization
(robust MPC), the steady-state closed-loop method achieves better dynamic
performance than the open-loop method.

The robust method (including steady-state and trajectory optimization) outperforms
the nominal method (including steady-state and trajectory optimization) on handling
the constraints on controlled variables.

In the situations where the uncertain non-square system has alternative ways to adjust
manipulated variables, optimizing a robust measure of robust dynamic performance is
better than optimizing the nominal dynamic performance. This is because the new
method includes uncertainty in evaluating future performance and enables the

controller to trade off uncertainty, economics, and nominal feedback dynamics.

This chapter has tailored the basic robust MPC method in Chapter 3 to

applications in process control. The next chapter will tailor the basic robust MPC

method for applications in supply chain optimization, which is another important

uncertain dynamic system with feedback.
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Chapter 5

Robust MPC for Supply Chain Optimization

This chapter addresses the application of the robust MPC method to the
optimization of supply chain operation under uncertainty. The general robust MPC
framework developed in Chapter 3 is adapted for the application, with the formulation
tailored for supply chain optimization. The need to tailor the formulation is introduced
through a real supply chain optimization problem from industry. The industrial supply
chain system contains manufacturing of the intermediate and final products,
transportation of the final products and storage units located in different parts of the
supply chain, so its structure is typical of many supply chain systems. As a result, the
method developed for this system is applicable to many other supply chain systems.

Section 5.1 introduces the industrial supply chain system and the goal of the
optimization. Section 5.2 describes the modeling of the dynamic system with a discrete,
state-space model and the nominal MPC formulation. Section 5.3 discusses the robust
MPC formulation with emphasis on: 1) the modeling of parametric uncertainty; 2) a
bilevel formulation for closed-loop optimization; 3) a tailored chance constrained
program for the non-normally distributed customer demands. Section 5.4 discusses the
supply chain model for simulation, which enforces integer values when needed. Section
5.5 shows the advantage of the robust MPC over nominal MPC on reducing the back
orders though the case study results of the industrial supply chain optimization problem.
Issues of the tuning and the computational complexity of the robust MPC method are also

addressed in Section 5.5. Section 5.6 summarizes the chapter with conclusions.
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S.1 The Industrial Supply Chain Optimization Problem

Let’s see the industrial multi-echelon supply chain system in Figure 5.1 first. The
sketch of the system is shown in Figure 5.1(a) and its schematic diagram (with defined

symbols and variables) is shown in Figure 5.1 (b).
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(a) The sketch of the system
1, 1y Iy,
Pi Ts,i Rs T
Fl,i F2,i F3,i F4,iJ J F5,iJ F6,i,j
=>| IPM |[=>/1ps\ = | SKUM |=—=> > —> D,
Symbol of each node in the system: Decision variables in the optimization:
UR: Unlimited raw materials P;: Manufacturing rate of the i IP (IP/84 hours)
IPM: IP manufacturing plant T,;: Machine running time for the i SKU (hour)
IPS: Plant IP storage F,,;: Shipping of the / SKU to the /# RDC (SKU/shipping hours)
SKUM: SKU manufacturing plant
Other variables in the system:
DC: Plant distribution center 1 b Inventory of the i* IP at IPS (IP)
RDC: Regional distribution center L,: Inventory of the #* SKU at DC (SKU)
I;,: Inventory of the  SKU at the /# RDC (SKU)
- fh
Uncertain parameters in the system: F 3 Flow of the # - IP from IPM to IPS (IPA’O/‘:)
R,: SKU manufacturing rate (SKU/hour) F,;: Flow of the z1h IP from IPS to SKUM (IP/hour)
7 Transportation time to the /% SKU (hour) F3,;: Flow of the # IP from SKUM to DC (SKU/hour)
o F;;;: Arrival of the i SKU to the /" RDC (SKU/shipping hours)

D, ;: Customer demand of the # SKU
o to the /# RDC(SKUrhour) Fyg,;: The i SKU from the /% RDC to costumer (SKU/hour)

(b) Simplified schematic diagram of the system

Figure 5.1 The industrial multi-echelon supply chain system
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The design of this supply chain was completed after discussions with an industrial
company, so that many of the specific parameters, e.g., decision frequency, are close to
the parameters used by the company. Naturally, these parameters could be changed, but
this design gives a reasonable basis for evaluating the robust optimization methods
developed in this thesis.

In this system, different types of unlimited raw materials are processed in the
plant IPM into different Intermediate Products (denoted by IP). The different types of raw
materials and the associated products are indexed by i=1,...,n; P;(IP/84 hours) denotes
the manufacturing rates of the IP that is associated with the i material type (hereafter,
referred to as the i™ IP). The decisions of the IP manufacturing are made once every 84
hours or 3.5 days.

The intermediate products are stored in the Plant IP storage (denoted by IPS). I;;
(IP) is the inventory of the i IP. The intermediate products are then processed into
different final products, called Stock Keeping Units (denoted by SKU), in plant SKUM.
F;; (IP/hour) denotes the processing rate of i™ IP into the associated SKU (hereafter,
referred to as the i SKU), which is determined by the machine running time Ty, for the
i IP. The decisions on the SKU manufacturing are made once every day.

The SKUs are sent to the plant Distribution Center (denoted by DC), where the
inventory of the i™ SKU is I; (SKU). Then, they are shipped by truck to different
Regional Distribution Centers (denoted by RDC), which are indexed by j =1,...n;. Fy;;
(SKU/shipping hours) denotes the quantity of the i SKU to be shipped to the /® RDC
and 7; denotes the transportation time for the shipment from DC to the ™ RDC. The
decisions on the shipments are made at different frequencies for different regional
centers, and the frequencies are between once per day to three times per day. The unit
cost of SKU shipment is constant, because if the SKUs do not fill up a truck, other
products can be transported to fill the truck. I3,; (SKU) denotes the inventory of the i
SKU at the j RDC.

The SKUs are sold to the customers at different RDCs. The customer demands
D,; (SKU/simulation period) of the i SKU to the /™ RDC can be estimated from
historical data, but a large variability exists in demands. If a demand of the ;™ SKU at the

7™ RDC cannot be satisfied immediately, a stock-out occurs, and the unfilled part of the
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order is recorded as a back order O;; (SKU), which must be satisfied by later shipments
before new demands will be satisfied.

In all cases considered, plants IPM and SKUM have sufficient capacity to satisfy
the total customer demands over the time horizon (14 days in the cases studies in this
Chapter). However, a capacity limit can be encountered during a short period of the
horizon (e.g., 1 day). The maximum storage capacities are unlimited, but naturally have
lower bounds of zero.

The goal of this supply chain optimization is to minimize the total system cost of
the supply chain (including inventory cost, manufacturing cost and transportation cost)
while satisfying customer demands (if possible) by making decisions on the IP
manufacturing rates P, SKU manufacturing machine running times 7, (hour), and the
SKU transportation quantities Fy;;. The uncertainties in the system include the SKU
manufacturing rate R; (SKU/hour), the product transportation time 7; (hour) and the
customer demands D;;.

We make the following assumptions for the model used in optimization based on

the real industrial problem and the needs for real-time computing:

1) In each manufacturing decision interval, the IP or SKU manufacturing is continuous
and the manufacturing rates are constant. The production scheduling, control and
optimization (if needed) are assumed to be solved locally, which are out of the scope
of this supply chain optimization. This decomposition is typical (e.g., Pinedo, 2000).

2) The SKU shipments to RDC only occur at predetermined time points each day. For
example, if the shipment is once every 12 hours, it can only occur at 12am and 12pm.

3) The daily quantities of customer demands are assumed to be continuous, and the
demand rate is assumed to be constant within each day.

4) Fractional numbers are allowed in the solution of the supply chain optimizer and are

rounded to an integer for implementation.
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5.2 The Nominal MPC Formulation

This section gives the detailed information on the nominal MPC formulation of
this supply chain optimization problem. The nominal MPC will be extended in the
following Section 5.3 to include robust performance using the method developed in
Chapter 3. Also, This nominal MPC will be used for comparison with the robust MPC in
case studies in Section 5.5. The nominal MPC is composed of three parts: the nominal
state-space dynamic model of the supply chain system, the economic objective function
and the constraints on the variables. We start with the modeling of a nominal state-space

dynamic model for the system.

5.2.1 The discrete-time nominal state-space model

5.2.1.1 Handling of different feedback and implementation periods

In process control, often the controlled variables are measured and the
manipulated variables are decided at the same time point, so the sampling period and the
decision implementation period are same. We can choose this period to be simulation
time period (the length of a discrete time step) of the discrete system, and then depict this
system with a canonical discrete state-space model. In this supply chain optimization
problem, however, the implementation periods of the decision variables are not all the
same, and they are not consistent with the frequency of measuring the different feedback
information. So we have to determine the simulation time period in another way.

It is logical to execute the supply chain optimizer only when new measured
information on inventories is available. Since all the inventories in this system are
measured once per 24 hours, the controller (optimizer) execution period of this system,
AT, is taken to be 24 hours. However, the decisions on the IP manufacturing (P;) are
determined once per 84 hours, the decisions on the SKU manufacturing (7s;) are
determined once per 24 hours, and the decisions on the SKU transportation (Fy;;) are
determined at different frequencies for different RDCs. Here, we choose the simulation

period, 4T, to be the greatest common devisor of the different periods so that all the
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Figure 5.2 The different time periods for the supply chain system

periods can be addressed with a canonical discrete state-space model with this 47. For
example, since the shortest F;; decision periods are 12 hours, we set 47=12 hours. We
also choose 1 hour to be the simulation period for the simulation model that presents the
behavior of the real supply chain (refer to Section 5.4 for more discussion on this model).

The different periods set for the supply chain system are shown in Figure 5.2.

5.2.1.2 Dynamic model based on mass balances

Now, we discuss the nominal dynamic model used by the controller. This model
can be built based on the dynamic mass balance for each inventory in the supply chain

system, which is discretized as given in the following.

IPS inventory:

Lyyn=1,,+F, AT -F,, AT, i=L..n, G
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where the £ subscript denotes the sequence number of sampled time steps.
The flow of the /™ IP coming out of plant IPM, Fy i is determined by the
manufacturing decision of the i IP, P;, at the current time step or a prior time step,

according to the following relationship

Fl,i,k =P

im

IAT,,  i=1,..,n (5.2)

where P, is the decision variable giving the total M 1P production during its decision
time period 47p (equal to 84 hours) beginning at time step m, (m, <k).

The flow of the i IP sent to the plant SKUM, F; 4, is determined by the SKU
manufacturing decision, processing time T, at the current time step or a prior time step,

according to the following relationship

Fy = CIP—SKU,iRs,i,kTs,i,m2 /AT, i=L..,n (5.3)

where T

s,i,m

,denotes the decision variable that determines the i™ SKU manufacturing
time during its decision time period 47, (equal to 24 hours) at time step m, (m, <k);
Ry is the (uncertain) production rate of the i SKU at time step k; C psku; converts

the units of the i IP i to the i™ SKU, that is, how much of the intermediate product is

required for one SKU.
DC inventory:
L=l +F  AT=Y F,, AT, i=l.,n, (5.4)

J=1

where the SKU mass flow F;,, is equal to the IP flow F,,, because there is no

inventory accumulated in the manufacturing plant SKUM, so

Fy .. =F,,, 1Cp_skys = R, /AT, i=1..,n (5.5)

s,i,my
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RDC inventory:

Ly jon =Lyt Fs, (AT - F, AT, i=l.,n, j=1l..,n, (5.6)

0.,]’,c+1 = O,J,k +D

1 1

AT - Fg, AT, i=l..n, j=L..,n, 5.7

i,j.k

Equation (5.7) denotes the back order balance. Let

* -
I3,i,j,k _13,i,j,k o

Lk

then equations (5.6-5.7) can be written into
IS,i,j,k+1* = I3,i,j,k *+F5,i,j,k - Di,j,k > i=l..,n, j=1,.., n, (5.8)

where 5 ; J,kﬂ* can be negative (when back orders exist), zero, or positive. The purpose of
the variable L;; J-,kﬂ* is to accumulate backorders that must be serviced as soon as
possible. In the case studies, orders are not lost if not satisfied immediately, and we will
monitor the magnitude of backorders when evaluating the performance of supply chain
optimization.

Also, the arrival shipment of the i SKU to the / RDC, comes from the departure
shipment of the i SKU to the / RDC, so

Fo, v = F4’,.,j,k_(,j,AT) , i=l..,n, j= 1,...,nj (5.9)

The time delay between the departure shipment and the arrival shipment in equation (5.8)
is caused by the transportation time 7,. To maintain the model in state space form, we can
express equation (5.9) in an equivalent form by introducing additional variables
Sij = (SupjesSe rars, ;)" that denote the quantities of the i™ SKU in the transportation to
the /" RDC during a time step:
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F. 5.0,k S0, k-1
Li,j.k 2,i, 7 k-1 . .
; = / , i=l..,n, j=1..,n, (5.10)
Sc, /AT )k Foi

Equations (5.1-5.5), (5.8) and (5.10) can be combined into the following

state-space model

Xen = A%, + Bu, +B,d, (5.11)

T T :
where x:(Sl,l,...,Sni’nl_,IU,...,I,’nl_,lz,,,...,lz,n’_,13’1,1*,...,13,,,“"]_ *)T contains the state

variables, u= (Pl,. s By Topse T s Fyyys e Foy )[ contains  all  decision

n; s.n; 2

(manipulated) variables and d,, = (Dl,l""’Dn,.,nj)r denotes the predicted disturbances

which are forecast customer demands.

5.2.2 The economic objective and the constraints

According to the goal of the supply chain optimization, the economic objective of

the nominal MPC can be written as

min Z Cripndipn + Z Criwndaipn + z Criwndsjpn
ik ik

u, 0, ; -
ki j k] l,j,k

+ Z CS,i,j,k+1Si,j,k+l + z CP,i,kPi,k + Zk Cn ,i,kTs,i,k (5.12)

ik ik

+ Z CF4,i,j,kF4,i,j,k + z CO,i,j,k+10i,j,k+l

i,jk ik

where C; .15 Cppns €, 4 denote the costs of inventory Ik Dk I3k

respectively; Cg, ., denotes the cost of the SKU in the transportation; C,,,, C; ,,
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CFA,,., ik denote the costs of implementing the decisions Pk Tsin Fyijus Co ks

denotes the penalty on the back order O According to the definition of the state

i,j.k+1°
vector x, and the decision vector u, the objective function (5.12) can be also written in

the following form

. T T T
min CrpnXpn + z Coptty + Z Cro410kn (5.13)
3 % %

Ot

where C,,,,, Ci,, Cp,, contain appropriate costs and penalty coefficients, and the

back order vector is defined as O, = (01,1,k+15' -0, y .

s n,-,nj,k+l

Now let’s discuss the inequality constraints on the variables. First, all the

inventories and the SKUs in transportation should be nonnegative, so

Il,i,k+1’ IZ,i,k+1’ I3,i,j,k+1’ Si,j,k+1 20, i=l.,n, j=1,.., n, (5.14)
According to the definition of x,, constraints (5.14) can be written into the form of

Xpot 2 Xpin a1 ~ BoOrat (5.15)

. . . . . *
where B, is a diagonal matrix whose diagonal elements are 1 when associated to 5 ;jx

and 0 otherwise. Second, all the back orders should be nonnegative, so
O04n 20 (5.16)
Third, the decision variables are all nonnegative and are subject to upper limits, so
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w20 .17)
n;
DTk STy (5.18)
i=1
ZF4,i,j,k < Fymaxjikr (5.19)
i=1

where the constraints (5.18) denote the total SKU manufacturing time at the kth controller
execution period AT, cannot exceed Tymaxx (i-€., Tsmaxi=47:=24 hours), and the
constraints (5.19) denote the quantities of different SKUs in a shipment to the ™ RDC
cannot exceed the available transportation capacity, Fimax;t Since IP manufacturing
capacity is larger than any possible optimal solution, no upper bounds are imposed on P,
F1 ., although such bounds could be accommodated in the robust MPC.

Special modeling is required because the IP manufacturing decision P; is made
once every 84 hours and not reconsidered until 84 hours have elapsed, F; and the
optimizer is executed every 24 hours. Therefore, the IP manufacturing decisions in the
subsequent several time steps must be set to the values determined in an earlier
optimization. To achieve this, we need to force these F; to be the value that has been
determined in a previous optimization, which can be realized by setting the upper and
lower bounds on these F; to be the value in the previous optimization. We can express

these special bounds as

F

1,min,#

kS S F s i=l...n, (5.20)

For the time step when P; are degrees of freedom that determinesF;,,, the above
constraints denote the equipment capacity limits; for the time step when P; has been
determined in an earlier controller execution that determines F,, , the bounds
F

optimization.

Fl nax; and they are equivalent to the value of F|,, determined in the prior

mini k

All the above bounds on decision variables can be written in the following form:
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u

min, k

SU SUpek (5.21)

b

with the minimum and maximum values determined prior to each optimization as
required to achieve the above-discussed strategy.

5.2.3 The nominal MPC formulation

The nominal MPC formulation consists of the objective function (5.13), the
nominal dynamic model (5.11) and the constraints (5.15-5.16) and (5.21).

NMPC SCO:
. T 7 T
min CopnXen + Z Gty + Z CroxrtOkn (5.22a)
U U1 k k k
st. X, =A4x,+Bu,+B,d,, +e, (5.22b)
Uninge S Up S Uy (5.22¢)
Xee1 2 Xnin g1 ~ B0y (5.22d)
0., 20 (5.22¢)
k=0,---,n-1

where »n denotes the same control and prediction horizons, the additional variable ¢y in
Equation (22.b) denotes the feedback information which contains the difference between
the predicted and the measured inventories. Note that for this supply chain system, we
assume that all the inventories can be measured at each time step, but the SKUs in transit
(.., Si; in state vector x;) cannot be measured. Therefore, we set the feedback elements
in eg, which correspond to S« to be zero at each time step. This nominal MPC
formulation, NMPC_SCO, is a Linear Program (LP) instead of a QP because the cost

function is linear.
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5.3 The Robust MPC Formulation

This section discusses the development of a robust MPC formulation based on the
nominal MPC formulation (5.22) to explicitly address the uncertainties in the system. We
can develop a closed-loop model for uncertainty using the same approach as in Chapter 3,
so here we will not repeat the general development. However, some additional issues
need to be addressed for the application of the robust MPC to this supply chain

optimization problem, which are discussed in the following subsections respectively.

5.3.1 Description of uncertainties with uncertain parameters

The uncertainties in the supply chain system include the customer demands, the
SKU manufacturing rate in the plant SKUM and the SKU transportation time. We will
describe these uncertainties and show how to characterize them using uncertain

parameters.

5.3.1.1 Costumer demands

The uncertainty in the customer demands can be estimated from the historical
data. Figure 5.3 shows the histogram of the daily demand of the 1** SKU to the 1¥ RDC
during years of 2004 and 2005, where we can find that the uncertain demand does not
obey a normal distribution but a distribution close to exponential distribution
(Balakrishnan and Basu, 1996). The demands of other products (to other RDCs) follow
similar distributions (see Appendix H for the histograms of their demands).

Furthermore, correlations exist between the uncertain demands. Figure 5.4
shows the normalized covariance matrix of the demands of the 1% and 2™ SKUs to the 1%
and the 2™ RDCs in the two successive days, which is calculated according to the
historical data from years of 2004 and 2005 using the standard technique (Box et al.,
2008). We observe that the correlations between the demands in the same day are more
significant, especially between demands of the 1% SKU to the two RDCs, although the

correlations between the demands in different days are much weaker.
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Daily demands (SKU per day)

Figure 5.3 The histogram of the daily demand of the 1* SKU to the 1 RDC

DI,I,I DI,2,1 D2,I,I D2,2,I Dl,1,2 DI,2,2 D2,1,2 D2,2,2

D,,;| 100 050 029 023 {024 031 016 012
D,,;| 050 100 021 026} 016 031 0.14 0.09
D;,;| 029 021 100 021 014 012 0.10 0.05

D,,;| 023 026 021 100 ; 007 005 010 0.11

D..| 024 016 014 007 | 100 050 029 023
Di,| 031 031 012 005|050 100 021 026
D;.| 016 014 010 010 | 029 021 1.00 0.21

D,,,| 012 009 005 011 {023 026 021 1.00

Figure 5.4 Normalized covariance matrix of demands of the SKUs to RDCs
(D« denotes demand of the /™ SKU to the /™ RDC in day k)
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The uncertainty in customer demands can be directly described by the uncertainty
in parameter djin the process model (5.11). According the above discussion, one way to
characterize d; uncertainty is to use the analytical expression of a joint (multi-variate)
exponential distribution. However, the existing work on multi-variate exponential
distribution (e.g. Bemis et. al., 1972; Marshall and Olkin, 1967; Proschan and Sullo,
1976) is limited for specific correlations between the variables only. So in this thesis, we
propose to characterize the demand uncertainty with sampling from the historical data
and use the results to build the chance-constrained program. The details of this method

are presented in Section 5.3.3.

5.3.1.2 SKU manufacturing rate

We will take estimates of the SKU manufacturing rate R, as their nominal value
+25% (from 13.3 to 22.2 SKU/hour) with 90% confidence. We assume that R;; obeys
a normal distribution and that there is no correlation between R;; in different days.
Because the manufacturing rate appears on the left-hand side in equations (5.4-5.5), the
uncertainty in R, leads to the uncertainty in the process gain B in the process model
(5.11).

5.3.1.3 SKU transportation time

We know the approximate ranges of the SKU transportation time 7,4 to different
RDCs with 90% confidence from discussions with the supplier of the case study. We
assume that 7;; obeys a normal distribution and that there is no correlation between 1 in
different shipments.

The uncertainty in SKU transportation time makes the structure of the model
uncertain, because it changes the number of states in (5.10). To model the uncertainty
would require disjunctive programming and integer variables, and no method is available
for modeling continuous uncertainty across multiple models. Therefore, we propose to
use an alternative disjunctive modeling approach with uncertain parameters to
approximate this structural uncertainty. The concept is illustrated in Figure 5.5. The

shipment from DC is
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Fyizk T T minm T jmax F5,iJ,£
DC RDCj

Q) 1 @)= 1
Aok j jn

NG T O=1,
R J g

Figure 5.5 Approximate disjunctive model for SKU transportation time uncertainty

assumed to reach the /™ RDC through several, in this study three, different virtual routes
with different but known transportation times, rj(l) =Tjmin (Minimum transportation time
with 90% confidence, typically 132 hours), rj(2)=rj,,, (nominal transportation time,
typically 144 hours) and tj(3)=rj,max (maximum transportation time with 90% confidence,
typically 156 hours). (Refer to Appendix H for a more complete information of j min, Tj»
and 7; g, for different RDCs.) Then, we have

F4,i,j,k(1) = ﬁ1F4,i,j,k , 0<p<1, Zﬂl =1 (5.23)
FS,i,j,k(l) = F:t,i,j,k—(r}”/AT)(l) (5.24)
Fy, .= 21: F, 0 (5.25)

1=1,2,3
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where equation (5.24) describes the time delay between the departure shipment Fj ; J,k(l)
and the arrival shipment Fs; J-,k(l) due to the transportation time rj(l), and this equation can
be transformed into a state-space model of the form of equation (5.10) with additional
variables. Note the ratios f; are uncertain parameters, so the uncertainty in SKU
transportation time can be approximately described by the uncertain elements in B that
depend on £,. In this chapter, we assume the nominal values of different f; are £,=0, f,=1,

S3=0, and the uncertain values of f; are generated as follows:

1) Generate values for 3 random variables ,81*, ﬂz*, B;,*, each of which obtains nominal
distribution with mean 0.5 and standard deviation 1/6.
2) Calculate each B by the formula = B/(8, +B, 485 ) (so that each f8; is between 0 and 1

and their summation equals to 1).

The case study results will demonstrate that this approximation provides good supply

chain optimization for the different cases.

5.3.2 Closed-loop optimization with approximating inner QP problems

The robust MPC formulation in Chapter 3 can be adapted for the supply chain
robust optimizer. Here, we present the robust controller formulation, including the change
in the formulation to give an inner QP problem for the robust supply chain optimization,
even though the nominal objective function is linear.

With the presence of uncertainty described in Section 5.3.1, we can use the

following model to describe the uncertain supply chain system,

xr,k+1 = Axr,k + Br,kur,k + Bdrdr,k + eO (526)

where 4,4, X,1+1, €ri+1, denote the decision (manipulated) variables, state variables and
feedback variables, respectively. The model (5.26) can be built in the same approach we
followed for the nominal model (5.11). However, additional state variables are needed to
model the uncertainties in the transportation time (as we discussed in Section 5.3.1.3).

The parameters By xand d, x in the model (5.26) are uncertain.
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The robust MPC for this supply chain optimization problem addresses the
closed-loop uncertainty of the system. So, its formulation includes not only the uncertain
system model (5.26); it also includes the effects of the controller (optimizer) on the
system dynamics during each time step in the future. As in Chapter 3, we will use a
nominal MPC for the future controllers in the model. Thus, the robust MPC requires to
solving the following bilevel stochastic optimization problem RMPC_SCO-CL

RMPC_SCO-CL:
nlin Z C)Z:k+1xk+l + z CuT,kuk + Z CIJ;,k+10k+l (5273)
k k k

Xop s, Msp i :Oral

st. U, =NMPC_SCO*(x,;,e,,,4d,;,X,4.0>U,,,) (5.27b)
Xy =A%, + B, u,, + B, d, , +e (5.27¢)
€ jn1 = X4 —(Ax,, +Bu,, + B, ,d,,) (5.27d)
Uning S Uy S Upaey (5.27¢)
X, i1 2 Xingee1 — BoOit (5.279
0k+1 20 (5:27g)

For all By, d;; in uncertainty region and £ = 0,..., n-1

where equation (5.27a) means that the robust MPC is to minimize the nominal cost of the
system. Equation (5.27c) denotes the uncertain system model with the feedback
information ey. Equation (5.27d) denotes the feedback scheme where the feedback
information is the difference between the real states and the nominal states. Equations
(5.27e-5.27g) impose the bounds on the variables.

Equation (5.27b) means that the “simulated” control decisions in the future
horizon are determined using a nominal MPC formulation, so equation (5.27b) denotes
the embedded inner optimization problem. If we use the nominal MPC formulation
NMPC_SCO (formulation (5.22) discussed in Section 5.2.3) in equation (5.27b), then the
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inner optimization problem is an LP. Thus, we cannot solve the bilevel stochastic
optimization problem RMPC SCO-CL using the method developed in Section 3.2 of
Chapter 3, which is based on modeling the future control action with QP. Therefore, we
need a modified nominal MPC formulation in form of QP to take advantage of the
method developed in Chapter 3. We call the modified formulation NMPC_SCO* and

show it as the following.

NMPC_SCO*:

xsp?}li,ﬂp,k ; (xk+1 = Xgp ksl )T 0 (xk+1 - xsp,k+l) * Zk: (uk ok )T R(uk - uSp,k) (5.28a)

st. X, =4Ax,+Bu,+B,d , +e, (5.28b)

Uing SUp SUppy (5.28¢)
k=0,..n-1

where Xgpri1. Ugpi denote the desired values of the states and the decision variables
respectively. Here, the objective (5.28a) is a quadratic function of the deviations of the
state and decision variables from their desired values instead of the linear cost functions
problem NMPC_SCO, so the problem NMPC_SCO is a QP instead of LP. Q and R are
the weighting matrices that can be tuned off-line. We do not include the bounds on the
state variables explicitly within the inner QPs because these bounds are addressed with
constraints (5.27f) that are outside the inner QPs.

Therefore, the decisions determined at the future kth time step, wu,x are
determined by the controller at that time step that solves the QP problem in the form of
NMPC_SCO* with the initial conditions X,, €k dmi=(dmi’s-..,dmi+n1")’ and the desired
states and decisions X g 1=(spkt1's «ovs Xsphtn ) s W sph=(Uspk' s +v» Usppen-l DX prets
U o are the degrees of freedom of the outer level of the bilevel problem
RMPC_SCO-CL. The problem RMPC SCO-CL can be transformed (approximately)
using the approach developed in Chapter 3 by a limited number of linear stochastic

optimization problems in the following form
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RMPC_SCO-CLT:

ntl})n C'x+CTu+CLO (5.292)
st. u, =L t+M 0+N o (5.29b)
X, =L t+M_0+N.o (5.29¢)
(I-1,) t=u, (5.29d)
u, 2u, 2u . (5.2%¢)
x,>x_ -BO (5.299)
0=0 (5.292)

For all L,,, My, Ly, M,,, ® in uncertainty region

where

1))

2)

Equation (5.29a) denotes the objective of the optimization is to minimize the
economic cost of the states and decisions as well as the penalties on the back orders.
The degrees of freedom X gp4+1, # spx are changed into t = (tOT RN )T (which are
linear combinations of X gi+1, # i) to prevent ill-conditioning. The process
variables are x=(x/,...,x.,) , u=@,...,ul) , O=(0],...,0.)" and
coefficients ~ are  C!=(CT,--,CT. ) , Cl=(Cl,-CI)
Clo =(Ciop+Crp )

Equations (5.29b-5.29d) denote the closed-loop model of the system with the known

. . _ T T N\T T T \T
active bounds on the decisions. w, =(u,,, ", u,, ) , X, =(X,,X%,,) ,

0=(x],el,d’)" where d,=(dl,,...,d. )" denotes the predicted disturbance in
the horizon, @=4&d, =(d/,-d,,,....d., —d, )" denotes the difference between

the uncertain disturbances and their predicted values. Equation (5.29d) enforces the
active bounds, where 8 is determined according to the known active bounds
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specified in u,. I,, u_ using the active set heuristic explained in Section 3.2.4 in
Chapter 3. The uncertain coefficients L,,, M,, L., M, can be obtained using the

same approach developed in Section 3.2.3 of Chapter 3 and Appendix D.
3) Equations (5.29e-5.29g) impose bounds on the process variables, where

_ T T T _ T T T _ T . T T
umin - (umin,09 Ty umin,n—l) s umax - (umax,O’ ) umax,n—l) H xmin - (xmin,l’ ) xmjn,n) and

The problem RMPC SCO-CL can be solved by solving the problem
RMPC_SCO-CLT iteratively with the active set heuristic developed in Chapter 3. The
next subsection will discuss the solution of the linear stochastic optimization problem

RMPC_SCO-CLT as a chance-constrained program.

5.3.3 SOCP formulation with tailored chance-constrained program

The equations (5.29b-5.29¢) and (5.29¢-5.29f) can be combined into the following

linear constraints with uncertain parameters,

Lt+M, 0+Now<u_ (5.30)
Lt+M 6+Now=u_, (5.31)
Lt+M 0+No>x_ -BO (5.32)

In Chapter 3 we pointed out that the uncertain linear inequalities can be transformed into
deterministic constraints using the idea of chance-constrained program. The accuracy of
the transformation replies on how close the distribution of uncertain parameters to normal
distribution. However, in this supply chain optimization problem, the uncertain parameter
® , which denotes the prediction errors of the uncertain customer demands in the future,

has a distribution that is significantly different from normal distribution (as discussed in
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Section 5.3.1). Therefore, we propose a revised chance-constrained program approach so
that the resulting deterministic constraints can better approximates the uncertain linear
inequalities.

For more details, let us consider the /th constraint in (5.30),

L,t+M, 0+N o<u,, (5.33)

ur,l ur,l u

where L, ,,M, N, denote the /th row of matrices L,,M,,N, respectively and

u denotes the /th element in u_, . Assume we want to guarantee the feasibility of

max,/

constraint (5.33) at the given confidence level « , then the constraint can be written as,

P(L,t+M,0+N, 0<u_ )2a (5.34)

ur,] url

We assume the uncertainties in L, ,,M,,, (from the uncertainties in manufacturing rate

ur,l °
and transportation time) are independent of the uncertainties in @ (comes from the

uncertainties in demand forecast), thus we can handle them separately.

Define 7., such that P(N,,@<r)2a'?, then constraint (5.34) can be

ul

transformed into

t+M,_ 0+r" <u_ )a"? (5.35)

ur,] ur/ u,d = “max/

P(L

where we assume the uncertain parameters L,,; M,,; to obey a normal distribution. Then
constraint (5.35) is equivalent to the following deterministic constraint (see Lobo et al.,
1998 for more details),

E(L, t+EM, )0+7,+®7 @) | V22 (t7,07,1) [,<u,., (5.36)
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where E() denotes the expected value of the parameters in the brackets, ®~'(a'?)
denotes the inverse cumulative probability function of normal distribution, V,, denotes
the covariance matrix of (Lu,’,,M wrl 1), which can be obtained using the method

discussed in Chapter 3.
If we transform all the uncertain linear inequalities (5.30-5.32) in the same way,
the problem RMPC SCO-CLT becomes problem RMPC SCO-CLTSOCP, a

deterministic SOCP in the following form

RMPC_SCO-CLTSOCP:
ntli)n CT'x+Clu+CLO (5.37a)

E(L, t+E(M,, )0+ ruf,

st r (5.37b)
+ @7 @) |77t 07.1) 1< 0y
I=1-nn
E(L, )t+E(M,, )0+,
-1 1/2 1/2{.T 7 Y (537C)
+@ @) V(07 (2w,
E(Lxr,l )t + E(Mxr,l )e t+ rx_,l
1, _1/2 12{,7 o7 1V ~ > 1= 1,---,nxn (5.37d)
+O (@ )V, (t 0 ’1) ;2 X o, — B,O
(diag(I)-8)-t=u, (5.37¢)
020 (5.379)

where L, ,M,, denote the lth row of matrices L,,M_, respectively and

Wi s Xy » denotes the /th element in w; , X, respectively, V, , denotes the

min, * ““min

covariance matrix of (Lx, M, ,,l) , T

wl 0 Txy

are the parameters such that
P(N,o>r )2a"?, P(Nyo2r)2a"’.

Note that 7, r;,, r;, are obtained off-line numerically based on sampling of

x,!

the historical data. For example, r,’, can be calculated as follows:
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1) Randomly select p samples of the customer demands from historical data over the
horizon of p time steps, and these samples form the vector ®;

2) Calculate 7,, =N, 0;

3) Repeat steps (1) and (2) for 100 groups of samples in the historical data set (from
years of 2004 and 2005), and then get values of 7,, for all the 100 groups of
samples. Pick the smallest r,, value such that the percentage of the 7,, values less

than it is above «"?, and then set r,; atthis value.

With these parameters evaluated, we can solve the bilevel stochastic optimization
problem RMPC_SCO-CL by solving a limited number of SOCP problems. In this thesis,
RMPC_SCO-CLTSOCP was solved using an interior point optimizer, CPLEX.

5.4 The Model for Supply Chain Simulation

In the purpose of simulation case study, we need a model to represent the
behavior of the real supply chain. The simulation period of this model is selected to be 1
hour for all the case studies in this chapter. Also, this model enforces all integer values
where required, even though factional numbers are allowed in the commands from the
optimization. It is non-trivial to round the fractional numbers into the integer variables,
because the hard process constraints need to be observed when implementing commands
from the optimizer. The following rules are used to implement the commands from the

optimizer:

1) The manufacturing rate of the i IP, P;, is rounded up to the nearest integer.

2) The processing rate of the i IP, F,i, is rounded down to the nearest integer if there is
enough inventory of the i IP (J;,) in IPS; Otherwise, F; is rounded to the largest
integer that is feasible with the existing /; ;.

3) The optimization tells how much SKUs to be produced within a SKU manufacturing
period, but it does not indicate the sequence of manufacturing the different SKUs
within the period. In the simulation model, this sequence is determined according to
the inventories of different SKUs at the end of the optimization period, i.e. the
smaller the inventory of a type of SKU is, the earlier that type of SKU is
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manufactured. (We could choose to look at the inventories at the beginning or the end

of the optimization period; here, we choose the end of the period to take the customer

demand information into account.)

4) The SKU transportation quantities to different RDCs (Fy;;) are rounded sequentially
according to the RDC indices j=1,...n; and then the materials/product indices
i=1,...n,. For a particular F;;, we round it in the following steps:

a) Round Fy;; up to the nearest integer and call the result F; J(a)

b) If Fy; J(a) is not feasible with the existing available inventory of SKU i in DC, I,
decrease it to the largest integer that is feasible with the existing available I, ;
Otherwise, do not change F; J-(a). We call the result after this step Fy; J(b).

¢) If the maximum transportation capacity to RDC j is not enough for Fy; J(b),
decrease it to the largest integer that is feasible; otherwise, do not change F; J(b).
We call the result after this step Fy, J(c).

d) Fy;/9 is the quantity of SKU i to be shipped to RDC j, which is used in the

dynamic material balances for the inventories.

Naturally, solving and continuous optimization problem and rounding the answer
for implementation is not always acceptable. We note that this rounding is generally
acceptable in this problem because the number of SKU’s manufactured and transported is
relatively large. The results from numerous case studies reported in this chapter

demonstrate the applicability of the approach for this realistic supply chain.

5.5 Case Study Results and Discussion

The simulation case studies were performed on a PC with Intel Core 2 Duo 3.0 GHz,
4GB memory and Windows Vista. The solution for the plant simulation is programmed
in MATLAB 7.5, and the controller SOCP optimization problems are solved in GAMS
with the interior point (barrier) solver of CPLEX 11. The data in MATLAB and CPLEX
are exchanged using the interface software MATGAMS developed by Ferris (2005).

The following Section 5.5.1 discusses the case studies with 1 IP/SKU (material)
type and 1 RDC, and Section 5.5.2 discusses a case study involving a more complex

system with 2 IP/SKU types and 2 RDCs. Section 5.5.3 discuss the computational
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complexity of the method with respect to the number of IP/SKU types and RDCs. We
start all cases with sufficient inventory so that the inventories remain non-zero (for
uncertain demands) until the first shipments from the DC arrive at the RDC. This is to
avoid back orders that are merely due to an insufficient initial inventory.

The uncertainties descriptions used in the studies are evaluated using the methods
in Section 5.3.3. To evaluate the importance of considering the uncertainty in the supply
chain optimizer, both nominal MPC and robust MPC methods are applied to the case
study problems.

1) Nominal MPC
This method solves the LP problem NMPC_SCO (equation (5.22)) at each

controller execution period.

2) Robust MPC
The method is the one developed in Section 5.3, which solves a series of SOCP

problems at each controller execution period with the active set heuristic. The detailed
steps of implementing the method is the same as described in Section 3.5 of Chapter 3
(for process control), except that the SOCP subproblems to be solved is as follows

(developed in Section 5.3 of this chapter)

min C’'x+Clu+CLO (5.38a)
E(Lur,l)t+E(Mur,l)e+r1:I
st “1,,1/2 12[¢7 T 1YV (5.38b)
+@7 @) | V(.07 1) (<,
I=1---,nn
E(Lur,l )t + E(Mur,l )9 + ru_,l
-1, 172 V2{eT aT 1Y (5.38¢)
+ @ @) V. 07) (1,2 u,,,,
E(Lxr,l )t + E(Mxr,l )0 + rx_,l
o afer ap T , =1 ,nn (5.38d)
+ @ @) | V127,07 1) 11,2 X, — B,O
(diag(I)—9) - t=u, (5.38¢)
0>0 (5.380)
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Also notice that the uncertainty in the supply chain system is time-varying so the

deviation model approach developed in Chapter 3 is not needed.

5.5.1 Case study with 1 IP/SKU type and 1 RDC

Case studies in this section only consider the 1% IP/SKU and the 1* RDC in the
system. The controller and system parameters in all the case studies results are basically
the same, expect that the nominal demands used are different and the specific realizations
of the uncertainty experienced by the simulations are different, which will be described
later for each specific study case.

Here we display the common parameters are used for all the case studies in this
section. Table 5-1 shows the system parameters, and Table 5-2 shows the cost
information specifically (which was defined arbitrarily for the study). Table 5-3 shows
the different periods used in both the nominal and robust MPC controllers. Since the
measurements of the inventories are available once a day, the MPC execution period, 4
T, is 1 day. According to the different decision implementation periods shown in Table
5-1 and the rules discussed in Section 5.2.1.1, the simulation period of the discrete model
of the system used by the controller, 47, is selected to be 12 hours. Table 5-4 shows the
weights related to the different controlled variables and decision variables in the
weighing matrices O, R of the inner QP problems, which are used to approximate the
future LP optimizers. The weights of the different variables are first selected as the
squares of the related costs (because we are using quadratic functions to approximate the
linear economic functions). The resulting controller could be overly aggressive because
the importance of the controller variables is amplified with the use of quadratic function,
so the controller is tuned to reduce the aggressiveness. The case study results will
demonstrate that using the weights showed in Table 5-4 in the inner problems of the

robust MPC gives good supply chain optimization performance.
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Table 5-1 Parameters of the system with the 1% IP/SKU and the 1 RDC

Parameter Value
Nominal SKU manufacturing rate R, (SKU/hour) 16.7
R, range with 90% confidence (SKU/ hour) 13.3-22.2
Unit converting coefficients Cjp_sxry (IP/ SKU) 6.0
Nominal SKU transportation time 7 (hour) 144
7 range with 90% confidence (hour) 132-156
SKU Shipping Intervals (hour) 12
SKU transportation capacity Fymax (SKU/12 hours) 40
Demands D range with 90% confidence (SKU/day) 0-38

Table 5-2 Costs defined by the author for the case study

Parameter Value
IP Inventory cost, C; ($/IP/hour) 0.6
SKU Inventory cost, C, ,C, (3/SKU/hour) 0.1
Back order cost (penalty) C, ($/SKU/hour) 100
IP manufacturing cost Cp ($/IP) 1
SKU manufacturing cost Cr ($/SKU) 0.1
SKU Transportation costCy, ($/ SKU) 0.01
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Table 5-3 The different periods of the nominal and robust MPC controllers

Parameter Value
Measurement and MPC execution period, 4 T (day) 1
Discrete model time interval, 4T (day) 0.5
Control and prediction horizon, » (day) 14

Table 5-4 The additional parameters of the robust MPC controller

Parameter Value
Confidence of each chance constraint, « 90%
QO in inner problem — element for IP Inventory (IP?) 0.072
Q in inner problem — element for SKU Inventory (SKU™) 0.002
R in inner problem — element for IP manufacturing (IP™) 1
R in inner problem — element for SKU manufacturing (SKU?) 0.01
R in inner problem — element for SKU Transportation (SKU?2) 0.0144

5.5.1.1 Simulation results of three typical situations

Results for three typical model mismatch situations are presented here:

Case A: The forecast prediction of customer demand, SKU manufacturing rate
and SKU transportation time are exactly correct. This is the no model-mismatch case.

Case B: The nominal SKU manufacturing rates and SKU transportation times

differ from their nominal values at each time period in a random manner; the sampled
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values could be outside of the 90% limits reported in Table 5-1. The forecast prediction
of customer demand per day is the expected demand obtained from historical. The
simulated plant experiences the actual demands taken from the demands in some
successive 28 days in the year of 2006 (which could be outside of the 90% limits used in
designing the controller), as well as a group of specific SKU manufacturing rates and the
SKU transportation times over the 28 days that are randomly selected according to their
assumed distributions.

Case C: Similar to Case B, but the demand forecast is nearly perfect, differing
from the actual demand only on the 16™ day (the prediction is 30 SKU less then the
actual demand).

Note that Case A represents an ideal case that is very unlikely to happen in the
real world, and Cases B and C are more realistic. Case B corresponds to the situation in
which the daily customer demands are random and not known ahead of time, but the
expected demands during a period can be estimated using historical data (e.g., retailers).
Case C corresponds to the situation in which most of the products are ordered or
contracted ahead of time and rush orders are possible but infrequent (e.g., wholesalers).
We applied the nominal MPC and the robust MPC to all these threes situations
respectively.

Figure 5.6 shows the simulation results with the nominal MPC and robust MPC in
Case A. First, we notice that the variable Fj; in Figure 5.6, which denotes the SKU
quantity shipped from DC to the RDC, is shown in a discrete way because we assume the
shipments only occur at particular time points in the supply chain system; but F ;; itself
is a continuous variable in the MPC calculation, and it is rounded to an integer variable
for the implementation to the real plant (using the rule described in Section 5.4). The
customer demand D, ; is shown with their daily demand in the figure, and the demand
rate is assumed to be constant within each day.

Second, we observe in Figure 5.6 that the nominal MPC performs very well — it
controls the inventory near zero while satisfying customer demands essentially all the
time. (Note that the small back orders occurring around the 28" day were caused by the
modeling approximations we made when building the nominal model used by the

controller.) Robust MPC also prevents the back orders, but it keeps a larger inventory
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Figure 5.6 Simulation Results without model mismatch — Case A
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of IP and SKU because the robust MPC tries to avoid back orders not only for the
nominal realization of the system, but also for other realizations within the confidence
level. The additional inventories to prevent the potential back orders are “safety stock”
for uncertainty, which is not required in this ideal case.

Finally, the manipulated variables Fy;; and the F>, (determined by the
manipulated variable 7;;) are fluctuating from day to day and the fluctuations under
robust MPC are greater than under nominal MPC. Similar results can also be found in
other case studies in this chapter. This may be because the robust MPC is more
“sensitive” to the time-varying uncertainties. The fluctuations in the manipulated
variables could be reduced in either MPC method by adding move suppression terms in
the objective function or constraints on the change of the manipulated variables.

Figure 5.7 and Figure 5.8 present the simulation results in Cases B and C,
respectively. In these mismatch cases, the nominal MPC performs unsatisfactory because
of the large numbers of back orders occurring after the about 20™ day. The nominal MPC
reduces inventories and does not consider safety stock, which would enable it to respond
well to mismatch. The robust MPC prevents back orders because it keeps a safety stock
to satisfy deviations from average performance that are due to model and forecast
mismatch. In both Cases B and C, the nominal MPC takes long time to eliminate the back
orders, because the transportation time from the DC the RDC is long (5.5-6.5 days),
which is the minimum time for the system to respond to the shortage SKU at the RDC.

5.5.1.2 Summary of the results of more situations

The figures in the last subsection represent the behavior of nominal and robust
MPC for a specific mismatch realization in three typical situations. The simulation
studies for a larger numbers of realizations and the variation combinations of mismatch
were performed to better understand the advantages of robust MPC. These simulation
results are summarized in Table 5-5. To generate the results for Table 5-5, simulation
were performed with nominal and robust MPC for 12 different cases for 28 days, in
which the parameters R;, 7, D can have mismatch from the actual process. (Note the
mismatch types in Case 1, 11, 12 are the same to those in Case A, B, C discussed in the
previous subsection.) The results in the table report the average behavior for 100
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Figure 5.7 Simulation results with model mismatch — Case B
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realizations of the uncertain parameters for each of the 12 cases. The uncertainty
realizations were selected randomly from their distributions and therefore, were allowed
to exceed the ranges used when designing the optimizer.

The results in Table 5-5 clearly demonstrate the reduced quantity of back orders
when the supply chain system is optimized by the robust MPC. Some small backorders
occurred with robust MPC because of (a few) realizations with demand outside the
design confidence region and the approximation made for the modeling. In contrast, the
average back order was nonzero in all the 11 study cases when nominal MPC was used,
and the increase in backorders was substantial in most cases. It is also clear that the
inventories maintained by the robust MPC are larger than those by the nominal MPC.
The extra inventories maintained by the robust MPC provide the safety stocks that
significantly reduce back orders.

Table 5-5 also shows that the uncertainty in any single source has effect on the
system performance. Uncertainty in the customer demand D has the dominant effect, and
this uncertainty must be addressed in the MPC calculation to reduce the back orders.
While the effects of the uncertainties in the SKU transportation time 7 are less significant,
addressing it in the robust MPC calculation is still essential to reduce the back orders.
The uncertainty in the manufacturing rate R; has the least effect on the system
performance in Table 5-5, because the manufacturing capacity is large enough in this
case study to enable the daily manufacturing quantity to be fulfilled as the uncertain rate
varied, that is, sufficient spare capacity existed in most of the days. Finally, the more
sources of uncertainty are present, the more back orders are incurred.

From these studies, we conclude that we need to address all sources of uncertainty
simultaneously in the robust MPC to reduce the back orders. Also, since R;, 7 appear in
the feedback model and D is the disturbance to the system, both the feedback model
mismatch and the disturbance uncertainty must be addressed to achieve the robust MPC
performance in Table 5-5. Many existing robust MPC methods are only able to address
part of the sources of the uncertainty in Table 5-5, e.g., feedback model mismatch
(Kothare et al., 1996) or disturbance uncertainty (Goulart et al., 20006), so they cannot

achieve the same performance as the method developed in this thesis.
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Table 5-5 The simulation results with nominal and robust MPC in the 12 cases

Case Nominal MPC Robust MPC
Number R, 4 D AvelP(EI®  AvezO'h Ave(Z]) Ave(Z0)
(SKU) (SKU) (SKU) (SKU)
1 ¢t C C 6233 48 11733 0
2 C C U1l 7356 602 10187 43
3 C C U2 6593 241 10540 30
4 C 8] C 7722 46 11531 0
5 c 8] Ul 7296 794 10279 70
6 C U U2 6558 330 10647 56
7 uta C C 6282 5 11212 0
8 8] C Ul 7300 607 10284 43
9 U C U2 6571 248 10454 32
10 U U C 7502 49 11408 0
11 U 8] Ul 7185 796 10359 74
12 U U U2 6560 338 10519 56

Note: [1] C = Certain; [2] U = Uncertain; [3] Ul for uncertain demands denotes the nominal
demands are expected demands; [4] U2 for uncertain demands denotes the nominal
demands are only incorrect for the 16™ day; [5] The average of the quantity in the
parentheses for the 100 samples; [6] The sum of the daily inventory level over the
simulation horizon; [7] The sum of the daily back order level over the simulation
horizon; {8] The small back orders are due to the approximation introduced in the
modeling.
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We emphasize that the robust MPC obtains the minimum safety stock through
optimization according to the known uncertainty characterization. Therefore, the safety
stock is the minimum for the closed-loop uncertainty experienced, which is better than

setting constant safety stocks based on past experience.

5.5.1.3 Trade-off between back orders and safety stock

Table 5-5 reports small amounts of back order under the robust MPC, which are
caused by the realizations outside the confidence region addressed by the robust MPC
and modeling approximations. We could increase the confidence level of satisfying
uncertain constraints to reduce the potential back orders at the cost of maintaining greater
“safety stock”. The trade-off in the tuning of the confidence level for robust MPC is
shown in Table 5-6. In this table, the results with the robust MPC using different
confidence levels are from the simulation of Case 11 in Table 5-5 (where the nominal
demands are the expected demands obtained from historical data). The quantities shown
in the table are from 100 realizations of the system.

We can see from Table 5-6 that when the confidence level is increased, the
average total inventory during the 28 days increases while the average total back orders
and the worst case back orders decrease. A new quantity, service level, is also shown in
Table 5-6. The service level of a period is defined to be 1 minus the ratio of the total back
orders to the total demands during the period (Tersine, 1994). It indicates how well the
customers are serviced during the period. It is clear that the higher the confidence level,
the better the system can service the customer but the more inventory the system needs to
maintain.

If the back order cost (penalty) correctly reflects the importance of service to the
customers, we can determine the best tuning of the confidence level quantitatively by
comparing the total costs of the inventories and back orders. According to the inventory
and back order unit costs shown in Table 5-2 and the inventories and back orders shown
in Table 5-6, we can calculate the costs for the 5 different tuning of the confidence levels.

The calculated results are illustrated in Figure 5.9. We can see that the inventory
cost increases and the back order cost decreases with the increase of the confidence level,
and the lowest total cost is present with the confidence of 90%. We note the steep
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Table 5-6 The simulation results of robust MPC with different confidence levels

McMaster University — Chemical Engineering

Confidence level Ave'(Z/?)  Ave(zOPY) Max(Z0)  Average service level
99% 22819 35 261 93.1%
95% 13244 37 271 92.9%
90% 12439 42 362 92.1%
85% 11319 58 418 89.2%
80% 10416 72 670 86.9%

Note: [1] The average of the quantity in the parentheses for the 100 samples; [2] The sum of
the daily inventory over the simulation horizon; [3] The sum of the daily back order over
the simulation horizon; [4] The maximum of the quantity in the parentheses for the 100

samples.

Figure 5.9 Relationship between system cost and the confidence level of robust MPC
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increase in total cost when the confidence level is above 95%, which indicates that
achieving service levels above 93% will be very expensive for this system because of
model uncertainty and demand forecast errors as well as the long transportation times

which delay feedback corrections.

5.5.1.4 The Tuning of the confidence level

A confidence level properly tuned off-line may still not as good as desired in
practice, because the current uncertainty of the system may be different from the
uncertainty characterized according to historical data. Reasons could be changes in
traffic, modifications to process equipment (planned or wear), or changes in customer
purchasing patterns. This problem can be addressed by tuning the confidence level
automatically online based on real time data. Here, we are not trying to propose a
systematic adaptive tuning method, but to demonstrate the advantage of the idea of
adaptive tuning through a simple heuristic and a case study.

The heuristic adaptive tuning method used here is:

1) When back orders occur, increase the confidence level of the robust MPC, a, by 1%.
This is to prevent a to be overly small.

2) When the SKU inventory at the RDC (I3) is above a particular level for a week,
decrease a by 1%. The particular inventory level is an indicator to judge if the safety
stock is too large, which can be obtained by the experienced personnel or an

inventory management heuristic.

Figure 5.10 compares the robust MPC methods with and without adaptive tuning
by the simulation of the closed-loop system for 15 weeks. Here, the nominal demands are
the expected demands obtained from historical data (i.e. as in the Case 11 in Table 5-5).
In the controller, the nominal predictions of the manufacturing rate and transportation
time have mismatch and the forecast of the demand is the average demand. The initial
confidence level of the robust MPC is 99%. We set the 90 SKUs to be the threshold
inventory level to judge if the SKU inventory at the RDC is overly large. We can find
that if keeping the 99% confidence level without using the adaptive tuning, the robust
MPC will maintain an excessive SKU inventory (/3,;) of over 200 SKUs at the RDC for
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Figure 5.10 Comparison of the robust MPC with and without adaptive tuning
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the quarter of the year. With adaptive tuning the robust MPC will gradually decrease the
confidence level so that /5; decreased to about 100 SKUs. This study demonstrates the
potential for improving supply chain optimization through adaptive updating of

uncertainties, and we conclude that this is an opportunity for future investigation.

5.5.1.5 Back orders due to limited transportation capacity

Previous cases have demonstrated that we can decrease back orders occurring
with robust MPC by increasing the confidence level of the chance constraints. Here, we
note that it is not always possible to achieve zero back orders by increasing the
confidence level to almost 100%. In some situations, the occurrence of back orders is not
due to the tuning of robust MPC, but to the limitations in the behaviour of the real
system.

Figure 5.11 shows a situation where large amount of back orders occur both
under nominal MPC and under robust MPC. In the controllers, the nominal predictions of
the manufacturing rate and transportation time have mismatch and the forecast of the
demand is the average demand (as the Case 11 in Table 5-5), but the simulated plant
experiences the actual demands taken from some successive 28 days in the year of 2004
(which is within the 90% uncertain demand region used in the controller design) In this
case scenario, there are large demands (100 SKUs/day) at the RDC on the 7™ and 8" days
of the simulation period. The transportation time is 6 days to ship SKUs from DC to the
RDC, and this lead time (in supply chain terminology) or dead time (in automatic control
terminology) presents a limit to the responsiveness of the feedback system. In this case
study, the initial SKU inventory at the RDC roughly equals the demands in the first 6
days, so no infeasibility occurs due to insufficient initial inventory. From the system
dynamics, the SKUSs shipped in the first two days from the DC to the RDC must be able
to satisfy the demands on the 7" and 8" days (minus any residual inventory in the RDC)
to ensure that no back orders occur. However, the transportation capacity for two days is
limited to a maximum of 160 SKUs (40 SKU/shipment and 1 shipment/12 hours).
Because of short-term high demands at the RDC, the existing transportation capacity is
not large enough to satisfy all the demands in the 7" and 8™ days (totally 200 SKUs). We
can see in Figure 5.11 (b) that the robust MPC addresses the potential uncertainty and
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Figure 5.11

Simulation Results with incorrect nominal prediction of parameters

- unavoidable back orders due to the limit of transportation capacity
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orders the system to ship the SKUs to the RDC at the full capacity in the first several
days. However, because of capacity limits, back orders still occur during the 7™ and 8"
days. As the demand decreases to within the capacity of the transportation system, the
back orders are quickly eliminated after the 8™ day by the SKUs transported on the 31
and subsequent days.

We can also find from Figure 5.11 (a) that more back orders occur under nominal
MPC on the 7" and 8" days as well as on the 21% and subsequent days. Therefore, the
robust MPC still outperforms the nominal MPC in this situation.

5.5.2 Case study with 2 IP/SKU types and 2 RDCs

This section shows the case study results when considering two material/product
types (the 1% and 2™ IP/SKU) and two regional distribution centers (the 1% and 2*¢ RDC).
Table 5-7, Table 5-8 and Table 5-9 show the supply chain system parameters, the
different periods used in the nominal and robust MPC and the additional robust MPC
parameters used in this section respectively. Also, we use the costs in Table 5-2 for this
section. The uncertainty in the customer demands of both SKU types at both RDCs can
be characterized from the historical demand data, and we show the histograms of the
demand data in Appendix H. The nominal forecast of the demand is the expected demand
obtained from historical data. The nominal forecast values of the manufacturing rate and
transportation time do not match the actual process behavior. The simulations were run
for 28 days.

Figures 5.12 and 5.13 show the simulation results under nominal and robust MPC,
respectively. We can find that if the nominal MPC is employed, back orders of the 1%
SKU will occur at both RDCs (especially the 2 RDC) due to the model mismatch; but
no back orders of the 2" SKU occur because the uncertainty in the demand forecast of
the 2" SKU is much smaller than that of the 1% SKU.

We can also find that if the robust MPC is employed, back orders do not occur for
either SKUs at either RDCs because of the explicit handling of uncertainty in robust
MPC. Also, the robust MPC maintains much larger inventories of the 1% SKU at the
RDCs (about 200 SKUs for each) than those of the 2*¢ SKU at the RDCs (about 70 and
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100 for each), because the nominal prediction and the uncertainty in the 1% SKU demands

are much larger than those for the 2" SKU.

Table 5-7 Parameters of the system with the 1% and 2™ IP/SKU and the 1% and 2™ RDC

Parameter

Value

Nominal SKU manufacturing rate R
(SKU/hour)

R, range with 90% confidence (SKU/ hour)

Unit converting coefficients Cip_skui
(IP/ SKU)

Nominal SKU transportation time 7; (hour)

7; range with 90% confidence (hour)

SKU Shipping Intervals (hour)

SKU transportation capacity F4 max,
(SKI/shipping interval)

Customer demands D;; range with 90% confidence*
(SKU/day)

16.7 (the 1*' IP/SKU)
16.7 (the 2™ IP/SKU)

13.3-22.2 (the 1° IP/SKU)
13.3-22.2 (the 2™ IP/SKU)

6.0 (the 1* IP/SKU)
6.6 (the 2™ IP/SKU)

144 (the 1*' RDC)
144 (the 2" RDC)

132-156 (the 1 RDC)
132-156 (the 2" RDC)

12 (the 1* RDC)
8 (the 2" RDC)

40 (the 1° IP/SKU)
40 (the 2™ IP/SKU)

0-38 (the 1% SKU 1, the 1* RDC)
0-55 (the 1% SKU 1, the 2" RDC)
0-12 (the 2™ SKU 1, the 1¥ RDC)
0-16 (the 2™ SKU 1, the 2" RDC)
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Table 5-8 The different periods of the nominal and robust MPC controllers

Parameter Value
Measurement and MPC execution period, 4T, (day) 1
Discrete model time interval, 4T (hour) 4
Control and prediction horizon, » (day) 14

Table 5-9 The additional parameters of the robust MPC controller

Parameter Value
Confidence of each chance constraint, « 90%
Q in inner problem — element for IP Inventory (IP?) 0.0144
Q in inner problem — element for SKU Inventory (SKU?) 0.0004
R in inner problem — element for IP manufacturing (IP) 1
R in inner problem — element for SKU manufacturing (SKU™) 0.01
R in inner problem — element for SKU Transportation (SKU?) 0.0016
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(b) Simulation results for the 2" IP/SKU
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Figure 5.12 Simulation results of 2 IP/SKU types and 2 RDCs — Nominal MPC
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(b) Simulation results for the 2™ IP/SKU
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Figure 5.13 Simulation results of 2 IP/SKU types and 2 RDCs — Robust MPC
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5.5.3 Computational complexity

In Section 5.5.2 we demonstrated that the robust MPC method works well for
multiple IP/SKU types and multiple RDCs. This section discusses the computational
complexity of the problem with respect to the number of IP/SKU types and RDCs. We
define Case B described in Section 5.5.1.1 as the base case for the simulation, and
compare the results with different numbers (denoted by 5, ) of IP/SKU types and
only 1 RDC, or the results with different number of RDCs (denoted by n,,-) and 1
IP/SKU type. Also, only one manufacturing plant (SKUM) and one plant SKU
distribution center (DC) exist in all the simulations. We will discuss the both theoretical
computational complexity and also give computational results from test problems.

First, with the increase of n,,. and n,, g, , the scale of the optimization
problem (formulation (5.37)) will increase. According to the modeling of the system and
the robust MPC formulation shown in Sections 5.2 and 5.3, the number of the decision
variables n,,,, the number of the linear constraints n,. and the number of the
second order cones Ng,. are all linear with respect to ng -1, g, > i€
Pyocisions P s Vsoc ~ OMppePp, sy ) - The following Figure 5.14 summarizes the simulation
results that indicate the effects of ng,. and n,, 4 On 74000 Prcs Neoc » Which is in
accordance with the theoretical analysis.

Second, the larger optimization problem requires the increased computer
memory for real-time computation. The memory is basically used to store the matrices
used in the calculation, so it is proportional to the elements in the matrices. According to
formulation (5.37), the matrix elements are O((Mpp-1p, 5 )°) - Figure 5.15 shows the
memory required in the online calculation, which is more linear than quadratic with
respect t0 My, My, oy - 1his is because many matrices are sparse, and the zero elements
do not occupy any space when sparse matrix numerical methods are employed.

Finally, the larger optimization problem takes more time to solve. Note that we
need to update the uncertainty characterization according to the saturation of the decision

variables in the real-time before we solve the optimization problem. According to the

discussion in Section 3.3.2 in Chapter 3 and in Appendix E, the uncertainty update
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Figure 5.14 Effects of numbers of IP/SKU types and RDCs on problem scale
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Figure 5.15 Effects of numbers of IP/SKU types and RDCs on memory

211



PhD Thesis — Xiang Li McMaster University — Chemical Engineering

calculation is cubic with respect to the number of decision variables, i.e. O(n),..,) and
thus O((Mepe 1y scu )’ ) - According to Lobo et al. (1998), the time complexity of solving
a SOCP problem is bounded from above by O(NieMyiion ZZSI"C g ,), Where ng,.
denotes the size of each second order cone, which is proportional to 7y, 75, g, 1n this

problem. So the time complexity of solving the SOCP problem (5.37) is bounded by

12 2 . 9/2
O(N 5oc M cision N soc ProcPup sk ) s 1€ O(MppePp ey )™ 7) -

Figure 5.16 shows the effects of n,,. and 7, g, onthe CPU time required
for the real-time uncertainty update and the optimization. It’s clear that both times are
polynomial with respect to n,,. and »,, g, . Note that here we only show the CPU
time of these two jobs, but the total time to complete all the calculations required for a
controller execution is much more than those shown in Figure 5.16 for the current version
of the software. The additional time is due to (a) a large amount of auxiliary operations
and calculations to preprocess the data and build the optimization formulation in
MATLAB; and (b) the slow procedure to exchange data between MATLAB and the
CLPLEX optimizer in GAMS (through reading and writing data from and to the hard

100 — T T T T 100 T T T T
| =—O— Online uncertainty update \ =-©— Online uncertainty update
80 | ~—&- Online optimization 80 : —é— Online optimization
/I T T T ™ | T - - T T T
) Q
2 2
o) o
3 o
1 2 3 4 J5
Number of IP/SKU types Number of RDCs
(a) Results with 1 RDC and different (b) Results with 1 IP/SKU types and
numbers of IP/SKU types different numbers of RDCs

Figure 5.16 Effects of numbers of IP/SKU types and RDCs on computing time
212



PhD Thesis — Xiang Li McMaster University — Chemical Engineering

disk). This additional time can be reduced by changing the software structure to make the
data preprocessing and organization more efficient and improving the data exchange
between MATLAB and GAMS in computer memory.

5.6 Conclusions

This chapter discusses the application of robust MPC to supply chain optimization
through a real industrial multi-echelon supply chain optimization problem. Since the
structure of the supply chain system is representative of those in industry, the method
developed for this system should also be applicable to many other real problems. The key
restriction is the occurrence of only continuous variables for the supply chain, with any
discrete decisions made at a lower level in the decision hierarchy. While certainly not
completely general, other researchers have found similar formulations appropriate for
industrial problems, e.g., Braun et al. (2003), Wang et al. (2007), etc.

In this chapter, we choose the greatest common divisor of the different decision
implementation periods and feedback period as the sampling time period, so the supply
chain system can be modeled in the form of a canonical discrete time state-space model.
The different uncertainties of the system are modeled using uncertain parameters. The
structural uncertainty caused by the uncertainty in the SKU transportation time is
approximated by a novel disjunctive model formulation with parametric uncertainty.

We adapted the general robust MPC framework developed in Chapter 3 for the
supply chain optimization. The resulting bilevel optimization problem is different from
the one in Chapter 3, because the inner optimization problems are LPs instead of QPs.
We approximate these LPs by QPs with the goal of achieving the targets set by the upper
level optimization. With this modification we can apply the active set heuristic developed
in Chapter 3 and transform the bilevel problem into single level problem. Also, the
non-normally distributed uncertain customer demands are characterized with Monte
Carlo sampling, so that it can be handled within the framework of chance-constrained
program

The case study results show that the robust MPC can determine the optimal safety

stock with the known information on uncertainties, which is a key advantage of the
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robust MPC over nominal MPC for supply chain optimization. The simulation study also
shows the ability of the robust MPC to address both the model mismatch and disturbance
uncertainty for this supply chain optimization problem, which is important to reduce the
back orders. When hard bounds (that represents the limitation of the real system) are
encountered, the robust MPC may not prevent back orders, but it can manage the system
to reduce back orders when compared with a nominal MPC.

We also discuss the trade-off between the inventory and back order (or service)
levels through tuning the confidence level of robust MPC through and evaluate the
effects through simulation studies. The trade-off can be evaluated by comparing the
inventory and back order costs with different tunings. The importance of adaptive tuning
is discussed, and its advantage is demonstrated in a case study using a prototype adaptive
method.

The robust MPC is successfully applied to the system with 1 IP/SKU type and 1
RDC and the system with 2 IP/SKU types and 2 RDCs. We point out that the theoretical
computational complexity of the problem is polynomial with respect to the number of
IP/SKU types and RDCs, which is validated by simulations of different test problem.
This means we can apply this method to larger systems with more IP/SKU types an
RDCs, and while computations increase with problem size, the rate of increase is

moderate and the robust MPC does not suffer from the curse of dimensionality.
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Chapter 6

Summary and Future Work

6.1 Summary

This thesis develops a novel robust MPC method for the control and optimization
of dynamic, uncertain systems with feedback, such as process control systems or supply
chain systems. The method is designed to optimize an uncertain closed-loop system
behavior, not to robustly stabilize it, although the method could be extended to provide
robust stability, as discussed later. It offers a general framework that can address different
sources of parametric uncertainty with efficient and reliable solution for real-time
implementation, and this framework can be tailored for the application to different types
of problems.

Chapter 3 develops the general framework of the new robust MPC method based
on the conventional nominal MPC formulation with a state-space model. Because the
controller influences the prediction of future behavior for uncertain systems, the robust
MPC formulation is initially a bilevel stochastic optimization with the inner optimization
approximating the future controller behavior. With an industry-proven heuristic and the
chance-constrained programming technique, this difficult-to-solve problem is solved
(approximately) by solving a limited number of deterministic, convex SOCP problems,

which can be solved efficiently and reliably with an optimizer using an interior point
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method. An enhanced dynamic model with deviation variables is developed to reduce the
conservativeness in the prediction of time-invariant uncertainty. An efficient closed-loop
uncertainty characterization method is developed so that the extensive calculation can be
performed off-line and the on-line calculation is efficient. The uncertainty in the state
estimation, if not all the states are measurable, is integrated explicitly in the general
framework of the new robust MPC. The case studies of several CSTR control problems
demonstrate the new robust MPC method outperforms nominal MPC and outperforms
simpler robust MPC formulations that do not include feedback uncertainty descriptions or
state estimation errors.

Chapter 4 extends the general robust MPC framework developed in Chapter 3 to
include two key features required for process control applications. The first feature is the
robust steady-state optimization, which obtains feasible and economically optimal set
points while addressing the closed-loop uncertainty, for the trajectory optimization
(control) at each control execution period. Deviation variables are again used to enhance
the steady-state model of the system for better prediction of time-invariant uncertainty.
The steady-state method is originally formulated as a bilevel stochastic optimization
problem, which is then approximated by a limited number of deterministic SOCP
problems using the similar approach introduced in Chapter 3. The second feature is a
quadratic and convex objective function formulation that can include expected
performance and variances of the controlled variables in the prediction horizon, so that
the robust MPC method can account for different input-output uncertainties when
optimizing the (expected) performance. The advantages of the two extensions on
handling constraints and achieving robust performance with the presence of uncertainty
are demonstrated through case studies of several distillation and CSTR control systems.

Chapter 5 tailors the general robust MPC framework developed in Chapter 3 for a
typical industrial supply chain optimization problem. At the beginning, a nominal linear
state-space model is developed for the supply chain system with appropriate assumptions,
and the uncertainties in the system are modeled as uncertain parameters in the linear
model. Next, a bilevel /inear stochastic optimization formulation is built to optimize the
uncertain closed-loop dynamics of the supply chain system. The inner LP problems of the

formulation are then approximated by QP problems so that the formulation can be
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approximated by a limited number of deterministic SOCP problems using the similar
approach introduced in Chapter 3 and a tailored chance-constrained programming
technique. The case study results show the advantage of the robust MPC over nominal
MPC on reducing the back orders as well as the trade-off between the controller tuning
and the customer service level. Finally, the theoretical polynomial computational
complexity of the robust MPC method is validated by simulation studies, which show
that the computations increase with problem size moderately and this robust MPC supply
chain method does not suffer from the curse of dimensionality. Note that if we model the
supply chain optimization problem in Chapter 5 using multi-stage stochastic
programming formulation with recourse, a 14- stage problem must be solved that will be
computationally intractable because the scale of the problem is exponential in the number

of scenarios.

6.2 Summary of Contributions

The key contributions of this thesis are summarized in the following.

e A general formulation of a new linear robust MPC method that optimizes the
uncertain closed-loop system behavior in the prediction horizon and is subject to
hard bounds on manipulated variables and soft bounds on controlled variables.
The formulation explicitly addresses correlated, time-varying or time-invariant,
parametric uncertainty of the plant/model mismatch, measured disturbance
plant/model mismatch, unmeasured disturbances and noises. Although existing
robust MPC methods can address one or more of these sources of uncertainty,
none of them can address all these sources of uncertainty in a unified framework

simultaneously with efficient solutio