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Abstract 


The focus of this thesis is on the utilization of the sparsity concept in solving some 

challenging problems, e.g., finding a unique solution to the under-determined linear 

system of equations in which the number of equations is less than the number of 

unknowns. This concept is extended to the problem of solving the under-determined 

blind source separation (BSS) problem in which the number of source signals is greater 

than the number of sensors and both the mixing matrix and the source signals are 

unknowns. In this respect we study three problems: 

1. 	 Developing some algorithms for solving the under-determined linear system of 

equations for the case of a sparse solution vector. 

In this thesis we develop a new methodology for minimizing a class of non­

convex (concave on the non-negative orthant) functions for solving the afore 

mentioned problem. The proposed technique is based on locally replacing the 

original objective function by a quadratic convex function which is easily min­

imized. For a certain selection of the convex objective function, the existing 

class of algorithms called Iterative Re-weighted Least Squares (IRLS) can be 

derived from the proposed methodology. Thus the proposed algorithms are a 

generalization and unification of the previous methods. In this thesis we also 

propose a convex objective function that produces an algorithm that can con­

verge to a sparse solution vector in significantly fewer iterations than the IRLS 
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algorithms. 

2. 	 Solving the under-determined BSS problem by developing new clustering algo­

rithms for estimating the mixing matrix. 

The under-determined BSS problem is usually solved by following a two-step 

approach, in which the mixing matrix is estimated in the first step, then the 

sources are estimated in the second step. For the case of sparse sources, the 

mixing matrix is usually estimated by clustering the columns of the observation 

matrix. In this thesis we develop three novel clustering algorithms that can 

efficiently estimate the mixing matrix, as well as the number of sources, which 

is usually unknown. Numerical simulations verify the efficiency of the proposed 

algorithms compared to some well known algorithms that are usually used for 

solving the same problem. 

3. 	 Extraction of a desired source signal from a linear mixture of hidden sources 

when prior information is available about the desired source signal. 

There are many situations in \vhich one is interested in extracting a specific 

source signal. The a priori available information about the desired source signal 

could be temporal, spatial, or both. In this thesis we develop new algorithms 

for extracting a desired sparse source signal from a linear mixture of hidden 

sources. The information available about the desired source signal, as well as its 

sparsity, are incorporated in an optimization problem for extracting this source 

signal. Four different algorithms have been developed for solving this problem. 

Numerical simulations show that the proposed algorithms can be used success­

fully for removing different kind of artifacts from real electroencephalographic 

(EEG) data and for estimating the event related potential (ERP) signal from 

synthesized EEG data. 
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Chapter 1 

Introduction 

There are many situations in science and technology that seek solutions to underde­

termined systems of equations, i.e. systems of linear equations with fewer equations 

than unknowns. Such problems are extremely common for a variety of reasons. For 

instance, the number of sensors may be small due to physical limitations as in breast 

cancer imaging, or the sensing process may be slow so that one can only measure the 

object a few times, as in MRI. Many other examples in inverse problems, array signal 

processing, and biomagnetic imaging all come to mind. However, it is known that a 

system of linear equations with fewer equations than unknowns has infinitely many 

solutions, and thus it is necessary to impose constraints on the candidate solution to 

identify which of these candidate solutions is the desired one. 

On closer inspection, there are many applications which ask for "sparse" solutions 

of such systems, i.e. solutions with few nonzero elements; the interpretation being 

that we know a priori that most of the candidate sources, pixels or genes are zeros, 

while the locations of the nonzero elements are not known a priori. The problem 

of reconstruction of sparse signals from a limited number of linear measurements is 

known in the literature as "compressed sensing" or "compressive sampling" (CS). 

Restricting the solution vector to be sparse converts the underlying problem from 
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being impossible into being a tractable, but nevertheless still difficult, problem. For 

an ( m x n) system of linear equations, where m is the number of measurements and 

n >mis the length of the solution vector, a naive approach to find al-sparse solution 

vector (i.e., a solution vector that has at most l « n nonzero entries), is to find the 

solution vector to every ( m x l) submatrix of the measuring matrix, and then selecting 

the set of indices that minimizes the residual error. Since there are (7) submatrices 

of size (m x l), this combinatorial approach is prohibitive when n and l are large. 

To overcome this difficulty, a number of computational strategies have been devel­

oped to find solutions with low computational complexity. Examples include greedy 

algorithms [1-5], the basis pursuit [6, 7], iterative-thresholding algorithms [8, 9], and 

iterative reweighted norm algorithms [10-18]. A brief description of some of these 

approaches is presented in Chapter 2. 

All the techniques mentioned in the previous paragraph can solve the problem of 

linear underdetermined system of equations as long as the solution vector is sparse, 

sparsely represented in some basis (e.g., wavelet and Gabor dictionaries among others 

[19]), or piecewise constant, (hence its gradient is sparse [11], [20]). Accordingly, 

compressed sensing has a wide range of applications and it has been studied in the 

literature under many different names such as subset selection [21], sparse coding [22], 

sparse regression [23, 24], sparse component analysis (SCA) [25-27] with application 

to blind source separation of more sources than sensors [28-33]. Other applications 

are biomagnetic inverse problems [10, 34-37], sub band decomposition [38], sparse 

audio signal representation [39], dictionary learning [40-42], image acquisition [43], 

direction-of-arrival estimation [10], [44], channel equalization [45], echo cancelation 

[46], and image restoration [11, 47, 48]. See [18] and the references therein for a list 

of more applications. In all these applications, the underlying linear inverse problem 

is the same and can be stated as follows: Represent a signal of interest using the 

minimum number of "atoms" (vectors) from an overcomplete dictionary. In the next 
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section we introduce some practical applications that have been addressed in the 

literature. 

1.1 Some Applications of Compressed Sensing 

In this section we present some examples that reflect the wide range of applications of 

compressed sensing (CS) and its ability to solve some difficult problems. In the first 

example CS is used in localizing the brain sources that generate a measured event 

related potential (ERP) signal. This is an ill-posed problem because the number of 

candidate source locations exceeds many thousand, while the number of sensors is 

very small, e.g. 128. Although the number of source locations is very large, only few 

sources are responsible for the measured ERP signal; hence, the solution vector is 

sparse. 

The second example we present is a practical application in which the theory of 

compressed sensing is utilized in building a "single-pixel" digital camera which can be 

utilized in capturing still images. The single-pixel camera takes a few measurements 

of the target scene, then a CS algorithm is used to restore the original image. In the 

third example CS is used in solving the problem of blind source separation (BSS) when 

the number of sensors is less than the number of sources. The difficulties associated 

with this example are: (i) both the sources and the mixing matrix are unknown, (ii) 

there are more sources than sensors, and (iii) the sources are, in general, not sparse. 

However, by utilizing the CS techniques, the sources can be perfectly estimated under 

ideal conditions. vVe now discuss these examples in more detail. 

1.1.1 EEG Source Imaging 

EEG source imaging is an inverse problem in which noninvasive measurements of 

electrical potentials at multichannel scalp electrodes are used for estimating neuronal 
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electrical sources distributed on a human brain cortex. The neuronal sources are usu­

ally modeled as dipole sources that are confined within thin (rv 4 mm) gray matter 

regions of the cerebral cortex. To determine the proper locations and orientations of 

the sources, the cortical surface is usually partitioned into a large number of trian­

gular elements (Figure 1.1 (a)). The current intensity of each source is related to the 

measured EEG data through the following linear model [34] 

x = Li+v 

where L is the ( m x n) lead field matrix, x is a column vector representing the 

measured EEG signal at the m electrodes at a given time instant, i is a column 

vector made of the n corresponding current source intensities, and v is a noise vector. 

Since exact source locations inside the real human brain cannot be estimated a 

priori, neuroelectromagnetic inverse problems are difficult to verify by in vivo ex­

periments. Thus we present in this example a simulated experiment that was done 

in [34]. For forward calculations, a three-layer boundary element model shown in Fig­

ure l.l(a) was used. This model consists of inner and outer skull boundaries and a 

scalp surface. To construct an artificial ERP signal, cortical patches were made from 

a set of dipoles with a Gaussian distributed current intensity profile, perpendicularly 

orientated to the partitioned cortical surface. Figure 1.1 (b) shows an example of the 

assumed cortical patch activations. After calculating electrical potentials at the 128 

electrodes assuming a 200-Hz sampling rate, real brain noise, which was obtained 

from a prestimulus period of a practical EEG experiment, was added. The original 

ERP signal without noise was scaled to produce a 7 dB signal to noise ratio (SNR). 

The inverse problem is solved using the FOCUSS algorithm [10], and the distribution 

of the estimated current intensities is presented in Figure 1.1( c). As shown in this 

figure, the distribution of the sources is perfectly estimated. 
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Figure 1.1: [34] EEG source imaging. (a) Boundary element model for EEG forward calcu­

lations, (b) Example of cortical patch activations: Three simultaneous Gaussian distributed 

sources were assumed in both hemispheres, (c) Estimated source distribution. 
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1.1.2 Single-pixel compressive digital camera 

As will be described in the next chapter, the idea of compressed sensing is that, for a 

l-sparse vector y of length n » l there is a measuring matrix <I> E JR.(mxn) such that, 

with high probability, y can be uniquely recovered from a low-dimensional vector 

x = <f!y, where x E JR.m and l ::=; m « n. The idea is also applicable if y is not 

sparse but can be sparsely represented in terms of some basis, i.e. y = '11 s, where the 

columns of '11 represents the basis, and s is a sparse vector of weighting coefficients. In 

this case, x is expressed as x = <f!y = cl>'11 s = As. Accordingly, y can be recovered 

from x by first estimating the sparse vector s, then estimating y using y = '118, 

where 8 is the estimated weighting coefficients. 

Conventional imaging devices that use CMOS technology are limited essentially 

to the visible spectrum. The single-pixel camera that we are presenting in this sec­

tion could significantly expand this capability (see [49] for more details). The idea 

of the single-pixel digital camera is based on the previously described model, where 

the target scene is represented by vector y and the ith pixel of the measured pic­

ture x is the inner product between the ith row of <I! and the target scene y. The 

implementation of the single-pixel digital camera is shown in Figure 1.2(a) [49]. As 

shown in this figure, the incident light-field corresponding to the desired image y 

is reflected off a digital micromirror device (DMD) consisting of an array of n tiny 

mirrors each of which can be oriented in two different positions. The orientation of 

the DMD is controlled by the random number generator (RNG). The reflected light 

is then collected by a second lens and focused onto a single photodiode (the single 

pixel). 

The entries of the measuring matrix '1> are either 1 or 0 with equal probability, 

i.e., they can be modeled as independent and identically distributed (i.i.d.) random 

variables from a Bernoulli density function. This is implemented in Figure l.2(a) 
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Low-cost, fast, sensitive 
optical detection 

PD 

(a) 

(b) 

AID 
Xmtr 

Compressed, encoded 
image data sent via RF 

for reconstruction 

( ( ( .,.'-------1 ..----.DSP 

Rcvr 

(c) 

Figure 1.2: [49] (a) Single-pixel, compressive sensing camera. (b) Conventional digital 

camera image of a soccer ball. (c) 64 x 64 black-and-white image iJ of the same ball 

(n = 4, 096 pixels) recovered from m = 1, 600 random measurements taken by the camera 

in (a). 
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by the RNG which sets the mirror orientation either towards the photodiode (corre­

sponding to 1) or away from the photodiode (corresponding to 0). The positions of 

the mirrors correspond to the entries of <t>i, the ith row of i!>. The voltage at the pho­

todiode then equals xi, which is the inner product between <J>i and the desired image 

y. The process is repeated m times to obtain all of the entries in x. To reconstruct 

the image from x, A suitable dictionary \JI, e.g., a wavelet dictionary that sparsely 

represents the original image, is selected. Then an optimization problem is solved to 

find an estimate of the sparse coefficients s which is used to reconstruct the image as 

y=\Jfs. 

An image acquired with the single-pixel camera using a number of random mea­

surements equal to 403 of the reconstructed pixels is illustrated in Figure 1.2(c); this 

can be compared to the target image in Figure 1.2(b). Although the resolution of 

the reconstructed image is low compared to the original image, this resolution can be 

increased by increasing the number of measurements. 

1.1.3 Blind separation of more sources than sensors 

The blind source separation (BSS) problem is defined as the problem of reconstructing 

n unknown source signals from m linear measurements when the mixing matrix is 

unknown. The relation between the measured signals and the original source signals 

can be expressed mathematically as X = AS, where X E .!RmxT is a matrix of 

measured signals, A E .!Rmxn is an unknown mixing matrix, SE IRnxT is a matrix of 

unknown source signals, mis the number of observations, n is the number of sources, 

and T is the number of samples. 

Over the last two decades, the BSS problem was extensively studied and many 

algorithms have been developed for estimating the hidden source signals. The most 

successful technique that has been developed in the literature for solving the BSS 

problem is called independent component analysis (ICA) [51, 52, 54, 55]. The BSS 
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Figure 1.3: [50] Blind source separation of 6 acoustic sources from 4 mixtures. 
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problem can be solved using the ICA technique as long as the underlying BSS problem 

satisfies the following conditions: 1) the sources are mutually independent, 2) the 

number of sources is less than or equal the number of sensors, 3) at most one of the 

sources is Gaussian, and 4) the mixing matrix is full column rank. However, there 

are many applications for which one or more of these assumptions are violated. For 

example, in some applications the number of sources is generally unknown and could 

be greater than the number of sensors, while in other applications some of the sources 

could be correlated. In these applications, ICA does not produce satisfactory results, 

and an alternative technique must be utilized for estimating the hidden sources. 

A recently developed technique, known as Sparse Component Analysis (SCA), 

has received a great deal of attention in recent years. SCA can solve the under­

determined BSS problem, i.e. the case of more sources than sensors. The additional 

information required in compensating the limited number of sensors is the sparseness 

of the source matrix S. Since non-sparse sources can often be sparsely represented 

under a suitable linear transformation, (e.g., the short time Fourier transform, the 

wavelet transform, the wavelet packets transform,. .. etc.), the SCA problem is quite 

general and also applicable to non-sparse sources. Accordingly, SCA can substitute 

for ICA in the cases when some of the assumptions associated with ICA are violated, 

e.g., when the number of sources is greater than the number of sensors. See Chapter 

4 and Chapter 5 for more details about this technique. 

Figure 1.3 presents an example presented in [50] for separating 6 acoustic source 

signals from 4 mixtures using the SCA analysis technique. The problem is solved 

in four steps. In the first step, a linear transformation is applied on the measured 

signals for sparse representation. The mixing matrix A is estimated in the second 

step via clustering the columns of the measured signals in the transform domain. The 

coefficients of the original source signals in the transform domain are estimated using a 

CS algorithm. Finally, the sources are reconstructed from their estimated coefficients 
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by performing the inverse transformation. The reconstructed signals are shown in 

Figure l.3(c). Comparing the reconstructed signals with the original source signals 

shown in Figure 1.3(a), it is clear that the original signals are well reconstructed even 

though the number of measurements is less than the number of sources. 

1.2 Contributions and Thesis Organization 

In this section, the contributions of this thesis are summarized. 

1.2 .1 Chapter 2 

Chapter 2 provides a review of the recently developed technique called compressed 

sensing (CS). The CS technique is developed to solve a linear under-determined sys­

tem of equations, i.e., when the number of measurements is less than the number of 

unknowns. In Chapter 2 we review the fundamental principals of the CS technique 

and we discuss the conditions under which a unique solution of the linear under­

determined system of equations can be obtained using the CS technique. Finally we 

provide a revision of the most popular algorithms that have been developed in the 

recent literature. 

1.2.2 Chapter 3 

In Chapter 3 we develop a novel methodology for minimizing a class of non-convex 

(concave on the non-negative orthant) functions for solving the linear under-determined 

system of equations As = x when the solution vector s is known a priori to be sparse. 

The proposed technique is based on locally replacing the original objective function 

by a quadratic convex function which is easily minimized. The resulting algorithm is 
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iterative and is absolutely converging to a fixed point of the original objective func­

tion. The importance of the proposed methodology is that, for a certain selection 

of the convex objective function, the class of algorithms called Iterative Reweighted 

Least Square (IRLS) [10-16] can be derived from the proposed methodology. Thus 

the proposed algorithms are a generalization and unification of the previous meth­

ods. In addition, we also propose a new class of algorithms with better convergence 

properties compared to the regular IRLS algorithms and, hence, can be considered 

as enhancements to these algorithms. 

In this chapter we propose a straightforward technique for selecting a convex func­

tion such that, for any starting solution vector s0 , the algorithm generates a sequence 

{ sk}~1 that converges to a fixed point of the original objective function. Since the 

original objective functions are non-convex, the proposed algorithm is susceptible to 

convergence to a local minimum. To alleviate this difficulty, we propose a random 

perturbation technique that enhances the performance of the proposed algorithm. 

The numerical results show that the proposed algorithms outperform some of the 

well known algorithms that are usually utilized for solving the same problem. 

1.2.3 Chapter 4 

In Chapter 4 we discuss the problem of finding a unique solution to the under­

determined BSS problem X = AS using the SCA approach. The discussion presented 

in this chapter is restricted to the two-step approach, in which the mixing matrix A 

and the source matrix S are estimated separately. In the first part of this chapter, 

we discuss in detail the main steps associated with the two-step approach, and we 

provide a literature review about the popular clustering techniques that have been 

suggested in the literature for estimating the mixing matrix. 

Most of the clustering algorithms that have been utilized for estimating the mixing 

matrix suffer from the presence of noisy and/or outlier measurements, and they also 
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require the number of clusters, which equals the number of sources, to be known 

in advance. In the second part of this chapter we propose three different clustering 

algorithms that can be utilized for estimating the mixing matrix, as well as the number 

of sources, even when the measurements are contaminated with additive noise. 

The first clustering algorithm we propose is based on a clustering technique called 

hierarchical clustering (HC). Identification of the individual clusters constructed with 

HC is a fundamental difficulty associated with this clustering technique. Previous ap­

proaches for identifying the clusters are either manual or depend on some parameters 

which are hard to determine. In this chapter we propose a novel clustering algorithm 

which mitigates the previously mentioned difficulty by incorporating a statistical test 

with the HC algorithm. The proposed algorithm is based on sequentially extracting 

compact clusters that have been constructed by the HC algorithm, where the extrac­

tion decision is based on the statistical test. A cluster is extracted when its mean 

is significantly different from that of the closest cluster. For identifying the clusters 

that correspond to the columns of the mixing matrix, we developed a quantitative 

measure called the concentration parameter (CP). 

The second clustering algorithm that we propose in Chapter 4 is a generalization of 

the angular histogram clustering algorithm. Previously suggested angular histogram 

clustering algorithms are restricted to the 2-D case. However, the proposed algorithm 

generalizes the previous algorithms to the m 2: 2 case. Under certain conditions, 

which will be described in Chapter 4, the proposed algorithm can efficiently estimate 

the mixing matrix and the number of sources. 

The third clustering algorithm that we propose in this chapter is a combination 

of the first two algorithms. This algorithm combines the advantages of the first two 

clustering algorithms and avoids their limitations. The numerical results show that 

the proposed algorithms are more efficient than some of the existing algorithms. 
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1.2.4 Chapter 5 

In Chapter 5 we extend two ICA techniques into the SCA domain. We refer to these 

as the sequential blind source extraction (BSE) and the constraint ICA (cICA) tech­

niques. An ICA-based algorithm can extract a source signal by finding a separating 

vector that maximizes the non-Gaussianity of the extracted source signal. These 

algorithms are general purpose algorithms and are not designed specifically for ex­

tracting sparse sources. In this chapter we extend the previous work and propose 

four novel algorithms which are capable of extracting sparse source signals. The four 

algorithms are based on finding a separating vector that maximizes the sparsity of 

the extracted source signal. The first algorithm is an extension of the BSE algorithm 

to the case of extracting sparse source signals. The remaining three algorithms are 

based on incorporating prior information available about the desired source signal 

into the optimization problem which is designed for extracting the sources. These 

algorithms are called constrained SCA ( cSCA). 

The first algorithm in the cSCA class is based on utilizing a reference signal 

that conveys temporal information about the desired source signals. The proposed 

algorithm has two different versions, depending on the measure of closeness between 

the extracted source signal and the reference signal. The second algorithm in this class 

is based on utilizing a reference signal that conveys information about the support of 

the desired sparse source signal. This algorithm is useful when there is an ambiguity 

associated with the sign of each sample of the desired source signal. This algorithm 

was utilized successfully in removing the (50/60 Hz) line voltage interference from a 

simulated EEG data. The last algorithm that we propose in this chapter can extract 

the desired sparse source signal when prior information about its mixing column 

is available. Previous approaches for solving this problem cannot estimate a single 

source signal, and are based on the ICA technique, and hence does not enforce the 

sparsity of the desired source signal. 
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In the field of biomedical signal analysis it is common that some prior information 

is available about the temporal or spatial characteristics of the desired signal. This 

prior information can then be used by a cSCA algorithm to extract the desired source 

signal. Simulation results show that the three proposed cSCA algorithms can be 

successfully used for removing different kind of artifacts from real EEG data and for 

estimating the ERP signal from synthesized EEG data. 

Finally, in Chapter 6 we conclude the thesis and propose some potential research 

problems for future work. 
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Chapter 2 

Fundamentals of compressed 

sensing (CS) 

Compressed sensing or compressive sampling (CS) is a simple and efficient signal 

acquisition technique that collects a few measurements about the signal of interest 

and later uses optimization techniques for reconstructing the original signal from 

what appears to be an incomplete set of measurements [56]. Accordingly, CS can be 

seen as a technique for sensing and compressing data simultaneously (thus the name). 

The CS technique relies on two fundamental principals: 1) sparse representation of 

the signal of interest in some basis, which is called the representation basis; and 

2) incoherence between the sensing matrix and the representation basis. The terms 

sensing, sparsity, and incoherence will be defined in the next section. 

The objective of this chapter is to answer the following questions: 

1. 	 Is it possible to design a sensing matrix with far fewer rows than columns to 

capture the main information in the measured signal? 

2. 	 What is the sufficient number of measurements (rows of the sensing matrix) 

such that the original signal can be reconstructed with high probability? 
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List of symbols 

Sensing matrix. 

Dictionary matrix. 

Null space. 

The isometry constant. 

x The vector of measurements of length m. 

s Sparse solution vector of length n. 

s* The true sparse vector. 

An estimate of s*. 

s*l The vector s* with all but the l-largest entries set to zero. 

An estimate of s* at the kth iteration. 

A diagonal weightng matrix at the kth iteration. 

m The number of measurements (length of x). 

n Length of s. 

The diversity of s*. 

I· I Cardinality of a vector. 

3. 	 What are the available techniques that can solve the inverse problem, i.e., re­

constructing the original signal from the few measurements? 

2.1 Problem formulation 

In this section we present the mathematical formulation of the problem of compressed 

sensing. The following subsections present the formal definitions of some terminolo­

gies that will be used in this chapter. 
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2.1.1 Compressed sensing 

In this subsection we present a formal description of "compressed sensing". Sensing of 

the time domain signal y(t) is defined as the process of collecting some measurements 

about y(t) by correlating y( t) with some sensing waveforms {¢1(t)}, i.e., 

Xj = (y,</>j), j = 1,2, ... ,m. (2.1) 

Based on the sensing waveforms, the entries of the vector x have different interpre­

tations. For example, if the sensing waveforms are sinusoids, then x is a vector of 

Fourier coefficients, and if the sensing waveforms are Dirac delta functions, then x is 

a vector of sampled values of y(t). 

To simplify the presentation of the CS technique we will restrict our attention to 

discrete signals y E !Rn. Accordingly, equation 2.1 can be rewritten in matrix form 

as 

x =.Py, (2.2) 

where the jth row of the sensing matrix q, E !Rmxn is the discrete representation 

of the jth sensing function ¢1(t), and y E !Rn is the discrete representation of y(t). 

Based on this model, compressed sensing is defined as the sensing process for which 

the number m of available measurements is much smaller than the dimension n of 

the signal y. The problem associated with compressed sensing is that we have to 

solve an under-determined system of equations to recover the original signal y from 

the measurement vector x. However, since the number of equations is less than the 

number of unknowns, it is known that this system has infinitely many solutions , and 

thus it is necessary to impose constraints on the candidate solution to identify which 

of these candidate solutions is the desired one. A powerful constraint that can be 

used in this regard is the "sparsity" of the solution vector, which is defined in the 

next subsection. 
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2.1.2 Sparsity 

Before explaining the importance of the sparsity constraint in solving under-determined 

systems of equations, we present the following definitions [41]: 

• 	 Sparsity= I{s[i] = O}J = number of zero entries ins, where J · Jdenotes cardi­

nality of a set. 

• 	 Diversity= J{s[i] =J. O}I =number of nonzero entries ins. 

• 	 [-sparse vector: a [-sparse vector is defined as the vector that has at most l 

nonzero entries. 

• 	 Compressible vector: The vector s is called compressible if its entries obey 

a power law JsJ(j) :S Crj-r, where JsJ(j) is the jth largest value of s, i.e., 

(JsJ(l) 2:: JsJ(2) 2:: ... 2:: JsJ(n)), r > 1, and Cr is a constant which depends only 

on r [57]. This means that most entries of a compressible vector are small 

while only few entries are large. Such a model is appropriate for the wavelet 

coefficients of a piecewise smooth signal, for example. 

As stated in the previous subsection, an underdetermined system of linear equa­

tions has infinite candidate solutions of the form y = y 0 +N where Yo is any vector 

that satisfies x = if>y0 , and N := N('P) is the null space of if>. As will be shown later, 

if the candidate solution vector is known to be /-sparse, and under some conditions 

on the sensing matrix if>, the solution vector can be uniquely determined using an 

optimization technique. Fortunately, this also applies to nonsparse vectors that can 

be sparsely represented in a suitably selected basis \JI, i.e., 

y 	= \Jls, (2.3) 
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where the coefficient vector s is sparse. 1 Clearly y and s are equivalent representations 

of the signal, with y in the time or space domain and s in the W domain. In some 

applications, it may be natural to choose W as an orthonormal basis, while in others 

the signal y may only be sparsely represented when W is a redundant dictionary; i.e., 

it has more columns than rows. A good example is provided by an audio signal which 

is often sparsely represented in an overcomplete dictionary with atoms (columns) that 
1 (t-t~)2 . 

have the form of modulated Gaussian pulses, e.g., u-2e- 20- eiwt, where t0 , w, and 

er are the discrete shift, modulation and scale parameters, respectively [18]. 

Combining (2.2) and (2.3) and taking into consideration the case of noisy mea­

surements, the sensing process can be written as 

x = 4>Ws + v =As+ v, (2.4) 

where A= 4>W E :!Rmxn, and v E :!Rn is a noise vector. Assuming that the coefficient 

vector s is [-sparse, then s, and hence y = Ws, can only be estimated from x if the 

matrices 4>, W, and A satisfy the properties described in the next subsection. 

2.1.3 Incoherence and restricted isometry properties 

The sparsity of the solution vector, or its representation in some basis, is a necessary 

but not sufficient condition for finding a unique solution to an underdetermined sys­

tem of linear equations. In addition to the sparsity principle, CS relies on another 

principle which is the "incoherence" between the sensing matrix 4> and the sparsity 

basis W. The incoherence principal is also related to an equivalent property, which is 

associated with A, called restricted isometry property (RIP). 

1In some papers a vector is called /-sparse if it is a linear combination of only l basis vectors. 
However, in this thesis we use the definition presented in the text. 
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2.1.3.1 Incoherence 

To simplify the treatment, we assume that the sparsity basis matrix '11 is orthonormal, 

and the sensing matrix <fl consists of m rows drawn randomly from an orthogonal basis 

~ E JR.nxn, which is normalized such that ~T~ = nl, where I is an identity matrix. 
A A fl 

The operation of extracting the m rows of <fl from <fl is denoted as <fl := <fl , where 

n c {1, ... , n} is a subset of indices of size IOI= m. Based on this notation, A can 
An A A ATA 

also be written as A:= A , where A= <fl'll is an orthogonal matrix with A A= nl. 

Let µ(A) be the element with the largest magnitude among all entries of A, i.e., 

(2.5) 


Assume that the measurements are noise-free and the sparse solution vector s is 

I-sparse and is reconstructed using basis pursuit, i.e., 

An An s= argmin llzlle1 subject to A z = A s, (2.6)
z 

then it was proved in [58] that s = s with overwhelming probability for all subsets n 
with size 

IOI ~ C.µ2(A).l. log n. (2.7) 

for some positive constant C. Equation (2.7) indicates that, in addition to the size 

and the sparsity of the solution vector, the number of measurements depends on the 

largest magnitude among all entries of A. Since each row (or column) of Anecessarily 

has an £12-norrn equal to fo, µ(A) will take a value between 1 and fo. When the 

magnitude of each entry of A equals 1 as in the case when A is the discrete Fourier 

transform, µ(A) = 1 and the number of measurements in (2.7) is the smallest. On 

the other hand, if a row of A is maximally concentrated-all the row entries but 

one vanish-then µ2 (A) = n, and (2.7) indicates that there is no guarantee that the 

solution vector can be recovered from a limited number of samples. 

22 




Ph.D. Thesis - Nasser Mourad McMaster - Electrical & Computer Engineering 

Since Ak,j = (<h, '1-'), where <Pk is the kth row of 4> and IJ!J is the jth column of 

'11, µ(A) can be rewritten as 

(2.8) 


For µ(«i>w) to be close to its minimum value of 1, each of the sensing vectors (rows 

of 4>) must have a dense representation in '11. To emphasize this relationship, µ(4>'11) 

is often referred to as the "mutual coherence" [59], [60]. 

The bound (2. 7) indicates that a !-sparse signal can be reconstructed from,...., l log n 

measurements using basis pursuit as long as the pair (4>, 'It) has very low mutual 

coherence parameter. Examples of such pairs are [56]: 

1- 4> is the spike basis and W is the Fourier basis. 

In this case the kth row of 4> is expressed as /i>k(t) = c5(t-k) and the jth column of W 

is expressed as 1/;j(t) = n-1l 2e-i21rJt/n. Since cl> is the sensing matrix, this corresponds 

to the classical sampling scheme in the time or space domain. The time-frequency 

pair obeys µ(4>w) = 1 and, therefore, we have maximal incoherence. 

2- 4> is the noiselet basis [62] and W is the wavelet basis. 

The coherence between noiselets and Haar wavelets is v'2, and that between noiselets 

and Daubechies D4 and D8 wavelets is respectively about 2.2 and 2.9 across a very 

wide range of sample sizes n [56]. Noiselets are also maximally incoherent with spikes 

and incoherent with the Fourier basis. 

3- 4> is a random matrix and W is any fixed basis. 

·with high probability, the coherence between any orthobasis 4> selected at random 

and any fixed basis W is about )2 log n. This is also applicable when the entries of 
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4» are samples of independent and identically distributed (iid) random variables from 

Gaussian or Bernoulli distributions [56]. 

2.1.3.2 Restricted isometry property (RIP) 

The restricted isometry property is a notion introduced in [63] and has proved to 

be very useful in studying the general robustness of CS. As will be shown later, 

RIP provides a very useful tool for determining sufficient conditions that guarantee 

exact reconstruction of a sparse solution vector for different reconstructing ( decod­

ing) algorithms. In contrast to (2.7), the conditions derived based on the RIP are 

deterministic, i.e. there is no probability of failure. 

Consider the following definition. 

Definition 2.1 [63} 

For each integer l = 1, 2, ... , the isometry constant <51 of a matrix A is defined as 

the smallest number such that 

(2.9) 


holds for all l-sparse vectors s. 

It will be loosely said that a matrix A obeys the RIP of order l if 81 is not too close 

to 1. When the RIP holds, the Euclidean length of l-sparse signals is approximately 

preserved by A, which in turn implies that [-sparse vectors cannot be in the nullspace 

of A. Clearly this is very important as otherwise there would be no hope of recon­

structing these [-sparse vectors. The RIP can also be interpreted as all subsets of l 

columns taken from A being nearly orthogonal (the columns of A cannot be exactly 

orthogonal since we have more columns than rows). 

The following example [61] reflects the connection between the RIP and CS. Sup­

pose that we wish to acquire [-sparse signals with A. Assume first that 821 < 1; then 
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it can be shown that one can recover a l-sparse vector s from the data y = As. 

Indeed, sis the unique sparsest solution of the system y =As., i.e. the one with the 

smallest number of nonzero entries. This can be shown as follows: consider any other 

solution of the form s + z with z E N(A) andz =!= 0. Then Az = 0 and therefore, 

z must have at least 2l + 1 nonzero entries. It then follows that s + z must have 

at least l + 1 nonzero entries. Conversely, assume that '521 = 1. Then 2/ columns of 

A could be linearly dependent in which case there is a 2l-sparse vector z satisfying 

Az = 0. Then z can be decomposed as z = s - s, where both s and s are l-sparse. 

Accordingly, we can write As = As which indicates that there are a pair of l-sparse 

vectors giving the same measurements. Clearly, one cannot reconstruct such sparse 

objects. Hence, to recover [-sparse signals, one would need to impose '521 < 1. 

What is remaining is to find some matrices that satisfy the RIP and to determine 

the relation between the number of measurements m and the sparsity of the solution 

vector l. There are many matrices that satisfy the RIP, i.e. matrices with column 

vectors taken from arbitrary subsets being nearly orthogonal. Consider the following 

sensing matrices: [56] 

1. 	 Form A by sampling n column vectors uniformly at random on the unit sphere 

of lRm. 

2. 	 Form A by sampling i.i.d. entries from the normal distribution with mean zero 

and variance 1 / m. 

3. 	 Form A by sampling i.i.d. entries from a symmetric Bernoulli distribution 

(P(AiJ = ±1/Jm) = ~) or other sub-Gaussian distribution. 

Then with overwhelming probability, all these matrices obey the restricted isometry 

property provided that 

m 	2:: C.k. log(n/l); (2.10) 
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where C is some constant depending on each instance. 

Note that, for a nonsparse signal that can be sparsely represented in an arbitrary 

orthobasis W, the RIP can also hold for sensing matrices A = <PW, where <I> is an 

m x n measurement matrix drawn randomly from a suitable distribution. It was 

addressed in [56] that, for a given w, if <I> is selected as one of the three previously 

mentioned cases, then with overwhelming probability, the matrix A = <Pw obeys the 

RIP provided that (2.10) is satisfied, where again C is some constant depending on 

each instance. It has to be noted that these random measurement matrices <I> are in 

a sense universal [64]; the sparsity basis need not even be known when designing the 

measurement system. To reconstruct the original signal from the m measurements 

in the vector y, an optimization technique must be used, and this is the topic of the 

next section. 

2.2 Signal reconstruction algorithms 

The signal reconstruction algorithm (some times called the decoder) must take the 

m random measurements in the vector x, the basis w, and the random measurement 

matrix <I> (or the random seed that generated it) and reconstruct the signal y E ]Rn 

or, equivalently, its [-sparse coefficient vector s*. In this section we will consider 

solving the following linear underdetermined system of equations 

x =As*, (2.11) 

where A E JRmxn, s* E lRn is a [-sparse vector, and m < n. 

The goal of a sparse-signal recovery algorithm is to obtain an estimate of s* given 

only x and A. This problem is non-trivial since A is overcomplete, i.e., the number of 

equations is less than the number of unknowns. Accordingly there are infinitely many 

solutions to (2.11) of the form 8 = s0 +N, where s0 is any vector that satisfies (2.11). 
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Figure 2.1: A plot of gp(s) for some values of 0 ~ p ~ 2 

Since the original vector s* is sparse, the problem of finding the desired solution can be 

phrased as an optimization problem where the objective is to maximize (minimize) 

an appropriate measure of sparsity (diversity) while simultaneously satisfying the 

constraints defined by (2.11), respectively. This can be expressed mathematically as 

s = argming(s) subject to x =As, (2.12)
8 

where g( ·) is an objective function to be minimized that encourages sparsity in the 

solution. We consider this function to be of the form 

(2.13) 


where p ~ 0, and s[i] is the i-th element of s. Eq. (2.13) expresses the p-th norm of 

s (although it is not strictly a valid norm for 0 ~ p < 1). A plot of gp(s) for some 

values of p is presented in Figure 2.1. \Ve now briefly discuss issues related to solving 

(2.13) for various values of p. 

27 



Ph.D. Thesis - Nasser Mourad McMaster - Electrical & Computer Engineering 

2.2.1 Minimum £2-norm reconstruction 

The £2-norm solution to (2.12) is the well-known least squares solution given by 

8£ 8 = AT(AAT)-1x. This is a closed form solution. With reference to Figure 2.1, 

the convexity of g2 (s) implies a unique solution to (2.12). Since the penalty imposed 

by 92 ( s[i]) on small nonzero coefficients of the solution vector is small, the least squares 

solution has a tendency to spread the energy among a large number of entries of s, 

resulting in a non-sparse solution. Accordingly, £2 minimization is not appropriate 

for finding a I-sparse solution. 

2.2.2 Minimum f0-norm reconstruction 

Since the £Tnorm measures signal energy and not signal sparsity, consider the £0­

norm that counts the number of non-zero entries in s. (Hence a /-sparse vector has 

£0-norm equal to l.) The optimization problem (2.12) in this case can be written as 

(Po) min llslleo subject to x =As. (2.14)
s 

Referring to Figure 2.1, we observe that g0 (s) is fl.at over all values of s except at 

s = 0, which implies that any gradient descent technique will fail to converge to the 

sparse solution. Since solving this problem is equivalent to selecting l vectors of the 

measuring matrix A that best represented the measured vector x, the solution vector 

to (Po) can be obtained by searching over the (7) possible ways in which the basis 

sets can be chosen to find the best solution. In principle, this strategy is effective. 

For example, in the particular case of random measurements, where the entries of 

A, or equivalently 4>, are drawn from a Gaussian distribution, and a signal s* with 

lls*l!eo = l, then with probability 1 the problem (Po) will have a unique solution 8 

that is exactly s*, as long as m 2:: 2l [65]. 

Unfortunately, the cost of such combinatorial searches is prohibitive, making find­

ing an optimal solution using an exhaustive search infeasible. In addition to this 
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difficulty, it was shown that (P0 ) yields a solution which is not robust to noise [25]. 

These limitations motivated researchers to replace g0 (s) by other functions that 

are robust to noise and can be solved efficiently (such as g2 (s)), but nevertheless offer 

sparse solutions (such as g0 (s)). A straightforward approach of achieving this goal is 

to minimize gp(s) for 0 s; p $ 2. 

2.2.3 Minimum £1-norm reconstruction 

For p = 1, (2.12) is usually called basis pursuit [6] and is expressed as 

min llsllt:i subject to x =As. (2.15)
8 

Since p = 1 is the smallest value of p for which gp(s) is convex, £1-minimization has 

been utilized in the context of sparse solutions for many years. See [14], [18] and the 

references therein for the history of £1-minimization and its applications. Because 

(2.15) is convex, it can be solved efficiently, a much better situation than that of 

(2.14). The improved sparsity of the (\-norm relative to the least squares solution is 

partially due to the fact that the penalty imposed by £1-norm on values of 0 $ Isl < 1 

is greater than that imposed by t'rnorm, refer to Figure 2.1. 

The equivalence between the solution vectors of (Pi) and (Po) was extensively 

studied in the literature. As stated in the previous section, a remarkable result of 

Candes and Tao [66] for random, Gaussian measurements is that (Pi) can recover with 

high probability any l-sparse vector s* provided that the number of measurements 

satisfies (2.10) for some constant C, which depends on the desired probability of 

success. In any case, C tends to one as n -+ oo. The cost of replacing (Po) by 

(P1) is that more measurements are required, depending logarithmically on n. Sharp 

reconstruction thresholds have been computed by Donoho and Tanner [67] so that 

for any choice of sparsity l and signal size n, the required number of measurements 

m for (P1) to recover s* with high probability can be determined precisely. Their 
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results replace log(n/l) with log(n/m), i.e. m 2:: C.l. log(n/m). However, m appears 

in both sides of this inequality, and this can be adjusted to compute a threshold of 

the sparsity l :::; Clog(n/m) for a given number of measurements m. 

The following results are based on utilizing the RIP described in the previous 

section. It was shown in [66] that if the solution vector satisfies JJs*Jl£o = l and the 

sensing matrix A satisfies the relation 631 + 3541 < 2, then s = s* is the unique 

minimizer of (P1). Also it was shown in [68,69] that all vectors s* with Jis*ilco:::; l 

can be recovered exactly using ( P1) as long as the measuring matrix A obeys 521 + 
2531 < 1. The following Theorem was stated in [70] regarding the reconstruction of a 

compressible vector s*, i.e. a vector with few large entries and many small ones. 

Theorem 2.1 [70} 

Assume that 521 < J2 - 1. Then the solutions to (2.15) obeys 

(2.16) 


and 

(2.17) 


where si is the vector s* with all but the [-largest entries set to zero, and Co is a 

constant given explicitly in f70}. 

In particular, ifs* is I-sparse, the recovery is exact. 

2.2.4 Minimum fq-norm reconstruction for 0 < q < 1 

In view of the above, and referring to Figure 2.1, it is natural to select p = q where 

0 < q < 1. In this case (2.12) can be written as 

min Iisl leq subject to x = As. (2.18)
s 
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Recall that !isl!~ = Li ls[iJIP. Accordingly, II· llq is not a norm when 0 < q < 1, 

though 11 · IIi satisfies the triangle inequality and induces a metric. 

Although the function gq(s) is not convex, which means that it may have multiple 

local minima, it is more "democratic" than the t'i-norm. This behavior is shown in 

Figure 2.2. As we can see from this figure, gq(s) imposes a larger penalty on values 

of 0 :::; Isl < 1 than g1 ( s), and the opposite is true for values of Is I > 1. It was 

shown in [71-73] that minimizing Cq-norm, for values of 0 < q < 1 performs better 

than minimizing the £1-norm in the sense that a smaller number of measurements 

are needed for exact reconstruction of the sparse solution vector. More precisely, it 

was shown in [73] that for the case of random Gaussian measurements, the above 

condition (2.10) of Candes and Tao generalizes to 

where C1 , C2 are determined explicitly, and are bounded in q. Thus, ideally, the 

dependence of the sufficient number of measurements m on the signal size n vanishes 

as q -+ 0. However the simulations presented in [73] did not reflect this behavior. 

The following theorem provides useful results that were derived based on the RIP. 

Theorem 2.2 (71] 

Lets* E JR.n have sparsity lls*lleo = l, 0 < q:::; 1, b > 1, and a= bq/(2-q). Suppose 

that A satisfies bat + M(a+l)I < b - 1. Then the unique minimizer of {Pq} is exactly 

s*. 

Note that, for example, when q = 0.5 and a= 3, the above theorem guarantees perfect 

reconstruction with £0.5 minimization under the condition that 831+27841 < 26, which 

is a less restrictive condition than the one needed to guarantee perfect reconstruction 

by f 1 minimization [74]. 

In [71 J ( Pq) was minimized by alternating between gradient descent and projection 

into the constraint As = x. This technique produced very promising results but 
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converged very slowly. Another approach for minimizing (Pq) was suggested in [12] 

and is based on utilizing an affine scaling methodology. This approach led to an 

iterative algorithm similar to the FOCUSS algorithm derived in [10] and is presented 

in the next subsection. 

2.2.5 Weighted norm minimization 

In contrast to the least squares solution, (2.15) and (2.18) do not have closed form 

solutions and require optimization software. Accordingly several alternatives to (2.15) 

and (2.18) that combine the simplicity of the least squares solution and perform as 

well as, or even better than, the £1-norm, have been proposed [10,12-14,75,76]. One of 

such alternatives is called Iterative Re-weighted Least Squares (IRLS) minimization. 

IRLS algorithms have the form 

min llW- 1 sll~ subject to x =As, (2.19)
s 

where W is a diagonal weighting matrix that reflects our prior knowledge about the 

solution vector s. The resulting algorithm is iterative, and the estimated solution at 

the kth iteration can be expressed as 

(2.20) 


where t is the Moore-Penrose inverse [77]. The difference between different IRLS 

algorithms resides in the way that the diagonal matrix is defined. In [10] W was 

selected as Wk = diag (I Bk-l I) which was shown to be equivalent to minimizing 

0g(s) = Li log(js[i]j), while it was selected as Wk = diag(jsk-i[i]j 1- ·
5q) in [12] for 

minimizing ( 2 .18). 

The motivation behind these weighted norm approaches can be explained as fol­

lows. Let w denote the main diagonal of the diagonal matrix w- 1
, then for (2.19) 

to be minimized, it is clear that the nonzero elements of s must be concentrated at 
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the indices where w[i] has small values, while the values of s[i] will converge to zero 

for those indices at which the w[i] have large values. So starting from a point s0 

close enough to a sparse solutions*, the IRLS algorithm (2.19) generates a sequence 

{sk}k°=o which converges to s*. The local rate of convergence varies according to the 

expression for W; for instance it was shown to be quadratic in [IO], while in [14] 

it was either linear or super-linear for the algorithm approximating (2.15) or (2.18), 

respectively. 

By examining the structure of the weighting matrices, we notice that any element 

in the solution vector that was estimated at any iteration to be zero will be kept at a 

value of zero at all successive iterations. This is the main drawback of this approach, 

because if any element of the solution vector is erroneously estimated as zero at 

any iteration, the algorithm will never converge to the exact solution. To overcome 

this difficulty and to improve the performance of the previously described algorithms 

a monotonically decreasing constant can be added to the diagonal elements of the 

weighting matrix [13, 14]. 

Another approach for weighted norm minimization is the one proposed in [18], 

where t'1-norm in (2.15) is replaced by 9wtJs) = llW;;1slle1 , where Wk = diag(lsk-1[iJI) 

is also a diagonal weighting matrix. It was shown in [18] that this algorithm performs 

much better than the £1-norm minimization and converges in few iterations. However 

each iteration is computationally expensive compared with an IRLS iteration. 

2.2.6 Geometric Interpretation 

In this section we present a geometric interpretation of the performance of the pre­

viously discussed objective functions, e.g. t'p-norm and weighted ep-norm where 

0 < p :::; 2, in estimating sparse solutions. This geometric interpretation helps visual­

ize why t'rnorm reconstruction fails to find the sparse solution that can be identified 

by £1-norm and weighted-norm reconstruction. 
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Figure 2.2: Geometric interpretation of the (a) failure of frnorm, (b) success of f1-norm, 

(c) failure of t'1-norm, (d) success of t'w1-norm, (e) success of l'w2-norm, and (f) success of 

l'q-norm (0 < q < 1), in estimating sparse solution vectors. See text for more details. 
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For the sake of illustration, consider the simple 3-D example in Figure 2.2. The 

coordinate axes in this figure are s1 , s2 , and s3 . In this figure, the exact and the 

estimated solution vectors are represented by the solid (blue) circle at s* = [O 1 Of 
and the gray (green) circle, respectively, while H, the set of all points s E R3 obeying 

As = As*, is represented by the red line passing through s*. 

The £2 minimizer of (2.12) is the point on'}-{ closest to the origin. This point can 

be found by blowing up the £2 ball, represented by the hypersphere in Figure 2.2(a), 

until it contacts H. Due to the randomness of the entries of the sensing matrix A, H 

is oriented at random angle. Accordingly, with high probability, the closest point s 
will live away from the coordinate axes and hence will be neither sparse nor close to 

the correct answers* [78]. In contrast, the f.1 ball in Figure 2.2(b) has points aligned 

with the coordinate axes. Therefore, depending on the orientation of 1-l, there are two 

possible cases. In the first case, when the f.1 ball is blown up, it will contact H at a 

point near the coordinate axes, which is precisely where the sparse vector s* is located 

as shown in Figure 2.2(b). In the second case, shown in Figure 2.2(c), the f.1 ball 

contacts '}-{ at a point far from the exact solution vector. Since both the RIP and the 

orientation of'}-{ depend on the entries of the measuring matrix A, Theorem 2.2 can 

be interpreted geometrically as follows: for all measuring matrices with b2k < J2- 1, 

H is oriented such that the f.1 ball contacts '}-{ at a point satisfying (2.16) and (2.17). 

Geometrically, incorporating a diagonal weighting matrix into the Pp-norm, where 

p = 1 or 2, causes the fv ball to elongate along certain directions and no longer 

be symmetric. If the weighting matrix is properly selected, the fv ball will contact 

H at, or very close to, the exact solution vector s* as shown in Figure 2.2(d)-(e) 

for p = 1 and 2, respectively. Note that the orientation of'}-{ in Figure 2.2(c),(d) 

is the same, i.e., the weighted £1-norm minimization can find solutions to problems 

when the condition of Theorem 2.1 is violated. Also note that the orientation of 

H in Figure 2.2(e) is similar to that in Figure 2.2(a). However, by incorporating a 
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diagonal weighting matrix into the t'rnorm, the solution vector is estimated correctly 

as in Figure 2.2(e). 

The failure of fp-norm, where p ~ 1, in estimating a sparse vector, as in Figure 

2.2(a) and (c), is due to the shape of the fp ball. As shown in Figure 2.2, the fp 

ball "bulges outward" for all p > 1, while it has a "diamond" shape for p = 1. This 

problem was partially alleviated in Figure 2.2(d) and (e) by incorporating a diagonal 

weighting matrix. Another way to overcome this difficulty is using fq-norm, where 

0 < q < 1. For this range of q, the fq ball "bulges inward" as shown in Figure 2.2(f). 

Comparing Figure 2.2(c) and (f) we find that, in contrast to the £1 ball, the fq ball 

does not have flat edges and hence it contacts Ti at the exact solution vector. This 

geometric analysis might explain why the t'q-norm outperforms the £1-norm for all 

O<q<l. 

2.2. 7 Sparse signal reconstruction from noisy measurements 

In any real application measured data could be corrupted by additive noise. Accord­

ingly, CS should be able to deal with noisy measurements. In the presence of noise, 

the measured vector can be expressed as 

x =As*+ v, (2.21) 

where v E ffi.m is a vector of additive noise with llvlle2 :::; t. If one seeks an esti­

mate s that leads to an exact reconstruction of x, it will have generically at least n 

nonzero components. To get a sparse representation one therefore has to allow for 

reconstruction errors. The best solution s that one can expect is the one that has 

nonzero entries within the same support as the exact solution vector s*, with the 

same signs but of course slightly different values. The difference converges to zero as 

the variance of the noise diminishes. 

To handle the presence of noise, the reconstruction algorithm (2.12) is modified 
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to 

8 = argming(s) subject to llx - Aslli
2 -< E, (2.22)s 

where E bounds the amount of noise in the measured data, and g(s) is an objective 

function that encourages the sparsity of its argument, e.g. llslle1, 11w-1slle1, Ilsllev, 
or llW- 1slle2 • Eq. (2.22) is equivalent to the following optimization problem 

8 = arg mJn ~!Ix - Aslli2 + >.g(s) (2.23) 

for an adequately chosen parameter >. > 0. Indeed if A is selected as the inverse 

of twice the Lagrangian multiplier of the constraint in (2.22), then both problems 

have the same optimum. If an estimate of the noise variance is available then the 

solution vector can be estimated using (2.22), otherwise, (2.23) has to be used. The 

regularization parameter Ain this case can be estimated using L-curve method [79-81]. 

When llslle1 is used in (2.22) as the objective function g(s) [56,57, 70,82-84], the 

optimization problem becomes convex (a second order cone program) and the solution 

vector has the following property [56, 57]: 

Theorem 2.3 Assume that the measuring matrix A satisfies c521 < v'2- 1. Then the 

solutions to (2.22), with g(s) = llslle11 obeys 

!Is - s*lle1 S ~0 
llsi - s*lle1 + C1E, (2.24) 

where sj is the vectors* with all but the [-largest entries set to zero, and C0 and C1 

are some constants. 

Theorem 2.3 states that the reconstruction error is bounded by the sum of two 

terms. The first is the error which would occur if one had noiseless data, see (2.16), 

and the second is proportional to the noise variance. The constants C0 and C1 are 

typically small. For example, with c521 = 1/4, C0 :::::; 5.5 and C1 :::::; 6 [56]. 

·when lisll~, with 0 < q < 1, is used in (2.22) as the objective function g(s), the 

solution vector will have the following property [74]: 
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Theorem 2.4 Assume that for some constants a > 1, and al E z+, the measuring 

matrix A satisfies <Sat+ a~-1 b(a+I)t < a~-I - 1, then the solution 8 to (2.22), with 

g(s) = ilsl!g, obeys 

(2.25) 


where si is the vectors* with all but the I-largest entries set to zero, and the constants 

C1 and C2 are given explicitly in {74). 

Thus, as for the .€ 1-norm recovery, the reconstruction error (to the qth power) is 

bounded by the sum of two terms; the first term is proportional to the noise variance, 

while the second term is proportional to the best !-term approximation error of the 

exact solution vector. 

When llsl!g, with 0 < q < 1, is used in (2.23) as an objective function, it was shown 

in [15, 41] that (2.23) is the maximum a-posteriori estimate of the sparse vector s* 

when a super Gaussian distribution is assumed as a prior distribution. Utilizing affine 

scaling methodology, the following iterative algorithm was derived in [15] 

(2.26) 


where Wk= diag (Jsk[i]j1-(q/2)), and I is an identity matrix. Note that in the limit 

as >. - 0, equations (2.26) and (2.20) are equivalent. 
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Chapter 3 

Minimizing N onconvex Functions 

for Sparse Signal Reconstruction 

3.1 Introduction 

The problem of finding a unique solution to a linear under-determined system of 

equations As= x, where A E JRmxn and m < n, is challenging indeed. As explained 

in Section 2.2, there are many algorithms developed for solving the above mentioned 

problem. In this chapter a novel methodology is developed and employed to minimize 

a class of non-convex (concave on the non-negative orthant) functions for solving the 

aforementioned problem. The proposed technique is based on locally replacing the 

original objective function by a quadratic convex function which is easily minimized. 

The resulting algorithm is iterative, and it will be shown that the penalty imposed 

by the convex objective function at any iteration depends on the gradient of the 

original objective function evaluated at the previous solution vector. Accordingly, if 

the objective function is carefully chosen, the penalty imposed by the convex function 

on the small entries of the solution vector can increase as the algorithm gets closer to 

a local minimum of the original objective function. As will be shown in this chapter, 
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List of symbols 

01 The non-negative orthant. 

g(s) An objective function for measuring the diversity of s. 

f(s) Convex approximation of g(s). 

do The gradient of g(s) at the starting point s0 . 

s* Global minimizer of f(s). 

The solution vector at the kth iteration. 

for a certain selection of the convex objective function, the class of algorithms called 

Iterative Re-weighted Least Squares (IRLS) [10-16] can be derived from the proposed 

methodology. Thus the proposed algorithms are a generalization and unification of 

the previous methods. 

In this chapter we propose a straightforward technique for selecting a convex func­

tion such that, for any starting solution vector s0 , the algorithm generates a sequence 

{sk}~1 that converges to a fixed point of the original objective function. Since the 

original objective functions are non-convex, the proposed algorithm is susceptible to 

convergence to a local minimum. To alleviate this difficulty, we propose a random per­

turbation technique that enhances the performance of the proposed algorithm. The 

proposed algorithm is called MCCR, as an abbreviation of Minimizing a Concave 

function via a Convex function Replacement. 

Our contributions in this chapter can be summarized as follows. (1) we propose 

a technique that provides a deeper understanding of the IRLS class of algorithms 

and provides a natural mechanism for deriving IRLS algorithms starting from suit­

ably chosen diversity measures, (2) we propose a new class of algorithms with better 

convergence properties compared to the regular IRLS algorithms and, hence, can 

be considered as enhancements to these algorithms, and (3) we suggest some novel 

techniques for improving the performance of IRLS methods. 
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3.2 Proposed Convex Function 

In absence of noise, a sparse solution vector of the under-determined system of equa­

tions, As = x, can be obtained by solving the following optimization problem 

s = argming(s) subject to x =As, 	 (3.1)
s 

where A E JRmxn, m < n, and g( ·) is an objective function to be minimized that 

encourages sparsity in the solution. In this chapter we restrict our attention to the 

class of non-convex objective functions that have the following properties [40]: 

(Pl) 	g(s) is separable, i.e., g(s) = Li9c(s[i]), where 9c(·) : JR -+ JR is a scalar 

function, and s[i] is the ith entry of s. Therefore, g(s) is also permutation 

invariant, i.e., g(s) = g(Ps) for any permutation matrix P. 

(P2) 	The function 9c(s) : JR -+ JR referred to in Pl is sign invariant and concave-­

and-monotonically increasing on the nonnegative orthant 0 1 . 

Examples of 9c(s) that were extensively used in the literature are gq(s) = lslq 1 and 

g109 (s) = log(jsi) [12, 13, 71, 72]. In this chapter we also propose using the following 

three functions g1091;(s) =log (!Jl + 1), 9atan(s) = atan (~),and 9s/s = 1}110 , where 

fJ > 0. A comparison between all these functions is presented in the simulation results. 

Since g( s) is sign invariant and concave on 0 1 , it is concave on each of the other 

orthants Ok, 1 ~ k ~ 2n. However, this does not imply that g(s) is concave on JRn. 

Consider the following theorem. 

Theorem 3.1 ( [40] Theorem 8) Let g(s) : ]Rn -+ JR be permutation invariant, 

sign invariant, and concave on the nonnegative orthant 0 1 . Then the global minimum 

of the objective function (3.1}, has at most m nonzero entries. 

1unless explicitly stated, 0 < q < 1. 
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Figure 3.1: A non-convex function g(z) that has many local minima and a smooth convex 

function f(z). 

Proof: See [40]. 

Theorem 3.1 implies that if the purpose of solving (3.1) is to achieve a sparse 

solution, then the permutation invariant and sign invariant concave functions can be 

used as diversity measure functions. 

The objective of this chapter is to replace gc(s), and hence g(s), by a properly 

chosen convex function. The motivation behind this approach can be described as 

follows. Let s0 be any solution vector to (3.1). Then any vectors= s0 + Fz; where 

F is a basis of the null space of A, and z E JRn-m is a random vector, is also a 

solution vector. Accordingly, (3.1) can be converted into the following unconstrained 

minimization problem 

z = argming(z) := g(s0 + Fz). (3.2)
z 

Note that (3.1) and (3.2) are equivalent, i.e., if z is a fixed point to (3.2) then 

s = s0 + Fz is also a fixed point to (3.1). A three dimensional plot of g(z) is 
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shown in Figure 3.1. As shown in this figure, the surface of g(z) is very rough and 

has many local minima and hence any minimization technique will fail to converge 

to a sparse solution. So, the idea presented in this chapter is to iteratively replace 

g(z) by a convex smooth function f(z), or equivalently f(s), which can be easily 

minimized. An example of such a function is shown in Figure 3.1. The advantages 

of the proposed approach is that, by replacing the nonconvex function g(s) by the 

convex function f(s), the optimization problem becomes more tractable and can be 

solved in few iterations. However, since the original function g(s) is nonconvex, the 

proposed algorithm may converge to a local minimum. This last situation could 

happen when the global minimizer of f(s) at a certain iteration belongs to the basin 

of attraction of one of the local minima of g(s). 

For the proposed approach to be useful, the function f (s) must be selected such 

that its global minimizer is guaranteed to reduce the original function g(s). Towards 

that end, and to simplify the exposition, we will consider replacing the one dimen­

sional function gc( s) by a convex function f (s) first, then we generalize to the n 

dimensional case. Consider the following theorem 

9c(s

Theorem 3.2 Given a differentiable one dimensional function gc(s) : JR --t IR that 

obeys Pl-P2, a one dimensional convex function J(s): IR --t IR with a global minimizer 

s0 
, and an initial point s0 , then sufficient conditions for 9c(s) to be reduced at s0 

, i.e., 

0 
)::; 9c(so), are: (1) sign (!'(so))= sign (g~(so)), and (2) js0 1::; !sol, where g'(so) 

is the gradient of g(s) at s =so. 

Proof: Since the negative of the gradient of any objective function provides a valid 

direction for minimizing this objective function, the first condition in Theorem 3.2 

is necessary to insure that the minimizing direction of f (s) is a valid minimizing 

direction for the original function g(s). On the other hand, from P2, it is known 

that g(s) is sign invariant and monotonically increasing on the nonnegative orthant. 
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Figure 3.2: A non-convex function g(s) and three different convex functions fi(s). Only 

f3(s) satisfies the conditions of Theorem 3.2. 

Accordingly, the second condition in Theorem 3.2 is necessary to insure that g( s0 
) ::; 

g(so). 

Figure 3.2 presents three different convex functions that intersect with a nonconvex 

function g(s) at s0 . The first function fi(s) violates the two conditions of Theorem 

3.2, while the second function h(s) violates the second condition. As shown in Figure 

3.2; g(si) > g(so), i = 1, 2; wheres! and s2 are the global minima of J1(s) and J2 (s), 

respectively. On the other hand, f3(s) in Figure 3.2 is the only function among these 

three functions that satisfies the two conditions of Theorem 3.2, hence g(s~) < g(s0 ) 

There are many ways of selecting convex objective functions that satisfy the two 

conditions of Theorem 3.2. However, in this chapter we propose a simple and straight 

forward technique for doing this task. The proposed function has the following form 

f(s) = 9c(so) + g~(sa)(s - so)+ f3o(s - sa)2
, (3.3) 
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Figure 3.3: Successive iterations of the proposed algorithm for minimizing the nonconvex 

function gc(s) (black curve). The hollow circles represent the starting points, while the solid 

ones represent the global minima of the locally-convex functions. 

where g~(s0) is the gradient of 9c(s) at s0 , and /30 2 0. Clearly the first condition of 

Theorem 3.2 is satisfied, since f'(s0 ) = g~(s0 ), and the second condition can be met 

by properly selecting the value of {30 . 

Remark: If /30 in (3.3) is selected as /30 = -0.5g~(s0), where g~(s0 ) is the Hessian 

of 9c(s) at s = s0 , then the function f(s) in (3.3) is equivalent to the second-order 

Taylor series expansion of 9c(s), with the sign of the quadratic term reversed. This 

results in f (s) being a convex function. However it does not guarantee that the second 

condition of Theorem 3.2 is satisfied. 

Assuming that the value of /30 was chosen such that f(s), defined in (3.3), satisfies 

the second condition of Theorem 3.2, then the point s1 = argmins /(s) is a global 

minimizer to f(s) but not to g(s). Accordingly, to reach the global minima of g(s), 

the procedure has to be repeated, i.e., to set s0 +- s 1 and select /30 such that (3.3) 

satisfies the conditions of Theorem 3.2. This procedure can be repeated many times 

till g(s) is globally minimized. This procedure is shown in Figure 3.3. 

45 




Ph.D. Thesis - Nasser Mourad McMaster - Electrical & Computer Engineering 

Since g(s) is separable, the one dimensional function (3.3) can be readily extended 

to the n dimensional case by constructing the following separable convex function 

n 

f(s) = L f(s[i]) 
i=l 

n

L 9c(so[i]) + g~(so[i])(s[i] - so[i]) + ,Bo[i](s[i] - so[i]) 2 

i=l 

= g(so) + (s - sofdo+ (s - sofBo(s - so), (3.4) 

where d0 = V'g(s0 ) is the gradient of g(s) at s = s0 , and B 0 is a diagonal positive 

semidefinite matrix. Instead of using (3.4) in deriving the proposed algorithms, the 

following simplified function will be used 

- T T (3.5)f(s) = s (do - 2Boso) + s Bos, 

which is equivalent to f (s) after dropping the constant terms. Although the constant 

term in (3.4) does not affect the value of the solution vector of f(s), it is important 

in proving the convergence of the derived algorithms. 

3.3 The MCCR Algorithms 

In this section we derive some algorithms for finding a sparse solution vector of the 

noise-free linear underdetermined system of equations. The derived algorithms are 

based on replacing the nonconvex objective function g(s) in (3.1) by the convex 

objective function f(s) defined in (3.4), or equivalently f(s) defined in (3.5). Since 

f(s) satisfies the first condition of Theorem 3.2, the remaining part of this section 

considers the problem of selecting B 0 such that, for a given starting point s0 , the 

original objective function g(s) satisfies g(s1):::; g(s0 ), where 

s 

subject to x = As. (3.6) 

argmin 
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The optimization problem (3.6) can be solved by following the standard method 

of Lagrangian multipliers (see, e.g. [85,86]). We define the Lagrangian L(s, .X) as 

(3.7) 

where .X is the ( m x 1) vector of Lagrange multipliers. Since f (s) is convex, a necessary 

and sufficient condition for the Lagrangian L(s, .X) to be minimized at s 1 is that (s1 , 

.X*) be stationary points of the Lagrangian function, i.e. 

Y'sL(s1,.X*) do+2Bo(s1-so)+AT.X* =0, (3.8) 

Y'_xL(s 1 , .X*) - As1 - x = 0. (3.9) 

From (3.8) we have 

(3.10) 


Substituting this equation into (3.9), and solving for A* we get 

.X* - -2(AB01AT)-1(x - As0 + 0.5AB01do) 

= -(AB01 AT)-1AB01d0 , (3.11) 

where the second equality holds because s0 is feasible, i.e. As0 = x. Substituting 

(3.11) back into (3.10), we get the following general expression for s 1: 

Eq. (3.12) represents the general expression of the proposed MCCR algorithm. 

In the next subsections we propose two different choices for Bo that guarantee g( s) 

is reduced at s 1, i.e., g(si) ~ g(s0 ). 

3.3.1 First approach: Select B 0 such that f(s) = 11w-1s11; 

In this subsection we select B 0 such that the global minima of f(s), and hence f(s), 

occurs at s 0 = 0.2 From (3.4), or equivalently (3.5), the global minima of f(s) occurs 

2It should be noted that, even though the global minimizer of f(s) is s 0 = 0, the solutions to 
the constrained problem (3.6} is given by (3.12} and is generally not s 0 = 0. 
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at s 0 
, which can be calculated from the following equation 

V' sf(s)! 8 o =do+ 2Bo(s0 
- so)= 0, 

which leads to 

(3.13) 


Accordingly, setting s0 = 0 is equivalent to 

(3.14) 


Substituting (3.14) into (3.12), and utilizing the fact that s0 is feasible, i.e., As0 = x, 

the expression of s 1 is reduced to 

(3.15) 


Note that s 1 is the global minima of the convex problem (3.6) but not of the orig­

inal problem (3.1). As will be shown later by Theorem 3.3, g(s1 ) ~ g(s0 ). Therefore, 

a stable point of (3.1) can be obtained by iteratively repeating (3.15), i.e., fork 2'.: 0 

(3.16) 


where Bk is a diagonal matrix which depends on Bk and dk = V'g(sk), the gradient of 

g(s) at Bk· The diagonal entries of Bk can be easily calculated from (3.14) as follows 

. . dk[i]
Bk[z, z] = 2sk[i], i = 1, ... , n. (3.17) 

Note that Bk[i,i] calculated from (3.17) is nonnegative, i.e., Bk is positive semidefi­

nite, which is a necessary condition for f(s) to be convex. This follows readily from 

the sign-invariant property of g(s) and its monotonically increasing property on the 

nonnegative orthant 0 1. Note that, substituting (3.14) into (3.5), the expression of 

B~112](s) is reduced to ](s) = llW- 1 sll~ as desired, where W = . 
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Since the original objective function g(s) is nonconvex, the convergence of the 

proposed algorithm (3.16) into the "global" minima of the original problem (3.1) is 

not guaranteed. However, the proposed algorithm always converges to a fixed point 

of (3.1) and does not have undesired properties such as divergence or oscillation. The 

proof of convergence of (3.16) to a fixed point of (3.1) is shown by the following 

theorem. 

Theorem 3.3 Given a starting solution vector sk E Rn and a separable function 

g(s) = l:i 9c(s[i]) : lRn ---+ JR, where 9c( ·) : JR ---+ JR is differentiable and obeys P2. Let 

dk denote the gradient of g(s) at Bk. If Bk in {3.4) is calculated using {3.17) and 

a new solution vector Bk+i is obtained using (3.16), then g(sk+i) ~ g(sk) with the 

equality holds if and only if Bk is a fixed point of the original problem {3.1). 

Proof: Since the global minima of f(s) occurs at s0 = 0, it is straightforward to 

show that f(s) is sign invariant, i.e., J(s) = f(lsl). Since both g(s) and f(s) are sign 

invariant, it will be assumed without loss of generality that sk E 0 1 , the nonnegative 

orthant. From (3.4) it is clear that both f(s) and g(s) share a common tangent at 

sk, which is given by the first two terms of (3.4). From the convexity of f(s) and the 

concavity of g(s) on 0 1 , a common tangent to f(s) and g(s) on 0 1 implies that g(s) 

is upper bounded by f (s) on 0 1. This is also applicable to the other 2n - 1 orthants. 

Therefore, g(s) ~ f(s), where the equality holds only at the 2n tangent points, i.e., for 

a given starting point sk E 0 1 we have g(sk) = f(sk)· However, from (3.6), and since 

f(s) is a quadratic convex function, we have f(sk+i) ~ f(sk) where the equality holds 

if and only if Bk+l = Bk, i.e., Bk+l can not be one of the other 2n - 1 tangent points. 

In conclusion, if Bk+l is different from sk, then g(Bk+i) < f(sk+i) < f(sk) = g(sk), 

while g(sk+1) = f(sk+ 1) = f(sk) = g(sk) if and only if Sk+l = Bk, where the only if 

part follows from the fact that sk+l is not one of the other tangent points. In this 

last case, Bk is a fixed point of (3.1). 
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Thus, starting from any feasible solution vector s 0 E ]Rn, the algorithm (3.16) 

generates a sequence { sk}~1 that converges at least to a local minimum of the original 

problem (3.1). At this point, s does not vary from one iteration to the next. 

Theorem 3.3 shows that any algorithm of the form (3.16) with Bk calculated using 

(3.17) is guaranteed to converge to a fixed point of the original optimization problem 

(3.1) as long as g(s) E Q, where g is the set of all objective functions that obey 

Pl-P2. The exact expression of the objective function g(s) affects only the rate of 

convergence of (3.16). The rate of convergence of some functions g(s) E 9 are derived 

in Section 3.3.3. 

Relation with IRLS algorithms 

1 

Define Wk = B~2 , then (3.16) can be written as 

(3.18) 

where t is the Moore-Penrose inverse [77]. Comparing (3.18) with (2.20) we readily 

find that the derived algorithm has the form of the IRLS algorithms. The convergence 

of an IRLS algorithm to a sparse solution vector depends on the relation between 

Wk and the previous solution vector sk. Some IRLS algorithms might not converge 

to a sparse solution vector, e.g., the algorithm derived in [12] for minimizing the 

Shannon entropy. However, the proposed technique provides a general methodology 

for deriving IRLS algorithms that converge to sparse solution vectors and enjoy fixed 

point convergence, i.e., convergence to a fixed point solution vector starting from any 

feasible solution vector. 

The performance of the proposed algorithm in finding a sparse solution is shown 

in Figure 3.4. The difference between Figure 3.4 and Figure 3.3 is that the global 

minimum of each convex function in Figure 3.4 is at the origin. Figure 3.4 shows the 

successive iterations associated with reducing a zero entry of the solution vector s 
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Figure 3.4: Successive iterations of the proposed algorithm for minimizing the nonconvex 

function 9c(s[j]) (black curve). The hollow circles represent the starting points, while the 

solid ones represent the global minima of the locally-convex functions. 

towards its optimum value of zero. As shown in this figure, the algorithm takes large 

steps when the value of s[j] is large, while the steps get smaller and smaller as sk[j] 

approaches zero. This performance is due to the weighting matrix Bk whose ith diag­

onal element is given by (3.17). From (3.17) we can see that as sk[i] ~ 0 the weights 

become large due to the fact that the function gc( s) is concave and monotonically 

increasing on 0 1 , and hence its gradient increases as the value of s decreases. Large 

weights associated with small values of s are required for a sparse solution. Note that 

the quadratic replacement function f(s) on the other hand imposes small penalties 

on small values of s, a fact which explains why the MCCR approach can not achieve 

the sparse solution in one step. 
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Figure 3.5: Geometric interpretation of the solution vector obtained by: (a) llslrn mini­

mization, (b) 11Wk"~ 1 sjl~ minimization, and {c) !IW;~ (s - Bsk-1)1!~ minimization.1 
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3.3.2 Second Approach: Select Bo such that f(s) = 11w-1 (s - Oso)ll; 

In Section 3.3.1 we proved that selecting Bk as in (3.17) reduces (3.4) to f(s) = 

l/W;;1sll~, where Wk = B~~. Consequently, the resulting algorithm (3.16), or equiv­

alently (3.18), has the general form of the IRLS algorithms. Moreover, it was proved 

by Corollary 3.3 that, starting from any bounded solution vector, the proposed algo­

rithm is guaranteed to converge to a fixed solution vector of the objective function 

g(s). However, the rate of convergence of the proposed algorithm is limited by the 

nature of the weighted l'2-ball. In contrast to the €1-ball, the £2-ball, and hence 

l'w2-ball, the weighted l'2-ball, has rounded tips. As a result, the proposed algorithm, 

and all other IRLS algorithms, may require large number of iterations to converge 

to a solution vector, especially when m and n are large. This behavior is shown 

geometrically in Figure 3.5. 

In this figure, the exact and the estimated solution vectors are represented by 

the blue circle at s* = [O 1 Of and the green circle, respectively, while 7-i, the 

set of all points s E IR.3 obeying As = As*, is represented by the red line passing 

through s*. As described in Chapter 2, the l'2 minimizer of (3.1) is the point on 1-i 

closest to the origin. This point can be found by blowing up the £2-ball, represented 

by the hypersphere in Figure 3.5(a), until it contacts 1-i. Due to the randomness of 

the entries of A, 1-i is oriented at random angle. Accordingly, with high probability, 

the closest point s0 will lie away from the coordinate axes and hence will be neither 

sparse nor close to the correct answer s* [78]. 

Geometrically, incorporating a diagonal weighting matrix into the l'rnorm causes 

the l'2-ball to elongate along a certain direction and no longer be symmetric. As­

suming that the proposed algorithm (3.16) is converging to the exact solution vector 

s*, then at the kth iteration the l'w2-ball will contact 1-i at sk, which is closer to the 

exact solution vector s* as shown in Figure (b). At the next iteration, and due to 

the new weighting matrix, the fw2-ball will be further squeezed and contact 1-i at a 
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point Bk+l closer to s* than the previous solution point Bk· The procedure continues 

until the l'w2-ball contacts 1i at s*. 

Since the sparse solution vector s* is restricted to lie at the tip of the l'w2-ball, 

algorithm (3.16) may take a large number of iterations to converge to that vector, 

i.e., for the fw2-ball to contact 1i at s*. However, the number of iterations can be 

significantly reduced if the sparse solution vector s* is allowed to lie on the surface 

of the fw2-ball. This can be achieved by changing the origin of the fw2-ball in each 

iteration of (3.16), where the origin at the kth iteration depends on the previous 

solution vector. The proposed modification is shown in Figure 3.5( c), where the 

origin of the L'w2-ball is shifted to Bsk-l, where eis a parameter to be determined. As 

shown in this figure, although 1i contacts the fw2-ball at a point away from its tip, 

this point coincides with the exact solution vector s*, which minimizes the original 

objective function g(s). 

Based on this geometric interpretation, we propose selecting B 0 in (3.5) such that 

f(s) = 11w-1(s - Bs0 )11~, where Wis a diagonal weighting matrix and s0 is a given 

solution vector. Since Wis diagonal, f(s) can be written as 

(3.19) 

where C is a constant term that does not depend on s. Equating (3.5) and (3.19) we 

get 

1 

w - B~2, 

Bo[i, i] = 
2(1 

do[i] 
- B)s0 [i]' 

i=l, ... ,n, (3.20) 

where the second equation results from equating the first terms in (3.5) and (3.19), 

and utilizing the fact that B 0 is diagonal. 

As described in Section 3.3.1, the quantity d0 [i]/s0 [i] is always nonnegative. Ac­

cordingly, for B 0 in (3.20) to be nonnegative definite, the value of e must be less 
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than 1. As will be shown later, this is also a necessary condition for (3.19) to pro­

duce a sequence of solution vectors that minimize the original objective function, i.e., 

g(sk+1) < g(sk), for all k ~ 0. 

Based on this formulation, the optimization problem (3.6) is reduced to 

s1 = 	argmin llW01(s - Bs0 )11~ subject to x =As, (3.21)
s 

where W 0 is a diagonal weighting matrix calculated from (3.20). Equation (3.21) 

is not in the standard form of a weighted minimum norm problem. Accordingly, 

for solving this problem, we follow the following steps. First, assuming that W 0 is 

invertible, let y be defined as 

Then, s is expressed as 

s =Woy+ Bso. (3.22) 

Finally, substituting (3.22) into (3.21) we get 

fJ = arg min llYll~ subject to x = Ay, 	 (3.23)
y 

where A = AW0 and x = x - 8As0 = (1 - B)x, where in the second equality we 

used the fact that s0 is feasible, i.e., As0 = x. Equation (3.23) is a minimum norm 

problem in the standard form and has the following solution 

(3.24) 

Substituting (3.24) into (3.22), the solution vector at the (k + l)th iteration is ex­

pressed as 

sk+I 	 = Bsk + (1 - B)Wk(AWk)tx. 

= Bsk + (1 - (})B-;;1AT(AB-;;1AT)-1x, (3.25) 
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where Bk is calculated using (3.20) and s0 and do have been replaced by sk and dk, 

respectively, where dk = V'g( sk). In the remaining part of this thesis, the acronyms 

MCCR and IRLS will be used to refer to (3.25)and (3.16), respectively . 

Selecting the value of e 

The performance of the MCCR algorithm (3.25) depends on the value of e. From 

(3.25) we note that multiplying Bk by any scaling parameter does not affect the value 

of Sk+I· Accordingly, the constant term in the expression of Bk[i, i] in (3.20) can be 

dropped without affecting the value of sk+I· As a result, the dependency of Bk on the 

unknown parameter ecan be dropped by calculating Bk[i, i], or equivalently Bk"1[i, i], 

using the following equation 

B-1[· ·i _ Sk[i]
k z,z-dk[i]' i=l, ... ,n, (3.26) 

and consequently, (3.25) can be written as 

(3.27) 


where sk+I 

(3.16). Eq. (3.27) shows that the MCCR solution at the (k + l)th iteration is an 

affine combination of the solution vector at the kth iteration and the IRLS solution 

at the (k + l)th vector. Geometrically this means that the solution vector sk+1 exists 

at a point determined by the parameter e, somewhere along the line connecting sk 

and Bk+I· Note that sk+I calculated using (3.27) is always feasible, i.e., Ask+1 = x. 

Accordingly, we will refer to the set of all affine combinations of Sk and Bk+I for 

various values of B as the feasible-line. 

In Section 3.3.1 we proved that the IRLS algorithms derived in this chapter are 

fixed point converging, i.e., for a given feasible solution vector sk, the IRLS solution 

vector Bk+I in (3.27) satisfies g(sk+I):::;; g(sk)· This implies that the direction from sk 
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to Bk+l on the feasible-line provides a descending direction for the original objective 

function g(s). This in turn implies that f) must satisfy the condition (0::; 1) in order 

that g(sk+d ::; g(sk). The optimum value of 0, denoted B is the one that minimizes0 , 

g(s) for all s belonging to the feasible-line. Accordingly, B can be determined by 0 

solving the following optimization problem 

Bo= arg min g(Bsk + (1 - B)sk+i) subject to Bmin < e< 1, (3.28)
9 

where Bmin is a lower bound one. This formulation is readily implemented using, e.g., 

the Golden-section search method (87), and can be solved using the Matlab function 

"fminbnd. m". In the simulation results to be shown we empirically set Bmin = -2. 

Another advantage of the MCCR solution (3.25) over the IRLS solution (3.16) is 

that (3.25) can be easily adapted to solve the following problem 

s = arg mjn g( s) subject to s 2: 0, x = As. (3.29) 

This can be readily done by selecting a starting feasible solution vector and properly 

selecting the value of Bmin ::; 1 in (3.28) to ensure that fJsk + (1 - B)sk+l 2: 0 for all 

()min ::; e~ 1. 

3.3.3 Proposed objective functions 

The analysis presented so far is general and applicable to any objective function of 

the form g(s) = Li9c(s[i]), where 9c(s[i]) obeys Pl-P2. Examples of 9c(s) that were 

extensively used in the literature are g109 (s) = log(jsj) and gq(s) = lslq with 0 < q < 1 

[12, 13, 71, 72]. In this chapter we propose a class of objective functions that depend 

on a parameter 6 > 0, which, if adjusted properly, can greatly influence the penalties 

imposed on the entries of the solution vector as the algorithm converges to a sparse 

solution vector. To be specific, consider the function 9c(s) = 9atan(s) = atan(lsl/8). 
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Figure 3.6: 9atan(s) = atan(/sJ/6) for different values of <5. 

This function is concave on 0 1 for all 8 > 0. However, the shape of gatan(s) depends 

greatly on the value of 8 as shown in Figure 3.6. 

Recall from Section 3.3.1 that selecting Bk as in (3.17) reduces f(s) into the form 

-( ) II -1 112 °'""' dk[iJ 2r·1 (3.30)f s = wk 8 2 = L..t 2sk[i( i, 
i 

where we used the result that w;2 = Bk, and the expression of Bk[i, i] is substituted 

from (3.17). As discussed before, the weights in (3.30) should be selected such that 

large weights are associated with small values of s while small weights are associated 

with large values. However (3.30) shows that the weight associated with s[i] depends, 

not only on the value of the previous solution sk[i], but also on the gradient of gc(s) at 

sk[i]. Accordingly, gc(s) should be chosen such that its gradient at any points varies 

inversely with the value of that point. This property is satisfied for any function 

obeying Pl-P2. For example, for gc(s) = 9atan(s) the gradient at sk[i] E 0 1 is given 

by 

sk[i] « 8 
(3.31) 

sk[i] » 8 

which varies inversely with sk[i]. 
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For a given value of sk[i], (3.31) also shows the effect of the value of 8 on the 

value of dk[i]. This effect is shown in Figure 3.6. In this figure, the gradient of 

9atan(2) decreases as 8 decreases from 1to0.1, while the opposite is true for 9atan(0.2). 

Accordingly, to obtain the most appropriate weights in (3.30), the value of 8 must be 

chosen as small as possible, and it is clear from (3.31) and Figure 3.6 that, as 8 - 0, 

Li 9atan(s[i]) - (jjsllo for some ( > 0. However, it was empirically observed that 

the 	number of local minima of 9atan (s) increases as 8 decreases 3. To overcome this 

difficulty, we suggest starting the algorithm with a reasonably large value of 8, e.g., 

8 = 1, and then decreasing its value as the algorithm progress and converges to a 

sparse solution vector. The strategy of reducing the value of 8 is an open problem, 

and different reduction strategies can result in different performance. The following 

strategies can be used for reducing the value of 6: 

1. 	 Linear reduction: 8k = 80 - D.8k, 0 < D.8 « 1, k = 1, 2, .... 

2. 	 Exponential reduction: 8k = a8k-l, 0 <a< 1, k = 1, 2, .... 

3. 	 Performance dependent: starting with 8 = 1 then, if the condition ll~l;k~:1i~ll 2 < 

~ is satisfied, the value of 8 is reduced as 8 +-- 8/10. 

4. 	 Solution dependent: 8k = I( sk_1), where I(·) : ]Rn - JR is a function of the 

previous solution vector. 

The first two choices reduce the value of 8 in each iteration regardless of the 

convergence of the algorithm, while the value of 8 in the last two choices depends on 

the convergence of the algorithm. The third choice reduces the value of 8 in steps 

depending on the value of Ek = llsk - Bk-ill 2 /llsk_1 j'2, while the last choice selects 

the value of 6 depending on the the previous solution vector sk-l and the function 

3This statement is not proved but observed by some numerical experiments, see e.g., Figure 
3.7(a). 
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Table 3.1: Some objective functions that can be used with MCCR. 

Function d[i] B-1[i, i] Order of the local 

rate of convergence 

II g(s) =Li js[i]jq, 0 < q < 1 I qs[i]Js[i]Jq-2 j js[i]J 2-q j 2-q 

2~ 2g(s) =Li log(js[iJI) Js[i] 1JsJill2 
1, (o » E)s[iJg(s) = Lilog(l + js[i]l/o) is[i]l(o + is[i]I)js[i]l(Hjs[i]/) 
2, (o « E) 

1, (J2 » E2)
os[i]g(s) =Li atan(is[i]l/o) ls[i]l(o2+ s2[i])is[iJl(<F+s2 [i]) 

3, (J2 « E2) 

1, (o » E)os[i]( ) L --1!Iill_ ls[i]/(o + s[i])2 
g 8 = i is[i]j+o is[i]l(Hs[i]) 2 

3, (o « c) 

I(-). If the solution vector is !-sparse and the value of l is known, then the choice 

I(sk-1) = ls~~f)I is appropriate, where js~~11 )j is the (l + l)th largest element of 

!sk-ll· This choice insures that large penalties are imposed on entries of the solution 

vectors that should be zero while small penalties are imposed on the nonzero entries 

of the solution vector. If the value of J is unknown, then I(·) can be chosen as 

I(sk-1) = p mean(isk-11), where 0 < p :S 1. 

In addition to gatan (s) we propose the following functions gz098 ( s) = log (!;1 + 1), 
and gs/s = isll~o, where o> 0. The expressions for B-1[i, i] for five different objective 

functions that can be used with MCCR, are presented in Table 3.1. In Table 3.1 all 

the constant terms are dropped from the expression of B-1[i, i]. 

Local rate of convergence 

As shown in Section 3.3.1, the derived algorithm (3.12) is equivalent to the IRLS 
1 

algorithm with Wk = B~2 . Accordingly, for each proposed objective function, the 
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local rate of convergence can be derived by following the procedure proposed in [10] 
1 

and utilizing the corresponding expression of Wk• or equivalently B~2 , from Table 

3.1. The calculated local rates of convergence for the proposed objective functions 

are listed in the right column in Table 3.1. The value of E in the table is defined in 

(3.34). 

As shown in this Table, the local rate of convergence of t'q-norm, 0 < q s; 1, 

depends on the value of q. The convergence is linear for q = 1, and the algorithm 

approaches quadratic convergence as q --+ 0. On the other hand, the local rate of 

convergence of the last three objective functions listed in Table 3.1 depends on the 

relation between 8 and E. The smaller the value of 8 compared to the value of E, the 

faster the local convergence. This behavior is demonstrated in the simulation results 

presented in the next section. 

3.4 Performance Enhancement 

In this section the performance of the derived algorithms is discussed. Since the 

MCCR solution (3.25) is an affine combination of the previous solution and the IRLS 

solution (3.16), we will consider only the factors that affect the performance of the 

IRLS solution (3.16). The discussion presented in this section is general and is appli­

cable to all of the objective functions in Table 3.1. 

There are two issues that can affect the performance of the updating equation 

(3.16). These issues, as well as their mitigating interventions, are now discussed. 

3.4.1 Inversion Operation Associated with (3.16) 

The first issue is the inversion operation associated with (3.16). Define ck= AB;1AT. 

Then for the solution of (3.16) to exist, Ck must be invertible. Recall from (3.17) 
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that 4 

B-lr· ·1 sk[i]k i, i = dk[i], i = 1, ... , n. (3.32) 

Accordingly, Ck can be expressed as 

(3.33) 


where ai is the ith column of A. Thus Ck is a summation of n rank-1 ( m x m) 

matrices. Accordingly, for Ck to be invertible, at least m elements of sk must be 

significant from zero, which contradicts the assumption that sis sparse. To overcome 

this difficulty, we redefine B;1[i, i] as follows 

~ 
B-1[· ·1 - dk[i] (3.34)k z, z - { ["]

Sk t otherwise,dk[i] Isk[i]<-€, 

where E is a small positive number. The second line in (3.34) means that, if the 

condition Jsk(i]I 2: Eis not satisfied, then B;1[i, i) is calculated by evaluating sk[il/dk[i] 

first then replacing each sk[i] by E. For example, for gc(s) = Jsiq we have d = qsJslq-2
, 

and if Jsl <Ethen the corresponding entry of n-1 will equal c:2-q/q. 

Unfortunately, as will be shown in the simulation results, the performance of 

MCCR depends on the value of E. To overcome this difficulty, we follow the procedure 

suggested in [13]. Here, Eis initiated to a relatively large value, e.g. E = 1. Its value is 

then reduced by a factor of 10 at iterations where the condition llsk - Sk-111/liskll < 

JE/100 is satisfied. The MCCR algorithm is summarized in Table 3.2. 

3.4.2 Non-convexity of g(s) 

The second issue that affects the performance of (3.16), and hence (3.25), is the non­

convexity of the objective functions considered in this chapter. As a result, MCCR 

may converge to a local minima. This problem may be partially alleviated by the 

4 In (3.32) the constant associated with Bk" 1 [i, i] is neglected. 
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Table 3.2: The MCCR Algorithm 

Algorithm 1: The MCCR Algorithm 

Given an (m x n) matrix A of basis vectors, and a vector x E JRm, select one 

of the objective functions in Table 3.1, a "large" value for E, e.g. E = 1 , an 

empirically-selected value for Bmin, e.g. Bmin = -2, a small threshold /3, and an 

initial feasible point s0 • This point can be selected as the least squares solution, i.e. 

s0 = AT(AAT)-1x. Then set k = 0 and repeat the following steps: 

1. Repeat until convergence: 

• Calculate Bk,1 using (3.34). 

• Calculate sk+I = Bk,1AT(ABk,1AT)-1x. 

• Calculate eusing (3.28). 

• if llsk+l - skll2/llsk+1ll2 < y'E/100, set E = c/10 end 

• Set k = k + 1, 

End 

2. Output Bk+l as the solution. 
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perturbed MCCR algorithm (PMCCR) described in Table 3.3. At each iteration, the 

solution vector sJ is perturbed by a random noise vector v, which is constrained to 

be in the null space of the mixing matrix; i.e. v = Fu where F is any matrix whose 

range is the null space of A and u E JRn-m is a random noise vector. The columns 

of F can be chosen by first calculating the singular value decomposition (SVD) of 

A= U:EVr, and then selecting the columns of Fas the last (n - m) columns of V. 

In the simulation results, the elements of u are sampled from a zero mean uniformly 

distributed random variable between ±asmax, where Smax is the maximum absolute 

element in the MCCR solution vector s, and a is an empirically determined non­

negative number in the range e.g., 1 ~ a ~ 2. Kote that the perturbation noise 

is constrained to be in the null space of the mixing matrix to insure the feasibility 

of the new perturbed vector. A stopping criterion could be a maximum number of 

iterations, or a pre-specified value of the cardinality of the solution. Note that, in 

each step, the new solution vector is accepted only if its cardinality is less than the 

cardinality of the previous solution vector. Accordingly, by following this strategy, it 

is guaranteed that no performance degradation occurs. 

3.5 Simulation Results 

In this section, a set of examples are presented in order to examine the effect of the 

parameters 6, E, and eon the performance of the MCCR algorithm, and to provide 

a comparison between the MCCR algorithm and other well known algorithms. In 

the first Example, the effect of the parameter 6 on the performance of MCCR is 

presented. In this example 9atan (s) is used as an objective function. The second 

example demonstrates the effect of Eon the performance of MCCR. Since the objective 

functions proposed in Table 3.1 can be classified into two groups, according to their 

dependency on 6, two different objective functions are used in this example, one for 
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Table 3.3: The PMCCR Algorithm 

Algorithm 2: The Perturbed MCCR Algorithm (PMCCA) 

Initialization: Select one of the objective functions in Table 3.1; select a feasible 

solution s0 ; Choose a E [1, 2]; set iteration index j = 0. 

1. 	 For the selected objective function, execute MCCR with initial value s0 to 

obtain sg. 

2. 	 Repeat until convergence: 

• 	 evaluate perturbed feasible solution s~ = sJ + Fu. Refer to the text for 

the definitions of F and u. 

• 	execute MCCR with initial value s~ to obtain s}. 

•j+-j+l 

End 

3. Output sJ+1 as the solution. 
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each group. The first objective function is 9atan(s), which depends on 6, and the 

second objective function is g109 (s). A comparison between the proposed MCCR 

algorithms and the counterpart IRLS algorithms is presented in the third example. 

This example reflects the effect of the parameter e. The fourth example presents 

a comparison between the five objective functions in Table 3.1. Finally, the fifth 

example presents a comparison between the MCCR algorithm and some algorithms 

that are usually utilized for estimating sparse vectors. 

In all these examples, two parameters are used as measures of performance. The 

first parameter is the probability of exact reconstruction (PER) of the solution vector. 

The PER is defined as the ratio between the number of runs at which the algorithm 

successfully estimates the sparse solution vector, to the total number of runs. The 

second parameter is the average number of iterations taken by each algorithm to 

converge to a solution vector. Each one of these two parameters is plotted as a 

function of the number of measurements ( m). 

Example 1: Effect of 6. 

In this example, we examine the effect of 6 on the performance of MCCR for the 

case 9c(s) = 9atan(s). The results are also applicable to g1090 (s) and 9s/s(s). In this 

example, n = 256, and the number of nonzero elements of s is i = 40, while m 

increases from 65 to 105. For each value of m, a random (m x n) matrix A is created 

whose entries are each Gaussian random variables with zero mean and unit variance. 

A sparse vector 8 8 with i nonzero entries is then created and the corresponding x is 

generated as x = As8 • The indices of these i entries of s 8 are randomly selected, and 

their values are chosen randomly from a zero mean Gaussian random variable with 

variance = 4. The total number of runs in this example is 500. 

The compared values of 6 are: 0.001, 0.1, 0.5, 1, and a variable value that depends 

on the previous solution vector, i.e., bk= I(sk-1), with I(sk-1) = 0.5mean(!sk-1i). 
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Figure 3.7: The effect of 8 on the performance of MCCR when 9c(s) = 9atan(s). (a) The 

probability of exact reconstruction of the original sparse vector as a function of the number 

of measurements (m); (b) The average number of iterations required to get a sparse solution 

vector. 
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The results are shown in Figure. 3.7. As shown in Figure 3.7(b), the smaller the 

value of '5, the faster the convergence of the MCCR algorithm. However, in terms of 

the PER presented in Figure 3.7(a), there is no direct relationship between the value 

of i5 and the PER. For example, i5 = 0.001 produced the worst performance, while 

the best performance is obtained when i5 = 0.5, not i5 = 1. On the other hand, it is 

clear from Figure 3. 7 that varying 8 in the proposed manner provides a good tradeoff 

between the PER and the average number of iteration. However, selecting an optimal 

value for i5 is an open problem, and other choices could provide better performance. 

Example 2: Effect of c. 

In this example, the effect of c on the performance of MCCR is examined. In this 

example we select two different objective functions. The first one is gatan(s), which 

depends on 8, and the other one is g109(s). The motivation behind choosing these 

two objective functions is to check whether the parameter 8 in gatan(s) affects its 

sensitivity to the variation in the value of c or not. Accordingly, two different values 

of i5 are used. The large one is i5 = 1, while the small one is i5 = 0.1. In this example, 

n = 40, i = 3, and m increases from 6 to 30. For each value of m, A and S 8 are 

generated as in Example 1. The total number of runs in this example is 1000. The 

compared values of care: 0.2, 0.1, 0.01, 10-3 , 10-6 , and a decreasing value of c as 

presented in Table 3.2. The results are shown in Figures 3.8-Figure 3.10. 

For the two objective functions shown in these figures and generally speaking, 

the number of iterations decreases as the value of c decreases, and the highest PER 

is obtained when c decreases in a manner described in Table 3.2. In terms of the 

PER, it is clear from Figure 3.9-Figure 3.10 that the performance of gatan depends on 

the value of 8. For the case when 8 = 1, it is clear from Figure 3.9(a) that the PER 

improves as the value of c decreases from 0.2 to 10-3 , while no improvement is observed 

by reducing c beyond 10-3. On the other hand, when 8 = 0.1 the performance of 
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Figure 3.8: Effect oft on the performance of MCCR for 9c(s) = g109 (s). (a) The proba­

bility of exact reconstruction of the original sparse vector as a function of the number of 

measurements (m), (b) The average number of iterations required to get a sparse solution 

vector. 
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Figure 3.9: Effect off on the performance of MCCR for 9c(s) = 9atan(s) and o= 1. (a) 


The probability of exact reconstruction of the original sparse vector as a function of the 


number of measurements ( m), (b) The average number of iterations required to get a sparse 

solution vector. 
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Figure 3.10: Effect of Eon the performance of MCCR for 9c(s) = 9atan(s) and 8 = 0.1. 

(a) The probability of exact reconstruction of the original sparse vector as a function of 

the number of measurements (m), (b) The average number of iterations required to get a 

sparse solution vector. 
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9atan(s) is less sensitive to the variation in the value of E as shown in Figure 3.lO(a). 

Accordingly, the optimum choice of E for 9atan can be chosen as E ::; 10-3 • On the 

other hand, for g1o9 (s) shown in Figure 3.8 none of the fixed values of E provides a 

good tradeoff between the PER and the number of iterations. For example, E = 0.1 

produced the highest PER but at the cost of a large number of iterations, and the 

opposite is true for E = 10-6 . 

From this example it is clear that small E produces good results for 9atan(s) but not 

for g1o9 ( s), while a decreasing E produces good results for both of them. Accordingly, 

since varying E in the way described in Table 3.2 has a negligible computational cost, 

we recommend choosing a variable E with all of the objective functions in Table 3.1. 

Example 3: Effect of e. 

In this Example we compare the effect of eon the performance of MCCR. Recall that 

the difference between the MCCR algorithm (3.25) and the IRLS algorithm (3.16) 

is the parameter e. The two algorithms are equivalent if e = 0, and the goal of 

this example is to investigate the impact of eon the performance of JVICCR. Three 

different objective functions are incorporated in this comparison. The functions are 

5g0 _5 (s) = !si 0· , 91a9 (s), and 9atan(s). Since the computation of() requires solving a 

nonlinear optimization problem (3.28), it is important to compare not just the average 

number of iterations but also the average amount of time taken by each algorithm 

to converge to a solution vector. For doing this, the results are calculated for two 

different conditions. In the first condition, the low dimensional case, the parameters 

are i = 30, n = 256, and m increases from 60 to 90, while for the second condition, 

the high dimensional case, the parameters are i = 60, n = 512, and m increases from 

120 to 160. The total number of runs for each case is 500, and the results are shown 

in Figure 3.11 and Figure 3.12. The results for MCCR are presented in faint brown 

while the results for IRLS (e = O)are presented in blue. 
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Figure 3.11: Effect of() on the performance of MCCR for three different objective functions 

for the condition i = 30, n = 256, and m increases from 60 to 90. (a) the probability of exact 

reconstruction of the original sparse vector as a function of the number of measurements 

(m), (b) the average number of iterations required to get a sparse solution vector, and (c) 

the average time in (sec.). 
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Figure 3.12: Effect of Bon the performance of MCCR for three different objective functions 

for the condition i = 60, n = 512, and m increases from 120 to 160. (a) the probability of 

exact reconstruction of the original sparse vector as a function of the number of measure­

ments (m), (b) the average number of iterations required to get a sparse solution vector, 

and (c) the average time in (sec.). 
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As shown in Figure 3.ll(a) and Figure 3.12(a) for the two conditions and for all 

the objective functions, MCCR and IRLS have almost similar PERs, meaning that 

they almost converge to the same solution vectors. However, comparing the average 

number of iterations taken by MCCR and IRLS algorithms in Figure 3.ll(b) and 

Figure 3.12(b) it is clear that MCCR takes fewer iterations than IRLS to converge to 

the solution vectors. For example, in Figure 3.12(b), and for the objective function 

g0 _5 ( s) and the case m = 140 we find that, on average, IRLS converges after 80 trials 

while MCCR converges after 54 trials only. However, since the computation of f) 

requires extra computational time, it is important to check the average time taken by 

each algorithm to converge to a solution vector. This comparison is shown in Figure 

3.ll(c) and Figure 3.12(c). 

For the low dimensional case presented in Figure 3.ll(c) it is clear that, except for 

g0_5 ( s), the two algorithms take on average the same amount of time to converge to 

a solution vector, which implies that there is no advantage of replacing the IRLS 

algorithm by the MCCR algorithm for low dimensional problems. However, the 

average computational time could be significantly reduced if a faster algorithm is 

used for calculating 0, or if the computational cost of f) is low compared with the 

inversion operation in (3.25). This later case is presented in Figure 3.12(c). From 

this figure it is clear that MCCR in this case converges in a shorter time than IRLS. 

Accordingly, we conclude this example by recommending the MCCR algorithm to 

solve large scale problems. 

Example 4: Comparison between different objective functions. 

In this Example we examine the performance of JVICCR as a function of the five 

objective functions in Table 3.1. As before, the performance is measured using the 

probability of exact reconstruction of the sparse vector, and the average number of 

iterations required for convergence to that solution vector, as functions of the number 
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Figure 3.13: Comparison between the five objective functions in Table 3.1. (a) The prob­

ability of exact reconstruction of the original sparse vector; (b) The average number of 

iterations required to get a sparse solution vector. 
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of observations m. In this example, n = 256, i = 40, and m increases from 80 to 105. 

For each value of m, A and s 8 are generated as in Example 1. The total number of 

runs in this example is 200, and the results are shown in Figure 3.13. 

In terms of the probability of exact reconstruction (PER), it is clear from Figure 

3.13(a) that the best performance of MCCR is obtained when 9c(s) = atan(JsJ/5) is 

used as an objective function, while the worst performance is obtained when 9c(s) = 

Jsj 0
·
5

. Also it can be shown that log(l + JsJ/5) performs better than log(JsJ). However, 

in terms of the average number of iterations shown in Figure 3.13(b), it is clear that 

the fastest convergence of MCCR is obtained when 9c(s) = log(JsJ). 

Example 5: Comparison between MCCR and PMCCR. 

In this example we examine the effect of the perturbation approach on the perfor­

mance of the P~dCCR. Specifically, we compare the performance of the ~'!CCR and 

the PMCCR algorithm for the case g(s) = Jlsll~ for the following values of q; 0.1, 0.5, 
q 

and 0.9. The comparison is made in terms of the probability of exact reconstruction 

of the sparse vector, and the average number of iterations required for convergence 

to that solution vector, as functions of the number of observations m, when both n 

and i are fixed at 40 and 3, respectively. For the two algorithms, the values of E and 

0 are selected as in Table 3.2. The results are shown in Figure 3.14. 

As shown in Figure 3.14( a) the probability of the exact reconstruction of the 

PMCCR algorithm is significantly better than that of the MCCR algorithm. For a 

low value of m, e.g., m = 10, the probability of exact reconstruction for PMCCR 

is 1003 for q = 0.1 and 0.5. The number of iterations taken by each algorithm 

is presented in Figure 3.14(b). The number of iterations of the PMCCR algorithm 

presented in Figure 3.14(b) is the number of times the MCCR algorithm was called 

by the PMCCR algorithm, i.e., the final value of j in Table 3.3. It is obvious that 

the PMCCR algorithm takes large number of iterations compared with the MCCR 
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Figure 3.14: Comparison between MCCR and PMCCR. (a) The probability of exact re­

construction of the original sparse vector; (b) The average number of iterations required to 

get a sparse solution vector. The number of iterations of the PMCCR algorithm represents 

the value of j in Table 3.3. 

78 




Ph.D. Thesis - Nasser Mourad McMaster - Electrical & Computer Engineering 

algorithm, especially when the number of measurements is small, e.g., m < 10 in 

this case. However, for larger m, e.g., m 2:: 15, the performance of PMCCR in terms 

of successful reconstruction is 100%, while the number of outer iterations required is 

roughly less than or equal to 3. Therefore, PMCCR can be seen as a high-performance, 

more costly method for difficult cases (i.e., low values of m), whereas it is a higher­

performance method at roughly the same cost, for cases which work well with other 

methods. 

Example 6: Comparison between MCCR and other algorithms. 

We conclude this chapter by a comparison between MCCR and four different algo­

rithms. The four algorithms are: the l'i-norm; the weighted £1-norm (18], denoted 

as fw 1-norm; the £0.5-norm implemented using the algorithm presented in [13], which 

5is equivalent to MCCR when 9c(s) = lsi0· and 0 = O; and the recently developed 

algorithm called smooth &-norm algorithm (88], denoted as Sl0 in Figure 3.15. The 

objective function used with MCCR is 9atan(s). In this example, n = 256, i = 40, 

and m increases from 80 to 140. For each value of m, A and s 8 are generated as 

in Example 1. The total number of runs in this example is 200, and the results are 

presented in Figure 3.15. 

As shown in Figure 3.15(a) MCCR has the best performance in terms of the PER, 

while the smooth i°-norm algorithm has the worst performance among the compared 

algorithms. Also it is clear from Figure 3.15(a) that the PER of £0 .5-norm algorithm 

is very close to that of MCCR and the fw 1-norm performs better than the regular f1­

norm. However, in terms of the average amount of time shown in Figure 3.15(b) it is 

clear that, aside from the smooth e0-norm, the MCCR is the fastest algorithm, while 

the fw1-norm is the most computationally expensive one. Although both MCCR and 

f 0.5-norm algorithms estimated all the solution vectors exactly for all m > 100, the 

MCCR converged in a significantly shorter time. For example, for the case when 
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Figure 3.15: Comparison between MCCR and four different algorithms. (a) The proba­

bility of exact reconstruction of the original sparse vector as a function of the number of 

measurements (m); (b) The average number of iterations required to get a sparse solution 

vector. 
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m = 100, MCCR converged in 0.43 seconds while the £0.5-norm algorithm converged 

in 0. 72 seconds. 

3.6 Conclusion 

In this chapter a novel methodology was developed and employed to minimize a 

class of non-convex (concave on the non-negative orthant) functions for solving an 

under-determined system of linear equations for the case of sparse solution vector. 

The proposed technique is based on locally replacing the original objective function 

by a quadratic convex function which is easily minimized. It was shown in this 

chapter, for a certain selection of the convex objective function, the class of algorithms 

called Iterative Re-weighted Least Squares (IRLS) can be derived from the proposed 

methodology. Thus the proposed algorithms are a generalization and unification of 

the previous methods. In this chapter we also proposed a convex objective function 

that produces an algorithm that can converge to the sparse solution vector in a 

significantly fewer number of iterations than the IRLS algorithms. Other selections 

of the convex objective function may produce algorithms with convergence properties 

better than the IRLS algorithms. 

In this chapter we also proposed a straightforward technique for selecting a con­

vex function such that, for any starting solution vector s0 , the algorithm generates 

a sequence { sk}~1 that converges to a fixed point of the original objective function. 

Since the original objective functions are non-convex, the proposed algorithm is sus­

ceptible to convergence to a local minimum. To alleviate this difficulty, we proposed 

a random perturbation technique that enhances the performance of the proposed al­

gorithm. Extensive simulation results were presented to examine the effect of various 

parameters on the performance of the proposed algorithm and to compare its perfor­

mance with some well known algorithms that are usually utilized for solving the same 
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problem. The simulation results show that the proposed algorithm outperforms the 

existing algorithms in terms of the execution time and the accuracy of reconstructing 

a sparse solution vector. 
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Chapter 4 

Blind Source Separation of an 

Unknown Number of Sources 

4.1 Introduction 

In Chapter 3 we discussed the problem of finding a unique solution to a linear under­

determined system of equations As = x, when both x and A are known, where 

A E !Rmxn, and m < n. In this chapter we discuss a more challenging problem 

of finding a unique solution to the linear system X = AS when both A and S 

are unknowns, where X E IR.mxT is a matrix of measured signals, A E IR.mxn is an 

unknown mixing matrix, S E !RnxT is a matrix of unknown sources, m is the number 

of observations, n is the number of sources, and T is the number of samples. 

This problem has been studied for nearly two decades under the name blind source 

separation (BSS) [25-33, 50-54, 89-104]. In BSS it is known a priori that the m 

measured signals are linear combinations of n hidden sources, and the task is to 

recover the sources as accurately as possible when the mixing coefficients are unknown. 

Based on the relation between the number of measurements m and the number of 
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sources n; the BSS problem is usually classified as complete (even-determined), over­

determined, or under-determined for the cases m = n, m > n, or m < n, respectively. 

Since the over-determined case can always be transformed into a complete case by 

using the principal component analysis (PCA) technique, the discussion presented in 

this section is restricted to the complete and the under-determined cases only. 

The early years of BSS research concentrated on solutions for even-determined 

and over-determined mixing processes. The earliest approach traces back to Herault 

and Jutten [90] whose goal was to separate an instantaneous linear even-determined 

mixtures of non-Gaussian independent sources. Since then, many algorithms [51-55] 

have been developed for separating independent sources from their linear mixtures, the 

technique known in the literature as independent component analysis (ICA). See [55] 

for a revision of the most known ICA algorithms. 

It is known [51-55] that the ICA technique is restricted to the cases for which 

the underlying problem satisfies the following conditions: 1) the sources are mutually 

independent, 2) the number of sources is less than or equal the number of sensors, 3) 

at most one of the sources is Gaussian, and 4) the mixing matrix is full column rank. 

However, there are many applications for which one or some of these assumptions 

are violated. For example, in some applications the number of sources is generally 

unknown and could be greater than the number of sensors, while in other applications 

some of the sources could be correlated. In these applications, ICA does not produce 

satisfactory results, and an alternative technique must be utilized for estimating the 

hidden sources. 

A recently developed technique, known as Sparse Component Analysis (SCA), 

has received a great deal of attention in recent years. SCA can solve the under­

determined BSS problem, i.e. the case of more sources than sensors. The additional 

information required in compensating the limited number of sensors is the sparseness 

of the source matrix S. Since non-sparse sources can often be sparsely represented 
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under a suitable linear transformation, (e.g., the short time Fourier transform, the 

wavelet transform, the wavelet packets transform, ... etc.), the SCA problem is quite 

general and also applicable to non-sparse sources. Accordingly, SCA can substitute 

for ICA in cases when some of the assumptions associated with ICA are violated, e.g., 

when the number of sources is greater than the number of sensors, or when some of 

the sources are correlated. In the sequel, we indicate a transformed quantity by a hat 

over the respective symbol, e.g., S is the sparse version of S, obtained under some 

suitable linear transformation. 

There are two main approaches for solving the BSS problem via SCA. In the first 

approach, the mixing matrix and the sparse sources are estimated simultaneously via 

maximum likelihood or maximum a posteriori approaches [28-30]. However, these 

approaches converge to local minima and have poor convergence properties [25,28,91]. 

In the second approach [25-27,31-33,92-94,96-104], the mixing matrix and the sparse 

sources are estimated separately. When the source matrix S is sufficiently sparse in 

the original space of representation, the BSS problem is solved in two steps, where 

the mixing matrix is estimated in the first step via clustering the columns of the 

measured matrix X, while the sparse source matrix S is estimated in the second 

step by solving the system of linear equations X = AS under the constraint that 

S is sparse. This latter problem can be solved using one of the compressed sensing 

algorithms described in Chapter 2 and Chapter 3. 

It is obvious that the accuracy of estimating the sparse sources in the second 

step of the two-step approach depends on how well the mixing matrix is estimated 

in the first step. Accordingly, the most critical component in the two-step approach 

is the first step, during which the mixing matrix is usually estimated via clustering 

some or all of the columns of the measured matrix X. However, precise estimation 

of the mixing matrix remains a problem in the two-step approach. Most of the 

clustering algorithms that have been utilized for estimating the mixing matrix have 
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some limitations. For example, most SCA algorithms are based on estimating the 

mixing matrix via partitioning clustering algorithms, e.g. k-means [25, 33), fuzzy c­

means [50, 95], or modified k-means [94, 100, 103]. However, and generally speaking, 

there are three main problems associated with most partitioning algorithms [105]: 

• 	The number of clusters, which equals the number of sources, has to be known 

in advance; a condition which might not be available in some applications, e.g., 

BSS of EEG signals. 

• 	 Since each point (column of X) must be assigned into a cluster, most partition­

ing clustering algorithms fail in the presence of noise and/or outlier points. 

• 	 All partitioning clustering algorithms are locally convergent and sensitive to the 

initial choice of the clusters' centroids. 

A revision of some clustering algorithms, that were suggested in the literature for 

estimating the mixing matrix, is presented in the next section. 

In this chapter we propose three novel clustering algorithms. The impact of the 

three limitations of the previous approaches are alleviated with the proposed al­

gorithms. Moreover, the proposed algorithms can estimate the number of clusters 

directly from the data matrix. Accordingly, the proposed algorithms can handle the 

case where the number of clusters (sources) is unknown. 

The remaining part of this chapter is organized as follows. In Section 4.2 we 

present in detail the various steps associated with solving the BSS problem via the 

two-step SCA approach. Three novel clustering algorithms, which can be used for 

estimating the mixing matrix and the number of hidden sources, are proposed in 

Section 4.3. Section 4.4 presents some computer simulations for assessing the per­

formance of the proposed algorithms. Finally, conclusions are given in Section 4.5. 
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List of symbols 

<I> The dictionary matrix. 

A The mixing matrix . 

.A An estimate of the mixing matrix. 

D The dissimilarity matrix. 

s The source matrix. 

s The source coefficient matrix in the transform domain. 

v The noise matrix. 

v The noise coefficient matrix in the transform domain. 

x The measurement matrix. 

x The measurement coefficient matrix in the transform domain. 

y The feature matrix. 

y A sub-matrix of the feature matrix Y. 

z The normalized feature matrix. 

r A reference vector. 

m The number of sensors (rows of X). 

n The number of sources (rows of S). 

T The number of samples (columns of S). 

T The number of columns of z. 
d(., . ) Distance between two vectors. 

µ The largest t'rnorm of the columns of Y. 
Ii The indices of the ith cluster. 

ci A sub-matrix of Y corresponding to the lth cluster. 

f31 The first concentration parameter of the lth cluster. 

'YI The second concentration parameter of the lth cluster. 
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4.2 Problem Formulation 

In this section the problem of solving the under-determined blind source separation 

using SCA is presented. The BSS problem is defined as the problem of retrieving n 

unknown source signals s(~) E ]Rn from m linear measurements x(~) E ]Rm when the 

mixing matrix A E JRmxn is unknown, and the measurements are possibly corrupted 

by additive noise v(~) E JRm: 

x(~) =As(~)+ v(~), ~ = 1, ... ,T, 	 (4.1) 

where T is the number of samples. The parameter ~ represents either time, spatial 

coordinates in the case of images, spatio-temporal parameter in the case of video 

sequences, or wavelength in the case of multispectral or other optical signals. Eq. 

(4.1) can be written in the following compact form 

X=AS+V, 	 (4.2) 

where X E JRmxT is a matrix of observed signals, SE lRnxT is a matrix of unknown 

sources, V E JRmxT is a matrix of additive noise, m is the number of observations, 

and n is the number of sources. 

The task of blind source separation is to accurately estimate the sources from the 

observed signals X when the mixing matrix is unknown. In this chapter we follow 

the two-step approach in solving the BSS problem via SCA. The two-step approach 

can be generally summarized in the following steps [26,27, 91, 95, 97, 99, 103]: 

1. 	 Sparse representation: If the source matrix is not sparse, select a suitable 

linear transformation, (e.g., the short time Fourier transform or the wavelet 

transform), and calculate X, the coefficients of the measured matrix X in the 

transform domain. Otherwise, go to step 2. 

2. 	 Form the feature matrix Y by selecting columns of the measured matrix X 

or (a subset of) their transformed coefficients X. 
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3. 	 Preparation steps: 

• 	 Normalize the feature vectors: Yk = Yk/11Ykllt2 , in order to project data 

points onto the surface of a unit sphere, where 11 · I lt2 denotes the f2 norm. 

Before normalization, it is reasonable to remove data points with a very 

small norm, since these points likely correspond to noise. 

• 	 Move the data points to a half-hypersphere by multiplying each column of 

the feature vectors Yk by the sign of its first entry. 

4. 	 Mixing matrix Estimation: Estimate the columns of the mixing matrix by 

clustering the columns of the feature matrix Y. The coordinates of the center 

of each cluster will form one column of the estimated mixing matrix A. 

5. 	 Sparse coefficient estimation: Use the estimated mixing matrix A and the 

measured coefficient matrix X and solve the following under-determined system 

of linear equations X = AS to find an estimate of S, the source coefficient 

matrix in the transform domain. 

6. 	 Stop if Step 1 is not utilized. Otherwise, perform the next step. 

7. 	 Source estimation: Apply the inverse transformation on S to obtain an esti­

mate of the source matrix S 

In the remaining part of this section we provide a detailed description of these 

steps and their effect on the overall solution of the BSS problem. 

4.2.1 Sparse representation 

Most natural source signals are non-sparse in their original space of representation. 

Although one can find examples of natural signals or images that are sparse in their 
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original space of representation, in most cases the source signals have a rather non­

sparse nature. However, the sparsity of the source components plays a key role in 

solving the under-determined BSS problem using the SCA technique. The reason will 

be clear after the next subsection. Accordingly, the first step in solving the under­

determined BSS problem using SCA is to find a suitable linear transformation such 

that the unknown source signals have sparse coefficients in the transform domain. 

To be specific, let { ¢i(0 E JRT}f=i denote a set of J basis vectors, and sij be the 

decomposition coefficients of the ith source signal in ¢i(0, i.e., 

si(~) = L
J 

Sij¢J(~) = si<I>T(~), i = 1, ... 'n, (4.3) 
j=I 

where si(~) is the ith row of S, and <fl(~) E .JRTxJ is called the basis or dictionary 

matrix. Depending on the number of columns J, the dictionary is either complete 

(J = T) or overcomplete ( J > T). Examples of such dictionaries that are usually 

used for sparse representation are Fourier basis, Gabor basis, various wavelet-related 

bases, etc. [28, 29]. 

The sparsity of the source coefficients { si }i~1 depends on the utilized dictionary 

matrix. Unfortunately, there is no universal transformation that projects any given 

natural signal or image onto its optimal sparse representation. Different classes of sig­

nals require their specific, optimal (in some sense), sparsification transformations [91]. 

For example, speech signals can be sparsely represented in terms of a time-frequency 

Gabor dictionary that consists of a variety of sine waves modulated by Gaussian win­

dows, with different locations and scales [18], while images can be sparsely represented 

using derivative operators [95]. 

The corresponding representation of the mixtures in terms of the same basis func­

tions is given by 

xk(~) = L
J 

Xkj¢J(~) = xk<I>T (~), k = 1, ... 'm, (4.4) 
j=l 
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where Xkj are the decomposition coefficients of the kth measured signal, i.e., the kth 

row of X. Substituting (4.3) and (4.4) into (4.2) and assuming that the dictionary 

matrix is complete, i.e. J = T, we get 

X=AS+V, (4.5) 

where V = V(O~T(~), and Vis the decomposition coefficients of the noise matrix 

V(~) in~(~). Comparing (4.5) and (4.2) we find that the relation between the sources 

and the mixtures in the original space of representation is preserved in the transform 

domain. Accordingly, the estimation of the mixing matrix can be performed in the 

transform domain via clustering some or all of the columns of X. 

4. 2. 2 Preparation steps 

If the dictionary matrix is properly selected such that the coefficients of the sources 

are very sparse, then, with high probability, there will be many columns of the source 

coefficient matrix S that have only one significantly nonzero entry. For each one of 

these columns, the corresponding column of X is collinear with one column of the 

mixing matrix A. Mathematically speaking, assume that the ith entry of the kth 

column of S is nonzero, while the remaining (n - 1) entries are zeros. Then, from 

(4.5) and neglecting the effect of noise, the kth column of Xis given by 

(4.6) 

Therefore, in the m dimensional space, the scatter plot of the column Xk would lie 

on a hyperline passing through the origin with orientation corresponding to the ith 

column of the mixing matrix, ai. ·when the source coefficients are sufficiently sparse 

to satisfy the disjoint orthogonality condition [103], i.e., si[i] · 81[j] = 0, Vi =/:- j (or 

st[i] · si[j] ~ 0 in the noisy case), for a large number of columns of S, the scatter plot 

of the columns of the data coefficients matrix X in them dimensional space would be 
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Figure 4.1: (a) Scatter plot of a mixture of four sparse sources, (b) Scatter plot of the 

normalized mixtures. Four clusters corresponding to the four mixing columns are clearly 

visible. 
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concentrated around n hyperlines whose orientations correspond to the columns of the 

mixing matrix A. To clarify this point, consider the following demonstrating example, 

in which a sparse source matrix SE ]R4 x 2000 is randomly generated. Each row of the 

sparse source matrix S is constructed such that it has exactly 500 nonzero entries. 

The indices of these 500 entries are randomly selected, and their amplitudes are 

chosen from a uniform distribution between ±2. The measured matrix X E JR2 x2000 

is constructed by multiplying the source matrix S by the following (2 x 4) mixing 

matrix. 

0.1 -1.4 0.7 0.3 ]A = 
[0.5 0.17 1.4 -0.2 

The scatter plot of the two mixtures is shown in Figure 4.1 (a), where each point in this 

figure represents one column of the data matrix X. As shown in this figure, and due 

to the sparsity of the source matrix, the columns of the data matrix are concentrated 

around four lines whose orientations correspond to the columns of the mixing matrix 

A. Therefore, the essence of solving the BSS problem using SCA is the estimation of 

the n columns of the mixing matrix via the identification of the orientations of the 

most concentrated n hyperlines from the observed data using clustering algorithms. 

It was shown in [50, 91] that, in some cases, especially when the wavelet packet 

transform is utilized for the sparse representation step, a good estimate of the mixing 

matrix is possible if only a fraction of the columns of the coefficient data matrix is 

used in the clustering process. The motivation behind this approach is that, in many 

cases, the sources have different sparsity properties at different nodes of a wavelet 

packet tree. Accordingly, only a subset of the nodes, the ones for which the sources 

are very sparse, can be used for estimating the mixing matrix. For this reason, a 

new matrix, called the feature matrix Y, is constructed from selected columns of the 

data coefficient matrix X. The feature matrix Y will be used only for estimating 

the mixing matrix, while the data coefficient matrix X is utilized for estimating the 
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source coefficient matrix S (25, 33, 91, 93, 95]. 

From ( 4.6) it is clear that the identification of ai from Xk, or equivalently Yk, is 

associated with sign and scale indeterminacies produced by sk[i]. Accordingly, these 

two ambiguities must be removed before estimating the columns of the mixing matrix 

via clustering the columns of the feature matrix Y. 

1 - Removing the scale ambiguity: 

Since multiplying the ith column of A by any constant a =I- 0 and dividing the ith row 

of S by the same constant does not affect the entries of the data coefficient matrix 

X, or equivalently Y, it will be assumed without loss of generality that the £2-norm 

of each column of A equals one. Accordingly, the scale ambiguity can be removed by 

projecting the columns of the feature matrix Y into the surface of the unit hyper­

sphere. However, before applying this step it is reasonable to remove the columns of 

Y with a norm value less than a pre-specified small threshold (), since these columns 

very likely correspond to noise. After selecting the threshold (), a new data matrix is 

generated as 

(4.7) 


and each column is projected into the surface of the unit sphere to construct a new 

data matrix Z whose kth column is given by 

(4.8) 


2 - Removing the sign ambiguity: 

After removing the scale ambiguity, it is reasonable to remove the sign ambiguity from 

each column of Z, otherwise, each line in Figure 4.l(a) will produce two clusters on 

opposite sides of the unit hemisphere. This ambiguity can be removed by multiplying 
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each column of the new data matrix Z by the sign of its first entry, i.e., 

(4.9) 


The result of applying these two steps on the data set shown in Figure 4.l(a) is 

shown in Figure 4.l(b). As shown in this figure, four different clusters emerge on 

the surface of the unit circle. Accordingly, the four clusters can be easily identified 

by applying a partitioning clustering algorithm, e.g. k-means, on this preproceed 

data set. The mean of the data points in each cluster can then be considered as an 

estimate of one column of the mixing matrix A. 

The example presented in Figure 4.1 shows that, when the source coefficient matrix 

S is very sparse, the two preprocessing steps can project the columns of the feature 

matrix into separate clusters on the surface of the unit hemisphere. However, in 

practice, S is not very sparse and many of its columns have more than one large 

entry. In this case, the scatter plot of the columns of the feature matrix Y will show 

a cloud surrounding the hyperlines (see Figure 4.2(a) for example). Therefore, after 

projecting the columns of the feature matrix into the surface of the unit hemisphere, 

the points in the scatter plot corresponding to the cloud will fill the gaps between the 

clusters, and no clear boundaries between the clusters will be visible. This situation 

is shown in Figure 4.2(b). 

As will be shown later, the first proposed clustering algorithm in Section 4.3 

is based on combining a statistical test with a hierarchical clustering technique to 

sequentially extract compact clusters. The statistical test is utilized to test whether 

the two closest clusters are significantly different or not. For this technique to succeed, 

the clusters must be clearly disjoint. However, as shown in Figure 4.2(b), the regular 

normalization technique may cause the statistical test to fail to distinguish the clusters 

resulting from the hyperlines in Figure 4.2(a). This is because the points in the cloud 

in Figure 4.2(a) fill the gap between the desired clusters. 
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Figure 4.2: (a) Scatter plot of a mixture of four sparse sources after removing the columns 

that have small norm values, (b) Scatter plot of the normalized mixtures on the surface of 

the unit hemisphere. (c) The proposed normalization technique shows four clear clusters 

corresponding to the four mixing columns. 
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To overcome this difficulty, we propose a method that maps points in the hy­

perlines in Figure 4.2(a) into discrete clusters, while ensuring that the points in the 

cloud are dispersed. To this end, we propose projecting the columns of the feature 

matrix Y into the narrow strip confined between two hyperspheres of radii (1 - E) 

and (1 + E), respectively, where 0 ~ E~ 1. Selecting E = 0 is equivalent to projecting 

the columns of the feature matrix on the surface of the unit sphere, while selecting 

E= 1 is equivalent to scaling the columns of the feature matrix such that its largest 

column has an t'2-norm of 2. 

Here we consider a mapping from space A, in which the points cluster into hyper­

lines as in Figure 4.2(a), into a space B where the points are represented as compact 

clusters. The proposed mapping :F: A -t Bis linear, i.e., for any q EA, the corre­

sponding point in Bis given by p = >..q. The mapping parameter ).. is chosen such 

that, for all q E A with 0 < llqllt2~ µ, where µ is the upper bound of the available 

data, the corresponding point in B is bounded as (1 - E) < llvllt2 ~ (1 + E). It is 

readily shown that ).. is then given as 

).. _ 1- E + 2E (4.10)- llqllf2 µ. 

Accordingly, following the proposed mapping technique, the normalization step (4.8) 

is replaced by the following mapping step 

2 (4.11)
Zk = (i,~:i,: + ~) f/k· 

The value ofµ can be calculated as the largest £2-norm of the columns of the matrix 

Y calculated in (4.7), and Eis a user-defined parameter. The result of applying this 

mapping technique on the data set shown in Figure 4. 2(a) is shown in Figure 4.2( c). 

As shown in this figure, the data points in the fuzzy cloud in Figure 4.2(a) constitute 

a cloud in the narrow strip, while the four hyperlines constitute four concentrated 

clusters. In Figure 4.2 ( c), and in the remaining examples in this chapter, we set 

E = 0.1. 
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4.2.3 Mixing matrix estimation 

There are several approaches that have been proposed in the literature for estimating 

the mixing matrix A via clustering the columns of the feature matrix Y. The first 

approach [25, 33, 91, 93, 94, 101, 103] is based on utilizing a partitioning clustering al­

gorithm, e.g., k-means and the modified k~means, which is based on the expectation 

maximization (EM) procedure. Table 4.1 presents a summary of the main steps asso­

ciated with the class of partitioning clustering algorithms. As shown in Table 4.1, the 

algorithm accepts the feature matrix Y and the number of clusters n as inputs, and 

produces the clusters' representative vectors as estimates of the columns of the mixing 

matrix. The difference between different partitioning clustering algorithms resides in 

the way that Cj and d(·, ·)are defined. In the conventional k-means algorithm, d(·, ·) 

is defined as the Euclidian distance between its arguments, i.e., d(x, y) = llx - Yllt2 , 

while the representative vector of the ith cluster is selected as the mean vector of all 

the vectors assigned to the ith cluster, i.e., Cj =mean( {zk : Zk E Oi} ), where Oi is 

defined in Table 4.1. [25, 33, 93]. In the modified k-means approach [94, 101, 103] the 

representative vector of the ith cluster is computed as the principal eigenvector of the 

correlation matrix calculated using all the vectors assigned to the ith cluster, where 

the principal eigenvector is the eigenvector corresponding to the largest eigenvalue. 

Different expressions for the distance measured(-,·) were proposed in (94, 101, 103]. 

It it obvious that for a clustering algorithm to produce a good estimate of the 

mixing matrix, this algorithm must be robust to the presence of outlier points, and 

the number of clusters must be estimated from the data set. However, as described 

in Section 4.1, most partitioning clustering algorithms are sensitive to outlier points 

and need the number of clusters to be provided. 

In contrast to the partitioning clustering algorithms, there are some clustering 

algorithms that can estimate the number of clusters from the data matrix X, or 

equivalently Y. One of these approaches is based on constructing a histogram of 
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Table 4.1: Steps of a partitioning clustering algorithm. 

[A] = Partitioning clustering(Y, n) 

l. 	Initialization: Initialize the clusters' representative vectors [c1, ... ,en], and con­

struct the new data matrix Z from the data matrix Y using the two steps presented 

in Section 4.2.2. 

2. Repeat until convergence: 

E-step: Assign the kth column of the data matrix Z into the closest cluster ni. 

i1i = {zk : d(zk,Ci) < d(zk,Cj) Vi-=/:- j}, where d(Zk>Ci) is the distance 

between the kth column of Z and the representative point of the ith cluster. 

M-step: Update the cluster representative vector Ci of the ith cluster ni, i = 1, ... , n. 

End. 

3. 	 Output [A] = [ci, ... , en]. 

the angles corresponding to the orientations of the columns of the feature matrix Y. 

Motivated by the 2-D scatter plot, the idea of this approach is based on estimating 

the orientation of each data point Yk E JR2 using the equation 

-1 	(Yk[2J) (4.12)O'.k = tan yk[lJ , 

and then constructing a histogram plot for the vector of the calculated angles o:. The 

number of peaks in the histogram corresponds to the number of clusters, and the 

corresponding angle bins correspond to the orientations of the columns of the mixing 

matrix (95, 96]. The accuracy of the angular histogram approach for estimating the 

columns of the mixing matrix is determined by the bin width that is assumed in 

evaluating the histogram. To enhance the accuracy, Parzen windowing was utilized 
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in [92] to estimate the probability density of the angles, and then the n angles that 

produce the n largest peaks of this distribution are used as the estimates for the 

directions of the n columns of the mixing matrix A. Although the angular histogram 

approach is efficient for the m = 2 case, its complexity grows exponentially with m. 

In the next section we propose a modification to that approach such that the new 

algorithm is applicable to the general case m ;::::: 2. 

Since the number of sources is generally unknown, several approaches have been 

proposed in the literature for estimating the mixing matrix without prior knowledge 

about the number of clusters (sources). In [31] the authors used the clustering al­

gorithm proposed in [106] which can extract an unknown number of clusters from a 

given data set. The estimated clusters are refined by first removing the outlier points 

from each cluster and then removing the clusters that have a number of points less 

than a pre-specified number. The disadvantage of this method is that its performance 

is very sensitive to the values of the two parameters that identify the outlier points 

and the cluster size, and no rigorous method was provided for selecting these two 

parameters. 

Another approach for estimating the number of clusters from the data set was 

proposed in [103]. This approach is based on applying a modified k-means clustering 

algorithm with the number of clusters being over estimated, e.g., if the expected 

number of sources is n then the number of clusters J( is selected as K > lOn. After 

estimating the K clusters, a correlation matrix is calculated for the points in each 

cluster and the largest eigenvalue of the correlation matrix is calculated. The K 

eigenvalues, one for each cluster, are then arranged in a descending order and plotted. 

If the value of K is chosen properly and the noise level is small, the eigenvalues 

corresponding to the hyperline clusters will be larger than the other ones, and the 

plotted curve will show a transition gap at the index indicating the number of clusters. 

The clusters corresponding to the largest eigenvalues are then extracted and the 
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principal eigenvector of each of the extracted clusters is considered as an estimate 

of one column of the mixing matrix. Although this approach produced promising 

results, good results can be obtained only when the value of K is selected to be 

much larger than the number of sources, which is unknown. For example, it was 

shown in [103) that, for the case of 5 sources, selecting K = 20 is not sufficient 

to produce acceptable results, while good results were obtained only for values of 

K > 50. Since this algorithm is a partitioning clustering algorithm, its performance 

is very sensitive to the initial estimates of the clusters' representative vectors. To 

overcome this difficulty, the authors of [103] proposed a sophisticated and complex 

initialization step. 

In the next section we propose three novel clustering algorithms that can estimate 

both the number of sources and the mixing matrix. In contrast to the partitioning 

clustering algorithms, the proposed algorithms can estimate the number of sources 

from the data set and do not suffer from the problem of outlier points nor initializa­

tion. 

The first clustering algorithm we propose is based on a clustering technique called 

hierarchical clustering (HC). Hierarchical clustering algorithms start with every col­

umn of Z assigned into a separate cluster. Then, in each successive step, the two 

closest1 clusters are merged into a single cluster. The process continues until all 

columns are assigned into a single cluster. The main difficulty associated with HC is 

the identification of the individual clusters. Previous approaches for identifying the 

clusters are either manual or depend on some parameters which are hard to deter­

mine. See Section 4.3.1 for more details. In this chapter we propose a novel clustering 

algorithm in which a statistical test is utilized for identifying the individual clusters. 

The statistical test is applied at each step of the hierarchical process to test whether 

the two closest clusters are significantly different. The two closest clusters are merged 

1The method to measure closeness of clusters is defined later. 
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into a single cluster if they are not significantly different, and the process continues. 

Otherwise, the largest (i.e., the one with largest number of objects) of them is ex­

tracted and removed from the data matrix. The process is repeated until all clusters 

are extracted. For identifying the clusters that correspond to the columns of the mix­

ing matrix, we developed a quantitative measure called the concentration parameter 

(CP). If the disjoint orthogonality condition is satisfied for a reasonably large number 

of columns of the source coefficient matrix, then the number of sources can also be 

estimated using this parameter. 

The idea of the second proposed clustering algorithm is inspired by the angular 

histogram clustering algorithm [92, 95, 96]. The previously suggested angular his­

togram clustering algorithms are difficult to extend beyond the 2-D case. However, 

in this chapter we propose a new algorithm that generalizes the previous algorithms 

to the m ~ 2 case. Under certain conditions, which will be described in the next 

section, the proposed algorithm can efficiently estimate the mixing matrix even when 

the disjoint orthogonality condition is satisfied for a small percentage of the columns 

of the source coefficient matrix. 

The third clustering algorithm that we propose in this chapter is a combination 

of the first two algorithms. This algorithm combines the advantages of the first two 

clustering algorithms and avoids their limitations. As will be shown in the simulation 

results, the third algorithm is very efficient in estimating the mixing matrix and the 

number of sources. 

4.3 Proposed Clustering Algorithms 

As described in Section 4.2.3, most of the clustering algorithms previously utilized for 

estimating the mixing matrix, in the two-step approach, belong to the partitioning 

clustering class, which suffer from the three limitations described in Section 4.1. In 
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this section we propose three clustering algorithms that are based on different classes 

of clustering techniques. The first algorithm is based on the hierarchical clustering 

technique, while the second algorithm is based on the angular histogram technique. 

The third algorithm is a combination of these two algorithms. Before explaining 

the proposed clustering algorithms, we provide brief description of the hierarchical 

clustering technique and the statistical test utilized in the first proposed algorithm. 

4.3.1 Hierarchical Clustering 

Table 4.2: Steps of a HC clustering algorithm. 

1. 	 Initialization: Start with T singleton clusters. 

2. 	 Calculate the dissimilarity matrix D E !Rtxt, whose ( i, j)th coefficient is given by 

diJ = llzi - zillt2 , i,j = 1, 2, ... , T. 

3. 	 For k = 1, ... ,T, repeat the following two steps: 

• Search the minimal distance between clusters 


D(Cu,Cv) = min. D(Ci,CJ) 

I~i<j~Tk 

where D(*, *) is a distance function between two clusters, to be defined, and 

Tk = T - k + 1 is the number of clusters at the k - th iteration. 

• Merge clusters Cu and Cv into a single cluster, and update the dissimilarity 

matrix. 

Hierarchical clustering (HC) follows a clustering strategy which is quite distinct 
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from that of the partitioning clustering algorithms. Hierarchical clustering algorithms 

start with every object (columns of Zin our case) assigned into a separate cluster. 

Then, in each successive step, the two closest clusters are merged into a single cluster. 

The process continues until all objects are assigned into a single cluster. The general 

steps of clustering the columns of the data matrix Z E JRmxi' using a HC algorithm 

are summarized in Table 4.2 [105, 107], where m is the number of variables and 

T :::; T is the number of columns of the feature matrix. The difference between 

different HC algorithms resides in the definition of the distance D(*, *) between two 

clusters. The most popular distances used with the HC algorithms are the single­

linkage, the complete-linkage and the average-linkage, see [105, 107] for the definition 

and comparison between these distances. In the first proposed algorithm we use the 

average-linkage distance to measure the distance between two clusters. The average­

distance between any two clusters R and Q is defined as [107] 

1 
(4.13)D(R, Q) = IRllQI . ~ dij 

1ER,JEQ 

where !RI and IQI denote the number of objects in clusters R and Q, respectively, 

and dij is defined in Table 4.2. 

It is convenient to depict the result of an HC algorithm using a dendrogram plot. 

The dendrogram plot resulting from applying a HC algorithm on the simple data set 

shown in Figure 4.3(a) is shown in Figure 4.3(b). In this plot, the root node of the 

dendrogram represents the whole data set and each leaf node is regarded as a data 

object. An internal node represents the union of all objects in its subtree, and the 

height of an internal node represents the distance between its two child nodes [107]. 

Note that the labels of the root nodes are exactly those of the clustered data points 

in Figure 4.3(a). 

A useful property associated with the HC algorithms [108], which is also depicted 

in Figure 4.3(b), is that closer objects are combined in early stages while distant 
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Figure 4.3: (a) A data set consists of 3 clusters and 4 outlier points; (b) Clustering the 

data set presented in (a) using hierarchical clustering. 
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objects (outliers) are combined in later stages. However, the main difficulty associated 

with HC is identifying the individual clusters. As shown in Figure 4.3(b), the clusters 

are not explicit and have to be determined in some way from the dendrogram. 

Previous approaches for identifying the clusters from the dendrogram include: 1) 

converting the dendrogram into a reachability plot [108, 109], 2) manually selecting 

individual clusters from the dendrogram, 3) selecting a horizontal line, denoted as 

Line 1 and Line 2 in Figure 4.3(b), that cuts the dendrogram at the level at which 

the number of nodes equals the desired number of clusters. In this case the com­

bination of all children connected to each resulting node is considered as a cluster. 

Unfortunately, each one of these approaches has its own limitations. For instance, 

the first approach requires an input parameter which is difficult to determine, while 

the other two approaches are user dependent and cannot be automated. For exam­

ple, automatic selection of a horizontal line in Figure 4.3(b) such that the number of 

clusters equals 3 will result in Line 1. It is clear from Figure 4.3(b) that this is not 

a good choice; since both C1 and C2 are combined in a single cluster and two outlier 

objects, obj18 and obj19 , constitute one of the estimated clusters. On the other hand, 

a manual selection of the horizontal line will select Line 2 because in this case each 

of the original three true clusters C1-C3 is well defined by an estimated cluster. 

In Section 4.3.3 we propose utilizing the T 2-statistical test to identify the clusters 

from the dendrogram. The T 2-statistical test is used for testing the equality of the 

means of two multivariate populations. A brief revision of the T 2-statistical test is 

presented in the next subsection. 

4.3.2 T2-statistical Test 

Consider the following two clusters R = (r1r2 ... rr1 ] and Q = [q1q2... qy
2
], where 

both r i and % E .!Rmx 1 . It is assumed that: 1) The sample set r 1r 2 ... rr1 is a 

random sample of size T1 from an m-variate population with mean vector µ 1 and 
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covariance matrix :E1, 2) The sample set q1q2 .. • Qy
2 

is a random sample of size T2 

from an m-variate population with mean vector µ 2 and covariance matrix :E2 , 3) 

Also, r 1r 2 ..• rr1 are independent of q1q2 ... Qy
2 

• Our goal is to test whether the null 

hypothesis 

is true or not. 

T2-statistic test [110] is utilized for testing the validity of H0 . The three assump­

tions mentioned before are sufficient for running the T 2-statistic test as long as the 

sample sizes T1 and T2 are large enough. However when the sample sizes are small, the 

following two assumptions are needed: 4) Both populations are multivariate normal, 

5) :Ei = :E2. 

The T2-statistic test can be summarized as follows [110]: 

1. 	 For each cluster calculate the unbiased estimate of both the mean vector and 

covariance matrix as follows 

l 	 T1 

µr = LTjT 
1 j=l 

2. 	 Calculate the pooled covariance matrix 

Spo = (T1 - l)Sr + (T2 - l)Sq 
T1+T2-2 

3. 	 Calculate the quantity 

2 T1T2 T -1 
T = T1 + T2 (µr - µq) Svo (µr - µq) 

h. h ' d' t 'b t d (Ti+T2 - 2)m t' 17 	 h F · Fw 1c 1s 1s n u e as (Ti+T
2
-m-l) imes 1·m,Ti+T2 -m_1, w ere a,b is an ­

distribution with a and b degrees of freedom (d.f.) 
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4. 	 Select a value for a, e.g. a= 0.05, then reject H0 ifT2 > (K~+~~-~~rr;)Fm,Ti+T2 -m-1(a), 
where Fm,Ti+T2-m_1 (a) is the upper (lOOa)-th percentile of an F-distribution 

with m and (T1 + T2 - m - 1) d.f. 

4.3.3 	 First Clustering Algorithm: Sequential Cluster Extrac­

tion (SCE) 

As described in Section 4.3.1, a hierarchical clustering algorithm starts by assigning 

each column of the data matrix Z into a separate cluster, i.e., the initial guess of the 

number of clusters is the number of available data points. Therefore, in contrast to 

the partitioning clustering algorithms, hierarchical clustering algorithms do not suffer 

from the initialization problem. Then the clustering process proceeds in steps where 

in each step the closest two clusters are merged into a single cluster. Accordingly, the 

effect of the outlier points on the performance of the HC algorithms can be greatly 

alleviated, since they are combined into clusters at the last stages. This behavior 

is depicted by the dendrogram in Figure 4.3(b) in which the four outlier objects 

obj18-obj21 are combined into clusters after the main three clusters are constructed. 

Accordingly, the effects of the outlier points can be alleviated, or even eliminated, if 

the hierarchical process stopped before combining these outlier points. 

The main difficulty associated with the hierarchical clustering algorithms is the 

identification of the clusters. For solving this problem we suggest a novel approach 

which is based on utilizing the T 2-statistical test at each merging step to decide 

whether the means of the two closest clusters are significantly different or not. If they 

are not significantly different, the two clusters are merged and the process continues. 

Otherwise, the cluster with the largest number of objects is extracted and removed 

from the data set. The mean of the extracted cluster is considered as an estimate 

of one column of the mixing matrix. The process can then be repeated until all the 
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clusters are extracted. Since the closest clusters are merged in the early stages, the 

early extracted clusters most likely correspond to the columns of the mixing matrix, 

while the extracted clusters at later stages are most likely due to outlier points, i.e., 

the points due to the linear combination of more than one column of the mixing 

matrix. The proposed algorithm is summarized in Table 4.3. 

The algorithm has two inputs and two outputs. The first input is the data matrix 

Z1 which equals the data matrix Z after removing the columns corresponding to the 

previously extracted (l - 1) clusters. Accordingly, Z 1 = Z. Recall that the data 

matrix Z is constructed from the coefficients data matrix X using the preprocessing 

steps described in Section 4.2.2 with the normalization step performed using ( 4.11). 

The second input is the value of a required for applying the statistical test. On the 

other hand, the first output I 1 contains the indices of the lth extracted cluster, while 

the second output is the input data matrix after removing the columns corresponding 

to the extracted cluster. Since the proposed algorithm extracts only one cluster, it 

can be repeated many times until the number of the remaining columns in the data 

matrix is less than or equal to 1. 

4.3.3.1 Estimating the mixing matrix and the number of sources 

Let L denote the total number of estimated clusters from the data matrix Z using 

Algorithm 1. To identify the clusters corresponding to the columns of the mixing 

matrix, we make use of the assumption that the disjoint orthogonality property is 

satisfied for a sufficiently large number of columns of the source coefficient matrix 

S. Accordingly, for the columns of the source coefficient matrix S that contain a 

single nonzero entry, the corresponding columns of X, or equivalently Y defined in 

(4.7), constitute hyperlines in the m dimensional space, where the orientations of the 

hyperlines correspond to the columns of the mixing matrix A. Therefore, to identify 

the number of sources and the clusters corresponding to the columns of the mixing 
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Table 4.3: Sequential Cluster Extraction Algorithm 

Algorithm 1: [I1, Z1+1] = SCE(Zz, a) 

1. 	 Start with T 1 singleton clusters, where T 1 is the number of columns of Z1. 

2. 	 Calculate the dissimilarity matrix DE JRT 
1 
xT 

1
, whose (i,j)th coefficient is given by 

dij = jjz~ - z~lle2 , i,j = 1, 2, ... T 1, where zi is the ith column of Z1. 

3. 	 Search the minimal distance between clusters 

where D(*, *)is a distance function between two clusters, defined in (4.13), and Tk 

is the number of clusters at the k - th iteration. 

4. 	 For the given value of a:, apply the T2-statistical test, presented in Section 4.3.2, to 

test whether the centroids (means) of the two clusters Cu and Cv are significantly 

different or not. 

5. 	 if the two means are not significantly different, merge clusters Cu and Cv in a single 

cluster, and update the dissimilarity matrix. Go to step 3. 

else 

if ICvl:::; ICul, set I1 = [iu1, ... ,iur,,]; 

else set Iz = [iv1, ... , ivrvl; 

break 

end 


end 


6. 	 Z1+1 = Zi/Z1(: ,Iz). 
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matrix, we propose calculating a parameter called the "concentration parametd' 

(CP) from the data matrix Y. The CP parameter measures how well the points of 

each cluster are concentrated around a hyperline in the m dimensional space. There 

are many ways for defining a CP that measures the concentration of the columns of a 

given data matrix around a hyperline in the m dimensional space. In this subsection 

we propose two different concentration parameters. 

Recall that the columns of the normalized data matrix Z are used for estimating 

the indices of the estimated clusters using Algorithm 1. Since there is a one-to-one 

correspondence between the columns of Z and Y, each extracted cluster from Z 

corresponds to a cluster in Y with the same indices. Accordingly, for each extracted 

cluster, the value of the CP parameter is calculated from the corresponding cluster 

in the data matrix Y. To be specific, let Ii denote the set of indices of the lth 

cluster estimated from Z1 using Algorithm 1, and let C 1 = Y1(:,I1) denote the 

matrix constructed from the columns of the data matrix Y 1 with indices Ii, where 

Y1 consists of the data matrix Y after removing the columns corresponding to the 

previously extracted (l - 1) clusters. Let R 1 be defined as 

(4.14) 

If the lth cluster constitutes a hyperline in the m dimensional space, the orien­

tation of the hyperline will coincide with that of the principal eigenvector of R 1• 

Therefore, the principal eigenvector of R 1 will be used as the representative vector 

of the lth cluster. Let b1 denote the representative vector of the lth cluster, then the 

matrix B = [b1 , ... , bL] can be considered as an initial estimate of the mixing matrix 

A. If L > n, where n is the number of sources, then a better estimate of A can 

be obtained by selecting the n columns of B that are very close to the columns of 

the mixing matrix. However, since the columns of the mixing matrix as well as the 

number of sources are unknowns, they must be estimated. For accomplishing that 
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goal, we propose the following two parameters, which measure the concentration of 

the points of a given cluster around the representative point of this cluster. 

First concentration parameter 

It is known that all the points constructing a hyperline cluster in the m dimensional 

space are concentrated around a hyperline oriented in the direction of the principal 

eigenvector of that cluster. Therefore, a cluster corresponding to one column of the 

mixing matrix can be identified by calculating the average distance between the points 

in that cluster and its principal eigenvector. The first concentration parameter ( CPl) 

of the lth cluster, /31, is defined as 

f31 = exp(-/Ji/Tt). (4.15) 

where Tt is the total number of points in the lth cluster, i.e., the number of columns 

of C 1, and f31 is the average distance between the columns of C 1and b1' the principal 

eigenvector of R 1 defined in (4.14). Let C 1 = [cL ... ,c~] denote the lth cluster, then 

the distance from c~ to the hyperline represented by b1, is given by (100] 

(4.16) 


and (31 is then calculated as 
Tl 

A ~ l
/31 = T, 

1 
L., di. (4.17) 

l i 

Note that if the lth and kth clusters have different sizes and the same average distance, 

i.e., {31= {3k, l =!= k, and Tt > Tk say, then the lth cluster is considered more concen­

trated than the kth cluster. This point was taken into consideration by dividing the 

value of {31 by the cluster's size Tt in (4.15). 

If the columns of the lth cluster C 1 are concentrated around the hyperline rep­

resented by b1, then the value of {31 will be very small and the corresponding value 
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of /31 will be very close to 1. Accordingly, b1 can be considered as an estimate of 

one column of the mixing matrix A. On the other hand, if the columns of the lth 

cluster are not concentrated around b1, the value of ~1 will be large resulting in a 

small value of /31• In this case the lth cluster consists of some points in the cloud 

in Figure 4.2. Accordingly, the value of CPl can be used to identify the number of 

sources and the clusters corresponding to the columns of the mixing matrix. This 

can be accomplished by plotting the concentration parameters (31, l = 1, ... , L after 

arranging them in descending order. If the disjoint orthogonality property is satisfied 

for a reasonably large number of columns of the source matrix such that the hyper­

lines are well defined in the m dimensional space, the plot of the arranged values of 

CPl will have a value close to 1 for the clusters corresponding to the columns of the 

mixing matrix. The value of CPl drops rapidly for the clusters corresponding to the 

cloud points. This behavior is depicted in Figure 4.4(b). 

The data set shown in Figure 4.4(a) was constructed by multiplying a sparse ma­

trix S E ]R5xrnoo by a mixing matrix A E ]R3x5 randomly generated from a white 

normal distribution with zero mean and unit variance. The sparse matrix is con­

structed such that 30% of its columns satisfy the disjoint orthogonality principal, i.e., 

each source is uniquely represented by 60 (= 0.3 * 1000/5) columns. The indices of 

the nonzero entries of each row of S are randomly selected, and their amplitudes are 

chosen from a uniform distribution between ±1. 

Since the number of columns of the mixing matrix A is greater than the number 

of rows, it is expected that some columns of the mixing matrix could be very close to 

each other, and hence they could be combined into the same cluster. The closeness 

between the columns of A can be measured by calculating the correlation coefficients 
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Figure 4.4: (a) A scatter plot of the measured data matrix, (b) The CPl parameter of the 

estimated clusters, ( c) The first 5 estimated clusters. 
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between these columns, which is given by 

1.0000 0.1829 0.2603 0.5900 -0.5278 

0.1829 1.0000 0.9969 0.9017 0.7384 

RAA ­ 0.2603 0.9969 1.0000 0.9332 0.6827 

0.5900 0.9017 0.9332 1.0000 0.3744 

-0.5278 0.7384 0.6827 0.3744 1.0000 

It is clear that the second and third columns of A are very close to each other, and 

hence they could be combined into a single cluster. 

After running the proposed clustering algorithm, and as shown in Figure 4.4(b), 

the total number of the extracted clusters is 13. However, the value of CPl is approxi­

mately one for five clusters only, i.e., these corresponding to the columns of the mixing 

matrix. The five clusters with largest values of CPl are shown in Figure 4.4(c). It is 

worth mentioning that these are the clusters that are extracted first by the proposed 

algorithm. As shown in Figure 4.4(c), each cluster constitutes a hyperline in the 3 

dimensional space. 

As a measure of closeness between the true mixing matrix and the estimated 

mixing matrix, the cross-correlation matrix between these two matrices is calculated 

(after correcting for the sign and permutation ambiguities) and is given by 

1.0000 0.1829 0.2561 0.5946 -0.5278 

0.1829 1.0000 0.9972 0.8992 0.7384 

RAA 0.2603 0.9969 1.0000 0.9311 0.6827 

0.5900 0.9017 0.9316 1.0000 0.3744 

-0.5278 0.7384 0.6858 0.3690 1.0000 

It is clear that the absolute correlation coefficients between the estimated columns 

and the columns of the mixing matrix are ones, which is an indication of perfect 

estimation. On the other hand, the cross-correlation matrix between the true mixing 
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matrix and the mixing matrix estimated using k-means is given by 

0.9473 0.1207 0.6198 0.8761 -0.7440 

-0.1417 0.9980 0.8849 -0.3136 0.5208 

RAAkm = 0.3002 0.8727 0.9993 0.1276 0.1006 

-0.0628 0.9899 0.9190 -0.2374 0.4515 

-0.7721 0.7795 0.3393 -0.8719 0.9602 

which shows that the fourth estimated cluster does not correspond to any column 

of the mixing matrix. Furthermore, the signal to interference ratio (SIR) (defined in 

( 4.20)) between the true mixing matrix and the mixing matrix estimated using the 

proposed algorithm is 51.6992 dB, while the SIR between the true mixing matrix and 

the mixing matrix estimated using k-means is only 8.1376 dB. 

Second concentration parameter 

Y

The second CP proposed in this section uses the values of the eigenvalues of R 1, 

defined in (4.14), of the lth cluster to investigate whether this cluster is a concentrated 

cluster or not. To be specific, let C 1 E .!RmxTz, where Ti is the number of objects in 

the lth cluster, denote the matrix constructed from the columns of the data matrix 

1 with indices corresponding to the lth extracted cluster, and let R 1 E .!Rmxm be 

defined as in (4.14). The eigenvalue decomposition of R 1 can be expressed as 

where the columns of U are the eigenvectors and A is a diagonal matrix with the 

eigenvalues sorted in the main diagonal. It is assumed without loss of generality that 

the eigenvalues are arranged in a descending order, i.e. A1 2:: A2 2:: ... 2:: Am 2:: 0. 

If the columns of C 1 are concentrated around a hyperline in the m dimensional 

space, then the value of A1, the first eigenvalue of R 1, will be much larger than the 

value of A2 , which in turn will be very close to the value of Am· In this case, the plot 
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Figure 4.5: The distance from .A2 to the virtual line connecting .A1 and Am can be used as 

a concentration parameter. 

of the eigenvalues will show an L-shape. This behavior is depicted in Figure 4.5 by 

the red curve. On the other hand, if the columns of C 1 are not concentrated around 

a hyperline in the m dimensional space, the plot of the eigenvalues will not show an 

L-shape, and the transition from one eigenvalue to the other will be smooth. This 

behavior is depicted in Figure 4.5 by the blue curve. 

From this geometric interpretation it is clear that there is a direct relation between 

the concentration of a cluster and the shape of the plot of its eigenvalues. What 

remains is to calculate a parameter whose value reflects this relation. There are many 

possible ways for calculating this parameter. For instance, this parameter could be 

calculated as the relative difference between >. 1 and >.2 , i.e, GP= { 1~{!. Empirically,1
we found that a plot of this parameter does not show a sharp transition gap at the 

index corresponding to the number of sources. 

In this chapter we propose using the distance from >.2 to a virtual line connecting 

>.1 and Am as the second concentration parameter (CP2). The virtual line connecting 
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>.. 1 and Am is shown by the dotted line in Figure 4.5, and the distance is depicted by 

the double arrow. As shown in this figure, 11 » 12 , where 11 and 12 are the distances 

corresponding to the concentrated cluster and the distributed cluster, respectively. 

Accordingly, the value of CP2 can be used to differentiate between concentrated and 

distributed clusters. 

It is not hard to prove that the distance from the point (2, >..2 ) to the line connecting 

the two points (1, >..i) and (m, Am) is given by 

(4.18) 


The value of I can be used for estimating the number of sources and the clusters 

corresponding to the columns of the mixing matrix. This can be accomplished by 

first calculating {tz, l = 1, ... , L }, where !z is the value of I for the lth cluster, and L 

is the total number of clusters. Then plot b1} after arranging them into descending 

order. If the disjoint orthogonality property is satisfied for a reasonably large number 

of columns of the source matrix, the plot of the arranged values of CP2 will have 

large value for the clusters corresponding to the columns of the mixing matrix. The 

value of CP2 is expected to drop rapidly for the clusters corresponding to the cloud 

points. 

4.3.3.2 SCE for noisy measurements 

When the measurements are contaminated with additive noise, it may become difficult 

to identify a transition gap in the plot of the concentration parameters. To clarify this 

point, consider the following example in vvhich a sparse source matrix S E ]R7xsoo is 

randomly generated and multiplied by a mixing matrix A E ]R5 x 7 randomly generated 

from a white normal distribution with zero mean and unit variance. The sparse matrix 

is constructed such that 503 of its columns satisfy the disjoint orthogonality principal, 

i.e., each source is uniquely represented by 58 (= f0.5*800/71) columns.The indices of 
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the nonzero entries of each row of S are randomly selected, and their amplitudes are 

chosen from a uniform distribution between ±1. A zero mean white Gaussian noise 

matrix V E }R5xsoo is randomly generated. The amplitude of the noise is adjusted to 

produce a 30dB SNR. After extracting the clusters using the SCE algorithm, the two 

concentration parameters are calculated and arranged in a descending order. The 

arranged CPl and CP2 are shown in Figure 4.6(a)-(b), respectively. As shown in 

these figures, the CPl shows a sharp transition at a number of clusters equal to 8 

rather than 7, while CP2 show a small transition at index 7 and large transition at 

index 9. 

To overcome this problem we propose performing a trimming step after estimating 

each cluster. The trimming step simply removes all the points that are farther than 

a certain threshold from the representative point of the cluster. To be specific, let 

C 1 = (ci, ... , 4J denote the lth cluster, and let u E }Rm be the representative point 

of this cluster. The representative point could be chosen as the principal eigenvector of 

R 1 = C 1C 1T for instance. Then the trimming step can be expressed mathematically 

as 

1 { 1 uTci } (4.19)C f- ci : llcille2 ~ p ' 

where 0 « p < 1 is a pre-specified threshold. For all the examples presented in this 

chapter, the value of pis selected empirically asp= 0.97. In (4.19) it was assumed 

that 1lul le2= 1. The trimming step is repeated until no further points are removed 

from the cluster. Note that a new representative point u must be calculated after 

each trimming step. The trimming step may be viewed as removing points which are 

not likely to belong to a specified cluster. 

The trimming step has the following two advantages: 1) it removes any outlier 

point that might be assigned into a compact cluster, and hence produces a better 

estimate of the columns of the mixing matrix, 2) it reduces the effect of distributed 

clusters on identifying the number of sources from the plot of the CP parameters. The 
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Figure 4.6: Effect of the trimming procedure on the identification of the number of sources 

from noisy measurements. (a) CPI before the trimming step, (b) CP2 before the trimming 

step,(c) CPI after the trimming step, (d) CP2 after the trimming step. 

second point can be explained in light of ( 4.15). For distributed clusters, the average 

distance /31 is usually larger than that for the case of concentrated clusters. However, 

if the number of points in a distributed cluster is large compared to the number of 

points in a concentrated cluster, then the value of CPl defined in (4.15) could be 

small and comparable to that for a concentrated cluster. As a result, the CP plots 

may not show a clear transition gap at the index corresponding to the actual number 

of sources. This behavior is depicted in Figure 4.6(a) and (b) for CPl and CP2, 

respectively. The plots of CPl and CP2 after the trimming step are shown in Figure 
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Figure 4. 7: Comparison between the proposed algorithm and the k-means algorithm in 

terms of the average SIR(A, A). The sparse source matrix S is constructed such that 83 

of its columns satisfy the disjoint orthogonality principal. (a) 8 = 30, (b) 8 = 50. 

4.6( c) and ( d), respectively. As shown in these figures, there is a clear transition gap 

at the number corresponding to the actual number of sources. 

Example: In this example we compare the performance of the proposed SCE 

algorithm and the k-means algorithm when the measurements are contaminated with 

additive Gaussian noise. The comparison is made in terms of the signal to interference 

ratio (SIR) between the true mixing matrix A and the estimated mixing matrix A, 
where the SIR is defined as [103] 

,,.--

The measurements are constructed as follows. A sparse source matrix SE }R7xsoo 

is randomly generated and multiplied by a mixing matrix A E }R5x7 randomly gener­

ated from a white normal distribution with zero mean and unit variance. The sparse 

source matrix is constructed such that 8% of its columns satisfy the disjoint orthog­

onality principal. The indices of the nonzero entries of each row of S are randomly 

selected, and their amplitudes are chosen from a uniform distribution between ±1. 

121 



Ph.D. Thesis - Nasser Mourad McMaster - Electrical & Computer Engineering 

The experiment is repeated for 8 = 30, 50. For each value of 8, a zero mean white 

Gaussian noise matrix V E ]R5xsoo is randomly generated. The amplitude of the 

noise is adjusted to produce one of the following values of the SNR; 20, 25, 35, and 

45 dB. For a given value of 8 and SNR, a noisy measurement matrix X =AS+ Vis 

constructed, and the mixing matrix A is estimated using three different algorithms; 

the k-means algorithm, the proposed basic SCE, and SCE with the trimming step, 

respectively. The concentration parameter CP2 is used for sorting the clusters esti­

mated using the SCE algorithm. For the three algorithms, the number of clusters 

was assumed to be known a priori, i.e., the first 7 arranged clusters obtained from the 

SCE algorithm are considered as an estimate of the mixing matrix. This is because 

we are comparing to the k-means algorithm, which requires the number of sources to 

be known. After estimating the mixing matrix, the SIR parameter is calculated using 

(4.20). For each value of 8 and the SNR, the experiment is repeated 100 different 

times and the average SIR is calculated and plotted in Figure 4.7. 

As shown in this figure, and for the two values of 8, the proposed algorithm 

performs much better than the k-means algorithm. Moreover, it is clear from the 

figure that the trimming step enhances the performance of the proposed algorithm, 

especially at the moderate SNR value of 25 dB. Also it is obvious from Figure 4. 7 

that the performance of the proposed algorithm depends on the value of 8. The larger 

the value of 8, the better the performance of the SCE algorithm. 

Although the presented example shows that Algorithm 1 is capable of estimating 

the mixing matrix with a relatively high precision compared to the k-means algorithm, 

there are two limitations associated with the proposed algorithm. The first limitation 

is the number of columns of the data matrix Z. Recall from the second step in Table 

4.3 that the size of the dissimilarity matrix D is T x T, where T is the number 

of columns of the data matrix Z. Since only the upper triangle of D is used for 

estimating the two closest clusters, the size of D is approximately T2/2, i.e., the 
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size of D 	grows quadratically with the number of columns of the data matrix Z. 

Accordingly, Algorithm 1 is suitable for clustering data matrices with only a relatively 

small number of columns. This limitation does not imply that the number of columns 

of the original data matrix X must be small. This limitation is applied only on the 

feature matrix Y, or equivalently Z, which could be constructed from only a few 

columns of the data matrix X. 

The second limitation of the proposed algorithm is that the CP parameter may 

not be sufficiently sensitive when the degree of sparsity is not high enough. If the 

source coefficient matrix is not sparse enough, then the plot of the CP parameters 

might not show a clear transition gap at the number corresponding to the true number 

of sources. However, if the number of clusters n is known a priori, then, with high 

probability2 , the representative points of the first n sorted clusters correspond to the 

columns of the mixing matrix. 

4.3.4 	 Second Clustering Algorithm: Modified Angular His­

togram (MAH) 

In this subsection we propose a new algorithm that, under certain conditions, can 

correctly estimate the mixing matrix and the number of sources. The proposed algo­

rithm is inspired by the angular histogram algorithm [92, 95, 96] described in Section 

4.2.3. The previous algorithm is restricted to 2-D space, and its idea is based on con­

structing a histogram of the angles corresponding to the orientations of the columns 

of the data coefficient matrix X, or equivalently Z, in 2-D space. In the proposed 

algorithm the calculated angles represent the relative angles between the columns of 

the data matrix Z and a reference vector r, i.e., 

(4.21) 


2This statement is based on empirical observation. 
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Table 4.4: Modified Angular Histogram Algorithm 

Algorithm 2: [A] = MAH(Z, r, D.B) 

1. 	 Calculate the angles between the reference vector r and the columns of Z and save 

the result in the vector of angles(} E ~i', where Tis the number of columns of Z. 

2. 	 Construct the vector ¢ = [O, t::.B, ... , 180°], where 6.B is a histogram bin width. 

3. 	 Construct the vector iJ by quantizing the values of () into the appropriate bin spec­

ified in ¢. This can be done using the following equation: 

0 =!:::.B round((}/ !:::.B). 


where the round(·) function rounds its argument into the nearest integer. 


4. 	 For i = 1,2, .. ., calculate h[i], the frequency of occurrence of <P[i] in 0. 

5. 	 Plot h against the indices corresponding to ¢ and count the number of peaks np 

and save the corresponding angles in the vector Op = [Bp 1 , , ()PnpJ; 

6. 	 Estimate the columns of the mixing matrix using the following steps. 

for j = 1: np 

<i'i = mean(Z(:,Ij)); 

end 
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Figure 4.8: (a) A scatter plot of the measured data matrix, (b) The histogram plot of the 

calculated data. 
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where T is the number of columns of Z, and the reference vector r may be chosen 

arbitrarily. 

The proposed algorithm is summarized in Table 4.4 and is described by the fol­

lowing example. Let S E .IR5 x 1000 be a sparse source matrix. Assume that the source 

matrix S is constructed such that 30% of its columns satisfy the disjoint orthogonal­

ity property, i.e., each source is uniquely represented by 60 (= 0.3 * 1000/5) columns 

of the source matrix, while the remaining 70% of the columns are non-sparse and 

randomly generated from a Gaussian distribution with zero mean and unit variance. 

Let A E JR.3x5 denote a mixing matrix randomly generated from a white normal dis­

tribution with zero mean and unit variance. For estimating the mixing matrix and 

the number of columns, a new data matrix Z is constructed from the observation 

matrix X =AS by following the preparation steps described in Section 4.2.2, with 

the normalization step performed using ( 4.8). The reference vector r E JR3x 1 in this 

example is selected as the principal eigenvector of the matrix Rz = zzT. 

The angle between the reference vector r and the kth column of Z can be cal­

culated using (4.21). For the columns of the source matrix S that contain only 

one nonzero element, the corresponding columns of Z are normalized versions of the 

columns of the mixing matrix A. Accordingly, if Zk = ai/JJaiJJg2 , then fh in (4.21) 

represents the angle between the reference vector r and ai, the ith column of the 

mixing matrix. Since, in the presented example, each source is uniquely represented 

by 60 columns in the source matrix S, there will be 5 angles, corresponding to the 

number of sources, that are repeated 60 times in the vector of angles(} = [B1, ... , Bt]. 

On the other hand, for the remaining 70% of the columns of the source matrix that 

have random entries, the corresponding columns of Z are a random linear combina­

tion of the columns of A. Consequently, the corresponding entries in the vector of 

angles () are random. Accordingly, by constructing a histogram plot for the vector of 

angles (}, the resulting figure will show 5 peaks corresponding to the 5 angles that are 
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repeated 60 times. The histogram plot of the presented example is shown in Figure 

4.8. 

As shown in Figure 4.8(b) there are five peaks in the histogram plot. The height 

of each peak is approximately 60, which agrees with the number of columns for which 

each source is uniquely represented in S. For constructing the histogram shown in 

Figure 4.8(b), and for estimating the columns of the mixing matrix, as will be shown 

later, the vector of angles fJ must be quantized into a finite number of values. The 

value of the quantization level 6 0 depends on the noise level. For the noise-free 

case shown in Figure 4.8(a), all the points corresponding to one hyperline in the 

m dimensional space have the same orientation. Accordingly, a small value of 6 0 

should be selected. On the other hand, if the measured signals are contaminated 

with random noise, the points corresponding to one hyperline in the m dimensional 

space will distribute around a hyperline, which is oriented in the same direction as 

one of the columns of the mixing matrix. In this case the value of 60 must be chosen 

large enough such that the difference between the angles of the points surrounding 

one hyperline is less than 60. 

After constructing the vector iJ, the quantized version of fJ, a histogram plot of iJ is 
constructed and the number of peaks is counted. If the reference vector r was chosen 

properly, the number of peaks in the histogram will equal the number of columns of 

the mixing matrix. Since there is a one-to-one correspondence between the angles 

in fJ and the columns of Z, the columns of the mixing matrix can be estimated 

by clustering the columns of Z corresponding to the angles that have peaks in the 

histogram. For example, the first peak in Figure 4.8(b) corresponds to the angle 

69°. Let Ii denote the set of indices of the entries in the vector iJ that have that 

value. Then an estimate of one column of the mixing matrix can be calculated as 

ai = mean(Z (:,Ii)). The process can be repeated for the remaining peaks in the 

histogram until all the columns of the mixing matrix are estimated. Following this 
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procedure for the example presented in Figure 4.8, the correlation coefficient between 

the true mixing matrix and the estimated mixing matrix is given by 

RAA = 

-1.0000 

0.1760 

-0.5603 

-0.8135 

-0.7046 

-0.7046 

-0.5745 

0.1931 

-0.9859 

-1.0000 

0.5603 

-0.9140 

1.0000 

-0.0260 

-0.1931 

-0.1760 

1.0000 

-0.9140 

0.4294 

0.5745 

0.8120 

0.4316 

-0.0285 

1.0000 

0.9863 

Clearly all the columns of the mixing matrix are estimated correctly. Further, the 

SIR between the actual mixing matrix and the estimated mixing matrix is 73.g128 

dB, while the SIR between the actual mixing matrix and the mixing matrix estimated 

using k-means is only g.4741 dB. 

The main difficulty associated with the proposed algorithm is choosing the refer­

ence vector r. Although the presented example shows that the proposed algorithm 

can estimate the mixing matrix correctly, this is not always the case. For example, if 

the reference vector is orthogonal to a hyperplane containing more than one column 

of the mixing matrix, the estimated angles for these columns will be the same and 

equal to go0 
. Accordingly, the number of peaks in the histogram will be less than the 

number of columns of the mixing matrix, and the estimated column corresponding 

to the go0 angle will be a linear combination of the vectors that belong to the same 

hyperplane. Further, if more than one column forms the same angle with respect to 

the refernce vector r, those columns will map into the same histogram bin and the 

algorithm will fail. The third algorithm presented in the next subsection overcomes 

this difficulty. 
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4.3.5 	 Third Clustering Algorithm: Modified Angular His­

togram followed by Sequential Cluster Extraction (MAH­

SCE) 

As shown in the previous two subsections, the proposed two algorithms can accurately 

estimate, under certain conditions, the number of sources and the mixing matrix. 

However, each one of these two algorithms has its own limitation. For instance, 

the first algorithm has an undesirable quadratic computational complexity, while the 

performance of the second algorithm depends greatly on the choice of the reference 

vector r, i.e., the second algorithm may fail distinguishing between distinct multiple 

columns of A. 

In this subsection we propose combining the two algorithms into a single robust 

algorithm that alleviates the difficulties associated with each approach. This can be 

done by executing the modified angular histogram (MAH) algorithm imax times, where 

in each execution a new reference vector is used and an estimate of the mixing matrix 

A is obtained. There are many approaches for selecting the reference vector. For 

instance, the reference vector can be selected as one of the eigenvectors of Rz = Z zr. 
This approach is obvious, since the eigenvectors of Rz capture the main directions of 

the columns of Z. If imax is chosen to be greater than m, the number of eigenvectors 

of Rz, then the remaining (imax-m) reference vectors can be selected randomly from, 

e.g., a Gaussian distribution with zero mean and unit variance. 

The estimated columns of the mixing matrix produced by the MAH algorithm 

may contain some columns which are linear combinations of some columns of the 

true mixing matrix A. This can occur when r has the same orientation with more 

than one column of A. To alleviate this problem, we execute the SCE algorithm, 

where the input feature matrix Y is constructed by concatenating all the A-matrices 

estimated using the MAH algorithm. The advantage of this approach is that the size 
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Figure 4.9: (a) A scatter plot of the first three rows of the measured data matrix, (b) The 

CP parameter of the estimated clusters. 
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of Y can be controlled to a reasonable level by appropriate choice of the parameter 

ima.T· The steps of the third algorithm is presented in Table 4.5. 

The following example demonstrates the ability of the MAHSCE algorithm in 

estimating the columns of the mixing matrix A in a very difficult situation. The 

number of sources n in this example is 7 while the number of observations m is 5. 

The number of columns of the source matrix S is 50, 000 and only 2% of them satisfy 

the disjoint orthogonality principal. The matrix X of observed signals is generated as 

X = AS, where A E ]R5x7 is randomly generated from a white normal distribution 

with zero mean and unit variance. A scatter plot of the first 3 measured signals 

is shown in Figure 4.9(a). As shown in this figure, no clear clusters are visible. 

However, after running the MAH algorithm 50 different times and constructing a 

feature matrix for the SCE algorithm, the SCE algorithm estimates the columns of 

the mixing matrix and the number of sources correctly as shown in Figure 4.9(b ). The 

correlation coefficient between the original mixing matrix and the estimated mixing 

matrix is given by 

RAA ­

-0.8326 

-0.6619 

0.1837 

0.9999 

0.8084 

0.4573 

-0.4885 

0.5500 

0.4817 

0.5456 

-0.4860 

-0.5177 

-0.0377 

0.9999 

0.0685 

-0.1630 

-0.7397 

-0.4648 

-0.5050 

-1.0000 

0.0297 

-0.5131 

-0.9999 

-0.1374 

0.6557 

0.1765 

-0.1644 

-0.4854 

0.9999 

0.5102 

0.2692 

-0.8313 

-0.8644 

-0.0771 

0.5458 

-0.2768 0.8573 

-0.1253 0.1713 

-1.0000 -0.0052 

-0.2002 -0.8077 

0.0044 -0.9999 

-0.7441 -0.5128 

-0.5528 0.5073 

Clearly the mixing matrix is well estimated using the proposed algorithm. The 

SIR between the actual mixing matrix and the estimated mixing matrix is 38.4434 

dB. On the other hand, the correlation matrix between the mixing matrix and the 

matrix estimated using k-means is given by 
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Table 4.5: Modified Angular Histogram followed by Sequential Cluster Extraction 

Algorithm 3: [A] = MAHSCE(Z, imax, t:,B) 

1. 	 Compute the eigenvalue decomposition of the matrix Rz = zzr; [U, :EJ = eig(Rz)· 

2. 	 Generate an ( m x ( imax - m)) random matrix, R. 

3. 	 Generate the matrix of all reference vectors by concatenating the columns of U 

andR, i.e., R = [UR]. 

4. 	 Initialize an empty feature matrix Y = [ J. 

5. 	 Fill the feature matrix by running the MAH algorithm imax times as follows: 

for i = 1 : ima.r 


Ti = R(:, i); 


6. 	 end 

7. 	 Estimate the mixing matrix A using Algorithm 1, with the constructed matrix Y 

as the input feature matrix. 

132 




Ph.D. Thesis - Nasser Mourad McMaster - Electrical & Computer Engineering 

R­AA1;;m 

-0.2028 

0.7315 

-0.9700 

-0.6054 

0.7178 

0.0096 

-0.2973 

-0.6658 

-0.6687 

0.4783 

0.2139 

-0.7953 

0.1623 

-0.2270 

0.5471 

-0.4542 

0.6514 

-0.2033 

0.1838 

0.4621 

0.9316 

0.0263 

0.1498 

-0.5142 

-0.9551 

0.7412 

-0.1547 

0.4225 

-0.1851 

-0.8208 

0.7398 

0.4465 

-0.8699 

-0.4937 

0.0338 

0.9524 -0.0445 

0.1566 -0.9110 

0.3195 0.8386 

0.0177 0.0720 

0.5393 -0.6104 

0.4400 -0.2873 

0.7633 0.4846 

which shows that only 5 columns are estimated with moderate accuracy, while the 

remaining ones are poorly estimated. The SIR between the actual mixing matrix 

and the estimated mixing matrix is only 5.0299 dB. This example reflects the advan­

tage of the proposed algorithm over the partitioning clustering algorithms, which are 

represented by the k-means algorithm in this example. Although the number of clus­

ters was provided to the k-means algorithm, the algorithm failed in estimating the 

columns of the mixing matrix, while the MAHSCE algorithm estimated the number 

of sources and the mixing matrix with very high accuracy. The reason behind this 

performance is that the MAHSCE algorithm is selective in the sense that only the 

points that show concentration around a hyperline are taken into consideration, while 

the k-means algorithm treats all the points equally. 

4.4 Simulation Results 

In this section we present two examples of separating real signals. In the first example 

the original signals are 5 different images, while in the second example the original 

signals are 4 different sounds. In both cases, the wavelet transform is applied on the 

measured signals. The mixing matrix and the wavelet coefficients of the sources are 

estimated in the wavelet domain. Then the inverse wavelet transform is applied on 

the wavelet coefficients of the sources to restore the original sources to their original 
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space of representation, i.e., the time domain for the sound signals and the spatial 

domain for the images. 

Example 1 

In this example, the performance of the MAHSCE algorithm is compared with two dif­

ferent algorithms, the k-means clustering algorithm and the FastICA algorithm [52]. 

The ICA algorithm is incorporated in this comparison to demonstrate the ability of 

the SCA technique in solving some problems for which the ICA technique fails. In 

this example we present a case for which some of the original source signals are cor­

related. Accordingly, the sources violate the fundamental independence assumption, 

and consequently it is expected that the FastICA algorithm will fail in this case. 

Since the ICA algorithms assume that the number of sensors is at least equal to the 

number of sources, a square mixing matrix is used in this example. 

The original sources in this example are the five photos shown in Figure 4.lO(a). 

The correlation matrix of the five pictures is given by 

1.0000 -0.1944 0.1956 -0.3230 -0.4664 

-0.1944 1.0000 -0.1715 0.3154 0.0285 

0.1956 -0.1715 1.0000 -0.4231 0.1963 

-0.3230 0.3154 -0.4231 1.0000 -0.0374 

-0.4664 0.0285 0.1963 -0.0374 1.0000 

Rss = 

which shows that some of the sources are correlated. 

The five mixtures are shown in Figure 4.lO(b), and the estimated sources using 

the FastICA algorithm are shown in Figure 4.lO(c). It is clear from this figure that 

the FastICA algorithm failed in estimating the sources correctly, and none of the 

estimated sources correspond to the third original source. 

On the other hand, estimating the sources using the SCA technique is performed 

by estimating the mixing matrix using two different clustering algorithms; the MAH­

SCE and the k-means algorithms. The 2-D "sym4" discrete wavelet transform is 
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(a) 

(b) 

-. 
(c) 

(d) 

• 
(e) 

Figure 4.10: Results of Example 1. (a) Original photos, (b) Mixed photos, (c) Estimated 

photos using FastICA algorithm, (d) and (e) Estimated photos when the mixing matrix is 

estimated using k- means and MAHSCE, respectively. 

135 



Ph.D. Thesis - Nasser Mourad McMaster - Electrical & Computer Engineering 

applied on the mixtures and each algorithm is applied separately on the resulting 

wavelet coefficients to estimate the mixing matrix. For each of the estimated mix­

ing matrices, the corresponding wavelet coefficients of the sources are obtained by 

pre-multiplying the matrix of the mixtures' wavelet coefficients by the inverse of the 

estimated mixing matrix. The pictures are then reconstructed by applying the 2­

D inverse wavelet transform on the resulting coefficients. Figure 4.lO(d)-(e) show 

the reconstructed pictures when the mixing matrix is estimated using k-means and 

IVIAHSCE, respectively. As shown in these two figures, the sources are estimated 

correctly only when the mixing matrix is estimated using the MAHSCE algorithm. 

Example 2 

In this example we consider the case of separating 4 different sound sources from 

only 3 mixtures. Since the number of mixtures is less than the number of sources, 

the sources can not be estimated using ICA. In this example, the performance of the 

MAHSCE algorithm is compared with that of the k-means. The observed signals 

are sparsely represented using the sym8 discrete wavelet transform, and the decom­

position coefficients are used for estimating the mixing matrix. After estimating the 

mixing matrix, the coefficients of the sources are estimated using the MCCR algo­

rithm presented in Chapter 3. The objective function used with the MCCR algorithm 

is the g109(s). The sources are reconstructed from their coefficients by applying the 

inverse wavelet transform. The results of this example are shown in Figure 4.11. 

As shown in Figure 4.11 ( c), the original sources are estimated correctly when the 

mixing matrix is estimated using the MAHSCE algorithm. The correlation matrix 
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Figure 4.11: Results of Example 2. (a) Original source signals, (b) Mixed signals, (c) and 

(d) Estimated sources when the mixing matrix is estimated using the MAHSCE and the 

k-means, respectively .. 

137 



Ph.D. Thesis - Nasser Mourad McMaster - Electrical & Computer Engineering 

between the original sources and the estimated sources in Figure 4.ll(c) is given by 

0.0077 0.9346 -0.0040 -0.0216 

-0.0619 0.0254 -0.2048 -0.9291 
Rss1 

0.9683 0.0165 -0.1916 0.1116 

-0.1228 -0.0061 0.8944 0.2056 

On the other hand, when the mixing matrix is estimated using k-means, the 

fourth source was not estimated. The correlation matrix between the original sources 

and the estimated sources in Figure 4.ll(d) is given by 

-0.0596 -0.0487 -0.8644 0.8080 

0.0362 0.7848 0.1464 0.2725 

-0.9072 0.0167 0.0278 0.0581 

0.3870 -0.5914 -0.2808 -0.2274 

Clearly the correlation between the original sources and the estimated ones is low. 

It is worth mentioning that, due to the reconstruction process of the sources, the 

accuracy of the estimated sources in this example is less than that of the estimated 

sources in the previous example. In the previous example, the mixing matrix is 
- - -1 ­

square; accordingly, the sources are reconstructed as S = A X, where A is the 

estimated mixing matrix. On the other hand, the sources in the second example are 

reconstructed in 3 steps. In the first step, the mixing matrix is estimated using the 

proposed MAHSCE clustering algorithm. In the second step, the estimated mixing 

matrix and the wavelet coefficients of the measured sounds are utilized for estimating 

the wavelet coefficient of the sources using the MCCR algorithm proposed in Chapter 

3. Finally, the sources are estimated by performing the inverse wavelet transform on 

the estimated wavelet coefficients of the sources. Recall from Chapter 3 that there is 

a certain threshold for the diversity (number of nonzero entries) of the source vector 

below which the original source vector can be perfectly estimated using the MCCR 

algorithm. Therefore, even if the mixing matrix can be estimated correctly using the 
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MAHSCE algorithm, the wavelet coefficients of the sources may not be estimated 

correctly using the MCCR algorithm. This can happen when many columns of the 

sources coefficient matrix are not sparse enough for the MCCR algorithm, or any 

other algorithm, to estimate them correctly. Therefore, although the SCA technique 

is very promising for solving the under-determined BSS problem, the most critical 

step in the two-step technique is finding a proper transformation that projects the 

original sources into its optimal sparse representation. This is the topic of the future 

research. 

4.5 Conclusion 

In this chapter we proposed three different clustering algorithms that can be used for 

estimating the mixing matrix for solving the blind source separation (BSS) problem 

via the SCA technique. In contrast to most of the previously utilized algorithms, the 

proposed algorithms can estimate the number of sources from the observed signals. 

The first clustering algorithm is based on a clustering technique called hierarchical 

clustering. Identification of individual clusters constructed using hierarchical clus­

tering is a difficult task. Previous approaches for identifying individual clusters are 

either manual or depend on some parameters that are difficult to adjust. In the first 

clustering algorithm we proposed a new technique for identifying these clusters. This 

technique is based on incorporating a statistical test with the hierarchical clustering 

algorithm. In addition, we proposed two parameters, called concentration param­

eters, that can identify from the extracted clusters the clusters that correspond to 

the columns of mixing matrix. Accordingly, the proposed algorithm can estimate the 

mixing matrix as well as the number of sources. 

The idea of the second proposed clustering algorithm is inspired by the angular 

histogram clustering algorithm [92, 95, 96]. Previously suggested angular histogram 
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clustering algorithms are difficult to extend beyond the 2-D case. However, in this 

chapter we proposed a new algorithm that generalizes the previous algorithms to the 

m 2:: 2 case. It was shown that, under certain conditions, the proposed algorithm can 

efficiently estimate the mixing matrix even when the disjoint orthogonality condition 

is satisfied for a small percentage of the columns of the source coefficient matrix. 

The third clustering algorithm is a combination of the first two algorithms. This 

algorithm combines the advantages of the first two clustering algorithms and avoids 

their limitations. Two real examples demonstrated the ability of the proposed algo­

rithms in estimating the mixing matrix and the number of sources. 
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Chapter 5 

Sequential Sparse Signal 

Extraction with Applications to 

EEG/MEG Signal Processing 

5.1 Introduction 

In Chapter 4 we discussed the problem of finding a unique solution to the instanta­

neous blind source separation (BSS) problem defined as X = AS when both A and 

Sare unknowns, where XE RmxT is a matrix of measured signals, A E Rmxn is an 

unknown mixing matrix, SE RnxT is a matrix of unknown sources, mis the number 

of observations, n is the number of sources, and T is the number of samples. The 

algorithms derived in Chapter 4 are more suitable for solving the underdetermined 

BSS in which the number of sources n is greater than the number of sensors m. In 

this chapter we develop new algorithms for solving the BSS problem when m 2: n. 

As described in Chapter 4, the independent component analysis (ICA) technique 

can be utilized for solving the BSS problem as long as the underlying problem satisfies 
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the four conditions mentioned in Section 4.1. Since the over-determined case, in 

which m > n can always be transformed into a complete case by using the principal 

component analysis (PCA) technique, it is assumed in this chapter, without loss of 

generality, that m = n, i.e., the number of sensors equals the number of sources. 

Generally speaking, there are three different approaches that have been suggested 

in the literature for solving the BSS problem using the ICA technique. The first 

approach is to separate all the sources simultaneously. This can be accomplished 

by finding a separating matrix B such that the rows of Y = BX = BAS are 

mutually independent. The ideal value of B is B = A-1
. However, the solution of 

the BSS problem is always associated with permutation and scale indeterminacies. 

Therefore, the best solution that one can expect from any algorithm that solves the 

BSS problem is the one that satisfies BA= PF, where Fis a diagonal scaling matrix 

and P is a permutation matrix. This approach has been utilized successfully for 

removing different kinds of artifacts from EEG/MEG data [111-113]. However, when 

the number of sensors is large, as in l\1EG measurements, the process of identifying 

the source of interest, e.g. the one corresponding to the artifact, from the separated 

sources is generally not trivial and needs some experience. Accordingly, in the case 

when only a very few source signals are the subject of interest, the computational cost 

as well as the post processing effort required for identifying the desired sources can be 

greatly reduced by extracting only the sources that have certain characteristics. This 

is the second approach for solving the BSS problem, and it is known in the literature 

as blind signal extraction (BSE). 

BSE has become one of the promising techniques for solving the BSS problem, 

especially in the cases when only few sources with specific stochastic properties or 

features need to be extracted. The idea of existing BSE methods is to find a separating 

vector b that maximizes the non-Gaussianity of the separated signal fJ = brX, where 

fJ is a row vector corresponding to one of the desired sources [52,53,55]. The extracted 
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source depends on the objective function that measures the non-Gaussianity of the 

separated source. For example, if the kurtosis is used as a measure of non-Gaussianity, 

the separated source could be either super-Gaussian or sub-Gaussian depending on 

whether the kurtosis is maximized or minimized, respectively. The extracted source is 

then removed from the mixture, and the process can be repeated until all the desired 

sources are extracted. 

As stated in [55], the BSE approach has the following advantages over the simul­

taneous BSS approach; 1) signals can be extracted in a specific order according to 

some features of the source signals, 2) the approach is very flexible in the sense that 

various criteria can be used in each stage depending on the features of the source to 

be extracted, 3) only interesting source signals need to be extracted, and 4) extensive 

computing time and resources can be saved. 

If one were to maximize the kurtosis, for instance, for extracting a single source, 

the algorithm would (ideally) converge to the single source having the maximum 

kurtosis of all the underlying sources. However, when one desires a specific source, 

then the BSE approach is of little use, unless the source carries the maximum kurtosis. 

Furthermore, due to random initialization of the algorithm, the algorithm is not 

guaranteed to converge to the global maximum [114]. To overcome this difficulty, prior 

knowledge about the desired source can be incorporated as additional constraints into 

the algorithm that solve the BSE problem. Following this technique, a third approach, 

known as constrained ICA (cICA), is developed in the literature for solving the BSS 

problem [114-119]. 

The cICA technique was first proposed in [115], and it was based on using a tem­

poral constraint to extract a source signal which is statistically independent from 

the other sources and is closest to some reference signal r(t). The technique is then 

developed in [116] to handle the case of utilizing multiple source signals for simul­

taneous extraction of multiple independent components. Further development was 
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then suggested in [ll8, 120, 121] for the case of a spatial constraint. In all these 

cases, the reference signal need not to be a perfect match (indeed, if it were, there 

would be no reason to perform the analysis) but it should have enough information 

to point the algorithm in the direction of the desired signal. For the case of imposing 

a temporal constraint [ll5, 116), the desired source signal is estimated by solving an 

optimization problem in which the negentropy was used as an objective function for 

measuring the non-Gaussianity of the extracted source, and the measure of closeness 

between the desired source signal and the reference signal was used as a constraint. 

The constrained optimization problem is then solved using a Newton-like learning 

procedure. Using the prior information provided by the reference signals, the cICA 

algorithm will then be able to extract only the useful components, thus eliminating 

the need for post-processing of the separated components, and reducing the amount 

of computational resources and costs. 

In the field of biomedical signal analysis it is common that some prior information 

is available about the temporal or spatial characteristics of the desired signal. The 

prior information can then be used for constructing a reference signal, which in turn 

can be used as a temporal constraint in the cICA algorithm. For example, for the case 

of rejecting ocular artifacts from an EEG /MEG data, the ocular artifact most likely 

contaminates the frontal electrodes. Accordingly, a reference signal in this case can 

be easily derived from one of the frontal electrodes as the time samples that exceed a 

certain threshold [114, 117, 122]. Reference signals for other artifacts can be obtained 

by using the information available about these artifacts. For instance, the frequency 

of the noise introduced by the main supply (50/60 Hz) is known, and a reference 

signal for the electrocardiogram (ECG) contamination can be obtained by using a 

co-recording from a separate electrode placed on the chest. In each of these cases, 

a reference signal can quite readily be automatically derived to serve as a temporal 

constraint in the cICA algorithm [114]. Another approach for generating a reference 
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signal for extracting periodic signals, e.g., the event related potential (ERP) signal, 

is to use a sequence of pulses which have the same periodic frequency as the desired 

signal. This approach was utilized in [116] for estimating the different components of 

the ERP signal from real EEG data. 

From this discussion it is clear that sequential source extraction techniques, es­

pecially cICA, are more useful than the simultaneous BSS technique in the field of 

biomedical signal processing, where only a few source signals are considered interest­

ing. In this chapter we propose four novel algorithms for solving the BSE problem 

when the source signals are sparse. Since non-sparse sources can often be sparsely 

represented under a suitable linear transformation, (e.g., the short time Fourier trans­

form, the wavelet transform, the wavelet packets transform, ... etc.), it will be assumed 

in this chapter, without loss of generality, that all the desired sources are sparse. In­

stead of maximizing the non-Gaussianity of the extracted source signal, as in the 

ICA approach, the objective function used in these algorithms measures the sparsity 

of the extracted source signal, and a separating vector is estimated as the one that 

maximizes the sparsity of the extracted source signal. 

In the first part of this chapter we propose a novel algorithm for solving the 

problem of sequential blind source extraction when the sources of interest are sparse. 

The ICA based algorithms that can extract sparse sources, e.g., the FastICA algo­

rithm [52], are based on modeling the sparse source signal as a super-Gaussian signal. 

Hence, a separating vector is estimated by maximizing the kurtosis of the extracted 

source signal. However, in the proposed algorithm we suggest using an objective func­

tion that explicitly measures the diversity (antisparsity) of the extracted source signal. 

The simulation results presented in Section 5.4 show that the proposed algorithm can 

extract sparse source signals with relatively smaller residual error than the FastICA 

algorithm. The proposed algorithm can extract only a single sparse source signal, and 

it is blind due to the lack of information available about the desired source. After 
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running the algorithm, the algorithm would (ideally) converge to the sparsest source 

signal. Then the extracted source is removed from the mixture, and the process is 

repeated until all the desired sources are extracted. The algorithm is referred to as 

blind sparse signal extraction (BSSE). 

In the second part of this chapter we propose three different novel algorithms that 

explicitly use the information available about the source of interest. The available 

information is used as a constraint in the optimization problem, and the resulting 

algorithms are referred to as constrained sparse component analysis (cSCA). The first 

algorithm in this class is based on utilizing the temporal information available about 

the source signal. A previous approach for solving this problem was proposed in [123] 

and is based on minimizing an objective function, which measures the sparsity of the 

extracted source signal, under the constraint that the correlation coefficient between 

the extracted source signal and a reference signal equal to one. The objective function 

used in [123] is a smooth approximation of the £1-norm. However, in Chapter 2 and 

Chapter 3 it was shown that nonconvex objective functions perform better than the 

£1-norm in estimating sparse signals. Therefore, the proposed algorithm is based 

on measuring the sparsity of the extracted source signal using one of the objective 

functions proposed in Chapter 3. The proposed algorithm has two different versions, 

depending on the measure of closeness between the extracted source signal and the 

reference signal. 

The second algorithm is also based on utilizing temporal information about the 

desired source signal. However, in contrast to the first algorithm, only the support 

of the desired sparse source signal is available, i.e., the case where only the indices of 

the nonzero samples of the desired source signal are known while no information is 

available about their signs and/or values. Finally, the third algorithm is based on uti­

lizing spatial information, i.e., information about the mixing column, of the source of 

interest. Previous approaches for solving this problem were proposed in [118,120,121]. 
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These approaches are based on modifying an ICA based algorithm in a way that some 

of the columns of the mixing matrix are initialized by the reference vectors, which 

are either kept fixed or allowed to change slightly during the optimization process. In 

these algorithms, all components must be estimated first, then the desired signals are 

identified as the components associated with the reference mixing columns. In con­

trast to these algorithms, the proposed algorithm can extract only one sparse source 

signal which corresponds to the available spatial reference vector. Simulation results 

show that the three algorithms can be successfully used for removing different kinds 

of artifacts from real EEG data and for estimating the ERP signal from synthesized 

EEG data. 

List of symbols 

A The mixing matrix. 

B The separating matrix. 

S The source matrix. 

X The measurement matrix. 

Y The estimated source matrix. 

W o A diagonal weighting matrix. 

h An estimate of a mixing column. 

r A reference vector. 

ft A temporal reference {row) vector. 

f su A support reference (row) vector. 

rs A spatial reference (column) vector. 

eigmin(R) The eigenvector of R corresponding to the minimum eigen­

value. 

:Ir (b; r) The regularization objective function. 

/ The regularization parameter. 
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5.2 Blind Sparse Signal Extraction (BSSE) 

As described in Chapter 4, the BSS problem is defined as the problem of retrieving n 

unknown source signals s(t) E IR,n from m linear measurements x(t) E Rm when the 

mixing matrix A E JRmxn is unknown: 

x(t) = As(t), t = 1, ... T. (5.1) 

here m is the number of observations, n is the number of sources, and T is the number 

of samples. Eq. (5.1) can be written in the following compact form 

X=AS, (5.2) 

where X E IR,mxT is a matrix of observed signals, S E RnxT is a matrix of unknown 

sources. 

In Chapter 4 we considered the case of solving an under-determined BSS problem 

in which the number of sources n is generally unknown and greater than the number 

of sensors m, and all the sources are estimated simultaneously. In this chapter we 

consider the even-determined BSS problem in which the number of sources equals the 

number of sensors, and we solve this problem via sequential extraction of the sources. 

In the case of the even-determined BSS problem, estimates of the sources are 

obtained by finding a separating matrix B such that the estimated sources 

Y=BX=BAS (5.3) 

satisfy some predefined statistical properties. For example, in the ICA approach, the 

separating matrix is estimated such that the rows of Y are mutually independent, 

while in the PCA approach, the separating matrix is estimated such that the rows of 

Y are uncorrelated. Since in the underlying model we assume that the sources are 

sparse, the separating matrix in this chapter is estimated such that the rows of Y are 
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as sparse as possible. Regardless of the utilized approach, the sources are considered 

to be correctly estimated if the overall separating-mixing system satisfies 

C=BA=PF, (5.4) 

where F is a diagonal scaling matrix, and P is a permutation matrix, i.e., the esti­

mated sources are usually associated with scale and permutation indeterminacies. 

5.2.1 Extraction of a sparse source. 

In this section we consider a novel solution to the problem of sequential estimation 

of the rows of the separating matrix B. Each row of the separating matrix B is 

estimated by maximizing the sparsity of the associated extracted source. From (5.3), 

the ith row yi E JRT of Y, corresponding to the ith separated source, is expressed as 

n 

Yi= biX = ciS = Lci[j]si, (5.5) 
j=l 

where bi is the i th row of B, ci = biA is the i th row of C, and si is the j th source 

signal, i.e., the jth row of S. Since the order of the estimated source is irrelevant, 

the superscript i will be dropped from the sequel equations, and we use the notation 

n to refer to a row vector. Accordingly (5.5) can be rewritten as 

n 

fJ = bX = cS = Lc[j]si, (5.6) 
j=l 

which shows that the estimated source signal is a linear combination of the original 

source signals. 

Assume that the support of the original source signals are independent. The 

support of the signal refers to the indices of the nonzero samples. Then, with high 

probability, the diversity (the number of nonzero samples) of the summation of two 

source signals is greater than the diversity of any one of the two sources. Accordingly, 
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the sparsest estimated signal fJ can be obtained if c has only one nonzero entry. Since 

c = bA, this implies that b corresponds to a scaled version of one row of A- 1
, the 

inverse of the mixing matrix. Accordingly, one sparse source signal can be obtained 

by finding a separating vector b that minimizes the diversity of the estimated source 

vector fJ = bX. 

Analytic Solution 

Consider the case where the set of indices of the zero entries of the desired source, 

say the ith source, is known. Let Ii refer to these indices, i.e., si(Ii) = 0. Due 

to the assumption that the support of the original source signals are independent, 

then, with high probability, there are some indices for which si(Ii) =/= 0, Vj =/= i, i.e., 

Ilsi (Ii) Ilc2 > 0. Therefore, if Bis a separating matrix, and neglecting the permutation 

indeterminacy, the entries of the ith row of the matrix 

Yii = BXI; (5.7) 

are all zeros, where XI; is a sub-matrix of X with columns corresponding to the 

indices in Ii. Accordingly, the ith row of the separating matrix B can be obtained 

by solving the following optimization problem 

(5.8) 

where the constraint IJbJle2 = 1 is utilized to prevent the trivial solution b= 0. 

Following the standard method of Lagrangian multipliers (see, e.g. [85, 86]), the 

optimization problem (5.8) can be readily solved with a solution vector satisfying 

(5.9) 


where >. is the Lagrangian multiplier. Equation (5.9) shows that >.and bT are eigen­

value and eigenvector of the matrix XIiX.L respectively. Moreover, substituting 
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(5.9) into the expression of the objective function in (5.8) we get 

(5.10) 

where in the last equality we used the fact that llblle2 = 1. Therefore, for mini­

mizing the cost function :Tb, ..\ must be minimum. Accordingly, the solution of the 

optimization problem (5.8) is given by 

(-i)T . T
b = e1gmin(Xr;Xr;), (5.11) 

where eigmin (R) is the eigenvector of R corresponding to the minimum eigenvalue. 

Equation (5.11) states that the separating vector of the ith source can be read­

ily estimated from the measured signals once the indices at which the ith source 

equals zero are known. However, this is of little use, since these indices are generally 

unknown. We now propose an iterative algorithm that converges in its limit to (5.11). 

Proposed iterative algorithm 

Since the prior information available about the desired source signal is its sparsity, the 

separating vector b can be estimated by minimizing the following objective function 

b = argmjng (Y) = g(bX) subject to llblle2 = 1, (5.12) 
b 

where g(fJ) is a function that measures the diversity (antisparsity) of the separated 

vector fl. In this chapter we consider the functions presented in Chapter 3, which 

have the general form 
T 

g(fJ) = 2: 9c(y[t]), (5.13) 
t=l 

where 9c( ·) is a symmetric and monotonically increasing concave function on the 

nonnegative orthant 0 1. See Table 3.1 for a list of objective functions that satisfy 

these conditions. 
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Given an estimate of the separating vector bk at the kth iteration, it was proved 

in Chapter 3 that the function g(y) is upper bounded by the convex function f(fJ) = 

llfJWk/IW
2 

, where wk is a diagonal matrix, whose ith diagonal element is calculated 

from Yk = bkX using the following equation 

t = 1, ... ,T, (5.14) 

where dk[t] = 898ly) /y=yk[tJ· The proposed algorithm is based on minimizing the objec­

tive function g(fJ) by iteratively minimizing its upper bound f(y). Therefore, given 

an initial estimate of the separating vector bk, a new estimate can be obtained by 

solving the following optimization problem 

bk+l = argm_in llbXWki1~ subject to /lblle2 = 1. (5.15)2
b 

Comparing (5.15) with (5.8) we readily find that 

(5.16) 


where X k = XW k· Note that the t-th column of X k is a scaled version of the t-th 

column of X, with a scaling factor given by vVk[t, t] defined in (5.14). Since Wk[t, t] 

is inversely proportional to Yk[t], multiplying the data matrix X by the diagonal 

matrix Wk has the effect of selecting the columns of the data matrix with indices 

corresponding to the indices of the small entries in the estimated source vector Yk· 

As the algorithm converges to the desired sparse signal, the diagonal matrix becomes 

more selective and Xk converges to XI;i defined in (5.7) ask~ oo. The proposed 

algorithm is summarized in Table 5.1 

5.2.2 Removing the extracted source from the mixture. 

After estimating the source signal fJ using the BSSE algorithm presented in Table 

5.1, the estimated source must be removed from the mixture before extracting a new 
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Table 5.1: Extraction of a sparse source 

[y, b] = BSSE(X, bo) 

Select a small threshold parameter t, and calculate y0 = b0 X. 

1. For k = 0, 1, ... , repeat until convergence: 

t = 1, ... ,T.• Calculate Wk[t, t] = 

• Update the separating vector: br+i = eigmin (XW~Xr). 

• Get a new estimate of the separated signal: Yk+i = bk+lX. 

2. Output Yk+l and bk+l as the solutions. 

End 

source. This can be done by finding a vector h E IRn that minimizes the following 

objective function (55] 

T 

.J(h) = L x'ftxjt, 	 (5.17) 
t=l 

where Xjt is the t-th column of the matrix Xj = Xj-l - hy, where j is an index 

corresponding to the number of the previously extracted source signals. Therefore, 

x 0 = X. Substituting the expression for Xjt into (5.17) we get 

T 

.J(h) = 	 L (x(j-l)t - hy[tl)T (x(j-l)t - hy[tl) 

t=l 

T T T 

= L x'&-i)tx(j-l)t - 2hT L X(j-l)tY[t] + hTh LY2[t], (5.18) 
t=l t=l t=l 
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where X(j-l)t is the t-th column of xi-1
. Setting the gradient of J(h) with respect 

to h equal to zero, we get 

(5.19) 


where bis the separating vector obtained from the BSSE algorithm in Table 5.1. Note 

that, h is, in fact, an estimate of the mixing column associated with the extracted 

source fJ. The new matrix Xi can then be used as an input to the BSSE algorithm 

for extracting the (j + 1)-st source signal, which in turn is removed from xJ before 

extracting a new source signal. This process can be repeated until all the desired 

source signals are extracted. Note that, after removing j ;:::: 1 source signals, and for 

estimating the separating vector of the (j + 1)-st source signal, the second step in 

Table 5.1 must be changed into 

-T . ( j 2 ( j)T)bk+I = e1gj+l X Wk X , 

where eigJ+l ( R) is the eigenvector corresponding to the (j +1)-st smallest eigenvalue 

of the correlation matrix R. This is because, ideally, the smallest j eigenvalues of the 

argument above are zero. 

5.3 Constrained Sparse Component Analysis (cSCA) 

The algorithm proposed in the previous section is useful for sequential extraction of 

sparse sources. Therefore, if one is interested in extracting a single source signal that 

has certain properties, then (ideally) the desired source will be the first extracted 

source signal as long as it is the sparsest source among all other sources. However, if 

the desired source is not the sparsest one, or if all the sources have the same sparsity, 

then there is no guarantee that the first extracted source is the desired one. One 

solution to this problem is to keep extracting sources one after the other until the 
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desired source is extracted. Clearly, this is not a good approach, especially when the 

number of sources is large. A more reasonable approach to overcome this difficulty is 

to explicitly incorporate all (or some of) the information available about the desired 

source signal into the optimization problem designed for extracting the sources. 

In the field of biomedical signal processing there is always some information avail­

able about the desired signal. This information could be a temporal pattern or the 

topographic map of the desired source. For example, it is known that eye-blink ar­

tifact contaminates the frontal electrodes (spatial information), and its amplitude is 

much higher than the amplitude of the brain signal. Accordingly, temporal infor­

mation about the eye-blink artifact can be obtained as the time samples at which 

one of the frontal electrodes exceeds a certain threshold. On the other hand, in the 

application of estimating the ERP signal from an EEG/MEG data, it is known a 

priori that there is a certain latency between the stimulus onset and the generation 

of the ERP signal; e.g., on average, the peak of the P300 occurs around 300 ms after 

the stimulus onset. This information can be incorporated as a temporal constraint 

for extracting the ERP signal. 

In this section we propose three new algorithms that explicitly incorporate either 

temporal, support, or spatial information about the desired source signal into the op­

timization problem (5.15). In the three algorithms, a separating vector bis iteratively 

obtained by solving the following optimization problem 

b1 = argm_inllbXWoll~2 +1.Jr(b;r) subject to llblle2 =1, (5.20) 
b 

where r E JRT is a reference vector that provides the information available about the 

desired signal, and / ~ 0 is a regularization parameter. The regularizing function 

.Jr(b; r) depends on whether the reference vector r conveys temporal or spatial in­

formation. Methods for choosing the reference vector r are discussed later in this 

chapter. Note that the constraint llblle2 = 1 is introduced to prevent the entries of 
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the solution vector b from growing without limit, producing a minimum equal to -oo. 

5.3.1 Temporal constraint SCA (tcSCA) algorithm 

In this subsection we consider the case of having a reference signal f't that conveys 

temporal information about the desired source signal. The reference signal must be 

selected carefully to have enough information to guide the algorithm towards the 

desired signal. However, this does not mean that the reference signal is a replica of 

the desired signal. 

The least squares approach is the conventional method for estimating a signal that 

is close to a given reference signal. In this method, a separating vector bts E JRn is 

estimated by minimizing the following objective function 

(5.21) 


for which the following closed-form solution is 

- - T ( T)-1bts = TtX XX , (5.22) 

and the corresponding extracted signal is given by 

(5.23) 


It is clear that the least squares solution does not utilize all the information 

available about the desired source signal, since it neglects the sparsity of the desired 

source signal. Accordingly, it is expected that the extracted source signal using the 

least squares approach is, in general, non-sparse. To enforce the sparsity of the 

extracted source signal, both the sparsity and the closeness to the reference vector f't 

must be incorporated into the objective function. There are many forms for measuring 

the closeness between two vectors. In this subsection we consider only two of them, 

the correlation coefficient and the mean-square error (MSE) between the two vectors. 
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First approach: the correlation coefficient as a measure of closeness 

In the first approach, the correlation coefficient between the desired signal and the 

reference signal is used as a measure of closeness between these two signals. Ac­

cordingly, in this case, :lr(b; r) in (5.20) has the form :lr(b; r) = -yr[= -bXr[. 

Substituting this expression into (5.20) we get 

bti = argmjn .lt1 (b) ~ llbXWolli
2 

- 1bXr[
b 

subject to llblle2 = 1. (5.24) 

This optimization problem can be solved by minimizing .lt1(b) with respect to 

b, then projecting the solution vector onto the surface of the unit sphere. Following 

these two steps, the expression of bti is given by 

(5.25) 


(5.26) 


Note that, due to the normalization step (5.26), the value of btl in this case does not 

depend on the value of the regularization parameter 'Y· 

Second approach: MSE as a measure of closeness 

In the second approach, the MSE between the desired source signal and the reference 

signal is used as a measure of closeness between the two signals. Accordingly, in 

this case, :lr(b; r) in (5.20) has the form :lr(b; r) = llfJ - f'tll;
2 

= llbX - f'tll;
2

• 

Substituting this expression into (5.20) we get 

bt2 = arg mjn .lt2 (b) ~ llbXWklli2 +1llbX - f'tllI2 
(5.27) 

b 
subject to llblle2 = 1. (5.28) 
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Table 5.2: Temporally Constrained SCA 

[y, b] = tcSCA(X, f't, o:) 

Select a small threshold parameter E, and calculate y0 =ft. 

1. 	 Fork = 0, 1, ... , repeat until convergence: 

• 	 Calculate lVk[t, t] = 2~}fl , t = 1, ... ,T.1 
• 	 if o: = 1, then calculate the value of"( using the L-curve method (see text 

for more details). 

• 	 Calculate the separating vector: 

b~+ 1 = f'tXT (X (W% + 0:11) xrrl 
-+ 

- bk+Ibk+l = + 
iibHrlle2 

• 	 Get a new estimate of the desired signal: Yk+I = bk+1X. 

2. Output Yk+I and bk+I as the solutions. 

End 

This optimization problem can also be solved by minimizing Jt2 (b) with respect 

to b, then projecting the solution vector onto the surface of the unit sphere. Following 

these two steps, the expression of btl is given by 

- + - T( ( 2 ) T) -1bt2="fTtX X Wk+"fl X , 	 (5.29) 

(5.30) 


where I is the identity matrix. A method for calculating the optimum value of "( 

is presented shortly in this subsection. In both approaches, a new estimate of the 
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desired signal is calculated and the diagonal elements of Wk are updated using (5.14). 

The process is repeated until convergence. 

Calculating the value of the regularization parameter 'Y 

The regularization parameter '"'/ can be calculated by first converting the objective 

function .:ft2(b) defined in (5.28) into the standard form of Tikhonov regularization, 

then calculating the regularization parameter using one of the standard techniques, 

e.g., the L--curve method [79-81]. The objective function .:ft2(b) can be converted 

to the standard form of Tikhonov regularization by defining d = bXWk and Ck = 

w;;1xr (x xrrl x' then expressing .:ft2 (b) as 

(5.31) 


The optimum solution vector d to (5.31) is the one that has minimum norm value 

and minimizes the residual error jjdCk - rtm The solution vector d depends on • 
2 

the value of 'Y· A large value of 'Y reduces the residual error while increasing the 

size of d, and vice versa. The optimum choice of 'Y is the one that keeps these two 

values small. There are many techniques that have been proposed in the literature 

for finding such a value for /, e.g., the L--curve and the generalized cross validation 

methods. See [79-81] and the references therein for more details. In this chapter the 

L-curve method, which is implemented in the Regularization Toolbox 1 , is used for 

calculating the regularization parameter. 

The proposed algorithm is summarized in Table 5.2. The input parameter a is 

a flag indicating which method is used as a measure of closeness, i.e., a = 1 for the 

l\1SE case, while a = 0 for the correlation coefficient case. 

Example: In this example we provide a quick comparison between the original 

least squares solution and the proposed algorithms. The data for this example were 

1This is a free software available at http://www2.imm.dtu.dkrpch/Regutools/ 

159 


http://www2.imm.dtu.dkrpch/Regutools


Ph.D. Thesis - Nasser Mourad McMaster - Electrical & Computer Engineering 

constructed as follows. A sparse source matrix S E JR10xi5o is generated such that 

each row has exactly 14 nonzero entries. The indices of these 14 entries are randomly 

selected, and their amplitudes are chosen from a uniform distribution between ±1. 

The measured data matrix X E JR10xi5o is constructed by multiplying the source 

matrix S by a square mixing matrix A E JR 10 x 10 randomly generated from a white 

normal distribution with zero mean and unit variance. The reference signal is con­

structed by adding a zero mean white Gaussian random noise to the desired source 

signal. The amplitude of the noise is adjusted to produce a 2dB SNR. The results 

are shown in Figure 5.1 

desired signal 

tcSCA solution 1 

tcSCA solution 2 

least square solution 

reference signal 

0 50 100 150 
number of samples 

Figure 5.1: Comparison between the least squares solution and the solutions produced by 

the tcSCA algorithm. The signals from top to bottom are the desired signal, the estimated 

signal using the tcSCA algorithm with a: = 0, the estimated signal using the tcSCA algo­

rithm with a: = 1, the estimated signal using the lest squares approach, and the reference 

signal, respectively. 

As shown in this figure, and for the two cases a = 0 and a = 1, the desired signal 

is correctly estimated using the tcSCA algorithm, while the least-squares approach 

produced a non-sparse signal. As a measure of performance, the average normalized 
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MSE (NMSE) between the desired signal and the extracted signal is calculated for 

each approach, where the NMSE between two vectors x and y is defined as 

NMSE- II -----II (5.32)x y- llxll12 llYllt2 2. 

The average NMSE is calculated over 1000 different runs, where in each run new 

source and mixing matrices are generated. The value of the average NMSE for the 

least-squares approach, the tcSCA with a = 0, and the tcSCA with a = 1 are 0.2016, 

3.67 x 10-4 , and 3.66 x 10-4 , respectively. Clearly the value of the NMSE for the 

tcSCA approach is much less than that of the least-square approach. 

5.3.2 Support constraint SCA (sucSCA) algorithm 

In this subsection we propose an algorithm that can extract a sparse source signal 

when only the support of that source signal is known, where the support of a signal 

is defined as the indices of its nonzero samples. This algorithm can be useful when 

the signs and the magnitudes of the nonzero samples of the desired source signal are 

unknowns, while only the indices of these samples are known. 

One application of this algorithm in the field of biomedical signal processing is 

removing the line voltage interference from the measured EEG/MEG data. Usually a 

notch filter is used for suppressing the 50/60 Hz noise from the measured EEG/MEG 

data. However, if an experiment is designed such that the desired response signal is 

expected to occupy the frequency band around the 50/60 Hz, then the notch filter 

will remove the desired response signal as well. Since the line voltage interference is 

very sparse in the frequency domain (it consists of a single pulse at 50/60 Hz), and its 

support (50/60 Hz) is known, this signal can be readily extracted using the proposed 

algorithm. See Example 3 in Section 5.4. 

The function :lr(b; r) in the proposed sucSCA algorithm measures the closeness 

between a nonnegative reference signal f'au ~ 0 and the square of the desired signal. 
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We can use the correlation coefficient between these two signals as such a measure. 

Since there is no information available about the absolute values of the nonzero entries 

of the desired signal, a reasonable choice of the reference signal f' su is the sign of the 

absolute value of the desired signal, i.e., it is one within the support of the desired 

signal and zero elsewhere. However, other choices, e.g., random positive entries within 

the support of the desired signal, can also be used. 

The function .:Tr(b; r) in the proposed sucSCA algorithm has the following expres­

sion .:Tr(b; r) = - (fl 8 fl) r;u, where 8 denotes the Hadamard product; i.e., element­

by-element multiplication. The quantity .:Tr(b; r) can be expressed in terms of b as 

follows 
T T 

- (fJ 8 fl) f'~u = - I: rsu[t]y2 [t] = L rsu[t] (bxt) 
2 

t=l t=l 

(5.33) 

where Xt is the t-th column of X, and Dr.u = diag (Tsu) is a diagonal matrix whose 

main diagonal equals the reference signal r su. 

Substituting .:Tr(b; r) into (5.20) we get 

bsu = argm_in.:Tsu (b) £ llbXWo!li - '"'(bXDrsuXrbT 
b 

2 

subject to llb//e2 = 1. (5.34) 

Eq. (5.34) can be written in the following form 

bsu = arg m_in .:Tsu (b) £ bX (W6 - '"'fDr.u) XrbT 
b 

subject to //b/ /c2 = 1. (5.35) 

which has the solution 

(5.36) 
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Table 5.3: Support constraint SCA 

[y, b] = sucSCA(X, Tsu) 

Select a small threshold parameter E. Calculate Dr,u = diag (Tsu), and set Yo = 

Tsu 8 v, where v E JR.T is a random noise vector, and 8 indicates the Hadamard 

product. 

1. 	 For k = 0, 1, ... , repeat until convergence: 

• Calculate wk, where wk[t] = 2d:kl~J , t = 1, ... ,T.1 
• Set W~ = diag(wk)· 

•Calculate the value of /k =min (~k~~,min(wk./Tsu)).r.ur.u 

• Calculate the separating vector: 

• 	 Get a new estimate of the desired signal: Yk+I = bk+1 X. 

• 	 Optional step: Set 'fh+i (Ir0 ) = 0, where Ir0 are the indices of the zero 

entries of the reference signal r su· 

2. Output Yk+i and bk+I as the solutions. 

End 
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The value of 'Y must be selected to minimize the value of Jsu (b) in (5.35) and 

to insure the convexity of Jsu (b). The convexity of :fsu (b) is satisfied as long as 

(W6 - 1Dr.J is nonnegative definite. Since both Wo and Dr.u are diagonal matri­

ces, the value of/ can be easily selected to satisfy this condition. Towards that end, 

let ibo E JRT denote the main diagonal of W6, then the value of/ that satisfies the 

convexity of :Tsu (b) must be selected such that 

0 :S / :S min ( ibofrsu) , (5.37) 

where the division operator is applied element wise. 

On the other hand, the value of 'Y that minimizes the value of Jsu (b) in (5.35) 

could be selected as the value that minimizes the difference (W6 -1Dr.u), or equiv­

alently llwo - /T sul 17
2 

, which is readily given by 

- -T
WoTsu 

!'=~· (5.38) 
Tsu Tsu 

Combining (5.37) and (5.38), the value of/ can be calculated as 

- -T )· WoTsu · - ­
0 :S / :S mm ( ~,mm(wa./rsu) . (5.39) 

Tsu Tsu 

The sucSCA algorithm is summarized in Table 5.3. The optional step in this table 

restricts the nonzero entries of the estimated signal to the support of the reference 

signal, which is also the support of the desired signal. This optional step is useful in 

a case when the measured signals are noisy. 

Example: This example demonstrates the ability of the sucSCA algorithm to 

extract a sparse source signal when only the support of this signal is known. In 

this example two different observation matrices and two different reference signals 

are constructed. The two observation matrices are constructed as X 1 = AS and 

X 2 = X 1+V, where S E JRIOxrso is the sparse source matrix, A E JR 10x10 is a square 

mixing matrix, and V E JR10xrso is a noise matrix which is randomly generated from 
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a white normal distribution with zero mean and unit variance. The entries of the 

noise matrix are adjusted such that the SNR = 10 dB. 

The sparse source matrix S is generated such that each row has exactly 15 nonzero 

entries. The indices of these 15 entries are randomly selected, and their amplitudes 

are chosen from a uniform distribution between ±1. The square mixing matrix A 

is randomly generated from a white normal distribution with zero mean and unit 

variance. The two reference vectors are set to have the same support as the first 

original source signal. The nonzero entries of the first reference vector r 1 are all ones, 

while for the second reference vector, r 2 , they are randomly generated from a random 

variable which is uniformly distributed between zero and one. According to the four 

different combinations of Xi and ri, i = 1, 2, we have four different cases. Each 

combination of these four different combinations is used as an input to the sucSCA 

algorithm, and an estimate of the desired signal is obtained. The optional step in 

Table 5.3 is used with the case of noisy measurements. The four estimated signals 

using the sucSCA algorithm, as well as the desired signal and the two reference signals 

are shown in Figure 5. 2. 

As shown in this figure, the desired signal is correctly estimated in the four dif­

ferent scenarios. This experiment is repeated 1000 different times, and in each time 

new S, A, and V are generated, and the NMSE between the desired signal and 

the extracted signal is calculated for each one of the four different cases. The av­

erage NMSE between the estimated signal and the desired signal for the four cases 

(X1;r1), (X2;r1), (X1;r2), and (X2;r2) are 0.0933, 0.2498, 0.1167, and 0.2566, 

respectively. As expected, the best performance is obtained when r 1 is used with 

noise-free measurements, while the worst performance is obtained when r 2 is used 

with noisy measurements. In terms of the reference vector, it is clear that, for a 

given measurement matrix, the NMSE is small when r 1 is used as a reference vector. 

Accordingly, on an empirical basis, we recommend using r 1 as a reference vector with 
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r1 

0 50 100 150 
number of samples 

Figure 5.2: An example of extracting a sparse signal using sucSCA algorithm in four 

different scenarios. 

the sucSCA algorithm. 

5.3.3 Spatial constraint SCA (scSCA) algorithm 

Recall from (5.1) that the measured signal at the t-th time instant can be expressed 

as 

x(t) = As(t) = L
n 

si(t)ai, t = 1, ... , T. (5.40) 
i=I 

In the previous two subsections we proposed two new algorithms for extracting the 

desired signal sJ(t), when some information about its temporal characteristics are 

available. In this subsection we propose a new algorithm for estimating the desired 

signal when some information is available about its spatial distribution, i.e., its mixing 

vector aj· The mixing vector aj represents the contribution of the desired signal at 

the measuring sensors. In the field of EEG /MEG signal processing, the vector aj 

represents the topographic map of the desired signal. 
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The topographic maps of some of the desired signals are known a priori, or can 

be estimated using visual inspection. In these cases, a reference vector of each one of 

these maps can be readily constructed. For example, it is known that the eye blink 

artifact contaminates the frontal electrodes. Accordingly a reference spatial vector 

for this source can be constructed by generating a vector of size n (the number of 

sensors), and filling this vector by zeros and ones, where the indices of the nonzero 

entries correspond to those of the frontal electrodes. 

Given some reference vectors for some of the mixing columns, previous approaches 

for estimating the corresponding sources were proposed in (118, 120, 121]. These 

approaches are based on modifying an ICA based algorithm in a way that some of 

the columns of the mixing matrix are initialized by the reference vectors and kept fixed 

during the optimization process. This approach is known as a hard spatial constraint. 

This type of hard spatial constraint is only advisable when the reference vectors are 

very close to the mixing columns of the desired sources [122). Another approach, 

called soft spatial constraint [118], allows the columns of the mixing matrix that were 

initialized by the reference vectors to change slightly during the optimization process. 

In both cases, all components must be estimated first, then the desired signals are 

identified as the components associated with the reference mixing columns. 

In this subsection we propose a new algorithm that can extract a sparse signal 

when prior information about its mixing column his provided by a reference vector rs. 

The prior information could be the sign of the individual entries of the mixing column, 

or rough estimate of the contribution of the desired source at different electrodes. 

In the proposed scSCA algorithm, the correlation coefficient between the reference 

vector rs and the mixing column h will be used as a measure of closeness between 

the two vectors. Therefore, in this case, the objective function 3r(b; r) in (5.20) can 

be expressed as 3r(b; r) = -hrrs· To express this objective function in terms of 

the separating vector b, rather than the mixing vector h, recall from (5.19) that, the 
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Table 5.4: Spatial constraint SCA 

[y, b] = scSCA(X, T 8 ) 

Select a small threshold parameter c, and calculate Rx = X XT. Generate a random 
-+ 

vector Yci, then set the initial estimate of the desired source as f/0 = :f-;0 e 
11 11 2 

1. Fork= 0, 1, ... , repeat until convergence: 

t = 1, ... ,T.• Calculate vVk[t, t] = 

• Calculate the separating vector: bk+l = (XWkXTr
1 

Rxrs 

• Get a new estimate of the desired signal: Yk+l = :k+iJ . 
II k+l lle2 

2. Output Yk+l and bk+l as the solutions. 

End 

r-T 

mixing column of an estimated source y = bX is given by h = ~i"t; ~ b , where bis1 2
the corresponding separating vector. Substituting this expression into the expression 

of Jr(b; r), the optimization problem (5.20) in this case is expressed as 

- bXXTrT 
bs - argmln llbXwkm2 - "! lliill~ s2 

subject to I!bl le2 = 1. (5.41) 

Recall that the constraint I!bl le2 = 1 was introduced into the optimization problem 

(5.20) to prevent the entries of the solution b from growing without limit, and hence 

producing a minimum equal to -oo. However, this goal can also be accomplished by 

constraining the norm of the extracted signal, i.e., by setting lliille2 = 1. Accordingly, 

168 




Ph.D. Thesis - Nasser Mourad McMaster - Electrical & Computer Engineering 

by replacing the constraint llbl\e2 = 1 in (5.41) by the constraint 111/l\e2 = 1, the 

optimization problem (5.41) becomes more tractable and is reduced to the following 

expression 

(5.42) 

where Rx= XXr. 

The optimization problem (5.42) can be solved in two steps, where in the first 

step an estimate of the separating vector bs is obtained by minimizing the objective 

function Js(b;r), then in the second step the constraint 111111~2 = 1 is satisfied by 

projecting the vector y = b8 X onto the surface of the unit circle. A new value of the 

diagonal matrix Wk is then calculated using y, and the procedure is repeated until 

convergence. The overall algorithm is summarized in Table 5.4. Note that the value 

of the solution vector does not depend on the value of the regularization parameter 

/ due to the normalization step. Examples for the scSCA approach are given in the 

next section. 

5.4 Simulation results 

In this section we present four different examples that demonstrate the ability of the 

proposed algorithms in estimating sparse sources. In the first example we provide a 

comparison between the first algorithm summarized in Table 5.1 and the FastICA al­

gorithm [52]. The remaining examples demonstrate the ability of the cSCA algorithms 

in extracting some desired signals from EEG data when different prior information 

about the desired signals is available. 
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Figure 5.3: Results of Example 1. (a) Original source signals, (b) Mixed signals, (c) 

and (d) Estimated source signals using the BSSE algorithm and the FastICA algorithm, 

respectively. 

Example 1: Comparison between BSSE and ICA 

In this example we provide a comparison between the BSSE algorithm, summarized 

in Table 5.1, and the FastICA algorithm in solving the BSS problem when the hidden 

sources are sparse. The measured signals are generated by multiplying a (5 x 50) ran­

domly generated sparse source matrix by a square mixing matrix A E }R5 x 5 randomly 

generated from a white normal distribution with zero mean and unit variance. Each 

row of the sparse source matrix S is constructed such that it has exactly 8 nonzero 

entries. The indices of these 8 entries are randomly selected, and their amplitudes 

are chosen from a uniform distribution between ±1. The sources and the measure­

ments are shown in Figure 5.3(a) and (b), respectively. The estimated sources using 
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Figure 5.4: The average NMSE between the estimated sources and the original ones. The 

x axis represents the indices of the original sources, and the y axis represents the average 

NMSE over 200 different runs corresponding to 200 different selections of the square mixing 

matrix. The figures (a)-(d) correspond to the cases n = 5, 10, 15, and 20, respectively. 

the proposed algorithm and the FastICA algorithm are shown in Figure 5.3(c) and 

Figure 5.3(d), respectively. As shown in these two figures, the original sources are 

estimated correctly using the proposed algorithm, while the estimated sources using 

FastICA are not sparse enough. 

Figure 5.4 provides a comparison between the proposed BSSE algorithm and the 

FastICA algorithm in terms of the average NMSE and the size of the BSS problem. 

In this figure, we consider the following four different values of the number of sources, 

n = 5, 10, 15, and 20, respectively. For each value of n, a sparse (n x 100) source 

matrix is generated, and 200 different square mixing matrices are generated. For 

1 1-4-FastlCA I 
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each one of the mixing matrices, the BSS problem is solved using the proposed BSSE 

algorithm and the FastICA algorithm. The NMSE between each source and the 

corresponding estimate is calculated, and the average over the 200 different trials 

is plotted in Figure 5.4. As shown in this figure, and for each source in the four 

different cases, the average N!vISE for the proposed algorithm is smaller than that 

of the FastICA algorithm. Accordingly, the proposed algorithm can estimate sparse 

sources more accurately than the FastICA algorithm. 

Example 2: Comparison between the tcSCA, scSCA, and sucSCA algo­

rithms 

In this example we compare the performance of the three proposed cSCA algorithms 

in estimating a desired sparse source signal. The comparison is done in terms of 

the average NMSE (between the desired and the estimated source signals) and the 

average convergence time. The experiment is performed for the cases n = 4, 6, ... , 20. 

For each value of n, a sparse source matrix S E IRnxwoo is generated such that 30% 

of its columns satisfy the disjoint orthogonality property. For each row of S, the 

indices of the nonzero entries are randomly selected, and their amplitudes are chosen 

from a uniform distribution between ±1. The measurement matrix X E ]Rnxwoo 

is constructed by multiplying the source matrix S by a square mixing matrix A E 

IRnxn randomly generated from a white normal distribution with zero mean and unit 

variance. The first source signal s1, the first row of S, is selected as the desired source 

signal. 

The reference vector ft for the tcSCA algorithm is constructed as ft = s 1 + v, 

where v is a zero mean Gaussian random noise. The amplitude of v is adjusted to 

produce 0 dB SNR. The reference vector f su for the sucSCA algorithm is selected 

as f'su =sign (/s11). The reference vector rs for the scSCA algorithm is constructed 

as r 8 = sign ( a 1), where a 1 is the mixing column associated with the desired source 
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Figure 5.5: Comparison between the tcSCA, scSCA, and sucSCA algorithms. (a)-(b) The 
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signal. 

For each value of n, the average NMSE and the average convergence time are 

calculated as the average over 1000 different runs, where in each run a new mixing 

matrix and a new sparse source matrix are generated. The results are shown in 

Figure 5.5(a)-(b). As shown in these two figures, the tcSCA algorithm has the best 

performance in terms of the average NMSE and the average convergence time, whereas 

the scSCA algorithm has the worst performance. This result is expected since the 

reference vector used with the tcSCA algorithm contains more information about the 

desired source signal than the other two algorithms. On the other hand, the poorer 

performance of the scSCA algorithm is due to the following factors: 1) the scSCA 

algorithm does not have any temporal information about the desired source signal, 

2) all the source signals are sparse and have the same sparsity, and 3) there could 

be more than one column of the mixing matrix that has the same sign pattern as 

the reference vector T 8 • Therefore, for the scSCA algorithm to produce satisfactory 

results, the desired source signal must be distinct (in terms of sparsity, amplitude, or 

sign pattern of the associated mixing column) from the other source signals. 

To check the effect of the amplitude of the desired source signal on the performance 

of the scSCA algorithm, the experiment is repeated with the amplitude of the desired 

source signal 5 times larger than that of the other source signals. The results of 

this new experiment are shown in Figure 5.5(c)-(d). As shown in these figures, the 

performance of the scSCA algorithm is remarkably enhanced. Similar performance 

enhancement is expected if the desired source signal is the sparsest source signal, or 

if the sign pattern of the mixing column associated with the desired source signal is 

distinct from that of the other mixing columns. 
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Figure 5.6: Automatic removal of eye blink artifact from real EEG data using the tcSCA 

algorithm. (a) Original EEG data, (b) The signals from top to bottom correspond to 

the extracted eye blink artifact, the denoised eye blink artifact, and the reference signal, 

respectively, (c) Clean version of the EEG data shown in (a). 
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Figure 5.7: Automatic removal of eye blink artifact from real EEG data using the scSCA 

algorithm. (a) Reference topographic map, (b) The topographic map of the extracted 

artifact, (c) The upper signal correspond to the extracted eye blink, while the lower signal 

is the denoised eye blink artifact, (d) Clean version of the EEG data shown in Figure 5.6(a) 
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Example 3: Rejection of eye blink artifact from real EEG data 

In this example we demonstrate the ability of the tcSCA algorithm and the scSCA 

algorithm in extracting the eye blink artifact contaminating real EEG data shown in 

Figure 5.6(a). Removing the eye blink artifact from a recorded EEG data using ICA 

is usually done in three steps. In the first step, called the processing step, the ICA 

algorithm is applied on the EEG data and an estimate of the independent components 

and the associated mixing columns is obtained. In the second step, which is called 

the investigation step, both the estimated mixing matrix and the estimated compo­

nents are carefully investigated to identify the components corresponding to the eye 

blink artifact. The decision is usually made based on the waveform of the suspected 

component and its mixing column which is usually depicted by a topographic map 

that represents the contribution of the eye blink artifact at each electrode. If the 

topographic map and the waveform of one of the components correspond to those of 

the eye blink artifact, this component is marked as the desired artifact. Finally, in 

the third step the component corresponding to the eye blink artifact is set to zero 

and the all the remaining components are recombined to reconstruct the clean EEG 

data. 

Clearly the most tedious step in the aforementioned procedure is the investigation 

step, during which all the sources and their associated maps are checked carefully 

to identify the artifact. This process is difficult to automate. In this example we 

show that the second step can be completely eliminated by using either the tcSCA 

algorithm or the scSCA algorithm for extracting only the desired source signal. In 

the tcSCA algorithm we use a reference signal which conveys temporal information 

about the eye blink artifact. This reference signal is extracted from one of the frontal 

electrodes, say Fl, by setting to zero all samples with absolute value less than a 

threshold of 50 µv. This reference signal is shown by the third waveform in Figure 

5.6(b). On the other hand, the reference vector for the scSCA algorithm is an (n x 1) 
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vector of zeros except for those indices corresponding to the frontal electrodes, for 

which the reference vector equals one. The topographic map of this reference vector 

is shown in Figure 5.7(a). 

After running the tcSCA algorithm and the scSCA algorithm on the EEG data 

shown in Figure 5.6(a), each with its own reference vector, both algorithms converge 

successfully to the desired artifact signal. The extracted signals are shown by the 

first waveform in Figure 5.6(b) and Figure 5.7(c), respectively. The second waveform 

in each one of these figures represents a denoised version of the estimated artifact, 

where the denoising step is performed using wavelet analysis. Figure 5. 7(b) shows 

the topographic map of the extracted source using scSCA algorithm. Clearly this 

topographic map corresponds to the expected topographic map of the eye blink ar­

tifact, for which Fl and F2 are the most contaminated electrodes. Finally, the clean 

EEG data is obtained by removing the denoised signals from the original EEG data 

using the technique mentioned in Section 5.2.2. The cleaned EEG data obtained after 

running the tcSCA algorithm and the scSCA algorithm are shown in Figure 5.6(c) 

and Figure 5. 7( d), respectively. Clearly the eye blink artifact is removed successfully 

in both cases. 

Example 4: Elimination of a line voltage interference from a recorded EEG 

data using the sucSCA algorithm 

In this example we present an application for which the sucSCA algorithm is appropri­

ate. In the field of EEG signal processing, the measured signal is usually contaminated 

by 50/60 Hz line voltage. This line voltage interference is usually removed from the 

measured EEG data using a notch filter with the correct center frequency. However, 

this filtering approach is not appropriate if a useful brain signal occupies a frequency 

band around 50/60 Hz. To overcome this difficulty, we propose utilizing the sucSCA 

algorithm for extracting the line voltage interference in the frequency domain. Note 
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Figure 5.8: (a) Simulated EEG data (b) The simulated EEG data contaminated with a 60 


Hz line voltage interference, ( c) Cleaned EEG data using the sucSCA algorithm. 
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that, the sucSCA algorithm, rather than the tcSCA algorithm, is used in this exam­

ple for removing the line voltage interference because the phase of the interference 

sinusoidal signal is generally unknown. 

The EEG data utilized in this example was generated as follows. First, a synthe­

sized EEG data matrix X, which corresponds to the background brain activity, and 

a 60 Hz sinusoidal signal s were generated. The phase of the generated sinusoidal 

signal was chosen randomly. Then the overall EEG data matrix X was generated as 

X = as+ X, where a is a mixing column randomly generated from a white normal 

distribution with zero mean and unit variance. The simulated EEG data X and the 

contaminated data X are shown in Figure 5.8(a) and (b), respectively. As shown 

in Figure 5.8(b), the EEG data is heavily contaminated by the 60 Hz line voltage 

interference. 

Since the 60 Hz interference signal is not sparse in the time domain but very sparse 

in the frequency domain, all the analysis is performed in the frequency domain. Let 

X (J) denote the discrete time Fourier transform of the original EEG data matrix X. 

The input data matrix to the sucSCA algorithm is constructed by concatenating the 

real and the imaginary parts of X(f). The reference signal to the sucSCA algorithm 

is constructed in the following steps. First a time domain reference signal r(t) = 

sin(27r60t) is generated. Then this signal is transformed into the frequency domain 

using the fast Fourier transform, i.e., r(f) = fft (r(t)). Finally, the reference vector for 

the sucSCA algorithm is constructed as f'su = abs ([real(r(f)) imag(r(J))]). After 

extracting the interference signal using the sucSCA algorithm, the extracted signal is 

removed from the EEG data matrix using the technique presented in Section 5.2.2. 

The cleaned EEG data is shown in Figure 5.8(c). Comparing the cleaned EEG data 

with the original EEG data shown in Figure 5.8(a), it is clear that the 60 Hz line 

voltage interference is successfully removed from the EEG data using the sucSCA 

algorithm. On the other hand, the signal to interference ratio (SIR) between the 
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original EEG data and the contaminated EEG data is -6.3461 dB, while the SIR 

between the original EEG data and the cleaned EEG data is 12.7489 dB, i.e., the 

improvement in the SIR is 19.1 dB. 

Example 5: Estimation of the ERP signal from a limited number of trials 

The event related potential (ERP) signal is defined as the brain activity in response to 

an external stimulus such as a sound. The ERP signal is phase-locked to the stimulus 

onset, and its signal to noise ratio (SNR) relative to the background brain activity 

is low. The conventional approach for estimating the ERP signal is to average over 

a large number of trials of the measured EEG data. This approach is motivated by 

the fact that the background brain activity is not phase locked to the stimulus onset, 

and that the ERP waveform is independent of the background brain activity. Hence, 

if the number of trials is sufficiently large, the background EEG will be suppressed in 

the averaged signal. This averaging approach depends also on the assumption that 

the amplitude and the latency of the ERP signal do not change from trial to trial. 

However, there is evidence to suggest that the ERP signal is associated with a random 

amplitude and a random delay at each trial [124-127). Accordingly, by following the 

averaging procedure, the amplitude and latency variations of the ERP signal between 

different trials will distort the estimated ERP signal. 

Accurate estimation of the amplitude and the latency parameters of the ERP 

signal in each individual trial is particularly important for clinical applications such 

as the diagnosis of possible brain injury or disorders in the central nervous system [124] 

because these measures indicate how the brain processes the presented stimuli [128]. 

Furthermore, with current techniques that largely involve averaging across trials, it 

is not possible to study fast learning phenomena, which could involve changes from 

trial to trial in both latency and amplitude. 

Another drawback associated with the averaging approach is that the accuracy of 
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Figure 5.9: (a) Template for the implanted ERP signal (dotted curve) and the averaged 

ERP signal at the first electrode of the generated EEG data (continuous curve), (b) The 

constructed EEG data for Example 3. 
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the estimated ERP signal depends on the number of the averaged trials. The larger 

the number of trials is, the better the estimation of the ERP signal. However, there 

are many situations at which the number of available clean trails is very small. For 

example, for the case of infant's EEG data, the recording time is usually short, and 

the recorded data is usually contaminated with very large movement artifacts, which 

limits the number of clean trials. 

Based on this introduction, it is clear that there is a need to track the variation 

of the ERP signal from trial to trial, and also to estimate the ERP signal from a 

limited number of trials. In the remaining part of this example we will show that 

both the tcSCA and the scSCA algorithms can estimate the waveform including the 

amplitude and latency variations of the ERP signal at each individual trial, even 

when the number of trials is limited. This enables a more accurate estimation of the 

ERP signal to be made. 

Towards that end, a synthesized EEG data matrix X, which corresponds to the 

background brain activity, is generated. The number of rows of this EEG data matrix 

is 20, and the number of columns is 3100, which corresponds to 10 trials each of which 

has a duration of 0.5 seconds. For constructing a varying ERP signal, a single trial 

ERP signal is generated and used as a template for the other trials. This template 

signal is shown as the dotted signal in Figure 5.9(a). The overall ERP signals is then 

constructed by concatenating 10 different templates of the ERP signal, where each 

of them is associated with random amplitude and random delay. The waveform of 

this ERP signal is shown by the upper waveform in Figure 5.lO(a) or Figure 5.lO(b). 

The overall data matrix X, which corresponds to the measured EEG data matrix, 

is generated as X = as + X, where a is a mixing column with random entries that 

are uniformly distributed between ±0.9. The mixing vector a corresponds to the 

topographic map of the ERP signal. The constructed EEG data is shown in Figure 

5.9(b). As shown in this figure, the implanted ERP signal is invisible in any channel. 
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For the ERP signal 8 to be estimated from the measured EEG data matrix X 

using either the tcSCA algorithm or the scSCA algorithm, an appropriate reference 

vector must be generated. For the tcSCA algorithm, the reference vector must convey 

information about the waveform and the timing of the ERP signal in each trial. 

Assume that the average latency of the peak of the ERP signal in each trial is known, 

which is usually the case (in the presented example, this time is 0.18 seconds after 

the stimulus onset). Then, for the presented example, a reference signal for the ERP 

signal 8 can be generated by generating a train of pulses each of which has a fixed 

amplitude and a fixed latency equal to 0.18 seconds after the stimulus onset. The 

value of the amplitude parameter of this reference signal is not critical, however, its 

latency (or position in time) is very important. The waveform of the reference signal 

is presented by the second waveform in Figure 5.lO(a). 

On the other hand, for estimating the ERP signal using the scSCA algorithm, 

a reference vector for the mixing vector a must be generated. This vector can be 

constructed by incorporating prior information about the topographic map of the 

ERP signal. For example, if the amplitude parameter of the ERP signal is known 

a priori to be positive over the frontal electrodes and negative over the occipital 

electrodes, the entries of the reference vector in this case can be selected as the 

sign of the amplitude parameter of the ERP signal at each electrode. We followed 

this procedure in the presented example, i.e, we selected rs = sign(a). The results 

of the tcSCA algorithm and the scSCA algorithm are shown in Figure 5.IO(a) and 

(b), respectively. The estimated ERP signal in each case is presented by the lower 

waveform in the corresponding figure. A denoised version of the estimated ERP signal 

is obtained by performing a wavelet analysis and is shown in the third and second 

waveforms in Figure 5.IO(a) and (b), respectively. 

As shown in these two figures, the ERP signal is estimated correctly, and the 

variations of the amplitude and the delay parameters are preserved in the estimated 
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Figure 5.10: (a) Different ERP signals associated with the tcSCA algorithm. The signals 

top to bottom are the original ERP signal, the template signal, the denoised version of 

the estimated ERP signal, and the estimated ERP signal, respectively. (b) Different ERP 

signals associated with the scSCA algorithm. The signals from top to bottom are the 

original ERP signal, the denoised version of the estimated ERP signal, and the estimated 

ERP signal, respectively. 
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signals. On the other hand, the continuous waveform shown in Figure 5.9(a) presents 

the ERP signal obtained by averaging trials over the first row in the data matrix X. 

As shown in this figure, the SNR of the averaged ERP signal is very low, and the 

averaged signal is, unlike those obtained by the proposed method, severely distorted. 

This is a direct result of the limited number of trials and the random variation in the 

amplitude and the delay parameters of the ERP signal in each trial. 

5.5 Conclusion 

In this chapter we proposed four novel algorithms for solving the problem of BSE when 

the desired source signals are sparse. In all these algorithms, a nonconvex objective 

function is utilized for measuring the sparsity of the extracted source signal. The first 

algorithm is based on sequentially extracting sparse source signals, where the sparsity 

of the desired source signals is the only prior information utilized for estimating 

the separating vectors. Simulation results show that the proposed algorithm can 

extract sparse source signals with relatively smaller residual error than the FastICA 

algorithm. 

On the other hand, the other proposed algorithms are based on incorporating prior 

information about the desired signal, in addition to its sparsity, into the optimization 

problem designed for extracting the desired source signal. This class of algorithms was 

called constrained SCA (cSCA). The first algorithm in this class is based on utilizing 

a reference signal that conveys temporal information about the desired source signals. 

The proposed algorithm has two different versions, depending on the measure of 

closeness between the extracted source signal and the reference signal. The second 

algorithm in this class is based on utilizing a reference signal that conveys information 

about the support of the desired sparse source signal. This algorithm is useful when 

there is an ambiguity associated with the sign of each sample of the desired source 

186 




Ph.D. Thesis - Nasser Mourad McMa.ster - Electrical & Computer Engineering 

signal. This algorithm was utilized successfully in removing the (50/60 Hz) line 

voltage interference from a simulated EEG data. The last algorithm that we proposed 

in this chapter can extract the desired sparse source signal when prior information 

about its mixing column is available. Previous approaches for solving this problem 

can not estimate a single source signal, and are based on the ICA technique, hence 

does not enforce the sparsity of the desired source signal. Simulation results show that 

the three algorithms can be successfully used for removing different kind of artifacts 

from real EEG data and for estimating the ERP signal from synthesized EEG data. 
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Chapter 6 

Conclusion and future work 

In this thesis we discussed the utilization of the sparsity concept in solving three 

challenging problems. The first problem that we have discussed is finding a unique 

solution to an under-determined linear system of equations in which the number of 

equations is less than the number of unknowns. We showed that a unique solution 

vector can be obtained if it is sparse or can be sparsely represented under a suitable 

linear transformation. In this regard, we developed a new methodology for minimizing 

a class of nonconvex objective functions that measure the diversity (anti-sparsity) of 

the solution vector. The proposed technique is based on locally replacing the original 

objective function by a quadratic convex function which is easily minimized. We 

showed that, for a certain selection of the convex objective function, the class of 

algorithms called Iterative Re-weighted Least Squares (IRLS) can be derived from 

the proposed methodology. Thus the proposed algorithms are a generalization and 

unification of the previous methods. In this thesis we also proposed a convex objective 

function that produced an algorithm that can converge to the sparse solution vector 

in a significantly fewer number of iterations than the IRLS algorithms. 

The second problem that we have discussed in this thesis is finding a unique solu­

tion to the under-determined BSS problem, in which the number of sources is greater 
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than the number of sensors. The difficulty associated with this problem is that both 

the mixing matrix and the source signals are unknowns. Moreover, in this thesis, we 

considered the more practical case in which the number of sources is also unknown. 

The under-determined BSS problem is usually solved by following the two-step SCA 

approach, in which the mixing matrix is estimated first via clustering the columns of 

the measurements matrix, then the sources are estimated using a compressed sensing 

technique, e.g., an IRLS algorithm. In this regard, we developed three novel different 

clustering algorithms that are robust to the presence of noisy and/or outlier mea­

surements. \Ve have also suggested two parameters, called concentration parameters 

(CP), for identifying the number of sources from the estimated clusters. Combin­

ing the clustering algorithms with the CPs, both the mixing matrix and the number 

of sources have been estimated with high accuracy compared with some clustering 

algorithms that are usually used for solving the same problem. 

The third problem that we have discussed in this thesis is extracting a sparse 

source signal from a linear mixture of unknown source signals. We also considered 

the case in which some prior information is available about the desired source signal in 

addition to its sparsity. In this regard we developed four novel algorithms. The first 

algorithm is based on sequentially extracting sparse source signals, while the remain­

ing three algorithms utilize a priori available information to extract a desired source 

signal. Numerical simulations show that the proposed algorithms can be successfully 

used for removing different kind of artifacts from real electroencephalographic (EEG) 

data and for estimating the event related potential (ERP) signal from synthesized 

EEG data. 

6.1 Suggestions for future research 


The following research points can be considered in the near future: 
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1. 	 Developing the MCCR algorithm to the case of noisy measurements. 

2. 	 Developing the MCCR algorithm for the case when the sparse solution vector 

has a certain structure. This has a practical application in the field of brain 

source localization. For brain source localization, it is known that the brain 

source that generates the measured ERP signal is confined in a certain region 

in the brain, which could be unknown. Accordingly, by constraining the solu­

tion vector to be block-sparse, i.e., the nonzero entries are confined in separate 

blocks, better estimate of the brain source that generates the ERP signal can 

be obtained. 

3. 	 The PMCCR algorithm produced very promising result in estimating a sparse 

solution vector from few number of measurements. However, the computational 

cost of the Ptv1CCR algorithm inhibits it from a practical use, especially for large 

scale problems. Adjusting the perturbation process in the PMCCR algorithm 

in a controlled manner, rather than random perturbation, is a topic of future 

research. 

4. 	 Developing a new algorithm for building dictionary matrices that produce better 

sparse representation of certain class of signals, e.g., sound signals or EEG 

signals, than the existing general purpose dictionaries, e.g., the vavelet related 

dictionaries. 

5. 	 Generalizing the BSSE algorithm, which is developed in Chapter 5, to the un­

derdetermined BSS problem. 
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