
EFFICIENT COMPUTATION OF REGULARITIES IN

STRINGS AND APPLICATIONS

EFFICIENT COMPUTATION OF REGULARITIES IN

STRINGS AND APPLICATIONS

BY

MUNINA YUSUFU, M.Eng. B.Sc.

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

MCMASTER UNIVERSITY

HAMILTON, ONTARIO, CANADA

©Copyright by Munina Yusufu, August 2009

MCMASTER UNIVERSITY

Title: Efficient Computation of Regularities in Strings and

Applications

Author: Munina Yusufu

Department: Computing and Software

Supervisor: Dr. William F. Smyth

Degree: Doctor of Philosophy

Number of Pages: xiii, 122

ii

Abstract

Regularities in strings model many phenomena and thus form the subject of extensive

mathematical studies. Perhaps the most conspicuous regularities in strings are those

that manifest themselves in the form of repeated subpatterns, that is, repeats, multi

repeats, repetitions, runs and others. Regularities in the form of repeating substrings

were the basis of one of the earliest and still widely used compression algorithms and

remain central in more recent approaches. Repeats and repetitions of lengthy sub

strings in DNA and protein sequences are important markers in biological research.

A large proportion of the available algorithms for computing regularities in strings

depends on the prior computation of a suffix tree, or, more recently, of a suffix array.

The design of new algorithms for computing regularities should emphasize conceptual

simplicity, as well as both time and space efficiency.

In this thesis, we investigate mathematical and algorithmical aspects of the com

putation of regularities in strings.

The first part of the thesis is the development of space and time efficient nonex

tendible (NE) and supernonextendible (SNE) repeats algorithms RPT, shown to be

more efficient than previous methods based on tests using different real data sets. In

particular, we describe four variants of a new fast algorithm RPTl that, based on

suffix array construction, computes all the complete NE repeats in a given string x

whose length (period) p 2'.'. Pmini where Pmin 2'.'. 1 is a user-specified minimum. RPTl

uses 5n bytes of space directly, but requires the LCP array, whose construction needs

6n bytes. The variants RPTl-3 and RPTl-4 execute in O(n) time independent of

alphabet size and are faster than the two other algorithms previously proposed for

iii

this problem. To provide a basis of comparison for RPTl, we also describe a straight

forward algorithm RPT2 that computes complete NE repeats without any recourse to

suffix arrays and whose total space requirement is only 5n bytes; however, this algo

rithm is slower than RPTl. Furthermore, we describe new fast algorithms RPT3 for

computing all complete SNE repeats in x. Of these, RPT3-2 executes in 8(n) time

independent of alphabet size, thus asymptotically faster than the methods previously

proposed. We conclude with a brief discussion of applications to bioinformatics and

data compression.

The second part of the thesis deals with the issue of finding the NE multirepeats

in a set of N strings of average length n under various constraints. A multirepeat is

a repeat that occurs at least m times (m 2: 2) in each of at least q 2: 1 strings in a

given set of strings. We show that RPTl can be extended to locate the multirepeats

based on the investigation of the properties of the multirepeats and various strategies.

We describe algorithms to find complete NE multirepeats, first with no restriction

on "gap length" (that is, the gap between occurrences of the multirepeat), then with

bounded gaps. For the first problem, we propose two algorithms with worst-case

time complexities O(Nn+a log2 N) and O(Nn+a) that use 9Nn and lONn bytes of

space, respectively, where a is the alphabet size. For the second problem, we describe

an algorithm with worst-case time complexity 0 (RNn) that requires approximately

IONn bytes, where R is the number of multirepeats output. We remark that if we set

the min and max constraints on gaps equal to zero in this algorithm, we can find all

repetitions (tandem repeats) in arbitrary subsets of a given set. We demonstrate that

our algorithms are faster, more flexible and much more space efficient than algorithms

recently proposed for this problem.

Finally, the third part of the thesis provides a convenient framework for comparing

the LZ factorization algorithms which are used in the computation of regularities in

strings rather than in the traditional application to text compression. LZ factorization

is the computational bottleneck in numerous string processing algorithms, especially

in regularity studies, such as computing repetitions, runs, repeats with fixed gap,

iv

branching repeats, sequence alignment, local periods, and data compression. Since

1977, when Ziv and Lempel described a kind of string factorization useful for data

compression, there has been a succession of algorithms proposed for computing "LZ

factorization". In particular, there have been several recent algorithms proposed

that extend the usefulness of LZ factorization, especially to the computation of runs

in a string x. We choose these algorithms and analyze each algorithm separately,

and remark on them by comparing some of their important aspects, for example,

additional space required and handling mechanism. We also address their output

format differences and some special features. We then provide a complete theoretical

comparison of their time and space efficiency. We conduct intensive testing on both

time and space performance and analyze the results carefully to draw conclusions in

which situations these algorithms perform best. We believe that our investigation and

analysis will be very useful for researchers in their choice of the proper LZ factorization

algorithms to deal with the problems related to computation of the regularities in

strings.

v

Acknowledgements

I am most thankful to my supervisor Dr. William F. Smyth. Your great expertise

and understanding of algorithms, devotion to research, constant encouragement and

enormous support of my research and the thesis writeup has been the key for all the

publications and the outcome of my current thesis. You are such an inspiring and

patient advisor; working with you is always a pleasure.

I would like to thank the members of my supervisory committee Dr. Michael Soltys

and Dr. Ned Nedialkov, for your help and advice over these years. Thank you also

Dr. Ned Nedialkov, for having agreed to participate in my defence via teleconference.

I am grateful to my external examiner Dr. Andrew Turpin, for reviewing my thesis

thoroughly and providing many valuable remarks. I would like to thank Dr. Jeffery

Zucker, for having agreed to review this work and attended my defence.

I have been privileged to work with other excellent researchers with whom I have

shared many interesting moments in science. In particular, I would like to mention

Dr. Simon J. Puglisi. I cannot recall the numbers of E-mails we wrote to each other,

but I remember all those useful suggestions you sent to me. Thank you Dr. Costas S.

Iliopoulos, for believing in me on the ideas of computing multirepeats and for working

with us. Thank you all, my colleagues and friends, for your support and friendship.

I am deeply grateful to my parents Zibaida and Yusufu, my brother Alibiyati

and sister Gulina. Thank you for your endless support, encouragement and love.

Thank you, my daughter Michelle, for your unconditional love and generous spirit as

I devoted much of my time to this work over these years. I am extremely lucky to

have you all in my life.

vi

Declaration

I declare that my thesis contains the following published or to be published materials

of which I was one of the co-authors and my contributions have also been stated.

These work are all done during my Ph.D. research and closely related to the context

of computation of regularities in strings; therefore, they are all integral components

of this thesis. The copyright holder has agreed to grant an irrevocable, non-exclusive

licence to McMaster University and the National Library of Canada to reproduce the

material as part of the thesis.

Simon J. Puglisi, William F. Smyth, and Munina Yusufu, Fast optimal algorithms

for computing all the repeats in a string, Prague Stringology Conference (preliminary

version), Jan Holub and Jan Zdarek (eds.) (2008) 161-169.

Simon J. Puglisi, William F. Smyth, and Munina Yusufu, Fast optimal algorithms

for computing all the repeats in a string, submitted for publication (2009).

Contribution by me: I proposed the ideas of the new algorithms PSYl-1, PSYl

2, and PSYl-3 for computing NE repeats and PSY3-1 for computing SNE repeats

and I was heavily involved in designing all the algorithms. I was also responsible for

the implementing and testing of these new algorithms against existing competitors. I

wrote the draft of the paper for the conference and rewrote it for the journal paper.

William F. Smyth and Munina Yusufu, Computing regularities in strings, Proc.

Second IEEE International Conference on Computer Science and Information Tech

nology (2009) 298-302.

vii

Contribution by me: I proposed the ideas and wrote the draft of the paper.

Costas S. Iliopoulos, William F. Smyth, and Munina Yusufu, Faster algorithms for

computing maximal multirepeats in multiple sequences, Fundamenta Informaticae,

Special StringMasters Issue (2009) to appear.

Contribution by me: I proposed to extend our algorithms PSYl in the first two

papers to locate the multirepeats in a set of strings under various constraints and

I was involved in designing efficient algorithms for two different problems. I also

proposed many of the new data structures which we used in the algorithms. I wrote

the draft of the paper.

Anisa Al-Hafeedh, Maxime Crochemore, Lucian Ilie, Jenya Kopylov, William F.

Smyth, German Tischler, and Munina Yusufu, A comparison of Lempel-Ziv LZ77

factorization algorithms, submitted for publication (2009).

Contribution by me: I finished the most of survey work by providing much of

the bibliography, and wrote the draft of the paper. I also did more than 50% of the

testing of the algorithms and supervised the testing throughout the project process.

Munina Yusufu and Gulina Yusufu, Comparison of software specification methods

using a case study, Proc. 2008 International Conference on Computer Science and

Software Engineering (2008) 784-787.

Contribution by me: I proposed the ideas by discussing the properties of five

formal specification methods theoretically, and wrote the most of the specifications

by designing a particular part of the ABM system using each method. I wrote the

draft of the paper. This study was beneficial to my research in the way that the

formal specification greatly increases the ease with which programs can be written

because it provides detailed and precise definitions of the desired functions.

Munina Yusufu, Computing complete repeats using suffix array, Presented at

WISE (Women in Science fj Engineering) Initiative International Women's Day

Conference (2008).

Vlll

Table of Contents

Abstract iii

Acknowledgements vi

Declaration vii

Table of Contents ix

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Motivation 1

1.1.1 Applications 1

1.1.2 Time and Space Efficiency 3

1.2 Computing Regularities 3

1.3 Major Contributions 6

1.4 Thesis Outline . 8

2 Preliminaries 10

2.1 Basic Definitions 10

2.2 Definitions of Various Regularities . 12

2.2.1 Repeats ... 12

2.2.2 Multirepeats . 14

2.2.3 Repetitions . 16

2.2.4 Runs 17

2.3 Data Structures used in the Algorithms . 19

2.3.1 Suffix Tree (ST) 19

IX

2.3.2 Suffix Array (SA) 21

2.3.3 Longest Common Prefix (LCP) Array. 23

2.3.4 Longest Previous Factor (LPF) Array . 24

2.3.5 Quasi Suffix Array (QSA) 24

2.3.6 Burrows-Wheeler Transform (BWT) Array . 25

3 NE/SNE Repeats 26

3.1 Introduction 26

3.2 Description of the Algorithms 28

3.2.1 RPTl 28

3.2.2 RPT2 49

3.2.3 RPT3 53

3.2.4 The Output of RPTl and RPT3 60

3.3 Experimental Results . 61

3.4 Discussion 65

4 Multirepeats 70

4.1 Introduction 70

4.2 Formulation of Problems . . . 72

4.3 Description of the Algorithms 74

4.3.1 No Constraints on Gaps 74

4.3.2 Restricted Gaps (MultiRepG) 80

4.4 Discussion 85

5 LZ Factorization 86

5.1 Introduction 86

5.2 Overview of LZ Algorithms 90

5.2.1 The LZ Algorithms . 90

5.2.2 Theoretical Comparison 102

5.3 Experimental Results . 104

5.3.l Implementation 104

5.3.2 Test Results . 105

5.4 Conclusion 109

6 Summary and Future Work 111

6.1 Summary .. 111

6.2 Future Work . 113

Bibliography 115

x

List of Tables

3.1 	 Description of the strings used in experiments 62

3.2 	 Microseconds per letter used by each run for SA, LCP, BWT, and

LAST arrays . 64

3.3 	 Microseconds per letter used by each run for RPTl, RPT2, and the

algorithm of [67] . 65

3.4 	 Microseconds per letter used by each run for RPT3 algorithms 66

3.5 	 Maximum number of stack entries required by RPTl 67

4.1 	 Comparison of algorithms 84

5.1 	 Theoretical comparison of LZ algorithms 103

5.2 	 Description of the strings used in experiments 105

5.3 	 Runtime in seconds for SA, LCP, and RMQ arrays 106

5.4 	 Total runtime in seconds for each LZ factorization algorithm 107

5.5 	 Peak memory usage in bytes per input symbol for the algorithms 107

xi

List of Figures

2.1 	 Multirepeats in a set of three strings s 1, s 2 , and s 3 15

2.2 	 The suffix tree of x = abaabaab 21

2.3 	 SA, LCP, LPF, BWT, and QSA arrays of x = abaabaab. 22

3.1 	 SA, LCP, and BWT arrays of x = abcaabcabaccaabcacbaac 29

3.2 	 LCP and SA arrays with graphical illustration for indicating repeat

patterns . 29

3.3 	 Algorithm RPTl-1 - compute all NE repeats of period p 2: Pmin as

ranges in SA using one stack 33

3.4 	 Snapshots of the stack LB in RPTl-1 34

3.5 	 Determine whether the repeat (p; i,j) is NLE (one stack) 36

3.6 	 Algorithm RPTl-2 - compute all NE repeats of period p 2: Pmin as

ranges in SA using one stack and LE range variables leftLE, rightLE 40

3.7 	 Algorithm RPTl-3 - compute all NE repeats of period p 2: Pmin as

ranges in SA using two stacks 42

3.8 	 Determine whether the repeat (p; i,j) is NLE (two stacks) 43

3.9 	 Snapshots of the stacks of LB and PREVRANGES in RPTl-3 . 44

3.10 A bad case for RPTl-3 . 45

3.11 Algorithm 	RPTl-4: compute all NE repeats of period p 2: Pmin as

ranges in SA 47

3.12 Snapshots of the stack LB in PRTl-4 . 	 49

3.13 Algorithm RPT2 - Initialize QSA array and n' 	 50

Xll

3.14 Algorithm RPT2 - output all NE repeats of period 2:: Pmin with gaps

:S 9max · · · · · 51

3.15 Algorithm RPT2 - function checkchain 	 52

3.16 Algorithm RPT2 - functions oldchain & splitchain 	 53

3.17 	LCP and SA arrays with graphical illustration for indicating SNRE

repeat patterns . 55

3.18 Algorithm RPT3-1 - compute all SNE repeats as ranges in SA using

a bit array B 57

3.19 Algorithm RPT3-2 - the simplified SNLE function using LAST. 58

3.20 Preprocessing for Algorithm RPT3-2 - computing LAST 59

3.21 	 Change the output form 60

4.1 	 Multirepeats without constrained gaps 73

4.2 	 Multirepeats with constrained gaps . . 74

4.3 	 Form a new string using end-of-string sentinels . 75

4.4 	 Form a new string and compute its SA, LCP, and BWT arrays . 75

4.5 	 Algorithm MultiRep-1: check multiplicity & quorum 77

4.6 	 Compute pas array 79

4.7 	 Algorithm MultiRep-2: check multiplicity & quorum 80

4.8 	 Algorithm MultiRepG: for each substring sk of s, if ace contains a

sequence of lengthµ= mmin that satisfies (4.2.1), then output ace . . 81

4.9 	 Function check: given an array ace of m occurrences of a repeating

substring in sk, determine whether ace contains a subarray of length

µ = mmin that satisfies the constraints d 83

5.1 	 The steps and main data structures used by each algorithm . 91

5.2 	 Algorithm CPS2 96

5.3 	 Given LPF for a string x, compute LZ 97

5.4 	 Three-stage calculation of LPF using only constant additional space 100

5.5 	 SA, LCP, and BWT arrays of the reversed string x = baabaaba . . . 102

xiii

Chapter 1

Introduction

Various forms of regularity are central to the recognition of important patterns in per

forming retrieval from massive data sets. In this thesis, we investigate mathematical

and algorithmical aspects of regularities in strings. In particular, we have developed

novel algorithms for computing regularities which are both time and space efficient.

1.1 Motivation

1.1.1 Applications

The study of strings began a little over 100 years ago with a mathematical study of

periodicity [81], the simplest form of regularity. When, 40 years ago, scientists and

engineers began to understand that previously unimagined quantities of data would

require efficient string algorithms, methods for recognizing periodicity in strings were

among the first to be proposed [52, 59].

Today algorithms for computing regularities have myriad applications:

• Data Compression. Regularities in the form of repeating substrings were the

1

2 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

basis of gzip, one of the earliest and still widely-used compression algorithms

[56, 91], and remain central in more recent approaches [14].

• 	 Computational Biology. Repeats and repetitions of lengthy substrings in

DNA and protein sequences are important markers in biological research [10, 82].

• 	 Information Security. Spam, the electronic equivalent of junk mail, affects

over 600 million users worldwide. Some methods for detecting spam are mainly

based on similarity calculations on strings [40, 86].

• 	 Data Mining. Various forms of regularity are central to the recognition of

important patterns in retrieval from massive data sets [38]. [36] applies a par

ticular pattern mining algorithm to find both ordered and unordered phrases.

• 	 Analysis of Musical Texts. The identification of melodies and rhythms in

huge musical databases depends heavily on algorithms for computing string

regularities, approximate and exact [25, 26, 27].

• 	 Software Engineering. The identification of approximate clones of methods

or classes in very large software systems is of fundamental importance to effec

tive software maintenance; modern methods depend heavily on algorithms that

identify regularities in source or object code [8].

Apart from expected benefits in application areas discussed above, there should

also be spin-off benefits of this research within the general scientific/technological

3 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

area of combinatorial algorithms.

1.1.2 Time and Space Efficiency

This research has concentrated on the design and development of highly efficient al

gorithms that permit applications to be dealt with quickly even when the problem

size n is extremely large - billions or more. Thus time efficiency is of critical im

portance. Space efficiency is also essential for fast algorithms on large data sets. In

the design of new algorithms for computing regularities, we have therefore tried to

achieve conceptual simplicity, time efficiency, and space efficiency.

1.2 Computing Regularities

In this section we provide informal definitions of the regularities that are most im

portant to this thesis. More formal definitions are given in Chapter 2.

Repeats

A repeat R is a collection of identical repeating substrings in x; R is complete if it

contains all of them. So for the following string

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x=a b a a b a b a a b a a b a

we can represent all the occurrences of aba by a complete repeat

R = (3; 1, 4, 6, 9, 12),

4 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

where the length of the repeating substring is 3 and 1, 4, 6, 9, 12 are the positions at

which it occurs.

Some repeats are more interesting than others. For example, we observe that the

repeats of ab are NOT interesting: they can all be right-extended with a, and so aba

must occur at all the same locations. Similarly with the repeats of ba: they can all

be left-extended with a. However, aba is nonextendible (NE) and so interesting.

In general, we only need to output NE complete repeats.

Also interesting in a biological context are supernonextendible (SNE) repeats;

that is, NE repeats that are not substrings of any other repeat in x. In the above

example, abaaba is the only SNE repeat.

M ultirepeats

A multirepeat is a repeat of minimum length Pmin that occurs at least mmin times

(mmin 2'.: 2) in each of at least q 2'.: 1 strings in a given set of strings. Consider, for

example, the two strings

s1 = ACGTACGACG, s2 = ATACGTGACGACG.

Given Pmin = 3, mmin = 2 and q = 2, we see that ACG of length Pmin occurs at

least mmin times in each of the q strings s1 and s2 . Therefore ACG is a multirepeat

5 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

Repetitions

A repetition is a repeat of adjacent substrings. For example,

x = · · ·dabcabcabcad · · ·

contains three repetitions (abc) 3 , (bca) 3
, (cab) 2

.

It was shown 25 years ago [16] that over all strings of length n, the maximum

number of repetitions is 8(n log n) - achieved for example by Fibonacci strings of

length n. Therefore it would seem that to output 8(n log n) repetitions must take

8(n log n) time. However, as we discover in the next subsection, repetitions can

actually be computed in 8(n) time.

Runs

A run is a periodicity that cannot be extended, either left or right. For example, in

x = · · ·dabcabcabcad · · ·

the underlined segment is a run that represents three repetitions (abc) 3 , (bca) 3 , (cab) 2 .

Using the LZ factorization, it was shown 10 years ago [58] that the runs in any

string x = x[l..n] can be computed in 8(n) time, and thus essentially, since every

repetition is part of a run, the repetitions. It turns out that, for computing runs and

repetitions, the LZ factorization is of central importance.

6 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

LZ Factorization

Roughly speaking, the LZ factorization of a string identifies either leftmost occur

rences of each letter or else longest substrings that occur at least twice in the string.

For example, for a string

f =QQQababaabag__Q

the LZ factorization is f = w 1w 2 w 3 w 4 w 5 w 7 , where Wi are the underlined segments.

LZ can be computed in linear time. The LZ factorization is widely used for

compression (gzip, for example). But, as we have seen LZ is multipurpose: it is also

important for computing runs and repetitions.

1.3 Major Contributions

In this thesis we explore theoretical and algorithmic aspects of the computation of

regularities in strings. Specifically, we describe the following results in subsequent

chapters.

1. 	 NE/SNE repeats: We have proposed four variants of a new fast algorithm

RPTl for computing NE repeats and two variants of RPT3 for computing SNE

repeats in x of length p 2'.: Pmin, using only LCP and BWT arrays, thus they

are space efficient. We have also demonstrated for the first time that both NE

and SNE complete repeats can be computed in O(n) time independent of al

phabet size. We also describe a straightforward algorithm RPT2 that computes

7 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

complete NE repeats without any recourse to suffix arrays and whose total

space requirement is only 5n bytes. Our experimental results have shown that

RPTl-4 is the best on overall strings tested, while the RPTl-1 and RPTl-2 are

better for non-highly periodic strings. Moreover, RPTl algorithms are faster

than the two other algorithms previously proposed for this problem [33, 67].

We have briefly discussed some applications of our RPTl and RPT2 algorithms

to bioinformatics and data compression.

2. 	 Multirepeats: We have also formulated two problems related to multirepeats

in sets of strings with various restrictions and extended our RPTl to present

three efficient algorithms. We have demonstrated that our algorithms are faster,

more flexible and much more space efficient than algorithms recently proposed

for this problem [6]. They are also easier to implement than previous ap

proaches. Among these algorithms, the first two, MultiRep-1 and MultiRep-2,

are for multirepeats with arbitrary gaps, while the last one, MultiRepG, ap

plies to the bounded gaps problem. Extending the algorithms of [6], our three

algorithms output only repeats whose occurrences are substrings of length at

least Pmin (user-specified), thus eliminating trivial outputs. We remark that if

we set the min and max constraints on gaps equal to zero in the algorithm

MultiRepG, we can find all repetitions in arbitrary subsets of a given set S.

3. 	 LZ factorization: The final part of our work provides a convenient framework

8 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

for comparing the LZ factorization algorithms which are used in the computa

tion of regularities in strings rather than in the traditional application to text

compression. We analyzed each algorithm separately and remarked on them

by comparing some of their important aspects, for example, additional space

required and handling mechanism. We also addressed their output format dif

ferences and some special features. We then provided a complete theoretical

comparison of their time and space efficiency. We conducted intensive testing

on both time and space performance and analyzed the results carefully to draw

conclusions in which situations these algorithms perform best. We believe that

our investigation and analysis will be very useful for researchers in their choice

of the proper LZ factorization algorithms to deal with the problems related to

computation of the regularities in strings.

1.4 Thesis Outline

The remainder of this thesis consists of the following chapters.

Chapter 2 introduces the related mathematical background, including all the de

finitions, such as complete repeats, NE/SNE repeats and multirepeats, and the data

structures used in the proposed algorithms, such as suffix array, LCP array and BWT

array.

9 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

Chapter 3 introduces several new, more efficient algorithms for computing com

plete NE and SNE repeats, and compares them with existing algorithms by conduct

ing intensive testing using various data sets.

Chapter 4 describes more efficient new algorithms for computing multirepeats

with various constraints, and compares them with existing algorithms by a theoretical

analysis.

Chapter 5 discusses the main LZ factorization algorithms and provides a theoret

ical and experimental comparison of them.

Chapter 6 gives some concluding remarks and suggestions for future work.

Chapter 2

Preliminaries

In this chapter, we introduce the notation and terminology of strings which will be

used in this thesis as well as the definitions of various regularities. Then we discuss

and describe the data structures will be used in our algorithms.

Basic string terminology in this thesis follows [77]. The material in this chapter

appears also in [80].

2.1 Basic Definitions

We identify a finite set A called an alphabet, whose elements are letters. The

cardinality of an alphabet denoted by a = IAI is the number of distinct letters in

the alphabet.

Usually we consider problems in the context of three kinds of alphabet A:

• 	 general alphabet: \:/..\, µ E A, it is decidable in constant time whether ,\ = µ

(for example, A is a set of Chinese ideographs).

10

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 11

• 	 ordered alphabet: a general alphabet in which VA,µ E A, it is decidable in

constant time whether A < µfor some order relation < (for example, A is a set

of English-language words).

• 	 indexed alphabet: VA E A, it is possible to declare an array T such that

T[A] is accessible in constant time (for example, A is a subset of the ASCII

characters).

A string x is a sequence of elements drawn from A. In this thesis we represent

x as an array x[l..n] of n 2: 0 letters, where n = lxl is called the length of the

string. We say that x has n elements x[l], x[2], ... , x[n], and also we say that x has n

positions while position 1 is at leftmost side of x and position n is at rightmost

side of x. The empty string is denoted bye which corresponds to an empty array

and has length 0.

Corresponding to any pair of integers i and j that satisfy 1 ~ i ~ j ~ n, we define

a substring x[i .. j] of x as follows:

x[i .. j] = x[i]x[i + 1] ...x[j].

If i = j, then x[i .. j] = x[i]; if i > j, then by convention x[i .. j] = E. We say that

x[i .. j] occurs at position i of x and that it has length j - i + 1. If j - i + 1 < n,

then x[i .. j] is called a proper substring.

There are two special kinds of substring x[i .. j] which are of particular importance.

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 12

For any integer j E O.. n, we say that x[l..j] is a prefix of x; if in fact j < n, x[l..j]

is called a proper prefix. Similarly, for any integer i E 1..n + 1, we say that x[i .. n]

is a suffix of x, and a proper suffix if i > 1. Note that these definition include E

as both a prefix and a suffix.

An ordered alphabet induces an ordering on strings, called lexicographic order:

given two strings x[l..n], y[l..m], we say that x < y if and only if one of the following

conditions holds:

• x is a proper prefix of y;

• for some unique integer i E 1.. min {m, n}, x[l..i-1] = y[l..i-1], and x[i] < y[i].

Informally, lexicographic order can be thought of as "dictionary order".

2.2 Definitions of Various Regularities

In this section we define the various regularities in strings that we deal with in this

thesis.

2.2.1 Repeats

Intuitively, a repeat is a collection of repeating substrings, not necessarily adjacent.

More formally, a repeat in x is a tuple

where e 2 2, 1 :::=; ii < i2 < ... < ie :::=; n, and

13 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

Note that it may happen, for some j E l..e - 1, that ij+l - = p or thati1

ii+1 - i1 < p - that is, the substrings of a repeat may be adjacent or even overlap.

We call u the generator, p the period, and e the exponent of Mx,u· Mx,u is called

a square if e = 2; this extends the usual definition of a square in which the repeating

substrings are required to be adjacent.

We say that Mx,u is complete if for every

we are assured that x[i .. i + p -1] =/::. u. We say that Mx,u is left-extendible (LE) if

(p;i1 - l,i2 -1, ... ,ie -1)

is a repeat; in this case, (p + 1; i1 - 1, i2 - 1, ... , ie - 1) is a repeat whose suffixes of

length p are specified by Mx,u· Similarly, Mx,u is right-extendible (RE) if

(p;i1+l,i2+1, ... ,ie + 1)

is a repeat; in this case, (p + 1; i1, i2, ... , ie) is a repeat whose prefixes of length p are

specified by Mx,u· If Mx,u is neither LE nor RE, we say that it is nonextendible

(NE). In x = abaababa, the NE repeats are

Mx,a = (1; 1, 3, 4, 6, 8) and Mx,aba = (3; 1, 4, 6);

14 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

since every occurrence of bis both preceded and followed by a, there are no others.

Of particular interest are repeating substrings u such that Mx,vi uv2 is a repeat if

and only if v1 = v2 = E, the empty string - in other words, u is not a proper substring

of any other repeating substring. We call such repeats supernonextendible (SNE).

The repeating substring u in an SNE repeat Mx,u is in some sense the longest in a

class of repeating substrings that are substrings of u. In the above example, (3; 1, 4,

6), identifying aba at positions 1, 4, 6, is the unique SNE repeat.

2.2.2 Multirepeats

In this thesis we consider and solve the multirepeats problem with various constraints.

A repeat Mx,u of multiplicity m is the occurrence of the generator u in the string

x m times. We define the quorum q to be the minimum number of strings in a set of

strings such that a nonextendible multirepeat must occur, in order to be considered

valid.

If we extend the repeats locating problem from a single string to a set of strings,

considering several constraints, such as minimum periods, multiplicity, and quorum,

then we give the following definition:

A multirepeat is a repeat of minimum length (period) Pmin that occurs at least

mmin 2:: 2 times (multiplicity) in each of at least q ;::: 1 strings (quorum) in a given

set of strings. Consider, for example, the three strings in Figure 2.1.

Given Pmin = 3, mmin = 2, and q = 2, we see that ACG of length Pmin occurs

15 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

at least mmin times in 3 > q strings; that is, ACG satisfies all the constraints in-

eluding minimum period, minimum multiplicity, and quorum. Therefore ACG is a

multirepeat in 8i, 8 2 , and 8 3 .

I 2 3 4 5 6 7 8 9 10 II 13 14 15 16 17 18 19 20 21

sl ~ C A C T A A

s2~ A C T C C T T G

s3 ~ G A C C G T

Figure 2.1: Multirepeats in a set of three strings 8i, 8 2 , and 8 3

Assuming that u occurs twice in a string x at positions ii and i2, then the number

of symbols between them is called a gap and it is equal to 9i = li2 - iii - p. In the

case that 9i = 0, then Mx,u is called a tandem repeat; if 9i < 0, then it is called

overlapping.

If restrictions are posed on the gaps between occurrences of u, then the gap 9i

between the ith and (i+1)th occurrence of u is bounded as follows: dmin, ::; 9i ::; dmax;,

where dmini and dmaxi are lower and upper bounds on the gap size, respectively.

Thus, in this case a repeat Mx,u is represented by the pair (u, d), where dis a tuple

If we add the gap restriction to the above example, choosing dmini = 1 and

dmax, = 5 for all i, so that 1 ::; 9i ::; 5, then ACG is a multirepeat only in 8i

and 8 2 (shaded occurrences).

16 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

2.2.3 Repetitions

A repetition is a sequence of adjacent repeating substrings. More precisely, a repe

tition in a string x = x[l..n] is a substring x[i .. i + pe - 1] = ue, where lul = p and

e ?: 2. If moreover u itself is not a repetition, then ue is said to be irreducible.

Analogous to a repeat, we call u the generator, p the period, and e the expo

nent of the repetition ue. Note that a repetition is completely specified by the triple

(i, p, e). We say that a repetition (i, p, e) = ue is left-extendible (LE) if there exists

a repetition at position i - p of x that is also of period p. If no such repetition exists,

we say that (i, p, e) is NLE. Similarly, if a repetition (i, p, e) = ue is right-extendible

(RE) if there exists a repetition at position i + p of x that is also of period p. If no

such repetition exists, we say that (i,p,e) is NRE. If (i,p,e) is both NLE and NRE,

it is said to be NE.

In the string

12345678

x=a b a a b a a a

the repetitions are (1,3,2) = (aba)2 ,(3,1,2) = a2 ,(6,1,2) = a2
, (6,1,3) = a3 , and

2 a3(7, 1, 2) = a . Among them, (1, 3, 2) = (aba) 2 , (3, 1, 2) = a2 , and (6, 1, 3) = are

NE, (6, 1, 2) = a2 is RE, and (7, 1, 2) = a2 is LE.

About a quarter-century ago, three algorithms were discovered [5, 16, 60] that

employed widely different approaches to computing all the repetitions in a given string

x[l..n] in 8(nlogn) time; of these algorithms, two were based on a form of suffix tree

17 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

calculation ([5] explicitly, [16] implicitly), while the third used a divide-and-conquer

technique. In [16] it was moreover shown that the Fibonacci string fK:

fo = b, f1 = a; fk = fk-1fk-2, k = 2, 3, ... , K

actually contains 8(jfKiloglJKI) repetitions. Hence these algorithms were regarded

as asymptotically optimal, a concept that as we shall see depends heavily on what is

accepted as a sufficient specification of a repetition.

2.2.4 Runs

Intuitively, a run is a nonextendible sequence of overlapping repetitions of the same

period.

It was mentioned in the Introduction that the maximum number of repetitions in

a string x = x[l..n] is 8(nlogn). But this is a count of repetitions that are both

nonextendible and irreducible. If instead we were asked to output the distinct squares

u 2 without these restrictions, we would find that x =an, for example, would require

ln2 /4J - that is, 8(n2
) - outputs to specify squares

x[l..2], x[2 ..3], .. ., x[n - l..n], x[l..4], x[2 ..5], .. ., x[n - 3..n],

and so on. Thus in restricting the output to nonextendible irreducible repetitions,

we encode the output, by tacit agreement with the user, so as to reduce its quan

tity, hence the asymptotic complexity of the algorithm. For x = an, this encoding

dramatically reduces the output to a single repetition (1, 1, n).

18 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

We now describe another encoding of repetitions that further reduces the quantity

of output required to 8(n). Given an NLE repetition (i,p, e), denote by t the greatest

integer such that, for every j E O..t, (i + j,p, e) is a repetition. Note that since

(i, p, e) is nonextendible, therefore t E 0 ..p - 1. We call t the tail of (i, p, e). Then a

run (nonextendible periodicity) (it is also called maximal periodicity in some

literature) is a 4-tuple (i,p, e, t), where (i,p, e) is an NLE repetition of tail t.

The idea of a run was first introduced by Main in [58], where also an algorithm

was proposed to compute the leftmost occurrence of every distinct run in x[l..n].

Given the suffix tree ST and the Lempel-Ziv factorization [56] of x (computable in

linear time from ST), Main's algorithm computes all the leftmost runs in 8(n) time.

In [43] Kolpakov & Kucherov showed that the maximum number p(n) of runs in any

string of length n satisfies

(1)

for some pair of universal positive constants k1 and k2 . They also extended Main's

algorithm to compute all the runs in x in time proportional to their number; thus by

(1), given ST, all the runs in x, and so in effect all the repetitions, could be computed

in 8(n) time.

The exact bound of p(n) is a subject of intense current research. It is known that

p(n) ~ 0.944565n [62] and p(n) :::; 1.029n [22].

Optimal linear time algorithms for computing all runs exist based on suffix trees

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 19

[43, 58] or suffix arrays [3, 23] together with Lempel-Ziv factorization [56, 91].

2.3 Data Structures used in the Algorithms

For storage of data, we make throughout the assumption that string length n:::; 232 -1,

so that each position in x requires at most one computer word (four bytes) for storage.

This is not really a serious restriction, because for computers with a 64-bit word

264length, we would suppose n :::; - 1 with 8 bytes (only the double of 4 bytes)

required for storage of each position. This value of n is much larger than the length

of any string that could be processed in practice.

Similarly we assume alphabet size o: :::; 256, the usual case; for larger o:, flog o:l

bits would be the minimum requirement for each letter in x.

2.3.1 Suffix Tree (ST)

The suffix tree is historically one of the most important data structures in string

processing. The "traditional" approach to LZ computation for x was based on prior

construction of the suffix tree ST of x; that is, a compacted trie on all the suffixes of

x [37, 77].

The suffix tree for x of length n is defined as a rooted tree such that [87]:

• 	 Edges of the tree are labeled with substrings of x. Thus paths from the root

are labeled with concatenations of edge labels.

• 	 The path from the root to any terminal node (leaf) is a suffix of the string x.

20 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

Each of the n suffixes of the string is in the tree, so it has n terminal nodes,

which are labeled i, identifying suffix x[i ..n];

• 	 Each internal node has at least 2 children. Every internal node I identifies the

length of the least common prefix of all the terminal nodes of the subtree

rooted at J.

• 	 The substrings labelling each edge out of a node must all begin with different

letters.

Since such a tree does not exist for all strings, x is padded with a terminal symbol

not seen in the string (usually denoted $). This ensures that no suffix is a prefix of

another, and that there will be n leaf nodes, one for each of then suffixes of x. Since

all internal non-root nodes are branching, there can be at most n - 1 such nodes, and

n + (n - 1) + 1 = 2n nodes in total.

In a suffix tree, the children of every node are displayed left to right in lexicograph

ical order, and so the leaf nodes are also displayed left to right in lexicographical order.

Figure 2.2 shows the suffix tree of

12345678

x = a b a a b a a b.

In order to construct and search a suffix tree, each internal node must contain a

data structure (search tree, sorted array) that enables the correct downward path to

be selected based on the next letter. Thus, especially for large alphabets, internal

21 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

a b

1

6

Figure 2.2: The suffix tree of x = abaabaab

nodes require substantial storage and so, even though suffix tree storage is linear in

n, it is also large, typically 20-40n bytes [77, p. 138]. For large n, this may exceed

available main memory capacity.

Suffix trees can be computed in O(nlogo:) time [61, 87], where a: E O(n), and

online [85] with the same time complexity; on an integer alphabet, 8(n)-time effi

ciency is possible [30], but the algorithm is not practical for long strings. Kolpakov

& Kucherov [42] have implemented [85] very efficiently so as to compute LZ on-line

for a: :S 4 (see Section 5.2.1, Algorithm KK).

2.3.2 Suffix Array (SA)

Consider a string x = x[l..n] defined on an ordered alphabet A of size a: (where if

there is no explicit bound on alphabet size, we suppose a :S n). We refer to the suffix

x[i ..n], i E 1..n, simply as suffix i. Then the suffix array SA is an array [1..n] in

which SA[j] = i iff suffix i is the jth in lexicographical order among all the suffixes

22 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

of x.

The SA array of the string

12345678

x == a b a a b a a b,

is shown in column 2 of Figure 2.3, and the corresponding suffixes in column 3.

i SA[i] x[SA[i] ..n] LCP[i] LPF[i] QSA[i] BWT[i]
1 6 aab 0 0 0 b
2 3 aabaab 3 0 0 b
3 7 ab 1 1 1 a
4 4 abaab 2 5 3 a
5 1 abaabaab 5 4 2 $
6 8 b 0 3 4 a
7 5 baab 1 2 6 a
8 2 baabaab 4 1 5 a

Figure 2.3: SA, LCP, LPF, BWT, and QSA arrays of x == abaabaab

SA can be computed in linear time [45, 49], though various supralinear methods

[63, 66] are certainly much faster, as well as more space efficient, in practice [71], in

some cases requiring space only for x and SA itself, which requires only 4n bytes

(4 bytes per input character) in its basic form, compared to 20-40n bytes for the

corresponding suffix tree. Probably the best overall SA construction code available is

libdivsufsort maintained at the website [65]; we use this code for our tests in Chapter

5. In [3] an enhanced suffix array (ESA) is introduced, consisting of the suffix array

together with an "lcp-interval tree" (see Section 5.2.1, Algorithm AKO).

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 23

2.3.3 Longest Common Prefix (LCP) Array

Another important data structure that is often used with the suffix array is the

Longest Common Prefix (LCP) array. Let us denote the length of the longest common

prefix of suffixes i and j by lcp(i,j). Then, the LCP array contains the lengths of

the longest common prefixes between successive suffixes of SA. That is,

LCP[i] = lcp(SA[i - 1], SA[i]),

for 1 < i:::; n.

The LCP values are closely related to the LCP values given in the internal nodes

of the suffix tree. For example, in Figure 2.2, suffixes 4 and 1 have longest common

prefix 5. In the corresponding suffix array, suffixes 4 and 1 would occur in positions

i - 1 and i, respectively, with LCP[i] = 5.

Given x and SA, LCP can also be computed in 8(n) time [47, 48, 64, 74]: the

algorithm described in [64] requires 9n bytes of storage and is almost as fast in

practice as that of [47], which requires 13n bytes. However the algorithm in [74] is

generally faster and requires only about 6n bytes of storage for its execution, since it

overwrites the suffix array. The algorithm very recently proposed in [48] is also very

fast, especially applied to highly repetitive strings, but again requires 13 bytes. Thus

we use the algorithm of [74] for LCP calculations in this thesis, as the best balance

of time and space efficiency. The fourth column of Figure 2.3 gives the LCP array of

the string abaabaab.

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 24

2.3.4 Longest Previous Factor (LPF) Array

The Longest Previous Factor (LPF) array was introduced in [17], but also appears as

the prefix array 7r in [34]. For any position i in a string x, LPF[i] is defined to be

the length of the longest factor of x starting at position i that occurs previously in

x. Formally, [17] defines LPF[i] as follows:

LPF[i] =max({f Ix[i.. i + f - 1] is a factor of x[O..i + f - 2]} U {O})

Two LPF calculation algorithms are given in [17], another in [20], all based on

prior construction of SA; in [19] an on-line LPF algorithm is described, as well as one

that is space-optimal in the sense that only constant storage is required in addition

to SA and LCP. For an example of LPF, see column 5 of Figure 2.3. It is shown in

[17] that LPF is a permutation of LCP.

2.3.5 Quasi Suffix Array (QSA)

In order to implement the RPT2 algorithm in Chapter 3, we introduce a new data

structure, modified from [34], called Quasi Suffix Array (QSA).

For increasing lengths p = 1, 2, ... (periods of the repeats) and decreasing positions

i = n, n - l, ... , 1, RPT2 computes QSA[i] +--- j, where j is the largest integer less

than i such that

x[j..j+p-1] = x[i ..i+p-1];

QSA[i] +--- 0 if no such j exists.

25 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

QSA (when p = 1) is illustrated in column 6 of Figure 2.3. For use in Chapter 5,

we reformulate the definition of QSA using LPF as follows:

For every i E 1..n, QSA[i] = 0 iff LPF[i] = O; otherwise, QSA[i] = j for some

j E 1..i-1 such that

x [j..j + LPF[i]-1J = x [i ..i+ LPF[i]-1J.

2.3.6 Burrows-Wheeler Transform (BWT) Array

We define the Burrows-Wheeler Transform BWT of x [14]: for SA[j] > 1, BWT[j] =

x [SA[j]-1J, while for j such that SA[j] = 1, BWT[j] = $, a sentinel letter not equal

to any other in x. In some algorithms it is useful also to define BWT[n+ 1] = $.

BWT can clearly be computed in linear time from SA; some of our algorithms and

LZ algorithms [69] use the BWT array since it occupies only n rather than 4n bytes.

BWT is illustrated in column 7 of Figure 2.3.

Chapter 3

NE/SNE Repeats

3 .1 Introduction

In [37, p. 147] an algorithm is described that, given the suffix tree ST of x, computes

all the NE (called "maximal") pairs of repeats in x in time O(an+q), where q is the

number of pairs output. [12] uses similar methods to compute all NE pairs (p; i1, i2)

such that i2-i1 2'.: 9min (or~ 9max) for user-defined gaps 9min,9max· [3] shows how to

use the suffix array SA of x to compute the NE pairs in time O(an+q). Since it may be

that a E O(n), all of these algorithms require O(n2) time in the worst case. [33] uses

the suffix arrays of both x and its reversed string x = x[n]x[n-1] · · · x[l] to compute

all the complete NE repeats in x in 8(n) time. More recently, [67] describes suffix

array-based 8(n)-time algorithms to compute all substring equivalence classes

- including the complete NE repeats - in x.

In this chapter, following [72, 73, 88], we present four variants of a new fast

algorithm RPTl that computes all the complete NE repeats in a given string x whose

26

27 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

length (period) p ~ Pmin, where Pmin ~ 1 is a user-specified minimum. RPTl uses 5n

bytes of space directly, but requires the LCP array, whose construction needs 6n bytes.

Of the RPTl algorithms, RPTl-1 is fastest in practice, while the variants RPTl-3

and RPTl-4 execute in O(n) time independent of alphabet size. To provide a basis

of comparison for RPTl, we also describe a straightforward algorithm RPT2 that

computes complete NE repeats without any recourse to suffix arrays and whose total

space requirement is only 5n bytes; however, this algorithm is an order of magnitude

slower than RPTl.

Finally, we describe two versions of a new linear time algorithm RPT3 to compute

all the SNE repeats in x. Both versions are fast, but the second, RPT3-2, executes in

time 8(n+a). This improves on the algorithm described in [37, p. 146] that does the

same calculation (of "supermaximal" repeats) in time O(nloga) using a suffix tree,

as well as on the algorithm described in [3, p. 59] that uses a suffix array and requires

O(n+a2
) time. For a E O(n) these times become O(n log n) and O(n2

), respectively,

whereas RPT3-2 remains 8(n).

In Section 3.2 we describe our algorithms. Section 3.3 summarizes the results

of experiments that compare the algorithms with each other and with existing al

gorithms. Section 3.4 discusses these results, including the strategy of computing

complete (NE and SNE) repeats in the context of applications to bioinformatics and

data compression.

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 28

3.2 Description of the Algorithms

The RPTl and RPT3 algorithms described below make direct use of LCP and BWT

(but not of SA or of x itself), and therefore require only 5n bytes of storage (plus

relatively small stack space in the case of RPTl). For these algorithms, then, the

6n bytes needed for LCP construction provide an upper bound on the overall space

requirement. The RPT2 algorithm uses a quasi suffix array construction modified

from [34], thus avoiding altogether the calculation of SA/LCP/BWT. This "direct"

approach requires only 5n bytes overall, but the resulting algorithm turns out to be

an order of magnitude slower than SA/LCP/BWT calculation plus RPTl. On the

other hand, RPT2 outputs positions in x directly, whereas RPTl and RPT3 output

ranges i .. j of positions in SA that specify complete repeats (NE for RPTl, SNE for

RPT3). See Section 3.4 for further discussion of the postprocessing of RPT1/RPT3

output.

3.2.1 RPTl

In this section we introduce the basic methodology of the RPTl family of algorithms,

illustrated with the example

x[l..22] = abcaabcabaccaabcacbaac.

Figure 3.1 displays the SA, LCP, and BWT arrays for this string. Figure 3.2 gives a

graphical representation of the SA and LCP values:

29 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

x abcaabcaba a a b a b a a

SA 4 13 20 8 I 5 14 21 17 IO 19 9 15 22 3 12 7 16 18 11

LCP o 5 I 2 4 4

BWT c c b c $ a a a c a a a a a b c b a a

Figure 3.1: SA, LCP, and BWT arrays of x = abcaabcabaccaabcacbaac

LCP (p) Values

7

6

01--~~~~~~~~~~~~..._--~~~~'-'u-~~~~~~-t-~-.

-1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 (Position)

4 13 20 8 1 5 14 21 17 10 19 9 2 6 15 22 3 12 7 16 18 11 (SA Values)

Figure 3.2: LCP and SA arrays with graphical illustration for indicating repeat pat
terns

• 	The horizontal axis gives the SA positions 1..n with the ending value n + 1

added for processing convenience.

• 	 At each position i 1, 2, .. , n, both i and the corresponding SA[i] values are

shown.

• 	 The vertical axis gives LCP[i] values for pairs of suffixes SA[i - 1] and SA[i],

i ~ 2, with LCP[l] = 0 and LCP[n+ 1] = -1, again for processing convenience.

• 	The heavy dots (•) in Figure 3.2 identify the LCP value pat each position i.

30 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

• 	 The vertical lines in the figure identify increases and decreases in the LCP values

p as i ranges from 1 to n.

• 	 Each horizontal line corresponding to some p > 0 identifies a repeat in x of

length p.

• 	 Each horizontal line can be specified by a tuple (p; i, j) where i is the left

endpoint of the line, j is the right endpoint of the line at height p; then (p; i, j)

specifies a repeat in x, moreover, a complete repeat. For example, since there

are 19 such tuples in Figure 3.2, there exist 19 complete repeats in the string

x[l..22]. For instance, within it, there are 3 repeats of length 4, that is, (4; 1, 2),

(4;5,7), and (4;17,18), corresponding to (4;4,13) = aabc, (4;1,5,14) = abca,

and (4; 3, 12) = caab, respectively.

The notation (p; i, j) used here, that identifies a range i .. j in SA provides a

mechanism for compressing the reporting of repeats; in terms of positions in x,

for example, the repeat (4; 5, 7) would need to be reported as (4; 1, 5, 14). See

below for the explanation.

• 	 Some horizontal lines occur in a specific segment (p;i,j), p = p',p' + 1, .. ,q;

that is, with the same range i ..j, but with different heights p. In such cases,

31 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

the peak tuple (q; i, j) represents a longest repeat for positions i and j:

x[SA[i] .. SA[i] + q - 1]

x[SA[i + 1] ..SA[i + 1] + q - 1]

x[SA[j] ..SA[j] + q - 1]

For example, the peak tuple (5; 1, 2) identifies the longest repeat

x[SA[l] ..SA[l] + 4] = x[4..8] = x[SA[2] ..SA[2] + 4] = x[l3 .. 17] = aabca.

The other tuples in this segment are (3; 1, 2) corresponding to aab and (4; 1, 2)

corresponding to aabc. We observe that both aab and aabc are RE repeats, but

aabca is NRE, because it is at the peak (it can not be extended).

Note that (2; 4, 7) = ab is also a longest repeat according to this definition; here

p' = q = 2, indicating that this segment only includes one tuple, thus ab is

NRE.

The following two lemmas express more formally the observations made above:

Lemma 3.1.1 (Completeness) Suppose there is a tuple (p; i, j) as defined above.

Let u = x[SA[i] .. SA[i] + p - 1]. Then (p; i,j) identifies a complete repeat.

Proof Since p is the longest common prefix of the suffixes

SA[i], SA[i + 1], .., SA[j],

32 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

and i < j, therefore the prefixes of length p of these suffixes certainly identify a repeat

(p; SA[i], SA[i + 1], .. , SA[j])

of x. If (p; i, j) is not a complete repeat, then there must exist k, such that x[k ..k +

p - 1] = u, fork E {1, 2, .. , n} A k ~ {SA[i], SA[i + 1], ..SA[j]}. But since for some t,

SA[t] = k, it follows that t E {i,i+l, .. ,j}; that is, k E {SA[i],SA[i+l], .. ,SA[j]},

so Mx,u = (p; SA[i], SA[i + 1], .. , SA[j]) must be a complete repeat of x. D

This lemma, together with the graphical presentation exemplified in Figure 3.2,

motivates representation of repeats by (p; i, j) where i .. j is a range in SA. This is the

approach adopted by the RPTl family of algorithms.

Lemma 3.1.2 (NRE repeat) The peak tuple (q; i,j) which represents a longest

repeat within a specific segment (p;i,j), where p = p',p' + l, .. ,q, must be a NRE

repeat.

Proof If (q; i,j) were not NRE, there would be a horizontal line q+l above q in the

segment, a contradiction. D

Note, however, that a peak tuple may be LE; for example (3; 13, 15) is a peak

tuple in Figure 3.2, corresponding to the repeating substring

x[2..4] = x[6..8] = x[15.. 17] = bca,

33 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

which is LE to

x[l..4] = x[5 ..8] = x[l4.. l 7] = abca.

RPTl-1

According to the methodology we discussed above, we now present the first algorithm.

Figures 3.3 and 3.5 show pseudocode for the brute force (but fast) version RPTl-1.

- Preprocessing: compute SA, BWT & LCP
- in 8(n) time (LCP overwrites SA).

j f-- O; pf-- -1; q f-- O; prevNE f-- O; push(LB; 0, 0)
while j < n do

repeat
j f-- j+l; pf-- q; q f-- LCP[j+l]
if q > p and q 2: Pmin then push(LB; j, q)

until p > q

repeat

if top(LB).lcp > 0 then
(i,p) f-- pop(LB)
if prevNE;:::: i then output(p; i, j)
elsif NLE(i, j) then prevNE f-- i; output(p; i, j)

until top(LB).lcp ::::; q
if top(LB).lcp < q and q 2: Pmin then

push(LB; i, q)

Figure 3.3: Algorithm RPTl-1 - compute all NE repeats of period p 2: Pmin as
ranges in SA using one stack

RPTl-1 performs a single left-to-right scan of LCP. It uses a single stack LB (Left

Boundary) containing pairs (position, LCP value), that identifies leftmost positions

i at which there is an increase in the LCP value. More precisely, in the typical case,

entries (j, q) are pushed onto LB at every position j at which the LCP value increases

(to q) and popped whenever the LCP value decreases. Thus each pop, together with

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 34

the current j value, identifies a complete repeat (p;i,j) as proved in Lemma 3.1.1,

that must be NRE according to Lemma 3.1.2, but that may or may not be NLE.

But a push onto LB may also occur after a sequence of pops has been processed

(see the second repeat loop in Figure 3.3). This case arises when the current LCP

value q = LCP[j + 1] (not pushed onto LB) turns out to be strictly greater than the

LCP value at the top of the stack; thus for the current leftmost position i, the pair

(i, q) needs to be pushed onto LB.

p p

~ J ~ JI (5, 4) I I (4. 2) I q

(5, 4)

(4, 2)
(4,
 2)

(I,
 I)

(0,
 0)

~

(I, I) ~
(0, 0)

(8, 2)

(I, I)

(0, 0)

(a) end of push (b) end ofpop(5, 4), (c) end ofpop(4, 2), (d) end of push

j=7;

output (4; 5,7)=abca output (2; 4, 7)=ab

Figure 3.4: Snapshots of the stack LB in RPTl-1

Figure 3.4 (a) shows these two cases. For j = 7, the stack contains four pairs.

The first of them is the initial element (0, 0), followed by (1, 1) that is produced by

line 16 of the code (Figure 3.3), recording the fact that there is a candidate repeat

starting at i = 1 with period 1, which is strictly greater than the LCP value 0 at the

top of the stack LB. The next two pairs, (4, 2) and (5, 4), are produced by line 7 of

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 35

the code. In contrast, Figure 3.4 (d) shows a typical case only, where (j, q) = (8, 2)

was pushed onto the stack by line 7. In between snapshot (a) and snapshot (d), two

NE repeats were generated, (4; 5, 7) = Mx,abca and (2; 4, 7) = Mx,ab by popping the

pairs (5, 4) and (4, 2).

Since the expected maximum length of a repeating substring in a given string

x = x[l..n] on an alphabet of size o: is 2 log0 n [46], this quantity is also the expected

maximum number of entries in LB; in the worst case (x =an), the maximum could

be 8(n). Note that since there is at most one output for each pop of LB, the number

of repeats, thus in particular the number of complete NE repeats in x is O(n) (at

most the number of internal nodes in the suffix tree).

Lemma 3.1.3 (NE repeat) Suppose Mx,u = (p; i, j) is the complete repeat output

after a "pop". Then Mx,u is a complete NE repeat iff Mx,u is NLE.

Proof According to Lemma 3.1.1 and Lemma 3.1.2, Mx,u must be a complete NRE

repeat, since only those repeats which are peak tuples have been pushed and thus

popped in RPTl-1. If Mx,u is also NLE, Mx,u is a complete NE repeat. On the other

hand, if Mx,u is a complete NE repeat, then Mx,u must be NLE. D

Referring to Figure 3.2, RPTl-1 will never push (j,q) = (5,3) and then pop the

complete repeat (3; 5, 7) = Mx,abc to check if it is NLE, since it is not a peak tuple,

thus not NRE; instead it pushes (j, q) = (5, 4) onto the stack LB, then pops the

36 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

complete NRE repeat (4; 5, 7) = Mx,abca to check if it is NLE. If it is, then it must be

NE.

We use function NLE to check whether a complete NRE repeat is NLE. In this

function, we use the BWT array instead of the SA array to reduce the space com

plexity from 4n bytes to n bytes.

function NLE(i, j)
- Range is LE only if all preceding letters are identical.

,\ +-- BWT[i]; i' f- i+l
while i' ~ j and ,\ = BWT[i'J do i' +-- i' + 1
return (i' ~ j)

Figure 3.5: Determine whether the repeat (p; i,j) is NLE (one stack)

Since by definition BWT[i] = x[SA[i] - 1], BWT provides information about the

letter to the left of the NRE repeat. Once an NRE repeat Mx,u is popped, we only

need to check that the preceding letters of each occurrence of the repeating substring

u are identical; if they are, then it is LE, otherwise NLE. Referring to the above

example, if we check (4; 5, 7) = Mx,abca for the NLE property, since

..\ = BWT[5] = $, BWT[i'] = BWT[6] = a,

the NLE function will return true, indicating that (4; 5, 7) = Mx,abca is an NLE repeat.

Now we discuss a very important feature of NE repeats and how we implement it

in RPTl-1; that is, the use of the variable prevNE.

Observe that prevNE is originally set in line 13 of Figure 3.3 to be the lefthand

boundary i in SA of the range i .. j of the NE repeat most recently output. Thereafter,

37 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

as shown in line 12, every NRE repeat subsequently found whose lefthand boundary i

is not to the right of prevNE (i ::; prevNE) is accepted to be also NLE and therefore

output. This situation is illustrated in Figure 3.4, where the NE repeat (4; 5, 7) = abca

will be identified and output first, causing prevNE to be set to 5; then subsequently,

the NRE repeat (2; 4, 7) = ab is considered; since i = 4 ::; prevNE = 5, (2; 4, 7) is

NLE and therefore output. Thus in this case the function NLE does not need to be

invoked.

To explain why this is so, we state and prove two lemmas.

Lemma 3.1.4 Given two distinct complete NE repeats Mx,u = (p; ii, Ji) and Mx,u

= (p, i2,]2), if i2 :S ii <Ji :S)2, then p < p.

Proof Let u = x[SA[h1] ..SA[hi] +p-1], ii::; hi::; Ji, u= x[SA[h2] ..SA[h2] +fJ-1],

i2 ::; h2 ::;)2. Therefore u = x[SA[hi] .. SA[hi] + p - 1], ii ::; hi ::; Ji, and either

u = u, u is a proper prefix of u, or u is a proper prefix of u. If u = u, then p = p,

and since the two repeats are complete and NE, they are therefore not distinct, a

contradiction. Suppose therefore that u is a proper prefix of u, so that p < p. Hence

u = x[SA[h2]..SA[h2] + p - 1], i 2 ::; h2 ::;)2, and (p; i2, j 2) is a repeat, contradicting

the assumption that (p; ii, Ji) is complete. It follows that u is a proper prefix of u,

hence that p > p. D

Lemma 3.1.5 Given two distinct complete NE repeats Mx,u = (p; ii, Ji) and Mx,u =

38 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

(p, i2, J2). Suppose that Mx,u is an NE repeat, Mx,u an NRE repeat. If i2 :'.S i1 <)1 :'.S

)2, then Mx,u must be an NE repeat.

Proof Since i2 :'.S i1 <)1 :'.S j2, umust be a proper prefix of u, and since Mx,u is NE,

therefore NLE, so Mx,u must be NLE; since Mx,u is also NRE, so Mx,u must be an

NE repeat. D

The importance of prevNE derives from Lemma 3.1.5; thus if an NE repeat

(p; ii, Ji) has been output, we set prevNE f-- i1. Then for any subsequent NRE

repeat (p; i 2, j 2) such that p :'.S p, i2 :'.S ii < j 1 :'.S j 2, we know without further testing

that (p; i 2 , j 2) is NLE and can therefore be output; this is implemented in line 12 by

checking whether i 2 < prevNE. Thus storing prevNE enables us to reduce testing

when a current range falls within the subsequent one.

In practice, this heuristic greatly reduces the time requirement. It is interesting

that, apart from highly periodic strings (that rarely occur in practice), RPTl-1 is

the fastest of the four variants on the strings used for testing. The variable prevNE

is also used in the other RPTl algorithms, but its effect is diminished in those cases

by other features of those algorithms.

However, RPTl-1 is not linear in string length n in the worst case. For integer

k ~ 1, n = 8k+2, x = (ab)nl2 , every repeat of b, bab, ... , b(abr12- 2 is LE, requiring

n/2, n/2-1, ... , n/2-(n/2-2) positions of SA, respectively, to be checked by function

NLE, a total of

39 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

n/2-2 n/2-2

L (n/2 - i) = (n/2)(n/2 - 1) - L i
i=O i=O

= (n/2) (n/2 - 1) - ((n/2 - 1) (n/2 - 2))/2

= (n/2 + 2)(n/2 - 1)/2 E O(n2
)

letter comparisons.

RPTl-2

To avoid repetitive checking of LE repeats, we introduce two integer variables, leftLE

and rightLE, that identify the left and right boundaries, respectively, of the repeat

(range in SA) most recently found to be LE in the left-to-right scan of LCP. In the

event that leftLE..rightLE is a subrange of a range i .. j whose LE status needs to

be checked, this change allows the LE subrange leftLE..rightLE to be skipped.

Assume that a particular peak tuple Mx,u' = (p; i' ..j') is LE. Then

x[SA[i'] - 1] = x[SA[i' + 1] - 1] = ... = x[SA[j'] - l].

If we set such i' to leftLE, j' to rightLE, then for the subsequent complete NRE

repeat Mx,u = (p; i, j) such that i ::; i' < j' ::; j, we also need to check whether or not

it is NLE, that is, to check whether or not there exists at least one pair in the letters

x[SA[i] - 1], x[SA[i + 1] - 1], ... , x[SA[j] - 1]

are different from each other. But since i ::; i' < j' ::; j, we only need to check that

40 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

((p; i .. leftLE) is NLE) V ((p; rightLE.. j) is NLE).

From this analysis, we know that we can eliminate unnecessary character compar

isons. The revised algorithm RPTl-2 is shown in Figure 3.6.

- Preprocessing: compute SA, BWT & LCP
- in 8(n) time (LCP overwrites SA).

j +--- O; p +--- -1; q +--- O; prevNE +--- O; push(LB; 0, 0)
while j < n do

repeat
j +--- j+l; p +--- q; q +--- LCP[j+l]
if q > p and q ~ Pmin then push(LB; j, q)

until p > q

leftLE +--- j; rightLE +--- j

repeat

if top(LB).lcp > 0 then
(i, p) +--- pop(LB)
if prevNE ~ i then output(p; i, j)
elsif rightLE < j and NLE(rightLE,j) then

prevNE +--- rightLE; output(p; i, j)
elsif i < leftLE and NLE(i, leftLE) then

prevNE +--- i; output(p; i, j)
else

leftLE +--- i; rightLE +--- j
until top(LB).lcp :S q
if top(LB).lcp < q and q ~ Pmin then

push(LB; i, q)

Figure 3.6: Algorithm RPTl-2 - compute all NE repeats of period p ~ Pmin as
ranges in SA using one stack and LE range variables leftLE, rightLE

We shall find in Section 3.3 that RPTl-2 greatly speeds up for highly periodic

strings in practice over RPTl-1, mainly due to the use of these two variables; but in

practice it runs the same or slightly slower for other strings, indicating that not many

cases exist in these strings such that the subranges of a range are LE, therefore the

41 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

functionality of leftLE and rightLE actually is not very useful.

Moreover, RPTl-2 is still not linear in the worst case, a result that is not unex

pected, but that turns out to be rather more difficult to establish than for RPTl-1.

Consider a string x in which the following substrings occur:

µ)q ...)..k (k times)

µ>.1 · · · >.k-1 (2 times)

(2 times)

where >.1 < >.2 < · · · < >.k < µ. For example, let

oflength n = 2(k2+k-1), and observe that for every >.i, 1 sis k, there exist exactly

k - i + 1 distinct substrings

all of which are NRE and LE repeats, with the lexicographically least occurring k

times, the others twice. It follows that during the execution of RPTl-2, the function

NLE will need to perform letter comparisons on the substring >.i>.i+l · · · >.k of length

k-i+l a total of k-i+l separate times. Then at least

k k

L(k-i+1)2 = L i2 = k(k+1)(2k+l)/6 E 8(k3
)

i=l i=l

42 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

letter comparisons are required. Since n E 8(k2), we see that the number of letter

comparisons is O(nyln). We conjecture that this is the worst case for RPTl-2.

RPTl-3

To guarantee worst-case linear time, we introduce another stack PREVRANGES,

thus creating a third variant RPTl-3 (see Figures 3.7 and 3.8).

- Preprocessing: compute SA, BWT & LCP
- in 8(n) time (LCP overwrites SA).

j f- O; pf- -1; q f- O;prevNE f- 0
push(LB; 0, O); push(PREVRANGES; 0, 0, $)
while j < n do

repeat
j f- j+l; pf- q; q f- LCP[j+l]
if q > p and q :2:: Pmin then push(LB; j, q)

until p > q

repeat

if top(LB).lcp > 0 then
(i,p) f- pop(LB)
if prevNE ;:::: i then output(p; i, j)
elsif NLE(i,j, PREVRANGES) then

setempty(PREVRANGES)
push(PREVRANGES; 0, 0, $)
prevNE f- i; output(p; i, j)

until top(LB).lcp :::; q
if top(LB).lcp < q and q :2:: Pmin then

push(LB; i, q)

Figure 3.7: Algorithm RPTl-3 - compute all NE repeats of period p :2:: Pmin as
ranges in SA using two stacks

If the current repeat processed by function NLE (Figure 3.8) is found to be left

extendible, its range boundaries i, j are pushed onto PREVRANGES together with

the letter ,\ that precedes each suffix in the range i ..j. Since each range must be

43 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

either disjoint from, or a proper subrange of, subsequent ranges identified during the

scan (reflecting the subtree structure of the suffix tree of x), these ranges allow us to

efficiently determine the left-extendibility of subsequent ranges without duplicating

letter comparisons already made, based on the following simple observations:

function NLE(i, j, PREVRANGES)
- Range is NLE if any subrange is NLE.

>. +--- BWT[i]; I+--- i
while top(PREVRANGES).j' > i do

(i',j', >.') +--- pop(PREVRANGES)
if>. =J $then

if >. = A' then I +--- j -1
else ,\ +--- $

if >. = $ then return TRUE

else

>.+---CHECK(!+1,j, >.)
if ,\ = $ then return TRUE
else push(PREVRANGES;i,j, >.);return FALSE

function CHECK(min, max,>.)
j' +---min
while j' ::; max and BWT[j'] = >. do j' +--- j' + 1
if j' > max then

return ,\

else

return$

Figure 3.8: Determine whether the repeat (p; i, j) is NLE (two stacks)

• every subrange of an LE range must also be LE (that is, a single NLE subrange

ensures that the enclosing range is also NLE);

• moreover, the letter >. =J $ that establishes left-extendibility must be identical

over all the subranges found in PREVRANGES.

44 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

Figure 3.9 shows an example of how the stacks of LB and PREVRANGES work

for the NRE repeats (5; 1, 2) and (2; 1, 3). After function NLE establishes that (5; 1, 2)

is not NLE (that is, BWT[l] = BWT[2] = c), it will set >. = c, and push (1, 2, c)

onto stack PREVRANGES (Figure 3.9(b)). Thus when (1, 2) is popped into (i,p)

(Figure 3.9(a)), where j = 3, function NLE will check whether or not (2; 1, 3) is NLE;

since range 1..2 is in range 1..3, it will only compare BWT[3] (bin the example) with

the current >. value, by popping out (1, 2, c) into (i', j', >.') (Figure 3.9(b)) and calling

function CHECK; since c =I- b, this indicates that (2; 1, 3) is NLE. Thus the algorithm

avoids unnecessary letter comparisons.

i p

~ !'
(I, s) I

j=2
j :\ pushed in - (0, o) I function NLE ~ ~ iJ

in line 13 ' (I, 2, c)
indicating (5; 1.2)i q (0, 0, $) is notNLE.

\ iJ
(I, 2)

(0, 0)

i p i' j' :\'
popped out from

~ !' function NLE \ i t
in line 5(I, 2) ==:>j=J (I, 2, c) to compare I."(0, 0)

(0, 0, $) with updated >. • -
(a) stack LB

(b) stack PREVRANGES

Figure 3.9: Snapshots of the stacks of LB and PREVRANGES in RPTl-3

45 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

Since every LE range is pushed onto PREVRANGES with a A value that is not

a sentinel$, therefore subsequent NRE repeats, which include the previous ranges as

subranges, will only check the ranges that are unmarked with A values; thus in the

worst case, the number of letter comparisons is O(n).

LE LE

I

0--1.!l-~~~~~~~~---~--

I l l l S i 7 I ! II

Figure 3.10: A bad case for RPTl-3

One of the bad cases for RPTl-3 is illustrated in Figure 3.10; if NRE repeats

(2; 1, 3), (2; 4, 7) and (2; 8, 10) are already identified by function NLE as LE, when

an NRE repeat (1; 1, 10) is checked by function NLE, since ranges 1..3, 4 ..7 and 8.. 10

were already checked and pushed into stack PREVRANGES with A values, therefore

function NLE will yield these A values. As a result, function NLE will only check

whether or not

BWT[3] = BWT[4] and BWT[7] = BWT[8].

Note that, if NRE repeat (4; 5, 7) was identified to be LE, then when (2; 4, 7) is

checked by function NLE, it will only check whether or not BWT[4] = BWT[5]. Thus

each position in the whole range 1..10 will only be checked once by the NLE function.

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 46

If an NRE repeat in any subrange of 1..10 was checked to be NLE (thus NE), then

(1; 1, 10) will be directly output without invoking the NLE function because of the

functionality of the prevNE variable.

RPTl-4

To guarantee worst-case linear time, and still use one stack, we create the fourth

variant RPTl-4. As shown in Figure 3.11, RPTl-4 performs a single left-to-right

scan of LCP, inspecting each position j from 1 to n. During the scan, whenever a

position lb (initially lb = j) is found for which the LCP value increases, an entry is

pushed onto a stack LB. As before, LB specifies the Left Boundary lb and period p of

a repeat that must be NRE, but that may or may not be NLE: lb marks the leftmost

occurrence in SA of a repeating substring oflength p = LCP[lb-t-1] > LCP[lb], thus the

left boundary of a repeat. In fact, a triple (p, lb, bwt) is pushed onto the stack, where

bwt is a letter that determines the left-extendibility of the repeat: initially bwt equals

the sentinel letter $ if BWT[lb] f= BWT[lb+ 1], and otherwise equals BWT[lb]. This

is the calculation performed repeatedly by the function LEletter. Thus bwt = $ if

the repeat is NLE (and so eventually should be output), but assumes a regular letter

value if the repeat (so far at least) is LE.

Since the pushes to LB occur in increasing order of position lb, the pops occur

in decreasing order of lb: the most recently pushed triple is popped when a position

j is reached for which LCP[j +1] < top(LB).lcp. Then j is the right boundary for

47 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

- Preprocessing: compute SA, BWT & LCP
- in 8(n) time and 6n bytes of space.

lcp +-- LCP[l]; lb+-- 1; bwtl +-- BWT[l]

push(LB; lcp, lb, bwtl)

for j +-- 1 to n do

lb+-- j; lcp +-- LCP[j+l]
- Compute LEletter of BWT[j] and BWT[j+l].

bwt2 +-- BWT[j+l]; bwt +-- LEletter(bwtl,bwt2); bwtl +-- bwt2
while top(LB).lcp > lcp do

pop(LB; p, i, prevbwt)
if prevbwt = $ and p 2: Pmin then

output(p; i, j)
lb+-- i

top(LB).bwt +-- LEletter(prevbwt, top(LB).bwt)

bwt +-- LEletter(prevbwt, bwt)

if top(LB).lcp = lcp then
top(LB).bwt +-- LEletter(top(LB).bwt, bwt)

else
push(LB; lcp, lb, bwt)

function LEletter(f'.1, £2)

if £1 = $ or £1 =f. £2 then return $

else return £1

Figure 3.11: Algorithm RPTl-4: compute all NE repeats of period p 2: Pmin as ranges
in SA

the popped triple (p, i, prevbwt) and a repeat (p; i, j) is identified. Observe that this

repeat is NRE: if the same letter followed each occurrence of the repeating substring

of length p, then p could not be maximum, contradicting the definition of LCP.

It remains to determine whether or not the popped triple is NLE. For this the

popped value prevbwt needs to be inspected to determine whether it is $ - that is,

whether the repeat is NLE, whether it should be output. To ensure that top(LB).bwt

is maintained correctly, we use a simple property of ranges of repeats: two ranges are

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 48

either disjoint (empty common prefix) or else one range contains the other (common

prefix over the longer range). It follows that if top(LB).bwt =$for a contained range,

then for every range that encloses it, we must also have top(LB).bwt = $. Moreover, if

for some letter >. E A, a contained range is LE with bwt = >., then the enclosing range

will be LE only if every other contained range also has bwt = >.. In RPTl-4 the correct

bwt value for the enclosing range is maintained by invoking LEletter to update

top(LB).bwt whenever LCP[j + 1] ::;: top(LB).lcp. For LCP[j + 1] < top(LB).lcp,

LEletter is used again to update the current bwt based on the prevbwt just popped.

In view of this discussion, we claim the correctness of RPTl-4. Execution time

is 8(n), since the number of executions of the while loop is at most the number of

triples pushed onto LB, thus O(n).

Space required directly for the execution of all RPTl variants is 5n bytes plus

maximum stack storage: 8-byte entries in LB and 9-byte entries in PREVRANGES.

The largest number of entries in both of these stacks will be the maximum depth of

the suffix tree - thus O(n) in the worst case - but expected depth on an alphabet

of size a > 1 is 2 log0 n [46]. Thus even for a = 2, expected space for LB is l8 log0 n

220bytes - if n = , 360 bytes. On strings arising in practice, LB requires negligible

space (Section 3.4).

Figure 3.12 shows how the stack LB works for NRE repeats (5; 1, 2) and (2; 1, 3).

Since BWT[l] = BWT[2] = c, the triple (5, 1, c) will be pushed onto stack; when it

49 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

LEletter(prevbwt, top(LB).bwt) = c p prevbwt

~ t 11 i
lcp

~
lb

t
bwt

i I (5, I, c) I Ico. I, c) I p prevbwt

(5,

(O,

I,

I,

c)

c)
I (0, I, c) I lcp

~
lb

t
bwt

i
(2, I, $)

(0, I, c)

(a) end of push; (b) end ofpop(5,l,c); (c) end of push; (d) end of pop(2,l ,$);

j =2. NRE repeat (5; 1,2) j =3. NRE repeat (2; 1,3)

= aabca is not NLE, = aa is NLE, thus NE.

Thus not NE. Output

Figure 3.12: Snapshots of the stack LB in PRTl-4

popped into variables (p, i,prevbwt), NRE repeat (5; 1, 2) will not be output since

prevbwt =J $; then LEletter is used to update the current top(LB).bwt (to c) and

bwt (to $) based on the prevbwt just popped. So in the next step, (2, 1, $) will be

pushed onto stack; then when it is popped into variables (p, i,prevbwt), NRE repeat

(2; 1, 3) will be output since prevbwt = $. We observe that the bwt value plays the

key role in determining the left extendibility of the NRE repeats.

3.2.2 RPT2

As outlined in Figure 3.13 and 3.14, Algorithm RPT2 avoids altogether the calculation

of SA/BWT/LCP and instead uses a QSA computation modified from [34] to compute

all the NE repeats of period at least Pmin that are separated in x by gaps of at most

9max· Unlike RPTl, RPT2 is therefore unable to output repeats as a simple range in

50 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

SA - it must output each position in x at which a repeating substring occurs.

Moreover, RPT2 is certainly not linear in its behaviour in the worst case (see

below for a discussion of complexity). On the other hand, RPT2 has the advantage

of being easily adjustable to cases when Pmin and 9max are important - it is fast in

practice for values of Pmin that are not too small, and it uses just over 5n bytes of

storage (x, QSA, and the bit vector PROC).

- Fast sort: initialize QSA for p = 1 by setting QSA[i] t- j iff j is the
- first position left of i such that x[i] = x[j]; QSA[i] t- 0 if none such.
- Initialize n' t- number of zero positions in QSA.

count[l..a] t- O°'; n' t- 0
for i t- 1 to n do

QSA[i] t- count[x[i]]
if QSA[i] = 0 then

n' t- n' + 1
count[x[i]] t- i

Figure 3.13: Algorithm RPT2 - Initialize QSA array and n'

For increasing lengths p = 1, 2, ... and decreasing positions i = n, n-1, ... , 1,

RPT2 computes QSA[i] t- j, where j is the largest integer less than i such that

x[j..j+p-1] = x[i ..i+p-1];

QSA[i] t- 0 if no such j exists. For some largest i = ii, therefore, the result is a

chain: ii, i2 , •.• , ik, of length k 2: 1, where for every h E l..k-1, QSA[ih] = ih+i

and QSA[ik] = 0. Thus for k 2: 2 each such chain (p, i) defines a complete repeat of

substrings of x of length p. As shown in Figure 3.14, RPT2 classifies every new chain

according to its extendibility:

51 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

p +--- 1; max +--- n
while n' < n do

PROC[l..max] +--- FALSEmax

for i +--- max downto 2 do

if not PROC[i] then

PROC[i] .___ TRUE

q +--- QSA[i]

- For a new chain, determine whether LE, RE, or NE (output required).
if q > 0 then

- Determine whether current chain LE/RE; if NRE, find first break j.
(LE, j, j') +--- checkchain(p, i, q)
if LE then

- For every position h in chain (p, i) such that QSA[h] =/= 0,

- set QSA[h] +--- 0 and n' +--- n'+1.

(QSA, n') +--- setzero(p, i, q, n')

elsif j' = 0 then

Current chain is RE: it can be skipped for the current p.

PROC +--- oldchain(p, i, q)

else
outchain(p, i, q,J,Pmin, 9max)
if j = i then q +--- -q

- In the interior of a chain already processed, prepare for p+ 1.
if q < 0 then

(QSA, n') +--- splitchain(p, i, q)
p +--- p+l; max+--- max-1

Figure 3.14: Algorithm RPT2 - output all NE repeats of period 2: Pmin with gaps
::; 9max

• If the chain is LE, then the positions i = i1 , i2 , ... , ik will not be reported as

part of any NLE repeat, and so we set QSA[i] +--- 0 for each such i.

• If the chain is NLE and RE, it will be output for some p' > p, and so each

position in the chain can be marked PROC for the current p.

• If the chain is NLE and NRE, then it may need to be output. At the same time,

52 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

some advantage may be taken of information available from function checkchain

that specifies the positions j, j' in the chain at which it ceases to be RE.

function checkchain(p, i, q)
h +--- i; h' +--- q; LE +--- TRUE; RE +--- TRUE
while h' > 0 and (LE or RE) do

if LE and x [h-1] I= x [h' -1] then
LE+--- FALSE

if RE then
if x[h+p] I= x[h' +p] then

RE+--- FALSE; t +--- h; t' +--- h'
h +--- h'; h' +--- QSA[h']

if h' = 0 and RE then
return (LE, h, h')

else
return (LE, t, t')

Figure 3.15: Algorithm RPT2 - function checkchain

In the function outchain, if p ~ Pmin, output subchains consisting of elements of

chain (p, i) whose occurrences are within 9max of each other. For positions pas > j in

the chain, set PROC[pos] +---TRUE; set QSA[j] +--- -QSA[j].

For interior positions in chains of period p, identified by negative QSA values, it

is necessary only to specify the nearest position to the left (or zero, if none such) that

is a member of the (p+ 1)-chain. This is the task of function splitchain.

Now we analyze the time complexity of the algorithm RPT2. RPT2 uses three

functions, checkchain, oldchain and splitchain, that are called within the internal for

loop. Any call of any one of the three functions could require O(n) time. Observe

that the for loop of RPT2 is called for the values max = n, n - 1, n - 2, ... , n - k,

53 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

function oldchain(p, i, q)
t (--- q
while t > 0 do

PROC[t] <-TRUE; t <- QSA[t]

function splitchain(p, i, q)
i' (--- i+p
if i' > n then

QSA[i] <- O; n' <- n'+l
else

t <- -q; >. <- x[i']
while t > 0 and >. =!= x[t+p] do t <- QSA[t]
QSA[i] <- t
if t = 0 then n' <- n'+1

t <- -q; QSA[t] <- -QSA[t]

Figure 3.16: Algorithm RPT2 - functions oldchain & splitchain

where k depends on the setting of n'. Thus the for loop can be executed O(n2) times,

and because of the three functions, each execution could require 0(n) time. Thus

RPT2 required O(n3) time. This is the worst case; on some strings RPT2 can be

quite fast. We also note that the execution time of RPT2 is related to the input of

Pmin and 9max ·

3.2.3 RPT3

In this section we introduce two algorithms for computing SNE repeats.

According to Lemma 3.1.2, the peak tuple (q;i,j) = Mx,u must be a NRE repeat,

and such tuples are candidates for SNRE repeats. Since each range must be either

disjoint from, or a proper subrange of, subsequent ranges identified during the scan,

then we have the following observations:

54 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

• If the range i .. j of a peak tuple (q; i, j) is disjoint from subsequent ranges, the

peak tuple (q; i,j) must be an SNRE repeat.

• 	 Otherwise, since the repeating substring u will be a proper prefix of subsequent

repeating substrings, therefore according to the definition of SNE repeat (given

in Section 2.2.1, that is, u is not a proper substring of any other repeating

substring), it is not SNRE.

From these observations, we know that for the string x[l..22], the following NRE

repeats must be SNRE.

(5; 4, 13) = Mx,aabca

(4; 1, 5, 14) = Mx,abca

(2; 21, 17, 10) = Mx,ac

(2; 19, 9) = Mx,ba

(3; 2, 6, 15) = Mx,ca

(6; 3, 12) = Mx,caabca

We observe that only those peak tuples which are in the "top" positions are SNRE

repeats. Figure 3.17 illustrates this pattern.

The next step is to check whether or not these SNRE repeats are also SNLE

repeats. For this purpose, we introduce more formal definitions of SNLE and SNRE

repeats.

55 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

LCP (p) Values caabca

7 aabca

/
abca p~6

bca
5 ""

p~5

4 ""Sf,,"
ba

p~

p~3

p~2

Fl

-I

I 2 3 4 s 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 (Position)

4 13 20 8 I s 14 21 17 10 19 9 2 6 IS 22 3 12 7 16 18 11 (SA Values)

Figure 3.17: LCP and SA arrays with graphical illustration for indicating SNRE
repeat patterns

Definition 3.1.1 (SNLE repeat) Suppose Mx,u = (p; i,j) is a complete repeat of x.

If x[SA[i]-1], x[SA[i+l]-1], .. , x[SA[j]-1] are pairwise distinct, then Mx,u = (p; i, j)

is a complete SNLE repeat.

Definition 3.1.2 (SNRE repeat) Suppose Mx,u = (p; i,j) is a complete repeat of x.

If x[SA[i]+p], x[SA[i+ 1] +p], .. , x[SA[j]+p] are pairwise distinct, then Mx,u = (p; i, j)

is a complete SNRE repeat.

As for NE repeats, we draw the following conclusion for SNE repeats:

Lemma 3.1.6 (SNE repeat) Suppose Mx,u = (p; i,j) is a complete SNRE repeat,

then Mx,u is SNE if! it is SNLE.

56 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

RPT3-1

The SNE repeats algorithm described in [3] does not deal explicitly with the problem

of determining whether or not a complete SNRE repeat is also SNLE. This determi

nation requires that the left extensions (BWT values) of the k positions in the repeat

be pairwise distinct as Definition 3.1.1. The straightforward approach to this problem

requires at most (;) letter comparisons, where k can possibly be order n. However,

we make two observations:

• 	 The cardinality k of an SNE repeat cannot exceed the alphabet size a. Thus a

single test suffices to eliminate candidate SNRE repeats of cardinality greater

than a, and the straightforward algorithm can then compute SNE repeats in

time O(n+za2
), where z E O(n) is the number of SNRE repeats in x.

• 	 Use of a bit map B = B[l..a] can reduce to 8(a) the time required to determine

whether or not each SNRE repeat is also SNLE, thus reducing worst-case time

to 8(an).

Figure 3.18 gives details of the algorithm RPT3-1 suggested by these remarks.

Since RPT3-1 requires no stacks, storage is reduced to 5n bytes plus a bits (again

with up to 6n bytes for LCP construction).

57 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

- Preprocessing: compute SA, BWT & LCP
- in 8(n) time (LCP overwrites SA).

j +--- O; p +--- -1; q +--- 0

while j < n do

high+--- 0
repeat

j +--- j +1; p +--- q; q +--- LCP[j +1]
if q > p then high +--- q; start +--- j

until p > q
if high > 0 and SNLE(start, j) then

output(p; start, j)

function SNLE(start, end)

k +--- end- start+ 1

if k > a then return FALSE

else

B [1..a] +--- FALSE°'
for h +--- start to end do

>. +--- BWT[h]
if B[>.] then return FALSE
else B[>.] +--- TRUE

return TRUE

Figure 3.18: Algorithm RPT3-1 - compute all SNE repeats as ranges in SA using a
bit array B

RPT3-2

A theoretical and also practical disadvantage of RPT3-1 is its need to perform 8(a)

time processing in function SNLE in order to clear the bit array B, a task that may

be repeated O(n) times. We now describe a more sophisticated approach that reduces

worst-case complexity to 8(n+a) at the cost of a slight increase in actual processing

time.

Instead of BWT, we compute an array LAST = LAST[l..n] in which for every

58 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

j E 1..n, LAST[j] measures the offset between the BWT letter corresponding to the

current position j in SA and the position jprev of the rightmost previous occurrence

in SA of the same BWT letter - if jprev does not exist or if j - jprev 2'. a, then

LAST[j] f-- a - 1. However, if jprev exists and satisfies j- jprev < a, we set

LAST[j] f-- j-jprev-l,

so that LAST[j] takes values in the range O ..a-2. Then when function SNLE processes

a possibly supernonextendible repeat consisting of end-start+l substrings of x, for

every position h E start+l..end, the value of BWT[h] will be unique within the range

if and only if h-LAST[h] > start. Given LAST, the function SNLE simplifies as

shown in Figure 3.19.

function SNLE(start, end, LAST)
k f-- end- start+ 1
if k > a then return FALSE
else

for h f-- start+ 1 to end do
if h-LAST[h] >start then return FALSE

return TRUE

Figure 3.19: Algorithm RPT3-2 - the simplified SNLE function using LAST

In general it is possible that the offsets stored in LAST could be integers of size

O(n). But offsets of magnitude greater than a-1 need not be stored, since as remarked

above the interval start ..end consists of at most a positions. Thus LAST requires

the same amount of storage as BWT, which stores letters that are also restricted to

59 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

be at most a-1 in magnitude. The method can be implemented for any finite a,

but with the usual convention that each letter in the alphabet is confined to a single

byte (a ::::; 256), the array LAST becomes an array of bytes, just like BWT. The

calculation of LAST is shown in Figure 3.20.

- Initialize an array storing rightmost positions of each letter.
for f t- 1 to a do

lastpos[f] t- 0
- Compute LAST in a single left-to-right scan of SA.

a' t- a-1

for j t- 1 to n do

it- SA[j]-1

if it- 0 then

LAST[j] t- a'

else

letter t- x[i]; jprev t- lastpos[letter]

if jprev = 0 or j-jprev ~ a then

LAST[j] t- a'

else

LAST[j] t- j - jprev-1

lastpos[letter] t- j

Figure 3.20: Preprocessing for Algorithm RPT3-2 - computing LAST

In fact, in order to take advantage of the CPU cache, our implementation of this

algorithm actually computes BWT first, then makes a pass over BWT to convert it

into LAST - an approach that turns out to be 2-3 times faster than a straightforward

implementation of the preprocessing algorithm.

60 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

3.2.4 The Output of RPTl and RPT3

The RPTl and RPT3 algorithms described above output NE and SNE repeats in the

compact form (p; i, j) (slightly different as (p; start, j) in RPT3) rather than

(p; SA[i], SA[i + 1], ... , SA[j]).

Thus repeats are keyed to a range i .. j in SA rather than to a collection of j - i + 1

distinct positions in x. In order to key each repeat to x, we need to access SA and

perform processing such as the following in Figure 3.21.

- Input: SA[l..n]
for every (p; i, j)

output (p)
for h +-- i to j do

output (SA[h])

Figure 3.21: Change the output form

Thus in such cases, the RPTl and RPT3 algorithms constitute the first step of a

two-step process. The second step shown in Figure 3.21 requires O(max(n, TJ)) time

and O(n) space, where ry is the number of occurrences of NE/SNE repeats in x; also,

it requires that SA be available, either in main memory or in secondary storage. This

two-step approach does not increase asymptotic complexity, either for space or time,

while retaining some flexibility for handling user requirements. Also, it has enabled

us to focus on achieving true linear-time performance for the first step.

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 61

3.3 Experimental Results

We have implemented and tested eight algorithms: four RPTl versions, two RPT3

versions, RPT2, and the algorithm of [67].

Some algorithms require SA and LCP arrays as input. For SA construction the

KS algorithm was used [49] - the fastest such algorithm is perhaps MP2 [63] that,

based on experiments documented in [63, 71], would perform 5-10 times faster on

average, using about 5.2n bytes of storage. For LCP construction the algorithm of

[74] was used, as we discussed in Section 2.3.

All programs were written in C++, using techniques such as function inlining,

avoidance of superfluous array references in order to yield efficient code and we are

confident that all implementations tested are of high quality.

Platform

Hardware All tests were conducted on a SUN X4600 M2 Server with four 2.6 GHz

Dual-Core AMD Opteron(tm) 8218 Processor (total of eight processor cores), 32GB

of RAM and four 146GB SAS disks.

Software The operating system is Redhat Linux 5.3 running kernel 2.6.18. All

implementations were in C++, compiled using GNU g++ at the -03 optimization

level.

62 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

Timing

Running times are the minimum of ten runs and do not include time spent reading

input files. Times were recorded with the C++ standard library function clock.

Test Data

Experiments were conducted on a diverse selection of files chosen from the collection

at http: I /www. cas. mcmaster. carbill/strings/ and listed in Table 3.1.

File Type Name No. Bytes Description
highly periodic fibo35

fibo36
fss9
fsslO

9,227,465
14,930,352
2,851,443

12,078,908

Fibonacci
Fibonacci
run-rich [35]
run-rich [35]

random rand2
rand21

8,388,608
8,388,608

a=2
a= 21

DNA ecoli
chr22
chr19

4,638,690
34,553,758
63,811,651

escherichia coli genome
human chromosome 22
human chromosome 19

Genbank protein database prot-a
prot-b

16,777,216
33,554,432

sample
doubled sample

English bible
howto
mozilla

4,047,392
39,422,105
51,220,480

King James bible
Linux howto files
Mozilla source code

Table 3.1: Description of the strings used in experiments

These files are of five main types:

• 	 highly periodic strings - strings that do not occur often in practice, containing

many repetitions (Fibonacci strings, binary strings constructed in [35]);

63 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

• strings with very few runs (random strings on small and fairly large alphabets).

•DNA strings on alphabet {a,c,g,t};

• protein sequences on an alphabet of 20 letters;

• strings on large alphabets (English-language, ASCII characters).

Test Results

We give in Table 3.2 the preprocessing times for the various data structures required

by the RPTl, RPT3, and [67] algorithms; specifically, the SA, LCP, BWT, and LAST

arrays.

Test results of algorithms are shown in Table 3.3 and 3.4. In Table 3.3, times for

the RPTl implementations and [67] include times required for SA, LCP, and BWT

computation; RPT2 times include time for QSA initialization. In Table 3.4, times

for the RPT3-1 include times required for SA, LCP, and BWT computation; while

RPT3-1 include times required for SA, LCP, and LAST computation.

In both Table 3.3 and 3.4, averages within file type are not weighted by file

size, and the final AVERAGE is a simple average of the "microseconds per letter"

ratios for each of the 14 test files. Note that for each program tested, the number

of microseconds per letter is generally stable within each file type and not highly

variable overall. Tests of RPTl used Pmin = 1; as expected, for larger Pmin the run

time decreased, usually to about half the starting value.

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 64

File SA LCP BWT LAST
fibo35 0.898 0.142 0.025 0.031
fibo36 0.886 0.601 0.027 0.033
fss9 0.826 0.561 0.026 0.031
fsslO 0.958 0.576 0.025 0.032
periodic AVG 0.892 0.470 0.026 0.032
rand2 0.947 0.144 0.026 0.031
rand21 1.135 0.112 0.025 0.031
random AVG 1.041 0.128 0.025 0.031
ecoli 1.413 0.116 0.025 0.031
chr22 1.635 0.146 0.035 0.040
chr19 1.873 0.160 0.044 0.053
DNA AVG 1.754 0.141 0.035 0.041
prot-a 1.778 0.142 0.027 0.032
prot-b 1.971 0.159 0.034 0.039
protein AVG 1.874 0.151 0.030 0.036
bible 1.417 0.111 0.024 0.030
howto 1.912 0.178 0.035 0.039
mozilla 1.815 0.135 0.032 0.036
English AVG 1.417 0.141 0.030 0.035
AVERAGE 1.390 0.235 0.029 0.035

Table 3.2: Microseconds per letter used by each run for SA, LCP, BWT, and LAST
arrays

The vertical lines in Table 3.3 separates the algorithms RPTl with RPT2 and the

algorithm of [67]. In each section of both Table 3.3 and 3.4, we underline in bold the

quantity that achieves the best result for the current test case.

To assess the effect of stack use on the space requirements of the RPTl family,

a record was kept of maximum stack usage for each of the files tested, as shown

in Table 3.5. The files prot-a and prot-b consumed by far the most stack space,

totalling in each case a little less than 125K bytes. (The maximum size of the LB

65 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

File RPTl-1 RPTl-2 RPTl-3 RPTl-4 RPT2 [67]
fibo35
fibo36
fss9
fsslO

1.119
1.570
1.462
1.614

1.084
1.533
1.434
1.582

1.084
1.534
1.434
1.580

1.077
1.526
1.427
1.572

-

-

-

-

1.126
1.570
1.470
1.618

periodic AVG 1.442 1.409 1.408 1.401 - 1.446
rand2
rand21

1.131
1.280

1.133
1.281

1.134
1.282

1.134
1.284

1.688
2.352

1.169
1.285

random AVG 1.205 1.207 1.207 1.209 2.020 1.226
ecoli
chr22
chr19

1.566
1.830
2.091

1.569
1.832
2.093

1.569
1.832
2.099

1.569
1.832
2.093

26.715
18.422
33.938

1.585
1.863
2.128

DNA AVG 1.943 1.946 1.949 1.946 26.358 1.973
prot-a
prot-b

1.958
2.176

1.959
2.177

1.960
2.178

1.960
2.177

65.479
-

1.975
2.201

protein AVG 2.067 2.068 2.069 2.068 - 2.088
bible
howto
mozilla

1.568
2.140
1.993

1.569
2.141

1.993

1.569
2.143
1.995

1.567
2.141
1.995

8.239
-

-

1.601
2.185
2.014

English AVG 1.602 1.603 1.604 1.603 - 1.635
AVERAGE 1.678 1.670 1.671 1.668 - 1.699

Table 3.3: Microseconds per letter used by each run for RPTl, RPT2, and the algo
rithm of [67]

stack was as expected identical for all four RPTl algorithms.)

3.4 Discussion

We make the following observations:

(1) 	 Except RPT2, the other six new algorithms tested are very fast, especially on

strings that arise in practice: even if SA were to execute 10 times faster, as it

might if MP2 were used, still each algorithm would require 53 or less of the

66 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

File RPT3-1 RPT3-2
fibo35 1.070 1.075
fibo36 1.519 1.524
fss9 1.419 1.422
fsslO 1.565 1.571
periodic AVG 1.394 1.398
rand2 1.127 1.130
rand21 1.282 1.286
random AVG 1.204 1.208
ecoli 1.564 1.568
chr22 1.826 1.829
chr19 2.087 2.094
DNA AVG 1.940 1.944
prot-a
prot-b

1.957
2.174

1.960
2.177

protein AVG 2.065 2.069
bible 1.562 1.566
howto 2.134 2.137
mozilla 1.990 1.993
English AVG 1.597 1.600
AVERAGE 1.663 1.667

Table 3.4: Microseconds per letter used by each run for RPT3 algorithms

total SA/LCP time.

(2) From 	the 6th and the last line in Table 3.3, we observe that the RPTl-4 is

behaving very well for highly periodic strings and is the fastest one of the four

variants over the complete range of strings tested.

(3) Contrary to the averages given in the last line of Table 3.3, RPTl-1 and RPTl

2 are actually slightly faster than RPTl-3 and RPTl-4 on strings that arise in

practice (that is, strings that are not highly periodic): the average microseconds

67 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

File LB PREVRANGES
fibo35
fibo36
fss9
fsslO

33
34
33
37

30
32
36
40

random2
random21

24
8

8
5

ecoli
chr22
chr19

24
64

249

14
35
50

prot-a
prot-b

6701
6701

7448
7448

bible
howto
mozilla

23
91

2772

112
292

2750

Table 3.5: Maximum number of stack entries required by RPTl

per letter for RPTl-1 on such files is 1.773, the best of all.

(4) We have computed maximum stack size for each of the test files: only for prot-a

and prot-b did the maximum size of the LB stack exceed three digits - for

prot-a (the worst case) the total maximum storage for LB and PREVRANGES

was 0.13 of the 5n bytes required for LCP and BWT storage.

(5) 	 The algorithm of [67] was originally designed to provide more comprehensive

output than that of our RPTl algorithms, and so is not directly comparable.

However, the authors have modified their code to reduce processing require

ments. Using this version for Table 3.3, the modified version appears to execute

around 2-3 times slower than RPTl on real-world files.

68 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

(6) We conducted 	no experiments on the algorithm of [33] because it needs to

compute SA/LCP twice and will therefore be very slow.

(7) Even though, in addition 	to its asymptotic advantage, RPT3-2 runs around

30% faster than RPT3-1, nevertheless it does not overcome the disadvantage

of the additional preprocessing time required for LAST compared to BWT (see

both Table 3.2 and 3.4): RPT3-1 together with BWT runs consistently slightly

faster than RPT3-2 with LAST.

(8) 	 RPT2 seems to provide possible advantage only for random strings.

The output of RPTl and RPT2 can be used in various ways and for various

purposes. For offiine data compression the output can be used for phrase selection

[4, 51, 83]. It is also useful for duplicate text/document detection [11]. If the user re

quires positions in x to be output, this can trivially be achieved, since SA is available,

by postprocessing that replaces i .. j by SA[i], SA[i+ 1], ... , SA[j]. In applications to

protein sequences, such as the detection of low-complexity regions, the use of either

RPTl or RPT2 will provide significant algorithmic speed-up over currently-proposed

methods [75] that are effective but slow. In the context of genome analysis the post

processing of interest may be to compute NE pairs as in [3, 12, 37]. Assuming an

integer alphabet l..o:, this can be accomplished as follows for each range i ..j. Intro

duce a new array BWT' = BWT'[l..n], where for SA[h] < n, BWT'[h] = x[SA[h]+l],

otherwise BWT'[h] = $.

69 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

(1) 	 Perform a radix sort on the pairs

(BWT[i], BWT'[i]), (BWT[i+l], BWT'[i+l]), ... , (BWT[j], BWT'[j])

into bins that are accessed from an array B = B[l..a, l..a]. As a byproduct of

the sort, positions in a Boolean array E = E[l..a] are set: E[b] = TRUE if and

only if row b of B is empty.

(2) 	 For every nonempty row b1 of B, and for every b2 E l..a, perform the following

simple processing:

if not E[h1] then

for h2 +--- (1 to b2 - 1) and (b2 + 1 to a) do

output all pairs B(b1 , b2) with B(h1 , h2)

This approach requires checking at most a 2 (a - 1)2 /2 positions in B for each range

processed; in the DNA case with a= 4, this amounts to at most 72 (that is, a 3 +2a)

positions, but will for most ranges be much less. Otherwise the time required is

proportional to the number of pairs output. Due to CPU cache effects, we believe this

will be an efficient algorithm for computing NE pairs: it depends only on i, j, BWT

and BWT'.

Chapter 4

Multirepeats

4.1 Introduction

In this chapter, we propose efficient algorithms for finding the nonextendible (NE)

multirepeats in a set of strings under various constraints. The problem of finding

common regularities among a set of strings is very important [37]. In biological

sequences (DNA, RNA, or protein) the problem of locating repeats in a set of strings

(multiple repeats, or multirepeats) arises in many contexts, such as database searching

and sequence alignment [6]. It is also important in data mining [32, 50].

In Chapter 3, we discussed several existing algorithms for computing different

kinds of NE repeats under some restrictions, and we proposed several fast algorithms

for similar problems. But they are all only for a single string. To compute repeats

in a set of strings (multirepeats), there exists only one algorithm [6]. This algorithm

is not space efficient since it uses suffix trees, one for each string in the set plus a

"generalized" suffix tree for all of them. Thus it is not easy to implement. In addition,

70

71 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

it has high time complexity.

If gaps (for definition, see Section 2.2.2) are unrestricted, the algorithm of [6]

requires 0(aN2n + rJ) time; If gaps are required to fall in a range of length c, it

requires O((c2 +a2)mN2nlog(Nn)+rJ) time. Here a is the alphabet size, N the

number of strings, n the average length of the N strings, m the multiplicity (number of

occurrences) of the multirepeat, and rJ the total number of occurrences of all reported

repeats. While n may be quite large (millions), in applications N is generally a small

integer (at most two digits). Similarly, we may suppose that the number R of reported

repeats is o(n).

In this chapter, following [39], we extend our work in Chapter 3 to the problems

considered in [6], proposing· algorithms that are more time efficient, as well as being

easier to implement and using much less space. We describe algorithms to find com

plete NE multirepeats that occur at least mmin times in each of at least q strings in

a given set S of N strings, first with no restriction on gap length, then with bounded

gaps. For the first problem, we propose two algorithms with worst-case time com

plexities O(Nn+rJ log2 N) and O(Nn+rJ) that use 9Nn and lONn bytes of space,

respectively. For the second problem, we describe an algorithm with worst-case time

complexity O(RNn) that requires approximately lONn bytes. Note that all times

are independent of alphabet size. Extending the algorithms of [6], our three algo

rithms output only repeats whose occurrences are substrings of length at least Pmin

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 72

(user-specified), thus eliminating trivial outputs.

The remainder of the chapter is organized as follows. In Section 4.2, we formulate

the problems. In Section 4.3, we give details of the three algorithms noted above.

Finally, in Section 4.4 we give the conclusions.

4.2 Formulation of Problems

We define two problems:

Unconstrained Multirepeats (abbreviated MultiRep):

Given a set S = {81,82 , ... ,8N} of strings, where each string 8k, 1 :S k :SN, has

length n (if the lengths of the strings vary, n represents their average length), and a

tuple of positive integers D = (Pmin, q, mmin), where Pmin 2: 1, q E 1..N, mmin 2: 2,

we output all NE multirepeats of period at least Pmin that occur at least mmin times

in each of at least q strings of S. Following [6], we call q the quorum and mmin the

minimum multiplicity.

Example 1 (see Figure 4.1): Given a set of three strings S ={81, 8 2 , 83}, with

D = (3, 2, 2), we find an NE repeat ACG of length Pmin = 3 that occurs at least

mmin = 2 times in all 3 2: q = 2 of the strings. Thus the repeat would be output.

However, for D = (3, 3, 3), 8 3 would not satisfy m 2: 3 and so only 2 < q = 3 of the

strings would have the minimum number of occurrences; in this case no output would

occur.

73 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

I 2 3 4 5 6 7 8 9 I 0 11 13 14 15 16 17 18 19 20 21

st~ -YC.-~4l!U C A C T A A

s2~ A c C C T C A T G
s3 ~ G C G T T A

Figure 4.1: Multirepeats without constrained gaps

Our second problem considers restrictions on the gaps as follows: if for i E l..p-1,

where JL = mmin, 9i is the gap between the ith and (i + l)th occurrences of u, then

we require dmini :=:; 9i :=:; dmaxo lower and upper bounds on 9i· Collectively, these

restrictions are represented by a (p-1)-tuple

(4.2.1)

Multirepeats with Constrained Gaps (abbreviated MultiRepG):

In addition to Sand D, we are given a tuple of gap constraints (4.2.1). We compute

all the repeats that satisfy (4.2.1) at least q times as well as the constraints D. More

precisely, in each individual string Bk E S that contains m 2: mmin occurrences of

the repeating substring, we look for a sequence of JL = mmin consecutive occurrences

that satisfies (4.2.1); if such a sequence exists in at least q strings, we output all m

occurrences in every Bk for which (4.2.1) is satisfied.

Example 2 (see Figure 4.2): Given the same set Sand D = (3, 2, 2) as in Example

1, we introduce the constraint (dmin,,dmaxJ = (0,5) for every i E 1..p-1. Because

the gap between B3 [6 ..8] and B3[15 .. 17] exceeds 5, ACG does not satisfy the gap

74 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

constraints in 8 3 , but continues to do so in 8 1 and 8 2 , thus at least q = 2 times. Thus

occurrences of ACG only in 8 1 and 8 2 are output.

1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sl ~ 	 T G c A c T A A

s2 ~ A c T T G ~ c c T c A T G
s3 ~ G A c c G ~ --G c T c G T ~ c QI c c T A

Figure 4.2: Multirepeats with constrained gaps

4.3 Description of the Algorithms

The overall strategy for both problems MultiRep and MultiRepG is the same:

• 	 form a single string 8 from the given set S of N strings;

• 	 in a preprocessing phase, compute the suffix array SA, the longest common

prefix array LCP and the Burrows-Wheeler transform BWT for 8;

• 	 use Algorithm RPTl introduced in Chapter 3 to compute all NE repeats of

period p 2: Pmin in 8j

• 	 output the repeats that satisfy D (MultiRep) and both D and d (MultiRepG).

4.3.1 No Constraints on Gaps

Algorithm MultiRep-1

shown in Figure 4.3, where the end-of-string sentinels $j, 1 :::::; j :::::; N - 1, and $

75 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

are distinct symbols less in lexicographic order than any of the letters in the Bk,

1 :::; k::; N, and that moreover satisfy$< $1 < $2 < ... < $N-l· Let Bk= Bk[l..nk]·

Figure 4.3: Form a new string using end-of-string sentinels

The preprocessing computes the SA, LCP and BWT arrays for B using standard

algorithms as described in Section 2.3 of Chapter 2: in these algorithms the $J are

treated as normal letters, while $ just marks the end of B and is not included in

calculations.

Example 3 (see Figure 4.4): Given S = {Bl, B2, s 3 }, where B1 = AAGTCAG, B2 =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A T c $, c T c $

SA 8 13 1 14 7 12 10 19 16 3 17 4

LCP -1 0 0 1 2 2 2 2 3 0 3 0 1 1 1 1 2 0 1 -1

BWT G G $ c G $, T c A G T $, A A A A A A G G $

Figure 4.4: Form a new string and compute its SA, LCP, and BWT arrays

RPTl makes use of the preprocessed arrays to compute NE repeats, each one a

triple (p; i, j) specifying a period p ?:". Pmin and a range i .. j in SA such that for every

h E i .. j, suffix SA[h] has an identical prefix of length p, while suffixes SA[i - 1] and

76 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

SA[j + 1] (if they exist) do not. If we are given Pmin = 2 in Example 3, RPTl would

output only one NE repeat for u = AG in the form (p; i, j) = (2; 4, 9) with period

p = 2, where the range 4 ..9 identifies SA[4] = 6, SA[5] = 11, SA[6] = 9, SA[7] =

18, SA[8] = 15, SA[9] = 2. Thus the NE repeat occurs in positions 6, 11, 9, 18, 15, 2 of

Bas shown by the shading in Example 3.

Given an output (p; i, j) from RPTl, we need to determine if the conditions speci

fied by the tuple D are satisfied. Our first task is to use the suffix array SA to convert

this output into the form M = (p; SA[i], SA[i + 1], ... , SA[jl) keyed to positions in B

rather than SA: over all repeats found by RPTl, this will require 0(17) time. We then

make use of two arrays, divpts and count. Array divpts specifies the starting points

of each substring Bk of B - this permits a binary search to be done to determine in

which substring Bk the current repeating substring is located. More precisely:

N-1 N

divpts[l..N +1] = [1, n1 +2, n1 +n2+3, ... , :~.:)nk+l)+l, 2.)nk+l)+l].
k=l k=l

The array count = count[l..N] just maintains a count of the number of repeating

substrings that have so far been found to lie within each of the N strings Bk·

Using these arrays, it is straightforward to determine in time 0((j - i) log N)

whether the repeat (p; i, j) occurs at least mmin times in each of at least q substrings

of B, as shown in MultiRep-1 (see Figure 4.5). Note that if j -i+ 1 < mminq, this

condition cannot be satisfied and so no tests are required. The function BinarySearch

returns the index k indicating that position SA[h] in B occurs in substring Bk.

77 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

Input: an NE multirepeat M = (p; SA[i], SA[i + 1], ... , SA[jl) of s,
together with integers mmin 2: 2, q 2: 1.

Output: M if and only if its repeating substring occurs
at least mmin times in each of at least q substrings of s.

- Preprocessing: compute divpts[l..N+l].

rf--j-i+l

if r 2: qmmin then

count[l..N] f- ON; qtotal f- 0
for hf- i to j

k f- BinarySearch(divpts, SA[h])

count[k] f- count[k] + 1

if count[k] = mmin then

qtotal f- qtotal + 1

if qtotal 2: q then

output(M)

Figure 4.5: Algorithm MultiRep-1: check multiplicity & quorum

In Example 3, divpts will be [1, 9, 14, 22] and the output repeat will be (2; 6, 11, 9,

18, 15, 2). After binary search we find that count[l] = 2 (positions 6 and 2), count[2] =

2 (11 and 9), and count[3] = 2 (18 and 15): the repeat occurs at least twice in each

of the three substrings. Thus for mmin = 2, q = 3, the repeat satisfies the constraints

specified by D.

Now we analyze the time and space complexity of the algorithm MultiRep-1. For

construction of SA there are algorithms linear in string length P [45, 49], though

in practice algorithms with worst-case 0(£2 log P) time requirement are several times

faster [71]. To compute LCP from SA there are several linear time algorithms [47, 64],

and the easy calculation of BWT from SA is also linear. Given LCP and BWT, RPTl

executes in linear time (Chapter 3). In our case P= N(n+l), and so all the repeats

78 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

(p; i, j) in s can be computed in time O(Nn). For each of O(R) repeats, the array

count must be cleared at a cost of O(N) time. In addition, for each of at most

'T] occurrences of repeating substrings in s, the time required is at most O(log2 N)

for the binary search. Thus to compute all the repeats satisfying constraint D, the

worst-case time complexity is O(Nn+RN +'TJ log2 N).

However, the asymptotic time complexity of MultiRep-1, though not perhaps

the expected running time in practice, can be slightly reduced, as we now explain.

Instead of performing count f- ON as part of the algorithm, execute it only once as

preprocessing over all invocations of MultiRep-1. Introduce into MultiRep-1 a list L,

initially empty, to which each value k computed by BinarySearch is added; then at

the end of MultiRep-1 introduce a new loop that removes from L each entry k and

performs count[k] f- 0. The resulting algorithm executes in time O(Nn+7]log2 N),

independent of R.

Preprocessing for a string of length f, requires as few as 5£ bytes for SA [71], 6£ for

LCP [74] and 6£ for BWT, thus at most 6N(n+l) bytes for f, = N(n+l). RPTl itself

requires only 5£ bytes for its execution, plus a further 4f. for storage of SA (since each

range i .. j in SA needs to be converted into a sequence SA[i], SA[i + 1], ... , SA[j] in

s). Since divpts and count are arrays l..N of integer, their total space requirement

is 8N bytes, and so the total is N (9n+ 17) bytes, in simple terms 9Nn.

The algorithm MultiRep-1 outputs all of the repeats M. It may instead be required

79 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

to output only those positions in M that occur in the sk for which m 2'. mmin· One

way to accomplish this is to introduce a Boolean array mok = mok[l..N] (similar

in its role to the array gapsok described below for MultiRepG) - mok records for

each k E 1..N whether or not sk contains at least mmin occurrences of M. Then

a straightforward processing of M, again using BinarySearch, produces the required

output, using the same asymptotic time and space.

Algorithm MultiRep-2

We briefly describe a strategy to avoid the binary search of MultiRep-1, at a cost of

an additional N(n+ 1) bytes of storage (based on the assumption that N is small

less than 256). In the preprocessing stage we introduce an array pos of byte such that,

for each i E 1..N(n+l), pos[i] = k iff i is a position in sk, while otherwise pos[i] = 0

(s[i] is a sentinel). Thus for every i, pos[i] E 0.. N. Example 3 augmented with pos is

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A Si c T c $

sa 8 13 1 14 7 12 10 19 16 3 17 4

lcp -1 0 0 1 2 2 2 2 3 0 3 0 1 1 1 2 0 1 -1

pos 0 0 1 3 1 3 1 2 2 3 3 1 3 1

bwt G G $ c G $1 T c A G T $, A A A A A A G G $

Figure 4.6: Compute pos array

shown in Figure 4.6. Using divpts, pos can easily be computed in 8(Nn) time. Then,

in order to determine, for each position h in SA which substring sk the position SA[h]

occurs in, it is necessary only to compute k +-- pos [SA[hl]. This 0(1) computation

80 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

replaces BinarySearch in MultiRep-1, reducing processing time to O(Nn+TJ), thus

asymptotically optimal. The algorithm MultiRep-2 is shown in Figure 4.7.

Input: an NE multirepeat M = (p; SA[i], SA[i + 1], ... , SA[jl) of s,
together with integers mmin 2 2, q 2 1.

Output: M if and only if its repeating substring occurs
at least mmin times in each of at least q substrings of s.

- Preprocessing: compute divpts[l..N+l], and then pas array of s.
r+-j-i+l
if r 2 qmmin then

caunt[l..N] +-ON; qtatal +- 0

for h +- i to j

if pas[h] = k then

caunt[k] +- caunt[k] + 1

if caunt[k] = mmin then

qtatal +- qtotal + 1

if qtatal 2 q then

output(M)

Figure 4. 7: Algorithm MultiRep-2: check multiplicity & quorum

4.3.2 Restricted Gaps (MultiRepG)

In this section, we introduce the algorithm MultiRepG, for which the input is an NE

multirepeat (p; i, j) of s satisfying constraints D = (Pmin, q, mmin) and the output

consists of the elements of (p; i, j) that satisfy the gap constraints d in at least q

substrings s k of s.

In order to satisfy constraints d in addition to those specified by D, we need to

introduce a bit vector lac = lac[l..N(n + 1)]. In a single preprocessing stage every

position in lac is set FALSE in time O(Nn/w), where w is the computer word length,

and the precondition loc[h] =FALSE for all his maintained thereafter. Then for each

81 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

NE repeat (p; i, j) of period p 2'. Pmin, the positions lac [SA[h]], h = i, i + 1, ... , j,

are set TRUE, so that a left-to-right scan of lac will yield in increasing order the

positions of the repeating substrings ins. Such a scan is shown in Figure 4.8, used to

determine which of the substrings skins satisfy the gap constraints. A Boolean array

gapsak = gapsak[l..N] is used to record the values k E 1..N for which sk satisfies d.

- Precondition: lac= FALSEN(n+l).

for h +-- i to j do lac[sa[hl] +--TRUE

- First Phase: Checking

q' +-- 0; gapsak[l..N] +--FALSEN

k +-- 1 ; m +-- 0; r +-- j - i +1; r' +-- 0; h +-- 1

while r' < r do

if lac[h] then
r' +-- r' +1
if h < divpts[k+l] then m +-- m+l; acc[m] +-- h
else

if m 2'. mmin and check(p, ace, m, d, mmin) then
q' +-- q'+l; gapsak[k] +--TRUE

m +-- 1; acc[l] +-- h
repeat k +-- k+l until h < divpts[k+l]

h+--h+l

if m 2'. mmin and check(p, ace, m, d, mmin) then

q' +-- q' +1; gapsak[k] +--TRUE

- Second Phase: Output

if q' 2'. q then

for k +-- 1 to N do

if gapsak[k] then
m +-- 0
for h +-- divpts[k] to divpts[k+l]-1 do

m +-- m+ 1; acc[m] +-- h

output(p, k, ace)

for h +-- i to j do lac [sa[hl] +-- FALSE

Figure 4.8: Algorithm MultiRepG: for each substring sk of s, if ace contains a sequence
of lengthµ= mmin that satisfies (4.2.1), then output ace

82 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

Algorithm MultiRepG executes in two phases, a checking phase and an output

phase.

In the checking phase, divpts is used to compute for each sk an array occ of candi

date positions. The function check, described below, actually applies the constraints

d to occ - its total time usage over all invocations is O(r), where r = j-i+l < Nn;

also, the positions inspected in divpts and gapsok for each repeat are at most N.

Thus for each candidate repeat, the time required to evaluate the constraints d is

O(Nn). For R such repeats, the overall time requirement of the first phase is there

fore 0(RNn). We note that since 1J :S RNn (the total number 1J of occurrences of

repeats cannot exceed the number R of repeats times the overall string length Nn),

therefore O(RNn) in fact represents the total time required both for MultiRep-2 and

the checking phase. For cases that arise in practice, a corresponding statement holds

also for MultiRep-1.

In the output phase, there is no action if less than q substrings of s contain repeats

satisfying the constraints d. Otherwise, occ is recomputed for each sk that satisfies

d and the repeat is then output. For the strings and gap constraints of Example

2, described above, the output of the algorithm MultiRepG would be (p, k, occ) =

(3, 1; 1, 5, 8, 14) and (3, 2; 4, 9, 17). The overall time requirement of the output phase

is again O(RNn).

The Boolean function check, shown in Figure 4.9, slides a window of width mmin

83 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

function check(p, occ, m, d, mmin) : boolean
Io+--- I+--- 1
while m-I 2'. mmin-1 do

J +-1
while J < mmin and d[J, 1] :S occ[I + 1] - occ[I] - p :S d[J, 2] do

I+--- I+ 1; J +--- J + 1
if J = mmin then

return TRUE
else

Io +--- I +--- Io + 1
return FALSE

Figure 4.9: Function check: given an array occ of m occurrences of a repeating
substring in sk, determine whether occ contains a subarray of length µ = mmin that
satisfies the constraints d

over the m 2'. mmin entries in occ, corresponding to the substring sk, shifting right

by one position at each step. For each window, check determines whether its entries

satisfy the constraints d; if so, check returns TRUE, causing the m repeating substrings

of occ that occur in Bk to be output. If no window of occ satisfies d, check returns

FALSE. The constraints d are accessed as a two-dimensional array d[l.. mmin -1, 1..2].

The outer while loop of check is executed (m - mmin + 1) times in the worst case,

and the inner while loop is executed at most mmin times; thus the execution time of

check at each invocation is O(mmin(m - mmin + 1)) = O(m). Here we assume that

the specified input value mmin is constant over the execution of the algorithm. Over

all invocations, therefore, the execution time of check is O(r).

We note that the corresponding algorithm described in [6] requires that the dif

ferences between the maximum and minimum gaps specified in (4.2.1) should all be

84 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

bounded by a small constant c. The methodology described here requires no such

bound, and its effectiveness does not depend on such differences. Note also that Mul

tiRepG can easily be modified, with the same asymptotic complexity and usage of

space, to output only those ranges of ace that satisfy d, omitting those entries that

do not.

The additional storage required for MultiRepG consists of the 4Nn/w bytes for

Loe plus up to 4n bytes for the integer array occ, a total of 4n(N/w+l). For w = 32,

this amounts to n(N/8+4), perhaps as much as an additional Nn bytes on top of the

9Nn used by MultiRep-1.

Table 4.1 compares the algorithms described here with those proposed in [6].

Problem Algorithm Time Space
MultiRep [6]

MultiRep-1
MultiRep-2

O(aN2n + TJ)
O(Nn+TJlog2 N)

O(Nn+TJ)

linear but large
9Nn bytes
lONn bytes

MultiRepG [6]
MultiRepG

O((c2 + a 2)mN2nlog(Nn)) + TJ)
O(RNn)

O(c2 Nnm)
lONn bytes

Table 4.1: Comparison of algorithms

Note that even though the suffix tree storage is linear, the large amount of infor

mation in each edge and node makes the suffix tree very expensive (see Section 2.3).

In [6], the algorithm MultiRep uses suffix trees, one for each string in the set plus a

"generalized" suffix tree for all of them, therefore the memory usage would be very

large.

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 85

4.4 Discussion

We have formulated two problems related to multirepeats in sets of strings with

various restrictions and presented efficient algorithms with lower time complexity and

less memory consumption compared to previously proposed algorithms. We remark

that if in Algorithm MultiRepG we set the min and max constraints on gaps equal

to zero, we can find all tandem repeats (repetitions) in arbitrary subsets of S.

Chapter 5

LZ Factorization

5.1 Introduction

In this chapter, following [1], we discuss the main LZ factorization algorithms and

provide both theoretical and practical comparisons of their time and space efficiency.

More than 30 years ago, in three very influential papers [56, 91, 92], Lempe! and Ziv

proposed methods for factoring a string x into substrings (factors) in such a way as to

facilitate encoding the string into a compressed form (lossless text compression). The

first two of these papers dealt with what is today generally called LZ77 factorization,

the third with a variant called LZ78.

Let x = x[l..n] be a string of length n on an ordered alphabet A of size a. In

general terms, an LZ factorization of xis a decomposition of x into nonempty factors:

x = w 1 w 2 · · ·wk. There are numerous forms of LZ factorization; for our purposes

we use the following definition:

Definition 5.1.1 (Iz77) A factorization of x = w 1 w 2 ···wk is LZ if and only if
each Wj, j E 1..k, is

86

87 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

(a) a letter that does not occur in w 1 w 2 · · · w3_1 ; or otherwise

(b) the longest substring that occurs at least twice in w 1 w 2 · • · W3.

We observe that w 1 = x[l], further that a factor w3 may overlap with its previous

occurrence in x. For the string

12345678
(5.1.1)

x = a b a a b a a b,

W1 = a, w 2 = b, wa = a, W4 = abaab.

The factorization of x can be reported in many ways. In its original form, LZ77

factorization [91] reports each factor w3 as a triple (POS, LEN,.-\), where

• 	 POS is the location of a previous occurrence of w3 in x or the location of w 3 if

no previous occurrence exists;

• 	 LEN is the length (possibly zero) of the matching previous occurrence;

•,\is the "letter of mismatch": for j < k, ,\ = x[lw1w2 .. ·W3-1J+LEN+l],

while for j = k, ,\ = $, an arbitrary sentinel.

Thus LZ77 would report the factorization of (5.1. l) as

lOa, 20b, lla, 15$.

It is noteworthy that this (in general, compressed) encoding of x permits the original

string to be reconstituted (decoded) with no need for an explicit dictionary; more

88 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

precisely, the dictionary is dynamic, derived from the reported triples. Essentially,

LZ78 factorization [92] removes LEN from the output, thus compressing the text

further, but introducing the need for a separate dictionary in order to recover the

original text.

For most of the last 30 years, LZ factorization has been used primarily for text

compression, and many LZ variants have been proposed and computed, including

factorization of infinite words [7]. Useful surveys are available at [28, 68, 90]. In

the context of compression, LZ algorithms generally operate not on the string as a

whole, but only on a sliding window of length N (usually N = 4096 or 8192), with

a long prefix that has already been factored and a short (typically 18 letters) as-yet

unfactored suffix F: the next factor w3 is the longest prefix of F that matches a

preceding substring within the window. Once w3 has been determined, the window

is shifted right by Jw3 I positions. It has been found that in practice the use of the

sliding window provides compression as good as using the entire string would yield,

and of course processing time is greatly reduced. Many sliding-window algorithms

have been proposed, of which several are described in [9, 70, 79] and the surveys noted

above. LZ is the basis of the gzip (Unix), winzip and pkzip compression techniques.

More recently LZ factorization has found application in the computation of various

"regularities" in strings: repetitions [15], runs (maximal periodicities) [3, 17, 20, 23,

24, 43], repeats with fixed gap [44], branching repeats [78], sequence alignments [21],

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 89

and local periods [29]. For these applications, the factorization of the entire string, not

merely a window, is required. On the other hand, the output can be simplified, since

the given string x is available and does not need to be reconstituted. In particular,

the letter ,\ is not required in the output, and so the triple (POS, LEN,.\) can be

reduced to a pair (POS, LEN). The output for (5.1.1) thus becomes

(POS, LEN) = (1, 0), (2, 0), (1, 1), (1, 5). (5.1.2)

Indeed, further simplification is possible. For text compression it was important to

be able to identify a position POS to the left of each factor Wj such that x[POS ..POSt

lwil-1] = Wj. However, for computing regularities, it usually suffices only to ensure

that each Wj does in fact provide a maximum-length match over all substrings to its

left in x. The position of match is not as a rule required. Thus it is necessary only

to give the sequence of occurrences of each Wj: the factorization x = w 1 w 2 ···Wk is

specified by a sequence

. . .
ii, i2, ... 'ik, (5.1.3)

where for j E 1..k-1, Wj = x[ij··ij+l -1], while wk = x[ik ..n]. For our example

(5.1.1), instead of (5.1.2), the sequence (1, 2, 3, 4) is sufficient, together with x, to

identify all the LZ factors.

In Section 5.2 we give an overview of LZ algorithms that yield results suitable

for the computation of regularities in strings. In addition we provide for each a

characterization of asymptotic time and space efficiency. As we shall see, in the last

90 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

few years there have been many algorithms proposed, remarkable for their diversity

of approach. Section 5.3 presents the results of experiments that compare the time

and space requirements of the algorithms applied to a varied selection of strings.

Section 5.4 summarizes our main conclusions.

5.2 Overview of LZ Algorithms

In this section we provide an overview of algorithms that compute the LZ factorization

(as discussed above) of an entire string x. For the data structures they used, see

Section 2.3.

5.2.1 The LZ Algorithms

In this subsection we provide an overview of the main LZ algorithms currently avail

able for the computation of regularities, especially maximal periodicities [58], in

strings. Figure 5.1 shows schematically the various data structures used by these

algorithms that we have denoted KK, AKO, CPS, CI, CIS, CII, and OS.

These algorithms all operate on the entire string x and produce outputs that

are comparable, though in some cases differing slightly. In the figure we include for

completeness a generic LZ77 algorithm used for text compression: as mentioned in

the introduction, there are actually several variants of this approach (for example,

[9, 70, 79]), all using a sliding window typically of length N = 4096 with an as-yet

unfactored suffix typically of length F = 18. When scaled up so as to be useful for

91 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

LZ77 KK AKO CPSI CPSl CPS3 CI CIS & CII OS

Sliding SA SA QSA c±J
- - -• - -

LCP
'

LPF

Window

LCP

LZ

Figure 5.1: The steps and main data structures used by each algorithm

regularities (N = n, the length of x, and F equal to the full length of the unfactored

suffix), these algorithms become uncompetitive. We therefore provide no further

description of them; the other algorithms are outlined below.

Algorithm KK

At [42] Kolpakov & Kucherov make available an implementation of Ukkonen's ST

algorithm that computes LZ on-line for small alphabets (a ::; 4). For an overview,

see [77, pp. 175-178]. Even though approaches based on suffix trees normally require

more time, and particularly more space, than suffix array approaches, nevertheless

.
the KK algorithm is consistently faster [24] applied to DNA files (a= 4) than other

LZ algorithms, as well as being highly space efficient. On the other hand, for a = 2,

it appears not to be competitive [24]. We therefore do not test this algorithm further.

Asymptotically, the KK implementation uses 8(n) time and space.

92 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

Algorithm AKO

In [3] Abouelhoda, Kurtz & Ohlebusch show how to compute LZ using an enhanced

suffix array (ESA): a suffix array SA that is augmented by an lcp-interval tree

consisting of the internal nodes I of the corresponding ST additionally labelled with a

range lb..rb of positions in SA. This range specifies in left-to-right order the leaf nodes

in the subtree rooted at I: SA[h], h =lb, lb+l, ... , rb. Here lb and rb stand for left and

right boundary, respectively, and each internal node I is called an lcp-interval. Thus

the label of each lcp-interval takes the form (lcp; lb, rb). For our example (5.1.1), the

internal node in Figure 2.2 labelled 1 that corresponds to a would be labelled (1; 1, 5),

since the leaf nodes are

SA[l] = 6, SA[2] = 3, SA[3] = 7, SA[4] = 4, SA[5] = l.

For the LZ calculation, the lcp-interval tree is virtual - not actually implemented

as a tree. In fact the lcp-intervals in the tree are computed with the help of a stack, the

elements of which are lcp-intervals represented by tuples (lcp, lb, rb, childList, min),

where lcp, lb and rb are as defined above, childList is a list of the current lcp-interval's

child intervals, and min is the minimum of the leaf nodes

SA[lb], SA[lb+ 1], ... , SA[rb].

This stack is used to simulate a bottom-up traversal of ST that generates all lcp

intervals (all internal nodes I). Every time an lcp-interval is generated, a procedure

93 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

is called to update the POS and LEN arrays as exemplified in (5.1.2). Thus the

factorization can be computed in linear time and space.

The AKO algorithm was the first to compute the LZ factorization based only on

SA and LCP.

The CPSl Algorithms

In [23, 24] Chen, Puglisi & Smyth describe a collection of algorithms CPSl for LZ

factorization, based on SA/LCP computation, that execute consistently faster and

with lower space requirements than AKO.

The execution of CPSl is based on three pointers i1 , i2, i3 to positions in SA for

which the invariant 1 :S i1 < i2 < i3 :S n+ 1 is maintained:

• i 1 marks the leftmost position in SA of a sequence of suffixes with lcp of length

at least LCP[i1 +1]; each such value i 1 is pushed onto a stack S.

• i2 marks the end of at least one sequence of suffixes sharing the same lcp; S is

then popped until a stacked position i is found for which LCP[i] :S LCP[i2+1].

• i3 marks the next position to the right of i2 that has not yet been processed.

The basic algorithm CPS1-1 locates, in a left-to-right traversal of SA, a next position

i2 > i1 such that LCP[i2] > LCP[i3] for some least i3 > i 2; it then backtracks (using

the stack S) from i2, setting POS[p2] +---pl or POS[p1] +--- p2 depending on whether

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 94

P1 = SA[i1] < SA[i2] = p2 or not, until the LCP value for the position i1 popped from

S falls below LCP[i2].

It turns out that none of the position pointers i1, i2, i3 will ever point to any

position i in SA such that POS [SA[il] has been previously set. This observation

allows the storage for SA and LCP to be dynamically reused so as to specify the

location and contents of the array POS, thus saving 4n bytes of storage. POS can

then be computed by a straightforward in-place compactification of SA and LCP into

LCP (now redefined as POS). This second algorithm is called CPSl-2.

But more storage can be saved by removing all reference to LEN from CPSl-2,

so that it computes only POS and in particular allocates no storage for LEN. This

third version is called CPSl-3.

Since at least one position in POS is set at each stage of the main while loop, it

follows that the execution time of CPS is linear in n. For CPSl-1 space requirements

total 17n bytes (for x, SA, LCP, POS & LEN) plus a stack of maximum size 4s bytes

- at most the maximum depth of ST. For x =an, s = n, but in the expected case,

s E O(loga n) [46]; for strings that arise in practice, s is usually negligible and seems

never to exceed n/5. For CPSl-2 the space required is 13n bytes plus stack. CPSl-3

gives rise to two variants:

• 	 CPS1-3a that is slightly the faster of the two while using exactly 13n bytes of

storage including stack;

95 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

• 	 CPS1-3b that computes LEN[i] only on demand, without the need to store a

LEN array, and that therefore uses only 9n bytes plus stack.

For large strings, saving space will generally be more important, and so in such cases

CPS1-3b would likely be the algorithm of choice among all the CPSl algorithms, even

though it is the slowest by 203 or so compared with the fastest. To give the range of

capability for the CPSl algorithms, in Section 5.3 we test the fastest, CPSl-2, using

13n bytes plus stack, and the slowest, CPS1-3b, using 9n bytes plus stack.

All variants of CPSl require 8(n) time in the worst case, and, like AKO, all

produce output (POS, LEN) of type (5.1.2) that is usable for text compression as

well as for the computation of regularities.

Algorithms CPS2 & CPS3

In [24] two other LZ algorithms, CPS2 and CPS3, are also described. Both of these

algorithms are supralinear in asymptotic worst-case execution time, and in practice

often (though not always) execute considerably more slowly than the CPSl algo

rithms. On the other other hand, both CPS2 and CPS3 use much less storage space

than any of the CPSl algorithms, comparable in fact to Algorithm OS (see below).

We therefore provide brief descriptions of these algorithms here.

As shown in Figure 5.2, CPS2 is a very simple algorithm that makes use of a

function lzfactor to compute the position and length of the LZ factor beginning at

the current position i in x. For its execution it requires only x and SA together with a

96 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

data structure RMQsA that supports range minimum queries rmq on SA: in constant

time and O(n) space [31], SA[RMQ8 A(lb,rb)] uses rmq to compute the minimum

of SA[lb..rb] (a least position in x). At a cost of O(logn) time per calculation, the

minimum is repeatedly computed for narrower and narrower ranges lb..rb until the

longest substring beginning at i is identified that matches a previous position in x.

output (1, 1)

i ...__ 2

while i::::; n do

(POS, LEN) ...__ lzfactor(x, SA, i)

output (POS, LEN)

i ...__ i+LEN

Figure 5.2: Algorithm CPS2

CPS3 is another simple algorithm that combines the idea of a QSA with that of a

q-gram [84] - that is, a substring of length q. In a preprocessing phase, CPS3 builds

a kind of QSA, called QSAq, in which only matches between substrings of length at

most q are considered at positions i and QSAq[i] of x. In addition to 4n bytes for

QSAq, the preprocessing uses 4aq bytes, and so the parameter q is chosen so that

4aq ~ n; that is, q ~ logo: n - logo: 4. QSAq can be thought of as an inverted file for x

based on t-grams, t E l..q. At positions i where an LZ factor begins, CPS3 extends

the partial LPF information provided by QSAq to determine the correct (POS, LEN)

values required by the LZ factorization.

97 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

The CI Algorithms

In [17] Crochemore & Ilie describe two algorithms to compute LPF, then give the

simple pseudocode shown in Figure 5.3 to compute LZ from LPF.

LZ[l] +-- 1; i +-- 1
while LZ[i] < n do

LZ[i+ 1] +-- LZ[i] +max (1, LPF [LZ[il])
i f- i+ 1

return LZ

Figure 5.3: Given LPF for a string x, compute LZ

This pseudocode outputs LZ in the form (5.1.3) not suitable for compression, but

the CI algorithms, as well as the CIS and CII algorithms described below, can all be

easily modified to output an array called PrevOcc, identical to the QSA array defined

in Section 2.3. Using QSA and slightly modified processing, LZ can also be computed

from LPF in the form (5.1.2). Regardless of the form in which LZ is provided, no

extra space needs to be allocated for the LZ computation by these algorithms, because

arrays used during the LPF phase can be deallocated and reused.

Both CI algorithms compute LPF based on prior computation of SA. The basic

idea of both is to search in the neighbour hood (to both left and right) of each position

j in SA, where i = SA[j], in order to compute a position QSA[i] = i* < i in x such

that

lcp(i*, i) = m,<axlcp(i', i).
i i

The first algorithm, Cll, makes use of two l..n arrays prevL and prevR that for

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 98

every position j in SA identify the nearest position in SA, to left and to right of j,

respectively, such that SA[prevL] < SA[j] and SA[prevR] < SA[j]. After the calcu

lation of SA, prevL and prevR are computed from SA in a 8(n)-time preprocessing

stage; Cll itself executes in 8(n) time and requires 13n bytes of storage (LPF, prevL,

prevR• x). In the pseudocode given in [17], Cll actually uses two additional arrays,

but these are not necessary.

The second algorithm, CI2, instead uses SA and LCP directly to search the neigh

bourhoods of positions j in SA. Also required for this search is a stack S containing

entries (j, LEN), where j is a position in SA and LEN is the lcp of suffix x [SA[j] ..nJ

and suffix x [SA[j'J ..n], where j' is the position for the preceding entry in S. CI2

controls pushes and pops to S so as to compute LPF. CI2 executes in 8(n) time

using 12n bytes (LPF, SA, LCP), but it also requires space for S. Like the stack for

CPSl-1, Smay in the worst case (x = an-1b) contain n entries (thus 8n bytes), but

the expected size is only l6 log0 n bytes, since the expected maximum LPF value is

2 log,. n [46]. For a = 2 and n = 107 , the expected size of S is only 372 bytes.

Algorithm CIS

Like CI2, CIS computes LPF using SA and LCP in 8(n) time, but it does not need to

access x; and even though CIS also uses a stack S, the entries are only single integers

and there are at most 2ffn of them. Thus the worst-case space requirement of CIS

is 12n+8ffn bytes. As for Cll and CI2, LZ can also easily be computed in the form

99 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

(5.1.3) suitable for compression.

The basis of CIS is the observation that LPF [SA[jl], j = 1, 2, ... , n, can be

immediately computed in the following two cases (a third case symmetric to (b) does

not arise in left-to-right processing of SA):

(a) if SA[j] > max(SA[j-1],SA[j+ll), then

LPF [SA[j]J =max (LCP[j], LCP[j + ll);

(b) if SA[j-1] < SA[j] < SA[j+l], then LPF[SA[j]J = LCP[j].

What CIS does is to scan SA left-to-right, applying case (a) or (b) whenever possible,

and stacking for subsequent iterations entries i = SA[j] that do not immediately yield

an LPF value.

Algorithm CII

We have noted above that the CI and CIS algorithms use very little more than the

12n bytes of storage required for input (SA and LCP) and output (LPF). However,

in [19], Crochemore, Ilie, Iliopoulos et al. show how to compute LPF from SA and

LCP using only constant additional space.

As shown in Figure 5.4, CII actually calls three LPF algorithms, each of which

computes a part of the final LPF array:

• Algorithm CII-ON-LINE is a descendant of CIS that partially computes LPF

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 100

- Suppose n 2: 8.
K +--- Ln-2ffnJ
procedure CU-ON-LINE (SA, LCP, K)
procedure CU-NAIVE (SA, LCP, K, n)
procedure CU-ANCHORED (SA, LCP, K, n)
return LPF

Figure 5.4: Three-stage calculation of LPF using only constant additional space

on-line with respect to suffix ordering in SA, while making use of unused posi

tions in LPF to store the CIS stack values. As we have seen, for length n, the CIS

stack contains at most 2ffn entries; thus K = Ln-2ffnJ positions in LPF can

be safely computed, leaving enough positions available in LPF to accommodate

the stack. This algorithm computes values LPF[i], i = SA[l], SA[2], ... , SA[K],

in time 8(K).

• 	 For i = SA[K+l], SA[K+2], ... , SA[n], Algorithm CU-NAIVE computes LPF[i],

performing a straightforward search of LCP to the left and right of each position

i in order to locate the corresponding LPF value. These searches are equivalent

to computing the prevL and prevR values in Algorithm en. Each of these n-K

searches may require O(n-K) time, yielding a total O((n-K)2) = O(n), since

n-K = 2ffn.

• Since the previous two algorithms perform their processing independent of each

other, it may be that some values LPF[i] may not be fully computed for posi

tions i = SA[j], where j is close to K. Thus CU-ANCHORED completes the

101 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

calculation by appropriate updates to these LPF values based on inspection of

the LCP values to the left and right of each position. This simple algorithm

also requires O(n) time in the worst case.

The algorithm of Figure 5.4 is of theoretical interest, but slow in practice. More

over, its space requirement is actually more than that of CPS1-3b (see Table 5.1)

that computes LZ directly without LPF. Of more interest for testing, therefore, is the

variant of CIS, Algorithm CIS-ON-LINE, executed using parameter n rather than K.

This is the "CII" algorithm for which test results are reported in Tables 5.4 and 5.5,

but in Table 5.1 we show properties of both the minimum-space and on-line versions.

Algorithm OS

In 	[69] Okanohara & Sadakane describe an LZ algorithm that is

• succinct - it stores SA in compressed form and uses rank/select operations

[54] and range minimum queries rmq [31] to access and update array entries;

• 	 on-line- it reads x a letter at a time and immediately reports the corresponding

LZ value;

• 	 compatible with implementation on a sliding window - because it is on-line,

OS can adjust string "history" to any desired length n simply by removing at

each step a prefix equal in length to the suffix added.

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 102

Algorithm OS executes in 0(n log3 n) time, using n log n + o(n log a)+ 0(n) bits of

space, where n is the length of the string or of the sliding window.

OS maintains succinct representations of versions of ESA, LCP and BWT that

are defined on the reverse x of x[n0 .. n], where n0 ;::: 1 is the selected lefthand position

of the window, and n is the current position being processed on-line. Processing the

reverse string facilitates update of the data structures, because the number of updates

is o(n). Figure 5.5 shows the modified arrays for our example string (5.1.1).

i SA[i] x[SA[i] ..n] LCP[i] BWT[i]
1 8 a 0 b
2 5 aaba 1 b
3 2 aabaaba 4 b
4 6 aba 1 a
5 3 abaaba 3 a
6 7 ba 0 a
7 4 baaba 2 a
8 1 baabaaba 5 $

Figure 5.5: SA, LCP, and BWT arrays of the reversed string x = baabaaba

LCP is stored using only 2n bits [76], including a balanced search tree used for

rmq operations in the LCP update; rank/select operations are used for the update

of BWT [57].

5.2.2 Theoretical Comparison

In Table 5.1 we summarize some of the information given above for the LZ algorithms.

The upper portion of the table covers the linear-time algorithms that generally have

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 103

larger space requirements; the lower portion displays supralinear algorithms that make

use of "succinct" data structures to reduce space.

The space estimates are a mixture of theoretical calculations based on the data

structures used and tests performed on a variety of standard files (see Section 5. 3). A

"+" after the space estimate indicates some allocation for stacks - except for certain

AKO cases generally negligible or small (up to 2n additional bytes). The nature of

the output refers to the forms mentioned earlier: specifying the previous occurrence

of each factor Wj (5.1.2) or else giving only the current position (5.1.3).

Algorithm Asymptotic
Worst-Case Time

Space
(bytes)

Output Special
Feature

KK 8(n) rv 1ln (5.1.2) a=4
AKO 8(n) 17n+ (5.1.2)

CPSl-1 8(n) 17n+ (5.1.2)
CPSl-2 8(n) 13n+ (5.1.2)
CPS1-3a 8(n) 13n (5.1.2)
CPS1-3b 8(n) 9n+ (5.1.2)

en 8(n) 13n (5.1.3)
CI2 8(n) 12n+ (5.1.3)
CIS 8(n) 12n+ (5.1.3)
en 8(n) 12n+ (5.1.3) on-line

8(n) 12n (5.1.3)
CPS2
CPS3

OS

O(nlogn)
O(n2

)

O(n log3 n)

6n
5-7n
3-7n

(5.1.2)
(5.1.2)
(5.1.2) on-line

Table 5.1: Theoretical comparison of LZ algorithms

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 104

5.3 Experimental Results

5.3.1 Implementation

We have tested nine algorithms - AKO, CPSl-2, CPS1-3b, Cll, CI2, CIS, CII (on

line); CPS2, CPS3 - that fall naturally into two groups. The first seven of these

algorithms use full data structures such as SA and LCP in order to execute as quickly

as possible; they typically require 8n - l6n bytes of storage. The final two however

use limited or succinct data structures that reduce space usage to about 4n bytes,

while generally making a substantial sacrifice in terms of execution time.

As indicated in Figure 5.1, many of these algorithms in a preprocessing stage

require computation of SA and LCP arrays; as discussed in Section 2.3, for SA con

struction we use libdivsufsort [65] and for LCP construction the algorithm in [74].

Since the preprocessing is usually a major component of the overall time for the algo

rithm, we show these times separately in Table 5.3, where for comparison we include

also times for the LCP construction algorithm described in [48].

We used the testing data sets as in Table 5.2. For each string we give its length

in letters (bytes) and alphabet size a. Also displayed (from [24]) are the number of

factors in each string's LZ factorization together with the length of the maximum

factor.

All tests were conducted on a SUN X4600 M2 Server with four 2.6 GHz Dual

Core AMD Opteron(tm) 8218 Processor (total of eight processor cores), 32GB of

105 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

String Length a No. Factors Max Factor Description
fibo36
fsslO

14930352
12078908

2
2

35
44

5702887
5158310

36th Fibonacci string
10th run rich string of [35]

random2
random21

8388608
8388608

2
21

385232
1835235

42
9

Random string
Random string

chr22
chr19

34553758
63811651

4
4

2554184
4411679

1768
3397

Human Chromosome 22
Human Chromosome 19

prot-a 16777216 23 2751022 6699 Small Protein dataset
bible
howto
mozilla

4047392
39422105
51220480

62
197
256

337558
3063929
3823511

549
70718
41323

King James Bible
Linux Howto files
Mozilla binaries

Table 5.2: Description of the strings used in experiments

RAM and four 146GB SAS disks. The operating system is Redhat Linux 5.3 running

kernel 2.6.18. All implementations were in C++, compiled using GNU g++ (gee

version 4.1.2) at the -03 optimization level, and carefully tested.

Running times are the minimum of four runs and do not include time spent reading

input files. Times were recorded with the C++ standard library function clock.

Memory usage was recorded with the memusage command available with most Linux

distributions.

5.3.2 Test Results

As noted above, we give in Table 5.3 the preprocessing times for the various data

structures required by the various LZ factorization algorithms; specifically, the SA,

LCP, and RMQ arrays.

Tables 5.4 and 5.5 give the total runtime (in seconds) and peak memory usage

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 106

String SA LCP[74] LCP[48] RMQ
fibo36 4.89 10.23 1.07 0.88
fsslO 3.89 7.87 0.82 0.70
random2 1.55 1.48 0.93 0.51
random21 2.34 1.16 1.06 0.51
chr22 7.88 5.97 4.60 2.11
chr19 15.93 11.93 10.76 3.91
prot-a 4.79 2.79 1.99 1.02
bible 0.59 0.54 0.36 0.24
howto 7.96 7.91 4.38 2.32
mozilla 8.45 8.46 5.39 3.19

Table 5.3: Runtime in seconds for SA, LCP, and RMQ arrays

(in bytes per input symbol), respectively, for each of the LZ algorithms tested. Both

tables take full account of the contribution made by the preprocessing. The vertical

lines in these tables separates the algorithms that use full data structures from "sue

cinct" algorithms that generally use less than eight bytes per input symbol. In each

section of the table we underline in bold the quantity that achieves the best result

for the current test case.

We make the following observations:

(1) Of the seven algorithms that use full data structures, CPSl-2 and CIS execute

fastest on all the files that are not highly periodic, and in fact differ by no more

than 5% in any of the test cases. Since CIS uses on average about 10% less

space than CPSl-2, it must therefore be regarded as the algorithm of choice

between the two.

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 107

String AKO ePSl-2 ePS1-3b ell er2 ers err ePS2 ePS3
fibo36 22.10 15.81 16.73 7.61 15.95 15.93 16.20 9.06 2.47
fsslO 17.20 12.27 13.11 6.26 12.48 12.38 12.80 7.19 1.93
random2 6.77 3.46 4.00 3.69 3.60 3.46 3.75 15.84 2.55
random21 5.36 3.91 4.42 4.51 4.07 3.94 4.20 23.46 4.64
chr22 28.15 16.40 20.10 19.63 16.73 16.15 17.26 103.84 31.49
chr19 55.73 33.04 41.30 39.03 34.30 32.94 35.09 208.01 133.23
proLa 12.37 8.55 9.92 10.07 9.46 8.52 9.03 45.85 145.20
bible 2.12 1.33 1.65 1.42 1.39 1.33 1.45 5.54 128.26
howto 29.00 18.13 23.09 18.80 19.14 18.44 19.47 74.26 -

mozilla 28.97 19.38 25.35 30.85 21.13 20.37 21.23 88.18 -

Table 5.4: Total runtime in seconds for each LZ factorization algorithm

String AKO ePSl-2 ePS1-3b ell er2 ers err ePS2 ePS3
fibo36 23.32 15.52 11.52 13.00 12.00 12.00 13.00 6.00 5.56
fsslO 23.08 15.12 11.12 13.00 12.00 12.00 13.00 6.00 5.68
random2 22.80 13.00 9.00 13.00 12.00 12.00 13.00 6.00 6.00
random21 10.24 13.00 9.00 13.00 12.00 12.00 13.00 6.00 5.52
chr22 16.64 13.00 9.00 13.00 12.00 12.00 13.00 6.00 5.64
chr19 16.84 13.00 9.00 13.00 12.00 12.00 13.00 6.00 5.36
proLa 12.12 13.20 9.20 13.00 12.00 12.00 13.00 6.00 5.12
bible 14.28 13.00 9.00 13.00 12.00 12.00 13.00 6.00 5.28
howto 14.72 13.00 9.00 13.00 12.00 12.00 13.00 6.00 -

mozilla 10.52 13.72 9.72 13.00 12.00 12.00 13.00 6.00 -

Table 5.5: Peak memory usage in bytes per input symbol for the algorithms

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 108

(2) However, the execution times of all six CPS and CI algorithms are consistently

very close, with CPS1-3b being in every case the slowest. Over the strings

that are not highly periodic, CPS1-3b runs at most 20% slower than the fastest

of the six. On the other hand, CPS1-3b uses at least 20% less space than

any other of the other six algorithms. Since space is often a more important

criterion, especially for large files, CPS1-3b seems therefore to be advantageous

in many practical situations.

(3) 	On highly periodic strings that rarely occur in practice, and over non-succinct

algorithms, en is the surprising winner in terms of execution time. This phe

nomenon occurs because, as noted in Figure 5.1, en is independent of LCP

construction, and we note from Table 5.3 that the LCP algorithm [74] used

in our tests is 10 times slower on highly periodic strings than the algorithm

[48], while otherwise being very competitive. The advantage of en on highly

periodic strings disappears if the other LCP algorithm is used; CPSl-2 again

becomes marginally the fastest. Note that en uses 13 bytes of space.

(4) For CPS3, Tables 5.4 	and 5.5 give results for the choice q = 2; for larger q,

specifically q = 3, either time or storage requirements become unacceptably

large. Over all algorithms, succinct or not, CPS3 (q = 2) is dominant on binary

strings, both highly periodic and random: it is both fastest overall and least

space-consuming. It is competitive in terms of time, and superior in terms of

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 109

space usage, also on random strings on an alphabet of size 21, but for the other

strings tested, it turns out to be very slow.

(5) CPS2 seems to provide possible advantage only for 	natural language strings

(e.g., the Bible). This observation perhaps provides a basis for more detailed

research.

(6) A comparison of Tables 5.3 	and 5.4 reveals that 80% or more of the overall

runtime is generally used in computing the data structures, especially SA and

LCP. Once these structures are in place, the algorithm-specific processing is

extremely efficient.

5.4 Conclusion

In this chapter we have surveyed a collection of LZ construction algorithms that have

been proposed by several authors over the last few years for use in the calculation of

regularities in strings rather than in the traditional application to text compression.

These algorithms fall into two categories: those that use full data structures, and

those that are "succinct". The succinct methods typically use about one computer

word per text symbol, but are several times slower in execution speed. In view of the

importance of minimizing the usage of space, the challenge for the future seems to be

to devise succinct algorithms whose time efficiency competes with that of algorithms

that make use of full data structures. Alternatively, in view of the large proportion

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 110

of overall runtime spent on computing these data structures, and in the light of of

recent research [18, 35] showing that regularities in strings are usually sublinear in

string length, perhaps it is time to intensively investigate methods that avoid these

computations altogether.

Chapter 6

Summary and Future Work

6.1 Summary

In this thesis, we studied several problems related to the computation of regularities

in strings.

We proposed four RPTl and one RPT2 algorithms for computing NE repeats and

two RPT3 algorithms for computing SNE repeats. Among them, RPTl-3, RPTl-4

and RPT3-2 execute in linear time independent of alphabet size. We believe that

quality software is produced by the thoughtful application of good engineering meth

ods and tools throughout the specification [89], design, coding, and testing stages.

Thus, in order to evaluate the efficiency of our algorithms in practice as well as to

compare them with existing algorithms for similar problems, we have conducted com

prehensive experimental work, analyzed the results carefully and drawn conclusions

about the situations in which these algorithms perform best on our results. Our ex

perimental results have shown that RPTl-4 is the best on overall strings tested, while

111

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 112

the RPTl-1 and RPTl-2 are better for non-highly periodic strings. Moreover, RPTl

algorithms are faster than the two other algorithms previously proposed for this prob

lem. These RPT algorithms have several practical applications in data compression,

computational biology and data mining.

We have also formulated two problems related to multirepeats in sets of strings

with various restrictions and extended our RPTl to present three efficient algorithms

with lower time complexity and less memory consumption compared to previously

proposed algorithms. Among these algorithms, two versions are for multirepeats with

arbitrary gaps, with worst-case time complexities O(Nn+a log2 N) and O(Nn+a)

that use 9Nn and lON n bytes of space respectively, while the third one applies to

the bounded gaps problem, with worst-case time complexity O(RNn) that requires

approximately lON n bytes, where R is the number of multirepeats output. In biolog

ical sequences (DNA, RNA, or protein) the problem of locating multirepeats arises

in many contexts, such as database searching and sequence alignment. It is also im

portant in data mining. We observed that if we set the min and max constraints on

gaps equal to zero in the algorithm MultiRepG, we can find all repetitions in arbitrary

subsets of S.

In the final part of the thesis, we investigated the recently proposed LZ factor

ization algorithms which are used in the computation of regularities in strings rather

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 113

than in the traditional application to text compression. We first provided a theo

retical comparison of their time and space efficiency, followed by the experimental

results on both time and space testing. We observed that these algorithms fall into

two categories: those that use full data structures, and those that are "succinct".

The succinct methods typically use about one computer word per text symbol, but

are several times slower in execution speed. Of the seven algorithms that use full

data structures, CPSl-2 and CIS execute fastest on all the files that are not highly

periodic, and in fact differ by no more than 5% in any of the test cases. Since CIS

uses on average about 10% less space than CPSl-2, it must therefore be regarded as

the algorithm of choice between the two. In view of the importance of minimizing the

usage of space, the challenge for the future seems to be to devise succinct algorithms

whose time efficiency competes with that of algorithms that make use of full data

structures. Alternatively, in view of the large proportion of overall runtime spent on

computing these data structures, perhaps it is time to intensively investigate methods

that avoid these computations altogether.

6.2 Future Work

There are several lines along which future research could proceed.

1. In the main work of this thesis in Chapter 3, we reported all complete non

extendible repeats with user defined minimum period, but they are reported in order

of positions in the SA array rather than in x. So the question remains: can we

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 114

efficiently reorganize the output NE repeats in the order of positions in x? If so, we

believe that we could compute complete repetitions in an efficient way.

2. As we can report all the complete NE repeats including tandem, overlapping,

and split repeats in O(n) time and 6n space, we wonder if we can make use of

all the advantages of the RPTl algorithms to report all quesiperiodicities from our

algorithm as a by-product? Then we could solve the problem that the BP algorithm

[13] proposed by using SA arrays.

3. There are many studies of locating approximate repeats or weighted repeats

in a string, but not multirepeats in sets of strings. Future work, then could include

detection of degenerate (approximate) multirepeats and weighted multirepeats.

4. In [2] the algorithm for locating common motifs with gaps by using suffix trees

was proposed. The authors consider that the problem of finding common motifs with

gaps is similar to finding the NE repeats present in strings with contiguous don't care

symbols between them, which form the gaps. If we consider this problem as for a

particular NE repeat that appears in each string with fixed (or arbitrary) gaps with

other NE repeats which must also appear in each string, then we could extend our

RPTl algorithm to find fixed gap or arbitrary gap motifs without using suffix trees,

which would be more space efficient.

Bibliography

[1] 	 Anisa Al-Hafeedh, Maxime Crochemore, Lucian Ilie, Jenya Kopylov, William
F. Smyth, German Tischler, and Munina Yusufu, A comparison of Lempel-Ziv
LZ77 factorization algorithms, submitted for publication (2009).

[2] 	 Pavlas Antoniou, Maxime Crochemore, Costas S. Iliopoulos, and Pierre Peter
longo, Application of suffix trees for the acquisition of common motifs with gaps
in a set of strings, Proc. 1st International Conference on Language and Automata
Theory and Applications (2007) 57-66.

[3] 	 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch, Replacing
suffix trees with enhanced suffix arrays, J. Discrete Algs. 2 (2004) 53-86.

[4] 	 Alberto Apostolico and Stefano Lonardi, Off-line compression by greedy textual
substitution, Proc. IEEE 88-11 (2000) 1733-1744.

[5] 	 Alberto Apostolico and Franco P. Preparata, Optimal off-line detection of repe
titions in a string, Theoret. Comput. Sci. 22 (1983) 297-315.

[6] 	 A. Bakalis, Costas S. Iliopoulos, Christos Makris, Spyros Sioutas, Evangelos
Theodoridis, Athanasios K. Tsakalidis, and Kostas Tsichlas, Locating maximal
multirepeats in multiple strings under various constraints, The Computer Journal
50-2 (2007) 178-185.

[7] 	 Jean Berstel and Alessandra Savelli, Crochemore factorization of Sturmian and
other infinite words, Proc. 31st Internat. Symp. Math. Foundations of Computer
Sci., Ratislav Kralovic and Pawel Urzyczyn (eds.), LNCS 4162, Springer-Verlag
(2006) 157-166.

[8] 	 Hamid Abdul Basit, Simon J. Puglisi, William F. Smyth, Andrew Turpin, and
Stan Jarzabek, Efficient token based clone detection with flexible tokenization,
Proc. 6th Joint Meeting: European Software Engineering Conference f3 ACM
SIGSOFT Symposium on Software Engineering (2007) 513-516.

115

116 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

[9] 	 Timothy C. Bell, Better OPM/L text compression, IEEE Trans. Communica
tions COM-34 (12) (1986) 1176-1182.

[10] 	 Gary Benson, Tandem repeats finder: A program to analyze DNA sequences,
Nucleic Acids Research 27-2 (1999) 573-580.

[11] 	 Yaniv Berstein and Justin Zobel, Accurate discovery of co-derivative documents
via duplicate text detection, Information Systems 31 (2006) 595-609.

[12] 	 Gerth S. Brodal, Rune B. Lyngso, Christian N. S. Pederesen, and Jens Stoye,
Finding maximal pairs with bounded gap, J. Discrete Algs. 1 (2000) 77-103.

[13] 	 Gerth S. Brodal and Christian N.S. Pedersen, Finding maximal quasiperiodicities
in strings, Lecture Notes in Computer Science 1848 (2000) 397-411.

[14] 	 Michael Burrows and David J. Wheeler, A block-sorting lossless data compression
algorithm, Technical Report 124, Digital Equipment Corporation (1994).

[15] 	 Maxime Crochemore, Transducers and repetitions, Theoret. Comput. Sci. 45-1
(1986) 63-86.

[16] 	 Maxime Crochemore, An optimal algorithm for computing the repetitions in a
word, Inform. Process. Lett. 12-5 (1981) 244-250.

[17] 	 Maxime Crochemore and Lucian Ilie, Computing longest previous factor in linear
time and applications, Inform. Proc. Lett. 106 (2008) 75-80.

[18] 	 Maxime Crochemore and Lucian Ilie, Maximal repetitions in strings, J. Com
puter f3 Sys. Sciences 74-5 (2008) 796-807.

[19] 	 Maxime Crochemore, Lucian Ilie, Costas S. Iliopoulos, Marcin Kubica, Woj
ciech Rytter, and Tomasz Walen, LPF computation revisited, Proc. 20th Inter
nat. Workshop on Combinatorial Algs., Jan Kratochvil and Mirka Miller (eds.),
LNCS, Springer-Verlag (2009) to appear.

[20] 	 Maxime Crochemore, Lucian Ilie, and William F. Smyth, A simple algorithm for
computing the Lempel-Ziv factorization, Proc. 18th Data Compression Confer
ence (DCC'08), J. A. Storer and M. W. Marcellin (eds.) (2008) 482-488.

[21] 	 Maxime Crochemore, Gad M. Landau, and Michal Ziv-Ukelson, A sub-quadratic
sequence alignment algorithm for unrestricted cost matrices, Proc. 12th A CM
S/AM Symp. Discrete Algs. (2002) 679-688.

[22] 	 Maxime Crochemore, Lucian Ilie, and Liviu Tinta, The "runs" conjecture, sub
mitted for publication (2009).

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 117

[23] 	 Gang Chen, Simon J. Puglisi, and William F. Smyth, Fast and practical al
gorithms for computing all runs in a string, Proc. 18th Annual Symposium on
Combinatorial Pattern Matching (2007) 307-315.

[24] 	 Gang Chen, Simon J. Puglisi, and William F. Smyth, Lempel-Ziv factorization
using less time & space, Mathematics in Computer Science 1-4, Joseph Chan
and Maxime Crochemore (eds.) (2008) 605-623.

[25] 	 Tim Crawford, Costas S. Iliopoulos, and Rajeev Raman, String matching tech
niques for musical similarity and melodic recognition, Computing in Musicology
11 (1998) 73-100.

[26] 	 Manolis Christodoulakis, Costas S. Iliopoulos, M. Sahel Rahman, and William
F. Smyth, Identifying rhythms in musical texts, Internat. J. Foundations of
Computer Sci. 19-1 (2008) 37-52.

[27] 	 Emilios Cambouropoulos, Maxime Crochemore, Costas S. Iliopoulos, Laurent
Mouchard, and Yoan J. Pinzon, Algorithms for computing approximate repeti
tions in musical sequences, R. Raman and J. Simpson editors, Proc. of the 10th
Australasian Workshop on Combinatorial Algorithms (1999) 129-144.

[28] 	 Michael Dippersein, LZSS (LZ11} Discussion and Implementation,

http://michael.dipperstein.com/lzss/

[29] 	 Jean-Pierre Duval, Roman Kolpakov, Gregory Kucherov, Thierry Lecroq, and
Arnaud Lefebvre, Linear-time computation of local periods, Theoret. Comput.
Sci. 326(1-3) (2004) 229-240.

[30] 	 Martin Farach, Optimal suffix tree construction with large alphabets, Proc. 38th
IEEE Symp. Found. Computer Science (1997) 137-143.

[31] 	 Johannes Fischer and Volker Heun, A new succinct representation of rmq
information and improvements on the enhanced suffix array, Proc. ESCAPE
2007, Bo Chen, Mike Paterson and Guochuan Zhang (eds.), LNCS 4614,
Springer-Verlag (2007) 459-470.

[32] 	 Johannes Fischer, Volker Heun, and Stefan Kramer, Optimal string mining under
frequency constraints, Proc. 10th European Conj. on Principles and Practice of
Knowledge Discovery in Databases, LNCS 4213, Springer-Verlag (2006) 139-150.

[33] 	 Frantisek Franek, William F. Smyth, and Yudong Tang, Computing all repeats
using suffix arrays, J. Automata, Languages & Combinatorics 8-4 (2003) 579
591.

http://michael.dipperstein.com/lzss

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 118

[34] 	 Frantisek Franek, Jan Holub, William F. Smyth, and Xiangdong Xiao, Com
puting quasi suffix arrays, J. Automata, Languages f3 Combinatorics 8-4 (2003)
593-606.

[35] 	 Frantisek Franek, Jamie Simpson, and William F. Smyth, The maximum number
of runs in a string, Proc. 14th Australasian Workshop on Combinatorial Algs.,
Mirka Miller and Kunsoo Park (eds.) (2003) 36-45.

[36] 	 Ryoichi Fujino, Hiroki Arimura, and Setsuo Arikawa, Discovering unordered and
ordered phrase association patterns for text mining, Proc. 4th Pacific-Asia Conj.
Knowledge Discovery and Data Mining (2000) 281-293.

[37] 	 Dan Gusfield, Algorithms on Strings, Trees and Sequences, Cambridge University
Press (1997) 534 pp.

[38] 	 Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, 2nd
edition, Morgan Kaufmann (2006).

[39] 	 Costas S. Iliopoulos, William F. Smyth, and Munina Yusufu, Faster algorithms
for computing maximal multirepeats in multiple sequences, Fundamenta Infor
maticae, Special StringMasters Issue (2009) to appear.

[40] 	 Kazuyuki Narisawa, Hideo Bannai, Kohei Hatano, and Masayuki Takeda, Un
supervised spam detection based on string alienness measures, Technical report.
Department of Informatics, Kyushu University (2007)

[41] 	 Stefan Kurtz, Reducing the space requirement of suffix trees, Software, Practice
f3 Experience 29-13 (1999) 1149-1171.

[42] 	 Roman Kolpakov and Gregory Kucherov, Mreps,

http://bioinfo.lifl.fr/mreps/

[43] 	 Roman Kolpakov and Gregory Kucherov, Finding maximal repetitions in a word
in linear time, Proc. 40th Annual IEEE Symp. Found. Computer Science (1999)
596-604.

[44] 	 Roman Kolpakov and Gregory Kucherov, Finding repeats with fixed gap, Proc.
7th International Symposium on String Processing and Information Retrieval
(2000) 162-168.

[45] 	 Pang Ko and Srinivas Alum, Space efficient linear time construction of suffix
arrays, Proc. 14th Annual Symp. Combinatorial Pattern Matching, R. Baeza
Yates, E. Chavez, and M. Crochemore (eds.), LNCS 2676, Springer-Verlag (2003)
200-210.

http://bioinfo.lifl.fr/mreps

119 Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software

[46] 	 S. Karlin, G. Ghandour, F. Ost, S. Tavare, and L. J. Korn, New approaches
for computer analysis of nucleic acid sequences, Proc. Natl. Acad. Sci. USA 80
(1983) 5660-5664.

[47] 	 Torn Kasai, Gunho Lee, Hiraki Arimura, Setsuo Arikawa, and Kunsoo Park,
Linear-time longest-common-prefix computation in suffix arrays and its applica
tions, Proc. 12th Annual Symp. Combinatorial Pattern Matching, LNCS 2089,
Springer-Verlag (2001) 181-192.

[48] 	 Juha Karkkainen, Giovanni Manzini, and Simon J. Puglisi, Permuted longest
common-prefix array, Proc. 20th Annual Symposium on Combinatorial Pattern
Matching (CPM'09) (2009) 181-192.

[49] 	 Juha Karkkainen and Peter Sanders, Simple linear work suffix array construction,
Proc. 30th Internat. Colloq. Automata, Languages f3 Programming, LNCS 2719,
Springer-Verlag (2003) 943-955.

[50] 	 Sau Dan Lee and Luc De Raedt, An efficient algorithm for mining string data
bases under constraints, Proc. KDID, LNCS 3377, Springer-Verlag (2005) 108
129.

[51] 	 Jesper Larsson and Alistair Moffat, Offiine dictionary-based compression, Proc.
Data Compression Conference (DCC'99) (1999) 296-305.

[52] 	 Andre Lentin and Marcel P. Schiitzenberger, A combinatorial problem in the
theory of free monoids, Combinatorial Mathematics fj Its Applications, R. C.
Bose and T. A. Dowling (eds.), University of North Carolina Press (1969) 128
144.

[53] 	 Glen G. Langdon, A note on the Ziv-Lempel model for compressing individual
sequences, IEEE Trans. Inform. Theory, IT-29 (1983) 284-287.

[54] 	 Sunho Lee and Kunsoo Park, Dynamic rank-select structures with applications
to run-length encoded texts, Proc. 18th Annual Symp. Combinatorial Pattern
Matching, Bin Ma and Kaizhong Zhang (eds.), LNCS 4580, Springer-Verlag
(2007) 95-106.

[55] 	 Jesper Larsson and Kunihiko Sadakane, Faster suffix sorting, Tech. Rep. LU-CS
TR:99-214 [LUNFD6/(NFCS-3140)], Department of Computer Science, Lund
University, Sweden (1999).

[56] 	 Abraham Lempel and Jacob Ziv, On the complexity of finite sequences, IEEE
Trans. Information Theory 22 (1976) 75-81.

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 120

[57] 	 Ross A. Lippert, Clark M. Mobarry, and Brian Walenz, A space-efficient con
struction of the Burrows-Wheeler transform for genomic data, J. Computational
Biology 12-7 (2005) 943-951.

[58] 	 Michael G. Main, Detecting leftmost maximal periodicities, Discrete Applied
Maths. 25 (1989) 145-153.

[59] 	 Michael G. Main and Richard J. Lorentz, An 0(n log n) algorithm for recognizing
repetition, Tech. Rep. CS-79-056, Computer Science Department, Washington
State University (1979).

[60] 	 Michael G. Main and Richard J. Lorentz, An O(nlogn) algorithm for finding all
repetitions in a string, J. Algs. 5 (1984) 422-432.

[61] 	 Edward M. McCreight, A space-economical suffix tree construction algorithm,
J. Assoc. Comput. Mach. 32-2 (1976) 262-272.

[62] 	 Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai, and Ayumi
Shinoharal, New lower bounds for the maximum number of runs in a string,
Proc. Prague Stringology Conference 2008, Jan Holub and Jan Zdarek (eds.)
(2008) 140-144.

[63] 	 Michael Maniscalco and Simon J. Puglisi, Faster lightweight suffix array con
struction, Proc. 17th Australasian Workshop on Combinatorial Algs., J. Ryan
and Dafik (eds.) (2006) 16-29.

[64] 	 Giovanni Manzini, Two space-saving tricks for linear time LCP computation,
Proc. 9th Scandinavian Workshop on Alg. Theory, LNCS 3111, T. Hagerup and
J. Katajainen (eds.), Springer-Verlag (2004) 372-383.

[65] 	 Yuta Mori, DivSufSort {2005)

http://www.homepage3.nifty.com/wpage/software/libdivsufsort.html

[66] 	 Giovanni Manzini and Paolo Ferragina, Engineering a lightweight suffix array
construction algorithm, Algorithmica 40 (2004) 33-50.

[67] 	 Kaziyuki Narisawa, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda,
Efficient computation of substring equivalence classes with suffix arrays, Proc.
18th Annual Symp. Combinatorial Pattern Matching (2007) 340-351.

[68] 	 Mark Nelson and Jean loup Gailly, The Data Compression Book, M&T Books
(1995) 541 pp.

http://www.homepage3.nifty.com/wpage/software/libdivsufsort.html

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 121

[69] 	 Daisuke Okanohara and Kunihiko Sadakane, An online algorithm for finding
the longest previous factors, Proc. 16th Annual European Symp. on Algs., Dan
Halperin & Kurt Melhorn (eds.), LNCS 5193, Springer-Verlag (2008) 696-707.

[70] 	 Pawel Pylak, Efficient modification of LZSS compression algorithm, Annales
UMCS Informatica AI 1 (2003) 61-72.

[71] 	 Simon J. Puglisi, William F. Smyth, and Andrew Turpin, A taxonomy of suffix
array construction algorithms, ACM Computing Surveys 39-2 (2007) 1-31.

[72] 	 Simon J. Puglisi, William F. Smyth, and Munina Yusufu, Fast optimal algo
rithms for computing all the repeats in a string, Prague Stringology Conference
(preliminary version), Jan Holub and Jan Zdarek (eds.) (2008) 161-169.

[73] 	 Simon J. Puglisi, William F. Smyth, and Munina Yusufu, Fast optimal algo
rithms for computing all the repeats in a string, submitted for publication (2009).

[74] 	 Simon J. Puglisi and Andrew Turpin, Space-time tradeoffs for longest-common
prefix array computation, Proc. 19th Internat. Symp. Algs. & Computation, S.-H.
Hong, H. Nagamochi & T. Fukunaga (eds) (2008) 124-135.

[75] 	 Sung W. Shin and Sam M. Kim, A new algorithm for detecting low-complexity
regions in protein sequences, Bioinformatics 21-2 (2005) 160-170.

[76] 	 Kunihiko Sadakane, Succint representations of lcp information and improvements
in the compressed suffix arrays, Proc. 13th ACM-SIAM Symp. Discrete Algs.
(2002) 225-232.

[77] 	 Bill Smyth, Computing Patterns in Strings, Pearson Addison-Wesley (2003) 423
pp.

[78] 	 Jens Stoye and Dan Gusfield, Simple and flexible detection of contiguous repeats
using a suffix tree, Theoret. Comput. Sci. 279-1/2 (2002) 843-850.

[79] 	 James A. Storer and Thomas G. Szymanski, Data compression via textual sub
stitution, J. Assoc. Comput. Mach. 29-4 (1982) 928-951.

[80] 	 William F. Smyth and Munina Yusufu, Computing regularities in strings, Proc.
Second IEEE International Conference on Computer Science and Information
Technology (2009) 298-302.

[81] 	 Axel Thue, Uber unendliche zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat.
Kl. Christiana 7 (1906) 1-22.

Ph.D. Thesis - Munina Yusufu McMaster - Computing & Software 122

[82] 	 Tatsuhiko Tsunoda, Masao Fukagawa, and Toshihisa Takagi, Time and mem
ory efficient algorithm for extracting palindromic and acid sequences, Pacific
Symposium on Biocomputing (1999) 202-213.

[83] 	 Andrew Turpin and William F. Smyth, An approach to phrase selection for
offiine data compression, Proc. 25th Australasian Computer Science Conference,
Michael Oudshoorn (eds.) (2002) 267-273.

[84] 	 Esko Ukkonen, Approximate string-matching with q-grams and maximal
matches, Theoret. Comput. Sci. 92-1 (1992) 191-211.

[85] 	 Esko Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995) 249
260.

[86] 	 Tanguy U rvoy, Thomas Lavergne, and Pascal Filoche, Tracking Web spam with
hidden style similarity, AIRWEB 2006 (2006) 25-31.

[87] 	 Peter Weiner, Linear pattern matching algorithms, Proc. 14th Annual IEEE
Symp. Switching and Automata Theory (1973) 1-11.

[88] 	 Munina Yusufu, Computing complete repeats using suffix array, Presented at
WISE (Women in Science & Engineering) Initiative International Women's Day
Conference (2008).

[89] 	 Munina Yusufu and Gulina Yusufu, Comparison of software specification meth
ods using a case study, Proc. 2008 International Conference on Computer Science
and Software Engineering (2008) 784-787.

[90] 	 Christina Zeeh, The Lempel-Ziv Algorithm (2003)

http://tuxtina.de/files/seminar/LempelZiv.pdf

[91] 	 Jacob Ziv and Abraham Lempel, A universal algorithm for sequential data com
pression, IEEE Trans. Information Theory 23 (1977) 337-343.

[92] 	 Jacob Ziv and Abraham Lempel, Compression of individual sequences via
variable-rate coding, IEEE Trans. Information Theory 24 (1978) 530-536.

http://tuxtina.de/files/seminar/LempelZiv.pdf

	Structure Bookmarks

